Sample records for simple passive diffusion

  1. Scaling laws of passive-scalar diffusion in the interstellar medium

    NASA Astrophysics Data System (ADS)

    Colbrook, Matthew J.; Ma, Xiangcheng; Hopkins, Philip F.; Squire, Jonathan

    2017-05-01

    Passive-scalar mixing (metals, molecules, etc.) in the turbulent interstellar medium (ISM) is critical for abundance patterns of stars and clusters, galaxy and star formation, and cooling from the circumgalactic medium. However, the fundamental scaling laws remain poorly understood in the highly supersonic, magnetized, shearing regime relevant for the ISM. We therefore study the full scaling laws governing passive-scalar transport in idealized simulations of supersonic turbulence. Using simple phenomenological arguments for the variation of diffusivity with scale based on Richardson diffusion, we propose a simple fractional diffusion equation to describe the turbulent advection of an initial passive scalar distribution. These predictions agree well with the measurements from simulations, and vary with turbulent Mach number in the expected manner, remaining valid even in the presence of a large-scale shear flow (e.g. rotation in a galactic disc). The evolution of the scalar distribution is not the same as obtained using simple, constant 'effective diffusivity' as in Smagorinsky models, because the scale dependence of turbulent transport means an initially Gaussian distribution quickly develops highly non-Gaussian tails. We also emphasize that these are mean scalings that apply only to ensemble behaviours (assuming many different, random scalar injection sites): individual Lagrangian 'patches' remain coherent (poorly mixed) and simply advect for a large number of turbulent flow-crossing times.

  2. Simple rules for passive diffusion through the nuclear pore complex

    PubMed Central

    Mironska, Roxana; Kim, Seung Joong

    2016-01-01

    Passive macromolecular diffusion through nuclear pore complexes (NPCs) is thought to decrease dramatically beyond a 30–60-kD size threshold. Using thousands of independent time-resolved fluorescence microscopy measurements in vivo, we show that the NPC lacks such a firm size threshold; instead, it forms a soft barrier to passive diffusion that intensifies gradually with increasing molecular mass in both the wild-type and mutant strains with various subsets of phenylalanine-glycine (FG) domains and different levels of baseline passive permeability. Brownian dynamics simulations replicate these findings and indicate that the soft barrier results from the highly dynamic FG repeat domains and the diffusing macromolecules mutually constraining and competing for available volume in the interior of the NPC, setting up entropic repulsion forces. We found that FG domains with exceptionally high net charge and low hydropathy near the cytoplasmic end of the central channel contribute more strongly to obstruction of passive diffusion than to facilitated transport, revealing a compartmentalized functional arrangement within the NPC. PMID:27697925

  3. Passive scalars: Mixing, diffusion, and intermittency in helical and nonhelical rotating turbulence

    NASA Astrophysics Data System (ADS)

    Imazio, P. Rodriguez; Mininni, P. D.

    2017-03-01

    We use direct numerical simulations to compute structure functions, scaling exponents, probability density functions, and effective transport coefficients of passive scalars in turbulent rotating helical and nonhelical flows. We show that helicity affects the inertial range scaling of the velocity and of the passive scalar when rotation is present, with a spectral law consistent with ˜k⊥-1.4 for the passive scalar variance spectrum. This scaling law is consistent with a phenomenological argument [P. Rodriguez Imazio and P. D. Mininni, Phys. Rev. E 83, 066309 (2011), 10.1103/PhysRevE.83.066309] for rotating nonhelical flows, which follows directly from Kolmogorov-Obukhov scaling and states that if energy follows a E (k ) ˜k-n law, then the passive scalar variance follows a law V (k ) ˜k-nθ with nθ=(5 -n ) /2 . With the second-order scaling exponent obtained from this law, and using the Kraichnan model, we obtain anomalous scaling exponents for the passive scalar that are in good agreement with the numerical results. Multifractal intermittency models are also considered. Intermittency of the passive scalar is stronger than in the nonhelical rotating case, a result that is also confirmed by stronger non-Gaussian tails in the probability density functions of field increments. Finally, Fick's law is used to compute the effective diffusion coefficients in the directions parallel and perpendicular to rotation. Calculations indicate that horizontal diffusion decreases in the presence of helicity in rotating flows, while vertical diffusion increases. A simple mean field argument explains this behavior in terms of the amplitude of velocity fluctuations.

  4. A passive sampler for airborne formaldehyde

    NASA Astrophysics Data System (ADS)

    Grosjean, Daniel; Williams, Edwin L.

    A simple, inexpensive passive sampler is described that is capable of reliable measurements of formaldehyde at the parts per billion (ppb) levels relevant to indoor and outdoor air quality. The passive sampler consists of a modified dual filter holder in which the upper stage serves as the diffusion barrier, the lower stage includes a 2,4-dinitrophenylhydrazine (DNPH)-coated filter which collects formaldehyde, and the space between the two stages serve as the diffusion gap. The measured sampling rate, 18.8 ± 1.8 ml min -1, was determined in experiments involving sampling of ppb levels of formaldehyde with the passive sampler and with DNPH-coated C 18 cartridges and agrees well with the value of 19.4 ± 2.0 ml min -1 calculated from theory. The measured sampling rate was independent of formaldehyde concentration (16-156 ppb) and sampling duration (1.5-72 h). The precision of the measurements for colocated passive samplers averaged 8.6% in purified and indoor air (office and museums) and 10.2% in photochemically polluted outdoor air. With a 1.2-μm pore size Teflon filter as the diffusion barrier, the detection limit is 32 ppb h, e.g. 4 ppb in an 8-h sample, 1.3 ppb in a 24-h sample, and so on. Perceived advantages and limitations of the sampler are discussed including flexibility, cost effectiveness and possible negative bias at high ambient levels of ozone.

  5. Scaling behavior in corrosion and growth of a passive film.

    PubMed

    Aarão Reis, F D A; Stafiej, Janusz

    2007-07-01

    We study a simple model for metal corrosion controlled by the reaction rate of the metal with an anionic species and the diffusion of that species in the growing passive film between the solution and the metal. A crossover from the reaction-controlled to the diffusion-controlled growth regime with different roughening properties is observed. Scaling arguments provide estimates of the crossover time and film thickness as functions of the reaction and diffusion rates and the concentration of anionic species in the film-solution interface, including a nontrivial square-root dependence on that concentration. At short times, the metal-film interface exhibits Kardar-Parisi-Zhang (KPZ) scaling, which crosses over to a diffusion-limited erosion (Laplacian growth) regime at long times. The roughness of the metal-film interface at long times is obtained as a function of the rates of reaction and diffusion and of the KPZ growth exponent. The predictions have been confirmed by simulations of a lattice version of the model in two dimensions. Relations with other erosion and corrosion models and possible applications are discussed.

  6. Evaluation of the ability of arsenic species to traverse cell membranes by simple diffusion using octanol-water and liposome-water partition coefficients.

    PubMed

    Chávez-Capilla, Teresa; Maher, William; Kelly, Tamsin; Foster, Simon

    2016-11-01

    Arsenic metabolism in living organisms is dependent on the ability of different arsenic species to traverse biological membranes. Simple diffusion provides an alternative influx and efflux route to mediated transport mechanisms that can increase the amount of arsenic available for metabolism in cells. Using octanol-water and liposome-water partition coefficients, the ability of arsenous acid, arsenate, methylarsonate, dimethylarsinate, thio-methylarsonate, thio-dimethylarsinic acid, arsenotriglutathione and monomethylarsonic diglutathione to diffuse through the lipid bilayer of cell membranes was investigated. Molecular modelling of arsenic species was used to explain the results. All arsenic species with the exception of arsenate, methylarsonate and thio-methylarsonate were able to diffuse through the lipid bilayer of liposomes, with liposome-water partition coefficients between 0.04 and 0.13. Trivalent arsenic species and thio-pentavalent arsenic species showed higher partition coefficients, suggesting that they can easily traverse cell membranes by passive simple diffusion. Given the higher toxicity of these species compared to oxo-pentavalent arsenic species, this study provides evidence supporting the risk associated with human exposure to trivalent and thio-arsenic species. Copyright © 2016. Published by Elsevier B.V.

  7. Use of Inert Gases to Study the Interaction of Blood Flow and Diffusion during Passive Absorption from the Gastrointestinal Tract of the Rat

    PubMed Central

    Levitt, Michael D.; Levitt, David G.

    1973-01-01

    Measurement of the relative absorption rates of inert gases (H2, He, CH4, SF6, and 133Xe) was used to investigate the interaction between diffusion and blood flow during passive absorption from the stomach, small bowel, and colon of the rat. If uptake is blood flow limited, the gases should be absorbed in proportion to their solubilities in blood, but if diffusion limited, uptake should be proportional to the diffusion rate of the gases in mucosal tissues. The observed absorption data were fitted to a series of models of interaction between perfusion and diffusion. A simple model accurately predicted the absorption rates of the gases from all segments of bowel. In this model, gas is absorbed into two distinct blood flows: one which flows in proximity to the lumen and completely equilibrates with the lumen, and a second which is sufficiently rapid and distant from the lumen that its gas uptake is entirely diffusion limited. The fraction of the total absorption attributable to the equilibrating flow can be readily calculated and equalled 93%, 77%, and 33% for the small bowel, colon, and stomach, respectively. Thus the rate of passive absorption of gases from the small bowel is limited almost entirely by the blood flow to the mucosa, and absorption from the stomach is largely limited by the diffusion rate of the gases. The flow which equilibrates with the lumen can be quantitated, and this flow may provide a useful measure of “effective” mucosal blood flow. Images PMID:4719667

  8. Assessment of passive muscle elongation using Diffusion Tensor MRI: Correlation between fiber length and diffusion coefficients.

    PubMed

    Mazzoli, Valentina; Oudeman, Jos; Nicolay, Klaas; Maas, Mario; Verdonschot, Nico; Sprengers, Andre M; Nederveen, Aart J; Froeling, Martijn; Strijkers, Gustav J

    2016-12-01

    In this study we investigated the changes in fiber length and diffusion parameters as a consequence of passive lengthening and stretching of the calf muscles. We hypothesized that changes in radial diffusivity (RD) are caused by changes in the muscle fiber cross sectional area (CSA) as a consequence of lengthening and shortening of the muscle. Diffusion Tensor MRI (DT-MRI) measurements were made twice in five healthy volunteers, with the foot in three different positions (30° plantarflexion, neutral position and 15° dorsiflexion). The muscles of the calf were manually segmented on co-registered high resolution anatomical scans, and maps of RD and axial diffusivity (AD) were reconstructed from the DT-MRI data. Fiber tractography was performed and mean fiber length was calculated for each muscle group. Significant negative correlations were found between the changes in RD and changes in fiber length in the dorsiflexed and plantarflexed positions, compared with the neutral foot position. Changes in AD did not correlate with changes in fiber length. Assuming a simple cylindrical model with constant volume for the muscle fiber, the changes in the muscle fiber CSA were calculated from the changes in fiber length. In line with our hypothesis, we observed a significant positive correlation of the CSA with the measured changes in RD. In conclusion, we showed that changes in diffusion coefficients induced by passive muscle stretching and lengthening can be explained by changes in muscle CSA, advancing the physiological interpretation of parameters derived from skeletal muscle DT-MRI. Copyright © 2016 John Wiley & Sons, Ltd.

  9. A novel in-plane passive microfluidic mixer with modified Tesla structures.

    PubMed

    Hong, Chien-Chong; Choi, Jin-Woo; Ahn, Chong H

    2004-04-01

    An innovative in-plane passive micromixer using modified Tesla structures, which are used as passive valves, has been designed, simulated, fabricated and successfully characterized in this paper. Simulation and experimental results of the developed novel micromixer have shown excellent mixing performance over a wide range of flow conditions in the micro scale. The micromixer realized in this work has achieved even better mixing performance at a higher flow rate, and its pressure drop is less than 10 KPa at the flow rate of 100 microl min(-1). This micromixer shows characteristics similar to Taylor dispersion, with contributions from both diffusion and convection. The mixer has a diffusion domain region at low flow rate, but it moves to a convection domain region at high flow rate. Due to the simple in-plane structure of the novel micromixer explored in this work, the mixer can be easily realized and integrated with on-chip microfluidic devices and micro total analysis systems (micro-TAS).

  10. Enhanced Organic Solar Cell Stability through the Effective Blocking of Oxygen Diffusion using a Self-Passivating Metal Electrode.

    PubMed

    Lee, Hansol; Jo, Sae Byeok; Lee, Hyo Chan; Kim, Min; Sin, Dong Hun; Ko, Hyomin; Cho, Kilwon

    2016-03-08

    A new and simple strategy for enhancing the stability of organic solar cells (OSCs) was developed by using self-passivating metal top electrodes. Systematic investigations on O2 permeability of Al top electrodes revealed that the main pathways for oxidation-induced degradation could be greatly suppressed by simply controlling the nanoscale morphology of the Al electrode. The population of nanoscale pinholes among Al grains, which critically decided the diffusion of O2 molecules toward the Al-organic interfaces that are vulnerable to oxidation, was successfully regulated by rapidly depositing Al or promoting lateral growth among the Al grains, accompanied by increasing the deposition thickness. Our observations suggested that the stability of OSCs with conventional architectures might be greatly enhanced simply by controlling the fabrication conditions of the Al top electrode, without the aid of additional secondary treatments. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Use of a parallel artificial membrane system to evaluate passive absorption and elimination in small fish.

    PubMed

    Kwon, Jung-Hwan; Katz, Lynn E; Liljestrand, Howard M

    2006-12-01

    A parallel artificial lipid membrane system was developed to mimic passive mass transfer of hydrophobic organic chemicals in fish. In this physical model system, a membrane filter-supported lipid bilayer separates two aqueous phases that represent the external and internal aqueous environments of fish. To predict bioconcentration kinetics in small fish with this system, literature absorption and elimination rates were analyzed with an allometric diffusion model to quantify the mass transfer resistances in the aqueous and lipid phases of fish. The effect of the aqueous phase mass transfer resistance was controlled by adjusting stirring intensity to mimic bioconcentration rates in small fish. Twenty-three simple aromatic hydrocarbons were chosen as model compounds for purposes of evaluation. For most of the selected chemicals, literature absorption/elimination rates fall into the range predicted from measured membrane permeabilities and elimination rates of the selected chemicals determined by the diffusion model system.

  12. Coiled to diffuse: Brownian motion of a helical bacterium.

    PubMed

    Butenko, Alexander V; Mogilko, Emma; Amitai, Lee; Pokroy, Boaz; Sloutskin, Eli

    2012-09-11

    We employ real-time three-dimensional confocal microscopy to follow the Brownian motion of a fixed helically shaped Leptospira interrogans (LI) bacterium. We extract from our measurements the translational and the rotational diffusion coefficients of this bacterium. A simple theoretical model is suggested, perfectly reproducing the experimental diffusion coefficients, with no tunable parameters. An older theoretical model, where edge effects are neglected, dramatically underestimates the observed rates of translation. Interestingly, the coiling of LI increases its rotational diffusion coefficient by a factor of 5, compared to a (hypothetical) rectified bacterium of the same contour length. Moreover, the translational diffusion coefficients would have decreased by a factor of ~1.5, if LI were rectified. This suggests that the spiral shape of the spirochaete bacteria, in addition to being employed for their active twisting motion, may also increase the ability of these bacteria to explore the surrounding fluid by passive Brownian diffusion.

  13. Vertical Diffusivities of Active and Passive Tracers

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Cheng, Y.; Howard, A. M.

    2010-01-01

    The climate models that include a carbon-cycle need the vertical diffusivity of a passive tracer. Since an expression for the latter is not available, it has been common practice to identify it with that of salt. The identification is questionable since T, S are active, not passive tracers. We present the first derivation of the diffusivity of a passive tracer in terms of Ri (Richardson number) and Rq (density ratio, ratio of salinity over temperature z-gradients). The following results have emerged: (a) The passive tracer diffusivity is an algebraic function of Ri, Rq. (b) In doubly stable regimes (DS, partial derivative of T with respect to z > 0, partial derivative of S with respect to z < 0), the passive scalar diffusivity is nearly the same as that of salt/heat for any values of Rq < 0 and Ri > 0. (c) In DC regimes (diffusive convection, partial derivative of T with respect to z < 0, partial derivative of S with respect to z < 0, Rq > 1), the passive scalar diffusivity is larger than that of salt. At Ri = O(1), it can be more than twice as large. (d) In SF regimes (salt fingers, partial derivative of T with respect to z > 0, partial derivative of S with respect to z > 0, Rq < 1), the passive scalar diffusivity is smaller than that of salt. At Ri = O(1), it can be less than half of it. (e) The passive tracer diffusivity predicted at the location of NATRE (North Atlantic Tracer Release Experiment) is discussed. (f) Perhaps the most relevant conclusion is that the common identification of the tracer diffusivity with that of salt is valid only in DS regimes. In the Southern Ocean, where there is the largest CO2 absorption, the dominant regime is diffusive convection discussed in (c) above.

  14. Convection with a simple chemically reactive passive scalar

    NASA Astrophysics Data System (ADS)

    Herring, J. R.; Wyngaard, J. C.

    Convection between horizontal stress-free perfectly conducting plates is examined in the turbulent regime for air. Results are presented for an additional scalar undergoing simple linear decay. We discuss qualitative aspects of the flow in terms of spectral and three-dimensional contour maps of the velocity and scalar fields. The horizontal mean profiles of scalar gradients and fluxes agree rather well with simple mixing-length concepts. Further, the mean profiles for a range of the destruction-rate parameter are shown to be nearly completely characterized by the boundary fluxes. Finally, we shall use the present numerical data as a basis for exploring a generalization of eddy-diffusion concepts so as to properly incorporate non-local effects.

  15. Stirring Up the Biological Pump: Vertical Mixing and Carbon Export in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Stukel, Michael R.; Ducklow, Hugh W.

    2017-09-01

    The biological carbon pump (BCP) transports organic carbon from the surface to the ocean's interior via sinking particles, vertically migrating organisms, and passive transport of organic matter by advection and diffusion. While many studies have quantified sinking particles, the magnitude of passive transport remains poorly constrained. In the Southern Ocean weak thermal stratification, strong vertical gradients in particulate organic matter, and weak vertical nitrate gradients suggest that passive transport from the euphotic zone may be particularly important. We compile data from seasonal time series at a coastal site near Palmer Station, annual regional cruises in the Western Antarctic Peninsula (WAP), cruises throughout the broader Southern Ocean, and SOCCOM (Southern Ocean Carbon and Climate Observations and Modeling) autonomous profiling floats to estimate spatial and temporal patterns in vertical gradients of nitrate, particulate nitrogen (PN), and dissolved organic carbon. Under a steady state approximation, the ratio of ∂PN/∂z to ∂NO3-/∂z suggests that passive transport of PN may be responsible for removing 46% (37%-58%) of the nitrate introduced into the surface ocean of the WAP (with dissolved organic matter contributing an additional 3-6%) and for 23% (19%-28%) of the BCP in the broader Southern Ocean. A simple model parameterized with in situ nitrate, PN, and primary production data suggested that passive transport was responsible for 54% of the magnitude of the BCP in the WAP. Our results highlight the potential importance of passive transport (by advection and diffusion) of organic matter in the Southern Ocean but should only be considered indicative of high passive transport (rather than conclusive evidence) due to our steady state assumptions.

  16. How does passive lengthening change the architecture of the human medial gastrocnemius muscle?

    PubMed

    Bolsterlee, Bart; D'Souza, Arkiev; Gandevia, Simon C; Herbert, Robert D

    2017-04-01

    There are few comprehensive investigations of the changes in muscle architecture that accompany muscle contraction or change in muscle length in vivo. For this study, we measured changes in the three-dimensional architecture of the human medial gastrocnemius at the whole muscle level, the fascicle level and the fiber level using anatomical MRI and diffusion tensor imaging (DTI). Data were obtained from eight subjects under relaxed conditions at three muscle lengths. At the whole muscle level, a 5.1% increase in muscle belly length resulted in a reduction in both muscle width (mean change -2.5%) and depth (-4.8%). At the fascicle level, muscle architecture measurements obtained at 3,000 locations per muscle showed that for every millimeter increase in muscle-tendon length above the slack length, average fascicle length increased by 0.46 mm, pennation angle decreased by 0.27° (0.17° in the superficial part and 0.37° in the deep part), and fascicle curvature decreased by 0.18 m -1 There was no evidence of systematic variation in architecture along the muscle's long axis at any muscle length. At the fiber level, analysis of the diffusion signal showed that passive lengthening of the muscle increased diffusion along fibers and decreased diffusion across fibers. Using these measurements across scales, we show that the complex shape changes that muscle fibers, whole muscles, and aponeuroses of the medial gastrocnemius undergo in vivo cannot be captured by simple geometrical models. This justifies the need for more complex models that link microstructural changes in muscle fibers to macroscopic changes in architecture. NEW & NOTEWORTHY Novel MRI and DTI techniques revealed changes in three-dimensional architecture of the human medial gastrocnemius during passive lengthening. Whole muscle belly width and depth decreased when the muscle lengthened. Fascicle length, pennation, and curvature changed uniformly or near uniformly along the muscle during passive lengthening. Diffusion of water molecules in muscle changes in the same direction as fascicle strains. Copyright © 2017 the American Physiological Society.

  17. Isotopic fractionation of volatile species during bubble growth in magmas

    NASA Astrophysics Data System (ADS)

    Watson, E. B.

    2016-12-01

    Bubbles grow in decompressing magmas by simple expansion and also by diffusive supply of volatiles to the bubble/melt interface. The latter phenomenon is of significant geochemical interest because diffusion can fractionate isotopes, raising the possibility that the isotopic character of volatile components in bubbles may not reflect that of volatiles dissolved in the host melt over the lifetime of a bubble—even in the complete absence of equilibrium vapor/melt isotopic fractionation. None of the foregoing is conceptually new, but recent experimental studies have established the existence of isotope mass effects on diffusion in silicate melts for several elements (Li, Mg, Ca, Fe), and this finding has now been extended to the volatile (anionic) element chlorine (Fortin et al. 2016; this meeting). Knowledge of isotope mass effects on diffusion of volatile species opens the way for quantitative models of diffusive fractionation during bubble growth. Significantly different effects are anticipated for "passive" volatiles (e.g., noble gases and Cl) that are partitioned into existing bubbles but play little role in nucleation and growth, as opposed to "active" volatiles whose limited solubilities lead to bubble nucleation during magma decompression. Numerical solution of the appropriate diffusion/mass-conservation equations reveals that the isotope effect on passive volatiles partitioned into bubbles growing at a constant rate in a static system depends (predictably) upon R/D, Kd and D1/D2 (R = growth rate; D = diffusivity; Kd = bubble/melt partition coefficient; D1/D2 = diffusivity ratio of the isotopes of interest). Constant R is unrealistic, but other scenarios can be explored by including the solubility and EOS of an "active" volatile (e.g., CO2) in numerical simulations of bubble growth. For plausible decompression paths, R increases exponentially with time—leading, potentially, to larger isotopic fractionation of species partitioned into the growing bubble.

  18. Confocal imaging to quantify passive transport across biomimetic lipid membranes.

    PubMed

    Li, Su; Hu, Peichi; Malmstadt, Noah

    2010-09-15

    The ability of a molecule to pass through the plasma membrane without the aid of any active cellular mechanisms is central to that molecule's pharmaceutical characteristics. Passive transport has been understood in the context of Overton's rule, which states that more lipophilic molecules cross membrane lipid bilayers more readily. Existing techniques for measuring passive transport lack reproducibility and are hampered by the presence of an unstirred layer (USL) that dominates transport across the bilayer. This report describes assays based on spinning-disk confocal microscopy (SDCM) of giant unilamellar vesicles (GUVs) that allow for the detailed investigation of passive transport processes and mechanisms. This approach allows the concentration field to be directly observed, allowing membrane permeability to be determined easily from the transient concentration profile data. A series of molecules of increasing hydrophilicity was constructed, and the transport of these molecules into GUVs was observed. The observed permeability trend is consistent with Overton's rule. However, the values measured depart from the simple partition-diffusion proportionality model of passive transport. This technique is easy to implement and has great promise as an approach to measure membrane transport. It is optimally suited to precise quantitative measurements of the dependence of passive transport on membrane properties.

  19. Molecular dynamics studies of simple membrane-water interfaces: Structure and functions in the beginnings of cellular life

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Wilson, Michael A.

    1995-01-01

    Molecular dynamics computer simulations of the structure and functions of a simple membrane are performed in order to examine whether membranes provide an environment capable of promoting protobiological evolution. Our model membrane is composed of glycerol 1-monooleate. It is found that the bilayer surface fluctuates in time and space, occasionally creating thinning defects in the membrane. These defects are essential for passive transport of simple ions across membranes because they reduce the Born barrier to this process by approximately 40%. Negative ions are transferred across the bilayer more readily than positive ions due to favorable interactions with the electric field at the membrane-water interface. Passive transport of neutral molecules is, in general, more complex than predicted by the solubility-diffusion model. In particular, molecules which exhibit sufficient hydrophilicity and lipophilicity concentrate near membrane surfaces and experience 'interfacial resistance' to transport. The membrane-water interface forms an environment suitable for heterogeneous catalysis. Several possible mechanisms leading to an increase of reaction rates at the interface are discussed. We conclude that vesicles have many properties that make them very good candidates for earliest protocells. Some potentially fruitful directions of experimental and theoretical research on this subject are proposed.

  20. Mechanism of sodium and chloride transport in the thin ascending limb of Henle.

    PubMed Central

    Imai, M; Kokko, J P

    1976-01-01

    Our previous in vitro studies have disclosed that the thin ascending limb of Henle (tALH) possesses some unique membrane characteristics. In those studies we failed to demonstrated active transport of sodium chloride by the tALH, although it was shown that the isotopic permeability to sodium and chloride was unusually high. However, we did not examine the mechanisms by which the apparent high permeation of sodium chloride occurs. Thus the purpose of the present studies was to elucidate the mechanism of sodium chloride transport across the isolated tALH of the rabbit by conducting four different types of studies: (1) comparison of the observed chloride and sodium flux ratios to those predicted by Ussing's equation under imposed salt concentration gradients; (2) kinetic evaluation of chloride and sodium fluxes; (3) examination of the effect of bromide on the kinetics of chloride transport; and (4) experiments to test for the existence of exchange diffusion of chloride. In the first set of studies the predicted and the theoretical flux ratios of sodium were identical in those experiments in which sodium chloride was added either to the perfusate or to the bath. However, the observed chloride flux ratio, lumen-to-bath/bath-to-lumen, was significantly lower than that predicted from Ussing's equation when 100 mM sodium chloride was added to the bath. In the second set of experiments the apparent isotopic permeability for sodium and for chloride was measured under varying perfusate and bath NaCl concentrations. There was no statistical change in the apparent sodium permeability coefficient when the NaCl concentration was raised by varying increments from 85.5 to 309.5 mM. However, permeation of 36Cl decrease significantly with an increase in Cl from 73.6 to 598.6 mM. These events could be explained by a two component chloride transport process consisting of simple diffusion and a saturable facilitated diffusion process with a Vmax = 3.71 neq mm-1 min-1. In the third set of studies it was shown that bromide inhibits transport of chloride and that the magnitude of inhibition is dependent on chloride concentrations. The fourth set of studies ruled out the existence of exchange diffusion. In conclusion, these studies indicate that sodium transport across tALH is by simple passive diffusion, while chloride transport across tALH involves at least two mechanisms: (1) simple passive diffusion; and (2) a specific membrane interaction process (carrier-mediated) which is competitively inhibited by bromide. PMID:993330

  1. Passive lipoidal diffusion and carrier-mediated cell uptake are both important mechanisms of membrane permeation in drug disposition.

    PubMed

    Smith, Dennis; Artursson, Per; Avdeef, Alex; Di, Li; Ecker, Gerhard F; Faller, Bernard; Houston, J Brian; Kansy, Manfred; Kerns, Edward H; Krämer, Stefanie D; Lennernäs, Hans; van de Waterbeemd, Han; Sugano, Kiyohiko; Testa, Bernard

    2014-06-02

    Recently, it has been proposed that drug permeation is essentially carrier-mediated only and that passive lipoidal diffusion is negligible. This opposes the prevailing hypothesis of drug permeation through biological membranes, which integrates the contribution of multiple permeation mechanisms, including both carrier-mediated and passive lipoidal diffusion, depending on the compound's properties, membrane properties, and solution properties. The prevailing hypothesis of drug permeation continues to be successful for application and prediction in drug development. Proponents of the carrier-mediated only concept argue against passive lipoidal diffusion. However, the arguments are not supported by broad pharmaceutics literature. The carrier-mediated only concept lacks substantial supporting evidence and successful applications in drug development.

  2. A parameterization of the passive layer of a quasigeostrophic flow in a continuously-stratified ocean

    NASA Astrophysics Data System (ADS)

    Benilov, E. S.

    2018-05-01

    This paper examines quasigeostrophic flows in an ocean that can be subdivided into an upper active layer (AL) and a lower passive layer (PL), with the flow and density stratification mainly confined to the former. Under this assumption, an asymptotic model is derived parameterizing the effect of the PL on the AL. The model depends only on the PL's depth, whereas its Väisälä-Brunt frequency turns out to be unimportant (as long as it is small). Under an additional assumption-that the potential vorticity field in the PL is well-diffused and, thus, uniform-the derived model reduces to a simple boundary condition. This condition is to be applied at the AL/PL interface, after which the PL can be excluded from consideration.

  3. Evidence-based approach to assess passive diffusion and carrier-mediated drug transport.

    PubMed

    Di, Li; Artursson, Per; Avdeef, Alex; Ecker, Gerhard F; Faller, Bernard; Fischer, Holger; Houston, J Brian; Kansy, Manfred; Kerns, Edward H; Krämer, Stefanie D; Lennernäs, Hans; Sugano, Kiyohiko

    2012-08-01

    Evidence supporting the action of passive diffusion and carrier-mediated (CM) transport in drug bioavailability and disposition is discussed to refute the recently proposed theory that drug transport is CM-only and that new transporters will be discovered that possess transport characteristics ascribed to passive diffusion. Misconceptions and faulty speculations are addressed to provide reliable guidance on choosing appropriate tools for drug design and optimization. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Finite-time robust passive control for a class of switched reaction-diffusion stochastic complex dynamical networks with coupling delays and impulsive control

    NASA Astrophysics Data System (ADS)

    Syed Ali, M.; Yogambigai, J.; Kwon, O. M.

    2018-03-01

    Finite-time boundedness and finite-time passivity for a class of switched stochastic complex dynamical networks (CDNs) with coupling delays, parameter uncertainties, reaction-diffusion term and impulsive control are studied. Novel finite-time synchronisation criteria are derived based on passivity theory. This paper proposes a CDN consisting of N linearly and diffusively coupled identical reaction- diffusion neural networks. By constructing of a suitable Lyapunov-Krasovskii's functional and utilisation of Jensen's inequality and Wirtinger's inequality, new finite-time passivity criteria for the networks are established in terms of linear matrix inequalities (LMIs), which can be checked numerically using the effective LMI toolbox in MATLAB. Finally, two interesting numerical examples are given to show the effectiveness of the theoretical results.

  5. Evaluation of passive diffusion bag and dialysis samplers in selected wells at Hickam Air Force Base, Hawaii, July 2001

    USGS Publications Warehouse

    Vroblesky, Don A.; Pravecek, Tasha

    2002-01-01

    Field comparisons of chemical concentrations obtained from dialysis samplers, passive diffusion bag samplers, and low-flow samplers showed generally close agreement in most of the 13 wells tested during July 2001 at Hickam Air Force Base, Hawaii. The data for chloride, sulfate, iron, alkalinity, arsenic, and methane appear to show that the dialysis samplers are capable of accurately collecting a passive sample for these constituents. In general, the comparisons of volatile organic compound concentrations showed a relatively close correspondence between the two different types of diffusion samples and between the diffusion samples and the low-flow samples collected in most wells. Divergence appears to have resulted primarily from the pumping method, either producing a mixed sample or water not characteristic of aquifer water moving through the borehole under ambient conditions. The fact that alkalinity was not detected in the passive diffusion bag samplers, highly alkaline waters without volatilization loss from effervescence, which can occur when a sample is acidified for preservation. Both dialysis and passive diffusion bag samplers are relatively inexpensive and can be deployed rapidly and easily. Passive diffusion bag samplers are intended for sampling volatile organic compounds only, but dialysis samplers can be used to sample both volatile organic compounds and inorganic solutes. Regenerated cellulose dialysis samplers, however, are subject to biodegradation and probably should be deployed no sooner than 2 weeks prior to recovery. 1 U.S. Geological Survey, Columbia, South Carolina. 2 Air Florce Center for Environmental Excellence, San Antionio, Texas.

  6. Cellular automaton formulation of passive scalar dynamics

    NASA Technical Reports Server (NTRS)

    Chen, Hudong; Matthaeus, William H.

    1987-01-01

    Cellular automata modeling of the advection of a passive scalar in a two-dimensional flow is examined in the context of discrete lattice kinetic theory. It is shown that if the passive scalar is represented by tagging or 'coloring' automation particles a passive advection-diffusion equation emerges without use of perturbation expansions. For the specific case of the hydrodynamic lattice gas model of Frisch et al. (1986), the diffusion coefficient is calculated by perturbation.

  7. Visualizing Molecular Diffusion through Passive Permeability Barriers in Cells: Conventional and Novel Approaches

    PubMed Central

    Lin, Yu-Chun; Phua, Siew Cheng; Lin, Benjamin; Inoue, Takanari

    2013-01-01

    Diffusion barriers are universal solutions for cells to achieve distinct organizations, compositions, and activities within a limited space. The influence of diffusion barriers on the spatiotemporal dynamics of signaling molecules often determines cellular physiology and functions. Over the years, the passive permeability barriers in various subcellular locales have been characterized using elaborate analytical techniques. In this review, we will summarize the current state of knowledge on the various passive permeability barriers present in mammalian cells. We will conclude with a description of several conventional techniques and one new approach based on chemically-inducible diffusion trap (C-IDT) for probing permeable barriers. PMID:23731778

  8. Passive Membrane Permeability: Beyond the Standard Solubility-Diffusion Model.

    PubMed

    Parisio, Giulia; Stocchero, Matteo; Ferrarini, Alberta

    2013-12-10

    The spontaneous diffusion of solutes through lipid bilayers is still a challenge for theoretical predictions. Since permeation processes remain beyond the capabilities of unbiased molecular dynamics simulations, an alternative strategy is currently adopted to gain insight into their mechanism and time scale. This is based on a monodimensional description of the translocation process only in terms of the position of the solute along the normal to the lipid bilayer, which is formally expressed in the solubility-diffusion model. Actually, a role of orientational and conformational motions has been pointed out, and the use of advanced simulation techniques has been proposed to take into account their effect. Here, we discuss the limitations of the standard solubility-diffusion approach and propose a more general description of membrane translocation as a diffusion process on a free energy surface, which is a function of the translational and rotational degrees of freedom of the molecule. Simple expressions for the permeability coefficient are obtained under suitable conditions. For fast solute reorientation, the classical solubility-diffusion equation is recovered. Under the assumption that well-defined minima can be identified on the free energy landscape, a mechanistic interpretation of the permeability coefficient in terms of all possible permeation paths is given.

  9. Highly Stable Near-Unity Photoluminescence Yield in Monolayer MoS2 by Fluoropolymer Encapsulation and Superacid Treatment.

    PubMed

    Kim, Hyungjin; Lien, Der-Hsien; Amani, Matin; Ager, Joel W; Javey, Ali

    2017-05-23

    Recently, there has been considerable research interest in two-dimensional (2D) transition-metal dichalcogenides (TMDCs) for future optoelectronic applications. It has been shown that surface passivation with the organic nonoxidizing superacid bis(trifluoromethane)sulfonamide (TFSI) produces MoS 2 and WS 2 monolayers whose recombination is at the radiative limit, with a photoluminescence (PL) quantum yield (QY) of ∼100%. While the surface passivation persists under ambient conditions, exposure to conditions such as water, solvents, and low pressure found in typical semiconductor processing degrades the PL QY. Here, an encapsulation/passivation approach is demonstrated that yields near-unity PL QY in MoS 2 and WS 2 monolayers which are highly stable against postprocessing. The approach consists of two simple steps: encapsulation of the monolayers with an amorphous fluoropolymer and a subsequent TFSI treatment. The TFSI molecules are able to diffuse through the encapsulation layer and passivate the defect states of the monolayers. Additionally, we demonstrate that the encapsulation layer can be patterned by lithography and is compatible with subsequent fabrication processes. Therefore, our work presents a feasible route for future fabrication of highly efficient optoelectronic devices based on TMDCs.

  10. Passive absolute age and temperature history sensor

    DOEpatents

    Robinson, Alex; Vianco, Paul T.

    2015-11-10

    A passive sensor for historic age and temperature sensing, including a first member formed of a first material, the first material being either a metal or a semiconductor material and a second member formed of a second material, the second material being either a metal or a semiconductor material. A surface of the second member is in contact with a surface of the first member such that, over time, the second material of the second member diffuses into the first material of the first member. The rate of diffusion for the second material to diffuse into the first material depends on a temperature of the passive sensor. One of the electrical conductance, the electrical capacitance, the electrical inductance, the optical transmission, the optical reflectance, or the crystalline structure of the passive sensor depends on the amount of the second material that has diffused into the first member.

  11. Visualizing molecular diffusion through passive permeability barriers in cells: conventional and novel approaches.

    PubMed

    Lin, Yu-Chun; Phua, Siew Cheng; Lin, Benjamin; Inoue, Takanari

    2013-08-01

    Diffusion barriers are universal solutions for cells to achieve distinct organizations, compositions, and activities within a limited space. The influence of diffusion barriers on the spatiotemporal dynamics of signaling molecules often determines cellular physiology and functions. Over the years, the passive permeability barriers in various subcellular locales have been characterized using elaborate analytical techniques. In this review, we will summarize the current state of knowledge on the various passive permeability barriers present in mammalian cells. We will conclude with a description of several conventional techniques and one new approach based on chemically inducible diffusion trap (CIDT) for probing permeable barriers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. A study of X100 pipeline steel passivation in mildly alkaline bicarbonate solutions using electrochemical impedance spectroscopy under potentiodynamic conditions and Mott-Schottky

    NASA Astrophysics Data System (ADS)

    Gadala, Ibrahim M.; Alfantazi, Akram

    2015-12-01

    The key steps involved in X100 pipeline steel passivation in bicarbonate-based simulated soil solutions from the pre-passive to transpassive potential regions have been analyzed here using a step-wise anodizing-electrochemical impedance spectroscopy (EIS) routine. Pre-passive steps involve parallel dissolution-adsorption in early stages followed by clear diffusion-adsorption control shortly before iron hydroxide formation. Aggressive NS4 chlorides/sulfate promote steel dissolution whilst inhibiting diffusion in pre-passive steps. Diffusive and adsorptive effects remain during iron hydroxide formation, but withdraw shortly thereafter during its removal and the development of the stable iron carbonate passive layer. Passive layer protectiveness is evaluated using EIS fitting, current density analysis, and correlations with semiconductive parameters, consistently revealing improved robustness in colder, bicarbonate-rich, chloride/sulfate-free conditions. Ferrous oxide formation at higher potentials results in markedly lower impedances with disordered behavior, and the involvement of the iron(III) valence state is observed in Mott-Schottky tests exclusively for 75 °C conditions.

  13. A Physical Mechanism for the Asymmetry in Top-Down and Bottom-Up Diffusion.

    NASA Astrophysics Data System (ADS)

    Wyngaard, J. C.

    1987-04-01

    Recent large-eddy simulations of the vertical diffusion of a passive, conservative scalar through the convective boundary layer (CBL) show strikingly different eddy diffusivity profiles in the `top-down' and `bottom-up' cases. These results indicate that for a given turbulent velocity field and associated scalar flux, the mean change in scalar mixing ratio across the CBL is several times larger if the flux originates at the top of the boundary layer (i.e., in top-down diffusion) rather than at the bottom. The large-eddy simulation (LES) data show that this asymmetry is due to a breakdown of the eddy-diffusion concept.A simple updraft-downdraft model of the CBL reveals a physical mechanism that could cause this unexpected behavior. The large, positive skewness of the convectively driven vertical velocity gives an appreciably higher probability of downdrafts than updrafts; this excess probability of downdrafts, interacting with the time changes of the mean mixing ratio caused by the nonstationarity of the bottom-up and top-down diffusion processes, decreases the equilibrium value of mean mixing-ratio jump across the mixed layer in the bottom-up case and increases it in the top-down case. The resulting diffusion asymmetry agrees qualitatively with that found through LES.

  14. Unity and diversity in mixing: Stretching, diffusion, breakup, and aggregation in chaotic flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ottino, J.M.

    1991-05-01

    Experiments and theory have produced a reasonably good qualitative understanding of the evolution of chaotic mixing of passive tracers, especially in two-dimensional time-periodic flow fields. Such an understanding forms a fabric for the evolution of breakup, aggregation, and diffusion-controlled reactions in more complex flows. These systems can be viewed as a population of microstructures'' whose behavior is dictated by iterations of a chaotic flow; microstructures break, diffuse, and aggregate, causing the population to evolve in space and time. This paper presents simple physical models for such processes. Self-similarity is common to all the problems; examples arise in the context ofmore » the distribution of stretchings within chaotic flows, in the asymptotic evolution of diffusion-reaction processes at striation thickness scales, in the equilibrium distribution of drop sizes generated upon mixing of immiscible fluids, in the equations describing mean-field kinetics of coagulation, in the sequence of actions necessary for the destruction of islands in two-dimensional flow, and in the fractal structure of clusters produced upon aggregation in chaotic flows.« less

  15. A novel active-passive sampling approach for measuring time-averaged concentrations of pollutants in water.

    PubMed

    Amato, Elvio D; Covaci, Adrian; Town, Raewyn M; Hereijgers, Jonas; Bellekens, Ben; Giacometti, Valentina; Breugelmans, Tom; Weyn, Maarten; Dardenne, Freddy; Bervoets, Lieven; Blust, Ronny

    2018-06-14

    Passive sampling with in situ devices offers several advantages over traditional sampling methods (i.e., discrete spot sampling), however, data interpretation from conventional passive samplers is hampered by difficulties in estimating the thickness of the diffusion layer at the sampler/medium interface (δ), often leading to inaccurate determinations of target analyte concentrations. In this study, the performance of a novel device combining active and passive sampling was investigated in the laboratory. The active-passive sampling (APS) device is comprised of a diffusion cell fitted with a pump and a flowmeter. Three receiving phases traditionally used in passive sampling devices (i.e., chelex resin, Oasis HLB, and silicone rubber), were incorporated in the diffusion cell and allowed the simultaneous accumulation of cationic metals, polar, and non-polar organic compounds, respectively. The flow within the diffusion cell was accurately controlled and monitored, and, combined with diffusion coefficients measurements, enabled the average δ to be estimated. Strong agreement between APS and time-averaged total concentrations measured in discrete water samples was found for most of the substances investigated. Accuracies for metals ranged between 87 and 116%, except Cu and Pb (∼50%), whilst accuracies between 64 and 101%, and 92 and 151% were achieved for polar and non-polar organic compounds, respectively. These results indicate that, via a well-defined in situ preconcentration step, the proposed APS approach shows promise for monitoring the concentration of a range of pollutants in water. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. In planta passive sampling devices for assessing subsurface chlorinated solvents.

    PubMed

    Shetty, Mikhil K; Limmer, Matt A; Waltermire, Kendra; Morrison, Glenn C; Burken, Joel G

    2014-06-01

    Contaminant concentrations in trees have been used to delineate groundwater contaminant plumes (i.e., phytoscreening); however, variability in tree composition hinders accurate measurement of contaminant concentrations in planta, particularly for long-term monitoring. This study investigated in planta passive sampling devices (PSDs), termed solid phase samplers (SPSs) to be used as a surrogate tree core. Characteristics studied for five materials included material-air partitioning coefficients (Kma) for chlorinated solvents, sampler equilibration time and field suitability. The materials investigated were polydimethylsiloxane (PDMS), low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), polyoxymethylene (POM) and plasticized polyvinyl chloride (PVC). Both PDMS and LLDPE samplers demonstrated high partitioning coefficients and diffusivities and were further tested in greenhouse experiments and field trials. While most of the materials could be used for passive sampling, the PDMS SPSs performed best as an in planta sampler. Such a sampler was able to accurately measure trichloroethylene (TCE) and tetrachloroethylene (PCE) concentrations while simultaneously incorporating simple operation and minimal impact to the surrounding property and environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Cubic zirconia as a species permeable coating for zinc diffusion in gallium arsenide

    NASA Astrophysics Data System (ADS)

    Bisberg, J. E.; Dabkowski, F. P.; Chin, A. K.

    1988-10-01

    Diffusion of zinc into GaAs through an yttria-stabilized cubic zirconia (YSZ) passivation layer has been demonstrated with an open-tube diffusion method. Pure zinc or GaAs/Zn2As3 sources produced high quality planar p-n junctions. The YSZ layer protects the GaAs surface from excessive loss of arsenic, yet is permeable to zinc, allowing its diffusion into the semiconductor. The YSZ films, deposited by electron beam evaporation, were typically 2000 Å thick. Zinc diffusion coefficients (DT) at 650 °C in the YSZ passivated GaAs ranged from 3.6×10-10 cm2/min for the GaAs/Zn2As3 source to 1.9×10-9 cm2/min for the pure zinc source. Doping concentrations for both YSZ passivated and uncapped samples were approximately 5×1019 cm-3.

  18. DGT Passive Sampling for Quantitative in Situ Measurements of Compounds from Household and Personal Care Products in Waters.

    PubMed

    Chen, Wei; Li, Yanying; Chen, Chang-Er; Sweetman, Andrew J; Zhang, Hao; Jones, Kevin C

    2017-11-21

    Widespread use of organic chemicals in household and personal care products (HPCPs) and their discharge into aquatic systems means reliable, robust techniques to monitor environmental concentrations are needed. The passive sampling approach of diffusive gradients in thin-films (DGT) is developed here and demonstrated to provide in situ quantitative and time-weighted average (TWA) measurement of these chemicals in waters. The novel technique is developed for HPCPs, including preservatives, antioxidants and disinfectants, by evaluating the performance of different binding agents. Ultrasonic extraction of binding gels in acetonitrile gave good and consistent recoveries for all test chemicals. Uptake by DGT with HLB (hydrophilic-lipophilic-balanced) as the binding agent was relatively independent of pH (3.5-9.5), ionic strength (0.001-0.1 M) and dissolved organic matter (0-20 mg L -1 ), making it suitable for applications across a wide range of environments. Deployment time and diffusion layer thickness dependence experiments confirmed DGT accumulated chemicals masses are consistent with theoretical predictions. The technique was further tested and applied in the influent and effluent of a wastewater treatment plant. Results were compared with conventional grab-sampling and 24-h-composited samples from autosamplers. DGT provided TWA concentrations over up to 18 days deployment, with minimal effects from biofouling or the diffusive boundary layer. The field application demonstrated advantages of the DGT technique: it gives in situ analyte preconcentration in a simple matrix, with more quantitative measurement of the HPCP analytes.

  19. Preliminary assessment of using tree-tissue analysis and passive-diffusion samplers to evaluate trichloroethene contamination of ground water at Site SS-34N, McChord Air Force Base, Washington, 2001

    USGS Publications Warehouse

    Cox, S.E.

    2002-01-01

    Two low-cost innovative sampling procedures for characterizing trichloroethene (TCE) contamination in ground water were evaluated for use at McChord Air Force Base (AFB) by the U.S. Geological Survey, in cooperation with the U.S. Air Force McChord Air Force Base Installation Restoration Program, in 2001. Previous attempts to characterize the source of ground-water contamination in the heterogeneous glacial outwash aquifer at McChord site SS-34N using soil-gas surveys, direct-push exploration, and more than a dozen ground-water monitoring wells have had limited success. The procedures assessed in this study involved analysis of tree-tissue samples to map underlying ground-water contamination and deploying passive-diffusion samplers to measure TCE concentrations in existing monitoring wells. These procedures have been used successfully at other U.S. Department of Defense sites and have resulted in cost avoidance and accelerated site characterization. Despite the presence of TCE in ground water at site SS-34N, TCE was not detected in any of the 20 trees sampled at the site during either early spring or late summer sampling. The reason the tree tissue procedure was not successful at the McChord AFB site SS-34N may have been due to an inability of tree roots to extract moisture from a water table 30 feet below the land surface, or that concentrations of TCE in ground water were not large enough to be detectable in the tree tissue at the sampling point. Passive-diffusion samplers were placed near the top, middle, and bottom of screened intervals in three monitoring wells and TCE was observed in all samplers. Concentrations of TCE from the passive-diffusion samplers were generally similar to concentrations found in samples collected in the same wells using conventional pumping methods. In contrast to conventional pumping methods, the collection of ground-water samples using the passive-diffusion samples did not generate waste purge water that would require hazardous-waste disposal. In addition, the results from the passive-diffusion samples may show that TCE concentrations are stratified across some screened intervals. The overall results of the limited test of passive-diffusion samplers at site SS-34N were similar to more detailed tests conducted at other contaminated sites across the country and indicate that further evaluation of the use of passive-diffusion samplers at McChord site SS-34N is warranted.

  20. Turbulent transport of a passive-scalar field by using a renormalization-group method

    NASA Technical Reports Server (NTRS)

    Hossain, Murshed

    1992-01-01

    A passive-scalar field is considered to evolve under the influence of a turbulent fluid governed by the Navier-Stokes equation. Turbulent-transport coefficients are calculated by small-scale elimination using a renormalization-group method. Turbulent processes couple both the viscosity and the diffusivity. In the absence of any correlation between the passive-scalar fluctuations and any component of the fluid velocity, the renormalized diffusivity is essentially the same as if the fluid velocity were frozen, although the renormalized equation does contain higher-order nonlinear terms involving viscosity. This arises due to the nonlinear interaction of the velocity with itself. In the presence of a finite correlation, the turbulent diffusivity becomes coupled with both the velocity field and the viscosity. There is then a dependence of the turbulent decay of the passive scalar on the turbulent Prandtl number.

  1. Gas-diffusion-based passive sampler for ammonia monitoring in marine waters.

    PubMed

    O'Connor Šraj, Lenka; Almeida, M Inês G S; Bassett, Chelsea; McKelvie, Ian D; Kolev, Spas D

    2018-05-01

    A novel passive sampler based on gas-diffusion across a hydrophobic membrane is described for the determination of the time-weighted average concentration of dissolved molecular ammonia in high ionic strength aquatic environments, such as sea, coastal and estuarine waters, for a period of 3 days. The passive sampler developed is cheap, easy-to-use, reusable, and has a dynamic concentration range of 2.0-12µM, which covers the water quality guideline trigger value of 11.4µM (160µgL -1 NH 3 -N) for high conservation value waters, making this a powerful new tool for water quality managers involved in long-term ammonia monitoring. The gas-diffusion-based passive sampler was calibrated under laboratory conditions and deployed in a tank of seawater in the laboratory and at an estuarine site for proof of concept, and a good agreement between passive and spot sampling was achieved in both cases. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Carrier characteristics influence the kinetics of passive drug loading into lipid nanoemulsions.

    PubMed

    Göke, Katrin; Bunjes, Heike

    2018-05-01

    Passive loading as a novel screening approach is a material-saving tool for the efficient selection of a suitable colloidal lipid carrier system for poorly water soluble drug candidates. This method comprises incubation of preformed carrier systems with drug powder and subsequent determination of the resulting drug load of the carrier particles after removal of excess drug. For reliable routine use and to obtain meaningful loading results, information on the kinetics of the process is required. Passive loading proceeds via a dissolution-diffusion-based mechanism, where drug surface area and drug water solubility are key parameters for fast passive loading. While the influence of the drug characteristics is mostly understood, the influence of the carrier characteristics remains unknown. The aim of this study was to examine how the lipid nanocarriers' characteristics, i.e. the type of lipid, the lipid content and the particle size, influence the kinetics of passive loading. Fenofibrate was used as model drug and the loading progress was analyzed by UV spectroscopy. The saturation solubility in the nanocarrier particles, i.e. the lipid type, did not influence the passive loading rate constant. Low lipid content in the nanocarrier and a small nanocarrier particle size both increased passive loading speed. Both variations increase the diffusivity of the nanocarrier particles, which is the primary cause for fast loading at these conditions: The quicker the carrier particles diffuse, the higher is the speed of passive loading. The influence of the diffusivity of the lipid nanocarriers and the effect of drug dissolution rate were included in an overall mechanistic model developed for similar processes (A. Balakrishnan, B.D. Rege, G.L. Amidon, J.E. Polli, Surfactant-mediated dissolution: contributions of solubility enhancement and relatively low micelle diffusivity, J. Pharm. Sci. 93 (2004) 2064-2075). The resulting mechanistic model gave a good estimate of the speed of passive loading in nanoemulsions. Whilst the drug's characteristics - apart from drug surface area - are basically fixed, the lipid nanocarriers can be customized to improve passive loading speed, e.g. by using small nanocarrier particles. The knowledge of the loading mechanism now allows the use of passive loading for the straightforward, material-saving selection of suitable lipid drug nanocarriers. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Record Charge Carrier Diffusion Length in Colloidal Quantum Dot Solids via Mutual Dot-To-Dot Surface Passivation.

    PubMed

    Carey, Graham H; Levina, Larissa; Comin, Riccardo; Voznyy, Oleksandr; Sargent, Edward H

    2015-06-03

    Through a combination of chemical and mutual dot-to-dot surface passivation, high-quality colloidal quantum dot solids are fabricated. The joint passivation techniques lead to a record diffusion length for colloidal quantum dots of 230 ± 20 nm. The technique is applied to create thick photovoltaic devices that exhibit high current density without losing fill factor. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Migration of the guinea pig sperm membrane protein PH-20 from one localized surface domain to another does not occur by a simple diffusion-trapping mechanism.

    PubMed

    Cowan, A E; Myles, D G; Koppel, D E

    1991-03-01

    The redistribution of membrane proteins on the surface of cells is a prevalent feature of differentiation in a variety of cells. In most cases the mechanism responsible for such redistribution is poorly understood. Two potential mechanisms for the redistribution of surface proteins are: (1) passive diffusion coupled with trapping, and (2) active translocation. We have studied the process of membrane protein redistribution for the PH-20 protein of guinea pig sperm, a surface protein required for sperm binding to the egg zona pellucida (P. Primakoff, H. Hyatt, and D. G. Myles (1985). J. Cell Biol. 101, 2239-2244). PH-20 protein is localized to the posterior head plasma menbrane of the mature sperm cell. Following the exocytotic acrosome reaction, PH-20 protein moves into the newly incorporated inner acrosomal membrane (IAM), placing it in a position favorable for a role in binding sperm to the egg zona pellucida (D. G. Myles, and P. Primakoff (1984), J. Cell Biol. 99, 1634-1641). To analyze the mechanistic basis for this protein migration, we have used fluorescence microscopy and digital image processing to characterize PH-20 protein migration in individual cells. PH-20 protein was observed to move against a concentration gradient in the posterior head plasma membrane. This result argues strongly against a model of passive diffusion followed by trapping in the IAM, and instead suggests that an active process serves to concentrate PH-20 protein toward the boundary separating the posterior head and IAM regions. A transient gradient of PH-20 concentration observed in the IAM suggests that once PH-20 protein reaches the IAM, it is freely diffusing. Additionally, we observed that migration of PH-20 protein was calcium dependent.

  5. A novel passive water sampler for in situ sampling of antibiotics.

    PubMed

    Chen, Chang-Er; Zhang, Hao; Jones, Kevin C

    2012-05-01

    Passive water sampling has several advantages over active methods; it provides time-integrated data, can save on time and cost compared to active methods, and yield high spatial resolution data through co-deployment of simple, cheap units. However, one problem with many sampler designs in current use is that their uptake rates for trace substances of interest are flow-rate dependent, thereby requiring calibration data and other information to enable water concentrations to be derived from the mass per sampler. However, the 'family' of samplers employing the principle of diffusive gradients in thin films (DGT) provides an in situ means of quantitatively measuring labile species in aquatic systems without field calibration. So far, this technique has only been tested and applied in inorganic substances: metals, radionuclides, nutrients, etc. Design and applications of DGT to trace organic contaminants ('o-DGT') would be of widespread interest. This study describes the laboratory testing and performance characteristics of o-DGT, with the antibiotic sulfamethoxazole (SMX) as a model compound and XAD18 as the novel binding agent. o-DGT uptake of SMX increased with time and decreased with diffusion layer thickness, confirming the principle for SMX. XAD18 showed sufficiently high capacity for SMX for routine field applications. o-DGT measurement of SMX was independent of pH (6-9) and ionic strength (0.001-0.1 M) and not affected by flow rate once above static conditions. The diffusion coefficient of SMX in the sampler was measured using an independent diffusion cell and information is presented to allow temperature correction and derivation of aqueous concentrations from deployed samplers. The potential use of o-DGT for in situ measurement of pharmaceutical antibiotics is confirmed by this study and applications are briefly discussed.

  6. Strange kinetics of bulk-mediated diffusion on lipid bilayers

    PubMed Central

    Campagnola, Grace; Nepal, Kanti; Peersen, Olve B.

    2016-01-01

    Diffusion at solid-liquid interfaces is crucial in many technological and biophysical processes. Although its behavior seems deceivingly simple, recent studies showing passive superdiffusive transport suggest diffusion on surfaces may hide rich complexities. In particular, bulk-mediated diffusion occurs when molecules are transiently released from the surface to perform three-dimensional excursions into the liquid bulk. This phenomenon bears the dichotomy where a molecule always return to the surface but the mean jump length is infinite. Such behavior is associated with a breakdown of the central limit theorem and weak ergodicity breaking. Here, we use single-particle tracking to study the statistics of bulk-mediated diffusion on a supported lipid bilayer. We find that the time-averaged mean square displacement (MSD) of individual trajectories, the archetypal measure in diffusion processes, does not converge to the ensemble MSD but it remains a random variable, even in the long observation-time limit. The distribution of time averages is shown to agree with a Lévy flight model. Our results also unravel intriguing anomalies in the statistics of displacements. The time averaged MSD is shown to depend on experimental time and investigations of fractional moments show a scaling 〈|r(t)|q〉 ∼ tqv(q) with non-linear exponents, i.e. v(q) ≠ const. This type of behavior is termed strong anomalous diffusion and is rare among experimental observations. PMID:27095275

  7. Passivity analysis for uncertain BAM neural networks with time delays and reaction-diffusions

    NASA Astrophysics Data System (ADS)

    Zhou, Jianping; Xu, Shengyuan; Shen, Hao; Zhang, Baoyong

    2013-08-01

    This article deals with the problem of passivity analysis for delayed reaction-diffusion bidirectional associative memory (BAM) neural networks with weight uncertainties. By using a new integral inequality, we first present a passivity condition for the nominal networks, and then extend the result to the case with linear fractional weight uncertainties. The proposed conditions are expressed in terms of linear matrix inequalities, and thus can be checked easily. Examples are provided to demonstrate the effectiveness of the proposed results.

  8. Error in measuring radon in soil gas by means of passive detectors

    USGS Publications Warehouse

    Tanner, A.B.

    1991-01-01

    Passive detection of radon isotopes depends on diffusion of radon atoms from the sites of their generation to the location of the detecting or collecting device. Because some radon decays en route to a passive detector in soil, the radon concentration measured by the detector must be less than the concentration in those soil pores where it is undiminished by diffusion to the detector cavity. The true radon concentration may be significantly underestimated in moist soils. -Author

  9. Use of Inert Gases and Carbon Monoxide to Study the Possible Influence of Countercurrent Exchange on Passive Absorption from the Small Bowel

    PubMed Central

    Bond, John H.; Levitt, David G.; Levitt, Michael D.

    1974-01-01

    The purpose of the present study was to quantitate the influence of countercurrent exchange on passive absorption of highly diffusible substances from the small intestine of the rabbit. The absorption of carbon monoxide, which is tightly bound to hemoglobin and therefore cannot exchange, was compared to the absorption of four unbound gases (H2, He, CH4, and 133Xe), which should exchange freely. The degree to which the observed absorption of the unbound gases falls below that predicted from CO absorption should provide a quantitative measure of countercurrent exchange. CO uptake at high luminal Pco is flow-limited and, assuming that villus and central hemoglobin concentrations are equal, the flow that equilibrates with CO (Fco) was calculated to equal 7.24 ml/min/100 g. The observed absorption rate of the unbound gases was from two to four times greater than would have been predicted had their entire uptake been accounted for by equilibration with Fco. This is the opposite of what would occur if countercurrent exchange retarded absorption of the unbound gases. The unbound gases have both flow- and diffusion-limited components, and Fco should account for only the fraction of absorption that is flow limited. A simple model of perfusion and diffusion made it possible to calculate the fraction of the total uptake of unbound gases that was flow limited. This fraction of the total observed absorption rate was still about 1.8 times greater than predicted by CO absorption. A possible explanation for this discrepancy is that plasma skimming reduces the hemoglobin of villus blood to about 60% of that of central blood. Thus, Fco is actually about 1.7 times greater than initially calculated, and with this correction, there is close agreement between the predicted and observed rates of absorption of each of the unbound gases. We conclude that countercurrent exchange does not influence passive absorption under the conditions of this study. PMID:4436431

  10. Diffusive-light invisibility cloak for transient illumination

    NASA Astrophysics Data System (ADS)

    Orazbayev, B.; Beruete, M.; Martínez, A.; García-Meca, C.

    2016-12-01

    Invisibility in a diffusive-light-scattering medium has been recently demonstrated by employing a scattering-cancellation core-shell cloak. Unlike nondiffusive cloaks, such a device can be simultaneously macroscopic, broadband, passive, polarization independent, and omnidirectional. Unfortunately, it has been verified that this cloak, as well as more sophisticated ones based on transformation optics, fail under pulsed illumination, invalidating their use for a variety of applications. Here, we introduce a different approach based on unimodular transformations that enables the construction of unidirectional diffusive-light cloaks exhibiting a perfect invisibility effect, even under transient conditions. Moreover, we demonstrate that a polygonal cloak can extend this functionality to multiple directions with a nearly ideal behavior, while preserving all other features. We propose and numerically verify a simple cloak realization based on a layered stack of two isotropic materials. The studied devices have several applications not addressable by any of the other cloaks proposed to date, including shielding from pulse-based detection techniques, cloaking undesired scattering elements in time-of-flight imaging or high-speed communication systems for diffusive environments, and building extreme optical security features. The discussed cloaking strategy could also be applied to simplify the implementation of thermal cloaks.

  11. Evidence for equivalence of diffusion processes of passive scalar and magnetic fields in anisotropic Navier-Stokes turbulence.

    PubMed

    Jurčišinová, E; Jurčišin, M

    2017-05-01

    The influence of the uniaxial small-scale anisotropy on the kinematic magnetohydrodynamic turbulence is investigated by using the field theoretic renormalization group technique in the one-loop approximation of a perturbation theory. The infrared stable fixed point of the renormalization group equations, which drives the scaling properties of the model in the inertial range, is investigated as the function of the anisotropy parameters and it is shown that, at least at the one-loop level of approximation, the diffusion processes of the weak passive magnetic field in the anisotropically driven kinematic magnetohydrodynamic turbulence are completely equivalent to the corresponding diffusion processes of passively advected scalar fields in the anisotropic Navier-Stokes turbulent environments.

  12. Multi-layer light-weight protective coating and method for application

    NASA Technical Reports Server (NTRS)

    Wiedemann, Karl E. (Inventor); Clark, Ronald K. (Inventor); Taylor, Patrick J. (Inventor)

    1992-01-01

    A thin, light-weight, multi-layer coating is provided for protecting metals and their alloys from environmental attack at high temperatures. A reaction barrier is applied to the metal substrate and a diffusion barrier is then applied to the reaction barrier. A sealant layer may also be applied to the diffusion barrier if desired. The reaction barrier is either non-reactive or passivating with respect to the metal substrate and the diffusion barrier. The diffusion barrier is either non-reactive or passivating with respect to the reaction barrier and the sealant layer. The sealant layer is immiscible with the diffusion barrier and has a softening point below the expected use temperature of the metal.

  13. Labile, dissolved and particulate PAHs and trace metals in wastewater: passive sampling, occurrence, partitioning in treatment plants.

    PubMed

    Gourlay-Francé, C; Bressy, A; Uher, E; Lorgeoux, C

    2011-01-01

    The occurrence and the partitioning of polycyclic aromatic hydrocarbons (PAHs) and seven metals (Al, Cd, Cr, Cu, Ni, Pb and Zn) were investigated in activated sludge wastewater treatment plants by means of passive and active sampling. Concentrations total dissolved and particulate contaminants were determined in wastewater at several points across the treatment system by means of grab sampling. Truly dissolved PAHs were sampled by means of semipermeable membrane devices. Labile (inorganic and weakly complexed) dissolved metals were also sampled using the diffusive gradient in thin film technique. This study confirms the robustness and the validity of these two passive sampling techniques in wastewater. All contaminant concentrations decreased in wastewater along the treatment, although dissolved and labile concentrations sometimes increased for substances with less affinity with organic matter. Solid-liquid and dissolved organic matter/water partitioning constants were estimated. The high variability of both partitioning constants for a simple substance and the poor relation between K(D) and K(OW) shows that the binding capacities of particles and organic matter are not uniform within the treatment and that other process than equilibrium sorption affect contaminant repartition and fate in wastewater.

  14. Damage detection and isolation via autocorrelation: a step toward passive sensing

    NASA Astrophysics Data System (ADS)

    Chang, Y. S.; Yuan, F. G.

    2018-03-01

    Passive sensing technique may eliminate the need of expending power from actuators and thus provide a means of developing a compact and simple structural health monitoring system. More importantly, it may provide a solution for monitoring the aircraft subjected to environmental loading from air flow during operation. In this paper, a non-contact auto-correlation based technique is exploited as a feasibility study for passive sensing application to detect damage and isolate the damage location. Its theoretical basis bears some resemblance to reconstructing Green's function from diffusive wavefield through cross-correlation. Localized high pressure air from air compressor are randomly and continuously applied on the one side surface of the aluminum panels through the air blow gun. A laser Doppler vibrometer (LDV) was used to scan a 90 mm × 90 mm area to create a 6 × 6 2D-array signals from the opposite side of the panels. The scanned signals were auto-correlated to reconstruct a "selfimpulse response" (or Green's function). The premise for stably reconstructing the accurate Green's function requires long sensing times. For a 609.6 mm × 609.6 mm flat aluminum panel, the sensing times roughly at least four seconds is sufficient to establish converged Green's function through correlation. For the integral stiffened aluminum panel, the geometrical features of the panel expedite the formation of the diffusive wavefield and thus shorten the sensing times. The damage is simulated by gluing a magnet onto the panels. Reconstructed Green's functions (RGFs) are used for damage detection and damage isolation based on an imaging condition with mean square deviation of the RGFs from the pristine and the damaged structure and the results are shown in color maps. The auto-correlation based technique is shown to consistently detect the simulated damage, image and isolate the damage in the structure subjected to high pressure air excitation. This technique may be transformed into passive sensing applied on the aircraft during operation.

  15. Two-dimensional numerical simulation of boron diffusion for pyramidally textured silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Fa-Jun, E-mail: Fajun.Ma@nus.edu.sg; Duttagupta, Shubham; Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576

    2014-11-14

    Multidimensional numerical simulation of boron diffusion is of great relevance for the improvement of industrial n-type crystalline silicon wafer solar cells. However, surface passivation of boron diffused area is typically studied in one dimension on planar lifetime samples. This approach neglects the effects of the solar cell pyramidal texture on the boron doping process and resulting doping profile. In this work, we present a theoretical study using a two-dimensional surface morphology for pyramidally textured samples. The boron diffusivity and segregation coefficient between oxide and silicon in simulation are determined by reproducing measured one-dimensional boron depth profiles prepared using different boronmore » diffusion recipes on planar samples. The established parameters are subsequently used to simulate the boron diffusion process on textured samples. The simulated junction depth is found to agree quantitatively well with electron beam induced current measurements. Finally, chemical passivation on planar and textured samples is compared in device simulation. Particularly, a two-dimensional approach is adopted for textured samples to evaluate chemical passivation. The intrinsic emitter saturation current density, which is only related to Auger and radiative recombination, is also simulated for both planar and textured samples. The differences between planar and textured samples are discussed.« less

  16. Measurement of Passive Uptake Rates for Volatile Organic Compounds on Commercial Thermal Desorption Tubes and the Effect of Ozone on Sampling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maddalena, Randy; Parra, Amanda; Russell, Marion

    Diffusive or passive sampling methods using commercially filled axial-sampling thermal desorption tubes are widely used for measuring volatile organic compounds (VOCs) in air. The passive sampling method provides a robust, cost effective way to measure air quality with time-averaged concentrations spanning up to a week or more. Sampling rates for VOCs can be calculated using tube geometry and Fick’s Law for ideal diffusion behavior or measured experimentally. There is evidence that uptake rates deviate from ideal and may not be constant over time. Therefore, experimentally measured sampling rates are preferred. In this project, a calibration chamber with a continuous stirredmore » tank reactor design and constant VOC source was combined with active sampling to generate a controlled dynamic calibration environment for passive samplers. The chamber air was augmented with a continuous source of 45 VOCs ranging from pentane to diethyl phthalate representing a variety of chemical classes and physiochemical properties. Both passive and active samples were collected on commercially filled Tenax TA thermal desorption tubes over an 11-day period and used to calculate passive sampling rates. A second experiment was designed to determine the impact of ozone on passive sampling by using the calibration chamber to passively load five terpenes on a set of Tenax tubes and then exposing the tubes to different ozone environments with and without ozone scrubbers attached to the tube inlet. During the sampling rate experiment, the measured diffusive uptake was constant for up to seven days for most of the VOCs tested but deviated from linearity for some of the more volatile compounds between seven and eleven days. In the ozone experiment, both exposed and unexposed tubes showed a similar decline in terpene mass over time indicating back diffusion when uncapped tubes were transferred to a clean environment but there was no indication of significant loss by ozone reaction.« less

  17. CVD-Based Valence-Mending Passivation for Crystalline-Si Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Meng

    2015-03-01

    The objective of this project is to investigate a new surface passivation technique, valence-mending passivation, for its applications in crystalline-Si solar cells to achieve significant efficiency improvement and cost reduction. As the enabling technique, the project includes the development of chemical vapor deposition recipes to passivate textured Si(100) and multicrystalline-Si surfaces by sulfur and the characterization of the passivated Si surfaces, including thermal stability, Schottky barrier height, contact resistance and surface recombination. One important application is to replace the Ag finger electrode in Si cells with Al to reduce cost, by ~$0.1/Wp, and allow terawatt-scale deployment of crystalline-Si solar cells.more » These all-Al Si cells require a low-temperature metallization process for the Al electrode, to be compatible with valence-mending passivation and to prevent Al diffusion into n-type Si. Another application is to explore valence-mending passivation of grain boundaries in multicrystalline Si by diffusing sulfur into grain boundaries, to reduce the efficiency gas between monocrystalline-Si solar cells and multicrystalline-Si cells. The major accomplishments of this project include: 1) Demonstration of chemical vapor deposition processes for valence-mending passivation of both monocrystalline Si(100) and multicrystalline Si surfaces. Record Schottky barriers have been demonstrated, with the new record-low barrier of less than 0.08 eV between Al and sulfur-passivated n-type Si(100) and the new record-high barrier of 1.14 eV between Al and sulfur-passivated p-type Si(100). On the textured p-type monocrystalline Si(100) surface, the highest barrier with Al is 0.85 eV by valence-mending passivation. 2) Demonstration of a low-temperature metallization process for Al in crystalline-Si solar cells. The new metallization process is based on electroplating of Al in a room-temperature ionic liquid. The resistivity of the electroplated Al is ~7×10–6 ohm-cm, similar to that of screen-printed Ag. 3) Demonstration of two all-Al, Ag-free Si solar cells, with an electroplated Al front electrode and a screen-printed Al back electrode. One cell is an industrial p-type front-emitter cell, and the other is an n-type back-emitter cell. The efficiency of the p-type cell is close to 15%. This is an industrial cell and its efficiency is capped at ~18%. 4) Demonstration of grain boundary passivation by both hydrogen and sulfur using hydrogen sulfide (H2S). When the new grain boundary passivation is combined with Al2O3 surface passivation and post-annealing, the minority carrier lifetime in the p-type multicrystalline Si samples shows a significant improvement up to 68 fold. 5) In a side project, a simple green process is developed which is capable of recycling over 90% of the Si material in end-of-life crystalline-Si solar cells. The recycled Si meets the specifications for solar-grade Si and can be used as a new poly-Si feedstock for ingot growth.« less

  18. Coupling of active motion and advection shapes intracellular cargo transport.

    PubMed

    Khuc Trong, Philipp; Guck, Jochen; Goldstein, Raymond E

    2012-07-13

    Intracellular cargo transport can arise from passive diffusion, active motor-driven transport along cytoskeletal filament networks, and passive advection by fluid flows entrained by such cargo-motor motion. Active and advective transport are thus intrinsically coupled as related, yet different representations of the same underlying network structure. A reaction-advection-diffusion system is used here to show that this coupling affects the transport and localization of a passive tracer in a confined geometry. For sufficiently low diffusion, cargo localization to a target zone is optimized either by low reaction kinetics and decoupling of bound and unbound states, or by a mostly disordered cytoskeletal network with only weak directional bias. These generic results may help to rationalize subtle features of cytoskeletal networks, for example as observed for microtubules in fly oocytes.

  19. Bismuth Passivation Technique for High-Resolution X-Ray Detectors

    NASA Technical Reports Server (NTRS)

    Chervenak, James; Hess, Larry

    2013-01-01

    The Athena-plus team requires X-ray sensors with energy resolution of better than one part in 3,000 at 6 keV X-rays. While bismuth is an excellent material for high X-ray stopping power and low heat capacity (for large signal when an X-ray is stopped by the absorber), oxidation of the bismuth surface can lead to electron traps and other effects that degrade the energy resolution. Bismuth oxide reduction and nitride passivation techniques analogous to those used in indium passivation are being applied in a new technique. The technique will enable improved energy resolution and resistance to aging in bismuth-absorber-coupled X-ray sensors. Elemental bismuth is lithographically integrated into X-ray detector circuits. It encounters several steps where the Bi oxidizes. The technology discussed here will remove oxide from the surface of the Bi and replace it with nitridized surface. Removal of the native oxide and passivating to prevent the growth of the oxide will improve detector performance and insulate the detector against future degradation from oxide growth. Placing the Bi coated sensor in a vacuum system, a reduction chemistry in a plasma (nitrogen/hydrogen (N2/H2) + argon) is used to remove the oxide and promote nitridization of the cleaned Bi surface. Once passivated, the Bi will perform as a better X-ray thermalizer since energy will not be trapped in the bismuth oxides on the surface. A simple additional step, which can be added at various stages of the current fabrication process, can then be applied to encapsulate the Bi film. After plasma passivation, the Bi can be capped with a non-diffusive layer of metal or dielectric. A non-superconducting layer is required such as tungsten or tungsten nitride (WNx).

  20. Carrier-Mediated Cocaine Transport at the Blood-Brain Barrier as a Putative Mechanism in Addiction Liability

    PubMed Central

    Chapy, Hélène; Smirnova, Maria; André, Pascal; Schlatter, Joël; Chiadmi, Fouad; Couraud, Pierre-Olivier; Scherrmann, Jean-Michel; Declèves, Xavier

    2015-01-01

    Background: The rate of entry of cocaine into the brain is a critical factor that influences neuronal plasticity and the development of cocaine addiction. Until now, passive diffusion has been considered the unique mechanism known by which cocaine crosses the blood-brain barrier. Methods: We reassessed mechanisms of transport of cocaine at the blood-brain barrier using a human cerebral capillary endothelial cell line (hCMEC/D3) and in situ mouse carotid perfusion. Results: Both in vivo and in vitro cocaine transport studies demonstrated the coexistence of a carrier-mediated process with passive diffusion. At pharmacological exposure level, passive diffusion of cocaine accounted for only 22.5% of the total cocaine influx in mice and 5.9% in hCMEC/D3 cells, whereas the carrier-mediated influx rate was 3.4 times greater than its passive diffusion rate in vivo. The functional identification of this carrier-mediated transport demonstrated the involvement of a proton antiporter that shared the properties of the previously characterized clonidine and nicotine transporter. The functionnal characterization suggests that the solute carrier (SLC) transporters Oct (Slc22a1-3), Mate (Slc47a1) and Octn (Slc22a4-5) are not involved in the cocaine transport in vivo and in vitro. Diphenhydramine, heroin, tramadol, cocaethylene, and norcocaine all strongly inhibited cocaine transport, unlike benzoylecgonine. Trans-stimulation studies indicated that diphenhydramine, nicotine, 3,4-methylenedioxyamphetamine (ecstasy) and the cathinone compound 3,4-methylenedioxypyrovalerone (MDPV) were also substrates of the cocaine transporter. Conclusions: Cocaine transport at the BBB involves a proton-antiporter flux that is quantitatively much more important than its passive diffusion. The molecular identification and characterization of this transporter will provide new tools to understand its role in addictive mechanisms. PMID:25539501

  1. Effective Drug Delivery in Diffuse Intrinsic Pontine Glioma: A Theoretical Model to Identify Potential Candidates

    PubMed Central

    El-Khouly, Fatma E.; van Vuurden, Dannis G.; Stroink, Thom; Hulleman, Esther; Kaspers, Gertjan J. L.; Hendrikse, N. Harry; Veldhuijzen van Zanten, Sophie E. M.

    2017-01-01

    Despite decades of clinical trials for diffuse intrinsic pontine glioma (DIPG), patient survival does not exceed 10% at two years post-diagnosis. Lack of benefit from systemic chemotherapy may be attributed to an intact bloodbrain barrier (BBB). We aim to develop a theoretical model including relevant physicochemical properties in order to review whether applied chemotherapeutics are suitable for passive diffusion through an intact BBB or whether local administration via convection-enhanced delivery (CED) may increase their therapeutic potential. Physicochemical properties (lipophilicity, molecular weight, and charge in physiological environment) of anticancer drugs historically and currently administered to DIPG patients, that affect passive diffusion over the BBB, were included in the model. Subsequently, the likelihood of BBB passage of these drugs was ascertained, as well as their potential for intratumoral administration via CED. As only non-molecularly charged, lipophilic, and relatively small sized drugs are likely to passively diffuse through the BBB, out of 51 drugs modeled, only 8 (15%)—carmustine, lomustine, erlotinib, vismodegib, lenalomide, thalidomide, vorinostat, and mebendazole—are theoretically qualified for systemic administration in DIPG. Local administration via CED might create more therapeutic options, excluding only positively charged drugs and drugs that are either prodrugs and/or only available as oral formulation. A wide variety of drugs have been administered systemically to DIPG patients. Our model shows that only few are likely to penetrate the BBB via passive diffusion, which may partly explain the lack of efficacy. Drug distribution via CED is less dependent on physicochemical properties and may increase the therapeutic options for DIPG. PMID:29164054

  2. Exploring the Dynamics of Cell Processes through Simulations of Fluorescence Microscopy Experiments

    PubMed Central

    Angiolini, Juan; Plachta, Nicolas; Mocskos, Esteban; Levi, Valeria

    2015-01-01

    Fluorescence correlation spectroscopy (FCS) methods are powerful tools for unveiling the dynamical organization of cells. For simple cases, such as molecules passively moving in a homogeneous media, FCS analysis yields analytical functions that can be fitted to the experimental data to recover the phenomenological rate parameters. Unfortunately, many dynamical processes in cells do not follow these simple models, and in many instances it is not possible to obtain an analytical function through a theoretical analysis of a more complex model. In such cases, experimental analysis can be combined with Monte Carlo simulations to aid in interpretation of the data. In response to this need, we developed a method called FERNET (Fluorescence Emission Recipes and Numerical routines Toolkit) based on Monte Carlo simulations and the MCell-Blender platform, which was designed to treat the reaction-diffusion problem under realistic scenarios. This method enables us to set complex geometries of the simulation space, distribute molecules among different compartments, and define interspecies reactions with selected kinetic constants, diffusion coefficients, and species brightness. We apply this method to simulate single- and multiple-point FCS, photon-counting histogram analysis, raster image correlation spectroscopy, and two-color fluorescence cross-correlation spectroscopy. We believe that this new program could be very useful for predicting and understanding the output of fluorescence microscopy experiments. PMID:26039162

  3. Use of fractional laser microablation and ultrasound to facilitate the delivery of gold nanoparticles into skin in vivo

    NASA Astrophysics Data System (ADS)

    Terentyuk, G. S.; Genina, Elina A.; Bashkatov, A. N.; Ryzhova, M. V.; Tsyganova, N. A.; Chumakov, D. S.; Khlebtsov, B. N.; Sazonov, A. A.; Dolotov, L. E.; Tuchin, Valerii V.; Khlebtsov, Nikolai G.; Inozemtseva, O. A.

    2012-06-01

    The delivery of gold nanoparticles (nanocages coated with a layer of silicon dioxide (40/20 nm)) dispersed in the solution (glycerol + polyethylene glycol-400, 1 : 1) into the skin tissue is studied experimentally in vivo. From the data of optical coherence tomography and histochemical analysis it follows that simple application of suspension of nanoparticles is not efficient enough for delivery of the particles into the skin as a result of passive diffusion. It is shown that fractional laser microablation of skin before the application of the suspension, followed by the topical treatment by ultrasound allows penetration through the epidermis layer and delivery of nanoparticles into dermis and hypodermis

  4. Body mass scaling of passive oxygen diffusion in endotherms and ectotherms

    PubMed Central

    Gillooly, James F.; Gomez, Juan Pablo; Mavrodiev, Evgeny V.; Rong, Yue; McLamore, Eric S.

    2016-01-01

    The area and thickness of respiratory surfaces, and the constraints they impose on passive oxygen diffusion, have been linked to differences in oxygen consumption rates and/or aerobic activity levels in vertebrates. However, it remains unclear how respiratory surfaces and associated diffusion rates vary with body mass across vertebrates, particularly in relation to the body mass scaling of oxygen consumption rates. Here we address these issues by first quantifying the body mass dependence of respiratory surface area and respiratory barrier thickness for a diversity of endotherms (birds and mammals) and ectotherms (fishes, amphibians, and reptiles). Based on these findings, we then use Fick’s law to predict the body mass scaling of oxygen diffusion for each group. Finally, we compare the predicted body mass dependence of oxygen diffusion to that of oxygen consumption in endotherms and ectotherms. We find that the slopes and intercepts of the relationships describing the body mass dependence of passive oxygen diffusion in these two groups are statistically indistinguishable from those describing the body mass dependence of oxygen consumption. Thus, the area and thickness of respiratory surfaces combine to match oxygen diffusion capacity to oxygen consumption rates in both air- and water-breathing vertebrates. In particular, the substantially lower oxygen consumption rates of ectotherms of a given body mass relative to those of endotherms correspond to differences in oxygen diffusion capacity. These results provide insights into the long-standing effort to understand the structural attributes of organisms that underlie the body mass scaling of oxygen consumption. PMID:27118837

  5. Body mass scaling of passive oxygen diffusion in endotherms and ectotherms.

    PubMed

    Gillooly, James F; Gomez, Juan Pablo; Mavrodiev, Evgeny V; Rong, Yue; McLamore, Eric S

    2016-05-10

    The area and thickness of respiratory surfaces, and the constraints they impose on passive oxygen diffusion, have been linked to differences in oxygen consumption rates and/or aerobic activity levels in vertebrates. However, it remains unclear how respiratory surfaces and associated diffusion rates vary with body mass across vertebrates, particularly in relation to the body mass scaling of oxygen consumption rates. Here we address these issues by first quantifying the body mass dependence of respiratory surface area and respiratory barrier thickness for a diversity of endotherms (birds and mammals) and ectotherms (fishes, amphibians, and reptiles). Based on these findings, we then use Fick's law to predict the body mass scaling of oxygen diffusion for each group. Finally, we compare the predicted body mass dependence of oxygen diffusion to that of oxygen consumption in endotherms and ectotherms. We find that the slopes and intercepts of the relationships describing the body mass dependence of passive oxygen diffusion in these two groups are statistically indistinguishable from those describing the body mass dependence of oxygen consumption. Thus, the area and thickness of respiratory surfaces combine to match oxygen diffusion capacity to oxygen consumption rates in both air- and water-breathing vertebrates. In particular, the substantially lower oxygen consumption rates of ectotherms of a given body mass relative to those of endotherms correspond to differences in oxygen diffusion capacity. These results provide insights into the long-standing effort to understand the structural attributes of organisms that underlie the body mass scaling of oxygen consumption.

  6. Study of surface passivation as a function of InP closed-ampoule solar cell fabrication processing variables

    NASA Technical Reports Server (NTRS)

    Faur, Mircea; Faur, Maria; Jenkins, Phillip; Goradia, Manju; Goradia, Chandra; Bailey, Sheila; Weinberg, Irving; Jayne, Douglas

    1990-01-01

    The effects of various surface preparation procedures, including chemical treatment and anodic or chemical oxidation, closed-ampoule diffusion conditions, and post-diffusion surface preparation and annealing conditions, on the passivating properties of InP have been investigated in order to optimize the fabrication procedures of n(+)p InP solar cells made by closed-ampoule diffusion of sulfur into p-type InP. The InP substrates used were p-type Cd-doped to a level of 1.7 x 10 to the 16th/cu cm, Zn-doped to levels of 2.2 x 10 to the 16th and 1.2 x 10 to the 18th/cu cm, and n-type S-doped to 4.4 x 10 to the 18th/cu cm. The passivating properties have been evaluated from photoluminescence (PL) and conductance-voltage (G-V) data. Good agreement was found between the level of surface passivation and the composition of different surface layers as revealed by X-ray photoelectron spectroscopy (XPS) analysis.

  7. Passivation of phosphorus diffused silicon surfaces with Al2O3: Influence of surface doping concentration and thermal activation treatments

    NASA Astrophysics Data System (ADS)

    Richter, Armin; Benick, Jan; Kimmerle, Achim; Hermle, Martin; Glunz, Stefan W.

    2014-12-01

    Thin layers of Al2O3 are well known for the excellent passivation of p-type c-Si surfaces including highly doped p+ emitters, due to a high density of fixed negative charges. Recent results indicate that Al2O3 can also provide a good passivation of certain phosphorus-diffused n+ c-Si surfaces. In this work, we studied the recombination at Al2O3 passivated n+ surfaces theoretically with device simulations and experimentally for Al2O3 deposited with atomic layer deposition. The simulation results indicate that there is a certain surface doping concentration, where the recombination is maximal due to depletion or weak inversion of the charge carriers at the c-Si/Al2O3 interface. This pronounced maximum was also observed experimentally for n+ surfaces passivated either with Al2O3 single layers or stacks of Al2O3 capped by SiNx, when activated with a low temperature anneal (425 °C). In contrast, for Al2O3/SiNx stacks activated with a short high-temperature firing process (800 °C) a significant lower surface recombination was observed for most n+ diffusion profiles without such a pronounced maximum. Based on experimentally determined interface properties and simulation results, we attribute this superior passivation quality after firing to a better chemical surface passivation, quantified by a lower interface defect density, in combination with a lower density of negative fixed charges. These experimental results reveal that Al2O3/SiNx stacks can provide not only excellent passivation on p+ surfaces but also on n+ surfaces for a wide range of surface doping concentrations when activated with short high-temperature treatments.

  8. Personal child and mother carbon monoxide exposures and kitchen levels: methods and results from a randomized trial of woodfired chimney cookstoves in Guatemala (RESPIRE).

    PubMed

    Smith, Kirk R; McCracken, John P; Thompson, Lisa; Edwards, Rufus; Shields, Kyra N; Canuz, Eduardo; Bruce, Nigel

    2010-07-01

    During the first randomized intervention trial (RESPIRE: Randomized Exposure Study of Pollution Indoors and Respiratory Effects) in air pollution epidemiology, we pioneered application of passive carbon monoxide (CO) diffusion tubes to measure long-term personal exposures to woodsmoke. Here we report on the protocols and validations of the method, trends in personal exposure for mothers and their young children, and the efficacy of the introduced improved chimney stove in reducing personal exposures and kitchen concentrations. Passive diffusion tubes originally developed for industrial hygiene applications were deployed on a quarterly basis to measure 48-hour integrated personal carbon monoxide exposures among 515 children 0-18 months of age and 532 mothers aged 15-55 years and area samples in a subsample of 77 kitchens, in households randomized into control and intervention groups. Instrument comparisons among types of passive diffusion tubes and against a continuous electrochemical CO monitor indicated that tubes responded nonlinearly to CO, and regression calibration was used to reduce this bias. Before stove introduction, the baseline arithmetic (geometric) mean 48-h child (n=270), mother (n=529) and kitchen (n=65) levels were, respectively, 3.4 (2.8), 3.4 (2.8) and 10.2 (8.4) p.p.m. The between-group analysis of the 3355 post-baseline measurements found CO levels to be significantly lower among the intervention group during the trial period: kitchen levels: -90%; mothers: -61%; and children: -52% in geometric means. No significant deterioration in stove effect was observed over the 18 months of surveillance. The reliability of these findings is strengthened by the large sample size made feasible by these unobtrusive and inexpensive tubes, measurement error reduction through instrument calibration, and a randomized, longitudinal study design. These results from the first randomized trial of improved household energy technology in a developing country and demonstrate that a simple chimney stove can substantially reduce chronic exposures to harmful indoor air pollutants among women and infants.

  9. Personal child and mother carbon monoxide exposures and kitchen levels: Methods and results from a randomized trial of woodfired chimney cookstoves in Guatemala (RESPIRE)

    PubMed Central

    SMITH, KIRK R.; McCRACKEN, JOHN P.; THOMPSON, LISA; EDWARDS, RUFUS; SHIELDS, KYRA N.; CANUZ, EDUARDO; BRUCE, NIGEL

    2015-01-01

    During the first randomized intervention trial (RESPIRE: Randomized Exposure Study of Pollution Indoors and Respiratory Effects) in air pollution epidemiology, we pioneered application of passive carbon monoxide (CO) diffusion tubes to measure long-term personal exposures to woodsmoke. Here we report on the protocols and validations of the method, trends in personal exposure for mothers and their young children, and the efficacy of the introduced improved chimney stove in reducing personal exposures and kitchen concentrations. Passive diffusion tubes originally developed for industrial hygiene applications were deployed on a quarterly basis to measure 48-hour integrated personal carbon monoxide exposures among 515 children 0–18 months of age and 532 mothers aged 15–55 years and area samples in a subsample of 77 kitchens, in households randomized into control and intervention groups. Instrument comparisons among types of passive diffusion tubes and against a continuous electrochemical CO monitor indicated that tubes responded nonlinearly to CO, and regression calibration was used to reduce this bias. Before stove introduction, the baseline arithmetic (geometric) mean 48-h child (n=270), mother (n=529) and kitchen (n=65) levels were, respectively, 3.4 (2.8), 3.4 (2.8) and 10.2 (8.4) p.p.m. The between-group analysis of the 3355 post-baseline measurements found CO levels to be significantly lower among the intervention group during the trial period: kitchen levels: −90%; mothers: −61%; and children: −52% in geometric means. No significant deterioration in stove effect was observed over the 18 months of surveillance. The reliability of these findings is strengthened by the large sample size made feasible by these unobtrusive and inexpensive tubes, measurement error reduction through instrument calibration, and a randomized, longitudinal study design. These results from the first randomized trial of improved household energy technology in a developing country and demonstrate that a simple chimney stove can substantially reduce chronic exposures to harmful indoor air pollutants among women and infants. PMID:19536077

  10. A Simple Parameterization of Mixing of Passive Scalars in Turbulent Flows

    NASA Astrophysics Data System (ADS)

    Nithianantham, Ajithshanthar; Venayagamoorthy, Karan

    2015-11-01

    A practical model for quantifying the turbulent diascalar diffusivity is proposed as Ks = 1 . 1γ'LTk 1 / 2 , where LT is defined as the Thorpe length scale, k is the turbulent kinetic energy and γ' is one-half of the mechanical to scalar time scale ratio, which was shown by previous researchers to be approximately 0 . 7 . The novelty of the proposed model lies in the use of LT, which is a widely used length scale in stably stratified flows (almost exclusively used in oceanography), for quantifying turbulent mixing in unstratified flows. LT can be readily obtained in the field using a Conductivity, Temperature and Depth (CTD) profiler. The turbulent kinetic energy is mostly contained in the large scales of the flow field and hence can be measured in the field or modeled in numerical simulations. Comparisons using DNS data show remarkably good agreement between the predicted and exact diffusivities. Office of Naval Research and National Science Foundation.

  11. Particle dynamics in a viscously decaying cat's eye: The effect of finite Schmidt numbers

    NASA Astrophysics Data System (ADS)

    Newton, P. K.; Meiburg, Eckart

    1991-05-01

    The dynamics and mixing of passive marker particles for the model problem of a decaying cat's eye flow is studied. The flow field corresponds to Stuart's one-parameter family of solutions [J. Fluid Mech. 29, 417 (1967)]. It is time dependent as a result of viscosity, which is modeled by allowing the free parameter to depend on time according to the self-similar solution of the Navier-Stokes equations for an isolated point vortex. Particle diffusion is numerically simulated by a random walk model. While earlier work had shown that, for small values of time over Reynolds number t/Re≪1, the interval length characterizing the formation of lobes of fluid escaping from the cat's eye scales as Re-1/2, the present study shows that, for the case of diffusive effects and t/Pe≪1, the scaling follows Pe-1/4. A simple argument, taking into account streamline convergence and divergence in different parts of the flow field, explains the Pe-1/4 scaling.

  12. Modeling cytoskeletal traffic: an interplay between passive diffusion and active transport.

    PubMed

    Neri, Izaak; Kern, Norbert; Parmeggiani, Andrea

    2013-03-01

    We introduce the totally asymmetric simple exclusion process with Langmuir kinetics on a network as a microscopic model for active motor protein transport on the cytoskeleton, immersed in the diffusive cytoplasm. We discuss how the interplay between active transport along a network and infinite diffusion in a bulk reservoir leads to a heterogeneous matter distribution on various scales: we find three regimes for steady state transport, corresponding to the scale of the network, of individual segments, or local to sites. At low exchange rates strong density heterogeneities develop between different segments in the network. In this regime one has to consider the topological complexity of the whole network to describe transport. In contrast, at moderate exchange rates the transport through the network decouples, and the physics is determined by single segments and the local topology. At last, for very high exchange rates the homogeneous Langmuir process dominates the stationary state. We introduce effective rate diagrams for the network to identify these different regimes. Based on this method we develop an intuitive but generic picture of how the stationary state of excluded volume processes on complex networks can be understood in terms of the single-segment phase diagram.

  13. Correlation between Photoluminescence and Carrier Transport and a Simple In Situ Passivation Method for High-Bandgap Hybrid Perovskites

    DOE PAGES

    Stoddard, Ryan J.; Eickemeyer, Felix T.; Katahara, John K.; ...

    2017-06-21

    High-bandgap mixed-halide hybrid perovskites have higher open-circuit voltage deficits and lower carrier diffusion lengths than their lower-bandgap counterparts. We have developed a ligand-assisted crystallization (LAC) technique that introduces additives in situ during the solvent wash and developed a new method to dynamically measure the absolute intensity steady-state photoluminescence and the mean carrier diffusion length simultaneously. The measurements reveal four distinct regimes of material changes and show that photoluminescence brightening often coincides with losses in carrier transport, such as in degradation or phase segregation. Further, the measurements enabled optimization of LAC on the 1.75 eV bandgap FA 0.83Cs 0.17Pb(I 0.66Br 0.34)more » 3, resulting in an enhancement of the photoluminescence quantum yield (PLQY) of over an order of magnitude, an increase of 80 meV in the quasi-Fermi level splitting (to 1.29 eV), an increase in diffusion length by a factor of 3.5 (to over 1 μm), and enhanced open-circuit voltage and short-circuit current from photovoltaics fabricated from the LAC-treated films.« less

  14. Correlation between Photoluminescence and Carrier Transport and a Simple In Situ Passivation Method for High-Bandgap Hybrid Perovskites.

    PubMed

    Stoddard, Ryan J; Eickemeyer, Felix T; Katahara, John K; Hillhouse, Hugh W

    2017-07-20

    High-bandgap mixed-halide hybrid perovskites have higher open-circuit voltage deficits and lower carrier diffusion lengths than their lower-bandgap counterparts. We have developed a ligand-assisted crystallization (LAC) technique that introduces additives in situ during the solvent wash and developed a new method to dynamically measure the absolute intensity steady-state photoluminescence and the mean carrier diffusion length simultaneously. The measurements reveal four distinct regimes of material changes and show that photoluminescence brightening often coincides with losses in carrier transport, such as in degradation or phase segregation. Further, the measurements enabled optimization of LAC on the 1.75 eV bandgap FA 0.83 Cs 0.17 Pb(I 0.66 Br 0.34 ) 3 , resulting in an enhancement of the photoluminescence quantum yield (PLQY) of over an order of magnitude, an increase of 80 meV in the quasi-Fermi level splitting (to 1.29 eV), an increase in diffusion length by a factor of 3.5 (to over 1 μm), and enhanced open-circuit voltage and short-circuit current from photovoltaics fabricated from the LAC-treated films.

  15. Electrical and optical characterization of surface passivation in GaAs nanowires.

    PubMed

    Chang, Chia-Chi; Chi, Chun-Yung; Yao, Maoqing; Huang, Ningfeng; Chen, Chun-Chung; Theiss, Jesse; Bushmaker, Adam W; Lalumondiere, Stephen; Yeh, Ting-Wei; Povinelli, Michelle L; Zhou, Chongwu; Dapkus, P Daniel; Cronin, Stephen B

    2012-09-12

    We report a systematic study of carrier dynamics in Al(x)Ga(1-x)As-passivated GaAs nanowires. With passivation, the minority carrier diffusion length (L(diff)) increases from 30 to 180 nm, as measured by electron beam induced current (EBIC) mapping, and the photoluminescence (PL) lifetime increases from sub-60 ps to 1.3 ns. A 48-fold enhancement in the continuous-wave PL intensity is observed on the same individual nanowire with and without the Al(x)Ga(1-x)As passivation layer, indicating a significant reduction in surface recombination. These results indicate that, in passivated nanowires, the minority carrier lifetime is not limited by twin stacking faults. From the PL lifetime and minority carrier diffusion length, we estimate the surface recombination velocity (SRV) to range from 1.7 × 10(3) to 1.1 × 10(4) cm·s(-1), and the minority carrier mobility μ is estimated to lie in the range from 10.3 to 67.5 cm(2) V(-1) s(-1) for the passivated nanowires.

  16. Passive sampler for PM10-2.5 aerosol.

    PubMed

    Leith, David; Sommerlatt, Darrell; Boundy, Maryanne G

    2007-03-01

    This study investigates the use of a small passive sampler for aerosol particles to determine particulate matter (PM)10-2.5 concentrations in outdoor air. The passive sampler collects particles by gravity, diffusion, and convective diffusion onto a glass coverslip that is then examined with an optical microscope; digital images are processed with free software and the resultant PM10-2.5 concentrations determined. Both the samplers and the analyses are relatively inexpensive. Passive samplers were collocated with Federal Reference Method (FRM) samplers in Chapel Hill, NC; Phoenix, AZ; and Birmingham, AL; for periods from 5 to 15 days. Particles consisted primarily of inorganic dusts at some sites and a mix of industrial and inorganic materials at other sites. Measured concentrations ranged from < 10 microg/m3 to approximately 40 microg/m3. Overall, PM10-2.5 concentrations measured with the passive samplers were within approximately 1 standard deviation of concentrations measured with the FRM samplers. Concentrations determined with passive samplers depend on assumptions about particle density and shape factors and may also depend somewhat on local wind speed and turbulence; accurate values for these parameters may not be known. The degree of agreement between passive and FRM concentrations measured here suggests that passive measurements may not be overly dependent on accurate knowledge of these parameters.

  17. Passive sampling for the isotopic fingerprinting of atmospheric mercury

    NASA Astrophysics Data System (ADS)

    Bergquist, B. A.; MacLagan, D.; Spoznar, N.; Kaplan, R.; Chandan, P.; Stupple, G.; Zimmerman, L.; Wania, F.; Mitchell, C. P. J.; Steffen, A.; Monaci, F.; Derry, L. A.

    2017-12-01

    Recent studies show that there are variations in the mercury (Hg) isotopic signature of atmospheric Hg, which demonstrates the potential for source tracing and improved understanding of atmospheric cycling of Hg. However, current methods for both measuring atmospheric Hg and collecting enough atmospheric Hg for isotopic analyses require expensive instruments that need power and expertise. Additionally, methods for collecting enough atmospheric Hg for isotopic analysis require pumping air through traps for long periods (weeks and longer). Combining a new passive atmospheric sampler for mercury (Hg) with novel Hg isotopic analyses will allow for the application of stable Hg isotopes to atmospheric studies of Hg. Our group has been testing a new passive sampler for gaseous Hg that relies on the diffusion of Hg through a diffusive barrier and adsorption onto a sulphur-impregnated activated carbon sorbent. The benefit of this passive sampler is that it is low cost, requires no power, and collects gaseous Hg for up to one year with linear, well-defined uptake, which allows for reproducible and accurate measurements of atmospheric gaseous Hg concentrations ( 8% uncertainty). As little as one month of sampling is often adequate to collect sufficient Hg for isotopic analysis at typical background concentrations. Experiments comparing the isotopic Hg signature in activated carbon samples using different approaches (i.e. by passive diffusion, by passive diffusion through diffusive barriers of different thickness, by active pumping) and at different temperatures confirm that the sampling process itself does not impose mass-independent fractionation (MIF). However, sampling does result in a consistent and thus correctable mass-dependent fractionation (MDF) effect. Therefore, the sampler preserves Hg MIF with very high accuracy and precision, which is necessary for atmospheric source tracing, and reasonable MDF can be estimated with some increase in error. In addition to experimental work, initial field data will be presented including a transect of increasing distance from a known strong source of Hg (Mt. Amiata mine, Italy), downwind of Kilauea volcano in Hawaii, and several other locales including the Arctic station Alert and various sites across Ontario, Canada.

  18. A Novel A Posteriori Investigation of Scalar Flux Models for Passive Scalar Dispersion in Compressible Boundary Layer Flows

    NASA Astrophysics Data System (ADS)

    Braman, Kalen; Raman, Venkat

    2011-11-01

    A novel direct numerical simulation (DNS) based a posteriori technique has been developed to investigate scalar transport modeling error. The methodology is used to test Reynolds-averaged Navier-Stokes turbulent scalar flux models for compressible boundary layer flows. Time-averaged DNS velocity and turbulence fields provide the information necessary to evolve the time-averaged scalar transport equation without requiring the use of turbulence modeling. With this technique, passive dispersion of a scalar from a boundary layer surface in a supersonic flow is studied with scalar flux modeling error isolated from any flowfield modeling errors. Several different scalar flux models are used. It is seen that the simple gradient diffusion model overpredicts scalar dispersion, while anisotropic scalar flux models underpredict dispersion. Further, the use of more complex models does not necessarily guarantee an increase in predictive accuracy, indicating that key physics is missing from existing models. Using comparisons of both a priori and a posteriori scalar flux evaluations with DNS data, the main modeling shortcomings are identified. Results will be presented for different boundary layer conditions.

  19. Diffusion barriers

    NASA Technical Reports Server (NTRS)

    Nicolet, M. A.

    1983-01-01

    The choice of the metallic film for the contact to a semiconductor device is discussed. One way to try to stabilize a contact is by interposing a thin film of a material that has low diffusivity for the atoms in question. This thin film application is known as a diffusion barrier. Three types of barriers can be distinguished. The stuffed barrier derives its low atomic diffusivity to impurities that concentrate along the extended defects of a polycrystalline layer. Sacrificial barriers exploit the fact that some (elemental) thin films react in a laterally uniform and reproducible fashion. Sacrificial barriers have the advantage that the point of their failure is predictable. Passive barriers are those most closely approximating an ideal barrier. The most-studied case is that of sputtered TiN films. Stuffed barriers may be viewed as passive barriers whose low diffusivity material extends along the defects of the polycrystalline host.

  20. Carrier-mediated cocaine transport at the blood-brain barrier as a putative mechanism in addiction liability.

    PubMed

    Chapy, Hélène; Smirnova, Maria; André, Pascal; Schlatter, Joël; Chiadmi, Fouad; Couraud, Pierre-Olivier; Scherrmann, Jean-Michel; Declèves, Xavier; Cisternino, Salvatore

    2014-10-31

    The rate of entry of cocaine into the brain is a critical factor that influences neuronal plasticity and the development of cocaine addiction. Until now, passive diffusion has been considered the unique mechanism known by which cocaine crosses the blood-brain barrier. We reassessed mechanisms of transport of cocaine at the blood-brain barrier using a human cerebral capillary endothelial cell line (hCMEC/D3) and in situ mouse carotid perfusion. Both in vivo and in vitro cocaine transport studies demonstrated the coexistence of a carrier-mediated process with passive diffusion. At pharmacological exposure level, passive diffusion of cocaine accounted for only 22.5% of the total cocaine influx in mice and 5.9% in hCMEC/D3 cells, whereas the carrier-mediated influx rate was 3.4 times greater than its passive diffusion rate in vivo. The functional identification of this carrier-mediated transport demonstrated the involvement of a proton antiporter that shared the properties of the previously characterized clonidine and nicotine transporter. The functionnal characterization suggests that the solute carrier (SLC) transporters Oct (Slc22a1-3), Mate (Slc47a1) and Octn (Slc22a4-5) are not involved in the cocaine transport in vivo and in vitro. Diphenhydramine, heroin, tramadol, cocaethylene, and norcocaine all strongly inhibited cocaine transport, unlike benzoylecgonine. Trans-stimulation studies indicated that diphenhydramine, nicotine, 3,4-methylenedioxyamphetamine (ecstasy) and the cathinone compound 3,4-methylenedioxypyrovalerone (MDPV) were also substrates of the cocaine transporter. Cocaine transport at the BBB involves a proton-antiporter flux that is quantitatively much more important than its passive diffusion. The molecular identification and characterization of this transporter will provide new tools to understand its role in addictive mechanisms. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Passive phloem loading and long-distance transport in a synthetic tree-on-a-chip.

    PubMed

    Comtet, Jean; Jensen, Kaare H; Turgeon, Robert; Stroock, Abraham D; Hosoi, A E

    2017-03-20

    Vascular plants rely on differences in osmotic pressure to export sugars from regions of synthesis (mature leaves) to sugar sinks (roots, fruits). In this process, known as Münch pressure flow, the loading of sugars from photosynthetic cells to the export conduit (the phloem) is crucial, as it sets the pressure head necessary to power long-distance transport. Whereas most herbaceous plants use active mechanisms to increase phloem sugar concentration above that of the photosynthetic cells, in most tree species, for which transport distances are largest, loading seems, counterintuitively, to occur by means of passive symplastic diffusion from the mesophyll to the phloem. Here, we use a synthetic microfluidic model of a passive loader to explore the non-linear dynamics that arise during export and determine the ability of passive loading to drive long-distance transport. We first demonstrate that in our device, the phloem concentration is set by the balance between the resistances to diffusive loading from the source and convective export through the phloem. Convection-limited export corresponds to classical models of Münch transport, where the phloem concentration is close to that of the source; in contrast, diffusion-limited export leads to small phloem concentrations and weak scaling of flow rates with hydraulic resistance. We then show that the effective regime of convection-limited export is predominant in plants with large transport resistances and low xylem pressures. Moreover, hydrostatic pressures developed in our synthetic passive loader can reach botanically relevant values as high as 10 bars. We conclude that passive loading is sufficient to drive long-distance transport in large plants, and that trees are well suited to take full advantage of passive phloem loading strategies.

  2. Extraction of thermal Green's function using diffuse fields: a passive approach applied to thermography

    NASA Astrophysics Data System (ADS)

    Capriotti, Margherita; Sternini, Simone; Lanza di Scalea, Francesco; Mariani, Stefano

    2016-04-01

    In the field of non-destructive evaluation, defect detection and visualization can be performed exploiting different techniques relying either on an active or a passive approach. In the following paper the passive technique is investigated due to its numerous advantages and its application to thermography is explored. In previous works, it has been shown that it is possible to reconstruct the Green's function between any pair of points of a sensing grid by using noise originated from diffuse fields in acoustic environments. The extraction of the Green's function can be achieved by cross-correlating these random recorded waves. Averaging, filtering and length of the measured signals play an important role in this process. This concept is here applied in an NDE perspective utilizing thermal fluctuations present on structural materials. Temperature variations interacting with thermal properties of the specimen allow for the characterization of the material and its health condition. The exploitation of the thermographic image resolution as a dense grid of sensors constitutes the basic idea underlying passive thermography. Particular attention will be placed on the creation of a proper diffuse thermal field, studying the number, placement and excitation signal of heat sources. Results from numerical simulations will be presented to assess the capabilities and performances of the passive thermal technique devoted to defect detection and imaging of structural components.

  3. Hydrodynamic effects on phase transition in active matter

    NASA Astrophysics Data System (ADS)

    Gidituri, Harinadha; Akella, V. S.; Panchagnula, Mahesh; Vedantam, Srikanth; Multiphase flow physics lab Team

    2017-11-01

    Organized motion of active (self-propelled) objects are ubiquitous in nature. The objective of this study to investigate the effect of hydrodynamics on the coherent structures in active and passive particle mixtures. We use a mesoscopic method Dissipative Particle Dynamics (DPD). The system shows three different states viz. meso-turbulent (disordered state), polar flock and vortical (ordered state) for different values of activity and volume fraction of active particles. From our numerical simulations we construct a phase diagram between activity co-efficient, volume fraction and viscosity of the passive fluid. Transition from vortical to polar is triggered by increasing the viscosity of passive fluid which causes strong short-range hydrodynamic interactions. However, as the viscosity of the fluid decreases, both vortical and meso-turbulent states transition to polar flock phase. We also calculated the diffusion co-efficients via mean square displacement (MSD) for passive and active particles. We observe ballistic and diffusive regimes in the present system.

  4. Hydrodynamic collective effects of active protein machines in solution and lipid bilayers

    PubMed Central

    Mikhailov, Alexander S.; Kapral, Raymond

    2015-01-01

    The cytoplasm and biomembranes in biological cells contain large numbers of proteins that cyclically change their shapes. They are molecular machines that can function as molecular motors or carry out various other tasks in the cell. Many enzymes also undergo conformational changes within their turnover cycles. We analyze the advection effects that nonthermal fluctuating hydrodynamic flows induced by active proteins have on other passive molecules in solution or membranes. We show that the diffusion constants of passive particles are enhanced substantially. Furthermore, when gradients of active proteins are present, a chemotaxis-like drift of passive particles takes place. In lipid bilayers, the effects are strongly nonlocal, so that active inclusions in the entire membrane contribute to local diffusion enhancement and the drift. All active proteins in a biological cell or in a membrane contribute to such effects and all passive particles, and the proteins themselves, will be subject to them. PMID:26124140

  5. Numerical investigation of metal-semiconductor-insulator-semiconductor passivated hole contacts based on atomic layer deposited AlO x

    NASA Astrophysics Data System (ADS)

    Ke, Cangming; Xin, Zheng; Ling, Zhi Peng; Aberle, Armin G.; Stangl, Rolf

    2017-08-01

    Excellent c-Si tunnel layer surface passivation has been obtained recently in our lab, using atomic layer deposited aluminium oxide (ALD AlO x ) in the tunnel layer regime of 0.9 to 1.5 nm, investigated to be applied for contact passivation. Using the correspondingly measured interface properties, this paper compares the theoretical collection efficiency of a conventional metal-semiconductor (MS) contact on diffused p+ Si to a metal-semiconductor-insulator-semiconductor (MSIS) contact on diffused p+ Si or on undoped n-type c-Si. The influences of (1) the tunnel layer passivation quality at the tunnel oxide interface (Q f and D it), (2) the tunnel layer thickness and the electron and hole tunnelling mass, (3) the tunnel oxide material, and (4) the semiconductor capping layer material properties are investigated numerically by evaluation of solar cell efficiency, open-circuit voltage, and fill factor.

  6. Use of Passive Diffusion Samplers for Monitoring Volatile Organic Compounds in Ground Water

    USGS Publications Warehouse

    Harte, Philip T.; Brayton, Michael J.; Ives, Wayne

    2000-01-01

    Passive diffusion samplers have been tested at a number of sites where volatile organic compounds (VOC's) are the principal contaminants in ground water. Test results generally show good agreement between concentrations of VOC's in samples collected with diffusion samplers and concentrations in samples collected by purging the water from a well. Diffusion samplers offer several advantages over conventional and low-flow ground-water sampling procedures: * Elimination of the need to purge a well before collecting a sample and to dispose of contaminated water. * Elimination of cross-contamination of samples associated with sampling with non-dedicated pumps or sample delivery tubes. * Reduction in sampling time by as much as 80 percent of that required for 'purge type' sampling methods. * An increase in the frequency and spatial coverage of monitoring at a site because of the associated savings in time and money. The successful use of diffusion samplers depends on the following three primary factors: (1) understanding site conditions and contaminants of interest (defining sample objectives), (2) validating of results of diffusion samplers against more widely acknowledged sampling methods, and (3) applying diffusion samplers in the field.

  7. Random walk of passive tracers among randomly moving obstacles.

    PubMed

    Gori, Matteo; Donato, Irene; Floriani, Elena; Nardecchia, Ilaria; Pettini, Marco

    2016-04-14

    This study is mainly motivated by the need of understanding how the diffusion behavior of a biomolecule (or even of a larger object) is affected by other moving macromolecules, organelles, and so on, inside a living cell, whence the possibility of understanding whether or not a randomly walking biomolecule is also subject to a long-range force field driving it to its target. By means of the Continuous Time Random Walk (CTRW) technique the topic of random walk in random environment is here considered in the case of a passively diffusing particle among randomly moving and interacting obstacles. The relevant physical quantity which is worked out is the diffusion coefficient of the passive tracer which is computed as a function of the average inter-obstacles distance. The results reported here suggest that if a biomolecule, let us call it a test molecule, moves towards its target in the presence of other independently interacting molecules, its motion can be considerably slowed down.

  8. Passivation of phosphorus diffused silicon surfaces with Al{sub 2}O{sub 3}: Influence of surface doping concentration and thermal activation treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richter, Armin, E-mail: armin.richter@ise.fraunhofer.de; Benick, Jan; Kimmerle, Achim

    2014-12-28

    Thin layers of Al{sub 2}O{sub 3} are well known for the excellent passivation of p-type c-Si surfaces including highly doped p{sup +} emitters, due to a high density of fixed negative charges. Recent results indicate that Al{sub 2}O{sub 3} can also provide a good passivation of certain phosphorus-diffused n{sup +} c-Si surfaces. In this work, we studied the recombination at Al{sub 2}O{sub 3} passivated n{sup +} surfaces theoretically with device simulations and experimentally for Al{sub 2}O{sub 3} deposited with atomic layer deposition. The simulation results indicate that there is a certain surface doping concentration, where the recombination is maximal duemore » to depletion or weak inversion of the charge carriers at the c-Si/Al{sub 2}O{sub 3} interface. This pronounced maximum was also observed experimentally for n{sup +} surfaces passivated either with Al{sub 2}O{sub 3} single layers or stacks of Al{sub 2}O{sub 3} capped by SiN{sub x}, when activated with a low temperature anneal (425 °C). In contrast, for Al{sub 2}O{sub 3}/SiN{sub x} stacks activated with a short high-temperature firing process (800 °C) a significant lower surface recombination was observed for most n{sup +} diffusion profiles without such a pronounced maximum. Based on experimentally determined interface properties and simulation results, we attribute this superior passivation quality after firing to a better chemical surface passivation, quantified by a lower interface defect density, in combination with a lower density of negative fixed charges. These experimental results reveal that Al{sub 2}O{sub 3}/SiN{sub x} stacks can provide not only excellent passivation on p{sup +} surfaces but also on n{sup +} surfaces for a wide range of surface doping concentrations when activated with short high-temperature treatments.« less

  9. The Role of Surface Passivation in Controlling Ge Nanowire Faceting.

    PubMed

    Gamalski, A D; Tersoff, J; Kodambaka, S; Zakharov, D N; Ross, F M; Stach, E A

    2015-12-09

    In situ transmission electron microscopy observations of nanowire morphologies indicate that during Au-catalyzed Ge nanowire growth, Ge facets can rapidly form along the nanowire sidewalls when the source gas (here, digermane) flux is decreased or the temperature is increased. This sidewall faceting is accompanied by continuous catalyst loss as Au diffuses from the droplet to the wire surface. We suggest that high digermane flux and low temperatures promote effective surface passivation of Ge nanowires with H or other digermane fragments inhibiting diffusion and attachment of Au and Ge on the sidewalls. These results illustrate the essential roles of the precursor gas and substrate temperature in maintaining nanowire sidewall passivation, necessary to ensure the growth of straight, untapered, ⟨111⟩-oriented nanowires.

  10. Response to a small external force and fluctuations of a passive particle in a one-dimensional diffusive environment

    NASA Astrophysics Data System (ADS)

    Huveneers, François

    2018-04-01

    We investigate the long-time behavior of a passive particle evolving in a one-dimensional diffusive random environment, with diffusion constant D . We consider two cases: (a) The particle is pulled forward by a small external constant force and (b) there is no systematic bias. Theoretical arguments and numerical simulations provide evidence that the particle is eventually trapped by the environment. This is diagnosed in two ways: The asymptotic speed of the particle scales quadratically with the external force as it goes to zero, and the fluctuations scale diffusively in the unbiased environment, up to possible logarithmic corrections in both cases. Moreover, in the large D limit (homogenized regime), we find an important transient region giving rise to other, finite-size scalings, and we describe the crossover to the true asymptotic behavior.

  11. Enhancing Stability of Perovskite Solar Cells to Moisture by the Facile Hydrophobic Passivation.

    PubMed

    Hwang, Insung; Jeong, Inyoung; Lee, Jinwoo; Ko, Min Jae; Yong, Kijung

    2015-08-12

    In this study, a novel and facile passivation process for a perovskite solar cell is reported. Poor stability in ambient atmosphere, which is the most critical demerit of a perovskite solar cell, is overcome by a simple passivation process using a hydrophobic polymer layer. Teflon, the hydrophobic polymer, is deposited on the top of a perovskite solar cell by a spin-coating method. With the hydrophobic passivation, the perovskite solar cell shows negligible degradation after a 30 day storage in ambient atmosphere. Suppressed degradation of the perovskite film is proved in various ways: X-ray diffraction, light absorption spectrum, and quartz crystal microbalance. This simple but effective passivation process suggests new kind of approach to enhance stability of perovskite solar cells to moisture.

  12. Comparison of passive diffusion bag samplers and submersible pump sampling methods for monitoring volatile organic compounds in ground water at Area 6, Naval Air Station, Whidbey Island, Washington

    USGS Publications Warehouse

    Huffman, Raegan L.

    2002-01-01

    Ground-water samples were collected in April 1999 at Naval Air Station Whidbey Island, Washington, with passive diffusion samplers and a submersible pump to compare concentrations of volatile organic compounds (VOCs) in water samples collected using the two sampling methods. Single diffusion samplers were installed in wells with 10-foot screened intervals, and multiple diffusion samplers were installed in wells with 20- to 40-foot screened intervals. The diffusion samplers were recovered after 20 days and the wells were then sampled using a submersible pump. VOC concentrations in the 10-foot screened wells in water samples collected with diffusion samplers closely matched concentrations in samples collected with the submersible pump. Analysis of VOC concentrations in samples collected from the 20- to 40-foot screened wells with multiple diffusion samplers indicated vertical concentration variation within the screened interval, whereas the analysis of VOC concentrations in samples collected with the submersible pump indicated mixing during pumping. The results obtained using the two sampling methods indicate that the samples collected with the diffusion samplers were comparable with and can be considerably less expensive than samples collected using a submersible pump.

  13. A population-based exposure assessment methodology for carbon monoxide: Development of a carbon monoxide passive sampler and occupational dosimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apte, Michael G.

    Two devices, an occupational carbon monoxide (CO) dosimeter (LOCD), and an indoor air quality (IAQ) passive sampler were developed for use in population-based CO exposure assessment studies. CO exposure is a serious public health problem in the U.S., causing both morbidity and mortality (lifetime mortality risk approximately 10{sup -4}). Sparse data from population-based CO exposure assessments indicate that approximately 10% of the U.S. population is exposed to CO above the national ambient air quality standard. No CO exposure measurement technology is presently available for affordable population-based CO exposure assessment studies. The LOCD and IAQ Passive Sampler were tested in themore » laboratory and field. The palladium-molybdenum based CO sensor was designed into a compact diffusion tube sampler that can be worn. Time-weighted-average (TWA) CO exposure of the device is quantified by a simple spectrophotometric measurement. The LOCD and IAQ Passive Sampler were tested over an exposure range of 40 to 700 ppm-hours and 200 to 4200 ppm-hours, respectively. Both devices were capable of measuring precisely (relative standard deviation <20%), with low bias (<10%). The LOCD was screened for interferences by temperature, humidity, and organic and inorganic gases. Temperature effects were small in the range of 10°C to 30°C. Humidity effects were low between 20% and 90% RH. Ethylene (200 ppm) caused a positive interference and nitric oxide (50 ppm) caused a negative response without the presence of CO but not with CO.« less

  14. Development of a passive sampler for gaseous mercury

    NASA Astrophysics Data System (ADS)

    Gustin, M. S.; Lyman, S. N.; Kilner, P.; Prestbo, E.

    2011-10-01

    Here we describe work toward development of the components of a cost effective passive sampling system for gaseous Hg that could be broadly deployed by nontechnical staff. The passive sampling system included an external shield to reduce turbulence and exposure to precipitation and dust, a diffusive housing that directly protects the collection surface during deployment and handling, and a collection surface. A protocol for cleaning and deploying the sampler and an analytical method were developed. Our final design consisted of a polycarbonate external shield enclosing a custom diffusive housing made from expanded PTFE tubing. Two collection surfaces were investigated, gold sputter-coated quartz plates and silver wires. Research showed the former would require extensive quality control for use, while the latter had interferences with other atmosphere constituents. Although the gold surface exhibited the best performance over space and time, gradual passivation would limit reuse. For both surfaces lack of contamination during shipping, deployment and storage indicated that the handling protocols developed worked well with nontechnical staff. We suggest that the basis for this passive sampling system is sound, but further exploration and development of a reliable collection surface is needed.

  15. Role of Passive Diffusion, Transporters, and Membrane Trafficking-Mediated Processes in Cellular Drug Transport.

    PubMed

    Cocucci, E; Kim, J Y; Bai, Y; Pabla, N

    2017-01-01

    Intracellular drug accumulation is thought to be dictated by two major processes, passive diffusion through the lipid membrane or membrane transporters. The relative role played by these distinct processes remains actively debated. Moreover, the role of membrane-trafficking in drug transport remains underappreciated and unexplored. Here we discuss the distinct processes involved in cellular drug distribution and propose that better experimental models are required to elucidate the differential contributions of various processes in intracellular drug accumulation. © 2016 American Society for Clinical Pharmacology and Therapeutics.

  16. Relative contributions of active mediated transport and passive diffusion of fluoroquinolones with various lipophilicities in a Calu-3 lung epithelial cell model.

    PubMed

    Brillault, Julien; De Castro, Whocely Victor; Couet, William

    2010-01-01

    The transport characteristics of six fluoroquinolones (FQs) with various lipophilicities were compared in a Calu-3 cell model. For each FQ, an active polarized transport was observed in the direction of the apical side. However, the apparent permeability of FQs resulted from active transport and passive diffusion that were highly variable between compounds and mainly governed by lipophilicity. Therefore, active transport was predominant for compounds with relatively low lipophilicity but minor for FQs with higher lipophilicity.

  17. Synthesis, characterization and field evaluation of a new calcium-based CO2 absorbent for radial diffusive sampler

    NASA Astrophysics Data System (ADS)

    Cucciniello, Raffaele; Proto, Antonio; Alfano, Davide; Motta, Oriana

    2012-12-01

    In this paper the use of passive sampling as a powerful approach to monitor atmospheric CO2 is assessed. Suitable substrate based on calcium-aluminium oxide was synthetized according to a process which permits to control the particle size of the CaO/Al based sorbent. The study shows that hydration of substrate is an essential part of the process of CO2 absorption and subsequent conversion to carbonate. X-ray diffraction, thermogravimetric analysis, environmental scanning electron microscopic analysis were used in order to characterize the substrate and to establish the best performances both in terms of particle size and CO2 absorption capacity. Passive samplers for CO2 monitoring were prepared and then tested at laboratory level and in the atmospheric environment. Validation was performed by comparison with an infrared continuous detector. Thermogravimetric analysis results, carried out to evaluate the absorbing capability of this new passive device, were in accordance with data collected at the same time by the active continuous analyser. The diffusive sampling rate and the diffusion coefficient of CO2 respect to this new passive device were also evaluated resulting equal to 47 ± 3 ml min-1 and 0.0509 ± 0.005 cm2 s-1, respectively.

  18. Three-compartment model for contaminant accumulation by semipermeable membrane devices

    USGS Publications Warehouse

    Gale, Robert W.

    1998-01-01

    Passive sampling of dissolved hydrophobic contaminants with lipid (triolein)-containing semipermeable membrane devices (SPMDs) has been gaining acceptance for environmental monitoring. Understanding of the accumulation process has employed a simple polymer film-control model of uptake by the polymer-enclosed lipid, while aqueous film control has been only briefly discussed. A more complete three-compartment model incorporating both aqueous film (turbulent-diffusive) and polymer film (diffusive) mass transfer is developed here and is fit to data from accumulation studies conducted in constant-concentration, flow-through dilutors. This model predicts aqueous film control of the whole device for moderate to high Kow compounds, rather than polymer film control. Uptake rates for phenanthrene and 2,2‘,5,5‘-tetrachlorobiphenyl were about 4.8 and 4.2 L/day/standard SPMD, respectively. Maximum 28 day SPMD concentration factors of 30 000 are predicted for solutes with log Kow values of >5.5. Effects of varying aqueous and polymer film thicknesses and solute diffusivities in the polymer film are modeled, and overall accumulation by the whole device is predicted to remain under aqueous film control, although accumulation in the triolein may be subject to polymer film control. The predicted half-life and integrative response of SPMDs to pulsed concentration events is proportional to log KSPMD.

  19. A predictive parameter estimation approach for the thermodynamically constrained averaging theory applied to diffusion in porous media

    NASA Astrophysics Data System (ADS)

    Valdes-Parada, F. J.; Ostvar, S.; Wood, B. D.; Miller, C. T.

    2017-12-01

    Modeling of hierarchical systems such as porous media can be performed by different approaches that bridge microscale physics to the macroscale. Among the several alternatives available in the literature, the thermodynamically constrained averaging theory (TCAT) has emerged as a robust modeling approach that provides macroscale models that are consistent across scales. For specific closure relation forms, TCAT models are expressed in terms of parameters that depend upon the physical system under study. These parameters are usually obtained from inverse modeling based upon either experimental data or direct numerical simulation at the pore scale. Other upscaling approaches, such as the method of volume averaging, involve an a priori scheme for parameter estimation for certain microscale and transport conditions. In this work, we show how such a predictive scheme can be implemented in TCAT by studying the simple problem of single-phase passive diffusion in rigid and homogeneous porous media. The components of the effective diffusivity tensor are predicted for several porous media by solving ancillary boundary-value problems in periodic unit cells. The results are validated through a comparison with data from direct numerical simulation. This extension of TCAT constitutes a useful advance for certain classes of problems amenable to this estimation approach.

  20. Diffusive mixing through velocity profile variation in microchannels

    NASA Astrophysics Data System (ADS)

    Yakhshi-Tafti, Ehsan; Cho, Hyoung J.; Kumar, Ranganathan

    2011-03-01

    Rapid mixing does not readily occur at low Reynolds number flows encountered in microdevices; however, it can be enhanced by passive diffusive mixing schemes. This study of micromixing of two miscible fluids is based on the principle that (1) increased velocity at the interface of co-flowing fluids results in increased diffusive mass flux across their interface, and (2) diffusion interfaces between two liquids progress transversely as the flow proceeds downstream. A passive micromixer is proposed that takes advantage of the peak velocity variation, inducing diffusive mixing. The effect of flow variation on the enhancement of diffusive mixing is investigated analytically and experimentally. Variation of the flow profile is confirmed using micro-Particle Image Velocimetry (μPIV) and mixing is evaluated by color variations resulting from the mixing of pH indicator and basic solutions. Velocity profile variations obtained from μPIV show a shift in peak velocities. The mixing efficiency of the Σ-micromixer is expected to be higher than that for a T-junction channel and can be as high as 80%. The mixing efficiency decreases with Reynolds number and increases with downstream length, exhibiting a power law.

  1. The role of surface passivation in controlling Ge nanowire faceting

    DOE PAGES

    Gamalski, A. D.; Tersoff, J.; Kodambaka, S.; ...

    2015-11-05

    In situ transmission electron microscopy observations of nanowire morphologies indicate that during Au-catalyzed Ge nanowire growth, Ge facets can rapidly form along the nanowire sidewalls when the source gas (here, digermane) flux is decreased or the temperature is increased. This sidewall faceting is accompanied by continuous catalyst loss as Au diffuses from the droplet to the wire surface. We suggest that high digermane flux and low temperatures promote effective surface passivation of Ge nanowires with H or other digermane fragments inhibiting diffusion and attachment of Au and Ge on the sidewalls. Furthermore, these results illustrate the essential roles of themore » precursor gas and substrate temperature in maintaining nanowire sidewall passivation, necessary to ensure the growth of straight, untapered, <111>-oriented nanowires.« less

  2. Remarques sur le Passif (suite) (Remarks on the Passive, Continued)

    ERIC Educational Resources Information Center

    Pinchon, Jacqueline

    1977-01-01

    The continuation of articles on the passive voice appearing in the "Grammaire vivante" section of the periodical. The production of the passive sentence is considered under two headings: the simple verb and the complex verbal group. (Text is in French.) (AMH)

  3. A field evaluation of a SO 2 passive sampler in tropical industrial and urban air

    NASA Astrophysics Data System (ADS)

    Cruz, Lícia P. S.; Campos, Vânia P.; Silva, Adriana M. C.; Tavares, Tania M.

    Passive samplers have been widely used for over 30 years in the measurement of personal exposure to vapours and gases in the workplace. These samplers have just recently been applied in the monitoring of ambient air, which presents concentrations that are normally much smaller than those found in occupational environments. The locally constructed passive sampler was based on gas molecular diffusion through static air layer. The design used minimizes particle interference and turbulent diffusion. After exposure, the SO 2 trapped in impregnated filters with Na 2CO 3 was extracted by means of an ultrasonic bath, for 15 min, using 1.0×10 -2 mol L -1 H 2O 2. It was determined as SO 4-2 by ion chromatography. The performance of the passive sampler was evaluated at different exposure periods, being applied in industrial and urban areas. Method precision as relative standard deviation for three simultaneously applied passive samplers was within 10%. Passive sampling, when compared to active monitoring methods under real conditions, used in urban and industrial areas, showed an overall accuracy of 15%. A statistical comparison with an active method was performed to demonstrate the validity of the passive method. Sampler capacity varied between 98 and 421 μg SO 2 m -3 for exposure periods of one month and one week, respectively, which allows its use in highly polluted areas.

  4. Low cost fuel cell diffusion layer configured for optimized anode water management

    DOEpatents

    Owejan, Jon P; Nicotera, Paul D; Mench, Matthew M; Evans, Robert E

    2013-08-27

    A fuel cell comprises a cathode gas diffusion layer, a cathode catalyst layer, an anode gas diffusion layer, an anode catalyst layer and an electrolyte. The diffusion resistance of the anode gas diffusion layer when operated with anode fuel is higher than the diffusion resistance of the cathode gas diffusion layer. The anode gas diffusion layer may comprise filler particles having in-plane platelet geometries and be made of lower cost materials and manufacturing processes than currently available commercial carbon fiber substrates. The diffusion resistance difference between the anode gas diffusion layer and the cathode gas diffusion layer may allow for passive water balance control.

  5. Performance of a passive direct ethanol fuel cell

    NASA Astrophysics Data System (ADS)

    Pereira, J. P.; Falcão, D. S.; Oliveira, V. B.; Pinto, A. M. F. R.

    2014-06-01

    Ethanol emerges as an attractive fuel since it is less toxic and has higher energy density than methanol and can be produced from biomass. Direct ethanol fuel cells (DEFCs) appear as a good choice for producing sustainable energy for portable applications. However, they are still far from attaining acceptable levels of power output, since their performance is affected by the slow electrochemical ethanol oxidation and water and ethanol crossover. In the present work, an experimental study on the performance of a passive DEFC is described. Tailored MEAs (membrane electrode assembly) with different catalyst loadings, anode diffusion layers and membranes were tested in order to select optimal working conditions at high ethanol concentrations and low ethanol crossover. The performance increased with an increase of membrane and anode diffusion layer thicknesses and anode catalyst loading. A maximum power density of 1.33 mW cm-2, was obtained using a Nafion 117 membrane, 4 mg cm-2 of Pt-Ru and 2 mg cm-2 of Pt on the anode and cathode catalyst layers, ELAT as anode diffusion layer, carbon cloth as cathode diffusion layer and an ethanol concentration of 2 M. As far as the authors are aware this is the first work reporting an experimental optimization of passive DEFCs.

  6. Facility fence-line monitoring using passive samplers

    EPA Science Inventory

    In 2009, the U.S. EPA executed a year-long field study at a refinery in Corpus Christi, Texas, to evaluate the use of passive diffusive sampling technology for assessing time-averaged benzene concentrations at the facility fence line. The study utilized 14-day time-integrated Car...

  7. Modeling and Simulation of Lab-on-a-Chip Systems

    DTIC Science & Technology

    2005-08-12

    complex chip geometries (including multiple turns). Variations of sample concentration profiles in laminar diffusion-based micromixers are also derived...CHAPTER 6 MODELING OF LAMINAR DIFFUSION-BASED COMPLEX ELECTROKINETIC PASSIVE MICROMIXERS ...140 6.4.4 Multi-Stream (Inter-Digital) Micromixers

  8. Potential of bias correction for downscaling passive microwave and soil moisture data

    USDA-ARS?s Scientific Manuscript database

    Passive microwave satellites such as SMOS (Soil Moisture and Ocean Salinity) or SMAP (Soil Moisture Active Passive) observe brightness temperature (TB) and retrieve soil moisture at a spatial resolution greater than most hydrological processes. Bias correction is proposed as a simple method to disag...

  9. Measurement of gaseous PAHs with an innovative passive sampler in community exposure studies

    EPA Science Inventory

    A sensitive, simple, and cost-effective passive sampling methodology was developed to quantify gaseous polycyclic aromatic hydrocarbons (PAHs) in personal, indoor and outdoor air. A Fan-Lioy passive PAH sampler (FL-PPS) is constructed from four 80 sections of 1 cm long SPB-5 GC c...

  10. Understanding of Relationship between Phospholipid Membrane Permeability and Self-Diffusion Coefficients of Some Drugs and Biologically Active Compounds in Model Solvents.

    PubMed

    Blokhina, Svetlana V; Volkova, Tatyana V; Golubev, Vasiliy A; Perlovich, German L

    2017-10-02

    In this work we measured self-diffusion coefficients of 5 drugs (aspirin, caffeine, ethionamide, salicylic acid, and paracetamol) and 11 biologically active compounds of similar structure in deuterated water and 1-octanol by NMR. It has been found that an increase in the van der Waals volume of the molecules of the studied substances result in reduction of their diffusion mobility in both solvents. The analysis of the experimental data showed the influence of chemical nature and structural isomerization of the molecules on the diffusion mobility. Apparent permeability coefficients of the studied compounds were determined using an artificial phospholipid membrane made of egg lecithin as a model of in vivo absorption. Distribution coefficients in 1-octanol/buffer pH 7.4 system were measured. For the first time the model of the passive diffusion through the phospholipid membrane was validated based on the experimental data. To this end, the passive diffusion was considered as an additive process of molecule passage through the aqueous boundary layer before the membrane and 1-octanol barrier simulating the lipid layer of the membrane.

  11. Effect of ultrasonic cavitation on the diffusivity of a point defect in the passive film on formed Nb in 0.5 M HCl solution.

    PubMed

    Li, D G

    2015-11-01

    This work primarily focused on the influence of ultrasonic cavitation on the transport property of the point defect in the passive film on formed Nb in 0.5M HCl solution via electrochemical techniques based on the point defect model (PDM). The influence of ultrasonic cavitation on the composition and structure of the passive film was detected by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). The transport property of a point defect in the passive film was characterized by the diffusivity of the point defect (D0). The influences of the ultrasonic cavitation power, passivated time and the distance between horn bottom and sample surface on D0 were analyzed. The results demonstrated that the passive film formed on Nb was an n-type semiconductor with a donor density (ND) ranging from 10(19) cm(-3) to 10(20) cm(-3) in the case of static state, while the order of ND increased one to two times by applying ultrasonic cavitation during film formation. The diffusivity of the point defect (D0) in the passive film formed on Nb at 0.5 V for 1 h in a 0.5 M HCl solution in the static state was calculated to be 9.704×10(-18) cm(2) s(-1), and it increased to 1.255×10(-16) cm(2) s(-1), 7.259×10(-16) cm(2) s(-1) and 7.296×10(-15) cm(2) s(-1) when applying the 180 W, 270 W and 450 W ultrasonic cavitation powers during film formation. D0 increased with the increment of the ultrasonic cavitation power, and decreased with the increased in formation time and distance between the horn bottom and sample surface. AES results showed the film structure and composition were changed by applying the ultrasonic cavitation. XPS results revealed that the passive film was mainly composed of Nb2O5 in the static state, and the low valence Nb-oxide (NbO) appeared in the passive film except Nb2O5 in the case of applying a 270 W ultrasonic cavitation power. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Scaling theory in a model of corrosion and passivation.

    PubMed

    Aarão Reis, F D A; Stafiej, Janusz; Badiali, J-P

    2006-09-07

    We study a model for corrosion and passivation of a metallic surface after small damage of its protective layer using scaling arguments and simulation. We focus on the transition between an initial regime of slow corrosion rate (pit nucleation) to a regime of rapid corrosion (propagation of the pit), which takes place at the so-called incubation time. The model is defined in a lattice in which the states of the sites represent the possible states of the metal (bulk, reactive, and passive) and the solution (neutral, acidic, or basic). Simple probabilistic rules describe passivation of the metal surface, dissolution of the passive layer, which is enhanced in acidic media, and spatially separated electrochemical reactions, which may create pH inhomogeneities in the solution. On the basis of a suitable matching of characteristic times of creation and annihilation of pH inhomogeneities in the solution, our scaling theory estimates the average radius of the dissolved region at the incubation time as a function of the model parameters. Among the main consequences, that radius decreases with the rate of spatially separated reactions and the rate of dissolution in acidic media, and it increases with the diffusion coefficient of H(+) and OH(-) ions in solution. The average incubation time can be written as the sum of a series of characteristic times for the slow dissolution in neutral media, until significant pH inhomogeneities are observed in the dissolved cavity. Despite having a more complex dependence on the model parameters, it is shown that the average incubation time linearly increases with the rate of dissolution in neutral media, under the reasonable assumption that this is the slowest rate of the process. Our theoretical predictions are expected to apply in realistic ranges of values of the model parameters. They are confirmed by numerical simulation in two-dimensional lattices, and the expected extension of the theory to three dimensions is discussed.

  13. Simulation of Combustion Systems with Realistic g-jitter

    NASA Technical Reports Server (NTRS)

    Mell, William E.; McGrattan, Kevin B.; Baum, Howard R.

    2003-01-01

    In this project a transient, fully three-dimensional computer simulation code was developed to simulate the effects of realistic g-jitter on a number of combustion systems. The simulation code is capable of simulating flame spread on a solid and nonpremixed or premixed gaseous combustion in nonturbulent flow with simple combustion models. Simple combustion models were used to preserve computational efficiency since this is meant to be an engineering code. Also, the use of sophisticated turbulence models was not pursued (a simple Smagorinsky type model can be implemented if deemed appropriate) because if flow velocities are large enough for turbulence to develop in a reduced gravity combustion scenario it is unlikely that g-jitter disturbances (in NASA's reduced gravity facilities) will play an important role in the flame dynamics. Acceleration disturbances of realistic orientation, magnitude, and time dependence can be easily included in the simulation. The simulation algorithm was based on techniques used in an existing large eddy simulation code which has successfully simulated fire dynamics in complex domains. A series of simulations with measured and predicted acceleration disturbances on the International Space Station (ISS) are presented. The results of this series of simulations suggested a passive isolation system and appropriate scheduling of crew activity would provide a sufficiently "quiet" acceleration environment for spherical diffusion flames.

  14. Evaluation of the availability of bound analyte for passive sampling in the presence of mobile binding matrix.

    PubMed

    Xu, Jianqiao; Huang, Shuyao; Jiang, Ruifen; Cui, Shufen; Luan, Tiangang; Chen, Guosheng; Qiu, Junlang; Cao, Chenyang; Zhu, Fang; Ouyang, Gangfeng

    2016-04-21

    Elucidating the availability of the bound analytes for the mass transfer through the diffusion boundary layers (DBLs) adjacent to passive samplers is important for understanding the passive sampling kinetics in complex samples, in which the lability factor of the bound analyte in the DBL is an important parameter. In this study, the mathematical expression of lability factor was deduced by assuming a pseudo-steady state during passive sampling, and the equation indicated that the lability factor was equal to the ratio of normalized concentration gradients between the bound and free analytes. Through the introduction of the mathematical expression of lability factor, the modified effective average diffusion coefficient was proven to be more suitable for describing the passive sampling kinetics in the presence of mobile binding matrixes. Thereafter, the lability factors of the bound polycyclic aromatic hydrocarbons (PAHs) with sodium dodecylsulphate (SDS) micelles as the binding matrixes were figured out according to the improved theory. The lability factors were observed to decrease with larger binding ratios and smaller micelle sizes, and were successfully used to predict the mass transfer efficiencies of PAHs through DBLs. This study would promote the understanding of the availability of bound analytes for passive sampling based on the theoretical improvements and experimental assessments. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Passive Superconducting Shielding: Experimental Results and Computer Models

    NASA Technical Reports Server (NTRS)

    Warner, B. A.; Kamiya, K.

    2003-01-01

    Passive superconducting shielding for magnetic refrigerators has advantages over active shielding and passive ferromagnetic shielding in that it is lightweight and easy to construct. However, it is not as easy to model and does not fail gracefully. Failure of a passive superconducting shield may lead to persistent flux and persistent currents. Unfortunately, modeling software for superconducting materials is not as easily available as is software for simple coils or for ferromagnetic materials. This paper will discuss ways of using available software to model passive superconducting shielding.

  16. Numerical study of air ingress transition to natural circulation in a high temperature helium loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franken, Daniel; Gould, Daniel; Jain, Prashant K.

    Here, the generation-IV high temperature gas cooled reactors (HTGRs) are designed with many passive safety features, one of which is the ability to passively remove heat under a loss of coolant accident (LOCA). However, several common reactor designs do not prevent against a large break in the coolant system and may therefore experience a depressurized LOCA. This would lead to air entering into the reactor system via several potential modes of ingress: diffusion, gravity currents, and natural circulation. At the onset of a LOCA, the initial rate of air ingress is expected to be very slow because it is governedmore » by molecular diffusion. However, after several hours, natural circulation would commence, thus, bringing the air into the reactor system at a much higher rate. As a consequence, air ingress would cause the high temperature graphite matrix to oxidize, leading to its thermal degradation and decreased passive heat (decay) removal capability. Therefore, it is essential to understand the transition of air ingress from molecular diffusion to natural circulation in an HTGR system. This paper presents results from a computational fluid dynamics (CFD) model to study the air ingress transition behavior. These results are validated against an h-shaped high temperature helium loop experiment. Details are provided to quantitatively predict the transition time from molecular diffusion to natural circulation.« less

  17. Numerical study of air ingress transition to natural circulation in a high temperature helium loop

    DOE PAGES

    Franken, Daniel; Gould, Daniel; Jain, Prashant K.; ...

    2017-09-21

    Here, the generation-IV high temperature gas cooled reactors (HTGRs) are designed with many passive safety features, one of which is the ability to passively remove heat under a loss of coolant accident (LOCA). However, several common reactor designs do not prevent against a large break in the coolant system and may therefore experience a depressurized LOCA. This would lead to air entering into the reactor system via several potential modes of ingress: diffusion, gravity currents, and natural circulation. At the onset of a LOCA, the initial rate of air ingress is expected to be very slow because it is governedmore » by molecular diffusion. However, after several hours, natural circulation would commence, thus, bringing the air into the reactor system at a much higher rate. As a consequence, air ingress would cause the high temperature graphite matrix to oxidize, leading to its thermal degradation and decreased passive heat (decay) removal capability. Therefore, it is essential to understand the transition of air ingress from molecular diffusion to natural circulation in an HTGR system. This paper presents results from a computational fluid dynamics (CFD) model to study the air ingress transition behavior. These results are validated against an h-shaped high temperature helium loop experiment. Details are provided to quantitatively predict the transition time from molecular diffusion to natural circulation.« less

  18. Passive solar design strategies: Remodeling guidelines for conserving energy at home

    NASA Astrophysics Data System (ADS)

    The idea of passive solar is simple, but applying it effectively does require information and attention to the details of design and construction. Some passive solar techniques are modest and low-cost, and require only small changes in remodeler's typical practice. At the other end of the spectrum, some passive solar systems can almost eliminate a house's need for purchased heating (and in some cases, cooling) energy - but probably at a relatively high first cost. In between are a broad range of energy-conserving passive solar techniques. Whether or not they are cost-effective, practical, and attractive enough to offer a market advantage to any individual remodeler depends on very specific factors such as local costs, climate, and market characteristics. Passive Solar Design Strategies: Remodeling Guidelines For Conserving Energy At Home is written to help give remodelers the information they need to make these decisions. Passive Solar Design Strategies is a package in three basic parts: the guidelines contain information about passive solar techniques and how they work, and provides specific examples of systems which will save various percentages of energy; the worksheets offer a simple, fill-in-the-blank method to pre-evaluate the performance of a specific design; and the worked example demonstrates how to complete the worksheets for a typical residence.

  19. A MULTI-STREAM MODEL FOR VERTICAL MIXING OF A PASSIVE TRACER IN THE CONVECTIVE BOUNDARY LAYER

    EPA Science Inventory

    We study a multi-stream model (MSM) for vertical mixing of a passive tracer in the convective boundary layer, in which the tracer is advected by many vertical streams with different probabilities and diffused by small scale turbulence. We test the MSM algorithm for investigatin...

  20. Pesticide impact on aquatic invertebrates identified with Chemcatcher® passive samplers and the SPEAR(pesticides) index.

    PubMed

    Münze, Ronald; Orlinskiy, Polina; Gunold, Roman; Paschke, Albrecht; Kaske, Oliver; Beketov, Mikhail A; Hundt, Matthias; Bauer, Coretta; Schüürmann, Gerrit; Möder, Monika; Liess, Matthias

    2015-12-15

    Pesticides negatively affect biodiversity and ecosystem function in aquatic environments. In the present study, we investigated the effects of pesticides on stream macroinvertebrates at 19 sites in a rural area dominated by forest cover and arable land in Central Germany. Pesticide exposure was quantified with Chemcatcher® passive samplers equipped with a diffusion-limiting membrane. Ecological effects on macroinvertebrate communities and on the ecosystem function detritus breakdown were identified using the indicator system SPEARpesticides and the leaf litter degradation rates, respectively. A decrease in the abundance of pesticide-vulnerable taxa and a reduction in leaf litter decomposition rates were observed at sites contaminated with the banned insecticide Carbofuran (Toxic Units≥-2.8), confirming the effect thresholds from previous studies. The results show that Chemcatcher® passive samplers with a diffusion-limiting membrane reliably detect ecologically relevant pesticide pollution, and we suggest Chemcatcher® passive samplers and SPEARpesticides as a promising combination to assess pesticide exposure and effects in rivers and streams. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Calculating the diffusive flux of persistent organic pollutants between sediments and the water column on the Palos Verdes shelf superfund site using polymeric passive samplers.

    PubMed

    Fernandez, Loretta A; Lao, Wenjian; Maruya, Keith A; Burgess, Robert M

    2014-04-01

    Passive samplers were deployed to the seafloor at a marine Superfund site on the Palos Verdes Shelf, California, USA, and used to determine water concentrations of persistent organic pollutants (POPs) in the surface sediments and near-bottom water. A model of Fickian diffusion across a thin water boundary layer at the sediment-water interface was used to calculate flux of contaminants due to molecular diffusion. Concentrations at four stations were used to calculate the flux of DDE, DDD, DDMU, and selected PCB congeners from sediments to the water column. Three passive sampling materials were compared: PE strips, POM strips, and SPME fibers. Performance reference compounds (PRCs) were used with PE and POM to correct for incomplete equilibration, and the resulting POP concentrations, determined by each material, agreed within 1 order of magnitude. SPME fibers, without PRC corrections, produced values that were generally much lower (1 to 2 orders of magnitude) than those measured using PE and POM, indicating that SPME may not have been fully equilibrated with waters being sampled. In addition, diffusive fluxes measured using PE strips at stations outside of a pilot remedial sand cap area were similar to those measured at a station inside the capped area: 240 to 260 ng cm(-2) y(-1) for p,p'-DDE. The largest diffusive fluxes of POPs were calculated at station 8C, the site where the highest sediment concentrations have been measured in the past, 1100 ng cm(-2) y(-1) for p,p'-DDE.

  2. Optical tracer size differences allow quantitation of active pumping rate versus Stokes-Einstein diffusion in lymphatic transport

    NASA Astrophysics Data System (ADS)

    DSouza, Alisha V.; Marra, Kayla; Gunn, Jason R.; Samkoe, Kimberley S.; Pogue, Brian W.

    2016-10-01

    Lymphatic uptake of interstitially administered agents occurs by passive convective-diffusive inflow driven by interstitial concentration and pressure, while the downstream lymphatic transport is facilitated by active propulsive contractions of lymphatic vessel walls. Near-infrared fluorescence imaging in mice was used to measure these central components of lymphatic transport for the first time, using two different-sized molecules-methylene blue (MB) and fluorescence-labeled antibody immunoglobulin G (IgG)-IRDye 680RD. This work confirms the hypothesis that lymphatic passive inflow and active propulsion rates can be separated based upon the relative differences in Stokes-Einstein diffusion coefficient. This coefficient specifically affects the passive-diffusive uptake when the interstitial volume and pressure are constant. Parameters such as mean time-to-peak signal, overall fluorescence signal intensities, and number of active peristaltic pulses, were estimated from temporal imaging data. While the mean time to attain peak signal representative of diffusion-dominated flow in the lymph vessels was 0.6±0.2 min for MB and 8±6 min for IgG, showing a size dependence, the active propulsion rates were 3.4±0.8 pulses/min and 3.3±0.5 pulses/min, respectively, appearing size independent. The propulsion rates for both dyes decreased with clearance from the interstitial injection-site, indicating intrinsic control of the smooth muscles in response to interstitial pressure. This approach to size-comparative agent flow imaging of lymphatic function can enable noninvasive characterization of diseases related to uptake and flow in lymph networks.

  3. Connecting Ellipses to Rectangles in Passive Scalar Transport

    NASA Astrophysics Data System (ADS)

    Aminian, Manuchehr; Bernardi, Francesca; Camassa, Roberto; Harris, Daniel; McLaughlin, Richard

    2017-11-01

    We study how passive scalar transport in Poiseuille flow is affected by the shape of the pipe cross section. Our previous results have established nontrivial dependence of the skewness of the tracer distribution upon the pipe shape. Previously, we have studied the families of rectangles and ellipses, with the behavior past diffusive timescales primarily depending on aspect ratio, and the type of geometry being secondary. However, at timescales well before the diffusion timescale, the family of ellipses is distinct compared to rectangles. We investigate this phenomenon by studying a collection of exotic cross sections connecting the ellipses and rectangles, using a combination of theoretical and computational tools.

  4. pH Dependent but not P-gp Dependent Bidirectional Transport Study of S-propranolol: The Importance of Passive Diffusion.

    PubMed

    Zheng, Yi; Benet, Leslie Z; Okochi, Hideaki; Chen, Xijing

    2015-08-01

    Recent controversial publications, citing studies purporting to show that P-gp mediates the transport of propranolol, proposed that passive biological membrane transport is negligible. Based on the BDDCS, the extensively metabolized-highly permeable-highly soluble BDDCS class 1 drug, propranolol, shows a high passive permeability at concentrations unrestricted by solubility that can overwhelm any potential transporter effects. Here we reinvestigate the effects of passive diffusion and carrier-mediated transport on S-propranolol. Bidirectional permeability and inhibition of efflux transport studies were carried out in MDCK, MDCK-MDR1 and Caco-2 cell lines at different concentrations. Transcellular permeability studies were conducted at different apical pHs in the rat jejunum Ussing chamber model and PAMPA system. S-propranolol exhibited efflux ratios lower than 1 in MDCK, MDCK-MDR1 and Caco-2 cells. No significant differences of Papp, B->A in the presence and absence of the efflux inhibitor GG918 were observed. However, an efflux ratio of 3.63 was found at apical pH 6.5 with significant decrease in Papp, A->B and increase in Papp, B->A compared to apical pH 7.4 in Caco-2 cell lines. The pH dependent permeability was confirmed in the Ussing chamber model. S-propranolol flux was unchanged during inhibition by verapamil and rifampin. Furthermore, pH dependent permeability was also observed in the PAMPA system. S-propranolol does not exhibit active transport as proposed previously. The "false" positive efflux ratio can be explained by the pH partition theory. As expected, passive diffusion, but not active transport, plays the primary role in the permeability of the BDDCS class 1 drug propranolol.

  5. pH dependent but not P-gp dependent bidirectional transport study of S-propranolol: the importance of passive diffusion

    PubMed Central

    Zheng, Yi; Benet, Leslie Z.; Okochi, Hideaki; Chen, Xijing

    2016-01-01

    Purpose Recent controversial publications, citing studies purporting to show that P-gp mediates the transport of propranolol, proposed that passive biological membrane transport is negligible. Based on the BDDCS, the extensively metabolized-highly permeable-highly soluble BDDCS class 1 drug, propranolol, shows a high passive permeability at concentrations unrestricted by solubility that can overwhelm any potential transporter effects. Here we reinvestigate the effects of passive diffusion and carrier-mediated transport on S-propranolol. Methods Bidirectional permeability and inhibition of efflux transport studies were carried out in MDCK, MDCK-MDR1 and Caco-2 cell lines at different concentrations. Transcellular permeability studies were conducted at different apical pHs in the rat jejunum Ussing chamber model and PAMPA system. Results S-propranolol exhibited efflux ratios lower than 1 in MDCK, MDCK-MDR1 and Caco-2 cells. No significant differences of Papp, B->A in the presence and absence of the efflux inhibitor GG918 were observed. However, an efflux ratio of 3.63 was found at apical pH 6.5 with significant decrease in Papp, A->B and increase in Papp, B->A compared to apical pH 7.4 in Caco-2 cell lines. The pH dependent permeability was confirmed in the Ussing chamber model. S-propranolol flux was unchanged during inhibition by verapamil and rifampin. Furthermore, pH dependent permeability was also observed in the PAMPA system. Conclusions S-propranolol does not exhibit active transport as proposed previously. The "false" positive efflux ratio can be explained by the pH partition theory. As expected, passive diffusion, but not active transport, plays the primary role in the permeability of the BDDCS class 1 drug propranolol. PMID:25690341

  6. Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance.

    PubMed

    Lan, Xinzheng; Voznyy, Oleksandr; Kiani, Amirreza; García de Arquer, F Pelayo; Abbas, Abdullah Saud; Kim, Gi-Hwan; Liu, Mengxia; Yang, Zhenyu; Walters, Grant; Xu, Jixian; Yuan, Mingjian; Ning, Zhijun; Fan, Fengjia; Kanjanaboos, Pongsakorn; Kramer, Illan; Zhitomirsky, David; Lee, Philip; Perelgut, Alexander; Hoogland, Sjoerd; Sargent, Edward H

    2016-01-13

    A solution-based passivation scheme is developed featuring the use of molecular iodine and PbS colloidal quantum dots (CQDs). The improved passivation translates into a longer carrier diffusion length in the solid film. This allows thicker solar-cell devices to be built while preserving efficient charge collection, leading to a certified power conversion efficiency of 9.9%, which is a new record in CQD solar cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Li4SiO4-Based Artificial Passivation Thin Film for Improving Interfacial Stability of Li Metal Anodes.

    PubMed

    Kim, Ji Young; Kim, A-Young; Liu, Guicheng; Woo, Jae-Young; Kim, Hansung; Lee, Joong Kee

    2018-03-14

    An amorphous SiO 2 (a-SiO 2 ) thin film was developed as an artificial passivation layer to stabilize Li metal anodes during electrochemical reactions. The thin film was prepared using an electron cyclotron resonance-chemical vapor deposition apparatus. The obtained passivation layer has a hierarchical structure, which is composed of lithium silicide, lithiated silicon oxide, and a-SiO 2 . The thickness of the a-SiO 2 passivation layer could be varied by changing the processing time, whereas that of the lithium silicide and lithiated silicon oxide layers was almost constant. During cycling, the surface of the a-SiO 2 passivation layer is converted into lithium silicate (Li 4 SiO 4 ), and the portion of Li 4 SiO 4 depends on the thickness of a-SiO 2 . A minimum overpotential of 21.7 mV was observed at the Li metal electrode at a current density of 3 mA cm -2 with flat voltage profiles, when an a-SiO 2 passivation layer of 92.5 nm was used. The Li metal with this optimized thin passivation layer also showed the lowest charge-transfer resistance (3.948 Ω cm) and the highest Li ion diffusivity (7.06 × 10 -14 cm 2 s -1 ) after cycling in a Li-S battery. The existence of the Li 4 SiO 4 artificial passivation layer prevents the corrosion of Li metal by suppressing Li dendritic growth and improving the ionic conductivity, which contribute to the low charge-transfer resistance and high Li ion diffusivity of the electrode.

  8. Developing a new, passive diffusion sampling array to detect helium anomalies associated with volcanic unrest

    USGS Publications Warehouse

    Dame, Brittany E; Solomon, D Kip; Evans, William C.; Ingebritsen, Steven E.

    2015-01-01

    Helium (He) concentration and 3 He/ 4 He anomalies in soil gas and spring water are potentially powerful tools for investigating hydrothermal circulation associated with volca- nism and could perhaps serve as part of a hazards warning system. However, in operational practice, He and other gases are often sampled only after volcanic unrest is detected by other means. A new passive diffusion sampler suite, intended to be collected after the onset of unrest, has been developed and tested as a relatively low-cost method of determining He- isotope composition pre- and post-unrest. The samplers, each with a distinct equilibration time, passively record He concen- tration and isotope ratio in springs and soil gas. Once collected and analyzed, the He concentrations in the samplers are used to deconvolve the time history of the He concentration and the 3 He/ 4 He ratio at the collection site. The current suite consisting of three samplers is sufficient to deconvolve both the magnitude and the timing of a step change in in situ con- centration if the suite is collected within 100 h of the change. The effects of temperature and prolonged deployment on the suite ’ s capability of recording He anomalies have also been evaluated. The suite has captured a significant 3 He/ 4 He soil gas anomaly at Horseshoe Lake near Mammoth Lakes, California. The passive diffusion sampler suite appears to be an accurate and affordable alternative for determining He anomalies associated with volcanic unrest.

  9. Dioxin analysis in water by using a passive sampler and CALUX bioassay.

    PubMed

    Addeck, Amr; Croes, Kim; Van Langenhove, Kersten; Denison, Michael; Elskens, Marc; Baeyens, Willy

    2012-01-15

    Passive sampling of organic pollutants is a new trend in environmental monitoring and analysis. Passive samplers are being developed to overcome the drawbacks of the conventional snapshot sampling approach. The ceramic toximeter is a promising passive sampler for monitoring dioxin-contaminated surface and ground waters. It consists of an alumina cylinder lined with a thin coating of titania and a pore diameter of 0.05 μm. The cylinder serves as a diffusion barrier limiting the analyte transport to molecular diffusion only, as well as a container for a selective trapping material of a high capacity and affinity towards the chemical(s) of concern. The cylinder is closed from both sides with PTFE caps. The ceramic toximeter was filled with activated carbon as the trapping material and has been tested in vitro for the sampling of dioxin-contaminated water. In addition, the utilization of the CALUX bioassay technique for analyzing the trapped dioxin has greatly reduced the time and costs for dioxin scanning in aqueous media. Exposure times varied between 1 and 7 days in a solution of 1.35 ng-TCDDL(-1) (TCDD is 2,3,7,8-tetrachlorodibenzodioxin). The mean effective molecular diffusion coefficient of TCDD in the toximeter amounts to 11.9×10(-6)m(2)d(-1) while the minimum concentration detectable in an aquatic system after 30 days of exposure amounts to 0.89 pg-TCDDL(-1). Copyright © 2011 Elsevier B.V. All rights reserved.

  10. The effect of video-guidance on passive movement in patients with cerebral palsy: fMRI study.

    PubMed

    Dinomais, Mickael; Chinier, Eva; Lignon, Gregoire; Richard, Isabelle; Ter Minassian, Aram; Tich, Sylvie Nguyen The

    2013-10-01

    In patients with cerebral palsy (CP), neuroimaging studies have demonstrated that passive movement and action-observation tasks have in common to share neuronal activation in all or part of areas involved in motor system. Action observation with simultaneous congruent passive movements may have additional effects in the recruitment of brain motor areas. The aim of this functional magnetic resonance imaging (fMRI) study was to examine brain activation in patients with unilateral CP during passive movement with and without simultaneous observation of simple hand movement. Eighteen patients with unilateral CP (fourteen male, mean age 14 years and 2 months) participated in the study. Using fMRI block design, brain activation following passive simple opening-closing hand movement of either the paretic or nonparetic hand with and without simultaneous observation of a similar movement performed by either the left or right hand of an actor was compared. Passive movement of the paretic hand performed simultaneously to the observation of congruent movement activated more "higher motor areas" including contralesional pre-supplementary motor area, superior frontal gyrus (extending to premotor cortex), and superior and inferior parietal regions than nonvideo-guided passive movement of the paretic hand. Passive movement of the paretic hand recruited more ipsilesional sensorimotor areas compared to passive movement of the nonparetic hand. Our study showed that the combination of observation of congruent hand movement simultaneously to passive movement of the paretic hand recruits more motor areas, giving neuronal substrate to propose video-guided passive movement of paretic hand in CP rehabilitation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. The Role of Diffusion-Weighted Magnetic Resonance Imaging in the Differential Diagnosis of Simple and Hydatid Cysts of the Liver.

    PubMed

    Aksoy, S; Erdil, I; Hocaoglu, E; Inci, E; Adas, G T; Kemik, O; Turkay, R

    2018-02-01

    The present study indicates that simple and hydatid cysts in liver are a common health problem in Turkey. The aim of the study is to differentiate different types of hydatid cysts from simple cysts by using diffusion-weighted images. In total, 37 hydatid cysts and 36 simple cysts in the liver were diagnosed. We retrospectively reviewed the medical records of the patients who had both ultrasonography and magnetic resonance imaging. We measured apparent diffusion coefficient (ADC) values of all the cysts and then compared the findings. There was no statistically meaningful difference between the ADC values of simple cysts and type 1 hydatid cysts. However, for the other types of hydatid cysts, it is possible to differentiate hydatid cysts from simple cysts using the ADC values. Although in our study we cannot differentiate between type I hydatid cysts and simple cysts in the liver, diffusion-weighted images are very useful to differentiate different types of hydatid cysts from simple cysts using the ADC values.

  12. Calculating the Diffusive Flux of Persistent Organic Pollutants between Sediments and the Water Column on the Palos Verdes Shelf Superfund Site using Polymeric Passive Samplers

    EPA Science Inventory

    Passive samplers were used to determine water concentrations of persistent organic pollutants (POPs) in the surface sediments and near-bottom water of a marine Superfund site on the Palos Verdes Shelf, California, USA. Measured concentrations in the porewater and water column at...

  13. Measurement of VOCs Using Passive Sorbent Tubes near Oil & Natural Gas Production Pads in Colorado and Texas

    EPA Science Inventory

    A U.S. EPA team, consisting of the Office of Research and Development and Region 6 (Dallas) and Region 8 (Denver), deployed passive-diffusive sorbent tubes as part of a method evaluation study around one oil and natural gas production pad in both the Barnett Shale Basin in Texas ...

  14. Wavelength Coded Image Transmission and Holographic Optical Elements.

    DTIC Science & Technology

    1984-08-20

    system has been designed and built for transmitting images of diffusely reflecting objects through optical fibers and displaying those images at a...passive components at the end of a fiber-optic designed to transmit high-resolution images of diffusely imaging system as described in this paper... designing a system for viewing diffusely reflecting The authors are with University of Minnesota. Electrical Engi- objects, one must consider that a

  15. Diffusion-limited mixing by incompressible flows

    NASA Astrophysics Data System (ADS)

    Miles, Christopher J.; Doering, Charles R.

    2018-05-01

    Incompressible flows can be effective mixers by appropriately advecting a passive tracer to produce small filamentation length scales. In addition, diffusion is generally perceived as beneficial to mixing due to its ability to homogenize a passive tracer. However we provide numerical evidence that, in cases where advection and diffusion are both actively present, diffusion may produce negative effects by limiting the mixing effectiveness of incompressible optimal flows. This limitation appears to be due to the presence of a limiting length scale given by a generalised Batchelor length (Batchelor 1959 J. Fluid Mech. 5 113–33). This length scale limitation may in turn affect long-term mixing rates. More specifically, we consider local-in-time flow optimisation under energy and enstrophy flow constraints with the objective of maximising the mixing rate. We observe that, for enstrophy-bounded optimal flows, the strength of diffusion may not impact the long-term mixing rate. For energy-constrained optimal flows, however, an increase in the strength of diffusion can decrease the mixing rate. We provide analytical lower bounds on mixing rates and length scales achievable under related constraints (point-wise bounded speed and rate-of-strain) by extending the work of Lin et al (2011 J. Fluid Mech. 675 465–76) and Poon (1996 Commun. PDE 21 521–39).

  16. A DNS study of turbulent mixing of two passive scalars

    NASA Astrophysics Data System (ADS)

    Juneja, A.; Pope, S. B.

    1996-08-01

    We employ direct numerical simulations to study the mixing of two passive scalars in stationary, homogeneous, isotropic turbulence. The present work is a direct extension of that of Eswaran and Pope from one scalar to two scalars and the focus is on examining the evolution states of the scalar joint probability density function (jpdf) and the conditional expectation of the scalar diffusion to motivate better models for multi-scalar mixing. The initial scalar fields are chosen to conform closely to a ``triple-delta function'' jpdf corresponding to blobs of fluid in three distinct states. The effect of the initial length scales and diffusivity of the scalars on the evolution of the jpdf and the conditional diffusion is investigated in detail as the scalars decay from their prescribed initial state. Also examined is the issue of self-similarity of the scalar jpdf at large times and the rate of decay of the scalar variance and dissipation.

  17. Laser doping of boron-doped Si paste for high-efficiency silicon solar cells

    NASA Astrophysics Data System (ADS)

    Tomizawa, Yuka; Imamura, Tetsuya; Soeda, Masaya; Ikeda, Yoshinori; Shiro, Takashi

    2015-08-01

    Boron laser doping (LD) is a promising technology for high-efficiency solar cells such as p-type passivated locally diffused solar cells and n-type Si-wafer-based solar cells. We produced a printable phosphorus- or boron-doped Si paste (NanoGram® Si paste/ink) for use as a diffuser in the LD process. We used the boron LD process to fabricate high-efficiency passivated emitter and rear locally diffused (PERL) solar cells. PERL solar cells on Czochralski Si (Cz-Si) wafers yielded a maximum efficiency of 19.7%, whereas the efficiency of a reference cell was 18.5%. Fill factors above 79% and open circuit voltages above 655 mV were measured. We found that the boron-doped area effectively performs as a local boron back surface field (BSF). The characteristics of the solar cell formed using NanoGram® Si paste/ink were better than those of the reference cell.

  18. A Biophysical Basis for Mucus Solids Concentration as a Candidate Biomarker for Airways Disease

    PubMed Central

    Hill, David B.; Vasquez, Paula A.; Mellnik, John; McKinley, Scott A.; Vose, Aaron; Mu, Frank; Henderson, Ashley G.; Donaldson, Scott H.; Alexis, Neil E.; Boucher, Richard C.; Forest, M. Gregory

    2014-01-01

    In human airways diseases, including cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD), host defense is compromised and airways inflammation and infection often result. Mucus clearance and trapping of inhaled pathogens constitute key elements of host defense. Clearance rates are governed by mucus viscous and elastic moduli at physiological driving frequencies, whereas transport of trapped pathogens in mucus layers is governed by diffusivity. There is a clear need for simple and effective clinical biomarkers of airways disease that correlate with these properties. We tested the hypothesis that mucus solids concentration, indexed as weight percent solids (wt%), is such a biomarker. Passive microbead rheology was employed to determine both diffusive and viscoelastic properties of mucus harvested from human bronchial epithelial (HBE) cultures. Guided by sputum from healthy (1.5–2.5 wt%) and diseased (COPD, CF; 5 wt%) subjects, mucus samples were generated in vitro to mimic in vivo physiology, including intermediate range wt% to represent disease progression. Analyses of microbead datasets showed mucus diffusive properties and viscoelastic moduli scale robustly with wt%. Importantly, prominent changes in both biophysical properties arose at ∼4 wt%, consistent with a gel transition (from a more viscous-dominated solution to a more elastic-dominated gel). These findings have significant implications for: (1) penetration of cilia into the mucus layer and effectiveness of mucus transport; and (2) diffusion vs. immobilization of micro-scale particles relevant to mucus barrier properties. These data provide compelling evidence for mucus solids concentration as a baseline clinical biomarker of mucus barrier and clearance functions. PMID:24558372

  19. Anomalous scaling of passive scalars in rotating flows.

    PubMed

    Rodriguez Imazio, P; Mininni, P D

    2011-06-01

    We present results of direct numerical simulations of passive scalar advection and diffusion in turbulent rotating flows. Scaling laws and the development of anisotropy are studied in spectral space, and in real space using an axisymmetric decomposition of velocity and passive scalar structure functions. The passive scalar is more anisotropic than the velocity field, and its power spectrum follows a spectral law consistent with ~ k[Please see text](-3/2). This scaling is explained with phenomenological arguments that consider the effect of rotation. Intermittency is characterized using scaling exponents and probability density functions of velocity and passive scalar increments. In the presence of rotation, intermittency in the velocity field decreases more noticeably than in the passive scalar. The scaling exponents show good agreement with Kraichnan's prediction for passive scalar intermittency in two dimensions, after correcting for the observed scaling of the second-order exponent.

  20. Arctic sea-ice diffusion from observed and simulated Lagrangian trajectories

    NASA Astrophysics Data System (ADS)

    Rampal, Pierre; Bouillon, Sylvain; Bergh, Jon; Ólason, Einar

    2016-07-01

    We characterize sea-ice drift by applying a Lagrangian diffusion analysis to buoy trajectories from the International Arctic Buoy Programme (IABP) dataset and from two different models: the standalone Lagrangian sea-ice model neXtSIM and the Eulerian coupled ice-ocean model used for the TOPAZ reanalysis. By applying the diffusion analysis to the IABP buoy trajectories over the period 1979-2011, we confirm that sea-ice diffusion follows two distinct regimes (ballistic and Brownian) and we provide accurate values for the diffusivity and integral timescale that could be used in Eulerian or Lagrangian passive tracers models to simulate the transport and diffusion of particles moving with the ice. We discuss how these values are linked to the evolution of the fluctuating displacements variance and how this information could be used to define the size of the search area around the position predicted by the mean drift. By comparing observed and simulated sea-ice trajectories for three consecutive winter seasons (2007-2011), we show how the characteristics of the simulated motion may differ from or agree well with observations. This comparison illustrates the usefulness of first applying a diffusion analysis to evaluate the output of modeling systems that include a sea-ice model before using these in, e.g., oil spill trajectory models or, more generally, to simulate the transport of passive tracers in sea ice.

  1. Surface Modification of the LiFePO4 Cathode for the Aqueous Rechargeable Lithium Ion Battery.

    PubMed

    Tron, Artur; Jo, Yong Nam; Oh, Si Hyoung; Park, Yeong Don; Mun, Junyoung

    2017-04-12

    The LiFePO 4 surface is coated with AlF 3 via a simple chemical precipitation for aqueous rechargeable lithium ion batteries (ARLBs). During electrochemical cycling, the unfavorable side reactions between LiFePO 4 and the aqueous electrolyte (1 M Li 2 SO 4 in water) leave a highly resistant passivation film, which causes a deterioration in the electrochemical performance. The coated LiFePO 4 by 1 wt % AlF 3 has a high discharge capacity of 132 mAh g -1 and a highly improved cycle life, which shows 93% capacity retention even after 100 cycles, whereas the pristine LiFePO 4 has a specific capacity of 123 mAh g -1 and a poor capacity retention of 82%. The surface analysis results, which include X-ray photoelectron spectroscopy and transmission electron microscopy results, show that the AlF 3 coating material is highly effective for reducing the detrimental surface passivation by relieving the electrochemical side reactions of the fragile aqueous electrolyte. The AlF 3 coating material has good compatibility with the LiFePO 4 cathode material, which mitigates the surface diffusion obstacles, reduces the charge-transfer resistances and improves the electrochemical performance and surface stability of the LiFePO 4 material in aqueous electrolyte solutions.

  2. Multigrid techniques for the solution of the passive scalar advection-diffusion equation

    NASA Technical Reports Server (NTRS)

    Phillips, R. E.; Schmidt, F. W.

    1985-01-01

    The solution of elliptic passive scalar advection-diffusion equations is required in the analysis of many turbulent flow and convective heat transfer problems. The accuracy of the solution may be affected by the presence of regions containing large gradients of the dependent variables. The multigrid concept of local grid refinement is a method for improving the accuracy of the calculations in these problems. In combination with the multilevel acceleration techniques, an accurate and efficient computational procedure is developed. In addition, a robust implementation of the QUICK finite-difference scheme is described. Calculations of a test problem are presented to quantitatively demonstrate the advantages of the multilevel-multigrid method.

  3. Enhanced diffusion of pollutants by self-propulsion.

    PubMed

    Zhao, Guanjia; Stuart, Emma J E; Pumera, Martin

    2011-07-28

    Current environmental models mostly account for the passive participation of pollutants in their environmental propagation. Here we demonstrate the paradigm-changing concept that pollutants can propagate themselves with a rate that is greater than the rate for standard molecular diffusion by five orders of magnitude. This journal is © the Owner Societies 2011

  4. Calibration of passive remote observing optical and microwave instrumentation; Proceedings of the Meeting, Orlando, FL, Apr. 3-5, 1991

    NASA Technical Reports Server (NTRS)

    Guenther, Bruce W. (Editor)

    1991-01-01

    Various papers on the calibration of passive remote observing optical and microwave instrumentation are presented. Individual topics addressed include: on-board calibration device for a wide field-of-view instrument, calibration for the medium-resolution imaging spectrometer, cryogenic radiometers and intensity-stabilized lasers for EOS radiometric calibrations, radiometric stability of the Shuttle-borne solar backscatter ultraviolet spectrometer, ratioing radiometer for use with a solar diffuser, requirements of a solar diffuser and measurements of some candidate materials, reflectance stability analysis of Spectralon diffuse calibration panels, stray light effects on calibrations using a solar diffuser, radiometric calibration of SPOT 23 HRVs, surface and aerosol models for use in radiative transfer codes. Also addressed are: calibrated intercepts for solar radiometers used in remote sensor calibration, radiometric calibration of an airborne multispectral scanner, in-flight calibration of a helicopter-mounted Daedalus multispectral scanner, technique for improving the calibration of large-area sphere sources, remote colorimetry and its applications, spatial sampling errors for a satellite-borne scanning radiometer, calibration of EOS multispectral imaging sensors and solar irradiance variability.

  5. Uptake of 2, 4-Dichlorophenoxyacetic acid by Pseudomonas fluorescens

    USGS Publications Warehouse

    Wedemeyer, G.A.

    1966-01-01

    Factors influencing the uptake of the sodium salt of 2,4-dichlorophenoxyacetic acid (2,4-D), under conditions in which no net metabolism occurred, were investigated in an effort to determine both the significance of “nonmetabolic” uptake as a potential agent in reducing pesticide levels and the mechanisms involved. Uptake of 2,4-D was affected by pH, temperature, and the presence of other organic and inorganic compounds. Uptake was more pronounced at pH values less than 6, which implies that there may be some interaction between charged groups on the cell and the ionized carboxyl group of 2,4-D. Active transport, carriermediated diffusion, passive diffusion, and adsorption were considered as possible mechanisms. Though uptake was inhibited by glucose, sodium azide, and fluorodinitrobenzene (but not by uranylion), 2,4-D was not accumulated against a concentration gradient, a necessary consequence of an active transport system, nor was isotope counterflow found to occur. Thus, carrier-mediated diffusion was finally precluded, implying that uptake probably occurs by a two-step process: sorption onto the cell wall followed by passive diffusion into the cytoplasm.

  6. Uptake of 2,4-dichlorophenoxyacetic acid by Pseudomonas fluorescens

    USGS Publications Warehouse

    Wedemeyer, Gary

    1966-01-01

    Factors influencing the uptake of the sodium salt of 2,4-dichlorophenoxyacetic acid (2,4-D), under conditions in which no net metabolism occurred, were investigated in an effort to determine both the significance of “non-metabolic” uptake as a potential agent in reducing pesticide levels and the mechanisms involved. Uptake of 2,4-D was affected by pH, temperature, and the presence of other organic and inorganic compounds. Uptake was more pronounced at pH values less than 6, which implies that there may be some interaction between charged groups on the cell and the ionized carboxyl group of 2,4-D. Active transport, carrier-mediated diffusion, passive diffusion, and adsorption were considered as possible mechanisms. Though uptake was inhibited by glucose, sodium azide, and fluorodinitrobenzene (but not by uranyl ion), 2,4-D was not accumulated against a concentration gradient, a necessary consequence of an active transport system, nor was isotope counterflow found to occur. Thus, carrier-mediated diffusion was finally precluded, implying that uptake probably occurs by a two-step process: sorption onto the cell wall followed by passive diffusion into the cytoplasm.

  7. Fenceline Measurements of Speciated VOCs Using Passive Sorbent Tubes Deployed Around Oil and Natural Gas Production Pads in Colorado and Texas

    EPA Science Inventory

    A U.S. EPA team, consisting of the Office of Research and Development and Region 6 (Dallas) and Region 8 (Denver), deployed passive-diffusive sorbent tubes as part of a method evaluation study around one oil and natural gas production pad in both the Barnett Shale Basin in Texas ...

  8. Mathematical modelling of the Phloem: the importance of diffusion on sugar transport at osmotic equilibrium.

    PubMed

    Payvandi, S; Daly, K R; Zygalakis, K C; Roose, T

    2014-11-01

    Plants rely on the conducting vessels of the phloem to transport the products of photosynthesis from the leaves to the roots, or to any other organs, for growth, metabolism, and storage. Transport within the phloem is due to an osmotically-generated pressure gradient and is hence inherently nonlinear. Since convection dominates over diffusion in the main bulk flow, the effects of diffusive transport have generally been neglected by previous authors. However, diffusion is important due to boundary layers that form at the ends of the phloem, and at the leaf-stem and stem-root boundaries. We present a mathematical model of transport which includes the effects of diffusion. We solve the system analytically in the limit of high Münch number which corresponds to osmotic equilibrium and numerically for all parameter values. We find that the bulk solution is dependent on the diffusion-dominated boundary layers. Hence, even for large Péclet number, it is not always correct to neglect diffusion. We consider the cases of passive and active sugar loading and unloading. We show that for active unloading, the solutions diverge with increasing Péclet. For passive unloading, the convergence of the solutions is dependent on the magnitude of loading. Diffusion also permits the modelling of an axial efflux of sugar in the root zone which may be important for the growing root tip and for promoting symbiotic biological interactions in the soil. Therefore, diffusion is an essential mechanism for transport in the phloem and must be included to accurately predict flow.

  9. Isolation of the most immunoreactive antigenes of echinococcus granulosus from sheep hydatid fluid.

    PubMed

    Pozzuoli, R; Piantelli, M; Perucci, C; Arru, E; Musiani, P

    1975-11-01

    This paper describes a simplified procedure for obtaining purified Echinococcus granulosus antigens from sheep hydatid fluid by using affinity chromatography on concanavalin A-Sepharose. The presence of two "major" antigens (4 and 5) was confirmed. Antigen 5 was isolated by preparative polyacrylamide gel electrophoresis. Antigen 4, eluted by diffusion from the gel, was seen to be "contaminated" by antigen 5 and was isolated by using anti-5 Sepharose-linked serum. These two major antigens were then tested separately against the sera of hydatidosis patients by using very simple immunolgic tests. The best results were obtained in passive hemagglutination with antigen 4. Antigen 4 is the most immunoreactive parasitic antigen; antibodies against it were found in the sera of all hydatidosis patients showing positive reaction. Apart from the direct use of this antigen in serologic tests, it appears possible to standarize the most frequently used and commerically available antigenic materials by titrating this component.

  10. Mechanisms of Ocean Heat Uptake

    NASA Astrophysics Data System (ADS)

    Garuba, Oluwayemi

    An important parameter for the climate response to increased greenhouse gases or other radiative forcing is the speed at which heat anomalies propagate downward in the ocean. Ocean heat uptake occurs through passive advection/diffusion of surface heat anomalies and through the redistribution of existing temperature gradients due to circulation changes. Atlantic meridional overturning circulation (AMOC) weakens in a warming climate and this should slow the downward heat advection (compared to a case in which the circulation is unchanged). However, weakening AMOC also causes a deep warming through the redistributive effect, thus increasing the downward rate of heat propagation compared to unchanging circulation. Total heat uptake depends on the combined effect of these two mechanisms. Passive tracers in a perturbed CO2 quadrupling experiments are used to investigate the effect of passive advection and redistribution of temperature anomalies. A new passive tracer formulation is used to separate ocean heat uptake into contributions due to redistribution and passive advection-diffusion of surface heating during an ocean model experiment with abrupt increase in surface temperature. The spatial pattern and mechanisms of each component are examined. With further experiments, the effects of surface wind, salinity and temperature changes in changing circulation and the resulting effect on redistribution in the individual basins are isolated. Analysis of the passive advection and propagation path of the tracer show that the Southern ocean dominates heat uptake, largely through vertical and horizontal diffusion. Vertical diffusion transports the tracer across isopycnals down to about 1000m in 100 years in the Southern ocean. Advection is more important in the subtropical cells and in the Atlantic high latitudes, both with a short time scale of about 20 years. The shallow subtropical cells transport the tracer down to about 500m along isopycnal surfaces, below this vertical diffusion takes over transport in the tropics; in the Atlantic, the MOC transports heat as deep 2000m in about 30 years. Redistributive surface heat uptake alters the total amount surface heat uptake among the basins. Compared to the passive-only heat uptake, which is about the same among the basins, redistribution nearly doubles the surface heat input into the Atlantic but makes smaller increases in the Indian and Pacific oceans for a net global increase of about 25%, in the perturbation experiment with winds unchanged. The passive and redistributive heat uptake components are further distributed among the basins through the global conveyor belt. The Pacific gains twice the surface heat input into it through lateral transport from the other two basins, as a result, the Atlantic and Pacific gain similar amounts of heat even though surface heat input is in the Atlantic is much bigger. Of this heat transport, most of the passive component comes from the Indian and the redistributive component comes from the Atlantic. Different surface forcing perturbation gives different circulation change pattern and as a result yield different redistributive uptake. Ocean heat uptake is more sensitive to wind forcing perturbation than to thermohaline forcing perturbation. About 2% reduction in subtropical cells transport and southern ocean transport, in the wind-change perturbation experiment, resulted in about 10% reduction in the global ocean heat uptake of wind-unchanged experiment. The AMOC weakened by about 35% and resulted in a 25% increase in passive heat uptake in the wind-unchanged experiment. Surface winds weakening reduces heat uptake by warming the reservoir surface temperatures, while MOC weakening increases heat input by a cooling reservoir surface temperatures. Thermohaline forcing perturbation is combination of salinity and temperature perturbations, both weaken the AMOC, however, they have opposite redistributive effects. Ocean surface freshening gives positive redistributive effect, while surface temperature increase gives negative redistributive effect on heat uptake. The salinity effect dominates the redistributive effect for thermohaline perturbation.

  11. Modeling uptake of hydrophobic organic contaminants into polyethylene passive samplers.

    PubMed

    Thompson, Jay M; Hsieh, Ching-Hong; Luthy, Richard G

    2015-02-17

    Single-phase passive samplers are gaining acceptance as a method to measure hydrophobic organic contaminant (HOC) concentration in water. Although the relationship between the HOC concentration in water and passive sampler is linear at equilibrium, mass transfer models are needed for nonequilibrium conditions. We report measurements of organochlorine pesticide diffusion and partition coefficients with respect to polyethylene (PE), and present a Fickian approach to modeling HOC uptake by PE in aqueous systems. The model is an analytic solution to Fick's second law applied through an aqueous diffusive boundary layer and a polyethylene layer. Comparisons of the model with existing methods indicate agreement at appropriate boundary conditions. Laboratory release experiments on the organochlorine pesticides DDT, DDE, DDD, and chlordane in well-mixed slurries support the model's applicability to aqueous systems. In general, the advantage of the model is its application in the cases of well-agitated systems, low values of polyethylene-water partioning coefficients, thick polyethylene relative to the boundary layer thickness, and/or short exposure times. Another significant advantage is the ability to estimate, or at least bound, the needed exposure time to reach a desired CPE without empirical model inputs. A further finding of this work is that polyethylene diffusivity does not vary by transport direction through the sampler thickness.

  12. Measurement of minority carrier diffusion lengths in GaAs nanowires by a nanoprobe technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darbandi, A.; Watkins, S. P., E-mail: simonw@sfu.ca

    Minority carrier diffusion lengths in both p-type and n-type GaAs nanowires were studied using electron beam induced current by means of a nanoprobe technique without lithographic processing. The diffusion lengths were determined for Au/GaAs rectifying junctions as well as axial p-n junctions. By incorporating a thin lattice-matched InGaP passivating shell, a 2-fold enhancement in the minority carrier diffusion lengths and one order of magnitude reduction in the surface recombination velocity were achieved.

  13. A new passive radon-thoron discriminative measurement system.

    PubMed

    Sciocchetti, G; Sciocchetti, A; Giovannoli, P; DeFelice, P; Cardellini, F; Cotellessa, G; Pagliari, M

    2010-10-01

    A new passive radon-thoron discriminative measurement system has been developed for monitoring radon and thoron individually. It consists of a 'couple' of passive integrating devices with a CR39 nuclear track detector (NTD). The experimental prototype is based on the application of a new concept of NTD instrument developed at ENEA, named Alpha-PREM, acronym of piston radon exposure meter, which allows controlling the detector exposure with a patented sampling technique (Int. Eu. Pat. and US Pat.). The 'twin diffusion chambers system' was based on two A-PREM devices consisting of the standard device, named NTD-Rn, and a modified version, named NTD-Rn/Tn, which was set up to improve thoron sampling efficiency of the diffusion chamber, without changing the geometry and the start/stop function of the NTD-Rn device. Coupling devices fitted on each device allowed getting a system, which works as a double-chamber structure when deployed at the monitoring position. In this paper both technical and physical aspects are considered.

  14. Performance evaluation of a tailor-made passive sampler for monitoring of tropospheric ozone.

    PubMed

    Ozden, Ozlem; Döğeroğlu, Tuncay

    2012-09-01

    This study presents the performance evaluation of a tailor-made passive sampler developed for the monitoring of tropospheric ozone. The performance of the passive sampler was tested in the field conditions in terms of accuracy, precision, blank values, detection limit, effects of some parameters such as sampling site characteristics and sampling period on the field blanks, self-consistency, experimental and theoretical uptake rates, shelf life and comparison with commercial passive samplers. There was an agreement (R (2) = 0.84) between the responses of passive sampler and the continuous automatic analyser. The accuracy of the sampler, expressed as percent relative error, was obtained lower than 15%. Method precision in terms of coefficient of variance for three simultaneously applied passive samplers was 12%. Sampler detection limit was 2.42 μg m(-3) for an exposure period of 1 week, and the sampler can be stored safely for a period of up to 8 weeks before exposure. Satisfactory self-consistency results showed that extended periods gave the same integrated response as a series of short-term samplers run side by side. The uptake rate of ozone was found to be 10.21 mL min(-1) in a very good agreement with the theoretical uptake rate (10.32 mL min(-1)). The results of the comparison study conducted against a commercially available diffusion tube (Gradko diffusion tube) showed a good linear relationship (R (2) = 0.93) between two passive samplers. The sampler seems suitable to be used in large-scale measurements of ozone where no data are available or the number of existing automated monitors is not sufficient.

  15. Status and Progress of High-efficiency Silicon Solar Cells

    NASA Astrophysics Data System (ADS)

    Xiao, Shaoqing; Xu, Shuyan

    High-efficiency Si solar cells have attracted more and more attention from researchers, scientists, engineers of photovoltaic (PV) industry for the past few decades. Many high-quality researchers and engineers in both academia and industry seek solutions to improve the cell efficiency and reduce the cost. This desire has stimulated a growing number of major research and research infrastructure programmes, and a rapidly increasing number of publications in this filed. This chapter reviews materials, devices and physics of high-efficiency Si solar cells developed over the last 20 years. In this chapter there is a fair number of topics, not only from the material viewpoint, introducing various materials that are required for high-efficiency Si solar cells, such as base materials (FZ-Si, CZ-Si, MCZ-Si and multi-Si), emitter materials (diffused emitter and deposited emitter), passivation materials (Al-back surface field, high-low junction, SiO2, SiO x , SiN x , Al2O3 and a-Si:H), and other functional materials (antireflective layer, TCO and metal electrode), but also from the device and physics point of view, elaborating on physics, cell concept, development and status of all kinds of high-efficiency Si solar cells, such as passivated emitter and rear contact (PERC), passivated emitter and rear locally diffused (PERL), passivated emitter and rear totally diffused (PERT), Pluto, interdigitated back-contacted (IBC), emitter-wrap-through (EWT), metallization-wrap-through (MWT), Heterojunction with intrinsic thin-layer (HIT) and so on. Some representative examples of high-efficiency Si solar cell materials and devices with excellent performance and competitive advantages are presented.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willemin, Marie-Emilie; Lumen, Annie, E-mail: Anni

    Thyroid homeostasis can be disturbed due to thiocyanate exposure from the diet or tobacco smoke. Thiocyanate inhibits both thyroidal uptake of iodide, via the sodium-iodide symporter (NIS), and thyroid hormone (TH) synthesis in the thyroid, via thyroid peroxidase (TPO), but the mode of action of thiocyanate is poorly quantified in the literature. The characterization of the link between intra-thyroidal thiocyanate concentrations and dose of exposure is crucial for assessing the risk of thyroid perturbations due to thiocyanate exposure. We developed a PBPK model for thiocyanate that describes its kinetics in the whole-body up to daily doses of 0.15 mmol/kg, withmore » a mechanistic description of the thyroidal kinetics including NIS, passive diffusion, and TPO. The model was calibrated in a Bayesian framework using published studies in rats. Goodness-of-fit was satisfactory, especially for intra-thyroidal thiocyanate concentrations. Thiocyanate kinetic processes were quantified in vivo, including the metabolic clearance by TPO. The passive diffusion rate was found to be greater than NIS-mediated uptake rate. The model captured the dose-dependent kinetics of thiocyanate after acute and chronic exposures. Model behavior was evaluated using a Morris screening test. The distribution of thiocyanate into the thyroid was found to be determined primarily by the partition coefficient, followed by NIS and passive diffusion; the impact of the latter two mechanisms appears to increase at very low doses. Extrapolation to humans resulted in good predictions of thiocyanate kinetics during chronic exposure. The developed PBPK model can be used in risk assessment to quantify dose-response effects of thiocyanate on TH. - Highlights: • A PBPK model of thiocyanate (SCN{sup −}) was calibrated in rats in a Bayesian framework. • The intra-thyroidal kinetics of thiocyanate including NIS and TPO was modeled. • Passive diffusion rate for SCN{sup −} seemed to be greater than the NIS-mediated uptake. • The dose-dependent kinetics of SCN{sup −} was captured after an acute and chronic exposure. • The PBPK model of thiocyanate was successfully extrapolated to humans.« less

  17. A Simple Educational Method for the Measurement of Liquid Binary Diffusivities

    ERIC Educational Resources Information Center

    Rice, Nicholas P.; de Beer, Martin P.; Williamson, Mark E.

    2014-01-01

    A simple low-cost experiment has been developed for the measurement of the binary diffusion coefficients of liquid substances. The experiment is suitable for demonstrating molecular diffusion to small or large undergraduate classes in chemistry or chemical engineering. Students use a cell phone camera in conjunction with open-source image…

  18. A Simple Refraction Experiment for Probing Diffusion in Ternary Mixtures

    ERIC Educational Resources Information Center

    Coutinho, Cecil A.; Mankidy, Bijith D.; Gupta, Vinay K.

    2010-01-01

    Diffusion is a fundamental phenomenon that is vital in many chemical processes such as mass transport in living cells, corrosion, and separations. We describe a simple undergraduate-level experiment based on Weiner's Method to probe diffusion in a ternary aqueous mixture of small molecular-weight molecules. As an illustration, the experiment…

  19. Passive micromixer using by convection and surface tension effects with air-liquid interface.

    PubMed

    Ju, Jongil; Warrick, Jay

    2013-12-01

    This article describes a passive micromixer that utilizes an air-liquid interface and surface tension effects to enhance fluid mixing via convection and Marangoni effects. Performance of the microfluidic component is tested within a passive-pumping-based device that consists of three microchannels connected in succession using passive micro-mixers. Mixing was quantified at 5 key points along the length of the device using microscope images of patterned streams of Alexa 488 fluorescent-dyed water and pure DI water flowing through the device. The passive micro-mixer mixed fluid 15-20 times more effectively than diffusion between laminar flow streams alone and is a novel micro-mixer embodiment that provides an additional strategy for removing external components from microscale devices for simpler, autonomous operation.

  20. Passive micromixer using by convection and surface tension effects with air-liquid interface

    PubMed Central

    Ju, Jongil; Warrick, Jay

    2014-01-01

    This article describes a passive micromixer that utilizes an air-liquid interface and surface tension effects to enhance fluid mixing via convection and Marangoni effects. Performance of the microfluidic component is tested within a passive-pumping-based device that consists of three microchannels connected in succession using passive micro-mixers. Mixing was quantified at 5 key points along the length of the device using microscope images of patterned streams of Alexa 488 fluorescent-dyed water and pure DI water flowing through the device. The passive micro-mixer mixed fluid 15–20 times more effectively than diffusion between laminar flow streams alone and is a novel micro-mixer embodiment that provides an additional strategy for removing external components from microscale devices for simpler, autonomous operation. PMID:25104979

  1. Influence of La addition on the semi-conductive properties of passive films formed on Cu-Ni alloy

    NASA Astrophysics Data System (ADS)

    Leng, Xiang; Zhang, Yadong; Zhou, Qiongyu; Zhang, Yinghui; Wang, Zhigang; Wang, Hang; Yang, Bin

    2018-05-01

    The semi-conductive properties of passive films formed on Cu-Ni alloy and Cu-Ni-La alloy were investigated in 0.1 M NaOH solution, by employing electrochemical impedance spectroscopy (EIS), Mott–Schottky analysis and point defect model (PDM). Results indicate that both the passive films formed on Cu-Ni alloy and Cu-Ni-La alloy display p-type semi-conductive characteristics with cation vacancies in order of magnitude of 1020 cm3. Compared with Cu-Ni alloy, La addition could significantly improve the corrosion resistance, due to a superior barrier passive film formed Cu-Ni-La alloy with a bigger film resistance (R f), increased passive film thickness (L ss) in conjunction with decreased diffusion coefficient (D 0).

  2. Passivity of Directed and Undirected Complex Dynamical Networks With Adaptive Coupling Weights.

    PubMed

    Wang, Jin-Liang; Wu, Huai-Ning; Huang, Tingwen; Ren, Shun-Yan; Wu, Jigang

    2017-08-01

    A complex dynamical network consisting of N identical neural networks with reaction-diffusion terms is considered in this paper. First, several passivity definitions for the systems with different dimensions of input and output are given. By utilizing some inequality techniques, several criteria are presented, ensuring the passivity of the complex dynamical network under the designed adaptive law. Then, we discuss the relationship between the synchronization and output strict passivity of the proposed network model. Furthermore, these results are extended to the case when the topological structure of the network is undirected. Finally, two examples with numerical simulations are provided to illustrate the correctness and effectiveness of the proposed results.

  3. Spectral Analysis and Computation of Effective Diffusivities for Steady Random Flows

    DTIC Science & Technology

    2016-04-28

    even in the motion of sea ice floes influenced by winds and ocean currents. The long time, large scale behavior of such systems is equivalent to an...flow plays a key role in many important processes in the global climate system [55] and Earth’s ecosys- tems [14]. Advection of geophysical fluids...HOMOGENIZATION OF THE ADVECTION-DIFFUSION EQUATION The dispersion of a cloud of passive scalars with density φ diffusing with molecular dif- fusivity ε and

  4. Passive sampling of DDT, DDE and DDD in sediments: accounting for degradation processes with reaction-diffusion modeling.

    PubMed

    Tcaciuc, A Patricia; Borrelli, Raffaella; Zaninetta, Luciano M; Gschwend, Philip M

    2018-01-24

    Passive sampling is becoming a widely used tool for assessing freely dissolved concentrations of hydrophobic organic contaminants in environmental media. For certain media and target analytes, the time to reach equilibrium exceeds the deployment time, and in such cases, the loss of performance reference compounds (PRCs), loaded in the sampler before deployment, is one of the common ways used to assess the fractional equilibration of target analytes. The key assumption behind the use of PRCs is that their release is solely diffusion driven. But in this work, we show that PRC transformations in the sediment can have a measurable impact on the PRC releases and even allow estimation of that compound's transformation rate in the environment of interest. We found that in both field and lab incubations, the loss of the 13 C 2,4'-DDT PRC from a polyethylene (PE) passive sampler deployed at the sediment-water interface was accelerated compared to the loss of other PRCs ( 13 C-labeled PCBs, 13 C-labeled DDE and DDD). The DDT PRC loss was also accompanied by accumulation in the PE of its degradation product, 13 C 2,4'-DDD. Using a 1D reaction-diffusion model, we deduced the in situ degradation rates of DDT from the measured PRC loss. The in situ degradation rates increased with depth into the sediment bed (0.14 d -1 at 0-10 cm and 1.4 d -1 at 30-40 cm) and although they could not be independently validated, these rates compared favorably with literature values. This work shows that passive sampling users should be cautious when choosing PRCs, as degradation processes can affect some PRC's releases from the passive sampler. More importantly, this work opens up the opportunity for novel applications of passive samplers, particularly with regard to investigating in situ degradation rates, pathways, and products for both legacy and emerging contaminants. However, further work is needed to confirm that the rates deduced from model fitting of PRC loss are a true reflection of DDT transformation rates in sediments.

  5. Numerically exploring habitat fragmentation effects on populations using cell-based coupled map lattices

    Treesearch

    Michael Bevers; Curtis H. Flather

    1999-01-01

    We examine habitat size, shape, and arrangement effects on populations using a discrete reaction-diffusion model. Diffusion is modeled passively and applied to a cellular grid of territories forming a coupled map lattice. Dispersal mortality is proportional to the amount of nonhabitat and fully occupied habitat surrounding a given cell, with distance decay. After...

  6. Modeling of molecular diffusion and thermal conduction with multi-particle interaction in compressible turbulence

    NASA Astrophysics Data System (ADS)

    Tai, Y.; Watanabe, T.; Nagata, K.

    2018-03-01

    A mixing volume model (MVM) originally proposed for molecular diffusion in incompressible flows is extended as a model for molecular diffusion and thermal conduction in compressible turbulence. The model, established for implementation in Lagrangian simulations, is based on the interactions among spatially distributed notional particles within a finite volume. The MVM is tested with the direct numerical simulation of compressible planar jets with the jet Mach number ranging from 0.6 to 2.6. The MVM well predicts molecular diffusion and thermal conduction for a wide range of the size of mixing volume and the number of mixing particles. In the transitional region of the jet, where the scalar field exhibits a sharp jump at the edge of the shear layer, a smaller mixing volume is required for an accurate prediction of mean effects of molecular diffusion. The mixing time scale in the model is defined as the time scale of diffusive effects at a length scale of the mixing volume. The mixing time scale is well correlated for passive scalar and temperature. Probability density functions of the mixing time scale are similar for molecular diffusion and thermal conduction when the mixing volume is larger than a dissipative scale because the mixing time scale at small scales is easily affected by different distributions of intermittent small-scale structures between passive scalar and temperature. The MVM with an assumption of equal mixing time scales for molecular diffusion and thermal conduction is useful in the modeling of the thermal conduction when the modeling of the dissipation rate of temperature fluctuations is difficult.

  7. Passive Imaging in Nondiffuse Acoustic Wavefields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulargia, Francesco; Castellaro, Silvia

    2008-05-30

    A main property of diffuse acoustic wavefields is that, taken any two points, each of them can be seen as the source of waves and the other as the recording station. This property is shown to follow simply from array azimuthal selectivity and Huygens principle in a locally isotropic wavefield. Without time reversal, this property holds approximately also in anisotropic azimuthally uniform wavefields, implying much looser constraints for undistorted passive imaging than those required by a diffuse field. A notable example is the seismic noise field, which is generally nondiffuse, but is found to be compatible with a finite aperturemore » anisotropic uniform wavefield. The theoretical predictions were confirmed by an experiment on seismic noise in the mainland of Venice, Italy.« less

  8. The role of halide ions on the electrochemical behaviour of iron in alkali solutions

    NASA Astrophysics Data System (ADS)

    Begum, S. Nathira; Muralidharan, V. S.; Basha, C. Ahmed

    2008-02-01

    Active dissolution and passivation of transition metals in alkali solutions is of technological importance in batteries. The performance of alkaline batteries is decided by the presence of halides as they influence passivation. Cyclic voltammetric studies were carried out on iron in different sodium hydroxide solutions in presence of halides. In alkali solutions iron formed hydroxo complexes and their polymers in the interfacial diffusion layer. With progress of time they formed a cation selective layer. The diffusion layer turned into bipolar ion selective layer consisted of halides, a selective inner sublayer to the metal side and cation selective outer layer to the solution side. At very high anodic potentials, dehydration and deprotonation led to the conversion of salt layer into an oxide.

  9. Development of a model using the MATLAB System identification toolbox to estimate (222)Rn equilibrium factor from CR-39 based passive measurements.

    PubMed

    Abo-Elmagd, M; Sadek, A M

    2014-12-01

    Can and Bare method is a widely used passive method for measuring the equilibrium factor F through the determination of the track density ratio between bare (D) and filtered (Do) detectors. The dimensions of the used diffusion chamber are altering the deposition ratios of Po-isotopes on the chamber walls as well as the ratios of the existing alpha emitters in air. Then the measured filtered track density and therefore the resultant equilibrium factor is changed according to the diffusion chamber dimensions. For this reason, high uncertainty was expected in the measured F using different diffusion chambers. In the present work, F is derived as a function of both track density ratio (D/Do) and the dimensions of the used diffusion chambers (its volume to the total internal surface area; V/A). The accuracy of the derived formula was verified using the black-box modeling technique via the MATLAB System identification toolbox. The results show that the uncertainty of the calculated F by using the derived formula of F (D/Do, V/A) is only 5%. The obtained uncertainty ensures the quality of the derived function to calculate F using diffusion chambers with wide range of dimensions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Passive acoustic monitoring of bed load for fluvial applications

    USDA-ARS?s Scientific Manuscript database

    The sediment transported as bed load in streams and rivers is notoriously difficult to monitor cheaply and accurately. Passive acoustic methods are relatively simple, inexpensive, and provide spatial integration along with high temporal resolution. In 1963 work began on monitoring emissions from par...

  11. Optimization of Wireless Power Transfer Systems Enhanced by Passive Elements and Metasurfaces

    NASA Astrophysics Data System (ADS)

    Lang, Hans-Dieter; Sarris, Costas D.

    2017-10-01

    This paper presents a rigorous optimization technique for wireless power transfer (WPT) systems enhanced by passive elements, ranging from simple reflectors and intermedi- ate relays all the way to general electromagnetic guiding and focusing structures, such as metasurfaces and metamaterials. At its core is a convex semidefinite relaxation formulation of the otherwise nonconvex optimization problem, of which tightness and optimality can be confirmed by a simple test of its solutions. The resulting method is rigorous, versatile, and general -- it does not rely on any assumptions. As shown in various examples, it is able to efficiently and reliably optimize such WPT systems in order to find their physical limitations on performance, optimal operating parameters and inspect their working principles, even for a large number of active transmitters and passive elements.

  12. Enhancement of diffusive transport in oscillatory flows

    NASA Technical Reports Server (NTRS)

    Knobloch, E.; Merryfield, W. J.

    1992-01-01

    The theory of transport of passive scalars in oscillatory flows is reexamined. The differences between transport in standing and traveling waves are emphasized. Both Lagrangian and Eulerian diffusivities are calculated, and the conditions for their applicability are discussed. Numerical simulations are conducted to understand the expulsion of gradients from time-dependent eddies and the resulting transport. The results indicate that it is the Eulerian diffusivity that is of primary relevance for describing enhanced transport on spatial scales larger than that of the eddies.

  13. A Passive Sampler for Determination of Nitrogen Dioxide in Ambient Air

    ERIC Educational Resources Information Center

    Xiao, Dan; Lin, Lianzhi; Yuan, Hongyan; Choi, Martin M. F.; Chan, Winghong

    2005-01-01

    A passive sampler that provides a convenient, simple, and fast method for nitrogen dioxide determination is proposed. The experiment can be modified for determinations of other air pollutants like formaldehyde and sulfur dioxide for hands-on experience for students studying environmental pollution problems.

  14. Nitridation of SiO2 for surface passivation

    NASA Technical Reports Server (NTRS)

    Lai, S. K. C.

    1985-01-01

    An attempt is made to relate the electrical properties of silicon dioxide film to the process history. A model is proposed to explain some of the observed results. It is shown that with our present knowledge of the dielectric, silicon dioxide film shows a lot of promise for its use in surface passivation, both for its resistance to impurity diffusion and for its resistance to radiation damage effects.

  15. Extracting dielectric fixed charge density on highly doped crystalline-silicon surfaces using photoconductance measurements

    NASA Astrophysics Data System (ADS)

    To, A.; Hoex, B.

    2017-11-01

    A novel method for the extraction of fixed interface charge, Qf, and the surface recombination parameters, Sn0 and Sp0, from the injection-level dependent effective minority carrier lifetime measurements is presented. Unlike conventional capacitance-voltage measurements, this technique can be applied to highly doped surfaces provided the surface carrier concentration transitions into strong depletion or inversion with increased carrier injection. By simulating the injection level dependent Auger-corrected inverse lifetime curve of symmetrically passivated and diffused samples after sequential annealing and corona charging, it was revealed that Qf, Sn0, and Sp0 have unique signatures. Therefore, these important electronic parameters, in some instances, can independently be resolved. Furthermore, it was shown that this non-linear lifetime behaviour is exhibited on both p-type and n-type diffused inverted surfaces, by demonstrating the approach with phosphorous diffused n+pn+ structures and boron diffused p+np+ structures passivated with aluminium oxide (AlOx) and silicon nitride, respectively (SiNx). The results show that the approximation of a mid-gap Shockley-Read-Hall defect level with equal capture cross sections is able to, in the samples studied in this work, reproduce the observed injection level dependent lifetime behaviour.

  16. CdCl2 passivation of polycrystalline CdMgTe and CdZnTe absorbers for tandem photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Swanson, Drew E.; Reich, Carey; Abbas, Ali; Shimpi, Tushar; Liu, Hanxiao; Ponce, Fernando A.; Walls, John M.; Zhang, Yong-Hang; Metzger, Wyatt K.; Sampath, W. S.; Holman, Zachary C.

    2018-05-01

    As single-junction silicon solar cells approach their theoretical limits, tandems provide the primary path to higher efficiencies. CdTe alloys can be tuned with magnesium (CdMgTe) or zinc (CdZnTe) for ideal tandem pairing with silicon. A II-VI/Si tandem holds the greatest promise for inexpensive, high-efficiency top cells that can be quickly deployed in the market using existing polycrystalline CdTe manufacturing lines combined with mature silicon production lines. Currently, all high efficiency polycrystalline CdTe cells require a chloride-based passivation process to passivate grain boundaries and bulk defects. This research examines the rich chemistry and physics that has historically limited performance when extending Cl treatments to polycrystalline 1.7-eV CdMgTe and CdZnTe absorbers. A combination of transmittance, quantum efficiency, photoluminescence, transmission electron microscopy, and energy-dispersive X-ray spectroscopy clearly reveals that during passivation, Mg segregates and out-diffuses, initially at the grain boundaries but eventually throughout the bulk. CdZnTe exhibits similar Zn segregation behavior; however, the onset and progression is localized to the back of the device. After passivation, CdMgTe and CdZnTe can render a layer that is reduced to predominantly CdTe electro-optical behavior. Contact instabilities caused by inter-diffusion between the layers create additional complications. The results outline critical issues and paths for these materials to be successfully implemented in Si-based tandems and other applications.

  17. Performances and application of a passive sampling method for the simultaneous determination of nitrogen dioxide and sulfur dioxide in ambient air.

    PubMed

    Plaisance, H; Sagnier, I; Saison, J Y; Galloo, J C; Guillermo, R

    2002-11-01

    The performances and applicability of a diffusion tube sampler for the simultaneous measurements of NO2 and SO2 in ambient air were evaluated. SO2 and NO2 are collected by the passive sampler using triethanolamine as trapping agent and are determined as sulphate and nitrite with ion chromatography. The detection limit (2.3 microg m(-3) of NO2 and 4.2 microg m(-3) of SO2 for two weeks sampling) is adequate for the determination of concentrations in urban and industrial areas. Precision of the method as RSD is in mean 5% for NO2 and 12% for SO2 at the concentration levels in urban areas. Calibration of the method was performed in the field conditions by comparison between the responses of sampler and the concentrations measured by the continuous monitors. High degree of linearity (correlation coefficients > 0.8) is found between the passive sampler tube and the continuous monitor data for both NO2 and SO2. To reduce the wind velocity influence on passive sampling of diffusion tubes, a protective shelter was tested in this study. The overall uncertainty of one measure for the optimised method is estimated at 5 microg m(-3) for NO2 and 6 microg m(-3) for SO2. Suitability of this passive sampling method for air pollution monitoring in urban areas was demonstrated by the results shown in this paper on a campaign carried out in the French agglomeration.

  18. Comparative Measurements of Radon Concentration in Soil Using Passive and Active Methods in High Level Natural Radiation Area (HLNRA) of Ramsar

    PubMed Central

    Amanat, B; Kardan, M R; Faghihi, R; Hosseini Pooya, S M

    2013-01-01

    Background: Radon and its daughters are amongst the most important sources of natural exposure in the world. Soil is one of the significant sources of radon/thoron due to both radium and thorium so that the emanated thoron from it may cause increased uncertainties in radon measurements. Recently, a diffusion chamber has been designed and optimized for passive discriminative measurements of radon/thoron concentrations in soil. Objective: In order to evaluate the capability of the passive method, some comparative measurements (with active methods) have been performed. Method: The method is based upon measurements by a diffusion chamber, including two Lexan polycarbonate SSNTDs, which can discriminate the emanated radon/thorn from the soil by delay method. The comparative measurements have been done in ten selected points of HLNRA of Ramsar in Iran. The linear regression and correlation between the results of two methods have been studied. Results: The results show that the radon concentrations are within the range of 12.1 to 165 kBq/m3 values. The correlation between the results of active and passive methods was measured by 0.99 value. As well, the thoron concentrations have been measured between 1.9 to 29.5 kBq/m3 values at the points. Conclusion: The sensitivity as well as the strong correlation with active measurements shows that the new low-cost passive method is appropriate for accurate seasonal measurements of radon and thoron concentration in soil. PMID:25505760

  19. Passivation of c-Si surfaces by sub-nm amorphous silicon capped with silicon nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Yimao, E-mail: yimao.wan@anu.edu.au; Yan, Di; Bullock, James

    2015-12-07

    A sub-nm hydrogenated amorphous silicon (a-Si:H) film capped with silicon nitride (SiN{sub x}) is shown to provide a high level passivation to crystalline silicon (c-Si) surfaces. When passivated by a 0.8 nm a-Si:H/75 nm SiN{sub x} stack, recombination current density J{sub 0} values of 9, 11, 47, and 87 fA/cm{sup 2} are obtained on 10 Ω·cm n-type, 0.8 Ω·cm p-type, 160 Ω/sq phosphorus-diffused, and 120 Ω/sq boron-diffused silicon surfaces, respectively. The J{sub 0} on n-type 10 Ω·cm wafers is further reduced to 2.5 ± 0.5 fA/cm{sup 2} when the a-Si:H film thickness exceeds 2.5 nm. The passivation by the sub-nm a-Si:H/SiN{sub x} stack is thermally stable at 400 °C in N{sub 2} formore » 60 min on all four c-Si surfaces. Capacitance–voltage measurements reveal a reduction in interface defect density and film charge density with an increase in a-Si:H thickness. The nearly transparent sub-nm a-Si:H/SiN{sub x} stack is thus demonstrated to be a promising surface passivation and antireflection coating suitable for all types of surfaces encountered in high efficiency c-Si solar cells.« less

  20. Modeling the transport of organic chemicals between polyethylene passive samplers and water in finite and infinite bath conditions.

    PubMed

    Tcaciuc, A Patricia; Apell, Jennifer N; Gschwend, Philip M

    2015-12-01

    Understanding the transfer of chemicals between passive samplers and water is essential for their use as monitoring devices of organic contaminants in surface waters. By applying Fick's second law to diffusion through the polymer and an aqueous boundary layer, the authors derived a mathematical model for the uptake of chemicals into a passive sampler from water, in finite and infinite bath conditions. The finite bath model performed well when applied to laboratory observations of sorption into polyethylene (PE) sheets for various chemicals (polycyclic aromatic hydrocarbons, polychlorinated biphenyls [PCBs], and dichlorodiphenyltrichloroethane [DDT]) and at varying turbulence levels. The authors used the infinite bath model to infer fractional equilibration of PCB and DDT analytes in field-deployed PE, and the results were nearly identical to those obtained using the sampling rate model. However, further comparison of the model and the sampling rate model revealed that the exchange of chemicals was inconsistent with the sampling rate model for partially or fully membrane-controlled transfer, which would be expected in turbulent conditions or when targeting compounds with small polymer diffusivities and small partition coefficients (e.g., phenols, some pesticides, and others). The model can be applied to other polymers besides PE as well as other chemicals and in any transfer regime (membrane, mixed, or water boundary layer-controlled). Lastly, the authors illustrate practical applications of this model such as improving passive sampler design and understanding the kinetics of passive dosing experiments. © 2015 SETAC.

  1. Interfacial instability of amorphous LiPON against lithium: A combined Density Functional Theory and spectroscopic study

    NASA Astrophysics Data System (ADS)

    Sicolo, Sabrina; Fingerle, Mathias; Hausbrand, René; Albe, Karsten

    2017-06-01

    The chemical instability of the glassy solid electrolyte LiPON against metallic lithium and the occurrence of side reactions at their interface is investigated by combining a surface science approach and quantum-mechanical calculations. Using an evolutionary structure search followed by a melt-quenching protocol, a model for the disordered structure of LiPON is generated and put into contact with lithium. Even the static optimization of a simple model interface suggests that the diffusion of lithium into LiPON is driven by a considerable driving force that could easily take place under experimental conditions. Calculated reaction energies indicate that the reduction and decomposition of LiPON is thermodynamically favorable. By monitoring the evolution of the LiPON core levels as a function of lithium exposure, the disruption of the LiPON network alongside the occurrence of new phases is observed. The direct comparison between UV photoelectron spectroscopy measurements and calculated electronic densities of states for increasing stages of lithiation univocally identifies the new phases as Li2O, Li3P and Li3N. These products are stable against Li metal and form a passivation layer which shields the electrolyte from further decomposition while allowing for the diffusion of Li ions.

  2. Absorption of resveratrol by vascular endothelial cells through passive diffusion and an SGLT1-mediated pathway.

    PubMed

    Chen, Ming-liang; Yi, Long; Jin, Xin; Xie, Qi; Zhang, Ting; Zhou, Xi; Chang, Hui; Fu, Yu-jie; Zhu, Jun-dong; Zhang, Qian-yong; Mi, Man-tian

    2013-11-01

    Resveratrol is a natural polyphenol that exerts potent effects to suppress atherosclerosis. However, its low concentration in plasma has placed this role in doubt. Thus, resveratrol effects might be dependent on its transport into vascular endothelium, a question not previously addressed in spite of its obvious and fundamental importance. Via high-performance liquid chromatography and liquid chromatography/mass spectrometry, we found that resveratrol was absorbed by human umbilical vein endothelial cells in a temperature-, concentration- and time-dependent manner, suggesting the involvement of passive diffusion and active transport. As determined by confocal laser scanning microscopy, resveratrol primarily distributed throughout the cytoplasm. Furthermore, resveratrol absorption was modulated by serum proteins and sodium-dependent glucose transporter 1 (SGLT1) yet inhibited by glucose (an SGLT1 substrate) and phlorizin (an SGLT1 selective inhibitor), as well as SGLT1 siRNA transfection. Additionally, Sprague-Dawley rats were intragastrically administrated with 100mg/kg of resveratrol and the concentration of resveratrol in blood vessels declined more slowly up to 24h compared to that in the blood. Our results suggested that resveratrol uptake by vascular endothelial cells involved both passive diffusion and an SGLT1-mediated process, at least partially. Moreover, the intracellular resveratrol pool may be more important than the serum level in vivo. These provide new insights into the cardiovascular benefits of resveratrol. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Permeability, transport, and metabolism of solutes in Caco-2 cell monolayers: a theoretical study.

    PubMed

    Sun, Huadong; Pang, K Sandy

    2008-01-01

    We explored the properties of a catenary model that includes the basolateral (B), apical (A), and cellular compartments via simulations under linear and nonlinear conditions to understand the asymmetric observations arising from transporters, enzymes, and permeability in Caco-2 cells. The efflux ratio (EfR; P(app,B-->A)/P(app,A-->B)), obtained from the effective permeability from the A-->B and B-->A direction under linear conditions, was unity for passively permeable drugs whose transport does not involve transporters; the value was unaffected by cellular binding or metabolism, but increased with apical efflux. Metabolism was asymmetric, showing lesser metabolite accrual for the B-->A than A-->B direction because of inherent differences in the volumes for A and B. Moreover, the net flux (total - passive permeation) due to saturable apical efflux, absorption, or metabolism showed nonconformity to simple Michaelis-Menten kinetics against C(D,0), the loading donor concentration. EfR values differed with saturable apical efflux and metabolism (>1), as well as apical absorption (EfRs <1), but approached unity with high passive diffusive clearance (CL(d)) and increasing C(D,0) at a higher degree of saturation of the process. The J(max) (apparent V(max) estimated for the carrier system) and K(m)(') [or the K(m)('') based on a modified equation with the Hill coefficient (beta)] estimates from the Eadie-Hofstee plot revealed spurious correlations with the assigned V(max) and K(m). The sampling time, CL(d), and parameter space of K(m) and V(max) strongly influenced both the correlation and accuracy of estimates. Improved correlation was found for compounds with high CL(d). These observations showed that the catenary model is appropriate in the description of transport and metabolic data in Caco-2 cells.

  4. A simple method for characterizing passive and active neuronal properties: application to striatal neurons.

    PubMed

    Lepora, Nathan F; Blomeley, Craig P; Hoyland, Darren; Bracci, Enrico; Overton, Paul G; Gurney, Kevin

    2011-11-01

    The study of active and passive neuronal dynamics usually relies on a sophisticated array of electrophysiological, staining and pharmacological techniques. We describe here a simple complementary method that recovers many findings of these more complex methods but relies only on a basic patch-clamp recording approach. Somatic short and long current pulses were applied in vitro to striatal medium spiny (MS) and fast spiking (FS) neurons from juvenile rats. The passive dynamics were quantified by fitting two-compartment models to the short current pulse data. Lumped conductances for the active dynamics were then found by compensating this fitted passive dynamics within the current-voltage relationship from the long current pulse data. These estimated passive and active properties were consistent with previous more complex estimations of the neuron properties, supporting the approach. Relationships within the MS and FS neuron types were also evident, including a graduation of MS neuron properties consistent with recent findings about D1 and D2 dopamine receptor expression. Application of the method to simulated neuron data supported the hypothesis that it gives reasonable estimates of membrane properties and gross morphology. Therefore detailed information about the biophysics can be gained from this simple approach, which is useful for both classification of neuron type and biophysical modelling. Furthermore, because these methods rely upon no manipulations to the cell other than patch clamping, they are ideally suited to in vivo electrophysiology. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  5. Determination of deployment specific chemical uptake rates for SDB-RPD Empore disk using a passive flow monitor (PFM).

    PubMed

    O'Brien, Dominique; Bartkow, Michael; Mueller, Jochen F

    2011-05-01

    The use of the adsorbent styrenedivinylbenzene-reverse phase sulfonated (SDB-RPD) Empore disk in a chemcatcher type passive sampler is routinely applied in Australia when monitoring herbicides in aquatic environments. One key challenge in the use of passive samplers is mitigating the potentially confounding effects of varying flow conditions on chemical uptake by the passive sampler. Performance reference compounds (PRCs) may be applied to correct sampling rates (R(s)) for site specific changed in flow and temperature however evidence suggests the use of PRCs is unreliable when applied to adsorbent passive samplers. The use of the passive flow monitor (PFM) has been introduced for the assessment of site-specific changes in water flow. In the presented study we have demonstrated that the R(s) at which both atrazine and prometryn are accumulated within the SDB-RPD-Empore disk is dependent on the flow conditions. Further, the calibration of the measured R(s) for chemical uptake by the SDB-RPD-Empore disk to the mass lost from the PFM has shown that the PFM provides an accurate measure of R(s) for flow velocities from 0 to 16cms(-1). Notably, for flow rates >16cms(-1), a non linear increase in the R(s) of both herbicides was observed which indicates that the key resistance to uptake into the SDB-RPD Empore disk is associated with the diffusion through the overlying diffusion limiting membrane. Overall the greatest uncertainty remains at very low flow conditions, which are unlikely to often occur in surface waters. Validation of the PFM use has also been undertaken in a limited field study. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Fluorescent recovery after photobleaching (FRAP) analysis of nuclear export rates identifies intrinsic features of nucleocytoplasmic transport.

    PubMed

    Cardarelli, Francesco; Tosti, Luca; Serresi, Michela; Beltram, Fabio; Bizzarri, Ranieri

    2012-02-17

    A quantitative description of carrier-mediated nuclear export in live cells is presented. To this end, we fused a prototypical leucine-rich nuclear export signal (NES) to GFP as a cargo model and expressed the fluorescent chimera in live CHO-K1 cells. By modeling FRAP data, we calculate the NES affinity for the export machinery and the maximum rate of nuclear export achievable at saturation of endogenous carriers. The measured active-export time through the Nuclear Pore Complex (NPC) is 18 ms, remarkably similar to the previously determined active-import rate. Also, our results reveal that active export/import and active export/passive diffusion fluxes are uncoupled, thus complementing previous reports on active import/passive diffusion uncoupling. These findings suggest differential gating at the NPC level.

  7. Managing evaporation for more robust microscale assays. Part 2. Characterization of convection and diffusion for cell biology.

    PubMed

    Berthier, Erwin; Warrick, Jay; Yu, Hongmeiy; Beebe, David J

    2008-06-01

    Cell based microassays allow the screening of a multitude of culture conditions in parallel, which can be used for various applications from drug screening to fundamental cell biology research. Tubeless microfluidic devices based on passive pumping are a step towards accessible high throughput microassays, however they are vulnerable to evaporation. In addition to volume loss, evaporation can lead to the generation of small flows. Here, we focus on issues of convection and diffusion for cell culture in microchannels and particularly the transport of soluble factors secreted by cells. We find that even for humidity levels as high as 95%, convection in a passive pumping channel can significantly alter distributions of these factors and that appropriate system design can prevent convection.

  8. Humidity Sensing Properties of Paper Substrates and Their Passivation with ZnO Nanoparticles for Sensor Applications

    PubMed Central

    Niarchos, Georgios; Dubourg, Georges; Afroudakis, Georgios; Georgopoulos, Markos; Tsouti, Vasiliki; Makarona, Eleni; Crnojevic-Bengin, Vesna; Tsamis, Christos

    2017-01-01

    In this paper, we investigated the effect of humidity on paper substrates and propose a simple and low-cost method for their passivation using ZnO nanoparticles. To this end, we built paper-based microdevices based on an interdigitated electrode (IDE) configuration by means of a mask-less laser patterning method on simple commercial printing papers. Initial resistive measurements indicate that a paper substrate with a porous surface can be used as a cost-effective, sensitive and disposable humidity sensor in the 20% to 70% relative humidity (RH) range. Successive spin-coated layers of ZnO nanoparticles then, control the effect of humidity. Using this approach, the sensors become passive to relative humidity changes, paving the way to the development of ZnO-based gas sensors on paper substrates insensitive to humidity. PMID:28273847

  9. Corrosion Properties of Dissimilar Friction Stir Welded 6061 Aluminum and HT590 Steel

    NASA Astrophysics Data System (ADS)

    Seo, Bosung; Song, Kuk Hyun; Park, Kwangsuk

    2018-05-01

    Corrosion properties of dissimilar friction stir welded 6061 aluminum and HT590 steel were investigated to understand effects of galvanic corrosion. As cathode when coupled, HT590 was cathodically protected. However, the passivation of AA6061 made the aluminum alloy cathode temporarily, which leaded to corrosion of HT590. From the EIS analysis showing Warburg diffusion plot in Nyquist plots, it can be inferred that the stable passivation layer was formed on AA6061. However, the weld as well as HT590 did not show Warburg diffusion plot in Nyquist plots, suggesting that there was no barrier for corrosion or even if it exists, the barrier had no function for preventing and/or retarding charge transport through the passivation layer. The open circuit potential measurements showed that the potential of the weld was similar to that of HT590, which lied in the pitting region for AA6061, making the aluminum alloy part of the weld keep corrosion state. That resulted in the cracked oxide film on AA6061 of the weld, which could not play a role of corrosion barrier.

  10. Diffusion tensor imaging reveals changes in the adult rat brain following long-term and passive moderate acoustic exposure.

    PubMed

    Abdoli, Sherwin; Ho, Leon C; Zhang, Jevin W; Dong, Celia M; Lau, Condon; Wu, Ed X

    2016-12-01

    This study investigated neuroanatomical changes following long-term acoustic exposure at moderate sound pressure level (SPL) under passive conditions, without coupled behavioral training. The authors utilized diffusion tensor imaging (DTI) to detect morphological changes in white matter. DTIs from adult rats (n = 8) exposed to continuous acoustic exposure at moderate SPL for 2 months were compared with DTIs from rats (n = 8) reared under standard acoustic conditions. Two distinct forms of DTI analysis were applied in a sequential manner. First, DTI images were analyzed using voxel-based statistics which revealed greater fractional anisotropy (FA) of the pyramidal tract and decreased FA of the tectospinal tract and trigeminothalamic tract of the exposed rats. Region of interest analysis confirmed (p < 0.05) that FA had increased in the pyramidal tract but did not show a statistically significant difference in the FA of the tectospinal or trigeminothalamic tract. The results of the authors show that long-term and passive acoustic exposure at moderate SPL increases the organization of white matter in the pyramidal tract.

  11. Microfluidic passive permeability assay using nanoliter droplet interface lipid bilayers.

    PubMed

    Nisisako, Takasi; Portonovo, Shiva A; Schmidt, Jacob J

    2013-11-21

    Membrane permeability assays play an important role in assessing drug transport activities across biological membranes. However, in conventional parallel artificial membrane permeability assays (PAMPA), the membrane model used is dissimilar to biological membranes physically and chemically. Here, we describe a microfluidic passive permeability assay using droplet interface bilayers (DIBs). In a microfluidic network, nanoliter-sized donor and acceptor aqueous droplets are alternately formed in cross-flowing oil containing phospholipids. Subsequently, selective removal of oil through hydrophobic pseudo-porous sidewalls induces the contact of the lipid monolayers, creating arrayed planar DIBs between the donor and acceptor droplets. Permeation of fluorescein from the donor to the acceptor droplets was fluorometrically measured. From the measured data and a simple diffusion model we calculated the effective permeabilities of 5.1 × 10(-6) cm s(-1), 60.0 × 10(-6) cm s(-1), and 87.6 × 10(-6) cm s(-1) with donor droplets at pH values of 7.5, 6.4 and 5.4, respectively. The intrinsic permeabilities of specific monoanionic and neutral fluorescein species were obtained similarly. We also measured the permeation of caffeine in 10 min using UV microspectroscopy, obtaining a permeability of 20.8 × 10(-6) cm s(-1). With the small solution volumes, short measurement time, and ability to measure a wide range of compounds, this device has considerable potential as a platform for high-throughput drug permeability assays.

  12. Reduction of timing jitter in passively Q-switched microchip lasers using self-injection seeding.

    PubMed

    Steinmetz, Alexander; Nodop, Dirk; Martin, Andreas; Limpert, Jens; Tünnermann, Andreas

    2010-09-01

    We present an efficient, simple, and passive technique for the reduction of timing jitter in passively Q-switched microchip lasers via self-injection seeding using a fiber delay line. The presented approach mitigates one inherent issue of passively Q-switched lasers without the need for active stabilization. At a repetition rate of a few hundred kilohertz and pulse duration of approximately 200 ps delivered by a microchip laser, the rms jitter is reduced from several nanoseconds down to 20 ps, hence, significantly below the pulse duration of the laser source.

  13. Diffusive Insights: On the Disagreement of Christian Bohr and August Krogh at the Centennial of the Seven Little Devils

    ERIC Educational Resources Information Center

    Gjedde, Albert

    2010-01-01

    The year 2010 is the centennial of the publication of the "Seven Little Devils" in the predecessor of "Acta Physiologica". In these seven papers, August and Marie Krogh sought to refute Christian Bohr's theory that oxygen diffusion from the lungs to the circulation is not entirely passive but rather facilitated by a specific cellular activity…

  14. A study of the feasibility and performance of an active/passive imager using silicon focal plane arrays and incoherent continuous wave laser diodes

    NASA Astrophysics Data System (ADS)

    Vollmerhausen, Richard H.

    This dissertation describes an active/passive imager (API) that provides reliable, nighttime, target acquisition in a man-portable package with effective visual range of about 4 kilometers. The reflective imagery is easier to interpret than currently used thermal imagery. Also, in the active mode, the API provides performance equivalent to the big-aperture, thermal systems used on weapons platforms like tanks and attack helicopters. This dissertation describes the research needed to demonstrate both the feasibility and utility of the API. Part of the research describes implementation of a silicon focal plane array (SFPA) capable of both active and passive imaging. The passive imaging mode exceeds the nighttime performance of currently fielded, man-portable sensors. Further, when scene illumination is insufficient for passive imaging, the low dark current of SFPA makes it possible to use continuous wave laser diodes (CWLD) to add an active imaging mode. CWLD have advantages of size, efficiency, and improved eye safety when compared to high peak-power diodes. Because of the improved eye safety, the API provides user-demanded features like video output and extended range gates in the active as well as passive imaging modes. Like any other night vision device, the API depends on natural illumination of the scene for passive operation. Although it has been known for decades that "starlight" illumination is actually from diffuse airglow emissions, the research described in this dissertation provides the first estimates of the global and temporal variation of ground illumination due to airglow. A third related element of the current research establishes the impact of atmospheric aerosols on API performance. We know from day experience that atmospheric scattering of sunlight into the imager line-of-sight can blind the imager and drastically degrade performance. Atmospheric scattering of sunlight is extensively covered in the literature. However, previous literature did not cover the impact of atmospheric scattering when the target is diffusely illuminated by airglow.

  15. A quantum diffusion law

    NASA Astrophysics Data System (ADS)

    Satpathi, Urbashi; Sinha, Supurna; Sorkin, Rafael D.

    2017-12-01

    We analyse diffusion at low temperature by bringing the fluctuation-dissipation theorem (FDT) to bear on a physically natural, viscous response-function R(t) . The resulting diffusion-law exhibits several distinct regimes of time and temperature, each with its own characteristic rate of spreading. As with earlier analyses, we find logarithmic spreading in the quantum regime, indicating that this behavior is robust. A consistent R(t) must satisfy the key physical requirements of Wightman positivity and passivity, and we prove that ours does so. We also prove in general that these two conditions are equivalent when the FDT holds. Given current technology, our diffusion law can be tested in a laboratory with ultra cold atoms.

  16. An efficient planar accordion-shaped micromixer: from biochemical mixing to biological application

    PubMed Central

    Cosentino, Armando; Madadi, Hojjat; Vergara, Paola; Vecchione, Raffaele; Causa, Filippo; Netti, Paolo Antonio

    2015-01-01

    Micromixers are the key component that allow lab-on-a-chip and micro total analysis systems to reach the correct level of mixing for any given process. This paper proposes a novel, simple, passive micromixer design characterized by a planar accordion-shape geometry. The geometrical characteristics of the presented design were analyzed numerically in the range of 0.01 < Re < 100 based on the micromixer performance. The performance of the most efficient design was experimentally investigated by means of fluorescence microscopy for a range of low diffusion coefficients, 10−12 < D < 10−11 m2/s. The micromixer structure was fabricated in a simple single-step process using maskless lithography and soft lithography. The experimental results showed a very good agreement with the predicted numerical results. This micromixer design including a single serpentine unit (1-SERP) displayed an efficiency higher than 90% (mixing length = 6.4 mm) creating a pressure drop of about 500 Pa at Re = 0.1 and 60 kPa at Re = 10. A mixing efficiency of almost 100% was readily reached when three serpentine units were included (3-SERP). Finally, the potential diagnostic value of the presented microdevice was validated experimentally for Red Blood Cell (RBC) lysis. PMID:26658848

  17. An efficient planar accordion-shaped micromixer: from biochemical mixing to biological application

    NASA Astrophysics Data System (ADS)

    Cosentino, Armando; Madadi, Hojjat; Vergara, Paola; Vecchione, Raffaele; Causa, Filippo; Netti, Paolo Antonio

    2015-12-01

    Micromixers are the key component that allow lab-on-a-chip and micro total analysis systems to reach the correct level of mixing for any given process. This paper proposes a novel, simple, passive micromixer design characterized by a planar accordion-shape geometry. The geometrical characteristics of the presented design were analyzed numerically in the range of 0.01 < Re < 100 based on the micromixer performance. The performance of the most efficient design was experimentally investigated by means of fluorescence microscopy for a range of low diffusion coefficients, 10-12 < D < 10-11 m2/s. The micromixer structure was fabricated in a simple single-step process using maskless lithography and soft lithography. The experimental results showed a very good agreement with the predicted numerical results. This micromixer design including a single serpentine unit (1-SERP) displayed an efficiency higher than 90% (mixing length = 6.4 mm) creating a pressure drop of about 500 Pa at Re = 0.1 and 60 kPa at Re = 10. A mixing efficiency of almost 100% was readily reached when three serpentine units were included (3-SERP). Finally, the potential diagnostic value of the presented microdevice was validated experimentally for Red Blood Cell (RBC) lysis.

  18. An efficient planar accordion-shaped micromixer: from biochemical mixing to biological application.

    PubMed

    Cosentino, Armando; Madadi, Hojjat; Vergara, Paola; Vecchione, Raffaele; Causa, Filippo; Netti, Paolo Antonio

    2015-12-14

    Micromixers are the key component that allow lab-on-a-chip and micro total analysis systems to reach the correct level of mixing for any given process. This paper proposes a novel, simple, passive micromixer design characterized by a planar accordion-shape geometry. The geometrical characteristics of the presented design were analyzed numerically in the range of 0.01 < Re < 100 based on the micromixer performance. The performance of the most efficient design was experimentally investigated by means of fluorescence microscopy for a range of low diffusion coefficients, 10(-12) < D < 10(-11) m(2)/s. The micromixer structure was fabricated in a simple single-step process using maskless lithography and soft lithography. The experimental results showed a very good agreement with the predicted numerical results. This micromixer design including a single serpentine unit (1-SERP) displayed an efficiency higher than 90% (mixing length = 6.4 mm) creating a pressure drop of about 500 Pa at Re = 0.1 and 60 kPa at Re = 10. A mixing efficiency of almost 100% was readily reached when three serpentine units were included (3-SERP). Finally, the potential diagnostic value of the presented microdevice was validated experimentally for Red Blood Cell (RBC) lysis.

  19. Passive Ventricular Mechanics Modelling Using MRI of Structure and Function

    PubMed Central

    Wang, V.Y.; Lam, H.I.; Ennis, D.B.; Young, A.A.; Nash, M.P.

    2009-01-01

    Patients suffering from dilated cardiomyopathy or myocardial infarction can develop left ventricular (LV) diastolic impairment. The LV remodels its structure and function to adapt to pathophysiological changes in geometry and loading conditions and this remodeling process can alter the passive ventricular mechanics. In order to better understand passive ventricular mechanics, a LV finite element model was developed to incorporate physiological and mechanical information derived from in vivo magnetic resonance imaging (MRI) tissue tagging, in vivo LV cavity pressure recording and ex vivo diffusion tensor MRI (DTMRI) of a canine heart. MRI tissue tagging enables quantitative evaluation of cardiac mechanical function with high spatial and temporal resolution, whilst the direction of maximum water diffusion (the primary eigenvector) in each voxel of a DTMRI directly correlates with the myocardial fibre orientation. This model was customized to the geometry of the canine LV during diastasis by fitting the segmented epicardial and endocardial surface data from tagged MRI using nonlinear finite element fitting techniques. Myofibre orientations, extracted from DTMRI of the same heart, were incorporated into this geometric model using a free form deformation methodology. Pressure recordings, temporally synchronized to the tissue tagging MRI data, were used to simulate the LV deformation during diastole. Simulation of the diastolic LV mechanics allowed us to estimate the stiffness of the passive LV myocardium based on kinematic data obtained from tagged MRI. This integrated physiological model will allow more insight into the regional passive diastolic mechanics of the LV on an individualized basis, thereby improving our understanding of the underlying structural basis of mechanical dysfunction in pathological conditions. PMID:18982680

  20. CdCl2 Passivation of Polycrystalline CdMgTe and CdZnTe Absorbers for Tandem Photovoltaic Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metzger, Wyatt K; Swanson, Drew; Reich, Carey

    As single-junction silicon solar cells approach their theoretical limits, tandems provide the primary path to higher efficiencies. CdTe alloys can be tuned with magnesium (CdMgTe) or zinc (CdZnTe) for ideal tandem pairing with silicon. A II-VI/Si tandem holds the greatest promise for inexpensive, high-efficiency top cells that can be quickly deployed in the market using existing polycrystalline CdTe manufacturing lines combined with mature silicon production lines. Currently, all high efficiency polycrystalline CdTe cells require a chloride-based passivation process to passivate grain boundaries and bulk defects. This research examines the rich chemistry and physics that has historically limited performance when extendingmore » Cl treatments to polycrystalline 1.7-eV CdMgTe and CdZnTe absorbers. A combination of transmittance, quantum efficiency, photoluminescence, transmission electron microscopy, and energy-dispersive X-ray spectroscopy clearly reveals that during passivation, Mg segregates and out-diffuses, initially at the grain boundaries but eventually throughout the bulk. CdZnTe exhibits similar Zn segregation behavior; however, the onset and progression is localized to the back of the device. After passivation, CdMgTe and CdZnTe can render a layer that is reduced to predominantly CdTe electro-optical behavior. Contact instabilities caused by inter-diffusion between the layers create additional complications. The results outline critical issues and paths for these materials to be successfully implemented in Si-based tandems and other applications.« less

  1. Passive ventricular mechanics modelling using MRI of structure and function.

    PubMed

    Wang, V Y; Lam, H I; Ennis, D B; Young, A A; Nash, M P

    2008-01-01

    Patients suffering from dilated cardiomyopathy or myocardial infarction can develop left ventricular (LV) diastolic impairment. The LV remodels its structure and function to adapt to pathophysiological changes in geometry and loading conditions and this remodeling process can alter the passive ventricular mechanics. In order to better understand passive ventricular mechanics, a LV finite element model was developed to incorporate physiological and mechanical information derived from in vivo magnetic resonance imaging (MRI) tissue tagging, in vivo LV cavity pressure recording and ex vivo diffusion tensor MRI (DTMRI) of a canine heart. MRI tissue tagging enables quantitative evaluation of cardiac mechanical function with high spatial and temporal resolution, whilst the direction of maximum water diffusion (the primary eigenvector) in each voxel of a DTMRI directly correlates with the myocardial fibre orientation. This model was customized to the geometry of the canine LV during diastasis by fitting the segmented epicardial and endocardial surface data from tagged MRI using nonlinear finite element fitting techniques. Myofibre orientations, extracted from DTMRI of the same heart, were incorporated into this geometric model using a free form deformation methodology. Pressure recordings, temporally synchronized to the tissue tagging MRI data, were used to simulate the LV deformation during diastole. Simulation of the diastolic LV mechanics allowed us to estimate the stiffness of the passive LV myocardium based on kinematic data obtained from tagged MRI. This integrated physiological model will allow more insight into the regional passive diastolic mechanics of the LV on an individualized basis, thereby improving our understanding of the underlying structural basis of mechanical dysfunction in pathological conditions.

  2. Porous Electrode Studies.

    DTIC Science & Technology

    1980-07-01

    the reac- tion modes of the Ag/AgCl, AgO/Ag 2O/Ag, and Zn/ ZnO electrodes and to testing various theories that predict electrode behavior. v LOCKHEED...of sudden passivation was related to a simul- taneous precipitation of flocculent ZnO , and this passivation was removed by addi- tion of fresh...vation occurred more slowly by covering with a thin, adherent film, and that a dis- solution, diffusion, deposition mode prevailed in the formation of ZnO

  3. Effect of dual-dielectric hydrogen-diffusion barrier layers on the performance of low-temperature processed transparent InGaZnO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Tari, Alireza; Wong, William S.

    2018-02-01

    Dual-dielectric SiOx/SiNx thin-film layers were used as back-channel and gate-dielectric barrier layers for bottom-gate InGaZnO (IGZO) thin-film transistors (TFTs). The concentration profiles of hydrogen, indium, gallium, and zinc oxide were analyzed using secondary-ion mass spectroscopy characterization. By implementing an effective H-diffusion barrier, the hydrogen concentration and the creation of H-induced oxygen deficiency (H-Vo complex) defects during the processing of passivated flexible IGZO TFTs were minimized. A bilayer back-channel passivation layer, consisting of electron-beam deposited SiOx on plasma-enhanced chemical vapor-deposition (PECVD) SiNx films, effectively protected the TFT active region from plasma damage and minimized changes in the chemical composition of the semiconductor layer. A dual-dielectric PECVD SiOx/PECVD SiNx gate-dielectric, using SiOx as a barrier layer, also effectively prevented out-diffusion of hydrogen atoms from the PECVD SiNx-gate dielectric to the IGZO channel layer during the device fabrication.

  4. Impurity gettering in semiconductors

    DOEpatents

    Sopori, B.L.

    1995-06-20

    A process for impurity gettering in a semiconductor substrate or device such as a silicon substrate or device is disclosed. The process comprises hydrogenating the substrate or device at the back side thereof with sufficient intensity and for a time period sufficient to produce a damaged back side. Thereafter, the substrate or device is illuminated with electromagnetic radiation at an intensity and for a time period sufficient to cause the impurities to diffuse to the back side and alloy with a metal there present to form a contact and capture the impurities. The impurity gettering process also can function to simultaneously passivate defects within the substrate or device, with the defects likewise diffusing to the back side for simultaneous passivation. Simultaneously, substantially all hydrogen-induced damage on the back side of the substrate or device is likewise annihilated. Also taught is an alternate process comprising thermal treatment after hydrogenation of the substrate or device at a temperature of from about 500 C to about 700 C for a time period sufficient to cause the impurities to diffuse to the damaged back side thereof for subsequent capture by an alloying metal. 1 fig.

  5. Impurity gettering in semiconductors

    DOEpatents

    Sopori, Bhushan L.

    1995-01-01

    A process for impurity gettering in a semiconductor substrate or device such as a silicon substrate or device. The process comprises hydrogenating the substrate or device at the back side thereof with sufficient intensity and for a time period sufficient to produce a damaged back side. Thereafter, the substrate or device is illuminated with electromagnetic radiation at an intensity and for a time period sufficient to cause the impurities to diffuse to the back side and alloy with a metal there present to form a contact and capture the impurities. The impurity gettering process also can function to simultaneously passivate defects within the substrate or device, with the defects likewise diffusing to the back side for simultaneous passivation. Simultaneously, substantially all hydrogen-induced damage on the back side of the substrate or device is likewise annihilated. Also taught is an alternate process comprising thermal treatment after hydrogenation of the substrate or device at a temperature of from about 500.degree. C. to about 700.degree. C. for a time period sufficient to cause the impurities to diffuse to the damaged back side thereof for subsequent capture by an alloying metal.

  6. Very Hard Corrosion-Resistant Roll-Bonded Cr Coating on Mild Steel in Presence of Graphite

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj; Khara, S.; Shekhar, S.; Mondal, K.

    2017-12-01

    The present work discusses the development of very hard Cr and Cr-carbide coating by roll bonding of Cr powder on a mild steel followed by annealing at 800, 1000, 1100 and 1200 °C with and without the presence of graphite powder packing in argon environment. In addition, the effect of a roll skin pass of 5% prior to the application of coating was studied. The presence of graphite allows diffusion of both carbon and Cr in the mild steel substrate, leading to the formation of Cr-carbide on the outer surface, making the surface very hard (VHN 1800). Depending on the annealing temperature and processing condition, diffusion layer thickness of Cr is found to be in the range of 10-250 μm with Cr content of 12.5-15 wt.% across the diffusion layer. Excellent stable passivity of the coated surface is observed in 0.2 N H2SO4, which is comparable to a highly passivating 304 stainless steel, and very low corrosion rate of the coating is observed as compared to the substrate mild steel.

  7. Geophysical logging and geologic mapping data in the vicinity of the GMH Electronics Superfund site near Roxboro, North Carolina

    USGS Publications Warehouse

    Chapman, Melinda J.; Clark, Timothy W.; Williams, John H.

    2013-01-01

    Geologic mapping, the collection of borehole geophysical logs and images, and passive diffusion bag sampling were conducted by the U.S. Geological Survey North Carolina Water Science Center in the vicinity of the GMH Electronics Superfund site near Roxboro, North Carolina, during March through October 2011. The study purpose was to assist the U.S. Environmental Protection Agency in the development of a conceptual groundwater model for the assessment of current contaminant distribution and future migration of contaminants. Data compilation efforts included geologic mapping of more than 250 features, including rock type and secondary joints, delineation of more than 1,300 subsurface features (primarily fracture orientations) in 15 open borehole wells, and the collection of passive diffusion-bag samples from 42 fracture zones at various depths in the 15 wells.

  8. Fluorescent Recovery after Photobleaching (FRAP) Analysis of Nuclear Export Rates Identifies Intrinsic Features of Nucleocytoplasmic Transport*

    PubMed Central

    Cardarelli, Francesco; Tosti, Luca; Serresi, Michela; Beltram, Fabio; Bizzarri, Ranieri

    2012-01-01

    A quantitative description of carrier-mediated nuclear export in live cells is presented. To this end, we fused a prototypical leucine-rich nuclear export signal (NES) to GFP as a cargo model and expressed the fluorescent chimera in live CHO-K1 cells. By modeling FRAP data, we calculate the NES affinity for the export machinery and the maximum rate of nuclear export achievable at saturation of endogenous carriers. The measured active-export time through the Nuclear Pore Complex (NPC) is 18 ms, remarkably similar to the previously determined active-import rate. Also, our results reveal that active export/import and active export/passive diffusion fluxes are uncoupled, thus complementing previous reports on active import/passive diffusion uncoupling. These findings suggest differential gating at the NPC level. PMID:22190681

  9. Correction of Altitude-Induced Changes in Performance of the Volumetric Diffusive Respirator

    DTIC Science & Technology

    2017-04-05

    to a plateau pressure. The positive pressure delivery of each percussive pulse is followed by a passive fall in pressure as the spring moves the ...AFRL-SA-WP-SR-2017-0007 Correction of Altitude- Induced Changes in Performance of the Volumetric Diffusive Respirator Thomas...Blakeman, MSc RRT April 2017 Air Force Research Laboratory 711th Human Performance Wing U.S. Air Force School of Aerospace

  10. Sarcomeric Pattern Formation by Actin Cluster Coalescence

    PubMed Central

    Friedrich, Benjamin M.; Fischer-Friedrich, Elisabeth; Gov, Nir S.; Safran, Samuel A.

    2012-01-01

    Contractile function of striated muscle cells depends crucially on the almost crystalline order of actin and myosin filaments in myofibrils, but the physical mechanisms that lead to myofibril assembly remains ill-defined. Passive diffusive sorting of actin filaments into sarcomeric order is kinetically impossible, suggesting a pivotal role of active processes in sarcomeric pattern formation. Using a one-dimensional computational model of an initially unstriated actin bundle, we show that actin filament treadmilling in the presence of processive plus-end crosslinking provides a simple and robust mechanism for the polarity sorting of actin filaments as well as for the correct localization of myosin filaments. We propose that the coalescence of crosslinked actin clusters could be key for sarcomeric pattern formation. In our simulations, sarcomere spacing is set by filament length prompting tight length control already at early stages of pattern formation. The proposed mechanism could be generic and apply both to premyofibrils and nascent myofibrils in developing muscle cells as well as possibly to striated stress-fibers in non-muscle cells. PMID:22685394

  11. Anomalous, non-Gaussian tracer diffusion in crowded two-dimensional environments

    NASA Astrophysics Data System (ADS)

    Ghosh, Surya K.; Cherstvy, Andrey G.; Grebenkov, Denis S.; Metzler, Ralf

    2016-01-01

    A topic of intense current investigation pursues the question of how the highly crowded environment of biological cells affects the dynamic properties of passively diffusing particles. Motivated by recent experiments we report results of extensive simulations of the motion of a finite sized tracer particle in a heterogeneously crowded environment made up of quenched distributions of monodisperse crowders of varying sizes in finite circular two-dimensional domains. For given spatial distributions of monodisperse crowders we demonstrate how anomalous diffusion with strongly non-Gaussian features arises in this model system. We investigate both biologically relevant situations of particles released either at the surface of an inner domain or at the outer boundary, exhibiting distinctly different features of the observed anomalous diffusion for heterogeneous distributions of crowders. Specifically we reveal an asymmetric spreading of tracers even at moderate crowding. In addition to the mean squared displacement (MSD) and local diffusion exponent we investigate the magnitude and the amplitude scatter of the time averaged MSD of individual tracer trajectories, the non-Gaussianity parameter, and the van Hove correlation function. We also quantify how the average tracer diffusivity varies with the position in the domain with a heterogeneous radial distribution of crowders and examine the behaviour of the survival probability and the dynamics of the tracer survival probability. Inter alia, the systems we investigate are related to the passive transport of lipid molecules and proteins in two-dimensional crowded membranes or the motion in colloidal solutions or emulsions in effectively two-dimensional geometries, as well as inside supercrowded, surface adhered cells.

  12. Mesure du coewicient d'absorption optique dans le silicium multicristallin de type P pour photopiles solaires

    NASA Astrophysics Data System (ADS)

    Gervais, J.

    1993-07-01

    The minority carrier diffusion length L characterizes the electrical quality of multicrystalline silicon wafers used for photovoltaics. Its determination before and after different treatments (impurity diffusion, passivation, metallisation) is needfull and requires the accurate knowledge of the optical absorption coefficient α in the near infrared. We have determinated the spectral variation of α in the range between 0.86 and 1.06 μm and we propose an analytic expression which is very close to those proposed for solar grade single crystals. In addition we have verified that the values of α are not affected by long phosphorus diffusion needed to getter metallic impurities. La longueur de diffusion des porteurs minoritaires L caractérise la qualité du silicium multicristallin utilisé pour la conversion photovoltaïque. Sa détermination avant et après les divers traitements (diffusion d'impuretés, passivation des défauts, métallisation) est indispensable et nécessite la connaissance précise du coefficient d'absorption optique α dans le proche infrarouge. Nous avons déterminé expérimentalement la variation spectrale de α entre 0,86 et 1,06 μm et nous proposons un développement qui est très proche de ceux trouvés dans des monocristaux de silicium de qualité solaire. La variation de α n'est pas influencée par des diffusions de phosphore prolongées nécessaires à l'extraction et au piégeage d'impuretés métalliques.

  13. Localization of Protein Aggregation in Escherichia coli Is Governed by Diffusion and Nucleoid Macromolecular Crowding Effect

    PubMed Central

    Coquel, Anne-Sophie; Jacob, Jean-Pascal; Primet, Mael; Demarez, Alice; Dimiccoli, Mariella; Julou, Thomas; Moisan, Lionel

    2013-01-01

    Aggregates of misfolded proteins are a hallmark of many age-related diseases. Recently, they have been linked to aging of Escherichia coli (E. coli) where protein aggregates accumulate at the old pole region of the aging bacterium. Because of the potential of E. coli as a model organism, elucidating aging and protein aggregation in this bacterium may pave the way to significant advances in our global understanding of aging. A first obstacle along this path is to decipher the mechanisms by which protein aggregates are targeted to specific intercellular locations. Here, using an integrated approach based on individual-based modeling, time-lapse fluorescence microscopy and automated image analysis, we show that the movement of aging-related protein aggregates in E. coli is purely diffusive (Brownian). Using single-particle tracking of protein aggregates in live E. coli cells, we estimated the average size and diffusion constant of the aggregates. Our results provide evidence that the aggregates passively diffuse within the cell, with diffusion constants that depend on their size in agreement with the Stokes-Einstein law. However, the aggregate displacements along the cell long axis are confined to a region that roughly corresponds to the nucleoid-free space in the cell pole, thus confirming the importance of increased macromolecular crowding in the nucleoids. We thus used 3D individual-based modeling to show that these three ingredients (diffusion, aggregation and diffusion hindrance in the nucleoids) are sufficient and necessary to reproduce the available experimental data on aggregate localization in the cells. Taken together, our results strongly support the hypothesis that the localization of aging-related protein aggregates in the poles of E. coli results from the coupling of passive diffusion-aggregation with spatially non-homogeneous macromolecular crowding. They further support the importance of “soft” intracellular structuring (based on macromolecular crowding) in diffusion-based protein localization in E. coli. PMID:23633942

  14. Numerical study of centrifugal compressor stage vaneless diffusers

    NASA Astrophysics Data System (ADS)

    Galerkin, Y.; Soldatova, K.; Solovieva, O.

    2015-08-01

    The authors analyzed CFD calculations of flow in vaneless diffusers with relative width in range from 0.014 to 0.100 at inlet flow angles in range from 100 to 450 with different inlet velocity coefficients, Reynolds numbers and surface roughness. The aim is to simulate calculated performances by simple algebraic equations. The friction coefficient that represents head losses as friction losses is proposed for simulation. The friction coefficient and loss coefficient are directly connected by simple equation. The advantage is that friction coefficient changes comparatively little in range of studied parameters. Simple equations for this coefficient are proposed by the authors. The simulation accuracy is sufficient for practical calculations. To create the complete algebraic model of the vaneless diffuser the authors plan to widen this method of modeling to diffusers with different relative length and for wider range of Reynolds numbers.

  15. Silver nanoparticles induce developmental stage-specific embryonic phenotypes in zebrafish

    NASA Astrophysics Data System (ADS)

    Lee, Kerry J.; Browning, Lauren M.; Nallathamby, Prakash D.; Osgood, Christopher J.; Xu, Xiao-Hong Nancy

    2013-11-01

    Much is anticipated from the development and deployment of nanomaterials in biological organisms, but concerns remain regarding their biocompatibility and target specificity. Here we report our study of the transport, biocompatibility and toxicity of purified and stable silver nanoparticles (Ag NPs, 13.1 +/- 2.5 nm in diameter) upon the specific developmental stages of zebrafish embryos using single NP plasmonic spectroscopy. We find that single Ag NPs passively diffuse into five different developmental stages of embryos (cleavage, early-gastrula, early-segmentation, late-segmentation, and hatching stages), showing stage-independent diffusion modes and diffusion coefficients. Notably, the Ag NPs induce distinctive stage and dose-dependent phenotypes and nanotoxicity, upon their acute exposure to the Ag NPs (0-0.7 nM) for only 2 h. The late-segmentation embryos are most sensitive to the NPs with the lowest critical concentration (CNP,c << 0.02 nM) and highest percentages of cardiac abnormalities, followed by early-segmentation embryos (CNP,c < 0.02 nM), suggesting that disruption of cell differentiation by the NPs causes the most toxic effects on embryonic development. The cleavage-stage embryos treated with the NPs develop into a wide variety of phenotypes (abnormal finfold, tail/spinal cord flexure, cardiac malformation/edema, yolk sac edema, and acephaly). These organ structures are not yet developed in cleavage-stage embryos, suggesting that the earliest determinative events to create these structures are ongoing, and disrupted by NPs, which leads to the downstream effects. In contrast, the hatching embryos are most resistant to the Ag NPs, and majority of embryos (94%) develop normally, and none of them develop abnormally. Interestingly, early-gastrula embryos are less sensitive to the NPs than cleavage and segmentation stage embryos, and do not develop abnormally. These important findings suggest that the Ag NPs are not simple poisons, and they can target specific pathways in development, and potentially enable target specific study and therapy for early embryonic development.Much is anticipated from the development and deployment of nanomaterials in biological organisms, but concerns remain regarding their biocompatibility and target specificity. Here we report our study of the transport, biocompatibility and toxicity of purified and stable silver nanoparticles (Ag NPs, 13.1 +/- 2.5 nm in diameter) upon the specific developmental stages of zebrafish embryos using single NP plasmonic spectroscopy. We find that single Ag NPs passively diffuse into five different developmental stages of embryos (cleavage, early-gastrula, early-segmentation, late-segmentation, and hatching stages), showing stage-independent diffusion modes and diffusion coefficients. Notably, the Ag NPs induce distinctive stage and dose-dependent phenotypes and nanotoxicity, upon their acute exposure to the Ag NPs (0-0.7 nM) for only 2 h. The late-segmentation embryos are most sensitive to the NPs with the lowest critical concentration (CNP,c << 0.02 nM) and highest percentages of cardiac abnormalities, followed by early-segmentation embryos (CNP,c < 0.02 nM), suggesting that disruption of cell differentiation by the NPs causes the most toxic effects on embryonic development. The cleavage-stage embryos treated with the NPs develop into a wide variety of phenotypes (abnormal finfold, tail/spinal cord flexure, cardiac malformation/edema, yolk sac edema, and acephaly). These organ structures are not yet developed in cleavage-stage embryos, suggesting that the earliest determinative events to create these structures are ongoing, and disrupted by NPs, which leads to the downstream effects. In contrast, the hatching embryos are most resistant to the Ag NPs, and majority of embryos (94%) develop normally, and none of them develop abnormally. Interestingly, early-gastrula embryos are less sensitive to the NPs than cleavage and segmentation stage embryos, and do not develop abnormally. These important findings suggest that the Ag NPs are not simple poisons, and they can target specific pathways in development, and potentially enable target specific study and therapy for early embryonic development. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03210h

  16. Preschoolers' Preference for Syntactic Complexity Varies by Socioeconomic Status

    ERIC Educational Resources Information Center

    Corriveau, Kathleen H.; Kurkul, Katelyn; Arunachalam, Sudha

    2016-01-01

    Two experiments investigated whether 4- and 5-year-old children choose to learn from informants who use more complex syntax (passive voice) over informants using more simple syntax (active voice). In Experiment 1 (N = 30), children viewed one informant who consistently used the passive voice and another who used active voice. When learning novel…

  17. Highly reliable photosensitive organic-inorganic hybrid passivation layers for a-InGaZnO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Bermundo, Juan Paolo; Ishikawa, Yasuaki; Yamazaki, Haruka; Nonaka, Toshiaki; Fujii, Mami N.; Uraoka, Yukiharu

    2015-07-01

    We report the fabrication of a photosensitive hybrid passivation material on amorphous InGaZnO (a-IGZO) thin-film transistors (TFTs) that greatly enhance its stability and improve its electrical characteristics. The hybrid passivation based on polysilsesquioxane is transparent and fabricated using a simple solution process. Because the passivation is photosensitive, dry etching was never performed during TFT fabrication. TFTs passivated with this material had a small threshold voltage shift of 0.5 V during positive bias stress, 0.5 V during negative bias stress, and -2.5 V during negative bias illumination stress. Furthermore, TFTs passivated by this layer were stable after being subjected to high relative humidity stress — confirming the superb barrier ability of the passivation. Analysis of secondary ion mass spectrometry showed that a large amount of hydrogen, carbon, and fluorine can be found in the channel region. We show that both hydrogen and fluorine reduced oxygen vacancies and that fluorine stabilized weak oxygen and hydroxide bonds. These results demonstrate the large potential of photosensitive hybrid passivation layers as effective passivation materials.

  18. Influence of In-Well Convection on Well Sampling

    USGS Publications Warehouse

    Vroblesky, Don A.; Casey, Clifton C.; Lowery, Mark A.

    2006-01-01

    Convective transport of dissolved oxygen (DO) from shallow to deeper parts of wells was observed as the shallow water in wells in South Carolina became cooler than the deeper water in the wells due to seasonal changes. Wells having a relatively small depth to water were more susceptible to thermally induced convection than wells where the depth to water was greater because the shallower water levels were more influenced by air temperature. The potential for convective transport of DO to maintain oxygenated conditions in a well was diminished as ground-water exchange through the well screen increased and as oxygen demand increased. Convective flow did not transport oxygen to the screened interval when the screened interval was deeper than the range of the convective cell. The convective movement of water in wells has potential implications for passive, or no-purge, and low-flow sampling approaches. Transport of DO to the screened interval can adversely affect the ability of passive samplers to produce accurate concentrations of oxygen-sensitive solutes, such as iron. Other potential consequences include mixing the screened-interval water with casing water and potentially allowing volatilization loss at the water surface. A field test of diffusion samplers in a convecting well during the winter, however, showed good agreement of chlorinated solvent concentrations with pumped samples, indicating that there was no negative impact of the convection on the utility of the samplers to collect volatile organic compound concentrations in that well. In the cases of low-flow sampling, convective circulation can cause the pumped sample to be a mixture of casing water and aquifer water. This can substantially increase the equilibration time of oxygen as an indicator parameter and can give false indications of the redox state. Data from this investigation show that simple in-well devices can effectively mitigate convective transport of oxygen. The devices can range from inflatable packers to simple baffle systems.

  19. Coexistence of passive and carrier-mediated processes in drug transport.

    PubMed

    Sugano, Kiyohiko; Kansy, Manfred; Artursson, Per; Avdeef, Alex; Bendels, Stefanie; Di, Li; Ecker, Gerhard F; Faller, Bernard; Fischer, Holger; Gerebtzoff, Grégori; Lennernaes, Hans; Senner, Frank

    2010-08-01

    The permeability of biological membranes is one of the most important determinants of the pharmacokinetic processes of a drug. Although it is often accepted that many drug substances are transported across biological membranes by passive transcellular diffusion, a recent hypothesis speculated that carrier-mediated mechanisms might account for the majority of membrane drug transport processes in biological systems. Based on evidence of the physicochemical characteristics and of in vitro and in vivo findings for marketed drugs, as well as results from real-life discovery and development projects, we present the view that both passive transcellular processes and carrier-mediated processes coexist and contribute to drug transport activities across biological membranes.

  20. A Fractional PDE Approach to Turbulent Mixing; Part II: Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Samiee, Mehdi; Zayernouri, Mohsen

    2016-11-01

    We propose a generalizing fractional order transport model of advection-diffusion kind with fractional time- and space-derivatives, governing the evolution of passive scalar turbulence. This approach allows one to incorporate the nonlocal and memory effects in the underlying anomalous diffusion i.e., sub-to-standard diffusion to model the trapping of particles inside the eddied, and super-diffusion associated with the sudden jumps of particles from one coherent region to another. For this nonlocal model, we develop a high order numerical (spectral) method in addition to a fast solver, examined in the context of some canonical problems. PhD student, Department of Mechanical Engineering, & Department Computational Mathematics, Science, and Engineering.

  1. Mixing of a passive scalar by the instability of a differentially rotating axial pinch

    NASA Astrophysics Data System (ADS)

    Paredes, A.; Gellert, M.; Rüdiger, G.

    2016-04-01

    The mean-field diffusion of passive scalars such as lithium, beryllium or temperature dispersals due to the magnetic Tayler instability of a rotating axial pinch is considered. Our study is carried out within a Taylor-Couette setup for two rotation laws: solid-body quasi-Kepler rotation. The minimum magnetic Prandtl number used is 0.05, and the molecular Schmidt number Sc of the fluid varies between 0.1 and 2. An effective diffusivity coefficient for the mixing is numerically measured by the decay of a prescribed concentration peak located between both cylinder walls. We find that only models with Sc exceeding 0.1 basically provide finite instability-induced diffusivity values. We also find that for quasi-Kepler rotation at a magnetic Mach number Mm ≃ 2, the flow transits from the slow-rotation regime to the fast-rotation regime that is dominated by the Taylor-Proudman theorem. For fixed Reynolds number, the relation between the normalized turbulent diffusivity and the Schmidt number of the fluid is always linear so that also a linear relation between the instability-induced diffusivity and the molecular viscosity results, just in the sense proposed by Schatzman (1977, A&A, 573, 80). The numerical value of the coefficient in this relation reaches a maximum at Mm ≃ 2 and decreases for larger Mm, implying that only toroidal magnetic fields on the order of 1 kG can exist in the solar tachocline.

  2. Quantitative assessment of passive electrical properties of the cardiac T-tubular system by FRAP microscopy

    PubMed Central

    Scardigli, M.; Ferrantini, C.; Gabbrielli, T.; Silvestri, L.; Coppini, R.; Tesi, C.; Rog-Zielinska, E. A.; Kohl, P.; Cerbai, E.; Poggesi, C.; Pavone, F. S.; Sacconi, L.

    2017-01-01

    Well-coordinated activation of all cardiomyocytes must occur on every heartbeat. At the cell level, a complex network of sarcolemmal invaginations, called the transverse-axial tubular system (TATS), propagates membrane potential changes to the cell core, ensuring synchronous and uniform excitation–contraction coupling. Although myocardial conduction of excitation has been widely described, the electrical properties of the TATS remain mostly unknown. Here, we exploit the formal analogy between diffusion and electrical conductivity to link the latter with the diffusional properties of TATS. Fluorescence recovery after photobleaching (FRAP) microscopy is used to probe the diffusion properties of TATS in isolated rat cardiomyocytes: A fluorescent dextran inside TATS lumen is photobleached, and signal recovery by diffusion of unbleached dextran from the extracellular space is monitored. We designed a mathematical model to correlate the time constant of fluorescence recovery with the apparent diffusion coefficient of the fluorescent molecules. Then, apparent diffusion is linked to electrical conductivity and used to evaluate the efficiency of the passive spread of membrane depolarization along TATS. The method is first validated in cells where most TATS elements are acutely detached by osmotic shock and then applied to probe TATS electrical conductivity in failing heart cells. We find that acute and pathological tubular remodeling significantly affect TATS electrical conductivity. This may explain the occurrence of defects in action potential propagation at the level of single T-tubules, recently observed in diseased cardiomyocytes. PMID:28507142

  3. Tantalum oxide/silicon nitride: A negatively charged surface passivation stack for silicon solar cells

    NASA Astrophysics Data System (ADS)

    Wan, Yimao; Bullock, James; Cuevas, Andres

    2015-05-01

    This letter reports effective passivation of crystalline silicon (c-Si) surfaces by thermal atomic layer deposited tantalum oxide (Ta2O5) underneath plasma enhanced chemical vapour deposited silicon nitride (SiNx). Cross-sectional transmission electron microscopy imaging shows an approximately 2 nm thick interfacial layer between Ta2O5 and c-Si. Surface recombination velocities as low as 5.0 cm/s and 3.2 cm/s are attained on p-type 0.8 Ω.cm and n-type 1.0 Ω.cm c-Si wafers, respectively. Recombination current densities of 25 fA/cm2 and 68 fA/cm2 are measured on 150 Ω/sq boron-diffused p+ and 120 Ω/sq phosphorus-diffused n+ c-Si, respectively. Capacitance-voltage measurements reveal a negative fixed insulator charge density of -1.8 × 1012 cm-2 for the Ta2O5 film and -1.0 × 1012 cm-2 for the Ta2O5/SiNx stack. The Ta2O5/SiNx stack is demonstrated to be an excellent candidate for surface passivation of high efficiency silicon solar cells.

  4. Retardation mechanism of ultrathin Al2O3 interlayer on Y2O3 passivated gallium nitride surface.

    PubMed

    Quah, Hock Jin; Cheong, Kuan Yew

    2014-05-28

    A systematic investigation was carried out by incorporating an ultrathin aluminum oxide (Al2O3) as an interlayer between yttrium oxide (Y2O3) passivation layer and GaN substrate. The sandwiched samples were then subjected to postdeposition annealing in oxygen ambient from 400 to 800 °C. The Al2O3 interlayer was discovered to play a significant role in slowing down inward diffusion of oxygen through the Y2O3 passivation layer as well as in impeding outward diffusion of Ga(3+) and N(3-) from the decomposed GaN surface. These beneficial effects have suppressed subsequent formation of interfacial layer. A mechanism in association with the function of Al2O3 as an interlayer was suggested and discussed. The mechanism was explicitly described on the basis of the obtained results from X-ray diffraction, X-ray photoelectron spectroscopy, energy-filtered transmission electron microscopy (TEM), high resolution TEM, and electron energy loss spectroscopy line scan. A correlation between the proposed mechanism and metal-oxide-semiconductor characteristics of Y2O3/Al2O3/GaN structure has been proposed.

  5. Estimating the Diffusion Coefficients of Sugars Using Diffusion Experiments in Agar-Gel and Computer Simulations.

    PubMed

    Miyamoto, Shuichi; Atsuyama, Kenji; Ekino, Keisuke; Shin, Takashi

    2018-01-01

    The isolation of useful microbes is one of the traditional approaches for the lead generation in drug discovery. As an effective technique for microbe isolation, we recently developed a multidimensional diffusion-based gradient culture system of microbes. In order to enhance the utility of the system, it is favorable to have diffusion coefficients of nutrients such as sugars in the culture medium beforehand. We have, therefore, built a simple and convenient experimental system that uses agar-gel to observe diffusion. Next, we performed computer simulations-based on random-walk concepts-of the experimental diffusion system and derived correlation formulas that relate observable diffusion data to diffusion coefficients. Finally, we applied these correlation formulas to our experimentally-determined diffusion data to estimate the diffusion coefficients of sugars. Our values for these coefficients agree reasonably well with values published in the literature. The effectiveness of our simple technique, which has elucidated the diffusion coefficients of some molecules which are rarely reported (e.g., galactose, trehalose, and glycerol) is demonstrated by the strong correspondence between the literature values and those obtained in our experiments.

  6. Resolvent-based modeling of passive scalar dynamics in wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Dawson, Scott; Saxton-Fox, Theresa; McKeon, Beverley

    2017-11-01

    The resolvent formulation of the Navier-Stokes equations expresses the system state as the output of a linear (resolvent) operator acting upon a nonlinear forcing. Previous studies have demonstrated that a low-rank approximation of this linear operator predicts many known features of incompressible wall-bounded turbulence. In this work, this resolvent model for wall-bounded turbulence is extended to include a passive scalar field. This formulation allows for a number of additional simplifications that reduce model complexity. Firstly, it is shown that the effect of changing scalar diffusivity can be approximated through a transformation of spatial wavenumbers and temporal frequencies. Secondly, passive scalar dynamics may be studied through the low-rank approximation of a passive scalar resolvent operator, which is decoupled from velocity response modes. Thirdly, this passive scalar resolvent operator is amenable to approximation by semi-analytic methods. We investigate the extent to which this resulting hierarchy of models can describe and predict passive scalar dynamics and statistics in wall-bounded turbulence. The support of AFOSR under Grant Numbers FA9550-16-1-0232 and FA9550-16-1-0361 is gratefully acknowledged.

  7. Mesoscale Elucidation of Surface Passivation in the Li-Sulfur Battery Cathode.

    PubMed

    Liu, Zhixiao; Mukherjee, Partha P

    2017-02-15

    The cathode surface passivation caused by Li 2 S precipitation adversely affects the performance of lithium-sulfur (Li-S) batteries. Li 2 S precipitation is a complicated mesoscale process involving adsorption, desorption and diffusion kinetics, which are affected profoundly by the reactant concentration and operating temperature. In this work, a mesoscale interfacial model is presented to study the growth of Li 2 S film on carbon cathode surface. Li 2 S film growth experiences nucleation, isolated Li 2 S island growth and island coalescence. The slow adsorption rate at small S 2- concentration inhibits the formation of nucleation seeds and the lateral growth of Li 2 S islands, which deters surface passivation. An appropriate operating temperature, especially in the medium-to-high temperature range, can also defer surface passivation. Fewer Li 2 S nucleation seeds form in such an operating temperature range, thereby facilitating heterogeneous growth and potentially inhibiting the lateral growth of the Li 2 S film, which may ultimately result in reduced surface passivation. The high specific surface area of the cathode microstructure is expected to mitigate the surface passivation.

  8. Passive antibody-mediated immunotherapy for the treatment of malignant gliomas.

    PubMed

    Mitra, Siddhartha; Li, Gordon; Harsh, Griffith R

    2010-01-01

    Despite advances in understanding the molecular mechanisms of brain cancer, the outcome of patients with malignant gliomas treated according to the current standard of care remains poor. Novel therapies are needed, and immunotherapy has emerged with great promise. The diffuse infiltration of malignant gliomas is a major challenge to effective treatment; immunotherapy has the advantage of accessing the entire brain with specificity for tumor cells. Therapeutic immune approaches include cytokine therapy, passive immunotherapy, and active immunotherapy. Cytokine therapy involves the administration of immunomodulatory cytokines to activate the immune system. Active immunotherapy is the generation or augmentation of an immune response, typically by vaccination against tumor antigens. Passive immunotherapy connotes either adoptive therapy, in which tumor-specific immune cells are expanded ex vivo and reintroduced into the patient, or passive antibody-mediated therapy. In this article, the authors discuss the preclinical and clinical studies that have used passive antibody-mediated immunotherapy, otherwise known as serotherapy, for the treatment of malignant gliomas.

  9. Advanced Aerodynamic Design of Passive Porosity Control Effectors

    NASA Technical Reports Server (NTRS)

    Hunter, Craig A.; Viken, Sally A.; Wood, Richard M.; Bauer, Steven X. S.

    2001-01-01

    This paper describes aerodynamic design work aimed at developing a passive porosity control effector system for a generic tailless fighter aircraft. As part of this work, a computational design tool was developed and used to layout passive porosity effector systems for longitudinal and lateral-directional control at a low-speed, high angle of attack condition. Aerodynamic analysis was conducted using the NASA Langley computational fluid dynamics code USM3D, in conjunction with a newly formulated surface boundary condition for passive porosity. Results indicate that passive porosity effectors can provide maneuver control increments that equal and exceed those of conventional aerodynamic effectors for low-speed, high-alpha flight, with control levels that are a linear function of porous area. This work demonstrates the tremendous potential of passive porosity to yield simple control effector systems that have no external moving parts and will preserve an aircraft's fixed outer mold line.

  10. Passivating Window/First Layer AR Coating for Space Solar Cells

    NASA Technical Reports Server (NTRS)

    Faur, Mircea; Faur, Maria; Bailey, S. G.; Flood, D. J.; Brinker, D. J.; Alterovitz, S. A.; Wheeler, D. R.; Matesscu, G.; Goradia, C.; Goradia, M.

    2004-01-01

    Chemically grown oxides, if well designed, offer excellent surface passivation of the emitter surface of space solar cells and can be used as effective passivating window/first layer AR coating. In this paper, we demonstrate the effectiveness of using a simple room temperature wet chemical technique to grow cost effective passivating layers on solar cell front surfaces after the front grid metallization step. These passivating layers can be grown both on planar and porous surfaces. Our results show that these oxide layers: (i) can effectively passivate the from the surface, (ii) can serve as an effective optical window/first layer AR coating, (iii) are chemically, thermally and UV stable, and (iv) have the potential of improving the BOL and especially the EOL efficiency of space solar cells. The potential of using this concept to simplify the III-V based space cell heterostructures while increasing their BOL and EOL efficiency is also discussed.

  11. A simple predictive model for the structure of the oceanic pycnocline

    PubMed

    Gnanadesikan

    1999-03-26

    A simple theory for the large-scale oceanic circulation is developed, relating pycnocline depth, Northern Hemisphere sinking, and low-latitude upwelling to pycnocline diffusivity and Southern Ocean winds and eddies. The results show that Southern Ocean processes help maintain the global ocean structure and that pycnocline diffusion controls low-latitude upwelling.

  12. Influence of wind-speed on short-duration NO2 measurements using Palmes and Ogawa passive diffusion samplers

    NASA Astrophysics Data System (ADS)

    Masey, Nicola; Gillespie, Jonathan; Heal, Mathew R.; Hamilton, Scott; Beverland, Iain J.

    2017-07-01

    We assessed the precision and accuracy of nitrogen dioxide (NO2) concentrations over 2-day, 3-day and 7-day exposure periods measured with the following types of passive diffusion samplers: standard (open) Palmes tubes; standard Ogawa samplers with commercially-prepared Ogawa absorbent pads (Ogawa[S]); and modified Ogawa samplers with absorbent-impregnated stainless steel meshes normally used in Palmes tubes (Ogawa[P]). We deployed these passive samplers close to the inlet of a chemiluminescence NO2 analyser at an urban background site in Glasgow, UK over 32 discrete measurement periods. Duplicate relative standard deviation was <7% for all passive samplers. The Ogawa[P], Ogawa[S] and Palmes samplers explained 93%, 87% and 58% of temporal variation in analyser concentrations respectively. Uptake rates for Palmes and Ogawa[S] samplers were positively and linearly associated with wind-speed (P < 0.01 and P < 0.05 respectively). Computation of adjusted uptake rates using average wind-speed observed during each sampling period increased the variation in analyser concentrations explained by Palmes and Ogawa[S] estimates to 90% and 92% respectively, suggesting that measurements can be corrected for shortening of diffusion path lengths due to wind-speed to improve the accuracy of estimates of short-term NO2 exposure. Monitoring situations where it is difficult to reliably estimate wind-speed variations, e.g. across multiple sites with different unknown exposures to local winds, and personal exposure monitoring, are likely to benefit from protection of these sampling devices from the effects of wind, for example by use of a mesh or membrane across the open end. The uptake rate of Ogawa[P] samplers was not associated with wind-speed resulting in a high correlation between estimated concentrations and observed analyser concentrations. The use of Palmes meshes in Ogawa[P] samplers reduced the cost of sampler preparation and removed uncertainty associated with the unknown manufacturing process for the commercially-prepared collection pads.

  13. A Simple, Analytical Model of Collisionless Magnetic Reconnection in a Pair Plasma

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Zenitani, Seiji; Kuznetova, Masha; Klimas, Alex

    2011-01-01

    A set of conservation equations is utilized to derive balance equations in the reconnection diffusion region of a symmetric pair plasma. The reconnection electric field is assumed to have the function to maintain the current density in the diffusion region, and to impart thermal energy to the plasma by means of quasi-viscous dissipation. Using these assumptions it is possible to derive a simple set of equations for diffusion region parameters in dependence on inflow conditions and on plasma compressibility. These equations are solved by means of a simple, iterative, procedure. The solutions show expected features such as dominance of enthalpy flux in the reconnection outflow, as well as combination of adiabatic and quasi-viscous heating. Furthermore, the model predicts a maximum reconnection electric field of E(sup *)=0.4, normalized to the parameters at the inflow edge of the diffusion region.

  14. A simple, analytical model of collisionless magnetic reconnection in a pair plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hesse, Michael; Zenitani, Seiji; Kuznetsova, Masha

    2009-10-15

    A set of conservation equations is utilized to derive balance equations in the reconnection diffusion region of a symmetric pair plasma. The reconnection electric field is assumed to have the function to maintain the current density in the diffusion region and to impart thermal energy to the plasma by means of quasiviscous dissipation. Using these assumptions it is possible to derive a simple set of equations for diffusion region parameters in dependence on inflow conditions and on plasma compressibility. These equations are solved by means of a simple, iterative procedure. The solutions show expected features such as dominance of enthalpymore » flux in the reconnection outflow, as well as combination of adiabatic and quasiviscous heating. Furthermore, the model predicts a maximum reconnection electric field of E{sup *}=0.4, normalized to the parameters at the inflow edge of the diffusion region.« less

  15. Parameters influencing the course of passive drug loading into lipid nanoemulsions.

    PubMed

    Göke, Katrin; Bunjes, Heike

    2018-05-01

    Passive drug loading can be used to effectively identify suitable colloidal lipid carrier systems for poorly water-soluble drugs. This method comprises incubation of preformed carrier systems with drug powder and subsequent determination of the resulting drug load of the carrier particles. Until now, the passive loading mechanism is unknown, which complicates reliable routine use. In this work, the influence of drug characteristics on the course of passive loading was investigated systematically varying drug surface area and drug solubility. Fenofibrate and flufenamic acid were used as model drugs; the carrier system was a trimyristin nanodispersion. Loading progress was analyzed by UV spectroscopy or by a novel method based on differential scanning calorimetry. While increasing drug solubility by micelle incorporation did not speed up passive loading, a large drug surface area and high water solubility were key parameters for fast loading. Since both factors are crucial in drug dissolution as described by the Noyes-Whitney equation, these findings point to a dissolution-diffusion-based passive loading mechanism. Accordingly, passive loading also occurred when drug and carrier particles were separated by a dialysis membrane. Knowledge of the loading mechanism allows optimizing the conditions for future passive loading studies and assessing the limitations of the method. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Non-local transport in turbulent MHD convection

    NASA Technical Reports Server (NTRS)

    Miesch, Mark; Brandenburg, Axel; Zweibel, Ellen; Toomre, Juri

    1995-01-01

    The nonlocal non-diffusive transport of passive scalars in turbulent magnetohydrodynamic (MHD) convection is investigated using transilient matrices. These matrices describe the probability that a tracer particle beginning at one position in a flow will be advected to another position after some time. A method for the calculation of these matrices from simulation data which involves following the trajectories of passive tracer particles and calculating their transport statistics, is presented. The method is applied to study the transport in several simulations of turbulent, rotating, three dimensional compressible, penetrative MDH convection. Transport coefficients and other diagnostics are used to quantify the transport, which is found to resemble advection more closely than diffusion. Some of the results are found to have direct relevance to other physical problems, such as the light element depletion in sun-type stars. The large kurtosis found for downward moving particles at the base of the convection zone implies several extreme events.

  17. Diffuse shear wave imaging: toward passive elastography using low-frame rate spectral-domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Nguyen, Thu-Mai; Zorgani, Ali; Lescanne, Maxime; Boccara, Claude; Fink, Mathias; Catheline, Stefan

    2016-12-01

    Optical coherence tomography (OCT) can map the stiffness of biological tissue by imaging mechanical perturbations (shear waves) propagating in the tissue. Most shear wave elastography (SWE) techniques rely on active shear sources to generate controlled displacements that are tracked at ultrafast imaging rates. Here, we propose a noise-correlation approach to retrieve stiffness information from the imaging of diffuse displacement fields using low-frame rate spectral-domain OCT. We demonstrated the method on tissue-mimicking phantoms and validated the results by comparison with classic ultrafast SWE. Then we investigated the in vivo feasibility on the eye of an anesthetized rat by applying noise correlation to naturally occurring displacements. The results suggest a great potential for passive elastography based on the detection of natural pulsatile motions using conventional spectral-domain OCT systems. This would facilitate the transfer of OCT-elastography to clinical practice, in particular, in ophthalmology or dermatology.

  18. Diffuse shear wave imaging: toward passive elastography using low-frame rate spectral-domain optical coherence tomography.

    PubMed

    Nguyen, Thu-Mai; Zorgani, Ali; Lescanne, Maxime; Boccara, Claude; Fink, Mathias; Catheline, Stefan

    2016-12-01

    Optical coherence tomography (OCT) can map the stiffness of biological tissue by imaging mechanical perturbations (shear waves) propagating in the tissue. Most shear wave elastography (SWE) techniques rely on active shear sources to generate controlled displacements that are tracked at ultrafast imaging rates. Here, we propose a noise-correlation approach to retrieve stiffness information from the imaging of diffuse displacement fields using low-frame rate spectral-domain OCT. We demonstrated the method on tissue-mimicking phantoms and validated the results by comparison with classic ultrafast SWE. Then we investigated the in vivo feasibility on the eye of an anesthetized rat by applying noise correlation to naturally occurring displacements. The results suggest a great potential for passive elastography based on the detection of natural pulsatile motions using conventional spectral-domain OCT systems. This would facilitate the transfer of OCT-elastography to clinical practice, in particular, in ophthalmology or dermatology.

  19. An efficient passive planar micromixer with ellipse-like micropillars for continuous mixing of human blood.

    PubMed

    Tran-Minh, Nhut; Dong, Tao; Karlsen, Frank

    2014-10-01

    In this paper, a passive planar micromixer with ellipse-like micropillars is proposed to operate in the laminar flow regime for high mixing efficiency. With a splitting and recombination (SAR) concept, the diffusion distance of the fluids in a micromixer with ellipse-like micropillars was decreased. Thus, space usage for micromixer of an automatic sample collection system is also minimized. Numerical simulation was conducted to evaluate the performance of proposed micromixer by solving the governing Navier-Stokes equation and convection-diffusion equation. With software (COMSOL 4.3) for computational fluid dynamics (CFD) we simulated the mixing of fluids in a micromixer with ellipse-like micropillars and basic T-type mixer in a laminar flow regime. The efficiency of the proposed micromixer is shown in numerical results and is verified by measurement results. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. RANS modeling of scalar dispersion from localized sources within a simplified urban-area model

    NASA Astrophysics Data System (ADS)

    Rossi, Riccardo; Capra, Stefano; Iaccarino, Gianluca

    2011-11-01

    The dispersion of a passive scalar downstream a localized source within a simplified urban-like geometry is examined by means of RANS scalar flux models. The computations are conducted under conditions of neutral stability and for three different incoming wind directions (0°, 45°, 90°) at a roughness Reynolds number of Ret = 391. A Reynolds stress transport model is used to close the flow governing equations whereas both the standard eddy-diffusivity closure and algebraic flux models are employed to close the transport equation for the passive scalar. The comparison with a DNS database shows improved reliability from algebraic scalar flux models towards predicting both the mean concentration and the plume structure. Since algebraic flux models do not increase substantially the computational effort, the results indicate that the use of tensorial-diffusivity can be promising tool for dispersion simulations for the urban environment.

  1. Passive vs. Active Control of Rhythmic Ball Bouncing: The Role of Visual Information

    ERIC Educational Resources Information Center

    Siegler, Isabelle A.; Bardy, Benoit G.; Warren, William H.

    2010-01-01

    The simple task of bouncing a ball on a racket offers a model system for studying how human actors exploit the physics and information of the environment to control their behavior. Previous work shows that people take advantage of a passively stable solution for ball bouncing but can also use perceptual information to actively stabilize bouncing.…

  2. Assessing the Impact and Social Perception of Self-Regulated Music Stimulation with Patients with Alzheimer's Disease

    ERIC Educational Resources Information Center

    Lancioni, Giulio E.; O'Reilly, Mark F.; Singh, Nirbhay N.; Sigafoos, Jeff; Grumo, Gianluca; Pinto, Katia; Stasolla, Fabrizio; Signorino, Mario; Groeneweg, Jop

    2013-01-01

    We assessed the impact and social rating of an active and a passive music condition implemented with six patients with Alzheimer's disease. In the active condition, the patients used a simple hand response and a microswitch to self-regulate music stimulation inputs. In the passive condition, music stimulation was automatically presented throughout…

  3. The Effect of Processing Instruction and Dictogloss Tasks on Acquisition of the English Passive Voice

    ERIC Educational Resources Information Center

    Qin, Jingjing

    2008-01-01

    This study was intended to compare processing instruction (VanPatten, 1993, 1996, 2000), an input-based focus on form technique, to dictogloss tasks, an output-oriented focus-on-form type of instruction to assess their effects in helping beginning-EFL (English as a Foreign Language) learners acquire the simple English passive voice. Two intact…

  4. High-Performance Quantum Dot Thin-Film Transistors with Environmentally Benign Surface Functionalization and Robust Defect Passivation.

    PubMed

    Jung, Su Min; Kang, Han Lim; Won, Jong Kook; Kim, JaeHyun; Hwang, ChaHwan; Ahn, KyungHan; Chung, In; Ju, Byeong-Kwon; Kim, Myung-Gil; Park, Sung Kyu

    2018-01-31

    The recent development of high-performance colloidal quantum dot (QD) thin-film transistors (TFTs) has been achieved with removal of surface ligand, defect passivation, and facile electronic doping. Here, we report on high-performance solution-processed CdSe QD-TFTs with an optimized surface functionalization and robust defect passivation via hydrazine-free metal chalcogenide (MCC) ligands. The underlying mechanism of the ligand effects on CdSe QDs has been studied with hydrazine-free ex situ reaction derived MCC ligands, such as Sn 2 S 6 4- , Sn 2 Se 6 4- , and In 2 Se 4 2- , to allow benign solution-process available. Furthermore, the defect passivation and remote n-type doping effects have been investigated by incorporating indium nanoparticles over the QD layer. Strong electronic coupling and solid defect passivation of QDs could be achieved by introducing electronically active MCC capping and thermal diffusion of the indium nanoparticles, respectively. It is also noteworthy that the diffused indium nanoparticles facilitate charge injection not only inter-QDs but also between source/drain electrodes and the QD semiconductors, significantly reducing contact resistance. With benign organic solvents, the Sn 2 S 6 4- , Sn 2 Se 6 4- , and In 2 Se 4 2- ligand based QD-TFTs exhibited field-effect mobilities exceeding 4.8, 12.0, and 44.2 cm 2 /(V s), respectively. The results reported here imply that the incorporation of MCC ligands and appropriate dopants provide a general route to high-performance, extremely stable solution-processed QD-based electronic devices with marginal toxicity, offering compatibility with standard complementary metal oxide semiconductor processing and large-scale on-chip device applications.

  5. The Effect of Pickling on Blue Borscht Gelatin and Other Interesting Diffusive Phenomena.

    ERIC Educational Resources Information Center

    Davis, Lawrence C.; Chou, Nancy C.

    1998-01-01

    Presents some simple demonstrations that students can construct for themselves in class to learn the difference between diffusion and convection rates. Uses cabbage leaves and gelatin and focuses on diffusion in ungelified media, a quantitative diffusion estimate with hydroxyl ions, and a quantitative diffusion estimate with photons. (DDR)

  6. Modelling passive diastolic mechanics with quantitative MRI of cardiac structure and function.

    PubMed

    Wang, Vicky Y; Lam, H I; Ennis, Daniel B; Cowan, Brett R; Young, Alistair A; Nash, Martyn P

    2009-10-01

    The majority of patients with clinically diagnosed heart failure have normal systolic pump function and are commonly categorized as suffering from diastolic heart failure. The left ventricle (LV) remodels its structure and function to adapt to pathophysiological changes in geometry and loading conditions, which in turn can alter the passive ventricular mechanics. In order to better understand passive ventricular mechanics, a LV finite element (FE) model was customized to geometric data segmented from in vivo tagged magnetic resonance images (MRI) data and myofibre orientation derived from ex vivo diffusion tensor MRI (DTMRI) of a canine heart using nonlinear finite element fitting techniques. MRI tissue tagging enables quantitative evaluation of cardiac mechanical function with high spatial and temporal resolution, whilst the direction of maximum water diffusion in each voxel of a DTMRI directly corresponds to the local myocardial fibre orientation. Due to differences in myocardial geometry between in vivo and ex vivo imaging, myofibre orientations were mapped into the geometric FE model using host mesh fitting (a free form deformation technique). Pressure recordings, temporally synchronized to the tagging data, were used as the loading constraints to simulate the LV deformation during diastole. Simulation of diastolic LV mechanics allowed us to estimate the stiffness of the passive LV myocardium based on kinematic data obtained from tagged MRI. Integrated physiological modelling of this kind will allow more insight into mechanics of the LV on an individualized basis, thereby improving our understanding of the underlying structural basis of mechanical dysfunction under pathological conditions.

  7. Hydrogen passivation of titanium impurities in silicon: Effect of doping conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, P.; Coutinho, J., E-mail: jose.coutinho@ua.pt; Torres, V. J. B.

    2014-07-21

    While the contamination of solar silicon by fast diffusing transition metals can be now limited through gettering, much attention has been drawn to the slow diffusing species, especially the early 3d and 4d elements. To some extent, hydrogen passivation has been successful in healing many deep centers, including transition metals in Si. Recent deep-level transient spectroscopy (DLTS) measurements concerning hydrogen passivation of Ti revealed the existence of at least four electrical levels related to Ti{sub i}H{sub n} in the upper-half of the gap. These findings challenge the existing models regarding both the current level assignment as well as the structure/speciesmore » involved in the defects. We revisit this problem by means of density functional calculations and find that progressive hydrogenation of interstitial Ti is thermodynamically stable in intrinsic and n-doped Si. Full passivation may not be possible to attain in p-type Si as Ti{sub i}H{sub 3} and Ti{sub i}H{sub 4} are metastable against dissociation and release of bond-centered protons. All DLTS electron traps are assigned, namely, E40′ to Ti{sub i}H(-/0), E170′ to Ti{sub i}H{sub 3}(0/+), E(270) to Ti{sub i}H{sub 2}(0/+), and E170 to Ti{sub i}H(0/+) transitions. Ti{sub i}H{sub 4} is confirmed to be electrically inert.« less

  8. Single Canonical Model of Reflexive Memory and Spatial Attention

    PubMed Central

    Patel, Saumil S.; Red, Stuart; Lin, Eric; Sereno, Anne B.

    2015-01-01

    Many neurons in the dorsal and ventral visual stream have the property that after a brief visual stimulus presentation in their receptive field, the spiking activity in these neurons persists above their baseline levels for several seconds. This maintained activity is not always correlated with the monkey’s task and its origin is unknown. We have previously proposed a simple neural network model, based on shape selective neurons in monkey lateral intraparietal cortex, which predicts the valence and time course of reflexive (bottom-up) spatial attention. In the same simple model, we demonstrate here that passive maintained activity or short-term memory of specific visual events can result without need for an external or top-down modulatory signal. Mutual inhibition and neuronal adaptation play distinct roles in reflexive attention and memory. This modest 4-cell model provides the first simple and unified physiologically plausible mechanism of reflexive spatial attention and passive short-term memory processes. PMID:26493949

  9. Comparative study between simple and optimized liposomal dispersion of quetiapine fumarate for diffusion through nasal route.

    PubMed

    Upadhyay, Pratik; Trivedi, Jatin; Pundarikakshudu, Kilambi; Sheth, Navin

    2016-05-01

    Nasal route of drug administration is preferred more and more for the targeted delivery to the brain in current drug development scenario due to its ease of use, reliability, quick action, and lesser side effects. Those CNS drugs which have limited oral bioavailability due to pharmacokinetic consequences and brain barrier repulsion are getting onto this direction. Quetiapine fumarate, an analogous to above and an antischizophrenic agent, is tested for its diffusion property with and without lipophilic carrier through sheep nasal membrane. Being a BCS class II' and high permeable candidate, it tends to crossover easily, so made up in a simple dispersion. To improve its diffusion rate, it was embedded into liposomal dispersion, which has proven that it has advanced efficiency for diffusion. For this, both the formulations were checked and compared for their diffusion profile, as it is an essential property for bioavailability through nasal route. Comparison was made on the basis of % drug diffusion within 6 h, rate, mechanism, profile, and coefficient. Liposomal dispersion has been proved superior with greater percentage diffusion of 32.61 ± 1.70 and very high permeability with a coefficient value of 4.1334 ± 0.7321 (× 10 (-) (5 )cm/s). Diffusion profile comparison bearing dissimilarity of 18 and similarity of 74 indicated that the diffusion profiles of liposomal dispersions and simple dispersion were similar but not identical. Liposomal diffusion supremacy was further sustained by in vivo, ciliotoxicity, and gamma scintigraphy studies.

  10. Market diffusion and the effect of demonstrations: A study of Denver metro passive solar home program

    NASA Astrophysics Data System (ADS)

    Lilien, G. L.

    1981-10-01

    The reactions to and effects of the Denver metro passive solar home demonstration program, conducted in the spring of 1981 are reported. The program provides impetus to builders for incorporating passive solar designs in spec built homes and demonstrates those designs to prospective buyers to increase buyer receptivity. A pre-post exposure analysis of the effect of the program is reported and four separate groups of prospective new home buyers are studied. The first group heard publicity about and voluntarily visited a demonstration home. The second group saw the home, but was recruited to come to the side. The third group, also in Denver, did not see the site, but answered the same set of questions after receiving a description of and pictures of passive solar homes. The fourth group was a control group, similar to the third, but located in Kansas City.

  11. Gallium-Doped Poly-Si:Ga/SiO 2 Passivated Emitters to n-Cz Wafers With iV oc >730 mV

    DOE PAGES

    Young, David L.; Lee, Benjamin G.; Fogel, Derek; ...

    2017-09-26

    Here, we form gallium-doped poly-Si:Ga/SiO 2 passivated contacts on n-type Czochralski (n-Cz) wafers using ion implantation of Ga and Ga-containing spin-on dopants. After annealing and passivation with Al 2O 3, the contacts exhibit i Voc values of >730 mV with corresponding Joe values of <5 fA/cm 2. These are among the best-reported values for p-type poly-Si/SiO 2 contacts. Secondary ion mass spectroscopic depth profile data show that, in contrast to B, Ga does not pileup at the SiO 2 interface in agreement with its known high diffusivity in SiO 2. This lack of Ga pileup may imply fewer dopant-related defectsmore » in the SiO 2, compared with B dopants, and account for the excellent passivation.« less

  12. Evaluation of passive diffusion bag samplers, dialysis samplers, and nylon-screen samplers in selected wells at Andersen Air Force Base, Guam, March-April 2002

    USGS Publications Warehouse

    Vroblesky, Don A.; Joshi, Manish; Morrell, Jeff; Peterson, J.E.

    2003-01-01

    During March-April 2002, the U.S. Geological Survey, Earth Tech, and EA Engineering, Science, and Technology, Inc., in cooperation with the Air Force Center for Environmental Excellence, tested diffusion samplers at Andersen Air Force Base, Guam. Samplers were deployed in three wells at the Main Base and two wells at Marianas Bonins (MARBO) Annex as potential ground-water monitoring alternatives. Prior to sampler deployment, the wells were tested using a borehole flowmeter to characterize vertical flow within each well. Three types of diffusion samplers were tested: passive diffusion bag (PDB) samplers, dialysis samplers, and nylon-screen samplers. The primary volatile organic compounds (VOCs) tested in ground water at Andersen Air Force Base were trichloroethene and tetrachloroethene. In most comparisons, trichloroethene and tetrachloroethene concentrations in PDB samples closely matched concentrations in pumped samples. Exceptions were in wells where the pumping or ambient flow produced vertical translocation of water in a chemically stratified aquifer. In these wells, PDB samplers probably would be a viable alternative sampling method if they were placed at appropriate depths. In the remaining three test wells, the trichloroethene or tetrachloroethene concentrations obtained with the diffusion samplers closely matched the result from pumped sampling. Chloride concentrations in nylon-screen samplers were compared with chloride concentrations in dialysis and pumped samples to test inorganic-solute diffusion into the samplers across a range of concentrations. The test showed that the results from nylon-screen samplers might have underestimated chloride concentrations at depths with elevated chloride concentrations. The reason for the discrepancy in this investigation is unknown, but may be related to nylon-screen-mesh size, which was smaller than that used in previous investigations.

  13. Preliminary design of a simple passive toe exercise apparatus with a flexible metal hydride actuator for pressure ulcer prevention.

    PubMed

    Ino, Shuichi; Sato, Mitsuru; Hosono, Minako; Nakajima, Sawako; Yamashita, Kazuhiko; Izumi, Takashi

    2010-01-01

    In an aging society, social demands for home-based rehabilitation and assistive technologies by healthcare and welfare services are globally increasing. The progress of quality-of-life technologies and rehabilitation science is a very important and urgent issue for elderly and disabled individuals as well as for their caregivers. Thus, there is a substantial need to develop simple bedside apparatuses for both continuous exercise of joints and for power assistance for standing to prevent and manage disuse syndromes (e.g., pressure ulcers, joint contractures and muscular atrophy). Unfortunately, there are currently no commercially-available actuators compatible with the human requirements of flexibility, quietness, lightness and a high power-to-weight ratio. To fulfill the above demands, we have developed a novel actuation device using a metal hydride (MH) alloy and a laminate film, called the flexible MH actuator, as a human-friendly force generator for healthcare and welfare services. In this paper, we show the basic structure and characteristics of the flexible MH actuator used to create a passive exercise system for preventing disuse syndromes. To evaluate the efficiency of passive exercise for bedsore prevention, subcutaneous blood flow during passive exercise at common pressure-ulcer sites is measured by a laser blood flow meter. The force and range-of-motion angle required for a passive exercise apparatus is also examined with the help of a professional physical therapist. Based on these findings, a prototype of a passive exercise apparatus is fabricated using the flexible MH actuator technology, and its operation characteristics are preliminarily verified using a thermoelectric control system.

  14. PASSIVE/DIFFUSIVE SAMPLERS FOR PESTICIDES IN RESIDENTIAL INDOOR AIR

    EPA Science Inventory

    Pesticides applied indoors vaporize from treated surfaces (e.g., carpets and baseboards) resulting in elevated air concentrations that may persist for long periods after applications. Estimating long-term respiratory exposures to pesticide vapors in residential indoor environme...

  15. Effect of concentration boundary layers on passive solute flows in a system of two polymeric membranes positioned in vertical planes.

    PubMed

    Slezak, Andrzej; Jasik-Slezak, Jolanta; Dworecki, Kazimierz

    2003-01-01

    The results of studies of influence of concentration boundary layers on passive diffusive transport in a double-membrane osmo-diffusive cell, containing a series of two (Ml and M(r)) vertically positioned, flat, microporous and symmetric polymer membranes (Nephrophane and Cellulose IMP-1) are presented in this paper. The membranes separated three compartments (l, m, r) containing binary, heterogeneous and non-ionic solutions (aqueous solutions of glucose or ethanol) or ternary non-electrolyte solutions (glucose solutions in 0.75 mol.l-1 solution of ethanol or ethanol solutions in 0.1 mol.l-1 aqueous solution of glucose). Solution concentrations fulfilled the condition C(k)l > C(k)m > C(k)r. The intermembrane compartment (m) was an infinitesimal solution layer. The volume of the m compartment and the volumes of the external (l and r) compartments fulfilled the condition Vl = Vr approximately 170 Vm. The tests were performed for configurations A and B of a double-membrane osmo-diffusive cell. In configuration A, the solution was located behind the M(r) membrane, and water was placed behind the Ml membrane, while in configuration B this sequence was reversed. The results obtained during experiment were interpreted in the categories of convective instability, which increased the value of diffusive permeability coefficient of the system: concentration boundary layer/membrane/concentration boundary layer.

  16. Ammonia excretion and urea handling by fish gills: present understanding and future research challenges.

    PubMed

    Wilkie, Michael Patrick

    2002-08-01

    In fresh water fishes, ammonia is excreted across the branchial epithelium via passive NH(3) diffusion. This NH(3) is subsequently trapped as NH(4)(+) in an acidic unstirred boundary layer lying next to the gill, which maintains the blood-to-gill water NH(3) partial pressure gradient. Whole animal, in situ, ultrastructural and molecular approaches suggest that boundary layer acidification results from the hydration of CO(2) in the expired gill water, and to a lesser extent H(+) excretion mediated by apical H(+)-ATPases. Boundary layer acidification is insignificant in highly buffered sea water, where ammonia excretion proceeds via NH(3) diffusion, as well as passive NH(4)(+) diffusion due to the greater ionic permeability of marine fish gills. Although Na(+)/H(+) exchangers (NHE) have been isolated in marine fish gills, possible Na(+)/NH(4)(+) exchange via these proteins awaits evaluation using modern electrophysiological and molecular techniques. Although urea excretion (J(Urea)) was thought to be via passive diffusion, it is now clear that branchial urea handling requires specialized urea transporters. Four urea transporters have been cloned in fishes, including the shark kidney urea transporter (shUT), which is a facilitated urea transporter similar to the mammalian renal UT-A2 transporter. Another urea transporter, characterized but not yet cloned, is the basolateral, Na(+) dependent urea antiporter of the dogfish gill, which is essential for urea retention in ureosmotic elasmobranchs. In ureotelic teleosts such as the Lake Magadi tilapia and the gulf toadfish, the cloned mtUT and tUT are facilitated urea transporters involved in J(Urea). A basolateral urea transporter recently cloned from the gill of the Japanese eel (eUT) may actually be important for urea retention during salt water acclimation. A multi-faceted approach, incorporating whole animal, histological, biochemical, pharmacological, and molecular techniques is required to learn more about the location, mechanism of action, and functional significance of urea transporters in fishes. Copyright 2002 Wiley-Liss, Inc.

  17. Combining Radiography and Passive Measurements for Radiological Threat Detection in Cargo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Erin A.; White, Timothy A.; Jarman, Kenneth D.

    Abstract Radiography is widely understood to provide information complimentary to passive detection: while not directly sensitive to radiological materials, radiography can reveal highly shielded regions which may mask a passive radiological signal. We present a method for combining radiographic and passive data which uses the radiograph to provide an estimate of scatter and attenuation for possible sources. This approach allows quantitative use of radiographic images without relying on image interpretation, and results in a probabilistic description of likely source locations and strengths. We present first results for this method for a simple modeled test case of a cargo container drivingmore » through a PVT portal. With this inversion approach, we address criteria for an integrated passive and radiographic screening system and how detection of SNM threats might be improved in such a system.« less

  18. Approximate Seismic Diffusive Models of Near-Receiver Geology: Applications from Lab Scale to Field

    NASA Astrophysics Data System (ADS)

    King, Thomas; Benson, Philip; De Siena, Luca; Vinciguerra, Sergio

    2017-04-01

    This paper presents a novel and simple method of seismic envelope analysis that can be applied at multiple scales, e.g. field, m to km scale and laboratory, mm to cm scale, and utilises the diffusive approximation of the seismic wavefield (Wegler, 2003). Coefficient values for diffusion and attenuation are obtained from seismic coda energies and are used to describe the rate at which seismic energy is scattered and attenuated into the local medium around a receiver. Values are acquired by performing a linear least squares inversion of coda energies calculated in successive time windows along a seismic trace. Acoustic emission data were taken from piezoelectric transducers (PZT) with typical resonance frequency of 1-5MHz glued around rock samples during deformation laboratory experiments carried out using a servo-controlled triaxial testing machine, where a shear/damage zone is generated under compression after the nucleation, growth and coalescence of microcracks. Passive field data were collected from conventional geophones during the 2004-2008 eruption of Mount St. Helens volcano (MSH), USA where a sudden reawakening of the volcanic activity and a new dome growth has occurred. The laboratory study shows a strong correlation between variations of the coefficients over time and the increase of differential stress as the experiment progresses. The field study links structural variations present in the near-surface geology, including those seen in previous geophysical studies of the area, to these same coefficients. Both studies show a correlation between frequency and structural feature size, i.e. landslide slip-planes and microcracks, with higher frequencies being much more sensitive to smaller scale features and vice-versa.

  19. Recombination reduction at the c-Si/RCA oxide interface through Ar-H2 plasma treatment

    NASA Astrophysics Data System (ADS)

    Landheer, Kees; Bronsveld, Paula C. P.; Poulios, Ioannis; Tichelaar, Frans D.; Kaiser, Monja; Schropp, Ruud E. I.; Rath, Jatin K.

    2017-02-01

    An Ar-H2 plasma treatment was applied on an ultrathin RCA oxide to create well-passivated silicon wafers with symmetric c-Si/SiOx:H/a-Si:H passivation layer stacks. The effective lifetime of these samples increased from 10 μs to 4 ms after annealing at 200 °C through Ar-H2 plasma treatment of the oxide. The results indicate that the plasma treatment can modify the RCA oxide and this enables atomic hydrogen diffusion at low annealing temperature, leading to a well passivated c-Si/SiOx:H interface. This might provide new possibilities to use wet chemical oxides in c-Si solar cells, for example as tunnel contacts.

  20. Passively mode-locked Raman fiber laser with 100 GHz repetition rate

    NASA Astrophysics Data System (ADS)

    Schröder, Jochen; Coen, Stéphane; Vanholsbeeck, Frédérique; Sylvestre, Thibaut

    2006-12-01

    We experimentally demonstrate the operation of a passively mode-locked Raman fiber ring laser with an ultrahigh repetition rate of 100GHz and up to 430mW of average output power. This laser constitutes a simple wavelength versatile pulsed optical source. Stable mode locking is based on dissipative four-wave mixing with a single fiber Bragg grating acting as the mode-locking element.

  1. Deterministic diffusion in flower-shaped billiards.

    PubMed

    Harayama, Takahisa; Klages, Rainer; Gaspard, Pierre

    2002-08-01

    We propose a flower-shaped billiard in order to study the irregular parameter dependence of chaotic normal diffusion. Our model is an open system consisting of periodically distributed obstacles in the shape of a flower, and it is strongly chaotic for almost all parameter values. We compute the parameter dependent diffusion coefficient of this model from computer simulations and analyze its functional form using different schemes, all generalizing the simple random walk approximation of Machta and Zwanzig. The improved methods we use are based either on heuristic higher-order corrections to the simple random walk model, on lattice gas simulation methods, or they start from a suitable Green-Kubo formula for diffusion. We show that dynamical correlations, or memory effects, are of crucial importance in reproducing the precise parameter dependence of the diffusion coefficent.

  2. Generation and precise control of dynamic biochemical gradients for cellular assays

    NASA Astrophysics Data System (ADS)

    Saka, Yasushi; MacPherson, Murray; Giuraniuc, Claudiu V.

    2017-03-01

    Spatial gradients of diffusible signalling molecules play crucial roles in controlling diverse cellular behaviour such as cell differentiation, tissue patterning and chemotaxis. In this paper, we report the design and testing of a microfluidic device for diffusion-based gradient generation for cellular assays. A unique channel design of the device eliminates cross-flow between the source and sink channels, thereby stabilizing gradients by passive diffusion. The platform also enables quick and flexible control of chemical concentration that makes highly dynamic gradients in diffusion chambers. A model with the first approximation of diffusion and surface adsorption of molecules recapitulates the experimentally observed gradients. Budding yeast cells cultured in a gradient of a chemical inducer expressed a reporter fluorescence protein in a concentration-dependent manner. This microfluidic platform serves as a versatile prototype applicable to a broad range of biomedical investigations.

  3. Renormalization group analysis of anisotropic diffusion in turbulent shear flows

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert; Barton, J. Michael

    1991-01-01

    The renormalization group is applied to compute anisotropic corrections to the scalar eddy diffusivity representation of turbulent diffusion of a passive scalar. The corrections are linear in the mean velocity gradients. All model constants are computed theoretically. A form of the theory valid at arbitrary Reynolds number is derived. The theory applies only when convection of the velocity-scalar correlation can be neglected. A ratio of diffusivity components, found experimentally to have a nearly constant value in a variety of shear flows, is computed theoretically for flows in a certain state of equilibrium. The theoretical value is well within the fairly narrow range of experimentally observed values. Theoretical predictions of this diffusivity ratio are also compared with data from experiments and direct numerical simulations of homogeneous shear flows with constant velocity and scalar gradients.

  4. Investigating axial diffusion in cylindrical pores using confocal single-particle fluorescence correlation spectroscopy.

    PubMed

    Chen, Fang; Neupane, Bhanu; Li, Peiyuan; Su, Wei; Wang, Gufeng

    2016-08-01

    We explored the feasibility of using confocal fluorescence correlation spectroscopy to study small nanoparticle diffusion in hundred-nanometer-sized cylindrical pores. By modeling single particle diffusion in tube-like confined three-dimensional space aligned parallel to the confocal optical axis, we showed that two diffusion dynamics can be observed in both original intensity traces and the autocorrelation functions (ACFs): the confined two-dimensional lateral diffusion and the unconfined one-dimensional (1D) axial diffusion. The separation of the axial and confined lateral diffusion dynamics provides an opportunity to study diffusions in different dimensions separately. We further experimentally studied 45 nm carboxylated polystyrene particles diffusing in 300 nm alumina pores. The experimental data showed consistency with the simulation. To extract the accurate axial diffusion coefficient, we found that a 1D diffusion model with a Lorentzian axial collection profile needs to be used to analyze the experimental ACFs. The diffusion of the 45 nm nanoparticles in polyethyleneglycol-passivated 300 nm pores slowed down by a factor of ∼2, which can be satisfactorily explained by hydrodynamic frictions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Passive Diffusion as a Mechanism Underlying Ribbon Synapse Vesicle Release and Resupply

    PubMed Central

    Graydon, Cole W.; Zhang, Jun; Oesch, Nicholas W.; Sousa, Alioscka A.; Leapman, Richard D.

    2014-01-01

    Synaptic ribbons are presynaptic protein structures found at many synapses that convey graded, “analog” sensory signals in the visual, auditory, and vestibular pathways. Ribbons, typically anchored to the presynaptic membrane and surrounded by tethered synaptic vesicles, are thought to regulate or facilitate vesicle delivery to the presynaptic membrane. No direct evidence exists, however, to indicate how vesicles interact with the ribbon or, once attached, move along the ribbon's surface to reach the presynaptic release sites at its base. To address these questions, we have created, validated, and tested a passive vesicle diffusion model of retinal rod bipolar cell ribbon synapses. We used axial (bright-field) electron tomography in the scanning transmission electron microscopy to obtain 3D structures of rat rod bipolar cell terminals in 1-μm-thick sections of retinal tissue at an isotropic spatial resolution of ∼3 nm. The resulting structures were then incorporated with previously published estimates of vesicle diffusion dynamics into numerical simulations that accurately reproduced electrophysiologically measured vesicle release/replenishment rates and vesicle pool sizes. The simulations suggest that, under physiologically realistic conditions, diffusion of vesicles crowded on the ribbon surface gives rise to a flow field that enhances delivery of vesicles to the presynaptic membrane without requiring an active transport mechanism. Numerical simulations of ribbon–vesicle interactions predict that transient binding and unbinding of multiple tethers to each synaptic vesicle may achieve sufficiently tight association of vesicles to the ribbon while permitting the fast diffusion along the ribbon that is required to sustain high release rates. PMID:24990916

  6. Passive diffusion as a mechanism underlying ribbon synapse vesicle release and resupply.

    PubMed

    Graydon, Cole W; Zhang, Jun; Oesch, Nicholas W; Sousa, Alioscka A; Leapman, Richard D; Diamond, Jeffrey S

    2014-07-02

    Synaptic ribbons are presynaptic protein structures found at many synapses that convey graded, "analog" sensory signals in the visual, auditory, and vestibular pathways. Ribbons, typically anchored to the presynaptic membrane and surrounded by tethered synaptic vesicles, are thought to regulate or facilitate vesicle delivery to the presynaptic membrane. No direct evidence exists, however, to indicate how vesicles interact with the ribbon or, once attached, move along the ribbon's surface to reach the presynaptic release sites at its base. To address these questions, we have created, validated, and tested a passive vesicle diffusion model of retinal rod bipolar cell ribbon synapses. We used axial (bright-field) electron tomography in the scanning transmission electron microscopy to obtain 3D structures of rat rod bipolar cell terminals in 1-μm-thick sections of retinal tissue at an isotropic spatial resolution of ∼3 nm. The resulting structures were then incorporated with previously published estimates of vesicle diffusion dynamics into numerical simulations that accurately reproduced electrophysiologically measured vesicle release/replenishment rates and vesicle pool sizes. The simulations suggest that, under physiologically realistic conditions, diffusion of vesicles crowded on the ribbon surface gives rise to a flow field that enhances delivery of vesicles to the presynaptic membrane without requiring an active transport mechanism. Numerical simulations of ribbon-vesicle interactions predict that transient binding and unbinding of multiple tethers to each synaptic vesicle may achieve sufficiently tight association of vesicles to the ribbon while permitting the fast diffusion along the ribbon that is required to sustain high release rates. Copyright © 2014 the authors 0270-6474/14/348948-15$15.00/0.

  7. Colloidal transport through trap arrays controlled by active microswimmers

    NASA Astrophysics Data System (ADS)

    Yang, Wen; Misko, Vyacheslav R.; Marchesoni, Fabio; Nori, Franco

    2018-07-01

    We investigate the dynamics of a binary mixture consisting of active and passive colloidal particles diffusing in a 2D array of truncated harmonic wells, or traps. We explore the possibility of using a small fraction of active particles to manipulate a much larger fraction of passive particles, for instance, to confine them in or extract them from the traps. The results of our study have potential application in biology and medical sciences, for example, to remove dead cells or undesired contaminants from biological systems by means of self-propelled nano-robots.

  8. Emergent Chemical Behavior in Variable-Volume Protocells

    PubMed Central

    Shirt-Ediss, Ben; Solé, Ricard V.; Ruiz-Mirazo, Kepa

    2015-01-01

    Artificial protocellular compartments and lipid vesicles have been used as model systems to understand the origins and requirements for early cells, as well as to design encapsulated reactors for biotechnology. One prominent feature of vesicles is the semi-permeable nature of their membranes, able to support passive diffusion of individual solute species into/out of the compartment, in addition to an osmotic water flow in the opposite direction to the net solute concentration gradient. Crucially, this water flow affects the internal aqueous volume of the vesicle in response to osmotic imbalances, in particular those created by ongoing reactions within the system. In this theoretical study, we pay attention to this often overlooked aspect and show, via the use of a simple semi-spatial vesicle reactor model, that a changing solvent volume introduces interesting non-linearities into an encapsulated chemistry. Focusing on bistability, we demonstrate how a changing volume compartment can degenerate existing bistable reactions, but also promote emergent bistability from very simple reactions, which are not bistable in bulk conditions. One particularly remarkable effect is that two or more chemically-independent reactions, with mutually exclusive reaction kinetics, are able to couple their dynamics through the variation of solvent volume inside the vesicle. Our results suggest that other chemical innovations should be expected when more realistic and active properties of protocellular compartments are taken into account. PMID:25590570

  9. Reliability and efficacy of organic passivation for polycrystalline silicon solar cells at room temperature

    NASA Astrophysics Data System (ADS)

    Shinde, Onkar S.; Funde, Adinath M.; Jadkar, Sandesh R.; Dusane, Rajiv O.; Dhere, Neelkanth G.; Ghaisas, Subhash V.

    2016-09-01

    Oleylamine is used as a passivating layer instead of commercial high temperature SiNx. Oleylamine coating applied on the n-type emitter side with p-type base polycrystalline silicon solar cells at room temperature using a simple spin coating method. It has been observed that there is 16% increase in efficiency after Oleylamine coating. Further, the solar cell was subjected to standard characterization namely current-voltage measurement for electrical parameters and Fourier transform infrared spectroscopy to understand the interaction of emitter surface and passivating Oleylamine. However, the passivation layer is not stable due to the reaction between Oleylamine and ambient air content such as humidity and carbon dioxide. This degradation can be prevented with suitable overcoating.

  10. A simple reaction-rate model for turbulent diffusion flames

    NASA Technical Reports Server (NTRS)

    Bangert, L. H.

    1975-01-01

    A simple reaction rate model is proposed for turbulent diffusion flames in which the reaction rate is proportional to the turbulence mixing rate. The reaction rate is also dependent on the mean mass fraction and the mean square fluctuation of mass fraction of each reactant. Calculations are compared with experimental data and are generally successful in predicting the measured quantities.

  11. A Simple Experiment for Visualizing Diffusion

    ERIC Educational Resources Information Center

    Helseth, L. E.

    2011-01-01

    We propose a simple and fascinating experiment for studying diffusion in gels using a pH-sensitive dye. By doping agar with methyl red, we obtain a gel which rapidly reacts to changes in pH by changing its absorption spectrum. The pH gradients can be followed using a digital camera, and we demonstrate here that the pH-sensitive colour changes can…

  12. A comparison of Fick and Maxwell-Stefan diffusion formulations in PEMFC gas diffusion layers

    NASA Astrophysics Data System (ADS)

    Lindstrom, Michael; Wetton, Brian

    2017-01-01

    This paper explores the mathematical formulations of Fick and Maxwell-Stefan diffusion in the context of polymer electrolyte membrane fuel cell cathode gas diffusion layers. The simple Fick law with a diagonal diffusion matrix is an approximation of Maxwell-Stefan. Formulations of diffusion combined with mass-averaged Darcy flow are considered for three component gases. For this application, the formulations can be compared computationally in a simple, one dimensional setting. Despite the models' seemingly different structure, it is observed that the predictions of the formulations are very similar on the cathode when air is used as oxidant. The two formulations give quite different results when the Nitrogen in the air oxidant is replaced by helium (this is often done as a diagnostic for fuel cells designs). The two formulations also give quite different results for the anode with a dilute Hydrogen stream. These results give direction to when Maxwell-Stefan diffusion, which is more complicated to implement computationally in many codes, should be used in fuel cell simulations.

  13. Mesoscale Elucidation of Surface Passivation in the Li–Sulfur Battery Cathode

    DOE PAGES

    Liu, Zhixiao; Mukherjee, Partha P.

    2017-01-23

    We report the cathode surface passivation caused by Li 2S precipitation adversely affects the performance of lithium-sulfur (Li-S) batteries. Li 2S precipitation is a complicated mesoscale process involving adsorption, desorption and diffusion kinetics, which are affected profoundly by the reactant concentration and operating temperature. In this work, a mesoscale interfacial model is presented to study the growth of Li 2S film on carbon cathode surface. Li 2S film growth experiences nucleation, isolated Li 2S island growth and island coalescence. The slow adsorption rate at small S 2- concentration inhibits the formation of nucleation seeds and the lateral growth of Limore » 2S islands, which deters surface passivation. An appropriate operating temperature, especially in the medium-to-high temperature range, can also defer surface passivation. Fewer Li 2S nucleation seeds form in such an operating temperature range, which facilitates heterogeneous growth and thereby inhibits the lateral growth of the Li 2S film, which may also result in reduced surface passivation. Finally, the high specific surface area of the cathode microstructure is expected to mitigate the surface passivation.« less

  14. Results of a Demonstration Assessment of Passive System Reliability Utilizing the Reliability Method for Passive Systems (RMPS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bucknor, Matthew; Grabaskas, David; Brunett, Acacia

    2015-04-26

    Advanced small modular reactor designs include many advantageous design features such as passively driven safety systems that are arguably more reliable and cost effective relative to conventional active systems. Despite their attractiveness, a reliability assessment of passive systems can be difficult using conventional reliability methods due to the nature of passive systems. Simple deviations in boundary conditions can induce functional failures in a passive system, and intermediate or unexpected operating modes can also occur. As part of an ongoing project, Argonne National Laboratory is investigating various methodologies to address passive system reliability. The Reliability Method for Passive Systems (RMPS), amore » systematic approach for examining reliability, is one technique chosen for this analysis. This methodology is combined with the Risk-Informed Safety Margin Characterization (RISMC) approach to assess the reliability of a passive system and the impact of its associated uncertainties. For this demonstration problem, an integrated plant model of an advanced small modular pool-type sodium fast reactor with a passive reactor cavity cooling system is subjected to a station blackout using RELAP5-3D. This paper discusses important aspects of the reliability assessment, including deployment of the methodology, the uncertainty identification and quantification process, and identification of key risk metrics.« less

  15. Diffusion of Salt in Tap Water

    ERIC Educational Resources Information Center

    Booth, C.; And Others

    1978-01-01

    A simple experiment is described to measure the diffusion coefficient of a solute in a fluid. Laboratory-made floats are used to monitor the density changes associated with diffusion behavior. The experiment is ideally suited for undergraduate project work. (BB)

  16. Experimental study of delivery of humidified-warm carbon dioxide during open abdominal surgery.

    PubMed

    Carpinteri, S; Sampurno, S; Malaterre, J; Millen, R; Dean, M; Kong, J; Chittleborough, T; Heriot, A; Lynch, A C; Ramsay, R G

    2018-04-01

    The aim of this study was to monitor the effect of humidified-warm carbon dioxide (HWCO 2 ) delivered into the open abdomen of mice, simulating laparotomy. Mice were anaesthetized, ventilated and subjected to an abdominal incision followed by wound retraction. In the experimental group, a diffuser device was used to deliver HWCO 2 ; the control group was exposed to passive air flow. In each group of mice, surgical damage was produced on one side of the peritoneal wall. Vital signs and core temperature were monitored throughout the 1-h procedure. The peritoneum was closed and mice were allowed to recover for 24 h or 10 days. Tumour cells were delivered into half of the mice in each cohort. Tissue was then examined using scanning electron microscopy and immunohistochemistry. Passive air flow generated ultrastructural damage including mesothelial cell bulging/retraction and loss of microvilli, as assessed at 24 h. Evidence of surgical damage was still measurable on day 10. HWCO 2 maintained normothermia, whereas open surgery alone led to hypothermia. The degree of tissue damage was significantly reduced by HWCO 2 compared with that in controls. Peritoneal expression of hypoxia inducible factor 1α and vascular endothelial growth factor A was lowered by HWCO 2 . These effects were also evident at the surgical damage sites, where protection from tissue trauma extended to 10 days. HWCO 2 did not reduce tumorigenesis in surgically damaged sites compared with passive air flow. HWCO 2 diffusion into the abdomen in the context of open surgery afforded tissue protection and accelerated tissue repair in mice, while preserving normothermia. Surgical relevance Damage to the peritoneum always occurs during open abdominal surgery, by exposure to desiccating air and by mechanical trauma/damage owing to the surgical intervention. Previous experimental studies showed that humidified-warm carbon dioxide (HWCO 2 ) reduced peritoneal damage during laparoscopic insufflation. Additionally, this intervention decreased experimental peritoneal carcinomatosis compared with the use of conventional dry-cold carbon dioxide. In the present experimental study, the simple delivery of HWCO 2 into the open abdomen reduced the amount of cellular damage and inflammation, and accelerated tissue repair. Sites of surgical intervention serve as ideal locations for cancer cell adhesion and subsequent tumour formation, but this was not changed measurably by the delivery of HWCO 2 . © 2017 The Authors. BJS published by John Wiley & Sons Ltd on behalf of BJS Society Ltd.

  17. Interplay between translational diffusion and large-amplitude angular jumps of water molecules

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Zhang, Yangyang; Zhang, Jian; Wang, Jun; Li, Wenfei; Wang, Wei

    2018-05-01

    Understanding the microscopic mechanism of water molecular translational diffusion is a challenging topic in both physics and chemistry. Here, we report an investigation on the interplay between the translational diffusion and the large-amplitude angular jumps of water molecules in bulk water using molecular dynamics simulations. We found that large-amplitude angular jumps are tightly coupled to the translational diffusions. Particularly, we revealed that concurrent rotational jumps of spatially neighboring water molecules induce inter-basin translational jumps, which contributes to the fast component of the water translational diffusion. Consequently, the translational diffusion shows positional heterogeneity; i.e., the neighbors of the water molecules with inter-basin translational jumps have larger probability to diffuse by inter-basin translational jumps. Our control simulations showed that a model water molecule with moderate hydrogen bond strength can diffuse much faster than a simple Lennard-Jones particle in bulk water due to the capability of disturbing the hydrogen bond network of the surrounding water molecules. Our results added to the understanding of the microscopic picture of the water translational diffusion and demonstrated the unique features of water diffusion arising from their hydrogen bond network structure compared with those of the simple liquids.

  18. Promoting protein crystallization using a plate with simple geometry.

    PubMed

    Chen, Rui-Qing; Yin, Da-Chuan; Liu, Yong-Ming; Lu, Qin-Qin; He, Jin; Liu, Yue

    2014-03-01

    Increasing the probability of obtaining protein crystals in crystallization screening is always an important goal for protein crystallography. In this paper, a new method called the cross-diffusion microbatch (CDM) method is presented, which aims to efficiently promote protein crystallization and increase the chance of obtaining protein crystals. In this method, a very simple crystallization plate was designed in which all crystallization droplets are in one sealed space, so that a variety of volatile components from one droplet can diffuse into any other droplet via vapour diffusion. Crystallization screening and reproducibility tests indicate that this method could be a potentially powerful technique in practical protein crystallization screening. It can help to obtain crystals with higher probability and at a lower cost, while using a simple and easy procedure.

  19. Active and passive transport of cargo in a corrugated channel: A lattice model study

    NASA Astrophysics Data System (ADS)

    Dey, Supravat; Ching, Kevin; Das, Moumita

    2018-04-01

    Inside cells, cargos such as vesicles and organelles are transported by molecular motors to their correct locations via active motion on cytoskeletal tracks and passive, Brownian diffusion. During the transportation of cargos, motor-cargo complexes (MCCs) navigate the confining and crowded environment of the cytoskeletal network and other macromolecules. Motivated by this, we study a minimal two-state model of motor-driven cargo transport in confinement and predict transport properties that can be tested in experiments. We assume that the motion of the MCC is directly affected by the entropic barrier due to confinement if it is in the passive, unbound state but not in the active, bound state where it moves with a constant bound velocity. We construct a lattice model based on a Fokker Planck description of the two-state system, study it using a kinetic Monte Carlo method and compare our numerical results with analytical expressions for a mean field limit. We find that the effect of confinement strongly depends on the bound velocity and the binding kinetics of the MCC. Confinement effectively reduces the effective diffusivity and average velocity, except when it results in an enhanced average binding rate and thereby leads to a larger average velocity than when unconfined.

  20. Slow positron studies of hydrogen activation/passivation on SiO2/Si(100) interfaces

    NASA Astrophysics Data System (ADS)

    Lynn, K. G.; Asoka-Kumar, P.

    The hydrogen atoms are one of the most common impurity species found in semiconductor systems owing to its large diffusivity, and are easily incorporated either in a controlled process like in ion implantation or in an uncontrolled process like the one at the fabrication stage. Hydrogen can passivate dangling bonds and dislocations in these systems and hence can be used to enhance the electrical properties. In a SiO2/Si system, hydrogen can passivate electronic states at the interface and can alter the fixed or mobile charges in the oxide layer. Since hydrogen is present in almost all of the environments of SiO2/Si wafer fabrication, the activation energy of hydrogen atoms is of paramount importance to a proper understanding of SiO2/Si based devices and has not been measured on the technologically most important Si(100) face. There are no direct, nondestructive methods available to observe hydrogen injection into the oxide layer and subsequent diffusion. The positrons are used as a 'sensitive', nondestructive probe to observe hydrogen interaction in the oxide layer and the interface region. A new way is described of characterizing the changes in the density of the interface states under a low temperature annealing using positrons.

  1. Paralleling power MOSFETs in their active region: Extended range of passively forced current sharing

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.

    1989-01-01

    A simple passive circuit that improves current balance in parallelled power MOSFETs that are not precisely matched and that are operated in their active region from a common gate drive are exhibited. A nonlinear circuit consisting of diodes and resistors generates the differential gate potential required to correct for unbalance while maintaining low losses over a range of current. Also application of a thin tape wound magnetic core to effect dynamic current balance is reviewed, and a simple theory is presented showing that for operation in the active region the branch currents tend to revert to their normal unbalanced values even if the core is not driven into saturation. Results of several comparative experiments are given.

  2. Global search and rescue - A new concept. [orbital digital radar system with passive reflectors

    NASA Technical Reports Server (NTRS)

    Sivertson, W. E., Jr.

    1976-01-01

    A new terrestrial search and rescue concept is defined embodying the use of simple passive radiofreqeuncy reflectors in conjunction with a low earth-orbiting, all-weather, synthetic aperture radar to detect, identify, and position locate earth-bound users in distress. Users include ships, aircraft, small boats, explorers, hikers, etc. Airborne radar tests were conducted to evaluate the basic concept. Both X-band and L-band, dual polarization radars were operated simultaneously. Simple, relatively small, corner-reflector targets were successfully imaged and digital data processing approaches were investigated. Study of the basic concept and evaluation of results obtained from aircraft flight tests indicate an all-weather, day or night, global search and rescue system is feasible.

  3. Non-chromate Passivation for LHE ZnNi

    DTIC Science & Technology

    2017-03-01

    control of coatings and processes. Development of an alternative methodology that is simple, repeatable, non -destructive, and capable of scanning across...FINAL REPORT Non -chromate Passivation for LHE ZnNi SERDP Project WP-2527 JANUARY 2017 Matt O’Keefe Missouri S&T...valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhixiao; Mukherjee, Partha P.

    We report the cathode surface passivation caused by Li 2S precipitation adversely affects the performance of lithium-sulfur (Li-S) batteries. Li 2S precipitation is a complicated mesoscale process involving adsorption, desorption and diffusion kinetics, which are affected profoundly by the reactant concentration and operating temperature. In this work, a mesoscale interfacial model is presented to study the growth of Li 2S film on carbon cathode surface. Li 2S film growth experiences nucleation, isolated Li 2S island growth and island coalescence. The slow adsorption rate at small S 2- concentration inhibits the formation of nucleation seeds and the lateral growth of Limore » 2S islands, which deters surface passivation. An appropriate operating temperature, especially in the medium-to-high temperature range, can also defer surface passivation. Fewer Li 2S nucleation seeds form in such an operating temperature range, which facilitates heterogeneous growth and thereby inhibits the lateral growth of the Li 2S film, which may also result in reduced surface passivation. Finally, the high specific surface area of the cathode microstructure is expected to mitigate the surface passivation.« less

  5. Optimized ultra-thin manganin alloy passivated fine-pitch damascene compatible bump-less Cu-Cu bonding at sub 200 °C for three-dimensional Integration applications

    NASA Astrophysics Data System (ADS)

    Panigrahi, Asisa Kumar; Hemanth Kumar, C.; Bonam, Satish; Ghosh, Tamal; Rama Krishna Vanjari, Siva; Govind Singh, Shiv

    2018-02-01

    Enhanced Cu diffusion, Cu surface passivation, and smooth surface at the bonding interface are the key essentials for high quality Cu-Cu bonding. Previously, we have demonstrated optimized 3 nm thin Manganin metal-alloy passivation from oxidation and also helps to reduce the surface roughness to about 0.8 nm which substantially led to high quality Cu-Cu bonding. In this paper, we demonstrated an ultra fine-pitch (<25 µm) Cu-Cu bonding using an optimized Manganin metal-alloy passivation. This engineered surface passivation approach led to high quality bonding at sub 200 °C temperature and 0.4 MPa. Very low specific contact resistance of 1.4 × 10-7 Ω cm2 and the defect free bonded interface is clear indication of high quality bonding for future multilayer integrations. Furthermore, electrical characterization of the bonded structure was performed under various robust conditions as per International Technology Roadmap for Semiconductors (ITRS Roadmap) in order to satisfy the stability of the bonded structure.

  6. Passive and semi-active heave compensator: Project design methodology and control strategies.

    PubMed

    Cuellar Sanchez, William Humberto; Linhares, Tássio Melo; Neto, André Benine; Fortaleza, Eugênio Libório Feitosa

    2017-01-01

    Heave compensator is a system that mitigates transmission of heave movement from vessels to the equipment in the vessel. In drilling industry, a heave compensator enables drilling in offshore environments. Heave compensator attenuates movement transmitted from the vessel to the drill string and drill bit ensuring security and efficiency of the offshore drilling process. Common types of heave compensators are passive, active and semi-active compensators. This article presents 4 main points. First, a bulk modulus analysis obtains a simple condition to determine if the bulk modulus can be neglected in the design of hydropneumatic passive heave compensator. Second, the methodology to design passive heave compensators with the desired frequency response. Third, four control methodologies for semi-active heave compensator are tested and compared numerically. Lastly, we show experimental results obtained from a prototype with the methodology developed to design passive heave compensator.

  7. Second Law based definition of passivity/activity of devices

    NASA Astrophysics Data System (ADS)

    Sundqvist, Kyle M.; Ferry, David K.; Kish, Laszlo B.

    2017-10-01

    Recently, our efforts to clarify the old question, if a memristor is a passive or active device [1], triggered debates between engineers, who have had advanced definitions of passivity/activity of devices, and physicists with significantly different views about this seemingly simple question. This debate triggered our efforts to test the well-known engineering concepts about passivity/activity in a deeper way, challenging them by statistical physics. It is shown that the advanced engineering definition of passivity/activity of devices is self-contradictory when a thermodynamical system executing Johnson-Nyquist noise is present. A new, statistical physical, self-consistent definition based on the Second Law of Thermodynamics is introduced. It is also shown that, in a system with uniform temperature distribution, any rectifier circuitry that can rectify thermal noise must contain an active circuit element, according to both the engineering and statistical physical definitions.

  8. Passive and semi-active heave compensator: Project design methodology and control strategies

    PubMed Central

    Cuellar Sanchez, William Humberto; Neto, André Benine; Fortaleza, Eugênio Libório Feitosa

    2017-01-01

    Heave compensator is a system that mitigates transmission of heave movement from vessels to the equipment in the vessel. In drilling industry, a heave compensator enables drilling in offshore environments. Heave compensator attenuates movement transmitted from the vessel to the drill string and drill bit ensuring security and efficiency of the offshore drilling process. Common types of heave compensators are passive, active and semi-active compensators. This article presents 4 main points. First, a bulk modulus analysis obtains a simple condition to determine if the bulk modulus can be neglected in the design of hydropneumatic passive heave compensator. Second, the methodology to design passive heave compensators with the desired frequency response. Third, four control methodologies for semi-active heave compensator are tested and compared numerically. Lastly, we show experimental results obtained from a prototype with the methodology developed to design passive heave compensator. PMID:28813494

  9. End-of-Mission Passivation: Successes and Challenges

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas; Matney, Mark

    2012-01-01

    The passivation of spacecraft and launch vehicle orbital stages at end-of-mission has been a principal space debris mitigation measure world-wide since the 1980 s. Space vehicle passivation includes the removal of stored energies, especially those associated with propulsion and electrical power systems. Prior to 2007 the breakup of non-functioning, non-passivated space vehicles was the major source of hazardous debris in Earth orbit. The United Nations and the Inter-Agency Space Debris Coordination Committee have both included passivation in their formal space debris mitigation guidelines. This often simple countermeasure has been adopted by many spacefaring countries and organizations and has undoubtedly prevented numerous major satellite breakups. For some existing space vehicle designs, passivation requires changes in hardware, software, and/or operational procedures. Questions about the permissible degree of passivation for both current and future space vehicles have arisen and are addressed herein. An important element to be considered is the potentially long period in which the space vehicle will remain in orbit, i.e., up to 25 years after mission termination in LEO and for centuries in orbits above LEO. Finally, the issue of passivation of space vehicles which have failed prematurely is addressed.

  10. Population pharmacokinetic modelling of non-linear brain distribution of morphine: influence of active saturable influx and P-glycoprotein mediated efflux

    PubMed Central

    Groenendaal, D; Freijer, J; de Mik, D; Bouw, M R; Danhof, M; de Lange, E C M

    2007-01-01

    Background and purpose: Biophase equilibration must be considered to gain insight into the mechanisms underlying the pharmacokinetic-pharmacodynamic (PK-PD) correlations of opioids. The objective was to characterise in a quantitative manner the non-linear distribution kinetics of morphine in brain. Experimental approach: Male rats received a 10-min infusion of 4 mg kg−1 of morphine, combined with a continuous infusion of the P-glycoprotein (Pgp) inhibitor GF120918 or vehicle, or 40 mg kg−1 morphine alone. Unbound extracellular fluid (ECF) concentrations obtained by intracerebral microdialysis and total blood concentrations were analysed using a population modelling approach. Key results: Blood pharmacokinetics of morphine was best described with a three-compartment model and was not influenced by GF120918. Non-linear distribution kinetics in brain ECF was observed with increasing dose. A one compartment distribution model was developed, with separate expressions for passive diffusion, active saturable influx and active efflux by Pgp. The passive diffusion rate constant was 0.0014 min−1. The active efflux rate constant decreased from 0.0195 min−1 to 0.0113 min−1 in the presence of GF120918. The active influx was insensitive to GF120918 and had a maximum transport (Nmax/Vecf) of 0.66 ng min−1 ml−1 and was saturated at low concentrations of morphine (C50=9.9 ng ml−1). Conclusions and implications: Brain distribution of morphine is determined by three factors: limited passive diffusion; active efflux, reduced by 42% by Pgp inhibition; low capacity active uptake. This implies blood concentration-dependency and sensitivity to drug-drug interactions. These factors should be taken into account in further investigations on PK-PD correlations of morphine. PMID:17471182

  11. Controlled release of optimized electroporation enhances the transdermal efficiency of sinomenine hydrochloride for treating arthritis in vitro and in clinic

    PubMed Central

    Feng, Shun; Zhu, Lijun; Huang, Zhisheng; Wang, Haojia; Li, Hong; Zhou, Hua; Lu, Linlin; Wang, Ying; Liu, Zhongqiu; Liu, Liang

    2017-01-01

    Sinomenine hydrochloride (SH) is an ideal drug for the treatment of rheumatoid arthritis and osteoarthritis. However, high plasma concentration of systemically administered SH can release histamine, which can cause rash and gastrointestinal side effects. Topical delivery can increase SH concentration in the synovial fluid without high plasma level, thus minimizing systemic side effects. However, passive diffusion of SH was found to be inefficient because of the presence of the stratum corneum layer. Therefore, an effective method is required to compensate for the low efficiency of SH passive diffusion. In this study, transdermal experiments in vitro and clinical tests were utilized to explore the optimized parameters for electroporation of topical delivery for SH. Fluorescence experiment and hematoxylin and eosin staining analysis were performed to reveal the mechanism by which electroporation promoted permeation. In vitro, optimized electroporation parameters were 3 KHz, exponential waveform, and intensity 10. Using these parameters, transdermal permeation of SH was increased by 1.9–10.1 fold in mice skin and by 1.6–47.1 fold in miniature pig skin compared with passive diffusion. After the electroporation stimulation, the intercellular intervals and epidermal cracks in the skin increased. In clinical tests, SH concentration in synovial fluid was 20.84 ng/mL after treatment with electroporation. Therefore, electroporation with optimized parameters could significantly enhance transdermal permeation of SH. The mechanism by which electroporation promoted permeation was that the electronic pulses made the skin structure looser. To summarize, electroporation may be an effective complementary method for transdermal permeation of SH. The controlled release of electroporation may be a promising clinical method for transdermal drug administration. PMID:28670109

  12. Evolution of Antibody-Drug Conjugate Tumor Disposition Model to Predict Preclinical Tumor Pharmacokinetics of Trastuzumab-Emtansine (T-DM1).

    PubMed

    Singh, Aman P; Maass, Katie F; Betts, Alison M; Wittrup, K Dane; Kulkarni, Chethana; King, Lindsay E; Khot, Antari; Shah, Dhaval K

    2016-07-01

    A mathematical model capable of accurately characterizing intracellular disposition of ADCs is essential for a priori predicting unconjugated drug concentrations inside the tumor. Towards this goal, the objectives of this manuscript were to: (1) evolve previously published cellular disposition model of ADC with more intracellular details to characterize the disposition of T-DM1 in different HER2 expressing cell lines, (2) integrate the improved cellular model with the ADC tumor disposition model to a priori predict DM1 concentrations in a preclinical tumor model, and (3) identify prominent pathways and sensitive parameters associated with intracellular activation of ADCs. The cellular disposition model was augmented by incorporating intracellular ADC degradation and passive diffusion of unconjugated drug across tumor cells. Different biomeasures and chemomeasures for T-DM1, quantified in the companion manuscript, were incorporated into the modified model of ADC to characterize in vitro pharmacokinetics of T-DM1 in three HER2+ cell lines. When the cellular model was integrated with the tumor disposition model, the model was able to a priori predict tumor DM1 concentrations in xenograft mice. Pathway analysis suggested different contribution of antigen-mediated and passive diffusion pathways for intracellular unconjugated drug exposure between in vitro and in vivo systems. Global and local sensitivity analyses revealed that non-specific deconjugation and passive diffusion of the drug across tumor cell membrane are key parameters for drug exposure inside a cell. Finally, a systems pharmacokinetic model for intracellular processing of ADCs has been proposed to highlight our current understanding about the determinants of ADC activation inside a cell.

  13. Towards Stable Lithium-Sulfur Batteries with a Low Self-Discharge Rate: Ion Diffusion Modulation and Anode Protection.

    PubMed

    Xu, Wen-Tao; Peng, Hong-Jie; Huang, Jia-Qi; Zhao, Chen-Zi; Cheng, Xin-Bing; Zhang, Qiang

    2015-09-07

    The self-discharge of a lithium-sulfur cell decreases the shelf-life of the battery and is one of the bottlenecks that hinders its practical applications. New insights into both the internal chemical reactions in a lithium-sulfur system and effective routes to retard self-discharge for highly stable batteries are crucial for the design of lithium-sulfur cells. Herein, a lithium-sulfur cell with a carbon nanotube/sulfur cathode and lithium-metal anode in lithium bis(trifluoromethanesulfonyl)imide/1,3-dioxolane/dimethyl ether electrolyte was selected as the model system to investigate the self-discharge behavior. Both lithium anode passivation and polysulfide anion diffusion suppression strategies are applied to reduce self-discharge of the lithium-sulfur cell. When the lithium-metal anode is protected by a high density passivation layer induced by LiNO3 , a very low shuttle constant of 0.017 h(-1) is achieved. The diffusion of the polysulfides is retarded by an ion-selective separator, and the shuttle constants decreased. The cell with LiNO3 additive maintained a discharge capacity of 97 % (961 mAh g(-1) ) of the initial capacity after 120 days at open circuit, which was around three times higher than the routine cell (32 % of initial capacity, corresponding to 320 mAh g(-1) ). It is expected that lithium-sulfur batteries with ultralow self-discharge rates may be fabricated through a combination of anode passivation and polysulfide shuttle control, as well as optimization of the lithium-sulfur cell configuration. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Diffusive gradients in thin-films (DGT) for in situ sampling of selected endocrine disrupting chemicals (EDCs) in waters.

    PubMed

    Chen, Wei; Pan, Suhong; Cheng, Hao; Sweetman, Andrew J; Zhang, Hao; Jones, Kevin C

    2018-06-15

    A passive water sampler based on the diffusive gradients in thin-films (DGT) technique was developed and tested for 3 groups of endocrine disrupting chemicals (EDCs, including oestrogens, alkyl-phenols and bisphenols). Three different resins (hydrophilic-lipophilic-balanced (HLB), XAD18 and Strata-XL-A (SXLA)) were investigated for their suitability as the binding phase for DGT devices. Laboratory tests across a range of pH (3.5-9.5), ionic strength (0.001-0.5 M) and dissolved organic matter concentration (0-20 mg L -1 ) showed HLB and XAD18-DGT devices were more stable compared to SXLA-DGT. HLB-DGT and XAD18-DGT accumulated test chemicals with time consistent with theoretical predictions, while SXLA-DGT accumulated reduced amounts of chemical. DGT performance was also compared in field deployments up to 28 days, alongside conventional active sampling at a wastewater treatment plant. Uptake was linear to the samplers over 18 days, and then began to plateau/decline, indicating the maximum deployment time in those conditions. Concentrations provided by the DGT samplers compared well with those provided by auto-samplers. DGT integrated concentrations over the deployment period in a way that grab-sampling cannot. The advantages of the DGT sampler over active sampling include: low cost, ease of simultaneous multi-site deployment, in situ analyte pre-concentration and reduction of matrix interferences compared with conventional methods. Compared to other passive sampler designs, DGT uptake is independent of flow rate and therefore allows direct derivation of field concentrations from measured compound diffusion coefficients. This passive DGT sampler therefore constitutes a viable and attractive alternative to conventional grab and active water sampling for routine monitoring of selected EDCs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Bioheat model evaluations of laser effects on tissues: role of water evaporation and diffusion

    NASA Astrophysics Data System (ADS)

    Nagulapally, Deepthi; Joshi, Ravi P.; Thomas, Robert J.

    2011-03-01

    A two-dimensional, time-dependent bioheat model is applied to evaluate changes in temperature and water content in tissues subjected to laser irradiation. Our approach takes account of liquid-to-vapor phase changes and a simple diffusive flow of water within the biotissue. An energy balance equation considers blood perfusion, metabolic heat generation, laser absorption, and water evaporation. The model also accounts for the water dependence of tissue properties (both thermal and optical), and variations in blood perfusion rates based on local tissue injury. Our calculations show that water diffusion would reduce the local temperature increases and hot spots in comparison to simple models that ignore the role of water in the overall thermal and mass transport. Also, the reduced suppression of perfusion rates due to tissue heating and damage with water diffusion affect the necrotic depth. Two-dimensional results for the dynamic temperature, water content, and damage distributions will be presented for skin simulations. It is argued that reduction in temperature gradients due to water diffusion would mitigate local refractive index variations, and hence influence the phenomenon of thermal lensing. Finally, simple quantitative evaluations of pressure increases within the tissue due to laser absorption are presented.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, David L.; Lee, Benjamin G.; Fogel, Derek

    Here, we form gallium-doped poly-Si:Ga/SiO 2 passivated contacts on n-type Czochralski (n-Cz) wafers using ion implantation of Ga and Ga-containing spin-on dopants. After annealing and passivation with Al 2O 3, the contacts exhibit i Voc values of >730 mV with corresponding Joe values of <5 fA/cm 2. These are among the best-reported values for p-type poly-Si/SiO 2 contacts. Secondary ion mass spectroscopic depth profile data show that, in contrast to B, Ga does not pileup at the SiO 2 interface in agreement with its known high diffusivity in SiO 2. This lack of Ga pileup may imply fewer dopant-related defectsmore » in the SiO 2, compared with B dopants, and account for the excellent passivation.« less

  17. Relative distance between tracers as a measure of diffusivity within moving aggregates

    NASA Astrophysics Data System (ADS)

    Pönisch, Wolfram; Zaburdaev, Vasily

    2018-02-01

    Tracking of particles, be it a passive tracer or an actively moving bacterium in the growing bacterial colony, is a powerful technique to probe the physical properties of the environment of the particles. One of the most common measures of particle motion driven by fluctuations and random forces is its diffusivity, which is routinely obtained by measuring the mean squared displacement of the particles. However, often the tracer particles may be moving in a domain or an aggregate which itself experiences some regular or random motion and thus masks the diffusivity of tracers. Here we provide a method for assessing the diffusivity of tracer particles within mobile aggregates by measuring the so-called mean squared relative distance (MSRD) between two tracers. We provide analytical expressions for both the ensemble and time averaged MSRD allowing for direct identification of diffusivities from experimental data.

  18. Pulling My Gut out--Simple Tools for Engaging Students in Gross Anatomy Lectures

    ERIC Educational Resources Information Center

    Chan, Lap Ki

    2010-01-01

    A lecture is not necessarily a monologue, promoting only passive learning. If appropriate techniques are used, a lecture can stimulate active learning too. One such method is demonstration, which can engage learners' attention and increase the interaction between the lecturer and the learners. This article describes two simple and useful tools for…

  19. Suppression of Soot Formation and Shapes of Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Xu, F.; Dai, Z.; Faeth, G. M.

    2001-01-01

    Laminar nonpremixed (diffusion) flames are of interest because they provide model flame systems that are far more tractable for analysis and experiments than practical turbulent flames. In addition, many properties of laminar diffusion flames are directly relevant to turbulent diffusion flames using laminar flamelet concepts. Finally, laminar diffusion flame shapes have been of interest since the classical study of Burke and Schumann because they involve a simple nonintrusive measurement that is convenient for evaluating flame shape predictions. Motivated by these observations, the shapes of round hydrocarbon-fueled laminar jet diffusion flames were considered, emphasizing conditions where effects of buoyancy are small because most practical flames are not buoyant. Earlier studies of shapes of hydrocarbon-fueled nonbuoyant laminar jet diffusion flames considered combustion in still air and have shown that flames at the laminar smoke point are roughly twice as long as corresponding soot-free (blue) flames and have developed simple ways to estimate their shapes. Corresponding studies of hydrocarbon-fueled weakly-buoyant laminar jet diffusion flames in coflowing air have also been reported. These studies were limited to soot-containing flames at laminar smoke point conditions and also developed simple ways to estimate their shapes but the behavior of corresponding soot-free flames has not been addressed. This is unfortunate because ways of selecting flame flow properties to reduce soot concentrations are of great interest; in addition, soot-free flames are fundamentally important because they are much more computationally tractable than corresponding soot-containing flames. Thus, the objectives of the present investigation were to observe the shapes of weakly-buoyant laminar jet diffusion flames at both soot-free and smoke point conditions and to use the results to evaluate simplified flame shape models. The present discussion is brief.

  20. The silicon on dust substrate path to make solar cells directly from a gaseous feedstock

    NASA Astrophysics Data System (ADS)

    Serra, J M; Pinto, C R; Silva, J A; Brito, M C; Maia Alves, J; Vallêra, A M

    2009-04-01

    In this paper, we present a silicon on dust substrate (SDS) process, a new method for the growth of silicon ribbons. As a demonstration of the concept, we also present results on solar cells made of these new silicon ribbons. SDS ribbons were obtained directly from a gaseous feedstock by a fast CVD step using silane. The resulting self-supported intrinsic ribbons were microcrystalline and porous. To make these ribbon films suitable for photovoltaic applications, a novel recrystallization with an in situ doping step was developed. To this purpose, the ribbons were sprayed with boric acid and then recrystallized by float zone melting. Simple solar cells were prepared by employing: aluminium back contacts, Ti/Pd/Ag front grid contacts, with no anti-reflective coating, doping optimization, passivation or gettering. The 1-sun I-V characteristics of the cells were: Voc ~ 530 mV and Jsc ~ 24 mA cm-2. The minority carrier diffusion length obtained from a spectral response at long wavelengths gave values of Ln ~ 70 µm.

  1. Diffusion coefficients of water in biobased hydrogel polymer matrices by nuclear magnetic resonance imaging

    USDA-ARS?s Scientific Manuscript database

    The diffusion coefficient of water in biobased hydrogels were measured utilizing a simple NMR method. This method tracks the migration of deuterium oxide through imaging data that is fit to a diffusion equation. The results show that a 5 wt% soybean oil based hydrogel gives aqueous diffusion of 1.37...

  2. Vertical Profiling of Soil Vapor Concentrations Using a New Passive Diffusion Sampler at a UST Site

    EPA Science Inventory

    Understanding the transport of volatile contaminants in soil gas, particularly those associated with underground storage tanks (USTs), requires a detailed knowledge about the depth-dependent distribution of chemical species in the subsurface. Traditional monitoring wells generall...

  3. Active transport of vesicles in neurons is modulated by mechanical tension.

    PubMed

    Ahmed, Wylie W; Saif, Taher A

    2014-03-27

    Effective intracellular transport of proteins and organelles is critical in cells, and is especially important for ensuring proper neuron functionality. In neurons, most proteins are synthesized in the cell body and must be transported through thin structures over long distances where normal diffusion is insufficient. Neurons transport subcellular cargo along axons and neurites through a stochastic interplay of active and passive transport. Mechanical tension is critical in maintaining proper function in neurons, but its role in transport is not well understood. To this end, we investigate the active and passive transport of vesicles in Aplysia neurons while changing neurite tension via applied strain, and quantify the resulting dynamics. We found that tension in neurons modulates active transport of vesicles by increasing the probability of active motion, effective diffusivity, and induces a retrograde bias. We show that mechanical tension modulates active transport processes in neurons and that external forces can couple to internal (subcellular) forces and change the overall transport dynamics.

  4. Active transport of vesicles in neurons is modulated by mechanical tension

    PubMed Central

    Ahmed, Wylie W.; Saif, Taher A.

    2014-01-01

    Effective intracellular transport of proteins and organelles is critical in cells, and is especially important for ensuring proper neuron functionality. In neurons, most proteins are synthesized in the cell body and must be transported through thin structures over long distances where normal diffusion is insufficient. Neurons transport subcellular cargo along axons and neurites through a stochastic interplay of active and passive transport. Mechanical tension is critical in maintaining proper function in neurons, but its role in transport is not well understood. To this end, we investigate the active and passive transport of vesicles in Aplysia neurons while changing neurite tension via applied strain, and quantify the resulting dynamics. We found that tension in neurons modulates active transport of vesicles by increasing the probability of active motion, effective diffusivity, and induces a retrograde bias. We show that mechanical tension modulates active transport processes in neurons and that external forces can couple to internal (subcellular) forces and change the overall transport dynamics. PMID:24670781

  5. Radiative transfer model for aerosols in infrared wavelengths for passive remote sensing applications.

    PubMed

    Ben-David, Avishai; Embury, Janon F; Davidson, Charles E

    2006-09-10

    A comprehensive analytical radiative transfer model for isothermal aerosols and vapors for passive infrared remote sensing applications (ground-based and airborne sensors) has been developed. The theoretical model illustrates the qualitative difference between an aerosol cloud and a chemical vapor cloud. The model is based on two and two/four stream approximations and includes thermal emission-absorption by the aerosols; scattering of diffused sky radiances incident from all sides on the aerosols (downwelling, upwelling, left, and right); and scattering of aerosol thermal emission. The model uses moderate resolution transmittance ambient atmospheric radiances as boundary conditions and provides analytical expressions for the information on the aerosol cloud that is contained in remote sensing measurements by using thermal contrasts between the aerosols and diffused sky radiances. Simulated measurements of a ground-based sensor viewing Bacillus subtilis var. niger bioaerosols and kaolin aerosols are given and discussed to illustrate the differences between a vapor-only model (i.e., only emission-absorption effects) and a complete model that adds aerosol scattering effects.

  6. Internal quantum efficiency mapping analysis for a >20%-efficiency n-type bifacial solar cell with front-side emitter formed by BBr3 thermal diffusion

    NASA Astrophysics Data System (ADS)

    Simayi, Shalamujiang; Mochizuki, Toshimitsu; Kida, Yasuhiro; Shirasawa, Katsuhiko; Takato, Hidetaka

    2017-10-01

    This paper presents a large-area (239-cm2) high-efficiency n-type bifacial solar cell that is processed using tube-furnace thermal diffusion employing liquid sources BBr3 for the front-side boron emitter and POCl3 for the rear-side phosphorus back surface field (BSF). The SiN x /Al2O3 stack was applied to the front-side boron emitter as a passivation layer. Both the front and rear-side electrodes are obtained using screen-printed contacts with H-patterns. The resulting highest-efficiency solar cell has front- and rear-side efficiencies of 20.3 and 18.7%, respectively, while the corresponding bifaciality is up to 92%. Finally, the passivation quality of the SiN x /Al2O3 stack on the front-side boron emitter and rear-side phosphorus BSF is investigated and visualized by measuring the internal quantum efficiency mapping of the bifacial solar cell.

  7. Extensional rheology of active suspensions

    NASA Astrophysics Data System (ADS)

    Saintillan, David

    2010-05-01

    A simple model is presented for the effective extensional rheology of a dilute suspension of active particles, such as self-propelled microswimmers, extending previous classical studies on suspensions of passive rodlike particles. Neglecting particle-particle hydrodynamic interactions, we characterize the configuration of the suspension by an orientation distribution, which satisfies a Fokker-Planck equation including the effects of an external flow field and of rotary diffusion. Knowledge of this orientation distribution then allows the determination of the particle extra stress as a configurational average of the force dipoles exerted by the particles on the fluid, which involve contributions from the imposed flow, rotary diffusion, and the permanent dipoles resulting from activity. Analytical expressions are obtained for the stress tensor in uniaxial extensional and compressional flows, as well as in planar extensional flow. In all types of flows, the effective viscosity is found to increase as a result of activity in suspensions of head-actuated swimmers (pullers) and to decrease in suspensions of tail-actuated swimmers (pushers). In the latter case, a negative particle viscosity is found to occur in weak flows. In planar extensional flow, we also characterize normal stresses, which are enhanced by activity in suspensions of pullers but reduced in suspensions of pushers. Finally, an energetic interpretation of the seemingly unphysical decrease in viscosity predicted in suspensions of pushers is proposed, where the decrease is explained as a consequence of the active power input generated by the swimming particles and is shown not to be directly related to viscous dissipative processes.

  8. Achieving bifunctional cloak via combination of passive and active schemes

    NASA Astrophysics Data System (ADS)

    Lan, Chuwen; Bi, Ke; Gao, Zehua; Li, Bo; Zhou, Ji

    2016-11-01

    In this study, a simple and delicate approach to realizing manipulation of multi-physics field simultaneously through combination of passive and active schemes is proposed. In the design, one physical field is manipulated with passive scheme while the other with active scheme. As a proof of this concept, a bifunctional device is designed and fabricated to behave as electric and thermal invisibility cloak simultaneously. It is found that the experimental results are consistent with the simulated ones well, confirming the feasibility of our method. Furthermore, the proposed method could also be extended to other multi-physics fields, which might lead to potential applications in thermal, electric, and acoustic areas.

  9. Active sieving across driven nanopores for tunable selectivity

    NASA Astrophysics Data System (ADS)

    Marbach, Sophie; Bocquet, Lydéric

    2017-10-01

    Molecular separation traditionally relies on sieving processes across passive nanoporous membranes. Here we explore theoretically the concept of non-equilibrium active sieving. We investigate a simple model for an active noisy nanopore, where gating—in terms of size or charge—is externally driven at a tunable frequency. Our analytical and numerical results unveil a rich sieving diagram in terms of the forced gating frequency. Unexpectedly, the separation ability is strongly increased as compared to its passive (zero frequency) counterpart. It also points to the possibility of tuning dynamically the osmotic pressure. Active separation outperforms passive sieving and represents a promising avenue for advanced filtration.

  10. Superacid Passivation of Crystalline Silicon Surfaces.

    PubMed

    Bullock, James; Kiriya, Daisuke; Grant, Nicholas; Azcatl, Angelica; Hettick, Mark; Kho, Teng; Phang, Pheng; Sio, Hang C; Yan, Di; Macdonald, Daniel; Quevedo-Lopez, Manuel A; Wallace, Robert M; Cuevas, Andres; Javey, Ali

    2016-09-14

    The reduction of parasitic recombination processes commonly occurring within the silicon crystal and at its surfaces is of primary importance in crystalline silicon devices, particularly in photovoltaics. Here we explore a simple, room temperature treatment, involving a nonaqueous solution of the superacid bis(trifluoromethane)sulfonimide, to temporarily deactivate recombination centers at the surface. We show that this treatment leads to a significant enhancement in optoelectronic properties of the silicon wafer, attaining a level of surface passivation in line with state-of-the-art dielectric passivation films. Finally, we demonstrate its advantage as a bulk lifetime and process cleanliness monitor, establishing its compatibility with large area photoluminescence imaging in the process.

  11. On extreme points of the diffusion polytope

    DOE PAGES

    Hay, M. J.; Schiff, J.; Fisch, N. J.

    2017-01-04

    Here, we consider a class of diffusion problems defined on simple graphs in which the populations at any two vertices may be averaged if they are connected by an edge. The diffusion polytope is the convex hull of the set of population vectors attainable using finite sequences of these operations. A number of physical problems have linear programming solutions taking the diffusion polytope as the feasible region, e.g. the free energy that can be removed from plasma using waves, so there is a need to describe and enumerate its extreme points. We also review known results for the case ofmore » the complete graph Kn, and study a variety of problems for the path graph Pn and the cyclic graph Cn. Finall, we describe the different kinds of extreme points that arise, and identify the diffusion polytope in a number of simple cases. In the case of increasing initial populations on Pn the diffusion polytope is topologically an n-dimensional hypercube.« less

  12. Diffusion and cellular uptake of drugs in live cells studied with surface-enhanced Raman scattering probes

    NASA Astrophysics Data System (ADS)

    Bálint, Štefan; Rao, Satish; Sánchez, Mónica Marro; Huntošová, Veronika; Miškovský, Pavol; Petrov, Dmitri

    2010-03-01

    An understanding of the mechanisms of drug diffusion and uptake through cellular membranes is critical for elucidating drug action and in the development of effective drug delivery systems. We study these processes for emodin, a potential anticancer drug, in live cancer cells using surface-enhanced Raman scattering. Micrometer-sized silica beads covered by nanosized silver colloids are passively embedded into the cell and used as sensors of the drug. We demonstrate that the technique offers distinct advantages: the possibility to study the kinetics of drug diffusion through the cellular membrane toward specific cell organelles, the detection of lower drug concentrations compared to fluorescence techniques, and less damage imparted on the cell.

  13. Gripping characteristics of an electromagnetically activated magnetorheological fluid-based gripper

    NASA Astrophysics Data System (ADS)

    Choi, Young T.; Hartzell, Christine M.; Leps, Thomas; Wereley, Norman M.

    2018-05-01

    The design and test of a magnetorheological fluid (MRF)-based universal gripper (MR gripper) are presented in this study. The MR gripper was developed to have a simple design, but with the ability to produce reliable gripping and handling of a wide range of simple objects. The MR gripper design consists of a bladder mounted atop an electromagnet, where the bladder is filled with an MRF, which was formulated to have long-term stable sedimentation stability, that was synthesized using a high viscosity linear polysiloxane (HVLP) carrier fluid with a carbonyl iron particle (CIP) volume fraction of 35%. Two bladders were fabricated: a magnetizable bladder using a magnetorheological elastomer (MRE), and a passive (non-magnetizable) silicone rubber bladder. The holding force and applied (initial compression) force of the MR gripper for a bladder fill volume of 75% were experimentally measured, for both magnetizable and passive bladders, using a servohydraulic material testing machine for a range of objects. The gripping performance of the MR gripper using an MRE bladder was compared to that of the MR gripper using a passive bladder.

  14. Linear Optical Quantum Metrology with Single Photons: Exploiting Spontaneously Generated Entanglement to Beat the Shot-Noise Limit

    NASA Astrophysics Data System (ADS)

    Motes, Keith R.; Olson, Jonathan P.; Rabeaux, Evan J.; Dowling, Jonathan P.; Olson, S. Jay; Rohde, Peter P.

    2015-05-01

    Quantum number-path entanglement is a resource for supersensitive quantum metrology and in particular provides for sub-shot-noise or even Heisenberg-limited sensitivity. However, such number-path entanglement has been thought to be resource intensive to create in the first place—typically requiring either very strong nonlinearities, or nondeterministic preparation schemes with feedforward, which are difficult to implement. Very recently, arising from the study of quantum random walks with multiphoton walkers, as well as the study of the computational complexity of passive linear optical interferometers fed with single-photon inputs, it has been shown that such passive linear optical devices generate a superexponentially large amount of number-path entanglement. A logical question to ask is whether this entanglement may be exploited for quantum metrology. We answer that question here in the affirmative by showing that a simple, passive, linear-optical interferometer—fed with only uncorrelated, single-photon inputs, coupled with simple, single-mode, disjoint photodetection—is capable of significantly beating the shot-noise limit. Our result implies a pathway forward to practical quantum metrology with readily available technology.

  15. Linear optical quantum metrology with single photons: exploiting spontaneously generated entanglement to beat the shot-noise limit.

    PubMed

    Motes, Keith R; Olson, Jonathan P; Rabeaux, Evan J; Dowling, Jonathan P; Olson, S Jay; Rohde, Peter P

    2015-05-01

    Quantum number-path entanglement is a resource for supersensitive quantum metrology and in particular provides for sub-shot-noise or even Heisenberg-limited sensitivity. However, such number-path entanglement has been thought to be resource intensive to create in the first place--typically requiring either very strong nonlinearities, or nondeterministic preparation schemes with feedforward, which are difficult to implement. Very recently, arising from the study of quantum random walks with multiphoton walkers, as well as the study of the computational complexity of passive linear optical interferometers fed with single-photon inputs, it has been shown that such passive linear optical devices generate a superexponentially large amount of number-path entanglement. A logical question to ask is whether this entanglement may be exploited for quantum metrology. We answer that question here in the affirmative by showing that a simple, passive, linear-optical interferometer--fed with only uncorrelated, single-photon inputs, coupled with simple, single-mode, disjoint photodetection--is capable of significantly beating the shot-noise limit. Our result implies a pathway forward to practical quantum metrology with readily available technology.

  16. Low-temperature fabrication of an HfO2 passivation layer for amorphous indium-gallium-zinc oxide thin film transistors using a solution process.

    PubMed

    Hong, Seonghwan; Park, Sung Pyo; Kim, Yeong-Gyu; Kang, Byung Ha; Na, Jae Won; Kim, Hyun Jae

    2017-11-24

    We report low-temperature solution processing of hafnium oxide (HfO 2 ) passivation layers for amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs). At 150 °C, the hafnium chloride (HfCl 4 ) precursor readily hydrolyzed in deionized (DI) water and transformed into an HfO 2 film. The fabricated HfO 2 passivation layer prevented any interaction between the back surface of an a-IGZO TFT and ambient gas. Moreover, diffused Hf 4+ in the back-channel layer of the a-IGZO TFT reduced the oxygen vacancy, which is the origin of the electrical instability in a-IGZO TFTs. Consequently, the a-IGZO TFT with the HfO 2 passivation layer exhibited improved stability, showing a decrease in the threshold voltage shift from 4.83 to 1.68 V under a positive bias stress test conducted over 10,000 s.

  17. Uptake of L-nicotine and of 6-hydroxy-L-nicotine by Arthrobacter nicotinovorans and by Escherichia coli is mediated by facilitated diffusion and not by passive diffusion or active transport.

    PubMed

    Ganas, Petra; Brandsch, Roderich

    2009-06-01

    The mechanism by which l-nicotine is taken up by bacteria that are able to grow on it is unknown. Nicotine degradation by Arthrobacter nicotinovorans, a Gram-positive soil bacterium, is linked to the presence of the catabolic megaplasmid pAO1. l-[(14)C]Nicotine uptake assays with A. nicotinovorans showed transport of nicotine across the cell membrane to be energy-independent and saturable with a K(m) of 6.2+/-0.1 microM and a V(max) of 0.70+/-0.08 micromol min(-1) (mg protein)(-1). This is in accord with a mechanism of facilitated diffusion, driven by the nicotine concentration gradient. Nicotine uptake was coupled to its intracellular degradation, and an A. nicotinovorans strain unable to degrade nicotine (pAO1(-)) showed no nicotine import. However, when the nicotine dehydrogenase genes were expressed in this strain, import of l-[(14)C]nicotine took place. A. nicotinovorans pAO1(-) and Escherichia coli were also unable to import 6-hydroxy-l-nicotine, but expression of the 6-hydroxy-l-nicotine oxidase gene allowed both bacteria to take up this compound. l-Nicotine uptake was inhibited by d-nicotine, 6-hydroxy-l-nicotine and 2-amino-l-nicotine, which may indicate transport of these nicotine derivatives by a common permease. Attempts to correlate nicotine uptake with pAO1 genes possessing similarity to amino acid transporters failed. In contrast to the situation at the blood-brain barrier, nicotine transport across the cell membrane by these bacteria was not by passive diffusion or active transport but by facilitated diffusion.

  18. Direct numerical simulation of turbulent mixing at very low Schmidt number with a uniform mean gradient

    NASA Astrophysics Data System (ADS)

    Yeung, P. K.; Sreenivasan, K. R.

    2014-01-01

    In a recent direct numerical simulation (DNS) study [P. K. Yeung and K. R. Sreenivasan, "Spectrum of passive scalars of high molecular diffusivity in turbulent mixing," J. Fluid Mech. 716, R14 (2013)] with Schmidt number as low as 1/2048, we verified the essential physical content of the theory of Batchelor, Howells, and Townsend ["Small-scale variation of convected quantities like temperature in turbulent fluid. 2. The case of large conductivity," J. Fluid Mech. 5, 134 (1959)] for turbulent passive scalar fields with very strong diffusivity, decaying in the absence of any production mechanism. In particular, we confirmed the existence of the -17/3 power of the scalar spectral density in the so-called inertial-diffusive range. In the present paper, we consider the DNS of the same problem, but in the presence of a uniform mean gradient, which leads to the production of scalar fluctuations at (primarily) the large scales. For the parameters of the simulations, the presence of the mean gradient alters the physics of mixing fundamentally at low Peclet numbers. While the spectrum still follows a -17/3 power law in the inertial-diffusive range, the pre-factor is non-universal and depends on the magnitude of the mean scalar gradient. Spectral transfer is greatly reduced in comparison with those for moderately and weakly diffusive scalars, leading to several distinctive features such as the absence of dissipative anomaly and a new balance of terms in the spectral transfer equation for the scalar variance, differing from the case of zero gradient. We use the DNS results to present an alternative explanation for the observed scaling behavior, and discuss a few spectral characteristics in detail.

  19. Outer-membrane translocation of bulky small molecules by passive diffusion

    PubMed Central

    van den Berg, Bert; Prathyusha Bhamidimarri, Satya; Dahyabhai Prajapati, Jigneshkumar; Kleinekathöfer, Ulrich; Winterhalter, Mathias

    2015-01-01

    The outer membrane (OM) of gram-negative bacteria forms a protective layer around the cell that serves as a permeability barrier to prevent unrestricted access of noxious substances. The permeability barrier of the OM results partly from the limited pore diameters of OM diffusion channels. As a consequence, there is an “OM size-exclusion limit,” and the uptake of bulky molecules with molecular masses of more than ∼600 Da is thought to be mediated by TonB-dependent, active transporters. Intriguingly, the OM protein CymA from Klebsiella oxytoca does not depend on TonB but nevertheless mediates efficient OM passage of cyclodextrins with diameters of up to ∼15 Å. Here we show, by using X-ray crystallography, molecular dynamics simulations, and single-channel electrophysiology, that CymA forms a monomeric 14-stranded β-barrel with a large pore that is occluded on the periplasmic side by the N-terminal 15 residues of the protein. Representing a previously unidentified paradigm in OM transport, CymA mediates the passive diffusion of bulky molecules via an elegant transport mechanism in which a mobile element formed by the N terminus acts as a ligand-expelled gate to preserve the permeability barrier of the OM. PMID:26015567

  20. Diffusion, spread, and migration of botulinum toxin.

    PubMed

    Ramirez-Castaneda, Juan; Jankovic, Joseph; Comella, Cynthia; Dashtipour, Khashayar; Fernandez, Hubert H; Mari, Zoltan

    2013-11-01

    Botulinum toxin (BoNT) is an acetylcholine release inhibitor and a neuromuscular blocking agent used for the treatment of a variety of neurologic and medical conditions. The efficacy and safety of BoNT depends on accurate selection and identification of intended targets but also may be determined by other factors, including physical spread of the molecule from the injection site, passive diffusion, and migration to distal sites via axonal or hematogenous transport. The passive kinetic dispersion of the toxin away from the injection site in a gradient-dependent manner may also play a role in toxin spread. In addition to unique properties of the various BoNT products, volume and dilution may also influence local and systemic distribution of BoNT. Most of the local and remote complications of BoNT injections are thought to be due to unwanted spread or diffusion of the toxin's biologic activity into adjacent and distal muscles. Despite widespread therapeutic and cosmetic use of BoNT over more than three decades, there is a remarkable paucity of published data on the mechanisms of distribution and its effects on clinical outcomes. The primary aim of this article is to critically review the available experimental and clinical literature and place it in the practical context. © 2013 International Parkinson and Movement Disorder Society.

  1. Hydrogen passivation of n+p and p+n heteroepitaxial InP solar cell structures

    NASA Technical Reports Server (NTRS)

    Chatterjee, B.; Ringel, S. A.; Hoffman, R., Jr.

    1995-01-01

    High-efficiency, heteroepitaxial (HE) InP solar cells, grown on GaAs, Si or Ge substrates, are desirable for their mechanically strong, light-weight and radiation-hard properties. However, dislocations, caused by lattice mismatch, currently limit the performance of the HE cells. This occurs through shunting paths across the active photovoltaic junction and by the formation of deep levels. In previous work we have demonstrated that plasma hydrogenation is an effective and stable means to passivate the electrical activity of dislocations in specially designed HE InP test structures. In this work, we present the first report of successful hydrogen passivation in actual InP cell structures grown on GaAs substrates by metalorganic chemical vapor deposition (MOCVD). We have found that a 2 hour exposure to a 13.56 MHz hydrogen plasma at 275 C reduces the deep level concentration in HE n+n InP cell structures from as-grown values of approximately 10(exp 15)/cm(exp -3), down to 1-2 x 10(exp 13)/cm(exp -3). The deep levels in the p-type base region of the cell structure match those of our earlier p-type test structures, which were attributed to dislocations or related point defect complexes. All dopants were successfully reactivated by a 400 C, 5 minute anneal with no detectable activation of deep levels. I-V analysis indicated a subsequent approximately 10 fold decrease in reverse leakage current at -1 volt reverse bias, and no change in the forward biased series resistance of the cell structure which indicates complete reactivation of the n+ emitter. Furthermore, electrochemical C-V profiling indicates greatly enhanced passivation depth, and hence hydrogen diffusion, for heteroepitaxial structures when compared with identically processed homoepitaxial n+p InP structures. An analysis of hydrogen diffusion in dislocated InP will be discussed, along with comparisons of passivation effectiveness for n+p versus p+n heteroepitaxial cell configurations. Preliminary hydrogen-passivated HE InP cell results will also be presented.

  2. Friction Regimes of Water-Lubricated Diamond (111): Role of Interfacial Ether Groups and Tribo-Induced Aromatic Surface Reconstructions

    NASA Astrophysics Data System (ADS)

    Kuwahara, Takuya; Moras, Gianpietro; Moseler, Michael

    2017-09-01

    Large-scale quantum molecular dynamics of water-lubricated diamond (111) surfaces in sliding contact reveals multiple friction regimes. While water starvation causes amorphization of the tribological interface, small H2O traces are sufficient to preserve crystallinity. This can result in high friction due to cold welding via ether groups or in ultralow friction due to aromatic surface passivation triggered by tribo-induced Pandey reconstruction. At higher water coverage, Grotthuss-type diffusion and H2O dissociation yield dense H /OH surface passivation leading to another ultralow friction regime.

  3. The effect of shear flow on the rotational diffusivity of a single axisymmetric particle

    NASA Astrophysics Data System (ADS)

    Leahy, Brian; Koch, Donald; Cohen, Itai

    2014-11-01

    Colloidal suspensions of nonspherical particles abound in the world around us, from red blood cells in arteries to kaolinite discs in clay. Understanding the orientation dynamics of these particles is important for suspension rheology and particle self-assembly. However, even for the simplest case of dilute suspensions in simple shear flow, the orientation dynamics of Brownian nonspherical particles are poorly understood at large shear rates. Here, we analytically calculate the time-dependent orientation distributions of particles confined to the flow-gradient plane when the rotary diffusion is small but nonzero. For both startup and oscillatory shear flows, we find a coordinate change that maps the convection-diffusion equation to a simple diffusion equation with an enhanced diffusion constant, simplifying the orientation dynamics. For oscillatory shear, this enhanced diffusion drastically alters the quasi-steady orientation distributions. Our theory of the unsteady orientation dynamics provides an understanding of a nonspherical particle suspension's rheology for a large class of unsteady flows. For particles with aspect ratio 10 under oscillatory shear, the rotary diffusion and intrinsic viscosity vary with amplitude by a factor of ~ 40 and ~ 2 , respectively.

  4. Flame Shapes of Luminous NonBuoyant Laminar Coflowing Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Lin, K.-C.; Faeth, G. M.

    1999-01-01

    Laminar diffusion flames are of interest as model flame systems that are more tractable for analysis and experiments than practical turbulent diffusion flames. Certainly understanding laminar flames must precede understanding more complex turbulent flames while man'y laminar diffusion flame properties are directly relevant to turbulent diffusion flames using laminar flamelet concepts. Laminar diffusion flame shapes have been of interest since the classical study of Burke and Schumann because they involve a simple nonintrusive measurement that is convenient for evaluating flame structure predictions. Motivated by these observations, the shapes of laminar flames were considered during the present investigation. The present study was limited to nonbuoyant flames because most practical flames are not buoyant. Effects of buoyancy were minimized by observing flames having large flow velocities at small pressures. Present methods were based on the study of the shapes of nonbu,3yant round laminar jet diffusion flames of Lin et al. where it was found that a simple analysis due to Spalding yielded good predictions of the flame shapes reported by Urban et al. and Sunderland et al.

  5. Volatile organic compounds at two oil and natural gas production well pads in Colorado and Texas using passive samplers.

    PubMed

    Eisele, Adam P; Mukerjee, Shaibal; Smith, Luther A; Thoma, Eben D; Whitaker, Donald A; Oliver, Karen D; Wu, Tai; Colon, Maribel; Alston, Lillian; Cousett, Tamira A; Miller, Michael C; Smith, Donald M; Stallings, Casson

    2016-04-01

    A pilot study was conducted in application of the U.S. Environmental Protection Agency (EPA) Methods 325A/B variant for monitoring volatile organic compounds (VOCs) near two oil and natural gas (ONG) production well pads in the Texas Barnett Shale formation and Colorado Denver-Julesburg Basin (DJB), along with a traffic-dominated site in downtown Denver, CO. As indicated in the EPA method, VOC concentrations were measured for 14-day sampling periods using passive-diffusive tube samplers with Carbopack X sorbent at fenceline perimeter and other locations. VOCs were significantly higher at the DJB well pad versus the Barnett well pad and were likely due to higher production levels at the DJB well pad during the study. Benzene and toluene were significantly higher at the DJB well pad versus downtown Denver. Except for perchloroethylene, VOCs measured at passive sampler locations (PSs) along the perimeter of the Barnett well pad were significantly higher than PSs farther away. At the DJB well pad, most VOC concentrations, except perchloroethylene, were significantly higher prior to operational changes than after these changes were made. Though limited, the results suggest passive samplers are precise (duplicate precision usually ≤10%) and that they can be useful to assess spatial gradients and operational conditions at well pad locations over time-integrated periods. Recently enacted EPA Methods 325A/B use passive-diffusive tube samplers to measure benzene at multiple fenceline locations at petrochemical refineries. This pilot study presents initial data demonstrating the utility of Methods 325A/B for monitoring at ONG facilities. Measurements revealed elevated concentrations reflective of production levels and spatial gradients of VOCs relative to source proximity at the Barnett well pad, as well as operational changes at the DJB well pad. Though limited, these findings indicate that Methods 325A/B can be useful in application to characterize VOCs at well pad boundaries.

  6. An Isotope Study of Hydrogenation of poly-Si/SiOx Passivated Contacts for Si Solar Cells: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnabel, Manuel; Nemeth, William; van de Loo, Bas, W.H.

    2017-06-26

    For many years, the record Si solar cell efficiency stood at 25.0%. Only recently have several companies and institutes managed to produce more efficient cells, using passivated contacts of made doped poly-Si or a-Si:H and a passivating intrinsic interlayer in all cases. Common to these designs is the need to passivate the layer stack with hydrogen. In this contribution, we perform a systematic study of passivated contact passivation by hydrogen, using poly-Si/SiOx passivated contacts on n-Cz-Si, and ALD Al2O3 followed by a forming gas anneal (FGA) as the hydrogen source. We study p-type and n-type passivated contacts with implied Vocmore » exceeding 690 and 720 mV, respectively, and perform either the ALD step or the FGA with deuterium instead of hydrogen in order to separate the two processes via SIMS. By examining the deuterium concentration at the SiOx in both types of samples, we demonstrate that the FGA supplies negligible hydrogen species to the SiOx, regardless of whether the FGA is hydrogenated or deuterated. Instead, it supplies the thermal energy needed for hydrogen species in the Al2O3 to diffuse there. Furthermore, the concentration of hydrogen species at the SiOx can saturate while implied Voc continues to increase, showing that the energy from the FGA is also required for hydrogen species already at the SiOx to find recombination-active defects to passivate.« less

  7. Diffusion of Super-Gaussian Profiles

    ERIC Educational Resources Information Center

    Rosenberg, C.-J.; Anderson, D.; Desaix, M.; Johannisson, P.; Lisak, M.

    2007-01-01

    The present analysis describes an analytically simple and systematic approximation procedure for modelling the free diffusive spreading of initially super-Gaussian profiles. The approach is based on a self-similar ansatz for the evolution of the diffusion profile, and the parameter functions involved in the modelling are determined by suitable…

  8. The Suess-Urey mission (return of solar matter to Earth).

    PubMed

    Rapp, D; Naderi, F; Neugebauer, M; Sevilla, D; Sweetnam, D; Burnett, D; Wiens, R; Smith, N; Clark, B; McComas, D; Stansbery, E

    1996-01-01

    The Suess-Urey (S-U) mission has been proposed as a NASA Discovery mission to return samples of matter from the Sun to the Earth for isotopic and chemical analyses in terrestrial laboratories to provide a major improvement in our knowledge of the average chemical and isotopic composition of the solar system. The S-U spacecraft and sample return capsule will be placed in a halo orbit around the L1 Sun-Earth libration point for two years to collect solar wind ions which implant into large passive collectors made of ultra-pure materials. Constant Spacecraft-Sun-Earth geometries enable simple spin stabilized attitude control, simple passive thermal control, and a fixed medium gain antenna. Low data requirements and the safety of a Sun-pointed spinner, result in extremely low mission operations costs.

  9. Method for fabricating silicon cells

    DOEpatents

    Ruby, Douglas S.; Basore, Paul A.; Schubert, W. Kent

    1998-08-11

    A process for making high-efficiency solar cells. This is accomplished by forming a diffusion junction and a passivating oxide layer in a single high-temperature process step. The invention includes the class of solar cells made using this process, including high-efficiency solar cells made using Czochralski-grown silicon.

  10. PERFORMANCE OF A NEW PASSIVE DIFFUSION SAMPLER FOR SOIL GAS AND GROUND WATER SAMPLING

    EPA Science Inventory

    Conventional practice to estimate intrusion of fuel vapors from ground water to buildings measures the concentration of BTEX in ground water beneath the building using a conventional well screened across the water table. Conventional practice assumes that the concentration of co...

  11. Anisotropic diffusion in mesh-free numerical magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.

    2017-04-01

    We extend recently developed mesh-free Lagrangian methods for numerical magnetohydrodynamics (MHD) to arbitrary anisotropic diffusion equations, including: passive scalar diffusion, Spitzer-Braginskii conduction and viscosity, cosmic ray diffusion/streaming, anisotropic radiation transport, non-ideal MHD (Ohmic resistivity, ambipolar diffusion, the Hall effect) and turbulent 'eddy diffusion'. We study these as implemented in the code GIZMO for both new meshless finite-volume Godunov schemes (MFM/MFV). We show that the MFM/MFV methods are accurate and stable even with noisy fields and irregular particle arrangements, and recover the correct behaviour even in arbitrarily anisotropic cases. They are competitive with state-of-the-art AMR/moving-mesh methods, and can correctly treat anisotropic diffusion-driven instabilities (e.g. the MTI and HBI, Hall MRI). We also develop a new scheme for stabilizing anisotropic tensor-valued fluxes with high-order gradient estimators and non-linear flux limiters, which is trivially generalized to AMR/moving-mesh codes. We also present applications of some of these improvements for SPH, in the form of a new integral-Godunov SPH formulation that adopts a moving-least squares gradient estimator and introduces a flux-limited Riemann problem between particles.

  12. Study of drug diffusion rate by laser beam deflection technique

    NASA Astrophysics Data System (ADS)

    Swapna, Mohanachandran Nair. S.; Anitha, Madhu J.; Sankararaman, Sankaranarayana Iyer

    2017-06-01

    Drug administration is an unavoidable part of treatment. When a drug is administered orally or intravenously, it gets absorbed into the blood stream. The rate and efficiency of absorption depend on the route of administration. When a drug is administered through the oral route, it penetrates the epithelial cells of the intestinal mucosa. The diffusion of the drug into the blood stream depends on various parameters, such as concentration, temperature, and the nature of the mucous membrane. The passive diffusion of drugs is found to obey Fick's law. Water soluble drugs penetrate the cell membrane through aqueous channel or pores. Hence, the study of diffusion of drugs into the water and finally into the blood stream is important. An attempt has been made to study the diffusion of the drug in water as 60% to 80% of human body is water. For the study of drug diffusion in water, a commonly used cough syrup of specific gravity 1.263 is used. It is found that the diffusion rate increases with the concentration of the drug.

  13. Avian Egg Latebra as Brain Tissue Water Diffusion Model

    PubMed Central

    Maier, Stephan E.; Mitsouras, Dimitris; Mulkern, Robert V.

    2013-01-01

    Purpose Simplified models of non-monoexponential diffusion signal decay are of great interest to study the basic constituents of complex diffusion behaviour in tissues. The latebra, a unique structure uniformly present in the yolk of avian eggs, exhibits a non-monoexponential diffusion signal decay. This model is more complex than simple phantoms based on differences between water and lipid diffusion, but is also devoid of microscopic structures with preferential orientation or perfusion effects. Methods Diffusion scans with multiple b-values were performed on a clinical 3 Tesla system in raw and boiled chicken eggs equilibrated to room temperature. Diffusion encoding was applied over the ranges 5–5,000 and 5–50,000 s/mm2. A low read-out bandwidth and chemical shift was used for reliable lipid/water separation. Signal decays were fitted with exponential functions. Results The latebra, when measured over the 5–5,000 s/mm2 range, exhibited independent of preparation clearly biexponential diffusion, with diffusion parameters similar to those typically observed in in-vivo human brain. For the range 5–50,000 s/mm2 there was evidence of a small third, very slow diffusing water component. Conclusion The latebra of the avian egg contains membrane structures, which may explain a deviation from a simple monoexponential diffusion signal decay, which is remarkably similar to the deviation observed in brain tissue. PMID:24105853

  14. LETTER TO THE EDITOR: Fractal diffusion coefficient from dynamical zeta functions

    NASA Astrophysics Data System (ADS)

    Cristadoro, Giampaolo

    2006-03-01

    Dynamical zeta functions provide a powerful method to analyse low-dimensional dynamical systems when the underlying symbolic dynamics is under control. On the other hand, even simple one-dimensional maps can show an intricate structure of the grammar rules that may lead to a non-smooth dependence of global observables on parameters changes. A paradigmatic example is the fractal diffusion coefficient arising in a simple piecewise linear one-dimensional map of the real line. Using the Baladi-Ruelle generalization of the Milnor-Thurnston kneading determinant, we provide the exact dynamical zeta function for such a map and compute the diffusion coefficient from its smallest zero.

  15. Probing the Interplay of Size, Shape, and Solution Environment in Macromolecular Diffusion Using a Simple Refraction Experiment

    ERIC Educational Resources Information Center

    Mankidy, Bijith D.; Coutinho, Cecil A.; Gupta, Vinay K.

    2010-01-01

    The diffusion coefficient of polymers is a critical parameter in biomedicine, catalysis, chemical separations, nanotechnology, and other industrial applications. Here, measurement of macromolecular diffusion in solutions is described using a visually instructive, undergraduate-level optical refraction experiment based on Weiner's method. To…

  16. Mixing of a passive scalar in isotropic and sheared homogeneous turbulence

    NASA Technical Reports Server (NTRS)

    Shirani, E.; Ferziger, J. H.; Reynolds, W. C.

    1981-01-01

    In order to calculate the velocity and scalar fields, the three dimensional, time-dependent equations of motion and the diffusion equation were solved numerically. The following cases were treated: isotropic, homogeneous turbulence with decay of a passive scalar; and homogeneous turbulent shear flow with a passive scalar whose mean varies linearly in the spanwise direction. The solutions were obtained at relatively low Reynolds numbers so that all of the turbulent scales could be resolved without modeling. Turbulent statistics such as integral length scales, Taylor microscales, Kolmogorov length scale, one- and two-point correlations of velocity-velocity and velocity-scalar, turbulent Prandtl/Schmidt number, r.m.s. values of velocities, the scalar quantity and pressure, skewness, decay rates, and decay exponents were calculated. The results are compared with the available expermental results, and good agreement is obtained.

  17. Effective surface passivation of multi-shelled InP quantum dots through a simple complexing with titanium species

    NASA Astrophysics Data System (ADS)

    Jo, Jung-Ho; Kim, Min-Seok; Han, Chang-Yeol; Jang, Eun-Pyo; Do, Young Rag; Yang, Heesun

    2018-01-01

    Fluorescent efficiency of various visible quantum dots (QDs) has been incessantly improved to meet industrially high standard mainly through the advance in core/shell heterostructural design, however, their stability against degradable environments appears still lacking. The most viable strategy to cope with this issue was to exploit chemically inert oxide phases to passivate QD surface in the form of either individual overcoating or matrix embedding. Herein, we report a simple but effective means to passivate QD surface by complexing its organic ligands with a metal alkoxide of titanium isopropoxide (Ti(i-PrO)4). For this, highly efficient red-emitting InP QDs with a multi-shell structure of ZnSeS intermediate plus ZnS outer shell are first synthesized and then the surface of resulting InP/ZnSeS/ZnS QDs is in-situ decorated with Ti(i-PrO)4. The presence of Tisbnd O species from Ti(i-PrO)4 on QD surface is verified by x-ray photoelectron and Fourier transform infrared spectroscopic analyses. Two comparative dispersions of pristine versus Ti(i-PrO)4-complexed QDs are exposed for certain periods of time to UV photon and heat and their temporal changes in photoluminescence are monitored, resulting in a huge improvement in QD stability from the latter ones through Ti(i-PrO)4-mediated better surface passivation.

  18. Diffuse colonies of human skin fibroblasts in relation to cellular senescence and proliferation.

    PubMed

    Zorin, Vadim; Zorina, Alla; Smetanina, Nadezhda; Kopnin, Pavel; Ozerov, Ivan V; Leonov, Sergey; Isaev, Artur; Klokov, Dmitry; Osipov, Andreyan N

    2017-05-16

    Development of personalized skin treatment in medicine and skin care may benefit from simple and accurate evaluation of the fraction of senescent skin fibroblasts that lost their proliferative capacity. We examined whether enriched analysis of colonies formed by primary human skin fibroblasts, a simple and widely available cellular assay, could reveal correlations with the fraction of senescent cells in heterogenic cell population. We measured fractions of senescence associated β-galactosidase (SA-βgal) positive cells in either mass cultures or colonies of various morphological types (dense, mixed and diffuse) formed by skin fibroblasts from 10 human donors. Although the donors were chosen to be within the same age group (33-54 years), the colony forming efficiency of their fibroblasts (ECO-f) and the percentage of dense, mixed and diffuse colonies varied greatly among the donors. We showed, for the first time, that the SA-βgal positive fraction was the largest in diffuse colonies, confirming that they originated from cells with the least proliferative capacity. The percentage of diffuse colonies was also found to correlate with the SA-βgal positive cells in mass culture. Using Ki67 as a cell proliferation marker, we further demonstrated a strong inverse correlation (r=-0.85, p=0.02) between the percentage of diffuse colonies and the fraction of Ki67+ cells. Moreover, a significant inverse correlation (r=-0.94, p=0.0001) between the percentage of diffuse colonies and ECO-f was found. Our data indicate that quantification of a fraction of diffuse colonies may provide a simple and useful method to evaluate the extent of cellular senescence in human skin fibroblasts.

  19. Rotationally invariant clustering of diffusion MRI data using spherical harmonics

    NASA Astrophysics Data System (ADS)

    Liptrot, Matthew; Lauze, François

    2016-03-01

    We present a simple approach to the voxelwise classification of brain tissue acquired with diffusion weighted MRI (DWI). The approach leverages the power of spherical harmonics to summarise the diffusion information, sampled at many points over a sphere, using only a handful of coefficients. We use simple features that are invariant to the rotation of the highly orientational diffusion data. This provides a way to directly classify voxels whose diffusion characteristics are similar yet whose primary diffusion orientations differ. Subsequent application of machine-learning to the spherical harmonic coefficients therefore may permit classification of DWI voxels according to their inferred underlying fibre properties, whilst ignoring the specifics of orientation. After smoothing apparent diffusion coefficients volumes, we apply a spherical harmonic transform, which models the multi-directional diffusion data as a collection of spherical basis functions. We use the derived coefficients as voxelwise feature vectors for classification. Using a simple Gaussian mixture model, we examined the classification performance for a range of sub-classes (3-20). The results were compared against existing alternatives for tissue classification e.g. fractional anisotropy (FA) or the standard model used by Camino.1 The approach was implemented on both two publicly-available datasets: an ex-vivo pig brain and in-vivo human brain from the Human Connectome Project (HCP). We have demonstrated how a robust classification of DWI data can be performed without the need for a model reconstruction step. This avoids the potential confounds and uncertainty that such models may impose, and has the benefit of being computable directly from the DWI volumes. As such, the method could prove useful in subsequent pre-processing stages, such as model fitting, where it could inform about individual voxel complexities and improve model parameter choice.

  20. Efflux of drugs and solutes from brain: the interactive roles of diffusional transcapillary transport, bulk flow and capillary transporters.

    PubMed

    Groothuis, Dennis R; Vavra, Michael W; Schlageter, Kurt E; Kang, Eric W-Y; Itskovich, Andrea C; Hertzler, Shannon; Allen, Cathleen V; Lipton, Howard L

    2007-01-01

    We examined the roles of diffusion, convection and capillary transporters in solute removal from extracellular space (ECS) of the brain. Radiolabeled solutes (eight with passive distribution and four with capillary or cell transporters) were injected into the brains of rats (n=497) and multiple-time point experiments measured the amount remaining in brain as a function of time. For passively distributed compounds, there was a relationship between lipid:water solubility and total brain efflux:diffusional efflux, which dominated when k(p), the transcapillary efflux rate constant, was >10(0) h(-1); when 10(-1)

  1. Improvement of Electrical Characteristics and Stability of Amorphous Indium Gallium Zinc Oxide Thin Film Transistors Using Nitrocellulose Passivation Layer.

    PubMed

    Shin, Kwan Yup; Tak, Young Jun; Kim, Won-Gi; Hong, Seonghwan; Kim, Hyun Jae

    2017-04-19

    In this research, nitrocellulose is proposed as a new material for the passivation layers of amorphous indium gallium zinc oxide thin film transistors (a-IGZO TFTs). The a-IGZO TFTs with nitrocellulose passivation layers (NC-PVLs) demonstrate improved electrical characteristics and stability. The a-IGZO TFTs with NC-PVLs exhibit improvements in field-effect mobility (μ FE ) from 11.72 ± 1.14 to 20.68 ± 1.94 cm 2 /(V s), threshold voltage (V th ) from 1.85 ± 1.19 to 0.56 ± 0.35 V, and on/off current ratio (I on/off ) from (5.31 ± 2.19) × 10 7 to (4.79 ± 1.54) × 10 8 compared to a-IGZO TFTs without PVLs, respectively. The V th shifts of a-IGZO TFTs without PVLs, with poly(methyl methacrylate) (PMMA) PVLs, and with NC-PVLs under positive bias stress (PBS) test for 10,000 s represented 5.08, 3.94, and 2.35 V, respectively. These improvements were induced by nitrogen diffusion from NC-PVLs to a-IGZO TFTs. The lone-pair electrons of diffused nitrogen attract weakly bonded oxygen serving as defect sites in a-IGZO TFTs. Consequently, the electrical characteristics are improved by an increase of carrier concentration in a-IGZO TFTs, and a decrease of defects in the back channel layer. Also, NC-PVLs have an excellent property as a barrier against ambient gases. Therefore, the NC-PVL is a promising passivation layer for next-generation display devices that simultaneously can improve electrical characteristics and stability against ambient gases.

  2. Method for fabricating silicon cells

    DOEpatents

    Ruby, D.S.; Basore, P.A.; Schubert, W.K.

    1998-08-11

    A process is described for making high-efficiency solar cells. This is accomplished by forming a diffusion junction and a passivating oxide layer in a single high-temperature process step. The invention includes the class of solar cells made using this process, including high-efficiency solar cells made using Czochralski-grown silicon. 9 figs.

  3. Evaluation of a New Passive Diffusion Sampler for Improving the Calibration of Models to Evaluate Vapor Movement at UST Sites

    EPA Science Inventory

    Understanding transport of volatile contaminants in soil gas and ground water, particularly those associated with underground storage tanks (USTs), requires a detailed knowledge about the depth-dependent distribution of chemical species in the subsurface. A risk assessment of th...

  4. A New Passive Diffusion Sampler for Improving the Calibration of Models to Evaluate Vapor Movement at UST Sites

    EPA Science Inventory

    Understanding transport of volatile contaminants in soil gas and ground water, particularly those associated with underground storage tanks (USTs), requires a detailed knowledge about the depthdependent distribution of chemical species in the subsurface. A risk assessment of the...

  5. PERFORMANCE OF A NEW PASSIVE DIFFUSION SAMPLER FOR MONITORING BENZENE IN EITHER SOIL GAS OR GROUND WATER

    EPA Science Inventory

    Understanding transport of volatile contaminants in soil gas and ground water, particularly those associated with underground storage tanks, requires a detailed knowledge about the depth-dependent distribution of chemical species in the subsurface. A risk assessment of the moveme...

  6. Understanding the rates of nonpolar organic chemical accumulation into passive samplers deployed in the environment: Guidance for passive sampler deployments.

    PubMed

    Apell, Jennifer N; Tcaciuc, A Patricia; Gschwend, Philip M

    2016-07-01

    Polymeric passive samplers have become a common method for estimating freely dissolved concentrations in environmental media. However, this approach has not yet been adopted by investigators conducting remedial investigations of contaminated environmental sites. Successful adoption of this sampling methodology relies on an understanding of how passive samplers accumulate chemical mass as well as developing guidance for the design and deployment of passive samplers. Herein, we outline the development of a simple mathematical relationship of the environmental, polymer, and chemical properties that control the uptake rate. This relationship, called a timescale, is then used to illustrate how each property controls the rate of equilibration in samplers deployed in the water or in the sediment. Guidance is also given on how to use the timescales to select an appropriate polymer, deployment time, and suite of performance reference compounds. Integr Environ Assess Manag 2016;12:486-492. © 2015 SETAC. © 2015 SETAC.

  7. Effects of plausibility on structural priming.

    PubMed

    Christianson, Kiel; Luke, Steven G; Ferreira, Fernanda

    2010-03-01

    We report a replication and extension of Ferreira (2003), in which it was observed that native adult English speakers misinterpret passive sentences that relate implausible but not impossible semantic relationships (e.g., The angler was caught by the fish) significantly more often than they do plausible passives or plausible or implausible active sentences. In the experiment reported here, participants listened to the same plausible and implausible passive and active sentences as in Ferreira (2003), answered comprehension questions, and then orally described line drawings of simple transitive actions. The descriptions were analyzed as a measure of structural priming (Bock, 1986). Question accuracy data replicated Ferreira (2003). Production data yielded an interaction: Passive descriptions were produced more often after plausible passives and implausible actives. We interpret these results as indicative of a language processor that proceeds along differentiated morphosyntactic and semantic routes. The processor may end up adjudicating between conflicting outputs from these routes by settling on a "good enough" representation that is not completely faithful to the input.

  8. Decoupling the effects of confinement and passivation on semiconductor quantum dots.

    PubMed

    Rudd, Roya; Hall, Colin; Murphy, Peter J; Reece, Peter J; Charrault, Eric; Evans, Drew

    2016-07-20

    Semiconductor (SC) quantum dots (QDs) have recently been fabricated by both chemical and plasma techniques for specific absorption and emission of light. Their optical properties are governed by the size of the QD and the chemistry of any passivation at their surface. Here, we decouple the effects of confinement and passivation by utilising DC magnetron sputtering to fabricate SC QDs in a perfluorinated polyether oil. Very high band gaps are observed for fluorinated QDs with increasing levels of quantum confinement (from 4.2 to 4.6 eV for Si, and 2.5 to 3 eV for Ge), with a shift down to 3.4 eV for Si when oxygen is introduced to the passivation layer. In contrast, the fluorinated Si QDs display a constant UV photoluminescence (3.8 eV) irrespective of size. This ability to tune the size and passivation independently opens a new opportunity to extending the use of simple semiconductor QDs.

  9. Fabrication process for polymer PLC platforms with V-grooves for passive alignment

    NASA Astrophysics Data System (ADS)

    Park, Suntak; Lee, Jong-Moo; Ahn, Joon Tae; Baek, Yong-Soon

    2005-12-01

    A method for polymer planar lightwave circuit (PLC) devices fabricated on a substrate with V-grooves is developed for passive alignment of an optical fiber to a polymer waveguide. In order to minimize thickness nonuniformity of polymer layers caused by the V-grooves, dry film resist (DFR) is used. The V-grooves are covered with the DFR before the polymer layers are spin-coated on the substrate. The DFR prevents the polymer from being filled in the V-grooves as well as from being spin-coated nonuniformly on the substrate. This process provides a simple and cost-effective fabrication method of polymer PLCs or platforms for passive alignment.

  10. A simple approximation for larval retention around reefs

    NASA Astrophysics Data System (ADS)

    Cetina-Heredia, Paulina; Connolly, Sean R.

    2011-09-01

    Estimating larval retention at individual reefs by local scale three-dimensional flows is a significant problem for understanding, and predicting, larval dispersal. Determining larval dispersal commonly involves the use of computationally demanding and expensively calibrated/validated hydrodynamic models that resolve reef wake eddies. This study models variation in larval retention times for a range of reef shapes and circulation regimes, using a reef-scale three-dimensional hydrodynamic model. It also explores how well larval retention time can be estimated based on the "Island Wake Parameter", a measure of the degree of flow turbulence in the wake of reefs that is a simple function of flow speed, reef dimension, and vertical diffusion. The mean residence times found in the present study (0.48-5.64 days) indicate substantial potential for self-recruitment of species whose larvae are passive, or weak swimmers, for the first several days after release. Results also reveal strong and significant relationships between the Island Wake Parameter and mean residence time, explaining 81-92% of the variability in retention among reefs across a range of unidirectional flow speeds and tidal regimes. These findings suggest that good estimates of larval retention may be obtained from relatively coarse-scale characteristics of the flow, and basic features of reef geomorphology. Such approximations may be a valuable tool for modeling connectivity and meta-population dynamics over large spatial scales, where explicitly characterizing fine-scale flows around reef requires a prohibitive amount of computation and extensive model calibration.

  11. Experimental investigation and numerical simulation of 3He gas diffusion in simple geometries: implications for analytical models of 3He MR lung morphometry.

    PubMed

    Parra-Robles, J; Ajraoui, S; Deppe, M H; Parnell, S R; Wild, J M

    2010-06-01

    Models of lung acinar geometry have been proposed to analytically describe the diffusion of (3)He in the lung (as measured with pulsed gradient spin echo (PGSE) methods) as a possible means of characterizing lung microstructure from measurement of the (3)He ADC. In this work, major limitations in these analytical models are highlighted in simple diffusion weighted experiments with (3)He in cylindrical models of known geometry. The findings are substantiated with numerical simulations based on the same geometry using finite difference representation of the Bloch-Torrey equation. The validity of the existing "cylinder model" is discussed in terms of the physical diffusion regimes experienced and the basic reliance of the cylinder model and other ADC-based approaches on a Gaussian diffusion behaviour is highlighted. The results presented here demonstrate that physical assumptions of the cylinder model are not valid for large diffusion gradient strengths (above approximately 15 mT/m), which are commonly used for (3)He ADC measurements in human lungs. (c) 2010 Elsevier Inc. All rights reserved.

  12. Examination of factors dominating the sediment-water diffusion flux of DDT-related compounds measured by passive sampling in an urbanized estuarine bay.

    PubMed

    Feng, Yan; Wu, Chen-Chou; Bao, Lian-Jun; Shi, Lei; Song, Lin; Zeng, Eddy Y

    2016-12-01

    The fate of hydrophobic organic compounds in aquatic environment are largely determined by their exchange at sediment-water interface, which is highly dynamic and subject to rapidly evolving environmental conditions. In turn, environmental conditions may be governed by both physicochemical parameters and anthropogenic events. To examine the importance of various impact factors, passive sampling devices were deployed at the seafloor of Hailing Bay, an urbanized estuarine bay in Guangdong Province of South China to measure the sediment-water diffusion fluxes of several metabolites of dichlorodiphenyltrichloroethane (DDT), p,p'-DDE, p,p'-DDD and o,p'-DDD. The physicochemical properties of water (temperature, pH, salinity and dissolved oxygen) and surface sediment (sediment organic matter, physical composition, pH, water content, colony forming unit and catalase activity) were also measured. The results showed that the diffusion fluxes of o,p'-DDD, p,p'-DDD and p,p'-DDE at sites A1 and A2 near a fishing boat maintenance facility ranged from 0.42 to 4.73 ng m -2 d -1 (from sediment to overlying water), whereas those at offshore sites varied between -0.03 and -3.02 ng m -2 d -1 (from overlying water to sediment), implicating A1 and A2 as the sources of the target compounds. The distribution patterns of the diffusion fluxes of the target compounds were different from those of water and sediment parameters (water temperature, salinity, sediment texture, pH, colony forming unit and catalase activity) at six sampling sites. This finding suggested that none of these parameters were critical in dictating the sediment-water diffusion fluxes. Besides, decreases in the contents of kerogen and black carbon by 6.7% and 11% would enhance the diffusion fluxes of the target compounds by 11-14% and 12-23%, respectively, at site A1, indicating that kerogen and black carbon were the key factors in mediating the sediment-water diffusion fluxes of DDT-related compounds in field environments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Thirty years since diffuse sound reflection by maximum length

    NASA Astrophysics Data System (ADS)

    Cox, Trevor J.; D'Antonio, Peter

    2005-09-01

    This year celebrates the 30th anniversary of Schroeder's seminal paper on sound scattering from maximum length sequences. This paper, along with Schroeder's subsequent publication on quadratic residue diffusers, broke new ground, because they contained simple recipes for designing diffusers with known acoustic performance. So, what has happened in the intervening years? As with most areas of engineering, the room acoustic diffuser has been greatly influenced by the rise of digital computing technologies. Numerical methods have become much more powerful, and this has enabled predictions of surface scattering to greater accuracy and for larger scale surfaces than previously possible. Architecture has also gone through a revolution where the forms of buildings have become more extreme and sculptural. Acoustic diffuser designs have had to keep pace with this to produce shapes and forms that are desirable to architects. To achieve this, design methodologies have moved away from Schroeder's simple equations to brute force optimization algorithms. This paper will look back at the past development of the modern diffuser, explaining how the principles of diffuser design have been devised and revised over the decades. The paper will also look at the present state-of-the art, and dreams for the future.

  14. Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization.

    PubMed

    Wawrezinieck, Laure; Rigneault, Hervé; Marguet, Didier; Lenne, Pierre-François

    2005-12-01

    To probe the complexity of the cell membrane organization and dynamics, it is important to obtain simple physical observables from experiments on live cells. Here we show that fluorescence correlation spectroscopy (FCS) measurements at different spatial scales enable distinguishing between different submicron confinement models. By plotting the diffusion time versus the transverse area of the confocal volume, we introduce the so-called FCS diffusion law, which is the key concept throughout this article. First, we report experimental FCS diffusion laws for two membrane constituents, which are respectively a putative raft marker and a cytoskeleton-hindered transmembrane protein. We find that these two constituents exhibit very distinct behaviors. To understand these results, we propose different models, which account for the diffusion of molecules either in a membrane comprising isolated microdomains or in a meshwork. By simulating FCS experiments for these two types of organization, we obtain FCS diffusion laws in agreement with our experimental observations. We also demonstrate that simple observables derived from these FCS diffusion laws are strongly related to confinement parameters such as the partition of molecules in microdomains and the average confinement time of molecules in a microdomain or a single mesh of a meshwork.

  15. Passive Q switching and mode-locking of Er:glass lasers using VO2 mirrors

    NASA Astrophysics Data System (ADS)

    Pollack, S. A.; Chang, D. B.; Chudnovky, F. A.; Khakhaev, I. A.

    1995-09-01

    Passive Q switching of an Er:glass laser with the pulse width varying between 14 and 80 ns has been demonstrated, using three resonator vanadium-dioxide-coated (VO2) mirror samples with temperature-dependent reflectivity and differing in the reflectivity contrast. The reflectivity changes because of a phase transition from a semiconductor to a metallic state. Broad band operating characteristics of VO2 mirrors provide Q switching over a wide range of wavelengths. In addition, mode-locked pulses with much shorter time scales have been observed, due to exciton formation and recombination. A simple criterion is derived for the allowable ambient temperatures at which the Q switching operates effectively. A simple relation has also been found relating the duration of the Q-switched pulse to the contrast in reflectivities of the two mirror phases.

  16. ALD TiO x as a top-gate dielectric and passivation layer for InGaZnO115 ISFETs

    NASA Astrophysics Data System (ADS)

    Pavlidis, S.; Bayraktaroglu, B.; Leedy, K.; Henderson, W.; Vogel, E.; Brand, O.

    2017-11-01

    The suitability of atomic layer deposited (ALD) titanium oxide (TiO x ) as a top gate dielectric and passivation layer for indium gallium zinc oxide (InGaZnO115) ion sensitive field effect transistors (ISFETs) is investigated. TiO x is an attractive barrier material, but reports of its use for InGaZnO thin film transistor (TFT) passivation have been conflicting thus far. In this work, it is found that the passivated TFT’s behavior depends on the TiO x deposition temperature, affecting critical device characteristics such as threshold voltage, field-effect mobility and sub-threshold swing. An O2 annealing step is required to recover TFT performance post passivation. It is also observed that the positive bias stress response of the passivated TFTs improves compared the original bare device. Secondary ion mass spectroscopy excludes the effects of hydrogen doping and inter-diffusion as sources of the temperature-dependent performance change, therefore indicating that oxygen gettering induced by TiO x passivation is the likely source of oxygen vacancies and, consequently, carriers in the InGaZnO film. It is also shown that potentiometric sensing using ALD TiO x exhibits a near Nernstian response to pH change, as well as minimizes V TH drift in TiO x passivated InGaZnO TFTs immersed in an acidic liquid. These results add to the understanding of InGaZnO passivation effects and underscore the potential for low-temperature fabricated InGaZnO ISFETs to be used as high-performance mobile chemical sensors.

  17. Passive demodulation of miniature fiber-optic-based interferometric sensors using a time-multiplexing technique.

    PubMed

    Santos, J L; Jackson, D A

    1991-08-01

    A passive demodulation technique suitable for interferometric interrogation of short optical cavities is described. It is based on time multiplexing of two low-finesse Fabry-Perot interferometers subject to the same measurand and with a differential optical phase of pi/2 (modulo 2pi). Independently of the cavity length, two optical outputs in quadrature are generated, which permits signal reading free of fading. The concept is demonstrated for the measurement of vibration using a simple processing scheme.

  18. Diffusion with social reinforcement: The role of individual preferences

    NASA Astrophysics Data System (ADS)

    Tur, Elena M.; Zeppini, Paolo; Frenken, Koen

    2018-02-01

    The debate on diffusion in social networks has traditionally focused on the structure of the network to understand the efficiency of a network in terms of diffusion. Recently, the role of social reinforcement has been added to the debate, as it has been proposed that simple contagions diffuse better in random networks and complex contagions diffuse better in regular networks. In this paper, we show that individual preferences cannot be overlooked: complex contagions diffuse better in regular networks only if the large majority of the population is biased against adoption.

  19. Processes for producing low cost, high efficiency silicon solar cells

    DOEpatents

    Rohatgi, Ajeet; Chen, Zhizhang; Doshi, Parag

    1996-01-01

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. Silicon solar cell efficiencies of 16.9% have been achieved. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x.

  20. Passive ultrasonics using sub-Nyquist sampling of high-frequency thermal-mechanical noise.

    PubMed

    Sabra, Karim G; Romberg, Justin; Lani, Shane; Degertekin, F Levent

    2014-06-01

    Monolithic integration of capacitive micromachined ultrasonic transducer arrays with low noise complementary metal oxide semiconductor electronics minimizes interconnect parasitics thus allowing the measurement of thermal-mechanical (TM) noise. This enables passive ultrasonics based on cross-correlations of diffuse TM noise to extract coherent ultrasonic waves propagating between receivers. However, synchronous recording of high-frequency TM noise puts stringent requirements on the analog to digital converter's sampling rate. To alleviate this restriction, high-frequency TM noise cross-correlations (12-25 MHz) were estimated instead using compressed measurements of TM noise which could be digitized at a sampling frequency lower than the Nyquist frequency.

  1. Interpreting the Weibull fitting parameters for diffusion-controlled release data

    NASA Astrophysics Data System (ADS)

    Ignacio, Maxime; Chubynsky, Mykyta V.; Slater, Gary W.

    2017-11-01

    We examine the diffusion-controlled release of molecules from passive delivery systems using both analytical solutions of the diffusion equation and numerically exact Lattice Monte Carlo data. For very short times, the release process follows a √{ t } power law, typical of diffusion processes, while the long-time asymptotic behavior is exponential. The crossover time between these two regimes is determined by the boundary conditions and initial loading of the system. We show that while the widely used Weibull function provides a reasonable fit (in terms of statistical error), it has two major drawbacks: (i) it does not capture the correct limits and (ii) there is no direct connection between the fitting parameters and the properties of the system. Using a physically motivated interpolating fitting function that correctly includes both time regimes, we are able to predict the values of the Weibull parameters which allows us to propose a physical interpretation.

  2. Perspectives on scaling and multiscaling in passive scalar turbulence

    NASA Astrophysics Data System (ADS)

    Banerjee, Tirthankar; Basu, Abhik

    2018-05-01

    We revisit the well-known problem of multiscaling in substances passively advected by homogeneous and isotropic turbulent flows or passive scalar turbulence. To that end we propose a two-parameter continuum hydrodynamic model for an advected substance concentration θ , parametrized jointly by y and y ¯, that characterize the spatial scaling behavior of the variances of the advecting stochastic velocity and the stochastic additive driving force, respectively. We analyze it within a one-loop dynamic renormalization group method to calculate the multiscaling exponents of the equal-time structure functions of θ . We show how the interplay between the advective velocity and the additive force may lead to simple scaling or multiscaling. In one limit, our results reduce to the well-known results from the Kraichnan model for passive scalar. Our framework of analysis should be of help for analytical approaches for the still intractable problem of fluid turbulence itself.

  3. Passivating Li-Ion Batteries in Orbit at the End of the Spacecraft's Life

    NASA Astrophysics Data System (ADS)

    Alcindor, Peter; Kimber, Rick; Remy, Stephane; Prevot, Didier

    2014-08-01

    International focus on the "Clean Space Initiative", as discussed at the ESA workshop "EoL Electrical Passivation" held on October 11th 2013 identified new legislation (REACh, RoHS and LOS). This paper concerns itself with the prevention of Li-ion battery explosion post end of mission as the spacecraft systems remain active well beyond the initial design expectations and beyond classical reliability design predictions. The main risks to Li-ion energy storage battery systems is the prevention of over charging and over discharging, both these scenarios result in the build up of internal pressure ultimately resulting in venting of high pressure gas. To warrant against such risk legislation requires that batteries are "Passivated" within the predictable life of the spacecraft systems. This paper proposes a simple method for the passivation of Li-ion batteries that relies only on the normal systems that form part of most present day spacecraft heritage.

  4. Surface passivation of mixed-halide perovskite CsPb(BrxI1-x)3 nanocrystals by selective etching for improved stability.

    PubMed

    Jing, Qiang; Zhang, Mian; Huang, Xiang; Ren, Xiaoming; Wang, Peng; Lu, Zhenda

    2017-06-08

    In recent years, there has been an unprecedented rise in the research of halide perovskites because of their important optoelectronic applications, including photovoltaic cells, light-emitting diodes, photodetectors and lasers. The most pressing question concerns the stability of these materials. Here faster degradation and PL quenching are observed at higher iodine content for mixed-halide perovskite CsPb(Br x I 1-x ) 3 nanocrystals, and a simple yet effective method is reported to significantly enhance their stability. After selective etching with acetone, surface iodine is partially etched away to form a bromine-rich surface passivation layer on mixed-halide perovskite nanocrystals. This passivation layer remarkably stabilizes the nanocrystals, making their PL intensity improved by almost three orders of magnitude. It is expected that a similar passivation layer can also be applied to various other kinds of perovskite materials with poor stability issues.

  5. Passive hand movements disrupt adults' counting strategies.

    PubMed

    Imbo, Ineke; Vandierendonck, André; Fias, Wim

    2011-01-01

    In the present study, we experimentally tested the role of hand motor circuits in simple-arithmetic strategies. Educated adults solved simple additions (e.g., 8 + 3) or simple subtractions (e.g., 11 - 3) while they were required to retrieve the answer from long-term memory (e.g., knowing that 8 + 3 = 11), to transform the problem by making an intermediate step (e.g., 8 + 3 = 8 + 2 + 1 = 10 + 1 = 11) or to count one-by-one (e.g., 8 + 3 = 8…9…10…11). During the process of solving the arithmetic problems, the experimenter did or did not move the participants' hand on a four-point matrix. The results show that passive hand movements disrupted the counting strategy while leaving the other strategies unaffected. This pattern of results is in agreement with a procedural account, showing that the involvement of hand motor circuits in adults' mathematical abilities is reminiscent of finger counting during childhood.

  6. USGS GeoData Digital Raster Graphics

    USGS Publications Warehouse

    ,

    2001-01-01

    Passive diffusion samplers have been tested at a number of sites where volatile organic compounds (VOC?s) are the principal contaminants in ground water. Test results generally show good agreement between concentrations of VOC?s in samples collected with diffusion samplers and concentrations in samples collected by purging the water from a well. Diffusion samplers offer several advantages over conventional and low-flow ground-water sampling procedures: ? Elimination of the need to purge a well before collecting a sample and to dispose of contaminated water. ? Elimination of cross-contamination of samples associated with sampling with non-dedicated pumps or sample delivery tubes. ? Reduction in sampling time by as much as 80 percent of that required for ?purge type? sampling methods. ? An increase in the frequency and spatial coverage of monitoring at a site because of the associated savings in time and money. The successful use of diffusion samplers depends on the following three primary factors: (1) understanding site conditions and contaminants of interest (defining sample objectives), (2) validating of results of diffusion samplers against more widely acknowledged sampling methods, and (3) applying diffusion samplers in the field.

  7. Surface passivation of nano-textured fluorescent SiC by atomic layer deposited TiO2

    NASA Astrophysics Data System (ADS)

    Lu, Weifang; Ou, Yiyu; Jokubavicius, Valdas; Fadil, Ahmed; Syväjärvi, Mikael; Petersen, Paul Michael; Ou, Haiyan

    2016-07-01

    Nano-textured surfaces have played a key role in optoelectronic materials to enhance the light extraction efficiency. In this work, morphology and optical properties of nano-textured SiC covered with atomic layer deposited (ALD) TiO2 were investigated. In order to obtain a high quality surface for TiO2 deposition, a three-step cleaning procedure was introduced after RIE etching. The morphology of anatase TiO2 indicates that the nano-textured substrate has a much higher surface nucleated grain density than a flat substrate at the beginning of the deposition process. The corresponding reflectance increases with TiO2 thickness due to increased surface diffuse reflection. The passivation effect of ALD TiO2 thin film on the nano-textured fluorescent 6H-SiC sample was also investigated and a PL intensity improvement of 8.05% was obtained due to the surface passivation.

  8. Effects of molecular weight on the diffusion coefficient of aquatic dissolved organic matter and humic substances.

    PubMed

    Balch, J; Guéguen, C

    2015-01-01

    In situ measurements of labile metal species using diffusive gradients in thin films (DGT) passive samplers are based on the diffusion rates of individual species. Although most studies have dealt with chemically isolated humic substances, the diffusion of dissolved organic matter (DOM) across the hydrogel is not well understood. In this study, the diffusion coefficient (D) and molecular weight (MW) of 11 aquatic DOM and 4 humic substances (HS) were determined. Natural, unaltered aquatic DOM was capable of diffusing across the diffusive gel membrane with D values ranging from 2.48×10(-6) to 5.31×10(-6) cm(2) s(-1). Humic substances had diffusion coefficient values ranging from 3.48×10(-6) to 6.05×10(-6) cm(2) s(-1), congruent with previous studies. Molecular weight of aquatic DOM and HS samples (∼500-1750 Da) measured using asymmetrical flow field-flow fractionation (AF4) strongly influenced D, with larger molecular weight DOM having lower D values. No noticeable changes in DOM size properties were observed during the diffusion process, suggesting that DOM remains intact following diffusion across the diffusive gel. The influence of molecular weight on DOM mobility will assist in further understanding and development of the DGT technique and the uptake and mobility of contaminants associated with DOM in aquatic environments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. CONSTRUCTION AND INSTALLATION OF A NEW PASSIVE DIFFUSION SAMPLER CAPABLE OF MONITORING BENZENE IN EITHER SOIL GAS OR GROUND WATER

    EPA Science Inventory

    Conventional practice to estimate intrusion of fuel vapors from ground water to buildings measures the concentration of BTEX in ground water beneath the building using a conventional well screened across the water table. This practice assumes that the concentration of contaminant...

  10. 4 pitfalls to clinical integration.

    PubMed

    Redding, John

    2012-11-01

    Four common mistakes can easily thwart clinical integration: Assuming that EHR adoption is the cornerstone of successful integration; Delaying the development of ambulatory services that support clinical integration; Believing that knowledge of clinical integration initiatives will passively diffuse through the ranks; Attaching too much weight to Federal Trade Commission/Department of Justice approval of a clinical integration model.

  11. Solid phase microextraction for active or passive sampling of methyl bromide during fumigations

    USDA-ARS?s Scientific Manuscript database

    The high diffusivity and volatility of methyl bromide make it an ideal compound for Solid Phase Micro Extraction (SPME)-based sampling of air prior to gas-chromatographic quantifications. SPME fibers can be used as active methyl bromide samplers, with high capacities and an equilibrium time of 1-2 m...

  12. Evaluation of a New Passive Diffusion Sampler for Monitoring for Soil Gas and Ground Water at Two UST Sites

    EPA Science Inventory

    Historically, conventional practice to estimate intrusion of fuel vapors from soil and ground water to buildings measures the concentration of BTEX beneath the building using vapor probes or monitoring wells screened across the water table. Standard practice assumes that the co...

  13. Molecular assemblies as protective barriers and adhesion promotion interlayer

    DOEpatents

    King, David E.; Czanderna, Alvin W.; Kennedy, Cheryl E.

    1996-01-01

    A protective diffusion barrier having adhesive qualifies for metalized surfaces is provided by a passivating agent having the formula HS--(CH.sub.2).sub.11 --COOH Which forms a very dense, transparent organized molecular assembly or layer that is impervious to water, alkali, and other impurities and corrosive substances that typically attack metal surfaces.

  14. Multifunctional Organic-Semiconductor Interfacial Layers for Solution-Processed Oxide-Semiconductor Thin-Film Transistor.

    PubMed

    Kwon, Guhyun; Kim, Keetae; Choi, Byung Doo; Roh, Jeongkyun; Lee, Changhee; Noh, Yong-Young; Seo, SungYong; Kim, Myung-Gil; Kim, Choongik

    2017-06-01

    The stabilization and control of the electrical properties in solution-processed amorphous-oxide semiconductors (AOSs) is crucial for the realization of cost-effective, high-performance, large-area electronics. In particular, impurity diffusion, electrical instability, and the lack of a general substitutional doping strategy for the active layer hinder the industrial implementation of copper electrodes and the fine tuning of the electrical parameters of AOS-based thin-film transistors (TFTs). In this study, the authors employ a multifunctional organic-semiconductor (OSC) interlayer as a solution-processed thin-film passivation layer and a charge-transfer dopant. As an electrically active impurity blocking layer, the OSC interlayer enhances the electrical stability of AOS TFTs by suppressing the adsorption of environmental gas species and copper-ion diffusion. Moreover, charge transfer between the organic interlayer and the AOS allows the fine tuning of the electrical properties and the passivation of the electrical defects in the AOS TFTs. The development of a multifunctional solution-processed organic interlayer enables the production of low-cost, high-performance oxide semiconductor-based circuits. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Turing mechanism for homeostatic control of synaptic density during C. elegans growth

    NASA Astrophysics Data System (ADS)

    Brooks, Heather A.; Bressloff, Paul C.

    2017-07-01

    We propose a mechanism for the homeostatic control of synapses along the ventral cord of Caenorhabditis elegans during development, based on a form of Turing pattern formation on a growing domain. C. elegans is an important animal model for understanding cellular mechanisms underlying learning and memory. Our mathematical model consists of two interacting chemical species, where one is passively diffusing and the other is actively trafficked by molecular motors, which switch between forward and backward moving states (bidirectional transport). This differs significantly from the standard mechanism for Turing pattern formation based on the interaction between fast and slow diffusing species. We derive evolution equations for the chemical concentrations on a slowly growing one-dimensional domain, and use numerical simulations to demonstrate the insertion of new concentration peaks as the length increases. Taking the passive component to be the protein kinase CaMKII and the active component to be the glutamate receptor GLR-1, we interpret the concentration peaks as sites of new synapses along the length of C. elegans, and thus show how the density of synaptic sites can be maintained.

  16. Active Generation and Propagation of Ca2+ Signals within Tunneling Membrane Nanotubes

    PubMed Central

    Smith, Ian F.; Shuai, Jianwei; Parker, Ian

    2011-01-01

    A new mechanism of cell-cell communication was recently proposed after the discovery of tunneling nanotubes (TNTs) between cells. TNTs are membrane protrusions with lengths of tens of microns and diameters of a few hundred nanometers that permit the exchange of membrane and cytoplasmic constituents between neighboring cells. TNTs have been reported to mediate intercellular Ca2+ signaling; however, our simulations indicate that passive diffusion of Ca2+ ions alone would be inadequate for efficient transmission between cells. Instead, we observed spontaneous and inositol trisphosphate (IP3)-evoked Ca2+ signals within TNTs between cultured mammalian cells, which sometimes remained localized and in other instances propagated as saltatory waves to evoke Ca2+ signals in a connected cell. Consistent with this, immunostaining showed the presence of both endoplasmic reticulum and IP3 receptors along the TNT. We propose that IP3 receptors may actively propagate intercellular Ca2+ signals along TNTs via Ca2+-induced Ca2+ release, acting as amplification sites to overcome the limitations of passive diffusion in a chemical analog of electrical transmission of action potentials. PMID:21504718

  17. Including carrier-mediated transport in oral uptake prediction of nutrients and pharmaceuticals in humans.

    PubMed

    O'Connor, Isabel A; Veltman, Karin; Huijbregts, Mark A J; Ragas, Ad M J; Russel, Frans G M; Hendriks, A Jan

    2014-11-01

    Most toxicokinetic models consider passive diffusion as the only mechanism when modeling the oral uptake of chemicals. However, the overall uptake of nutrients and xenobiotics, such as pharmaceuticals and environmental pollutants, can be increased by influx transport proteins. We incorporated carrier-mediated transport into a one-compartment toxicokinetic model originally developed for passive diffusion only. The predictions were compared with measured oral uptake efficiencies of nutrients and pharmaceuticals, i.e. the fraction of the chemical reaching systemic circulation. Including carrier-mediated uptake improved model predictions for hydrophilic nutrients (RMSE=10% vs. 56%, Coefficient of Efficiency CoE=0.5 vs. -9.6) and for pharmaceuticals (RMSE=21% vs. 28% and CoE=-0.4 vs. -1.1). However, the negative CoE for pharmaceuticals indicates that further improvements are needed. Most important in this respect is a more accurate estimation of vMAX and KM as well as the determination of the amount of expressed and functional transport proteins both in vivo and in vitro. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Effect of sulfur passivation on the InP surface prior to plasma-enhanced chemical vapor deposition of SiNx

    NASA Astrophysics Data System (ADS)

    Tang, Hengjing; Wu, Xiaoli; Xu, Qinfei; Liu, Hongyang; Zhang, Kefeng; Wang, Yang; He, Xiangrong; Li, Xue; Gong, Hai Mei

    2008-03-01

    The fabrication of Au/SiNx/InP metal-insulator-semiconductor (MIS) diodes has been achieved by depositing a layer of SiNx on the (NH4)2Sx-treated n-InP. The SiNx layer was deposited at 200 °C using plasma-enhanced chemical vapor deposition (PECVD). The effect of passivation on the InP surface before and after annealing was evaluated by current-voltage (I-V) and capacitance-voltage (C-V) measurements, and Auger electron spectroscopy (AES) analysis was used to investigate the depth profiles of several atoms. The results indicate that the SiNx passivation layer exhibits good insulative characteristics. The annealing process causes distinct inter-diffusion in the SiNx/InP interface and contributes to the decrease of the fixed charge density and minimum interface state density, which are 1.96 × 1012 cm-2 and 7.41 × 1011 cm-2 eV-1, respectively. A 256 × 1 InP/InGaAs/InP heterojunction photodiode, fabricated with sulfidation and SiNx passivation layer, has good response uniformity.

  19. Particle Diffusion in an Inhomogeneous Medium

    ERIC Educational Resources Information Center

    Bringuier, E.

    2011-01-01

    This paper is an elementary introduction to particle diffusion in a medium where the coefficient of diffusion varies with position. The introduction is aimed at third-year university courses. We start from a simple model of particles hopping on a discrete lattice, in one or more dimensions, and then take the continuous-space limit so as to obtain…

  20. Glassy behaviour in simple kinetically constrained models: topological networks, lattice analogues and annihilation-diffusion

    NASA Astrophysics Data System (ADS)

    Sherrington, David; Davison, Lexie; Buhot, Arnaud; Garrahan, Juan P.

    2002-02-01

    We report a study of a series of simple model systems with only non-interacting Hamiltonians, and hence simple equilibrium thermodynamics, but with constrained dynamics of a type initially suggested by foams and idealized covalent glasses. We demonstrate that macroscopic dynamical features characteristic of real and more complex model glasses, such as two-time decays in energy and auto-correlation functions, arise from the dynamics and we explain them qualitatively and quantitatively in terms of annihilation-diffusion concepts and theory. The comparison is with strong glasses. We also consider fluctuation-dissipation relations and demonstrate subtleties of interpretation. We find no FDT breakdown when the correct normalization is chosen.

  1. Interpretation of leaching data for cementitious waste forms using analytical solutions based on mass transport theory and empiricism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spence, R.D.; Godbee, H.W.; Tallent, O.K.

    1991-01-01

    Despite the demonstrated importance of diffusion control in leaching, other mechanisms have been observed to play a role and leaching from porous solid bodies is not simple diffusion. Only simple diffusion theory has been developed well enough for extrapolation, as yet. The well developed diffusion theory, used in data analysis by ANSI/ANS-16.1 and the NEWBOX program, can help in trying to extrapolate and predict the performance of solidified waste forms over decades and centuries, but the limitations and increased uncertainty must be understood in so doing. Treating leaching as a semi-infinite medium problem, as done in the Cote model, resultsmore » in simpler equations, but limits, application to early leaching behavior when less than 20% of a given component has been leached. 18 refs., 2 tabs.« less

  2. Efficient micromagnetic modelling of spin-transfer torque and spin-orbit torque

    NASA Astrophysics Data System (ADS)

    Abert, Claas; Bruckner, Florian; Vogler, Christoph; Suess, Dieter

    2018-05-01

    While the spin-diffusion model is considered one of the most complete and accurate tools for the description of spin transport and spin torque, its solution in the context of dynamical micromagnetic simulations is numerically expensive. We propose a procedure to retrieve the free parameters of a simple macro-spin like spin-torque model through the spin-diffusion model. In case of spin-transfer torque the simplified model complies with the model of Slonczewski. A similar model can be established for the description of spin-orbit torque. In both cases the spin-diffusion model enables the retrieval of free model parameters from the geometry and the material parameters of the system. Since these parameters usually have to be determined phenomenologically through experiments, the proposed method combines the strength of the diffusion model to resolve material parameters and geometry with the high performance of simple torque models.

  3. Comparison between active (pumped) and passive (diffusive) sampling methods for formaldehyde in pathology and histology laboratories.

    PubMed

    Lee, Eun Gyung; Magrm, Rana; Kusti, Mohannad; Kashon, Michael L; Guffey, Steven; Costas, Michelle M; Boykin, Carie J; Harper, Martin

    2017-01-01

    This study was to determine occupational exposures to formaldehyde and to compare concentrations of formaldehyde obtained by active and passive sampling methods. In one pathology and one histology laboratories, exposure measurements were collected with sets of active air samplers (Supelco LpDNPH tubes) and passive badges (ChemDisk Aldehyde Monitor 571). Sixty-six sample pairs (49 personal and 17 area) were collected and analyzed by NIOSH NMAM 2016 for active samples and OSHA Method 1007 (using the manufacturer's updated uptake rate) for passive samples. All active and passive 8-hr time-weighted average (TWA) measurements showed compliance with the OSHA permissible exposure limit (PEL-0.75 ppm) except for one passive measurement, whereas 78% for the active and 88% for the passive samples exceeded the NIOSH recommended exposure limit (REL-0.016 ppm). Overall, 73% of the passive samples showed higher concentrations than the active samples and a statistical test indicated disagreement between two methods for all data and for data without outliers. The OSHA Method cautions that passive samplers should not be used for sampling situations involving formalin solutions because of low concentration estimates in the presence of reaction products of formaldehyde and methanol (a formalin additive). However, this situation was not observed, perhaps because the formalin solutions used in these laboratories included much less methanol (3%) than those tested in the OSHA Method (up to 15%). The passive samplers in general overestimated concentrations compared to the active method, which is prudent for demonstrating compliance with an occupational exposure limit, but occasional large differences may be a result of collecting aerosolized droplets or splashes on the face of the samplers. In the situations examined in this study the passive sampler generally produces higher results than the active sampler so that a body of results from passive samplers demonstrating compliance with the OSHA PEL would be a valid conclusion. However, individual passive samples can show lower results than a paired active sampler so that a single result should be treated with caution.

  4. Bio-inspired passive actuator simulating an abalone shell mechanism for structural control

    NASA Astrophysics Data System (ADS)

    Yang, Henry T. Y.; Lin, Chun-Hung; Bridges, Daniel; Randall, Connor J.; Hansma, Paul K.

    2010-10-01

    An energy dispersion mechanism called 'sacrificial bonds and hidden length', which is found in some biological systems, such as abalone shells and bones, is the inspiration for new strategies for structural control. Sacrificial bonds and hidden length can substantially increase the stiffness and enhance energy dissipation in the constituent molecules of abalone shells and bone. Having been inspired by the usefulness and effectiveness of such a mechanism, which has evolved over millions of years and countless cycles of evolutions, the authors employ the conceptual underpinnings of this mechanism to develop a bio-inspired passive actuator. This paper presents a fundamental method for optimally designing such bio-inspired passive actuators for structural control. To optimize the bio-inspired passive actuator, a simple method utilizing the force-displacement-velocity (FDV) plots based on LQR control is proposed. A linear regression approach is adopted in this research to find the initial values of the desired parameters for the bio-inspired passive actuator. The illustrative examples, conducted by numerical simulation with experimental validation, suggest that the bio-inspired passive actuator based on sacrificial bonds and hidden length may be comparable in performance to state-of-the-art semi-active actuators.

  5. A 3-Component System of Competition and Diffusion.

    DTIC Science & Technology

    1983-08-01

    assume * that the distribution of the populations are determined by competition of’ Lotka - Volterra - * Gause type and simple diffusion. Suppose ui(t,x...diffusive Lotka - Volterra system with three species can have a stable non-constant equilibrium solutions. J. Math. Biol., (in press). [7] Kishimoto, K., Mimura...M. and Yoshida, K., Stable spatlo-temporal oscillations of diffusive Lotka - Volterra systems with three or more species, to appear in J. Math. Biol

  6. High angular resolution diffusion imaging with stimulated echoes: compensation and correction in experiment design and analysis.

    PubMed

    Lundell, Henrik; Alexander, Daniel C; Dyrby, Tim B

    2014-08-01

    Stimulated echo acquisition mode (STEAM) diffusion MRI can be advantageous over pulsed-gradient spin-echo (PGSE) for diffusion times that are long compared with T2 . It therefore has potential for biomedical diffusion imaging applications at 7T and above where T2 is short. However, gradient pulses other than the diffusion gradients in the STEAM sequence contribute much greater diffusion weighting than in PGSE and lead to a disrupted experimental design. Here, we introduce a simple compensation to the STEAM acquisition that avoids the orientational bias and disrupted experiment design that these gradient pulses can otherwise produce. The compensation is simple to implement by adjusting the gradient vectors in the diffusion pulses of the STEAM sequence, so that the net effective gradient vector including contributions from diffusion and other gradient pulses is as the experiment intends. High angular resolution diffusion imaging (HARDI) data were acquired with and without the proposed compensation. The data were processed to derive standard diffusion tensor imaging (DTI) maps, which highlight the need for the compensation. Ignoring the other gradient pulses, a bias in DTI parameters from STEAM acquisition is found, due both to confounds in the analysis and the experiment design. Retrospectively correcting the analysis with a calculation of the full B matrix can partly correct for these confounds, but an acquisition that is compensated as proposed is needed to remove the effect entirely. © 2014 The Authors. NMR in Biomedicine published by John Wiley & Sons, Ltd.

  7. Passive and active adaptive management: Approaches and an example

    USGS Publications Warehouse

    Williams, B.K.

    2011-01-01

    Adaptive management is a framework for resource conservation that promotes iterative learning-based decision making. Yet there remains considerable confusion about what adaptive management entails, and how to actually make resource decisions adaptively. A key but somewhat ambiguous distinction in adaptive management is between active and passive forms of adaptive decision making. The objective of this paper is to illustrate some approaches to active and passive adaptive management with a simple example involving the drawdown of water impoundments on a wildlife refuge. The approaches are illustrated for the drawdown example, and contrasted in terms of objectives, costs, and potential learning rates. Some key challenges to the actual practice of AM are discussed, and tradeoffs between implementation costs and long-term benefits are highlighted. ?? 2010 Elsevier Ltd.

  8. Design and fabrication of a hybrid maglev model employing PML and SML

    NASA Astrophysics Data System (ADS)

    Sun, R. X.; Zheng, J.; Zhan, L. J.; Huang, S. Y.; Li, H. T.; Deng, Z. G.

    2017-10-01

    A hybrid maglev model combining permanent magnet levitation (PML) and superconducting magnetic levitation (SML) was designed and fabricated to explore a heavy-load levitation system advancing in passive stability and simple structure. In this system, the PML was designed to levitate the load, and the SML was introduced to guarantee the stability. In order to realize different working gaps of the two maglev components, linear bearings were applied to connect the PML layer (for load) and the SML layer (for stability) of the hybrid maglev model. Experimental results indicate that the hybrid maglev model possesses excellent advantages of heavy-load ability and passive stability at the same time. This work presents a possible way to realize a heavy-load passive maglev concept.

  9. Silver nanoparticles induce developmental stage-specific embryonic phenotypes in zebrafish.

    PubMed

    Lee, Kerry J; Browning, Lauren M; Nallathamby, Prakash D; Osgood, Christopher J; Xu, Xiao-Hong Nancy

    2013-12-07

    Much is anticipated from the development and deployment of nanomaterials in biological organisms, but concerns remain regarding their biocompatibility and target specificity. Here we report our study of the transport, biocompatibility and toxicity of purified and stable silver nanoparticles (Ag NPs, 13.1 ± 2.5 nm in diameter) upon the specific developmental stages of zebrafish embryos using single NP plasmonic spectroscopy. We find that single Ag NPs passively diffuse into five different developmental stages of embryos (cleavage, early-gastrula, early-segmentation, late-segmentation, and hatching stages), showing stage-independent diffusion modes and diffusion coefficients. Notably, the Ag NPs induce distinctive stage and dose-dependent phenotypes and nanotoxicity, upon their acute exposure to the Ag NPs (0-0.7 nM) for only 2 h. The late-segmentation embryos are most sensitive to the NPs with the lowest critical concentration (CNP,c < 0.02 nM) and highest percentages of cardiac abnormalities, followed by early-segmentation embryos (CNP,c < 0.02 nM), suggesting that disruption of cell differentiation by the NPs causes the most toxic effects on embryonic development. The cleavage-stage embryos treated with the NPs develop into a wide variety of phenotypes (abnormal finfold, tail/spinal cord flexure, cardiac malformation/edema, yolk sac edema, and acephaly). These organ structures are not yet developed in cleavage-stage embryos, suggesting that the earliest determinative events to create these structures are ongoing, and disrupted by NPs, which leads to the downstream effects. In contrast, the hatching embryos are most resistant to the Ag NPs, and majority of embryos (94%) develop normally, and none of them develop abnormally. Interestingly, early-gastrula embryos are less sensitive to the NPs than cleavage and segmentation stage embryos, and do not develop abnormally. These important findings suggest that the Ag NPs are not simple poisons, and they can target specific pathways in development, and potentially enable target specific study and therapy for early embryonic development.

  10. Active flow control of subsonic flow in an adverse pressure gradient using synthetic jets and passive micro flow control devices

    NASA Astrophysics Data System (ADS)

    Denn, Michael E.

    Several recent studies have shown the advantages of active and/or passive flow control devices for boundary layer flow modification. Many current and future proposed air vehicles have very short or offset diffusers in order to save vehicle weight and create more optimal vehicle/engine integration. Such short coupled diffusers generally result in boundary layer separation and loss of pressure recovery which reduces engine performance and in some cases may cause engine stall. Deployment of flow control devices can alleviate this problem to a large extent; however, almost all active flow control devices have some energy penalty associated with their inclusion. One potential low penalty approach for enhancing the diffuser performance is to combine the passive flow control elements such as micro-ramps with active flow control devices such as synthetic jets to achieve higher control authority. The goal of this dissertation is twofold. The first objective is to assess the ability of CFD with URANS turbulence models to accurately capture the effects of the synthetic jets and micro-ramps on boundary layer flow. This is accomplished by performing numerical simulations replicating several experimental test cases conducted at Georgia Institute of Technology under the NASA funded Inlet Flow Control and Prediction Technologies Program, and comparing the simulation results with experimental data. The second objective is to run an expanded CFD matrix of numerical simulations by varying various geometric and other flow control parameters of micro-ramps and synthetic jets to determine how passive and active control devices interact with each other in increasing and/or decreasing the control authority and determine their influence on modification of boundary layer flow. The boundary layer shape factor is used as a figure of merit for determining the boundary layer flow quality/modification and its tendency towards separation. It is found by a large number of numerical experiments and the analysis of simulation data that a flow control device's influence on boundary layer quality is a function of three factors: (1) the strength of the longitudinal vortex emanating from the flow control device or devices, (2) the height of the vortex core above the surface and, when a synthetic jet is present, (3) the momentum added to the boundary layer flow.

  11. Influence of peptide dendrimers and sonophoresis on the transdermal delivery of ketoprofen.

    PubMed

    Manikkath, Jyothsna; Hegde, Aswathi R; Kalthur, Guruprasad; Parekh, Harendra S; Mutalik, Srinivas

    2017-04-15

    The aim of this study was to determine the individual and combined effects of peptide dendrimers and low frequency ultrasound on the transdermal permeation of ketoprofen. Arginine terminated peptide dendrimers of varying charges (4 + , 8 + and 16 + , named as A4. A8 and A16 respectively) were synthesized and characterized. Ketoprofen was subjected to passive, peptide dendrimer-assisted and sonophoretic permeation studies (with and without dendrimer application) across Swiss albino mouse skin, both in vitro and in vivo. The studies revealed that the synthesized peptide dendrimers considerably increased the transdermal permeation of ketoprofen and displayed enhancement ratios of up to 3.25 (with A16 dendrimer), compared to passive diffusion of drug alone in vitro. Moreover, the combination of peptide dendrimer treatment and ultrasound application worked in synergy and gave enhancement ratios of up to 1369.15 (with ketoprofen-A16 dendrimer complex). In vivo studies demonstrated that dendrimer and ultrasound-assisted permeation of drug achieved much higher plasma concentration of drug, compared to passive diffusion. Comparison of transdermal and oral absorption studies revealed that transdermal administration of ketoprofen with A8 dendrimer showed comparable absorption and plasma drug levels with oral route. The excised mouse skin after in vivo permeation study with dendrimers and ultrasound did not show major toxic reactions. This study demonstrates that arginine terminated peptide dendrimers combined with sonophoresis can effectively improve the transdermal permeation of ketoprofen. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Tantalum oxide/silicon nitride: A negatively charged surface passivation stack for silicon solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Yimao, E-mail: yimao.wan@anu.edu.au; Bullock, James; Cuevas, Andres

    2015-05-18

    This letter reports effective passivation of crystalline silicon (c-Si) surfaces by thermal atomic layer deposited tantalum oxide (Ta{sub 2}O{sub 5}) underneath plasma enhanced chemical vapour deposited silicon nitride (SiN{sub x}). Cross-sectional transmission electron microscopy imaging shows an approximately 2 nm thick interfacial layer between Ta{sub 2}O{sub 5} and c-Si. Surface recombination velocities as low as 5.0 cm/s and 3.2 cm/s are attained on p-type 0.8 Ω·cm and n-type 1.0 Ω·cm c-Si wafers, respectively. Recombination current densities of 25 fA/cm{sup 2} and 68 fA/cm{sup 2} are measured on 150 Ω/sq boron-diffused p{sup +} and 120 Ω/sq phosphorus-diffused n{sup +} c-Si, respectively. Capacitance–voltage measurements reveal a negativemore » fixed insulator charge density of −1.8 × 10{sup 12 }cm{sup −2} for the Ta{sub 2}O{sub 5} film and −1.0 × 10{sup 12 }cm{sup −2} for the Ta{sub 2}O{sub 5}/SiN{sub x} stack. The Ta{sub 2}O{sub 5}/SiN{sub x} stack is demonstrated to be an excellent candidate for surface passivation of high efficiency silicon solar cells.« less

  13. Design of a Three-Layer Antireflection Coating for High Efficiency Indium Phosphide Solar Cells Using a Chemical Oxide as First Layer

    NASA Technical Reports Server (NTRS)

    Moulot, Jacques; Faur, Mircea; Faur, Maria; Goradia, Chandra; Goradia, Manju; Bailey, Sheila

    1995-01-01

    It is well known that the behavior of III-V compound based solar cells is largely controlled by their surface, since the majority of light generated carriers (63% for GaAs and 79% for InP) are created within 0.2 microns of the illuminated surface of the cell. Consequently, the always observed high surface recombination velocity (SRV) on these cells is a serious limiting factor for their high efficiency performance, especially for those with the p-n junction made by either thermal diffusion or ion implantation. A good surface passivation layer, ideally, a grown oxide as opposed to a deposited one, will cause a significant reduction in the SRV without adding interface problems, thus improving the performance of III-V compound based solar cells. Another significant benefit to the overall performance of the solar cells can be achieved by a substantial reduction of their large surface optical reflection by the use of a well designed antireflection (AR) coating. In this paper, we demonstrate the effectiveness of using a chemically grown, thermally and chemically stable oxide, not only for surface passivation but also as an integral part of a 3- layer AR coating for thermally diffused p(+)n InP solar cells. A phosphorus-rich interfacial oxide, In(PO3)3, is grown at the surface of the p(+) emitter using an etchant based on HNO3, o-H3PO4 and H2O2. This oxide has the unique properties of passivating the surface as well as serving as a fairly efficient antireflective layer yielding a measured record high AM0, 25 C, open-circuit voltage of 890.3 mV on a thermally diffused InP(Cd,S) solar cell. Unlike conventional single layer AR coatings such as ZnS, Sb2O3, SiO or double layer AR coatings such as ZnS/MgF2 deposited by e-beam or resistive evaporation, this oxide preserves the stoichiometry of the InP surface. We show that it is possible to design a three-layer AR coating for a thermally diffused InP solar cell using the In(PO3)3 grown oxide as the first layer and Al2O3, MgF2 or ZnS, MgF2 as the second and third layers respectively, so as to yield an overall theoretical reflectance of less than 2%. Since chemical oxides are readily grown on III-V semiconductor materials, the technique of using the grown oxide layer to both passivate the surface as well as serve as the first of a multilayer AR coating, should work well for essentially all III-V compound-based solar cells.

  14. Design of a three-layer antireflection coating for high efficiency indium phosphide solar cells using a chemical oxide as first layer

    NASA Technical Reports Server (NTRS)

    Moulot, Jacques; Faur, M.; Faur, M.; Goradia, C.; Goradia, M.; Bailey, S.

    1995-01-01

    It is well known that the behavior of III-V compound based solar cells is largely controlled by their surface, since the majority of light generated carriers (63% for GaAs and 79% for InP) are created within 0.2 mu m of the surface of the illuminated cell. Consequently, the always observed high surface recombination velocity (SRV) on these cells is a serious limiting factor for their high efficiency performance, especially for those with p-n junction made by either thermal diffusion or ion implantation. A good surface passivation layer, ideally a grown oxide as opposed to a deposited one, will cause a significant reduction in the SRV without adding interface problems, thus improving the performance of III-V compound based solar cells. Another significant benefit to the overall performance of the solar cells can be achieved by a substantial reduction of their large surface optical reflection by the use of a well designed antireflection (AR) coating. In this paper, we demonstrate the effectiveness of using a chemically grown thermally and chemically stable oxide, not only for surface passivation but also as an integral part of a 3-layer AR coating for thermally diffused p+n InP solar cells. A phosphorus-rich interfacial oxide, In(PO3)3, is grown at the surface of the p+ emitter using an etchant based on HNO3, o-H3PO4 and H2O2. This oxide has the unique properties of passivating the surface as well as serving as an efficient antireflective layer yielding a measured record high AMO open-circuit voltage of 890.3 mV on a thermally diffused InP(Cd,S) solar cell. Unlike conventional single layer AR coatings such as ZnS, Sb2O3, SiO or double layer AR coatings such as ZnS/MgF2 deposited by e-beam or resistive evaporation, this oxide preserves the stoichiometry of the InP surface. We show that it is possible to design a three-layer AR coating for a thermally diffused InP solar cell using the In(PO3)3 grown oxide as the first layer and Al2O3 and MgF2 as the second and third layers respectively, so as to yield an overall theoretical reflectance of less than 2%. Since chemical oxides are readily grown on III-V semiconductors materials, the technique of using the grown oxide layer to both passivate the surface as well as serve as the first of a multilayer AR coating should work well for all III-V compound-based solar cells.

  15. Cu-Zn binary phase diagram and diffusion couples

    NASA Technical Reports Server (NTRS)

    Mccoy, Robert A.

    1992-01-01

    The objectives of this paper are to learn: (1) what information a binary phase diagram can yield; (2) how to construct and heat treat a simple diffusion couple; (3) how to prepare a metallographic sample; (4) how to operate a metallograph; (5) how to correlate phases found in the diffusion couple with phases predicted by the phase diagram; (6) how diffusion couples held at various temperatures could be used to construct a phase diagram; (7) the relation between the thickness of an intermetallic phase layer and the diffusion time; and (8) the effect of one species of atoms diffusing faster than another species in a diffusion couple.

  16. Assembly of bipolar microtubule structures by passive cross-linkers and molecular motors

    NASA Astrophysics Data System (ADS)

    Johann, D.; Goswami, D.; Kruse, K.

    2016-06-01

    During cell division, sister chromatids are segregated by the mitotic spindle, a bipolar assembly of interdigitating antiparallel polar filaments called microtubules. The spindle contains the midzone, a stable region of overlapping antiparallel microtubules, that is essential for maintaining bipolarity. Although a lot is known about the molecular players involved, the mechanism underlying midzone formation and maintenance is still poorly understood. We study the interaction of polar filaments that are cross-linked by molecular motors moving directionally and by passive cross-linkers diffusing along microtubules. Using a particle-based stochastic model, we find that the interplay of motors and passive cross-linkers can generate a stable finite overlap between a pair of antiparallel polar filaments. We develop a mean-field theory to study this mechanism in detail and investigate the influence of steric interactions between motors and passive cross-linkers on the overlap dynamics. In the presence of interspecies steric interactions, passive cross-linkers mimic the behavior of molecular motors and stable finite overlaps are generated even for non-cross-linking motors. Finally, we develop a mean-field theory for a bundle of aligned polar filaments and show that they can self-organize into a spindlelike pattern. Our work suggests possible ways as to how cells can generate spindle midzones and control their extensions.

  17. Enhanced Impurity-Free Intermixing Bandgap Engineering for InP-Based Photonic Integrated Circuits

    NASA Astrophysics Data System (ADS)

    Cui, Xiao; Zhang, Can; Liang, Song; Zhu, Hong-Liang; Hou, Lian-Ping

    2014-04-01

    Impurity-free intermixing of InGaAsP multiple quantum wells (MQW) using sputtering Cu/SiO2 layers followed by rapid thermal processing (RTP) is demonstrated. The bandgap energy could be modulated by varying the sputtering power and time of Cu, RTP temperature and time to satisfy the demands for lasers, modulators, photodetector, and passive waveguides for the photonic integrated circuits with a simple procedure. The blueshift of the bandgap wavelength of MQW is experimentally investigated on different sputtering and annealing conditions. It is obvious that the introduction of the Cu layer could increase the blueshift more greatly than the common impurity free vacancy disordering technique. A maximum bandgap blueshift of 172 nm is realized with an annealing condition of 750°C and 200s. The improved technique is promising for the fabrication of the active/passive optoelectronic components on a single wafer with simple process and low cost.

  18. Simple analytical model for low-frequency frequency-modulation noise of monolithic tunable lasers.

    PubMed

    Huynh, Tam N; Ó Dúill, Seán P; Nguyen, Lim; Rusch, Leslie A; Barry, Liam P

    2014-02-10

    We employ simple analytical models to construct the entire frequency-modulation (FM)-noise spectrum of tunable semiconductor lasers. Many contributions to the laser FM noise can be clearly identified from the FM-noise spectrum, such as standard Weiner FM noise incorporating laser relaxation oscillation, excess FM noise due to thermal fluctuations, and carrier-induced refractive index fluctuations from stochastic carrier generation in the passive tuning sections. The contribution of the latter effect is identified by noting a correlation between part of the FM-noise spectrum with the FM-modulation response of the passive sections. We pay particular attention to the case of widely tunable lasers with three independent tuning sections, mainly the sampled-grating distributed Bragg reflector laser, and compare with that of a distributed feedback laser. The theoretical model is confirmed with experimental measurements, with the calculations of the important phase-error variance demonstrating excellent agreement.

  19. 25-Gb/s broadband silicon modulator with 0.31-V·cm VπL based on forward-biased PIN diodes embedded with passive equalizer.

    PubMed

    Baba, Takeshi; Akiyama, Suguru; Imai, Masahiko; Usuki, Tatsuya

    2015-12-28

    We investigated the broadband operations of a silicon Mach-Zehnder modulator (MZM) based on a forward-biased-PIN diode. The phase shifter was integrated with a passive-circuit equalizer to compensate for the narrowband characteristics of the diodes, which consists of a simple resistance of doped silicon and a parallel-plate metal capacitance. The device structure was simple and fabricated using standard CMOS processes. The measured results for a 50-Ω driver indicated there was a small VπL of 0.31 V·cm and a flat frequency response for a 3-dB bandwidth (f(3dB)) of 17 GHz, which agree well with the designed values. A 25-Gb/s large-signal operation was obtained using binary signals without pre-emphasis. The modulator showed a linear modulation property to the applied voltage, due to the metal capacitance of the equalizer.

  20. Understanding and improving lithium ion batteries through mathematical modeling and experiments

    NASA Astrophysics Data System (ADS)

    Deshpande, Rutooj D.

    There is an intense, worldwide effort to develop durable lithium ion batteries with high energy and power densities for a wide range of applications, including electric and hybrid electric vehicles. For improvement of battery technology understanding the capacity fading mechanism in batteries is of utmost importance. Novel electrode material and improved electrode designs are needed for high energy- high power batteries with less capacity fading. Furthermore, for applications such as automotive applications, precise cycle-life prediction of batteries is necessary. One of the critical challenges in advancing lithium ion battery technologies is fracture and decrepitation of the electrodes as a result of lithium diffusion during charging and discharging operations. When lithium is inserted in either the positive or negative electrode, there is a volume change associated with insertion or de-insertion. Diffusion-induced stresses (DISs) can therefore cause the nucleation and growth of cracks, leading to mechanical degradation of the batteries. With different mathematical models we studied the behavior of diffusion induces stresses and effects of electrode shape, size, concentration dependent material properties, pre-existing cracks, phase transformations, operating conditions etc. on the diffusion induced stresses. Thus we develop tools to guide the design of the electrode material with better mechanical stability for durable batteries. Along with mechanical degradation, chemical degradation of batteries also plays an important role in deciding battery cycle life. The instability of commonly employed electrolytes results in solid electrolyte interphase (SEI) formation. Although SEI formation contributes to irreversible capacity loss, the SEI layer is necessary, as it passivates the electrode-electrolyte interface from further solvent decomposition. SEI layer and diffusion induced stresses are inter-dependent and affect each-other. We study coupled chemical-mechanical degradation of electrode materials to understand the capacity fading of the battery with cycling. With the understanding of chemical and mechanical degradation, we develop a simple phenomenological model to predict battery life. On the experimental part we come up with a novel concept of using liquid metal alloy as a self-healing battery electrode. We develop a method to prepare thin film liquid gallium electrode on a conductive substrate. This enabled us to perform a series of electrochemical and characterization experiments which certify that liquid electrode undergo liquid-solid-liquid transition and thus self-heals the cracks formed during de-insertion. Thus the mechanical degradation can be avoided. We also perform ab-initio calculations to understand the equilibrium potential of various lithium-gallium phases. KEYWORDS: Lithium ion batteries, diffusion induced stresses, self-healing electrode, coupled chemical and mechanical degradation, life-prediction model.

  1. Passive Rocket Diffuser Testing: Reacting Flow Performance of Four Second-Throat Geometries

    NASA Technical Reports Server (NTRS)

    Jones, Daniel R.; Allgood, Daniel C.; Saunders, Grady P.

    2016-01-01

    Second-throat diffusers serve to isolate rocket engines from the effects of ambient back pressure. As one of the nation's largest rocket testing facilities, the performance and design limitations of diffusers are of great interest to NASA's Stennis Space Center. This paper describes a series of tests conducted on four diffuser configurations to better understand the effects of inlet geometry and throat area on starting behavior and boundary layer separation. The diffusers were tested for a duration of five seconds with a 1455-pound thrust, LO2/GH2 thruster to ensure they each reached aerodynamic steady state. The effects of a water spray ring at the diffuser exits and a water-cooled deflector plate were also evaluated. Static pressure and temperature measurements were taken at multiple axial locations along the diffusers, and Computational Fluid Dynamics (CFD) simulations were used as a tool to aid in the interpretation of data. The hot combustion products were confirmed to enable the diffuser start condition with tighter second throats than predicted by historical cold-flow data or the theoretical normal shock method. Both aerodynamic performance and heat transfer were found to increase with smaller diffuser throats. Spray ring and deflector cooling water had negligible impacts on diffuser boundary layer separation. CFD was found to accurately capture diffuser shock structures and full-flowing diffuser wall pressures, and the qualitative behavior of heat transfer. However, the ability to predict boundary layer separated flows was not consistent.

  2. Field intercomparison of ammonia passive samplers: results and lessons learned.

    NASA Astrophysics Data System (ADS)

    Stephens, Amy; Leeson, Sarah; Jones, Matthew; van Dijk, Netty; Kentisbeer, John; Twigg, Marsailidh; Simmons, Ivan; Braban, Christine; Martin, Nick; Poskitt, Janet; Ferm, Martin; Seitler, Eva; Sacco, Paolo; Gates, Linda; Stolk, Ariën; Stoll, Jean-Marc; Tang, Sim

    2017-04-01

    Ammonia pollution contributes significantly to eutrophication and acidification of ecosystems with resultant losses of biodiversity and ecosystem changes. Monitoring of ambient ammonia over a wide spatial and long temporal scales is primarily done with low-cost diffusive samplers. Less frequently, surface flux measurements of ammonia can be made using passive samplers at plot scale. This paper will present a field intercomparison conducted within the MetNH3 project to assess the performance of passive samplers for ambient measurements of ammonia. Eight different designs of commercial passive samplers housed in shelters provided by the manufacturer/laboratory were exposed over an 8-week period at the Whim experimental field site in Scotland between August and October 2016. Whim Bog has a facility in place for controlled releases of ammonia (http://www.whimbog.ceh.ac.uk/). Automated conditional release from the line source occurs when the wind direction in the preceding minute is from the northeast (wind sector 180-215°) and wind speed is > 5 m s-1. The passive samplers were exposed at different distances from the release source (16, 32 and 60 m) and also at a background location. Most were exposed for 2 x 4-week long periods and some for 4 x 2-week long periods. At the 32 m position, an active denuder method, the CEH DELTA sampler and a continuous high temporal resolution wet chemistry ammonia instrument (AiRRmonia, Mechatronics, NL.) were also deployed alongside the passive samplers to provide reference measurements of ammonia. Results are presented within the context of the MetNH3 CATFAC controlled laboratory exposure assessments. The results are discussed in terms of typical deployments of passive samplers and quality control. Measurement for policy evidence for both local and regional studies using passive samplers are discussed.

  3. Passive Standoff Detection of Chemical Warfare Agents on Surfaces

    NASA Astrophysics Data System (ADS)

    Thériault, Jean-Marc; Puckrin, Eldon; Hancock, Jim; Lecavalier, Pierre; Lepage, Carmela Jackson; Jensen, James O.

    2004-11-01

    Results are presented on the passive standoff detection and identification of chemical warfare (CW) liquid agents on surfaces by the Fourier-transform IR radiometry. This study was performed during surface contamination trials at Defence Research and Development Canada-Suffield in September 2002. The goal was to verify that passive long-wave IR spectrometric sensors can potentially remotely detect surfaces contaminated with CW agents. The passive sensor, the Compact Atmospheric Sounding Interferometer, was used in the trial to obtain laboratory and field measurements of CW liquid agents, HD and VX. The agents were applied to high-reflectivity surfaces of aluminum, low-reflectivity surfaces of Mylar, and several other materials including an armored personnel carrier. The field measurements were obtained at a standoff distance of 60 m from the target surfaces. Results indicate that liquid contaminant agents deposited on high-reflectivity surfaces can be detected, identified, and possibly quantified with passive sensors. For low-reflectivity surfaces the presence of the contaminants can usually be detected; however, their identification based on simple correlations with the absorption spectrum of the pure contaminant is not possible.

  4. Novel maglev pump with a combined magnetic bearing.

    PubMed

    Onuma, Hiroyuki; Murakami, Michiko; Masuzawa, Toru

    2005-01-01

    The newly developed pump is a magnetically levitated centrifugal blood pump in which active and passive magnetic bearings are integrated to construct a durable ventricular assist device. The developed maglev centrifugal pump consists of an active magnetic bearing, a passive magnetic bearing, a levitated impeller, and a motor stator. The impeller is set between the active magnetic bearing and the motor stator. The active magnetic bearing uses four electromagnets to control the tilt and the axial position of the impeller. The radial movement of the levitated impeller is restricted with the passive stability dependent upon the top stator and the passive permanent magnetic bearing to reduce the energy consumption and the control system complexity. The top stator was designed based upon a magnetic field analysis to develop the maglev pump with sufficient passive stability in the radial direction. By implementing this analysis design, the oscillating amplitude of the impeller in the radial direction was cut in half when compared with the simple shape stator. This study concluded that the newly developed maglev centrifugal pump displayed excellent levitation performance and sufficient pump performance as a ventricular assist device.

  5. Measuring charge carrier diffusion in coupled colloidal quantum dot solids.

    PubMed

    Zhitomirsky, David; Voznyy, Oleksandr; Hoogland, Sjoerd; Sargent, Edward H

    2013-06-25

    Colloidal quantum dots (CQDs) are attractive materials for inexpensive, room-temperature-, and solution-processed optoelectronic devices. A high carrier diffusion length is desirable for many CQD device applications. In this work we develop two new experimental methods to investigate charge carrier diffusion in coupled CQD solids under charge-neutral, i.e., undepleted, conditions. The methods take advantage of the quantum-size-effect tunability of our materials, utilizing a smaller-bandgap population of quantum dots as a reporter system. We develop analytical models of diffusion in 1D and 3D structures that allow direct extraction of diffusion length from convenient parametric plots and purely optical measurements. We measure several CQD solids fabricated using a number of distinct methods and having significantly different doping and surface ligand treatments. We find that CQD materials recently reported to achieve a certified power conversion efficiency of 7% with hybrid organic-inorganic passivation have a diffusion length of 80 ± 10 nm. The model further allows us to extract the lifetime, trap density, mobility, and diffusion coefficient independently in each material system. This work will facilitate further progress in extending the diffusion length, ultimately leading to high-quality CQD solid semiconducting materials and improved CQD optoelectronic devices, including CQD solar cells.

  6. A novel rumor diffusion model considering the effect of truth in online social media

    NASA Astrophysics Data System (ADS)

    Sun, Ling; Liu, Yun; Zeng, Qing-An; Xiong, Fei

    2015-12-01

    In this paper, we propose a model to investigate how truth affects rumor diffusion in online social media. Our model reveals a relation between rumor and truth — namely, when a rumor is diffusing, the truth about the rumor also diffuses with it. Two patterns of the agents used to identify rumor, self-identification and passive learning are taken into account. Combining theoretical proof and simulation analysis, we find that the threshold value of rumor diffusion is negatively correlated to the connectivity between nodes in the network and the probability β of agents knowing truth. Increasing β can reduce the maximum density of the rumor spreaders and slow down the generation speed of new rumor spreaders. On the other hand, we conclude that the best rumor diffusion strategy must balance the probability of forwarding rumor and the probability of agents losing interest in the rumor. High spread rate λ of rumor would lead to a surge in truth dissemination which will greatly limit the diffusion of rumor. Furthermore, in the case of unknown λ, increasing β can effectively reduce the maximum proportion of agents who do not know the truth, but cannot narrow the rumor diffusion range in a certain interval of β.

  7. Opposing Effects of cAMP and T259 Phosphorylation on Plasma Membrane Diffusion of the Water Channel Aquaporin-5 in Madin-Darby Canine Kidney Cells

    PubMed Central

    Koffman, Jennifer S.; Arnspang, Eva C.; Marlar, Saw; Nejsum, Lene N.

    2015-01-01

    Aquaporin-5 (AQP5) facilitates passive water transport in glandular epithelia in response to secretory stimuli via intracellular pathways involving calcium release, cAMP and protein kinase A (PKA). In epithelial plasma membranes, AQP5 may be acutely regulated to facilitate water transport in response to physiological stimuli by changes in protein modifications, interactions with proteins and lipids, nanoscale membrane domain organization, and turnover rates. Such regulatory mechanisms could potentially be associated with alteration of diffusion behavior, possibly resulting in a change in the plasma membrane diffusion coefficient of AQP5. We aimed to test the short-term regulatory effects of the above pathways, by measuring lateral diffusion of AQP5 and an AQP5 phospho-mutant, T259A, using k-space Image Correlation Spectroscopy of quantum dot- and EGFP-labeled AQP5. Elevated cAMP and PKA inhibition significantly decreased lateral diffusion of AQP5, whereas T259A mutation showed opposing effects; slowing diffusion without stimulation and increasing diffusion to basal levels after cAMP elevation. Thus, lateral diffusion of AQP5 is significantly regulated by cAMP, PKA, and T259 phosphorylation, which could be important for regulating water flow in glandular secretions. PMID:26218429

  8. Mode coupling theory for nonequilibrium glassy dynamics of thermal self-propelled particles.

    PubMed

    Feng, Mengkai; Hou, Zhonghuai

    2017-06-28

    We present a mode coupling theory study for the relaxation and glassy dynamics of a system of strongly interacting self-propelled particles, wherein the self-propulsion force is described by Ornstein-Uhlenbeck colored noise and thermal noises are included. Our starting point is an effective Smoluchowski equation governing the distribution function of particle positions, from which we derive a memory function equation for the time dependence of density fluctuations in nonequilibrium steady states. With the basic assumption of the absence of macroscopic currents and standard mode coupling approximation, we can obtain expressions for the irreducible memory function and other relevant dynamic terms, wherein the nonequilibrium character of the active system is manifested through an averaged diffusion coefficient D[combining macron] and a nontrivial structural function S 2 (q) with q being the magnitude of wave vector q. D[combining macron] and S 2 (q) enter the frequency term and the vertex term for the memory function, and thus influence both the short time and the long time dynamics of the system. With these equations obtained, we study the glassy dynamics of this thermal self-propelled particle system by investigating the Debye-Waller factor f q and relaxation time τ α as functions of the persistence time τ p of self-propulsion, the single particle effective temperature T eff as well as the number density ρ. Consequently, we find the critical density ρ c for given τ p shifts to larger values with increasing magnitude of propulsion force or effective temperature, in good accordance with previously reported simulation work. In addition, the theory facilitates us to study the critical effective temperature T for fixed ρ as well as its dependence on τ p . We find that T increases with τ p and in the limit τ p → 0, it approaches the value for a simple passive Brownian system as expected. Our theory also well recovers the results for passive systems and can be easily extended to more complex systems such as active-passive mixtures.

  9. Modeling 2D and 3D diffusion.

    PubMed

    Saxton, Michael J

    2007-01-01

    Modeling obstructed diffusion is essential to the understanding of diffusion-mediated processes in the crowded cellular environment. Simple Monte Carlo techniques for modeling obstructed random walks are explained and related to Brownian dynamics and more complicated Monte Carlo methods. Random number generation is reviewed in the context of random walk simulations. Programming techniques and event-driven algorithms are discussed as ways to speed simulations.

  10. Molecular-dynamics simulation of mutual diffusion in nonideal liquid mixtures

    NASA Astrophysics Data System (ADS)

    Rowley, R. L.; Stoker, J. M.; Giles, N. F.

    1991-05-01

    The mutual-diffusion coefficients, D 12, of n-hexane, n-heptane, and n-octane in chloroform were modeled using equilibrium molecular-dynamics (MD) simulations of simple Lennard-Jones (LJ) fluids. Pure-component LJ parameters were obtained by comparison of simulations to experimental self-diffusion coefficients. While values of “effective” LJ parameters are not expected to simulate accurately diverse thermophysical properties over a wide range of conditions, it was recently shown that effective parameters obtained from pure self-diffusion coefficients can accurately model mutual diffusion in ideal, liquid mixtures. In this work, similar simulations are used to model diffusion in nonideal mixtures. The same combining rules used in the previous study for the cross-interaction parameters were found to be adequate to represent the composition dependence of D 12. The effect of alkane chain length on D 12 is also correctly predicted by the simulations. A commonly used assumption in empirical correlations of D 12, that its kinetic portion is a simple, compositional average of the intradiffusion coefficients, is inconsistent with the simulation results. In fact, the value of the kinetic portion of D 12 was often outside the range of values bracketed by the two intradiffusion coefficients for the nonideal system modeled here.

  11. Entropy-based separation of yeast cells using a microfluidic system of conjoined spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Kai-Jian; Qin, S.-J., E-mail: shuijie.qin@gmail.com; Bai, Zhong-Chen

    2013-11-21

    A physical model is derived to create a biological cell separator that is based on controlling the entropy in a microfluidic system having conjoined spherical structures. A one-dimensional simplified model of this three-dimensional problem in terms of the corresponding effects of entropy on the Brownian motion of particles is presented. This dynamic mechanism is based on the Langevin equation from statistical thermodynamics and takes advantage of the characteristics of the Fokker-Planck equation. This mechanism can be applied to manipulate biological particles inside a microfluidic system with identical, conjoined, spherical compartments. This theoretical analysis is verified by performing a rapid andmore » a simple technique for separating yeast cells in these conjoined, spherical microfluidic structures. The experimental results basically match with our theoretical model and we further analyze the parameters which can be used to control this separation mechanism. Both numerical simulations and experimental results show that the motion of the particles depends on the geometrical boundary conditions of the microfluidic system and the initial concentration of the diffusing material. This theoretical model can be implemented in future biophysics devices for the optimized design of passive cell sorters.« less

  12. Using cross correlations of turbulent flow-induced ambient vibrations to estimate the structural impulse response. Application to structural health monitoring.

    PubMed

    Sabra, Karim G; Winkel, Eric S; Bourgoyne, Dwayne A; Elbing, Brian R; Ceccio, Steve L; Perlin, Marc; Dowling, David R

    2007-04-01

    It has been demonstrated theoretically and experimentally that an estimate of the impulse response (or Green's function) between two receivers can be obtained from the cross correlation of diffuse wave fields at these two receivers in various environments and frequency ranges: ultrasonics, civil engineering, underwater acoustics, and seismology. This result provides a means for structural monitoring using ambient structure-borne noise only, without the use of active sources. This paper presents experimental results obtained from flow-induced random vibration data recorded by pairs of accelerometers mounted within a flat plate or hydrofoil in the test section of the U.S. Navy's William B. Morgan Large Cavitation Channel. The experiments were conducted at high Reynolds number (Re > 50 million) with the primary excitation source being turbulent boundary layer pressure fluctuations on the upper and lower surfaces of the plate or foil. Identical deterministic time signatures emerge from the noise cross-correlation function computed via robust and simple processing of noise measured on different days by a pair of passive sensors. These time signatures are used to determine and/or monitor the structural response of the test models from a few hundred to a few thousand Hertz.

  13. Influence of Sulfide Nanoparticles on Dissolved Mercury and Zinc Quantification by Diffusive Gradient in Thin-Film Passive Samplers.

    PubMed

    Pham, Anh Le-Tuan; Johnson, Carol; Manley, Devon; Hsu-Kim, Heileen

    2015-11-03

    Diffusive gradient in thin-film (DGT) passive samplers are frequently used to monitor the concentrations of metals such as mercury and zinc in sediments and other aquatic environments. The application of these samplers generally presumes that they quantify only the dissolved fraction and not particle-bound metal species that are too large to migrate into the sampler. However, metals associated with very small nanoparticles (smaller than the pore size of DGT samplers) can be abundant in certain environments, yet the implications of these nanoparticles for DGT measurements are unclear. The objective of this study was to determine how the performance of the DGT sampler is affected by the presence of nanoparticulate species of Hg and Zn. DGT samplers were exposed to solutions containing known amounts of dissolved Hg(II) and nanoparticulate HgS (or dissolved Zn(II) and nanoparticulate ZnS). The amounts of Hg and Zn accumulated onto the DGT samplers were quantified over hours to days, and the rates of diffusion of the dissolved metal (i.e., the effective diffusion coefficient D) into the sampler's diffusion layer were calculated and compared for solutions containing varying concentrations of nanoparticles. The results suggested that the nanoparticles deposited on the surface of the samplers might have acted as sorbents, slowing the migration of the dissolved species into the samplers. The consequence was that the DGT sampler data underestimated the dissolved metal concentration in the solution. In addition, X-ray absorption spectroscopy was employed to determine the speciation of the Hg accumulated on the sampler binding layer, and the results indicated that HgS nanoparticles did not appear to directly contribute to the DGT measurement. Overall, our findings suggest that the deployment of DGT samplers in settings where nanoparticles are relevant (e.g., sediments) may result in DGT data that incorrectly estimated the dissolved metal concentrations. Models for metal uptake into the sampler may need to be reconsidered.

  14. Active Nuclear Import of Membrane Proteins Revisited

    PubMed Central

    Laba, Justyna K.; Steen, Anton; Popken, Petra; Chernova, Alina; Poolman, Bert; Veenhoff, Liesbeth M.

    2015-01-01

    It is poorly understood how membrane proteins destined for the inner nuclear membrane pass the crowded environment of the Nuclear Pore Complex (NPC). For the Saccharomyces cerevisiae proteins Src1/Heh1 and Heh2, a transport mechanism was proposed where the transmembrane domains diffuse through the membrane while the extralumenal domains encoding a nuclear localization signal (NLS) and intrinsically disordered linker (L) are accompanied by transport factors and travel through the NPC. Here, we validate the proposed mechanism and explore and discuss alternative interpretations of the data. First, to disprove an interpretation where the membrane proteins become membrane embedded only after nuclear import, we present biochemical and localization data to support that the previously used, as well as newly designed reporter proteins are membrane-embedded irrespective of the presence of the sorting signals, the specific transmembrane domain (multipass or tail anchored), independent of GET, and also under conditions that the proteins are trapped in the NPC. Second, using the recently established size limit for passive diffusion of membrane proteins in yeast, and using an improved assay, we confirm active import of polytopic membrane protein with extralumenal soluble domains larger than those that can pass by diffusion on similar timescales. This reinforces that NLS-L dependent active transport is distinct from passive diffusion. Thirdly, we revisit the proposed route through the center of the NPC and conclude that the previously used trapping assay is, unfortunately, poorly suited to address the route through the NPC, and the route thus remains unresolved. Apart from the uncertainty about the route through the NPC, the data confirm active, transport factor dependent, nuclear transport of membrane-embedded mono- and polytopic membrane proteins in baker’s yeast. PMID:26473931

  15. Transcellular movement of hydroxyurea is mediated by specific solute carrier transporters

    PubMed Central

    Walker, Aisha L.; Franke, Ryan M.; Sparreboom, Alex; Ware, Russell E.

    2015-01-01

    Objective Hydroxyurea has proven laboratory and clinical therapeutic benefits for sickle cell anemia (SCA) and other diseases, yet many questions remain regarding its in vivo pharmacokinetic and pharmacodynamic profiles. Previous reports suggest that hydroxyurea passively diffuses across cells, but its observed rapid absorption and distribution are more consistent with facilitated or active transport. We investigated the potential role of solute carrier (SLC) transporters in cellular uptake and accumulation of hydroxyurea. Materials and Methods Passive diffusion of hydroxyurea across cell membranes was determined using the parallel artificial membrane permeability assay. SLC transporter screens were conducted using in vitro intracellular drug accumulation and transcellular transport assays in cell lines and oocytes overexpressing SLC transporters. Gene expression of SLC transporters was measured by real-time PCR in human tissues and cell lines. Results Hydroxyurea had minimal diffusion across a lipid bilayer but was a substrate for 5 different SLC transporters belonging to the OCTN and OATP families of transporters and urea transporters A and B. Further characterization of hydroxyurea transport revealed that cellular uptake by OATP1B3 is time and temperature dependent and inhibited by known substrates of OATP1B3. Urea transporters A and B are expressed differentially in human tissues and erythroid cells, and transport hydroxyurea bidirectionally via facilitated diffusion. Conclusions These studies provide new insight into drug transport proteins that may be involved in the in vivo absorption, cellular distribution, and elimination of hydroxyurea. Elucidation of hydroxyurea transcellular movement should improve our understanding of its pharmacokinetics and pharmacodynamics, and may help explain some of the inter-patient drug variability observed in patients with SCA. PMID:21256917

  16. An asymptotic solution to a passive biped walker model

    NASA Astrophysics Data System (ADS)

    Yudaev, Sergey A.; Rachinskii, Dmitrii; Sobolev, Vladimir A.

    2017-02-01

    We consider a simple model of a passive dynamic biped robot walker with point feet and legs without knee. The model is a switched system, which includes an inverted double pendulum. Robot’s gait and its stability depend on parameters such as the slope of the ramp, the length of robot’s legs, and the mass distribution along the legs. We present an asymptotic solution of the model. The first correction to the zero order approximation is shown to agree with the numerical solution for a limited parameter range.

  17. Passive long range acousto-optic sensor

    NASA Astrophysics Data System (ADS)

    Slater, Dan

    2006-08-01

    Alexander Graham Bell's photophone of 1880 was a simple free space optical communication device that used the sun to illuminate a reflective acoustic diaphragm. A selenium photocell located 213 m (700 ft) away converted the acoustically modulated light beam back into sound. A variation of the photophone is presented here that uses naturally formed free space acousto-optic communications links to provide passive multichannel long range acoustic sensing. This system, called RAS (remote acoustic sensor), functions as a long range microphone with a demonstrated range in excess of 40 km (25 miles).

  18. Diffusion in coastal and harbour zones, effects of Waves,Wind and Currents

    NASA Astrophysics Data System (ADS)

    Diez, M.; Redondo, J. M.

    2009-04-01

    As there are multiple processes at different scales that produce turbulent mixing in the ocean, thus giving a large variation of horizontal eddy diffusivities, we use a direct method to evaluate the influence of different ambient parameters such as wave height and wind on coastal dispersion. Measurements of the diffusivity are made by digital processing of images taken from from video recordings of the sea surface near the coast. The use of image analysis allows to estimate both spatial and temporal characteristics of wave fields, surface circulation and mixing in the surf zone, near Wave breakers and inside Harbours. The study of near-shore dispersion [1], with the added complexity of the interaction between wave fields, longshore currents, turbulence and beach morphology, needs detailed measurements of simple mixing processes to compare the respective influences of forcings at different scales. The measurements include simultaneous time series of waves, currents, wind velocities from the studied area. Cuantitative information from the video images is accomplished using the DigImage video processing system [3], and a frame grabber. The video may be controlled by the computer, allowing, remote control of the processing. Spectral analysis on the images has also used n order to estimate dominant wave periods as well as the dispersion relations of dominant instabilities. The measurements presented here consist mostly on the comarison of difussion coeficients measured by evaluating the spread of blobs of dye (milk) as well as by measuring the separation between different buoys released at the same time. We have used a techniques, developed by Bahia(1997), Diez(1998) and Bezerra(2000)[1-3] to study turbulent diffusion by means of digital processing of images taken from remote sensing and video recordings of the sea surface. The use of image analysis allows to measure variations of several decades in horizontal diffusivity values, the comparison of the diffusivities between different sites is not direct and a good understanding of the dominant mixing processes is needed. There is an increase of diffusivity with wave height but only for large Wave Reynolds numbers. Other important factors are wind speed and tidal currents. The horizontal diffusivity shows a marked anisotropy as a function of wave height and distance from the coast. The measurements were performed under a variety of weather conditions conditional sampling has been used to identify the different influences of the environmental agents on the actual effective horizontal diffusion[4]. [1] Bahia E. (1998) "Un estudio numerico experimental de la dispersion de contaminantes en aguas costeras, PhD Tesis UPC, Barcelona. [2] Bezerra M.O., (2000) "Diffusion de contaminantes en la costa. , PhD Tesis Uni. De Barcelona, Barcelona. [3] Diez M. (1998) "Estudio de la Hidrodinamica de la zona de rompientes mediante el analisis digital de imagenes. Master Thesis, UPC, Barcelona. [4] Artale V., Boffetta G., Celani A., Cencini M. and Vulpiani A., 1997, "Dispersion of passive tracers in closed basins: Beyond the diffusion coefficient", Physics of Fluids, vol 9, pp 3162-1997

  19. Molecular assemblies as protective barriers and adhesion promotion interlayer

    DOEpatents

    King, D.E.; Czanderna, A.W.; Kennedy, C.E.

    1996-01-30

    A protective diffusion barrier having adhesive qualities for metalized surfaces is provided by a passivating agent having the formula HS--(CH{sub 2}){sub 11}--COOH which forms a very dense, transparent organized molecular assembly or layer that is impervious to water, alkali, and other impurities and corrosive substances that typically attack metal surfaces. 8 figs.

  20. Performance Evaluation and Quality Validation System for Optical Gas Imaging Cameras that Visualize Fugitive Hydrocarbon Gas Emissions

    EPA Science Inventory

    A U.S. EPA team, consisting of the Office of Research and Development and Region 6 (Dallas) and Region 8 (Denver), deployed passive-diffusive sorbent tubes as part of a method evaluation study around one oil and natural gas production pad in both the Barnett Shale Basin in Texas ...

  1. Favorite Demonstrations: Gaseous Diffusion: A Demonstration of Graham's Law.

    ERIC Educational Resources Information Center

    Kauffman, George B.; Ebner, Ronald D.

    1985-01-01

    Describes a demonstration in which gaseous ammonia and hydrochloric acid are used to illustrate rates of diffusion (Graham's Law). Simple equipment needed for the demonstration include a long tube, rubber stoppes, and cotton. Two related demonstrations are also explained. (DH)

  2. Demonstrating Diffusion

    ERIC Educational Resources Information Center

    Foy, Barry G.

    1977-01-01

    Two demonstrations are described. Materials and instructions for demonstrating movement of molecules into cytoplasm using agar blocks, phenolphthalein, and sodium hydroxide are given. A simple method for demonstrating that the rate of diffusion of a gas is inversely proportional to its molecular weight is also presented. (AJ)

  3. A Simple Demonstration of Convective Effects on Reaction-Diffusion Systems: A Burning Cigarette.

    ERIC Educational Resources Information Center

    Pojman, John A.

    1990-01-01

    Described is a demonstration that provides an introduction to nonequilibrium reaction-diffusion systems and the coupling of hydrodynamics to chemical reactions. Experiments that demonstrate autocatalytic behavior that are effected by gravity and convection are included. (KR)

  4. Optical effects module and passive sample array

    NASA Technical Reports Server (NTRS)

    Linton, R. C.

    1983-01-01

    The Optical Effects Module (OEM) has the objective to monitor the effects of the deposition and adhesion of both molecular species and particles on optical surfaces in the Shuttle cargo bay environment. The OEM performs inflight measurements of the ultraviolet (253.7 nm) transmittance and diffuse reflectance of five optical samples at regular intervals throughout the orbital mission. Most of the obtained results indicates or implies the absence of a significant accumulation of contamination other than particulates on the samples. The contaminant species (or particulates) adhering to the samples of the Passive Sample Array (PSA) were identified by means of Auger and X-ray energy dispersive analyses. The elements silicon, chlorine, and phosphorus were discovered.

  5. A simple sensing mechanism for wireless, passive pressure sensors.

    PubMed

    Drazan, John F; Wassick, Michael T; Dahle, Reena; Beardslee, Luke A; Cady, Nathaniel C; Ledet, Eric H

    2016-08-01

    We have developed a simple wireless pressure sensor that consists of only three electrically isolated components. Two conductive spirals are separated by a closed cell foam that deforms when exposed to changing pressures. This deformation changes the capacitance and thus the resonant frequency of the sensors. Prototype sensors were submerged and wirelessly interrogated while being exposed to physiologically relevant pressures from 10 to 130 mmHg. Sensors consistently exhibited a sensitivity of 4.35 kHz/mmHg which is sufficient for resolving physiologically relevant pressure changes in vivo. These simple sensors have the potential for in vivo pressure sensing.

  6. Diffusion of Defaults Among Financial Institutions

    NASA Astrophysics Data System (ADS)

    Demange, Gabrielle

    The paper proposes a simple unified model for the diffusion of defaults across financial institutions and presents some measures for evaluating the risk imposed by a bank on the system. So far the standard contagion processes might not incorporate some important features of financial contagion.

  7. A rapid and simple method for estimating sulfate reduction activity and quantifying inorganic sulfides

    USGS Publications Warehouse

    Ulrich, G.A.; Krumholz, L.R.; Suflita, J.M.

    1997-01-01

    A simplified passive extraction procedure for quantifying reduced inorganic sulfur compounds from sediments and water is presented. This method may also be used for the estimation of sulfate reduction rates. Efficient extraction of FeS, FeS(inf2), and S(sup2-) was obtained with this procedure; however, the efficiency for S(sup0) depended on the form that was tested. Passive extraction can be used with samples containing up to 20 mg of reduced sulfur. We demonstrated the utility of this technique in a determination of both sulfate reduction rates and reduced inorganic sulfur pools in marine and freshwater sediments. A side-by-side comparison of the passive extraction method with the established single-step distillation technique yielded comparable results with a fraction of the effort.

  8. Soft lithographic functionalization and patterning oxide-free silicon and germanium.

    PubMed

    Bowers, Carleen M; Toone, Eric J; Clark, Robert L; Shestopalov, Alexander A

    2011-12-16

    The development of hybrid electronic devices relies in large part on the integration of (bio)organic materials and inorganic semiconductors through a stable interface that permits efficient electron transport and protects underlying substrates from oxidative degradation. Group IV semiconductors can be effectively protected with highly-ordered self-assembled monolayers (SAMs) composed of simple alkyl chains that act as impervious barriers to both organic and aqueous solutions. Simple alkyl SAMs, however, are inert and not amenable to traditional patterning techniques. The motivation for immobilizing organic molecular systems on semiconductors is to impart new functionality to the surface that can provide optical, electronic, and mechanical function, as well as chemical and biological activity. Microcontact printing (μCP) is a soft-lithographic technique for patterning SAMs on myriad surfaces. Despite its simplicity and versatility, the approach has been largely limited to noble metal surfaces and has not been well developed for pattern transfer to technologically important substrates such as oxide-free silicon and germanium. Furthermore, because this technique relies on the ink diffusion to transfer pattern from the elastomer to substrate, the resolution of such traditional printing is essentially limited to near 1 μm. In contrast to traditional printing, inkless μCP patterning relies on a specific reaction between a surface-immobilized substrate and a stamp-bound catalyst. Because the technique does not rely on diffusive SAM formation, it significantly expands the diversity of patternable surfaces. In addition, the inkless technique obviates the feature size limitations imposed by molecular diffusion, facilitating replication of very small (<200 nm) features. However, up till now, inkless μCP has been mainly used for patterning relatively disordered molecular systems, which do not protect underlying surfaces from degradation. Here, we report a simple, reliable high-throughput method for patterning passivated silicon and germanium with reactive organic monolayers and demonstrate selective functionalization of the patterned substrates with both small molecules and proteins. The technique utilizes a preformed NHS-reactive bilayered system on oxide-free silicon and germanium. The NHS moiety is hydrolyzed in a pattern-specific manner with a sulfonic acid-modified acrylate stamp to produce chemically distinct patterns of NHS-activated and free carboxylic acids. A significant limitation to the resolution of many μCP techniques is the use of PDMS material which lacks the mechanical rigidity necessary for high fidelity transfer. To alleviate this limitation we utilized a polyurethane acrylate polymer, a relatively rigid material that can be easily functionalized with different organic moieties. Our patterning approach completely protects both silicon and germanium from chemical oxidation, provides precise control over the shape and size of the patterned features, and gives ready access to chemically discriminated patterns that can be further functionalized with both organic and biological molecules. The approach is general and applicable to other technologically-relevant surfaces.

  9. Dispersion-relation phase spectroscopy of neuron transport

    NASA Astrophysics Data System (ADS)

    Wang, Ru; Wang, Zhuo; Millet, Larry; Gillette, Martha; Leigh, Joseph Robert; Sobh, Nahil; Levine, Alex; Popescu, Gabreil

    2012-02-01

    Molecular motors move materials along prescribed biopolymer tracks. This sort of active transport is required to rapidly move products over large distances within the cell, where passive diffusion is too slow. We examine intracellular traffic patterns using a new application of spatial light interference microscopy (SLIM) and measure the dispersion relation, i.e. decay rate vs. spatial mode, associated with mass transport in live cells. This approach applies equally well to both discrete and continuous mass distributions without the need for particle tracking. From the quadratic experimental curve specific to diffusion, we extracted the diffusion coefficient as the only fitting parameter. The linear portion of the dispersion relation reveals the deterministic component of the intracellular transport. Our data show a universal behavior where the intracellular transport is diffusive at small scales and deterministic at large scales. We further applied this method to studying transport in neurons and are able to use SLIM to map the changes in index of refraction across the neuron and its extended processes. We found that in dendrites and axons, the transport is mostly active, i.e., diffusion is subdominant.

  10. Moist, Double-diffusive convection

    NASA Astrophysics Data System (ADS)

    Oishi, Jeffrey; Burns, Keaton; Brown, Ben; Lecoanet, Daniel; Vasil, Geoffrey

    2017-11-01

    Double-diffusive convection occurs when the competition between stabilizing and a destabilizing buoyancy source is mediated by a difference in the diffusivity of each source. Such convection is important in a wide variety of astrophysical and geophysical flows. However, in giant planets, double-diffusive convection occurs in regions where condensation of important components of the atmosphere occurs. Here, we present preliminary calculations of moist, double-diffusive convection using the Dedalus pseudospectral framework. Using a simple model for phase change, we verify growth rates for moist double diffusive convection from linear calculations and report on preliminary relationships between the ability to form liquid phase and the resulting Nusselt number in nonlinear simulations.

  11. Primitive ATP-activated P2X receptors: discovery, function and pharmacology

    PubMed Central

    Fountain, Samuel J.

    2013-01-01

    Adenosine 5-triphosphate (ATP) is omnipresent in biology. It is therefore no surprise that organisms have evolved multifaceted roles for ATP, exploiting its abundance and restriction of passive diffusion across biological membranes. A striking role is the emergence of ATP as a bona fide transmitter molecule, whereby the movement of ATP across membranes serves as a chemical message through a direct ligand-receptor interaction. P2X receptors are ligand-gated ion channels that mediate fast responses to the transmitter ATP in mammalian cells including central and sensory neurons, vascular smooth muscle, endothelium, and leukocytes. Molecular cloning of P2X receptors and our understanding of structure-function relationships has provided sequence information with which to query an exponentially expanding wealth of genome sequence information including protist, early animal and human pathogen genomes. P2X receptors have now been cloned and characterized from a number of simple organisms. Such work has led to surprising new cellular roles for the P2X receptors family and an unusual phylogeny, with organisms such as Drosophila and C. elegans notably lacking P2X receptors despite retaining ionotropic receptors for other common transmitters that are present in mammals. This review will summarize current work on the evolutionary biology of P2X receptors and ATP as a signaling molecule, discuss what can be drawn from such studies when considering the action of ATP in higher animals and plants, and outline how simple organisms may be exploited experimentally to inform P2X receptor function in a wider context. PMID:24367292

  12. Super-hydrophobic coatings with nano-size roughness prepared with simple PECVD method

    NASA Astrophysics Data System (ADS)

    Choi, Yoon S.; Lee, Joon S.; Jin, Su B.; Han, Jeon G.

    2013-08-01

    A simple and conventional method to synthesize nearly flat super-hydrophobic coatings was studied. Conventional plasma enhanced chemical vapour deposition (PECVD) was adopted to synthesize hydrophobic coatings on plastic and glass substrates at room temperature. Hexamethyldisilane was used as a precursor, and hydrogen gas was added to modulate the surface roughness and passivate defects, such as dangling bond and electrically uncovered polar sites rendering non-hydrophobicity. The static water contact angle (WCA) was controlled in the range 120°-160° by adjusting process parameters, especially the hydrogen flow rate and power. AFM showed that the film with a WCA of 145° has as small as 2.5 nm roughness in rms value. In the resistance test of salt water and cosmetics, this film showed excellent results owing to super-hydrophobicity and defect passivation which keeps the surface isolated from external agents. In order to exploit these results, Rare gas analysis was used to examine the process plasma and Fourier transform infrared (FTIR) was used to analyse the chemical structures of the super-hydrophobic films. In the FTIR results, the remarkable increase in the modes of Si-Hx and Si-C bonds as well as Si-CH2-Si in the film was observed indicating the defect passivation and closely packed dense film structure.

  13. Modeling of a Von Platen-Munters diffusion absorption refrigeration cycle

    NASA Astrophysics Data System (ADS)

    Agostini, Bruno; Agostini, Francesco; Habert, Mathieu

    2016-09-01

    This article presents a thermodynamical model of a Von-Platen diffusion absorption refrigeration cycle for power electronics applications. It is first validated by comparison with data available in the literature for the classical water-ammonia-helium cycle for commercial absorption fridges. Then new operating conditions corresponding to specific ABB applications, namely high ambient temperature and new organic fluids combinations compatible with aluminium are simulated and discussed. The target application is to cool power electronics converters in harsh environments with high ambient temperature by providing refrigeration without compressor, for passive components losses of about 500 W, with a compact and low cost solution.

  14. Morphogen transport

    PubMed Central

    Müller, Patrick; Rogers, Katherine W.; Yu, Shuizi R.; Brand, Michael; Schier, Alexander F.

    2013-01-01

    The graded distribution of morphogens underlies many of the tissue patterns that form during development. How morphogens disperse from a localized source and how gradients in the target tissue form has been under debate for decades. Recent imaging studies and biophysical measurements have provided evidence for various morphogen transport models ranging from passive mechanisms, such as free or hindered extracellular diffusion, to cell-based dispersal by transcytosis or cytonemes. Here, we analyze these transport models using the morphogens Nodal, fibroblast growth factor and Decapentaplegic as case studies. We propose that most of the available data support the idea that morphogen gradients form by diffusion that is hindered by tortuosity and binding to extracellular molecules. PMID:23533171

  15. 3D Numerical Simulation versus Experimental Assessment of Pressure Pulsations Using a Passive Method for Swirling Flow Control in Conical Diffusers of Hydraulic Turbines

    NASA Astrophysics Data System (ADS)

    TANASA, C.; MUNTEAN, S.; CIOCAN, T.; SUSAN-RESIGA, R. F.

    2016-11-01

    The hydraulic turbines operated at partial discharge (especially hydraulic turbines with fixed blades, i.e. Francis turbine), developing a swirling flow in the conical diffuser of draft tube. As a result, the helical vortex breakdown, also known in the literature as “precessing vortex rope” is developed. A passive method to mitigate the pressure pulsations associated to the vortex rope in the draft tube cone of hydraulic turbines is presented in this paper. The method involves the development of a progressive and controlled throttling (shutter), of the flow cross section at the bottom of the conical diffuser. The adjustable cross section is made on the basis of the shutter-opening of circular diaphragms, while maintaining in all positions the circular cross-sectional shape, centred on the axis of the turbine. The stagnant region and the pressure pulsations associated to the vortex rope are mitigated when it is controlled with the turbine operating regime. Consequently, the severe flow deceleration and corresponding central stagnant are diminished with an efficient mitigation of the precessing helical vortex. Four cases (one without diaphragm and three with diaphragm), are numerically and experimentally investigated, respectively. The present paper focuses on a 3D turbulent swirling flow simulation in order to evaluate the control method. Numerical results are compared against measured pressure recovery coefficient and Fourier spectra. The results prove the vortex rope mitigation and its associated pressure pulsations when employing the diaphragm.

  16. Status of Diffused Junction p(+)n InP Solar Cells for Space Applications

    NASA Technical Reports Server (NTRS)

    Faur, Mircea; Faur, Maria; Flood, D. J.; Brinker, D. J.; Goradia, C.; Fatemi, N. S.; Jenkins, P. P.; Wilt, D. M.; Bailey, S.

    1994-01-01

    Recently, we have succeeded in fabricating diffused junction p(+)n(Cd,S) InP solar cells with measured AMO, 25 C open circuit voltage (V(sub OC)) of 887.6 mV, which, to the best of our knowledge, is higher than previously reported V(sub OC) values for any InP homojunction solar cells. The experiment-based projected achievable efficiency of these cells using LEC grown substrates is 21.3%. The maximum AMO, 25 C efficiency recorded to date on bare cells is, however, only 13.2%. This is because of large external and internal losses due to non-optimized front grid design, antireflection (AR) coating and emitter thickness. This paper summarizes recent advances in the technology of fabrication of p(+)n InP diffused structures and solar cells, resulted from a study undertaken in an effort to increase the cell efficiency. The topics discussed in this paper include advances in: 1) the formation of thin p(+) InP:Cd emitter layers, 2) electroplated front contacts, 3) surface passivation and 4) the design of a new native oxide/AI203/MgF2 three layer AR coating using a chemically-grown P-rich passivating oxide as a first layer. Based on the high radiation resistance and the excellent post-irradiation annealing and recovery demonstrated in the early tests done to date, as well as the projected high efficiency and low-cost high-volume fabricability, these cells show a very good potential for space photovoltaic applications.

  17. Dual Electrolytic Plasma Processing for Steel Surface Cleaning and Passivation

    NASA Astrophysics Data System (ADS)

    Yang, L.; Zhang, P.; Shi, J.; Liang, J.; Tian, W. B.; Zhang, Y. M.; Sun, Z. M.

    2017-10-01

    To remove the rust on rebars and passivate the fresh surfaces, electrodes reversing electrolytic plasma processing (EPP) was proposed and conducted in a 10 wt.% Na2CO3 aqueous solution. The morphology and the composition of the surface were investigated by SEM and XPS. Experimental results show that the rust on the surface was removed effectively by cathode EPP, and a passive film containing Cr2O3 was achieved by the succeeding anode EPP treatment, by a simple operation of reversing the bias. The corrosion resistance was evaluated in a 3.5 wt.% NaCl aqueous solution using an electrochemical workstation. In comparison, the corrosion resistance was improved by the succeeding anode EPP treatment, which is evidenced by a positive shift of the open-circuit potential, an increase in the electrochemical impedance representing the inner layer by 76.8% and the decrease in the corrosion current density by 49.6%. This is an effective and environment-friendly technique to clean and passivate rebars and similar steel materials.

  18. EPMOSt: An Energy-Efficient Passive Monitoring System for Wireless Sensor Networks

    PubMed Central

    Garcia, Fernando P.; Andrade, Rossana M. C.; Oliveira, Carina T.; de Souza, José Neuman

    2014-01-01

    Monitoring systems are important for debugging and analyzing Wireless Sensor Networks (WSN). In passive monitoring, a monitoring network needs to be deployed in addition to the network to be monitored, named the target network. The monitoring network captures and analyzes packets transmitted by the target network. An energy-efficient passive monitoring system is necessary when we need to monitor a WSN in a real scenario because the lifetime of the monitoring network is extended and, consequently, the target network benefits from the monitoring for a longer time. In this work, we have identified, analyzed and compared the main passive monitoring systems proposed for WSN. During our research, we did not identify any passive monitoring system for WSN that aims to reduce the energy consumption of the monitoring network. Therefore, we propose an Energy-efficient Passive MOnitoring SysTem for WSN named EPMOSt that provides monitoring information using a Simple Network Management Protocol (SNMP) agent. Thus, any management tool that supports the SNMP protocol can be integrated with this monitoring system. Experiments with real sensors were performed in several scenarios. The results obtained show the energy efficiency of the proposed monitoring system and the viability of using it to monitor WSN in real scenarios. PMID:24949639

  19. Considering the reversibility of passive and reactive transport problems: Are forward-in-time and backward-in-time models ever equivalent?

    NASA Astrophysics Data System (ADS)

    Engdahl, N.

    2017-12-01

    Backward in time (BIT) simulations of passive tracers are often used for capture zone analysis, source area identification, and generation of travel time and age distributions. The BIT approach has the potential to become an immensely powerful tool for direct inverse modeling but the necessary relationships between the processes modeled in the forward and backward models have yet to be formally established. This study explores the time reversibility of passive and reactive transport models in a variety of 2D heterogeneous domains using particle-based random walk methods for the transport and nonlinear reaction steps. Distributed forward models are used to generate synthetic observations that form the initial conditions for the backward in time models and we consider both linear-flood and point injections. The results for passive travel time distributions show that forward and backward models are not exactly equivalent but that the linear-flood BIT models are reasonable approximations. Point based BIT models fall within the travel time range of the forward models, though their distributions can be distinctive in some cases. The BIT approximation is not as robust when nonlinear reactive transport is considered and we find that this reaction system is only exactly reversible under uniform flow conditions. We use a series of simplified, longitudinally symmetric, but heterogeneous, domains to illustrate the causes of these discrepancies between the two model types. Many of the discrepancies arise because diffusion is a "self-adjoint" operator, which causes mass to spread in the forward and backward models. This allows particles to enter low velocity regions in the both models, which has opposite effects in the forward and reverse models. It may be possible to circumvent some of these limitations using an anti-diffusion model to undo mixing when time is reversed, but this is beyond the capabilities of the existing Lagrangian methods.

  20. Stainless hooks to bond lower lingual retainer.

    PubMed

    Durgekar, Sujala G; Nagaraj, K

    2011-01-01

    We introduced a simple and economical technique for precise placement of lower lingual retainers. Two stainless steel hooks made of 0.6mm wire are placed interdentally in the embrasure area between canine and lateral incisor bilaterally to lock the retainer wire in the correct position. Etch, rinse and dry the enamel surfaces with the retainer passively in place, then bond the retainer with light-cured adhesive. Hooks are simple to fabricate and eliminate the need for a transfer tray.

  1. Passive sampler for formaldehyde in air using 2,4-dinitrophenylhydrazine-coated glass fiber filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, J.O.; Lindahl, R.; Andersson, K.

    1986-12-01

    A method utilizing diffusive sampling of formaldehyde in air has been developed. A glass fiber filter, impregnated with 2,4-dinitrophenylhydrazine (DNPH) and phosphoric acid and mounted into a modified aerosol-sampling cassette, is used for sampling by controlled diffusion. The formaldehyde hydrazone formed is desorbed and determined by high-performance liquid chromatography with UV detection. The sampling rate of the sampler was determined to 61 mL/min, with a standard deviation of 5%. The sampling rate is independent of formaldehyde concentrations between 0.1 and 5 mg/m/sup 3/ and sampling times between 15 min and 8 h. The sensitivity of the diffusive method is approximatelymore » 0.005 mg/m/sup 3/ (5 ppm) in an 8-h sample, and the reproducibility is better than 3%.« less

  2. A novel enhanced diffusion sampler for collecting gaseous pollutants without air agitation.

    PubMed

    Pan, Xuelian; Zhuo, Shaojie; Zhong, Qirui; Chen, Yuanchen; Du, Wei; Cheng, Hefa; Wang, Xilong; Zeng, Eddy Y; Xing, Baoshan; Tao, Shu

    2018-03-06

    A novel enhanced diffusion sampler for collecting gaseous phase polycyclic aromatic hydrocarbons (PAHs) without air agitation is proposed. The diffusion of target compounds into a sampling chamber is facilitated by continuously purging through a closed-loop flow to create a large concentration difference between the ambient air and the air in the sampling chamber. A glass-fiber filter-based prototype was developed. It was demonstrated that the device could collect gaseous PAHs at a much higher rate (1.6 ± 1.4 L/min) than regular passive samplers, while the ambient air is not agitated. The prototype was also tested in both the laboratory and field for characterizing the concentration gradients over a short distance from the soil surface. The sampler has potential to be applied in other similar situations to characterize the concentration profiles of other chemicals.

  3. Effects of epitaxial structure and processing on electrical characteristics of InAs-based nBn infrared detectors

    NASA Astrophysics Data System (ADS)

    Du, X.; Savich, G. R.; Marozas, B. T.; Wicks, G. W.

    2017-02-01

    The conventional processing of the III-V nBn photodetectors defines mesa devices by etching the contact n-layer and stopping immediately above the barrier, i.e., a shallow etch. This processing enables great suppression of surface leakage currents without having to explore surface passivation techniques. However, devices that are made with this processing scheme are subject to lateral diffusion currents. To address the lateral diffusion current, we compare the effects of different processing approaches and epitaxial structures of nBn detectors. The conventional solution for eliminating lateral diffusion current, a deep etch through the barrier and the absorber, creates increased dark currents and an increased device failure rate. To avoid deep etch processing, a new device structure is proposed, the inverted-nBn structure. By comparing with the conventional nBn structure, the results show that the lateral diffusion current is effectively eliminated in the inverted-nBn structure without elevating the dark currents.

  4. Effect of cyclic and static tensile loading on water content and solute diffusion in canine flexor tendons: an in vitro study.

    PubMed

    Hannafin, J A; Arnoczky, S P

    1994-05-01

    This study was designed to determine the effects of various loading conditions (no load and static and cyclic tensile load) on the water content and pattern of nutrient diffusion of canine flexor tendons in vitro. Region D (designated by Okuda et al.) of the flexor digitorum profundus was subjected to a cyclic or static tensile load of 100 g for times ranging from 5 minutes to 24 hours. The results demonstrated a statistically significant loss of water in tendons subjected to both types of load as compared with the controls (no load). This loss appeared to progress with time. However, neither static nor cyclic loading appeared to alter the diffusion of 3H-glucose into the tendon over a 24-hour period compared with the controls. These results suggest that any benefit in tendon repair derived from intermittent passive motion is probably not a result of an increase in the diffusion of small nutrients in response to intermittent tensile load.

  5. Sodium enhances indium-gallium interdiffusion in copper indium gallium diselenide photovoltaic absorbers.

    PubMed

    Colombara, Diego; Werner, Florian; Schwarz, Torsten; Cañero Infante, Ingrid; Fleming, Yves; Valle, Nathalie; Spindler, Conrad; Vacchieri, Erica; Rey, Germain; Guennou, Mael; Bouttemy, Muriel; Manjón, Alba Garzón; Peral Alonso, Inmaculada; Melchiorre, Michele; El Adib, Brahime; Gault, Baptiste; Raabe, Dierk; Dale, Phillip J; Siebentritt, Susanne

    2018-02-26

    Copper indium gallium diselenide-based technology provides the most efficient solar energy conversion among all thin-film photovoltaic devices. This is possible due to engineered gallium depth gradients and alkali extrinsic doping. Sodium is well known to impede interdiffusion of indium and gallium in polycrystalline Cu(In,Ga)Se 2 films, thus influencing the gallium depth distribution. Here, however, sodium is shown to have the opposite effect in monocrystalline gallium-free CuInSe 2 grown on GaAs substrates. Gallium in-diffusion from the substrates is enhanced when sodium is incorporated into the film, leading to Cu(In,Ga)Se 2 and Cu(In,Ga) 3 Se 5 phase formation. These results show that sodium does not decrease per se indium and gallium interdiffusion. Instead, it is suggested that sodium promotes indium and gallium intragrain diffusion, while it hinders intergrain diffusion by segregating at grain boundaries. The deeper understanding of dopant-mediated atomic diffusion mechanisms should lead to more effective chemical and electrical passivation strategies, and more efficient solar cells.

  6. Universal sensitivity of speckle intensity correlations to wavefront change in light diffusers

    PubMed Central

    Kim, KyungDuk; Yu, Hyeonseung; Lee, KyeoReh; Park, YongKeun

    2017-01-01

    Here, we present a concept based on the realization that a complex medium can be used as a simple interferometer. Changes in the wavefront of an incident coherent beam can be retrieved by analyzing changes in speckle patterns when the beam passes through a light diffuser. We demonstrate that the spatial intensity correlations of the speckle patterns are independent of the light diffusers, and are solely determined by the phase changes of an incident beam. With numerical simulations using the random matrix theory, and an experimental pressure-driven wavefront-deforming setup using a microfluidic channel, we theoretically and experimentally confirm the universal sensitivity of speckle intensity correlations, which is attributed to the conservation of optical field correlation despite multiple light scattering. This work demonstrates that a light diffuser works as a simple interferometer, and presents opportunities to retrieve phase information of optical fields with a compact scattering layer in various applications in metrology, analytical chemistry, and biomedicine. PMID:28322268

  7. Relations de Dispersion et Diffusion des Glueballs et des Mesons dans la Theorie de Jauge U(1)(2+1) Compacte

    NASA Astrophysics Data System (ADS)

    Ahmed, Chaara El Mouez

    Nous avons etudie les relations de dispersion et la diffusion des glueballs et des mesons dans le modele U(1)_{2+1} compact. Ce modele a ete souvent utilise comme un simple modele de la chromodynamique quantique (QCD), parce qu'il possede le confinement ainsi que les etats de glueballs. Par contre, sa structure mathematique est beaucoup plus simple que la QCD. Notre methode consiste a diagonaliser l'Hamiltonien de ce modele dans une base appropriee de graphes et sur reseau impulsion, afin de generer les relations de dispersion des glueballs et des mesons. Pour la diffusion, nous avons utilise la methode dependante du temps pour calculer la matrice S et la section efficace de diffusion des glueballs et des mesons. Les divers resultats obtenus semblent etre en accord avec les travaux anterieurs de Hakim, Alessandrini et al., Irving et al., qui eux, utilisent plutot la theorie des perturbations en couplage fort, et travaillent sur un reseau espace-temps.

  8. Numerical simulation model of hyperacute/acute stage white matter infarction.

    PubMed

    Sakai, Koji; Yamada, Kei; Oouchi, Hiroyuki; Nishimura, Tsunehiko

    2008-01-01

    Although previous studies have revealed the mechanisms of changes in diffusivity (apparent diffusion coefficient [ADC]) in acute brain infarction, changes in diffusion anisotropy (fractional anisotropy [FA]) in white matter have not been examined. We hypothesized that membrane permeability as well as axonal swelling play important roles, and we therefore constructed a simulation model using random walk simulation to replicate the diffusion of water molecules. We implemented a numerical diffusion simulation model of normal and infarcted human brains using C++ language. We constructed this 2-pool model using simple tubes aligned in a single direction. Random walk simulation diffused water. Axon diameters and membrane permeability were then altered in step-wise fashion. To estimate the effects of axonal swelling, axon diameters were changed from 6 to 10 microm. Membrane permeability was altered from 0% to 40%. Finally, both elements were combined to explain increasing FA in the hyperacute stage of white matter infarction. The simulation demonstrated that simple water shift into the intracellular space reduces ADC and increases FA, but not to the extent expected from actual human cases (ADC approximately 50%; FA approximately +20%). Similarly, membrane permeability alone was insufficient to explain this phenomenon. However, a combination of both factors successfully replicated changes in diffusivity indices. Both axonal swelling and reduced membrane permeability appear important in explaining changes in ADC and FA based on eigenvalues in hyperacute-stage white matter infarction.

  9. The Gini coefficient: a methodological pilot study to assess fetal brain development employing postmortem diffusion MRI.

    PubMed

    Viehweger, Adrian; Riffert, Till; Dhital, Bibek; Knösche, Thomas R; Anwander, Alfred; Stepan, Holger; Sorge, Ina; Hirsch, Wolfgang

    2014-10-01

    Diffusion-weighted imaging (DWI) is important in the assessment of fetal brain development. However, it is clinically challenging and time-consuming to prepare neuromorphological examinations to assess real brain age and to detect abnormalities. To demonstrate that the Gini coefficient can be a simple, intuitive parameter for modelling fetal brain development. Postmortem fetal specimens(n = 28) were evaluated by diffusion-weighted imaging (DWI) on a 3-T MRI scanner using 60 directions, 0.7-mm isotropic voxels and b-values of 0, 150, 1,600 s/mm(2). Constrained spherical deconvolution (CSD) was used as the local diffusion model. Fractional anisotropy (FA), apparent diffusion coefficient (ADC) and complexity (CX) maps were generated. CX was defined as a novel diffusion metric. On the basis of those three parameters, the Gini coefficient was calculated. Study of fetal brain development in postmortem specimens was feasible using DWI. The Gini coefficient could be calculated for the combination of the three diffusion parameters. This multidimensional Gini coefficient correlated well with age (Adjusted R(2) = 0.59) between the ages of 17 and 26 gestational weeks. We propose a new method that uses an economics concept, the Gini coefficient, to describe the whole brain with one simple and intuitive measure, which can be used to assess the brain's developmental state.

  10. Diffusion of aqueous solutions of ionic, zwitterionic, and polar solutes

    NASA Astrophysics Data System (ADS)

    Teng, Xiaojing; Huang, Qi; Dharmawardhana, Chamila Chathuranga; Ichiye, Toshiko

    2018-06-01

    The properties of aqueous solutions of ionic, zwitterionic, and polar solutes are of interest to many fields. For instance, one of the many anomalous properties of aqueous solutions is the behavior of water diffusion in different monovalent salt solutions. In addition, solutes can affect the stabilities of macromolecules such as proteins in aqueous solution. Here, the diffusivities of aqueous solutions of sodium chloride, potassium chloride, tri-methylamine oxide (TMAO), urea, and TMAO-urea are examined in molecular dynamics simulations. The decrease in the diffusivity of water with the concentration of simple ions and urea can be described by a simple model in which the water molecules hydrogen bonded to the solutes are considered to diffuse at the same rate as the solutes, while the remainder of the water molecules are considered to be bulk and diffuse at almost the same rate as pure water. On the other hand, the decrease in the diffusivity of water with the concentration of TMAO is apparently affected by a decrease in the diffusion rate of the bulk water molecules in addition to the decrease due to the water molecules hydrogen bonded to TMAO. In other words, TMAO enhances the viscosity of water, while urea barely affects it. Overall, this separation of water molecules into those that are hydrogen bonded to solute and those that are bulk can provide a useful means of understanding the short- and long-range effects of solutes on water.

  11. Office of Naval Research Overview of Corrosion S&T Program

    DTIC Science & Technology

    2010-12-02

    a carbon induced passivity for LTCSS treated austenitic stainless steels - Low temp. allows interstitial C diffusion, but not substitutional...paraequilibrium carburization mechanism(s) that lead to the enhanced corrosion resistance seaw ater crevice corrosion on 316 Stainless Steel LTC...Treated 316 untreated LTC process TTT diagram LTCSS Surface Modification: • Carbon concentrations > 12 at. % in 316 stainless steel while maintaining

  12. Using Passive Samplers to Calculate the Diffusive Flux of DDTs and PCBs from Sediments to Water Column at the Palos Verdes Shelf Superfund Site

    EPA Science Inventory

    Background/Objectives. The Palos Verdes Shelf (PVS) Superfund site is in over 50 meters of water on the continental shelf and slope off the coast of southern California (USA). The site includes over 25 km2 of sediments contaminated over several decades by municipal treatment pla...

  13. Passive asymmetric transport of hesperetin across isolated rabbit cornea.

    PubMed

    Srirangam, Ramesh; Majumdar, Soumyajit

    2010-07-15

    Hesperetin, an aglycone of the flavanone hesperidin, is a potential candidate for the treatment of diabetic retinopathy and macular edema. The purpose of this investigation was to determine solubility, stability and in vitro permeability characteristics of hesperetin across excised rabbit corneas. Aqueous and pH dependent solubility was determined using standard shake flask method. Solution stability was evaluated as a function of pH (1.2-9) and temperature (25 and 40 degrees C). Permeability of hesperetin was determined across the isolated rabbit cornea utilizing a side-bi-side diffusion apparatus, in the apical to basolateral (A-B) and basolateral to apical (B-A) directions. Hesperetin displayed asymmetrical transcorneal transport with a 2.3-fold higher apparent permeability in the B-A direction compared to the A-B direction. The transport process was observed to be pH dependent. Surprisingly, however, the involvement of efflux transporters or proton-coupled carrier-systems was not evident in this asymmetric transcorneal diffusion process. The passive and pH dependent corneal transport of hesperetin could probably be attributable to corneal ultrastructure, physicochemical characteristics of hesperetin and the role of transport buffer components. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  14. Comparison study and thoron interference test of different radon monitors.

    PubMed

    Sumesh, C G; Kumar, A Vinod; Tripathi, R M; Puranik, V D

    2013-03-01

    A comparison study and thoron interference test for different continuous radon monitors were carried out. The comparison study includes three passive diffusion monitors [one pulse ionisation chamber based-Alpha Guard and two silicon semi-conductor based-Radon Scout Plus (RSP)] and one silicon semi-conductor-based active radon thoron discriminating monitor--RAD 7. Radon emanation standard, supplied by National Institute of Science and Technology, has been utilised for the comparison study to qualify the calibration of the continuous radon monitors. All the instruments showed good agreement with the estimated radon concentration using (226)Ra/(222)Rn emanation standard. It was found that the active radon monitoring system is having a higher initial response towards the transient radon concentration than the passive radon monitors studied. The instruments measuring radon concentration without energy discrimination are likely to have some sensitivity towards the thoron concentration. Thus, thoron interference study was carried out in the above monitors. Nine percent interference in measured radon concentration in the Alpha Guard monitor and 4 % interference in the semi-conductor-based RSP monitors was observed. Study indicates that the interference of thoron in radon monitors depends on the area of diffusion of gas, volume of detection and sensitivity factor.

  15. Active generation and propagation of Ca2+ signals within tunneling membrane nanotubes.

    PubMed

    Smith, Ian F; Shuai, Jianwei; Parker, Ian

    2011-04-20

    A new mechanism of cell-cell communication was recently proposed after the discovery of tunneling nanotubes (TNTs) between cells. TNTs are membrane protrusions with lengths of tens of microns and diameters of a few hundred nanometers that permit the exchange of membrane and cytoplasmic constituents between neighboring cells. TNTs have been reported to mediate intercellular Ca(2+) signaling; however, our simulations indicate that passive diffusion of Ca(2+) ions alone would be inadequate for efficient transmission between cells. Instead, we observed spontaneous and inositol trisphosphate (IP(3))-evoked Ca(2+) signals within TNTs between cultured mammalian cells, which sometimes remained localized and in other instances propagated as saltatory waves to evoke Ca(2+) signals in a connected cell. Consistent with this, immunostaining showed the presence of both endoplasmic reticulum and IP(3) receptors along the TNT. We propose that IP(3) receptors may actively propagate intercellular Ca(2+) signals along TNTs via Ca(2+)-induced Ca(2+) release, acting as amplification sites to overcome the limitations of passive diffusion in a chemical analog of electrical transmission of action potentials. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Electrochemical properties of 316L stainless steel with culturing L929 fibroblasts

    PubMed Central

    Hiromoto, Sachiko; Hanawa, Takao

    2005-01-01

    Potentiodynamic polarization and impedance tests were carried out on 316L stainless steel with culturing murine fibroblast L929 cells to elucidate the corrosion behaviour of 316L steel with L929 cells and to understand the electrochemical interface between 316L steel and cells, respectively. Potential step test was carried out on 316L steel with type I collagen coating and culturing L929 cells to compare the effects of collagen and L929 cells. The open-circuit potential of 316L steel slightly shifted in a negative manner and passive current density increased with cells, indicating a decrease in the protective ability of passive oxide film. The pitting potential decreased with cells, indicating a decrease in the pitting corrosion resistance. In addition, a decrease in diffusivity at the interface was indicated from the decrease in the cathodic current density and the increase in the diffusion resistance parameter in the impedance test. The anodic peak current in the potential step test decreased with cells and collagen. Consequently, the corrosion resistance of 316L steel decreases with L929 cells. In addition, collagen coating would provide an environment for anodic reaction similar to that with culturing cells. PMID:16849246

  17. Recombination activity of grain boundaries in high-performance multicrystalline Si during solar cell processing

    NASA Astrophysics Data System (ADS)

    Adamczyk, Krzysztof; Søndenâ, Rune; Stokkan, Gaute; Looney, Erin; Jensen, Mallory; Lai, Barry; Rinio, Markus; Di Sabatino, Marisa

    2018-02-01

    In this work, we applied internal quantum efficiency mapping to study the recombination activity of grain boundaries in High Performance Multicrystalline Silicon under different processing conditions. Wafers were divided into groups and underwent different thermal processing, consisting of phosphorus diffusion gettering and surface passivation with hydrogen rich layers. After these thermal treatments, wafers were processed into heterojunction with intrinsic thin layer solar cells. Light Beam Induced Current and Electron Backscatter Diffraction were applied to analyse the influence of thermal treatment during standard solar cell processing on different types of grain boundaries. The results show that after cell processing, most random-angle grain boundaries in the material are well passivated, but small-angle grain boundaries are not well passivated. Special cases of coincidence site lattice grain boundaries with high recombination activity are also found. Based on micro-X-ray fluorescence measurements, a change in the contamination level is suggested as the reason behind their increased activity.

  18. Fixed points, stability, and intermittency in a shell model for advection of passive scalars

    PubMed

    Kockelkoren; Jensen

    2000-08-01

    We investigate the fixed points of a shell model for the turbulent advection of passive scalars introduced in Jensen, Paladin, and Vulpiani [Phys. Rev. A 45, 7214 (1992)]. The passive scalar field is driven by the velocity field of the popular Gledzer-Ohkitani-Yamada (GOY) shell model. The scaling behavior of the static solutions is found to differ significantly from Obukhov-Corrsin scaling straight theta(n) approximately k(-1/3)(n), which is only recovered in the limit where the diffusivity vanishes, D-->0. From the eigenvalue spectrum we show that any perturbation in the scalar will always damp out, i.e., the eigenvalues of the scalar are negative and are decoupled from the eigenvalues of the velocity. We estimate Lyapunov exponents and the intermittency parameters using a definition proposed by Benzi, Paladin, Parisi, and Vulpiani [J. Phys. A 18, 2157 (1985)]. The full model is found to be as chaotic as the GOY model, measured by the maximal Lyapunov exponent, but is more intermittent.

  19. Sustainability of the prevention of passive infant smoking within well-baby clinics.

    PubMed

    Crone, M R; Verlaan, M; Willemsen, M C; van Soelen, P; Reijneveld, S A; Sing, R A Hira; Paulussen, T G W M

    2006-04-01

    This study assessed the antecedents of continued use of an education program to prevent passive smoking in infants. It consists of a booklet for parents and a manual for health professionals describing a five-step procedure for discussing passive smoking. A questionnaire was sent to 67 managers, 670 nurses, and 335 physicians working in well-baby clinics (response rate: 70%, 53%, 47% respectively). Questions concerned the completeness of use, level of institutionalization, and characteristics of the organization, the user, and the dissemination strategy. Seventy-one percent of nurses and 42% of physicians worked with the program. They foremost provided the first three steps of the five-step procedure. Physicians' completeness of use was related to their perceived responsibility in providing this education, and nurses' use was related to their perceived self-efficacy, responsibility, training attendance, participation in the adoption decision, and level of institutionalization. Diffusion efforts should focus on improving the completeness of use and level of institutionalization.

  20. Improved interfacial and electrical properties of GaAs metal-oxide-semiconductor capacitors with HfTiON as gate dielectric and TaON as passivation interlayer

    NASA Astrophysics Data System (ADS)

    Wang, L. S.; Xu, J. P.; Zhu, S. Y.; Huang, Y.; Lai, P. T.

    2013-08-01

    The interfacial and electrical properties of sputtered HfTiON on sulfur-passivated GaAs with or without TaON as interfacial passivation layer (IPL) are investigated. Experimental results show that the GaAs metal-oxide-semiconductor capacitor with HfTiON/TaON stacked gate dielectric annealed at 600 °C exhibits low interface-state density (1.0 × 1012 cm-2 eV-1), small gate leakage current (7.3 × 10-5 A cm-2 at Vg = Vfb + 1 V), small capacitance equivalent thickness (1.65 nm), and large equivalent dielectric constant (26.2). The involved mechanisms lie in the fact that the TaON IPL can effectively block the diffusions of Hf, Ti, and O towards GaAs surface and suppress the formation of interfacial As-As bonds, Ga-/As-oxides, thus unpinning the Femi level at the TaON/GaAs interface and improving the interface quality and electrical properties of the device.

  1. Molecular understanding of polyelectrolyte binders that actively regulate ion transport in sulfur cathodes

    DOE PAGES

    Li, Longjun; Pascal, Tod A.; Connell, Justin G.; ...

    2017-12-22

    Polymer binders in battery electrodes may be either active or passive. This distinction depends on whether the polymer influences charge or mass transport in the electrode. Though it is desirable to understand how to tailor the macromolecular design of a polymer to play a passive or active role, design rules are still lacking, as is a framework to assess the divergence in such behaviors. We reveal the molecular-level underpinnings that distinguish an active polyelectrolyte binder designed for lithium-sulfur batteries from a passive alternative. The binder, a cationic polyelectrolyte, is shown to both facilitate lithium-ion transport through its reconfigurable network ofmore » mobile anions and restrict polysulfide diffusion from mesoporous carbon hosts by anion metathesis, which we show is selective for higher oligomers. These attributes then allow cells to be operated for > 100 cycles with excellent rate capability using cathodes with areal sulfur loadings up to 8.1 mg cm -2 .« less

  2. Method for analyzing passive silicon carbide thermometry with a continuous dilatometer to determine irradiation temperature

    DOE PAGES

    Campbell, Anne A.; Porter, Wallace D.; Katoh, Yutai; ...

    2016-01-14

    Silicon carbide is used as a passive post-irradiation temperature monitor because the irradiation defects will anneal out above the irradiation temperature. The irradiation temperature is determined by measuring a property change after isochronal annealing, i.e., lattice spacing, dimensions, electrical resistivity, thermal diffusivity, or bulk density. However, such methods are time-consuming since the steps involved must be performed in a serial manner. This work presents the use of thermal expansion from continuous dilatometry to calculate the SiC irradiation temperature, which is an automated process requiring minimal setup time. Analysis software was written that performs the calculations to obtain the irradiation temperaturemore » and removes possible user-introduced error while standardizing the analysis. In addition, this method has been compared to an electrical resistivity and isochronal annealing investigation, and the results revealed agreement of the calculated temperatures. These results show that dilatometry is a reliable and less time-intensive process for determining irradiation temperature from passive SiC thermometry.« less

  3. Method for analyzing passive silicon carbide thermometry with a continuous dilatometer to determine irradiation temperature

    NASA Astrophysics Data System (ADS)

    Campbell, Anne A.; Porter, Wallace D.; Katoh, Yutai; Snead, Lance L.

    2016-03-01

    Silicon carbide is used as a passive post-irradiation temperature monitor because the irradiation defects will anneal out above the irradiation temperature. The irradiation temperature is determined by measuring a property change after isochronal annealing, i.e., lattice spacing, dimensions, electrical resistivity, thermal diffusivity, or bulk density. However, such methods are time-consuming since the steps involved must be performed in a serial manner. This work presents the use of thermal expansion from continuous dilatometry to calculate the SiC irradiation temperature, which is an automated process requiring minimal setup time. Analysis software was written that performs the calculations to obtain the irradiation temperature and removes possible user-introduced error while standardizing the analysis. This method has been compared to an electrical resistivity and isochronal annealing investigation, and the results revealed agreement of the calculated temperatures. These results show that dilatometry is a reliable and less time-intensive process for determining irradiation temperature from passive SiC thermometry.

  4. Partitioning of hydrophobic organic contaminants between polymer and lipids for two silicones and low density polyethylene.

    PubMed

    Smedes, Foppe; Rusina, Tatsiana P; Beeltje, Henry; Mayer, Philipp

    2017-11-01

    Polymers are increasingly used for passive sampling of neutral hydrophobic organic substances (HOC) in environmental media including water, air, soil, sediment and even biological tissue. The equilibrium concentration of HOC in the polymer can be measured and then converted into equilibrium concentrations in other (defined) media, which however requires appropriate polymer to media partition coefficients. We determined thus polymer-lipid partition coefficients (K PL ) of various PCB, PAH and organochlorine pesticides by equilibration of two silicones and low density polyethylene (LDPE) with fish oil and Triolein at 4 °C and 20 °C. We observed (i) that K PL was largely independent of lipid type and temperature, (ii) that lipid diffusion rates in the polymers were higher compared to predictions based on their molecular volume, (iii) that silicones showed higher lipid diffusion and lower lipid sorption compared to LDPE and (iv) that absorbed lipid behaved like a co-solute and did not affect the partitioning of HOC at least for the smaller molecular size HOC. The obtained K PL can convert measured equilibrium concentrations in passive sampling polymers into equilibrium concentrations in lipid, which then can be used (1) for environmental quality monitoring and assessment, (2) for thermodynamic exposure assessment and (3) for assessing the linkage between passive sampling and the traditionally measured lipid-normalized concentrations in biota. LDPE-lipid partition coefficients may also be of use for a thermodynamically sound risk assessment of HOC contained in microplastics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Contaminant sequestration in karstic aquifers: Experiments and quantification

    NASA Astrophysics Data System (ADS)

    Li, Guangquan; Loper, David E.; Kung, Robin

    2008-02-01

    A karstic aquifer typically has significant secondary porosity consisting of an interconnected system of caves or conduits. Conduit-borne contaminants can enter the contiguous limestone matrix, remain inside for a longer time than in the conduit, and subsequently be flushed out. This retention or sequestration can significantly influence the fate of contaminants within the aquifer and alter the shape of the breakthrough curve. The mechanisms involved in sequestration have been identified and quantified by analysis of the breakthrough curves generated by a set of laboratory experiments in which a conduit, porous limestone matrix, and conservative contaminant were simulated by a porous-walled pipe, chamber of closely packed glass beads, and salt, respectively. Experiments were conducted with both active and passive transfer of water between conduit and matrix, simulating differing hydrogeologic regimes. In active transfer the primary control parameter is the volume of water transferred; sequestration is primarily due to advection with the effects of diffusion and dispersion being minimal. In passive transfer the control parameters are the conduit Reynolds number and the duration that contaminant resides in the conduit; sequestration is caused by the combined effects of the conduit pressure drop, pressure variation due to bedform, and diffusion. Active and passive transfer can be unified by analyzing the ratio of the scale of pressure variation to the conduit length. In accordance with the resolved mechanisms a variety of models have been constructed to recover solute distributions in the matrix and to regenerate breakthrough curves. These analyses and models provide a potential approach to investigate contaminant migration in karstic aquifers.

  6. Dynamics of altered surface layer formation on dissolving silicates

    NASA Astrophysics Data System (ADS)

    Daval, Damien; Bernard, Sylvain; Rémusat, Laurent; Wild, Bastien; Guyot, François; Micha, Jean Sébastien; Rieutord, François; Magnin, Valérie; Fernandez-Martinez, Alejandro

    2017-07-01

    The extrapolation of mineral dissolution kinetics experiments to geological timescales has frequently been challenged by the observation that mineral dissolution rates decrease with time. In the present study, we report a detailed investigation of the early stages of wollastonite dissolution kinetics, linking time-resolved measurements of wollastonite dissolution rate as a function of crystallographic orientation to the evolution of physicochemical properties (i.e., diffusivity, density, and thickness) of amorphous silica-rich layers (ASSLs) that developed on each surface. Batch dissolution experiments conducted at room temperature and at far-from-equilibrium conditions revealed that the initial (i.e., ASSL-free) dissolution rate of wollastonite (R(hkl)) based on Ca release observe the following trend: R(010) ≈R(100) >R(101) >R(001) . A gradual decrease of the dissolution rate of some faces by up to one order of magnitude resulted in a modification of this trend after two days: R(010) ≫R(100) ⩾R(101) ≈R(001) . In parallel, the diffusivity of ASSLs developed on each face was estimated based on the measurement of the concentration profile of a conservative tracer (methylene blue) across the ASSL using nanoSIMS. The apparent diffusion coefficients of methylene blue as a function of the crystallographic orientation (Dapp(hkl)) observe the following trend: Dapp(010) ⩾Dapp(100) >Dapp(101) ≫Dapp(001) , and decreases as a function of time for the (1 0 0) and (1 0 1) faces. Finally, the density of ASSL was estimated based on the modeling of X-ray reflectivity patterns acquired as a function of time. The density of ASSLs developed on the (0 1 0) faces remains low and constant, whereas it increases for the ASSLs developed on the (0 0 1) faces. On the whole, our results suggest that the impact of the formation of ASSLs on the wollastonite dissolution rate is anisotropic: while some crystal faces are weakly affected by the formation of non-passivating ASSLs (e.g., the (0 1 0) face), the dissolution of other faces is hampered by passivating ASSLs within a few hours. The observed passivation is suggested to originate from the progressive densification of the ASSL, which limits the transport of reactive species from and to the dissolving wollastonite surface, as evidenced by the estimated diffusivity of the ASSLs. Because the apparent face-specific diffusivity of the ASSLs is correlated with the face-specific initial (i.e., ASSL-free) dissolution rate of wollastonite, we propose that the extent of ASSL densification (and the resulting impact on ion transport) is (at least partly) controlled by the absolute mineral dissolution rate. Overall, this study argues that the formation and microstructural evolution of ASSLs are likely candidates for mineral ageing, highlighting the need for determining the parameters controlling the spontaneous changes of ASSL diffusivity as a function of the reaction progress.

  7. Angular intensity and polarization dependence of diffuse transmission through random media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliyahu, D.; Rosenbluh, M.; Feund, I.

    1993-03-01

    A simple theoretical model involving only a single sample parameter, the depolarization ratio [rho] for linearly polarized normally incident and normally scattered light, is developed to describe the angular intensity and all other polarization-dependent properties of diffuse transmission through multiple-scattering media. Initial experimental results that tend to support the theory are presented. Results for diffuse reflection are also described. 63 refs., 15 figs.

  8. Single-particle trajectories reveal two-state diffusion-kinetics of hOGG1 proteins on DNA.

    PubMed

    Vestergaard, Christian L; Blainey, Paul C; Flyvbjerg, Henrik

    2018-03-16

    We reanalyze trajectories of hOGG1 repair proteins diffusing on DNA. A previous analysis of these trajectories with the popular mean-squared-displacement approach revealed only simple diffusion. Here, a new optimal estimator of diffusion coefficients reveals two-state kinetics of the protein. A simple, solvable model, in which the protein randomly switches between a loosely bound, highly mobile state and a tightly bound, less mobile state is the simplest possible dynamic model consistent with the data. It yields accurate estimates of hOGG1's (i) diffusivity in each state, uncorrupted by experimental errors arising from shot noise, motion blur and thermal fluctuations of the DNA; (ii) rates of switching between states and (iii) rate of detachment from the DNA. The protein spends roughly equal time in each state. It detaches only from the loosely bound state, with a rate that depends on pH and the salt concentration in solution, while its rates for switching between states are insensitive to both. The diffusivity in the loosely bound state depends primarily on pH and is three to ten times higher than in the tightly bound state. We propose and discuss some new experiments that take full advantage of the new tools of analysis presented here.

  9. Regimes of stability and scaling relations for the removal time in the asteroid belt: a simple kinetic model and numerical tests

    NASA Astrophysics Data System (ADS)

    Cubrovic, Mihailo

    2005-02-01

    We report on our theoretical and numerical results concerning the transport mechanisms in the asteroid belt. We first derive a simple kinetic model of chaotic diffusion and show how it gives rise to some simple correlations (but not laws) between the removal time (the time for an asteroid to experience a qualitative change of dynamical behavior and enter a wide chaotic zone) and the Lyapunov time. The correlations are shown to arise in two different regimes, characterized by exponential and power-law scalings. We also show how is the so-called “stable chaos” (exponential regime) related to anomalous diffusion. Finally, we check our results numerically and discuss their possible applications in analyzing the motion of particular asteroids.

  10. P-glycoprotein substrate transport assessed by comparing cellular and vesicular ATPase activity.

    PubMed

    Nervi, Pierluigi; Li-Blatter, Xiaochun; Aänismaa, Päivi; Seelig, Anna

    2010-03-01

    We compared the P-glycoprotein ATPase activity in inside-out plasma membrane vesicles and living NIH-MDR1-G185 cells with the aim to detect substrate transport. To this purpose we used six substrates which differ significantly in their passive influx through the plasma membrane. In cells, the cytosolic membrane leaflet harboring the substrate binding site of P-glycoprotein has to be approached by passive diffusion through the lipid membrane, whereas in inside-out plasma membrane vesicles, it is accessible directly from the aqueous phase. Compounds exhibiting fast passive influx compared to active efflux by P-glycoprotein induced similar ATPase activity profiles in cells and inside-out plasma membrane vesicles, because their concentrations in the cytosolic leaflets were similar. Compounds exhibiting similar influx as efflux induced in contrast different ATPase activity profiles in cells and inside-out vesicles. Their concentration was significantly lower in the cytosolic leaflet of cells than in the cytosolic leaflet of inside-out membrane vesicles, indicating that P-glycoprotein could cope with passive influx. P-glycoprotein thus transported all compounds at a rate proportional to ATP hydrolysis (i.e. all compounds were substrates). However, it prevented substrate entry into the cytosol only if passive influx of substrates across the lipid bilayer was in a similar range as active efflux. Copyright 2009 Elsevier B.V. All rights reserved.

  11. Simple Approaches for Measuring Dry Atmospheric Nitrogen Deposition to Watersheds

    EPA Science Inventory

    Assessing the effects of atmospheric nitrogen (N) deposition on surface water quality requires accurate accounts of total N deposition (wet, dry, and cloud vapor); however, dry deposition is difficult to measure and is often spatially variable. Affordable passive sampling methods...

  12. An Urban Diffusion Simulation Model for Carbon Monoxide

    ERIC Educational Resources Information Center

    Johnson, W. B.; And Others

    1973-01-01

    A relatively simple Gaussian-type diffusion simulation model for calculating urban carbon (CO) concentrations as a function of local meteorology and the distribution of traffic is described. The model can be used in two ways: in the synoptic mode and in the climatological mode. (Author/BL)

  13. A combinatorial model of malware diffusion via bluetooth connections.

    PubMed

    Merler, Stefano; Jurman, Giuseppe

    2013-01-01

    We outline here the mathematical expression of a diffusion model for cellphones malware transmitted through Bluetooth channels. In particular, we provide the deterministic formula underlying the proposed infection model, in its equivalent recursive (simple but computationally heavy) and closed form (more complex but efficiently computable) expression.

  14. Passive stability and actuation of micro aerial vehicles

    NASA Astrophysics Data System (ADS)

    Piccoli, Matthew

    Micro Aerial Vehicles (MAVs) have increased in popularity in recent years. The most common platform, the quadrotor, has surpassed other MAVs like traditional helicopters and ornithopters in popularity mainly due to their simplicity. Yet the quadrotor design is a century old and was intended to carry people. We set out to design a MAV that is designed specifically to be a MAV, i.e. a vehicle not intended to carry humans as a payload. With this constraint lifted the vehicle can continuously rotate, which would dizzy a human, can sustain larger forces, which would damage a human, or can take advantage of scaling properties, where it may not work at human scale. Furthermore, we aim for simplicity by removing vehicle controllers and reducing the number of actuators, such that the vehicle can be made cost effective, if not disposable. We begin by studying general equations of motion for hovering MAVs. We search for vehicle configurations that exhibit passive stability, allowing the MAV to operate without a controller or actuators to apply control, ideally a single actuator. The analysis suggests two distinct types of passively stabilized MAVs and we create test vehicles for both. With simple hovering achieved, we concentrate on controlled motion with an emphasis on doing so without adding actuators. We find we can attain three degree of freedom control using separation of time scales with our actuator via low frequency for control in the vertical direction and high frequency for control in the horizontal plane. We explore techniques for achieving high frequency actuator control, which also allow the compensation of motor defects, specifically cogging torque. We combine passive stability with the motion control into two vehicles, UNO and Piccolissimo. UNO, the Underactuated-propeller Naturally-stabilized One-motor vehicle, demonstrates the capabilities of simple vehicles by performing maneuvers like conventional quadrotors. Piccolissimo, Italian for very little, demonstrates the merits of passive stability and single actuator control by being the smallest, self-powered, controllable MAV.

  15. Jigsaw puzzle metasurface for multiple functions: polarization conversion, anomalous reflection and diffusion.

    PubMed

    Zhao, Yi; Cao, Xiangyu; Gao, Jun; Liu, Xiao; Li, Sijia

    2016-05-16

    We demonstrate a simple reconfigurable metasurface with multiple functions. Anisotropic tiles are investigated and manufactured as fundamental elements. Then, the tiles are combined in a certain sequence to construct a metasurface. Each of the tiles can be adjusted independently which is like a jigsaw puzzle and the whole metasurface can achieve diverse functions by different layouts. For demonstration purposes, we realize polarization conversion, anomalous reflection and diffusion by a jigsaw puzzle metasurface with 6 × 6 pieces of anisotropic tile. Simulated and measured results prove that our method offers a simple and effective strategy for metasurface design.

  16. Temperatures Achieved in Human and Canine Neocortex During Intraoperative Passive or Active Focal Cooling

    PubMed Central

    Han, Rowland H.; Yarbrough, Chester K.; Patterson, Edward E.; Yang, Xiao-Feng; Miller, John W.; Rothman, Steven M.; D'Ambrosio, Raimondo

    2015-01-01

    Focal cortical cooling inhibits seizures and prevents acquired epileptogenesis in rodents. To investigate the potential clinical utility of this treatment modality, we examined the thermal characteristics of canine and human brain undergoing active and passive surface cooling in intraoperative settings. Four patients with intractable epilepsy were treated in a standard manner. Before the resection of a neocortical epileptogenic focus, multiple intraoperative studies of active (custom-made cooled irrigation-perfused grid) and passive (stainless steel probe) cooling were performed. We also actively cooled the neocortices of two dogs with perfused grids implanted for 2 hours. Focal surface cooling of the human brain causes predictable depth-dependent cooling of the underlying brain tissue. Cooling of 0.6–2°C was achieved both actively and passively to a depth of 10–15 mm from the cortical surface. The perfused grid permitted comparable and persistent cooling of canine neocortex when the craniotomy was closed. Thus, the human cortex can easily be cooled with the use of simple devices such as a cooling grid or a small passive probe. These techniques provide pilot data for the design of a permanently implantable device to control intractable epilepsy. PMID:25902001

  17. Molecular Dynamics Simulations of Grain Boundary and Bulk Diffusion in Metals.

    NASA Astrophysics Data System (ADS)

    Plimpton, Steven James

    Diffusion is a microscopic mass transport mechanism that underlies many important macroscopic phenomena affecting the structural, electrical, and mechanical properties of metals. This thesis presents results from atomistic simulation studies of diffusion both in bulk and in the fast diffusion paths known as grain boundaries. Using the principles of molecular dynamics single boundaries are studied and their structure and dynamic properties characterized. In particular, tilt boundary bicrystal and bulk models of fcc Al and bcc alpha-Fe are simulated. Diffusion coefficients and activation energies for atomic motion are calculated for both models and compared to experimental data. The influence of the interatomic pair potential on the diffusion is studied in detail. A universal relation between the melting temperature that a pair potential induces in a simulated bulk model and the potential energy barrier height for atomic hopping is derived and used to correlate results for a wide variety of pair potentials. Using these techniques grain boundary and bulk diffusion coefficients for any fcc material can be estimated from simple static calculations without the need to perform more time-consuming dynamic simulations. The influences of two other factors on grain boundary diffusion are also studied because of the interest of the microelectronics industry in the diffusion related reliability problem known as electromigration. The first factor, known to affect the self diffusion rate of Al, is the presence of Cu impurity atoms in Al tilt boundaries. The bicrystal model for Al is seeded randomly with Cu atoms and a simple hybrid Morse potential used to model the Al-Cu interaction. While some effect due to the Cu is noted, it is concluded that pair potentials are likely an inadequate approximation for the alloy system. The second factor studied is the effect of the boundary orientation angle on the diffusion rate. Symmetric bcc Fe boundaries are relaxed to find optimal structures and their diffusion coefficients calculated. Good agreement is found with the dislocation pipe model for tilt boundary diffusion.

  18. High linearity current communicating passive mixer employing a simple resistor bias

    NASA Astrophysics Data System (ADS)

    Rongjiang, Liu; Guiliang, Guo; Yuepeng, Yan

    2013-03-01

    A high linearity current communicating passive mixer including the mixing cell and transimpedance amplifier (TIA) is introduced. It employs the resistor in the TIA to reduce the source voltage and the gate voltage of the mixing cell. The optimum linearity and the maximum symmetric switching operation are obtained at the same time. The mixer is implemented in a 0.25 μm CMOS process. The test shows that it achieves an input third-order intercept point of 13.32 dBm, conversion gain of 5.52 dB, and a single sideband noise figure of 20 dB.

  19. Virtual Passive Controller for Robot Systems Using Joint Torque Sensors

    NASA Technical Reports Server (NTRS)

    Aldridge, Hal A.; Juang, Jer-Nan

    1997-01-01

    This paper presents a control method based on virtual passive dynamic control that will stabilize a robot manipulator using joint torque sensors and a simple joint model. The method does not require joint position or velocity feedback for stabilization. The proposed control method is stable in the sense of Lyaponov. The control method was implemented on several joints of a laboratory robot. The controller showed good stability robustness to system parameter error and to the exclusion of nonlinear dynamic effects on the joints. The controller enhanced position tracking performance and, in the absence of position control, dissipated joint energy.

  20. Assessment of blood-brain barrier penetration: in silico, in vitro and in vivo.

    PubMed

    Feng, Meihua Rose

    2002-12-01

    The amount of drug achieved and maintained in the brain after systemic administration is determined by the agent's permeability at blood-brain barrier (BBB), potential involvement of transport systems, and the distribution, metabolism and elimination properties. Passive diffusion permeability may be predicted by an in silico method based on a molecule's structure property. In vitro cell culture is another useful tool for the assessment of passive permeability and BBB transports (e.g. PGP, MRP). In situ or in vivo techniques like carotid artery single injection or perfusion, brain microdialysis, autoradiography, and others are used at various stages of drug discovery and development to estimate CNS penetration and PK/PD correlation. Each technique has its own application with specific advantages and limitations.

  1. Exacerbation of experimental autoimmune encephalomyelitis by passive transfer of IgG antibodies from a multiple sclerosis patient responsive to immunoadsorption.

    PubMed

    Pedotti, Rosetta; Musio, Silvia; Scabeni, Stefano; Farina, Cinthia; Poliani, Pietro Luigi; Colombo, Emanuela; Costanza, Massimo; Berzi, Angela; Castellucci, Fabrizio; Ciusani, Emilio; Confalonieri, Paolo; Hemmer, Bernhard; Mantegazza, Renato; Antozzi, Carlo

    2013-09-15

    The pathogenic role of antibodies in multiple sclerosis (MS) is still controversial. We transferred to mice with experimental autoimmune encephalomyelitis (EAE), animal model of MS, IgG antibodies purified from a MS patient presenting a dramatic clinical improvement during relapse after selective IgG removal with immunoadsorption. Passive transfer of patient's IgG exacerbated motor paralysis and increased mouse central nervous system (CNS) inflammation and demyelination. Binding of patient's IgG was demonstrated in mouse CNS, with a diffuse staining of white matter oligodendrocytes. These data support a growing body of evidence that antibodies can play an important role in the pathobiology of MS. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Comparison of Techniques to Estimate Ammonia Emissions at Cattle Feedlots Using Time-Averaged and Instantaneous Concentration Measurements

    NASA Astrophysics Data System (ADS)

    Shonkwiler, K. B.; Ham, J. M.; Williams, C. M.

    2013-12-01

    Ammonia (NH3) that volatilizes from confined animal feeding operations (CAFOs) can form aerosols that travel long distances where such aerosols can deposit in sensitive regions, potentially causing harm to local ecosystems. However, quantifying the emissions of ammonia from CAFOs through direct measurement is very difficult and costly to perform. A system was therefore developed at Colorado State University for conditionally sampling NH3 concentrations based on weather parameters measured using inexpensive equipment. These systems use passive diffusive cartridges (Radiello, Sigma-Aldrich, St. Louis, MO, USA) that provide time-averaged concentrations representative of a two-week deployment period. The samplers are exposed by a robotic mechanism so they are only deployed when wind is from the direction of the CAFO at 1.4 m/s or greater. These concentration data, along with other weather variables measured during each sampler deployment period, can then be used in a simple inverse model (FIDES, UMR Environnement et Grandes Cultures, Thiverval-Grignon, France) to estimate emissions. There are not yet any direct comparisons of the modeled emissions derived from time-averaged concentration data to modeled emissions from more sophisticated backward Lagrangian stochastic (bLs) techniques that utilize instantaneous measurements of NH3 concentration. In the summer and autumn of 2013, a suite of robotic passive sampler systems were deployed at a 25,000-head cattle feedlot at the same time as an open-path infrared (IR) diode laser (GasFinder2, Boreal Laser Inc., Edmonton, Alberta, Canada) which continuously measured ammonia concentrations instantaneously over a 225-m path. This particular laser is utilized in agricultural settings, and in combination with a bLs model (WindTrax, Thunder Beach Scientific, Inc., Halifax, Nova Scotia, Canada), has become a common method for estimating NH3 emissions from a variety of agricultural and industrial operations. This study will first compare the ammonia concentrations measured with the Radiello system to that measured with the long-path IR laser. Second, NH3 emissions estimated using the simple inverse model (FIDES) and the time-averaged data will be compared to emissions derived from the bLS model (WindTrax) using the laser-based NH3 data. Results could lead to a more cost-efficient and simpler technique for monitoring ammonia fluxes from of CAFOs and other strong areal sources.

  3. Preliminary studies for a beam-generated plasma neutralizer test in NIO1

    NASA Astrophysics Data System (ADS)

    Sartori, E.; Veltri, P.; Balbinot, L.; Cavenago, M.; Veranda, M.; Antoni, V.; Serianni, G.

    2017-08-01

    The deployment of neutral beam injectors in future fusion plants is beset by the particularly poor efficiency of the neutralization process. Beam-generated plasma neutralizers were proposed as a passive and intrinsically safe scheme of efficient plasma neutralizers. The concept is based on the natural ionization of the gas target by the beam, and on a suitable confinement of the secondary plasma. The technological challenge of such a concept is the magnetic confinement of the secondary plasma: a proof-of-principle for the concept is needed. The possibility to test of such a system in the small negative ion beam system NIO1 is discussed in this paper. The constraints given by the facility are first discussed. A model of beam-gas interaction is developed to provide the charge-state of beam particles along the neutralizer, and to provide the source terms of plasma generation. By using a cylindrical model of plasma diffusion in magnetic fields, the ionization degree of the target is estimated. In the absence of magnetic fields the diffusion model is validated against experimental measurements of the space-charge compensation plasma in the drift region of NIO1. Finally, the feasibility study for a beam-generated plasma neutralizer in NIO is presented. The neutralizer length, required gas target thickness, and a very simple magnetic setup were considered, taking into account the integration in NIO1. For the basic design a low ionization degree (1%) is obtained, however a promising plasma density up to hundred times the beam density was calculated. The proposed test in NIO1 can be the starting point for studying advanced schemes of magnetic confinement aiming at ionization degrees in the order of 10%.

  4. Lifetime Improvement of Organic Light Emitting Diodes using LiF Thin Film and UV Glue Encapsulation

    NASA Astrophysics Data System (ADS)

    Huang, Jian-Ji; Su, Yan-Kuin; Chang, Ming-Hua; Hsieh, Tsung-Eong; Huang, Bohr-Ran; Wang, Shun-Hsi; Chen, Wen-Ray; Tsai, Yu-Sheng; Hsieh, Huai-En; Liu, Mark O.; Juang, Fuh-Shyang

    2008-07-01

    This work demonstrates the use of lithium fluoride (LiF) as a passivation layer and a newly developed UV glue for encapsulation on the LiF passivation layer to enhance the stability of organic light-emitting devices (OLEDs). Devices with double protective layers showed a 25-fold increase in operational lifetime compared to those without any packaging layers. LiF has a low melting point and insulating characteristics and it can be adapted as both a protective layer and pre-encapsulation film. The newly developed UV glue has a fast curing time of only 6 s and can be directly spin-coated onto the surface of the LiF passivation layer. The LiF thin film plus spin-coated UV glue is a simple packaging method that reduces the fabrication costs of OLEDs.

  5. Integration of quantum cascade lasers and passive waveguides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montoya, Juan, E-mail: juan.montoya@ll.mit.edu; Wang, Christine; Goyal, Anish

    2015-07-20

    We report on monolithic integration of active quantum cascade laser (QCL) materials with passive waveguides formed by using proton implantation. Proton implantation reduces the electron concentration in the QCL layers by creating deep levels that trap carriers. This strongly reduces the intersubband absorption and the free-carrier absorption in the gain region and surrounding layers, thus significantly reducing optical loss. We have measured loss as low as α = 0.33 cm{sup −1} in λ = 9.6 μm wavelength proton-implanted QCL material. We have also demonstrated lasing in active-passive integrated waveguides. This simple integration technique is anticipated to enable low-cost fabrication in infrared photonic integrated circuits in themore » mid-infrared (λ ∼ 3–16 μm)« less

  6. Diffusion blotting: a rapid and simple method for production of multiple blots from a single gel.

    PubMed

    Olsen, Ingrid; Wiker, Harald G

    2015-01-01

    A very simple and fast method for diffusion blotting of proteins from precast SDS-PAGE gels on a solid plastic support was developed. Diffusion blotting for 3 min gives a quantitative transfer of 10 % compared to 1-h electroblotting. For each subsequent blot from the same gel a doubling of transfer time is necessary to obtain the same amount of protein onto each blot. High- and low-molecular-weight components are transferred equally efficiently when compared to electroblotting. However, both methods do give a higher total transfer of the low-molecular-weight proteins compared to the large proteins. The greatest advantage of diffusion blotting is that several blots can be made from each lane, thus enabling testing of multiple antisera on virtually identical blots. The gel remains on the plastic support, which prevents it from stretching or shrinking. This ensures identical blots and facilitates more reliable molecular weight determination. Furthermore the proteins remaining in the gel can be stained with Coomassie Brilliant Blue or other methods for exact and easy comparison with the developed blots. These advantages make diffusion blotting the method of choice when quantitative protein transfer is not required.

  7. Chemical and Temperature Effects on Diffusion in a Model Polymer/Nanoparticle Composite

    NASA Astrophysics Data System (ADS)

    Janes, Dustin; Durning, Christopher

    Polymers and inks used in medical devices may be strengthened with nanoparticle fillers, so an understanding of how they may affect the release of residuals and additives via diffusion will help modernize biocompatibility testing. Transport of small molecules in polymers with increasing volume fraction of impermeable nanoparticles is often poorly predicted by the simple Maxwell model for heterogeneous media. In this presentation we will examine two diffusant classes, only one of which possesses hydrogen bonding interactions with the nanoparticle surface. Since similar reductions in mutual diffusion coefficients were observed in both cases we attribute the enhancement of the ''blocking effect'' in nanocomposites to a reduction in polymer mobility in the interfacial volume near the nanoparticle. The temperature and penetrant concentration dependence of the diffusion coefficients were examined in the context of a Vrentas-Duda free volume model that includes a thermally activated prefactor. While data obtained for rubbery poly(methyl acrylate) clearly obeys the expected Arrhenius scaling with EA = 11 kJ/mol, results for films containing d = 14 nm spherical silica nanoparticles do not, providing more evidence that polymer free volume is perturbed in unexpected ways even for conceptually simple systems. National Science Foundation IGERT Program, Pall Corporation.

  8. Self-learning kinetic Monte Carlo simulations of Al diffusion in Mg

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandipati, Giridhar; Govind, Niranjan; Andersen, Amity

    2016-03-16

    Atomistic on-lattice self-learning kinetic Monte Carlo (SLKMC) method was used to examine the vacancy-mediated diffusion of an Al atom in pure hcp Mg. Local atomic environment dependent activation barriers for vacancy-atom exchange processes were calculated on-the-fly using climbing image nudged-elastic band method (CI-NEB) and using a Mg-Al binary modified embedded-atom method (MEAM) interatomic potential. Diffusivities of vacancy and Al atom in pure Mg were obtained from SLKMC simulations and are compared with values available in the literature that are obtained from experiments and first-principle calculations. Al Diffusivities obtained from SLKMC simulations are lower, due to larger activation barriers and lowermore » diffusivity prefactors, than those available in the literature but have same order of magnitude. We present all vacancy-Mg and vacancy-Al atom exchange processes and their activation barriers that were identified in SLKMC simulations. We will describe a simple mapping scheme to map a hcp lattice on to a simple cubic lattice that would enable hcp lattices to be simulated in an on-lattice KMC framework. We also present the pattern recognition scheme used in SLKMC simulations.« less

  9. Mutual influence of molecular diffusion in gas and surface phases

    NASA Astrophysics Data System (ADS)

    Hori, Takuma; Kamino, Takafumi; Yoshimoto, Yuta; Takagi, Shu; Kinefuchi, Ikuya

    2018-01-01

    We develop molecular transport simulation methods that simultaneously deal with gas- and surface-phase diffusions to determine the effect of surface diffusion on the overall diffusion coefficients. The phenomenon of surface diffusion is incorporated into the test particle method and the mean square displacement method, which are typically employed only for gas-phase transport. It is found that for a simple cylindrical pore, the diffusion coefficients in the presence of surface diffusion calculated by these two methods show good agreement. We also confirm that both methods reproduce the analytical solution. Then, the diffusion coefficients for ink-bottle-shaped pores are calculated using the developed method. Our results show that surface diffusion assists molecular transport in the gas phase. Moreover, the surface tortuosity factor, which is known to be uniquely determined by physical structure, is influenced by the presence of gas-phase diffusion. This mutual influence of gas-phase diffusion and surface diffusion indicates that their simultaneous calculation is necessary for an accurate evaluation of the diffusion coefficients.

  10. A Combinatorial Model of Malware Diffusion via Bluetooth Connections

    PubMed Central

    Merler, Stefano; Jurman, Giuseppe

    2013-01-01

    We outline here the mathematical expression of a diffusion model for cellphones malware transmitted through Bluetooth channels. In particular, we provide the deterministic formula underlying the proposed infection model, in its equivalent recursive (simple but computationally heavy) and closed form (more complex but efficiently computable) expression. PMID:23555677

  11. Diffusion of protein through the human cornea.

    PubMed

    Charalel, Resmi A; Engberg, Kristin; Noolandi, Jaan; Cochran, Jennifer R; Frank, Curtis; Ta, Christopher N

    2012-01-01

    To determine the rate of diffusion of myoglobin and bovine serum albumin (BSA) through the human cornea. These small proteins have hydrodynamic diameters of approximately 4.4 and 7.2 nm, and molecular weights of 16.7 and 66 kDa, for myoglobin and BSA, respectively. Diffusion coefficients were measured using a diffusion chamber where the protein of interest and balanced salt solution were in different chambers separated by an ex vivo human cornea. Protein concentrations in the balanced salt solution chamber were measured over time. Diffusion coefficients were calculated using equations derived from Fick's law and conservation of mass in a closed system. Our experiments demonstrate that the diffusion coefficient of myoglobin is 5.5 ± 0.9 × 10(-8) cm(2)/s (n = 8; SD = 1.3 × 10(-8) cm(2)/s; 95% CI: 4.6 × 10(-8) to 6.4 × 10(-8) cm(2)/s) and the diffusion coefficient of BSA is 3.1 ± 1.0 × 10(-8) cm(2)/s (n = 8; SD = 1.4 × 10(-8) cm(2)/s; 95% CI: 2.1 × 10(-8) to 4.1 × 10(-8) cm(2)/s). Our study suggests that molecules as large as 7.2 nm may be able to passively diffuse through the human cornea. With applications in pharmacotherapy and the development of an artificial cornea, further experiments are warranted to fully understand the limits of human corneal diffusion and its clinical relevance. Copyright © 2012 S. Karger AG, Basel.

  12. GaSb and Ga1-xInxSb Thermophotovoltaic Cells using Diffused Junction Technology in Bulk Substrates

    NASA Astrophysics Data System (ADS)

    Dutta, P. S.; Borrego, J. M.; Ehsani, H.; Rajagopalan, G.; Bhat, I. B.; Gutmann, R. J.; Nichols, G.; Baldasaro, P. F.

    2003-01-01

    This paper presents results of experimental and theoretical research on antimonide- based thermophotovoltaic (TPV) materials and cells. The topics discussed include: growth of large diameter ternary GaInSb bulk crystals, substrate preparation, diffused junction processes, cell fabrication and characterization, and, cell modeling. Ternary GaInSb boules up to 2 inches in diameter have been grown using the vertical Bridgman technique with a novel self solute feeding technique. A single step diffusion process followed by precise etching of the diffused layer has been developed to obtain a diffusion profile appropriate for high efficiency, p-n junction GaSb and GaInSb thermophotovoltaic cells. The optimum junction depth to obtain the highest quantum efficiency and open circuit voltage has been identified based on diffusion lengths (or minority carrier lifetimes), carrier mobility and experimental diffused impurity profiles. Theoretical assessment of the performance of ternary (GaInSb) and binary (GaSb) cells fabricated by Zn diffusion in bulk substrates has been performed using PC-1D one-dimensional computer simulations. Several factors affecting the cell performances such as the effects of emitter doping profile, emitter thickness and recombination mechanisms (Auger, radiative and Shockley-Read-Hall), the advantages of surface passivation and the impact of dark current due to the metallic grid will be discussed. The conditions needed for diffused junction cells on ternary and binary substrates to achieve similar performance to the epitaxially grown lattice- matched quaternary cells are identified.

  13. Comparison of Pumped and Diffusion Sampling Methods to Monitor Concentrations of Perchlorate and Explosive Compounds in Ground Water, Camp Edwards, Cape Cod, Massachusetts, 2004-05

    USGS Publications Warehouse

    LeBlanc, Denis R.; Vroblesky, Don A.

    2008-01-01

    Laboratory and field tests were conducted at Camp Edwards on the Massachusetts Military Reservation on Cape Cod to examine the utility of passive diffusion sampling for long-term monitoring of concentrations of perchlorate and explosive compounds in ground water. The diffusion samplers were constructed of 1-inch-diameter rigid, porous polyethylene tubing. The results of laboratory tests in which diffusion samplers were submerged in containers filled with ground water containing perchlorate, RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), and HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) indicate that concentrations inside the diffusion samplers equilibrated with concentrations in the containers within the 19-day-long test period. Field tests of the diffusion samplers were conducted in 15 wells constructed of 2- or 2.5-inch-diameter polyvinyl chloride pipe with 10-foot-long slotted screens. Concentrations of perchlorate, RDX, and HMX in the diffusion samplers placed in the wells for 42 to 52 days were compared to concentrations in samples collected by low-flow pumped sampling from 53 days before to 109 days after retrieval of the diffusion samples. The results of the field tests indicate generally good agreement between the pumped and diffusion samples for concentrations of perchlorate, RDX, and HMX. The concentration differences indicate no systematic bias related to contaminant type or concentration levels.

  14. A simple linear model for estimating ozone AOT40 at forest sites from raw passive sampling data.

    PubMed

    Ferretti, Marco; Cristofolini, Fabiana; Cristofori, Antonella; Gerosa, Giacomo; Gottardini, Elena

    2012-08-01

    A rapid, empirical method is described for estimating weekly AOT40 from ozone concentrations measured with passive samplers at forest sites. The method is based on linear regression and was developed after three years of measurements in Trentino (northern Italy). It was tested against an independent set of data from passive sampler sites across Italy. It provides good weekly estimates compared with those measured by conventional monitors (0.85 ≤R(2)≤ 0.970; 97 ≤ RMSE ≤ 302). Estimates obtained using passive sampling at forest sites are comparable to those obtained by another estimation method based on modelling hourly concentrations (R(2) = 0.94; 131 ≤ RMSE ≤ 351). Regression coefficients of passive sampling are similar to those obtained with conventional monitors at forest sites. Testing against an independent dataset generated by passive sampling provided similar results (0.86 ≤R(2)≤ 0.99; 65 ≤ RMSE ≤ 478). Errors tend to accumulate when weekly AOT40 estimates are summed to obtain the total AOT40 over the May-July period, and the median deviation between the two estimation methods based on passive sampling is 11%. The method proposed does not require any assumptions, complex calculation or modelling technique, and can be useful when other estimation methods are not feasible, either in principle or in practice. However, the method is not useful when estimates of hourly concentrations are of interest.

  15. Antenna for passive RFID tags

    NASA Astrophysics Data System (ADS)

    Schiopu, Paul; Manea, Adrian; Cristea, Ionica; Grosu, Neculai; Vladescu, Marian; Craciun, Anca-Ileana; Craciun, Alexandru

    2015-02-01

    Minuscule devices, called RFID tags are attached to objects and persons and emit information which positioned readers may capture wirelessly. Many methods of identification have been used, but that of most common is to use a unique serial number for identification of person or object. RFID tags can be characterized as either active or passive [1,2]. Traditional passive tags are typically in "sleep" state until awakened by the reader's emitted field. In passive tags, the reader's field acts to charge the capacitor that powers the badge and this can be a combination of antenna and barcodes obtained with SAW( Surface Acoustic Wave) devices [1,2,3] . The antenna in an RFID tag is a conductive element that permits the tag to exchange data with the reader. The paper contribution are targeted to antenna for passive RFID tags. The electromagnetic field generated by the reader is somehow oriented by the reader antenna and power is induced in the tag only if the orientation of the tag antenna is appropriate. A tag placed orthogonal to the reader yield field will not be read. This is the reason that guided manufacturers to build circular polarized antenna capable of propagating a field that is alternatively polarized on all planes passing on the diffusion axis. Passive RFID tags are operated at the UHF frequencies of 868MHz (Europe) and 915MHz (USA) and at the microwave frequencies of 2,45 GHz and 5,8 GHz . Because the tags are small dimensions, in paper, we present the possibility to use circular polarization microstrip antenna with fractal edge [2].

  16. Computational Exploration of the Li-Electrode|Electrolyte Interface in the Presence of a Nanometer Thick Solid-Electrolyte Interphase Layer [Computational exploration of the Li-electrode|electrolyte interface complicated by a nanometer thin solid-electrolyte interphase (SEI) layer

    DOE PAGES

    Li, Yunsong; Leung, Kevin; Qi, Yue

    2016-09-30

    A nanometer thick passivation layer will spontaneously form on Li-metal in battery applications due to electrolyte reduction reactions. This passivation layer in rechargeable batteries must have “selective” transport properties: blocking electrons from attacking the electrolytes, while allowing Li + ion to pass through so the electrochemical reactions can continue. The classical description of the electrochemical reaction, Li + + e → Li 0, occurring at the Li-metal|electrolyte interface is now complicated by the passivation layer and will reply on the coupling of electronic and ionic degrees of freedom in the layer. We consider the passivation layer, called “solid electrolyte interphasemore » (SEI)”, as “the most important but the least understood in rechargeable Li-ion batteries,” partly due to the lack of understanding of its structure–property relationship. In predictive modeling, starting from the ab initio level, we find that it is an important tool to understand the nanoscale processes and materials properties governing the interfacial charge transfer reaction at the Li-metal|SEI|electrolyte interface. Here, we demonstrate pristine Li-metal surfaces indeed dissolve in organic carbonate electrolytes without the SEI layer. Based on joint modeling and experimental results, we point out that the well-known two-layer structure of SEI also exhibits two different Li + ion transport mechanisms. The SEI has a porous (organic) outer layer permeable to both Li + and anions (dissolved in electrolyte), and a dense (inorganic) inner layer facilitate only Li + transport. This two-layer/two-mechanism diffusion model suggests only the dense inorganic layer is effective at protecting Li-metal in electrolytes. This model suggests a strategy to deconvolute the structure–property relationships of the SEI by analyzing an idealized SEI composed of major components, such as Li 2CO 3, LiF, Li 2O, and their mixtures. After sorting out the Li+ ion diffusion carriers and their diffusion pathways, we design methods to accelerate the Li + ion conductivity by doping and by using heterogonous structure designs. We will predict the electron tunneling barriers and connect them with measurable first cycle irreversible capacity loss. We note that the SEI not only affects Li + and e – transport, but it can also impose a potential drop near the Li-metal|SEI interface. Our challenge is to fully describe the electrochemical reactions at the Li -metal|SEI|electrolyte interface. This will be the subject of ongoing efforts.« less

  17. Computational Exploration of the Li-Electrode|Electrolyte Interface in the Presence of a Nanometer Thick Solid-Electrolyte Interphase Layer [Computational exploration of the Li-electrode|electrolyte interface complicated by a nanometer thin solid-electrolyte interphase (SEI) layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yunsong; Leung, Kevin; Qi, Yue

    A nanometer thick passivation layer will spontaneously form on Li-metal in battery applications due to electrolyte reduction reactions. This passivation layer in rechargeable batteries must have “selective” transport properties: blocking electrons from attacking the electrolytes, while allowing Li + ion to pass through so the electrochemical reactions can continue. The classical description of the electrochemical reaction, Li + + e → Li 0, occurring at the Li-metal|electrolyte interface is now complicated by the passivation layer and will reply on the coupling of electronic and ionic degrees of freedom in the layer. We consider the passivation layer, called “solid electrolyte interphasemore » (SEI)”, as “the most important but the least understood in rechargeable Li-ion batteries,” partly due to the lack of understanding of its structure–property relationship. In predictive modeling, starting from the ab initio level, we find that it is an important tool to understand the nanoscale processes and materials properties governing the interfacial charge transfer reaction at the Li-metal|SEI|electrolyte interface. Here, we demonstrate pristine Li-metal surfaces indeed dissolve in organic carbonate electrolytes without the SEI layer. Based on joint modeling and experimental results, we point out that the well-known two-layer structure of SEI also exhibits two different Li + ion transport mechanisms. The SEI has a porous (organic) outer layer permeable to both Li + and anions (dissolved in electrolyte), and a dense (inorganic) inner layer facilitate only Li + transport. This two-layer/two-mechanism diffusion model suggests only the dense inorganic layer is effective at protecting Li-metal in electrolytes. This model suggests a strategy to deconvolute the structure–property relationships of the SEI by analyzing an idealized SEI composed of major components, such as Li 2CO 3, LiF, Li 2O, and their mixtures. After sorting out the Li+ ion diffusion carriers and their diffusion pathways, we design methods to accelerate the Li + ion conductivity by doping and by using heterogonous structure designs. We will predict the electron tunneling barriers and connect them with measurable first cycle irreversible capacity loss. We note that the SEI not only affects Li + and e – transport, but it can also impose a potential drop near the Li-metal|SEI interface. Our challenge is to fully describe the electrochemical reactions at the Li -metal|SEI|electrolyte interface. This will be the subject of ongoing efforts.« less

  18. The relationship between the surface composition and electrical properties of corrosion films formed on carbon steel in alkaline sour medium: an XPS and EIS study.

    PubMed

    Galicia, Policarpo; Batina, Nikola; González, Ignacio

    2006-07-27

    This work studies the evolution of 1018 carbon steel surfaces during 3-15 day immersion in alkaline sour medium 0.1 M (NH4)2S and 10 ppm CN(-) as (NaCN). During this period of time, surfaces were jointly characterized by electrochemical techniques in situ (electrochemical impedance spectroscopy, EIS) and spectroscopic techniques ex situ (X-ray photoelectron spectroscopy, XPS). The results obtained by these techniques allowed for a description of electrical and chemical properties of the films of corrosion products formed at the 1018 steel surface. There is an interconversion cycle of chemical species that form films of corrosion products whose conversion reactions favor two different types of diffusions inside the films: a chemical diffusion of iron cations and a typical diffusion of atomic hydrogen. These phenomena jointly control the passivity of the interface attacked by the corrosive medium.

  19. Upgraded metallurgical-grade silicon solar cells with efficiency above 20%

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, P.; Rougieux, F. E.; Samundsett, C.

    We present solar cells fabricated with n-type Czochralski–silicon wafers grown with strongly compensated 100% upgraded metallurgical-grade feedstock, with efficiencies above 20%. The cells have a passivated boron-diffused front surface, and a rear locally phosphorus-diffused structure fabricated using an etch-back process. The local heavy phosphorus diffusion on the rear helps to maintain a high bulk lifetime in the substrates via phosphorus gettering, whilst also reducing recombination under the rear-side metal contacts. The independently measured results yield a peak efficiency of 20.9% for the best upgraded metallurgical-grade silicon cell and 21.9% for a control device made with electronic-grade float-zone silicon. The presencemore » of boron-oxygen related defects in the cells is also investigated, and we confirm that these defects can be partially deactivated permanently by annealing under illumination.« less

  20. Sedimentation dynamics and diffusion of suspensions of swimming E. coli

    NASA Astrophysics Data System (ADS)

    Arratia, Paulo; Patteson, Alison; Singh, Jaspreet; Purohit, Prashant

    2017-11-01

    Sedimentation in active fluids has come into focus due to the ubiquity of swimming micro-organisms in natural and man-made environments. Here, we experimentally investigate sedimentation of passive particles in water containing various concentrations of the bacterium E. coli. Results show that the presence of live bacteria reduces the velocity of the sedimentation front even in the dilute regime, where constant sedimentation velocity is expected to be independent of particle concentration. The presence of live bacteria increases the effective diffusion coefficient, which determines the width of the sedimentation front. For higher bacteria concentration, we find the development of two sedimentation fronts due to bacterial death. A model in which the advection-diffusion equation describing the settling of particles under gravity is coupled to the population dynamics of the bacteria captures the experimental trends relatively well. This work is supported by NSF-CBET-1437482.

Top