SIMPL Systems, or: Can We Design Cryptographic Hardware without Secret Key Information?
NASA Astrophysics Data System (ADS)
Rührmair, Ulrich
This paper discusses a new cryptographic primitive termed SIMPL system. Roughly speaking, a SIMPL system is a special type of Physical Unclonable Function (PUF) which possesses a binary description that allows its (slow) public simulation and prediction. Besides this public key like functionality, SIMPL systems have another advantage: No secret information is, or needs to be, contained in SIMPL systems in order to enable cryptographic protocols - neither in the form of a standard binary key, nor as secret information hidden in random, analog features, as it is the case for PUFs. The cryptographic security of SIMPLs instead rests on (i) a physical assumption on their unclonability, and (ii) a computational assumption regarding the complexity of simulating their output. This novel property makes SIMPL systems potentially immune against many known hardware and software attacks, including malware, side channel, invasive, or modeling attacks.
Management system of simple rental flats study based on technical aspect and health in Medan city
NASA Astrophysics Data System (ADS)
Novrial; Indra Cahaya, S.
2018-03-01
Medan city is a metropolis city in Sumatera that has slums area. Simple rental flats have been built to overcome the problem. However the preliminary survey result showed that the physical and non-physical environment management of simple rent flats is very bad. This study conducted in 3 simple rent flats. It has observed the simple rent flats environment and has interviewed occupants and related agencies. Results of conducted research showed the occupant’s characteristics based on the largest percentage are Javanese; last education is senior high with self-employed work with average income Rp 1,000,000 – Rp 2,500,000. Waste retribution submitted to their cleanliness except for Amplas simple rent flats, their waste management system does not manage properly and the garbage littered. The number of family members of Wisma Labuhan and Amplas simple rent flats exceeds the regulation number of occupants, so it is crowded and noisy. Physical conditions of Amplas simple rent flats are bad, septic tank is full and are not vacuumed. Clean water sources derived from wells and artesian wll are vulnerable to be contaminated by pollutants such as leachate and bad quality water. It is necessary to improve the physical, basic sanitation, and guidance for the simple rent flats occupants to the management system of Simple Rent Flats.
ERIC Educational Resources Information Center
Taber, Keith S.
2013-01-01
Comparing the atom to a "tiny solar system" is a common teaching analogy, and the extent to which learners saw the systems as analogous was investigated. English upper secondary students were asked parallel questions about the physical interactions between the components of a simple atomic system and a simple solar system to investigate…
Allen, Craig R.; Holling, Crawford S.; Garmestani, Ahjond S.; El-Shaarawi, Abdel H.; Piegorsch, Walter W.
2013-01-01
The scaling of physical, biological, ecological and social phenomena is a major focus of efforts to develop simple representations of complex systems. Much of the attention has been on discovering universal scaling laws that emerge from simple physical and geometric processes. However, there are regular patterns of departures both from those scaling laws and from continuous distributions of attributes of systems. Those departures often demonstrate the development of self-organized interactions between living systems and physical processes over narrower ranges of scale.
Are attractors 'strange', or is life more complicated than the simple laws of physics?
Pogun, S
2001-01-01
Interesting and intriguing questions involve complex systems whose properties cannot be explained fully by reductionist approaches. Last century was dominated by physics, and applying the simple laws of physics to biology appeared to be a practical solution to understand living organisms. However, although some attributes of living organisms involve physico-chemical properties, the genetic program and evolutionary history of complex biological systems make them unique and unpredictable. Furthermore, there are and will be 'unobservable' phenomena in biology which have to be accounted for.
DIY soundcard based temperature logging system. Part II: applications
NASA Astrophysics Data System (ADS)
Nunn, John
2016-11-01
This paper demonstrates some simple applications of how temperature logging systems may be used to monitor simple heat experiments, and how the data obtained can be analysed to get some additional insight into the physical processes.
DIY Soundcard Based Temperature Logging System. Part II: Applications
ERIC Educational Resources Information Center
Nunn, John
2016-01-01
This paper demonstrates some simple applications of how temperature logging systems may be used to monitor simple heat experiments, and how the data obtained can be analysed to get some additional insight into the physical processes. [For "DIY Soundcard Based Temperature Logging System. Part I: Design," see EJ1114124.
Lagrangians and Systems They Describe-How Not to Treat Dissipation in Quantum Mechanics.
ERIC Educational Resources Information Center
Ray, John R.
1979-01-01
The author argues that a Lagrangian that yields equations of motion for a damped simple harmonic oscillator does not describe this system, but a completely different physical system, and constructs a physical system that the Lagrangian describes and derives some of its properties. (Author/GA)
Thermodynamic Entropy and the Accessible States of Some Simple Systems
ERIC Educational Resources Information Center
Sands, David
2008-01-01
Comparison of the thermodynamic entropy with Boltzmann's principle shows that under conditions of constant volume the total number of arrangements in a simple thermodynamic system with temperature-independent constant-volume heat capacity, C, is T[superscript C/k]. A physical interpretation of this function is given for three such systems: an…
Phonon scattering in nanoscale systems: lowest order expansion of the current and power expressions
NASA Astrophysics Data System (ADS)
Paulsson, Magnus; Frederiksen, Thomas; Brandbyge, Mads
2006-04-01
We use the non-equilibrium Green's function method to describe the effects of phonon scattering on the conductance of nano-scale devices. Useful and accurate approximations are developed that both provide (i) computationally simple formulas for large systems and (ii) simple analytical models. In addition, the simple models can be used to fit experimental data and provide physical parameters.
A Simple Technique for High Resistance Measurement
ERIC Educational Resources Information Center
Aguilar, Horacio Munguia; Landin, Ramon Ochoa
2012-01-01
A simple electronic system for the measurement of high values of resistance is shown. This system allows the measurement of resistance in the range of a few megohm up to 10[superscript 9] [omega]. We have used this system for the evaluation of CdS thin film resistance, but other practical uses in the basic physics laboratory are presented.…
The Monash University Interactive Simple Climate Model
NASA Astrophysics Data System (ADS)
Dommenget, D.
2013-12-01
The Monash university interactive simple climate model is a web-based interface that allows students and the general public to explore the physical simulation of the climate system with a real global climate model. It is based on the Globally Resolved Energy Balance (GREB) model, which is a climate model published by Dommenget and Floeter [2011] in the international peer review science journal Climate Dynamics. The model simulates most of the main physical processes in the climate system in a very simplistic way and therefore allows very fast and simple climate model simulations on a normal PC computer. Despite its simplicity the model simulates the climate response to external forcings, such as doubling of the CO2 concentrations very realistically (similar to state of the art climate models). The Monash simple climate model web-interface allows you to study the results of more than a 2000 different model experiments in an interactive way and it allows you to study a number of tutorials on the interactions of physical processes in the climate system and solve some puzzles. By switching OFF/ON physical processes you can deconstruct the climate and learn how all the different processes interact to generate the observed climate and how the processes interact to generate the IPCC predicted climate change for anthropogenic CO2 increase. The presentation will illustrate how this web-base tool works and what are the possibilities in teaching students with this tool are.
Simple system for locating ground loops.
Bellan, P M
2007-06-01
A simple low-cost system for rapid identification of the cables causing ground loops in complex instrumentation configurations is described. The system consists of an exciter module that generates a 100 kHz ground loop current and a detector module that determines which cable conducts this test current. Both the exciter and detector are magnetically coupled to the ground circuit so there is no physical contact to the instrumentation system under test.
Shih, Ching-Hsiang
2011-01-01
This study evaluated whether two people with developmental disabilities would be able to actively perform simple physical activities by controlling their favorite environmental stimulation using Nintendo Wii Balance Boards with a newly developed standing location detection program (SLDP, i.e., a new software program turning a Nintendo Wii Balance Board into a standing location detector). This study was carried out using to an ABAB design. The data showed that both participants significantly increased their simple physical activity (target response) to activate the control system to produce environmental stimulation during the B (intervention) phases. The practical and developmental implications of the findings are discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Myneni, Lakshman Sundeep
Students in middle school science classes have difficulty mastering physics concepts such as energy and work, taught in the context of simple machines. Moreover, students' naive conceptions of physics often remain unchanged after completing a science class. To address this problem, I developed an intelligent tutoring system, called the Virtual Physics System (ViPS), which coaches students through problem solving with one class of simple machines, pulley systems. The tutor uses a unique cognitive based approach to teaching simple machines, and includes innovations in three areas. (1) It employs a teaching strategy that focuses on highlighting links among concepts of the domain that are essential for conceptual understanding yet are seldom learned by students. (2) Concepts are taught through a combination of effective human tutoring techniques (e.g., hinting) and simulations. (3) For each student, the system identifies which misconceptions he or she has, from a common set of student misconceptions gathered from domain experts, and tailors tutoring to match the correct line of scientific reasoning regarding the misconceptions. ViPS was implemented as a platform on which students can design and simulate pulley system experiments, integrated with a constraint-based tutor that intervenes when students make errors during problem solving to teach them and to help them. ViPS has a web-based client-server architecture, and has been implemented using Java technologies. ViPS is different from existing physics simulations and tutoring systems due to several original features. (1). It is the first system to integrate a simulation based virtual experimentation platform with an intelligent tutoring component. (2) It uses a novel approach, based on Bayesian networks, to help students construct correct pulley systems for experimental simulation. (3) It identifies student misconceptions based on a novel decision tree applied to student pretest scores, and tailors tutoring to individual students based on detected misconceptions. ViPS has been evaluated through usability and usefulness experiments with undergraduate engineering students taking their first college-level engineering physics course and undergraduate pre-service teachers taking their first college-level physics course. These experiments demonstrated that ViPS is highly usable and effective. Students using ViPS reduced their misconceptions, and students conducting virtual experiments in ViPS learned more than students who conducted experiments with physical pulley systems. Interestingly, it was also found that college students exhibited many of the same misconceptions that have been identified in middle school students.
Physical layer security in fiber-optic MIMO-SDM systems: An overview
NASA Astrophysics Data System (ADS)
Guan, Kyle; Cho, Junho; Winzer, Peter J.
2018-02-01
Fiber-optic transmission systems provide large capacities over enormous distances but are vulnerable to simple eavesdropping attacks at the physical layer. We classify key-based and keyless encryption and physical layer security techniques and discuss them in the context of optical multiple-input-multiple-output space-division multiplexed (MIMO-SDM) fiber-optic communication systems. We show that MIMO-SDM not only increases system capacity, but also ensures the confidentiality of information transmission. Based on recent numerical and experimental results, we review how the unique channel characteristics of MIMO-SDM can be exploited to provide various levels of physical layer security.
A simple, low-cost, data logging pendulum built from a computer mouse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gintautas, Vadas; Hubler, Alfred
Lessons and homework problems involving a pendulum are often a big part of introductory physics classes and laboratory courses from high school to undergraduate levels. Although laboratory equipment for pendulum experiments is commercially available, it is often expensive and may not be affordable for teachers on fixed budgets, particularly in developing countries. We present a low-cost, easy-to-build rotary sensor pendulum using the existing hardware in a ball-type computer mouse. We demonstrate how this apparatus may be used to measure both the frequency and coefficient of damping of a simple physical pendulum. This easily constructed laboratory equipment makes it possible formore » all students to have hands-on experience with one of the most important simple physical systems.« less
Shih, Ching-Hsiang; Chung, Chiao-Chen; Shih, Ching-Tien; Chen, Ling-Che
2011-01-01
The latest researches have adopted software technology turning the Nintendo Wii Balance Board into a high performance standing location detector. This study extended Wii Balance Board functionality to assess whether two people with developmental disabilities would be able to actively perform designated physical activities according to simple instructions by controlling their favorite environmental stimulation using Nintendo Wii Balance Boards. This study was carried out according to an A-B-A-B design. Data showed that both participants significantly increased their target response (performing a designated physical activity) by activating the control system to produce their preferred environmental stimulation during the intervention phases. Copyright © 2011 Elsevier Ltd. All rights reserved.
Versatile microrobotics using simple modular subunits
NASA Astrophysics Data System (ADS)
Cheang, U. Kei; Meshkati, Farshad; Kim, Hoyeon; Lee, Kyoungwoo; Fu, Henry Chien; Kim, Min Jun
2016-07-01
The realization of reconfigurable modular microrobots could aid drug delivery and microsurgery by allowing a single system to navigate diverse environments and perform multiple tasks. So far, microrobotic systems are limited by insufficient versatility; for instance, helical shapes commonly used for magnetic swimmers cannot effectively assemble and disassemble into different size and shapes. Here by using microswimmers with simple geometries constructed of spherical particles, we show how magnetohydrodynamics can be used to assemble and disassemble modular microrobots with different physical characteristics. We develop a mechanistic physical model that we use to improve assembly strategies. Furthermore, we experimentally demonstrate the feasibility of dynamically changing the physical properties of microswimmers through assembly and disassembly in a controlled fluidic environment. Finally, we show that different configurations have different swimming properties by examining swimming speed dependence on configuration size.
Versatile microrobotics using simple modular subunits
Cheang, U Kei; Meshkati, Farshad; Kim, Hoyeon; Lee, Kyoungwoo; Fu, Henry Chien; Kim, Min Jun
2016-01-01
The realization of reconfigurable modular microrobots could aid drug delivery and microsurgery by allowing a single system to navigate diverse environments and perform multiple tasks. So far, microrobotic systems are limited by insufficient versatility; for instance, helical shapes commonly used for magnetic swimmers cannot effectively assemble and disassemble into different size and shapes. Here by using microswimmers with simple geometries constructed of spherical particles, we show how magnetohydrodynamics can be used to assemble and disassemble modular microrobots with different physical characteristics. We develop a mechanistic physical model that we use to improve assembly strategies. Furthermore, we experimentally demonstrate the feasibility of dynamically changing the physical properties of microswimmers through assembly and disassembly in a controlled fluidic environment. Finally, we show that different configurations have different swimming properties by examining swimming speed dependence on configuration size. PMID:27464852
Nondeducibility-Based Analysis of Cyber-Physical Systems
NASA Astrophysics Data System (ADS)
Gamage, Thoshitha; McMillin, Bruce
Controlling information flow in a cyber-physical system (CPS) is challenging because cyber domain decisions and actions manifest themselves as visible changes in the physical domain. This paper presents a nondeducibility-based observability analysis for CPSs. In many CPSs, the capacity of a low-level (LL) observer to deduce high-level (HL) actions ranges from limited to none. However, a collaborative set of observers strategically located in a network may be able to deduce all the HL actions. This paper models a distributed power electronics control device network using a simple DC circuit in order to understand the effect of multiple observers in a CPS. The analysis reveals that the number of observers required to deduce all the HL actions in a system increases linearly with the number of configurable units. A simple definition of nondeducibility based on the uniqueness of low-level projections is also presented. This definition is used to show that a system with two security domain levels could be considered “nondeducibility secure” if no unique LL projections exist.
Analysis of pre-service physics teacher skills designing simple physics experiments based technology
NASA Astrophysics Data System (ADS)
Susilawati; Huda, C.; Kurniawan, W.; Masturi; Khoiri, N.
2018-03-01
Pre-service physics teacher skill in designing simple experiment set is very important in adding understanding of student concept and practicing scientific skill in laboratory. This study describes the skills of physics students in designing simple experiments based technologicall. The experimental design stages include simple tool design and sensor modification. The research method used is descriptive method with the number of research samples 25 students and 5 variations of simple physics experimental design. Based on the results of interviews and observations obtained the results of pre-service physics teacher skill analysis in designing simple experimental physics charged technology is good. Based on observation result, pre-service physics teacher skill in designing simple experiment is good while modification and sensor application are still not good. This suggests that pre-service physics teacher still need a lot of practice and do experiments in designing physics experiments using sensor modifications. Based on the interview result, it is found that students have high enough motivation to perform laboratory activities actively and students have high curiosity to be skilled at making simple practicum tool for physics experiment.
A Simple Interactive Software Package for Plotting, Animating, and Calculating
ERIC Educational Resources Information Center
Engelhardt, Larry
2012-01-01
We introduce a new open source (free) software package that provides a simple, highly interactive interface for carrying out certain mathematical tasks that are commonly encountered in physics. These tasks include plotting and animating functions, solving systems of coupled algebraic equations, and basic calculus (differentiating and integrating…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, Philip LaRoche
At the end of his life, Stephen Jay Kline, longtime professor of mechanical engineering at Stanford University, completed a book on how to address complex systems. The title of the book is 'Conceptual Foundations of Multi-Disciplinary Thinking' (1995), but the topic of the book is systems. Kline first establishes certain limits that are characteristic of our conscious minds. Kline then establishes a complexity measure for systems and uses that complexity measure to develop a hierarchy of systems. Kline then argues that our minds, due to their characteristic limitations, are unable to model the complex systems in that hierarchy. Computers aremore » of no help to us here. Our attempts at modeling these complex systems are based on the way we successfully model some simple systems, in particular, 'inert, naturally-occurring' objects and processes, such as what is the focus of physics. But complex systems overwhelm such attempts. As a result, the best we can do in working with these complex systems is to use a heuristic, what Kline calls the 'Guideline for Complex Systems.' Kline documents the problems that have developed due to 'oversimple' system models and from the inappropriate application of a system model from one domain to another. One prominent such problem is the Procrustean attempt to make the disciplines that deal with complex systems be 'physics-like.' Physics deals with simple systems, not complex ones, using Kline's complexity measure. The models that physics has developed are inappropriate for complex systems. Kline documents a number of the wasteful and dangerous fallacies of this type.« less
Wave cybernetics: A simple model of wave-controlled nonlinear and nonlocal cooperative phenomena
NASA Astrophysics Data System (ADS)
Yasue, Kunio
1988-09-01
A simple theoretical description of nonlinear and nonlocal cooperative phenomena is presented in which the global control mechanism of the whole system is given by the tuned-wave propagation. It provides us with an interesting universal scheme of systematization in physical and biological systems called wave cybernetics, and may be understood as a model realizing Bohm's idea of implicate order in natural philosophy.
ERIC Educational Resources Information Center
Iler, H. Darrell; Brown, Amber; Landis, Amanda; Schimke, Greg; Peters, George
2014-01-01
A numerical analysis of the free radical addition polymerization system is described that provides those teaching polymer, physical, or advanced organic chemistry courses the opportunity to introduce students to numerical methods in the context of a simple but mathematically stiff chemical kinetic system. Numerical analysis can lead students to an…
Nonequilibrium Langevin dynamics: A demonstration study of shear flow fluctuations in a simple fluid
NASA Astrophysics Data System (ADS)
Belousov, Roman; Cohen, E. G. D.; Rondoni, Lamberto
2017-08-01
The present paper is based on a recent success of the second-order stochastic fluctuation theory in describing time autocorrelations of equilibrium and nonequilibrium physical systems. In particular, it was shown to yield values of the related deterministic parameters of the Langevin equation for a Couette flow in a microscopic molecular dynamics model of a simple fluid. In this paper we find all the remaining constants of the stochastic dynamics, which then is simulated numerically and compared directly with the original physical system. By using these data, we study in detail the accuracy and precision of a second-order Langevin model for nonequilibrium physical systems theoretically and computationally. We find an intriguing relation between an applied external force and cumulants of the resulting flow fluctuations. This is characterized by a linear dependence of an athermal cumulant ratio, an apposite quantity introduced here. In addition, we discuss how the order of a given Langevin dynamics can be raised systematically by introducing colored noise.
Power Transfer in Physical Systems.
ERIC Educational Resources Information Center
Kaeck, Jack A.
1990-01-01
Explores the power transfer using (1) a simple electric circuit consisting of a power source with internal resistance; (2) two different mechanical systems (gravity driven and constant force driven); (3) ecological examples; and (4) a linear motor. (YP)
Rotational Stability--An Amusing Physical Paradox
ERIC Educational Resources Information Center
Sendra, Carlos M.; Picca, Fabricio Della; Gil, Salvador
2007-01-01
Here we present a simple and amusing device that demonstrates some surprising results of the dynamics of the rotation of a symmetrical rigid body. This system allows for a qualitative demonstration or a quantitative study of the rotation stability of a symmetric top. A simple and inexpensive technique is proposed to carry out quantitative…
The Hydraulic Jump: Finding Complexity in Turbulent Water
ERIC Educational Resources Information Center
Vondracek, Mark
2013-01-01
Students who do not progress to more advanced science disciplines in college generally do not realize that seemingly simple physical systems are--when studied in detail--more complex than one might imagine. This article presents one such phenomenon--the hydraulic jump--as a way to help students see the complexity behind the seemingly simple, and…
ERIC Educational Resources Information Center
Ginsberg, Edw S.
2018-01-01
The compatibility of the Newtonian formulation of mechanical energy and the transformation equations of Galilean relativity is demonstrated for three simple examples of motion treated in most introductory physics courses (free fall, a frictionless inclined plane, and a mass/spring system). Only elementary concepts and mathematics, accessible to…
A simple physical model for X-ray burst sources
NASA Technical Reports Server (NTRS)
Joss, P. C.; Rappaport, S.
1977-01-01
In connection with information considered by Illarianov and Sunyaev (1975) and van den Heuvel (1975), a simple physical model for an X-ray burst source in the galactic disk is proposed. The model includes an unevolved OB star with a relatively weak stellar wind and a compact object in a close binary system. For some reason, the stellar wind from the OB star is unable to accrete steadily on to the compact object. When the stellar wind is sufficiently weak, the compact object accretes irregularly, leading to X-ray bursts.
3D Imaging with Structured Illumination for Advanced Security Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birch, Gabriel Carisle; Dagel, Amber Lynn; Kast, Brian A.
2015-09-01
Three-dimensional (3D) information in a physical security system is a highly useful dis- criminator. The two-dimensional data from an imaging systems fails to provide target dis- tance and three-dimensional motion vector, which can be used to reduce nuisance alarm rates and increase system effectiveness. However, 3D imaging devices designed primarily for use in physical security systems are uncommon. This report discusses an architecture favorable to physical security systems; an inexpensive snapshot 3D imaging system utilizing a simple illumination system. The method of acquiring 3D data, tests to understand illumination de- sign, and software modifications possible to maximize information gathering capabilitymore » are discussed.« less
Simple Models for Nanocrystal Growth
NASA Astrophysics Data System (ADS)
Jensen, Pablo
Growth of new materials with tailored properties is one of the most active research directions for physicists. As pointed out by Silvan Schweber in his brilliant analysis of the evolution of physics after World War II [1] "An important transformation has taken place in physics: As had previously happened in chemistry, an ever larger fraction of the efforts in the field were being devoted to the study of novelty rather than to the elucidation of fundamental laws and interactions […] The successes of quantum mechanics at the atomic level immediately made it clear to the more perspicacious physicists that the laws behind the phenomena had been apprehended, that they could therefore control the behavior of simple macroscopic systems and, more importantly, that they could create new structures, new objects and new phenomena […] Condensed matter physics has indeed become the study of systems that have never before existed. Phenomena such as superconductivity are genuine novelties in the universe."
A Simple Double-Source Model for Interference of Capillaries
ERIC Educational Resources Information Center
Hou, Zhibo; Zhao, Xiaohong; Xiao, Jinghua
2012-01-01
A simple but physically intuitive double-source model is proposed to explain the interferogram of a laser-capillary system, where two effective virtual sources are used to describe the rays reflected by and transmitted through the capillary. The locations of the two virtual sources are functions of the observing positions on the target screen. An…
Yurkin, Alexander; Tozzi, Arturo; Peters, James F; Marijuán, Pedro C
2017-12-01
The present Addendum complements the accompanying paper "Cellular Gauge Symmetry and the Li Organization Principle"; it illustrates a recently-developed geometrical physical model able to assess electronic movements and energetic paths in atomic shells. The model describes a multi-level system of circular, wavy and zigzag paths which can be projected onto a horizontal tape. This model ushers in a visual interpretation of the distribution of atomic electrons' energy levels and the corresponding quantum numbers through rather simple tools, such as compasses, rulers and straightforward calculations. Here we show how this geometrical model, with the due corrections, among them the use of geodetic curves, might be able to describe and quantify the structure and the temporal development of countless physical and biological systems, from Langevin equations for random paths, to symmetry breaks occurring ubiquitously in physical and biological phenomena, to the relationships among different frequencies of EEG electric spikes. Therefore, in our work we explore the possible association of binomial distribution and geodetic curves configuring a uniform approach for the research of natural phenomena, in biology, medicine or the neurosciences. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nonlinear system theory: another look at dependence.
Wu, Wei Biao
2005-10-04
Based on the nonlinear system theory, we introduce previously undescribed dependence measures for stationary causal processes. Our physical and predictive dependence measures quantify the degree of dependence of outputs on inputs in physical systems. The proposed dependence measures provide a natural framework for a limit theory for stationary processes. In particular, under conditions with quite simple forms, we present limit theorems for partial sums, empirical processes, and kernel density estimates. The conditions are mild and easily verifiable because they are directly related to the data-generating mechanisms.
How Well Do Students in Secondary School Understand Temporal Development of Dynamical Systems?
ERIC Educational Resources Information Center
Forjan, Matej; Grubelnik, Vladimir
2015-01-01
Despite difficulties understanding the dynamics of complex systems only simple dynamical systems without feedback connections have been taught in secondary school physics. Consequently, students do not have opportunities to develop intuition of temporal development of systems, whose dynamics are conditioned by the influence of feedback processes.…
ERIC Educational Resources Information Center
Eisenstein, Stan; Simpson, Jeff
2008-01-01
The electrical design of the common hair dryer is based almost entirely on relatively simple principles learned in introductory physics classes. Just as biology students dissect a frog to see the principles of anatomy in action, physics students can "dissect" a hair dryer to see how principles of electricity are used in a real system. They can…
Physics and biochemical engineering: 3
NASA Astrophysics Data System (ADS)
Fairbrother, Robert; Riddle, Wendy; Fairbrother, Neil
2006-09-01
Once an antibiotic has been produced on a large scale, as described in our preceding articles, it has to be extracted and purified. Filtration and centrifugation are the two main ways of doing this, and the design of industrial processing systems is governed by simple physics involving factors such as pressure, viscosity and rotational motion.
Lorentz Trial Function for the Hydrogen Atom: A Simple, Elegant Exercise
ERIC Educational Resources Information Center
Sommerfeld, Thomas
2011-01-01
The quantum semester of a typical two-semester physical chemistry course is divided into two parts. The initial focus is on quantum mechanics and simple model systems for which the Schrodinger equation can be solved in closed form, but it then shifts in the second half to atoms and molecules, for which no closed solutions exist. The underlying…
Projectiles, pendula, and special relativity
NASA Astrophysics Data System (ADS)
Price, Richard H.
2005-05-01
The kind of flat-earth gravity used in introductory physics appears in an accelerated reference system in special relativity. From this viewpoint, we work out the special relativistic description of a ballistic projectile and a simple pendulum, two examples of simple motion driven by earth-surface gravity. The analysis uses only the basic mathematical tools of special relativity typical of a first-year university course.
The Influence of Spring Length on the Physical Parameters of Simple Harmonic Motion
ERIC Educational Resources Information Center
Triana, C. A.; Fajardo, F.
2012-01-01
The aim of this work is to analyse the influence of spring length on the simple harmonic motion of a spring-mass system. In particular, we study the effect of changing the spring length on the elastic constant "[kappa]", the angular frequency "[omega]" and the damping factor "[gamma]" of the oscillations. To characterize the behaviour of these…
Exergaming Theories: A Literature Review
ERIC Educational Resources Information Center
Kooiman, Brian; Sheehan, Dwayne D.
2015-01-01
Until recently exergaming was seldom a topic of research. The technology that makes exergaming possible was not available to consumers. In 2006, Nintendo released the Wii gaming system. This new system allowed for interactive physical movement beyond simple hand held play. The Wii system contained hardware and software that responded to movements…
Biomimetic small scale variable focal length lens unit using synthetic elastomer actuators
NASA Astrophysics Data System (ADS)
Kim, Baek-chul; Chung, Jinah; Lee, Y.; Nam, Jae-Do; Moon, Hyungpil; Choi, Hyouk Ryeol; Koo, J. C.
2011-04-01
Having a combination of a gel-like soft lens, ligaments, and the Ciliary muscles, the human eyes are effectively working for various focal lengths without a complicated group of lens. The simple and compact but effective optical system should deserve numerous attentions from various technical field especially portable information technology device industry. Noting the limited physical space of those deivces, demanding shock durability, and massive volume productivity, the present paper proposes a biomimetic optical lens unit that is organized with a circular silicone lens and an annular dielectric polymer actuator. Unlike the traditional optical lens mechanism that normally acquires a focus by changing its focal distance with moving lens or focal plane. the proposed optical system changes its lens thickness using a annulary connected polymer actuator in order to get image focuses. The proposed biomimetic lens system ensures high shock durability, compact physical dimensions, fast actuations, simple manufacturing process, and low production cost.
An easy-to-build remote laboratory with data transfer using the Internet School Experimental System
NASA Astrophysics Data System (ADS)
Schauer, František; Lustig, František; Dvořák, Jiří; Ožvoldová, Miroslava
2008-07-01
The present state of information communication technology makes it possible to devise and run computer-based e-laboratories accessible to any user with a connection to the Internet, equipped with very simple technical means and making full use of web services. Thus, the way is open for a new strategy of physics education with strongly global features, based on experiment and experimentation. We name this strategy integrated e-learning, and remote experiments across the Internet are the foundation for this strategy. We present both pedagogical and technical reasoning for the remote experiments and outline a simple system based on a server-client approach, and on web services and Java applets. We give here an outline of the prospective remote laboratory system with data transfer using the Internet School Experimental System (ISES) as hardware and ISES WEB Control kit as software. This approach enables the simple construction of remote experiments without building any hardware and virtually no programming, using a paste and copy approach with typical prebuilt blocks such as a camera view, controls, graphs, displays, etc. We have set up and operate at present seven experiments, running round the clock, with more than 12 000 connections since 2005. The experiments are widely used in practical teaching of both university and secondary level physics. The recording of the detailed steps the experimentor takes during the measurement enables detailed study of the psychological aspects of running the experiments. The system is ready for a network of universities to start covering the basic set of physics experiments. In conclusion we summarize the results achieved and experiences of using remote experiments built on the ISES hardware system.
Examination of multi-model ensemble seasonal prediction methods using a simple climate system
NASA Astrophysics Data System (ADS)
Kang, In-Sik; Yoo, Jin Ho
2006-02-01
A simple climate model was designed as a proxy for the real climate system, and a number of prediction models were generated by slightly perturbing the physical parameters of the simple model. A set of long (240 years) historical hindcast predictions were performed with various prediction models, which are used to examine various issues of multi-model ensemble seasonal prediction, such as the best ways of blending multi-models and the selection of models. Based on these results, we suggest a feasible way of maximizing the benefit of using multi models in seasonal prediction. In particular, three types of multi-model ensemble prediction systems, i.e., the simple composite, superensemble, and the composite after statistically correcting individual predictions (corrected composite), are examined and compared to each other. The superensemble has more of an overfitting problem than the others, especially for the case of small training samples and/or weak external forcing, and the corrected composite produces the best prediction skill among the multi-model systems.
Significance of modeling internal damping in the control of structures
NASA Technical Reports Server (NTRS)
Banks, H. T.; Inman, D. J.
1992-01-01
Several simple systems are examined to illustrate the importance of the estimation of damping parameters in closed-loop system performance and stability. The negative effects of unmodeled damping are particularly pronounced in systems that do not use collocated sensors and actuators. An example is considered for which even the actuators (a tip jet nozzle and flexible hose) for a simple beam produce significant damping which, if ignored, results in a model that cannot yield a reasonable time response using physically meaningful parameter values. It is concluded that correct damping modeling is essential in structure control.
Simple Harmonics Motion experiment based on LabVIEW interface for Arduino
NASA Astrophysics Data System (ADS)
Tong-on, Anusorn; Saphet, Parinya; Thepnurat, Meechai
2017-09-01
In this work, we developed an affordable modern innovative physics lab apparatus. The ultrasonic sensor is used to measure the position of a mass attached on a spring as a function of time. The data acquisition system and control device were developed based on LabVIEW interface for Arduino UNO R3. The experiment was designed to explain wave propagation which is modeled by simple harmonic motion. The simple harmonic system (mass and spring) was observed and the motion can be realized using curve fitting to the wave equation in Mathematica. We found that the spring constants provided by Hooke’s law and the wave equation fit are 9.9402 and 9.1706 N/m, respectively.
ERIC Educational Resources Information Center
Andrews, David L.; Romero, Luciana C. Davila
2009-01-01
The dynamical behaviour of simple harmonic motion can be found in numerous natural phenomena. Within the quantum realm of atomic, molecular and optical systems, two main features are associated with harmonic oscillations: a finite ground-state energy and equally spaced quantum energy levels. Here it is shown that there is in fact a one-to-one…
Competitive agents in a market: Statistical physics of the minority game
NASA Astrophysics Data System (ADS)
Sherrington, David
2007-10-01
A brief review is presented of the minority game, a simple frustrated many-body system stimulated by considerations of a market of competitive speculative agents. Its cooperative behaviour exhibits phase transitions and both ergodic and non-ergodic regimes. It provides novel challenges to statistical physics, reminiscent of those of mean-field spin glasses.
CADDIS Volume 2. Sources, Stressors and Responses: Physical Habitat - Simple Conceptual Diagram
Introduction to the Physical Habitat module, when to list Physical Habitat as a candidate cause, ways to measure Physical Habitat, simple and detailed conceptual diagrams for Physical Habitat, Physical Habitat module references and literature reviews.
Nonlinear system theory: Another look at dependence
Wu, Wei Biao
2005-01-01
Based on the nonlinear system theory, we introduce previously undescribed dependence measures for stationary causal processes. Our physical and predictive dependence measures quantify the degree of dependence of outputs on inputs in physical systems. The proposed dependence measures provide a natural framework for a limit theory for stationary processes. In particular, under conditions with quite simple forms, we present limit theorems for partial sums, empirical processes, and kernel density estimates. The conditions are mild and easily verifiable because they are directly related to the data-generating mechanisms. PMID:16179388
A data transmission method for particle physics experiments based on Ethernet physical layer
NASA Astrophysics Data System (ADS)
Huang, Xi-Ru; Cao, Ping; Zheng, Jia-Jun
2015-11-01
Due to its advantages of universality, flexibility and high performance, fast Ethernet is widely used in readout system design for modern particle physics experiments. However, Ethernet is usually used together with the TCP/IP protocol stack, which makes it difficult to implement readout systems because designers have to use the operating system to process this protocol. Furthermore, TCP/IP degrades the transmission efficiency and real-time performance. To maximize the performance of Ethernet in physics experiment applications, a data readout method based on the physical layer (PHY) is proposed. In this method, TCP/IP is replaced with a customized and simple protocol, which makes it easier to implement. On each readout module, data from the front-end electronics is first fed into an FPGA for protocol processing and then sent out to a PHY chip controlled by this FPGA for transmission. This kind of data path is fully implemented by hardware. From the side of the data acquisition system (DAQ), however, the absence of a standard protocol causes problems for the network related applications. To solve this problem, in the operating system kernel space, data received by the network interface card is redirected from the traditional flow to a specified memory space by a customized program. This memory space can easily be accessed by applications in user space. For the purpose of verification, a prototype system has been designed and implemented. Preliminary test results show that this method can meet the requirements of data transmission from the readout module to the DAQ with an efficient and simple manner. Supported by National Natural Science Foundation of China (11005107) and Independent Projects of State Key Laboratory of Particle Detection and Electronics (201301)
Relativistic Few-Body Hadronic Physics Calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polyzou, Wayne
2016-06-20
The goal of this research proposal was to use ``few-body'' methods to understand the structure and reactions of systems of interacting hadrons (neutrons, protons, mesons, quarks) over a broad range of energy scales. Realistic mathematical models of few-hadron systems have the advantage that they are sufficiently simple that they can be solved with mathematically controlled errors. These systems are also simple enough that it is possible to perform complete accurate experimental measurements on these systems. Comparison between theory and experiment puts strong constraints on the structure of the models. Even though these systems are ``simple'', both the experiments and computationsmore » push the limits of technology. The important property of ``few-body'' systems is that the ``cluster property'' implies that the interactions that appear in few-body systems are identical to the interactions that appear in complicated many-body systems. Of particular interest are models that correctly describe physics at distance scales that are sensitive to the internal structure of the individual nucleons. The Heisenberg uncertainty principle implies that in order to be sensitive to physics on distance scales that are a fraction of the proton or neutron radius, a relativistic treatment of quantum mechanics is necessary. The research supported by this grant involved 30 years of effort devoted to studying all aspects of interacting two and three-body systems. Realistic interactions were used to compute bound states of two- and three-nucleon, and two- and three-quark systems. Scattering observables for these systems were computed for a broad range of energies - from zero energy scattering to few GeV scattering, where experimental evidence of sub-nucleon degrees of freedom is beginning to appear. Benchmark calculations were produced, which when compared with calculations of other groups provided an essential check on these complicated calculations. In addition to computing bound state properties and scattering cross section, we also computed electron scattering cross sections in few-nucleon and few-quark systems, which are sensitive to the electric currents in these systems. We produced the definitive review on article on relativistic quantum mechanics, which and been used by many groups. In addition we developed and tested many computational techniques are used by other groups. Many of these techniques have applications in other areas of physics. The research benefited by collaborations with physicists from many different institutions and countries. It also involved working with seventeen undergraduate and graduate students.« less
Mathematics and complex systems.
Foote, Richard
2007-10-19
Contemporary researchers strive to understand complex physical phenomena that involve many constituents, may be influenced by numerous forces, and may exhibit unexpected or emergent behavior. Often such "complex systems" are macroscopic manifestations of other systems that exhibit their own complex behavior and obey more elemental laws. This article proposes that areas of mathematics, even ones based on simple axiomatic foundations, have discernible layers, entirely unexpected "macroscopic" outcomes, and both mathematical and physical ramifications profoundly beyond their historical beginnings. In a larger sense, the study of mathematics itself, which is increasingly surpassing the capacity of researchers to verify "by hand," may be the ultimate complex system.
Soulis, Konstantinos X; Valiantzas, John D; Ntoulas, Nikolaos; Kargas, George; Nektarios, Panayiotis A
2017-09-15
In spite of the well-known green roof benefits, their widespread adoption in the management practices of urban drainage systems requires the use of adequate analytical and modelling tools. In the current study, green roof runoff modeling was accomplished by developing, testing, and jointly using a simple conceptual model and a physically based numerical simulation model utilizing HYDRUS-1D software. The use of such an approach combines the advantages of the conceptual model, namely simplicity, low computational requirements, and ability to be easily integrated in decision support tools with the capacity of the physically based simulation model to be easily transferred in conditions and locations other than those used for calibrating and validating it. The proposed approach was evaluated with an experimental dataset that included various green roof covers (either succulent plants - Sedum sediforme, or xerophytic plants - Origanum onites, or bare substrate without any vegetation) and two substrate depths (either 8 cm or 16 cm). Both the physically based and the conceptual models matched very closely the observed hydrographs. In general, the conceptual model performed better than the physically based simulation model but the overall performance of both models was sufficient in most cases as it is revealed by the Nash-Sutcliffe Efficiency index which was generally greater than 0.70. Finally, it was showcased how a physically based and a simple conceptual model can be jointly used to allow the use of the simple conceptual model for a wider set of conditions than the available experimental data and in order to support green roof design. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Xu, Xinhua; Wang, Xiaogang; Wu, Meifen
2014-01-01
The determination of the solid-liquid phase diagram of a binary system is always used as an experiment in the undergraduate physical chemistry laboratory courses. However, most phase diagrams investigated in the lab are simple eutectic ones, despite the fact that complex binary solid-liquid phase diagrams are more common. In this article, the…
The Motion of a Leaking Oscillator: A Study for the Physics Class
ERIC Educational Resources Information Center
Rodrigues, Hilário; Panza, Nelson; Portes, Dirceu; Soares, Alexandre
2014-01-01
This paper is essentially about the general form of Newton's second law for variable mass problems. We develop a model for describing the motion of the one-dimensional oscillator with a variable mass within the framework of classroom physics. We present a simple numerical procedure for the solution of the equation of motion of the system to…
Robust controller designs for second-order dynamic system: A virtual passive approach
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Phan, Minh
1990-01-01
A robust controller design is presented for second-order dynamic systems. The controller is model-independent and itself is a virtual second-order dynamic system. Conditions on actuator and sensor placements are identified for controller designs that guarantee overall closed-loop stability. The dynamic controller can be viewed as a virtual passive damping system that serves to stabilize the actual dynamic system. The control gains are interpreted as virtual mass, spring, and dashpot elements that play the same roles as actual physical elements in stability analysis. Position, velocity, and acceleration feedback are considered. Simple examples are provided to illustrate the physical meaning of this controller design.
Dataflow models for fault-tolerant control systems
NASA Technical Reports Server (NTRS)
Papadopoulos, G. M.
1984-01-01
Dataflow concepts are used to generate a unified hardware/software model of redundant physical systems which are prone to faults. Basic results in input congruence and synchronization are shown to reduce to a simple model of data exchanges between processing sites. Procedures are given for the construction of congruence schemata, the distinguishing features of any correctly designed redundant system.
Predicting climate effects on Pacific sardine
Deyle, Ethan R.; Fogarty, Michael; Hsieh, Chih-hao; Kaufman, Les; MacCall, Alec D.; Munch, Stephan B.; Perretti, Charles T.; Ye, Hao; Sugihara, George
2013-01-01
For many marine species and habitats, climate change and overfishing present a double threat. To manage marine resources effectively, it is necessary to adapt management to changes in the physical environment. Simple relationships between environmental conditions and fish abundance have long been used in both fisheries and fishery management. In many cases, however, physical, biological, and human variables feed back on each other. For these systems, associations between variables can change as the system evolves in time. This can obscure relationships between population dynamics and environmental variability, undermining our ability to forecast changes in populations tied to physical processes. Here we present a methodology for identifying physical forcing variables based on nonlinear forecasting and show how the method provides a predictive understanding of the influence of physical forcing on Pacific sardine. PMID:23536299
Developing model asphalt systems using molecular simulation : final model.
DOT National Transportation Integrated Search
2009-09-01
Computer based molecular simulations have been used towards developing simple mixture compositions whose : physical properties resemble those of real asphalts. First, Monte Carlo simulations with the OPLS all-atom force : field were used to predict t...
Laser Communication--An Ideal Student Project.
ERIC Educational Resources Information Center
Leung, W. P.; And Others
1980-01-01
Describes a project on the application of the laser which aims to stimulate the interest of undergraduate students in applied physics and to demonstrate the interaction between light and ultrasonic waves by building a simple laser communication system. (SK)
A simple physical mechanism enables homeostasis in primitive cells
NASA Astrophysics Data System (ADS)
Engelhart, Aaron E.; Adamala, Katarzyna P.; Szostak, Jack W.
2016-05-01
The emergence of homeostatic mechanisms that enable maintenance of an intracellular steady state during growth was critical to the advent of cellular life. Here, we show that concentration-dependent reversible binding of short oligonucleotides, of both specific and random sequence, can modulate ribozyme activity. In both cases, catalysis is inhibited at high concentrations, and dilution activates the ribozyme via inhibitor dissociation, thus maintaining near-constant ribozyme specific activity throughout protocell growth. To mimic the result of RNA synthesis within non-growing protocells, we co-encapsulated high concentrations of ribozyme and oligonucleotides within fatty acid vesicles, and ribozyme activity was inhibited. Following vesicle growth, the resulting internal dilution produced ribozyme activation. This simple physical system enables a primitive homeostatic behaviour: the maintenance of constant ribozyme activity per unit volume during protocell volume changes. We suggest that such systems, wherein short oligonucleotides reversibly inhibit functional RNAs, could have preceded sophisticated modern RNA regulatory mechanisms, such as those involving miRNAs.
NASA Astrophysics Data System (ADS)
Papadouris, Nicos; Hadjigeorgiou, Angela; Constantinou, Constantinos P.
2014-12-01
Energy is recognized as a core idea in science and, hence, a significant learning objective of science education. The effective promotion of this learning objective posits that teachers themselves possess sound conceptual understanding. This is needed for enabling them to organize effective learning environments for their students. In this study, we report on the results of an empirical investigation of teachers' understanding of energy. In particular, the focus is placed on pre-service teachers' ability to employ energy as a framework for analyzing the operation of physical systems. We have collected data from 198 pre-service teachers through three open-ended tasks that involved the application of the energy conservation principle to simple physical systems. The results corroborate the claim made in the literature that teachers typically do not possess functional, coherent understanding of this principle. Most importantly, the data serve to identify and document specific difficulties that hamper attempts to use energy for the analysis of the operation of physical systems. The difficulties we were able to document lend support to the idea that it is important to introduce the idea of energy degradation alongside the conservation of energy principle. The findings of this study have implications for the design of preparation programs for teachers, about energy. The findings also provide insights into the limitations of conventional teaching of energy, to which the participants had been exposed as students, in fostering coherent understanding of energy conservation.
NASA Astrophysics Data System (ADS)
Ginsberg, Edw. S.
2018-02-01
The compatibility of the Newtonian formulation of mechanical energy and the transformation equations of Galilean relativity is demonstrated for three simple examples of motion treated in most introductory physics courses (free fall, a frictionless inclined plane, and a mass/spring system). Only elementary concepts and mathematics, accessible to students at that level, are used. Emphasis is on pedagogy and concepts related to the transformation properties of potential energy.
A framework for qualitative reasoning about solid objects
NASA Technical Reports Server (NTRS)
Davis, E.
1987-01-01
Predicting the behavior of a qualitatively described system of solid objects requires a combination of geometrical, temporal, and physical reasoning. Methods based upon formulating and solving differential equations are not adequate for robust prediction, since the behavior of a system over extended time may be much simpler than its behavior over local time. A first-order logic, in which one can state simple physical problems and derive their solution deductively, without recourse to solving the differential equations, is discussed. This logic is substantially more expressive and powerful than any previous AI representational system in this domain.
NASA Technical Reports Server (NTRS)
Won, C. C.
1993-01-01
This work describes a modeling and design method whereby a piezoelectric system is formulated by two sets of second-order equations, one for the mechanical system, and the other for the electrical system, coupled through the piezoelectric effect. The solution to this electromechanical coupled system gives a physical interpretation of the piezoelectric effect as a piezoelectric transformer that is a part of the piezoelectric system, which transfers the applied mechanical force into a force-controlled current source, and short circuit mechanical compliance into capacitance. It also transfers the voltage source into a voltage-controlled relative velocity input, and free motional capacitance into mechanical compliance. The formulation and interpretation simplify the modeling of smart structures and lead to physical insight that aids the designer. Due to its physical realization, the smart structural system can be unconditional stable and effectively control responses. This new concept has been demonstrated in three numerical examples for a simple piezoelectric system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Austin; Chakraborty, Sudipta; Wang, Dexin
This paper presents a cyber-physical testbed, developed to investigate the complex interactions between emerging microgrid technologies such as grid-interactive power sources, control systems, and a wide variety of communication platforms and bandwidths. The cyber-physical testbed consists of three major components for testing and validation: real time models of a distribution feeder model with microgrid assets that are integrated into the National Renewable Energy Laboratory's (NREL) power hardware-in-the-loop (PHIL) platform; real-time capable network-simulator-in-the-loop (NSIL) models; and physical hardware including inverters and a simple system controller. Several load profiles and microgrid configurations were tested to examine the effect on system performance withmore » increasing channel delays and router processing delays in the network simulator. Testing demonstrated that the controller's ability to maintain a target grid import power band was severely diminished with increasing network delays and laid the foundation for future testing of more complex cyber-physical systems.« less
Investigating decoherence in a simple system
NASA Technical Reports Server (NTRS)
Albrecht, Andreas
1991-01-01
The results of some simple calculations designed to study quantum decoherence are presented. The physics of quantum decoherence are briefly reviewed, and a very simple 'toy' model is analyzed. Exact solutions are found using numerical techniques. The type of incoherence exhibited by the model can be changed by varying a coupling strength. The author explains why the conventional approach to studying decoherence by checking the diagonality of the density matrix is not always adequate. Two other approaches, the decoherence functional and the Schmidt paths approach, are applied to the toy model and contrasted to each other. Possible problems with each are discussed.
Optimize Resources and Help Reduce Cost of Ownership with Dell[TM] Systems Management
ERIC Educational Resources Information Center
Technology & Learning, 2008
2008-01-01
Maintaining secure, convenient administration of the PC system environment can be a significant drain on resources. Deskside visits can greatly increase the cost of supporting a large number of computers. Even simple tasks, such as tracking inventory or updating software, quickly become expensive when they require physically visiting every…
Automating quantum experiment control
NASA Astrophysics Data System (ADS)
Stevens, Kelly E.; Amini, Jason M.; Doret, S. Charles; Mohler, Greg; Volin, Curtis; Harter, Alexa W.
2017-03-01
The field of quantum information processing is rapidly advancing. As the control of quantum systems approaches the level needed for useful computation, the physical hardware underlying the quantum systems is becoming increasingly complex. It is already becoming impractical to manually code control for the larger hardware implementations. In this chapter, we will employ an approach to the problem of system control that parallels compiler design for a classical computer. We will start with a candidate quantum computing technology, the surface electrode ion trap, and build a system instruction language which can be generated from a simple machine-independent programming language via compilation. We incorporate compile time generation of ion routing that separates the algorithm description from the physical geometry of the hardware. Extending this approach to automatic routing at run time allows for automated initialization of qubit number and placement and additionally allows for automated recovery after catastrophic events such as qubit loss. To show that these systems can handle real hardware, we present a simple demonstration system that routes two ions around a multi-zone ion trap and handles ion loss and ion placement. While we will mainly use examples from transport-based ion trap quantum computing, many of the issues and solutions are applicable to other architectures.
Pre-Service and In-Service Physics Teachers' Ideas about Simple Electric Circuits
ERIC Educational Resources Information Center
Kucukozer, Huseyin; Demirci, Neset
2008-01-01
The aim of the study is to determine pre-service and high school physics teachers' ideas about simple electric circuits. In this study, a test containing eight questions related to simple electric circuits was given to the pre-service physics teachers (32 subjects) that had graduated from Balikesir University, Necatibey Faculty of Education, the…
NASA Astrophysics Data System (ADS)
Johari, A. H.; Muslim
2018-05-01
Experiential learning model using simple physics kit has been implemented to get a picture of improving attitude toward physics senior high school students on Fluid. This study aims to obtain a description of the increase attitudes toward physics senior high school students. The research method used was quasi experiment with non-equivalent pretest -posttest control group design. Two class of tenth grade were involved in this research 28, 26 students respectively experiment class and control class. Increased Attitude toward physics of senior high school students is calculated using an attitude scale consisting of 18 questions. Based on the experimental class test average of 86.5% with the criteria of almost all students there is an increase and in the control class of 53.75% with the criteria of half students. This result shows that the influence of experiential learning model using simple physics kit can improve attitude toward physics compared to experiential learning without using simple physics kit.
Microcomputer Simulation of Real Gases--Part 1.
ERIC Educational Resources Information Center
Sperandeo-Mineo, R. M.; Tripi, G.
1987-01-01
Describes some simple computer programs designed to simulate the molecular dynamics of two-dimensional systems with a Lennard-Jones interaction potential. Discusses the use of the software in introductory physics courses at the high school and college level. (TW)
High current proton beams production at Simple Mirror Ion Source 37.
Skalyga, V; Izotov, I; Razin, S; Sidorov, A; Golubev, S; Kalvas, T; Koivisto, H; Tarvainen, O
2014-02-01
This paper presents the latest results of high current proton beam production at Simple Mirror Ion Source (SMIS) 37 facility at the Institute of Applied Physics (IAP RAS). In this experimental setup, the plasma is created and the electrons are heated by 37.5 GHz gyrotron radiation with power up to 100 kW in a simple mirror trap fulfilling the ECR condition. Latest experiments at SMIS 37 were performed using a single-aperture two-electrode extraction system. Proton beams with currents up to 450 mA at high voltages below 45 kV were obtained. The maximum beam current density was measured to be 600 mA/cm(2). A possibility of further improvement through the development of an advanced extraction system is discussed.
A simple wavelength division multiplexing system for active learning teaching
NASA Astrophysics Data System (ADS)
Zghal, Mourad; Ghalila, Hassen; Ben Lakhdar, Zohra
2009-06-01
The active learning project consists in a series of workshops for educators, researchers and students and promotes an innovative method of teaching physics using simple, inexpensive materials that can be fabricated locally. The objective of the project is to train trainers and inspire students to learn physics. The workshops are based on the use of laboratory work and hands-on activities in the classroom. The interpretation of these experiments is challenging for some students, and the experiments can lead to a significant amount of discussion. The workshops are organized within the framework of the project ``Active Learning in Optics and Photonics" (ALOP) mainly funded by UNESCO, with the support of ICTP (Abdus Salam International Centre for Theoretical Physics) and SPIE. ALOP workshops offer high school, college or university physics teachers the opportunity to improve their conceptual understanding of optics. These workshops usually run for five days and cover several of the topics usually found in any introductory university physics program. Optics and photonics are used as subject matter because it is relevant as well as adaptable to research and educational conditions in many developing countries [1]. In this paper, we will mainly focus on a specific topic of the ALOP workshops, namely optical communications and Wavelength Division Multiplexing technology (WDM). This activity was originally developed by Mazzolini et al [2]. WDM is a technology used in fibre-optic communications for transmitting two or more separate signals over a single fibre optic cable by using a separate wavelength for each signal. Multiple signals are carried together as separate wavelengths of light in a multiplexed signal. Simple and inexpensive WDM system was implemented in our laboratory using light emitting diodes or diode lasers, plastic optical fibres, a set of optical filters and lenses, prism or grating, and photodiodes. Transmission of audio signals using home-made, simple, inexpensive electronic circuits was also demonstrated. The experimental set-up was used during national ALOP workshops. Results are presented and discussed in this paper. Current explorations to further develop these and other closely-related experiments will also be described.
High-speed holocinematographic velocimeter for studying turbulent flow control physics
NASA Technical Reports Server (NTRS)
Weinstein, L. M.; Beeler, G. B.; Lindemann, A. M.
1985-01-01
Use of a dual view, high speed, holographic movie technique is examined for studying turbulent flow control physics. This approach, which eliminates some of the limitations of previous holographic techniques, is termed a holocinematographic velocimeter (HCV). The data from this system can be used to check theoretical turbulence modeling and numerical simulations, visualize and measure coherent structures in 'non-simple' turbulent flows, and examine the mechanisms operative in various turbulent control/drag reduction concepts. This system shows promise for giving the most complete experimental characterization of turbulent flows yet available.
The amazing cases of motion with friction
NASA Astrophysics Data System (ADS)
Grech, Dariusz; Mazur, Zygmunt
2001-07-01
The paper describes the behaviour of a simple mechanical system, which should help students (or teachers) to understand and clarify the importance of relative motion of two surfaces when kinetic friction is present. We show that despite the simplicity of this system, the peculiar interplay between friction forces, tension forces and gravity leads to physical solutions exceeding in many cases most intuitive expectations. These are discussed in detail. The problem is intended to be solved in a theoretical framework as an example, which helps to understand better the physical background of kinetic friction phenomena.
Linear analysis of auto-organization in Hebbian neural networks.
Carlos Letelier, J; Mpodozis, J
1995-01-01
The self-organization of neurotopies where neural connections follow Hebbian dynamics is framed in terms of linear operator theory. A general and exact equation describing the time evolution of the overall synaptic strength connecting two neural laminae is derived. This linear matricial equation, which is similar to the equations used to describe oscillating systems in physics, is modified by the introduction of non-linear terms, in order to capture self-organizing (or auto-organizing) processes. The behavior of a simple and small system, that contains a non-linearity that mimics a metabolic constraint, is analyzed by computer simulations. The emergence of a simple "order" (or degree of organization) in this low-dimensionality model system is discussed.
ERIC Educational Resources Information Center
Tekbiyik, Ahmet; Ercan, Orhan
2015-01-01
Current study examined the effects of virtual and physical laboratory practices on students' conceptual achievement in the subject of electricity and their attitudes towards simple electric circuits. Two groups (virtual and physical) selected through simple random sampling was taught with web-aided material called "Electricity in Our…
Anticipatory Cognitive Systems: a Theoretical Model
NASA Astrophysics Data System (ADS)
Terenzi, Graziano
This paper deals with the problem of understanding anticipation in biological and cognitive systems. It is argued that a physical theory can be considered as biologically plausible only if it incorporates the ability to describe systems which exhibit anticipatory behaviors. The paper introduces a cognitive level description of anticipation and provides a simple theoretical characterization of anticipatory systems on this level. Specifically, a simple model of a formal anticipatory neuron and a model (i.e. the τ-mirror architecture) of an anticipatory neural network which is based on the former are introduced and discussed. The basic feature of this architecture is that a part of the network learns to represent the behavior of the other part over time, thus constructing an implicit model of its own functioning. As a consequence, the network is capable of self-representation; anticipation, on a oscopic level, is nothing but a consequence of anticipation on a microscopic level. Some learning algorithms are also discussed together with related experimental tasks and possible integrations. The outcome of the paper is a formal characterization of anticipation in cognitive systems which aims at being incorporated in a comprehensive and more general physical theory.
Health monitoring system for transmission shafts based on adaptive parameter identification
NASA Astrophysics Data System (ADS)
Souflas, I.; Pezouvanis, A.; Ebrahimi, K. M.
2018-05-01
A health monitoring system for a transmission shaft is proposed. The solution is based on the real-time identification of the physical characteristics of the transmission shaft i.e. stiffness and damping coefficients, by using a physical oriented model and linear recursive identification. The efficacy of the suggested condition monitoring system is demonstrated on a prototype transient engine testing facility equipped with a transmission shaft capable of varying its physical properties. Simulation studies reveal that coupling shaft faults can be detected and isolated using the proposed condition monitoring system. Besides, the performance of various recursive identification algorithms is addressed. The results of this work recommend that the health status of engine dynamometer shafts can be monitored using a simple lumped-parameter shaft model and a linear recursive identification algorithm which makes the concept practically viable.
Distilling free-form natural laws from experimental data.
Schmidt, Michael; Lipson, Hod
2009-04-03
For centuries, scientists have attempted to identify and document analytical laws that underlie physical phenomena in nature. Despite the prevalence of computing power, the process of finding natural laws and their corresponding equations has resisted automation. A key challenge to finding analytic relations automatically is defining algorithmically what makes a correlation in observed data important and insightful. We propose a principle for the identification of nontriviality. We demonstrated this approach by automatically searching motion-tracking data captured from various physical systems, ranging from simple harmonic oscillators to chaotic double-pendula. Without any prior knowledge about physics, kinematics, or geometry, the algorithm discovered Hamiltonians, Lagrangians, and other laws of geometric and momentum conservation. The discovery rate accelerated as laws found for simpler systems were used to bootstrap explanations for more complex systems, gradually uncovering the "alphabet" used to describe those systems.
Dimensional Analysis in Mathematical Modeling Systems: A Simple Numerical Method
1991-02-01
US Army Ballistic Research Laboratories, Aberden Proving Ground , NID, August 1975. [18] Hi1irlimann, T., and .J. lKohlas "LPL: A Structured Language...such systems can prove that (a’ + ab + b2 + ba) = (a + b) 2 . With some effort, since the laws of physical algebra are a minor variant on those of
Derivation of the Second Law of Thermodynamics from Boltzmann's Distribution Law.
ERIC Educational Resources Information Center
Nelson, P. G.
1988-01-01
Shows how the thermodynamic condition for equilibrium in an isolated system can be derived by the application of Boltzmann's law to a simple physical system. States that this derivation could be included in an introductory course on chemical equilibrium to help prepare students for a statistical mechanical treatment presented in the curriculum.…
Kinetic Theory and Simulation of Single-Channel Water Transport
NASA Astrophysics Data System (ADS)
Tajkhorshid, Emad; Zhu, Fangqiang; Schulten, Klaus
Water translocation between various compartments of a system is a fundamental process in biology of all living cells and in a wide variety of technological problems. The process is of interest in different fields of physiology, physical chemistry, and physics, and many scientists have tried to describe the process through physical models. Owing to advances in computer simulation of molecular processes at an atomic level, water transport has been studied in a variety of molecular systems ranging from biological water channels to artificial nanotubes. While simulations have successfully described various kinetic aspects of water transport, offering a simple, unified model to describe trans-channel translocation of water turned out to be a nontrivial task.
Extended physics as a theoretical framework for systems biology?
Miquel, Paul-Antoine
2011-08-01
In this essay we examine whether a theoretical and conceptual framework for systems biology could be built from the Bailly and Longo (2008, 2009) proposal. These authors aim to understand life as a coherent critical structure, and propose to develop an extended physical approach of evolution, as a diffusion of biomass in a space of complexity. Their attempt leads to a simple mathematical reconstruction of Gould's assumption (1989) concerning the bacterial world as a "left wall of least complexity" that we will examine. Extended physical systems are characterized by their constructive properties. Time is acting and new properties emerge by their history that can open the list of their initial properties. This conceptual and theoretical framework is nothing more than a philosophical assumption, but as such it provides a new and exciting approach concerning the evolution of life, and the transition between physics and biology. Copyright © 2011 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Davies, Steve
1989-01-01
Outlines what a hologram is, the main types of holography, and how a simple system producing a white light reflection hologram can be set up in a school physics laboratory. Discusses the basic optics of the hologram and procedures and materials for making holograms in school. (YP)
Recent developments in chaotic dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ott, E.
1994-02-01
Before the relatively recent wide acceptance of the existence of chaotic dynamics, many physicists and engineers were under the impression that simple systems could necessarily only display simple solutions. This feeling had been unintentionally reinforced by conventional college courses which emphasize linear dynamics (partly because that is the only case with nice general solutions). More recently, physical experiments and numerical examples have abundantly demonstrated how wrong this feeling is. A brief review of chaotic dynamics is presented. Topics discussed include basic concepts, recent developments, and applications.
Sherrington, David
2010-03-13
This paper is concerned with complex macroscopic behaviour arising in many-body systems through the combinations of competitive interactions and disorder, even with simple ingredients at the microscopic level. It attempts to indicate and illustrate the richness that has arisen, in conceptual understanding, in methodology and in application, across a large range of scientific disciplines, together with a hint of some of the further opportunities that remain to be tapped. In doing so, it takes the perspective of physics and tries to show, albeit rather briefly, how physics has contributed and been stimulated.
Sherrington, David
2010-01-01
This paper is concerned with complex macroscopic behaviour arising in many-body systems through the combinations of competitive interactions and disorder, even with simple ingredients at the microscopic level. It attempts to indicate and illustrate the richness that has arisen, in conceptual understanding, in methodology and in application, across a large range of scientific disciplines, together with a hint of some of the further opportunities that remain to be tapped. In doing so, it takes the perspective of physics and tries to show, albeit rather briefly, how physics has contributed and been stimulated. PMID:20123753
Cofrades, Susana; Bou, Ricard; Flaiz, Linda; Garcimartín, Alba; Benedí, Juana; Mateos, Raquel; Sánchez-Muniz, Francisco J; Olivero-David, Raúl; Jiménez-Colmenero, Francisco
2017-06-01
This study examines the influence of different food-grade n-3 PUFA-enriched simple emulsion (SE), double emulsion (DE) and gelled double emulsion (GDE) delivery systems on the extent of lipolysis, antioxidant capacity and the bioaccessibility of hydroxytyrosol (HTy). GDE emulsion offered better protection for HTy (89%) than the other systems (79% in SE and DE). The reducing capacity of the emulsions containing HTy were not altered during oral digestion. However, "in vitro" gastric and intestinal phases significantly reduced the antioxidant activity of all systems. The structural and physical state of GDE entailed a slowing-down of triacylglyceride hydrolysis (36.4%) in comparison with that of SE and DE (22.7 and 24.8% for SE and DE, respectively).
Managing and capturing the physics of robotic systems
NASA Astrophysics Data System (ADS)
Werfel, Justin
Algorithmic and other theoretical analyses of robotic systems often use a discretized or otherwise idealized framework, while the real world is continuous-valued and noisy. This disconnect can make theoretical work sometimes problematic to apply successfully to real-world systems. One approach to bridging the separation can be to design hardware to take advantage of simple physical effects mechanically, in order to guide elements into a desired set of discrete attracting states. As a result, the system behavior can effectively approximate a discretized formalism, so that proofs based on an idealization remain directly relevant, while control can be made simpler. It is important to note, conversely, that such an approach does not make a physical instantiation unnecessary nor a purely theoretical treatment sufficient. Experiments with hardware in practice always reveal physical effects not originally accounted for in simulation or analytic modeling, which lead to unanticipated results and require nontrivial modifications to control algorithms in order to achieve desired outcomes. I will discuss these points in the context of swarm robotic systems recently developed at the Self-Organizing Systems Research Group at Harvard.
Rocket Engine Oscillation Diagnostics
NASA Technical Reports Server (NTRS)
Nesman, Tom; Turner, James E. (Technical Monitor)
2002-01-01
Rocket engine oscillating data can reveal many physical phenomena ranging from unsteady flow and acoustics to rotordynamics and structural dynamics. Because of this, engine diagnostics based on oscillation data should employ both signal analysis and physical modeling. This paper describes an approach to rocket engine oscillation diagnostics, types of problems encountered, and example problems solved. Determination of design guidelines and environments (or loads) from oscillating phenomena is required during initial stages of rocket engine design, while the additional tasks of health monitoring, incipient failure detection, and anomaly diagnostics occur during engine development and operation. Oscillations in rocket engines are typically related to flow driven acoustics, flow excited structures, or rotational forces. Additional sources of oscillatory energy are combustion and cavitation. Included in the example problems is a sampling of signal analysis tools employed in diagnostics. The rocket engine hardware includes combustion devices, valves, turbopumps, and ducts. Simple models of an oscillating fluid system or structure can be constructed to estimate pertinent dynamic parameters governing the unsteady behavior of engine systems or components. In the example problems it is shown that simple physical modeling when combined with signal analysis can be successfully employed to diagnose complex rocket engine oscillatory phenomena.
Pumpe, Daniel; Greiner, Maksim; Müller, Ewald; Enßlin, Torsten A
2016-07-01
Stochastic differential equations describe well many physical, biological, and sociological systems, despite the simplification often made in their derivation. Here the usage of simple stochastic differential equations to characterize and classify complex dynamical systems is proposed within a Bayesian framework. To this end, we develop a dynamic system classifier (DSC). The DSC first abstracts training data of a system in terms of time-dependent coefficients of the descriptive stochastic differential equation. Thereby the DSC identifies unique correlation structures within the training data. For definiteness we restrict the presentation of the DSC to oscillation processes with a time-dependent frequency ω(t) and damping factor γ(t). Although real systems might be more complex, this simple oscillator captures many characteristic features. The ω and γ time lines represent the abstract system characterization and permit the construction of efficient signal classifiers. Numerical experiments show that such classifiers perform well even in the low signal-to-noise regime.
High-Throughput Density Measurement Using Magnetic Levitation.
Ge, Shencheng; Wang, Yunzhe; Deshler, Nicolas J; Preston, Daniel J; Whitesides, George M
2018-06-20
This work describes the development of an integrated analytical system that enables high-throughput density measurements of diamagnetic particles (including cells) using magnetic levitation (MagLev), 96-well plates, and a flatbed scanner. MagLev is a simple and useful technique with which to carry out density-based analysis and separation of a broad range of diamagnetic materials with different physical forms (e.g., liquids, solids, gels, pastes, gums, etc.); one major limitation, however, is the capacity to perform high-throughput density measurements. This work addresses this limitation by (i) re-engineering the shape of the magnetic fields so that the MagLev system is compatible with 96-well plates, and (ii) integrating a flatbed scanner (and simple optical components) to carry out imaging of the samples that levitate in the system. The resulting system is compatible with both biological samples (human erythrocytes) and nonbiological samples (simple liquids and solids, such as 3-chlorotoluene, cholesterol crystals, glass beads, copper powder, and polymer beads). The high-throughput capacity of this integrated MagLev system will enable new applications in chemistry (e.g., analysis and separation of materials) and biochemistry (e.g., cellular responses under environmental stresses) in a simple and label-free format on the basis of a universal property of all matter, i.e., density.
ERIC Educational Resources Information Center
Aminabhavi, Tejraj M.
1983-01-01
Discusses a set of relations (addressing changes in volume and refractivity) for use in the study of binary systems. Suggests including such an experiment in undergraduate physical chemistry courses (measuring density/refractive index of pure compounds and their mixtures) to predict even small changes occurring during mixing process. (Author/JN)
Interplay of Determinism and Randomness: From Irreversibility to Chaos, Fractals, and Stochasticity
NASA Astrophysics Data System (ADS)
Tsonis, A.
2017-12-01
We will start our discussion into randomness by looking exclusively at our formal mathematical system to show that even in this pure and strictly logical system one cannot do away with randomness. By employing simple mathematical models, we will identify the three possible sources of randomness: randomness due to inability to find the rules (irreversibility), randomness due to inability to have infinite power (chaos), and randomness due to stochastic processes. Subsequently we will move from the mathematical system to our physical world to show that randomness, through the quantum mechanical character of small scales, through chaos, and because of the second law of thermodynamics, is an intrinsic property of nature as well. We will subsequently argue that the randomness in the physical world is consistent with the three sources of randomness suggested from the study of simple mathematical systems. Many examples ranging from purely mathematical to natural processes will be presented, which clearly demonstrate how the combination of rules and randomness produces the world we live in. Finally, the principle of least effort or the principle of minimum energy consumption will be suggested as the underlying principle behind this symbiosis between determinism and randomness.
ERIC Educational Resources Information Center
Heusner, A. A.; Tracy, M. L.
1980-01-01
Describes a simple hydraulic analog which allows students to explore some physical aspects of the cardiovascular system and provides them with a means to visualize and conceptualize these basic principles. Simulates the behavior of arterial pressure in response to changes in heart rate, stroke volume, arterial compliance, and peripheral…
ERIC Educational Resources Information Center
Freudenrich, Craig
2005-01-01
Since 1995, astronomers have discovered over 100 known exoplanets--planets outside of the solar system--and determined their properties such as mass, orbital distance, size, and density. By using simple algebraic equations of physics, students can determine these properties as well. In this article, the author discusses an activity titled…
NASA Astrophysics Data System (ADS)
Yulkifli; Afandi, Zurian; Yohandri
2018-04-01
Development of gravitation acceleration measurement using simple harmonic motion pendulum method, digital technology and photogate sensor has been done. Digital technology is more practical and optimizes the time of experimentation. The pendulum method is a method of calculating the acceleration of gravity using a solid ball that connected to a rope attached to a stative pole. The pendulum is swung at a small angle resulted a simple harmonic motion. The measurement system consists of a power supply, Photogate sensors, Arduino pro mini and seven segments. The Arduino pro mini receives digital data from the photogate sensor and processes the digital data into the timing data of the pendulum oscillation. The calculation result of the pendulum oscillation time is displayed on seven segments. Based on measured data, the accuracy and precision of the experiment system are 98.76% and 99.81%, respectively. Based on experiment data, the system can be operated in physics experiment especially in determination of the gravity acceleration.
QR Codes: Outlook for Food Science and Nutrition.
Sanz-Valero, Javier; Álvarez Sabucedo, Luis M; Wanden-Berghe, Carmina; Santos Gago, Juan M
2016-01-01
QR codes opens up the possibility to develop simple-to-use, cost-effective-cost, and functional systems based on the optical recognition of inexpensive tags attached to physical objects. These systems, combined with Web platforms, can provide us with advanced services that are already currently broadly used on many contexts of the common life. Due to its philosophy, based on the automatic recognition of messages embedded on simple graphics by means of common devices such as mobile phones, QR codes are very convenient for the average user. Regretfully, its potential has not yet been fully exploited in the domains of food science and nutrition. This paper points out some applications to make the most of this technology for these domains in a straightforward manner. For its characteristics, we are addressing systems with low barriers to entry and high scalability for its deployment. Therefore, its launching among professional and final users is quite simple. The paper also provides high-level indications for the evaluation of the technological frame required to implement the identified possibilities of use.
Foreshock and aftershocks in simple earthquake models.
Kazemian, J; Tiampo, K F; Klein, W; Dominguez, R
2015-02-27
Many models of earthquake faults have been introduced that connect Gutenberg-Richter (GR) scaling to triggering processes. However, natural earthquake fault systems are composed of a variety of different geometries and materials and the associated heterogeneity in physical properties can cause a variety of spatial and temporal behaviors. This raises the question of how the triggering process and the structure interact to produce the observed phenomena. Here we present a simple earthquake fault model based on the Olami-Feder-Christensen and Rundle-Jackson-Brown cellular automata models with long-range interactions that incorporates a fixed percentage of stronger sites, or asperity cells, into the lattice. These asperity cells are significantly stronger than the surrounding lattice sites but eventually rupture when the applied stress reaches their higher threshold stress. The introduction of these spatial heterogeneities results in temporal clustering in the model that mimics that seen in natural fault systems along with GR scaling. In addition, we observe sequences of activity that start with a gradually accelerating number of larger events (foreshocks) prior to a main shock that is followed by a tail of decreasing activity (aftershocks). This work provides further evidence that the spatial and temporal patterns observed in natural seismicity are strongly influenced by the underlying physical properties and are not solely the result of a simple cascade mechanism.
Perkins, Casey; Muller, George
2015-10-08
The number of connections between physical and cyber security systems is rapidly increasing due to centralized control from automated and remotely connected means. As the number of interfaces between systems continues to grow, the interactions and interdependencies between them cannot be ignored. Historically, physical and cyber vulnerability assessments have been performed independently. This independent evaluation omits important aspects of the integrated system, where the impacts resulting from malicious or opportunistic attacks are not easily known or understood. Here, we describe a discrete event simulation model that uses information about integrated physical and cyber security systems, attacker characteristics and simple responsemore » rules to identify key safeguards that limit an attacker's likelihood of success. Key features of the proposed model include comprehensive data generation to support a variety of sophisticated analyses, and full parameterization of safeguard performance characteristics and attacker behaviours to evaluate a range of scenarios. Lastly, we also describe the core data requirements and the network of networks that serves as the underlying simulation structure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perkins, Casey; Muller, George
The number of connections between physical and cyber security systems is rapidly increasing due to centralized control from automated and remotely connected means. As the number of interfaces between systems continues to grow, the interactions and interdependencies between them cannot be ignored. Historically, physical and cyber vulnerability assessments have been performed independently. This independent evaluation omits important aspects of the integrated system, where the impacts resulting from malicious or opportunistic attacks are not easily known or understood. Here, we describe a discrete event simulation model that uses information about integrated physical and cyber security systems, attacker characteristics and simple responsemore » rules to identify key safeguards that limit an attacker's likelihood of success. Key features of the proposed model include comprehensive data generation to support a variety of sophisticated analyses, and full parameterization of safeguard performance characteristics and attacker behaviours to evaluate a range of scenarios. Lastly, we also describe the core data requirements and the network of networks that serves as the underlying simulation structure.« less
NASA Technical Reports Server (NTRS)
Cain, Bruce L.
1990-01-01
The problems of weld quality control and weld process dependability continue to be relevant issues in modern metal welding technology. These become especially important for NASA missions which may require the assembly or repair of larger orbiting platforms using automatic welding techniques. To extend present welding technologies for such applications, NASA/MSFC's Materials and Processes Lab is developing physical models of the arc welding process with the goal of providing both a basis for improved design of weld control systems, and a better understanding of how arc welding variables influence final weld properties. The physics of the plasma arc discharge is reasonably well established in terms of transport processes occurring in the arc column itself, although recourse to sophisticated numerical treatments is normally required to obtain quantitative results. Unfortunately the rigor of these numerical computations often obscures the physics of the underlying model due to its inherent complexity. In contrast, this work has focused on a relatively simple physical model of the arc discharge to describe the gross features observed in welding arcs. Emphasis was placed of deriving analytic expressions for the voltage along the arc axis as a function of known or measurable arc parameters. The model retains the essential physics for a straight polarity, diffusion dominated free burning arc in argon, with major simplifications of collisionless sheaths and simple energy balances at the electrodes.
How-to-Do-It: Countercurrent Heat Exchange in Vertebrate Limbs.
ERIC Educational Resources Information Center
Franklin, George B.; Plakke, Ronald K.
1988-01-01
Describes principals of physics that are manifested in simple biological systems of heat conservation structures. Outlines materials needed, data collection, analysis, and discussion questions for construction and operation of two models, one that is a countercurrent heat exchange model and one that is not. (RT)
A simple method to measure the complex permittivity of materials at variable temperatures
NASA Astrophysics Data System (ADS)
Yang, Xiaoqing; Yin, Yang; Liu, Zhanwei; Zhang, Di; Wu, Shiyue; Yuan, Jianping; Li, Lixin
2017-10-01
Measurement of the complex permittivity (CP) of a material at different temperatures in microwave heating applications is difficult and complicated. In this paper a simple and convenient method is employed to measure the CP of a material over variable temperature. In this method the temperature of a sample is increased experimentally to obtain the formula for the relationship between CP and temperature by a genetic algorithm. We chose agar solution (sample) and a Yangshao reactor (microwave heating system) to validate the reliability and feasibility of this method. The physical parameters (the heat capacity, C p , density, ρ, and thermal conductivity, k) of the sample are set as constants in the process of simulation and inversion. We analyze the influence of the variation of physical parameters with temperature on the accuracy of the inversion results. It is demonstrated that the variation of these physical parameters has little effect on the inversion results in a certain temperature range.
Manipulators with flexible links: A simple model and experiments
NASA Technical Reports Server (NTRS)
Shimoyama, Isao; Oppenheim, Irving J.
1989-01-01
A simple dynamic model proposed for flexible links is briefly reviewed and experimental control results are presented for different flexible systems. A simple dynamic model is useful for rapid prototyping of manipulators and their control systems, for possible application to manipulator design decisions, and for real time computation as might be applied in model based or feedforward control. Such a model is proposed, with the further advantage that clear physical arguments and explanations can be associated with its simplifying features and with its resulting analytical properties. The model is mathematically equivalent to Rayleigh's method. Taking the example of planar bending, the approach originates in its choice of two amplitude variables, typically chosen as the link end rotations referenced to the chord (or the tangent) motion of the link. This particular choice is key in establishing the advantageous features of the model, and it was used to support the series of experiments reported.
ERIC Educational Resources Information Center
Blond, J. P.; Boggett, D. M.
1980-01-01
Discusses some basic physical ideas about light scattering and describes a simple Raman spectrometer, a single prism monochromator and a multiplier detector. This discussion is intended for British undergraduate physics students. (HM)
Science 101: Q--What Is the Physics behind Simple Machines?
ERIC Educational Resources Information Center
Robertson, Bill
2013-01-01
Bill Robertson thinks that questioning the physics behind simple machines is a great idea because when he encounters the subject of simple machines in textbooks, activities, and classrooms, he seldom encounters, a scientific explanation of how they work. Instead, what one often sees is a discussion of load, effort, fulcrum, actual mechanical…
The ideas behind self-consistent expansion
NASA Astrophysics Data System (ADS)
Schwartz, Moshe; Katzav, Eytan
2008-04-01
In recent years we have witnessed a growing interest in various non-equilibrium systems described in terms of stochastic nonlinear field theories. In some of those systems, like KPZ and related models, the interesting behavior is in the strong coupling regime, which is inaccessible by traditional perturbative treatments such as dynamical renormalization group (DRG). A useful tool in the study of such systems is the self-consistent expansion (SCE), which might be said to generate its own 'small parameter'. The self-consistent expansion (SCE) has the advantage that its structure is just that of a regular expansion, the only difference is that the simple system around which the expansion is performed is adjustable. The purpose of this paper is to present the method in a simple and understandable way that hopefully will make it accessible to a wider public working on non-equilibrium statistical physics.
A simple model of hysteresis behavior using spreadsheet analysis
NASA Astrophysics Data System (ADS)
Ehrmann, A.; Blachowicz, T.
2015-01-01
Hysteresis loops occur in many scientific and technical problems, especially as field dependent magnetization of ferromagnetic materials, but also as stress-strain-curves of materials measured by tensile tests including thermal effects, liquid-solid phase transitions, in cell biology or economics. While several mathematical models exist which aim to calculate hysteresis energies and other parameters, here we offer a simple model for a general hysteretic system, showing different hysteresis loops depending on the defined parameters. The calculation which is based on basic spreadsheet analysis plus an easy macro code can be used by students to understand how these systems work and how the parameters influence the reactions of the system on an external field. Importantly, in the step-by-step mode, each change of the system state, compared to the last step, becomes visible. The simple program can be developed further by several changes and additions, enabling the building of a tool which is capable of answering real physical questions in the broad field of magnetism as well as in other scientific areas, in which similar hysteresis loops occur.
Unconditionally Secure Credit/Debit Card Chip Scheme and Physical Unclonable Function
NASA Astrophysics Data System (ADS)
Kish, Laszlo B.; Entesari, Kamran; Granqvist, Claes-Göran; Kwan, Chiman
The statistical-physics-based Kirchhoff-law-Johnson-noise (KLJN) key exchange offers a new and simple unclonable system for credit/debit card chip authentication and payment. The key exchange, the authentication and the communication are unconditionally secure so that neither mathematics- nor statistics-based attacks are able to crack the scheme. The ohmic connection and the short wiring lengths between the chips in the card and the terminal constitute an ideal setting for the KLJN protocol, and even its simplest versions offer unprecedented security and privacy for credit/debit card chips and applications of physical unclonable functions (PUFs).
Scheduling observational and physical practice: influence on the coding of simple motor sequences.
Ellenbuerger, Thomas; Boutin, Arnaud; Blandin, Yannick; Shea, Charles H; Panzer, Stefan
2012-01-01
The main purpose of the present experiment was to determine the coordinate system used in the development of movement codes when observational and physical practice are scheduled across practice sessions. The task was to reproduce a 1,300-ms spatial-temporal pattern of elbow flexions and extensions. An intermanual transfer paradigm with a retention test and two effector (contralateral limb) transfer tests was used. The mirror effector transfer test required the same pattern of homologous muscle activation and sequence of limb joint angles as that performed or observed during practice, and the non-mirror effector transfer test required the same spatial pattern movements as that performed or observed. The test results following the first acquisition session replicated the findings of Gruetzmacher, Panzer, Blandin, and Shea (2011) . The results following the second acquisition session indicated a strong advantage for participants who received physical practice in both practice sessions or received observational practice followed by physical practice. This advantage was found on both the retention and the mirror transfer tests compared to the non-mirror transfer test. These results demonstrate that codes based in motor coordinates can be developed relatively quickly and effectively for a simple spatial-temporal movement sequence when participants are provided with physical practice or observation followed by physical practice, but physical practice followed by observational practice or observational practice alone limits the development of codes based in motor coordinates.
A computer model of context-dependent perception in a very simple world
NASA Astrophysics Data System (ADS)
Lara-Dammer, Francisco; Hofstadter, Douglas R.; Goldstone, Robert L.
2017-11-01
We propose the foundations of a computer model of scientific discovery that takes into account certain psychological aspects of human observation of the world. To this end, we simulate two main components of such a system. The first is a dynamic microworld in which physical events take place, and the second is an observer that visually perceives entities and events in the microworld. For reason of space, this paper focuses only on the starting phase of discovery, which is the relatively simple visual inputs of objects and collisions.
A Simple Method for Specifying the R/S Configuration about a Chiral Center.
ERIC Educational Resources Information Center
Idoux, John P.
1982-01-01
Describes a method for specifying R/S (clockwise/counterclockwise) configuration about a chiral center which does not require the use of a three-dimensional physical model, the mental visualization of the molecule, or the memorization of a recently reported arbitrary number system. (Author/JN)
When Worlds Collide: An Augmented Reality Check
ERIC Educational Resources Information Center
Villano, Matt
2008-01-01
The technology is simple: Mobile technologies such as handheld computers and global positioning systems work in sync to create an alternate, hybrid world that mixes virtual characters with the actual physical environment. The result is a digital simulation that offers powerful game-playing opportunities and allows students to become more engaged…
Data management in the mission data system
NASA Technical Reports Server (NTRS)
Wagner, David A.
2005-01-01
As spacecraft evolve from simple embedded devices to become more sophisticated computing platforms with complex behaviors it is increasingly necessary to model and manage the flow of data, and to provide uniform models for managing data that promote adaptability, yet pay heed to the physical limitations of the embedded and space environments.
NASA Technical Reports Server (NTRS)
Teich, M. C.
1980-01-01
The history of heterodyne detection is reviewed from the radiowave to the optical regions of the electromagnetic spectrum with emphasion the submillimeter/far infrared. The transition from electric field to photon absorption detection in a simple system is investigated. The response of an isolated two level detector to a coherent source of incident radiation is calculated for both heterodyne and video detection. When the processes of photon absorption and photon emission cannot be distinguished, the relative detected power at double- and sum-frequencies is found to be multiplied by a coefficient, which is less than or equal to unity, and which depends on the incident photon energy and on the effective temperature of the system.
Optimization of Wireless Power Transfer Systems Enhanced by Passive Elements and Metasurfaces
NASA Astrophysics Data System (ADS)
Lang, Hans-Dieter; Sarris, Costas D.
2017-10-01
This paper presents a rigorous optimization technique for wireless power transfer (WPT) systems enhanced by passive elements, ranging from simple reflectors and intermedi- ate relays all the way to general electromagnetic guiding and focusing structures, such as metasurfaces and metamaterials. At its core is a convex semidefinite relaxation formulation of the otherwise nonconvex optimization problem, of which tightness and optimality can be confirmed by a simple test of its solutions. The resulting method is rigorous, versatile, and general -- it does not rely on any assumptions. As shown in various examples, it is able to efficiently and reliably optimize such WPT systems in order to find their physical limitations on performance, optimal operating parameters and inspect their working principles, even for a large number of active transmitters and passive elements.
NASA Astrophysics Data System (ADS)
Johnston, Marty; Jalkio, Jeffrey
2013-04-01
By the time students have reached the intermediate level physics courses they have been exposed to a broad set of analytical, experimental, and computational skills. However, their ability to independently integrate these skills into the study of a physical system is often weak. To address this weakness and assess their understanding of the underlying physical concepts we have introduced laboratory homework into lecture based, junior level theoretical mechanics and electromagnetics courses. A laboratory homework set replaces a traditional one and emphasizes the analysis of a single system. In an exercise, students use analytical and computational tools to predict the behavior of a system and design a simple measurement to test their model. The laboratory portion of the exercises is straight forward and the emphasis is on concept integration and application. The short student reports we collect have revealed misconceptions that were not apparent in reviewing the traditional homework and test problems. Work continues on refining the current problems and expanding the problem sets.
NASA Astrophysics Data System (ADS)
Patil, S. H.; Tang, K. T.; Toennies, J. P.
1999-10-01
Simple analytical wave functions satisfying appropriate boundary conditions are constructed for the ground states of one-and two-electron homonuclear molecules. Both the asymptotic condition when one electron is far away and the cusp condition when the electron coalesces with a nucleus are satisfied by the proposed wave function. For H2+, the resulting wave function is almost identical to the Guillemin-Zener wave function which is known to give very good energies. For the two electron systems H2 and He2++, the additional electron-electron cusp condition is rigorously accounted for by a simple analytic correlation function which has the correct behavior not only for r12→0 and r12→∞ but also for R→0 and R→∞, where r12 is the interelectronic distance and R, the internuclear distance. Energies obtained from these simple wave functions agree within 2×10-3 a.u. with the results of the most sophisticated variational calculations for all R and for all systems studied. This demonstrates that rather simple physical considerations can be used to derive very accurate wave functions for simple molecules thereby avoiding laborious numerical variational calculations.
Aerosol Complexity and Implications for Predictability and Short-Term Forecasting
NASA Technical Reports Server (NTRS)
Colarco, Peter
2016-01-01
There are clear NWP and climate impacts from including aerosol radiative and cloud interactions. Changes in dynamics and cloud fields affect aerosol lifecycle, plume height, long-range transport, overall forcing of the climate system, etc. Inclusion of aerosols in NWP systems has benefit to surface field biases (e.g., T2m, U10m). Including aerosol affects has impact on analysis increments and can have statistically significant impacts on, e.g., tropical cyclogenesis. Above points are made especially with respect to aerosol radiative interactions, but aerosol-cloud interaction is a bigger signal on the global system. Many of these impacts are realized even in models with relatively simple (bulk) aerosol schemes (approx.10 -20 tracers). Simple schemes though imply simple representation of aerosol absorption and importantly for aerosol-cloud interaction particle-size distribution. Even so, more complex schemes exhibit a lot of diversity between different models, with issues such as size selection both for emitted particles and for modes. Prospects for complex sectional schemes to tune modal (and even bulk) schemes toward better selection of size representation. I think this is a ripe topic for more research -Systematic documentation of benefits of no vs. climatological vs. interactive (direct and then direct+indirect) aerosols. Document aerosol impact on analysis increments, inclusion in NWP data assimilation operator -Further refinement of baseline assumptions in model design (e.g., absorption, particle size distribution). Did not get into model resolution and interplay of other physical processes with aerosols (e.g., moist physics, obviously important), chemistry
NASA Astrophysics Data System (ADS)
Demin, V. A.; Emelyanov, A. V.; Lapkin, D. A.; Erokhin, V. V.; Kashkarov, P. K.; Kovalchuk, M. V.
2016-11-01
The instrumental realization of neuromorphic systems may form the basis of a radically new social and economic setup, redistributing roles between humans and complex technical aggregates. The basic elements of any neuromorphic system are neurons and synapses. New memristive elements based on both organic (polymer) and inorganic materials have been formed, and the possibilities of instrumental implementation of very simple neuromorphic systems with different architectures on the basis of these elements have been demonstrated.
Misconceptions of Mexican Teachers in the Solution of Simple Pendulum
ERIC Educational Resources Information Center
Garcia Trujillo, Luis Antonio; Ramirez Díaz, Mario H.; Rodriguez Castillo, Mario
2013-01-01
Solving the position of a simple pendulum at any time is apparently one of the most simple and basic problems to solve in high school and college physics courses. However, because of this apparent simplicity, teachers and physics texts often assume that the solution is immediate without pausing to reflect on the problem formulation or verifying…
ERIC Educational Resources Information Center
Heckler, Andrew F.; Scaife, Thomas M.
2015-01-01
We report on five experiments investigating response choices and response times to simple science questions that evoke student "misconceptions," and we construct a simple model to explain the patterns of response choices. Physics students were asked to compare a physical quantity represented by the slope, such as speed, on simple physics…
NASA Astrophysics Data System (ADS)
Ariga, Katsuhiko; Aono, Masakazu
2016-11-01
The construction of functional systems with nanosized parts would not possible by simple technology (nanotechnology). It can be handled by certain kinds of more sophisticated carpenter work or artistic architectonics (nanoarchitectonics). However, architecting materials in the nanoscale is not very simple because of various unexpected and uncontrollable thermal/statistical fluctuations and mutual interactions. The latter factors inevitably disturb the interactions between component building blocks. Therefore, several techniques and actions, including the regulation of atomic/molecular manipulation, molecular modification by organic chemistry, control of physicochemical interactions, self-assembly/organization, and application of external physical stimuli, must be well combined. This short review describes the historical backgrounds and essences of nanoarchitectonics, followed by a brief introduction of recent examples related to nanoarchitectonics. These examples are categorized in accordance with their physical usages: (i) atom/molecule control; (ii) devices and sensors; (iii) the other applications based on interfacial nanoarchitectonics.
NASA Astrophysics Data System (ADS)
Wiley, E. O.
2010-07-01
Relative motion studies of visual double stars can be investigated using least squares regression techniques and readily accessible programs such as Microsoft Excel and a calculator. Optical pairs differ from physical pairs under most geometries in both their simple scatter plots and their regression models. A step-by-step protocol for estimating the rectilinear elements of an optical pair is presented. The characteristics of physical pairs using these techniques are discussed.
General flat four-dimensional world pictures and clock systems
NASA Technical Reports Server (NTRS)
Hsu, J. P.; Underwood, J. A.
1978-01-01
We explore the mathematical structure and the physical implications of a general four-dimensional symmetry framework which is consistent with the Poincare-Einstein principle of relativity for physical laws and with experiments. In particular, we discuss a four-dimensional framework in which all observers in different frames use one and the same grid of clocks. The general framework includes special relativity and a recently proposed new four-dimensional symmetry with a nonuniversal light speed as two special simple cases. The connection between the properties of light propagation and the convention concerning clock systems is also discussed, and is seen to be nonunique within the four-dimensional framework.
True-slime-mould-inspired hydrostatically coupled oscillator system exhibiting versatile behaviours.
Umedachi, Takuya; Idei, Ryo; Ito, Kentaro; Ishiguro, Akio
2013-09-01
Behavioural diversity is an indispensable attribute of living systems, which makes them intrinsically adaptive and responsive to the demands of a dynamically changing environment. In contrast, conventional engineering approaches struggle to suppress behavioural diversity in artificial systems to reach optimal performance in given environments for desired tasks. The goals of this research include understanding the essential mechanism that endows living systems with behavioural diversity and implementing the mechanism in robots to exhibit adaptive behaviours. For this purpose, we have focused on an amoeba-like unicellular organism: the plasmodium of true slime mould. Despite the absence of a central nervous system, the plasmodium exhibits versatile spatiotemporal oscillatory patterns and switches spontaneously among these patterns. By exploiting this behavioural diversity, it is able to exhibit adaptive behaviour according to the situation encountered. Inspired by this organism, we built a real physical robot using hydrostatically coupled oscillators that produce versatile oscillatory patterns and spontaneous transitions among the patterns. The experimental results show that exploiting physical hydrostatic interplay—the physical dynamics of the robot—allows simple phase oscillators to promote versatile behaviours. The results can contribute to an understanding of how a living system generates versatile and adaptive behaviours with physical interplays among body parts.
The principles of collective animal behaviour
Sumpter, D.J.T
2005-01-01
In recent years, the concept of self-organization has been used to understand collective behaviour of animals. The central tenet of self-organization is that simple repeated interactions between individuals can produce complex adaptive patterns at the level of the group. Inspiration comes from patterns seen in physical systems, such as spiralling chemical waves, which arise without complexity at the level of the individual units of which the system is composed. The suggestion is that biological structures such as termite mounds, ant trail networks and even human crowds can be explained in terms of repeated interactions between the animals and their environment, without invoking individual complexity. Here, I review cases in which the self-organization approach has been successful in explaining collective behaviour of animal groups and societies. Ant pheromone trail networks, aggregation of cockroaches, the applause of opera audiences and the migration of fish schools have all been accurately described in terms of individuals following simple sets of rules. Unlike the simple units composing physical systems, however, animals are themselves complex entities, and other examples of collective behaviour, such as honey bee foraging with its myriad of dance signals and behavioural cues, cannot be fully understood in terms of simple individuals alone. I argue that the key to understanding collective behaviour lies in identifying the principles of the behavioural algorithms followed by individual animals and of how information flows between the animals. These principles, such as positive feedback, response thresholds and individual integrity, are repeatedly observed in very different animal societies. The future of collective behaviour research lies in classifying these principles, establishing the properties they produce at a group level and asking why they have evolved in so many different and distinct natural systems. Ultimately, this research could inform not only our understanding of animal societies, but also the principles by which we organize our own society. PMID:16553306
The principles of collective animal behaviour.
Sumpter, D J T
2006-01-29
In recent years, the concept of self-organization has been used to understand collective behaviour of animals. The central tenet of self-organization is that simple repeated interactions between individuals can produce complex adaptive patterns at the level of the group. Inspiration comes from patterns seen in physical systems, such as spiralling chemical waves, which arise without complexity at the level of the individual units of which the system is composed. The suggestion is that biological structures such as termite mounds, ant trail networks and even human crowds can be explained in terms of repeated interactions between the animals and their environment, without invoking individual complexity. Here, I review cases in which the self-organization approach has been successful in explaining collective behaviour of animal groups and societies. Ant pheromone trail networks, aggregation of cockroaches, the applause of opera audiences and the migration of fish schools have all been accurately described in terms of individuals following simple sets of rules. Unlike the simple units composing physical systems, however, animals are themselves complex entities, and other examples of collective behaviour, such as honey bee foraging with its myriad of dance signals and behavioural cues, cannot be fully understood in terms of simple individuals alone. I argue that the key to understanding collective behaviour lies in identifying the principles of the behavioural algorithms followed by individual animals and of how information flows between the animals. These principles, such as positive feedback, response thresholds and individual integrity, are repeatedly observed in very different animal societies. The future of collective behaviour research lies in classifying these principles, establishing the properties they produce at a group level and asking why they have evolved in so many different and distinct natural systems. Ultimately, this research could inform not only our understanding of animal societies, but also the principles by which we organize our own society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Li; Jacobsen, Stein B., E-mail: astrozeng@gmail.com, E-mail: jacobsen@neodymium.harvard.edu
In the past few years, the number of confirmed planets has grown above 2000. It is clear that they represent a diversity of structures not seen in our own solar system. In addition to very detailed interior modeling, it is valuable to have a simple analytical framework for describing planetary structures. The variational principle is a fundamental principle in physics, entailing that a physical system follows the trajectory, which minimizes its action. It is alternative to the differential equation formulation of a physical system. Applying the variational principle to the planetary interior can beautifully summarize the set of differential equationsmore » into one, which provides us some insight into the problem. From this principle, a universal mass–radius relation, an estimate of the error propagation from the equation of state to the mass–radius relation, and a form of the virial theorem applicable to planetary interiors are derived.« less
Augmenting Phase Space Quantization to Introduce Additional Physical Effects
NASA Astrophysics Data System (ADS)
Robbins, Matthew P. G.
Quantum mechanics can be done using classical phase space functions and a star product. The state of the system is described by a quasi-probability distribution. A classical system can be quantized in phase space in different ways with different quasi-probability distributions and star products. A transition differential operator relates different phase space quantizations. The objective of this thesis is to introduce additional physical effects into the process of quantization by using the transition operator. As prototypical examples, we first look at the coarse-graining of the Wigner function and the damped simple harmonic oscillator. By generalizing the transition operator and star product to also be functions of the position and momentum, we show that additional physical features beyond damping and coarse-graining can be introduced into a quantum system, including the generalized uncertainty principle of quantum gravity phenomenology, driving forces, and decoherence.
On the Lagrangian description of dissipative systems
NASA Astrophysics Data System (ADS)
Martínez-Pérez, N. E.; Ramírez, C.
2018-03-01
We consider the Lagrangian formulation with duplicated variables of dissipative mechanical systems. The application of Noether theorem leads to physical observable quantities which are not conserved, like energy and angular momentum, and conserved quantities, like the Hamiltonian, that generate symmetry transformations and do not correspond to observables. We show that there are simple relations among the equations satisfied by these two types of quantities. In the case of the damped harmonic oscillator, from the quantities obtained by the Noether theorem follows the algebra of Feshbach and Tikochinsky. Furthermore, if we consider the whole dynamics, the degrees of freedom separate into a physical and an unphysical sector. We analyze several cases, with linear and nonlinear dissipative forces; the physical consistency of the solutions is ensured, observing that the unphysical sector has always the trivial solution.
Measurement of g using a magnetic pendulum and a smartphone magnetometer
NASA Astrophysics Data System (ADS)
Pili, Unofre; Violanda, Renante; Ceniza, Claude
2018-04-01
The internal sensors in smartphones for their advanced add-in functions have also paved the way for these gadgets becoming multifunctional tools in elementary experimental physics. For instance, the acceleration sensor has been used to analyze free-falling motion and to study the oscillations of a spring-mass system. The ambient light sensor on the other hand has been proven to be a capable tool in studying an astronomical phenomenon as well as in measuring speed and acceleration. In this paper we present an accurate, convenient, and engaging use of the smartphone magnetic field sensor to measure the acceleration due to gravity via measurement of the period of oscillations (simply called "period" in what follows) of a simple pendulum. Measurement of the gravitational acceleration via the simple pendulum is a standard elementary physics laboratory activity, but the employment of the magnetic field sensor of a smartphone device in measuring the period is quite new and the use of it is seen as fascinating among students. The setup and procedure are rather simple and can easily be replicated as a classroom demonstration or as a regular laboratory activity.
Bounds on the power of proofs and advice in general physical theories.
Lee, Ciarán M; Hoban, Matty J
2016-06-01
Quantum theory presents us with the tools for computational and communication advantages over classical theory. One approach to uncovering the source of these advantages is to determine how computation and communication power vary as quantum theory is replaced by other operationally defined theories from a broad framework of such theories. Such investigations may reveal some of the key physical features required for powerful computation and communication. In this paper, we investigate how simple physical principles bound the power of two different computational paradigms which combine computation and communication in a non-trivial fashion: computation with advice and interactive proof systems. We show that the existence of non-trivial dynamics in a theory implies a bound on the power of computation with advice. Moreover, we provide an explicit example of a theory with no non-trivial dynamics in which the power of computation with advice is unbounded. Finally, we show that the power of simple interactive proof systems in theories where local measurements suffice for tomography is non-trivially bounded. This result provides a proof that [Formula: see text] is contained in [Formula: see text], which does not make use of any uniquely quantum structure-such as the fact that observables correspond to self-adjoint operators-and thus may be of independent interest.
On the theory of evolution of particulate systems
NASA Astrophysics Data System (ADS)
Buyevich, Yuri A.; Alexandrov, Dmitri V.
2017-04-01
An analytical method for the description of particulate systems at sufficiently long times is developed. This method allows us to obtain very simple analytical expressions for the particle distribution function. The method under consideration can be applied to a number of practically important problems including evaporation of a polydisperse mist, dissolution of dispersed solids, combustion of dispersed propellants, physical and chemical transformation of powders and phase transitions in metastable materials.
Small Reactor for Deep Space Exploration
none,
2018-06-06
This is the first demonstration of a space nuclear reactor system to produce electricity in the United States since 1965, and an experiment demonstrated the first use of a heat pipe to cool a small nuclear reactor and then harvest the heat to power a Stirling engine at the Nevada National Security Site's Device Assembly Facility confirms basic nuclear reactor physics and heat transfer for a simple, reliable space power system.
Spatial Localization in Dissipative Systems
NASA Astrophysics Data System (ADS)
Knobloch, E.
2015-03-01
Spatial localization is a common feature of physical systems, occurring in both conservative and dissipative systems. This article reviews the theoretical foundations of our understanding of spatial localization in forced dissipative systems, from both a mathematical point of view and a physics perspective. It explains the origin of the large multiplicity of simultaneously stable spatially localized states present in a parameter region called the pinning region and its relation to the notion of homoclinic snaking. The localized states are described as bound states of fronts, and the notions of front pinning, self-pinning, and depinning are emphasized. Both one-dimensional and two-dimensional systems are discussed, and the reasons behind the differences in behavior between dissipative systems with conserved and nonconserved dynamics are explained. The insights gained are specific to forced dissipative systems and are illustrated here using examples drawn from fluid mechanics (convection and shear flows) and a simple model of crystallization.
Equipment Issues regarding the Collection of Video Data for Research
ERIC Educational Resources Information Center
Kung, Rebecca Lippmann; Kung, Peter; Linder, Cedric
2005-01-01
Physics education research increasingly makes use of video data for analysis of student learning and teaching practice. Collection of these data is conceptually simple but execution is often fraught with costly and time-consuming complications. This pragmatic paper discusses the development of systems to record and permanently archive audio and…
Simulation of snow and soil water content as a basis for satellite retrievals
USDA-ARS?s Scientific Manuscript database
It is not yet possible to determine whether the snow has changed over time despite collection of passive microwave data for more than thirty years. Physically-based, but computationally simple snow and soil models have been coupled to form the basis of a data assimilation system for retrievals of sn...
Operational Environmental Assessment
1988-09-01
Chemistry Branch - Physical Chemistry Branch " Analytical Research Division - Analytical Systems Branch - Methodology Research Branch - Spectroscopy Branch...electromagnetic frequency spec- trum and includes radio frequencies, infrared , visible light, ultraviolet, X-rays and gamma rays (in ascending order of...Verruculogen Aflatrem Picrotoxin Ciguatoxin Mycotoxins Simple Tr ichothecenes T-2 Toxin T-2 Tetraol Neosolaniol * Nivalenol Deoxynivalenol Verrucarol B-3 B lank
Modeling the Compact Disc Read System in Lab
ERIC Educational Resources Information Center
Hinaus, Brad; Veum, Mick
2009-01-01
One of the great, engaging aspects of physics is its application to everyday technology. The compact disc player is an example of one such technology that applies fundamental principles from optics in order to efficiently store and quickly retrieve information. We have created a lab in which students use simple optical components to assemble a…
Orr, G; Roth, M
2012-08-01
A low-voltage (mV) electronically triggered spot welding system for fabricating fine thermocouples and thin sheets used in high-temperature characterization of materials' properties is suggested. The system is based on the capacitance discharge method with a timed trigger for obtaining reliable and consistent welds. In contrast to existing techniques based on employing high voltage DC supplies for charging the capacitor or supplies with positive and negative rails, this method uses a simple, standard dual power supply available at most of the physical laboratories or can be acquired at a low cost. In addition, an efficient and simple method of fabricating non-sticking electrodes that do not contaminate the weld area is suggested and implemented.
Implications of Biospheric Energization
NASA Astrophysics Data System (ADS)
Budding, Edd; Demircan, Osman; Gündüz, Güngör; Emin Özel, Mehmet
2016-07-01
Our physical model relating to the origin and development of lifelike processes from very simple beginnings is reviewed. This molecular ('ABC') process is compared with the chemoton model, noting the role of the autocatalytic tuning to the time-dependent source of energy. This substantiates a Darwinian character to evolution. The system evolves from very simple beginnings to a progressively more highly tuned, energized and complex responding biosphere, that grows exponentially; albeit with a very low net growth factor. Rates of growth and complexity in the evolution raise disturbing issues of inherent stability. Autocatalytic processes can include a fractal character to their development allowing recapitulative effects to be observed. This property, in allowing similarities of pattern to be recognized, can be useful in interpreting complex (lifelike) systems.
A pulsed jumping ring apparatus for demonstration of Lenz's law
NASA Astrophysics Data System (ADS)
Tanner, Paul; Loebach, Jeff; Cook, James; Hallen, H. D.
2001-08-01
Lenz's law is often demonstrated in classrooms by the use of Elihu Thomson's jumping ring. However, it is ironic that a thorough analysis of the physics of the ac jumping ring reveals that the operation is due mainly to a phase difference, not Lenz's law. A complete analysis of the physics behind the ac jumping ring is difficult for the introductory student. We present a design for a pulsed jumping ring which can be fully described by the application of Lenz's law. Other advantages of this system are that it lends itself to a rigorous analysis of the force balances and energy flow. The simple jumping ring apparatus closely resembles Thomson's, but is powered by a capacitor bank. The jump heights were measured for several rings as a function of energy stored in the capacitors. A simple model describes the data well. Currents in both the drive coil and ring are measured and that of the drive coil modeled to illuminate some properties of the capacitors. An analysis of the energy flow in the system explains the higher jump heights, to 2 m, when the ring is cooled.
Existence of an information unit as a postulate of quantum theory.
Masanes, Lluís; Müller, Markus P; Augusiak, Remigiusz; Pérez-García, David
2013-10-08
Does information play a significant role in the foundations of physics? Information is the abstraction that allows us to refer to the states of systems when we choose to ignore the systems themselves. This is only possible in very particular frameworks, like in classical or quantum theory, or more generally, whenever there exists an information unit such that the state of any system can be reversibly encoded in a sufficient number of such units. In this work, we show how the abstract formalism of quantum theory can be deduced solely from the existence of an information unit with suitable properties, together with two further natural assumptions: the continuity and reversibility of dynamics, and the possibility of characterizing the state of a composite system by local measurements. This constitutes a set of postulates for quantum theory with a simple and direct physical meaning, like the ones of special relativity or thermodynamics, and it articulates a strong connection between physics and information.
Existence of an information unit as a postulate of quantum theory
Masanes, Lluís; Müller, Markus P.; Augusiak, Remigiusz; Pérez-García, David
2013-01-01
Does information play a significant role in the foundations of physics? Information is the abstraction that allows us to refer to the states of systems when we choose to ignore the systems themselves. This is only possible in very particular frameworks, like in classical or quantum theory, or more generally, whenever there exists an information unit such that the state of any system can be reversibly encoded in a sufficient number of such units. In this work, we show how the abstract formalism of quantum theory can be deduced solely from the existence of an information unit with suitable properties, together with two further natural assumptions: the continuity and reversibility of dynamics, and the possibility of characterizing the state of a composite system by local measurements. This constitutes a set of postulates for quantum theory with a simple and direct physical meaning, like the ones of special relativity or thermodynamics, and it articulates a strong connection between physics and information. PMID:24062431
DE HERT, MARC; COHEN, DAN; BOBES, JULIO; CETKOVICH-BAKMAS, MARCELO; LEUCHT, STEFAN; M. NDETEI, DAVID; W. NEWCOMER, JOHN; UWAKWE, RICHARD; ASAI, ITSUO; MÖLLER, HANS-JURGEN; GAUTAM, SHIV; DETRAUX, JOHAN; U. CORRELL, CHRISTOPH
2011-01-01
Physical disorders are, compared to the general population, more prevalent in people with severe mental illness (SMI). Although this excess morbidity and mortality is largely due to modifiable lifestyle risk factors, the screening and assessment of physical health aspects remains poor, even in developed countries. Moreover, specific patient, provider, treatment and system factors act as barriers to the recognition and to the management of physical diseases in people with SMI. Psychiatrists can play a pivotal role in the improvement of the physical health of these patients by expanding their task from clinical psychiatric care to the monitoring and treatment of crucial physical parameters. At a system level, actions are not easy to realize, especially for developing countries. However, at an individual level, even simple and very basic monitoring and treatment actions, undertaken by the treating clinician, can already improve the problem of suboptimal medical care in this population. Adhering to monitoring and treatment guidelines will result in a substantial enhancement of physical health outcomes. Furthermore, psychiatrists can help educate and motivate people with SMI to address their suboptimal lifestyle, including smoking, unhealthy diet and lack of exercise. The adoption of the recommendations presented in this paper across health care systems throughout the world will contribute to a significant improvement in the medical and related psychiatric health outcomes of patients with SMI. PMID:21633691
Electro-optical co-simulation for integrated CMOS photonic circuits with VerilogA.
Sorace-Agaskar, Cheryl; Leu, Jonathan; Watts, Michael R; Stojanovic, Vladimir
2015-10-19
We present a Cadence toolkit library written in VerilogA for simulation of electro-optical systems. We have identified and described a set of fundamental photonic components at the physical level such that characteristics of composite devices (e.g. ring modulators) are created organically - by simple instantiation of fundamental primitives. Both the amplitude and phase of optical signals as well as optical-electrical interactions are simulated. We show that the results match other simulations and analytic solutions that have previously been compared to theory for both simple devices, such as ring resonators, and more complicated devices and systems such as single-sideband modulators, WDM links and Pound Drever Hall Locking loops. We also illustrate the capability of such toolkit for co-simulation with electronic circuits, which is a key enabler of the electro-optic system development and verification.
Getting the Swing of Surface Gravity
NASA Astrophysics Data System (ADS)
Thomas, Brian C.; Quick, Matthew
2012-04-01
Sports are a popular and effective way to illustrate physics principles. Baseball in particular presents a number of opportunities to motivate student interest and teach concepts. Several articles have appeared in this journal on this topic,1 illustrating a wide variety of areas of physics. In addition, several websites2 and an entire book3 are available. In this paper we describe a student-designed project that illustrates the relative surface gravity on the Earth, Sun, and other solar system bodies using baseball. We describe the project and its results here as an example of a simple, fun, and student-driven use of baseball to illustrate an important physics principle.
NASA Technical Reports Server (NTRS)
Weinberg, Michael C.
1986-01-01
In this work consideration is given to the problem of the extraction of physical data information from gas bubble dissolution and growth measurements. The discussion is limited to the analysis of the simplest experimental systems consisting of a single, one component gas bubble in a glassmelt. It is observed that if the glassmelt is highly under- (super-) saturated, then surface tension effects may be ignored, simplifying the task of extracting gas diffusivity values from the measurements. If, in addition, the bubble rise velocity is very small (or very large) the ease of obtaining physical property data is enhanced. Illustrations are given for typical cases.
The architecture of Newton, a general-purpose dynamics simulator
NASA Technical Reports Server (NTRS)
Cremer, James F.; Stewart, A. James
1989-01-01
The architecture for Newton, a general-purpose system for simulating the dynamics of complex physical objects, is described. The system automatically formulates and analyzes equations of motion, and performs automatic modification of this system equations when necessitated by changes in kinematic relationships between objects. Impact and temporary contact are handled, although only using simple models. User-directed influence of simulations is achieved using Newton's module, which can be used to experiment with the control of many-degree-of-freedom articulated objects.
Free Energy in Introductory Physics
NASA Astrophysics Data System (ADS)
Prentis, Jeffrey J.; Obsniuk, Michael J.
2016-02-01
Energy and entropy are two of the most important concepts in science. For all natural processes where a system exchanges energy with its environment, the energy of the system tends to decrease and the entropy of the system tends to increase. Free energy is the special concept that specifies how to balance the opposing tendencies to minimize energy and maximize entropy. There are many pedagogical articles on energy and entropy. Here we present a simple model to illustrate the concept of free energy and the principle of minimum free energy.
X-ray system simulation software tools for radiology and radiography education.
Kengyelics, Stephen M; Treadgold, Laura A; Davies, Andrew G
2018-02-01
To develop x-ray simulation software tools to support delivery of radiological science education for a range of learning environments and audiences including individual study, lectures, and tutorials. Two software tools were developed; one simulated x-ray production for a simple two dimensional radiographic system geometry comprising an x-ray source, beam filter, test object and detector. The other simulated the acquisition and display of two dimensional radiographic images of complex three dimensional objects using a ray casting algorithm through three dimensional mesh objects. Both tools were intended to be simple to use, produce results accurate enough to be useful for educational purposes, and have an acceptable simulation time on modest computer hardware. The radiographic factors and acquisition geometry could be altered in both tools via their graphical user interfaces. A comparison of radiographic contrast measurements of the simulators to a real system was performed. The contrast output of the simulators had excellent agreement with measured results. The software simulators were deployed to 120 computers on campus. The software tools developed are easy-to-use, clearly demonstrate important x-ray physics and imaging principles, are accessible within a standard University setting and could be used to enhance the teaching of x-ray physics to undergraduate students. Current approaches to teaching x-ray physics in radiological science lack immediacy when linking theory with practice. This method of delivery allows students to engage with the subject in an experiential learning environment. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Steckloff, Jordan; Lindell, Rebecca
2016-10-01
Teaching science by having students manipulate real data is a popular trend in astronomy and planetary science education. However, many existing activities simply couple this data with traditional "cookbook" style verification labs. As with most topics within science, this instructional technique does not enhance the average students' understanding of the phenomena being studied. Here we present a methodology for developing "science by doing" activities that incorporate the latest discoveries in planetary science with up-to-date constructivist pedagogy to teach advanced concepts in Physics and Astronomy. In our methodology, students are first guided to understand, analyze, and plot real raw scientific data; develop and test physical and computational models to understand and interpret the data; finally use their models to make predictions about the topic being studied and test it with real data.To date, two activities have been developed according to this methodology: Understanding Asteroids through their Light Curves (hereafter "Asteroid Activity"), and Understanding Exoplanetary Systems through Simple Harmonic Motion (hereafter "Exoplanet Activity"). The Asteroid Activity allows students to explore light curves available on the Asteroid Light Curve Database (ALCDB) to discover general properties of asteroids, including their internal structure, strength, and mechanism of asteroid moon formation. The Exoplanet Activity allows students to investigate the masses and semi-major axes of exoplanets in a system by comparing the radial velocity motion of their host star to that of a coupled simple harmonic oscillator. Students then explore how noncircular orbits lead to deviations from simple harmonic motion. These activities will be field tested during the Fall 2016 semester in an advanced undergraduate mechanics and astronomy courses at a large Midwestern STEM-focused university. We will present the development methodologies for these activities, description of the activities, and results from the pre-tests.
Synapse fits neuron: joint reduction by model inversion.
van der Scheer, H T; Doelman, A
2017-08-01
In this paper, we introduce a novel simplification method for dealing with physical systems that can be thought to consist of two subsystems connected in series, such as a neuron and a synapse. The aim of our method is to help find a simple, yet convincing model of the full cascade-connected system, assuming that a satisfactory model of one of the subsystems, e.g., the neuron, is already given. Our method allows us to validate a candidate model of the full cascade against data at a finer scale. In our main example, we apply our method to part of the squid's giant fiber system. We first postulate a simple, hypothetical model of cell-to-cell signaling based on the squid's escape response. Then, given a FitzHugh-type neuron model, we derive the verifiable model of the squid giant synapse that this hypothesis implies. We show that the derived synapse model accurately reproduces synaptic recordings, hence lending support to the postulated, simple model of cell-to-cell signaling, which thus, in turn, can be used as a basic building block for network models.
Chaotic behaviour of Zeeman machines at introductory course of mechanics
NASA Astrophysics Data System (ADS)
Nagy, Péter; Tasnádi, Péter
2016-05-01
Investigation of chaotic motions and cooperative systems offers a magnificent opportunity to involve modern physics into the basic course of mechanics taught to engineering students. In the present paper it will be demonstrated that Zeeman Machine can be a versatile and motivating tool for students to get introductory knowledge about chaotic motion via interactive simulations. It works in a relatively simple way and its properties can be understood very easily. Since the machine can be built easily and the simulation of its movement is also simple the experimental investigation and the theoretical description can be connected intuitively. Although Zeeman Machine is known mainly for its quasi-static and catastrophic behaviour, its dynamic properties are also of interest with its typical chaotic features. By means of a periodically driven Zeeman Machine a wide range of chaotic properties of the simple systems can be demonstrated such as bifurcation diagrams, chaotic attractors, transient chaos and so on. The main goal of this paper is the presentation of an interactive learning material for teaching the basic features of the chaotic systems through the investigation of the Zeeman Machine.
Why do worms go against the flow? C. elegans behaviors explained by simple physics
Bau, Haim H; Raizen, David; Yuan, Jinzhou
2015-01-01
Nearly half a century of neurobiological research using the nematode Caenorahbitis elegans has produced a remarkably detailed understanding of how genotype controls behavioral phenotype. However, the role of simple physical forces in regulating behavior has been understudied. Here, we review our recent observations of 3 behaviors of C. elegans suspended in solution that can be fully explained by the laws of mechanics. These behaviors are bordertaxis, the attraction toward solid surfaces; positive rheotaxis, the propensity to swim against the flow; and synchrophilia, the tendency of animals when close to each other to synchronize their gaits. Although these 3 behaviors are not directly regulated by the animal's nervous system, bordertaxis and rheotaxis require the animal to have an undulating gait. We conjecture that these behaviors are advantageous to the animals, and thus evolution may have favored microorganism that swim with an undulating gait. PMID:27123373
Interobject grouping facilitates visual awareness.
Stein, Timo; Kaiser, Daniel; Peelen, Marius V
2015-01-01
In organizing perception, the human visual system takes advantage of regularities in the visual input to perceptually group related image elements. Simple stimuli that can be perceptually grouped based on physical regularities, for example by forming an illusory contour, have a competitive advantage in entering visual awareness. Here, we show that regularities that arise from the relative positioning of complex, meaningful objects in the visual environment also modulate visual awareness. Using continuous flash suppression, we found that pairs of objects that were positioned according to real-world spatial regularities (e.g., a lamp above a table) accessed awareness more quickly than the same object pairs shown in irregular configurations (e.g., a table above a lamp). This advantage was specific to upright stimuli and abolished by stimulus inversion, meaning that it did not reflect physical stimulus confounds or the grouping of simple image elements. Thus, knowledge of the spatial configuration of objects in the environment shapes the contents of conscious perception.
Analysis of graphical representation among freshmen in undergraduate physics laboratory
NASA Astrophysics Data System (ADS)
Adam, A. S.; Anggrayni, S.; Kholiq, A.; Putri, N. P.; Suprapto, N.
2018-03-01
Physics concept understanding is the importance of the physics laboratory among freshmen in the undergraduate program. These include the ability to interpret the meaning of the graph to make an appropriate conclusion. This particular study analyses the graphical representation among freshmen in an undergraduate physics laboratory. This study uses empirical study with quantitative approach. The graphical representation covers 3 physics topics: velocity of sound, simple pendulum and spring system. The result of this study shows most of the freshmen (90% of the sample) make a graph based on the data from physics laboratory. It means the transferring process of raw data which illustrated in the table to physics graph can be categorised. Most of the Freshmen use the proportional principle of the variable in graph analysis. However, Freshmen can't make the graph in an appropriate variable to gain more information and can't analyse the graph to obtain the useful information from the slope.
NASA Astrophysics Data System (ADS)
Tran, Thien Khanh; Tran, Hoai Nam; Nguyen, Thuy Linh; Leu, Hoang Jyn
2018-04-01
Nowadays, the pollution of water environment has become a significant problem that really requires a long term solution to deal with. In this study, we provide a simple method to create a capable electrode for electrochemical treatment of wastewater or even can be used as a filter by a physical method. Carbon fiber clothes 300×700 mm were chosen to carry on experiments of Polyaniline (PANI) electrodeposition. Generally, PANI was used to be deposited by three electrodes electrochemical system, however, our samples we obtained here are created by a simple two-electrode electrochemical system. Nevertheless, the product fiber cloth is controlled with a thickness of 0.19 mm and the mass density of 0.44g/cm3, the whole process was carried out under simple lab scale condition at Ton Duc Thang University. To clarify the properties of our products, there was some measurement applied, such as SEM for surface monographic investigation, thermal conductivity by DSC, electrical conductivity by CV and material properties by XRD and EDS measurement. In that manner, we believe that there is still more room for this method to improve in the near future and a bright chance to apply to industrial processes.
Equilibrium time correlation functions and the dynamics of fluctuations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luban, Marshall; Luscombe, James H.
1999-12-01
Equilibrium time correlation functions are of great importance because they probe the equilibrium dynamical response to external perturbations. We discuss the properties of time correlation functions for several systems that are simple enough to illustrate the calculational steps involved. The discussion underscores the need for avoiding language which misleadingly suggests that thermal equilibrium is associated with a quiescent or moribund state of the system. (c) 1999 American Association of Physics Teachers.
General model and control of an n rotor helicopter
NASA Astrophysics Data System (ADS)
Sidea, A. G.; Yding Brogaard, R.; Andersen, N. A.; Ravn, O.
2014-12-01
The purpose of this study was to create a dynamic, nonlinear mathematical model of a multirotor that would be valid for different numbers of rotors. Furthermore, a set of Single Input Single Output (SISO) controllers were implemented for attitude control. Both model and controllers were tested experimentally on a quadcopter. Using the combined model and controllers, simple system simulation and control is possible, by replacing the physical values for the individual systems.
[Continuous registration of the filling volume of the human urinary bladder].
Preussner, P R
1991-11-01
A sensing system for continuous recording of bladder volume is described. The system is intended for use in particular in patients with paraplegia or bladder plastique. Owing to the very simple measuring procedure employed the implantable components can be designed for very low power consumption. Also, there is no need for an additional data transfer from inside the body to the exterior, because measurement and telemetry are physically the same procedures.
Hadronic Octaves: Symphony in Treble Clef
NASA Astrophysics Data System (ADS)
Ne'eman, Yuval
2002-06-01
Pythagoreanism, as derived from the physics of music, an artificial quantized system, involved simple ratios between integers and was conjectured by the Pythagoreans to extend to the whole of physics (the Music of the Spheres). It hit the jackpot in 1895 with Balmer's formula and has dominated XXth Century physics, with its Quantum Foundations. I review the history of Hadron Spectroscopy and my personal role in 1958-1964, i.e. (1) my 1960 discovery of SU(3) symmetry with an octet assignment for the j = 1/2 baryons (independently reached somewhat later by M. Gell-Mann), and (2) in 1961 (with H. Goldberg) my mathematical construction of a structural model which was then developed into the physical quark model by Gell-Mann and Zweig.
Free Will, Physics, Biology, and the Brain
NASA Astrophysics Data System (ADS)
Koch, Christof
This introduction reviews the traditionally conceived question of free will from the point of view of a physicist turned neurobiologist. I discuss the quantum mechanic evidence that has brought us to the view that the world, including our brains, is not completely determined by physics and that even very simple nervous systems are subject to deterministic chaos. However, it is unclear how consciousness or any other extra-physical agent could take advantage of this situation to effect a change in the world, except possibly by realizing one quantum possibility over another. While the brain is a highly nonlinear and stochastic system, it remains unclear to what extent individual quantum effects can affect its output behavior. Finally, I discuss several cognitive neuroscience experiments suggesting that in many instances, our brain decides prior to our conscious mind, and that we often ignorant of our brain's decisions.
Adaptive simplification of complex multiscale systems.
Chiavazzo, Eliodoro; Karlin, Ilya
2011-03-01
A fully adaptive methodology is developed for reducing the complexity of large dissipative systems. This represents a significant step toward extracting essential physical knowledge from complex systems, by addressing the challenging problem of a minimal number of variables needed to exactly capture the system dynamics. Accurate reduced description is achieved, by construction of a hierarchy of slow invariant manifolds, with an embarrassingly simple implementation in any dimension. The method is validated with the autoignition of the hydrogen-air mixture where a reduction to a cascade of slow invariant manifolds is observed.
The volume- and surface-binding energies of ice systems containing CO, CO2, and H2O
NASA Technical Reports Server (NTRS)
Sandford, Scott A.; Allamandola, Louis J.
1990-01-01
Laboratory-measured, temperature-dependent sticking efficiencies are presently used to derive the surface-binding energies of CO and CO2 on H2O-rich ices, with a view to determining the condensation and vaporization properties of these systems as well as to the measured energies' implications for both cometary behavior and the evolution of interstellar ices. The molecular volume and the surface binding energies are not found to be necessarily related on the basis of simple nearest-neighbor scaling in surface and bulk sites; this may be due to the physical constraints associated with matrix structure-associated physical constraints, which sometimes dominate the volume-binding energies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freitag, Mark A.
2001-12-31
The major title of this dissertation, 'From first principles,' is a phase often heard in the study of thermodynamics and quantum mechanics. These words embody a powerful idea in the physical sciences; namely, that it is possible to distill the complexities of nature into a set of simple, well defined mathematical laws from which specific relations can then be derived . In thermodynamics, these fundamental laws are immediately familiar to the physical scientist by their numerical order: the First, Second and Third Laws. However, the subject of the present volume is quantum mechanics-specifically, non-relativistic quantum mechanics, which is appropriate formore » most systems of chemical interest.« less
Resonant Drag Instability of Grains Streaming in Fluids
NASA Astrophysics Data System (ADS)
Squire, J.; Hopkins, P. F.
2018-03-01
We show that grains streaming through a fluid are generically unstable if their velocity, projected along some direction, matches the phase velocity of a fluid wave (linear oscillation). This can occur whenever grains stream faster than any fluid wave. The wave itself can be quite general—sound waves, magnetosonic waves, epicyclic oscillations, and Brunt–Väisälä oscillations each generate instabilities, for example. We derive a simple expression for the growth rates of these “resonant drag instabilities” (RDI). This expression (i) illustrates why such instabilities are so virulent and generic and (ii) allows for simple analytic computation of RDI growth rates and properties for different fluids. As examples, we introduce several new instabilities, which could see application across a variety of physical systems from atmospheres to protoplanetary disks, the interstellar medium, and galactic outflows. The matrix-based resonance formalism we introduce can also be applied more generally in other (nonfluid) contexts, providing a simple means for calculating and understanding the stability properties of interacting systems.
NASA Astrophysics Data System (ADS)
Samardzija, Nikola
1995-01-01
A simple three dimensional physical model is proposed to qualitatively address a particular type of dynamics evolving on toroidal structures. In the phase space this dynamics creates appearance of a worm-hole through which a chaotic, quasiperiodic and periodic behaviors are formed. An intriguing topological property of such a system is that it possesses no steady state solutions. As such, it opens some interesting questions in the bifurcation theory. The model also offers a novel qualitative tool for explaining some recently reported experimental and simulation results observed in physics, chemistry and biology.
The crystallography of correlated disorder.
Keen, David A; Goodwin, Andrew L
2015-05-21
Classical crystallography can determine structures as complicated as multi-component ribosomal assemblies with atomic resolution, but is inadequate for disordered systems--even those as simple as water ice--that occupy the complex middle ground between liquid-like randomness and crystalline periodic order. Correlated disorder nevertheless has clear crystallographic signatures that map to the type of disorder, irrespective of the underlying physical or chemical interactions and material involved. This mapping hints at a common language for disordered states that will help us to understand, control and exploit the disorder responsible for many interesting physical properties.
Multiple Weyl points and the sign change of their topological charges in woodpile photonic crystals
NASA Astrophysics Data System (ADS)
Chang, Ming-Li; Xiao, Meng; Chen, Wen-Jie; Chan, C. T.
2017-03-01
We show that Weyl points with topological charges 1 and 2 can be found in very simple chiral woodpile photonic crystals and the distribution of the charges can be changed by changing the material parameters without altering space-group symmetry. The underlying physics can be understood through a tight-binding model. Gapless surface states and their backscattering immune properties also are demonstrated in these systems. Obtaining Weyl points in these easily fabricated woodpile photonic crystals will facilitate the realization of Weyl point physics in optical and IR frequencies.
A Note on Weak Solutions of Conservation Laws and Energy/Entropy Conservation
NASA Astrophysics Data System (ADS)
Gwiazda, Piotr; Michálek, Martin; Świerczewska-Gwiazda, Agnieszka
2018-03-01
A common feature of systems of conservation laws of continuum physics is that they are endowed with natural companion laws which are in such cases most often related to the second law of thermodynamics. This observation easily generalizes to any symmetrizable system of conservation laws; they are endowed with nontrivial companion conservation laws, which are immediately satisfied by classical solutions. Not surprisingly, weak solutions may fail to satisfy companion laws, which are then often relaxed from equality to inequality and overtake the role of physical admissibility conditions for weak solutions. We want to answer the question: what is a critical regularity of weak solutions to a general system of conservation laws to satisfy an associated companion law as an equality? An archetypal example of such a result was derived for the incompressible Euler system in the context of Onsager's conjecture in the early nineties. This general result can serve as a simple criterion to numerous systems of mathematical physics to prescribe the regularity of solutions needed for an appropriate companion law to be satisfied.
Wiimote Experiments: Circular Motion
ERIC Educational Resources Information Center
Kouh, Minjoon; Holz, Danielle; Kawam, Alae; Lamont, Mary
2013-01-01
The advent of new sensor technologies can provide new ways of exploring fundamental physics. In this paper, we show how a Wiimote, which is a handheld remote controller for the Nintendo Wii video game system with an accelerometer, can be used to study the dynamics of circular motion with a very simple setup such as an old record player or a…
A Counterintuitive Toy: The Bird That Never Falls Down.
ERIC Educational Resources Information Center
Fort, J.; Llebot, J. E.; Saurina, J.; Sunol, J. J.
1998-01-01
Describes a toy shaped like a bird that has an intuitively astonishing property: no matter how far away from equilibrium it is moved, it oscillates back to equilibrium. The behavior of this physical system is explained and is used to illustrate the concept of mechanical stability and the usefulness of making simple, idealized models for describing…
Wiimote Experiments: Circular Motion
NASA Astrophysics Data System (ADS)
Kouh, Minjoon; Holz, Danielle; Kawam, Alae; Lamont, Mary
2013-03-01
The advent of new sensor technologies can provide new ways of exploring fundamental physics. In this paper, we show how a Wiimote, which is a handheld remote controller for the Nintendo Wii video game system with an accelerometer, can be used to study the dynamics of circular motion with a very simple setup such as an old record player or a bicycle wheel.
An Exact Solvable Model of Rocket Dynamics in Atmosphere
ERIC Educational Resources Information Center
Rodrigues, H.; Pinho, M. O.; Portes, D., Jr.; Santiago, A.
2009-01-01
In basic physics courses at undergraduate level, the dynamics of self-propelled bodies is presented as an example of momentum conservation law applied to systems with time-varying mass. However, is often studied the simple situation of free motion or the motion under the action of a constant gravitational field. In this work, we investigate the…
Introducing Gyroscopes Quantitatively without Putting Students into a Spin
ERIC Educational Resources Information Center
McGlynn, Enda
2007-01-01
The uniform precession of a simple form of gyroscope is analysed via a direct application of Newton's laws, using only concepts generally taught to physics and engineering students in the first two years of an undergraduate programme, with an emphasis on understanding the forces and torques acting on the system. This type of approach, in the…
Energy waste in a university building
NASA Astrophysics Data System (ADS)
Numark, Neil J.; Bartlett, Albert A.
1982-04-01
Interesting physics problems that can be used as examples in introductory physics courses relating to the waste of thermal energy can be found in the mechanical systems of campus buildings. The design of these wasteful systems may represent the ``state of the art'' as it existed just a few years ago, so such examples are probably abundant. Our Student Recreation Center was opened in 1973. It has an ice skating rink with the associated large refrigeration system. Simple calculations using elementary thermodynamics applied to this system show that the heat rejected by the system is roughly a quarter of a megawatt, which is approximately the average thermal power needed to heat water for the showers in the building. An outcome of this student project is the recommendation that the rejected heat be used to heat (or preheat) the shower water at an estimated annual saving of 40 000 in current energy costs.
Energy waste in a university building
DOE Office of Scientific and Technical Information (OSTI.GOV)
Numark, N.J.; Bartlett, A.A.
1982-04-01
Interesting physics problems that can be used as examples in introductory physics courses relating to the waste of thermal energy can be found in the mechanical systems of campus buildings. The design of these wasteful systems may represent the ''state of the art'' as it existed just a few years ago, so such examples are probably abundant. Our Student Recreation Center was opened in 1973. It has an ice skating rink with the associated large refrigeration system. Simple calculations using elementary thermodynamics applied to this system show that the heat rejected by the system is roughly a quarter of amore » megawatt, which is approximately the average thermal power needed to heat water for the showers in the building. An outcome of this student project is the recommendation that the rejected heat be used to heat (or preheat) the shower water at an estimated annual saving of $40 000 in current energy costs.« less
Use of system identification techniques for improving airframe finite element models using test data
NASA Technical Reports Server (NTRS)
Hanagud, Sathya V.; Zhou, Weiyu; Craig, James I.; Weston, Neil J.
1991-01-01
A method for using system identification techniques to improve airframe finite element models was developed and demonstrated. The method uses linear sensitivity matrices to relate changes in selected physical parameters to changes in total system matrices. The values for these physical parameters were determined using constrained optimization with singular value decomposition. The method was confirmed using both simple and complex finite element models for which pseudo-experimental data was synthesized directly from the finite element model. The method was then applied to a real airframe model which incorporated all the complexities and details of a large finite element model and for which extensive test data was available. The method was shown to work, and the differences between the identified model and the measured results were considered satisfactory.
TRIQS: A toolbox for research on interacting quantum systems
NASA Astrophysics Data System (ADS)
Parcollet, Olivier; Ferrero, Michel; Ayral, Thomas; Hafermann, Hartmut; Krivenko, Igor; Messio, Laura; Seth, Priyanka
2015-11-01
We present the TRIQS library, a Toolbox for Research on Interacting Quantum Systems. It is an open-source, computational physics library providing a framework for the quick development of applications in the field of many-body quantum physics, and in particular, strongly-correlated electronic systems. It supplies components to develop codes in a modern, concise and efficient way: e.g. Green's function containers, a generic Monte Carlo class, and simple interfaces to HDF5. TRIQS is a C++/Python library that can be used from either language. It is distributed under the GNU General Public License (GPLv3). State-of-the-art applications based on the library, such as modern quantum many-body solvers and interfaces between density-functional-theory codes and dynamical mean-field theory (DMFT) codes are distributed along with it.
Various supercritical carbon dioxide cycle layouts study for molten carbonate fuel cell application
NASA Astrophysics Data System (ADS)
Bae, Seong Jun; Ahn, Yoonhan; Lee, Jekyoung; Lee, Jeong Ik
2014-12-01
Various supercritical carbon dioxide (S-CO2) cycles for a power conversion system of a Molten Carbonate Fuel Cell (MCFC) hybrid system are studied in this paper. Re-Compressing Brayton (RCB) cycle, Simple Recuperated Brayton (SRB) cycle and Simple Recuperated Transcritical (SRT) cycle layouts were selected as candidates for this study. In addition, a novel concept of S-CO2 cycle which combines Brayton cycle and Rankine cycle is proposed and intensively studied with other S-CO2 layouts. A parametric study is performed to optimize the total system to be compact and to achieve wider operating range. Performances of each S-CO2 cycle are compared in terms of the thermal efficiency, net electricity of the MCFC hybrid system and approximate total volumes of each S-CO2 cycle. As a result, performance and total physical size of S-CO2 cycle can be better understood for MCFC S-CO2 hybrid system and especially, newly suggested S-CO2 cycle shows some success.
ISSA/TSS power preliminary design
NASA Technical Reports Server (NTRS)
Main, John A.
1996-01-01
A projected power shortfall during the initial utilization flights of the International Space Station Alpha (ISSA) has prompted an inquiry into the use of the Tethered Satellite System (TSS) to provide station power. The preliminary design of the combined ISSA/TSS system is currently underway in the Preliminary Design Office at the Marshall Space Flight Center. This document focuses on the justification for using a tether system on space station, the physical principles behind such a system, and how it might be operated to best utilize its capabilities. The basic components of a simple DC generator are a magnet of some type and a conductive wire. Moving the wire through the magnetic field causes forces to be applied to the electric charges in the conductor, and thus current is induced to flow. This simple concept is the idea behind generating power with space-borne tether systems. The function of the magnet is performed by the earth's magnetic field, and orbiting a conductive tether about the earth effectively moves the tether through the field.
A new site for 85Kr measurements on groundwater samples
NASA Astrophysics Data System (ADS)
Lange, T.; Hebert, D.
2001-06-01
As a part of a new 85Kr laboratory, which is currently being established at the Institute of Applied Physics in Freiberg, Germany, a modified CO 2 extractor for krypton sampling is used. The operation principle is simple and contamination-safe with a reasonable effort. Continuously pumped under pressure, the water passes a Venturi-type nozzle and degasses due to relaxing. The extracted gas mixture then enters a recirculation system flowing through a CO 2 trap (NaOH), molecular sieves and a cooled charcoal trap, where krypton and other components are adsorbed. Remaining gases reenter the system at the Venturi-type nozzle. To keep the circulation alive an additional helium support is needed. In a simple field experiment, extraction efficiencies up to 0.8 for 222Rn have been measured.
A definition of the degree of controllability - A criterion for actuator placement
NASA Technical Reports Server (NTRS)
Viswanathan, C. N.; Longman, R. W.; Likins, P. W.
1979-01-01
The unsolved problem of how to control the attitude and shape of future very large flexible satellite structures represents a challenging problem for modern control theory. One aspect of this problem is the question of how to choose the number and locations throughout the spacecraft of the control system actuators. Starting from basic physical considerations, this paper develops a concept of the degree of controllability of a control system, and then develops numerical methods to generate approximate values of the degree of controllability for any spacecraft. These results offer the control system designer a tool which allows him to rank the effectiveness of alternative actuator distributions, and hence to choose the actuator locations on a rational basis. The degree of controllability is shown to take a particularly simple form when the satellite dynamics equations are in modal form. Examples are provided to illustrate the use of the concept on a simple flexible spacecraft.
A Simple Global View of Fuel Burnup
NASA Astrophysics Data System (ADS)
Sekimoto, Hiroshi
2017-01-01
Reactor physics and fuel burnup are discussed in order to obtain a simple global view of the effects of nuclear reactor characteristics to fuel cycle system performance. It may provide some idea of free thinking and overall vision, though it is still a small part of nuclear energy system. At the beginning of this lecture, governing equations for nuclear reactors are presented. Since the set of these equations is so big and complicated, it is simplified by imposing some extreme conditions and the nuclear equilibrium equation is derived. Some features of future nuclear equilibrium state are obtained by solving this equation. The contribution of a nucleus charged into reactor core to the system performance indexes such as criticality is worth for understanding the importance of each nuclide. It is called nuclide importance and can be evaluated by using the equations adjoint to the nuclear equilibrium equation. Examples of some importances and their application to criticalily search problem are presented.
Generalized Kirchhoff-Law-Johnson-Noise (KLJN) secure key exchange system using arbitrary resistors.
Vadai, Gergely; Mingesz, Robert; Gingl, Zoltan
2015-09-03
The Kirchhoff-Law-Johnson-Noise (KLJN) secure key exchange system has been introduced as a simple, very low cost and efficient classical physical alternative to quantum key distribution systems. The ideal system uses only a few electronic components-identical resistor pairs, switches and interconnecting wires-in order to guarantee perfectly protected data transmission. We show that a generalized KLJN system can provide unconditional security even if it is used with significantly less limitations. The more universal conditions ease practical realizations considerably and support more robust protection against attacks. Our theoretical results are confirmed by numerical simulations.
Optical spectral singularities as threshold resonances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mostafazadeh, Ali
2011-04-15
Spectral singularities are among generic mathematical features of complex scattering potentials. Physically they correspond to scattering states that behave like zero-width resonances. For a simple optical system, we show that a spectral singularity appears whenever the gain coefficient coincides with its threshold value and other parameters of the system are selected properly. We explore a concrete realization of spectral singularities for a typical semiconductor gain medium and propose a method of constructing a tunable laser that operates at threshold gain.
Reconciling phase diffusion and Hartree-Fock approximation in condensate systems
NASA Astrophysics Data System (ADS)
Giorgi, Gian Luca; de Pasquale, Ferdinando
2012-01-01
Despite the weakly interacting regime, the physics of Bose-Einstein condensates is widely affected by particle-particle interactions. They determine quantum phase diffusion, which is known to be the main cause of loss of coherence. Studying a simple model of two interacting Bose systems, we show how to predict the appearance of phase diffusion beyond the Bogoliubov approximation, providing a self-consistent treatment in the framework of a generalized Hartree-Fock-Bogoliubov perturbation theory.
Universality of emergent states in diverse physical systems
NASA Astrophysics Data System (ADS)
Guidry, Mike
2017-12-01
Our physics textbooks are dominated by examples of simple weakly-interacting microscopic states, but most of the real world around us is most effectively described in terms of emergent states that have no clear connection to simple textbook states. Emergent states are strongly-correlated and dominated by properties that emerge as a consequence of interactions and are not part of the description of the corresponding weakly-interacting system. This paper proposes a connection of weakly-interacting textbook states and realistic emergent states through fermion dynamical symmetries having fully-microscopic generators of the emergent states. These imply unique truncation of the Hilbert space for the weakly-interacting system to a collective subspace where the emergent states live. Universality arises because the possible symmetries under commutation of generators, which transcend the microscopic structure of the generators, are highly restricted in character and determine the basic structure of the emergent state, with the microscopic structure of the generators influencing emergent state only parametrically. In support of this idea we show explicit evidence that high-temperature superconductors, collective states in heavy atomic nuclei, and graphene quantum Hall states in strong magnetic fields exhibit a near-universal emergent behavior in their microscopically-computed total energy surfaces, even though these systems share essentially nothing in common at the microscopic level and their emergent states are characterized by fundamentally different order parameters.
NASA Astrophysics Data System (ADS)
Ingebrigtsen, Trond S.; Schrøder, Thomas B.; Dyre, Jeppe C.
2012-01-01
This paper is an attempt to identify the real essence of simplicity of liquids in John Locke’s understanding of the term. Simple liquids are traditionally defined as many-body systems of classical particles interacting via radially symmetric pair potentials. We suggest that a simple liquid should be defined instead by the property of having strong correlations between virial and potential-energy equilibrium fluctuations in the NVT ensemble. There is considerable overlap between the two definitions, but also some notable differences. For instance, in the new definition simplicity is not a direct property of the intermolecular potential because a liquid is usually only strongly correlating in part of its phase diagram. Moreover, not all simple liquids are atomic (i.e., with radially symmetric pair potentials) and not all atomic liquids are simple. The main part of the paper motivates the new definition of liquid simplicity by presenting evidence that a liquid is strongly correlating if and only if its intermolecular interactions may be ignored beyond the first coordination shell (FCS). This is demonstrated by NVT simulations of the structure and dynamics of several atomic and three molecular model liquids with a shifted-forces cutoff placed at the first minimum of the radial distribution function. The liquids studied are inverse power-law systems (r-n pair potentials with n=18,6,4), Lennard-Jones (LJ) models (the standard LJ model, two generalized Kob-Andersen binary LJ mixtures, and the Wahnstrom binary LJ mixture), the Buckingham model, the Dzugutov model, the LJ Gaussian model, the Gaussian core model, the Hansen-McDonald molten salt model, the Lewis-Wahnstrom ortho-terphenyl model, the asymmetric dumbbell model, and the single-point charge water model. The final part of the paper summarizes properties of strongly correlating liquids, emphasizing that these are simpler than liquids in general. Simple liquids, as defined here, may be characterized in three quite different ways: (1) chemically by the fact that the liquid’s properties are fully determined by interactions from the molecules within the FCS, (2) physically by the fact that there are isomorphs in the phase diagram, i.e., curves along which several properties like excess entropy, structure, and dynamics, are invariant in reduced units, and (3) mathematically by the fact that throughout the phase diagram the reduced-coordinate constant-potential-energy hypersurfaces define a one-parameter family of compact Riemannian manifolds. No proof is given that the chemical characterization follows from the strong correlation property, but we show that this FCS characterization is consistent with the existence of isomorphs in strongly correlating liquids’ phase diagram. Finally, we note that the FCS characterization of simple liquids calls into question the physical basis of standard perturbation theory, according to which the repulsive and attractive forces play fundamentally different roles for the physics of liquids.
Cycle expansions: From maps to turbulence
NASA Astrophysics Data System (ADS)
Lan, Y.
2010-03-01
We present a derivation, a physical explanation and applications of cycle expansions in different dynamical systems, ranging from simple one-dimensional maps to turbulence in fluids. Cycle expansion is a newly devised powerful tool for computing averages of physical observables in nonlinear chaotic systems which combines many innovative ideas developed in dynamical systems, such as hyperbolicity, invariant manifolds, symbolic dynamics, measure theory and thermodynamic formalism. The concept of cycle expansion has a deep root in theoretical physics, bearing a close analogy to cumulant expansion in statistical physics and effective action functional in quantum field theory, the essence of which is to represent a physical system in a hierarchical way by utilizing certain multiplicative structures such that the dominant parts of physical observables are captured by compact, maneuverable objects while minor detailed variations are described by objects with a larger space and time scale. The technique has been successfully applied to many low-dimensional dynamical systems and much effort has recently been made to extend its use to spatially extended systems. For one-dimensional systems such as the Kuramoto-Sivashinsky equation, the method turns out to be very effective while for more complex real-world systems including the Navier-Stokes equation, the method is only starting to yield its first fruits and much more work is needed to enable practical computations. However, the experience and knowledge accumulated so far is already very useful to a large set of research problems. Several such applications are briefly described in what follows. As more research effort is devoted to the study of complex dynamics of nonlinear systems, cycle expansion will undergo a fast development and find wide applications.
Statistical physics of self-replication.
England, Jeremy L
2013-09-28
Self-replication is a capacity common to every species of living thing, and simple physical intuition dictates that such a process must invariably be fueled by the production of entropy. Here, we undertake to make this intuition rigorous and quantitative by deriving a lower bound for the amount of heat that is produced during a process of self-replication in a system coupled to a thermal bath. We find that the minimum value for the physically allowed rate of heat production is determined by the growth rate, internal entropy, and durability of the replicator, and we discuss the implications of this finding for bacterial cell division, as well as for the pre-biotic emergence of self-replicating nucleic acids.
Simple universal models capture all classical spin physics.
De las Cuevas, Gemma; Cubitt, Toby S
2016-03-11
Spin models are used in many studies of complex systems because they exhibit rich macroscopic behavior despite their microscopic simplicity. Here, we prove that all the physics of every classical spin model is reproduced in the low-energy sector of certain "universal models," with at most polynomial overhead. This holds for classical models with discrete or continuous degrees of freedom. We prove necessary and sufficient conditions for a spin model to be universal and show that one of the simplest and most widely studied spin models, the two-dimensional Ising model with fields, is universal. Our results may facilitate physical simulations of Hamiltonians with complex interactions. Copyright © 2016, American Association for the Advancement of Science.
Between disorder and order: A case study of power law
NASA Astrophysics Data System (ADS)
Cao, Yong; Zhao, Youjie; Yue, Xiaoguang; Xiong, Fei; Sun, Yongke; He, Xin; Wang, Lichao
2016-08-01
Power law is an important feature of phenomena in long memory behaviors. Zipf ever found power law in the distribution of the word frequencies. In physics, the terms order and disorder are Thermodynamic or statistical physics concepts originally and a lot of research work has focused on self-organization of the disorder ingredients of simple physical systems. It is interesting what make disorder-order transition. We devise an experiment-based method about random symbolic sequences to research regular pattern between disorder and order. The experiment results reveal power law is indeed an important regularity in transition from disorder to order. About these results the preliminary study and analysis has been done to explain the reasons.
NASA Astrophysics Data System (ADS)
Meshgi, Ali; Schmitter, Petra; Babovic, Vladan; Chui, Ting Fong May
2014-11-01
Developing reliable methods to estimate stream baseflow has been a subject of interest due to its importance in catchment response and sustainable watershed management. However, to date, in the absence of complex numerical models, baseflow is most commonly estimated using statistically derived empirical approaches that do not directly incorporate physically-meaningful information. On the other hand, Artificial Intelligence (AI) tools such as Genetic Programming (GP) offer unique capabilities to reduce the complexities of hydrological systems without losing relevant physical information. This study presents a simple-to-use empirical equation to estimate baseflow time series using GP so that minimal data is required and physical information is preserved. A groundwater numerical model was first adopted to simulate baseflow for a small semi-urban catchment (0.043 km2) located in Singapore. GP was then used to derive an empirical equation relating baseflow time series to time series of groundwater table fluctuations, which are relatively easily measured and are physically related to baseflow generation. The equation was then generalized for approximating baseflow in other catchments and validated for a larger vegetation-dominated basin located in the US (24 km2). Overall, this study used GP to propose a simple-to-use equation to predict baseflow time series based on only three parameters: minimum daily baseflow of the entire period, area of the catchment and groundwater table fluctuations. It serves as an alternative approach for baseflow estimation in un-gauged systems when only groundwater table and soil information is available, and is thus complementary to other methods that require discharge measurements.
Method for Determining the Sensitivity of a Physical Security System.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Speed, Ann; Gauthier, John H.; Hoffman, Matthew John
Modern systems, such as physical security systems, are often designed to involve complex interactions of technological and human elements. Evaluation of the performance of these systems often overlooks the human element. A method is proposed here to expand the concept of sensitivity—as denoted by d’—from signal detection theory (Green & Swets 1966; Macmillan & Creelman 2005), which came out of the field of psychophysics, to cover not only human threat detection but also other human functions plus the performance of technical systems in a physical security system, thereby including humans in the overall evaluation of system performance. New in thismore » method is the idea that probabilities of hits (accurate identification of threats) and false alarms (saying “threat” when there is not one), which are used to calculate d’ of the system, can be applied to technologies and, furthermore, to different functions in the system beyond simple yes-no threat detection. At the most succinct level, the method returns a single number that represents the effectiveness of a physical security system; specifically, the balance between the handling of actual threats and the distraction of false alarms. The method can be automated, and the constituent parts revealed, such that given an interaction graph that indicates the functional associations of system elements and the individual probabilities of hits and false alarms for those elements, it will return the d’ of the entire system as well as d’ values for individual parts. The method can also return a measure of the response bias* of the system. One finding of this work is that the d’ for a physical security system can be relatively poor in spite of having excellent d’s for each of its individual functional elements.« less
A moist Boussinesq shallow water equations set for testing atmospheric models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zerroukat, M., E-mail: mohamed.zerroukat@metoffice.gov.uk; Allen, T.
The shallow water equations have long been used as an initial test for numerical methods applied to atmospheric models with the test suite of Williamson et al. being used extensively for validating new schemes and assessing their accuracy. However the lack of physics forcing within this simplified framework often requires numerical techniques to be reworked when applied to fully three dimensional models. In this paper a novel two-dimensional shallow water equations system that retains moist processes is derived. This system is derived from three-dimensional Boussinesq approximation of the hydrostatic Euler equations where, unlike the classical shallow water set, we allowmore » the density to vary slightly with temperature. This results in extra (or buoyancy) terms for the momentum equations, through which a two-way moist-physics dynamics feedback is achieved. The temperature and moisture variables are advected as separate tracers with sources that interact with the mean-flow through a simplified yet realistic bulk moist-thermodynamic phase-change model. This moist shallow water system provides a unique tool to assess the usually complex and highly non-linear dynamics–physics interactions in atmospheric models in a simple yet realistic way. The full non-linear shallow water equations are solved numerically on several case studies and the results suggest quite realistic interaction between the dynamics and physics and in particular the generation of cloud and rain. - Highlights: • Novel shallow water equations which retains moist processes are derived from the three-dimensional hydrostatic Boussinesq equations. • The new shallow water set can be seen as a more general one, where the classical equations are a special case of these equations. • This moist shallow water system naturally allows a feedback mechanism from the moist physics increments to the momentum via buoyancy. • Like full models, temperature and moistures are advected as tracers that interact through a simplified yet realistic phase-change model. • This model is a unique tool to test numerical methods for atmospheric models, and physics–dynamics coupling, in a very realistic and simple way.« less
Surfing on Protein Waves: Proteophoresis as a Mechanism for Bacterial Genome Partitioning
NASA Astrophysics Data System (ADS)
Walter, J.-C.; Dorignac, J.; Lorman, V.; Rech, J.; Bouet, J.-Y.; Nollmann, M.; Palmeri, J.; Parmeggiani, A.; Geniet, F.
2017-07-01
Efficient bacterial chromosome segregation typically requires the coordinated action of a three-component machinery, fueled by adenosine triphosphate, called the partition complex. We present a phenomenological model accounting for the dynamic activity of this system that is also relevant for the physics of catalytic particles in active environments. The model is obtained by coupling simple linear reaction-diffusion equations with a proteophoresis, or "volumetric" chemophoresis, force field that arises from protein-protein interactions and provides a physically viable mechanism for complex translocation. This minimal description captures most known experimental observations: dynamic oscillations of complex components, complex separation, and subsequent symmetrical positioning. The predictions of our model are in phenomenological agreement with and provide substantial insight into recent experiments. From a nonlinear physics view point, this system explores the active separation of matter at micrometric scales with a dynamical instability between static positioning and traveling wave regimes triggered by the dynamical spontaneous breaking of rotational symmetry.
Second Law based definition of passivity/activity of devices
NASA Astrophysics Data System (ADS)
Sundqvist, Kyle M.; Ferry, David K.; Kish, Laszlo B.
2017-10-01
Recently, our efforts to clarify the old question, if a memristor is a passive or active device [1], triggered debates between engineers, who have had advanced definitions of passivity/activity of devices, and physicists with significantly different views about this seemingly simple question. This debate triggered our efforts to test the well-known engineering concepts about passivity/activity in a deeper way, challenging them by statistical physics. It is shown that the advanced engineering definition of passivity/activity of devices is self-contradictory when a thermodynamical system executing Johnson-Nyquist noise is present. A new, statistical physical, self-consistent definition based on the Second Law of Thermodynamics is introduced. It is also shown that, in a system with uniform temperature distribution, any rectifier circuitry that can rectify thermal noise must contain an active circuit element, according to both the engineering and statistical physical definitions.
Automated sampling assessment for molecular simulations using the effective sample size
Zhang, Xin; Bhatt, Divesh; Zuckerman, Daniel M.
2010-01-01
To quantify the progress in the development of algorithms and forcefields used in molecular simulations, a general method for the assessment of the sampling quality is needed. Statistical mechanics principles suggest the populations of physical states characterize equilibrium sampling in a fundamental way. We therefore develop an approach for analyzing the variances in state populations, which quantifies the degree of sampling in terms of the effective sample size (ESS). The ESS estimates the number of statistically independent configurations contained in a simulated ensemble. The method is applicable to both traditional dynamics simulations as well as more modern (e.g., multi–canonical) approaches. Our procedure is tested in a variety of systems from toy models to atomistic protein simulations. We also introduce a simple automated procedure to obtain approximate physical states from dynamic trajectories: this allows sample–size estimation in systems for which physical states are not known in advance. PMID:21221418
Integration of Openstack cloud resources in BES III computing cluster
NASA Astrophysics Data System (ADS)
Li, Haibo; Cheng, Yaodong; Huang, Qiulan; Cheng, Zhenjing; Shi, Jingyan
2017-10-01
Cloud computing provides a new technical means for data processing of high energy physics experiment. However, the resource of each queue is fixed and the usage of the resource is static in traditional job management system. In order to make it simple and transparent for physicist to use, we developed a virtual cluster system (vpmanager) to integrate IHEPCloud and different batch systems such as Torque and HTCondor. Vpmanager provides dynamic virtual machines scheduling according to the job queue. The BES III use case results show that resource efficiency is greatly improved.
Learning Simple Machines through Cross-Age Collaborations
ERIC Educational Resources Information Center
Lancor, Rachael; Schiebel, Amy
2008-01-01
In this project, introductory college physics students (noneducation majors) were asked to teach simple machines to a class of second graders. This nontraditional activity proved to be a successful way to encourage college students to think critically about physics and how it applied to their everyday lives. The noneducation majors benefited by…
Greenhouse effect: temperature of a metal sphere surrounded by a glass shell and heated by sunlight
NASA Astrophysics Data System (ADS)
Nguyen, Phuc H.; Matzner, Richard A.
2012-01-01
We study the greenhouse effect on a model satellite consisting of a tungsten sphere surrounded by a thin spherical, concentric glass shell, with a small gap between the sphere and the shell. The system sits in vacuum and is heated by sunlight incident along the z-axis. This development is a generalization of the simple treatment of the greenhouse effect given by Kittel and Kroemer (1980 Thermal Physics (San Francisco: Freeman)) and can serve as a very simple model demonstrating the much more complex Earth greenhouse effect. Solution of the model problem provides an excellent pedagogical tool at the Junior/Senior undergraduate level.
Stochastic resonant damping in a noisy monostable system: theory and experiment.
Volpe, Giovanni; Perrone, Sandro; Rubi, J Miguel; Petrov, Dmitri
2008-05-01
Usually in the presence of a background noise an increased effort put in controlling a system stabilizes its behavior. Rarely it is thought that an increased control of the system can lead to a looser response and, therefore, to a poorer performance. Strikingly there are many systems that show this weird behavior; examples can be drawn form physical, biological, and social systems. Until now no simple and general mechanism underlying such behaviors has been identified. Here we show that such a mechanism, named stochastic resonant damping, can be provided by the interplay between the background noise and the control exerted on the system. We experimentally verify our prediction on a physical model system based on a colloidal particle held in an oscillating optical potential. Our result adds a tool for the study of intrinsically noisy phenomena, joining the many constructive facets of noise identified in the past decades-for example, stochastic resonance, noise-induced activation, and Brownian ratchets.
Passive vs. Active Control of Rhythmic Ball Bouncing: The Role of Visual Information
ERIC Educational Resources Information Center
Siegler, Isabelle A.; Bardy, Benoit G.; Warren, William H.
2010-01-01
The simple task of bouncing a ball on a racket offers a model system for studying how human actors exploit the physics and information of the environment to control their behavior. Previous work shows that people take advantage of a passively stable solution for ball bouncing but can also use perceptual information to actively stabilize bouncing.…
An Easy-to-Build Remote Laboratory with Data Transfer Using the Internet School Experimental System
ERIC Educational Resources Information Center
Schauer, Frantisek; Lustig, Frantisek; Dvorak, Jiri; Ozvoldova, Miroslava
2008-01-01
The present state of information communication technology makes it possible to devise and run computer-based e-laboratories accessible to any user with a connection to the Internet, equipped with very simple technical means and making full use of web services. Thus, the way is open for a new strategy of physics education with strongly global…
A Piece of Paper Falling Faster than Free Fall
ERIC Educational Resources Information Center
Vera, F.; Rivera, R.
2011-01-01
We report a simple experiment that clearly demonstrates a common error in the explanation of the classic experiment where a small piece of paper is put over a book and the system is let fall. This classic demonstration is used in introductory physics courses to show that after eliminating the friction force with the air, the piece of paper falls…
Bryan A. Black; Daniel Griffin; Peter van der Sleen; Alan D. Wanamaker; James H. Speer; David C. Frank; David W. Stahle; Neil Pederson; Carolyn A. Copenheaver; Valerie Trouet; Shelly Griffin; Bronwyn M. Gillanders
2016-01-01
High-resolution biogenic and geologic proxies in which one increment or layer is formed per year are crucial to describing natural ranges of environmental variability in Earth's physical and biological systems. However, dating controls are necessary to ensure temporal precision and accuracy; simple counts cannot ensure that all layers are placed correctly in time...
NASA Astrophysics Data System (ADS)
Bhardwaj, Jyotirmoy; Gupta, Karunesh K.; Gupta, Rajiv
2018-02-01
New concepts and techniques are replacing traditional methods of water quality parameter measurement systems. This paper introduces a cyber-physical system (CPS) approach for water quality assessment in a distribution network. Cyber-physical systems with embedded sensors, processors and actuators can be designed to sense and interact with the water environment. The proposed CPS is comprised of sensing framework integrated with five different water quality parameter sensor nodes and soft computing framework for computational modelling. Soft computing framework utilizes the applications of Python for user interface and fuzzy sciences for decision making. Introduction of multiple sensors in a water distribution network generates a huge number of data matrices, which are sometimes highly complex, difficult to understand and convoluted for effective decision making. Therefore, the proposed system framework also intends to simplify the complexity of obtained sensor data matrices and to support decision making for water engineers through a soft computing framework. The target of this proposed research is to provide a simple and efficient method to identify and detect presence of contamination in a water distribution network using applications of CPS.
[Human body structure in Su Wen].
Yang, Shizhe
2011-05-01
The ancient medical book Su Wen states that the human is a dual composition of physical and spiritual bodies. Thus, if only physical perspectives were applied to interpret its medical terms, confusion would result because of the misunderstanding of spiritual terms. The descriptions in Su Wen didn't show a complete anatomy system or at least at organ levels. The fragments of its context revealed proofs of gross anatomical studies with measurement in ancient China. Su Wen was not a special work for the circulatory route of the channels, so the anatomy terms used was simple. The anatomy position of the body couldn't be judged. The elementary superficial anatomy system formed, which can be traced from the superficial anatomy locations expounded in the book.
Floquet-Engineered Valleytronics in Dirac Systems.
Kundu, Arijit; Fertig, H A; Seradjeh, Babak
2016-01-08
Valley degrees of freedom offer a potential resource for quantum information processing if they can be effectively controlled. We discuss an optical approach to this problem in which intense light breaks electronic symmetries of a two-dimensional Dirac material. The resulting quasienergy structures may then differ for different valleys, so that the Floquet physics of the system can be exploited to produce highly polarized valley currents. This physics can be utilized to realize a valley valve whose behavior is determined optically. We propose a concrete way to achieve such valleytronics in graphene as well as in a simple model of an inversion-symmetry broken Dirac material. We study the effect numerically and demonstrate its robustness against moderate disorder and small deviations in optical parameters.
CADDIS Volume 2. Sources, Stressors and Responses: Physical Habitat
Introduction to the Physical Habitat module, when to list Physical Habitat as a candidate cause, ways to measure Physical Habitat, simple and detailed conceptual diagrams for Physical Habitat, Physical Habitat module references and literature reviews.
GRIPs (Group Investigation Problems) for Introductory Physics
NASA Astrophysics Data System (ADS)
Moore, Thomas A.
2006-12-01
GRIPs lie somewhere between homework problems and simple labs: they are open-ended questions that require a mixture of problem-solving skills and hands-on experimentation to solve practical puzzles involving simple physical objects. In this talk, I will describe three GRIPs that I developed for a first-semester introductory calculus-based physics course based on the "Six Ideas That Shaped Physics" text. I will discuss the design of the three GRIPs we used this past fall, our experience in working with students on these problems, and students' response as reported on course evaluations.
Considerations in the design of a communication network for an autonomously managed power system
NASA Technical Reports Server (NTRS)
Mckee, J. W.; Whitehead, Norma; Lollar, Louis
1989-01-01
The considerations involved in designing a communication network for an autonomously managed power system intended for use in space vehicles are examined. An overview of the design and implementation of a communication network implemented in a breadboard power system is presented. An assumption that the monitoring and control devices are distributed but physically close leads to the selection of a multidrop cable communication system. The assumption of a high-quality communication cable in which few messages are lost resulted in a simple recovery procedure consisting of a time out and retransmit process.
H-theorem and Maxwell demon in quantum physics
NASA Astrophysics Data System (ADS)
Kirsanov, N. S.; Lebedev, A. V.; Sadovskyy, I. A.; Suslov, M. V.; Vinokur, V. M.; Blatter, G.; Lesovik, G. B.
2018-02-01
The Second Law of Thermodynamics states that temporal evolution of an isolated system occurs with non-diminishing entropy. In quantum realm, this holds for energy-isolated systems the evolution of which is described by the so-called unital quantum channel. The entropy of a system evolving in a non-unital quantum channel can, in principle, decrease. We formulate a general criterion of unitality for the evolution of a quantum system, enabling a simple and rigorous approach for finding and identifying the processes accompanied by decreasing entropy in energy-isolated systems. We discuss two examples illustrating our findings, the quantum Maxwell demon and heating-cooling process within a two-qubit system.
Synthetic Earthquake Statistics From Physical Fault Models for the Lower Rhine Embayment
NASA Astrophysics Data System (ADS)
Brietzke, G. B.; Hainzl, S.; Zöller, G.
2012-04-01
As of today, seismic risk and hazard estimates mostly use pure empirical, stochastic models of earthquake fault systems tuned specifically to the vulnerable areas of interest. Although such models allow for reasonable risk estimates they fail to provide a link between the observed seismicity and the underlying physical processes. Solving a state-of-the-art fully dynamic description set of all relevant physical processes related to earthquake fault systems is likely not useful since it comes with a large number of degrees of freedom, poor constraints on its model parameters and a huge computational effort. Here, quasi-static and quasi-dynamic physical fault simulators provide a compromise between physical completeness and computational affordability and aim at providing a link between basic physical concepts and statistics of seismicity. Within the framework of quasi-static and quasi-dynamic earthquake simulators we investigate a model of the Lower Rhine Embayment (LRE) that is based upon seismological and geological data. We present and discuss statistics of the spatio-temporal behavior of generated synthetic earthquake catalogs with respect to simplification (e.g. simple two-fault cases) as well as to complication (e.g. hidden faults, geometric complexity, heterogeneities of constitutive parameters).
Response of Simple, Model Systems to Extreme Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ewing, Rodney C.; Lang, Maik
2015-07-30
The focus of the research was on the application of high-pressure/high-temperature techniques, together with intense energetic ion beams, to the study of the behavior of simple oxide systems (e.g., SiO 2, GeO 2, CeO 2, TiO 2, HfO 2, SnO 2, ZnO and ZrO 2) under extreme conditions. These simple stoichiometries provide unique model systems for the analysis of structural responses to pressure up to and above 1 Mbar, temperatures of up to several thousands of kelvin, and the extreme energy density generated by energetic heavy ions (tens of keV/atom). The investigations included systematic studies of radiation- and pressure-induced amorphizationmore » of high P-T polymorphs. By studying the response of simple stoichiometries that have multiple structural “outcomes”, we have established the basic knowledge required for the prediction of the response of more complex structures to extreme conditions. We especially focused on the amorphous state and characterized the different non-crystalline structure-types that result from the interplay of radiation and pressure. For such experiments, we made use of recent technological developments, such as the perforated diamond-anvil cell and in situ investigation using synchrotron x-ray sources. We have been particularly interested in using extreme pressures to alter the electronic structure of a solid prior to irradiation. We expected that the effects of modified band structure would be evident in the track structure and morphology, information which is much needed to describe theoretically the fundamental physics of track-formation. Finally, we investigated the behavior of different simple-oxide, composite nanomaterials (e.g., uncoated nanoparticles vs. core/shell systems) under coupled, extreme conditions. This provided insight into surface and boundary effects on phase stability under extreme conditions.« less
Use of system identification techniques for improving airframe finite element models using test data
NASA Technical Reports Server (NTRS)
Hanagud, Sathya V.; Zhou, Weiyu; Craig, James I.; Weston, Neil J.
1993-01-01
A method for using system identification techniques to improve airframe finite element models using test data was developed and demonstrated. The method uses linear sensitivity matrices to relate changes in selected physical parameters to changes in the total system matrices. The values for these physical parameters were determined using constrained optimization with singular value decomposition. The method was confirmed using both simple and complex finite element models for which pseudo-experimental data was synthesized directly from the finite element model. The method was then applied to a real airframe model which incorporated all of the complexities and details of a large finite element model and for which extensive test data was available. The method was shown to work, and the differences between the identified model and the measured results were considered satisfactory.
A simple approach to nonlinear estimation of physical systems
Christakos, G.
1988-01-01
Recursive algorithms for estimating the states of nonlinear physical systems are developed. This requires some key hypotheses regarding the structure of the underlying processes. Members of this class of random processes have several desirable properties for the nonlinear estimation of random signals. An assumption is made about the form of the estimator, which may then take account of a wide range of applications. Under the above assumption, the estimation algorithm is mathematically suboptimal but effective and computationally attractive. It may be compared favorably to Taylor series-type filters, nonlinear filters which approximate the probability density by Edgeworth or Gram-Charlier series, as well as to conventional statistical linearization-type estimators. To link theory with practice, some numerical results for a simulated system are presented, in which the responses from the proposed and the extended Kalman algorithms are compared. ?? 1988.
1983-01-13
Naval .1 Ordnance Systems Command ) codes are detailed propagation simulations mostly at lower frequencies . These are combined with WEPH code phenomenology...AD B062349L. Scope /Abstract: This report describes a simple model for predicting the loads on box-like target structures subject to air blast. A... model and applying it to targets which can be approximated by a series of rectangular parallelopipeds. In this report the physical phenomena of high
Synchronisation of chaos and its applications
NASA Astrophysics Data System (ADS)
Eroglu, Deniz; Lamb, Jeroen S. W.; Pereira, Tiago
2017-07-01
Dynamical networks are important models for the behaviour of complex systems, modelling physical, biological and societal systems, including the brain, food webs, epidemic disease in populations, power grids and many other. Such dynamical networks can exhibit behaviour in which deterministic chaos, exhibiting unpredictability and disorder, coexists with synchronisation, a classical paradigm of order. We survey the main theory behind complete, generalised and phase synchronisation phenomena in simple as well as complex networks and discuss applications to secure communications, parameter estimation and the anticipation of chaos.
Neurobiology as Information Physics
Street, Sterling
2016-01-01
This article reviews thermodynamic relationships in the brain in an attempt to consolidate current research in systems neuroscience. The present synthesis supports proposals that thermodynamic information in the brain can be quantified to an appreciable degree of objectivity, that many qualitative properties of information in systems of the brain can be inferred by observing changes in thermodynamic quantities, and that many features of the brain’s anatomy and architecture illustrate relatively simple information-energy relationships. The brain may provide a unique window into the relationship between energy and information. PMID:27895560
Demonstration of entanglement assisted invariance on IBM's quantum experience.
Deffner, Sebastian
2017-11-01
Quantum entanglement is among the most fundamental, yet from classical intuition also most surprising properties of the fully quantum nature of physical reality. We report several experiments performed on IBM's Quantum Experience demonstrating envariance - entanglement assisted invariance. Envariance is a recently discovered symmetry of composite quantum systems, which is at the foundational origin of physics and a quantum phenomenon of pure states. These very easily reproducible and freely accessible experiments on Quantum Experience provide simple tools to study the properties of envariance, and we illustrate this for several cases with "quantum universes" consisting of up to five qubits.
CADDIS Volume 2. Sources, Stressors and Responses: Physical Habitat - Detailed Conceptual Diagram
Introduction to the Physical Habitat module, when to list Physical Habitat as a candidate cause, ways to measure Physical Habitat, simple and detailed conceptual diagrams for Physical Habitat, Physical Habitat module references and literature reviews.
Simple Screening Test for Exercise-Induced Bronchospasm in the Middle School Athlete
ERIC Educational Resources Information Center
Weiss, Tyler J.; Baker, Rachel H.; Weiss, Jason B.; Weiss, Michelle M.
2013-01-01
This article recommends and provides results from a simple screening test that could be incorporated into a standardized school evaluation for all children participating in sports and physical education classes. The test can be employed by physical educators utilizing their own gym to identify children who demonstrate signs of exercise-induced…
NASA Technical Reports Server (NTRS)
You, J. H.; Chen, W. P.; Zhang, S. N.; Chen, L.; Liu, D.; Chou, C. K.
2003-01-01
We present simple analytical formulae for the emission spectrum and total power of a special kind of resonant inverse Compton scattering (RICS) of a relativistic electron in an intense magnetic field. In contrast with the available formulae system, we obtain a markedly simplified one based on the semiclassical quantum theory, which is more understandable for people who are unfamiliar with quantum electrodynamics. We show that the RICS process, under an appropriate 'accommodation condition' derived in this paper, is predominantly much more efficient than the coexistent ordinary inverse Compton scattering, and produces highly beamed high-frequency radiation with moderately good monochromaticity. Our formulae are simple to use - thus offering a lucid physical intuition for the theory - and may find wide applications in hard X-ray and gamma-ray astrophysics.
Entropy as a collective variable
NASA Astrophysics Data System (ADS)
Parrinello, Michele
Sampling complex free energy surfaces that exhibit long lived metastable states separated by kinetic bottlenecks is one of the most pressing issues in the atomistic simulations of matter. Not surprisingly many solutions to this problem have been suggested. Many of them are based on the identification of appropriate collective variables that span the manifold of the slow varying modes of the system. While much effort has been put in devising and even constructing on the fly appropriate collective variables there is still a cogent need of introducing simple, generic, physically transparent, and yet effective collective variables. Motivated by the physical observation that in many case transitions between one metastable state and another result from a trade off between enthalpy and entropy we introduce appropriate collective variables that are able to represent in a simple way these two physical properties. We use these variables in the context of the recently introduced variationally enhanced sampling and apply it them with success to the simulation of crystallization from the liquid and to conformational transitions in protein. Department of Chemistry and Applied Biosciences, ETH Zurich, and Facolta' di Informatica, Istituto di Scienze Computazionali, Universita' della Svizzera Italiana, Via G. Buffi 13, 6900 Lugano, Switzerland.
The physics behind a simple demonstration of the greenhouse effect
NASA Astrophysics Data System (ADS)
Buxton, Gavin A.
2014-03-01
A simple, and popular, demonstration of the greenhouse effect involves a higher temperature being observed in a container with an elevated concentration of CO2 inside than in a container with just air enclosed, when subject to direct light. The CO2 absorbs outgoing thermal radiation and causes the air inside the container to be warmer. However, in some variations of this experiment an additional positive effect can arise from artefacts in the experiment, such as the slightly heavier CO2 forming a layer at the bottom of the container and suppressing convection. Therefore, the physics of this demonstration is elucidated in a system that does not suffer from such artefacts. In particular, the absorption of infrared radiation due to the enclosed CO2 is measured, and a one-dimensional model of heat transfer is solved. It is found that the temperature of the enclosed air is significantly higher inside the container with an elevated concentration of CO2 inside, but that the temperature of the container itself is not appreciably higher.
Cloud fluid models of gas dynamics and star formation in galaxies
NASA Technical Reports Server (NTRS)
Struck-Marcell, Curtis; Scalo, John M.; Appleton, P. N.
1987-01-01
The large dynamic range of star formation in galaxies, and the apparently complex environmental influences involved in triggering or suppressing star formation, challenges the understanding. The key to this understanding may be the detailed study of simple physical models for the dominant nonlinear interactions in interstellar cloud systems. One such model is described, a generalized Oort model cloud fluid, and two simple applications of it are explored. The first of these is the relaxation of an isolated volume of cloud fluid following a disturbance. Though very idealized, this closed box study suggests a physical mechanism for starbursts, which is based on the approximate commensurability of massive cloud lifetimes and cloud collisional growth times. The second application is to the modeling of colliding ring galaxies. In this case, the driving processes operating on a dynamical timescale interact with the local cloud processes operating on the above timescale. The results is a variety of interesting nonequilibrium behaviors, including spatial variations of star formation that do not depend monotonically on gas density.
Peng, Jiegang
2015-11-04
Weakly electric fish sense their surroundings in complete darkness by their active electrolocation system. For biologists, the active electrolocation system has been investigated for near 60 years. And for engineers, bio-inspired active electrolocation sensor has been investigated for about 20 years. But how the amplitude information response will be affected by frequencies of detecting electric fields in the active electrolocation system was rarely investigated. In this paper, an electrolocation experiment system has been built. The amplitude information-frequency characteristics (AIFC) of the electrolocation system for sinusoidal electric fields of varying frequencies have been investigated. We find that AIFC of the electrolocation system have relevance to the material properties and geometric features of the probed object and conductivity of surrounding water. Detect frequency dead zone (DFDZ) and frequency inflection point (FIP) of AIFC for the electrolocation system were found. The analysis model of the electrolocation system has been investigated for many years, but DFDZ and FIP of AIFC can be difficult to explain by those models. In order to explain those AIFC phenomena for the electrolocation system, a simple relaxation model based on Cole-Cole model which is not only a mathematical explanation but it is a physical one for the electrolocation system was advanced. We also advance a hypothesis for physical mechanism of weakly electrical fish electrolocation system. It may have reference value for physical mechanism of weakly electrical fish active electrolocation system.
Simple robust control laws for robot manipulators. Part 2: Adaptive case
NASA Technical Reports Server (NTRS)
Bayard, D. S.; Wen, J. T.
1987-01-01
A new class of asymptotically stable adaptive control laws is introduced for application to the robotic manipulator. Unlike most applications of adaptive control theory to robotic manipulators, this analysis addresses the nonlinear dynamics directly without approximation, linearization, or ad hoc assumptions, and utilizes a parameterization based on physical (time-invariant) quantities. This approach is made possible by using energy-like Lyapunov functions which retain the nonlinear character and structure of the dynamics, rather than simple quadratic forms which are ubiquitous to the adaptive control literature, and which have bound the theory tightly to linear systems with unknown parameters. It is a unique feature of these results that the adaptive forms arise by straightforward certainty equivalence adaptation of their nonadaptive counterparts found in the companion to this paper (i.e., by replacing unknown quantities by their estimates) and that this simple approach leads to asymptotically stable closed-loop adaptive systems. Furthermore, it is emphasized that this approach does not require convergence of the parameter estimates (i.e., via persistent excitation), invertibility of the mass matrix estimate, or measurement of the joint accelerations.
Modeling of two-phase porous flow with damage
NASA Astrophysics Data System (ADS)
Cai, Z.; Bercovici, D.
2009-12-01
Two-phase dynamics has been broadly studied in Earth Science in a convective system. We investigate the basic physics of compaction with damage theory and present preliminary results of both steady state and time-dependent transport when melt migrates through porous medium. In our simple 1-D model, damage would play an important role when we consider the ascent of melt-rich mixture at constant velocity. Melt segregation becomes more difficult so that porosity is larger than that in simple compaction in the steady-state compaction profile. Scaling analysis for compaction equation is performed to predict the behavior of melt segregation with damage. The time-dependent of the compacting system is investigated by looking at solitary wave solutions to the two-phase model. We assume that the additional melt is injected to the fracture material through a single pulse with determined shape and velocity. The existence of damage allows the pulse to keep moving further than that in simple compaction. Therefore more melt could be injected to the two-phase mixture and future application such as carbon dioxide injection is proposed.
Supercritical entanglement in local systems: Counterexample to the area law for quantum matter.
Movassagh, Ramis; Shor, Peter W
2016-11-22
Quantum entanglement is the most surprising feature of quantum mechanics. Entanglement is simultaneously responsible for the difficulty of simulating quantum matter on a classical computer and the exponential speedups afforded by quantum computers. Ground states of quantum many-body systems typically satisfy an "area law": The amount of entanglement between a subsystem and the rest of the system is proportional to the area of the boundary. A system that obeys an area law has less entanglement and can be simulated more efficiently than a generic quantum state whose entanglement could be proportional to the total system's size. Moreover, an area law provides useful information about the low-energy physics of the system. It is widely believed that for physically reasonable quantum systems, the area law cannot be violated by more than a logarithmic factor in the system's size. We introduce a class of exactly solvable one-dimensional physical models which we can prove have exponentially more entanglement than suggested by the area law, and violate the area law by a square-root factor. This work suggests that simple quantum matter is richer and can provide much more quantum resources (i.e., entanglement) than expected. In addition to using recent advances in quantum information and condensed matter theory, we have drawn upon various branches of mathematics such as combinatorics of random walks, Brownian excursions, and fractional matching theory. We hope that the techniques developed herein may be useful for other problems in physics as well.
Physical root-soil interactions
NASA Astrophysics Data System (ADS)
Kolb, Evelyne; Legué, Valérie; Bogeat-Triboulot, Marie-Béatrice
2017-12-01
Plant root system development is highly modulated by the physical properties of the soil and especially by its mechanical resistance to penetration. The interplay between the mechanical stresses exerted by the soil and root growth is of particular interest for many communities, in agronomy and soil science as well as in biomechanics and plant morphogenesis. In contrast to aerial organs, roots apices must exert a growth pressure to penetrate strong soils and reorient their growth trajectory to cope with obstacles like stones or hardpans or to follow the tortuous paths of the soil porosity. In this review, we present the main macroscopic investigations of soil-root physical interactions in the field and combine them with simple mechanistic modeling derived from model experiments at the scale of the individual root apex.
Supersymmetry and fermionic modes in an oscillon background
NASA Astrophysics Data System (ADS)
Correa, R. A. C.; Ospedal, L. P. R.; de Paula, W.; Helayël-Neto, J. A.
2018-05-01
The excitations referred to as oscillons are long-lived time-dependent field configurations which emerge dynamically from non-linear field theories. Such long-lived solutions are of interest in applications that include systems of Condensed Matter Physics, the Standard Model of Particle Physics, Lorentz-symmetry violating scenarios and Cosmology. In this work, we show how oscillons may be accommodated in a supersymmetric scenario. We adopt as our framework simple (N = 1) supersymmetry in D = 1 + 1 dimensions. We focus on the bosonic sector with oscillon configurations and their (classical) effects on the corresponding fermionic modes, (supersymmetric) partners of the oscillons. The particular model we adopt to pursue our investigation displays cubic superfield which, in the physical scalar sector, corresponds to the usual quartic self-coupling.
Physical root-soil interactions.
Kolb, Evelyne; Legué, Valérie; Bogeat-Triboulot, Marie-Béatrice
2017-11-16
Plant root system development is highly modulated by the physical properties of the soil and especially by its mechanical resistance to penetration. The interplay between the mechanical stresses exerted by the soil and root growth is of particular interest for many communities, in agronomy and soil science as well as in biomechanics and plant morphogenesis. In contrast to aerial organs, roots apices must exert a growth pressure to penetrate strong soils and reorient their growth trajectory to cope with obstacles like stones or hardpans or to follow the tortuous paths of the soil porosity. In this review, we present the main macroscopic investigations of soil-root physical interactions in the field and combine them with simple mechanistic modeling derived from model experiments at the scale of the individual root apex.
Perspectives on theory at the interface of physics and biology.
Bialek, William
2018-01-01
Theoretical physics is the search for simple and universal mathematical descriptions of the natural world. In contrast, much of modern biology is an exploration of the complexity and diversity of life. For many, this contrast is prima facie evidence that theory, in the sense that physicists use the word, is impossible in a biological context. For others, this contrast serves to highlight a grand challenge. I am an optimist, and believe (along with many colleagues) that the time is ripe for the emergence of a more unified theoretical physics of biological systems, building on successes in thinking about particular phenomena. In this essay I try to explain the reasons for my optimism, through a combination of historical and modern examples.
Perspectives on theory at the interface of physics and biology
NASA Astrophysics Data System (ADS)
Bialek, William
2018-01-01
Theoretical physics is the search for simple and universal mathematical descriptions of the natural world. In contrast, much of modern biology is an exploration of the complexity and diversity of life. For many, this contrast is prima facie evidence that theory, in the sense that physicists use the word, is impossible in a biological context. For others, this contrast serves to highlight a grand challenge. I am an optimist, and believe (along with many colleagues) that the time is ripe for the emergence of a more unified theoretical physics of biological systems, building on successes in thinking about particular phenomena. In this essay I try to explain the reasons for my optimism, through a combination of historical and modern examples.
European Scientific Notes. Volume 34, Number 3,
1980-03-31
Communications and Information Theory Dr. M.A. Greenfield Radiological Science 4 Medical Physics CDR J.A. Holt Undersea Systems Dr. R.S. Hughes Laser...Titanium: Correlations of Structural, presentation of simple theory , with Mbssbauer and Electronic Spectral Data." justifications.for classifying mixed...environs. helpful to listeners with little back- The second week was led off by ground in the theory of mixed-valence Brown, discussing "Synthetic
RESEARCH AREA 7.1: Exploring the Systematics of Controlling Quantum Phenomena
2016-10-05
the bottom to the top of the landscape. Computational analyses for simple model quantum systems are performed to ascertain the relative abundance of...SECURITY CLASSIFICATION OF: This research is concerned with the theoretical and experimental control quantum dynamics phenomena. Advances include new...algorithms to accelerate quantum control as well as provide physical insights into the controlled dynamics. The latter research includes the
The convection stack - a device for ridding pit toilets of bad odor
J. Alan Wagar
1962-01-01
One of the common problems on outdoor recreation areas is that pit toilets smell bad. Flush plumbing is one answer to the problem. But pit toilets are needed in many places where modern sewage systems are economically or physically impractical. To reduce the smell of the pit toilet, one simple, safe, and inexpensive device that can be used is the convection stack....
ERIC Educational Resources Information Center
Papadouris, Nicos; Hadjigeorgiou, Angela; Constantinou, Constantinos P.
2014-01-01
Energy is recognized as a core idea in science and, hence, a significant learning objective of science education. The effective promotion of this learning objective posits that teachers themselves possess sound conceptual understanding. This is needed for enabling them to organize effective learning environments for their students. In this study,…
Reading Time as Evidence for Mental Models in Understanding Physics
NASA Astrophysics Data System (ADS)
Brookes, David T.; Mestre, José; Stine-Morrow, Elizabeth A. L.
2007-11-01
We present results of a reading study that show the usefulness of probing physics students' cognitive processing by measuring reading time. According to contemporary discourse theory, when people read a text, a network of associated inferences is activated to create a mental model. If the reader encounters an idea in the text that conflicts with existing knowledge, the construction of a coherent mental model is disrupted and reading times are prolonged, as measured using a simple self-paced reading paradigm. We used this effect to study how "non-Newtonian" and "Newtonian" students create mental models of conceptual systems in physics as they read texts related to the ideas of Newton's third law, energy, and momentum. We found significant effects of prior knowledge state on patterns of reading time, suggesting that students attempt to actively integrate physics texts with their existing knowledge.
Automated Design of Complex Dynamic Systems
Hermans, Michiel; Schrauwen, Benjamin; Bienstman, Peter; Dambre, Joni
2014-01-01
Several fields of study are concerned with uniting the concept of computation with that of the design of physical systems. For example, a recent trend in robotics is to design robots in such a way that they require a minimal control effort. Another example is found in the domain of photonics, where recent efforts try to benefit directly from the complex nonlinear dynamics to achieve more efficient signal processing. The underlying goal of these and similar research efforts is to internalize a large part of the necessary computations within the physical system itself by exploiting its inherent non-linear dynamics. This, however, often requires the optimization of large numbers of system parameters, related to both the system's structure as well as its material properties. In addition, many of these parameters are subject to fabrication variability or to variations through time. In this paper we apply a machine learning algorithm to optimize physical dynamic systems. We show that such algorithms, which are normally applied on abstract computational entities, can be extended to the field of differential equations and used to optimize an associated set of parameters which determine their behavior. We show that machine learning training methodologies are highly useful in designing robust systems, and we provide a set of both simple and complex examples using models of physical dynamical systems. Interestingly, the derived optimization method is intimately related to direct collocation a method known in the field of optimal control. Our work suggests that the application domains of both machine learning and optimal control have a largely unexplored overlapping area which envelopes a novel design methodology of smart and highly complex physical systems. PMID:24497969
Towards quantifying dynamic human-human physical interactions for robot assisted stroke therapy.
Mohan, Mayumi; Mendonca, Rochelle; Johnson, Michelle J
2017-07-01
Human-Robot Interaction is a prominent field of robotics today. Knowledge of human-human physical interaction can prove vital in creating dynamic physical interactions between human and robots. Most of the current work in studying this interaction has been from a haptic perspective. Through this paper, we present metrics that can be used to identify if a physical interaction occurred between two people using kinematics. We present a simple Activity of Daily Living (ADL) task which involves a simple interaction. We show that we can use these metrics to successfully identify interactions.
A simple magic cup to inject excitement and curiosity in physics
NASA Astrophysics Data System (ADS)
Amir, Nazir
2018-05-01
This article highlights a simple demonstration kit that can be easily fabricated in Design & Technology (D&T) workshops to inject excitement and curiosity into students’ learning of physics concepts such as density and optics. Using an ice cream cup from a fast food restaurant and a transparent circular acrylic piece, students can be guided to make a ‘magic’ cup, while at the same time get inquisitive about the physics behind the magic. The project highlights a way of linking physics to D&T in a feasible manner which can motivate and engage students.
Flaiz, Linda; Freire, María; Cofrades, Susana; Mateos, Raquel; Weiss, Jochen; Jiménez-Colmenero, Francisco; Bou, Ricard
2016-12-15
The purpose of this study was to compare three different emulsion-based systems, namely simple emulsion, double emulsion and gelled double emulsion, for delivery of n-3 fatty acids (perilla oil at 300g/kg) and hydroxytyrosol (300mg/kg). Considering that their structural differences may affect their physical and oxidative stability, this was studied by storing them at 4°C for 22days in the dark. The results showed that the oxidative status was maintained in all systems by the addition of hydroxytyrosol. However, there was some loss of hydroxytyrosol, mainly during sample storage and during preparation of the gelled double emulsion. Moreover, the antioxidant loss was more pronounced in more compartmentalized systems, which was attributed to their increased surface area. However, the double emulsion was found to be less stable than the gelled emulsion. Overall, the encapsulation of labile compounds in more complex systems needs to be carefully studied and adapted to specific technological and/or nutritional requirements. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Vollmer, Michael; Mollmann, Klaus-Peter
2012-01-01
The recent introduction of inexpensive high-speed cameras offers a new experimental approach to many simple but fast-occurring events in physics. In this paper, the authors present two simple demonstration experiments recorded with high-speed cameras in the fields of gas dynamics and thermal physics. The experiments feature vapour pressure effects…
Using High Speed Smartphone Cameras and Video Analysis Techniques to Teach Mechanical Wave Physics
ERIC Educational Resources Information Center
Bonato, Jacopo; Gratton, Luigi M.; Onorato, Pasquale; Oss, Stefano
2017-01-01
We propose the use of smartphone-based slow-motion video analysis techniques as a valuable tool for investigating physics concepts ruling mechanical wave propagation. The simple experimental activities presented here, suitable for both high school and undergraduate students, allows one to measure, in a simple yet rigorous way, the speed of pulses…
A Web Browsing System by Eye-gaze Input
NASA Astrophysics Data System (ADS)
Abe, Kiyohiko; Owada, Kosuke; Ohi, Shoichi; Ohyama, Minoru
We have developed an eye-gaze input system for people with severe physical disabilities, such as amyotrophic lateral sclerosis (ALS) patients. This system utilizes a personal computer and a home video camera to detect eye-gaze under natural light. The system detects both vertical and horizontal eye-gaze by simple image analysis, and does not require special image processing units or sensors. We also developed the platform for eye-gaze input based on our system. In this paper, we propose a new web browsing system for physically disabled computer users as an application of the platform for eye-gaze input. The proposed web browsing system uses a method of direct indicator selection. The method categorizes indicators by their function. These indicators are hierarchized relations; users can select the felicitous function by switching indicators group. This system also analyzes the location of selectable object on web page, such as hyperlink, radio button, edit box, etc. This system stores the locations of these objects, in other words, the mouse cursor skips to the object of candidate input. Therefore it enables web browsing at a faster pace.
Bell's Theorem and Einstein's `Spooky Actions' from a Simple Thought Experiment
NASA Astrophysics Data System (ADS)
Kuttner, Fred; Rosenblum, Bruce
2010-02-01
In 1964 John Bell proved a theorem2 allowing the experimental test of whether what Einstein derided as "spooky actions at a distance" actually exist. We will see that they do. Bell's theorem can be displayed with a simple, nonmathematical thought experiment suitable for a physics course at any level. And a simple, semi-classical derivation of the quantum theory result can be given for physics students. These entanglement phenomena are today applied in industrial laboratories and are increasingly discussed in the popular literature. Unfortunately, they are also misappropriated by the purveyors of pseudoscience, something physicists have a responsibility to address.3 Students can be intrigued by the quantum strangeness physics has encountered at a boundary of our discipline.
Introducing Multisensor Satellite Radiance-Based Evaluation for Regional Earth System Modeling
NASA Technical Reports Server (NTRS)
Matsui, T.; Santanello, J.; Shi, J. J.; Tao, W.-K.; Wu, D.; Peters-Lidard, C.; Kemp, E.; Chin, M.; Starr, D.; Sekiguchi, M.;
2014-01-01
Earth System modeling has become more complex, and its evaluation using satellite data has also become more difficult due to model and data diversity. Therefore, the fundamental methodology of using satellite direct measurements with instrumental simulators should be addressed especially for modeling community members lacking a solid background of radiative transfer and scattering theory. This manuscript introduces principles of multisatellite, multisensor radiance-based evaluation methods for a fully coupled regional Earth System model: NASA-Unified Weather Research and Forecasting (NU-WRF) model. We use a NU-WRF case study simulation over West Africa as an example of evaluating aerosol-cloud-precipitation-land processes with various satellite observations. NU-WRF-simulated geophysical parameters are converted to the satellite-observable raw radiance and backscatter under nearly consistent physics assumptions via the multisensor satellite simulator, the Goddard Satellite Data Simulator Unit. We present varied examples of simple yet robust methods that characterize forecast errors and model physics biases through the spatial and statistical interpretation of various satellite raw signals: infrared brightness temperature (Tb) for surface skin temperature and cloud top temperature, microwave Tb for precipitation ice and surface flooding, and radar and lidar backscatter for aerosol-cloud profiling simultaneously. Because raw satellite signals integrate many sources of geophysical information, we demonstrate user-defined thresholds and a simple statistical process to facilitate evaluations, including the infrared-microwave-based cloud types and lidar/radar-based profile classifications.
NASA Astrophysics Data System (ADS)
Kurosu, Keita; Takashina, Masaaki; Koizumi, Masahiko; Das, Indra J.; Moskvin, Vadim P.
2014-10-01
Although three general-purpose Monte Carlo (MC) simulation tools: Geant4, FLUKA and PHITS have been used extensively, differences in calculation results have been reported. The major causes are the implementation of the physical model, preset value of the ionization potential or definition of the maximum step size. In order to achieve artifact free MC simulation, an optimized parameters list for each simulation system is required. Several authors have already proposed the optimized lists, but those studies were performed with a simple system such as only a water phantom. Since particle beams have a transport, interaction and electromagnetic processes during beam delivery, establishment of an optimized parameters-list for whole beam delivery system is therefore of major importance. The purpose of this study was to determine the optimized parameters list for GATE and PHITS using proton treatment nozzle computational model. The simulation was performed with the broad scanning proton beam. The influences of the customizing parameters on the percentage depth dose (PDD) profile and the proton range were investigated by comparison with the result of FLUKA, and then the optimal parameters were determined. The PDD profile and the proton range obtained from our optimized parameters list showed different characteristics from the results obtained with simple system. This led to the conclusion that the physical model, particle transport mechanics and different geometry-based descriptions need accurate customization in planning computational experiments for artifact-free MC simulation.
NASA Astrophysics Data System (ADS)
Georgakopoulos, A.; Politopoulos, K.; Georgiou, E.
2018-03-01
A new dynamic-system approach to the problem of radiative transfer inside scattering and absorbing media is presented, directly based on first-hand physical principles. This method, the Dynamic Radiative Transfer System (DRTS), employs a dynamical system formality using a global sparse matrix, which characterizes the physical, optical and geometrical properties of the material-volume of interest. The new system state is generated by the above time-independent matrix, using simple matrix-vector multiplication for each subsequent time step. DRTS is capable of calculating accurately the time evolution of photon propagation in media of complex structure and shape. The flexibility of DRTS allows the integration of time-dependent sources, boundary conditions, different media and several optical phenomena like reflection and refraction in a unified and consistent way. Various examples of DRTS simulation results are presented for ultra-fast light pulse 3-D propagation, demonstrating greatly reduced computational cost and resource requirements compared to other methods.
Monostatic Radar Cross Section Estimation of Missile Shaped Object Using Physical Optics Method
NASA Astrophysics Data System (ADS)
Sasi Bhushana Rao, G.; Nambari, Swathi; Kota, Srikanth; Ranga Rao, K. S.
2017-08-01
Stealth Technology manages many signatures for a target in which most radar systems use radar cross section (RCS) for discriminating targets and classifying them with regard to Stealth. During a war target’s RCS has to be very small to make target invisible to enemy radar. In this study, Radar Cross Section of perfectly conducting objects like cylinder, truncated cone (frustum) and circular flat plate is estimated with respect to parameters like size, frequency and aspect angle. Due to the difficulties in exactly predicting the RCS, approximate methods become the alternative. Majority of approximate methods are valid in optical region and where optical region has its own strengths and weaknesses. Therefore, the analysis given in this study is purely based on far field monostatic RCS measurements in the optical region. Computation is done using Physical Optics (PO) method for determining RCS of simple models. In this study not only the RCS of simple models but also missile shaped and rocket shaped models obtained from the cascaded objects with backscatter has been computed using Matlab simulation. Rectangular plots are obtained for RCS in dbsm versus aspect angle for simple and missile shaped objects using Matlab simulation. Treatment of RCS, in this study is based on Narrow Band.
Guzman, Karen; Bartlett, John
2012-01-01
Biological systems and living processes involve a complex interplay of biochemicals and macromolecular structures that can be challenging for undergraduate students to comprehend and, thus, misconceptions abound. Protein synthesis, or translation, is an example of a biological process for which students often hold many misconceptions. This article describes an exercise that was developed to illustrate the process of translation using simple objects to represent complex molecules. Animations, 3D physical models, computer simulations, laboratory experiments and classroom lectures are also used to reinforce the students' understanding of translation, but by focusing on the simple manipulatives in this exercise, students are better able to visualize concepts that can elude them when using the other methods. The translation exercise is described along with suggestions for background material, questions used to evaluate student comprehension and tips for using the manipulatives to identify common misconceptions. Copyright © 2012 Wiley Periodicals, Inc.
Horno, J; González-Caballero, F; González-Fernández, C F
1990-01-01
Simple techniques of network thermodynamics are used to obtain the numerical solution of the Nernst-Planck and Poisson equation system. A network model for a particular physical situation, namely ionic transport through a thin membrane with simultaneous diffusion, convection and electric current, is proposed. Concentration and electric field profiles across the membrane, as well as diffusion potential, have been simulated using the electric circuit simulation program, SPICE. The method is quite general and extremely efficient, permitting treatments of multi-ion systems whatever the boundary and experimental conditions may be.
Noise properties in the ideal Kirchhoff-Law-Johnson-Noise secure communication system.
Gingl, Zoltan; Mingesz, Robert
2014-01-01
In this paper we determine the noise properties needed for unconditional security for the ideal Kirchhoff-Law-Johnson-Noise (KLJN) secure key distribution system using simple statistical analysis. It has already been shown using physical laws that resistors and Johnson-like noise sources provide unconditional security. However real implementations use artificial noise generators, therefore it is a question if other kind of noise sources and resistor values could be used as well. We answer this question and in the same time we provide a theoretical basis to analyze real systems as well.
MPPhys—A many-particle simulation package for computational physics education
NASA Astrophysics Data System (ADS)
Müller, Thomas
2014-03-01
In a first course to classical mechanics elementary physical processes like elastic two-body collisions, the mass-spring model, or the gravitational two-body problem are discussed in detail. The continuation to many-body systems, however, is deferred to graduate courses although the underlying equations of motion are essentially the same and although there is a strong motivation for high-school students in particular because of the use of particle systems in computer games. The missing link between the simple and the more complex problem is a basic introduction to solve the equations of motion numerically which could be illustrated, however, by means of the Euler method. The many-particle physics simulation package MPPhys offers a platform to experiment with simple particle simulations. The aim is to give a principle idea how to implement many-particle simulations and how simulation and visualization can be combined for interactive visual explorations. Catalogue identifier: AERR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERR_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 111327 No. of bytes in distributed program, including test data, etc.: 608411 Distribution format: tar.gz Programming language: C++, OpenGL, GLSL, OpenCL. Computer: Linux and Windows platforms with OpenGL support. Operating system: Linux and Windows. RAM: Source Code 4.5 MB Complete package 242 MB Classification: 14, 16.9. External routines: OpenGL, OpenCL Nature of problem: Integrate N-body simulations, mass-spring models Solution method: Numerical integration of N-body-simulations, 3D-Rendering via OpenGL. Running time: Problem dependent
The development and evaluation of a new coding system for medical records.
Papazissis, Elias
2014-01-01
The present study aims to develop a simple, reliable and easy tool enabling clinicians to codify the major part of individualized medical details (patient history and findings of physical examination) quickly and easily in routine medical practice, by entering data to a purpose-built software application, using structure data elements and detailed medical illustrations. We studied medical records of 9,320 patients and we extracted individualized medical details. We recorded the majority of symptoms and the majority of findings of physical examination into the system, which was named IMPACT® (Intelligent Medical Patient Record and Coding Tool). Subsequently the system was evaluated by clinicians, based on the examination of 1206 patients. The evaluation results showed that IMPACT® is an efficient tool, easy to use even under time-pressing conditions. IMPACT® seems to be a promising tool for illustration-guided, structured data entry of medical narrative, in electronic patient records.
Estimation of Sonic Fatigue by Reduced-Order Finite Element Based Analyses
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.; Przekop, Adam
2006-01-01
A computationally efficient, reduced-order method is presented for prediction of sonic fatigue of structures exhibiting geometrically nonlinear response. A procedure to determine the nonlinear modal stiffness using commercial finite element codes allows the coupled nonlinear equations of motion in physical degrees of freedom to be transformed to a smaller coupled system of equations in modal coordinates. The nonlinear modal system is first solved using a computationally light equivalent linearization solution to determine if the structure responds to the applied loading in a nonlinear fashion. If so, a higher fidelity numerical simulation in modal coordinates is undertaken to more accurately determine the nonlinear response. Comparisons of displacement and stress response obtained from the reduced-order analyses are made with results obtained from numerical simulation in physical degrees-of-freedom. Fatigue life predictions from nonlinear modal and physical simulations are made using the rainflow cycle counting method in a linear cumulative damage analysis. Results computed for a simple beam structure under a random acoustic loading demonstrate the effectiveness of the approach and compare favorably with results obtained from the solution in physical degrees-of-freedom.
An efficient, modular and simple tape archiving solution for LHC Run-3
NASA Astrophysics Data System (ADS)
Murray, S.; Bahyl, V.; Cancio, G.; Cano, E.; Kotlyar, V.; Kruse, D. F.; Leduc, J.
2017-10-01
The IT Storage group at CERN develops the software responsible for archiving to tape the custodial copy of the physics data generated by the LHC experiments. Physics run 3 will start in 2021 and will introduce two major challenges for which the tape archive software must be evolved. Firstly the software will need to make more efficient use of tape drives in order to sustain the predicted data rate of 150 petabytes per year as opposed to the current 50 petabytes per year. Secondly the software will need to be seamlessly integrated with EOS, which has become the de facto disk storage system provided by the IT Storage group for physics data. The tape storage software for LHC physics run 3 is code named CTA (the CERN Tape Archive). This paper describes how CTA will introduce a pre-emptive drive scheduler to use tape drives more efficiently, will encapsulate all tape software into a single module that will sit behind one or more EOS systems, and will be simpler by dropping support for obsolete backwards compatibility.
Black-boxing and cause-effect power
Albantakis, Larissa; Tononi, Giulio
2018-01-01
Reductionism assumes that causation in the physical world occurs at the micro level, excluding the emergence of macro-level causation. We challenge this reductionist assumption by employing a principled, well-defined measure of intrinsic cause-effect power–integrated information (Φ), and showing that, according to this measure, it is possible for a macro level to “beat” the micro level. Simple systems were evaluated for Φ across different spatial and temporal scales by systematically considering all possible black boxes. These are macro elements that consist of one or more micro elements over one or more micro updates. Cause-effect power was evaluated based on the inputs and outputs of the black boxes, ignoring the internal micro elements that support their input-output function. We show how black-box elements can have more common inputs and outputs than the corresponding micro elements, revealing the emergence of high-order mechanisms and joint constraints that are not apparent at the micro level. As a consequence, a macro, black-box system can have higher Φ than its micro constituents by having more mechanisms (higher composition) that are more interconnected (higher integration). We also show that, for a given micro system, one can identify local maxima of Φ across several spatiotemporal scales. The framework is demonstrated on a simple biological system, the Boolean network model of the fission-yeast cell-cycle, for which we identify stable local maxima during the course of its simulated biological function. These local maxima correspond to macro levels of organization at which emergent cause-effect properties of physical systems come into focus, and provide a natural vantage point for scientific inquiries. PMID:29684020
Electric generation and ratcheted transport of contact-charged drops
NASA Astrophysics Data System (ADS)
Cartier, Charles A.; Graybill, Jason R.; Bishop, Kyle J. M.
2017-10-01
We describe a simple microfluidic system that enables the steady generation and efficient transport of aqueous drops using only a constant voltage input. Drop generation is achieved through an electrohydrodynamic dripping mechanism by which conductive drops grow and detach from a grounded nozzle in response to an electric field. The now-charged drops are transported down a ratcheted channel by contact charge electrophoresis powered by the same voltage input used for drop generation. We investigate how the drop size, generation frequency, and transport velocity depend on system parameters such as the liquid viscosity, interfacial tension, applied voltage, and channel dimensions. The observed trends are well explained by a series of scaling analyses that provide insight into the dominant physical mechanisms underlying drop generation and ratcheted transport. We identify the conditions necessary for achieving reliable operation and discuss the various modes of failure that can arise when these conditions are violated. Our results demonstrate that simple electric inputs can power increasingly complex droplet operations with potential opportunities for inexpensive and portable microfluidic systems.
Electric generation and ratcheted transport of contact-charged drops.
Cartier, Charles A; Graybill, Jason R; Bishop, Kyle J M
2017-10-01
We describe a simple microfluidic system that enables the steady generation and efficient transport of aqueous drops using only a constant voltage input. Drop generation is achieved through an electrohydrodynamic dripping mechanism by which conductive drops grow and detach from a grounded nozzle in response to an electric field. The now-charged drops are transported down a ratcheted channel by contact charge electrophoresis powered by the same voltage input used for drop generation. We investigate how the drop size, generation frequency, and transport velocity depend on system parameters such as the liquid viscosity, interfacial tension, applied voltage, and channel dimensions. The observed trends are well explained by a series of scaling analyses that provide insight into the dominant physical mechanisms underlying drop generation and ratcheted transport. We identify the conditions necessary for achieving reliable operation and discuss the various modes of failure that can arise when these conditions are violated. Our results demonstrate that simple electric inputs can power increasingly complex droplet operations with potential opportunities for inexpensive and portable microfluidic systems.
ERIC Educational Resources Information Center
Pe´rez, Eduardo
2015-01-01
The procedure of a physical chemistry experiment for university students must be designed in a way that the accuracy and precision of the measurements is properly maintained. However, in many cases, that requires costly and sophisticated equipment not readily available in developing countries. A simple, low-cost experiment to determine isobaric…
ERIC Educational Resources Information Center
Shih, Ching-Hsiang
2011-01-01
This study evaluated whether two people with developmental disabilities would be able to actively perform simple physical activities by controlling their favorite environmental stimulation using Nintendo Wii Balance Boards with a newly developed standing location detection program (SLDP, i.e., a new software program turning a Nintendo Wii Balance…
Time Trials--An AP Physics Challenge Lab
ERIC Educational Resources Information Center
Jones, David
2009-01-01
I have come to the conclusion that for high school physics classroom and laboratory experiences, simpler is better! In this paper I describe a very simple and effective lab experience that my AP students have thoroughly enjoyed year after year. I call this lab exercise "Time Trials." The experiment is simple in design and it is a lot of fun for…
ERIC Educational Resources Information Center
Planinic, Maja; Boone, William J.; Krsnik, Rudolf; Beilfuss, Meredith L.
2006-01-01
Croatian 1st-year and 3rd-year high-school students (N = 170) completed a conceptual physics test. Students were evaluated with regard to two physics topics: Newtonian dynamics and simple DC circuits. Students answered test items and also indicated their confidence in each answer. Rasch analysis facilitated the calculation of three linear…
A simple physical model for forest fire spread
E. Koo; P. Pagni; J. Woycheese; S. Stephens; D. Weise; J. Huff
2005-01-01
Based on energy conservation and detailed heat transfer mechanisms, a simple physical model for fire spread is presented for the limit of one-dimensional steady-state contiguous spread of a line fire in a thermally-thin uniform porous fuel bed. The solution for the fire spread rate is found as an eigenvalue from this model with appropriate boundary conditions through a...
Development of Computer-Based Experiment Set on Simple Harmonic Motion of Mass on Springs
ERIC Educational Resources Information Center
Musik, Panjit
2017-01-01
The development of computer-based experiment set has become necessary in teaching physics in schools so that students can learn from their real experiences. The purpose of this study is to create and to develop the computer-based experiment set on simple harmonic motion of mass on springs for teaching and learning physics. The average period of…
Fractality à la carte: a general particle aggregation model.
Nicolás-Carlock, J R; Carrillo-Estrada, J L; Dossetti, V
2016-01-19
In nature, fractal structures emerge in a wide variety of systems as a local optimization of entropic and energetic distributions. The fractality of these systems determines many of their physical, chemical and/or biological properties. Thus, to comprehend the mechanisms that originate and control the fractality is highly relevant in many areas of science and technology. In studying clusters grown by aggregation phenomena, simple models have contributed to unveil some of the basic elements that give origin to fractality, however, the specific contribution from each of these elements to fractality has remained hidden in the complex dynamics. Here, we propose a simple and versatile model of particle aggregation that is, on the one hand, able to reveal the specific entropic and energetic contributions to the clusters' fractality and morphology, and, on the other, capable to generate an ample assortment of rich natural-looking aggregates with any prescribed fractal dimension.
Universality classes of fluctuation dynamics in hierarchical complex systems
NASA Astrophysics Data System (ADS)
Macêdo, A. M. S.; González, Iván R. Roa; Salazar, D. S. P.; Vasconcelos, G. L.
2017-03-01
A unified approach is proposed to describe the statistics of the short-time dynamics of multiscale complex systems. The probability density function of the relevant time series (signal) is represented as a statistical superposition of a large time-scale distribution weighted by the distribution of certain internal variables that characterize the slowly changing background. The dynamics of the background is formulated as a hierarchical stochastic model whose form is derived from simple physical constraints, which in turn restrict the dynamics to only two possible classes. The probability distributions of both the signal and the background have simple representations in terms of Meijer G functions. The two universality classes for the background dynamics manifest themselves in the signal distribution as two types of tails: power law and stretched exponential, respectively. A detailed analysis of empirical data from classical turbulence and financial markets shows excellent agreement with the theory.
NASA Astrophysics Data System (ADS)
Raghu Gowda, Belagumba Venkatachalaiah
This dissertation examines how simple structural compliance impacts a specific transient vortex phenomenon that occurs on high angle of attack lifting surfaces termed dynamic stall. In many Fluid structure interaction (FSI) research efforts, a purely physical or purely computational approach is taken. In this work a low cost cyber-physical (CPFD) system is designed and developed for representing the FSI in the leading edge vortex (LEV) development problem. The leading edge compliance appears to be favorable in a specific spring constant range for a given wing. When the leading edge compliance prescribed via CPFD system is too low compared with the moment due to dynamic pressure or fluid unsteady effect, the LEV behavior is similar to that of a rigid wing system. When the leading edge compliance is too high, excessive compliance is introduced into the wing system and the leading edge vortex evolution is affected by the large change in wing angle. At moderate leading edge compliance, a balance appears to be achieved in which the leading edge vorticity shedding rate supports the long term evolution of the leading edge vortex. Further investigation is required to determine specific parameters governing these leading edge compliance ranges.
Generalized fractional diffusion equations for subdiffusion in arbitrarily growing domains
NASA Astrophysics Data System (ADS)
Angstmann, C. N.; Henry, B. I.; McGann, A. V.
2017-10-01
The ubiquity of subdiffusive transport in physical and biological systems has led to intensive efforts to provide robust theoretical models for this phenomena. These models often involve fractional derivatives. The important physical extension of this work to processes occurring in growing materials has proven highly nontrivial. Here we derive evolution equations for modeling subdiffusive transport in a growing medium. The derivation is based on a continuous-time random walk. The concise formulation of these evolution equations requires the introduction of a new, comoving, fractional derivative. The implementation of the evolution equation is illustrated with a simple model of subdiffusing proteins in a growing membrane.
``Dissection'' of a Hair Dryer
NASA Astrophysics Data System (ADS)
Eisenstein, Stan; Simpson, Jeff
2008-12-01
The electrical design of the common hair dryer is based almost entirely on relatively simple principles learned in introductory physics classes. Just as biology students dissect a frog to see the principles of anatomy in action, physics students can "dissect" a hair dryer to see how principles of electricity are used in a real system. They can discover how engineers solve problems such as how to vary between low and high heat and fan speed by simply moving the position of a single switch. Principles of alternating versus direct current, series and parallel circuits, electrical safety, voltage dividing, ac rectification, power, and measurement of resistance and continuity all come in to play.
Using Bayesian Networks and Decision Theory to Model Physical Security
2003-02-01
Home automation technologies allow a person to monitor and control various activities within a home or office setting. Cameras, sensors and other...components used along with the simple rules in the home automation software provide an environment where the lights, security and other appliances can be...monitored and controlled. These home automation technologies, however, lack the power to reason under uncertain conditions and thus the system can
Oscillations studied with the smartphone ambient light sensor
NASA Astrophysics Data System (ADS)
Sans, J. A.; Manjón, F. J.; Pereira, A. L. J.; Gomez-Tejedor, J. A.; Monsoriu, J. A.
2013-11-01
This paper makes use of a smartphone's ambient light sensor to analyse a system of two coupled springs undergoing either simple or damped oscillatory motion. The period, frequency and stiffness of the spring, together with the damping constant and extinction time, are extracted from light intensity curves obtained using a free Android application. The results demonstrate the instructional value of mobile phone sensors as a tool in the physics laboratory.
A new fitting law of rovibrationally inelastic rate constants for rapidly rotating molecules
NASA Astrophysics Data System (ADS)
Strekalov, M. L.
2005-04-01
Semiclassical scattering of a particle from a three-dimensional ellipsoid with internal structure is used to model vibration-rotation-translation (VRT) collisional transfer between atoms and diatomic molecules. The result is a very simple analytical expression containing two variable parameters that have a clear physical meaning. Predictions of the model for the Li 2 + Ne system are in reasonably good agreement with experimental results.
Technology to Reduce Hypoglycemia
Yeoh, Ester; Choudhary, Pratik
2015-01-01
Hypoglycemia is a major barrier toward achieving glycemic targets and is associated with significant morbidity (both psychological and physical) and mortality. This article reviews technological strategies, from simple to more advanced technologies, which may help prevent or mitigate exposure to hypoglycemia. More efficient insulin delivery systems, bolus advisor calculators, data downloads providing information on glucose trends, continuous glucose monitoring with alarms warning of hypoglycemia, predictive algorithms, and finally closed loop insulin delivery systems are reviewed. The building blocks to correct use and interpretation of this range of available technology require patient education and appropriate patient selection. PMID:25883167
NASA Technical Reports Server (NTRS)
Rajagopalan, J.; Xing, K.; Guo, Y.; Lee, F. C.; Manners, Bruce
1996-01-01
A simple, application-oriented, transfer function model of paralleled converters employing Master-Slave Current-sharing (MSC) control is developed. Dynamically, the Master converter retains its original design characteristics; all the Slave converters are forced to depart significantly from their original design characteristics into current-controlled current sources. Five distinct loop gains to assess system stability and performance are identified and their physical significance is described. A design methodology for the current share compensator is presented. The effect of this current sharing scheme on 'system output impedance' is analyzed.
NASA Astrophysics Data System (ADS)
Frenkel, Daan
2007-03-01
During the past decade there has been a unique synergy between theory, experiment and simulation in Soft Matter Physics. In colloid science, computer simulations that started out as studies of highly simplified model systems, have acquired direct experimental relevance because experimental realizations of these simple models can now be synthesized. Whilst many numerical predictions concerning the phase behavior of colloidal systems have been vindicated by experiments, the jury is still out on others. In my talk I will discuss some of the recent technical developments, new findings and open questions in computational soft-matter science.
Entropic Repulsion Between Fluctuating Surfaces
NASA Astrophysics Data System (ADS)
Janke, W.
The statistical mechanics of fluctuating surfaces plays an important role in a variety of physical systems, ranging from biological membranes to world sheets of strings in theories of fundamental interactions. In many applications it is a good approximation to assume that the surfaces possess no tension. Their statistical properties are then governed by curvature energies only, which allow for gigantic out-of-plane undulations. These fluctuations are the “entropic” origin of long-range repulsive forces in layered surface systems. Theoretical estimates of these forces for simple model surfaces are surveyed and compared with recent Monte Carlo simulations.
The effects of mixotrophy on the stability and dynamics of a simple planktonic food web
Jost, Christian; Lawrence, Cathryn A.; Campolongo, Francesca; Wouter, van de Bund; Hill, Sheryl; DeAngelis, Donald L.
2004-01-01
Recognition of the microbial loop as an important part of aquatic ecosystems disrupted the notion of simple linear food chains. However, current research suggests that even the microbial loop paradigm is a gross simplification of microbial interactions due to the presence of mixotrophs—organisms that both photosynthesize and graze. We present a simple food web model with four trophic species, three of them arranged in a food chain (nutrients–autotrophs–herbivores) and the fourth as a mixotroph with links to both the nutrients and the autotrophs. This model is used to study the general implications of inclusion of the mixotrophic link in microbial food webs and the specific predictions for a parameterization that describes open ocean mixed layer plankton dynamics. The analysis indicates that the system parameters reside in a region of the parameter space where the dynamics converge to a stable equilibrium rather than displaying periodic or chaotic solutions. However, convergence requires weeks to months, suggesting that the system would never reach equilibrium in the ocean due to alteration of the physical forcing regime. Most importantly, the mixotrophic grazing link seems to stabilize the system in this region of the parameter space, particularly when nutrient recycling feedback loops are included.
Optical and Excitonic Properties of Atomically Thin Transition-Metal Dichalcogenides
NASA Astrophysics Data System (ADS)
Berkelbach, Timothy C.; Reichman, David R.
2018-03-01
Starting with the isolation of a single sheet of graphene, the study of layered materials has been one of the most active areas of condensed matter physics, chemistry, and materials science. Single-layer transition-metal dichalcogenides are direct-gap semiconducting analogs of graphene that exhibit novel electronic and optical properties. These features provide exciting opportunities for the discovery of both new fundamental physical phenomena as well as innovative device platforms. Here, we review the progress associated with the creation and use of a simple microscopic framework for describing the optical and excitonic behavior of few-layer transition-metal dichalcogenides, which is based on symmetry, band structure, and the effective interactions between charge carriers in these materials. This approach provides an often quantitative account of experiments that probe the physics associated with strong electron–hole interactions in these quasi two-dimensional systems and has been successfully employed by many groups to both describe and predict emergent excitonic behavior in these layered semiconducting systems.
Supercritical entanglement in local systems: Counterexample to the area law for quantum matter
Movassagh, Ramis; Shor, Peter W.
2016-01-01
Quantum entanglement is the most surprising feature of quantum mechanics. Entanglement is simultaneously responsible for the difficulty of simulating quantum matter on a classical computer and the exponential speedups afforded by quantum computers. Ground states of quantum many-body systems typically satisfy an “area law”: The amount of entanglement between a subsystem and the rest of the system is proportional to the area of the boundary. A system that obeys an area law has less entanglement and can be simulated more efficiently than a generic quantum state whose entanglement could be proportional to the total system’s size. Moreover, an area law provides useful information about the low-energy physics of the system. It is widely believed that for physically reasonable quantum systems, the area law cannot be violated by more than a logarithmic factor in the system’s size. We introduce a class of exactly solvable one-dimensional physical models which we can prove have exponentially more entanglement than suggested by the area law, and violate the area law by a square-root factor. This work suggests that simple quantum matter is richer and can provide much more quantum resources (i.e., entanglement) than expected. In addition to using recent advances in quantum information and condensed matter theory, we have drawn upon various branches of mathematics such as combinatorics of random walks, Brownian excursions, and fractional matching theory. We hope that the techniques developed herein may be useful for other problems in physics as well. PMID:27821725
Dittrich, Peter
2018-02-01
The organic code concept and its operationalization by molecular codes have been introduced to study the semiotic nature of living systems. This contribution develops further the idea that the semantic capacity of a physical medium can be measured by assessing its ability to implement a code as a contingent mapping. For demonstration and evaluation, the approach is applied to a formal medium: elementary cellular automata (ECA). The semantic capacity is measured by counting the number of ways codes can be implemented. Additionally, a link to information theory is established by taking multivariate mutual information for quantifying contingency. It is shown how ECAs differ in their semantic capacities, how this is related to various ECA classifications, and how this depends on how a meaning is defined. Interestingly, if the meaning should persist for a certain while, the highest semantic capacity is found in CAs with apparently simple behavior, i.e., the fixed-point and two-cycle class. Synergy as a predictor for a CA's ability to implement codes can only be used if context implementing codes are common. For large context spaces with sparse coding contexts synergy is a weak predictor. Concluding, the approach presented here can distinguish CA-like systems with respect to their ability to implement contingent mappings. Applying this to physical systems appears straight forward and might lead to a novel physical property indicating how suitable a physical medium is to implement a semiotic system. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
2008-05-01
WE RECOMMEND Why the Sky is Blue This book gives an excellent answer to the age-old question Science Magic Book of experiments finds the fun in physics Function Generator Kit Build your own simple wave generator Dent pullers Instead of using them to pull out dents, get your pupils to pull them apart Rocket Tracker Launch and track rockets with this kit Stephen Hawking, A biograpy This book looks at both the science and the personal life of the famous physicist WORTH A LOOK The Universe and the Atom All-encompassing but uninspiring physics book Sizzling Magnets Another cheap toy proves its usefulness in the physics lab Efergy Energy-saving meter is easy to use but may not save you energy Experiments and Demonstrations in Physics This book is full of interesting experiments but skewed to a particular hardware system WEB WATCH Gary Williams recounts the valuable lessons he learned at the Software 4 Skint Schools workshop
High density flux of Co nanoparticles produced by a simple gas aggregation apparatus.
Landi, G T; Romero, S A; Santos, A D
2010-03-01
Gas aggregation is a well known method used to produce clusters of different materials with good size control, reduced dispersion, and precise stoichiometry. The cost of these systems is relatively high and they are generally dedicated apparatuses. Furthermore, the usual sample production speed of these systems is not as fast as physical vapor deposition devices posing a problem when thick samples are needed. In this paper we describe the development of a multipurpose gas aggregation system constructed as an adaptation to a magnetron sputtering system. The cost of this adaptation is negligible and its installation and operation are both remarkably simple. The gas flow for flux in the range of 60-130 SCCM (SCCM denotes cubic centimeter per minute at STP) is able to completely collimate all the sputtered material, producing spherical nanoparticles. Co nanoparticles were produced and characterized using electron microscopy techniques and Rutherford back-scattering analysis. The size of the particles is around 10 nm with around 75 nm/min of deposition rate at the center of a Gaussian profile nanoparticle beam.
The use of a Nintendo Wii remote control in physics experiments
NASA Astrophysics Data System (ADS)
Abellán, F. J.; Arenas, A.; Núñez, M. J.; Victoria, L.
2013-09-01
In this paper we describe how a Nintendo Wii remote control (known as the Wiimote) can be used in the design and implementation of several undergraduate-level experiments in a physics laboratory class. An experimental setup composed of a Wiimote and a conveniently located IR LED allows the trajectory of one or several moving objects to be tracked and recorded accurately, in both long and short displacement. The authors have developed a user interface program to configure the operation of the acquisition system of such data. The two experiments included in this work are the free fall of a body with magnetic braking and the simple pendulum, but other physics experiments could have been chosen. The treatment of the data was performed using Bayesian inference.
Physics on the Bus—How About Physics on Your Bus?
NASA Astrophysics Data System (ADS)
Romer, Robert H.
2004-12-01
Riders on the buses of UMass Transit (here in the "Five-College" area) and of the University of Georgia transit system have something other than the usual "Please don't eat on the bus" placards to read—simple physics questions in the overhead advertising racks, with appealing cats and dogs posing questions, giving partial answers (some flat-out wrong, some partially correct), ending up with "What do you think? … Visit our website." One sample is given below; others can be viewed at http://www.amherst.edu/˜physicsqanda. (More often than not, the dog gets it wrong; I'm a cat person.) This project was begun in collaboration with John King and was inspired by one of the many ideas described in his 2000 Oersted Medal address.
Physical pendulum—a simple experiment can give comprehensive information about a rigid body
NASA Astrophysics Data System (ADS)
Kladivová, Mária; Mucha, L'ubomír
2014-03-01
A simple experiment with a physical pendulum examining some aspects of rigid body motion is presented in this paper. The experiment consists of measuring the period of oscillation of a rod with non-homogeneous mass distribution used as a physical pendulum, dependent upon the position of the pivot axis. The obtained dependence provides sufficient information to calculate the position of the centre of mass, moment of inertia of the rigid body and local gravitational acceleration. This experiment is intended for secondary school and undergraduate students.
NASA Astrophysics Data System (ADS)
Vilão, Rui C.; Melo, Santino L. S.
2014-12-01
We address the production of musical tones by a simple musical instrument of the Brazilian tradition: the berimbau-de-barriga. The vibration physics of the string and of the air mass inside the gourd are reviewed. Straightforward measurements of an actual berimbau, which illustrate the basic physical phenomena, are performed using a PC-based "soundcard oscilloscope." The inharmonicity of the string and the role of the gourd are discussed in the context of known results in the psychoacoustics of pitch definition.
Security scheme in IMDD-OFDM-PON system with the chaotic pilot interval and scrambling
NASA Astrophysics Data System (ADS)
Chen, Qianghua; Bi, Meihua; Fu, Xiaosong; Lu, Yang; Zeng, Ran; Yang, Guowei; Yang, Xuelin; Xiao, Shilin
2018-01-01
In this paper, a random chaotic pilot interval and permutations scheme without any requirement of redundant sideband information is firstly proposed for the physical layer security-enhanced intensity modulation direct detection orthogonal frequency division multiplexing passive optical network (IMDD-OFDM-PON) system. With the help of the position feature of inserting the pilot, a simple logistic chaos map is used to generate the random pilot interval and scramble the chaotic subcarrier allocation of each column pilot data for improving the physical layer confidentiality. Due to the dynamic chaotic permutations of pilot data, the enhanced key space of ∼103303 is achieved in OFDM-PON. Moreover, the transmission experiment of 10-Gb/s 16-QAM encrypted OFDM data is successfully demonstrated over 20-km single-mode fiber, which indicates that the proposed scheme not only improves the system security, but also can achieve the same performance as in the common IMDD-OFDM-PON system without encryption scheme.
Magnetohydrodynamic Propulsion for the Classroom
NASA Astrophysics Data System (ADS)
Font, Gabriel I.; Dudley, Scott C.
2004-10-01
The cinema industry can sometimes prove to be an ally when searching for material with which to motivate students to learn physics. Consider, for example, the electromagnetic force on a current in the presence of a magnetic field. This phenomenon is at the heart of magnetohydrodynamic (MHD) propulsion systems. A submarine employing this type of propulsion was immortalized in the movie Hunt for Red October. While mentioning this to students certainly gets their attention, it often elicits comments that it is only fiction and not physically possible. Imagine their surprise when a working system is demonstrated! It is neither difficult nor expensive to construct a working system that can be demonstrated in the front of a classroom.2 In addition, all aspects of the engineering hurdles that must be surmounted and myths concerning this "silent propulsion" system are borne out in a simple apparatus. This paper details how to construct an inexpensive MHD propulsion boat that can be demonstrated for students in the classroom.
Scalable Parallel Computation for Extended MHD Modeling of Fusion Plasmas
NASA Astrophysics Data System (ADS)
Glasser, Alan H.
2008-11-01
Parallel solution of a linear system is scalable if simultaneously doubling the number of dependent variables and the number of processors results in little or no increase in the computation time to solution. Two approaches have this property for parabolic systems: multigrid and domain decomposition. Since extended MHD is primarily a hyperbolic rather than a parabolic system, additional steps must be taken to parabolize the linear system to be solved by such a method. Such physics-based preconditioning (PBP) methods have been pioneered by Chac'on, using finite volumes for spatial discretization, multigrid for solution of the preconditioning equations, and matrix-free Newton-Krylov methods for the accurate solution of the full nonlinear preconditioned equations. The work described here is an extension of these methods using high-order spectral element methods and FETI-DP domain decomposition. Application of PBP to a flux-source representation of the physics equations is discussed. The resulting scalability will be demonstrated for simple wave and for ideal and Hall MHD waves.
On Mechanical Transitions in Biologically Motivated Soft Matter Systems
NASA Astrophysics Data System (ADS)
Fogle, Craig
The notion of phase transitions as a characterization of a change in physical properties pervades modern physics. Such abrupt and fundamental changes in the behavior of physical systems are evident in condensed matter system and also occur in nuclear and subatomic settings. While this concept is less prevalent in the field of biology, recent advances have pointed to its relevance in a number of settings. Recent studies have modeled both the cell cycle and cancer as phase transition in physical systems. In this dissertation we construct simplified models for two biological systems. As described by those models, both systems exhibit phase transitions. The first model is inspired by the shape transition in the nuclei of neutrophils during differentiation. During differentiation the nucleus transitions from spherical to a shape often described as "beads on a string." As a simplified model of this system, we investigate the spherical-to-wrinkled transition in an elastic core bounded to a fluid shell system. We find that this model exhibits a first-order phase transition, and the shape that minimizes the energy of the system scales as (micror3/kappa). . The second system studied is motivated by the dynamics of globular proteins. These proteins may undergoes conformational changes with large displacements relative to their size. Transitions between conformational states are not possible if the dynamics are governed strictly by linear elasticity. We construct a model consisting of an predominantly elastic region near the energetic minimum of the system and a non-linear softening of the system at a critical displacement. We find that this simple model displays very rich dynamics include a sharp dynamical phase transition and driving-force-dependent symmetry breaking.
ERIC Educational Resources Information Center
Shih, Ching-Hsiang; Chung, Chiao-Chen; Shih, Ching-Tien; Chen, Ling-Che
2011-01-01
The latest researches have adopted software technology turning the Nintendo Wii Balance Board into a high performance standing location detector. This study extended Wii Balance Board functionality to assess whether two people with developmental disabilities would be able to actively perform designated physical activities according to simple…
Darwin's legacy: why biology is not physics, or why evolution has not become a common sense.
Singh, Rama S
2011-10-01
Cosmology and evolution together have enabled us to look deep into the past and comprehend evolution-from the big bang to the cosmos, from molecules to humans. Here, I compare the nature of theories in biology and physics and ask why physical theories get accepted by the public without necessarily comprehending them but biological theories do not. Darwin's theory of natural selection, utterly simple in its premises but profound in its consequences, is not accepted widely. Organized religions, and creationists in particularly, have been the major critic of evolution, but not all opposition to evolution comes from organized religions. A great many people, between evolutionary biologists on one hand and creationists on the other, many academics included, who may not be logically opposed to evolution nevertheless do not accept it. This is because the process of and the evidence for evolution are invisible to a nonspecialist, or the theory may look too simple to explain complex traits to some, or because people compare evolution against God and find evolutionary explanations threatening to their beliefs. Considering how evolution affects our lives, including health and the environment to give just two examples, a basic course in evolution should become a required component of all our college and university educational systems.
Rising tides, cumulative impacts and cascading changes to estuarine ecosystem functions.
O'Meara, Theresa A; Hillman, Jenny R; Thrush, Simon F
2017-08-31
In coastal ecosystems, climate change affects multiple environmental factors, yet most predictive models are based on simple cause-and-effect relationships. Multiple stressor scenarios are difficult to predict because they can create a ripple effect through networked ecosystem functions. Estuarine ecosystem function relies on an interconnected network of physical and biological processes. Estuarine habitats play critical roles in service provision and represent global hotspots for organic matter processing, nutrient cycling and primary production. Within these systems, we predicted functional changes in the impacts of land-based stressors, mediated by changing light climate and sediment permeability. Our in-situ field experiment manipulated sea level, nutrient supply, and mud content. We used these stressors to determine how interacting environmental stressors influence ecosystem function and compared results with data collected along elevation gradients to substitute space for time. We show non-linear, multi-stressor effects deconstruct networks governing ecosystem function. Sea level rise altered nutrient processing and impacted broader estuarine services ameliorating nutrient and sediment pollution. Our experiment demonstrates how the relationships between nutrient processing and biological/physical controls degrade with environmental stress. Our results emphasise the importance of moving beyond simple physically-forced relationships to assess consequences of climate change in the context of ecosystem interactions and multiple stressors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaks, D; Fletcher, R; Salamon, S
Purpose: To develop an online framework that tracks a patient’s plan from initial simulation to treatment and that helps automate elements of the physics plan checks usually performed in the record and verify (RV) system and treatment planning system. Methods: We have developed PlanTracker, an online plan tracking system that automatically imports new patients tasks and follows it through treatment planning, physics checks, therapy check, and chart rounds. A survey was designed to collect information about the amount of time spent by medical physicists in non-physics related tasks. We then assessed these non-physics tasks for automation. Using these surveys, wemore » directed our PlanTracker software development towards the automation of intra-plan physics review. We then conducted a systematic evaluation of PlanTracker’s accuracy by generating test plans in the RV system software designed to mimic real plans, in order to test its efficacy in catching errors both real and theoretical. Results: PlanTracker has proven to be an effective improvement to the clinical workflow in a radiotherapy clinic. We present data indicating that roughly 1/3 of the physics plan check can be automated, and the workflow optimized, and show the functionality of PlanTracker. When the full system is in clinical use we will present data on improvement of time use in comparison to survey data prior to PlanTracker implementation. Conclusion: We have developed a framework for plan tracking and automatic checks in radiation therapy. We anticipate using PlanTracker as a basis for further development in clinical/research software. We hope that by eliminating the most simple and time consuming checks, medical physicists may be able to spend their time on plan quality and other physics tasks rather than in arithmetic and logic checks. We see this development as part of a broader initiative to advance the clinical/research informatics infrastructure surrounding the radiotherapy clinic. This research project has been financially supported by Varian Medical Systems, Palo Alto, CA, through a Varian MRA.« less
NASA Astrophysics Data System (ADS)
Kuznetsov, Valentin; Riley, Daniel; Afaq, Anzar; Sekhri, Vijay; Guo, Yuyi; Lueking, Lee
2010-04-01
The CMS experiment has implemented a flexible and powerful system enabling users to find data within the CMS physics data catalog. The Dataset Bookkeeping Service (DBS) comprises a database and the services used to store and access metadata related to CMS physics data. To this, we have added a generalized query system in addition to the existing web and programmatic interfaces to the DBS. This query system is based on a query language that hides the complexity of the underlying database structure by discovering the join conditions between database tables. This provides a way of querying the system that is simple and straightforward for CMS data managers and physicists to use without requiring knowledge of the database tables or keys. The DBS Query Language uses the ANTLR tool to build the input query parser and tokenizer, followed by a query builder that uses a graph representation of the DBS schema to construct the SQL query sent to underlying database. We will describe the design of the query system, provide details of the language components and overview of how this component fits into the overall data discovery system architecture.
Wilson, Lydia J; Newhauser, Wayne D
2015-01-01
State-of-the-art radiotherapy treatment planning systems provide reliable estimates of the therapeutic radiation but are known to underestimate or neglect the stray radiation exposures. Most commonly, stray radiation exposures are reconstructed using empirical formulas or lookup tables. The purpose of this study was to develop the basic physics of a model capable of calculating the total absorbed dose both inside and outside of the therapeutic radiation beam for external beam photon therapy. The model was developed using measurements of total absorbed dose in a water-box phantom from a 6 MV medical linear accelerator to calculate dose profiles in both the in-plane and cross-plane direction for a variety of square field sizes and depths in water. The water-box phantom facilitated development of the basic physical aspects of the model. RMS discrepancies between measured and calculated total absorbed dose values in water were less than 9.3% for all fields studied. Computation times for 10 million dose points within a homogeneous phantom were approximately 4 minutes. These results suggest that the basic physics of the model are sufficiently simple, fast, and accurate to serve as a foundation for a variety of clinical and research applications, some of which may require that the model be extended or simplified based on the needs of the user. A potentially important advantage of a physics-based approach is that the model is more readily adaptable to a wide variety of treatment units and treatment techniques than with empirical models. PMID:26040833
Jagetic, Lydia J; Newhauser, Wayne D
2015-06-21
State-of-the-art radiotherapy treatment planning systems provide reliable estimates of the therapeutic radiation but are known to underestimate or neglect the stray radiation exposures. Most commonly, stray radiation exposures are reconstructed using empirical formulas or lookup tables. The purpose of this study was to develop the basic physics of a model capable of calculating the total absorbed dose both inside and outside of the therapeutic radiation beam for external beam photon therapy. The model was developed using measurements of total absorbed dose in a water-box phantom from a 6 MV medical linear accelerator to calculate dose profiles in both the in-plane and cross-plane direction for a variety of square field sizes and depths in water. The water-box phantom facilitated development of the basic physical aspects of the model. RMS discrepancies between measured and calculated total absorbed dose values in water were less than 9.3% for all fields studied. Computation times for 10 million dose points within a homogeneous phantom were approximately 4 min. These results suggest that the basic physics of the model are sufficiently simple, fast, and accurate to serve as a foundation for a variety of clinical and research applications, some of which may require that the model be extended or simplified based on the needs of the user. A potentially important advantage of a physics-based approach is that the model is more readily adaptable to a wide variety of treatment units and treatment techniques than with empirical models.
Dynamics of Complex Systems Built as Coupled Physical, Communication and Decision Layers
Kühnlenz, Florian; Nardelli, Pedro H. J.
2016-01-01
This paper proposes a simple model to capture the complexity of multilayer systems where their constituent layers affect, and are affected by, each other. The physical layer is a circuit composed by a power source and resistors in parallel. Every individual agent aims at maximizing its own delivered power by adding, removing or keeping the resistors it has; the delivered power is in turn a non-linear function that depends on the other agents’ behavior, its own internal state, its global state perception, the information received from its neighbors via the communication network and a randomized selfishness. We develop an agent-based simulation to analyze the effects of number of agents (system size), communication network topology, communication errors and the minimum power gain that triggers a behavioral change on the system dynamic. Our results show that a wave-like behavior at macro-level (caused by individual changes in the decision layer) can only emerge for a specific system size. The ratio between cooperators and defectors depends on the minimum gain assumed—lower minimal gains lead to less cooperation, and vice-versa. Different communication network topologies imply different levels of power utilization and fairness at the physical layer, and a certain level of error in the communication layer induces more cooperation. PMID:26730590
Lu, Zhonghua; Arikatla, Venkata S; Han, Zhongqing; Allen, Brian F; De, Suvranu
2014-12-01
High-frequency electricity is used in the majority of surgical interventions. However, modern computer-based training and simulation systems rely on physically unrealistic models that fail to capture the interplay of the electrical, mechanical and thermal properties of biological tissue. We present a real-time and physically realistic simulation of electrosurgery by modelling the electrical, thermal and mechanical properties as three iteratively solved finite element models. To provide subfinite-element graphical rendering of vaporized tissue, a dual-mesh dynamic triangulation algorithm based on isotherms is proposed. The block compressed row storage (BCRS) structure is shown to be critical in allowing computationally efficient changes in the tissue topology due to vaporization. We have demonstrated our physics-based electrosurgery cutting algorithm through various examples. Our matrix manipulation algorithms designed for topology changes have shown low computational cost. Our simulator offers substantially greater physical fidelity compared to previous simulators that use simple geometry-based heat characterization. Copyright © 2013 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Ballagh, R. J.; Cooper, J.
1984-01-01
There are many systems of physical interest for which a set of rate equations for level populations can provide insight. If the system has two (or more) different mechanisms for effecting transition between levels, total rates of transfer are usually taken as the sum of rates that the individual mechanisms would cause acting alone. Using the example of a hydrogen atom subjected to (ionic and electronic) collisions and external radiation, it is shown that when these individual mechanisms overlap, the total transfer rates must be modified to account for correlations between collisional and radiative processes. For a broad-band radiation field the modified rates have a simple physical interpretation. In the case of a narrow-band field the overlapping events may cause new coherences to appear and interpretation of the modified 'rates' is more complicated.
Physics of Intracellular Organization in Bacteria.
Wingreen, Ned S; Huang, Kerwyn Casey
2015-01-01
With the realization that bacteria achieve exquisite levels of spatiotemporal organization has come the challenge of discovering the underlying mechanisms. In this review, we describe three classes of such mechanisms, each of which has physical origins: the use of landmarks, the creation of higher-order structures that enable geometric sensing, and the emergence of length scales from systems of chemical reactions coupled to diffusion. We then examine the diversity of geometric cues that exist even in cells with relatively simple geometries, and end by discussing both new technologies that could drive further discovery and the implications of our current knowledge for the behavior, fitness, and evolution of bacteria. The organizational strategies described here are employed in a wide variety of systems and in species across all kingdoms of life; in many ways they provide a general blueprint for organizing the building blocks of life.
ERIC Educational Resources Information Center
Murket, A. J.
1979-01-01
Develops a simple model of radio wave propagation and illustrates how basic physical concepts such as refractive index, refraction, reflection and dispersion can be applied to a situation normally not met in introductory physics courses. (Author/GA)
MHD shocks in coronal mass ejections
NASA Technical Reports Server (NTRS)
Steinolfson, R. S.
1991-01-01
The primary objective of this research program is the study of the magnetohydrodynamic (MHD) shocks and nonlinear simple waves produced as a result of the interaction of ejected lower coronal plasma with the ambient corona. The types of shocks and nonlinear simple waves produced for representative coronal conditions and disturbance velocities were determined. The wave system and the interactions between the ejecta and ambient corona were studied using both analytic theory and numerical solutions of the time-dependent, nonlinear MHD equations. Observations from the SMM coronagraph/polarimeter provided both guidance and motivation and are used extensively in evaluating the results. As a natural consequence of the comparisons with the data, the simulations assisted in better understanding the physical interactions in coronal mass ejections (CME's).
NASA Astrophysics Data System (ADS)
Zhang, Weijia; Fuller, Robert G.
1998-05-01
A demographic database for the 139 Nobel prize winners in physics from 1901 to 1990 has been created from a variety of sources. The results of our statistical study are discussed in the light of the implications for physics teaching.
Taking a Swat at Physics with a Ping-Pong Paddle.
ERIC Educational Resources Information Center
Graney, Chris M.
1994-01-01
A professor of physics discusses ideas on how to use physics to improve your ping-pong game. Describes how basic physics was used to analyze a simple ball-paddle collision problem and provide students with insight on the application of physics to a fun and real life situation. (ZWH)
An Amusement Park Physics Competition
ERIC Educational Resources Information Center
Moll, Rachel F.
2010-01-01
Amusement park physics is a popular way to reinforce physics concepts and to motivate physics learners. This article describes a novel physics competition where students use simple tools to take amusement park ride measurements and use the data to answer challenging exam questions. Research into the impact of participating in the competition…
Dynamics of non-Markovian exclusion processes
NASA Astrophysics Data System (ADS)
Khoromskaia, Diana; Harris, Rosemary J.; Grosskinsky, Stefan
2014-12-01
Driven diffusive systems are often used as simple discrete models of collective transport phenomena in physics, biology or social sciences. Restricting attention to one-dimensional geometries, the asymmetric simple exclusion process (ASEP) plays a paradigmatic role to describe noise-activated driven motion of entities subject to an excluded volume interaction and many variants have been studied in recent years. While in the standard ASEP the noise is Poissonian and the process is therefore Markovian, in many applications the statistics of the activating noise has a non-standard distribution with possible memory effects resulting from internal degrees of freedom or external sources. This leads to temporal correlations and can significantly affect the shape of the current-density relation as has been studied recently for a number of scenarios. In this paper we report a general framework to derive the fundamental diagram of ASEPs driven by non-Poissonian noise by using effectively only two simple quantities, viz., the mean residual lifetime of the jump distribution and a suitably defined temporal correlation length. We corroborate our results by detailed numerical studies for various noise statistics under periodic boundary conditions and discuss how our approach can be applied to more general driven diffusive systems.
Simple force feedback for small virtual environments
NASA Astrophysics Data System (ADS)
Schiefele, Jens; Albert, Oliver; van Lier, Volker; Huschka, Carsten
1998-08-01
In today's civil flight training simulators only the cockpit and all its interaction devices exist as physical mockups. All other elements such as flight behavior, motion, sound, and the visual system are virtual. As an extension to this approach `Virtual Flight Simulation' tries to subsidize the cockpit mockup by a 3D computer generated image. The complete cockpit including the exterior view is displayed on a Head Mounted Display (HMD), a BOOM, or a Cave Animated Virtual Environment. In most applications a dataglove or virtual pointers are used as input devices. A basic problem of such a Virtual Cockpit simulation is missing force feedback. A pilot cannot touch and feel buttons, knobs, dials, etc. he tries to manipulate. As a result, it is very difficult to generate realistic inputs into VC systems. `Seating Bucks' are used in automotive industry to overcome the problem of missing force feedback. Only a seat, steering wheel, pedal, stick shift, and radio panel are physically available. All other geometry is virtual and therefore untouchable but visible in the output device. In extension to this concept a `Seating Buck' for commercial transport aircraft cockpits was developed. Pilot seat, side stick, pedals, thrust-levers, and flaps lever are physically available. All other panels are simulated by simple flat plastic panels. They are located at the same location as their real counterparts only lacking the real input devices. A pilot sees the entire photorealistic cockpit in a HMD as 3D geometry but can only touch the physical parts and plastic panels. In order to determine task performance with the developed Seating Buck, a test series was conducted. Users press buttons, adapt dials, and turn knobs. In a first test, a complete virtual environment was used. The second setting had a plastic panel replacing all input devices. Finally, as cross reference the participants had to repeat the test with a complete physical mockup of the input devices. All panels and physical devices can be easily relocated to simulate a different type of cockpit. Maximal 30 minutes are needed for a complete adaptation. So far, an Airbus A340 and a generic cockpit are supported.
Prodinger, Birgit; Reinhardt, Jan D; Selb, Melissa; Stucki, Gerold; Yan, Tiebin; Zhang, Xia; Li, Jianan
2016-06-13
A national, multi-phase, consensus process to develop simple, intuitive descriptions of International Classification of Functioning, Disability and Health (ICF) categories contained in the ICF Generic and Rehabilitation Sets, with the aim of enhancing the utility of the ICF in routine clinical practice, is presented in this study. A multi-stage, national, consensus process was conducted. The consensus process involved 3 expert groups and consisted of a preparatory phase, a consensus conference with consecutive working groups and 3 voting rounds (votes A, B and C), followed by an implementation phase. In the consensus conference, participants first voted on whether they agreed that an initially developed proposal for simple, intuitive descriptions of an ICF category was in fact simple and intuitive. The consensus conference was held in August 2014 in mainland China. Twenty-one people with a background in physical medicine and rehabilitation participated in the consensus process. Four ICF categories achieved consensus in vote A, 16 in vote B, and 8 in vote C. This process can be seen as part of a larger effort towards the system-wide implementation of the ICF in routine clinical and rehabilitation practice to allow for the regular and comprehensive evaluation of health outcomes most relevant for the monitoring of quality of care.
Anharmonic effects in simple physical models: introducing undergraduates to nonlinearity
NASA Astrophysics Data System (ADS)
Christian, J. M.
2017-09-01
Given the pervasive character of nonlinearity throughout the physical universe, a case is made for introducing undergraduate students to its consequences and signatures earlier rather than later. The dynamics of two well-known systems—a spring and a pendulum—are reviewed when the standard textbook linearising assumptions are relaxed. Some qualitative effects of nonlinearity can be anticipated from symmetry (e.g., inspection of potential energy functions), and further physical insight gained by applying a simple successive-approximation method that might be taught in parallel with courses on classical mechanics, ordinary differential equations, and computational physics. We conclude with a survey of how these ideas have been deployed on programmes at a UK university.
A Scalable and Dynamic Testbed for Conducting Penetration-Test Training in a Laboratory Environment
2015-03-01
entry point through which to execute a payload to accomplish a higher-level goal: executing arbitrary code, escalating privileges , pivoting...Mobile Ad Hoc Network Emulator (EMANE)26 can emulate the entire network stack (physical to application -layer protocols). 2. Methodology To build a...to host Windows, Linux, MacOS, Android , and other operating systems without much effort. 4 E. A simple and automatic “restore” function: Many
2012-10-21
PBIEDS ). Coupled with recent suicide bomb events in unstable regions of Southwest Asia and Africa, long-standing Urgent Operation Need Statements for...explosives and shrapnel (metal screws, bolts, ball bearings). A PBIED detection capability is critically needed not only for operations during open...produce magnetic signals above a certain threshold. We have developed a simple and robust multi- modal sensing system to detect PBIEDs and metal
Method and system for automated on-chip material and structural certification of MEMS devices
Sinclair, Michael B.; DeBoer, Maarten P.; Smith, Norman F.; Jensen, Brian D.; Miller, Samuel L.
2003-05-20
A new approach toward MEMS quality control and materials characterization is provided by a combined test structure measurement and mechanical response modeling approach. Simple test structures are cofabricated with the MEMS devices being produced. These test structures are designed to isolate certain types of physical response, so that measurement of their behavior under applied stress can be easily interpreted as quality control and material properties information.
Preparation of Greenberger-Horne-Zeilinger Entangled States in the Atom-Cavity Systems
NASA Astrophysics Data System (ADS)
Xu, Nan
2018-02-01
We present a new simple scheme for the preparation of Greenberger-Horne-Zeilinger maximally entangled states of two two-level atoms. The distinct feature of the effective Hamiltonian is that there is no energy exchange between the atoms and the cavity.. Thus the scheme is insensitive to the effect of cavity field and the atom radiation.This protocol may be realizable in the realm of current physical experiment.
A one-parametric formula relating the frequencies of twin-peak quasi-periodic oscillations
NASA Astrophysics Data System (ADS)
Török, Gabriel; Goluchová, Kateřina; Šrámková, Eva; Horák, Jiří; Bakala, Pavel; Urbanec, Martin
2017-12-01
Timing analysis of X-ray flux in more than a dozen low-mass X-ray binary systems containing a neutron star reveals remarkable correlations between frequencies of two characteristic peaks present in the power-density spectra. We find a simple analytic relation that well reproduces all these individual correlations. We link this relation to a physical model which involves accretion rate modulation caused by an oscillating torus.
Adiabatic dynamics of one-dimensional classical Hamiltonian dissipative systems
NASA Astrophysics Data System (ADS)
Pritula, G. M.; Petrenko, E. V.; Usatenko, O. V.
2018-02-01
A linearized plane pendulum with the slowly varying mass and length of string and the suspension point moving at a slowly varying speed is presented as an example of a simple 1D mechanical system described by the generalized harmonic oscillator equation, which is a basic model in discussion of the adiabatic dynamics and geometric phase. The expression for the pendulum geometric phase is obtained by three different methods. The pendulum is shown to be canonically equivalent to the damped harmonic oscillator. This supports the mathematical conclusion, not widely accepted in physical community, of no difference between the dissipative and Hamiltonian 1D systems.
Upper bound on the efficiency of certain nonimaging concentrators in the physical-optics model
NASA Astrophysics Data System (ADS)
Welford, W. T.; Winston, R.
1982-09-01
Upper bounds on the performance of nonimaging concentrators are obtained within the framework of scalar-wave theory by using a simple approach to avoid complex calculations on multiple phase fronts. The approach consists in treating a theoretically perfect image-forming device and postulating that no non-image-forming concentrator can have a better performance than such an ideal image-forming system. The performance of such a system can be calculated according to wave theory, and this will provide, in accordance with the postulate, upper bounds on the performance of nonimaging systems. The method is demonstrated for a two-dimensional compound parabolic concentrator.
Simple Experiments for Teaching Air Pressure
ERIC Educational Resources Information Center
Shamsipour, Gholamreza
2006-01-01
Everyone who teaches physics knows very well that sometimes a simple device or experiment can help to make a concept clear. In this paper, inspired by "The Jumping Pencil" by Martin Gardner, I will discuss a simple demonstration device that can be used to start the study of air pressure.
NASA Astrophysics Data System (ADS)
Gac, J. M.; Żebrowski, J. J.
A chaotic transition occurs when a continuous change of one of the parameters of the system causes a discontinuous change in the properties of the chaotic attractor of the system. Such phenomena are present in many dynamical systems, in which a chaotic behavior occurs. The best known of these transitions are: the period-doubling bifurcation cascade, intermittency and crises. The effect of dichotomous Markov noise (DMN) on the properties of systems with chaotic transitions is discussed. DMN is a very simple two-valued stochastic process, with constant transition rates between the two states. In spite of its simplicity, this kind of noise is a very powerful tool to describe various phenomena present in many physical, chemical or biological systems. Many interesting phenomena induced by DMN are known. However, there is no research on the effect of this kind of noise on intermittency or crises. We present the change of the mean laminar phase length and of laminar phase length distribution caused by DMN modulating the parameters of a system with intermittency and the modification of the mean life time on the pre-crisis attractor in the case of a boundary crisis. The results obtained analytically are compared with numerical simulations for several simple dynamical systems.
Nanopore Current Oscillations: Nonlinear Dynamics on the Nanoscale.
Hyland, Brittany; Siwy, Zuzanna S; Martens, Craig C
2015-05-21
In this Letter, we describe theoretical modeling of an experimentally realized nanoscale system that exhibits the general universal behavior of a nonlinear dynamical system. In particular, we consider the description of voltage-induced current fluctuations through a single nanopore from the perspective of nonlinear dynamics. We briefly review the experimental system and its behavior observed and then present a simple phenomenological nonlinear model that reproduces the qualitative behavior of the experimental data. The model consists of a two-dimensional deterministic nonlinear bistable oscillator experiencing both dissipation and random noise. The multidimensionality of the model and the interplay between deterministic and stochastic forces are both required to obtain a qualitatively accurate description of the physical system.
Quadrocopter Control Design and Flight Operation
NASA Technical Reports Server (NTRS)
Karwoski, Katherine
2011-01-01
A limiting factor in control system design and analysis for spacecraft is the inability to physically test new algorithms quickly and cheaply. Test flights of space vehicles are costly and take much preparation. As such, EV41 recently acquired a small research quadrocopter that has the ability to be a test bed for new control systems. This project focused on learning how to operate, fly, and maintain the quadrocopter, as well as developing and testing protocols for its use. In parallel to this effort, developing a model in Simulink facilitated the design and analysis of simple control systems for the quadrocopter. Software provided by the manufacturer enabled testing of the Simulink control system on the vehicle.
Applying New Network Security Technologies to SCADA Systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurd, Steven A; Stamp, Jason Edwin; Duggan, David P
2006-11-01
Supervisory Control and Data Acquisition (SCADA) systems for automation are very important for critical infrastructure and manufacturing operations. They have been implemented to work in a number of physical environments using a variety of hardware, software, networking protocols, and communications technologies, often before security issues became of paramount concern. To offer solutions to security shortcomings in the short/medium term, this project was to identify technologies used to secure "traditional" IT networks and systems, and then assess their efficacy with respect to SCADA systems. These proposed solutions must be relatively simple to implement, reliable, and acceptable to SCADA owners and operators.more » 4This page intentionally left blank.« less
Action at a Distance in the Cell's Nucleus
NASA Astrophysics Data System (ADS)
Kondev, Jane
Various functions performed by chromosomes involve long-range communication between DNA sequences that are tens of thousands of bases apart along the genome, and microns apart in the nucleus. In this talk I will discuss experiments and theory relating to two distinct modes of long-range communication in the nucleus, chromosome looping and protein hopping along the chromosome, both in the context of DNA-break repair in yeast. Yeast is an excellent model system for studies that link chromosome conformations to their function as there is ample experimental evidence that yeast chromosome conformations are well described by a simple, random-walk polymer model. Using a combination of polymer physics theory and experiments on yeast cells, I will demonstrate that loss of polymer entropy due to chromosome looping is the driving force for homology search during repair of broken DNA by homologous recombination. I will also discuss the spread of histone modifications along the chromosome and away from the DNA break point in the context of simple physics models based on chromosome looping and kinase hopping, and show how combining physics theory and cell-biology experiment can be used to dissect the molecular mechanism of the spreading process. These examples demonstrate how combined theoretical and experimental studies can reveal physical principles of long-range communication in the nucleus, which play important roles in regulation of gene expression, DNA recombination, and chromatin modification. This work was supported by the NSF DMR-1206146.
Transport Properties of Complex Oxides: New Ideas and Insights from Theory and Simulation
NASA Astrophysics Data System (ADS)
Benedek, Nicole
Complex oxides are one of the largest and most technologically important materials families. The ABO3 perovskite oxides in particular display an unparalleled variety of physical properties. The microscopic origin of these properties (how they arise from the structure of the material) is often complicated, but in many systems previous research has identified simple guidelines or `rules of thumb' that link structure and chemistry to the physics of interest. For example, the tolerance factor is a simple empirical measure that relates the composition of a perovskite to its tendency to adopt a distorted structure. First-principles calculations have shown that the tendency towards ferroelectricity increases systematically as the tolerance factor of the perovskite decreases. Can we uncover a similar set of simple guidelines to yield new insights into the ionic and thermal transport properties of perovskites? I will discuss recent research from my group on the link between crystal structure and chemistry, soft phonons and ionic transport in a family of layered perovskite oxides, the Ln2NiO4+δ Ruddlesden-Popper phases. In particular, we show how the lattice dynamical properties of these materials (their tendency to undergo certain structural distortions) can be correlated with oxide ion transport properties. Ultimately, we seek new ways to understand the microscopic origins of complex transport processes and to develop first-principles-based design rules for new materials based on our understanding.
A Simple Exploration of Complexity at the Climate-Weather-Social-Conflict Nexus
NASA Astrophysics Data System (ADS)
Shaw, M.
2017-12-01
The conceptualization, exploration, and prediction of interplay between climate, weather, important resources, and social and economic - so political - human behavior is cast, and analyzed, in terms familiar from statistical physics and nonlinear dynamics. A simple threshold toy model is presented which emulates human tendencies to either actively engage in responses deriving, in part, from environmental circumstances or to maintain some semblance of status quo, formulated based on efforts drawn from the sociophysics literature - more specifically vis a vis a model akin to spin glass depictions of human behavior - with threshold/switching of individual and collective dynamics influenced by relatively more detailed weather and land surface model (hydrological) analyses via a land data assimilation system (a custom rendition of the NASA GSFC Land Information System). Parameters relevant to human systems' - e.g., individual and collective switching - sensitivity to hydroclimatology are explored towards investigation of overall system behavior; i.e., fixed points/equilibria, oscillations, and bifurcations of systems composed of human interactions and responses to climate and weather through, e.g., agriculture. We discuss implications in terms of conceivable impacts of climate change and associated natural disasters on socioeconomics, politics, and power transfer, drawing from relatively recent literature concerning human conflict.
1/f Noise in the Simple Genetic Algorithm Applied to a Traveling Salesman Problem
NASA Astrophysics Data System (ADS)
Yamada, Mitsuhiro
Complex dynamical systems are observed in physics, biology, and even economics. Such systems in balance are considered to be in a critical state, and 1/f noise is considered to be a footprint. Complex dynamical systems have also been investigated in the field of evolutionary algorithms inspired by biological evolution. The genetic algorithm (GA) is a well-known evolutionary algorithm in which many individuals interact, and the simplest GA is referred to as the simple GA (SGA). However, the GA has not been examined from the viewpoint of the emergence of 1/f noise. In the present paper, the SGA is applied to a traveling salesman problem in order to investigate the SGA from such a viewpoint. The timecourses of the fitness of the candidate solution were examined. As a result, when the mutation and crossover probabilities were optimal, the system evolved toward a critical state in which the average maximum fitness over all trial runs was maximum. In this situation, the fluctuation of the fitness of the candidate solution resulted in the 1/f power spectrum, and the dynamics of the system had no intrinsic time or length scale.
Evolutionary Design of Controlled Structures
NASA Technical Reports Server (NTRS)
Masters, Brett P.; Crawley, Edward F.
1997-01-01
Basic physical concepts of structural delay and transmissibility are provided for simple rod and beam structures. Investigations show the sensitivity of these concepts to differing controlled-structures variables, and to rational system modeling effects. An evolutionary controls/structures design method is developed. The basis of the method is an accurate model formulation for dynamic compensator optimization and Genetic Algorithm based updating of sensor/actuator placement and structural attributes. One and three dimensional examples from the literature are used to validate the method. Frequency domain interpretation of these controlled structure systems provide physical insight as to how the objective is optimized and consequently what is important in the objective. Several disturbance rejection type controls-structures systems are optimized for a stellar interferometer spacecraft application. The interferometric designs include closed loop tracking optics. Designs are generated for differing structural aspect ratios, differing disturbance attributes, and differing sensor selections. Physical limitations in achieving performance are given in terms of average system transfer function gains and system phase loss. A spacecraft-like optical interferometry system is investigated experimentally over several different optimized controlled structures configurations. Configurations represent common and not-so-common approaches to mitigating pathlength errors induced by disturbances of two different spectra. Results show that an optimized controlled structure for low frequency broadband disturbances achieves modest performance gains over a mass equivalent regular structure, while an optimized structure for high frequency narrow band disturbances is four times better in terms of root-mean-square pathlength. These results are predictable given the nature of the physical system and the optimization design variables. Fundamental limits on controlled performance are discussed based on the measured and fit average system transfer function gains and system phase loss.
Using high speed smartphone cameras and video analysis techniques to teach mechanical wave physics
NASA Astrophysics Data System (ADS)
Bonato, Jacopo; Gratton, Luigi M.; Onorato, Pasquale; Oss, Stefano
2017-07-01
We propose the use of smartphone-based slow-motion video analysis techniques as a valuable tool for investigating physics concepts ruling mechanical wave propagation. The simple experimental activities presented here, suitable for both high school and undergraduate students, allows one to measure, in a simple yet rigorous way, the speed of pulses along a spring and the period of transverse standing waves generated in the same spring. These experiments can be helpful in addressing several relevant concepts about the physics of mechanical waves and in overcoming some of the typical student misconceptions in this same field.
An integrated strategy for the planetary sciences: 1995 - 2010
NASA Technical Reports Server (NTRS)
1994-01-01
In 1992, the National Research Council's Space Studies Board charged its Committee on Planetary and Lunar Exploration (COMPLEX) to: (1) summarize current understanding of the planets and the solar system; (2) pose the most significant scientific questions that remain; and (3) establish the priorities for scientific exploration of the planets for the period from 1995 to 2010. The broad scientific goals of solar system exploration include: (1) understanding how physical and chemical processes determine the major characteristics of the planets, and thereby help us to understand the operation of Earth; (2) learning about how planetary systems originate and evolve; (3) determining how life developed in the solar system, particularly on Earth, and in what ways life modifies planetary environments; and (4) discovering how relatively simple, basic laws of physics and chemistry can lead to the diverse phenomena observed in complex systems. COMPLEX maintains that the most useful new programs to emphasize in the period from 1995 to 2010 are detailed investigations of comets, Mars, and Jupiter and an intensive search for, and characterization of, extrasolar planets.
High sensitivity test of the Pauli Exclusion Principle for electrons with X-ray spectroscopy (VIP2)
NASA Astrophysics Data System (ADS)
Marton, Johann; VIP2 Collaboration
2015-10-01
The Pauli Exclusion Principle (PEP) is one of the most fundamental rules in physics and it has various important consequences ranging from atomic and subatomic systems to the stability of matter and stellar objects like neutron stars. Due to many observations This rule must be valid to an extremely high degree and consequently no violations were found so far. On the other hand a simple explanation of PEP is still missing. Many experimental investigations based on different assumptions were performed to search for a tiny PEP violation in various systems. The experiment VIP2 at the Gran Sasso underground laboratory (LNGS of INFN) is designed to test the PEP for electrons with high sensitivity by searching for forbidden X-ray transitions in copper atoms. This experiment aims to improve the PEP violation limit obtained with our preceding experiment VIP by orders of magnitude. The experimental method, comparison of the VIP result with different PEP searches and the present status of the VIP2 experiment will be presented. We acknowledge the support from the: HadronPhysics FP6 (506078), HadronPhysics2 FP7 (227431), HadronPhysics3 (283286) projects, EU COST Action 1006 (Fundamental Problems in Quantum Physics) and the Austrian Science Fund (FWF).
Physical Education Curriculum Priorities: Evidence for Education and Skillfulness
ERIC Educational Resources Information Center
Ennis, Catherine D.
2011-01-01
One question facing kinesiologists today is how to implement findings from research into society, in this case, physical education. In this paper I examine the role of a balanced approach to educational physical education in promoting physical activity. I argue that limiting physical education to simple tasks that encourage students to workout at…
Physics of the mechanical toy Gee-Haw Whammy Diddle.
Marek, Martin; Badin, Matej; Plesch, Martin
2018-02-27
Gee-Haw Whammy Diddle is a seemingly simple mechanical toy consisting of a wooden stick and a second stick that is made up of a series of notches with a propeller at its end. When the wooden stick is pulled over the notches, the propeller starts to rotate. Despite its simplicity, physical principles governing the motion of the stick and the propeller are rather complicated and interesting. Here we provide a thorough analysis of the system and parameters influencing the motion. We show that contrary to the results published on this topic so far, neither elliptic motion of the stick nor frequency synchronization is needed for starting a stable motion of the propeller.
Probabilistic short-term forecasting of eruption rate at Kīlauea Volcano using a physics-based model
NASA Astrophysics Data System (ADS)
Anderson, K. R.
2016-12-01
Deterministic models of volcanic eruptions yield predictions of future activity conditioned on uncertainty in the current state of the system. Physics-based eruption models are well-suited for deterministic forecasting as they can relate magma physics with a wide range of observations. Yet, physics-based eruption forecasting is strongly limited by an inadequate understanding of volcanic systems, and the need for eruption models to be computationally tractable. At Kīlauea Volcano, Hawaii, episodic depressurization-pressurization cycles of the magma system generate correlated, quasi-exponential variations in ground deformation and surface height of the active summit lava lake. Deflations are associated with reductions in eruption rate, or even brief eruptive pauses, and thus partly control lava flow advance rates and associated hazard. Because of the relatively well-understood nature of Kīlauea's shallow magma plumbing system, and because more than 600 of these events have been recorded to date, they offer a unique opportunity to refine a physics-based effusive eruption forecasting approach and apply it to lava eruption rates over short (hours to days) time periods. A simple physical model of the volcano ascribes observed data to temporary reductions in magma supply to an elastic reservoir filled with compressible magma. This model can be used to predict the evolution of an ongoing event, but because the mechanism that triggers events is unknown, event durations are modeled stochastically from previous observations. A Bayesian approach incorporates diverse data sets and prior information to simultaneously estimate uncertain model parameters and future states of the system. Forecasts take the form of probability distributions for eruption rate or cumulative erupted volume at some future time. Results demonstrate the significant uncertainties that still remain even for short-term eruption forecasting at a well-monitored volcano - but also the value of a physics-based, mixed deterministic-probabilistic eruption forecasting approach in reducing and quantifying these uncertainties.
Felzer, Torsten; Beckerle, Philipp; Rinderknecht, Stephan; Nordmann, Rainer
2010-07-01
The main objective of this article is to present an alternative method of interacting with a computer which empowers persons with very severe motor impairments to leverage retained capabilities in order to independently control parts of their daily lives. The input strategy is based on tiny intentional contractions of a single muscle of choice (requiring a minimum of physical contribution only) which are used as selection markers in the context of scanning. To demonstrate the usefulness of the idea, two applications (combined in a single software system) have been implemented (initially): a module turning the PC into a Universal Remote Control and a Text-To-Speech module. The system has finally been supplemented by a third application offering to effortlessly make telephone calls. A simple experiment requesting the speed of the scanning scheme shows that the theoretical concept really works. Furthermore, the usability by novice users from the target population is proven in a user study focusing on the telephony application. It is concluded that the approach has a large potential for persons with severe physical disabilities, meaning that the resulting system is indeed able to improve its users' quality of life.
Emergent dynamic structures and statistical law in spherical lattice gas automata.
Yao, Zhenwei
2017-12-01
Various lattice gas automata have been proposed in the past decades to simulate physics and address a host of problems on collective dynamics arising in diverse fields. In this work, we employ the lattice gas model defined on the sphere to investigate the curvature-driven dynamic structures and analyze the statistical behaviors in equilibrium. Under the simple propagation and collision rules, we show that the uniform collective movement of the particles on the sphere is geometrically frustrated, leading to several nonequilibrium dynamic structures not found in the planar lattice, such as the emergent bubble and vortex structures. With the accumulation of the collision effect, the system ultimately reaches equilibrium in the sense that the distribution of the coarse-grained speed approaches the two-dimensional Maxwell-Boltzmann distribution despite the population fluctuations in the coarse-grained cells. The emergent regularity in the statistical behavior of the system is rationalized by mapping our system to a generalized random walk model. This work demonstrates the capability of the spherical lattice gas automaton in revealing the lattice-guided dynamic structures and simulating the equilibrium physics. It suggests the promising possibility of using lattice gas automata defined on various curved surfaces to explore geometrically driven nonequilibrium physics.
Emergent dynamic structures and statistical law in spherical lattice gas automata
NASA Astrophysics Data System (ADS)
Yao, Zhenwei
2017-12-01
Various lattice gas automata have been proposed in the past decades to simulate physics and address a host of problems on collective dynamics arising in diverse fields. In this work, we employ the lattice gas model defined on the sphere to investigate the curvature-driven dynamic structures and analyze the statistical behaviors in equilibrium. Under the simple propagation and collision rules, we show that the uniform collective movement of the particles on the sphere is geometrically frustrated, leading to several nonequilibrium dynamic structures not found in the planar lattice, such as the emergent bubble and vortex structures. With the accumulation of the collision effect, the system ultimately reaches equilibrium in the sense that the distribution of the coarse-grained speed approaches the two-dimensional Maxwell-Boltzmann distribution despite the population fluctuations in the coarse-grained cells. The emergent regularity in the statistical behavior of the system is rationalized by mapping our system to a generalized random walk model. This work demonstrates the capability of the spherical lattice gas automaton in revealing the lattice-guided dynamic structures and simulating the equilibrium physics. It suggests the promising possibility of using lattice gas automata defined on various curved surfaces to explore geometrically driven nonequilibrium physics.
Iberall, A. S.
1985-01-01
A groundwork is laid for a formulation of the modern human social system as a field continuum. As in a simple material physical field, the independent implied relationships of materials or processes in flux have to be based on local conservations of mass, energy, and momentum. In complex fields, the transport fluctuations of momentum are transformed into action modes (e.g., [unk] pdq = ΣHi = H, a characteristic quantum of action over a characteristic cycle time). In complex living systems, a fourth local conservation of population number, the demographic variable, has to be added as a renormalized variable. Modern man, settled in place via agriculture, urbanized, and engaged largely in trade and war, invents a fifth local conservation—value-in-trade, the economic variable. The potentials that drive these five fluxes are also enumerated. Among the more evident external and internal physical-chemical potentials, the driving potentials include a sheaf of internal potential-like components that represent the command-control system emergent as politics. In toto, culture represents the social solvent with the main processes of economics and politics being driven by a social pressure. PMID:16593594
Technology to Reduce Hypoglycemia.
Yeoh, Ester; Choudhary, Pratik
2015-07-01
Hypoglycemia is a major barrier toward achieving glycemic targets and is associated with significant morbidity (both psychological and physical) and mortality. This article reviews technological strategies, from simple to more advanced technologies, which may help prevent or mitigate exposure to hypoglycemia. More efficient insulin delivery systems, bolus advisor calculators, data downloads providing information on glucose trends, continuous glucose monitoring with alarms warning of hypoglycemia, predictive algorithms, and finally closed loop insulin delivery systems are reviewed. The building blocks to correct use and interpretation of this range of available technology require patient education and appropriate patient selection. © 2015 Diabetes Technology Society.
NASA Technical Reports Server (NTRS)
Rajagopalan, J.; Xing, K.; Guo, Y.; Lee, F. C.; Manners, Bruce
1996-01-01
A simple, application-oriented, transfer function model of paralleled converters employing Master-Slave Current-sharing (MSC) control is developed. Dynamically, the Master converter retains its original design characteristics; all the Slave converters are forced to depart significantly from their original design characteristics into current-controlled current sources. Five distinct loop gains to assess system stability and performance are identified and their physical significance is described. A design methodology for the current share compensator is presented. The effect of this current sharing scheme on 'system output impedance' is analyzed.
Low Order Modeling Tools for Preliminary Pressure Gain Combustion Benefits Analyses
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.
2012-01-01
Pressure gain combustion (PGC) offers the promise of higher thermodynamic cycle efficiency and greater specific power in propulsion and power systems. This presentation describes a model, developed under a cooperative agreement between NASA and AFRL, for preliminarily assessing the performance enhancement and preliminary size requirements of PGC components either as stand-alone thrust producers or coupled with surrounding turbomachinery. The model is implemented in the Numerical Propulsion Simulation System (NPSS) environment allowing various configurations to be examined at numerous operating points. The validated model is simple, yet physics-based. It executes quickly in NPSS, yet produces realistic results.
Sub-millikelvin stabilization of a closed cycle cryocooler.
Dubuis, Guy; He, Xi; Božović, Ivan
2014-10-01
Intrinsic temperature oscillations (with the amplitude up to 1 K) of a closed cycle cryocooler are stabilized by a simple thermal damping system. It employs three different materials with different thermal conductivity and specific heat at various temperatures. The amplitude of oscillations of the sample temperature is reduced to less than 1 mK, in the temperature range from 4 K to 300 K, while the cooling power is virtually undiminished. The damping system is small, inexpensive, can be retrofitted to most existing closed cycle cryocoolers, and may improve measurements of any temperature-sensitive physics properties.
A Hilbert Space Representation of Generalized Observables and Measurement Processes in the ESR Model
NASA Astrophysics Data System (ADS)
Sozzo, Sandro; Garola, Claudio
2010-12-01
The extended semantic realism ( ESR) model recently worked out by one of the authors embodies the mathematical formalism of standard (Hilbert space) quantum mechanics in a noncontextual framework, reinterpreting quantum probabilities as conditional instead of absolute. We provide here a Hilbert space representation of the generalized observables introduced by the ESR model that satisfy a simple physical condition, propose a generalization of the projection postulate, and suggest a possible mathematical description of the measurement process in terms of evolution of the compound system made up of the measured system and the measuring apparatus.
Sub-millikelvin stabilization of a closed cycle cryocooler
Dubuis, Guy; He, Xi; Božović, Ivan
2014-10-03
In this study, intrinsic temperature oscillations (with the amplitude up to 1 K) of a closed cycle cryocooler are stabilized by a simple thermal damping system. It employs three different materials with different thermal conductivity and capacity at various temperatures. The amplitude of oscillations of the sample temperature is reduced to less than 1 mK, in the temperature range from 4 K to 300 K, while the cooling power is virtually undiminished. The damping system is small, inexpensive, can be retrofitted to most existing closed cycle cryocoolers, and may improve measurements of any temperature-sensitive physics properties.
One dimensional two-body collisions experiment based on LabVIEW interface with Arduino
NASA Astrophysics Data System (ADS)
Saphet, Parinya; Tong-on, Anusorn; Thepnurat, Meechai
2017-09-01
The purpose of this work is to build a physics lab apparatus that is modern, low-cost and simple. In one dimensional two-body collisions experiment, we used the Arduino UNO R3 as a data acquisition system which was controlled by LabVIEW program. The photogate sensors were designed using LED and LDR to measure position as a function of the time. Aluminium frame houseware and blower were used for the air track system. In both totally inelastic and elastic collision experiments, the results of momentum and energy conservation are in good agreement with the theoretical calculations.
Learn about Physical Science: Simple Machines. [CD-ROM].
ERIC Educational Resources Information Center
2000
This CD-ROM, designed for students in grades K-2, explores the world of simple machines. It allows students to delve into the mechanical world and learn the ways in which simple machines make work easier. Animated demonstrations are provided of the lever, pulley, wheel, screw, wedge, and inclined plane. Activities include practical matching and…
Fun with Physics in the Elementary School.
ERIC Educational Resources Information Center
Ediger, Marlow
Primary grade pupils can become fascinated with simple machines. This paper suggests that teachers have simple machines in the classroom for a unit of study. It proposes some guidelines to create a unit of study for six simple machines that include the fulcrum, inclined plane, pulley, wheel and axle, wedge, and screw. Friction, gravity, force, and…
Everyday Engineering: What Makes a Bic Click?
ERIC Educational Resources Information Center
Moyer, Richard; Everett, Susan
2009-01-01
The ballpoint pen is an ideal example of simple engineering that we use everyday. But is it really so simple? The ballpoint pen is a remarkable combination of technology and science. Its operation uses several scientific principles related to chemistry and physics, such as properties of liquids and simple machines. They represent significant…
ERIC Educational Resources Information Center
Herald, Christine
2010-01-01
During the month of May, the author's eighth-grade physical science students study the six simple machines through hands-on activities, reading assignments, videos, and notes. At the end of the month, they can easily identify the six types of simple machine: inclined plane, wheel and axle, pulley, screw, wedge, and lever. To conclude this unit,…
A system for intelligent teleoperation research
NASA Technical Reports Server (NTRS)
Orlando, N. E.
1983-01-01
The Automation Technology Branch of NASA Langley Research Center is developing a research capability in the field of artificial intelligence, particularly as applicable in teleoperator/robotics development for remote space operations. As a testbed for experimentation in these areas, a system concept has been developed and is being implemented. This system termed DAISIE (Distributed Artificially Intelligent System for Interacting with the Environment), interfaces the key processes of perception, reasoning, and manipulation by linking hardware sensors and manipulators to a modular artificial intelligence (AI) software system in a hierarchical control structure. Verification experiments have been performed: one experiment used a blocksworld database and planner embedded in the DAISIE system to intelligently manipulate a simple physical environment; the other experiment implemented a joint-space collision avoidance algorithm. Continued system development is planned.
NASA Technical Reports Server (NTRS)
Economos, A. C.; Miquel, J.
1979-01-01
A simple physiological model of mortality kinetics is used to assess the intuitive concept that the aging rates of populations are proportional to their mortality rates. It is assumed that the vitality of an individual can be expressed as a simple summation of the weighted functional capacities of its organs and homeostatic systems that are indispensable for survival. It is shown that the mortality kinetics of a population can be derived by a linear transformation of the frequency distribution of vitality, assuming a uniform constant rate of decline of the physiological functions. A simple comparison of two populations is not possible when they have different vitality frequency distributions. Analysis of the data using the model suggests that the differences in decline of survivorship with age between the military pilot population, a medically insured population, and the control population can be accounted for by the effect of physical selection on the vitality frequency distribution of the screened populations.
The structure of tropical forests and sphere packings
Jahn, Markus Wilhelm; Dobner, Hans-Jürgen; Wiegand, Thorsten; Huth, Andreas
2015-01-01
The search for simple principles underlying the complex architecture of ecological communities such as forests still challenges ecological theorists. We use tree diameter distributions—fundamental for deriving other forest attributes—to describe the structure of tropical forests. Here we argue that tree diameter distributions of natural tropical forests can be explained by stochastic packing of tree crowns representing a forest crown packing system: a method usually used in physics or chemistry. We demonstrate that tree diameter distributions emerge accurately from a surprisingly simple set of principles that include site-specific tree allometries, random placement of trees, competition for space, and mortality. The simple static model also successfully predicted the canopy structure, revealing that most trees in our two studied forests grow up to 30–50 m in height and that the highest packing density of about 60% is reached between the 25- and 40-m height layer. Our approach is an important step toward identifying a minimal set of processes responsible for generating the spatial structure of tropical forests. PMID:26598678
Assured crew return capability Crew Emergency Return Vehicle (CERV) avionics
NASA Technical Reports Server (NTRS)
Myers, Harvey Dean
1990-01-01
The Crew Emergency Return Vehicle (CERV) is being defined to provide Assured Crew Return Capability (ACRC) for Space Station Freedom. The CERV, in providing the standby lifeboat capability, would remain in a dormat mode over long periods of time as would a lifeboat on a ship at sea. The vehicle must be simple, reliable, and constantly available to assure the crew's safety. The CERV must also provide this capability in a cost effective and affordable manner. The CERV Project philosophy of a simple vehicle is to maximize its useability by a physically deconditioned crew. The vehicle reliability goes unquestioned since, when needed, it is the vehicle of last resort. Therefore, its systems and subsystems must be simple, proven, state-of-the-art technology with sufficient redundancy to make it available for use as required for the life of the program. The CERV Project Phase 1'/2 Request for Proposal (RFP) is currently scheduled for release on October 2, 1989. The Phase 1'/2 effort will affirm the existing project requirements or amend and modify them based on a thorough evaluation of the contractor(s) recommendations. The system definition phase, Phase 2, will serve to define CERV systems and subsystems. The current CERV Project schedule has Phase 2 scheduled to begin October 1990. Since a firm CERV avionics design is not in place at this time, the treatment of the CERV avionics complement for the reference configuration is not intended to express a preference with regard to a system or subsystem.
Haeufle, D F B; Günther, M; Wunner, G; Schmitt, S
2014-01-01
In biomechanics and biorobotics, muscles are often associated with reduced movement control effort and simplified control compared to technical actuators. This is based on evidence that the nonlinear muscle properties positively influence movement control. It is, however, open how to quantify the simplicity aspect of control effort and compare it between systems. Physical measures, such as energy consumption, stability, or jerk, have already been applied to compare biological and technical systems. Here a physical measure of control effort based on information entropy is presented. The idea is that control is simpler if a specific movement is generated with less processed sensor information, depending on the control scheme and the physical properties of the systems being compared. By calculating the Shannon information entropy of all sensor signals required for control, an information cost function can be formulated allowing the comparison of models of biological and technical control systems. Exemplarily applied to (bio-)mechanical models of hopping, the method reveals that the required information for generating hopping with a muscle driven by a simple reflex control scheme is only I=32 bits versus I=660 bits with a DC motor and a proportional differential controller. This approach to quantifying control effort captures the simplicity of a control scheme and can be used to compare completely different actuators and control approaches.
NASA Astrophysics Data System (ADS)
Kuusela, Tom A.
2017-09-01
A He-Ne laser is an example of a class A laser, which can be described by a single nonlinear differential equation of the complex electric field. This laser system has only one degree of freedom and is thus inherently stable. A He-Ne laser can be driven to the chaotic condition when a large fraction of the output beam is injected back to the laser. In practice, this can be done simply by adding an external mirror. In this situation, the laser system has infinite degrees of freedom and therefore it can have a chaotic attractor. We show the fundamental laser equations and perform elementary stability analysis. In experiments, the laser intensity variations are measured by a simple photodiode circuit. The laser output intensity time series is studied using nonlinear analysis tools which can be found freely on the internet. The results show that the laser system with feedback has an attractor of a reasonably high dimension and that the maximal Lyapunov exponent is positive, which is clear evidence of chaotic behaviour. The experimental setup and analysis steps are so simple that the studies can even be implemented in the undergraduate physics laboratory.
Students Learning Physics While Lifting Themselves: A Simple Analysis of a Scissors Jack
NASA Astrophysics Data System (ADS)
Haugland, Ole Anton
2017-02-01
Every time I have to jack up my car, I am a bit surprised by how slowly the scissors jack works the higher I raise it, and close to maximum height I need very little force to turn the crank. This agrees well with the principle of simple machines. Since I have to jack up my car at least twice a year to change between winter tires and summer tires, I thought it was time to take a closer look at the physics behind the process. And like most physics teachers, I am always looking for new ideas for my teaching. In this note I will present a few ideas on how a jack can be a topic in physics teaching.
Implementing Computer Based Laboratories
NASA Astrophysics Data System (ADS)
Peterson, David
2001-11-01
Physics students at Francis Marion University will complete several required laboratory exercises utilizing computer-based Vernier probes. The simple pendulum, the acceleration due to gravity, simple harmonic motion, radioactive half lives, and radiation inverse square law experiments will be incorporated into calculus-based and algebra-based physics courses. Assessment of student learning and faculty satisfaction will be carried out by surveys and test results. Cost effectiveness and time effectiveness assessments will be presented. Majors in Computational Physics, Health Physics, Engineering, Chemistry, Mathematics and Biology take these courses, and assessments will be categorized by major. To enhance the computer skills of students enrolled in the courses, MAPLE will be used for further analysis of the data acquired during the experiments. Assessment of these enhancement exercises will also be presented.
A bio-physical basis of mathematics in synaptic function of the nervous system: a theory.
Dempsher, J
1980-01-01
The purpose of this paper is to present a bio-physical basis of mathematics. The essence of the theory is that function in the nervous system is mathematical. The mathematics arises as a result of the interaction of energy (a wave with a precise curvature in space and time) and matter (a molecular or ionic structure with a precise form in space and time). In this interaction, both energy and matter play an active role. That is, the interaction results in a change in form of both energy and matter. There are at least six mathematical operations in a simple synaptic region. It is believed the form of both energy and matter are specific, and their interaction is specific, that is, function in most of the 'mind' and placed where it belongs - in nature and the synaptic regions of the nervous system; it results in both places from a precise interaction between energy (in a precise form) and matter ( in a precise structure).
Exploring Physics with Computer Animation and PhysGL
NASA Astrophysics Data System (ADS)
Bensky, T. J.
2016-10-01
This book shows how the web-based PhysGL programming environment (http://physgl.org) can be used to teach and learn elementary mechanics (physics) using simple coding exercises. The book's theme is that the lessons encountered in such a course can be used to generate physics-based animations, providing students with compelling and self-made visuals to aid their learning. Topics presented are parallel to those found in a traditional physics text, making for straightforward integration into a typical lecture-based physics course. Users will appreciate the ease at which compelling OpenGL-based graphics and animations can be produced using PhysGL, as well as its clean, simple language constructs. The author argues that coding should be a standard part of lower-division STEM courses, and provides many anecdotal experiences and observations, that include observed benefits of the coding work.
NASA Technical Reports Server (NTRS)
Englert, G. W.
1971-01-01
A model of the random walk is formulated to allow a simple computing procedure to replace the difficult problem of solution of the Fokker-Planck equation. The step sizes and probabilities of taking steps in the various directions are expressed in terms of Fokker-Planck coefficients. Application is made to many particle systems with Coulomb interactions. The relaxation of a highly peaked velocity distribution of particles to equilibrium conditions is illustrated.
Direct Visualization of Mechanical Beats by Means of an Oscillating Smartphone
NASA Astrophysics Data System (ADS)
Giménez, Marcos H.; Salinas, Isabel; Monsoriu, Juan A.; Castro-Palacio, Juan C.
2017-10-01
The resonance phenomenon is widely known in physics courses. Qualitatively speaking, resonance takes place in a driven oscillating system whenever the frequency approaches the natural frequency, resulting in maximal oscillatory amplitude. Very closely related to resonance is the phenomenon of mechanical beating, which occurs when the driving and natural frequencies of the system are slightly different. The frequency of the beat is just the difference of the natural and driving frequencies. Beats are very familiar in acoustic systems. There are several works in this journal on visualizing the beats in acoustic systems. For instance, the microphone and the speaker of two mobile devices were used in previous work to analyze the acoustic beats produced by two signals of close frequencies. The formation of beats can also be visualized in mechanical systems, such as a mass-spring system or a double-driven string. Here, the mechanical beats in a smartphone-spring system are directly visualized in a simple way. The frequency of the beats is measured by means of the acceleration sensor of a smartphone, which hangs from a spring attached to a mechanical driver. This laboratory experiment is suitable for both high school and first-year university physics courses.
How Computer-Assisted Teaching in Physics Can Enhance Student Learning
ERIC Educational Resources Information Center
Karamustafaoglu, O.
2012-01-01
Simple harmonic motion (SHM) is an important topic for physics or science students and has wide applications all over the world. Computer simulations are applications of special interest in physics teaching because they support powerful modeling environments involving physics concepts. This article is aimed to compare the effect of…
Containment wells to form hydraulic barriers along site boundaries.
Vo, D; Ramamurthy, A S; Qu, J; Zhao, X P
2008-12-15
In the field, aquifer remediation methods include pump and treat procedures based on hydraulic control systems. They are used to reduce the level of residual contamination present in the soil and soil pores of aquifers. Often, physical barriers are erected along the boundaries of the target (aquifer) site to reduce the leakage of the released soil contaminant to the surrounding regions. Physical barriers are expensive to build and dismantle. Alternatively, based on simple hydraulic principles, containment wells or image wells injecting clear water can be designed and built to provide hydraulic barriers along the contaminated site boundaries. For brevity, only one pattern of containment well system that is very effective is presented in detail. The study briefly reports about the method of erecting a hydraulic barrier around a contaminated region based on the simple hydraulic principle of images. During the clean-up period, hydraulic barriers can considerably reduce the leakage of the released contaminant from the target site to surrounding pristine regions. Containment wells facilitate the formation of hydraulic barriers. Hence, they control the movement of contaminants away from the site that is being remedied. However, these wells come into play, only when the pumping operation for cleaning up the site is active. After operation, they can be filled with soil to permit the natural ground water movement. They can also be used as monitoring wells.
NASA Astrophysics Data System (ADS)
Di Capua, R.; Offi, F.; Fontana, F.
2014-07-01
Exponential decay is a prototypical functional behaviour for many physical phenomena, and therefore it deserves great attention in physics courses at an academic level. The absorption of the electromagnetic radiation that propagates in a dissipative medium provides an example of the decay of light intensity, as stated by the law of Lambert-Beer-Bourguer. We devised a very simple experiment to check this law. The experimental setup, its realization, and the data analysis of the experiment are definitely simple. Our main goal was to create an experiment that is accessible to all students, including those in their first year of academic courses and those with poorly equipped laboratories. As illustrated in this paper, our proposal allowed us to develop a deep discussion about some general mathematical and numerical features of exponential decay. Furthermore, the special setup of the absorbing medium (sliced in finite thickness slabs) and the experimental outcomes allow students to understand the transition from the discrete to the continuum approach in experimental physics.
Temporal coding in a silicon network of integrate-and-fire neurons.
Liu, Shih-Chii; Douglas, Rodney
2004-09-01
Spatio-temporal processing of spike trains by neuronal networks depends on a variety of mechanisms distributed across synapses, dendrites, and somata. In natural systems, the spike trains and the processing mechanisms cohere though their common physical instantiation. This coherence is lost when the natural system is encoded for simulation on a general purpose computer. By contrast, analog VLSI circuits are, like neurons, inherently related by their real-time physics, and so, could provide a useful substrate for exploring neuronlike event-based processing. Here, we describe a hybrid analog-digital VLSI chip comprising a set of integrate-and-fire neurons and short-term dynamical synapses that can be configured into simple network architectures with some properties of neocortical neuronal circuits. We show that, despite considerable fabrication variance in the properties of individual neurons, the chip offers a viable substrate for exploring real-time spike-based processing in networks of neurons.
Investigating the Effect of Damage Progression Model Choice on Prognostics Performance
NASA Technical Reports Server (NTRS)
Daigle, Matthew; Roychoudhury, Indranil; Narasimhan, Sriram; Saha, Sankalita; Saha, Bhaskar; Goebel, Kai
2011-01-01
The success of model-based approaches to systems health management depends largely on the quality of the underlying models. In model-based prognostics, it is especially the quality of the damage progression models, i.e., the models describing how damage evolves as the system operates, that determines the accuracy and precision of remaining useful life predictions. Several common forms of these models are generally assumed in the literature, but are often not supported by physical evidence or physics-based analysis. In this paper, using a centrifugal pump as a case study, we develop different damage progression models. In simulation, we investigate how model changes influence prognostics performance. Results demonstrate that, in some cases, simple damage progression models are sufficient. But, in general, the results show a clear need for damage progression models that are accurate over long time horizons under varied loading conditions.
NASA Astrophysics Data System (ADS)
Opitz, Florian; Treffinger, Peter
2016-04-01
Electric arc furnaces (EAF) are complex industrial plants whose actual behavior depends upon numerous factors. Due to its energy intensive operation, the EAF process has always been subject to optimization efforts. For these reasons, several models have been proposed in literature to analyze and predict different modes of operation. Most of these models focused on the processes inside the vessel itself. The present paper introduces a dynamic, physics-based model of a complete EAF plant which consists of the four subsystems vessel, electric system, electrode regulation, and off-gas system. Furthermore the solid phase is not treated to be homogenous but a simple spatial discretization is employed. Hence it is possible to simulate the energy input by electric arcs and fossil fuel burners depending on the state of the melting progress. The model is implemented in object-oriented, equation-based language Modelica. The simulation results are compared to literature data.
Kelishadi, Roya; Ziaee, Vahid; Ardalan, Gelayol; Namazi, Ascieh; Noormohammadpour, Pardis; Ghayour-Mobarhan, Majid; Sadraei, Hoda; Mirmoghtadaee, Parisa; Poursafa, Parinaz
2010-01-01
Objective To provide a low-cost and simple model of culturally-appropriate and low cost facilities for improvement of physical activity for girls and their mothers through an after-school program and to determine the changes in anthropometric indexes after this trial. Methods This national study was conducted in 2006-2007 in 7 provinces with different socioeconomic situations in Iran. Female students who studied in the 7th through 10th grade and their mothers were selected by random cluster sampling. In each province, 24 sessions of after-school aerobic physical activity were held for 90 minutes, two days a week, and 3 months long at school sites in the afternoon. Findings The study comprised 410 participants (204 mothers and 206 daughters), with a mean age of 15.86±1.01 and 40.71±6.3 years in girls and their mothers, respectively. The results of the focus group discussions showed that in general, both mothers and daughters were satisfied from the program and found it feasible and successful. After the trial, the indexes of generalized and abdominal obesity improved significantly both in girls and in their mothers (P-value <0.0001 for weight, body mass index and waist circumference). Conclusion Our findings may provide a low-cost and simple effective model of motivation for physical activity with targeted interventions for girls and their mothers. We suggest that the success of this trial might be a result of bonding and accompaniment of mothers and daughters. Such model can be integrated in the existing health and education systems to increase the physical activity level. PMID:23056741
NASA Astrophysics Data System (ADS)
Thurner, Stefan; Corominas-Murtra, Bernat; Hanel, Rudolf
2017-09-01
There are at least three distinct ways to conceptualize entropy: entropy as an extensive thermodynamic quantity of physical systems (Clausius, Boltzmann, Gibbs), entropy as a measure for information production of ergodic sources (Shannon), and entropy as a means for statistical inference on multinomial processes (Jaynes maximum entropy principle). Even though these notions represent fundamentally different concepts, the functional form of the entropy for thermodynamic systems in equilibrium, for ergodic sources in information theory, and for independent sampling processes in statistical systems, is degenerate, H (p ) =-∑ipilogpi . For many complex systems, which are typically history-dependent, nonergodic, and nonmultinomial, this is no longer the case. Here we show that for such processes, the three entropy concepts lead to different functional forms of entropy, which we will refer to as SEXT for extensive entropy, SIT for the source information rate in information theory, and SMEP for the entropy functional that appears in the so-called maximum entropy principle, which characterizes the most likely observable distribution functions of a system. We explicitly compute these three entropy functionals for three concrete examples: for Pólya urn processes, which are simple self-reinforcing processes, for sample-space-reducing (SSR) processes, which are simple history dependent processes that are associated with power-law statistics, and finally for multinomial mixture processes.
Influence of gravity on cardiac performance.
Pantalos, G M; Sharp, M K; Woodruff, S J; O'Leary, D S; Lorange, R; Everett, S D; Bennett, T E; Shurfranz, T
1998-01-01
Results obtained by the investigators in ground-based experiments and in two parabolic flight series of tests aboard the NASA KC-135 aircraft with a hydraulic simulator of the human systemic circulation have confirmed that a simple lack of hydrostatic pressure within an artificial ventricle causes a decrease in stroke volume of 20%-50%. A corresponding drop in stroke volume (SV) and cardiac output (CO) was observed over a range of atrial pressures (AP), representing a rightward shift of the classic CO versus AP cardiac function curve. These results are in agreement with echocardiographic experiments performed on space shuttle flights, where an average decrease in SV of 15% was measured following a three-day period of adaptation to weightlessness. The similarity of behavior of the hydraulic model to the human system suggests that the simple physical effects of the lack of hydrostatic pressure may be an important mechanism for the observed changes in cardiac performance in astronauts during the weightlessness of space flight.
System and method for authentication of goods
Kaish, Norman; Fraser, Jay; Durst, David I.
1999-01-01
An authentication system comprising a medium having a plurality of elements, the elements being distinctive, detectable and disposed in an irregular pattern or having an intrinsic irregularity. Each element is characterized by a determinable attribute distinct from a two-dimensional coordinate representation of simple optical absorption or simple optical reflection intensity. An attribute and position of the plurality of elements, with respect to a positional reference is detected. A processor generates an encrypted message including at least a portion of the attribute and position of the plurality of elements. The encrypted message is recorded in physical association with the medium. The elements are preferably dichroic fibers, and the attribute is preferably a polarization or dichroic axis, which may vary over the length of a fiber. An authentication of the medium based on the encrypted message may be authenticated with a statistical tolerance, based on a vector mapping of the elements of the medium, without requiring a complete image of the medium and elements to be recorded.
Pattern Driven Stress Localization
NASA Astrophysics Data System (ADS)
Croll, Andrew; Crosby, Alfred
2010-03-01
The self-assembly of patterns from isotropic initial states is a major driver of modern soft-matter research. This avenue of study is directed by the desire to understand the complex physics of the varied structures found in Nature, and by technological interest in functional materials that may be derived through biomimicry. In this work we show how a simple striped phase can respond with significant complexity to an appropriately chosen perturbation. In particular, we show how a buckled elastic plate transitions into a state of stress localization using a simple, self-assembled variation in surface topography. The collection of topographic boundaries act in concert to change the state from isotropic sinusoidal wrinkles, to sharp folds or creases separated by relatively flat regions. By varying the size of the imposed topographic pattern or the wavelength of the wrinkles, we construct a state diagram of the system. The localized state has implications for both biological systems, and for the control of non-linear pattern formation.
Engineering coherence among excited states in synthetic heterodimer systems.
Hayes, Dugan; Griffin, Graham B; Engel, Gregory S
2013-06-21
The design principles that support persistent electronic coherence in biological light-harvesting systems are obscured by the complexity of such systems. Some electronic coherences in these systems survive for hundreds of femtoseconds at physiological temperatures, suggesting that coherent dynamics may play a role in photosynthetic energy transfer. Coherent effects may increase energy transfer efficiency relative to strictly incoherent transfer mechanisms. Simple, tractable, manipulable model systems are required in order to probe the fundamental physics underlying these persistent electronic coherences, but to date, these quantum effects have not been observed in small molecules. We have engineered a series of rigid synthetic heterodimers that can serve as such a model system and observed quantum beating signals in their two-dimensional electronic spectra consistent with the presence of persistent electronic coherences.
Simple and detailed conceptual model diagram and associated narrative for ammonia, dissolved oxygen, flow alteration, herbicides, insecticides, ionic strength, metals, nutrients, ph, physical habitat, sediments, temperature, unspecified toxic chemicals.
Single Aerosol Particle Studies Using Optical Trapping Raman And Cavity Ringdown Spectroscopy
NASA Astrophysics Data System (ADS)
Gong, Z.; Wang, C.; Pan, Y. L.; Videen, G.
2017-12-01
Due to the physical and chemical complexity of aerosol particles and the interdisciplinary nature of aerosol science that involves physics, chemistry, and biology, our knowledge of aerosol particles is rather incomplete; our current understanding of aerosol particles is limited by averaged (over size, composition, shape, and orientation) and/or ensemble (over time, size, and multi-particles) measurements. Physically, single aerosol particles are the fundamental units of any large aerosol ensembles. Chemically, single aerosol particles carry individual chemical components (properties and constituents) in particle ensemble processes. Therefore, the study of single aerosol particles can bridge the gap between aerosol ensembles and bulk/surface properties and provide a hierarchical progression from a simple benchmark single-component system to a mixed-phase multicomponent system. A single aerosol particle can be an effective reactor to study heterogeneous surface chemistry in multiple phases. Latest technological advances provide exciting new opportunities to study single aerosol particles and to further develop single aerosol particle instrumentation. We present updates on our recent studies of single aerosol particles optically trapped in air using the optical-trapping Raman and cavity ringdown spectroscopy.
Fast Readout Architectures for Large Arrays of Digital Pixels: Examples and Applications
Gabrielli, A.
2014-01-01
Modern pixel detectors, particularly those designed and constructed for applications and experiments for high-energy physics, are commonly built implementing general readout architectures, not specifically optimized in terms of speed. High-energy physics experiments use bidimensional matrices of sensitive elements located on a silicon die. Sensors are read out via other integrated circuits bump bonded over the sensor dies. The speed of the readout electronics can significantly increase the overall performance of the system, and so here novel forms of readout architectures are studied and described. These circuits have been investigated in terms of speed and are particularly suited for large monolithic, low-pitch pixel detectors. The idea is to have a small simple structure that may be expanded to fit large matrices without affecting the layout complexity of the chip, while maintaining a reasonably high readout speed. The solutions might be applied to devices for applications not only in physics but also to general-purpose pixel detectors whenever online fast data sparsification is required. The paper presents also simulations on the efficiencies of the systems as proof of concept for the proposed ideas. PMID:24778588
NASA Astrophysics Data System (ADS)
Shauly, Eitan; Parag, Allon; Khmaisy, Hafez; Krispil, Uri; Adan, Ofer; Levi, Shimon; Latinski, Sergey; Schwarzband, Ishai; Rotstein, Israel
2011-04-01
A fully automated system for process variability analysis of high density standard cell was developed. The system consists of layout analysis with device mapping: device type, location, configuration and more. The mapping step was created by a simple DRC run-set. This database was then used as an input for choosing locations for SEM images and for specific layout parameter extraction, used by SPICE simulation. This method was used to analyze large arrays of standard cell blocks, manufactured using Tower TS013LV (Low Voltage for high-speed applications) Platforms. Variability of different physical parameters like and like Lgate, Line-width-roughness and more as well as of electrical parameters like drive current (Ion), off current (Ioff) were calculated and statistically analyzed, in order to understand the variability root cause. Comparison between transistors having the same W/L but with different layout configurations and different layout environments (around the transistor) was made in terms of performances as well as process variability. We successfully defined "robust" and "less-robust" transistors configurations, and updated guidelines for Design-for-Manufacturing (DfM).
NASA Astrophysics Data System (ADS)
Beh, Kian Lim
2000-10-01
This study was designed to explore the effect of a typical traditional method of instruction in physics on the formation of useful mental models among college students for problem-solving using simple electric circuits as a context. The study was also aimed at providing a comprehensive description of the understanding regarding electric circuits among novices and experts. In order to achieve these objectives, the following two research approaches were employed: (1) A students survey to collect data from 268 physics students; and (2) An interview protocol to collect data from 23 physics students and 24 experts (including 10 electrical engineering graduates, 4 practicing electrical engineers, 2 secondary school physics teachers, 8 physics lecturers, and 4 electrical engineers). Among the major findings are: (1) Most students do not possess accurate models of simple electric circuits as presented implicitly in physics textbooks; (2) Most students display good procedural understanding for solving simple problems concerning electric circuits but have no in-depth conceptual understanding in terms of practical knowledge of current, voltage, resistance, and circuit connections; (3) Most students encounter difficulty in discerning parallel connections that are drawn in a non-conventional format; (4) After a year of college physics, students show significant improvement in areas, including practical knowledge of current and voltage, ability to compute effective resistance and capacitance, ability to identify circuit connections, and ability to solve problems; however, no significance was found in practical knowledge of resistance and ability to connect circuits; and (5) The differences and similarities between the physics students and the experts include: (a) Novices perceive parallel circuits more in terms of 'branch', 'current', and 'resistors with the same resistance' while experts perceive parallel circuits more in terms of 'node', 'voltage', and 'less resistance'; and (b) Both novices and experts use phrases such as 'side-by side' and 'one on top of the other' in describing parallel circuits which emphasize the geometry of the standard circuit drawing when describing parallel resistors.
Study on transient beam loading compensation for China ADS proton linac injector II
NASA Astrophysics Data System (ADS)
Gao, Zheng; He, Yuan; Wang, Xian-Wu; Chang, Wei; Zhang, Rui-Feng; Zhu, Zheng-Long; Zhang, Sheng-Hu; Chen, Qi; Powers, Tom
2016-05-01
Significant transient beam loading effects were observed during beam commissioning tests of prototype II of the injector for the accelerator driven sub-critical (ADS) system, which took place at the Institute of Modern Physics, Chinese Academy of Sciences, between October and December 2014. During these tests experiments were performed with continuous wave (CW) operation of the cavities with pulsed beam current, and the system was configured to make use of a prototype digital low level radio frequency (LLRF) controller. The system was originally operated in pulsed mode with a simple proportional plus integral and deviation (PID) feedback control algorithm, which was not able to maintain the desired gradient regulation during pulsed 10 mA beam operations. A unique simple transient beam loading compensation method which made use of a combination of proportional and integral (PI) feedback and feedforward control algorithm was implemented in order to significantly reduce the beam induced transient effect in the cavity gradients. The superconducting cavity field variation was reduced to less than 1.7% after turning on this control algorithm. The design and experimental results of this system are presented in this paper. Supported by National Natural Science Foundation of China (91426303, 11525523)
Simple and Beautiful Experiments III by LADY CATS and Science Teachers' group
NASA Astrophysics Data System (ADS)
Tanemura, M.; Okiharu, F.; Ishii, K.; Onishi, H.; Taniguchi, M.; Uchida, T.; Yasuda, J.; Hoshino, T.; Yoshimura, T.; Hashimoto, T.; Wada, S.; Kinoshita, K.; Ebata, T.; Kawakatsu, H.
2010-07-01
LADY CATS (LADY Creators of Activities for Teaching Science) is an organization of science teachers. Our group includes a lot of female teachers, which is rather unusual in the field of physics. We would like to propose and exhibit beautiful and simple science experiments that can demonstrate the principles of physics to fascinate students' interest. These experiments are easily made and low-cost. It is also aimed to catch female and humanities students' eyes on physics from the view point of female teachers. Furthermore, we believe that these ideas help resolve gender problems and support non-specialist teachers in primary school.
Bell's Theorem and Einstein's "Spooky Actions" from a Simple Thought Experiment
ERIC Educational Resources Information Center
Kuttner, Fred; Rosenblum, Bruce
2010-01-01
In 1964 John Bell proved a theorem allowing the experimental test of whether what Einstein derided as "spooky actions at a distance" actually exist. We will see that they "do". Bell's theorem can be displayed with a simple, nonmathematical thought experiment suitable for a physics course at "any" level. And a simple, semi-classical derivation of…
Replumbing of the Biological Pump caused by Millennial Climate Variability
NASA Astrophysics Data System (ADS)
Galbraith, E.; Sarmiento, J.
2008-12-01
It has been hypothesized that millennial-timescale variability in the biological pump was a critical instigator of glacial-interglacial cycles. However, even in the absence of changes in ecosystem function (e.g. due to iron fertilization), determining the mechanisms by which physical climate variability alters the biological pump is not simple. Changes in upper ocean circulation and deep water formation have previously been shown to alter both the downward flux of organic matter and the mass of respired carbon in the ocean interior, often in non- intuitive ways. For example, a reduced upward flux of nutrients at the global scale will decrease the global rate of export production, but it could either increase or decrease the respired carbon content of the ocean interior, depending on where the reduced upward flux of nutrients occurs. Furthermore, viable candidates for physical climate forcing are numerous, including changes in the westerly winds, changes in the depth of the thermocline, and changes in the formation rate of North Atlantic Deep Water, among others. We use a simple, prognostic, light-and temperature-dependent model of biogeochemical cycling within a state-of-the- art global coupled ocean-atmosphere model to examine the response of the biological pump to changes in the coupled Earth system over multiple centuries. The biogeochemical model explicitly distinguishes respired carbon from preformed and saturation carbon, allowing the activity of the biological pump to be clearly quantified. Changes are forced in the model by altering the background climate state, and by manipulating the flux of freshwater to the North Atlantic region. We show how these changes in the physical state of the coupled ocean-atmosphere system impact the distribution and mass of respired carbon in the ocean interior, and the relationship these changes bear to global patterns of export production via the redistribution of nutrients.
Basic research on design analysis methods for rotorcraft vibrations
NASA Technical Reports Server (NTRS)
Hanagud, S.
1991-01-01
The objective of the present work was to develop a method for identifying physically plausible finite element system models of airframe structures from test data. The assumed models were based on linear elastic behavior with general (nonproportional) damping. Physical plausibility of the identified system matrices was insured by restricting the identification process to designated physical parameters only and not simply to the elements of the system matrices themselves. For example, in a large finite element model the identified parameters might be restricted to the moduli for each of the different materials used in the structure. In the case of damping, a restricted set of damping values might be assigned to finite elements based on the material type and on the fabrication processes used. In this case, different damping values might be associated with riveted, bolted and bonded elements. The method itself is developed first, and several approaches are outlined for computing the identified parameter values. The method is applied first to a simple structure for which the 'measured' response is actually synthesized from an assumed model. Both stiffness and damping parameter values are accurately identified. The true test, however, is the application to a full-scale airframe structure. In this case, a NASTRAN model and actual measured modal parameters formed the basis for the identification of a restricted set of physically plausible stiffness and damping parameters.
Time Dependent Data Mining in RAVEN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cogliati, Joshua Joseph; Chen, Jun; Patel, Japan Ketan
RAVEN is a generic software framework to perform parametric and probabilistic analysis based on the response of complex system codes. The goal of this type of analyses is to understand the response of such systems in particular with respect their probabilistic behavior, to understand their predictability and drivers or lack of thereof. Data mining capabilities are the cornerstones to perform such deep learning of system responses. For this reason static data mining capabilities were added last fiscal year (FY 15). In real applications, when dealing with complex multi-scale, multi-physics systems it seems natural that, during transients, the relevance of themore » different scales, and physics, would evolve over time. For these reasons the data mining capabilities have been extended allowing their application over time. In this writing it is reported a description of the new RAVEN capabilities implemented with several simple analytical tests to explain their application and highlight the proper implementation. The report concludes with the application of those newly implemented capabilities to the analysis of a simulation performed with the Bison code.« less
Linking market interaction intensity of 3D Ising type financial model with market volatility
NASA Astrophysics Data System (ADS)
Fang, Wen; Ke, Jinchuan; Wang, Jun; Feng, Ling
2016-11-01
Microscopic interaction models in physics have been used to investigate the complex phenomena of economic systems. The simple interactions involved can lead to complex behaviors and help the understanding of mechanisms in the financial market at a systemic level. This article aims to develop a financial time series model through 3D (three-dimensional) Ising dynamic system which is widely used as an interacting spins model to explain the ferromagnetism in physics. Through Monte Carlo simulations of the financial model and numerical analysis for both the simulation return time series and historical return data of Hushen 300 (HS300) index in Chinese stock market, we show that despite its simplicity, this model displays stylized facts similar to that seen in real financial market. We demonstrate a possible underlying link between volatility fluctuations of real stock market and the change in interaction strengths of market participants in the financial model. In particular, our stochastic interaction strength in our model demonstrates that the real market may be consistently operating near the critical point of the system.
Shih, Ching-Hsiang; Chen, Ling-Che; Shih, Ching-Tien
2012-01-01
The latest researches have adopted software technology to modify the Nintendo Wii Balance Board functionality and used it to enable two people with developmental disabilities to actively perform physical activities. This study extended the latest research of the Wii Balance Board application to assess whether four people (two groups) with developmental disabilities would be able to actively improve their physical activities collaboration--walking to the designated location following simple instructions, by controlling their favorite environmental stimulation through using three Nintendo Wii Balance Boards. We employed an A-B-A-B design, with A represented the baseline and B represented intervention phases. Data showed that both groups of participants significantly increased their collaborative target response (collaboratively performing designated physical activities) by activating the control system to produce their preferred environmental stimulation during the intervention phases. Practical and developmental implications of the findings are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Curriculum Process in Science Education
NASA Astrophysics Data System (ADS)
Adamčíková, Veronika; Tarábek, Paul
2010-07-01
Physics/science education in the communicative conception is defined as the continuous transfer of the knowledge and methods of physics into the minds of individuals who have not participated in creating them. This process, called the educational communication of physics/science, is performed by various educational agents—teachers, curriculum makers, textbook designers, university teachers and does not mean only a simple transfer of information, but it also involves teaching and instruction at all levels of the school system, the study, learning, and cognition of pupils, students and all other learners, the assessment and evaluation of learning outcomes, curriculum composition and design, the production of textbooks and other means of educational communication and, in addition, university education and the further training of teachers. The educational communication is carried out by the curriculum process of physics/science, which is a sequence of variant forms of curriculum mutually interconnected by curriculum transformations. The variant forms of curriculum are as follows: conceptual curriculum, intended curriculum, project (written) curriculum, operational curriculum, implemented curriculum, and attained curriculum.
Kong, Muwen; Van Houten, Bennett
2017-08-01
Since Robert Brown's first observations of random walks by pollen particles suspended in solution, the concept of diffusion has been subject to countless theoretical and experimental studies in diverse fields from finance and social sciences, to physics and biology. Diffusive transport of macromolecules in cells is intimately linked to essential cellular functions including nutrient uptake, signal transduction, gene expression, as well as DNA replication and repair. Advancement in experimental techniques has allowed precise measurements of these diffusion processes. Mathematical and physical descriptions and computer simulations have been applied to model complicated biological systems in which anomalous diffusion, in addition to simple Brownian motion, was observed. The purpose of this review is to provide an overview of the major physical models of anomalous diffusion and corresponding experimental evidence on the target search problem faced by DNA-binding proteins, with an emphasis on DNA repair proteins and the role of anomalous diffusion in DNA target recognition. Copyright © 2016 Elsevier Ltd. All rights reserved.
Opening-assisted coherent transport in the semiclassical regime
NASA Astrophysics Data System (ADS)
Zhang, Yang; Celardo, G. Luca; Borgonovi, Fausto; Kaplan, Lev
2017-02-01
We study quantum enhancement of transport in open systems in the presence of disorder and dephasing. Quantum coherence effects may significantly enhance transport in open systems even in the semiclassical regime (where the decoherence rate is greater than the intersite hopping amplitude), as long as the disorder is sufficiently strong. When the strengths of disorder and dephasing are fixed, there is an optimal opening strength at which the coherent transport enhancement is optimized. Analytic results are obtained in two simple paradigmatic tight-binding models of large systems: the linear chain and the fully connected network. The physical behavior is also reflected in the Fenna-Matthews-Olson (FMO) photosynthetic complex, which may be viewed as intermediate between these paradigmatic models.
Equipment issues regarding the collection of video data for research
NASA Astrophysics Data System (ADS)
Kung, Rebecca Lippmann; Kung, Peter; Linder, Cedric
2005-12-01
Physics education research increasingly makes use of video data for analysis of student learning and teaching practice. Collection of these data is conceptually simple but execution is often fraught with costly and time-consuming complications. This pragmatic paper discusses the development of systems to record and permanently archive audio and video data in real-time. We focus on a system based upon consumer video DVD recorders, but also give an overview of other technologies and detail issues common to all systems. We detail common yet unexpected complications, particularly with regard to sound quality and compatibility with transcription software. Information specific to fixed and transportable systems, other technology options, and generic and specific equipment recommendations are given in supplemental appendices
NASA Astrophysics Data System (ADS)
Dhamala, Mukeshwar; Lai, Ying-Cheng
1999-02-01
Transient chaos is a common phenomenon in nonlinear dynamics of many physical, biological, and engineering systems. In applications it is often desirable to maintain sustained chaos even in parameter regimes of transient chaos. We address how to sustain transient chaos in deterministic flows. We utilize a simple and practical method, based on extracting the fundamental dynamics from time series, to maintain chaos. The method can result in control of trajectories from almost all initial conditions in the original basin of the chaotic attractor from which transient chaos is created. We apply our method to three problems: (1) voltage collapse in electrical power systems, (2) species preservation in ecology, and (3) elimination of undesirable bursting behavior in a chemical reaction system.
NASA Technical Reports Server (NTRS)
Hanks, Brantley R.; Skelton, Robert E.
1991-01-01
This paper addresses the restriction of Linear Quadratic Regulator (LQR) solutions to the algebraic Riccati Equation to design spaces which can be implemented as passive structural members and/or dampers. A general closed-form solution to the optimal free-decay control problem is presented which is tailored for structural-mechanical systems. The solution includes, as subsets, special cases such as the Rayleigh Dissipation Function and total energy. Weighting matrix selection is a constrained choice among several parameters to obtain desired physical relationships. The closed-form solution is also applicable to active control design for systems where perfect, collocated actuator-sensor pairs exist. Some examples of simple spring mass systems are shown to illustrate key points.
Daemonic ergotropy: enhanced work extraction from quantum correlations
NASA Astrophysics Data System (ADS)
Francica, Gianluca; Goold, John; Plastina, Francesco; Paternostro, Mauro
2017-03-01
We investigate how the presence of quantum correlations can influence work extraction in closed quantum systems, establishing a new link between the field of quantum non-equilibrium thermodynamics and the one of quantum information theory. We consider a bipartite quantum system and we show that it is possible to optimize the process of work extraction, thanks to the correlations between the two parts of the system, by using an appropriate feedback protocol based on the concept of ergotropy. We prove that the maximum gain in the extracted work is related to the existence of quantum correlations between the two parts, quantified by either quantum discord or, for pure states, entanglement. We then illustrate our general findings on a simple physical situation consisting of a qubit system.
Text Based Analogy in Overcoming Student Misconception on Simple Electricity Circuit Material
NASA Astrophysics Data System (ADS)
Hesti, R.; Maknun, J.; Feranie, S.
2017-09-01
Some researcher have found that the use of analogy in learning and teaching physics was effective enough in giving comprehension in a complicated physics concept such as electrical circuits. Meanwhile, misconception become main cause that makes students failed when learning physics. To provide teaching physics effectively, the misconception should be resolved. Using Text Based Analogy is one of the way to identifying misconceptions and it is enough to assist teachers in conveying scientific truths in order to overcome misconceptions. The purpose of the study to investigate the use of text based analogy in overcoming students misconception on simple electrical circuit material. The samples of this research were 28 of junior high school students taken purposively from one high school in South Jakarta. The method use in this research is pre-experimental and design in one shot case study. Students who are the participants of sample have been identified misconception on the electrical circuit material by using the Diagnostic Test of Simple Electricity Circuit. The results of this study found that TBA can replace the misconceptions of the concept possessed by students with scientific truths conveyed in the text in a way that is easily understood so that TBA is strongly recommended to use in other physics materials.
Qualitative methods in quantum theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Migdal, A.B.
The author feels that the solution of most problems in theoretical physics begins with the application of qualitative methods - dimensional estimates and estimates made from simple models, the investigation of limiting cases, the use of the analytic properties of physical quantities, etc. This book proceeds in this spirit, rather than in a formal, mathematical way with no traces of the sweat involved in the original work left to show. The chapters are entitled Dimensional and model approximations, Various types of perturbation theory, The quasi-classical approximation, Analytic properties of physical quantities, Methods in the many-body problem, and Qualitative methods inmore » quantum field theory. Each chapter begins with a detailed introduction, in which the physical meaning of the results obtained in that chapter is explained in a simple way. 61 figures. (RWR)« less
Helicity and nuclear β decay correlations
NASA Astrophysics Data System (ADS)
Hong, Ran; Sternberg, Matthew G.; Garcia, Alejandro
2017-01-01
We present simple derivations of nuclear β-decay correlations with an emphasis on the special role of helicity. This topic provides a good opportunity to teach students about helicity and chirality in particle physics with exercises that use simple aspects of quantum mechanics. In addition, this paper serves as an introduction to nuclear β-decay correlations from both a theoretical and experimental perspective. This article can be used to introduce students to ongoing experiments searching for hints of new physics in the low-energy precision frontier.
Physical condition for elimination of ambiguity in conditionally convergent lattice sums
NASA Astrophysics Data System (ADS)
Young, K.
1987-02-01
The conditional convergence of the lattice sum defining the Madelung constant gives rise to an ambiguity in its value. It is shown that this ambiguity is related, through a simple and universal integral, to the average charge density on the crystal surface. The physically correct value is obtained by setting the charge density to zero. A simple and universally applicable formula for the Madelung constant is derived as a consequence. It consists of adding up dipole-dipole energies together with a nontrivial correction term.
On one-parametric formula relating the frequencies of twin-peak quasi-periodic oscillations
NASA Astrophysics Data System (ADS)
Török, Gabriel; Goluchová, Kateřina; Šrámková, Eva; Horák, Jiří; Bakala, Pavel; Urbanec, Martin
2018-01-01
Twin-peak quasi-periodic oscillations (QPOs) are observed in several low-mass X-ray binary systems containing neutron stars. Timing the analysis of X-ray fluxes of more than dozen of such systems reveals remarkable correlations between the frequencies of two characteristic peaks present in the power density spectra. The individual correlations clearly differ, but they roughly follow a common individual pattern. High values of measured QPO frequencies and strong modulation of the X-ray flux both suggest that the observed correlations are connected to orbital motion in the innermost part of an accretion disc. Several attempts to model these correlations with simple geodesic orbital models or phenomenological relations have failed in the past. We find and explore a surprisingly simple analytic relation that reproduces individual correlations for a group of several sources through a single parameter. When an additional free parameter is considered within our relation, it well reproduces the data of a large group of 14 sources. The very existence and form of this simple relation support the hypothesis of the orbital origin of QPOs and provide the key for further development of QPO models. We discuss a possible physical interpretation of our relation's parameters and their links to concrete QPO models.
Assessment of Growth Problems in Adolescents
Baker, F.W.
1986-01-01
Investigation of an adolescent growth problem consists of taking an adequate history and doing a complete physical examination. This procedure, along with a calculation of bone age and height/weight age, will allow family physicians to decide on the cause of the growth variance in most patients. Relatively simple studies can be done in the family physician's office to delineate the major causes of growth problems; the majority will be unrelated to the endocrine system. Further studies may be needed in a hospital-based setting. PMID:21267222
A multi-resolution approach for optimal mass transport
NASA Astrophysics Data System (ADS)
Dominitz, Ayelet; Angenent, Sigurd; Tannenbaum, Allen
2007-09-01
Optimal mass transport is an important technique with numerous applications in econometrics, fluid dynamics, automatic control, statistical physics, shape optimization, expert systems, and meteorology. Motivated by certain problems in image registration and medical image visualization, in this note, we describe a simple gradient descent methodology for computing the optimal L2 transport mapping which may be easily implemented using a multiresolution scheme. We also indicate how the optimal transport map may be computed on the sphere. A numerical example is presented illustrating our ideas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgansen, K.A.; Pin, F.G.
A new method for mitigating unexpected impact of a redundant manipulator with an object in its environment is presented. Kinematic constraints are utilized with the recently developed method known as Full Space Parameterization (FSP). System performance criterion and constraints are changed at impact to return the end effector to the point of impact and halt the arm. Since large joint accelerations could occur as the manipulator is halted, joint acceleration bounds are imposed to simulate physical actuator limitations. Simulation results are presented for the case of a simple redundant planar manipulator.
Bird song: in vivo, in vitro, in silico
NASA Astrophysics Data System (ADS)
Mukherjee, Aryesh; Mandre, Shreyas; Mahadevan, Lakshminarayan
2010-11-01
Bird song, long since an inspiration for artists, writers and poets also poses challenges for scientists interested in dissecting the mechanisms underlying the neural, motor, learning and behavioral systems behind the beak and brain, as a way to recreate and synthesize it. We use a combination of quantitative visualization experiments with physical models and computational theories to understand the simplest aspects of these complex musical boxes, focusing on using the controllable elastohydrodynamic interactions to mimic aural gestures and simple songs.
Tangled nature: a model of evolutionary ecology.
Christensen, Kim; di Collobiano, Simone A; Hall, Matt; Jensen, Henrik J
2002-05-07
We discuss a simple model of co-evolution. In order to emphasize the effect of interaction between individuals, the entire population is subjected to the same physical environment. Species are emergent structures and extinction, origination and diversity are entirely a consequence of co-evolutionary interaction between individuals. For comparison, we consider both asexual and sexually reproducing populations. In either case, the system evolves through periods of hectic reorganization separated by periods of coherent stable coexistence. Copyright 2002 Elsevier Science Ltd. All rights reserved.
The mysteries of the diffusion region in asymmetric systems
NASA Astrophysics Data System (ADS)
Hesse, M.; Aunai, N.; Zenitani, S.; Kuznetsova, M. M.; Birn, J.
2013-12-01
Unlike in symmetric systems, where symmetry dictates a comparatively simple structure of the reconnection region, asymmetric systems offer a surprising, much more complex, structure of the diffusion region. Beyond the well-known lack of colocation of flow stagnation and magnetic null, the physical mechanism underpinning the reconnection electric field also appears to be considerably more complex. In this presentation, we will perform a detailed analysis of the reconnection diffusion region in an asymmetric system. We will show that, unlike in symmetric systems, the immediate reconnection electric field is not given by electron pressure tensor nongyrotropies, but by electron inertial contributions. We will further discuss the role of pressure nongyrotropies, and we will study the origin of the complex structures of electron distributions in the central part of the diffusion region.
Simple Map in Action-Angle Coordinates.
NASA Astrophysics Data System (ADS)
Kerwin, Olivia; Punjabi, Alkesh; Ali, Halima
2008-04-01
The simple map is the simplest map that has the topology of a divertor tokamak. The simple map has three canonical representations: (i) the natural coordinates - toroidal magnetic flux and poloidal angle (ψ,θ), (ii) the physical coordinates - the physical variables (R,Z) or (X,Y), and (iii) the action-angle coordinates - (J,θ) or magnetic coordinates (ψ, θ). All three are canonical coordinates for field lines. The simple map in the (X,Y) representation has been studied extensively ^1, 2. Here we analytically calculate the action-angle coordinates and safety factor q for the simple map. We construct the equilibrium generating function for the simple map in action-angle coordinates. We derive the simple map in action-angle representation, and calculate the stochastic broadening of the ideal separatrix due to topological noise in action-angle representation. We also show how the geometric effects such as elongation, the height, and width of the ideal separatrix surface can be investigated using a slight modification of the simple map in action-angle representation. This work is supported by the following grants US Department of Energy - OFES DE-FG02-01ER54624 and DE-FG02-04ER54793 and National Science Foundation - HRD-0630372 and 0411394. [1] A. Punjabi, H. Ali, T. Evans, and A. Boozer, Phys Lett A, 364 140-145 (2007). [2] A. Punjabi, A. Verma, and A. Boozer, Phys.Rev. Lett. 69, 3322 (1992).
NASA Astrophysics Data System (ADS)
Yücel, M.; Emirhan, E.; Bayrak, A.; Ozben, C. S.; Yücel, E. Barlas
2015-11-01
Design and production of a simple and low cost X-ray imaging system that can be used for light industrial applications was targeted in the Nuclear Physics Laboratory of Istanbul Technical University. In this study, production, transmission and detection of X-rays were simulated for the proposed imaging device. OX/70-P dental tube was used and X-ray spectra simulated by Geant4 were validated by comparison with X-ray spectra measured between 20 and 35 keV. Relative detection efficiency of the detector was also determined to confirm the physics processes used in the simulations. Various time optimization tools were performed to reduce the simulation time.
The Eye of a Mathematical Physicist
NASA Astrophysics Data System (ADS)
Hepp, Klaus
2009-03-01
In this essay we are searching for neural correlates of `doing mathematical physics'. We introduce a toy model of a mathematical physicist, a brain connected with the outside world only by vision and saccadic eye movements and interacting with a computer screen. First, we describe the neuroanatomy of the visuo-saccadic system and Listing's law, which binds saccades and the optics of the eye. Then we explain space-time transformations in the superior colliculus, the performance of a canonical cortical circuit in the frontal eye field and finally the recurrent interaction of both areas, which leads to a coherent percept of space in spite of saccades. This sets the stage in the brain for doing mathematical physics, which is analyzed in simple examples.
NASA Technical Reports Server (NTRS)
Christodoulou, Dimitris M.; Kazanas, Demosthenes
2017-01-01
We consider the geometric Titius-Bode rule for the semimajor axes of planetary orbits. We derive an equivalent rule for the midpoints of the segments between consecutive orbits along the radial direction and we interpret it physically in terms of the work done in the gravitational field of the Sun by particles whose orbits are perturbed around each planetary orbit. On such energetic grounds, it is not surprising that some exoplanets in multiple-planet extrasolar systems obey the same relation. However, it is surprising that this simple interpretation of the Titius-Bode rule also reveals new properties of the bound closed orbits predicted by Bertrand's theorem, which has been known since 1873.
NASA Astrophysics Data System (ADS)
Christodoulou, Dimitris M.; Kazanas, Demosthenes
2017-12-01
We consider the geometric Titius-Bode rule for the semimajor axes of planetary orbits. We derive an equivalent rule for the midpoints of the segments between consecutive orbits along the radial direction and we interpret it physically in terms of the work done in the gravitational field of the Sun by particles whose orbits are perturbed around each planetary orbit. On such energetic grounds, it is not surprising that some exoplanets in multiple-planet extrasolar systems obey the same relation. However, it is surprising that this simple interpretation of the Titius-Bode rule also reveals new properties of the bound closed orbits predicted by Bertrand’s theorem, which has been known since 1873.
Creation and protection of entanglement in systems out of thermal equilibrium
NASA Astrophysics Data System (ADS)
Bellomo, Bruno; Antezza, Mauro
2013-11-01
We investigate the creation of entanglement between two quantum emitters interacting with a realistic common stationary electromagnetic field out of thermal equilibrium. In the case of two qubits we show that the absence of equilibrium allows the generation of steady entangled states, which is inaccessible at thermal equilibrium and is realized without any further external action on the two qubits. We first give a simple physical interpretation of the phenomenon in a specific case and then we report a detailed investigation on the dependence of the entanglement dynamics on the various physical parameters involved. Sub- and super-radiant effects are discussed, and qualitative differences in the dynamics concerning both creation and protection of entanglement according to the initial two-qubit state are pointed out.
NASA Technical Reports Server (NTRS)
Rabitz, Herschel
1987-01-01
The use of parametric and functional gradient sensitivity analysis techniques is considered for models described by partial differential equations. By interchanging appropriate dependent and independent variables, questions of inverse sensitivity may be addressed to gain insight into the inversion of observational data for parameter and function identification in mathematical models. It may be argued that the presence of a subset of dominantly strong coupled dependent variables will result in the overall system sensitivity behavior collapsing into a simple set of scaling and self similarity relations amongst elements of the entire matrix of sensitivity coefficients. These general tools are generic in nature, but herein their application to problems arising in selected areas of physics and chemistry is presented.
Using the USU ionospheric model to predict radio propagation through a simulated ionosphere
NASA Astrophysics Data System (ADS)
Huffines, Gary R.
1990-12-01
To evaluate the capabilities of communication, navigation, and defense systems utilizing electromagnetic waves which interact with the ionosphere, a three-dimensional ray tracing program was used. A simple empirical model (Chapman function) and a complex physical model (Schunk and Sojka model) were used to compare the representation of ionospheric conditions. Four positions were chosen to test four different features of the Northern Hemispheric ionosphere. It seems that decreasing electron density has little or no effect on the horizontal components of the ray path while increasing electron density causes deviations in the ray path. It was also noted that rays in the physical model's mid-latitude trough region escaped the ionosphere for all frequencies used in this study.
NASA Astrophysics Data System (ADS)
Dhara, Chirag; Renner, Maik; Kleidon, Axel
2015-04-01
The convective transport of heat and moisture plays a key role in the climate system, but the transport is typically parameterized in models. Here, we aim at the simplest possible physical representation and treat convective heat fluxes as the result of a heat engine. We combine the well-known Carnot limit of this heat engine with the energy balances of the surface-atmosphere system that describe how the temperature difference is affected by convective heat transport, yielding a maximum power limit of convection. This results in a simple analytic expression for convective strength that depends primarily on surface solar absorption. We compare this expression with an idealized grey atmosphere radiative-convective (RC) model as well as Global Circulation Model (GCM) simulations at the grid scale. We find that our simple expression as well as the RC model can explain much of the geographic variation of the GCM output, resulting in strong linear correlations among the three approaches. The RC model, however, shows a lower bias than our simple expression. We identify the use of the prescribed convective adjustment in RC-like models as the reason for the lower bias. The strength of our model lies in its ability to capture the geographic variation of convective strength with a parameter-free expression. On the other hand, the comparison with the RC model indicates a method for improving the formulation of radiative transfer in our simple approach. We also find that the latent heat fluxes compare very well among the approaches, as well as their sensitivity to surface warming. What our comparison suggests is that the strength of convection and their sensitivity in the climatic mean can be estimated relatively robustly by rather simple approaches.
ERIC Educational Resources Information Center
Molosky, Gerald; And Others
GRADES OR AGES: Grades 7-10. SUBJECT MATTER: Physical education. ORGANIZATION AND PHYSICAL APPEARANCE: The guide is divided into six color-coded units, one each for athletic skills and games, fitness testing and body mechanics, rhythmical activities, simple games and recreational activities, tumbling and apparatus, and swimming. It is mimeographed…
ERIC Educational Resources Information Center
Parnafes, Orit
2010-01-01
Many real-world phenomena, even "simple" physical phenomena such as natural harmonic motion, are complex in the sense that they require coordinating multiple subtle foci of attention to get the required information when experiencing them. Moreover, for students to develop sound understanding of a concept or a phenomenon, they need to learn to get…
SPARK: A Framework for Multi-Scale Agent-Based Biomedical Modeling.
Solovyev, Alexey; Mikheev, Maxim; Zhou, Leming; Dutta-Moscato, Joyeeta; Ziraldo, Cordelia; An, Gary; Vodovotz, Yoram; Mi, Qi
2010-01-01
Multi-scale modeling of complex biological systems remains a central challenge in the systems biology community. A method of dynamic knowledge representation known as agent-based modeling enables the study of higher level behavior emerging from discrete events performed by individual components. With the advancement of computer technology, agent-based modeling has emerged as an innovative technique to model the complexities of systems biology. In this work, the authors describe SPARK (Simple Platform for Agent-based Representation of Knowledge), a framework for agent-based modeling specifically designed for systems-level biomedical model development. SPARK is a stand-alone application written in Java. It provides a user-friendly interface, and a simple programming language for developing Agent-Based Models (ABMs). SPARK has the following features specialized for modeling biomedical systems: 1) continuous space that can simulate real physical space; 2) flexible agent size and shape that can represent the relative proportions of various cell types; 3) multiple spaces that can concurrently simulate and visualize multiple scales in biomedical models; 4) a convenient graphical user interface. Existing ABMs of diabetic foot ulcers and acute inflammation were implemented in SPARK. Models of identical complexity were run in both NetLogo and SPARK; the SPARK-based models ran two to three times faster.
NASA Astrophysics Data System (ADS)
Nagasaki, Takeo; Tajima, Osamu; Araki, Kentaro; Ishimoto, Hiroshi
2016-07-01
We propose a novel ground-based meteorological monitoring system. In the 20{30 GHz band, our system simultaneously measures a broad absorption peak of water vapor and cloud liquid water. Additional observation in the 50{60 GHz band obtains the radiation of oxygen. Spectral results contain vertical profiles of the physical temperature of atmospheric molecules. We designed a simple method for placing the system atop high buildings and mountains and on decks of ships. There is a simple optical system in front of horn antennas for each frequency band. A focused signal from a reflector is separated into two polarized optical paths by a wire grid. Each signal received by the horn antenna is amplified by low-noise amplifiers. Spectra of each signal are measured as a function of frequency using two analyzers. A blackbody calibration source is maintained at 50 K in a cryostat. The calibration signal is led to each receiver via the wire grid. The input path of the signal is selected by rotation of the wire grid by 90°, because the polarization axis of the reflected path and axis of the transparent path are orthogonal. We developed a prototype receiver and demonstrated its performance using monitoring at the zenith.
A virtual data language and system for scientific workflow management in data grid environments
NASA Astrophysics Data System (ADS)
Zhao, Yong
With advances in scientific instrumentation and simulation, scientific data is growing fast in both size and analysis complexity. So-called Data Grids aim to provide high performance, distributed data analysis infrastructure for data- intensive sciences, where scientists distributed worldwide need to extract information from large collections of data, and to share both data products and the resources needed to produce and store them. However, the description, composition, and execution of even logically simple scientific workflows are often complicated by the need to deal with "messy" issues like heterogeneous storage formats and ad-hoc file system structures. We show how these difficulties can be overcome via a typed workflow notation called virtual data language, within which issues of physical representation are cleanly separated from logical typing, and by the implementation of this notation within the context of a powerful virtual data system that supports distributed execution. The resulting language and system are capable of expressing complex workflows in a simple compact form, enacting those workflows in distributed environments, monitoring and recording the execution processes, and tracing the derivation history of data products. We describe the motivation, design, implementation, and evaluation of the virtual data language and system, and the application of the virtual data paradigm in various science disciplines, including astronomy, cognitive neuroscience.
Janson, Natalia B; Marsden, Christopher J
2017-12-05
It is well known that architecturally the brain is a neural network, i.e. a collection of many relatively simple units coupled flexibly. However, it has been unclear how the possession of this architecture enables higher-level cognitive functions, which are unique to the brain. Here, we consider the brain from the viewpoint of dynamical systems theory and hypothesize that the unique feature of the brain, the self-organized plasticity of its architecture, could represent the means of enabling the self-organized plasticity of its velocity vector field. We propose that, conceptually, the principle of cognition could amount to the existence of appropriate rules governing self-organization of the velocity field of a dynamical system with an appropriate account of stimuli. To support this hypothesis, we propose a simple non-neuromorphic mathematical model with a plastic self-organized velocity field, which has no prototype in physical world. This system is shown to be capable of basic cognition, which is illustrated numerically and with musical data. Our conceptual model could provide an additional insight into the working principles of the brain. Moreover, hardware implementations of plastic velocity fields self-organizing according to various rules could pave the way to creating artificial intelligence of a novel type.
Investigating student understanding of simple harmonic motion
NASA Astrophysics Data System (ADS)
Somroob, S.; Wattanakasiwich, P.
2017-09-01
This study aimed to investigate students’ understanding and develop instructional material on a topic of simple harmonic motion. Participants were 60 students taking a course on vibrations and wave and 46 students taking a course on Physics 2 and 28 students taking a course on Fundamental Physics 2 on the 2nd semester of an academic year 2016. A 16-question conceptual test and tutorial activities had been developed from previous research findings and evaluated by three physics experts in teaching mechanics before using in a real classroom. Data collection included both qualitative and quantitative methods. Item analysis and whole-test analysis were determined from student responses in the conceptual test. As results, most students had misconceptions about restoring force and they had problems connecting mathematical solutions to real motions, especially phase angle. Moreover, they had problems with interpreting mechanical energy from graphs and diagrams of the motion. These results were used to develop effective instructional materials to enhance student abilities in understanding simple harmonic motion in term of multiple representations.
Swanson, Jon; Audie, Joseph
2018-01-01
A fundamental and unsolved problem in biophysical chemistry is the development of a computationally simple, physically intuitive, and generally applicable method for accurately predicting and physically explaining protein-protein binding affinities from protein-protein interaction (PPI) complex coordinates. Here, we propose that the simplification of a previously described six-term PPI scoring function to a four term function results in a simple expression of all physically and statistically meaningful terms that can be used to accurately predict and explain binding affinities for a well-defined subset of PPIs that are characterized by (1) crystallographic coordinates, (2) rigid-body association, (3) normal interface size, and hydrophobicity and hydrophilicity, and (4) high quality experimental binding affinity measurements. We further propose that the four-term scoring function could be regarded as a core expression for future development into a more general PPI scoring function. Our work has clear implications for PPI modeling and structure-based drug design.
Order-of-magnitude physics of neutron stars. Estimating their properties from first principles
NASA Astrophysics Data System (ADS)
Reisenegger, Andreas; Zepeda, Felipe S.
2016-03-01
We use basic physics and simple mathematics accessible to advanced undergraduate students to estimate the main properties of neutron stars. We set the stage and introduce relevant concepts by discussing the properties of "everyday" matter on Earth, degenerate Fermi gases, white dwarfs, and scaling relations of stellar properties with polytropic equations of state. Then, we discuss various physical ingredients relevant for neutron stars and how they can be combined in order to obtain a couple of different simple estimates of their maximum mass, beyond which they would collapse, turning into black holes. Finally, we use the basic structural parameters of neutron stars to briefly discuss their rotational and electromagnetic properties.
Measuring effective temperatures in a generalized Gibbs ensemble
NASA Astrophysics Data System (ADS)
Foini, Laura; Gambassi, Andrea; Konik, Robert; Cugliandolo, Leticia F.
2017-05-01
The local physical properties of an isolated quantum statistical system in the stationary state reached long after a quench are generically described by the Gibbs ensemble, which involves only its Hamiltonian and the temperature as a parameter. If the system is instead integrable, additional quantities conserved by the dynamics intervene in the description of the stationary state. The resulting generalized Gibbs ensemble involves a number of temperature-like parameters, the determination of which is practically difficult. Here we argue that in a number of simple models these parameters can be effectively determined by using fluctuation-dissipation relationships between response and correlation functions of natural observables, quantities which are accessible in experiments.
NASA Astrophysics Data System (ADS)
Klein, P.; Gröber, S.; Kuhn, J.; Fleischhauer, A.; Müller, A.
2015-01-01
The selection and application of coordinate systems is an important issue in physics. However, considering different frames of references in a given problem sometimes seems un-intuitive and is difficult for students. We present a concrete problem of projectile motion which vividly demonstrates the value of considering different frames of references. We use this example to explore the effectiveness of video-based motion analysis (VBMA) as an instructional technique at university level in enhancing students’ understanding of the abstract concept of coordinate systems. A pilot study with 47 undergraduate students indicates that VBMA instruction improves conceptual understanding of this issue.
Universal Parameterization of Absorption Cross Sections
NASA Technical Reports Server (NTRS)
Tripathi, R. K.; Cucinotta, Francis A.; Wilson, John W.
1997-01-01
This paper presents a simple universal parameterization of total reaction cross sections for any system of colliding nuclei that is valid for the entire energy range from a few AMeV to a few AGeV. The universal picture presented here treats proton-nucleus collision as a special case of nucleus-nucleus collision, where the projectile has charge and mass number of one. The parameters are associated with the physics of the collision system. In general terms, Coulomb interaction modifies cross sections at lower energies, and the effects of Pauli blocking are important at higher energies. The agreement between the calculated and experimental data is better than all earlier published results.
Haranas, Ioannis; Gkigkitzis, Ioannis; Kotsireas, Ilias; Austerlitz, Carlos
2017-01-01
Understanding how the brain encodes information and performs computation requires statistical and functional analysis. Given the complexity of the human brain, simple methods that facilitate the interpretation of statistical correlations among different brain regions can be very useful. In this report we introduce a numerical correlation measure that may serve the interpretation of correlational neuronal data, and may assist in the evaluation of different brain states. The description of the dynamical brain system, through a global numerical measure may indicate the presence of an action principle which may facilitate a application of physics principles in the study of the human brain and cognition.
ERIC Educational Resources Information Center
Purba, Siska Wati Dewi; Hwang, Wu-Yuin
2017-01-01
In this study, we designed and developed an app called Ubiquitous-Physics (U-Physics) for mobile devices like tablet PC or smart phones to help students learn the principles behind a simple pendulum in Physics. The unique characteristic of U-Physics is the use of sensors on mobile devices to collect acceleration and velocity data during pendulum…
Impact Crater Experiments for Introductory Physics and Astronomy Laboratories
ERIC Educational Resources Information Center
Claycomb, J. R.
2009-01-01
Activity-based collisional analysis is developed for introductory physics and astronomy laboratory experiments. Crushable floral foam is used to investigate the physics of projectiles undergoing completely inelastic collisions with a low-density solid forming impact craters. Simple drop experiments enable determination of the average acceleration,…
The physics of wheel-rail stability
NASA Astrophysics Data System (ADS)
Tan, B. T. G.
2018-05-01
This article discusses, at a simple level, the dynamics of the wheel-rail interface, which is fundamental to the stability of rail vehicles. The physics underlying this topic deserves to be better known by physicists and physics students, as it underpins such an important part of our technological infrastructure.
Let Students Discover an Important Physical Property of a Slinky
ERIC Educational Resources Information Center
Gash, Philip
2016-01-01
This paper describes a simple experiment that lets first-year physics and engineering students discover an important physical property of a Slinky. The restoring force for the fundamental oscillation frequency is provided only by those coils between the support and the Slinky center of mass.
The Physics of Wheel-Rail Stability
ERIC Educational Resources Information Center
Tan, B. T. G.
2018-01-01
This article discusses, at a simple level, the dynamics of the wheel-rail interface, which is fundamental to the stability of rail vehicles. The physics underlying this topic deserves to be better known by physicists and physics students, as it underpins such an important part of our technological infrastructure
Practical Physics Labs: A Resource Manual.
ERIC Educational Resources Information Center
Goodwin, Peter
This resource manual focuses on physics labs that relate to the world around us and utilize simple equipment and situations. Forty-five laboratories are included that relate to thermodynamics, electricity, magnetism, dynamics, optics, wave transmission, centripetal force, and atomic physics. Each lab has three sections. The first section…
A Physics-Based Engineering Approach to Predict the Cross Section for Advanced SRAMs
NASA Astrophysics Data System (ADS)
Li, Lei; Zhou, Wanting; Liu, Huihua
2012-12-01
This paper presents a physics-based engineering approach to estimate the heavy ion induced upset cross section for 6T SRAM cells from layout and technology parameters. The new approach calculates the effects of radiation with junction photocurrent, which is derived based on device physics. The new and simple approach handles the problem by using simple SPICE simulations. At first, the approach uses a standard SPICE program on a typical PC to predict the SPICE-simulated curve of the collected charge vs. its affected distance from the drain-body junction with the derived junction photocurrent. And then, the SPICE-simulated curve is used to calculate the heavy ion induced upset cross section with a simple model, which considers that the SEU cross section of a SRAM cell is more related to a “radius of influence” around a heavy ion strike than to the physical size of a diffusion node in the layout for advanced SRAMs in nano-scale process technologies. The calculated upset cross section based on this method is in good agreement with the test results for 6T SRAM cells processed using 90 nm process technology.
Two-Step Multi-Physics Analysis of an Annular Linear Induction Pump for Fission Power Systems
NASA Technical Reports Server (NTRS)
Geng, Steven M.; Reid, Terry V.
2016-01-01
One of the key technologies associated with fission power systems (FPS) is the annular linear induction pump (ALIP). ALIPs are used to circulate liquid-metal fluid for transporting thermal energy from the nuclear reactor to the power conversion device. ALIPs designed and built to date for FPS project applications have not performed up to expectations. A unique, two-step approach was taken toward the multi-physics examination of an ALIP using ANSYS Maxwell 3D and Fluent. This multi-physics approach was developed so that engineers could investigate design variations that might improve pump performance. Of interest was to determine if simple geometric modifications could be made to the ALIP components with the goal of increasing the Lorentz forces acting on the liquid-metal fluid, which in turn would increase pumping capacity. The multi-physics model first calculates the Lorentz forces acting on the liquid metal fluid in the ALIP annulus. These forces are then used in a computational fluid dynamics simulation as (a) internal boundary conditions and (b) source functions in the momentum equations within the Navier-Stokes equations. The end result of the two-step analysis is a predicted pump pressure rise that can be compared with experimental data.
Crespo-Salgado, Juan José; Delgado-Martín, José Luis; Blanco-Iglesias, Orlando; Aldecoa-Landesa, Susana
2015-03-01
The detection of physical inactivity in adults, using simple and useful tools is primary objective in both public health and in clinical settings, since this risk factor is one of the major causes of non-communicable disease in the world, and is very prevalent in developed societies such as in Spain. Two validated instruments are described that are simple and useful for detecting and/or monitoring physical inactivity in adults: (i)the international physical activity questionnaire in its short version, and (ii)the pedometer to measure the number of steps taken in a day. Increased levels of physical activity are important for the primary prevention of some chronic diseases (coronary heart disease, type2 diabetes, osteoporosis, colon cancer) and to improve the quality of life. Medical personnel must determine the motivation level and the availability of patients and their families to change their behavior towards physical activity. Moderate-intensity physical activities have hardly any contraindications and the risks are few. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.
Wood, Laurence; Peat, George; Thomas, Elaine; Hay, Elaine M; Sim, Julius
2008-01-01
Knee pain is a common disabling condition for which older people seek primary care. Clinicians depend on the history and physical examination to direct treatment. The purpose of this study was to examine the associations between simple physical examination tests and self-reported physical functional limitations. A population sample of 819 older adults underwent a standardized physical examination consisting of 24 tests. Associations between the tests and self-reported physical functional limitations (Western Ontario and McMaster Universities Osteoarthritis Index physical functioning subscale [WOMAC-PF] scores) were explored. Five of the tests showed correlations with WOMAC-PF scores, corresponding to an intermediate effect (r>or=.30). These were tenderness on palpation of the infrapatellar area, timed single-leg standing balance, maximal isometric quadriceps femoris muscle strength (force-generating capacity), reproduction of symptoms on patellofemoral compression, and degree of knee flexion. Each of these tests was able to account for between 7% and 13% of the variance in WOMAC-PF scores, after controlling for age, sex, and body mass index. Three of these tests are indicative of impairments that may be modifiable by exercise interventions. Self-reported physical functional limitations among older people with knee pain are associated with potentially modifiable physical impairments that can be identified by simple physical examination tests.
ERIC Educational Resources Information Center
Alvarado, Patricio R.; Montalvo, Luis
This is the fifth book in a five-book physical science series on simple machines. The books are designed for Spanish-speaking junior high school students. This volume explains the principles and some of the uses of inclined planes, as they appear in simple machines, by suggesting experiments and posing questions concerning drawings in the book…
Tutorial on Fourier space coverage for scattering experiments, with application to SAR
NASA Astrophysics Data System (ADS)
Deming, Ross W.
2010-04-01
The Fourier Diffraction Theorem relates the data measured during electromagnetic, optical, or acoustic scattering experiments to the spatial Fourier transform of the object under test. The theorem is well-known, but since it is based on integral equations and complicated mathematical expansions, the typical derivation may be difficult for the non-specialist. In this paper, the theorem is derived and presented using simple geometry, plus undergraduatelevel physics and mathematics. For practitioners of synthetic aperture radar (SAR) imaging, the theorem is important to understand because it leads to a simple geometric and graphical understanding of image resolution and sampling requirements, and how they are affected by radar system parameters and experimental geometry. Also, the theorem can be used as a starting point for imaging algorithms and motion compensation methods. Several examples are given in this paper for realistic scenarios.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Fei; Maier, T. A.; Scarola, V. W.
The extended Bose-Hubbard model captures the essential properties of a wide variety of physical systems including ultracold atoms and molecules in optical lattices, Josephson junction arrays, and certain narrow band superconductors. It exhibits a rich phase diagram including a supersolid phase where a lattice solid coexists with a superfluid. We use quantum Monte Carlo to study the supersolid part of the phase diagram of the extended Bose-Hubbard model on the simple cubic lattice. We add disorder to the extended Bose-Hubbard model and find that the maximum critical temperature for the supersolid phase tends to be suppressed by disorder. But wemore » also find a narrow parameter window in which the supersolid critical temperature is enhanced by disorder. Our results show that supersolids survive a moderate amount of spatial disorder and thermal fluctuations in the simple cubic lattice.« less
Performance tests and quality control of cathode ray tube displays.
Roehrig, H; Blume, H; Ji, T L; Browne, M
1990-08-01
Spatial resolution, noise, characteristic curve, and absolute luminance are the essential parameters that describe physical image quality of a display. This paper presents simple procedures for assessing the performance of a cathode ray tube (CRT) in terms of these parameters as well as easy set up techniques. The procedures can be used in the environment where the CRT is used. The procedures are based on a digital representation of the Society of Motion Pictures and Television Engineers pattern plus a few simple other digital patterns. Additionally, measurement techniques are discussed for estimating brightness uniformity, veiling glare, and distortion. Apart from the absolute luminance, all performance features can be assessed with an uncalibrated photodetector and the eyes of a human observer. The measurement techniques especially enable the user to perform comparisons of different display systems.
Automatic determination of fault effects on aircraft functionality
NASA Technical Reports Server (NTRS)
Feyock, Stefan
1989-01-01
The problem of determining the behavior of physical systems subsequent to the occurrence of malfunctions is discussed. It is established that while it was reasonable to assume that the most important fault behavior modes of primitive components and simple subsystems could be known and predicted, interactions within composite systems reached levels of complexity that precluded the use of traditional rule-based expert system techniques. Reasoning from first principles, i.e., on the basis of causal models of the physical system, was required. The first question that arises is, of course, how the causal information required for such reasoning should be represented. The bond graphs presented here occupy a position intermediate between qualitative and quantitative models, allowing the automatic derivation of Kuipers-like qualitative constraint models as well as state equations. Their most salient feature, however, is that entities corresponding to components and interactions in the physical system are explicitly represented in the bond graph model, thus permitting systematic model updates to reflect malfunctions. Researchers show how this is done, as well as presenting a number of techniques for obtaining qualitative information from the state equations derivable from bond graph models. One insight is the fact that one of the most important advantages of the bond graph ontology is the highly systematic approach to model construction it imposes on the modeler, who is forced to classify the relevant physical entities into a small number of categories, and to look for two highly specific types of interactions among them. The systematic nature of bond graph model construction facilitates the process to the point where the guidelines are sufficiently specific to be followed by modelers who are not domain experts. As a result, models of a given system constructed by different modelers will have extensive similarities. Researchers conclude by pointing out that the ease of updating bond graph models to reflect malfunctions is a manifestation of the systematic nature of bond graph construction, and the regularity of the relationship between bond graph models and physical reality.
Simple Exploration Apparatus for the Introductory Physics Laboratory
ERIC Educational Resources Information Center
Campbell, Thomas C.
1977-01-01
Discusses the laboratory portion of a beginning noncalculus physics course that uses concrete examples of abstract concepts. Describes the use of coffee cans to explain oscillations and plastic darts to illustrate collisions. (MLH)
Fundamentals of Physics, Part 2 (Chapters 12-20)
NASA Astrophysics Data System (ADS)
Halliday, David; Resnick, Robert; Walker, Jearl
2003-12-01
Chapter 12 Equilibrium and Elasticity. What injury can occur to a rock climber hanging by a crimp hold? 12-1 What Is Physics? 12-2 Equilibrium. 12-3 The Requirements of Equilibrium. 12-4 The Center of Gravity. 12-5 Some Examples of Static Equilibrium. 12-6 Indeterminate Structures. 12-7 Elasticity. Review & Summary Questions Problems. Chapter 13 Gravitation. What lies at the center of our Milky Way galaxy? 13-1 What Is Physics? 13-2 Newton's Law of Gravitation. 13-3 Gravitation and the Principle of Superposition. 13-4 Gravitation Near Earth's Surface. 13-5 Gravitation Inside Earth. 13-6 Gravitational Potential Energy. 13-7 Planets and Satellites: Kepler's Laws. 13-8 Satellites: Orbits and Energy. 13-9 Einstein and Gravitation. Review & Summary Questions Problems. Chapter 14 Fluids. What causes ground effect in race car driving? 14-1 What Is Physics? 14-2 What Is a Fluid? 14-3 Density and Pressure. 14-4 Fluids at Rest. 14-5 Measuring Pressure. 14-6 Pascal's Principle. 14-7 Archimedes' Principle. 14-8 Ideal Fluids in Motion. 14-9 The Equation of Continuity. 14-10 Bernoulli's Equation. Review & SummaryQuestionsProblems. Chapter 15 Oscillations. What is the "secret" of a skilled diver's high catapult in springboard diving? 15-1 What Is Physics? 15-2 Simple Harmonic Motion. 15-3 The Force Law for Simple Harmonic Motion. 15-4 Energy in Simple Harmonic Motion. 15-5 An Angular Simple Harmonic Oscillator. 15-6 Pendulums. 15-7 Simple Harmonic Motion and Uniform Circular Motion. 15-8 Damped Simple Harmonic Motion. 15-9 Forced Oscillations and Resonance. Review & Summary Questions Problems. Chapter 16 Waves--I. How can a submarine wreck be located by distant seismic stations? 16-1 What Is Physics? 16-2 Types of Waves. 16-3 Transverse and Longitudinal Waves. 16-4 Wavelength and Frequency. 16-5 The Speed of a Traveling Wave. 16-6 Wave Speed on a Stretched String. 16-7 Energy and Power of a Wave Traveling Along a String. 16-8 The Wave Equation. 16-9 The Principle of Superposition for Waves. 16-10 Interference of Waves. 16-11 Phasors. 16-12 Standing Waves. 16-13 Standing Waves and Resonance. Review & Summary Questions Problems. Chapter 17 Waves--II. How can an emperor penguin .nd its mate among thousands of huddled penguins? 17-1 What Is Physics? 17-2 Sound Waves. 17-3 The Speed of Sound. 17-4 Traveling Sound Waves. 17-5 Interference. 17-6 Intensity and Sound Level. 17-7 Sources of Musical Sound. 17-8 Beats. 17-9 The Doppler Effect. 17-10 Supersonic Speeds, Shock Waves. Review & Summary Questions Problems. Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. How can a dead rattlesnake detect and strike a reaching hand? 18-1 What Is Physics?. 18-2 Temperature. 18-3 The Zeroth Law of Thermodynamics. 18-4 Measuring Temperature. 18-5 The Celsius and Fahrenheit Scales. 18-6 Thermal Expansion. 18-7 Temperature and Heat. 18-8 The Absorption of Heat by Solids and Liquids. 18-9 A Closer Look at Heat and Work. 18-10 The First Law of Thermodynamics. 18-11 Some Special Cases of the First Law of Thermodynamics. 18-12 Heat Transfer Mechanisms. Review & Summary Questions Problems. Chapter 19 The Kinetic Theory of Gases. How can cooling steam inside a railroad tank car cause the car to be crushed? 19-1 What Is Physics? 19-2 Avogadro's Number. 19-3 Ideal Gases. 19-4 Pressure, Temperature, and RMS Speed. 19-5 Translational Kinetic Energy. 19-6 Mean Free Path. 19-7 The Distribution of Molecular Speeds. 19-8 The Molar Speci.c Heats of an Ideal Gas. 19-9 Degrees of Freedom and Molar Speci.c Heats. 19-10 A Hint of Quantum Theory. 19-11 The Adiabatic Expansion of an Ideal Gas. Review & Summary Questions Problems. Chapter 20 Entropy and the Second Law of Thermodynamics. Why is the popping of popcorn irreversible? 20-1 What Is Physics? 20-2 Irreversible Processes and Entropy. 20-3 Change in Entropy. 20-4 The Second Law of Thermodynamics. 20-5 Entropy in the Real World: Engines. 20-6 Entropy in the Real World: Refrigerators. 20-7 The Ef.ciencies of Real Engines. 20-8 A Statistical View of Entropy. Review & Summary Questions Problems. Appendices. A The International System of Units (SI). B Some Fundamental Constants of Physics. C Some Astronomical Data. D Conversion Factors. E Mathematical Formulas. F Properties of the Elements. G Periodic Table of the Elements. Answers to Checkpoints and Odd-Numbered Questions and Problems. Index.
Dini, Paolo; Nehaniv, Chrystopher L; Egri-Nagy, Attila; Schilstra, Maria J
2013-05-01
Interaction computing (IC) aims to map the properties of integrable low-dimensional non-linear dynamical systems to the discrete domain of finite-state automata in an attempt to reproduce in software the self-organizing and dynamically stable properties of sub-cellular biochemical systems. As the work reported in this paper is still at the early stages of theory development it focuses on the analysis of a particularly simple chemical oscillator, the Belousov-Zhabotinsky (BZ) reaction. After retracing the rationale for IC developed over the past several years from the physical, biological, mathematical, and computer science points of view, the paper presents an elementary discussion of the Krohn-Rhodes decomposition of finite-state automata, including the holonomy decomposition of a simple automaton, and of its interpretation as an abstract positional number system. The method is then applied to the analysis of the algebraic properties of discrete finite-state automata derived from a simplified Petri net model of the BZ reaction. In the simplest possible and symmetrical case the corresponding automaton is, not surprisingly, found to contain exclusively cyclic groups. In a second, asymmetrical case, the decomposition is much more complex and includes five different simple non-abelian groups whose potential relevance arises from their ability to encode functionally complete algebras. The possible computational relevance of these findings is discussed and possible conclusions are drawn. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Shear thickening in concentrated suspensions: phenomenology, mechanisms and relations to jamming
NASA Astrophysics Data System (ADS)
Brown, Eric; Jaeger, Heinrich M.
2014-04-01
Shear thickening is a type of non-Newtonian behavior in which the stress required to shear a fluid increases faster than linearly with shear rate. Many concentrated suspensions of particles exhibit an especially dramatic version, known as Discontinuous Shear Thickening (DST), in which the stress suddenly jumps with increasing shear rate and produces solid-like behavior. The best known example of such counter-intuitive response to applied stresses occurs in mixtures of cornstarch in water. Over the last several years, this shear-induced solid-like behavior together with a variety of other unusual fluid phenomena has generated considerable interest in the physics of densely packed suspensions. In this review, we discuss the common physical properties of systems exhibiting shear thickening, and different mechanisms and models proposed to describe it. We then suggest how these mechanisms may be related and generalized, and propose a general phase diagram for shear thickening systems. We also discuss how recent work has related the physics of shear thickening to that of granular materials and jammed systems. Since DST is described by models that require only simple generic interactions between particles, we outline the broader context of other concentrated many-particle systems such as foams and emulsions, and explain why DST is restricted to the parameter regime of hard-particle suspensions. Finally, we discuss some of the outstanding problems and emerging opportunities.
ERIC Educational Resources Information Center
2000
All kids know the word "work." But they probably don't understand that work happens whenever a force is used to move something--whether it's lifting a heavy object or playing on a see-saw. All About Simple Machines introduces kids to the concepts of forces, work and how machines are used to make work easier. Six simple machines are…
Ferreiro, Diego U.; Komives, Elizabeth A.; Wolynes, Peter G.
2014-01-01
Biomolecules are the prime information processing elements of living matter. Most of these inanimate systems are polymers that compute their own structures and dynamics using as input seemingly random character strings of their sequence, following which they coalesce and perform integrated cellular functions. In large computational systems with a finite interaction-codes, the appearance of conflicting goals is inevitable. Simple conflicting forces can lead to quite complex structures and behaviors, leading to the concept of frustration in condensed matter. We present here some basic ideas about frustration in biomolecules and how the frustration concept leads to a better appreciation of many aspects of the architecture of biomolecules, and how biomolecular structure connects to function. These ideas are simultaneously both seductively simple and perilously subtle to grasp completely. The energy landscape theory of protein folding provides a framework for quantifying frustration in large systems and has been implemented at many levels of description. We first review the notion of frustration from the areas of abstract logic and its uses in simple condensed matter systems. We discuss then how the frustration concept applies specifically to heteropolymers, testing folding landscape theory in computer simulations of protein models and in experimentally accessible systems. Studying the aspects of frustration averaged over many proteins provides ways to infer energy functions useful for reliable structure prediction. We discuss how frustration affects folding mechanisms. We review here how a large part of the biological functions of proteins are related to subtle local physical frustration effects and how frustration influences the appearance of metastable states, the nature of binding processes, catalysis and allosteric transitions. We hope to illustrate how Frustration is a fundamental concept in relating function to structural biology. PMID:25225856
Perceived Causalities of Physical Events Are Influenced by Social Cues
ERIC Educational Resources Information Center
Zhou, Jifan; Huang, Xiang; Jin, Xinyi; Liang, Junying; Shui, Rende; Shen, Mowei
2012-01-01
In simple mechanical events, we can directly perceive causal interactions of the physical objects. Physical cues (especially spatiotemporal features of the display) are found to associate with causal perception. Here, we demonstrate that cues of a completely different domain--"social cues"--also impact the causal perception of…
ERIC Educational Resources Information Center
Vollmer, Michael; Möllmann, Klaus-Peter
2015-01-01
Toys are known to attract interest in physics and they are therefore often used in physics teaching of various topics. The present paper deals with a simple toy, the so-called "hopper popper," which, similar to superballs, can be used when teaching mechanics. We suggest some experiments and describe the basic physics of this toy, also…
ERIC Educational Resources Information Center
Campbell, Dean J.; Xia, Younan
2007-01-01
The physical phenomenon of plasmons and the techniques that build upon them are discussed. Plasmon-enhanced applications are well-suited for introduction in physical chemistry and instrumental analysis classes and some methods of fabrication and analysis of plasmon-producing structures are simple for use in labs in general, physical and inorganic…
The Formation and Physical Origin of Highly Ionized Cooling Gas
NASA Astrophysics Data System (ADS)
Bordoloi, Rongmon; Wagner, Alexander Y.; Heckman, Timothy M.; Norman, Colin A.
2017-10-01
We present a simple model that explains the origin of warm, diffuse gas seen primarily as highly ionized absorption-line systems in the spectra of background sources. We predict the observed column densities of several highly ionized transitions such as O VI, O vii, Ne viii, N v, and Mg x, and we present a unified comparison of the model predictions with absorption lines seen in the Milky Way disk, Milky Way halo, starburst galaxies, the circumgalactic medium, and the intergalactic medium at low and high redshifts. We show that diffuse gas seen in such diverse environments can be simultaneously explained by a simple model of radiatively cooling gas. We show that most such absorption-line systems are consistent with being collisionally ionized, and we estimate the maximum-likelihood temperature of the gas in each observation. This model satisfactorily explains why O VI is regularly observed around star-forming low-z L* galaxies, and why N v is rarely seen around the same galaxies. We further present some consequences of this model in quantifying the dynamics of the cooling gas around galaxies and predict the shock velocities associated with such flows. A unique strength of this model is that while it has only one free (but physically well-constrained) parameter, it nevertheless successfully reproduces the available data on O VI absorbers in the interstellar, circumgalactic, intragroup, and intergalactic media, as well as the available data on other absorption lines from highly ionized species.
The Formation and Physical Origin of Highly Ionized Cooling Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bordoloi, Rongmon; Wagner, Alexander Y.; Heckman, Timothy M.
We present a simple model that explains the origin of warm, diffuse gas seen primarily as highly ionized absorption-line systems in the spectra of background sources. We predict the observed column densities of several highly ionized transitions such as O vi, O vii, Ne viii, N v, and Mg x, and we present a unified comparison of the model predictions with absorption lines seen in the Milky Way disk, Milky Way halo, starburst galaxies, the circumgalactic medium, and the intergalactic medium at low and high redshifts. We show that diffuse gas seen in such diverse environments can be simultaneously explainedmore » by a simple model of radiatively cooling gas. We show that most such absorption-line systems are consistent with being collisionally ionized, and we estimate the maximum-likelihood temperature of the gas in each observation. This model satisfactorily explains why O vi is regularly observed around star-forming low- z L* galaxies, and why N v is rarely seen around the same galaxies. We further present some consequences of this model in quantifying the dynamics of the cooling gas around galaxies and predict the shock velocities associated with such flows. A unique strength of this model is that while it has only one free (but physically well-constrained) parameter, it nevertheless successfully reproduces the available data on O vi absorbers in the interstellar, circumgalactic, intragroup, and intergalactic media, as well as the available data on other absorption lines from highly ionized species.« less
Reactions of immune system to physical exercises.
Pershin, Boris B; Geliev, Anatoly B; Tolstov, Dmitry V; Kovalchuk, Leonid V; Medvedev, Vladimir Ya
2002-04-01
The great attention to reactions of immune system to the physical exercises in sportsmen is linked to the growth of training volumes, to the increase of competition numbers and to the elevation of morbidity. Immune deficiency may be considered as the detonator of pathological processes among which acute respiratory diseases (ARD) are investigated most completely in sports medicine. Other pathologies require long-term observations, but it is not so simple to do due to the frequent renewal of sports groups. Besides ARD, there are reports about the growth of cases of poliomyelitis, endotoxemia, allergic and autoimmune disorders. Immune reactions in sportsmen are developed at the background of fever, impaired balance of ergotrophic hormone activity and in a number of cases under conditions of systemic endotoxemia. We have described the extreme type of immune deficiency in sportsmen, in which we could not determine different isotypes of Ig. The phenomenon of Ig disappearance is reproduced under the experimental conditions that opened the way to study its mechanisms. Physical exercises decrease function of immunocompetent cells, their antiviral resistance, antigen presentation and expression of class II MHC molecules. With the involvement of macrophages hyperproduction of IL-6 is developed in muscle tissues. After physical exercises other cytokines also change the state of immunity. Also, neuropeptides getting in touch the links between endocrine and immune systems may make a contribution to immunosuppression. The immunosuppression may be prevented by use of special carbohydrate diets and by administration of complexed preparations. The prophylaxis is capable to control the morbidity, profoundly to increase the training volumes and to enhance the labor efficiency.
NASA Astrophysics Data System (ADS)
Dufoyer, A.; Lecoq, N.; Massei, N.; Marechal, J. C.
2017-12-01
Physics-based modeling of karst systems remains almost impossible without enough accurate information about the inner physical characteristics. Usually, the only available hydrodynamic information is the flow rate at the karst outlet. Numerous works in the past decades have used and proven the usefulness of time-series analysis and spectral techniques applied to spring flow, precipitations or even physico-chemical parameters, for interpreting karst hydrological functioning. However, identifying or interpreting the karst systems physical features that control statistical or spectral characteristics of spring flow variations is still challenging, not to say sometimes controversial. The main objective of this work is to determine how the statistical and spectral characteristics of the hydrodynamic signal at karst springs can be related to inner physical and hydraulic properties. In order to address this issue, we undertake an empirical approach based on the use of both distributed and physics-based models, and on synthetic systems responses. The first step of the research is to conduct a sensitivity analysis of time-series/spectral methods to karst hydraulic and physical properties. For this purpose, forward modeling of flow through several simple, constrained and synthetic cases in response to precipitations is undertaken. It allows us to quantify how the statistical and spectral characteristics of flow at the outlet are sensitive to changes (i) in conduit geometries, and (ii) in hydraulic parameters of the system (matrix/conduit exchange rate, matrix hydraulic conductivity and storativity). The flow differential equations resolved by MARTHE, a computer code developed by the BRGM, allows karst conduits modeling. From signal processing on simulated spring responses, we hope to determine if specific frequencies are always modified, thanks to Fourier series and multi-resolution analysis. We also hope to quantify which parameters are the most variable with auto-correlation analysis: first results seem to show higher variations due to conduit conductivity than the ones due to matrix/conduit exchange rate. Future steps will be using another computer code, based on double-continuum approach and allowing turbulent conduit flow, and modeling a natural system.
Ebersviller, S.; Lichtveld, K.; Sexton, K. G.; Zavala, J.; Lin, Y-H.; Jaspers, I.; Jeffries, H. E.
2013-01-01
This is the first of a three-part study designed to demonstrate dynamic entanglements among gaseous organic compounds (VOC), particulate matter (PM), and their subsequent potential biological effects. We study these entanglements in increasingly complex VOC and PM mixtures in urban-like conditions in a large outdoor chamber. To the traditional chemical and physical characterizations of gas and PM, we added new measurements of gas-only- and PM-only-biological effects, using cultured human lung cells as model indicators. These biological effects are assessed here as increases in cellular damage or expressed irritation (i.e., cellular toxic effects) from cells exposed to chamber air relative to cells exposed to clean air. The exposure systems permit gas-only- or PM-only-exposures from the same air stream containing both gases and PM in equilibria, i.e., there are no extractive operations prior to cell exposure. Our simple experiments in this part of the study were designed to eliminate many competing atmospheric processes to reduce ambiguity in our results. Simple volatile and semi-volatile organic gases that have inherent cellular toxic properties were tested individually for biological effect in the dark (at constant humidity). Airborne mixtures were then created with each compound and PM that has no inherent cellular toxic properties for another cellular exposure. Acrolein and p-tolualdehyde were used as model VOCs and mineral oil aerosol (MOA) was selected as a surrogate for organic-containing PM. MOA is appropriately complex in composition to represent ambient PM, and it exhibits no inherent cellular toxic effects and thus did not contribute any biological detrimental effects on its own. Chemical measurements, combined with the responses of our biological exposures, clearly demonstrate that gas-phase pollutants can modify the composition of PM (and its resulting detrimental effects on lung cells) – even if the gas-phase pollutants are not considered likely to partition to the condensed phase: the VOC-modified-PM showed significantly more damage and inflammation to lung cells than did the original PM. Because gases and PM are transported and deposited differently within the atmosphere and the lungs, these results have significant consequences. For example, current US policies for research and regulation of PM do not recognize this “effect modification” phenomena (NAS, 2004). These results present an unambiguous demonstration that – even in these simple mixtures – physical and thermal interactions alone can cause a modification of the distribution of species among the phases of airborne pollution mixtures and can result in a non-toxic phase becoming toxic due to atmospheric thermal processes only. Subsequent work extends the simple results reported here to systems with photochemical transformations of complex urban mixtures and to systems with diesel exhaust produced by different fuels. PMID:23457430
The Surface-to-Volume Ratio in Thermal Physics: From Cheese Cube Physics to Animal Metabolism
ERIC Educational Resources Information Center
Planinsic, Gorazd; Vollmer, Michael
2008-01-01
The surface-to-volume ratio is an important quantity in thermal physics. For example it governs the behaviour of heating or cooling of physical objects as a function of size like, e.g. cubes or spheres made of different material. The starting point in our paper is the simple physics problem of how cheese cubes of different sizes behave if heated…
Simulation study of localization of electromagnetic waves in two-dimensional random dipolar systems.
Wang, Ken Kang-Hsin; Ye, Zhen
2003-12-01
We study the propagation and scattering of electromagnetic waves by random arrays of dipolar cylinders in a uniform medium. A set of self-consistent equations, incorporating all orders of multiple scattering of the electromagnetic waves, is derived from first principles and then solved numerically for electromagnetic fields. For certain ranges of frequencies, spatially localized electromagnetic waves appear in such a simple but realistic disordered system. Dependence of localization on the frequency, radiation damping, and filling factor is shown. The spatial behavior of the total, coherent, and diffusive waves is explored in detail, and found to comply with a physical intuitive picture. A phase diagram characterizing localization is presented, in agreement with previous investigations on other systems.
Biological neural networks as model systems for designing future parallel processing computers
NASA Technical Reports Server (NTRS)
Ross, Muriel D.
1991-01-01
One of the more interesting debates of the present day centers on whether human intelligence can be simulated by computer. The author works under the premise that neurons individually are not smart at all. Rather, they are physical units which are impinged upon continuously by other matter that influences the direction of voltage shifts across the units membranes. It is only the action of a great many neurons, billions in the case of the human nervous system, that intelligent behavior emerges. What is required to understand even the simplest neural system is painstaking analysis, bit by bit, of the architecture and the physiological functioning of its various parts. The biological neural network studied, the vestibular utricular and saccular maculas of the inner ear, are among the most simple of the mammalian neural networks to understand and model. While there is still a long way to go to understand even this most simple neural network in sufficient detail for extrapolation to computers and robots, a start was made. Moreover, the insights obtained and the technologies developed help advance the understanding of the more complex neural networks that underlie human intelligence.
On a Possible Unified Scaling Law for Volcanic Eruption Durations
Cannavò, Flavio; Nunnari, Giuseppe
2016-01-01
Volcanoes constitute dissipative systems with many degrees of freedom. Their eruptions are the result of complex processes that involve interacting chemical-physical systems. At present, due to the complexity of involved phenomena and to the lack of precise measurements, both analytical and numerical models are unable to simultaneously include the main processes involved in eruptions thus making forecasts of volcanic dynamics rather unreliable. On the other hand, accurate forecasts of some eruption parameters, such as the duration, could be a key factor in natural hazard estimation and mitigation. Analyzing a large database with most of all the known volcanic eruptions, we have determined that the duration of eruptions seems to be described by a universal distribution which characterizes eruption duration dynamics. In particular, this paper presents a plausible global power-law distribution of durations of volcanic eruptions that holds worldwide for different volcanic environments. We also introduce a new, simple and realistic pipe model that can follow the same found empirical distribution. Since the proposed model belongs to the family of the self-organized systems it may support the hypothesis that simple mechanisms can lead naturally to the emergent complexity in volcanic behaviour. PMID:26926425
On a Possible Unified Scaling Law for Volcanic Eruption Durations.
Cannavò, Flavio; Nunnari, Giuseppe
2016-03-01
Volcanoes constitute dissipative systems with many degrees of freedom. Their eruptions are the result of complex processes that involve interacting chemical-physical systems. At present, due to the complexity of involved phenomena and to the lack of precise measurements, both analytical and numerical models are unable to simultaneously include the main processes involved in eruptions thus making forecasts of volcanic dynamics rather unreliable. On the other hand, accurate forecasts of some eruption parameters, such as the duration, could be a key factor in natural hazard estimation and mitigation. Analyzing a large database with most of all the known volcanic eruptions, we have determined that the duration of eruptions seems to be described by a universal distribution which characterizes eruption duration dynamics. In particular, this paper presents a plausible global power-law distribution of durations of volcanic eruptions that holds worldwide for different volcanic environments. We also introduce a new, simple and realistic pipe model that can follow the same found empirical distribution. Since the proposed model belongs to the family of the self-organized systems it may support the hypothesis that simple mechanisms can lead naturally to the emergent complexity in volcanic behaviour.
Bajnóczi, Éva G; Németh, Zoltán; Vankó, György
2017-11-20
Even quite simple chemical systems can involve many components and chemical states, and sometimes it can be very difficult to differentiate them by their hardly separable physical-chemical properties. The Ni II -EDTA-CN - (EDTA = ethylenediaminetetraacetic acid) ternary system is a good example for this problem where, in spite of its fairly simple components and numerous investigations, several molecular combinations can exist, all of them not having been identified unambiguously yet. In order to achieve a detailed understanding of the reaction steps and chemical equilibria, methods are required in which the structural transitions in the different reaction steps can be followed via element-selective complex spectral feature sets. With the help of our recently developed von Hámos type high-resolution laboratory X-ray absorption spectrometer, both the structural variations and stability constants of the forming complexes were determined from the same measurement series, proving that X-ray absorption spectroscopy can be considered as a multifaced, table-top tool in coordination chemistry. Furthermore, with the help of theoretical calculations, independent structural evidence was also given for the formation of the [NiEDTA(CN)] 3- mixed complex.
Zeitoun, Ramsey I; Goudie, Marcus J; Zwier, Jacob; Mahawilli, David; Burns, Mark A
2011-12-07
Nanolitre droplets in microfluidic devices can be used to perform thousands of independent chemical and biological experiments while minimizing reagents, cost and time. However, the absence of simple and versatile methods capable of controlling the contents of these nanolitre chemical systems limits their scientific potential. To address this, we have developed a method that is simple to fabricate and can continuously control nanolitre chemical systems by integrating a time-resolved convective flow signal across a permeable membrane wall. With this method, we can independently control the volume and concentration of nanolitre-sized drops without ever directly contacting the fluid. Transport occurring in these systems was also analyzed and thoroughly characterized. We achieved volumetric fluid introduction and removal rates ranging from 0.23 to 4.0 pL s(-1). Furthermore, we expanded this method to perform chemical processes. We precipitated silver chloride using a flow signal of sodium chloride and silver nitrate droplets. From there, we were able to separate sodium chloride reactants with a water flow signal, and dissolve silver chloride solids with an ammonia hydroxide flow signal. Finally, we demonstrate the potential to deliver large molecules and perform physical processes like crystallization and particle packing.
Adaptive Antenna System for Both 4G LTE and 5G Cellular Systems
NASA Astrophysics Data System (ADS)
Henderson, Kendrick Q. T.
Given the steep increase in the use of mobile communication systems, the current 4G/LTE (Long Term Evolution), cellular system will not be able to handle the increase in data. It is estimated that by 2020 the bandwidth requirements will be 10 times greater than what LTE can sustain. A new 5th generation (5G) communication system has been proposed to meet this demand. The physical layer or the antenna is the most critical part of any wireless communication systems as it is the interface between the free space medium and an electrical circuit. It sets the margin for almost all design parameters in the system such as the system noise and bandwidth. Several interactions of antennas have been proposed over the years for cellular services. These antennas are of various geometries, bandwidths, and radiation patterns with almost all having linear polarization. This thesis attempts to solve the multiple LTE antenna problem by creating a simple antenna that covers most of the LTE bands (850-2700 MHz) as well as introducing an antenna system at the 28 GHz 5G band. This allows for a greater educated hypothesis into what 5G can offer at the physical layer. The proposed concept will provide a solution to the co-existence problem of upcoming 5G wireless systems to be interoperable with existing 4G/LTE system.
Voss, Christine; Winters, Meghan; Frazer, Amanda D; McKay, Heather A
2014-12-01
Active travel to school is a potential source of physical activity for adolescents, but its assessments often rely on assumptions around travel patterns. Global positioning system (GPS) and accelerometry provide an objective assessment of physical activity from school-travel and the context in which it occurs (where, when, how long). To describe school-travel patterns of adolescents and to compare estimates of physical activity during the hour before/after school - a commonly used proxy for school-travel time - with physical activity accrued during school trips identified through GPS ('GPS-trips'). Adolescents ( n =49, 13.3±0.7 years, 37% female) from Downtown Vancouver wore an accelerometer (GT3X+) and GPS (Qstarz) for 7 days (October 2012). Minutes of moderate-to-vigorous physical activity (MVPA) during the hour before/after school and during GPS-trips were calculated for the n =130 school-trips made by 43 students. We used multilevel linear regression to assess the association between MVPA during GPS-trips and MVPA during the hour/before school. Only 55% of school-trips were from/to home and within the hour before/after school ('normal'). Estimates of MVPA during the hour before/after school were higher than during GPS-trips (12.0 vs. 8.0 min). On average, MVPA during GPS-trips was linearly associated with MVPA during the hour before/after school, suggesting that physical activity levels during the hour before/after school are broadly reflective of physical activity from school-travel. GPS and accelerometry provide context-rich information relating to school-travel. The hour before/after school may - on average - provide a simple means to crudely estimate physical activity from school-travel when GPS are not available.
Voss, Christine; Winters, Meghan; Frazer, Amanda D.; McKay, Heather A.
2015-01-01
Background Active travel to school is a potential source of physical activity for adolescents, but its assessments often rely on assumptions around travel patterns. Global positioning system (GPS) and accelerometry provide an objective assessment of physical activity from school-travel and the context in which it occurs (where, when, how long). Purpose To describe school-travel patterns of adolescents and to compare estimates of physical activity during the hour before/after school – a commonly used proxy for school-travel time – with physical activity accrued during school trips identified through GPS (‘GPS-trips’). Methods Adolescents (n=49, 13.3±0.7 years, 37% female) from Downtown Vancouver wore an accelerometer (GT3X+) and GPS (Qstarz) for 7 days (October 2012). Minutes of moderate-to-vigorous physical activity (MVPA) during the hour before/after school and during GPS-trips were calculated for the n=130 school-trips made by 43 students. We used multilevel linear regression to assess the association between MVPA during GPS-trips and MVPA during the hour/before school. Results Only 55% of school-trips were from/to home and within the hour before/after school (‘normal’). Estimates of MVPA during the hour before/after school were higher than during GPS-trips (12.0 vs. 8.0 min). On average, MVPA during GPS-trips was linearly associated with MVPA during the hour before/after school, suggesting that physical activity levels during the hour before/after school are broadly reflective of physical activity from school-travel. Conclusion GPS and accelerometry provide context-rich information relating to school-travel. The hour before/after school may – on average – provide a simple means to crudely estimate physical activity from school-travel when GPS are not available. PMID:26793437
REVIEW ARTICLE: How do biomolecular systems speed up and regulate rates?
NASA Astrophysics Data System (ADS)
Zhou, Huan-Xiang
2005-09-01
The viability of a biological system depends upon careful regulation of the rates of various processes. These rates have limits imposed by intrinsic chemical or physical steps (e.g., diffusion). These limits can be expanded by interactions and dynamics of the biomolecules. For example, (a) a chemical reaction is catalyzed when its transition state is preferentially bound to an enzyme; (b) the folding of a protein molecule is speeded up by specific interactions within the transition-state ensemble and may be assisted by molecular chaperones; (c) the rate of specific binding of a protein molecule to a cellular target can be enhanced by mechanisms such as long-range electrostatic interactions, nonspecific binding and folding upon binding; (d) directional movement of motor proteins is generated by capturing favorable Brownian motion through intermolecular binding energy; and (e) conduction and selectivity of ions through membrane channels are controlled by interactions and the dynamics of channel proteins. Simple physical models are presented here to illustrate these processes and provide a unifying framework for understanding speed attainment and regulation in biomolecular systems.
Use of videos for students to see the effect of changing gravity on harmonic oscillators
NASA Astrophysics Data System (ADS)
Benge, Raymond; Young, Charlotte; Worley, Alan; Davis, Shirley; Smith, Linda; Gell, Amber
2010-03-01
In introductory physics classes, students are introduced to harmonic oscillators such as masses on springs and the simple pendulum. In derivation of the equations describing these systems, the term ``g'' for the acceleration due to gravity cancels in the equation for the period of a mass oscillating on a spring, but it remains in the equation for the period of a pendulum. Frequently there is a homework problem asking how the system described would behave on the Moon, Mars, etc. Students have to have faith in the equations. In January, 2009, a team of community college faculty flew an experiment aboard an aircraft in conjunction with NASA's Microgravity University program. The experiment flown was a study in harmonic oscillator and pendulum behavior under various gravity situations. The aircraft simulated zero gravity, Martian, Lunar, and hypergravity conditions. The experiments were video recorded for students to study the behavior of the systems in varying gravity conditions. These videos are now available on the internet for anyone to use in introductory physics classes.
NASA Astrophysics Data System (ADS)
Cheviakov, Alexei F.
2017-11-01
An efficient systematic procedure is provided for symbolic computation of Lie groups of equivalence transformations and generalized equivalence transformations of systems of differential equations that contain arbitrary elements (arbitrary functions and/or arbitrary constant parameters), using the software package GeM for Maple. Application of equivalence transformations to the reduction of the number of arbitrary elements in a given system of equations is discussed, and several examples are considered. The first computational example of generalized equivalence transformations where the transformation of the dependent variable involves an arbitrary constitutive function is presented. As a detailed physical example, a three-parameter family of nonlinear wave equations describing finite anti-plane shear displacements of an incompressible hyperelastic fiber-reinforced medium is considered. Equivalence transformations are computed and employed to radically simplify the model for an arbitrary fiber direction, invertibly reducing the model to a simple form that corresponds to a special fiber direction, and involves no arbitrary elements. The presented computation algorithm is applicable to wide classes of systems of differential equations containing arbitrary elements.
Semantic Information Processing of Physical Simulation Based on Scientific Concept Vocabulary Model
NASA Astrophysics Data System (ADS)
Kino, Chiaki; Suzuki, Yoshio; Takemiya, Hiroshi
Scientific Concept Vocabulary (SCV) has been developed to actualize Cognitive methodology based Data Analysis System: CDAS which supports researchers to analyze large scale data efficiently and comprehensively. SCV is an information model for processing semantic information for physics and engineering. In the model of SCV, all semantic information is related to substantial data and algorisms. Consequently, SCV enables a data analysis system to recognize the meaning of execution results output from a numerical simulation. This method has allowed a data analysis system to extract important information from a scientific view point. Previous research has shown that SCV is able to describe simple scientific indices and scientific perceptions. However, it is difficult to describe complex scientific perceptions by currently-proposed SCV. In this paper, a new data structure for SCV has been proposed in order to describe scientific perceptions in more detail. Additionally, the prototype of the new model has been constructed and applied to actual data of numerical simulation. The result means that the new SCV is able to describe more complex scientific perceptions.
New trial wave function for the nuclear cluster structure of nuclei
NASA Astrophysics Data System (ADS)
Zhou, Bo
2018-04-01
A new trial wave function is proposed for nuclear cluster physics, in which an exact solution to the long-standing center-of-mass problem is given. In the new approach, the widths of the single-nucleon Gaussian wave packets and the widths of the relative Gaussian wave functions describing correlations of nucleons or clusters are treated as variables in the explicit intrinsic wave function of the nuclear system. As an example, this new wave function was applied to study the typical {^{20}Ne} (α+{{^{16}}O}) cluster system. By removing exactly the spurious center-of-mass effect in a very simple way, the energy curve of {^{20}Ne} was obtained by variational calculations with the width of the α cluster, the width of the {{^{16}}O} cluster, and the size parameter of the nucleus. These are considered the three crucial variational variables in describing the {^{20}Ne} (α+{{^{16}}O}) cluster system. This shows that the new wave function can be a very interesting new tool for studying many-body and cluster effects in nuclear physics.
Rescriptive and Descriptive Gauge Symmetry in Finite-Dimensional Dynamical Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gurfil, Pini
2007-02-07
Gauge theories in physics constitute a fundamental tool for modeling interactions among electromagnetic, weak and strong forces. They have been used in a myriad of fields, ranging from sub-atomic physics to cosmology. The basic mathematical tool generating the gauge theories is that of symmetry, i.e. a redundancy in the description of the system. Although symmetries have long been recognized as a fundamental tool for solving ordinary differential equations, they have not been formally categorized as gauge theories. In this paper, we show how simple systems described by ordinary differential equations are prone to exhibit gauge symmetry, and discuss a fewmore » practical applications of this approach. In particular, we utilize the notion of gauge symmetry to question some common engineering misconceptions of chaotic and stochastic phenomena, and show that seemingly 'disordered' (deterministic) or 'random' (stochastic) behaviors can be 'ordered'. This brings into play the notion of observation; we show that temporal observations may be misleading when used for chaos detection. From a practical standpoint, we use gauge symmetry to considerably mitigate the numerical truncation error of numerical integrations.« less
Branson: A Mini-App for Studying Parallel IMC, Version 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Alex
This code solves the gray thermal radiative transfer (TRT) equations in parallel using simple opacities and Cartesian meshes. Although Branson solves the TRT equations it is not designed to model radiation transport: Branson contains simple physics and does not have a multigroup treatment, nor can it use physical material data. The opacities have are simple polynomials in temperature there is a limited ability to specify complex geometries and sources. Branson was designed only to capture the computational demands of production IMC codes, especially in large parallel runs. It was also intended to foster collaboration with vendors, universities and other DOEmore » partners. Branson is similar in character to the neutron transport proxy-app Quicksilver from LLNL, which was recently open-sourced.« less
Soft nanocomposites of gelatin and poly(3-hydroxybutyrate) nanoparticles for dual drug release.
Bini, Rafael A; Silva, Mônica F; Varanda, Laudemir C; da Silva, Marcelo A; Dreiss, Cécile A
2017-09-01
We developed a nanocomposite gel composed of gelatin and poly(3-hydroxybutyrate) polymeric nanoparticles (PNP) to be used as an injectable gel for the contemporaneous, dual sustained release of bioactive molecules. The hydrogel matrix was formed by a very simple process, using either the physical gelation of gelatin or the natural enzyme transglutaminase to covalently cross-link the gelatin chains in the presence of embedded PNP. Oscillatory rheological measurements showed that the addition of the PNP induced an increase in the storage modulus compared to pure gelatin gels, for both physical and chemical gels. Micrographs from scanning electron microscopy revealed that the presence of PNP disrupted the native structure of the gelatin chains in the hydrogel matrix. Dual drug encapsulation was achieved with curcumin (CM) in the PNP and naproxen sodium(NS) in the gelatin matrix. In vitro release studies showed that the hydrogel matrix acts both as a physical and chemical barrier, delaying the diffusion of the drugs. An initial burst release was observed in the first hours of the measurement, and around 90% was released on the third day for naproxen sodium. In free PNP, 82% of curcumin was relased after four days, while when PNP were embedded in the gelatin matrix only 40% was released over the same time period. Overall, these simple, sustainable soft nanocomposites show potential as an injectable co-sustained drug release system. Copyright © 2017 Elsevier B.V. All rights reserved.
Movable Ground Based Recovery System for Reuseable Space Flight Hardware
NASA Technical Reports Server (NTRS)
Sarver, George L. (Inventor)
2013-01-01
A reusable space flight launch system is configured to eliminate complex descent and landing systems from the space flight hardware and move them to maneuverable ground based systems. Precision landing of the reusable space flight hardware is enabled using a simple, light weight aerodynamic device on board the flight hardware such as a parachute, and one or more translating ground based vehicles such as a hovercraft that include active speed, orientation and directional control. The ground based vehicle maneuvers itself into position beneath the descending flight hardware, matching its speed and direction and captures the flight hardware. The ground based vehicle will contain propulsion, command and GN&C functionality as well as space flight hardware landing cushioning and retaining hardware. The ground based vehicle propulsion system enables longitudinal and transverse maneuverability independent of its physical heading.
A Simple Approach to the Landau-Zener Formula
ERIC Educational Resources Information Center
Vutha, Amar C.
2010-01-01
The Landau-Zener formula provides the probability of non-adiabatic transitions occurring when two energy levels are swept through an avoided crossing. The formula is derived here in a simple calculation that emphasizes the physics responsible for non-adiabatic population transfer. (Contains 2 figures.)
A Simple Metallothionein-Based Biosensor for Enhanced Detection of Arsenic and Mercury
Irvine, Gordon W.; Tan, Swee Ngin; Stillman, Martin J.
2017-01-01
Metallothioneins (MTs) are a family of cysteine-rich proteins whose biological roles include the regulation of essential metal ions and protection against the harmful effects of toxic metals. Due to its high affinity for many toxic, soft metals, recombinant human MT isoform 1a was incorporated into an electrochemical-based biosensor for the detection of As3+ and Hg2+. A simple design was chosen to maximize its potential in environmental monitoring and MT was physically adsorbed onto paper discs placed on screen-printed carbon electrodes (SPCEs). This system was tested with concentrations of arsenic and mercury typical of contaminated water sources ranging from 5 to 1000 ppb. The analytical performance of the MT-adsorbed paper discs on SPCEs demonstrated a greater than three-fold signal enhancement and a lower detection limit compared to blank SPCEs, 13 ppb for As3+ and 45 ppb for Hg2+. While not being as low as some of the recommended drinking water limits, the sensitivity of the simple MT-biosensor would be potentially useful in monitoring of areas of concern with a known contamination problem. This paper describes the ability of the metal binding protein metallothionein to enhance the effectiveness of a simple, low-cost electrochemical sensor. PMID:28335390
NASA Astrophysics Data System (ADS)
Holota, Petr; Nesvadba, Otakar
2017-04-01
The aim of this paper is to discuss the solution of the linearized gravimetric boundary value problem by means of the method of successive approximations. We start with the relation between the geometry of the solution domain and the structure of Laplace's operator. Similarly as in other branches of engineering and mathematical physics a transformation of coordinates is used that offers a possibility to solve an alternative between the boundary complexity and the complexity of the coefficients of the partial differential equation governing the solution. Laplace's operator has a relatively simple structure in terms of ellipsoidal coordinates which are frequently used in geodesy. However, the physical surface of the Earth substantially differs from an oblate ellipsoid of revolution, even if it is optimally fitted. Therefore, an alternative is discussed. A system of general curvilinear coordinates such that the physical surface of the Earth is imbedded in the family of coordinate surfaces is used. Clearly, the structure of Laplace's operator is more complicated in this case. It was deduced by means of tensor calculus and in a sense it represents the topography of the physical surface of the Earth. Nevertheless, the construction of the respective Green's function is more simple, if the solution domain is transformed. This enables the use of the classical Green's function method together with the method of successive approximations for the solution of the linear gravimetric boundary value problem expressed in terms of new coordinates. The structure of iteration steps is analyzed and where useful also modified by means of the integration by parts. Comparison with other methods is discussed.
Masaoka, T; Amano, K; Takedani, H; Suzuki, T; Otaki, M; Seita, I; Tateiwa, T; Shishido, T; Yamamoto, K; Fukutake, K
2017-03-01
Detecting signs of joint deterioration is important for early effective orthopaedic intervention in managing haemophilic arthropathy. We developed a simple, patient self-administered sheet to evaluate the joint condition, and assessed the predictive ability of this assessment sheet for the need for an orthopaedic intervention. This was a single-centre, cross-sectional study. The association between the score of each of the four items of the assessment sheet (bleeding, swelling, pain and physical impairment) and the results of radiological findings and physical examinations based on Haemophilia Joint Health Score 2.1 was assessed. An optimal scoring system was explored by the area under the curve (AUC). The cut-off value for the need for surgery or physiotherapy was determined using the receiver operating characteristic curve procedure. Forty-two patients were included. The 'physical impairment' item showed the highest correlation coefficient with the results of radiographic and physical examinations (range: 0.57-0.76). The AUC of finally adjusted scoring indicates good ability to discriminate between patients with and without a need for orthopaedic intervention. The positive predictive value was the highest at a cut-off value of 4 points for knees (63.0%) and ankles (70.0%), at 5 points for elbows (66.7%) and the highest predictive accuracy at the cut-off value of 4 points for all the joints. The linear trend of the need for an orthopaedic intervention was observed with an increasing score. The joint condition assessment sheet can help clinicians assess the need for orthopaedic intervention for haemophilic arthropathy in Japanese patients with haemophilia. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Dias, Clenilda F.; Araújo, Maria A. S.; Carvalho-Santos, Vagson L.
2018-01-01
The Euler-Lagrange equations (ELE) are very important in the theoretical description of several physical systems. In this work we have used a simplified form of ELE to study one-dimensional motions under the action of a constant force. From the use of the definition of partial derivative, we have proposed two operators, here called mean delta operators, which may be used to solve the ELE in a simplest way. We have applied this simplification to solve three simple mechanical problems in which the particle is under the action of the gravitational field: a free fall body, the Atwood’s machine and the inclined plan. The proposed simplification can be used to introduce the lagrangian formalism in teaching classical mechanics in introductory physics courses.
Low Energy Nuclear Reactions: A Millennium Status Report
NASA Astrophysics Data System (ADS)
Mallove, Eugene F.
2000-03-01
This talk will summarize some of the more convincing recent experiments that show that helium-4, nuclear scale excess energy, tritium, low-level neutron production, and the transmutation of heavy elements can occur near room temperature in relatively simple systems. Despite inappropriate theory-based arguments against it and unethical attacks by people unfamiliar with the supporting experiments, the new field of solid state nuclear reactions is progressing. The physical theory behind the associated phenomena continues to be debated among theorists. The facts of the history of this scientific controversy suggest that it is inadvisable to rush to judgment against allegedly ``impossible" new phenomena when increasingly careful experiments have revealed new vistas in physics. Detailed discussion of evidence for solid state nuclear reactions is available elsewhere (http://www.infinite-energy.com). abstract document
Solonin, Iu G; Markov, A L; Boĭko, E R; Potolitsyna, N N; Parshukova, O I
2014-01-01
17 male northerners participating in the satellite experiments of the '"Mars-500" project passed through the morphological, physiometric, psychological and biochemical studies. The prenosological health indices in different seasons were calculated using the hardware-software complex "Ecosan-2007". Seasonal sinusoidal fluctuations were detected for the thermoregulation (body and skin temperature), lipids metabolism (cholesterol, HDL and LDL levels in the blood), circulation regulation under physical exercise (the increase of "double product" and its recovery time). In the majority of the participants the unfavorable deviations of body mass index, "power" and "life" indices, simple visual-motor reaction time, Kerdo vegetative index, physical health levels and regulatory systems activity index (in comparison with the mid-latitude standards) were found.
Sculpting bespoke mountains: Determining free energies with basis expansions
NASA Astrophysics Data System (ADS)
Whitmer, Jonathan K.; Fluitt, Aaron M.; Antony, Lucas; Qin, Jian; McGovern, Michael; de Pablo, Juan J.
2015-07-01
The intriguing behavior of a wide variety of physical systems, ranging from amorphous solids or glasses to proteins, is a direct manifestation of underlying free energy landscapes riddled with local minima separated by large barriers. Exploring such landscapes has arguably become one of statistical physics's great challenges. A new method is proposed here for uniform sampling of rugged free energy surfaces. The method, which relies on special Green's functions to approximate the Dirac delta function, improves significantly on existing simulation techniques by providing a boundary-agnostic approach that is capable of mapping complex features in multidimensional free energy surfaces. The usefulness of the proposed approach is established in the context of a simple model glass former and model proteins, demonstrating improved convergence and accuracy over existing methods.
Chen, Chih-Chen
2016-01-01
[Purpose] The increase in the Taiwanese older population is associated with age-related inconveniences. Finding adequate and simple physical activities to help the older people maintaining their physiological function and preventing them from falls has become an urgent social issue. [Subjects and Methods] This study aimed to design a virtual exercise training game suitable for Taiwanese older people. This system will allow for the maintenance of the physiological function and standing stability through physical exercise, while using a virtual reality game. The participants can easily exercise in a carefree, interactive environment. This study will use Kinect for Windows for physical movement detection and Unity software for virtual world development. [Results] Group A and B subjects were involved in the exercise training method of Kinect interactive multimedia for 12 weeks. The results showed that the functional reach test and the unipedal stance test improved significantly. [Conclusion] The physiological function and standing stability of the group A subjects were examined at six weeks post training. The results showed that these parameters remained constant. This proved that the proposed system provide substantial support toward the preservation of the Taiwanese older people’ physiological function and standing stability. PMID:27190480
Chen, Chih-Chen
2016-04-01
[Purpose] The increase in the Taiwanese older population is associated with age-related inconveniences. Finding adequate and simple physical activities to help the older people maintaining their physiological function and preventing them from falls has become an urgent social issue. [Subjects and Methods] This study aimed to design a virtual exercise training game suitable for Taiwanese older people. This system will allow for the maintenance of the physiological function and standing stability through physical exercise, while using a virtual reality game. The participants can easily exercise in a carefree, interactive environment. This study will use Kinect for Windows for physical movement detection and Unity software for virtual world development. [Results] Group A and B subjects were involved in the exercise training method of Kinect interactive multimedia for 12 weeks. The results showed that the functional reach test and the unipedal stance test improved significantly. [Conclusion] The physiological function and standing stability of the group A subjects were examined at six weeks post training. The results showed that these parameters remained constant. This proved that the proposed system provide substantial support toward the preservation of the Taiwanese older people' physiological function and standing stability.
Guo, Wei; Song, Binbin; Shen, Junfei; Wu, Jiong; Zhang, Chunyan; Wang, Beili; Pan, Baishen
2015-08-25
To establish an indirect reference interval based on the test results of alanine aminotransferase stored in a laboratory information system. All alanine aminotransferase results were included for outpatients and physical examinations that were stored in the laboratory information system of Zhongshan Hospital during 2014. The original data were transformed using a Box-Cox transformation to obtain an approximate normal distribution. Outliers were identified and omitted using the Chauvenet and Tukey methods. The indirect reference intervals were obtained by simultaneously applying nonparametric and Hoffmann methods. The reference change value was selected to determine the statistical significance of the observed differences between the calculated and published reference intervals. The indirect reference intervals for alanine aminotransferase of all groups were 12 to 41 U/L (male, outpatient), 12 to 48 U/L (male, physical examination), 9 to 32 U/L (female, outpatient), and 8 to 35 U/L (female, physical examination), respectively. The absolute differences when compared with the direct results were all smaller than the reference change value of alanine aminotransferase. The Box-Cox transformation combined with the Hoffmann and Tukey methods is a simple and reliable technique that should be promoted and used by clinical laboratories.
Correlation between structure and physical properties of chalcogenide glasses in the AsxSe1-x system
NASA Astrophysics Data System (ADS)
Yang, Guang; Bureau, Bruno; Rouxel, Tanguy; Gueguen, Yann; Gulbiten, Ozgur; Roiland, Claire; Soignard, Emmanuel; Yarger, Jeffery L.; Troles, Johann; Sangleboeuf, Jean-Christophe; Lucas, Pierre
2010-11-01
Physical properties of chalcogenide glasses in the AsxSe1-x system have been measured as a function of composition including the Young’s modulus E , shear modulus G , bulk modulus K , Poisson’s ratio ν , the density ρ , and the glass transition Tg . All these properties exhibit a relatively sharp extremum at the average coordination number ⟨r⟩=2.4 . The structural origin of this trend is investigated by Raman spectroscopy and nuclear magnetic resonance. It is shown that the reticulation of the glass structure increases continuously until x=0.4 following the “chain crossing model” and then undergoes a transition toward a lower dimension pyramidal network containing an increasing number of molecular inclusions at x>0.4 . Simple theoretical estimates of the network bonding energy confirm a mismatch between the values of mechanical properties measured experimentally and the values predicted from a continuously reticulated structure, therefore corroborating the formation of a lower dimension network at high As content. The evolution of a wide range of physical properties is consistent with this sharp structural transition and suggests that there is no intermediate phase in these glasses at room temperature.