A simple and effective method for detecting precipitated proteins in MALDI-TOF MS.
Oshikane, Hiroyuki; Watabe, Masahiko; Nakaki, Toshio
2018-04-01
MALDI-TOF MS has developed rapidly into an essential analytical tool for the life sciences. Cinnamic acid derivatives are generally employed in routine molecular weight determinations of intact proteins using MALDI-TOF MS. However, a protein of interest may precipitate when mixed with matrix solution, perhaps preventing MS detection. We herein provide a simple approach to enable the MS detection of such precipitated protein species by means of a "direct deposition method" -- loading the precipitant directly onto the sample plate. It is thus expected to improve routine MS analysis of intact proteins. Copyright © 2018. Published by Elsevier Inc.
de Sena, Rodrigo Caciano; Soares, Matheus; Pereira, Maria Luiza Oliveira; da Silva, Rogério Cruz Domingues; do Rosário, Francisca Ferreira; da Silva, Joao Francisco Cajaiba
2011-01-01
The development of a simple, rapid and low cost method based on video image analysis and aimed at the detection of low concentrations of precipitated barium sulfate is described. The proposed system is basically composed of a webcam with a CCD sensor and a conventional dichroic lamp. For this purpose, software for processing and analyzing the digital images based on the RGB (Red, Green and Blue) color system was developed. The proposed method had shown very good repeatability and linearity and also presented higher sensitivity than the standard turbidimetric method. The developed method is presented as a simple alternative for future applications in the study of precipitations of inorganic salts and also for detecting the crystallization of organic compounds. PMID:22346607
Small-Scale and Low Cost Electrodes for "Standard" Reduction Potential Measurements
ERIC Educational Resources Information Center
Eggen, Per-Odd; Kvittingen, Lise
2007-01-01
The construction of three simple and inexpensive electrodes, hydrogen, and chlorine and copper electrode is described. This simple method will encourage students to construct their own electrode and better help in understanding precipitation and other electrochemistry concepts.
X-ray peak profile analysis of zinc oxide nanoparticles formed by simple precipitation method
NASA Astrophysics Data System (ADS)
Pelicano, Christian Mark; Rapadas, Nick Joaquin; Magdaluyo, Eduardo
2017-12-01
Zinc oxide (ZnO) nanoparticles were successfully synthesized by a simple precipitation method using zinc acetate and tetramethylammonium hydroxide. The synthesized ZnO nanoparticles were characterized by X-ray Diffraction analysis (XRD) and Transmission Electron Microscopy (TEM). The XRD result revealed a hexagonal wurtzite structure for the ZnO nanoparticles. The TEM image showed spherical nanoparticles with an average crystallite size of 6.70 nm. For x-ray peak analysis, Williamson-Hall (W-H) and Size-Strain Plot (SSP) methods were applied to examine the effects of crystallite size and lattice strain on the peak broadening of the ZnO nanoparticles. Based on the calculations, the estimated crystallite sizes and lattice strains obtained are in good agreement with each other.
A Generalized Simple Formulation of Convective Adjustment ...
Convective adjustment timescale (τ) for cumulus clouds is one of the most influential parameters controlling parameterized convective precipitation in climate and weather simulation models at global and regional scales. Due to the complex nature of deep convection, a prescribed value or ad hoc representation of τ is used in most global and regional climate/weather models making it a tunable parameter and yet still resulting in uncertainties in convective precipitation simulations. In this work, a generalized simple formulation of τ for use in any convection parameterization for shallow and deep clouds is developed to reduce convective precipitation biases at different grid spacing. Unlike existing other methods, our new formulation can be used with field campaign measurements to estimate τ as demonstrated by using data from two different special field campaigns. Then, we implemented our formulation into a regional model (WRF) for testing and evaluation. Results indicate that our simple τ formulation can give realistic temporal and spatial variations of τ across continental U.S. as well as grid-scale and subgrid scale precipitation. We also found that as the grid spacing decreases (e.g., from 36 to 4-km grid spacing), grid-scale precipitation dominants over subgrid-scale precipitation. The generalized τ formulation works for various types of atmospheric conditions (e.g., continental clouds due to heating and large-scale forcing over la
Determination of Lead in Blood by Atomic Absorption Spectrophotometry1
Selander, Stig; Cramér, Kim
1968-01-01
Lead in blood was determined by atomic absorption spectrophotometry, using a wet ashing procedure and a procedure in which the proteins were precipitated with trichloroacetic acid. In both methods the lead was extracted into isobutylmethylketone before measurement, using ammonium pyrrolidine dithiocarbamate as chelator. The simpler precipitation procedure was shown to give results identical with those obtained with the ashing technique. In addition, blood specimens were examined by the precipitation method and by spectral analysis, which method includes wet ashing of the samples, with good agreement. All analyses were done on blood samples from `normal' persons or from lead-exposed workers, and no additions of inorganic lead were made. The relatively simple protein precipitation technique gave accurate results and is suitable for the large-scale control of lead-exposed workers. PMID:5663425
Precipitation of molybdenum(V) as the hydroxide and its separation from rhenium.
Yatirajam, V; Ahuja, U; Kakkar, L R
1975-03-01
A study of the conditions for precipitation of molybdenum(V) hydroxide shows that for Mo concentration 1 mg ml about 97.5% of the Mo can be precipitated between pH 5 and 5.8. Lower concentrations of molybdenum(V) or molybdenum(VI) can be precipitated quantitatively by using 20 times the amount of zirconium as collector, at the same pH. On this basis, a simple method is given for quantitative separation of rhenium from large amounts of molybdenum and is attested by analysis of synthetic and molybdenite samples.
Yang, Xiaojing; Xiong, Xuewu; Cao, Ji; Luan, Baolei; Liu, Yongjun; Liu, Guozhu; Zhang, Lei
2015-01-30
Matrix interference, which can lead to false positive/negative results, contamination of injector or separation column, incompatibility between sample solution and the selected analytical instrument, and response inhibition or even quenching, is commonly suffered for the analysis of trace level toxic impurities in drug substance. In this study, a simple matrix precipitation strategy is proposed to eliminate or minimize the above stated matrix interference problems. Generally, a sample of active pharmaceutical ingredients (APIs) is dissolved in an appropriate solvent to achieve the desired high concentration and then an anti-solvent is added to precipitate the matrix substance. As a result, the target analyte is extracted into the mixed solution with very less residual of APIs. This strategy has the characteristics of simple manipulation, high recovery and excellent anti-interference capability. It was found that the precipitation ratio (R, representing the ability to remove matrix substance) and the proportion of solvent (the one used to dissolve APIs) in final solution (P, affecting R and also affecting the method sensitivity) are two important factors of the precipitation process. The correlation between R and P was investigated by performing precipitation with various APIs in different solvent/anti-solvent systems. After a detailed mathematical reasoning process, P=20% was proved to be an effective and robust condition to perform the precipitation strategy. The precipitation method with P=20% can be used as a general strategy for toxic impurity analysis in APIs. Finally, several typical examples are described in this article, where the challenging matrix interference issues have been resolved successfully. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Papacharalampous, Georgia; Tyralis, Hristos; Koutsoyiannis, Demetris
2018-02-01
We investigate the predictability of monthly temperature and precipitation by applying automatic univariate time series forecasting methods to a sample of 985 40-year-long monthly temperature and 1552 40-year-long monthly precipitation time series. The methods include a naïve one based on the monthly values of the last year, as well as the random walk (with drift), AutoRegressive Fractionally Integrated Moving Average (ARFIMA), exponential smoothing state-space model with Box-Cox transformation, ARMA errors, Trend and Seasonal components (BATS), simple exponential smoothing, Theta and Prophet methods. Prophet is a recently introduced model inspired by the nature of time series forecasted at Facebook and has not been applied to hydrometeorological time series before, while the use of random walk, BATS, simple exponential smoothing and Theta is rare in hydrology. The methods are tested in performing multi-step ahead forecasts for the last 48 months of the data. We further investigate how different choices of handling the seasonality and non-normality affect the performance of the models. The results indicate that: (a) all the examined methods apart from the naïve and random walk ones are accurate enough to be used in long-term applications; (b) monthly temperature and precipitation can be forecasted to a level of accuracy which can barely be improved using other methods; (c) the externally applied classical seasonal decomposition results mostly in better forecasts compared to the automatic seasonal decomposition used by the BATS and Prophet methods; and (d) Prophet is competitive, especially when it is combined with externally applied classical seasonal decomposition.
NASA Astrophysics Data System (ADS)
Ishizaki, N. N.; Dairaku, K.; Ueno, G.
2016-12-01
We have developed a statistical downscaling method for estimating probabilistic climate projection using CMIP5 multi general circulation models (GCMs). A regression model was established so that the combination of weights of GCMs reflects the characteristics of the variation of observations at each grid point. Cross validations were conducted to select GCMs and to evaluate the regression model to avoid multicollinearity. By using spatially high resolution observation system, we conducted statistically downscaled probabilistic climate projections with 20-km horizontal grid spacing. Root mean squared errors for monthly mean air surface temperature and precipitation estimated by the regression method were the smallest compared with the results derived from a simple ensemble mean of GCMs and a cumulative distribution function based bias correction method. Projected changes in the mean temperature and precipitation were basically similar to those of the simple ensemble mean of GCMs. Mean precipitation was generally projected to increase associated with increased temperature and consequent increased moisture content in the air. Weakening of the winter monsoon may affect precipitation decrease in some areas. Temperature increase in excess of 4 K was expected in most areas of Japan in the end of 21st century under RCP8.5 scenario. The estimated probability of monthly precipitation exceeding 300 mm would increase around the Pacific side during the summer and the Japan Sea side during the winter season. This probabilistic climate projection based on the statistical method can be expected to bring useful information to the impact studies and risk assessments.
Peristalticity-driven banded chemical garden
NASA Astrophysics Data System (ADS)
Pópity-Tóth, É.; Schuszter, G.; Horváth, D.; Tóth, Á.
2018-05-01
Complex structures in nature are often formed by self-assembly. In order to mimic the formation, to enhance the production, or to modify the structures, easy-to-use methods are sought to couple engineering and self-assembly. Chemical-garden-like precipitation reactions are frequently used to study such couplings because of the intrinsic chemical and hydrodynamic interplays. In this work, we present a simple method of applying periodic pressure fluctuations given by a peristaltic pump which can be used to achieve regularly banded precipitate membranes in the copper-phosphate system.
A simple and rapid method to isolate purer M13 phage by isoelectric precipitation.
Dong, Dexian; Sutaria, Sanjana; Hwangbo, Je Yeol; Chen, P
2013-09-01
M13 virus (phage) has been extensively used in phage display technology and nanomaterial templating. Our research aimed to use M13 phage to template sulfur nanoparticles for making lithium ion batteries. Traditional methods for harvesting M13 phage from Escherichia coli employ polyethylene glycol (PEG)-based precipitation, and the yield is usually measured by plaque counting. With this method, PEG residue is present in the M13 phage pellet and is difficult to eliminate. To resolve this issue, a method based on isoelectric precipitation was introduced and tested. The isoelectric method resulted in the production of purer phage with a higher yield, compared to the traditional PEG-based method. There is no significant variation in infectivity of the phage prepared using isoelectric precipitation, and the dynamic light scattering data indirectly prove that the phage structure is not damaged by pH adjustment. To maximize phage production, a dry-weight yield curve of M13 phage for various culture times was produced. The yield curve is proportional to the growth curve of E. coli. On a 200-mL culture scale, 0.2 g L(-1) M13 phage (dry-weight) was produced by the isoelectric precipitation method.
Evaluation of an alternative extraction procedure for enterotoxin determination in dairy products.
Meyrand, A; Atrache, V; Bavai, C; Montet, M P; Vernozy-Rozand, C
1999-06-01
A concentration protocol based on trichloroacetic acid precipitation was evaluated and compared with the reference method using dialysis concentration. Different quantities of purified staphylococcal enterotoxins were added to pasteurized Camembert-type cheeses. Detection of enterotoxins in these cheeses was performed using an automated detection system. Raw goat milk Camembert-type cheeses involved in a staphylococcal food poisoning were also tested. Both enterotoxin extraction methods allowed detection of the lowest enterotoxin concentration level used in this study (0.5 ng g-1). Compared with the dialysis concentration method, TCA precipitation of staphylococcal enterotoxins was 'user-friendly' and less time-consuming. These results suggest that TCA precipitation is a rapid (1 h), simple and reliable method of extracting enterotoxin from food which gives excellent recovery from dairy products.
NASA Astrophysics Data System (ADS)
Colorado, G.; Salinas, J. A.; Cavazos, T.; de Grau, P.
2013-05-01
15 CMIP5 GCMs precipitation simulations were combined in a weighted ensemble using the Reliable Ensemble Averaging (REA) method, obtaining the weight of each model. This was done for a historical period (1961-2000) and for the future emissions based on low (RCP4.5) and high (RCP8.5) radiating forcing for the period 2075-2099. The annual cycle of simple ensemble of the historical GCMs simulations, the historical REA average and the Climate Research Unit (CRU TS3.1) database was compared in four zones of México. In the case of precipitation we can see the improvements by using the REA method, especially in the two northern zones of México where the REA average is more close to the observations (CRU) that the simple average. However in the southern zones although there is an improvement it is not as good as it is in the north, particularly in the southeast where instead of the REA average is able to reproduce qualitatively good the annual cycle with the mid-summer drought it was greatly underestimated. The main reason is because the precipitation is underestimated for all the models and the mid-summer drought do not even exists in some models. In the REA average of the future scenarios, as we can expected, the most drastic decrease in precipitation was simulated using the RCP8.5 especially in the monsoon area and in the south of Mexico in summer and in winter. In the center and southern of Mexico however, the same scenario in autumn simulates an increase of precipitation.
Xia, Dengning; Gan, Yong; Cui, Fude
2014-01-01
This review focuses on using precipitation (bottom-up) method to produce water-insoluble drug nanocrystals, and the stability issues of nanocrystals. The precipitation techniques for production of ultra-fine particles have been widely researched for last few decades. In these techniques, precipitation of solute is achieved by addition of a non-solvent for solute called anti-solvent to decrease the solvent power for the solute dissolved in a solution. The anti-solvent can be water, organic solvents or supercritical fluids. In this paper, efforts have been made to review the precipitation techniques involving the anti-solvent precipitation by simple mixing, impinging jet mixing, multi-inlet vortex mixing, the using of high-gravity, ultrasonic waves and supercritical fluids. The key to the success of yielding stable nanocrystals in these techniques is to control the nucleation kinetics and particle growth through mixing during precipitation based on crystallization theories. The stability issues of the nanocrystals, such as sedimentation, Ostwald ripening, agglomeration and cementing of crystals, change of crystalline state, and the approaches to stabilizing nanocrystals are also discussed in detail.
A rapid and highly selective method for the estimation of pyro-, tri- and orthophosphates.
Kamat, D R; Savant, V V; Sathyanarayana, D N
1995-03-01
A rapid, highly selective and simple method has been developed for the quantitative determination of pyro-, tri- and orthophosphates. The method is based on the formation of a solid complex of bis(ethylenediamine)cobalt(III) species with pyrophosphate at pH 4.2-4.3, with triphosphate at pH 2.0-2.1 and with orthophosphate at pH 8.2-8.6. The proposed method for pyro- and triphosphates differs from the available method, which is based on the formation of an adduct with tris(ethylenediamine)cobalt(III) species. The complexes have the composition [Co(en)(2)HP(2)O(7)]4H(2)O and [Co(en)(2)H(2)P(3)O(10)]2H(2)O, respectively. The precipitation is instantaneous and quantitative under the recommended optimum conditions giving 99.5% gravimetric yield in both cases. There is no interferences from orthophosphate, trimetaphosphate and pyrophosphate species in the triphosphate estimation up to 5% of each component. The efficacy of the method has been established by determining pyrophosphate and triphosphate contents in various matrices. In the case of orthophosphate, the proposed method differs from the available methods such as ammonium phosphomolybdate, vanadophosphomolybdate and quinoline phosphomolybdate, which are based on the formation of a precipitate, followed by either titrimetry or gravimetry. The precipitation is instantaneous and the method is simple. Under the recommended pH and other reaction conditions, gravimetric yields of 99.6-100% are obtainable. The method is applicable to orthophosphoric acid and a variety of phosphate salts.
Gong, Zhihong; Chen, Si; Gao, Jiangtao; Li, Meihong; Wang, Xiaxia; Lin, Jun; Yu, Xiaomin
2017-11-08
An effective and simple method was established to simultaneously purify seven tea catechins (gallocatechin (GC), epigallocatechin (EGC), catechin (C), epigallocatechin-3- O -gallate (EGCG), epicatechin (EC), epigallocatechin-3- O -(3- O -methyl)-gallate (EGCG3"Me) and epicatechin-3- O -gallate (ECG)) from fresh tea leaves by semi-preparative high performance liquid chromatography (HPLC). Fresh leaves of Tieguanyin tea were successively extracted with methanol and chloroform. Then crude catechins were precipitated from the aqueous fraction of chloroform extraction by adding lead subacetate. Crude catechins were used for the isolation of the seven target catechin compounds by semi-preparative HPLC. Methanol-water and acetonitrile-water were sequentially used as mobile phases. After two rounds of semi-preparative HPLC, all target compounds were achieved with high purities (>90%). The proposed method was tested on two additional tea cultivars and showed similar results. This method demonstrated a simple and efficient strategy based on solvent extraction, ion precipitation and semi-preparative HPLC for the preparation of multiple catechins from tea leaves.
Fibrin-based tissue engineering: comparison of different methods of autologous fibrinogen isolation.
Dietrich, Maren; Heselhaus, Johanna; Wozniak, Justyna; Weinandy, Stefan; Mela, Petra; Tschoeke, Beate; Schmitz-Rode, Thomas; Jockenhoevel, Stefan
2013-03-01
This study is focussed on the optimal method of autologous fibrinogen isolation with regard to the yield and the use as a scaffold material. This is particularly relevant for pediatric patients with strictly limited volumes of blood. The following isolation methods were evaluated: cryoprecipitation, ethanol (EtOH) precipitation, ammonium sulfate [(NH(4))(2)SO(4))] precipitation, ammonium sulfate precipitation combined with cryoprecipitation, and polyethylene glycol precipitation combined with cryoprecipitation. Fibrinogen yields were quantified spectrophotometrically and by electrophoretic analyses. To test the influence of the different isolation methods on the microstructure of the fibrin gels, scanning electron microscopy (SEM) was used and the mechanical strength of the cell-free and cell-seeded fibrin gels was tested by burst strength measurements. Cytotoxicity assays were performed to analyze the effect of various fibrinogen isolation methods on proliferation, apoptosis, and necrosis. Tissue development and cell migration were analyzed in all samples using immunohistochemical techniques. The synthesis of collagen as an extracellular matrix component by human umbilical cord artery smooth muscle cells in fibrin gels was measured using hydroxyproline assay. Compared to cryoprecipitation, all other considered methods were superior in quantitative analyses, with maximum fibrinogen yields of ∼80% of total plasma fibrinogen concentration using ethanol precipitation. SEM imaging demonstrated minor differences in the gel microstructure. Ethanol-precipitated fibrin gels exhibited the best mechanical properties. None of the isolation methods had a cytotoxic effect on the cells. Collagen production was similar in all gels except those from ammonium sulfate precipitation. Histological analysis showed good cell compatibility for ethanol-precipitated gels. The results of the present study demonstrated that ethanol precipitation is a simple and effective method for isolation of fibrinogen and a suitable alternative to cryoprecipitation. This technique allows minimization of the necessary blood volume for fibrinogen isolation, particularly important for pediatric applications, and also has no negative influence on microstructure, mechanical properties, cell proliferation, or tissue development.
Li, Yao; Jiang, Peng; Xiang, Wei; Ran, Fanyong; Cao, Wenbin
2016-01-15
In this paper, a simple, safe and cost-saving precipitation-peptization method was proposed to prepare VO2 sol by using inorganic VOSO4-NH3⋅H2O-H2O2 reactants system in air under room temperature. In this process, VOSO4 was firstly precipitated to form VO(OH)2, then monometallic species of VO(O2)(OH)(-) were formed through the coordination between VO(OH)2 and H2O2. The rearrangement of VO(O2)(OH)(-) in a nonplanar pattern and intermolecular condensation reactions result in multinuclear species. Finally, VO2 sol is prepared through the condensation reactions between the multinuclear species. After drying the obtained sol at 40°C, VO2 xerogel exhibiting monoclinic crystal structure with the space group of C2/m was prepared. The crystal structure of VO2 nanoparticles was transferred to monoclinic crystal structure with the space group of P21/c (VO2(M)) by annealing the xerogel at 550°C. Both XRD and TEM analysis indicated that the nanoparticles possess good crystallinity with crystallite size of 34.5nm as estimated by Scherrer's method. These results suggest that the VO2 sol has been prepared successfully through the proposed simple method. Copyright © 2015 Elsevier Inc. All rights reserved.
Fernández-Cidón, Bárbara; Padró-Miquel, Ariadna; Alía-Ramos, Pedro; Castro-Castro, María José; Fanlo-Maresma, Marta; Dot-Bach, Dolors; Valero-Politi, José; Pintó-Sala, Xavier; Candás-Estébanez, Beatriz
2017-01-01
High serum concentrations of small dense low-density lipoprotein cholesterol (sd-LDL-c) particles are associated with risk of cardiovascular disease (CVD). Their clinical application has been hindered as a consequence of the laborious current method used for their quantification. Optimize a simple and fast precipitation method to isolate sd-LDL particles and establish a reference interval in a Mediterranean population. Forty-five serum samples were collected, and sd-LDL particles were isolated using a modified heparin-Mg 2+ precipitation method. sd-LDL-c concentration was calculated by subtracting high-density lipoprotein cholesterol (HDL-c) from the total cholesterol measured in the supernatant. This method was compared with the reference method (ultracentrifugation). Reference values were estimated according to the Clinical and Laboratory Standards Institute and The International Federation of Clinical Chemistry and Laboratory Medicine recommendations. sd-LDL-c concentration was measured in serums from 79 subjects with no lipid metabolism abnormalities. The Passing-Bablok regression equation is y = 1.52 (0.72 to 1.73) + 0.07 x (-0.1 to 0.13), demonstrating no significant statistical differences between the modified precipitation method and the ultracentrifugation reference method. Similarly, no differences were detected when considering only sd-LDL-c from dyslipidemic patients, since the modifications added to the precipitation method facilitated the proper sedimentation of triglycerides and other lipoproteins. The reference interval for sd-LDL-c concentration estimated in a Mediterranean population was 0.04-0.47 mmol/L. An optimization of the heparin-Mg 2+ precipitation method for sd-LDL particle isolation was performed, and reference intervals were established in a Spanish Mediterranean population. Measured values were equivalent to those obtained with the reference method, assuring its clinical application when tested in both normolipidemic and dyslipidemic subjects.
Influence of solution conditions on deposition of calcium phosphate on titanium by NaOH-treatment
NASA Astrophysics Data System (ADS)
Feng, Q. L.; Cui, F. Z.; Wang, H.; Kim, T. N.; Kim, J. O.
2000-03-01
The present paper demonstrated a biomimetic method to coat calcium phosphate (Ca-P) on the surface of titanium induced by NaOH-treatment from a simple supersaturated hydroxyapatite solution (SHS). The influence of pH value and calcium ions concentration on the precipitation process was investigated. It is necessary for the solution to be supersaturated than the critical concentration of octacalcium phosphate (OCP) to get Ca-P coatings on titanium surface. In the precipitating process, it seems that amorphous calcium phosphate (ACP) precipitated first, then OCP, and finally hydroxyapatite (HA). The system was in continuous evolution and the phase transitions occurred in sequence.
Ko, K Y; Ahn, D U
2007-02-01
The objective of this study was to develop an economical, simple, and large-scale separation method for IgY from egg yolk. Egg yolk diluted with 9 volumes of cold water was centrifuged after adjusting the pH to 5.0. The supernatant was added with 0.01% charcoal or 0.01% carrageenan and centrifuged at 2,800 x g for 30 min. The supernatant was filtered through a Whatman no. 1 filter paper and then the filtrate was concentrated to 20% original volume using ultrafiltration. The concentrated solution was further purified using either cation exchange chromatography or ammonium sulfate precipitation. For the cation exchange chromatography method, the concentrated sample was loaded onto a column equilibrated with 20 mM citrate-phosphate buffer at pH 4.8 and eluted with 200 mM citrate-phosphate buffer at pH 6.4. For the ammonium sulfate precipitation method, the concentrated sample was twice precipitated with 40% ammonium sulfate solution at pH 9.0. The yield and purity of IgY were determined by ELISA and electrophoresis. The yield of IgY from the cation exchange chromatography method was 30 to 40%, whereas that of the ammonium sulfate precipitation was 70 to 80%. The purity of IgY from the ammonium sulfate method was higher than that of the cation exchange chromatography. The cation exchange chromatography could handle only a small amount of samples, whereas the ammonium sulfate precipitation could handle a large volume of samples. This suggests that ammonium sulfate precipitation was a more efficient and useful purification method than cation exchange chromatography for the large-scale preparation of IgY from egg yolk.
Depletion of abundant plant RuBisCO protein using the protamine sulfate precipitation method.
Kim, Yu Ji; Lee, Hye Min; Wang, Yiming; Wu, Jingni; Kim, Sang Gon; Kang, Kyu Young; Park, Ki Hun; Kim, Yong Chul; Choi, In Soo; Agrawal, Ganesh Kumar; Rakwal, Randeep; Kim, Sun Tae
2013-07-01
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is the most abundant plant leaf protein, hampering deep analysis of the leaf proteome. Here, we describe a novel protamine sulfate precipitation (PSP) method for the depletion of RuBisCO. For this purpose, soybean leaf total proteins were extracted using Tris-Mg/NP-40 extraction buffer. Obtained clear supernatant was subjected to the PSP method, followed by 13% SDS-PAGE analysis of total, PS-supernatant and -precipitation derived protein samples. In a dose-dependent experiment, 0.1% w/v PS was found to be sufficient for precipitating RuBisCO large and small subunits (LSU and SSU). Western blot analysis confirmed no detection of RuBisCO LSU in the PS-supernatant proteins. Application of this method to Arabidopsis, rice, and maize leaf proteins revealed results similar to soybean. Furthermore, 2DE analyses of PS-treated soybean leaf displayed enriched protein profile for the protein sample derived from the PS-supernatant than total proteins. Some enriched 2D spots were subjected to MALDI-TOF-TOF analysis and were successfully assigned for their protein identity. Hence, the PSP method is: (i) simple, fast, economical, and reproducible for RuBisCO precipitation from the plant leaf sample; (ii) applicable to both dicot and monocot plants; and (iii) suitable for downstream proteomics analysis. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Approximating Long-Term Statistics Early in the Global Precipitation Measurement Era
NASA Technical Reports Server (NTRS)
Stanley, Thomas; Kirschbaum, Dalia B.; Huffman, George J.; Adler, Robert F.
2017-01-01
Long-term precipitation records are vital to many applications, especially the study of extreme events. The Tropical Rainfall Measuring Mission (TRMM) has served this need, but TRMMs successor mission, Global Precipitation Measurement (GPM), does not yet provide a long-term record. Quantile mapping, the conversion of values across paired empirical distributions, offers a simple, established means to approximate such long-term statistics, but only within appropriately defined domains. This method was applied to a case study in Central America, demonstrating that quantile mapping between TRMM and GPM data maintains the performance of a real-time landslide model. Use of quantile mapping could bring the benefits of the latest satellite-based precipitation dataset to existing user communities such as those for hazard assessment, crop forecasting, numerical weather prediction, and disease tracking.
Global modeling of land water and energy balances. Part III: Interannual variability
Shmakin, A.B.; Milly, P.C.D.; Dunne, K.A.
2002-01-01
The Land Dynamics (LaD) model is tested by comparison with observations of interannual variations in discharge from 44 large river basins for which relatively accurate time series of monthly precipitation (a primary model input) have recently been computed. When results are pooled across all basins, the model explains 67% of the interannual variance of annual runoff ratio anomalies (i.e., anomalies of annual discharge volume, normalized by long-term mean precipitation volume). The new estimates of basin precipitation appear to offer an improvement over those from a state-of-the-art analysis of global precipitation (the Climate Prediction Center Merged Analysis of Precipitation, CMAP), judging from comparisons of parallel model runs and of analyses of precipitation-discharge correlations. When the new precipitation estimates are used, the performance of the LaD model is comparable to, but not significantly better than, that of a simple, semiempirical water-balance relation that uses only annual totals of surface net radiation and precipitation. This implies that the LaD simulations of interannual runoff variability do not benefit substantially from information on geographical variability of land parameters or seasonal structure of interannual variability of precipitation. The aforementioned analyses necessitated the development of a method for downscaling of long-term monthly precipitation data to the relatively short timescales necessary for running the model. The method merges the long-term data with a reference dataset of 1-yr duration, having high temporal resolution. The success of the method, for the model and data considered here, was demonstrated in a series of model-model comparisons and in the comparisons of modeled and observed interannual variations of basin discharge.
Continuous flow hydrogenation of nitroarenes, azides and alkenes using maghemite-Pd nanocomposites
Maghemite-supported ultra-fine Pd (1-2 nm) nanoparticles, prepared by a simple co-precipitation method, find application in the catalytic continuous flow hydrogenation of nitroarenes, azides, and alkenes wherein they play an important role in reduction of various functional group...
NASA Astrophysics Data System (ADS)
Cowley, Garret S.; Niemann, Jeffrey D.; Green, Timothy R.; Seyfried, Mark S.; Jones, Andrew S.; Grazaitis, Peter J.
2017-02-01
Soil moisture can be estimated at coarse resolutions (>1 km) using satellite remote sensing, but that resolution is poorly suited for many applications. The Equilibrium Moisture from Topography, Vegetation, and Soil (EMT+VS) model downscales coarse-resolution soil moisture using fine-resolution topographic, vegetation, and soil data to produce fine-resolution (10-30 m) estimates of soil moisture. The EMT+VS model performs well at catchments with low topographic relief (≤124 m), but it has not been applied to regions with larger ranges of elevation. Large relief can produce substantial variations in precipitation and potential evapotranspiration (PET), which might affect the fine-resolution patterns of soil moisture. In this research, simple methods to downscale temporal average precipitation and PET are developed and included in the EMT+VS model, and the effects of spatial variations in these variables on the surface soil moisture estimates are investigated. The methods are tested against ground truth data at the 239 km2 Reynolds Creek watershed in southern Idaho, which has 1145 m of relief. The precipitation and PET downscaling methods are able to capture the main features in the spatial patterns of both variables. The space-time Nash-Sutcliffe coefficients of efficiency of the fine-resolution soil moisture estimates improve from 0.33 to 0.36 and 0.41 when the precipitation and PET downscaling methods are included, respectively. PET downscaling provides a larger improvement in the soil moisture estimates than precipitation downscaling likely because the PET pattern is more persistent through time, and thus more predictable, than the precipitation pattern.
A satellite simulator for TRMM PR applied to climate model simulations
NASA Astrophysics Data System (ADS)
Spangehl, T.; Schroeder, M.; Bodas-Salcedo, A.; Hollmann, R.; Riley Dellaripa, E. M.; Schumacher, C.
2017-12-01
Climate model simulations have to be compared against observation based datasets in order to assess their skill in representing precipitation characteristics. Here we use a satellite simulator for TRMM PR in order to evaluate simulations performed with MPI-ESM (Earth system model of the Max Planck Institute for Meteorology in Hamburg, Germany) performed within the MiKlip project (https://www.fona-miklip.de/, funded by Federal Ministry of Education and Research in Germany). While classical evaluation methods focus on geophysical parameters such as precipitation amounts, the application of the satellite simulator enables an evaluation in the instrument's parameter space thereby reducing uncertainties on the reference side. The CFMIP Observation Simulator Package (COSP) provides a framework for the application of satellite simulators to climate model simulations. The approach requires the introduction of sub-grid cloud and precipitation variability. Radar reflectivities are obtained by applying Mie theory, with the microphysical assumptions being chosen to match the atmosphere component of MPI-ESM (ECHAM6). The results are found to be sensitive to the methods used to distribute the convective precipitation over the sub-grid boxes. Simple parameterization methods are used to introduce sub-grid variability of convective clouds and precipitation. In order to constrain uncertainties a comprehensive comparison with sub-grid scale convective precipitation variability which is deduced from TRMM PR observations is carried out.
Upgrades to the REA method for producing probabilistic climate change projections
NASA Astrophysics Data System (ADS)
Xu, Ying; Gao, Xuejie; Giorgi, Filippo
2010-05-01
We present an augmented version of the Reliability Ensemble Averaging (REA) method designed to generate probabilistic climate change information from ensembles of climate model simulations. Compared to the original version, the augmented one includes consideration of multiple variables and statistics in the calculation of the performance-based weights. In addition, the model convergence criterion previously employed is removed. The method is applied to the calculation of changes in mean and variability for temperature and precipitation over different sub-regions of East Asia based on the recently completed CMIP3 multi-model ensemble. Comparison of the new and old REA methods, along with the simple averaging procedure, and the use of different combinations of performance metrics shows that at fine sub-regional scales the choice of weighting is relevant. This is mostly because the models show a substantial spread in performance for the simulation of precipitation statistics, a result that supports the use of model weighting as a useful option to account for wide ranges of quality of models. The REA method, and in particular the upgraded one, provides a simple and flexible framework for assessing the uncertainty related to the aggregation of results from ensembles of models in order to produce climate change information at the regional scale. KEY WORDS: REA method, Climate change, CMIP3
NASA Astrophysics Data System (ADS)
Yoon, Man-Soon; Islam, Mobinul; Park, Young Min; Ur, Soon-Chul
2013-03-01
Olivine-type LiFePO4/C cathode materials are fabricated with FePO4 powders that are pre-synthesized by two different processes from iron chloride solution. Process I is a modified precipitation method which is implemented by the pH control of a solution using NH4OH to form FePO4 precipitates at room temperature. Process II is a conventional precipitation method, of which H3PO4 (85%) solution is gradually added to a FeCl3 solution during the process to maintain a designated mole ratio. The solution is subsequently aged at 90°C in a water bath until FePO4 precipitates appear. In order to synthesize LiFePO4/C composites, each batch of FePO4 powders is then mixed with pre-milled lithium carbonate and glucose (8 wt. %) as a carbon source in a ball-mill. The structural characteristics of both LiFePO4/C composites fabricated using iron phospates from two different routes have been examined employing XRD and SEM. The modified precipitation process is considered to be a relatively simple and effective process for the preparation of LiFePO4/C composites owing to their excellent electrochemical properties and rate capabilities.
Spent NiMH batteries-The role of selective precipitation in the recovery of valuable metals
NASA Astrophysics Data System (ADS)
Bertuol, Daniel Assumpção; Bernardes, Andréa Moura; Tenório, Jorge Alberto Soares
The production of electronic equipment, such as computers and cell phones, and, consequently, batteries, has increased dramatically. One of the types of batteries whose production and consumption has increased in recent times is the nickel metal hydride (NiMH) battery. This study evaluated a hydrometallurgical method of recovery of rare earths and a simple method to obtain a solution rich in Ni-Co from spent NiMH batteries. The active materials from both electrodes were manually removed from the accumulators and leached. Several acid and basic solutions for the recovery of rare earths were evaluated. Results showed that more than 98 wt.% of the rare earths were recovered as sulfate salts by dissolution with sulfuric acid, followed by selective precipitation at pH 1.2 using sodium hydroxide. The complete process, precipitation at pH 1.2 followed by precipitation at pH 7, removed about 100 wt.% of iron and 70 wt.% of zinc from the leaching solution. Results were similar to those found in studies that used solvent extraction. This method is easy, economic, and does not pose environmental threats of solvent extraction.
NASA Astrophysics Data System (ADS)
Manzanas, R.; Lucero, A.; Weisheimer, A.; Gutiérrez, J. M.
2018-02-01
Statistical downscaling methods are popular post-processing tools which are widely used in many sectors to adapt the coarse-resolution biased outputs from global climate simulations to the regional-to-local scale typically required by users. They range from simple and pragmatic Bias Correction (BC) methods, which directly adjust the model outputs of interest (e.g. precipitation) according to the available local observations, to more complex Perfect Prognosis (PP) ones, which indirectly derive local predictions (e.g. precipitation) from appropriate upper-air large-scale model variables (predictors). Statistical downscaling methods have been extensively used and critically assessed in climate change applications; however, their advantages and limitations in seasonal forecasting are not well understood yet. In particular, a key problem in this context is whether they serve to improve the forecast quality/skill of raw model outputs beyond the adjustment of their systematic biases. In this paper we analyze this issue by applying two state-of-the-art BC and two PP methods to downscale precipitation from a multimodel seasonal hindcast in a challenging tropical region, the Philippines. To properly assess the potential added value beyond the reduction of model biases, we consider two validation scores which are not sensitive to changes in the mean (correlation and reliability categories). Our results show that, whereas BC methods maintain or worsen the skill of the raw model forecasts, PP methods can yield significant skill improvement (worsening) in cases for which the large-scale predictor variables considered are better (worse) predicted by the model than precipitation. For instance, PP methods are found to increase (decrease) model reliability in nearly 40% of the stations considered in boreal summer (autumn). Therefore, the choice of a convenient downscaling approach (either BC or PP) depends on the region and the season.
NASA Astrophysics Data System (ADS)
Prasanna, V.
2018-01-01
This study makes use of temperature and precipitation from CMIP5 climate model output for climate change application studies over the Indian region during the summer monsoon season (JJAS). Bias correction of temperature and precipitation from CMIP5 GCM simulation results with respect to observation is discussed in detail. The non-linear statistical bias correction is a suitable bias correction method for climate change data because it is simple and does not add up artificial uncertainties to the impact assessment of climate change scenarios for climate change application studies (agricultural production changes) in the future. The simple statistical bias correction uses observational constraints on the GCM baseline, and the projected results are scaled with respect to the changing magnitude in future scenarios, varying from one model to the other. Two types of bias correction techniques are shown here: (1) a simple bias correction using a percentile-based quantile-mapping algorithm and (2) a simple but improved bias correction method, a cumulative distribution function (CDF; Weibull distribution function)-based quantile-mapping algorithm. This study shows that the percentile-based quantile mapping method gives results similar to the CDF (Weibull)-based quantile mapping method, and both the methods are comparable. The bias correction is applied on temperature and precipitation variables for present climate and future projected data to make use of it in a simple statistical model to understand the future changes in crop production over the Indian region during the summer monsoon season. In total, 12 CMIP5 models are used for Historical (1901-2005), RCP4.5 (2005-2100), and RCP8.5 (2005-2100) scenarios. The climate index from each CMIP5 model and the observed agricultural yield index over the Indian region are used in a regression model to project the changes in the agricultural yield over India from RCP4.5 and RCP8.5 scenarios. The results revealed a better convergence of model projections in the bias corrected data compared to the uncorrected data. The study can be extended to localized regional domains aimed at understanding the changes in the agricultural productivity in the future with an agro-economy or a simple statistical model. The statistical model indicated that the total food grain yield is going to increase over the Indian region in the future, the increase in the total food grain yield is approximately 50 kg/ ha for the RCP4.5 scenario from 2001 until the end of 2100, and the increase in the total food grain yield is approximately 90 kg/ha for the RCP8.5 scenario from 2001 until the end of 2100. There are many studies using bias correction techniques, but this study applies the bias correction technique to future climate scenario data from CMIP5 models and applied it to crop statistics to find future crop yield changes over the Indian region.
A First Approach to Global Runoff Simulation using Satellite Rainfall Estimation
NASA Technical Reports Server (NTRS)
Hong, Yang; Adler, Robert F.; Hossain, Faisal; Curtis, Scott; Huffman, George J.
2007-01-01
Many hydrological models have been introduced in the hydrological literature to predict runoff but few of these have become common planning or decision-making tools, either because the data requirements are substantial or because the modeling processes are too complicated for operational application. On the other hand, progress in regional or global rainfall-runoff simulation has been constrained by the difficulty of measuring spatiotemporal variability of the primary causative factor, i.e. rainfall fluxes, continuously over space and time. Building on progress in remote sensing technology, researchers have improved the accuracy, coverage, and resolution of rainfall estimates by combining imagery from infrared, passive microwave, and space-borne radar sensors. Motivated by the recent increasing availability of global remote sensing data for estimating precipitation and describing land surface characteristics, this note reports a ballpark assessment of quasi-global runoff computed by incorporating satellite rainfall data and other remote sensing products in a relatively simple rainfall-runoff simulation approach: the Natural Resources Conservation Service (NRCS) runoff Curve Number (CN) method. Using an Antecedent Precipitation Index (API) as a proxy of antecedent moisture conditions, this note estimates time-varying NRCS-CN values determined by the 5-day normalized API. Driven by multi-year (1998-2006) Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis, quasi-global runoff was retrospectively simulated with the NRCS-CN method and compared to Global Runoff Data Centre data at global and catchment scales. Results demonstrated the potential for using this simple method when diagnosing runoff values from satellite rainfall for the globe and for medium to large river basins. This work was done with the simple NRCS-CN method as a first-cut approach to understanding the challenges that lie ahead in advancing the satellite-based inference of global runoff. We expect that the successes and limitations revealed in this study will lay the basis for applying more advanced methods to capture the dynamic variability of the global hydrologic process for global runoff monltongin real time. The essential ingredient in this work is the use of global satellite-based rainfall estimation.
Zhu, Bangjie; Liu, Feng; Li, Xituo; Wang, Yan; Gu, Xue; Dai, Jieyu; Wang, Guiming; Cheng, Yu; Yan, Chao
2015-01-01
Endogenous carbohydrates in biosamples are frequently highlighted as the most differential metabolites in many metabolomics studies. A simple, fast, simultaneous quantitative method for 16 endogenous carbohydrates in plasma has been developed using hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry. In order to quantify 16 endogenous carbohydrates in plasma, various conditions, including columns, chromatographic conditions, mass spectrometry conditions, and plasma preparation methods, were investigated. Different conditions in this quantified analysis were performed and optimized. The reproducibility, precision, recovery, matrix effect, and stability of the method were verified. The results indicated that a methanol/acetonitrile (50:50, v/v) mixture could effectively and reproducibly precipitate rat plasma proteins. Cold organic solvents coupled with vortex for 1 min and incubated at -20°C for 20 min were the most optimal conditions for protein precipitation and extraction. The results, according to the linearity, recovery, precision, matrix effect, and stability, showed that the method was satisfactory in the quantification of endogenous carbohydrates in rat plasma. The quantified analysis of endogenous carbohydrates in rat plasma performed excellently in terms of sensitivity, high throughput, and simple sample preparation, which met the requirement of quantification in specific expanded metabolomic studies after the global metabolic profiling research. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Gou, Yabin; Ma, Yingzhao; Chen, Haonan; Wen, Yixin
2018-05-01
Quantitative precipitation estimation (QPE) is one of the important applications of weather radars. However, in complex terrain such as Tibetan Plateau, it is a challenging task to obtain an optimal Z-R relation due to the complex spatial and temporal variability in precipitation microphysics. This paper develops two radar QPE schemes respectively based on Reflectivity Threshold (RT) and Storm Cell Identification and Tracking (SCIT) algorithms using observations from 11 Doppler weather radars and 3264 rain gauges over the Eastern Tibetan Plateau (ETP). These two QPE methodologies are evaluated extensively using four precipitation events that are characterized by different meteorological features. Precipitation characteristics of independent storm cells associated with these four events, as well as the storm-scale differences, are investigated using short-term vertical profile of reflectivity (VPR) clusters. Evaluation results show that the SCIT-based rainfall approach performs better than the simple RT-based method for all precipitation events in terms of score comparison using validation gauge measurements as references. It is also found that the SCIT-based approach can effectively mitigate the local error of radar QPE and represent the precipitation spatiotemporal variability better than the RT-based scheme.
Long-term variability and changes of the precipitation regime in Pakistan
NASA Astrophysics Data System (ADS)
Hussain, Mian Sabir; Lee, Seungho
2014-05-01
This paper presents an examination of precipitation amounts in Pakistan. For this purpose, the annual precipitation and the annual number of precipitation days have been calculated, and a study aimed at investigating precipitation intensity and decadal changes was conducted. Precipitation trends have been calculated using a simple linear regression method and Kendall's tau-based test. To assess stability and differences, a 10-year span was determined for each precipitation region for the period of 1951-2010. This study focused on the three CLINO (Climatological Normal) periods, namely 1961-1990, 1971-2000, and 1981-2010 (the latest global standard normal period). Results confirm the gradual increase of annual precipitation in southwestern coastal areas of Pakistan and Cholistan desert. With regard to annual number of precipitation days, in the central part of the country negative trends were evident for wet days (with precipitation ≧ 0.1 mm), while the number of rainy days (with precipitation ≧ 1 mm) displayed a prominent positive trend. The series of the precipitation intensity gives evidence of a minor decrease in the Baluchistan Plateau, sub-Himalayas, and Potwar Plateau during the study period. Examination of secular trends evidenced that the Murree hills, the upper Indus plain, and the northwestern Baluchistan plateau have had shifts in their precipitation regime towards drier conditions, while the central plain, the northwestern mountains, and the southern part of the country are shifting in their precipitation regime towards wetter conditions. Description among the means of precipitation amounts suggests that "normal" precipitation data for various national projects should be calculated for the last 30 years.
Drivers of precipitation change: An energetic understanding
NASA Astrophysics Data System (ADS)
Richardson, T.; Forster, P.; Andrews, T.
2016-12-01
Future precipitation changes are highly uncertain. Different drivers of anthropogenic climate change can cause very different hydrological responses, which could have significant societal implications. Changes in precipitation are tightly linked to the atmospheric energy budget due to the latent heat released through condensation. Through analysis of the atmospheric energy budget we make significant steps forward in understanding and predicting the precipitation response to different forcings. Here we analyse the response to five targeted forcing scenarios (perturbed CO2, CH4, black carbon, sulphate and solar insolation) across eight climate models participating in the Precipitation Driver and Response Model Intercomparison Project (PDRMIP). The resulting changes are split into a rapid adjustment component, due to the near-instantaneous changes in the atmospheric energy budget, and a feedback component which scales with surface temperature change. Globally, CO2 and black carbon produce large negative adjustments in precipitation due to the increase in atmospheric absorption. However, over land it is sulphate and solar forcing which produce the largest precipitation adjustments due to changes in horizontal energy transport associated with rapid circulation changes. Globally, the precipitation feedback response is very consistent between forcing scenarios, driven mainly by increased longwave cooling. The feedback response differs significantly over land and sea, with a larger feedback over the oceans. We use the PDRMIP results to construct a simple model for precipitation change over land and sea based on surface temperature change and top of the atmosphere forcing. The simple model matches well with CMIP5 ensemble mean precipitation change for RCP8.5. Simulated changes in land mean precipitation can be estimated well using the rapid adjustment and feedback framework, and understood through simple energy budget arguments. Up until present day the effects of temperature change on land mean precipitation have been entirely masked by sulphate forcing. However, as projected sulphate forcing decreases, and warming continues, the temperature driven increase in land mean precipitation soon dominates.
NASA Astrophysics Data System (ADS)
Chapman, S. C.; Stainforth, D. A.; Watkins, N. W.
2014-12-01
Estimates of how our climate is changing are needed locally in order to inform adaptation planning decisions. This requires quantifying the geographical patterns in changes at specific quantiles or thresholds in distributions of variables such as daily temperature or precipitation. We develop a method[1] for analysing local climatic timeseries to assess which quantiles of the local climatic distribution show the greatest and most robust changes, to specifically address the challenges presented by 'heavy tailed' distributed variables such as daily precipitation. We extract from the data quantities that characterize the changes in time of the likelihood of daily precipitation above a threshold and of the relative amount of precipitation in those extreme precipitation days. Our method is a simple mathematical deconstruction of how the difference between two observations from two different time periods can be assigned to the combination of natural statistical variability and/or the consequences of secular climate change. This deconstruction facilitates an assessment of how fast different quantiles of precipitation distributions are changing. This involves both determining which quantiles and geographical locations show the greatest change but also, those at which any change is highly uncertain. We demonstrate this approach using E-OBS gridded data[2] timeseries of local daily precipitation from specific locations across Europe over the last 60 years. We treat geographical location and precipitation as independent variables and thus obtain as outputs the pattern of change at a given threshold of precipitation and with geographical location. This is model- independent, thus providing data of direct value in model calibration and assessment. Our results identify regionally consistent patterns which, dependent on location, show systematic increase in precipitation on the wettest days, shifts in precipitation patterns to less moderate days and more heavy days, and drying across all days which is of potential value in adaptation planning. [1] S C Chapman, D A Stainforth, N W Watkins, 2013 Phil. Trans. R. Soc. A, 371 20120287; D. A. Stainforth, S. C. Chapman, N. W. Watkins, 2013 Environ. Res. Lett. 8, 034031 [2] Haylock et al. 2008 J. Geophys. Res (Atmospheres), 113, D20119
Spatial interpolation schemes of daily precipitation for hydrologic modeling
Hwang, Y.; Clark, M.R.; Rajagopalan, B.; Leavesley, G.
2012-01-01
Distributed hydrologic models typically require spatial estimates of precipitation interpolated from sparsely located observational points to the specific grid points. We compare and contrast the performance of regression-based statistical methods for the spatial estimation of precipitation in two hydrologically different basins and confirmed that widely used regression-based estimation schemes fail to describe the realistic spatial variability of daily precipitation field. The methods assessed are: (1) inverse distance weighted average; (2) multiple linear regression (MLR); (3) climatological MLR; and (4) locally weighted polynomial regression (LWP). In order to improve the performance of the interpolations, the authors propose a two-step regression technique for effective daily precipitation estimation. In this simple two-step estimation process, precipitation occurrence is first generated via a logistic regression model before estimate the amount of precipitation separately on wet days. This process generated the precipitation occurrence, amount, and spatial correlation effectively. A distributed hydrologic model (PRMS) was used for the impact analysis in daily time step simulation. Multiple simulations suggested noticeable differences between the input alternatives generated by three different interpolation schemes. Differences are shown in overall simulation error against the observations, degree of explained variability, and seasonal volumes. Simulated streamflows also showed different characteristics in mean, maximum, minimum, and peak flows. Given the same parameter optimization technique, LWP input showed least streamflow error in Alapaha basin and CMLR input showed least error (still very close to LWP) in Animas basin. All of the two-step interpolation inputs resulted in lower streamflow error compared to the directly interpolated inputs. ?? 2011 Springer-Verlag.
NASA Astrophysics Data System (ADS)
Chapman, Sandra; Stainforth, David; Watkins, Nick
2014-05-01
Estimates of how our climate is changing are needed locally in order to inform adaptation planning decisions. This requires quantifying the geographical patterns in changes at specific quantiles in distributions of variables such as daily temperature or precipitation. Here we focus on these local changes and on a method to transform daily observations of precipitation into patterns of local climate change. We develop a method[1] for analysing local climatic timeseries to assess which quantiles of the local climatic distribution show the greatest and most robust changes, to specifically address the challenges presented by daily precipitation data. We extract from the data quantities that characterize the changes in time of the likelihood of daily precipitation above a threshold and of the relative amount of precipitation in those days. Our method is a simple mathematical deconstruction of how the difference between two observations from two different time periods can be assigned to the combination of natural statistical variability and/or the consequences of secular climate change. This deconstruction facilitates an assessment of how fast different quantiles of precipitation distributions are changing. This involves both determining which quantiles and geographical locations show the greatest change but also, those at which any change is highly uncertain. We demonstrate this approach using E-OBS gridded data[2] timeseries of local daily precipitation from specific locations across Europe over the last 60 years. We treat geographical location and precipitation as independent variables and thus obtain as outputs the pattern of change at a given threshold of precipitation and with geographical location. This is model- independent, thus providing data of direct value in model calibration and assessment. Our results show regionally consistent patterns of systematic increase in precipitation on the wettest days, and of drying across all days which is of potential value in adaptation planning. [1] S C Chapman, D A Stainforth, N W Watkins, 2013, On Estimating Local Long Term Climate Trends, Phil. Trans. R. Soc. A, 371 20120287; D. A. Stainforth, 2013, S. C. Chapman, N. W. Watkins, Mapping climate change in European temperature distributions, Environ. Res. Lett. 8, 034031 [2] Haylock, M.R., N. Hofstra, A.M.G. Klein Tank, E.J. Klok, P.D. Jones and M. New. 2008: A European daily high-resolution gridded dataset of surface temperature and precipitation. J. Geophys. Res (Atmospheres), 113, D20119
NASA Technical Reports Server (NTRS)
Chao, Winston C.
2015-01-01
The excessive precipitation over steep and high mountains (EPSM) in GCMs and meso-scale models is due to a lack of parameterization of the thermal effects of the subgrid-scale topographic variation. These thermal effects drive subgrid-scale heated slope induced vertical circulations (SHVC). SHVC provide a ventilation effect of removing heat from the boundary layer of resolvable-scale mountain slopes and depositing it higher up. The lack of SHVC parameterization is the cause of EPSM. The author has previously proposed a method of parameterizing SHVC, here termed SHVC.1. Although this has been successful in avoiding EPSM, the drawback of SHVC.1 is that it suppresses convective type precipitation in the regions where it is applied. In this article we propose a new method of parameterizing SHVC, here termed SHVC.2. In SHVC.2 the potential temperature and mixing ratio of the boundary layer are changed when used as input to the cumulus parameterization scheme over mountainous regions. This allows the cumulus parameterization to assume the additional function of SHVC parameterization. SHVC.2 has been tested in NASA Goddard's GEOS-5 GCM. It achieves the primary goal of avoiding EPSM while also avoiding the suppression of convective-type precipitation in regions where it is applied.
Methods for estimating 2D cloud size distributions from 1D observations
Romps, David M.; Vogelmann, Andrew M.
2017-08-04
The two-dimensional (2D) size distribution of clouds in the horizontal plane plays a central role in the calculation of cloud cover, cloud radiative forcing, convective entrainment rates, and the likelihood of precipitation. Here, a simple method is proposed for calculating the area-weighted mean cloud size and for approximating the 2D size distribution from the 1D cloud chord lengths measured by aircraft and vertically pointing lidar and radar. This simple method (which is exact for square clouds) compares favorably against the inverse Abel transform (which is exact for circular clouds) in the context of theoretical size distributions. Both methods also performmore » well when used to predict the size distribution of real clouds from a Landsat scene. When applied to a large number of Landsat scenes, the simple method is able to accurately estimate the mean cloud size. Finally, as a demonstration, the methods are applied to aircraft measurements of shallow cumuli during the RACORO campaign, which then allow for an estimate of the true area-weighted mean cloud size.« less
Methods for estimating 2D cloud size distributions from 1D observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romps, David M.; Vogelmann, Andrew M.
The two-dimensional (2D) size distribution of clouds in the horizontal plane plays a central role in the calculation of cloud cover, cloud radiative forcing, convective entrainment rates, and the likelihood of precipitation. Here, a simple method is proposed for calculating the area-weighted mean cloud size and for approximating the 2D size distribution from the 1D cloud chord lengths measured by aircraft and vertically pointing lidar and radar. This simple method (which is exact for square clouds) compares favorably against the inverse Abel transform (which is exact for circular clouds) in the context of theoretical size distributions. Both methods also performmore » well when used to predict the size distribution of real clouds from a Landsat scene. When applied to a large number of Landsat scenes, the simple method is able to accurately estimate the mean cloud size. Finally, as a demonstration, the methods are applied to aircraft measurements of shallow cumuli during the RACORO campaign, which then allow for an estimate of the true area-weighted mean cloud size.« less
Preparation of ZnO nanoparticles showing upconversion luminescence through simple chemical method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anjana, R.; Subha, P. P.; Markose, Kurias K.
2016-05-23
Upconversion luminescence is an interesting area while considering its applications in a vast variety of fields. Rare earth ions like erbium is the most studied and efficient candidate for achieving upconversion. Erbium and ytterbium co-doped ZnO nanoparticles were prepared through co-precipitation method. A strong red emission has been obtained while exciting with 980 nm laser. Dependence of luminescence emission colour on ytterbium concentration has been studied.
Precipitation Nowcast using Deep Recurrent Neural Network
NASA Astrophysics Data System (ADS)
Akbari Asanjan, A.; Yang, T.; Gao, X.; Hsu, K. L.; Sorooshian, S.
2016-12-01
An accurate precipitation nowcast (0-6 hours) with a fine temporal and spatial resolution has always been an important prerequisite for flood warning, streamflow prediction and risk management. Most of the popular approaches used for forecasting precipitation can be categorized into two groups. One type of precipitation forecast relies on numerical modeling of the physical dynamics of atmosphere and another is based on empirical and statistical regression models derived by local hydrologists or meteorologists. Given the recent advances in artificial intelligence, in this study a powerful Deep Recurrent Neural Network, termed as Long Short-Term Memory (LSTM) model, is creatively used to extract the patterns and forecast the spatial and temporal variability of Cloud Top Brightness Temperature (CTBT) observed from GOES satellite. Then, a 0-6 hours precipitation nowcast is produced using a Precipitation Estimation from Remote Sensing Information using Artificial Neural Network (PERSIANN) algorithm, in which the CTBT nowcast is used as the PERSIANN algorithm's raw inputs. Two case studies over the continental U.S. have been conducted that demonstrate the improvement of proposed approach as compared to a classical Feed Forward Neural Network and a couple simple regression models. The advantages and disadvantages of the proposed method are summarized with regard to its capability of pattern recognition through time, handling of vanishing gradient during model learning, and working with sparse data. The studies show that the LSTM model performs better than other methods, and it is able to learn the temporal evolution of the precipitation events through over 1000 time lags. The uniqueness of PERSIANN's algorithm enables an alternative precipitation nowcast approach as demonstrated in this study, in which the CTBT prediction is produced and used as the inputs for generating precipitation nowcast.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatakeyama, Keisuke, E-mail: hatakeyamak@pref.tottori.jp; Okuda, Masukazu; Kuki, Takahiro
2012-12-15
Graphical abstract: Display Omitted Highlights: ► The photocatalytic property of a silver orthophosphate (Ag{sub 3}PO{sub 4}) was investigated for humic acid degradation. ► The Ag{sub 3}PO{sub 4} shows high photocatalytic activity under visible light. ► The photocatalytic activity was greatly improved by employing the precipitation method. -- Abstract: In order to remove dissolved organic matter such as humic acid from water, a silver orthophosphate (Ag{sub 3}PO{sub 4}) was newly employed as a heterogeneous photocatalyst. Here, Ag{sub 3}PO{sub 4} was prepared by simple ion-exchange and precipitation methods, and the physico-chemical properties were characterized by X-ray diffraction, ultraviolet–visible diffuse reflectance spectroscopy, scanningmore » electron microscopy, particle distribution measurements and Brunauer–Emmett–Teller (BET) analysis. The degradation of humic acid was faster over Ag{sub 3}PO{sub 4} catalyst than over conventional TiO{sub 2} (P-25). The total photocatalytic properties were improved by employing not an ion-exchange method but a precipitation method; humic acid degradation was performed with a removal ratio of dissolved organic carbon of 75% under visible light (λ = 451 nm) for 2-h irradiation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Viklund, H.I.; Kennedy, R.H.
Uranium precipitates obtained from Congo leach liquors by an ion exchange process contained more than 0.1% chloride. Attempts were made to reduce the chloride content of typical precipitates by calcination of dried precipitate, releaching of dried precipitate with water, and washing of wet precipitate with water. Washing of wet precipitate with an aqueous solution of 0.25% Na/sub 2/SO/ sub 4/, to prevent peptization, provided a simple solution to the problem. Precipitation tests on Congo ion exchange eluates showed a marked advantage in subsequent thickening and filtration operations for precipitation from hot solution. (auth)
Seasonality of Groundwater Recharge in the Basin and Range Province, Western North America
NASA Astrophysics Data System (ADS)
Neff, K. L.; Meixner, T.; Ajami, H.; De La Cruz, L.
2015-12-01
For water-scarce communities in the western U.S., it is critical to understand groundwater recharge regimes and how those regimes might shift in the face of climate change and impact groundwater resources. Watersheds in the Basin and Range Geological Province are characterized by a variable precipitation regime of wet winters and variable summer precipitation. The relative contributions to groundwater recharge by summer and winter precipitation vary throughout the province, with winter precipitation recharge dominant in the northern parts of the region, and recharge from summer monsoonal precipitation playing a more significant role in the south, where the North American Monsoon (NAM) extends its influence. Stable water isotope data of groundwater and seasonal precipitation from sites in Sonora, Mexico and the U.S. states of California, Nevada, Utah, Arizona, Colorado, New Mexico, and Texas were examined to estimate and compare groundwater recharge seasonality throughout the region. Contributions of winter precipitation to annual recharge vary from 69% ± 41% in the southernmost Río San Miguel Basin in Sonora, Mexico, to 100% ± 36% in the westernmost Mojave Desert of California. The Normalized Seasonal Wetness Index (NSWI), a simple water budget method for estimating recharge seasonality from climatic data, was shown to approximate recharge seasonality well in several winter precipitation-dominated systems, but less well in basins with significant summer precipitation.
NASA Astrophysics Data System (ADS)
Koskelo, Antti I.; Fisher, Thomas R.; Utz, Ryan M.; Jordan, Thomas E.
2012-07-01
SummaryBaseflow separation methods are often impractical, require expensive materials and time-consuming methods, and/or are not designed for individual events in small watersheds. To provide a simple baseflow separation method for small watersheds, we describe a new precipitation-based technique known as the Sliding Average with Rain Record (SARR). The SARR uses rainfall data to justify each separation of the hydrograph. SARR has several advantages such as: it shows better consistency with the precipitation and discharge records, it is easier and more practical to implement, and it includes a method of event identification based on precipitation and quickflow response. SARR was derived from the United Kingdom Institute of Hydrology (UKIH) method with several key modifications to adapt it for small watersheds (<50 km2). We tested SARR on watersheds in the Choptank Basin on the Delmarva Peninsula (US Mid-Atlantic region) and compared the results with the UKIH method at the annual scale and the hydrochemical method at the individual event scale. Annually, SARR calculated a baseflow index that was ˜10% higher than the UKIH method due to the finer time step of SARR (1 d) compared to UKIH (5 d). At the watershed scale, hydric soils were an important driver of the annual baseflow index likely due to increased groundwater retention in hydric areas. At the event scale, SARR calculated less baseflow than the hydrochemical method, again because of the differences in time step (hourly for hydrochemical) and different definitions of baseflow. Both SARR and hydrochemical baseflow increased with event size, suggesting that baseflow contributions are more important during larger storms. To make SARR easy to implement, we have written a MatLab program to automate the calculations which requires only daily rainfall and daily flow data as inputs.
Yoshida, Terumitsu; Takahashi, Ryohei; Imai, Koichi; Uchida, Hiroshi; Arai, Yasutoshi; Oh-ishi, Tsutomu
2010-03-01
This study developed a simple and sensitive method using reversed-phase high-performance liquid chromatography (HPLC) for ganciclovir (GCV) plasma concentrations in cytomegalovirus infectious infants with hearing loss. The method involves a simple protein precipitation procedure that uses no solid-phase or liquid-liquid extraction. The HPLC separation was carried out on a Cadenza CD-C(18) column (3 microm, 4.6 mm x 150 mm) with phosphate buffer (pH 2.5, 25 mM) containing 1% methanol-acetonitrile mixture (4:3, v/v) as a mobile phase at a 0.7 mL/min flow rate. GCV was detected using a fluorescence detection (lambdaex/em: 265/380 nm). The quantification limit was 0.025 microg/mL for 100 microL of plasma sample at which good intra- and inter-assay coefficient of variation values (< 4.96%) and recoveries (94.9-96.5%) were established.
Repeated and random components in Oklahoma's monthly precipitation record
USDA-ARS?s Scientific Manuscript database
Precipitation across Oklahoma exhibits a high degree of spatial and temporal variability and creates numerous water resources management challenges. The monthly precipitation record of the Central Oklahoma climate division was evaluated in a proof-of-concept to establish whether a simple monthly pre...
Tillman, F.D.; Callegary, J.B.; Nagler, P.L.; Glenn, E.P.
2012-01-01
Groundwater is a vital water resource in the arid to semi-arid southwestern United States. Accurate accounting of inflows to and outflows from the groundwater system is necessary to effectively manage this shared resource, including the important outflow component of groundwater discharge by vegetation. A simple method for estimating basin-scale groundwater discharge by vegetation is presented that uses remote sensing data from satellites, geographic information systems (GIS) land cover and stream location information, and a regression equation developed within the Southern Arizona study area relating the Enhanced Vegetation Index from the MODIS sensors on the Terra satellite to measured evapotranspiration. Results computed for 16-day composited satellite passes over the study area during the 2000 through 2007 time period demonstrate a sinusoidal pattern of annual groundwater discharge by vegetation with median values ranging from around 0.3 mm per day in the cooler winter months to around 1.5 mm per day during summer. Maximum estimated annual volume of groundwater discharge by vegetation was between 1.4 and 1.9 billion m3 per year with an annual average of 1.6 billion m3. A simplified accounting of the contribution of precipitation to vegetation greenness was developed whereby monthly precipitation data were subtracted from computed vegetation discharge values, resulting in estimates of minimum groundwater discharge by vegetation. Basin-scale estimates of minimum and maximum groundwater discharge by vegetation produced by this simple method are useful bounding values for groundwater budgets and groundwater flow models, and the method may be applicable to other areas with similar vegetation types.
An exploratory study on seawater-catalysed urine phosphorus recovery (SUPR).
Dai, Ji; Tang, Wen-Tao; Zheng, Yi-Se; Mackey, Hamish R; Chui, Ho Kwong; van Loosdrecht, Mark C M; Chen, Guang-Hao
2014-12-01
Phosphorus (P) is a crucial and non-renewable resource, while it is excessively discharged via sewage, significant amounts originating from human urine. Recovery of P from source-separated urine presents an opportunity not only to recover this precious resource but also to improve downstream sewage treatment works. This paper proposes a simple and economic method to recover urine derived P by using seawater as a low-cost precipitant to form struvite, as Hong Kong has practised seawater toilet flushing as an alternative water resource since 1958. Chemical reactions, process conditions and precipitate composition for P precipitation in urine have been investigated to develop this new urine P recovery approach. This study concluded that ureolysis extent in a urine-seawater mixture determines the reaction pH that in turn influences the P recovery efficiency significantly; 98% of urine P can precipitate with seawater within 10 min when 40-75% of the urea in urine is ureolysed; the urine to seawater ratio alters the composition of the precipitates. The P content in the precipitates was found to be more than 9% when the urine fraction was 40% or higher. Magnesium ammonium phosphate (MAP) was confirmed to be the predominant component of the precipitates. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gou, Y.
2017-12-01
Quantitative Precipitation Estimation (QPE) is one of the important applications of weather radars. However, in complex terrain such as Tibetan Plateau, it is a challenging task to obtain an optimal Z-R relation due to the complex space time variability in precipitation microphysics. This paper develops two radar QPE schemes respectively based on Reflectivity Threshold (RT) and Storm Cell Identification and Tracking (SCIT) algorithms using observations from 11 Doppler weather radars and 3294 rain gauges over the Eastern Tibetan Plateau (ETP). These two QPE methodologies are evaluated extensively using four precipitation events that are characterized by different meteorological features. Precipitation characteristics of independent storm cells associated with these four events, as well as the storm-scale differences, are investigated using short-term vertical profiles of reflectivity clusters. Evaluation results show that the SCIT-based rainfall approach performs better than the simple RT-based method in all precipitation events in terms of score comparison using validation gauge measurements as references, with higher correlation (than 75.74%), lower mean absolute error (than 82.38%) and root-mean-square error (than 89.04%) of all the comparative frames. It is also found that the SCIT-based approach can effectively mitigate the radar QPE local error and represent precipitation spatiotemporal variability better than RT-based scheme.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soner Yorgun, M.; Rood, Richard B.
An object-based evaluation method using a pattern recognition algorithm (i.e., classification trees) is applied to the simulated orographic precipitation for idealized experimental setups using the National Center of Atmospheric Research (NCAR) Community Atmosphere Model (CAM) with the finite volume (FV) and the Eulerian spectral transform dynamical cores with varying resolutions. Daily simulations were analyzed and three different types of precipitation features were identified by the classification tree algorithm. The statistical characteristics of these features (i.e., maximum value, mean value, and variance) were calculated to quantify the difference between the dynamical cores and changing resolutions. Even with the simple and smoothmore » topography in the idealized setups, complexity in the precipitation fields simulated by the models develops quickly. The classification tree algorithm using objective thresholding successfully detected different types of precipitation features even as the complexity of the precipitation field increased. The results show that the complexity and the bias introduced in small-scale phenomena due to the spectral transform method of CAM Eulerian spectral dynamical core is prominent, and is an important reason for its dissimilarity from the FV dynamical core. The resolvable scales, both in horizontal and vertical dimensions, have significant effect on the simulation of precipitation. The results of this study also suggest that an efficient and informative study about the biases produced by GCMs should involve daily (or even hourly) output (rather than monthly mean) analysis over local scales.« less
Soner Yorgun, M.; Rood, Richard B.
2016-11-11
An object-based evaluation method using a pattern recognition algorithm (i.e., classification trees) is applied to the simulated orographic precipitation for idealized experimental setups using the National Center of Atmospheric Research (NCAR) Community Atmosphere Model (CAM) with the finite volume (FV) and the Eulerian spectral transform dynamical cores with varying resolutions. Daily simulations were analyzed and three different types of precipitation features were identified by the classification tree algorithm. The statistical characteristics of these features (i.e., maximum value, mean value, and variance) were calculated to quantify the difference between the dynamical cores and changing resolutions. Even with the simple and smoothmore » topography in the idealized setups, complexity in the precipitation fields simulated by the models develops quickly. The classification tree algorithm using objective thresholding successfully detected different types of precipitation features even as the complexity of the precipitation field increased. The results show that the complexity and the bias introduced in small-scale phenomena due to the spectral transform method of CAM Eulerian spectral dynamical core is prominent, and is an important reason for its dissimilarity from the FV dynamical core. The resolvable scales, both in horizontal and vertical dimensions, have significant effect on the simulation of precipitation. The results of this study also suggest that an efficient and informative study about the biases produced by GCMs should involve daily (or even hourly) output (rather than monthly mean) analysis over local scales.« less
Using Extreme Tropical Precipitation Statistics to Constrain Future Climate States
NASA Astrophysics Data System (ADS)
Igel, M.; Biello, J. A.
2017-12-01
Tropical precipitation is characterized by a rapid growth in mean intensity as the column humidity increases. This behavior is examined in both a cloud resolving model and with high-resolution observations of precipitation and column humidity from CloudSat and AIRS, respectively. The model and the observations exhibit remarkable consistency and suggest a new paradigm for extreme precipitation. We show that the total precipitation can be decomposed into a product of contributions from a mean intensity, a probability of precipitation, and a global PDF of column humidity values. We use the modeling and observational results to suggest simple, analytic forms for each of these functions. The analytic representations are then used to construct a simple expression for the global accumulated precipitation as a function of the parameters of each of the component functions. As the climate warms, extreme precipitation intensity and global precipitation are expected to increase, though at different rates. When these predictions are incorporated into the new analytic expression for total precipitation, predictions for changes due to global warming to the probability of precipitation and the PDF of column humidity can be made. We show that strong constraints can be imposed on the future shape of the PDF of column humidity but that only weak constraints can be set on the probability of precipitation. These are largely imposed by the intensification of extreme precipitation. This result suggests that understanding precisely how extreme precipitation responds to climate warming is critical to predicting other impactful properties of global hydrology. The new framework can also be used to confirm and discount existing theories for shifting precipitation.
Yang, Xiupei; Su, Yan; Paau, Man Chin; Choi, Martin M F
2012-02-07
This paper presents a simple and convenient methodology to separate and characterize water-soluble gold nanocluster stabilized with penicillamine ligands (AuNC-SR) in aqueous medium by sequential size-selective precipitation (SSSP) and mass spectrometry (MS). The highly polydisperse crude AuNC-SR product with an average core diameter of 2.1 nm was initially synthesized by a one-phase solution method. AuNCs were then precipitated and separated successively from larger to smaller ones by progressively increasing the concentration of acetone in the aqueous AuNCs solution. The SSSP fractions were analyzed by UV-vis spectroscopy, matrix-assisted laser desorption/ionization time-of-flight-MS, and thermogravimetric analysis (TGA). The MS and TGA data confirmed that the fractions precipitated from 36, 54, 72, and 90% v/v acetone (F(36%), F(54%), F(72%), and F(90%)) comprised families of close core size AuNCs with average molecular formulas of Au(38)(SR)(18), Au(28)(SR)(15), Au(18)(SR)(12), and Au(11)(SR)(8), respectively. In addition, F(36%), F(54%), F(72%), and F(90%) contained also the typical magic-sized gold nanoparticles of Au(38), Au(25), Au(18), and Au(11), respectively, together with some other AuNCs. This study shed light on the potential use of SSSP for simple and large-scale preliminary separation of polydisperse water-soluble AuNCs into different fractions with a relatively narrower size distribution. © 2012 American Chemical Society
NASA Astrophysics Data System (ADS)
Quéno, Louis; Vionnet, Vincent; Cabot, Frédéric; Vrécourt, Dominique; Dombrowski-Etchevers, Ingrid
2017-04-01
In the Pyrenees, freezing precipitations in altitude occur at least once per winter, leading to the formation of a pure ice layer on the surface of the snowpack. It may lead to accidents and fatalities among mountaineers and skiers, with sometimes a higher human toll than avalanches. Such events are not predicted by the current operational systems for snow and avalanche hazard forecasting. A crowd-sourced database of surface ice layer occurrences is first built up, using reports from Internet mountaineering and ski-touring communities, to mitigate the lack of observations from conventional observation networks. A simple diagnostic of freezing precipitation is then developed, based on the cloud water content and screen temperature forecast by the Numerical Weather Prediction model AROME, operating at 2.5-km resolution. The performance of this diagnostic is assessed for the event of 5-6 January 2012, with a good representation of altitudinal and spatial distributions of the ice layer. An evaluation of the diagnostic for major events over five winters gives good skills of detection compared to the occurrences reported in the observation database. A new modelling of ice formation on the surface of the snowpack due to impinging supercooled water is added to the detailed snowpack model Crocus. It is combined to the atmospheric diagnostic of freezing precipitations and resulting snowpack simulations over a winter season capture well the formation of the main ice layers. Their influence on the snowpack stratigraphy is also realistically simulated. These simple methods enable to forecast the occurrence of surface ice layer formations with good confidence and to simulate their evolution within the snowpack, even if an accurate estimation of freezing precipitation amounts remains the main challenge.
Li, Chun-xiang; Chen, Ting-yu; Yan, Yong-sheng
2007-10-01
In the present paper, the use of 8-hydroxyquinoline(oxine, HQ) complexs in precipitate flotation to separate and preconcentrate Cu and Mn, using SDBS as collector, followed by AAS spectrophotometric determination is proposed. The optimum conditions of precipitate flotation were studied. The effects of several parameters of flotation processes condition on single metal ions precipitation-flotation and multi-metal ions coprecipitation-flotation of Cu and Mn at pH 9 were investigated. The experimental results show that the flotation rate of Cu is supreme with pH 9. Under the condition of pH 9 and changing the ratio of concentration, when Mn/Cu> or =8, the recovery rate of Cu is less than 90%. This method is simple, rapid, accurate, sensitive and precise and avoids using the virulent organic solvent. The linear range of Cu is 0.5-5.0 microg x mL(-1) with the correlative coefficient of 0.9996, detection limit of this method was found to be 1.59 x 10(-3) microg x mL(-1), the linear range of Mn is 0.5-5.0 microg x mL(-1) with the correlative coefficient of 0.9987, and the detection limit of this method was found to be 3.52 x 10(-3) microg x mL(-1). The method was applied to the determination of Cu and Mn in foodstuff, and the recovery is 87.6%-100.7%. The result was satisfactory.
Remote Sensing of Precipitation from Space
NASA Technical Reports Server (NTRS)
Stocker, Erich Franz
2010-01-01
This slide presentation reviews the use of remote sensing of precipitation from satellite observations. The purpose of the presentation is to introduce the three prime instrument types for measuring precipitation from space, give an overview of the Tropical Rainfall Measuring Mission (TRMM) and the Global Precipitation Measurement (GPM) mission, provides examples of how measurements from space can be used, and provides simple, high level scenarios for how remote sensed precipitation data can be used by planners and managers.
NASA Astrophysics Data System (ADS)
Sharma, Ravi Kant; Ghose, Ranjana
2015-04-01
Porous nanocrystalline NiO has been synthesized by a simple homogeneous precipitation method in short time at low calcination temperature without using any surfactant, chelating or gelating agents. The porous nanocrystalline NiO with a hexagonal sheet-like morphology were obtained by calcination of Ni(OH)2 nanoflakes at 500 °C. The calcination temperature strongly influences the morphology, crystallite size, specific surface area, pore volume and optical band gap of the samples. The samples were characterized using powder X-ray diffraction, thermal gravimetric analysis, FT-IR spectroscopy, UV-Visible diffuse reflectance spectroscopy, surface area measurements, field emission scanning electron microscopy coupled with energy dispersive X-ray analysis and transmission electron microscopy. The chemical activity of the samples was tested by catalytic reduction of 4-nitrophenol with NaBH4.
Uncertainty Estimation using Bootstrapped Kriging Predictions for Precipitation Isoscapes
NASA Astrophysics Data System (ADS)
Ma, C.; Bowen, G. J.; Vander Zanden, H.; Wunder, M.
2017-12-01
Isoscapes are spatial models representing the distribution of stable isotope values across landscapes. Isoscapes of hydrogen and oxygen in precipitation are now widely used in a diversity of fields, including geology, biology, hydrology, and atmospheric science. To generate isoscapes, geostatistical methods are typically applied to extend predictions from limited data measurements. Kriging is a popular method in isoscape modeling, but quantifying the uncertainty associated with the resulting isoscapes is challenging. Applications that use precipitation isoscapes to determine sample origin require estimation of uncertainty. Here we present a simple bootstrap method (SBM) to estimate the mean and uncertainty of the krigged isoscape and compare these results with a generalized bootstrap method (GBM) applied in previous studies. We used hydrogen isotopic data from IsoMAP to explore these two approaches for estimating uncertainty. We conducted 10 simulations for each bootstrap method and found that SBM results in more kriging predictions (9/10) compared to GBM (4/10). Prediction from SBM was closer to the original prediction generated without bootstrapping and had less variance than GBM. SBM was tested on different datasets from IsoMAP with different numbers of observation sites. We determined that predictions from the datasets with fewer than 40 observation sites using SBM were more variable than the original prediction. The approaches we used for estimating uncertainty will be compiled in an R package that is under development. We expect that these robust estimates of precipitation isoscape uncertainty can be applied in diagnosing the origin of samples ranging from various type of waters to migratory animals, food products, and humans.
Application of thermal model for pan evaporation to the hydrology of a defined medium, the sponge
NASA Technical Reports Server (NTRS)
Trenchard, M. H.; Artley, J. A. (Principal Investigator)
1981-01-01
A technique is presented which estimates pan evaporation from the commonly observed values of daily maximum and minimum air temperatures. These two variables are transformed to saturation vapor pressure equivalents which are used in a simple linear regression model. The model provides reasonably accurate estimates of pan evaporation rates over a large geographic area. The derived evaporation algorithm is combined with precipitation to obtain a simple moisture variable. A hypothetical medium with a capacity of 8 inches of water is initialized at 4 inches. The medium behaves like a sponge: it absorbs all incident precipitation, with runoff or drainage occurring only after it is saturated. Water is lost from this simple system through evaporation just as from a Class A pan, but at a rate proportional to its degree of saturation. The contents of the sponge is a moisture index calculated from only the maximum and minium temperatures and precipitation.
Liu, Lili; Zhang, Xianwen; Chaudhuri, Jharna
2015-01-01
We present a simple co-precipitation method to prepare highly nanoporous YBO(3) architecture using NaBO(3) · 4H(2)O as a boric source and 600°C as the annealing temperature. The reaction was carried out under an aqueous condition without any organic solvent, surfactant, or catalysts. The prepared samples were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The photoluminescence of doped-nanoporous YBO(3):Eu(3+) was further investigated. It is expected that highly nanoporous YBO(3) architecture can be an ideal candidate for applications in catalysis, adsorption, and optoelectronic devices. © Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Jianying; Dann, Geoffrey P.; Shi, Tujin
2012-03-10
Sodium dodecyl sulfate (SDS) is one of the most popular laboratory reagents used for highly efficient biological sample extraction; however, SDS presents a significant challenge to LC-MS-based proteomic analyses due to its severe interference with reversed-phase LC separations and electrospray ionization interfaces. This study reports a simple SDS-assisted proteomic sample preparation method facilitated by a novel peptide-level SDS removal protocol. After SDS-assisted protein extraction and digestion, SDS was effectively (>99.9%) removed from peptides through ion substitution-mediated DS- precipitation with potassium chloride (KCl) followed by {approx}10 min centrifugation. Excellent peptide recovery (>95%) was observed for less than 20 {mu}g of peptides.more » Further experiments demonstrated the compatibility of this protocol with LC-MS/MS analyses. The resulting proteome coverage from this SDS-assisted protocol was comparable to or better than those obtained from other standard proteomic preparation methods in both mammalian tissues and bacterial samples. These results suggest that this SDS-assisted protocol is a practical, simple, and broadly applicable proteomic sample processing method, which can be particularly useful when dealing with samples difficult to solubilize by other methods.« less
Ko, K Y; Nam, K C; Jo, C; Lee, E J; Ahn, D U
2011-05-01
The objective of this study was to develop a new protocol that could be used for large-scale separation of phosvitin from egg yolk using ethanol and salts. Yolk granules, which contain phosvitin, were precipitated after diluting egg yolk with 9 volumes of distilled water. The pH of the yolk solution was adjusted to pH 4.0 to 8.0 using 6 N HCl or NaOH, and then yolk granules containing phosvitin was separated by centrifugation at 3,220 × g for 30 min. Lipids and phospholipids were removed from the insoluble yolk granules using 85% ethanol. The optimal volumes and concentration of ethanol in removing lipids from the precipitants were determined. After centrifugation, the lipid-free precipitants were homogenized with 9 volumes of ammonium sulfate [(NH(4))(2)SO(4)] or NaCl to extract phosvitin. The optimal pH and concentration of (NH(4))(2)SO(4) or NaCl for the highest recovery rate and purity for phosvitin in final solution were determined. At pH 6.0, all the phosvitin in diluted egg yolk solution was precipitated. Among the (NH(4))(2)SO(4) and NaCl conditions tested, 10% (NH(4))(2)SO(4) or 10% NaCl at pH 4.0 yielded the greatest phosvitin extraction from the lipid-free precipitants. The recovery rates of phosvitin using (NH(4))(2)SO(4) and NaCl were 72 and 97%, respectively, and their purity was approximately 85%. Salt was removed from the extract using ultrafiltration. The salt-free phosvitin solution was concentrated using ultrafiltration, the impurities were removed by centrifugation, and the resulting solution was freeze-dried. The partially purified phosvitin was suitable for human use because ethanol was the only solvent used to remove lipids, (NH(4))(2)SO(4) or NaCl was used to extract phosvitin, and ultrafiltration was used to remove salt and concentrate the extract. The developed method was simple and suitable for a large-scale preparation of partially purified phosvitin.
Stressler, Timo; Tanzer, Coralie; Ewert, Jacob; Claaßen, Wolfgang; Fischer, Lutz
2017-03-01
The aminopeptidase A (PepA; EC 3.4.11.7) is an intracellular exopeptidase present in lactic acid bacteria. The PepA cleaves glutamyl/aspartyl residues from the N-terminal end of peptides and can, therefore, be applied for the production of protein hydrolysates with an increased amount of these amino acids, which results in a savory taste (umami). The first PepA from a lactobacilli strain was recombinantly expressed in Escherichia coli in a recently published study and harbored a C-terminal His 6 -tag for easier purification. Due to the fact that a His-tag might influence the properties of an enzyme, a simple purification method for the non-His-tagged PepA was required. Surprisingly, the PepA precipitated at a very low ammonium sulfate concentration of 5%. Unusual for a precipitating step, the purity of PepA was over 95% and the obtained activity yield was 110%. The high purity allows biochemical characterization and kinetic investigation. As a result, the optimum pH (6.0-6.5) and temperature (60-65 °C) were comparable to the His 6 -tag harboring PepA; the K M value was at 0.79 mM slightly lower compared to 1.21 mM, respectively. Since PepA is a homo dodecamer, it has a high molecular mass of approximately 480 kDa. Therefore, a subsequent preparative size-exclusion chromatography (SEC) step seemed promising. The PepA after SEC was purified to homogeneity. In summary, the simple two-step purification method presented can be applied to purify high amounts of PepA that will allow the performance of experiments in the future to crystalize PepA for the first time. Copyright © 2016 Elsevier Inc. All rights reserved.
Yu, Jun-Xia; Wang, Li-Yan; Chi, Ru-An; Zhang, Yue-Fei; Xu, Zhi-Gao; Guo, Jia
2013-01-01
The purpose of this research is to use a simple method to prepare magnetic modified biomass with good adsorption performances for cationic ions. The magnetic modified biomass was prepared by two steps: (1) preparation of pyromellitic dianhydride (PMDA) modified biomass in N, N-dimethylacetamide solution and (2) preparation of magnetic PMDA modified biomass by a situ co-precipitation method under the assistance of ultrasound irradiation in ammonia water. The adsorption potential of the as-prepared magnetic modified biomass was analyzed by using cationic dyes: methylene blue and basic magenta as model dyes. Optical micrograph and x-ray diffraction analyses showed that Fe(3)O(4) particles were precipitated on the modified biomass surface. The as-prepared biosorbent could be recycled easily by using an applied magnetic field. Titration analysis showed that the total concentration of the functional groups on the magnetic PMDA modified biomass was calculated to be 0.75 mmol g(-1) by using the first derivative method. The adsorption capacities (q(m)) of the magnetic PMDA modified biomass for methylene blue and basic magenta were 609.0 and 520.9 mg g(-1), respectively, according to the Langmuir equation. Kinetics experiment showed that adsorption could be completed within 150 min for both dyes. The desorption experiment showed that the magnetic sorbent could be used repeatedly after regeneration. The as-prepared magnetic modified sorbent had a potential in the dyeing industry wastewater treatment.
NASA Astrophysics Data System (ADS)
Deng, Ziwang; Liu, Jinliang; Qiu, Xin; Zhou, Xiaolan; Zhu, Huaiping
2017-10-01
A novel method for daily temperature and precipitation downscaling is proposed in this study which combines the Ensemble Optimal Interpolation (EnOI) and bias correction techniques. For downscaling temperature, the day to day seasonal cycle of high resolution temperature of the NCEP climate forecast system reanalysis (CFSR) is used as background state. An enlarged ensemble of daily temperature anomaly relative to this seasonal cycle and information from global climate models (GCMs) are used to construct a gain matrix for each calendar day. Consequently, the relationship between large and local-scale processes represented by the gain matrix will change accordingly. The gain matrix contains information of realistic spatial correlation of temperature between different CFSR grid points, between CFSR grid points and GCM grid points, and between different GCM grid points. Therefore, this downscaling method keeps spatial consistency and reflects the interaction between local geographic and atmospheric conditions. Maximum and minimum temperatures are downscaled using the same method. For precipitation, because of the non-Gaussianity issue, a logarithmic transformation is used to daily total precipitation prior to conducting downscaling. Cross validation and independent data validation are used to evaluate this algorithm. Finally, data from a 29-member ensemble of phase 5 of the Coupled Model Intercomparison Project (CMIP5) GCMs are downscaled to CFSR grid points in Ontario for the period from 1981 to 2100. The results show that this method is capable of generating high resolution details without changing large scale characteristics. It results in much lower absolute errors in local scale details at most grid points than simple spatial downscaling methods. Biases in the downscaled data inherited from GCMs are corrected with a linear method for temperatures and distribution mapping for precipitation. The downscaled ensemble projects significant warming with amplitudes of 3.9 and 6.5 °C for 2050s and 2080s relative to 1990s in Ontario, respectively; Cooling degree days and hot days will significantly increase over southern Ontario and heating degree days and cold days will significantly decrease in northern Ontario. Annual total precipitation will increase over Ontario and heavy precipitation events will increase as well. These results are consistent with conclusions in many other studies in the literature.
Singh, Sheelendra Pratap; Dwivedi, Nistha; Raju, Kanumuri Siva Rama; Taneja, Isha; Wahajuddin, Mohammad
2016-01-01
United States Environmental Protection Agency has recommended estimating pyrethroids’ risk using cumulative exposure. For cumulative risk assessment, it would be useful to have a bioanalytical method for quantification of one or several pyrethroids simultaneously in a small sample volume to support toxicokinetic studies. Therefore, in the present study, a simple, sensitive and high-throughput ultraperformance liquid chromatography–tandem mass spectrometry method was developed and validated for simultaneous analysis of seven pyrethroids (fenvalerate, fenpropathrin, bifenthrin, lambda-cyhalothrin, cyfluthrin, cypermethrin and deltamethrin) in 100 µL of rat plasma. A simple single-step protein precipitation method was used for the extraction of target compounds. The total chromatographic run time of the method was 5 min. The chromatographic system used a Supelco C18 column and isocratic elution with a mobile phase consisting of methanol and 5 mM ammonium formate in the ratio of 90 : 10 (v/v). Mass spectrometer (API 4000) was operated in multiple reaction monitoring positive-ion mode using the electrospray ionization technique. The calibration curves were linear in the range of 7.8–2,000 ng/mL with correlation coefficients of ≥0.99. All validation parameters such as precision, accuracy, recovery, matrix effect and stability met the acceptance criteria according to the regulatory guidelines. The method was successfully applied to the toxicokinetic study of cypermethrin in rats. To the best of our knowledge, this is the first LC–MS-MS method for the simultaneous analysis of pyrethroids in rat plasma. This validated method with minimal modification can also be utilized for forensic and clinical toxicological applications due to its simplicity, sensitivity and rapidity. PMID:26801239
Susong, D.; Marks, D.; Garen, D.
1999-01-01
Topographically distributed energy- and water-balance models can accurately simulate both the development and melting of a seasonal snowcover in the mountain basins. To do this they require time-series climate surfaces of air temperature, humidity, wind speed, precipitation, and solar and thermal radiation. If data are available, these parameters can be adequately estimated at time steps of one to three hours. Unfortunately, climate monitoring in mountain basins is very limited, and the full range of elevations and exposures that affect climate conditions, snow deposition, and melt is seldom sampled. Detailed time-series climate surfaces have been successfully developed using limited data and relatively simple methods. We present a synopsis of the tools and methods used to combine limited data with simple corrections for the topographic controls to generate high temporal resolution time-series images of these climate parameters. Methods used include simulations, elevational gradients, and detrended kriging. The generated climate surfaces are evaluated at points and spatially to determine if they are reasonable approximations of actual conditions. Recommendations are made for the addition of critical parameters and measurement sites into routine monitoring systems in mountain basins.Topographically distributed energy- and water-balance models can accurately simulate both the development and melting of a seasonal snowcover in the mountain basins. To do this they require time-series climate surfaces of air temperature, humidity, wind speed, precipitation, and solar and thermal radiation. If data are available, these parameters can be adequately estimated at time steps of one to three hours. Unfortunately, climate monitoring in mountain basins is very limited, and the full range of elevations and exposures that affect climate conditions, snow deposition, and melt is seldom sampled. Detailed time-series climate surfaces have been successfully developed using limited data and relatively simple methods. We present a synopsis of the tools and methods used to combine limited data with simple corrections for the topographic controls to generate high temporal resolution time-series images of these climate parameters. Methods used include simulations, elevational gradients, and detrended kriging. The generated climate surfaces are evaluated at points and spatially to determine if they are reasonable approximations of actual conditions. Recommendations are made for the addition of critical parameters and measurement sites into routine monitoring systems in mountain basins.
Synthesis and evaluation of α-Ag2WO4 as novel antifungal agent
NASA Astrophysics Data System (ADS)
Foggi, Camila C.; Fabbro, Maria T.; Santos, Luís P. S.; de Santana, Yuri V. B.; Vergani, Carlos E.; Machado, Ana L.; Cordoncillo, Eloisa; Andrés, Juan; Longo, Elson
2017-04-01
Because of the need for new antifungal materials with greater potency, microcrystals of α-Ag2WO4, a complex metal oxide, have been synthetized by a simple co-precipitation method, and their antifungal activity against Candida albicans has been investigated. A theoretical model based on clusters that are building blocks of α-Ag2WO4 has been proposed to explain the experimental results.
Lee, Kang Choon; Chun, Young Goo; Kim, Insoo; Shin, Beom Soo; Park, Eun-Seok; Yoo, Sun Dong; Youn, Yu Seok
2009-07-15
A simple, specific and sensitive derivatization with monobromobimane (mBrB) and the corresponding HPLC-fluorescence quantitation method for the analysis of bucillamine in human plasma was developed and validated. The analytical procedure involves a simple protein precipitation, pre-column fluorescence derivatization, and separation by reversed-phase high performance liquid chromatography (RP-HPLC). The calibration curve showed good linearity over a wide concentration range (50 ng/mL to 10 microg/mL) in human plasma (r(2)=0.9998). The lower limit of quantitation (LLOQ) was 50 ng/mL. The average precision and accuracy at LLOQ were within 6.3% and 107.6%, respectively. This method was successfully applied to a pharmacokinetic study after oral administration of a dose (300 mg) of bucillamine to 20 healthy Korean volunteers.
NASA Astrophysics Data System (ADS)
Pang, Huan; Zhang, Yizhou; Cheng, Tao; Lai, Wen-Yong; Huang, Wei
2015-09-01
Uniform manganese hexacyanoferrate hydrate nanocubes are prepared via a simple chemical precipitation method at room temperature. Due to both micro/mesopores of the Prussian blue analogue and nanocubic structures, the manganese hexacyanoferrate hydrate nanocubes allow the efficient charge transfer and mass transport for electrolyte solution and chemical species. Thus, the manganese hexacyanoferrate hydrate nanocube electrode shows a good rate capability and cycling stability for electrochemical capacitors. Furthermore, electrodes modified with manganese hexacyanoferrate hydrate nanocubes demonstrate a sensitive electrochemical response to hydrogen peroxide (H2O2) in buffer solutions with a high selectivity.Uniform manganese hexacyanoferrate hydrate nanocubes are prepared via a simple chemical precipitation method at room temperature. Due to both micro/mesopores of the Prussian blue analogue and nanocubic structures, the manganese hexacyanoferrate hydrate nanocubes allow the efficient charge transfer and mass transport for electrolyte solution and chemical species. Thus, the manganese hexacyanoferrate hydrate nanocube electrode shows a good rate capability and cycling stability for electrochemical capacitors. Furthermore, electrodes modified with manganese hexacyanoferrate hydrate nanocubes demonstrate a sensitive electrochemical response to hydrogen peroxide (H2O2) in buffer solutions with a high selectivity. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04322k
Process-conditioned bias correction for seasonal forecasting: a case-study with ENSO in Peru
NASA Astrophysics Data System (ADS)
Manzanas, R.; Gutiérrez, J. M.
2018-05-01
This work assesses the suitability of a first simple attempt for process-conditioned bias correction in the context of seasonal forecasting. To do this, we focus on the northwestern part of Peru and bias correct 1- and 4-month lead seasonal predictions of boreal winter (DJF) precipitation from the ECMWF System4 forecasting system for the period 1981-2010. In order to include information about the underlying large-scale circulation which may help to discriminate between precipitation affected by different processes, we introduce here an empirical quantile-quantile mapping method which runs conditioned on the state of the Southern Oscillation Index (SOI), which is accurately predicted by System4 and is known to affect the local climate. Beyond the reduction of model biases, our results show that the SOI-conditioned method yields better ROC skill scores and reliability than the raw model output over the entire region of study, whereas the standard unconditioned implementation provides no added value for any of these metrics. This suggests that conditioning the bias correction on simple but well-simulated large-scale processes relevant to the local climate may be a suitable approach for seasonal forecasting. Yet, further research on the suitability of the application of similar approaches to the one considered here for other regions, seasons and/or variables is needed.
Development of a new portable air sampler based on electrostatic precipitation.
Roux, J M; Sarda-Estève, R; Delapierre, G; Nadal, M H; Bossuet, C; Olmedo, L
2016-05-01
Airborne particles are known to cause illness and to influence meteorological phenomena. It is therefore important to monitor their concentrations and to identify them. A challenge is to collect micro and nanoparticles, microorganisms as well as toxic molecules with a device as simple and small as possible to be used easily and everywhere. Electrostatic precipitation is an efficient method to collect all kinds of airborne particles. Furthermore, this method can be miniaturized. A portable, silent, and autonomous air sampler based on this technology is therefore being developed with the final objective to collect very efficiently airborne pathogens such as supermicron bacteria but also submicron viruses. Particles are collected on a dry surface so they may be concentrated afterwards in a small amount of liquid medium to be analyzed. It is shown that nearly 98 % of airborne particles from 10 nm to 3 μm are collected.
NASA Astrophysics Data System (ADS)
Manikandan, V.; Li, Xiaogan; Mane, R. S.; Chandrasekaran, J.
2018-04-01
Tin (Sn) substituted nickel ferrite (NiFe2O4) thin film sensors were prepared by a simple chemical co-precipitation method, which initially characterized their structure and surface morphology with the help of x-ray diffraction and scanning electron microscopy. Surface morphology of the sensing films reveals particles stick together with nearer particles and this formation leads to a large specific area as a large specific area is very useful for easy adsorption of gas molecules. Transmission electron microscopy and selected area electron diffraction pattern images confirm particle size and nanocrystallnity as due to formation of circular rings. Fourier transform infrared analysis has supported the presence of functional groups. The 3.69 eV optical band gap of the film was found which enabled better gas sensing. Gas sensors demonstrate better response and recovery characteristics, and the maximum response was 68.43%.
Separation of ovotransferrin and ovomucoid from chicken egg white.
Abeyrathne, E D N S; Lee, H Y; Ahn, D U
2014-04-01
Ovotransferrin and ovomucoid were separated using 2 methods after extracting the ovotransferrin- and ovomucoid-containing fraction from egg white. Diluted egg white (2×) was added to Fe(3+) and treated with 43% ethanol (final concentration). After centrifugation, the supernatant was collected and treated with either a high-level ethanol (61% final concentration) or an acidic salt combination (2.5% ammonium sulfate and 2.5% citric acid) to separate ovotransferrin and ovomucoid. For the high-level of ethanol method, ovotransferrin was precipitated using 61% ethanol. After centrifugation, the precipitant was dissolved in 9 vol. of distilled water and the residual ethanol in the solution was removed using ultrafiltration. The supernatant, mainly containing ovomucoid, was diluted with 4 vol. of water, had ethanol removed, and was then concentrated and used as the ovomucoid fraction. For the acidic salt precipitation method, the ethanol in the supernatant was removed first. The ethanol-free solution was then concentrated and treated with a 2.5% ammonium sulfate and 2.5% citric acid combination. After centrifugation, the precipitant was used as the ovotransferrin and the supernatant as the ovomucoid fraction. The ovomucoid fraction from both of the protocols was further purified by heating at 65°C for 20 min and the impurities were removed by centrifugation. The yields of ovomucoid and ovotransferrin were >96 and >92%, respectively. The purity of ovomucoid was >89% and that of the ovotransferrin was >88%. The ELISA results confirmed that the activity of the separated ovotransferrin was >95%. Both of the protocols separated ovotransferrin and ovomucoid effectively and the methods were simple, fast, and easy to scale up.
NASA Astrophysics Data System (ADS)
Lenderink, Geert; Attema, Jisk
2015-08-01
Scenarios of future changes in small scale precipitation extremes for the Netherlands are presented. These scenarios are based on a new approach whereby changes in precipitation extremes are set proportional to the change in water vapor amount near the surface as measured by the 2m dew point temperature. This simple scaling framework allows the integration of information derived from: (i) observations, (ii) a new unprecedentedly large 16 member ensemble of simulations with the regional climate model RACMO2 driven by EC-Earth, and (iii) short term integrations with a non-hydrostatic model Harmonie. Scaling constants are based on subjective weighting (expert judgement) of the three different information sources taking also into account previously published work. In all scenarios local precipitation extremes increase with warming, yet with broad uncertainty ranges expressing incomplete knowledge of how convective clouds and the atmospheric mesoscale circulation will react to climate change.
Application of glucose as a green capping agent and reductant to fabricate CuI micro/nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tavakoli, Farnosh; Salavati-Niasari, Masoud, E-mail: salavati@kashanu.ac.ir; Ghanbari, Davood
Graphical abstract: - Highlights: • CuI nanostructures were prepared via a simple precipitation method. • Glucose as a green capping agent and reductant was applied. • The effect of glucose concentration on the morphology of CuI was investigated. • According to XRD results, pure cubic phase CuI have been formed by using glucose. - Abstract: In this work, CuI micro/nanostructures have been successfully prepared via a simple precipitation route at room temperature. By using glucose as a clean reducing agent with different concentrations, CuI micro/nanostructures with various morphologies were obtained. Besides glucose, Na{sub 2}SO{sub 3}, KBH{sub 4} and N{sub 2}H{submore » 4}·H{sub 2}O have been applied as reductant. X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence spectroscopy, X-ray energy dispersive spectroscopy (EDS) and Fourier transformed infrared (FT-IR) spectroscopy were used to characterize the as-produced CuI micro/nanostructures. According to the XRD results, it was found that pure cubic phase CuI have been formed by using glucose.« less
Assessing the skill of seasonal precipitation and streamflow forecasts in sixteen French catchments
NASA Astrophysics Data System (ADS)
Crochemore, Louise; Ramos, Maria-Helena; Pappenberger, Florian
2015-04-01
Meteorological centres make sustained efforts to provide seasonal forecasts that are increasingly skilful. Streamflow forecasting is one of the many applications than can benefit from these efforts. Seasonal flow forecasts generated using seasonal ensemble precipitation forecasts as input to a hydrological model can help to take anticipatory measures for water supply reservoir operation or drought risk management. The objective of the study is to assess the skill of seasonal precipitation and streamflow forecasts in France. First, we evaluated the skill of ECMWF SYS4 seasonal precipitation forecasts for streamflow forecasting in sixteen French catchments. Daily flow forecasts were produced using raw seasonal precipitation forecasts as input to the GR6J hydrological model. Ensemble forecasts are issued every month with 15 or 51 members according to the month of the year and evaluated for up to 90 days ahead. In a second step, we applied eight variants of bias correction approaches to the precipitation forecasts prior to generating the flow forecasts. The approaches were based on the linear scaling and the distribution mapping methods. The skill of the ensemble forecasts was assessed in accuracy (MAE), reliability (PIT Diagram) and overall performance (CRPS). The results show that, in most catchments, raw seasonal precipitation and streamflow forecasts are more skilful in terms of accuracy and overall performance than a reference prediction based on historic observed precipitation and watershed initial conditions at the time of forecast. Reliability is the only attribute that is not significantly improved. The skill of the forecasts is, in general, improved when applying bias correction. Two bias correction methods showed the best performance for the studied catchments: the simple linear scaling of monthly values and the empirical distribution mapping of daily values. L. Crochemore is funded by the Interreg IVB DROP Project (Benefit of governance in DROught adaPtation).
Ouyang, Hui; Guo, Yicheng; He, Mingzhen; Zhang, Jinlian; Huang, Xiaofang; Zhou, Xin; Jiang, Hongliang; Feng, Yulin; Yang, Shilin
2015-03-01
A simple, sensitive and specific liquid chromatography-tandem mass spectrometry method was developed and validated for the determination of Pulsatilla saponin D, a potential antitumor constituent isolated from Pulsatilla chinensis in rat plasma. Rat plasma samples were pretreated by protein precipitation with methanol. The method validation was performed in accordance with US Food and Drug Administration guidelines and the results met the acceptance criteria. The method was successfully applied to assess the pharmacokinetics and oral bioavailability of Pulsatilla saponin D in rats. Copyright © 2014 John Wiley & Sons, Ltd.
Malinsky, Michelle Duval; Jacoby, Cliffton B; Reagen, William K
2011-01-10
We report herein a simple protein precipitation extraction-liquid chromatography tandem mass spectrometry (LC/MS/MS) method, validation, and application for the analysis of perfluorinated carboxylic acids (C7-C12), perfluorinated sulfonic acids (C4, C6, and C8), and perfluorooctane sulfonamide (FOSA) in fish fillet tissue. The method combines a rapid homogenization and protein precipitation tissue extraction procedure using stable-isotope internal standard (IS) calibration. Method validation in bluegill (Lepomis macrochirus) fillet tissue evaluated the following: (1) method accuracy and precision in both extracted matrix-matched calibration and solvent (unextracted) calibration, (2) quantitation of mixed branched and linear isomers of perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) with linear isomer calibration, (3) quantitation of low level (ppb) perfluorinated compounds (PFCs) in the presence of high level (ppm) PFOS, and (4) specificity from matrix interferences. Both calibration techniques produced method accuracy of at least 100±13% with a precision (%RSD) ≤18% for all target analytes. Method accuracy and precision results for fillet samples from nine different fish species taken from the Mississippi River in 2008 and 2009 are also presented. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, X.; Srinivasan, R.
2008-12-01
In this study, a user friendly GIS tool was developed for evaluating and improving NEXRAD using raingauge data. This GIS tool can automatically read in raingauge and NEXRAD data, evaluate the accuracy of NEXRAD for each time unit, implement several geostatistical methods to improve the accuracy of NEXRAD through raingauge data, and output spatial precipitation map for distributed hydrologic model. The geostatistical methods incorporated in this tool include Simple Kriging with varying local means, Kriging with External Drift, Regression Kriging, Co-Kriging, and a new geostatistical method that was newly developed by Li et al. (2008). This tool was applied in two test watersheds at hourly and daily temporal scale. The preliminary cross-validation results show that incorporating raingauge data to calibrate NEXRAD can pronouncedly change the spatial pattern of NEXRAD and improve its accuracy. Using different geostatistical methods, the GIS tool was applied to produce long term precipitation input for a distributed hydrologic model - Soil and Water Assessment Tool (SWAT). Animated video was generated to vividly illustrate the effect of using different precipitation input data on distributed hydrologic modeling. Currently, this GIS tool is developed as an extension of SWAT, which is used as water quantity and quality modeling tool by USDA and EPA. The flexible module based design of this tool also makes it easy to be adapted for other hydrologic models for hydrological modeling and water resources management.
NASA Astrophysics Data System (ADS)
Ma, Yingzhao; Hong, Yang; Chen, Yang; Yang, Yuan; Tang, Guoqiang; Yao, Yunjun; Long, Di; Li, Changmin; Han, Zhongying; Liu, Ronghua
2018-01-01
Accurate estimation of precipitation from satellites at high spatiotemporal scales over the Tibetan Plateau (TP) remains a challenge. In this study, we proposed a general framework for blending multiple satellite precipitation data using the dynamic Bayesian model averaging (BMA) algorithm. The blended experiment was performed at a daily 0.25° grid scale for 2007-2012 among Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42RT and 3B42V7, Climate Prediction Center MORPHing technique (CMORPH), and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR). First, the BMA weights were optimized using the expectation-maximization (EM) method for each member on each day at 200 calibrated sites and then interpolated to the entire plateau using the ordinary kriging (OK) approach. Thus, the merging data were produced by weighted sums of the individuals over the plateau. The dynamic BMA approach showed better performance with a smaller root-mean-square error (RMSE) of 6.77 mm/day, higher correlation coefficient of 0.592, and closer Euclid value of 0.833, compared to the individuals at 15 validated sites. Moreover, BMA has proven to be more robust in terms of seasonality, topography, and other parameters than traditional ensemble methods including simple model averaging (SMA) and one-outlier removed (OOR). Error analysis between BMA and the state-of-the-art IMERG in the summer of 2014 further proved that the performance of BMA was superior with respect to multisatellite precipitation data merging. This study demonstrates that BMA provides a new solution for blending multiple satellite data in regions with limited gauges.
Zheng, Yunliang; Hu, Xingjiang; Liu, Jian; Wu, Guolan; Zhou, Huili; Zhu, Meixiang; Zhai, You; Wu, Lihua; Shentu, Jianzhong
2014-01-01
A highly sensitive, simple, and rapid liquid chromatography tandem mass spectrometry method to simultaneously determine blonanserin and blonanserin C in human plasma with AD-5332 as internal standard (IS) was established. A simple direct protein precipitation method was used for the sample pretreatment, and chromatographic separation was performed on a Waters XBridge C8 (4.6 × 150 mm, 3.5 μ m) column. The mobile phase consists of a mixture of 10 mM ammonium formate and 0.1% formic acid in water (A) and 0.1% formic acid in methanol (B). To quantify blonanserin, blonanserin C, and IS, multiple reaction monitoring (MRM) was performed in positive ESI mode. The calibration curve was linear in the concentration range of 0.012-5.78 ng·mL(-1) for blonanserin and 0.023-11.57 ng·mL(-1) for blonanserin C (r (2) > 0.9990). The intra- and interday precision of three quality control (QC) levels in plasma were less than 7.5%. Finally, the current simple, sensitive, and accurate LC-MS/MS method was successfully applied to investigate the pharmacokinetics of blonanserin and blonanserin C in healthy Chinese volunteers.
Zheng, Yunliang; Hu, Xingjiang; Liu, Jian; Wu, Guolan; Zhou, Huili; Zhu, Meixiang; Zhai, You; Wu, Lihua; ShenTu, Jianzhong
2014-01-01
A highly sensitive, simple, and rapid liquid chromatography tandem mass spectrometry method to simultaneously determine blonanserin and blonanserin C in human plasma with AD-5332 as internal standard (IS) was established. A simple direct protein precipitation method was used for the sample pretreatment, and chromatographic separation was performed on a Waters XBridge C8 (4.6 × 150 mm, 3.5 μm) column. The mobile phase consists of a mixture of 10 mM ammonium formate and 0.1% formic acid in water (A) and 0.1% formic acid in methanol (B). To quantify blonanserin, blonanserin C, and IS, multiple reaction monitoring (MRM) was performed in positive ESI mode. The calibration curve was linear in the concentration range of 0.012–5.78 ng·mL−1 for blonanserin and 0.023–11.57 ng·mL−1 for blonanserin C (r 2 > 0.9990). The intra- and interday precision of three quality control (QC) levels in plasma were less than 7.5%. Finally, the current simple, sensitive, and accurate LC-MS/MS method was successfully applied to investigate the pharmacokinetics of blonanserin and blonanserin C in healthy Chinese volunteers. PMID:24678425
Synthesis and Structural Characterization of CdFe2O4 Nanostructures
NASA Astrophysics Data System (ADS)
Kalpanadevi, K.; Sinduja, C. R.; Manimekalai, R.
The synthesis of CdFe2O4 nanoparticles has been achieved by a simple thermal decomposition method from the inorganic precursor, [CdFe2(cin)3(N2H4)3], which was obtained by a simple precipitation method from the corresponding metal salts, cinnamic acid and hydrazine hydrate. The precursor was characterized by hydrazine and metal analyses, infrared spectral analysis and thermo gravimetric analysis. On appropriate annealing, [CdFe2(cin)3(N2H4)3] yielded CdFe2O4 nanoparticles. The XRD studies showed that the crystallite size of the particles was 13nm. The results of HRTEM studies also agreed well with those of XRD. SAED pattern of the sample established the polycrystalline nature of the nanoparticles. SEM images displayed a random distribution of grains in the sample.
A flexible importance sampling method for integrating subgrid processes
Raut, E. K.; Larson, V. E.
2016-01-29
Numerical models of weather and climate need to compute grid-box-averaged rates of physical processes such as microphysics. These averages are computed by integrating subgrid variability over a grid box. For this reason, an important aspect of atmospheric modeling is spatial integration over subgrid scales. The needed integrals can be estimated by Monte Carlo integration. Monte Carlo integration is simple and general but requires many evaluations of the physical process rate. To reduce the number of function evaluations, this paper describes a new, flexible method of importance sampling. It divides the domain of integration into eight categories, such as the portion that containsmore » both precipitation and cloud, or the portion that contains precipitation but no cloud. It then allows the modeler to prescribe the density of sample points within each of the eight categories. The new method is incorporated into the Subgrid Importance Latin Hypercube Sampler (SILHS). Here, the resulting method is tested on drizzling cumulus and stratocumulus cases. In the cumulus case, the sampling error can be considerably reduced by drawing more sample points from the region of rain evaporation.« less
Xia, Zengmin; Yu, Xiaohua; Jiang, Xi; Brody, Harold D; Rowe, David W; Wei, Mei
2013-01-01
The objective of the current study is to prepare a biomimetic collagen-apatite (Col-Ap) scaffold for improved bone repair and regeneration. A novel bottom-up approach has been developed, which combines a biomimetic self-assembly method with a controllable freeze casting technology. In this study, the mineralized collagen fibers were generated using a simple one-step co-precipitation method which involved collagen self-assembly and in situ apatite precipitation in a collagen-containing modified simulated body fluid (m-SBF). The precipitates were subjected to controllable freeze casting, forming scaffolds with either an isotropic equiaxed structure or a unidirectional lamellar structure. These scaffolds were comprised of collagen fibers and poorly crystalline bone-like carbonated apatite nanoparticles. The mineral content in the scaffold could be tailored in a range 0–54 wt% by simply adjusting the collagen content in the m-SBF. Further, the mechanisms of the formation of both the equiaxed and the lamellar scaffolds were investigated, and freezing regimes for equiaxed and lamellar solidification were established. Finally, bone forming capability of such prepared scaffolds was evaluated in vivo in a mouse calvarial defect model. It was confirmed that the scaffolds well support new bone formation. PMID:23567944
Intensity changes in future extreme precipitation: A statistical event-based approach.
NASA Astrophysics Data System (ADS)
Manola, Iris; van den Hurk, Bart; de Moel, Hans; Aerts, Jeroen
2017-04-01
Short-lived precipitation extremes are often responsible for hazards in urban and rural environments with economic and environmental consequences. The precipitation intensity is expected to increase about 7% per degree of warming, according to the Clausius-Clapeyron (CC) relation. However, the observations often show a much stronger increase in the sub-daily values. In particular, the behavior of the hourly summer precipitation from radar observations with the dew point temperature (the Pi-Td relation) for the Netherlands suggests that for moderate to warm days the intensification of the precipitation can be even higher than 21% per degree of warming, that is 3 times higher than the expected CC relation. The rate of change depends on the initial precipitation intensity, as low percentiles increase with a rate below CC, the medium percentiles with 2CC and the moderate-high and high percentiles with 3CC. This non-linear statistical Pi-Td relation is suggested to be used as a delta-transformation to project how a historic extreme precipitation event would intensify under future, warmer conditions. Here, the Pi-Td relation is applied over a selected historic extreme precipitation event to 'up-scale' its intensity to warmer conditions. Additionally, the selected historic event is simulated in the high-resolution, convective-permitting weather model Harmonie. The initial and boundary conditions are alternated to represent future conditions. The comparison between the statistical and the numerical method of projecting the historic event to future conditions showed comparable intensity changes, which depending on the initial percentile intensity, range from below CC to a 3CC rate of change per degree of warming. The model tends to overestimate the future intensities for the low- and the very high percentiles and the clouds are somewhat displaced, due to small wind and convection changes. The total spatial cloud coverage in the model remains, as also in the statistical method, unchanged. The advantages of the suggested Pi-Td method of projecting future precipitation events from historic events is that it is simple to use, is less expensive time, computational and resource wise compared to a numerical model. The outcome can be used directly for hydrological and climatological studies and for impact analysis such as for flood risk assessments.
Shukla, Shraddhanand; Funk, Christopher C.; Hoell, Andrew
2014-01-01
In this study we implement and evaluate a simple 'hybrid' forecast approach that uses constructed analogs (CA) to improve the National Multi-Model Ensemble's (NMME) March–April–May (MAM) precipitation forecasts over equatorial eastern Africa (hereafter referred to as EA, 2°S to 8°N and 36°E to 46°E). Due to recent declines in MAM rainfall, increases in population, land degradation, and limited technological advances, this region has become a recent epicenter of food insecurity. Timely and skillful precipitation forecasts for EA could help decision makers better manage their limited resources, mitigate socio-economic losses, and potentially save human lives. The 'hybrid approach' described in this study uses the CA method to translate dynamical precipitation and sea surface temperature (SST) forecasts over the Indian and Pacific Oceans (specifically 30°S to 30°N and 30°E to 270°E) into terrestrial MAM precipitation forecasts over the EA region. In doing so, this approach benefits from the post-1999 teleconnection that exists between precipitation and SSTs over the Indian and tropical Pacific Oceans (Indo-Pacific) and EA MAM rainfall. The coupled atmosphere-ocean dynamical forecasts used in this study were drawn from the NMME. We demonstrate that while the MAM precipitation forecasts (initialized in February) skill of the NMME models over the EA region itself is negligible, the ranked probability skill score of hybrid CA forecasts based on Indo-Pacific NMME precipitation and SST forecasts reach up to 0.45.
Vijay Simha, B; Sood, S K; Kumariya, Rashmi; Garsa, Anita Kumari
2012-10-12
The use of pediocins as food additives or drugs requires a simple and rapid method by which large quantities of homogeneous pediocin are produced at industrial level. Two centrifugation steps required during initial stages of purification i.e. separation of cells from fermentation broth and collection of precipitates after ammonium sulphate precipitation are the major bottlenecks for their large scale purification. In the present work, pediocin production by a new a dairy strain, Pediococcus pentosaceous NCDC 273 (identical to pediocin PA-1 at nucleotide sequence level), was found to be optimum at initial pH of 6.0 and 7.0 of basal MRS supplemented with 20 g/l of glucose or lactose at 20 and 24 h, respectively. Immobilization of cells through entrapment in alginate-xanthan gum gel beads with chitosan coating resulted in negligible cell release during fermentation. Thus, the cell free extract was directly collected through decantation, avoiding the need of centrifugation step at this stage. Subsequent ammonium sulphate precipitation at isoelectric point of pediocin PA-1 (8.85), using magnetic stirrer at high speed (approx. 1200 rpm), resulted in forceful deposition of precipitates on the wall of precipitation beaker allowing their collection using a spatula, avoiding centrifugation step at this stage also. Further purification using cation-exchange chromatography resulted in yield of 134.4% with more than 320 fold purification with the specific activity of 19×10⁵ AU/mg. The collection of single peak of pediocin at 41.9min in RP-HPLC, overlapping with standard pediocin PA-1, resulted in yield of 1.15 μg from 20 μl of sample applied. The overlapping of RP-HPLC peak and SDS-PAGE band corresponding to 4.6 kDa, confirmed the purity and identity of pediocin 273 as pediocin PA-1. Copyright © 2012 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Guo, J.; Ma, L.; Sak, P. B.; Gaillardet, J.; Chabaux, F. J.; Brantley, S. L.
2015-12-01
Chemical weathering is a critical process to global CO2 consumption, river/ocean chemistry, and nutrient import to biosphere. Weathering rinds experience minimal physical erosion and provide a well-constrained system to study the chemical weathering process. Here, we applied U-series disequilibrium dating method to study weathering advance rates on the wet side of Basse-Terre Island, French Guadeloupe, aiming to understand the role of the precipitation in controlling weathering rates and elucidate the behavior and immobilization mechanisms of U-series isotopes during rind formation. Six weathering clasts from 5 watersheds with mean annual precipitation varying from 2000 to 3000 mm/yr were measured for U-series isotope ratios and major element compositions on linear core-to-rind transects. One sample experienced complete core-to-rind transformation, while the rest clasts contain both rinds and unweathered cores. Our results show that the unweathered cores are under U-series secular equilibrium, while all the rind materials show significant U-series disequilibrium. For most rinds, linear core-to-rind increases of (230Th/232Th) activity ratios suggest a simple continuous U addition history. However, (234U/238U) and (238U/232Th) trends in several clasts show evidences of remobilization of Uranium besides the U addition, complicating the use of U-series dating method. The similarity between U/Th ratios and major elements trends like Fe, Al, P in some transects and the ongoing leaching experiments suggest that redox and organic colloids could control the mobilization of U-series isotopes in the rinds. Rind formation ages and weathering advance rate (0.07-0.29mm/kyr) were calculated for those rinds with a simple U-addition history. Our preliminary results show that local precipitation gradient significantly influenced the weathering advance rate, revealing the potential of estimating weathering advance rates at a large spatial scale using the U-series dating method.
A Simple Experiment Demonstrating the Allosteric Regulation of Yeast Pyruvate Kinase.
ERIC Educational Resources Information Center
Taber, Richard L.; Campbell, Angela; Spencer, Scott
1998-01-01
Explains the procedures used to determine the regulatory properties of yeast pyruvate kinase. Involves a partial purification using PEG precipitation that can be done in one laboratory period with simple equipment. (DDR)
NASA Technical Reports Server (NTRS)
Brubaker, Kaye L.; Entekhabi, Dara; Eagleson, Peter S.
1991-01-01
The advective transport of atmospheric water vapor and its role in global hydrology and the water balance of continental regions are discussed and explored. The data set consists of ten years of global wind and humidity observations interpolated onto a regular grid by objective analysis. Atmospheric water vapor fluxes across the boundaries of selected continental regions are displayed graphically. The water vapor flux data are used to investigate the sources of continental precipitation. The total amount of water that precipitates on large continental regions is supplied by two mechanisms: (1) advection from surrounding areas external to the region; and (2) evaporation and transpiration from the land surface recycling of precipitation over the continental area. The degree to which regional precipitation is supplied by recycled moisture is a potentially significant climate feedback mechanism and land surface-atmosphere interaction, which may contribute to the persistence and intensification of droughts. A simplified model of the atmospheric moisture over continents and simultaneous estimates of regional precipitation are employed to estimate, for several large continental regions, the fraction of precipitation that is locally derived. In a separate, but related, study estimates of ocean to land water vapor transport are used to parameterize an existing simple climate model, containing both land and ocean surfaces, that is intended to mimic the dynamics of continental climates.
Determination of 15N/14N and 13C/12C in Solid and Aqueous Cyanides
Johnson, C.A.
1996-01-01
The stable isotopic compositions of nitrogen and carbon in cyanide compounds can be determined by combusting aliquots in sealed tubes to form N2 gas and CO2 gas and analyzing the gases by mass spectrometry. Free cyanide (CN-aq + HCNaq) in simple solutions can also be analyzed by first precipitating the cyanide as copper(II) ferrocyanide and then combusting the precipitate. Reproducibility is ??0.5??? or better for both ??15N and ??13C. If empirical corrections are made on the basis of carbon yields, the reproducibility of ??13C can be improved to ??0.2???. The analytical methods described herein are sufficiently accurate and precise to apply stable isotope techniques to problems of cyanide degradation in natural waters and industrial process solutions.
Introducing Multisensor Satellite Radiance-Based Evaluation for Regional Earth System Modeling
NASA Technical Reports Server (NTRS)
Matsui, T.; Santanello, J.; Shi, J. J.; Tao, W.-K.; Wu, D.; Peters-Lidard, C.; Kemp, E.; Chin, M.; Starr, D.; Sekiguchi, M.;
2014-01-01
Earth System modeling has become more complex, and its evaluation using satellite data has also become more difficult due to model and data diversity. Therefore, the fundamental methodology of using satellite direct measurements with instrumental simulators should be addressed especially for modeling community members lacking a solid background of radiative transfer and scattering theory. This manuscript introduces principles of multisatellite, multisensor radiance-based evaluation methods for a fully coupled regional Earth System model: NASA-Unified Weather Research and Forecasting (NU-WRF) model. We use a NU-WRF case study simulation over West Africa as an example of evaluating aerosol-cloud-precipitation-land processes with various satellite observations. NU-WRF-simulated geophysical parameters are converted to the satellite-observable raw radiance and backscatter under nearly consistent physics assumptions via the multisensor satellite simulator, the Goddard Satellite Data Simulator Unit. We present varied examples of simple yet robust methods that characterize forecast errors and model physics biases through the spatial and statistical interpretation of various satellite raw signals: infrared brightness temperature (Tb) for surface skin temperature and cloud top temperature, microwave Tb for precipitation ice and surface flooding, and radar and lidar backscatter for aerosol-cloud profiling simultaneously. Because raw satellite signals integrate many sources of geophysical information, we demonstrate user-defined thresholds and a simple statistical process to facilitate evaluations, including the infrared-microwave-based cloud types and lidar/radar-based profile classifications.
The Global Precipitation Climatology Project: First Algorithm Intercomparison Project
NASA Technical Reports Server (NTRS)
Arkin, Phillip A.; Xie, Pingping
1994-01-01
The Global Precipitation Climatology Project (GPCP) was established by the World Climate Research Program to produce global analyses of the area- and time-averaged precipitation for use in climate research. To achieve the required spatial coverage, the GPCP uses simple rainfall estimates derived from IR and microwave satellite observations. In this paper, we describe the GPCP and its first Algorithm Intercomparison Project (AIP/1), which compared a variety of rainfall estimates derived from Geostationary Meteorological Satellite visible and IR observations and Special Sensor Microwave/Imager (SSM/I) microwave observations with rainfall derived from a combination of radar and raingage data over the Japanese islands and the adjacent ocean regions during the June and mid-July through mid-August periods of 1989. To investigate potential improvements in the use of satellite IR data for the estimation of large-scale rainfall for the GPCP, the relationship between rainfall and the fractional coverage of cold clouds in the AIP/1 dataset is examined. Linear regressions between fractional coverage and rainfall are analyzed for a number of latitude-longitude areas and for a range of averaging times. The results show distinct differences in the character of the relationship for different portions of the area. These results suggest that the simple IR-based estimation technique currently used in the GPCP can be used to estimate rainfall for global tropical and subtropical areas, provided that a method for adjusting the proportional coefficient for varying areas and seasons can be determined.
Radon-222 related influence on ambient gamma dose.
Melintescu, A; Chambers, S D; Crawford, J; Williams, A G; Zorila, B; Galeriu, D
2018-04-03
Ambient gamma dose, radon, and rainfall have been monitored in southern Bucharest, Romania, from 2010 to 2016. The seasonal cycle of background ambient gamma dose peaked between July and October (100-105 nSv h -1 ), with minimum values in February (75-80 nSv h -1 ), the time of maximum snow cover. Based on 10 m a.g.l. radon concentrations, the ambient gamma dose increased by around 1 nSv h -1 for every 5 Bq m -3 increase in radon. Radon variability attributable to diurnal changes in atmospheric mixing contributed less than 15 nSv h -1 to the overall variability in ambient gamma dose, a factor of 4 more than synoptic timescale changes in air mass fetch. By contrast, precipitation-related enhancements of the ambient gamma dose were 15-80 nSv h -1 . To facilitate routine analysis, and account in part for occasional equipment failure, an automated method for identifying precipitation spikes in the ambient gamma dose was developed. Lastly, a simple model for predicting rainfall-related enhancement of the ambient gamma dose is tested against rainfall observations from events of contrasting duration and intensity. Results are also compared with those from previously published models of simple and complex formulation. Generally, the model performed very well. When simulations underestimated observations the absolute difference was typically less than the natural variability in ambient gamma dose arising from atmospheric mixing influences. Consequently, combined use of the automated event detection method and the simple model of this study could enable the ambient gamma dose "attention limit" (which indicates a potential radiological emergency) to be reduced from 200 to 400% above background to 25-50%. Copyright © 2018 Elsevier Ltd. All rights reserved.
Synthesis and characterization of graphene quantum dots/cobalt ferrite nanocomposite
NASA Astrophysics Data System (ADS)
Ramachandran, Shilpa; Sathishkumar, M.; Kothurkar, Nikhil K.; Senthilkumar, R.
2018-02-01
A facile method has been developed for the synthesis of a graphene quantum dots/cobalt ferrite nanocomposite. Graphene quantum dots (GQDs) were synthesized by a simple bottom-up method using citric acid, followed by the co-precipitation of cobalt ferrite nanoparticles on the graphene quantum dots. The morphology, structural analysis, optical properties, magnetic properties were investigated using transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-vis absorption spectroscopy, fluorescence spectroscopy, vibrating sample magnetometry (VSM) measurements. The synthesized nanocomposite showed good fluorescence and superparamagnetic properties, which are important for biomedical applications.
[Histochemical stains for minerals by hematoxylin-lake method].
Miyagawa, Makoto
2013-04-01
The present study was undertaken to establish the experimental animal model by histological staining methods for minerals. After intraperitoneal injections of minerals, precipitates deposited on the surface of the liver. Liver tissues were fixed in paraformaldehyde, embedded in paraffin and cut into thin sections which were used as minerals containing standard section. Several reagents for histological stains and spectrophotometry for minerals were applied in both test-tube experiments and stainings of tissue sections to test for minerals. Hematoxylin-lake was found of capable of staining minerals in tissue. A simple technique used was described for light microscopic detection of minerals.
Synthesis of ZnO decorated graphene nanocomposite for enhanced photocatalytic properties
NASA Astrophysics Data System (ADS)
Gayathri, S.; Jayabal, P.; Kottaisamy, M.; Ramakrishnan, V.
2014-05-01
Zinc oxide/Graphene (GZ) composites with different concentrations of ZnO were successfully synthesized through simple chemical precipitation method. The X-ray diffraction pattern and the micro-Raman spectroscopic technique revealed the formation of GZ composite, and the energy dispersive X-ray spectrometry analysis showed the purity of the prepared samples. The ZnO nanoparticles decorated graphene sheets were clearly visible in the field emission scanning electron micrograph. Raman mapping was employed to analyze the homogeneity of the prepared samples. The diffuse-reflectance spectra clearly indicated that the formation of GZ composites promoted the absorption in the visible region also. The photocatalytic activity of ZnO and GZ composites was studied by the photodegradation of Methylene blue dye. The results revealed that the GZ composites exhibited a higher photocatalytic activity than pristine ZnO. Hence, we proposed a simple wet chemical method to synthesize GZ composite and its application on photocatalysis was demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chunya; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074; Ha, Enna
2012-11-15
Graphical abstract: High-resolution TEM image of wurtzite Cu{sub 2}ZnSnS{sub 4} nanocrystals. Highlights: ► Wurtzite Cu{sub 2}ZnSnS{sub 4} nanocrystals were synthesized by arrested precipitation method. ► XRD, EDX, TEM demonstrate that the CZTS nanocrystals are purely wurtzite structure. ► The average diameter of the bulk CZTS products is found to be 10 ± 1.1 nm. ► The estimated direct bandgap energy is 1.56 eV for wurtzite CZTS nanocrystals. ► The electrical resistivity of the wurtzite CZTS nanocrystals is low. -- Abstract: A facile route for the synthesis of wurtzite Cu{sub 2}ZnSnS{sub 4} (CZTS) nanocrystals was developed by an arrested precipitation methodmore » at 240 °C under simple reaction conditions with diethanolamine as the solvent and thiourea as sulfur source. The structure and morphology of the CZTS nanocrystals were characterized by X-ray diffraction and transmission electron microscopy. Control experiments demonstrated that CZTS nanocrystals which are purely wurtzite structure are readily obtained. The average diameter of the bulk CZTS products is found to be 10 ± 1.1 nm. The estimated direct bandgap energy is 1.56 eV, which indicates that the CZTS nanocrystals produced by this method possess promising applications in photovoltaic devices.« less
NASA Astrophysics Data System (ADS)
Pujar, Malatesh S.; Hunagund, Shirajahammad M.; Desai, Vani R.; Patil, Shivaprasadgouda; Sidarai, Ashok H.
2018-04-01
We report the simple Co-precipitation method for the synthesis of Cerium oxide (CeO2) nanoparticles (NPs) in an ambient temperature. We have taken the Cerium (III) nitrate hexahydrate (Ce(NO3)3.6H2O) and Sodium hydroxide (NaOH) as the precursors. The obtained NPs were analyzed using the UV-Vis spectrophotometer, Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The obtained results signify that UV-Vis spectrum exhibited a well-defined absorption peak at 274 nm and the estimated energy gap (Eg) is 4.05 eV. The FT-IR analysis provides the supporting evidence for the presence of bonding of O-H, nitrates, alcohols and O-Ce-O vibrations. The XRD result reveals that the synthesized CeO2 NPs was crystallite with cubic phase structure and the estimated average crystallite size of CeO2 NPs using Scherer's and W-H method was significantly different due to their assumptions. Further, it is purposed to study their photocatalytic biological activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ingebretsen, O.C.; Borgen, J.; Farstad, M.
A reversed-phase liquid-chromatographic procedure is presented for quantitation or uric acid in human serum, with absorbance measured at 292 nm. The mobile phase was sodium acetate (35 mmol/L, pH 5.0)/acetonitrile (9/1 by vol). Complete precipitation of serum proteins was obtained by mixing serum (50-500 microL) with an equal volume of acetonitrile, and the precipitate was removed by centrifugation. Aliquots (20 microL) of the supernate were injected directly into the liquid chromatograph, which was adjusted so that the absorbance reading of the uric acid peak was as high as possible. Routinely, a full-scale deflection of 1.28 absorbance units was used. Themore » within-run precision (CV) was 0.6% for a serum uric acid concentration of 227 mumol/L and day-to-day precision over a 15-day period was 0.8% for uric acid of 345 mumol/L. No interferences from related compounds were observed. Researchers compared results by this method with those by kinetic and equilibrium adaptations of uricase methods. The method reported is simple, and can be used in a fully automatic liquid-chromatographic system.« less
Huang, Zhiyuan; Xie, Fengchun; Ma, Yang
2011-01-15
A method was developed to recover the copper and iron from Printed Circuit Boards (PCB) manufacturing generated spent acid etching solution and waste sludge with ultrasonic energy at laboratory scale. It demonstrated that copper-containing PCB spent etching solution could be utilized as a leaching solution to leach copper from copper contained PCB waste sludge. It also indicated that lime could be used as an alkaline precipitating agent in this method to precipitate iron from the mixture of acidic PCB spent etching solution and waste sludge. This method provided an effective technique for the recovery of copper and iron through simultaneous use of PCB spent acid solution and waste sludge. The leaching rates of copper and iron enhanced with ultrasound energy were reached at 93.76% and 2.07% respectively and effectively separated copper from iron. Followed by applying lime to precipitate copper from the mixture of leachate and rinsing water produced by the copper and iron separation, about 99.99% and 1.29% of soluble copper and calcium were settled as the solids respectively. Furthermore the settled copper could be made as commercial rate copper. The process performance parameters studied were pH, ultrasonic power, and temperature. This method provided a simple and reliable technique to recover copper and iron from waste streams generated by PCB manufacturing, and would significantly reduce the cost of chemicals used in the recovery. Copyright © 2010 Elsevier B.V. All rights reserved.
Predicting Precipitation in Darwin: An Experiment with Markov Chains
ERIC Educational Resources Information Center
Boncek, John; Harden, Sig
2009-01-01
As teachers of first-year college mathematics and science students, the authors are constantly on the lookout for simple classroom exercises that improve their students' analytical and computational skills. In this article, the authors outline a project entitled "Predicting Precipitation in Darwin." In this project, students: (1) analyze…
Canopy interception variability in changing climate
NASA Astrophysics Data System (ADS)
Kalicz, Péter; Herceg, András; Kisfaludi, Balázs; Csáki, Péter; Gribovszki, Zoltán
2017-04-01
Tree canopies play a rather important role in forest hydrology. They intercept significant amounts of precipitation and evaporate back into the atmosphere during and after precipitation event. This process determines the net intake of forest soils and so important factor of hydrological processes in forested catchments. Average amount of interception loss is determined by the storage capacity of tree canopies and the rainfall distribution. Canopy storage capacity depends on several factors. It shows strong correlation with the leaf area index (LAI). Some equations are available to quantify this dependence. LAI shows significant variability both spatial and temporal scale. There are several methods to derive LAI from remote sensed data which helps to follow changes of it. In this study MODIS sensor based LAI time series are used to estimate changes of the storage capacity. Rainfall distribution derived from the FORESEE database which is developed for climate change related impact studies in the Carpathian Basin. It contains observation based precipitation data for the past and uses bias correction method for the climate projections. In this study a site based estimation is outworked for the Sopron Hills area. Sopron Hills is located at the eastern foothills of the Alps in Hungary. The study site, namely Hidegvíz Valley experimental catchment, is located in the central valley of the Sopron Hills. Long-term interception measurements are available in several forest sites in Hidegvíz Valley. With the combination of the ground based observations, MODIS LAI datasets a simple function is developed to describe the average yearly variations in canopy storage. Interception measurements and the CREMAP evapotranspiration data help to calibrate a simple interception loss equation based on Merriam's work. Based on these equation and the FORESEE bias corrected precipitation data an estimation is outworked for better understanding of the feedback of forest crown on hydrological cycle. This research has been supported by the Agroclimate.2 VKSZ_12-1-2013-0034 project, and the corresponding author's work was also supported by the János Bolyai Scholarship of the Hungarian Academy of Sciences.
NASA Astrophysics Data System (ADS)
Millar, R.; Ingram, W.; Allen, M. R.; Lowe, J.
2013-12-01
Temperature and precipitation patterns are the climate variables with the greatest impacts on both natural and human systems. Due to the small spatial scales and the many interactions involved in the global hydrological cycle, in general circulation models (GCMs) representations of precipitation changes are subject to considerable uncertainty. Quantifying and understanding the causes of uncertainty (and identifying robust features of predictions) in both global and local precipitation change is an essential challenge of climate science. We have used the huge distributed computing capacity of the climateprediction.net citizen science project to examine parametric uncertainty in an ensemble of 20,000 perturbed-physics versions of the HadCM3 general circulation model. The ensemble has been selected to have a control climate in top-of-atmosphere energy balance [Yamazaki et al. 2013, J.G.R.]. We force this ensemble with several idealised climate-forcing scenarios including carbon dioxide step and transient profiles, solar radiation management geoengineering experiments with stratospheric aerosols, and short-lived climate forcing agents. We will present the results from several of these forcing scenarios under GCM parametric uncertainty. We examine the global mean precipitation energy budget to understand the robustness of a simple non-linear global precipitation model [Good et al. 2012, Clim. Dyn.] as a better explanation of precipitation changes in transient climate projections under GCM parametric uncertainty than a simple linear tropospheric energy balance model. We will also present work investigating robust conclusions about precipitation changes in a balanced ensemble of idealised solar radiation management scenarios [Kravitz et al. 2011, Atmos. Sci. Let.].
Singh, Sheelendra Pratap; Dwivedi, Nistha; Raju, Kanumuri Siva Rama; Taneja, Isha; Wahajuddin, Mohammad
2016-04-01
United States Environmental Protection Agency has recommended estimating pyrethroids' risk using cumulative exposure. For cumulative risk assessment, it would be useful to have a bioanalytical method for quantification of one or several pyrethroids simultaneously in a small sample volume to support toxicokinetic studies. Therefore, in the present study, a simple, sensitive and high-throughput ultraperformance liquid chromatography-tandem mass spectrometry method was developed and validated for simultaneous analysis of seven pyrethroids (fenvalerate, fenpropathrin, bifenthrin, lambda-cyhalothrin, cyfluthrin, cypermethrin and deltamethrin) in 100 µL of rat plasma. A simple single-step protein precipitation method was used for the extraction of target compounds. The total chromatographic run time of the method was 5 min. The chromatographic system used a Supelco C18 column and isocratic elution with a mobile phase consisting of methanol and 5 mM ammonium formate in the ratio of 90 : 10 (v/v). Mass spectrometer (API 4000) was operated in multiple reaction monitoring positive-ion mode using the electrospray ionization technique. The calibration curves were linear in the range of 7.8-2,000 ng/mL with correlation coefficients of ≥ 0.99. All validation parameters such as precision, accuracy, recovery, matrix effect and stability met the acceptance criteria according to the regulatory guidelines. The method was successfully applied to the toxicokinetic study of cypermethrin in rats. To the best of our knowledge, this is the first LC-MS-MS method for the simultaneous analysis of pyrethroids in rat plasma. This validated method with minimal modification can also be utilized for forensic and clinical toxicological applications due to its simplicity, sensitivity and rapidity. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
A scheme for parameterizing ice cloud water content in general circulation models
NASA Technical Reports Server (NTRS)
Heymsfield, Andrew J.; Donner, Leo J.
1989-01-01
A method for specifying ice water content in GCMs is developed, based on theory and in-cloud measurements. A theoretical development of the conceptual precipitation model is given and the aircraft flights used to characterize the ice mass distribution in deep ice clouds is discussed. Ice water content values derived from the theoretical parameterization are compared with the measured values. The results demonstrate that a simple parameterization for atmospheric ice content can account for ice contents observed in several synoptic contexts.
Oki, Shogo; Nonaka, Takahiro; Shiraki, Kentaro
2018-06-01
Protein purification using non-chromatographic methods is a simple technique that avoids costly resin. Recently, a cell surface protein B (CspB) tag has been developed for a pH-responsive tag for protein purification by solid-liquid separation. Proteins fused with the CspB tag show reversible insolubilization at acidic pH that can be used in solid-liquid separation for protein purification. However, brown-color impurities from co-precipitation hamper further analysis of the target proteins. In this study, we investigated the effect of additives on the co-precipitation of CspB-tagged Teriparatide (CspB50TEV-Teriparatide) expressed in Corynebacterium glutamicum and associated impurities. Arginine (Arg) at 1.0 M was found to be the most effective additive for removing impurities, particularly carotenoids and nucleic acids. Furthermore, all impurities detected in the fluorescence and absorbance spectra were successfully removed by the repetition of precipitation-redissolution in the Arg solution. The precipitation yield of the CspB50TEV-Teriparatide did not change with the addition of Arg and the repetition of the precipitation-redissolution process. Collectively, our findings indicate that the specific desorption of π-electron rich compounds by Arg may be useful in conjunction with the pH-responsive CspB tag for solid-liquid protein purification. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Mahadevan, S.; Jayakumar, T.; Rao, B. P. C.; Kumar, Anish; Rajkumar, K. V.; Raj, Baldev
2008-08-01
X-ray diffraction (XRD) studies were carried out to characterize aging behavior of M250 grade maraging steel samples subjected to isothermal aging at 755 K for varying durations of 0.25, 1, 3, 10, 40, 70, and 100 hours. Earlier studies had shown typical features of precipitation hardening, wherein the hardness increased to a peak value due to precipitation of intermetallics and decreased upon further aging (overaging) due to reversion of martensite to austenite. Intermetallic precipitates, while coherent, are expected to increase the microstrain in the matrix. Hence, an attempt has been made in the present study to understand the microstructural changes in these samples using XRD line profile analysis. The anisotropic broadening with diffraction angle observed in the simple Williamson Hall (WH) plot has been addressed using the modified WH (mWH) approach, which takes into account the contrast caused by dislocations on line profiles, leading to new scaling factors in the WH plot. The normalized mean square strain and crystallite size estimated from mWH have been used to infer early precipitation and to characterize aging behavior. The normalized mean square strain has been used to determine the Avrami exponent in the Johnson Mehl Avrami (JMA) equation, which deals with the kinetics of precipitation. The Avrami exponent thus determined has matched well with values found by other methods, as reported in literature.
[Principle of LAMP method--a simple and rapid gene amplification method].
Ushikubo, Hiroshi
2004-06-01
So far nucleic acid test (NAT) has been employed in various fields, including infectious disease diagnoses. However, due to its complicated procedures and relatively high cost, it has not been widely utilized in many actual diagnostic applications. We have therefore developed a simple and rapid gene amplification technology, Loop-mediated Isothermal Amplification (LAMP) method, which has shown prominent results of surpassing the performance of the conventional gene amplification methods. LAMP method acquires three main features: (1) all reaction can be carried out under isothermal conditions; (2) the amplification efficiency is extremely high and tremendous amount of amplification products can be obtained; and (3) the reaction is highly specific. Furthermore, developed from the standard LAMP method, a rapid LAMP method, by adding in the loop primers, can reduce the amplification time from the previous 1 hour to less than 30 minutes. Enormous amount of white precipitate of magnesium pyrophosphate is produced as a by-product of the amplification, therefore, direct visual detection is possible without using any reaction indicators and detection equipments. We believe LAMP technology, with the integration of these features, can rightly apply to clinical genetic testing, food and environmental analysis, as well as NAT in different fields.
NASA Technical Reports Server (NTRS)
Raymond, William H.; Olson, William S.; Callan, Geary
1990-01-01
The focus of this part of the investigation is to find one or more general modeling techniques that will help reduce the time taken by numerical forecast models to initiate or spin-up precipitation processes and enhance storm intensity. If the conventional data base could explain the atmospheric mesoscale flow in detail, then much of our problem would be eliminated. But the data base is primarily synoptic scale, requiring that a solution must be sought either in nonconventional data, in methods to initialize mesoscale circulations, or in ways of retaining between forecasts the model generated mesoscale dynamics and precipitation fields. All three methods are investigated. The initialization and assimilation of explicit cloud and rainwater quantities computed from conservation equations in a mesoscale regional model are examined. The physical processes include condensation, evaporation, autoconversion, accretion, and the removal of rainwater by fallout. The question of how to initialize the explicit liquid water calculations in numerical models and how to retain information about precipitation processes during the 4-D assimilation cycle are important issues that are addressed. The explicit cloud calculations were purposely kept simple so that different initialization techniques can be easily and economically tested. Precipitation spin-up processes associated with three different types of weather phenomena are examined. Our findings show that diabatic initialization, or diabatic initialization in combination with a new diabatic forcing procedure, work effectively to enhance the spin-up of precipitation in a mesoscale numerical weather prediction forecast. Also, the retention of cloud and rain water during the analysis phase of the 4-D data assimilation procedure is shown to be valuable. Without detailed observations, the vertical placement of the diabatic heating remains a critical problem.
Lemons, B; Khaing, H; Ward, A; Thakur, P
2018-06-01
A new sequential separation method for the determination of polonium and actinides (Pu, Am and U) in drinking water samples has been developed that can be used for emergency response or routine water analyses. For the first time, the application of TEVA chromatography column in the sequential separation of polonium and plutonium has been studied. This method utilizes a rapid Fe +3 co-precipitation step to remove matrix interferences, followed by plutonium oxidation state adjustment to Pu 4+ and an incubation period of ~ 1 h at 50-60 °C to allow Po 2+ to oxidize to Po 4+ . The polonium and plutonium were then separated on a TEVA column, while separation of americium from uranium was performed on a TRU column. After separation, polonium was micro-precipitated with copper sulfide (CuS), while actinides were micro co-precipitated using neodymium fluoride (NdF 3 ) for counting by the alpha spectrometry. The method is simple, robust and can be performed quickly with excellent removal of interferences, high chemical recovery and very good alpha peak resolution. The efficiency and reliability of the procedures were tested by using spiked samples. The effect of several transition metals (Cu 2+ , Pb 2+ , Fe 3+ , Fe 2+ , and Ni 2+ ) on the performance of this method were also assessed to evaluate the potential matrix effects. Studies indicate that presence of up to 25 mg of these cations in the samples had no adverse effect on the recovery or the resolution of polonium alpha peaks. Copyright © 2018 Elsevier Ltd. All rights reserved.
Xia, Zengmin; Yu, Xiaohua; Jiang, Xi; Brody, Harold D; Rowe, David W; Wei, Mei
2013-07-01
The objective of the current study is to prepare a biomimetic collagen-apatite scaffold for improved bone repair and regeneration. A novel bottom-up approach has been developed, which combines a biomimetic self-assembly method with a controllable freeze-casting technology. In this study, the mineralized collagen fibers were generated using a simple one-step co-precipitation method which involved collagen self-assembly and in situ apatite precipitation in a collagen-containing modified simulated body fluid (m-SBF). The precipitates were then subjected to controllable freeze casting, forming scaffolds with either an isotropic equiaxed structure or a unidirectional lamellar structure. These scaffolds were comprised of collagen fibers and poorly crystalline bone-like carbonated apatite nanoparticles. The mineral content in the scaffold could be tailored in the range 0-54wt.% by simply adjusting the collagen content in the m-SBF. Further, the mechanisms of the formation of both the equiaxed and the lamellar scaffolds were investigated, and freezing regimes for equiaxed and lamellar solidification were established. Finally, the bone-forming capability of such prepared scaffolds was evaluated in vivo in a mouse calvarial defect model. It was confirmed that the scaffolds well support new bone formation. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Zipper, Lauren E; Aristide, Xavier; Bishop, Dylan P; Joshi, Ishita; Kharzeev, Julia; Patel, Krishna B; Santiago, Brianna M; Joshi, Karan; Dorsinvil, Kahille; Sweet, Robert M; Soares, Alexei S
2014-12-01
A method is described for using plate lids to reduce evaporation in low-volume vapor-diffusion crystallization experiments. The plate lids contain apertures through which the protein and precipitants were added to different crystallization microplates (the reservoir was filled before fitting the lids). Plate lids were designed for each of these commonly used crystallization microplates. This system minimizes the dehydration of crystallization droplets containing just a few nanolitres of protein and precipitant, and results in more reproducible diffraction from the crystals. For each lid design, changes in the weight of the plates were used to deduce the rate of evaporation under different conditions of temperature, air movement, droplet size and precipitant. For comparison, the state of dehydration was also visually assessed throughout the experiment. Finally, X-ray diffraction methods were used to compare the diffraction of protein crystals that were conventionally prepared against those that were prepared on plates with plate lids. The measurements revealed that the plate lids reduced the rate of evaporation by 63-82%. Crystals grown in 5 nl drops that were set up with plate lids diffracted to higher resolution than similar crystals from drops that were set up without plate lids. The results demonstrate that plate lids can be instrumental for improving few-nanolitre crystallizations.
NASA Astrophysics Data System (ADS)
Camera, Corrado; Bruggeman, Adriana; Hadjinicolaou, Panos; Pashiardis, Stelios; Lange, Manfred A.
2014-01-01
High-resolution gridded daily data sets are essential for natural resource management and the analyses of climate changes and their effects. This study aims to evaluate the performance of 15 simple or complex interpolation techniques in reproducing daily precipitation at a resolution of 1 km2 over topographically complex areas. Methods are tested considering two different sets of observation densities and different rainfall amounts. We used rainfall data that were recorded at 74 and 145 observational stations, respectively, spread over the 5760 km2 of the Republic of Cyprus, in the Eastern Mediterranean. Regression analyses utilizing geographical copredictors and neighboring interpolation techniques were evaluated both in isolation and combined. Linear multiple regression (LMR) and geographically weighted regression methods (GWR) were tested. These included a step-wise selection of covariables, as well as inverse distance weighting (IDW), kriging, and 3D-thin plate splines (TPS). The relative rank of the different techniques changes with different station density and rainfall amounts. Our results indicate that TPS performs well for low station density and large-scale events and also when coupled with regression models. It performs poorly for high station density. The opposite is observed when using IDW. Simple IDW performs best for local events, while a combination of step-wise GWR and IDW proves to be the best method for large-scale events and high station density. This study indicates that the use of step-wise regression with a variable set of geographic parameters can improve the interpolation of large-scale events because it facilitates the representation of local climate dynamics.
Pu, Jinji; Guo, Jianrong; Fan, Zaifeng
2014-01-01
Small RNAs, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), are important regulators of plant development and gene expression. The acquisition of high-quality small RNAs is the first step in the study of its expression and function analysis, yet the extraction method of small RNAs in recalcitrant plant tissues with various secondary metabolites is not well established, especially for tropical and subtropical plant species rich in polysaccharides and polyphenols. Here, we developed a simple and efficient method for high quality small RNAs extraction from recalcitrant plant species. Prior to RNA isolation, a precursory step with a CTAB-PVPP buffer system could efficiently remove compounds and secondary metabolites interfering with RNAs from homogenized lysates. Then, total RNAs were extracted by Trizol reagents followed by a differential precipitation of high-molecular-weight (HMW) RNAs using polyethylene glycol (PEG) 8000. Finally, small RNAs could be easily recovered from supernatant by ethanol precipitation without extra elimination steps. The isolated small RNAs from papaya showed high quality through a clear background on gel and a distinct northern blotting signal with miR159a probe, compared with other published protocols. Additionally, the small RNAs extracted from papaya were successfully used for validation of both predicted miRNAs and the putative conserved tasiARFs. Furthermore, the extraction method described here was also tested with several other subtropical and tropical plant tissues. The purity of the isolated small RNAs was sufficient for such applications as end-point stem-loop RT-PCR and northern blotting analysis, respectively. The simple and feasible extraction method reported here is expected to have excellent potential for isolation of small RNAs from recalcitrant plant tissues rich in polyphenols and polysaccharides. PMID:24787387
Extreme Precipitation in Poland in the Years 1951-2010
NASA Astrophysics Data System (ADS)
Malinowska, Miroslawa
2017-12-01
The characteristics of extreme precipitation, including the dominant trends, were analysed for eight stations located in different parts of Poland for the period 1951-2010. Five indices enabling the assessment of the intensity and frequency of both extremely dry and wet conditions were applied. The indices included the number of days with precipitation ≥10mm·d-1 (R10), maximum number of consecutive dry days (CDD), maximum 5-day precipitation total (R5d), simple daily intensity index (SDII), and the fraction of annual total precipitation due to events exceeding the 95th percentile calculated for the period 1961-1990. Annual trends were calculated using standard linear regression method, while the fit of the model was assessed with the F-test at the 95% confidence level. The analysed changes in extreme precipitation showed mixed patterns. A significant positive trend in the number of days with precipitation ≥10mm·d-1 (R10) was observed in central Poland, while a significant negative one, in south-eastern Poland. Based on the analysis of maximum 5-day precipitation totals (R5d), statistically significant positive trends in north-western, western and eastern parts of the country were detected, while the negative trends were found in the central and northeastern parts. Daily precipitation, expressed as single daily intensity index (SDII), increased over time in northern and central Poland. In southern Poland, the variation of SDII index showed non-significant negative tendencies. Finally, the fraction of annual total precipitation due to the events exceeding the 1961-1990 95th percentile increased at one station only, namely, in Warsaw. The indicator which refers to dry conditions, i.e. maximum number of consecutive dry days (CDD) displayed negative trends throughout the surveyed area, with the exception of Szczecin that is a representative of north-western Poland.
Zhan, Jia; Zhong, Ying-ying; Yu, Xue-jun; Peng, Jin-feng; Chen, Shubing; Yin, Ju-yi; Zhang, Jia-Jie; Zhu, Yan
2013-06-01
A rapid, simple and generic analytical method which was able to simultaneously determine 220 undesirable chemical residues in infant formula had been developed. The method comprised of extraction with acetonitrile, clean-up by low temperature and water precipitation, and analysis by ultra performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (UPLC-ESI-MS-MS) using multiple reaction monitoring (MRM) mode. Most fat materials in acetonitrile extract were eliminated by low temperature clean-up. The water precipitation, providing a necessary and supplementary cleanup, could avoid losses of hydrophobic analytes (avermectins, ionophores). Average recoveries for spiked infant formula were in the range from 57% to 147% with associated RSD values between 1% and 28%. For over 80% of the analytes, the recoveries were between 70% and 120% with RSD values in the range of 1-15%. The limits of quantification (LOQs) were from 0.01 to 5 μg/kg, which were usually sufficient to verify the compliance of products with legal tolerances. Application of this method in routine monitoring programs would imply a drastic reduction of both effort and time. Copyright © 2012 Elsevier Ltd. All rights reserved.
Interstitial-phase precipitation in iron-base alloys: a comparative study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pelton, A.R.
1982-06-01
Recent developments have elucidated the atomistic mechanisms of precipitation of interstitial elements in simple alloy systems. However, in the more technologically important iron base alloys, interstitial phase precipitation is generally not well understood. The present experimental study was therefore designed to test the applicability of these concepts to more complex ferrous alloys. Hence, a comparative study was made of interstitial phase precipitation in ferritic Fe-Si-C and in austenitic phosphorus-containing Fe-Cr-Ni steels. These systems were subjected to a variety of quench-age thermal treatments, and the microstructural development was subsequently characterized by transmission electron microscopy.
Großhans, Steffen; Wang, Gang; Fischer, Christian; Hubbuch, Jürgen
2018-01-19
In the past decades, research was carried out to find cost-efficient alternatives to Protein A chromatography as a capture step in monoclonal antibody (mAb) purification processes. In this work, polyethylene glycol (PEG) precipitation has shown promising results in the case of mAb yield and purity. Especially with respect to continuous processing, PEG precipitation has many advantages, like low cost of goods, simple setup, easy scalability, and the option to handle perfusion reactors. Nevertheless, replacing Protein A has the disadvantage of renouncing a platform unit operation as well. Furthermore, PEG precipitation is not capable of reducing high molecular weight impurities (HMW) like aggregates or DNA. To overcome these challenges, an integrated process strategy combining PEG precipitation with cation-exchange chromatography (CEX) for purification of a mAb is presented. This work discusses the process strategy as well as the associated fast, easy, and material-saving process development platform. These were implemented through the combination of high-throughput methods with empirical and mechanistic modeling. The strategy allows the development of a common batch process. Additionally, it is feasible to develop a continuous process. In the presented case study, a mAb provided from cell culture fluid (HCCF) was purified. The precipitation and resolubilization conditions as well as the chromatography method were optimized, and the mutual influence of all steps was investigated. A mAb yield of over 95.0% and a host cell protein (HCP) reduction of over 99.0% could be shown. At the same time, the aggregate level was reduced from 3.12% to 1.20% and the DNA level was reduced by five orders of magnitude. Furthermore, the mAb was concentrated three times to a final concentration of 11.9mg/mL. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Swain, Basudev; Shin, Dongyoon; Joo, So Yeong; Ahn, Nak Kyoon; Lee, Chan Gi; Yoon, Jin-Ho
2017-11-01
Considering the value of silver metal and silver nanoparticles, the waste generated during manufacturing of low temperature co-fired ceramic (LTCC) were recycled through the simple yet cost effective process by chemical-metallurgy. Followed by leaching optimization, silver was selectively recovered through precipitation. The precipitated silver chloride was valorized though silver nanoparticle synthesis by a simple one-pot greener synthesis route. Through leaching-precipitation optimization, quantitative selective recovery of silver chloride was achieved, followed by homogeneous pure silver nanoparticle about 100nm size were synthesized. The reported recycling process is a simple process, versatile, easy to implement, requires minimum facilities and no specialty chemicals, through which semiconductor manufacturing industry can treat the waste generated during manufacturing of LTCC and reutilize the valorized silver nanoparticles in manufacturing in a close loop process. Our reported process can address issues like; (i) waste disposal, as well as value-added silver recovery, (ii) brings back the material to production stream and address the circular economy, and (iii) can be part of lower the futuristic carbon economy and cradle-to-cradle technology management, simultaneously. Copyright © 2017 Elsevier Ltd. All rights reserved.
Post, A E; Arnold, B; Weiss, J; Hinrichs, J
2012-04-01
Selective precipitation is a common method for the isolation of β-casein, using the different calcium sensitivities of the individual caseins and the selective solubility of β-casein at a low temperature. In previous studies, it has been indicated that the β-casein yield depends on the physicochemical characteristics of the casein raw material used for fractionation. The objective of this study was to evaluate and compare the solubility of α(S)- and β-casein in solutions of micellar casein, sodium caseinate, and calcium caseinate as a function of pH and temperature. Additionally, the solubility of isolated α(S)- and β-casein fractions in demineralized water, ultrafiltration permeate, and a calcium-depleted milk salt solution was investigated depending on the pH and temperature. Furthermore, micellar casein, sodium caseinate, and calcium caseinate were subjected to a calcium chloride-precipitation process to determine the solubility of α(S)- and β-casein in calcium chloride precipitate, which is produced during selective precipitation, as a function of temperature and pH. Generally, the temperature had only a marginal influence on the α(S)-casein solubility compared with the β-casein solubility, whereas the solubility was shown to be strongly influenced by the pH. Our results suggest that the yield of β-casein obtained during isolation by means of selective precipitation may be a result of the solubility characteristics of α(S)- and β-casein in calcium chloride precipitate. Manufacturers may consider a simple solubility experiment before the β-casein isolation process by means of selective precipitation to predict β-casein yield. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Quantifying how the full local distribution of daily precipitation is changing and its uncertainties
NASA Astrophysics Data System (ADS)
Stainforth, David; Chapman, Sandra; Watkins, Nicholas
2016-04-01
The study of the consequences of global warming would benefit from quantification of geographical patterns of change at specific thresholds or quantiles, and better understandings of the intrinsic uncertainties in such quantities. For precipitation a range of indices have been developed which focus on high percentiles (e.g. rainfall falling on days above the 99th percentile) and on absolute extremes (e.g. maximum annual one day precipitation) but scientific assessments are best undertaken in the context of changes in the whole climatic distribution. Furthermore, the relevant thresholds for climate-vulnerable policy decisions, adaptation planning and impact assessments, vary according to the specific sector and location of interest. We present a methodology which maintains the flexibility to provide information at different thresholds for different downstream users, both scientists and decision makers. We develop a method[1,2] for analysing local climatic timeseries to assess which quantiles of the local climatic distribution show the greatest and most robust changes in daily precipitation data. We extract from the data quantities that characterize the changes in time of the likelihood of daily precipitation above a threshold and of the amount of precipitation on those days. Our method is a simple mathematical deconstruction of how the difference between two observations from two different time periods can be assigned to the combination of natural statistical variability and/or the consequences of secular climate change. This deconstruction facilitates an assessment of how fast different quantiles of precipitation distributions are changing. This involves not only determining which quantiles and geographical locations show the greatest and smallest changes, but also those at which uncertainty undermines the ability to make confident statements about any change there may be. We demonstrate this approach using E-OBS gridded data[3] which are timeseries of local daily precipitation across Europe over the last 60+ years. We treat geographical location and precipitation as independent variables and thus obtain as outputs the geographical pattern of change at given thresholds of precipitation. This information is model- independent, thus providing data of direct value in model calibration and assessment. [1] S C Chapman, D A Stainforth, N W Watkins, 2013, On Estimating Local Long Term Climate Trends, Phil. Trans. R. Soc. A, 371 20120287; D. A. Stainforth, 2013 [2] S C Chapman, D A Stainforth, N W Watkins, 2015 Limits to the quantification of local climate change, ERL,10, 094018 (2015), ERL,10, 094018 [3] M R Haylock et al . 2008: A European daily high-resolution gridded dataset of surface temperature and precipitation. J. Geophys. Res (Atmospheres), 113, D20119
Hydroxyapatite nanocrystals: simple preparation, characterization and formation mechanism.
Mohandes, Fatemeh; Salavati-Niasari, Masoud; Fathi, Mohammadhossein; Fereshteh, Zeinab
2014-12-01
Crystalline hydroxyapatite (HAP) nanoparticles and nanorods have been successfully synthesized via a simple precipitation method. To control the shape and particle size of HAP nanocrystals, coordination ligands derived from 2-hydroxy-1-naphthaldehyde were first prepared, characterized by Fourier transform infrared (FT-IR) and proton nuclear magnetic resonance ((1)H-NMR) spectroscopies, and finally applied in the synthesis process of HAP. On the other hand, the HAP nanocrystals were also characterized by several techniques including powder X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). According to the FE-SEM and TEM micrographs, it was found that the morphology and crystallinity of the HAP powders depended on the coordination mode of the ligands. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wei, Jiangfeng; Dirmeyer, Paul A.; Yang, Zong-Liang; Chen, Haishan
2017-10-01
Through a series of model simulations with an atmospheric general circulation model coupled to three different land surface models, this study investigates the impacts of land model ensembles and coupled model ensemble on precipitation simulation. It is found that coupling an ensemble of land models to an atmospheric model has a very minor impact on the improvement of precipitation climatology and variability, but a simple ensemble average of the precipitation from three individually coupled land-atmosphere models produces better results, especially for precipitation variability. The generally weak impact of land processes on precipitation should be the main reason that the land model ensembles do not improve precipitation simulation. However, if there are big biases in the land surface model or land surface data set, correcting them could improve the simulated climate, especially for well-constrained regional climate simulations.
Márta, Zoltán; Bobály, Balázs; Fekete, Jenő; Magda, Balázs; Imre, Tímea; Mészáros, Katalin Viola; Bálint, Mária; Szabó, Pál Tamás
2018-02-20
Ultratrace analysis of sample components requires excellent analytical performance in terms of limits of quantitation (LOQ). Micro UHPLC coupled to sensitive tandem mass spectrometry provides state of the art solution for such analytical problems. Using on-line SPE with column switching on a micro UHPLC-MS/MS system allowed to decrease LOQ without any complex sample preparation protocol. The presented method is capable of reaching satisfactory low LOQ values for analysis of thirteen different steroid molecules from human plasma without the most commonly used off-line SPE or compound derivatization. Steroids were determined by using two simple sample preparation methods, based on lower and higher plasma steroid concentrations. In the first method, higher analyte concentrations were directly determined after protein precipitation with methanol. The organic phase obtained from the precipitation was diluted with water and directly injected into the LC-MS system. In the second method, low steroid levels were determined by concentrating the organic phase after steroid extraction. In this case, analytes were extracted with ethyl acetate and reconstituted in 90/10 water/acetonitrile following evaporation to dryness. This step provided much lower LOQs, outperforming previously published values. The method has been validated and subsequently applied to clinical laboratory measurement. Copyright © 2017 Elsevier B.V. All rights reserved.
Development of a Terbium-Sensitized Fluorescence Method for Analysis of Silibinin.
Ershadi, Saba; Jouyban, Abolghasem; Molavi, Ommoleila; Shayanfar, Ali
2017-05-01
Silibinin is a natural flavonoid with potent anticancer properties, as shown in both in vitro and in vivo experiments. Various methods have been used for silibinin analysis. Terbium-sensitized fluorescence methods have been widely used for the determination of drugs in pharmaceutical preparations and biological samples in recent years. The present work is aimed at providing a simple analytical method for the quantitative determination of silibinin in aqueous solutions based on the formation of a fluorescent complex with terbium ion. Terbium concentration, pH, and volume of buffer, the important effective parameters for the determination of silibinin by the proposed method, were optimized using response surface methodology. The fluorescence intensity of silibinin was measured at 545 nm using λex = 334 nm. The developed method was applied for the determination of silibinin in plasma samples after protein precipitation with acetone. Under optimum conditions, the method provided a linear range between 0.10 and 0.50 mg/L, with a coefficient of determination (R2) of 0.997. The LOD and LOQ were 0.034 and 0.112 mg/L, respectively. These results indicate that the developed method is a simple, low-cost, and suitable analytical method for the quantification of silibinin in aqueous solution and plasma samples.
High-throughput purification of recombinant proteins using self-cleaving intein tags.
Coolbaugh, M J; Shakalli Tang, M J; Wood, D W
2017-01-01
High throughput methods for recombinant protein production using E. coli typically involve the use of affinity tags for simple purification of the protein of interest. One drawback of these techniques is the occasional need for tag removal before study, which can be hard to predict. In this work, we demonstrate two high throughput purification methods for untagged protein targets based on simple and cost-effective self-cleaving intein tags. Two model proteins, E. coli beta-galactosidase (βGal) and superfolder green fluorescent protein (sfGFP), were purified using self-cleaving versions of the conventional chitin-binding domain (CBD) affinity tag and the nonchromatographic elastin-like-polypeptide (ELP) precipitation tag in a 96-well filter plate format. Initial tests with shake flask cultures confirmed that the intein purification scheme could be scaled down, with >90% pure product generated in a single step using both methods. The scheme was then validated in a high throughput expression platform using 24-well plate cultures followed by purification in 96-well plates. For both tags and with both target proteins, the purified product was consistently obtained in a single-step, with low well-to-well and plate-to-plate variability. This simple method thus allows the reproducible production of highly pure untagged recombinant proteins in a convenient microtiter plate format. Copyright © 2016 Elsevier Inc. All rights reserved.
Organic influences on inorganic patterns of diffusion-controlled precipitation in gels
NASA Astrophysics Data System (ADS)
Barge, Laura M.; Nealson, Kenneth H.; Petruska, John
2010-06-01
The well-known AgNO 3/K 2CrO 4 reaction-diffusion system produces periodic bands of silver chromate precipitate in gelatin, but only randomly oriented crystals in agarose gel. We show that comparable bands can be produced in agarose gel by adding small amounts of simple organic acids (e.g., acetic acid, N-acetyl glycine, and N-acetyl alanine) that suppress crystal growth and promote formation of rounded particles of precipitate. These results indicate that α-carboxyl groups of amino acids or short peptides in gelatin under mildly acidic conditions can induce periodic band patterns in diffusion-controlled silver chromate precipitates.
Rosenow, Matthew; Xiao, Nick; Spetzler, David
2018-01-01
ABSTRACT Extracellular vesicle (EV)-based liquid biopsies have been proposed to be a readily obtainable biological substrate recently for both profiling and diagnostics purposes. Development of a fast and reliable preparation protocol to enrich such small particles could accelerate the discovery of informative, disease-related biomarkers. Though multiple EV enrichment protocols are available, in terms of efficiency, reproducibility and simplicity, precipitation-based methods are most amenable to studies with large numbers of subjects. However, the selectivity of the precipitation becomes critical. Here, we present a simple plasma EV enrichment protocol based on pluronic block copolymer. The enriched plasma EV was able to be verified by multiple platforms. Our results showed that the particles enriched from plasma by the copolymer were EV size vesicles with membrane structure; proteomic profiling showed that EV-related proteins were significantly enriched, while high-abundant plasma proteins were significantly reduced in comparison to other precipitation-based enrichment methods. Next-generation sequencing confirmed the existence of various RNA species that have been observed in EVs from previous studies. Small RNA sequencing showed enriched species compared to the corresponding plasma. Moreover, plasma EVs enriched from 20 advanced breast cancer patients and 20 age-matched non-cancer controls were profiled by semi-quantitative mass spectrometry. Protein features were further screened by EV proteomic profiles generated from four breast cancer cell lines, and then selected in cross-validation models. A total of 60 protein features that highly contributed in model prediction were identified. Interestingly, a large portion of these features were associated with breast cancer aggression, metastasis as well as invasion, consistent with the advanced clinical stage of the patients. In summary, we have developed a plasma EV enrichment method with improved precipitation selectivity and it might be suitable for larger-scale discovery studies. PMID:29696079
Precipitation Structure in the Sierra Nevada of California During Winter
NASA Technical Reports Server (NTRS)
Pandey, Ganesh R.; Cayan, Daniel R.; Georgakakos, Kostantine P.
1998-01-01
The influences of upper air characteristics along the coast of California upon the winter time precipitation in the Sierra Nevada region were investigated. Most precipitation episodes in the Sierra are associated with moist southwesterly winds and also tend to occur when the 700-mb temperature is close to -2 C. This favored wind direction and temperature signifies the equal importance of moisture transport and orographic lifting for maximum precipitation frequency. Making use of this observation, simple linear models were formulated to quantify the precipitation totals observed at different sites as a function of moisture transport. The skill of the model is least for daily precipitation and increases with time scale of aggregation. In terms of incremental gain, the skill of the model is optimal for an aggregation period of 5-7 days, which is also the duration of the most frequent precipitation events in the Sierra. This indicates that upper air moisture transport at can be used to make reasonable estimates of the precipitation totals for most frequent events in the Sierra region.
Improving the yield and quality of DNA isolated from white-rot fungi.
Kuhad, R C; Kapoor, R K; Lal, R
2004-01-01
A new simple method used to eliminate polysaccharides that cause problems during DNA isolation was established for 6 different white-rot fungi using 1% hexadecyltrimethylammonium bromide (CTAB) as wash buffer and followed by centrifugation. Variation in the DNA yield and quality was ascertained using precipitating agents, detergents and cell-wall-hydrolyzing chitinase. Considerable amount of exopolysaccharides from fungal biomass was removed with the use of 1% CTAB wash buffer followed by centrifugation. The DNA varied in terms of yield and quality. For the DNA extraction use of 2% SDS in extraction buffer worked best for Pycnoporus cinnabarinus, Cyathus bulleri, Cyathus striatus and Cyathus stercoreus, while 2% CTAB worked best for Phanerochaete chrysosporium and Pleurotus ostreatus. Elimination of phenol and use of absolute ethanol for precipitating DNA resulted in good yield and quality of DNA. This DNA was amenable to restriction endonuclease digestion.
Efficient renaturation of inclusion body proteins denatured by SDS.
He, Chuan; Ohnishi, Kouhei
2017-09-02
Inclusion bodies are often formed when the foreign protein is over expressed in Escherichia coli. Since proteins in inclusion bodies are inactive, denaturing and refolding of inclusion body proteins are necessary to obtain the active form. Instead of the conventional denaturants, urea and guanidine hydrochloride, a strong anionic detergent SDS was used to solubilize C-terminal His-tag form of ulvan lyase in the inclusion bodies. Solution containing SDS-solubilized enzyme were kept on ice to precipitate SDS, followed by SDS-KCl insoluble crystal formation to remove SDS completely. After removing the precipitate by centrifugation, the supernatant was applied to Ni-NTA column to purify His-tagged ulvan lyase. The purified protein showed a dimeric form and ulvan lyase activity, demonstrating that SDS-denatured protein was renatured and recovered enzyme activity. This simple method could be useful for refolding other inclusion body proteins. Copyright © 2017 Elsevier Inc. All rights reserved.
Richelle, M; Darimont, C; Piguet-Welsch, C; Fay, L B
2004-01-01
This paper presents a high-throughput method for the simultaneous determination of deuterium and oxygen-18 (18O) enrichment of water samples isolated from blood. This analytical method enables rapid and simple determination of these enrichments of microgram quantities of water. Water is converted into hydrogen and carbon monoxide gases by the use of a high-temperature conversion elemental analyzer (TC-EA), that are then transferred on-line into the isotope ratio mass spectrometer. Accuracy determined with the standard light Antartic precipitation (SLAP) and Greenland ice sheet precipitation (GISP) is reliable for deuterium and 18O enrichments. The range of linearity is from 0 up to 0.09 atom percent excess (APE, i.e. -78 up to 5725 delta per mil (dpm)) for deuterium enrichment and from 0 up to 0.17 APE (-11 up to 890 dpm) for 18O enrichment. Memory effects do exist but can be avoided by analyzing the biological samples in quintuplet. This method allows the determination of 1440 samples per week, i.e. 288 biological samples per week. Copyright 2004 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Wu, Yishan; Li, Jun; Ye, Jianchun; Chen, Xiaohong; Li, Huili; Huang, Sumei; Zhao, Ran; Ou-Yang, Wei
2017-10-01
Corona discharge-induced wind (CDIW) has been widely utilized in production lines in the food and semiconductor industries and in indoor devices such as electrostatic precipitators. Some ozone is inevitably emitted, posing serious health risks to respiratory system and lung function of a human being. In this work, a greener corona discharge with enhanced wind generation for a needle-to-cylinder discharge structure is demonstrated using a simple dip-coating method to attach carbon nanotubes (CNTs) to the discharge electrode of a stainless steel needle. Compared with a conventional discharge electrode without CNT decoration, the velocity of the CDIW is greatly enhanced, the onset voltage is lowered, the energy conversion efficiency is greatly improved and the concentration of generated ozone is much reduced, making this easy method of CNT decoration a promising candidate for greener corona discharge systems. In addition, several impact factors for improved performance are discussed mathematically and phenomenologically, providing an insight into the corona discharge and wind generation.
Chattopadhyay, Sankha; Saha Das, Sujata
2009-10-01
A simple and inexpensive method for the separation of medically useful no-carrier-added (nca) iodine radionuclides from bulk amounts of irradiated tellurium dioxide (TeO(2)) target was developed. The beta(-) emitting (131)I radionuclide, produced by the decay of (131)Te through the (nat)Te(n, gamma)(131)Te nuclear reaction, was used for standardization of the radiochemical separation procedure. The radiochemical separation was performed by precipitation followed by column (activated charcoal) chromatography. Quantitative post-irradiation recovery of the TeO(2) target material (98-99%), in a form suitable for reuse in future irradiations, was achieved. The overall radiochemical yield for the complete separation of (131)I was 75-85% (n=8). The separated nca (131)I was of high, approximately 99%, radionuclidic and radiochemical purities and did not contain detectable amounts of the target material. This method can be adopted for the radiochemical separation of other different iodine radionuclides produced from tellurium matrices through cyclotron as well as reactor irradiation.
Hassan, Ahmed Sheikh; Sapin, Anne; Ubrich, Nathalie; Maincent, Philippe; Bolzan, Claire; Leroy, Pierre
2008-10-01
A simple and sensitive high-performance liquid chromatography (HPLC) assay applied to the measurement of ibuprofen in rat plasma has been developed. Two parameters have been investigated to improve ibuprofen detectability using fluorescence detection: variation of mobile phase pH and the use of beta-cyclodextrin (beta-CD). Increasing the pH value from 2.5 to 6.5 and adding 5 mM beta-CD enhanced the fluorescence signal (lambda(exc) = 224 nm; lambda(em) = 290 nm) by 2.5 and 1.3-fold, respectively, when using standards. In the case of plasma samples, only pH variation significantly lowered detection and quantification limits, down to 10 and 35 ng/mL, respectively. Full selectivity was obtained with a single step for plasma treatment, that is, protein precipitation with acidified acetonitrile. The validated method was applied to a pharmacokinetic study of ibuprofen encapsulated in microspheres and subcutaneously administered to rats.
Hoh, Carmen S L; Boocock, David J; Marczylo, Timothy H; Brown, V A; Cai, Hong; Steward, William P; Berry, David P; Gescher, Andreas J
2007-04-04
Silibinin has recently received attention as a potential cancer chemopreventive agent because of its antiproliferative and anticarcinogenic effects. A simple and specific reversed-phase high-performance liquid chromatography method was developed and validated for the quantitation of silibinin in human plasma. Sample preparation involved simple protein precipitation, and separation was achieved on a Waters Atlantis C18 column with flow rate of 1.0 mL/min at 40 degrees C and UV detection at 290 nm. Silibinin was detected as two peaks corresponding to trans-diastereoisomers. The peak area was linear over the investigated concentration range (0-5000 ng/mL). The limits of detection were 2 and 1 ng/mL for the two diastereoisomers (d1 and d2), with a recovery of 53-58%. This method was utilized to detect silibinin in plasma of colorectal patients after 7 days of treatment with silipide (silibinin formulated with phosphatidyl choline).
Wu, Guo-Lan; Zhou, Hui-Li; Shentu, Jian-Zhong; He, Qiao-Jun; Yang, Bo
2008-12-15
A simple, sensitive and rapid LC/MS/MS method was developed for the quantification of lansoprazole in human plasma. After a simple sample preparation procedure by one-step protein precipitation with acetonitrile, lansoprazole and the internal standard bicalutamide were chromatographed on a Zorbax SB-C(18) (3.0 mm x 150 mm, 3.5 microm, Agilent) column with the mobile phase consisted of methanol-water (70:30, v/v, containing 5 mM ammonium formate, pH was adjusted to 7.85 by 1% ammonia solution). Detection was performed on a triple quadrupole tandem mass spectrometry by multiple reaction monitoring (MRM) mode via negative eletrospray ionization source (ESI(-)). The lower limit of quantification was 5.5 ng/mL, and the assay exhibited a linear range of 5.5-2200.0 ng/mL. The validated method was successfully applied to investigate the bioequivalence between two kinds of preparation (test vs. reference product) in twenty-eight healthy male Chinese volunteers.
Phiroonsoontorn, Nattaphorn; Sansuk, Sira; Santaladchaiyakit, Yanawath; Srijaranai, Supalax
2017-10-13
This research presents a simple and green in situ solid phase extraction (is-SPE) combined with high-performance liquid chromatography (HPLC) for the simultaneous analysis of tetracyclines (TCs) including tetracycline, oxytetracycline, and chlortetracycline. In is-SPE, TCs were efficiently extracted through the precipitation formation of dissolvable layered double hydroxides (LDHs) by mixing the LDH components such as magnesium and aluminum ions (both in metal chloride salts) thoroughly in an alkaline sample solution. After the centrifugation, the precipitate was completely dissolved with trifluoroacetic acid to release the enriched TCs, and then analyzed by HPLC. Under optimized conditions, this method gave good enrichment factors (EFs) of 41-93 with low limits of detection (LODs) of 0.7-6μg/L and limits of quantitation (LOQs) of 3-15μg/L. Also, the proposed method was successfully applied for the determination of TCs in water and milk samples with the recoveries ranging from 81.7-108.1% for water and 55.7-88.7% for milk. Copyright © 2017 Elsevier B.V. All rights reserved.
Huanca-Mamani, W; Rivera-Cabello, D; Maita-Maita, J
2015-07-17
In this study, we report a modified CTAB-PVP method combined with silicon dioxide (silica) treatment for the extraction of high quality genomic DNA from a single larva or pupa. This method efficiently obtains DNA from small specimens, which is difficult and challenging because of the small amount of starting tissue. Maceration with liquid nitrogen, phenol treatment, and the ethanol precipitation step are eliminated using this methodology. The A260/A280 absorbance ratios of the isolated DNA were approximately 1.8, suggesting that the DNA is pure and can be used for further molecular analysis. The quality of the isolated DNA permits molecular applications and represents a fast, cheap, and effective alternative method for laboratories with low budgets.
Zipper, Lauren E.; Aristide, Xavier; Bishop, Dylan P.; Joshi, Ishita; Kharzeev, Julia; Patel, Krishna B.; Santiago, Brianna M.; Joshi, Karan; Dorsinvil, Kahille; Sweet, Robert M.; Soares, Alexei S.
2014-01-01
A method is described for using plate lids to reduce evaporation in low-volume vapor-diffusion crystallization experiments. The plate lids contain apertures through which the protein and precipitants were added to different crystallization microplates (the reservoir was filled before fitting the lids). Plate lids were designed for each of these commonly used crystallization microplates. This system minimizes the dehydration of crystallization droplets containing just a few nanolitres of protein and precipitant, and results in more reproducible diffraction from the crystals. For each lid design, changes in the weight of the plates were used to deduce the rate of evaporation under different conditions of temperature, air movement, droplet size and precipitant. For comparison, the state of dehydration was also visually assessed throughout the experiment. Finally, X-ray diffraction methods were used to compare the diffraction of protein crystals that were conventionally prepared against those that were prepared on plates with plate lids. The measurements revealed that the plate lids reduced the rate of evaporation by 63–82%. Crystals grown in 5 nl drops that were set up with plate lids diffracted to higher resolution than similar crystals from drops that were set up without plate lids. The results demonstrate that plate lids can be instrumental for improving few-nanolitre crystallizations. PMID:25484231
Zipper, Lauren E.; Aristide, Xavier; Bishop, Dylan P.; ...
2014-11-28
A method is described for using plate lids to reduce evaporation in low-volume vapor-diffusion crystallization experiments. The plate lids contain apertures through which the protein and precipitants were added to different crystallization microplates (the reservoir was filled before fitting the lids). Plate lids were designed for each of these commonly used crystallization microplates. This system minimizes the dehydration of crystallization droplets containing just a few nanolitres of protein and precipitant, and results in more reproducible diffraction from the crystals. For each lid design, changes in the weight of the plates were used to deduce the rate of evaporation under differentmore » conditions of temperature, air movement, droplet size and precipitant. For comparison, the state of dehydration was also visually assessed throughout the experiment. Finally, X-ray diffraction methods were used to compare the diffraction of protein crystals that were conventionally prepared against those that were prepared on plates with plate lids. The measurements revealed that the plate lids reduced the rate of evaporation by 63–82%. Crystals grown in 5 nl drops that were set up with plate lids diffracted to higher resolution than similar crystals from drops that were set up without plate lids. Ultimately, the results demonstrate that plate lids can be instrumental for improving few-nanolitre crystallizations.« less
Low-magnesium calcite produced by coralline algae in seawater of Late Cretaceous composition
Stanley, Steven M.; Ries, Justin B.; Hardie, Lawrence A.
2002-01-01
Shifts in the Mg/Ca ratio of seawater driven by changes in midocean ridge spreading rates have produced oscillations in the mineralogy of nonskeletal carbonate precipitates from seawater on time scales of 108 years. Since Cambrian time, skeletal mineralogies of anatomically simple organisms functioning as major reef builders or producers of shallow marine limestones have generally corresponded in mineral composition to nonskeletal precipitates. Here we report on experiments showing that the ambient Mg/Ca ratio actually governs the skeletal mineralogy of some simple organisms. In modern seas, coralline algae produce skeletons of high-Mg calcite (>4 mol % MgCO3). We grew three species of these algae in artificial seawaters having three different Mg/Ca ratios. All of the species incorporated amounts of Mg into their skeletons in proportion to the ambient Mg/Ca ratio, mimicking the pattern for nonskeletal precipitation. Thus, the algae calcified as if they were simply inducing precipitation from seawater through their consumption of CO2 for photosynthesis; presumably organic templates specify the calcite crystal structure of their skeletons. In artificial seawater with the low Mg/Ca ratio of Late Cretaceous seas, the algae in our experiments produced low-Mg calcite (<4 mol % MgCO3), the carbonate mineral formed by nonskeletal precipitation in those ancient seas. Our results suggest that many taxa that produce high-Mg calcite today produced low-Mg calcite in Late Cretaceous seas. PMID:12399549
Zhou, Ying; Jiang, Ji; Hu, Pei; Wang, Hongyun
2014-12-01
A rapid, simple and validated method based on liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) has been developed for the determination of granisetron in human plasma. Plasma samples were pre-purified by protein precipitation procedure. The chromatographic separation was achieved with Synergi Polar-RP (75 × 2 mm, 4 µm) column using a mixture of 5 mm pH4.0 ammonium formate and methanol (300:316, v/v) under isocratic conditions at a flow rate of 0.3 mL/min. The detection was performed on a triple quadrupole tandem mass spectrometer in multiple reaction monitoring mode using positive electrospray ionization. The analysis time was about 2.5 min. The method was fully validated over the concentration range 0.1-10 ng/mL. The lower limit of quantification was 0.1 ng/mL. Inter- and intra-batch precision was <6.1% and the accuracy was within 95.6-100.0%. The mean extraction recovery was 96.3%. Selectivity, matrix effect and stability were also validated. The method was applied to the comparative pharmacokinetic study of granisetron in Chinese healthy subjects. Copyright © 2014 John Wiley & Sons, Ltd.
New visible and selective DNA staining method in gels with tetrazolium salts.
Paredes, Aaron J; Naranjo-Palma, Tatiana; Alfaro-Valdés, Hilda M; Barriga, Andrés; Babul, Jorge; Wilson, Christian A M
2017-01-15
DNA staining in gels has historically been carried out using silver staining and fluorescent dyes like ethidium bromide and SYBR Green I (SGI). Using fluorescent dyes allows recovery of the analyte, but requires instruments such as a transilluminator or fluorimeter to visualize the DNA. Here we described a new and simple method that allows DNA visualization to the naked eye by generating a colored precipitate. It works by soaking the acrylamide or agarose DNA gel in SGI and nitro blue tetrazolium (NBT) solution that, when exposed to sunlight, produces a purple insoluble formazan precipitate that remains in the gel after exposure to light. A calibration curve made with a DNA standard established a detection limit of approximately 180 pg/band at 500 bp. Selectivity of this assay was determined using different biomolecules, demonstrating a high selectivity for DNA. Integrity and functionality of the DNA recovered from gels was determined by enzymatic cutting with a restriction enzyme and by transforming competent cells after the different staining methods, respectively. Our method showed the best performance among the dyes employed. Based on its specificity, low cost and its adequacy for field work, this new methodology has enormous potential benefits to research and industry. Copyright © 2016 Elsevier Inc. All rights reserved.
Katharopoulos, Efstathios; Touloupi, Katerina; Touraki, Maria
2016-08-01
The present study describes the development of a simple and efficient screening system that allows identification and quantification of nine bacteriocins produced by Lactococcus lactis. Cell-free L. lactis extracts presented a broad spectrum of antibacterial activity, including Gram-negative bacteria, Gram-positive bacteria, and fungi. The characterization of their sensitivity to pH, and heat, showed that the extracts retained their antibacterial activity at extreme pH values and in a wide temperature range. The loss of antibacterial activity following treatment of the extracts with lipase or protease suggests a lipoproteinaceous nature of the produced antimicrobials. The extracts were subjected to a purification protocol that employs a two phase extraction using ammonium sulfate precipitation and organic solvent precipitation, followed by ion exchange chromatography, solid phase extraction and HPLC. In the nine fractions that presented antimicrobial activity, bacteriocins were quantified by the turbidometric method using a standard curve of nisin and by the HPLC method with nisin as the external standard, with both methods producing comparable results. Turbidometry appears to be unique in the qualitative determination of bacteriocins but the only method suitable to both separate and quantify the bacteriocins providing increased sensitivity, accuracy, and precision is HPLC. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Milliere, Laure; Verrecchia, Eric; Gussone, Nikolaus
2014-05-01
Calcium (Ca), carbon (C) and oxygen (O) are important elements in terrestrial environment, as their biogeochemical cycles are directly related to the storage of atmospheric carbon. Nevertheless, contrarily to C and O, Ca isotope composition has been only poorly studied in the terrestrial carbonates. Needle Fibre Calcite (NFC) is one of the most common pedogenic carbonates, unless its origin is still under debate. Recent studies explain its formation by precipitation inside fungal hyphae. Due to this possible biogenic origin, NFC can be considered as a potential bridge between the biochemistry (precipitation inside organic structure) and geochemistry (pedogenic carbonate related to soil conditions) of the Ca. Thus, the study of the Ca isotope composition of NFC seem to be of first interest in order to shed light on the behaviour of Ca in terrestrial environment, especially when precipitation of secondary carbonates is involved. The sampling site is situated in the Swiss Jura Mountains and has been chosen due to a previous complete study of the C and O isotope composition of NFC in relation to the ecosystem, which represent a good precondition for the understanding of the NFC Ca isotope signatures in this context. In this study, the implication of the fungi in the origin of NFC is investigated, by comparing the Ca isotope composition of NFC and a purely physicochemical calcite cement (LCC), both precipitated in the same environment. The δ44Ca signature of NFC and LCC crystals were used to determine possible differences of the precipitation rate during their formation. NFC and LCC have similar δ18O composition and are supposed to precipitate at the same temperature (Milliere et al., 2011a). Thus the study of Ca isotope composition of NFC seems to demonstrate that the elongated shape of the calcite needle can be explained by different precipitation processes than the rhombohedric calcite crystals precipitated in the same environment; and more precisely, the specific shape of NFC could be ascribed to a growth related to fungal organic molecules or potentially inside fungal hyphae. Three microscopic morphologies of NFC, previously defined (Milliere et al., 2011a), have been also examined in order to trace the evolution of the NFC inside the soil porosity. The Ca isotope composition of the simple needles, which are supposed to be the original form of NFC are the less fractionated compared to the soil solution, whereas the Ca isotope composition of the two other microscopic morphologies, namely the simple needle with nanofibres and the simple needle with overgrowths, are more fractionated, like the LCC, indicating potentially the influence of biogenic processes in the formation of the simple needles. Milliere L, Hasinger O, Bindschedler S, Cailleau G, Spangenberg JE, Verrecchia EP. 2011a. Stable carbon and oxygen isotopic signatures of pedogenic needle fibre calcite. Geoderma 161, 74-87.
Zeitoun, Ramsey I; Goudie, Marcus J; Zwier, Jacob; Mahawilli, David; Burns, Mark A
2011-12-07
Nanolitre droplets in microfluidic devices can be used to perform thousands of independent chemical and biological experiments while minimizing reagents, cost and time. However, the absence of simple and versatile methods capable of controlling the contents of these nanolitre chemical systems limits their scientific potential. To address this, we have developed a method that is simple to fabricate and can continuously control nanolitre chemical systems by integrating a time-resolved convective flow signal across a permeable membrane wall. With this method, we can independently control the volume and concentration of nanolitre-sized drops without ever directly contacting the fluid. Transport occurring in these systems was also analyzed and thoroughly characterized. We achieved volumetric fluid introduction and removal rates ranging from 0.23 to 4.0 pL s(-1). Furthermore, we expanded this method to perform chemical processes. We precipitated silver chloride using a flow signal of sodium chloride and silver nitrate droplets. From there, we were able to separate sodium chloride reactants with a water flow signal, and dissolve silver chloride solids with an ammonia hydroxide flow signal. Finally, we demonstrate the potential to deliver large molecules and perform physical processes like crystallization and particle packing.
A simple and facile synthesis of MPA capped CdSe and CdSe/CdS core/shell nanoparticles
NASA Astrophysics Data System (ADS)
Sukanya, D.; Sagayaraj, P.
2015-06-01
II-VI semiconductor nanostructures, in particular, CdSe quantum dots have drawn a lot of attention because of their promising potential applications in biological tagging, photovoltaic, display devices etc. due to their excellent optical properties, high emission quantum yield, size dependent emission wavelength and high photostability. In this paper, we describe the synthesis and properties of mercaptopropionic acid capped CdSe and CdSe/CdS nanoparticles through a simple and efficient co-precipitation method followed by hydrothermal treatment. The growth process, characterization and the optical absorption as a function of wavelength for the synthesized MPA capped CdSe and CdSe/CdS nanoparticles have been determined using X-ray diffraction study (XRD), Ultraviolet-Visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FT-IR) and High Resolution Transmission Electron Microscopy (HRTEM).
NASA Astrophysics Data System (ADS)
Lalithadevi, B.; Mohan Rao, K.; Ramananda, D.
2018-05-01
Following a green synthesis method, zinc sulfide (ZnS) nanoparticles were prepared by chemical co-precipitation technique using starch as capping agent. Microwave irradiation was used as heating source. X-ray diffraction studies indicated that nanopowders obtained were polycrystalline possessing ZnS simple cubic structure. Transmission electron microscopic studies indicated that starch limits the agglomeration by steric stabilization. Interaction between ZnS and starch was confirmed by Fourier transform infrared spectroscopy as well as Raman scattering studies. Quantum size effects were observed in optical absorption studies while quenching of defect states on nanoparticles was improved with increase in starch addition as indicated by photoluminescence spectra.
A study of the influence of soil moisture on future precipitation
NASA Technical Reports Server (NTRS)
Fennessy, M. J.; Sud, Y. C.
1983-01-01
Forty years of precipitation and surface temperature data observed over 261 Local Climatic Data (LCD) stations in the Continental United States was utilized in a ground hydrology model to yield soil moisture time series at each station. A month-by-month soil moisture dataset was constructed for each year. The monthly precipitation was correlated with antecedent monthly precipitation, soil moisture and vapotranspiration separately. The maximum positive correlation is found to be in the drought prone western Great Plains region during the latter part of summer. There is also some negative correlation in coastal regions. The correlations between soil moisture and precipitation particularly in the latter part of summer, suggest that large scale droughts over extended periods may be partially maintained by the feedback influence of soil moisture on rainfall. In many other regions the lack of positive correlation shows that there is no simple answer such as higher land-surface evapotranspiration leads to more precipitation, and points out the complexity of the influence of soil moisture on the ensuring precipitation.
NASA Astrophysics Data System (ADS)
Cook, L. M.; Samaras, C.; McGinnis, S. A.
2017-12-01
Intensity-duration-frequency (IDF) curves are a common input to urban drainage design, and are used to represent extreme rainfall in a region. As rainfall patterns shift into a non-stationary regime as a result of climate change, these curves will need to be updated with future projections of extreme precipitation. Many regions have begun to update these curves to reflect the trends from downscaled climate models; however, few studies have compared the methods for doing so, as well as the uncertainty that results from the selection of the native grid scale and temporal resolution of the climate model. This study examines the variability in updated IDF curves for Pittsburgh using four different methods for adjusting gridded regional climate model (RCM) outputs into station scale precipitation extremes: (1) a simple change factor applied to observed return levels, (2) a naïve adjustment of stationary and non-stationary Generalized Extreme Value (GEV) distribution parameters, (3) a transfer function of the GEV parameters from the annual maximum series, and (4) kernel density distribution mapping bias correction of the RCM time series. Return level estimates (rainfall intensities) and confidence intervals from these methods for the 1-hour to 48-hour duration are tested for sensitivity to the underlying spatial and temporal resolution of the climate ensemble from the NA-CORDEX project, as well as, the future time period for updating. The first goal is to determine if uncertainty is highest for: (i) the downscaling method, (ii) the climate model resolution, (iii) the climate model simulation, (iv) the GEV parameters, or (v) the future time period examined. Initial results of the 6-hour, 10-year return level adjusted with the simple change factor method using four climate model simulations of two different spatial resolutions show that uncertainty is highest in the estimation of the GEV parameters. The second goal is to determine if complex downscaling methods and high-resolution climate models are necessary for updating, or if simpler methods and lower resolution climate models will suffice. The final results can be used to inform the most appropriate method and climate model resolutions to use for updating IDF curves for urban drainage design.
ERIC Educational Resources Information Center
Gilbert, George L., Ed.
1988-01-01
Describes two demonstrations for college level chemistry courses including: "Electrochemical Cells Using Sodium Silicate" and "A Simple, Vivid Demonstration of Selective Precipitation." Lists materials, preparation, procedures, and precautions. (CW)
NASA Astrophysics Data System (ADS)
Moshtaghi, Saeed; Gholamrezaei, Sousan; Salavati Niasari, Masoud
2017-04-01
In this work, nanocubes of CaSnO3 have been prepared by a simple and green co-precipitation method. In this technique, for preparation of calcium stannate, we have used from a complex structure of calcium as a new precursor and the synthesis of CaSnO3 have been done in water as a green solvent. Using of complexing precursors were created a congestion in reaction medium. Different conditions have been studied in synthetic approaches and optimized the effect of different parameters on the morphology of product such as precipitation agent (alkaline), pH, temperature, the rate of stirrer, surfactants and the mole ratio of surfactants for preparation product and obtain the best product in terms of quality and morphology. By using of this CaSnO3, two types of azo dyes (acid blue 92 and acid brown 14) have been degraded at presence of ultraviolet light from aqueous solution. Results display that the powder shows appropriate catalytic behavior for degradation of dyes (77% acid brown 14 and 67% acid black 92). Therefore these nano-cube structures have been used as photocatalysts in presence of UV light for degradation of azo dyes.
Investigating the Control of Ocean-Atmospheric Oscillations on Global Terrestrial Evaporation
NASA Astrophysics Data System (ADS)
Martens, B.; Waegeman, W.; Dorigo, W.; Verhoest, N.; Miralles, D. G.
2017-12-01
Intra-annual and multi-decadal variability in Earth's climate is strongly driven by periodic oscillations in the coupled state of our atmosphere and ocean. These oscillations do not only impact climate in nearby regions, but can also have an effect on the climate in remote areas, a phenomenon that is often referred to as teleconnection. Because changes in local climate immediately affect terrestrial ecosystems through a series of complex processes, ocean-atmospheric oscillations are expected to influence land evaporation; i.e. the return flux of water from land into the atmosphere. In this presentation, the effects of ocean-atmospheric oscillations on global terrestrial evaporation are analysed. We use multi-decadal, satellite-based observations of different climate variables (air temperature, radiation, precipitation) in combination with a simple supervised learning method - the Least Absolute Shrinkage and Selection Operator - to detect the impact of sixteen leading ocean-atmospheric oscillations on terrestrial evaporation. The latter is retrieved using the Global Land Evaporation Amsterdam Model (GLEAM). The analysis reveals hotspot regions in which more than 30% of the inter-annual variability in terrestrial evaporation can be explained by ocean-atmospheric oscillations. The impact is different per region and season, and can typically be attributed to a small subset of oscillations. For instance, the dynamics in terrestrial evaporation over eastern Australia are substantially impacted by both the El Niño Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) during Austral spring. Using the same learning method, but targeting terrestrial evaporation based on its local climatic drivers (air temperature, precipitation, and radiation), shows the dominant control of precipitation on terrestrial evaporation in Australia, suggesting that both ENSO and IOD affect the precipitation, in his turn influencing evaporation. The latter is confirmed by regressing precipitation to the ocean-atmospheric oscillations. The results of our study allow for a better understanding of the link between ocean-atmosphere dynamics and terrestrial bio-geochemical cycles, and may help improve the prediction of future changes in the water cycle over the continents.
Garg, Uttam; Munar, Ada; Frazee, Clinton; Scott, David
2012-09-01
Vitamin D plays a vital role not only in bone health but also in pathophysiology of many other body functions. In recent years, there has been significant increase in testing of 25-hydroxyvitamin D (25-OH vitamin D), a marker of vitamin D deficiency. The most commonly used methods for the measurement of 25-OH vitamin D are immunoassays and liquid chromatography tandem mass spectrometry (LC-MS-MS). Since immunoassays suffer from inaccuracies and interferences, LC-MS-MS is a preferred method. In LC-MS-MS methods, 25-OH vitamin D is extracted from serum or plasma by solid-phase or liquid-phase extraction. Because these extraction methods are time consuming, we developed an easy method that uses simple protein precipitation followed by injection of the supernatant to LC-MS-MS. Several mass-to-charge (m/z) ratio transitions, including commonly used transitions based on water loss, were evaluated and several tube types were tested. The optimal transitions for 25-OH vitamin D2 and D3 were 395.5 > 269.5 and 383.4 > 257.3, respectively. The reportable range of the method was 1-100 ng/mL, and repeatability (within-run) and within-laboratory imprecision were <4% and <6%, respectively. The method agreed well with the solid-phase extraction methods. © 2012 Wiley Periodicals, Inc.
Effect of Time-Dependent Pinning Pressure on Abnormal Grain Growth: Phase Field Simulation
NASA Astrophysics Data System (ADS)
Kim, Jeong Min; Min, Guensik; Shim, Jae-Hyeok; Lee, Kyung Jong
2018-05-01
The effect of the time-dependent pinning pressure of precipitates on abnormal grain growth has been investigated by multiphase field simulation with a simple precipitation model. The application of constant pinning pressure is problematic because it always induces abnormal grain growth or no grain growth, which is not reasonable considering the real situation. To produce time-dependent pinning pressure, both precipitation kinetics and precipitate coarsening kinetics have been considered with two rates: slow and fast. The results show that abnormal grain growth is suppressed at the slow precipitation rate. At the slow precipitation rate, the overall grain growth caused by the low pinning pressure in the early stage indeed plays a role in preventing abnormal grain growth by reducing the mobility advantage of abnormal grains. In addition, the fast precipitate coarsening rate tends to more quickly transform abnormal grain growth into normal grain growth by inducing the active growth of grains adjacent to the abnormal grains in the early stage. Therefore, the present study demonstrates that the time dependence of the pinning pressure of precipitates is a critical factor that determines the grain growth mode.
Effect of Time-Dependent Pinning Pressure on Abnormal Grain Growth: Phase Field Simulation
NASA Astrophysics Data System (ADS)
Kim, Jeong Min; Min, Guensik; Shim, Jae-Hyeok; Lee, Kyung Jong
2018-03-01
The effect of the time-dependent pinning pressure of precipitates on abnormal grain growth has been investigated by multiphase field simulation with a simple precipitation model. The application of constant pinning pressure is problematic because it always induces abnormal grain growth or no grain growth, which is not reasonable considering the real situation. To produce time-dependent pinning pressure, both precipitation kinetics and precipitate coarsening kinetics have been considered with two rates: slow and fast. The results show that abnormal grain growth is suppressed at the slow precipitation rate. At the slow precipitation rate, the overall grain growth caused by the low pinning pressure in the early stage indeed plays a role in preventing abnormal grain growth by reducing the mobility advantage of abnormal grains. In addition, the fast precipitate coarsening rate tends to more quickly transform abnormal grain growth into normal grain growth by inducing the active growth of grains adjacent to the abnormal grains in the early stage. Therefore, the present study demonstrates that the time dependence of the pinning pressure of precipitates is a critical factor that determines the grain growth mode.
On the Vertical Distribution of Local and Remote Sources of Water for Precipitation
NASA Technical Reports Server (NTRS)
Bosilovich, Michael G.
2001-01-01
The vertical distribution of local and remote sources of water for precipitation and total column water over the United States are evaluated in a general circulation model simulation. The Goddard Earth Observing System (GEOS) general circulation model (GCM) includes passive constituent tracers to determine the geographical sources of the water in the column. Results show that the local percentage of precipitable water and local percentage of precipitation can be very different. The transport of water vapor from remote oceanic sources at mid and upper levels is important to the total water in the column over the central United States, while the access of locally evaporated water in convective precipitation processes is important to the local precipitation ratio. This result resembles the conceptual formulation of the convective parameterization. However, the formulations of simple models of precipitation recycling include the assumption that the ratio of the local water in the column is equal to the ratio of the local precipitation. The present results demonstrate the uncertainty in that assumption, as locally evaporated water is more concentrated near the surface.
Design of a global soil moisture initialization procedure for the simple biosphere model
NASA Technical Reports Server (NTRS)
Liston, G. E.; Sud, Y. C.; Walker, G. K.
1993-01-01
Global soil moisture and land-surface evapotranspiration fields are computed using an analysis scheme based on the Simple Biosphere (SiB) soil-vegetation-atmosphere interaction model. The scheme is driven with observed precipitation, and potential evapotranspiration, where the potential evapotranspiration is computed following the surface air temperature-potential evapotranspiration regression of Thomthwaite (1948). The observed surface air temperature is corrected to reflect potential (zero soil moisture stress) conditions by letting the ratio of actual transpiration to potential transpiration be a function of normalized difference vegetation index (NDVI). Soil moisture, evapotranspiration, and runoff data are generated on a daily basis for a 10-year period, January 1979 through December 1988, using observed precipitation gridded at a 4 deg by 5 deg resolution.
Characteristics of HgS nanoparticles formed in hair by a chemical reaction
NASA Astrophysics Data System (ADS)
Patriarche, G.; Walter, P.; Van Elslande, E.; Ayache, J.; Castaing, J.
2013-01-01
A chemical reaction, derived from an ancient recipe for hair dyeing, is used to precipitate nanoparticles of mercury sulphide in hair by the simple process of immersion in a water solution of Ca(OH)2 and HgO. After several days, HgS nanoparticles appear throughout the hair and are particularly numerous in the various interfaces. The formation of these nanoparticles has been studied by analytical and atomic resolution electron microscopy. High resolution quantitative analysis allowed the determination of two varieties of HgS precipitate crystal structures formed: a hexagonal cinnabar and a cubic metacinnabar structure. This very simple process of a chemical reaction in hair is a particularly inexpensive way to fabricate semiconductor sulphide nanoparticles with specific properties.
Composite nanoplatelets combining soft-magnetic iron oxide with hard-magnetic barium hexaferrite
NASA Astrophysics Data System (ADS)
Primc, D.; Makovec, D.
2015-01-01
By coupling two different magnetic materials inside a single composite nanoparticle, the shape of the magnetic hysteresis can be engineered to meet the requirements of specific applications. Sandwich-like composite nanoparticles composed of a hard-magnetic Ba-hexaferrite (BaFe12O19) platelet core in between two soft-magnetic spinel iron oxide maghemite (γ-Fe2O3) layers were synthesized using a new, simple and inexpensive method based on the co-precipitation of Fe3+/Fe2+ ions in an aqueous suspension of hexaferrite core nanoparticles. The required close control of the supersaturation of the precipitating species was enabled by the controlled release of the Fe3+ ions from the nitrate complex with urea ([Fe((H2N)2C&z.dbd;O)6](NO3)3) and by using Mg(OH)2 as a solid precipitating agent. The platelet Ba-hexaferrite nanoparticles of different sizes were used as the cores. The controlled coating resulted in an exclusively heterogeneous nucleation and the topotactic growth of the spinel layers on both basal surfaces of the larger hexaferrite nanoplatelets. The direct magnetic coupling between the core and the shell resulted in a strong increase of the energy product |BH|max. Ultrafine core nanoparticles reacted with the precipitating species and homogeneous product nanoparticles were formed, which differ in terms of the structure and composition compared to any other compound in the BaO-Fe2O3 system.By coupling two different magnetic materials inside a single composite nanoparticle, the shape of the magnetic hysteresis can be engineered to meet the requirements of specific applications. Sandwich-like composite nanoparticles composed of a hard-magnetic Ba-hexaferrite (BaFe12O19) platelet core in between two soft-magnetic spinel iron oxide maghemite (γ-Fe2O3) layers were synthesized using a new, simple and inexpensive method based on the co-precipitation of Fe3+/Fe2+ ions in an aqueous suspension of hexaferrite core nanoparticles. The required close control of the supersaturation of the precipitating species was enabled by the controlled release of the Fe3+ ions from the nitrate complex with urea ([Fe((H2N)2C&z.dbd;O)6](NO3)3) and by using Mg(OH)2 as a solid precipitating agent. The platelet Ba-hexaferrite nanoparticles of different sizes were used as the cores. The controlled coating resulted in an exclusively heterogeneous nucleation and the topotactic growth of the spinel layers on both basal surfaces of the larger hexaferrite nanoplatelets. The direct magnetic coupling between the core and the shell resulted in a strong increase of the energy product |BH|max. Ultrafine core nanoparticles reacted with the precipitating species and homogeneous product nanoparticles were formed, which differ in terms of the structure and composition compared to any other compound in the BaO-Fe2O3 system. Electronic supplementary information (ESI) available: Synthesis (ESI #1) and properties (ESI #2) of the barium hexaferrite core nanoparticles, TEM of the nanoparticles synthesized under an excessive supersaturation (ESI #3), and magnetic properties of physical mixtures of the hard-magnetic hexaferrite and the soft-magnetic spinel ferrite (ESI #4). See DOI: 10.1039/c4nr05854b
Tian, Bing-mei; Xie, Xiao-mei; Shen, Pan-pan; Yang, Mo; Zhang, Sheng-long; Tang, Qing-jiu
2015-05-01
Chaenomeles speciosa fruits were extracted using water. The extracts were precipitated with 20%~95% (φ) ethanol, respectively. The amount of total polysaccharide was measured with phenol-sulfuric acid method. A method using high-performance size-exclusion chromatography (HPSEC) equipped with multiangle laser-light-scattering photometry (MALLS) and differential refractometry (RI) was presented for determining the molecular weight and molecular weigh distribution. RAW264.7 macrophage were cultured and stimulated with the polysaccharides in vitro and the production of nitric oxide in the cells was determined by the Griess assay. The aim of the study is to determine the amount and the molecular weight of the polysaccharides from Chaenomeles speciosa fruits, and preliminary investigate the immunomodulatory activity, The study provided the basis datas for the further research of Chaenomeles speciosa fruits. , and provided a simple and system method for the research of natural polysaccharide. The ethanol fractional precipitation showed that the order of total polysaccharide content was 95%>80%>40% ≥60%>20%. The results indicated that most polysaccharide from Chaenomeles speciosa fruits might be precipitated when ethanol concentration was up to 95% (T) and the crude polysaccharide purity had risen from 35. 1% to 45. 0% when the concentration of ethanol increased from 20% to 95%. HPSEC-MALLS-RI system showed that all the polysaccharide samples had the similar compositions. They appeared three chromatographic peaks and the retention time were not apparently different. The Mw were 6. 570 X 10(4) g . mol-1 and 1. 393 X 10(4) g . mol-1 respectively, and one less than 10 000 which was failure to obtain accurate values. The molecular weight of the first two polysaccharide distribution index(Mw/Mn)were 1. 336 and 1. 639 respectively. The polysaccharide samples had not exhibited immunomodulatory activity assessed on the basis of nitric oxide production by RAW264. 7 macrophage cells in the experiment.
Irii, Toshiaki; Maebashi, Kyoko; Fukui, Kenji; Sohma, Ryoko; Matsumoto, Sari; Takasu, Shojiro; Iwadate, Kimiharu
2016-05-01
Investigation of drug-related crimes, such as violation of the Stimulant Drug Control Law, requires identifying the used drug (mainly stimulant drugs, methamphetamine hydrochloride) from a drug solution and the DNA type of the drug user from a trace of blood left in the syringe used to inject the drug. In current standard test procedures, DNA typing and methamphetamine detection are performed as independent tests that use two separate portions of a precious sample. The sample can be entirely used up by either analysis. Therefore, we developed a new procedure involving partial lysis of a stimulant-containing blood sample followed by separation of the lysate into a precipitate for DNA typing and a liquid-phase fraction for methamphetamine detection. The method enables these two tests to be run in parallel using a single portion of sample. Samples were prepared by adding methamphetamine hydrochloride water solution to blood. Samples were lysed with Proteinase K in PBS at 56°C for 20min, cooled at -20°C after adding methanol, and then centrifuged at 15,000rpm. Based on the biopolymer-precipitating ability of alcohol, the precipitate was used for DNA typing and the liquid-phase fraction for methamphetamine detection. For DNA typing, the precipitate was dissolved and DNA was extracted, quantified, and subjected to STR analysis using the AmpFℓSTR® Identifiler® Plus PCR Amplification Kit. For methamphetamine detection, the liquid-phase fraction was evaporated with N2 gas after adding 20μL acetic acid and passed through an extraction column; the substances captured in the column were eluted with a solvent, derivatized, and quantitatively detected using gas chromatograph/mass spectrometry. This method was simple and could be completed in approximately 2h. Both DNA typing and methamphetamine detection were possible, which suggests that this method may be valuable for use in criminal investigations. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
ERIC Educational Resources Information Center
Salinas, Dino G.; Reyes, Juan G.
2015-01-01
Qualitative questions are proposed to assess the understanding of solubility and some of its applications. To improve those results, a simple quantitative problem on the precipitation of proteins is proposed.
Quantitative studies of sulphate conjugation by isolated rat liver cells using [35S]sulphate.
Dawson, J; Knowles, R G; Pogson, C I
1991-06-21
We have developed a simple, rapid and sensitive method for the study of sulphate conjugation in isolated liver cells based on the incorporation of 35S from [35S]sulphate. Excess [35S]sulphate is removed by a barium precipitation procedure, leaving [35S]sulphate conjugates in solution. We have used this method to examine the kinetics of sulphation of N-acetyl-p-aminophenol (acetaminophen), 4-nitrophenol and 1-naphthol in isolated rat liver cells. The efficiency of recovery of the sulphate conjugates was greater than 86%. The method is applicable to the quantitative study of sulphate conjugation of any substrate which forms a sulphate conjugate that is soluble in the presence of barium, without the need for standards or radiolabelled sulphate acceptors.
NASA Astrophysics Data System (ADS)
Ose, T.
2016-12-01
Seasonally varying land surface air temperature (SAT) is basically responsible for the occurrence of the Asia Monsoon precipitation whereas the precipitation may play more important roles in the appearance and variability of the Asia Monsoon circulations. A simple and basic analysis on model biases of land SAT simulations over the Eurasian Continent is done to find necessary improvements of land surface treatment in the models, their relationship with model precipitation and their influences to future projections. Specifically, the Empirical Orthogonal Function (EOF) analysis is applied to land SATs of the CMIP5 present-day's simulation (the June-July-August average during 1975-1999) ensemble. Associated biases of precipitation and other Asia Monsoon elements are obtained by the regression method onto the obtained EOF coefficients. The first EOF is the SAT bias over the dry region of the Eurasia. Positive deviations of the 1st EOF coefficient indicate northwestward shift of the Asia Monsoon System; northwestward (or inner-continent-ward) shifts of precipitation, the Tibetan High, the low-level jet, the Pacific High and so on. The second EOF is the SAT bias over the northeast Eurasia. It is interesting that warmer land SAT bias over the northeast Asia is related to more wet condition over East Asia like in early summer; southward shift of westerly jet and precipitation band in East Asia. The third one indicates the SAT bias over the Eurasian region between the 1st and 2nd EOF SAT regions. However, this EOF may be characterized by the accompanied model precipitation bias over the subtropical Northwest Pacific like in late summer; northeastward shift of upper westerly jet in the eastern Asia and the weak Pacific High in the subtropical Northwest Pacific. The most intrigued feature is a connection of the 3rd EOF with the future change of SAT in the extra-tropical Northern Hemisphere in the CMIP5 projections. This fact may indicate that precipitation climatology in the Asia Monsoon is an important factor in the heat budget of the northern summer in the future change as well as the present-day simulation.
NASA Technical Reports Server (NTRS)
Tao, Wei Kuo; Chen, C.-S.; Jia, Y.; Baker, D.; Lang, S.; Wetzel, P.; Lau, W. K.-M.
2001-01-01
Several heavy precipitation episodes occurred over Taiwan from August 10 to 13, 1994. Precipitation patterns and characteristics are quite different between the precipitation events that occurred from August 10 and I I and from August 12 and 13. In Part I (Chen et al. 2001), the environmental situation and precipitation characteristics are analyzed using the EC/TOGA data, ground-based radar data, surface rainfall patterns, surface wind data, and upper air soundings. In this study (Part II), the Penn State/NCAR Mesoscale Model (MM5) is used to study the precipitation characteristics of these heavy precipitation events. Various physical processes (schemes) developed at NASA Goddard Space Flight Center (i.e., cloud microphysics scheme, radiative transfer model, and land-soil-vegetation surface model) have recently implemented into the MM5. These physical packages are described in the paper, Two way interactive nested grids are used with horizontal resolutions of 45, 15 and 5 km. The model results indicated that Cloud physics, land surface and radiation processes generally do not change the location (horizontal distribution) of heavy precipitation. The Goddard 3-class ice scheme produced more rainfall than the 2-class scheme. The Goddard multi-broad-band radiative transfer model reduced precipitation compared to a one-broad band (emissivity) radiation model. The Goddard land-soil-vegetation surface model also reduce the rainfall compared to a simple surface model in which the surface temperature is computed from a Surface energy budget following the "force-re store" method. However, model runs including all Goddard physical processes enhanced precipitation significantly for both cases. The results from these runs are in better agreement with observations. Despite improved simulations using different physical schemes, there are still some deficiencies in the model simulations. Some potential problems are discussed. Sensitivity tests (removing either terrain or radiative processes) are performed to identify the physical processes that determine the precipitation patterns and characteristics for heavy rainfall events. These sensitivity tests indicated that terrain can play a major role in determining the exact location for both precipitation events. The terrain can also play a major role in determining the intensity of precipitation for both events. However, it has a large impact on one event but a smaller one on the other. The radiative processes are also important for determining, the precipitation patterns for one case but. not the other. The radiative processes can also effect the total rainfall for both cases to different extents.
NASA Astrophysics Data System (ADS)
Hirota, N.; Takayabu, Y. N.; Watanabe, M.; Kimoto, M.; Chikira, M.
2013-12-01
This study shows that a proper treatment of convective entrainment is essential in determining spatial distributions and temporal variations of precipitation by numerical experiments. They have performed and compared four experiments with different entrainment characteristics: a control (Ctl), no entrainment (NoEnt), original Arakawa Schubert (AS), and AS with simple empirical suppression of convection (ASRH). The fractional entrainment rate of AS and ASRH are constant for each cloud type and are very small near cloud base compared to Ctl, in which half of buoyancy-generated energy is consumed by the entrainment. Ctl well reproduces the spatial and temporal variations, whereas NoEnt and AS, which are very similar to each other, significantly underestimated the variations with the so-called the double ITCZ problem. The enhanced variations in Ctl are due to the larger entrainment that strengthens the coupling of convection and free tropospheric humidity. Time variations are also more realistic in Ctl; mid-height convection moistens mid-troposphere and large precipitation events occur after sufficient moisture is available. In contrast, deep convection is more frequent but with smaller precipitation amount in NoEnt and AS. ASRH shows smaller spatial but excessive temporal variations suggesting that its empirical suppression condition is too simple and a more sophisticated formulation is required for more realistic precipitation variations. This study was supported by the Ministry of Education, Culture, Sports, Science and Technology (GRENE), and by the Ministry of the Environment (2A-1201), Japan.
NASA Astrophysics Data System (ADS)
Roberts, Michael J.; Braun, Noah O.; Sinclair, Thomas R.; Lobell, David B.; Schlenker, Wolfram
2017-09-01
We compare predictions of a simple process-based crop model (Soltani and Sinclair 2012), a simple statistical model (Schlenker and Roberts 2009), and a combination of both models to actual maize yields on a large, representative sample of farmer-managed fields in the Corn Belt region of the United States. After statistical post-model calibration, the process model (Simple Simulation Model, or SSM) predicts actual outcomes slightly better than the statistical model, but the combined model performs significantly better than either model. The SSM, statistical model and combined model all show similar relationships with precipitation, while the SSM better accounts for temporal patterns of precipitation, vapor pressure deficit and solar radiation. The statistical and combined models show a more negative impact associated with extreme heat for which the process model does not account. Due to the extreme heat effect, predicted impacts under uniform climate change scenarios are considerably more severe for the statistical and combined models than for the process-based model.
Gott, Matthew D; Hayes, Connor R; Wycoff, Donald E; Balkin, Ethan R; Smith, Bennett E; Pauzauskie, Peter J; Fassbender, Michael E; Cutler, Cathy S; Ketring, Alan R; Wilbur, D Scott; Jurisson, Silvia S
2016-08-01
Novel, natural abundance metal disulfide targets were irradiated for 1h with a 10µA proton beam in a small, medical cyclotron. Osmium disulfide was synthesized by simple distillation and precipitation methods while MoS2 and WS2 were commercially available. The targets dissolved under mild conditions and were analyzed by γ-spectroscopy. Production rates and potential applications are discussed, including target recovery and recycling schemes for OsS2 and WS2. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pang, Huan; Zhang, Yizhou; Cheng, Tao; Lai, Wen-Yong; Huang, Wei
2015-10-14
Uniform manganese hexacyanoferrate hydrate nanocubes are prepared via a simple chemical precipitation method at room temperature. Due to both micro/mesopores of the Prussian blue analogue and nanocubic structures, the manganese hexacyanoferrate hydrate nanocubes allow the efficient charge transfer and mass transport for electrolyte solution and chemical species. Thus, the manganese hexacyanoferrate hydrate nanocube electrode shows a good rate capability and cycling stability for electrochemical capacitors. Furthermore, electrodes modified with manganese hexacyanoferrate hydrate nanocubes demonstrate a sensitive electrochemical response to hydrogen peroxide (H2O2) in buffer solutions with a high selectivity.
Wang, Feng-Lei; Zhang, Li-Ying; Zhang, Ya-Fei
2008-11-22
SiC nanowires have been synthesized at 1,600 degrees C by using a simple and low-cost method in a high-frequency induction furnace. The commercial SiO powder and the arc-discharge plasma pretreated carbon black were mixed and used as the source materials. The heating-up and reaction time is less than half an hour. It was found that most of the nanowires have core-shell SiC/SiO(2) nanostructures. The nucleation, precipitation, and growth processes were discussed in terms of the oxide-assisted cluster-solid mechanism.
Parker, Suzanne L; Lipman, Jeffrey; Roberts, Jason A; Wallis, Steven C
2015-02-01
A high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, using hydrophilic interaction liquid chromatography (HILIC) chromatography for the analysis of fosfomycin in human plasma and urine, has been developed and validated. The plasma method uses a simple protein precipitation using a low volume sample (10 μL) and is suitable for the concentration range of 1 to 2000 μg/mL. The urine method involves a simple dilution of 10 μL of sample and is suitable for a concentration range of 0.1 to 10 mg/mL. The plasma and urine results, reported, respectively, are for recovery (68, 72%), inter-assay precision (≤9.1%, ≤8.1%) and accuracy (range -7.2 to 3.3%, -1.9 to 1.6%), LLOQ precision (4.7%, 3.1%) and accuracy (1.7% and 1.2%), and includes investigations into the linearity, stability and matrix effects. The method was used in a pilot pharmacokinetic study of a critically ill patient receiving i.v. fosfomycin, which measured a maximum and minimum plasma concentration of 222 μg/mL and 172 μg/mL, respectively, after the initial dose, and a maximum and minimum plasma concentration of 868 μg/mL and 591μg/mL, respectively, after the fifth dose. The urine concentration was 2.03 mg/mL after the initial dose and 0.29 mg/mL after the fifth dose. Copyright © 2014 Elsevier B.V. All rights reserved.
Bihan, Kevin; Sauzay, Chloé; Goldwirt, Lauriane; Charbonnier-Beaupel, Fanny; Hulot, Jean-Sebastien; Funck-Brentano, Christian; Zahr, Noël
2015-02-01
Vemurafenib (Zelboraf) is a new tyrosine kinase inhibitor that selectively targets activated BRAF V600E gene and is indicated for the treatment of advanced BRAF mutation-positive melanoma. We developed a simple method for vemurafenib quantification using liquid chromatography-tandem mass spectrometry. A stability study of vemurafenib in human plasma was also performed. (13)C(6)-vemurafenib was used as the internal standard. A single-step protein precipitation was used for plasma sample preparation. Chromatography was performed on an Acquity UPLC system (Waters) with chromatographic separation by the use of an Acquity UPLC BEH C18 column (2.1 × 50 mm, 1.7-mm particle size; Waters). Quantification was performed using the monitoring of multiple reactions of following transitions: m/z 488.2 → 381.0 for vemurafenib and m/z 494.2 → 387.0 for internal standard. This method was linear over the range from 1.0 to 100.0 mcg/mL. The lower limit of quantification was 0.1 mcg/mL for vemurafenib in plasma. Vemurafenib remained stable for 1 month at all levels tested, when stored indifferently at room temperature (20 °C), at +4 °C, or at -20 °C. This method was used successfully to perform a plasma pharmacokinetic study of vemurafenib in a patient after oral administration at a steady state. This liquid chromatography-tandem mass spectrometry method for vemurafenib quantification in human plasma is simple, rapid, specific, sensitive, accurate, precise, and reliable.
The impacts of changing transport and precipitation on pollutant distributions in a future climate
NASA Astrophysics Data System (ADS)
Fang, Yuanyuan; Fiore, Arlene M.; Horowitz, Larry W.; Gnanadesikan, Anand; Held, Isaac; Chen, Gang; Vecchi, Gabriel; Levy, Hiram
2011-09-01
Air pollution (ozone and particulate matter in surface air) is strongly linked to synoptic weather and thus is likely sensitive to climate change. In order to isolate the responses of air pollutant transport and wet removal to a warming climate, we examine a simple carbon monoxide-like (CO) tracer (COt) and a soluble version (SAt), both with the 2001 CO emissions, in simulations with the Geophysical Fluid Dynamics Laboratory chemistry-climate model (AM3) for present (1981-2000) and future (2081-2100) climates. In 2081-2100, projected reductions in lower-tropospheric ventilation and wet deposition exacerbate surface air pollution as evidenced by higher surface COt and SAt concentrations. However, the average horizontal general circulation patterns in 2081-2100 are similar to 1981-2000, so the spatial distribution of COt changes little. Precipitation is an important factor controlling soluble pollutant wet removal, but the total global precipitation change alone does not necessarily indicate the sign of the soluble pollutant response to climate change. Over certain latitudinal bands, however, the annual wet deposition change can be explained mainly by the simulated changes in large-scale (LS) precipitation. In regions such as North America, differences in the seasonality of LS precipitation and tracer burdens contribute to an apparent inconsistency of changes in annual wet deposition versus annual precipitation. As a step toward an ultimate goal of developing a simple index that can be applied to infer changes in soluble pollutants directly from changes in precipitation fields as projected by physical climate models, we explore here a "Diagnosed Precipitation Impact" (DPI) index. This index captures the sign and magnitude (within 50%) of the relative annual mean changes in the global wet deposition of the soluble pollutant. DPI can only be usefully applied in climate models in which LS precipitation dominates wet deposition and horizontal transport patterns change little as climate warms. Our findings support the need for tighter emission regulations, for both soluble and insoluble pollutants, to obtain a desired level of air quality as climate warms.
Prasad, Thatipamula R; Joseph, Siji; Kole, Prashant; Kumar, Anoop; Subramanian, Murali; Rajagopalan, Sudha; Kr, Prabhakar
2017-11-01
Objective of the current work was to develop a 'green chemistry' compliant selective and sensitive supercritical fluid chromatography-tandem mass spectrometry method for simultaneous estimation of risperidone (RIS) and its chiral metabolites in rat plasma. Methodology & results: Agilent 1260 Infinity analytical supercritical fluid chromatography system resolved RIS and its chiral metabolites within runtime of 6 min using a gradient chromatography method. Using a simple protein precipitation sample preparation followed by mass spectrometric detection achieved a sensitivity of 0.92 nM (lower limit of quantification). With linearity over four log units (0.91-7500 nM), the method was found to be selective, accurate, precise and robust. The method was validated and was successfully applied for simultaneous estimation of RIS and 9-hydroxyrisperidone metabolites (R & S individually) after intravenous and per oral administration to rats.
Effect of acclimatization on hexavalent chromium reduction in a biocathode microbial fuel cell.
Wu, Xiayuan; Zhu, Xujun; Song, Tianshun; Zhang, Lixiong; Jia, Honghua; Wei, Ping
2015-03-01
A simple acclimatization method for the reduction of hexavalent chromium (Cr(VI)) at a biocathode by first enriching an exoelectrogenic biofilm on a microbial fuel cell (MFC) anode, followed by direct inversion of the anode to function as the biocathode, has been established. This novel method significantly enhanced the Cr(VI) reduction efficiency of the MFC, which was mainly attributed to the higher microbial density and less resistive Cr(III) precipitates on the cathode when compared with a common biocathode acclimatization method (control). The biocathode acclimatization period was shortened by 19days and the Cr(VI) reduction rate was increased by a factor of 2.9. Microbial community analyses of biocathodes acclimatized using different methods further verified the feasibility of this electrode inversion method, indicating similar dominant bacteria species in biofilms, which mainly consist of Gamma-proteobacteria and Bacteria. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rodrigues, Luis R. L.; Doblas-Reyes, Francisco J.; Coelho, Caio A. S.
2018-02-01
A Bayesian method known as the Forecast Assimilation (FA) was used to calibrate and combine monthly near-surface temperature and precipitation outputs from seasonal dynamical forecast systems. The simple multimodel (SMM), a method that combines predictions with equal weights, was used as a benchmark. This research focuses on Europe and adjacent regions for predictions initialized in May and November, covering the boreal summer and winter months. The forecast quality of the FA and SMM as well as the single seasonal dynamical forecast systems was assessed using deterministic and probabilistic measures. A non-parametric bootstrap method was used to account for the sampling uncertainty of the forecast quality measures. We show that the FA performs as well as or better than the SMM in regions where the dynamical forecast systems were able to represent the main modes of climate covariability. An illustration with the near-surface temperature over North Atlantic, the Mediterranean Sea and Middle-East in summer months associated with the well predicted first mode of climate covariability is offered. However, the main modes of climate covariability are not well represented in most situations discussed in this study as the seasonal dynamical forecast systems have limited skill when predicting the European climate. In these situations, the SMM performs better more often.
Investigation of electrical and magnetic properties of ferro-nanofluid on transformers
2011-01-01
This study investigated a simple model of transformers that have liquid magnetic cores with different concentrations of ferro-nanofluids. The simple model was built on a capillary by enamel-insulated wires and with ferro-nanofluid loaded in the capillary. The ferro-nanofluid was fabricated by a chemical co-precipitation method. The performances of the transformers with either air core or ferro-nanofluid at different concentrations of nanoparticles of 0.25, 0.5, 0.75, and 1 M were measured and simulated at frequencies ranging from 100 kHz to 100 MHz. The experimental results indicated that the inductance and coupling coefficient of coils grew with the increment of the ferro-nanofluid concentration. The presence of ferro-nanofluid increased resistance, yielding to the decrement of the quality factor, owing to the phase lag between the external magnetic field and the magnetization of the material. PMID:21711784
Investigation of electrical and magnetic properties of ferro-nanofluid on transformers.
Tsai, Tsung-Han; Chen, Ping-Hei; Lee, Da-Sheng; Yang, Chin-Ting
2011-03-28
This study investigated a simple model of transformers that have liquid magnetic cores with different concentrations of ferro-nanofluids. The simple model was built on a capillary by enamel-insulated wires and with ferro-nanofluid loaded in the capillary. The ferro-nanofluid was fabricated by a chemical co-precipitation method. The performances of the transformers with either air core or ferro-nanofluid at different concentrations of nanoparticles of 0.25, 0.5, 0.75, and 1 M were measured and simulated at frequencies ranging from 100 kHz to 100 MHz. The experimental results indicated that the inductance and coupling coefficient of coils grew with the increment of the ferro-nanofluid concentration. The presence of ferro-nanofluid increased resistance, yielding to the decrement of the quality factor, owing to the phase lag between the external magnetic field and the magnetization of the material.
Thunderstorms Increase Mercury Wet Deposition.
Holmes, Christopher D; Krishnamurthy, Nishanth P; Caffrey, Jane M; Landing, William M; Edgerton, Eric S; Knapp, Kenneth R; Nair, Udaysankar S
2016-09-06
Mercury (Hg) wet deposition, transfer from the atmosphere to Earth's surface by precipitation, in the United States is highest in locations and seasons with frequent deep convective thunderstorms, but it has never been demonstrated whether the connection is causal or simple coincidence. We use rainwater samples from over 800 individual precipitation events to show that thunderstorms increase Hg concentrations by 50% relative to weak convective or stratiform events of equal precipitation depth. Radar and satellite observations reveal that strong convection reaching the upper troposphere (where high atmospheric concentrations of soluble, oxidized mercury species (Hg(II)) are known to reside) produces the highest Hg concentrations in rain. As a result, precipitation meteorology, especially thunderstorm frequency and total rainfall, explains differences in Hg deposition between study sites located in the eastern United States. Assessing the fate of atmospheric mercury thus requires bridging the scales of global transport and convective precipitation.
Carbon Dioxide Physiological Forcing Dominates Projected Eastern Amazonian Drying
NASA Astrophysics Data System (ADS)
Richardson, T. B.; Forster, P. M.; Andrews, T.; Boucher, O.; Faluvegi, G.; Fläschner, D.; Kasoar, M.; Kirkevâg, A.; Lamarque, J.-F.; Myhre, G.; Olivié, D.; Samset, B. H.; Shawki, D.; Shindell, D.; Takemura, T.; Voulgarakis, A.
2018-03-01
Future projections of east Amazonian precipitation indicate drying, but they are uncertain and poorly understood. In this study we analyze the Amazonian precipitation response to individual atmospheric forcings using a number of global climate models. Black carbon is found to drive reduced precipitation over the Amazon due to temperature-driven circulation changes, but the magnitude is uncertain. CO2 drives reductions in precipitation concentrated in the east, mainly due to a robustly negative, but highly variable in magnitude, fast response. We find that the physiological effect of CO2 on plant stomata is the dominant driver of the fast response due to reduced latent heating and also contributes to the large model spread. Using a simple model, we show that CO2 physiological effects dominate future multimodel mean precipitation projections over the Amazon. However, in individual models temperature-driven changes can be large, but due to little agreement, they largely cancel out in the model mean.
A facile thermal decomposition route to synthesise CoFe2O4 nanostructures
NASA Astrophysics Data System (ADS)
Kalpanadevi, K.; Sinduja, C. R.; Manimekalai, R.
2014-01-01
The synthesis of CoFe2O4 nanoparticles has been achieved by a simple thermal decomposition method from an inorganic precursor, cobalt ferrous cinnamate hydrazinate (CoFe2(cin)3(N2H4)3) which was obtained by a novel precipitation method from the corresponding metal salts, cinnamic acid and hydrazine hydrate. The precursor was characterized by hydrazine and metal analyses, infrared spectral analysis and thermo gravimetric analysis. Under appropriate annealing, CoFe2(cin)3(N2H4)3 yielded CoFe2O4 nanoparticles, which were characterized for their size and structure using X-Ray diffraction (XRD), high resolution transmission electron microscopic (HRTEM), selected area electron diffraction (SAED) and scanning electron microscopic (SEM) techniques.
A simplified model of precipitation enhancement over a heterogeneous surface
NASA Astrophysics Data System (ADS)
Cioni, Guido; Hohenegger, Cathy
2018-06-01
Soil moisture heterogeneities influence the onset of convection and subsequent evolution of precipitating systems through the triggering of mesoscale circulations. However, local evaporation also plays a role in determining precipitation amounts. Here we aim at disentangling the effect of advection and evaporation on precipitation over the course of a diurnal cycle by formulating a simple conceptual model. The derivation of the model is inspired by the results of simulations performed with a high-resolution (250 m) large eddy simulation model over a surface with varying degrees of heterogeneity. A key element of the conceptual model is the representation of precipitation as a weighted sum of advection and evaporation, each weighed by its own efficiency. The model is then used to isolate the main parameters that control precipitation variations over a spatially drier patch. It is found that these changes surprisingly do not depend on soil moisture itself but instead purely on parameters that describe the atmospheric initial state. The likelihood for enhanced precipitation over drier soils is discussed based on these parameters. Additional experiments are used to test the validity of the model.
A novel in chemico method to detect skin sensitizers in highly diluted reaction conditions.
Yamamoto, Yusuke; Tahara, Haruna; Usami, Ryota; Kasahara, Toshihiko; Jimbo, Yoshihiro; Hioki, Takanori; Fujita, Masaharu
2015-11-01
The direct peptide reactivity assay (DPRA) is a simple and versatile alternative method for the evaluation of skin sensitization that involves the reaction of test chemicals with two peptides. However, this method requires concentrated solutions of test chemicals, and hydrophobic substances may not dissolve at the concentrations required. Furthermore, hydrophobic test chemicals may precipitate when added to the reaction solution. We previously established a high-sensitivity method, the amino acid derivative reactivity assay (ADRA). This method uses novel cysteine (NAC) and novel lysine derivatives (NAL), which were synthesized by introducing a naphthalene ring to the amine group of cysteine and lysine residues. In this study, we modified the ADRA method by reducing the concentration of the test chemicals 100-fold. We investigated the accuracy of skin sensitization predictions made using the modified method, which was designated the ADRA-dilutional method (ADRA-DM). The predictive accuracy of the ADRA-DM for skin sensitization was 90% for 82 test chemicals which were also evaluated via the ADRA, and the predictive accuracy in the ADRA-DM was higher than that in the ADRA and DPRA. Furthermore, no precipitation of test compounds was observed at the initiation of the ADRA-DM reaction. These results show that the ADRA-DM allowed the use of test chemicals at concentrations two orders of magnitude lower than that possible with the ADRA. In addition, ADRA-DM does not have the restrictions on test compound solubility that were a major problem with the DPRA. Therefore, the ADRA-DM is a versatile and useful method. Copyright © 2015 John Wiley & Sons, Ltd.
Lee, Hye Min; Gupta, Ravi; Kim, Sun Hyung; Wang, Yiming; Rakwal, Randeep; Agrawal, Ganesh Kumar; Kim, Sun Tae
2015-05-01
High-abundance proteins (HAPs) hamper in-depth proteome study necessitating development of a HAPs depletion method. Here, we report a novel ethanol precipitation method (EPM) for HAPs depletion from total tuber proteins. Ethanol showed a dose-dependent effect on depletion of sporamin from sweet potato and patatin from potato tubers, respectively. The 50% ethanol was an optimal concentration. 2DE analysis of EPM-prepared sweet potato proteins also revealed enrichment of storage proteins (SPs) in ethanol supernatant (ES) resulting in detection of new low-abundance proteins in ethanol pellet (EP), compared to total fraction. The ES fraction showed even higher trypsin inhibitor activity than total proteins, further showing the efficacy of EPM in enrichment of sporamin in ES fraction. Application of this method was demonstrated for comparative proteomics of two sweet potato cultivars (Hwang-geum and Ho-bac) and purification of SP (sporamin) in its native form, as examples. Comparative proteomics identified many cultivar specific protein spots and selected spots were confidently assigned for their protein identity using MALDI-TOF-TOF analysis. Overall, the EPM is simple, reproducible, and economical for depletion of SPs and is suitable for downstream proteomics study. This study opens a door for its potential application to other tuber crops or fruits rich in carbohydrates. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Q; Wei, W; Liu, Q
2000-10-01
A new method for the indirect determination of thiocyanate with ammonium sulfate and ethanol by extraction-flotation of copper in the presence of ascorbic acid is described. A small amount of Cu(II) is reduced to Cu(I) by ascorbic acid, then Cu(I) is precipitated with SCN-. In the course of phase separation of ethanol from water, the precipitated CuSCN stays in the interface of ethanol and water. A good linear relationship is observed between the flotation yield of Cu(II) and the amount of SCN-. Using 1.0 ml of 1 x 10(-3) M ascorbic acid solution, 50 micrograms of Cu(II), 3.5 g of (NH4)2SO4 and 3.0 ml of ethanol with a total volume of 10 ml, the concentration of thiocyanate could then be determined by determining the flotation yield of Cu(II). The detection limit for thiocyanate is 5 x 10(-5) M. Every parameter was optimized and the reaction mechanism was studied. The method is simple and rapid and it was successfully applied to the determination of thiocyanate in urine and saliva of smokers and non-smokers and in venous blood of patients infused with sodium nitroprusside.
Polymenidou, Magdalini; Verghese-Nikolakaki, Susan; Groschup, Martin; Chaplin, Melanie J; Stack, Mick J; Plaitakis, Andreas; Sklaviadis, Theodoros
2002-01-01
Background Transmissible spongiform encephalopathies (TSEs) are neurodegenerative diseases affecting both humans and animals. They are associated with post-translational conversion of the normal cellular prion protein (PrPC) into a heat- and protease-resistant abnormal isoform (PrPSc). Detection of PrPSc in individuals is widely utilized for the diagnosis of prion diseases. Methods TSE brain tissue samples have been processed in order to quantitatively isolate PrPSc. The protocol includes an initial homogenization, digestion with proteinase K and salt precipitation. Results Here we show that over 97 percent of the PrPSc present can be precipitated from infected brain material using this simple salting-out procedure for proteins. No chemically harsh conditions are used during the process in order to conserve the native quality of the isolated protein. Conclusion The resulting PrPSc-enriched preparation should provide a suitable substrate for analyzing the structure of the prion agent and for scavenging for other molecules with which it may associate. In comparison with most methods that exist today, the one described in this study is rapid, cost-effective and does not demand expensive laboratory equipment. PMID:12370086
NASA Astrophysics Data System (ADS)
Jeseentharani, V.; Dayalan, A.; Nagaraja, K. S.
2018-04-01
In this study, nanocrystalline transition metal nickel-cobalt molybdate (Ni1-xCoxMoO4, NiCM; x = 0, 0.3, 0.5, 0.7, 1) composites were prepared using a simple co-precipitation method. The composites were characterized by thermogravimetric/differential thermal analysis, Fourier transform-infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The NiCM composites were studied to determine their possible use as humidity sensors, and photoluminescence (PL) measurements were obtained. The sensing study was performed in environments with different relative humidity levels (5-98%). The maximum sensitivity of 18624 ± 168 was observed with the Ni0.7Co0.3MoO4 composite where the humidity could be calculated according to the relationship: Sf = R5%/R98%, where R5% and R98% are the dc resistances at 5 and 98% RH, respectively. The photoluminescence measurements acquired at room temperature for the NiCMs included green and red emission peaks when excited at a wavelength (λex) of 520 nm.
Simple synthesis of graphene nanocomposites MgO-rGO and Fe2O3-rGO for multifunctional applications
NASA Astrophysics Data System (ADS)
Abdel-Aal, Seham K.; Ionov, Andrey; Mozhchil, R. N.; Naqvi, Alim H.
2018-05-01
Hummer's method was used to prepare graphene oxide (GO) by chemical exfoliation of graphite. Simple precipitation method was used for the preparation of hybrid nanocomposites MgO-rGO and Fe2O3-rGO. A 0.3 Molar of corresponding metal nitrate solution and GO solution are used for the preparation process. XRD, FT-IR, and XPS were used to characterize the prepared nanocomposites. The reduction of GO into reduced rGO in the formed nanocomposites was confirmed. Morphological characterization showed the formation of needle-shaped nanocrystals of MgO successfully grown on graphene nanosheet with average crystallite size 8.4 nm. Hematite nanocomposite Fe2O3-rGO forms rod-shaped crystals with average crystallite size 27.5 nm. The saturation magnetization observed for Fe2O3-rGO is less than reported value for the pure Fe2O3 nanoparticles. Thermal properties of as-prepared hybrid nanocomposites MgO-rGO and Fe2O3-rGO showed thermal stability of the prepared nanocomposite over long range of temperature.
Alcohol vapor sensing by cadmium-doped zinc oxide thick films based chemical sensor
NASA Astrophysics Data System (ADS)
Zargar, R. A.; Arora, M.; Chackrabarti, S.; Ahmad, S.; Kumar, J.; Hafiz, A. K.
2016-04-01
Cadmium-doped zinc oxide nanoparticles were derived by simple chemical co-precipitation route using zinc acetate dihydrate and cadmium acetate dihydrate as precursor materials. The thick films were casted from chemical co-precipitation route prepared nanoparticles by economic facile screen printing method. The structural, morphological, optical and electrical properties of the film were characterized relevant to alcohol vapor sensing application by powder XRD, SEM, UV-VIS and DC conductivity techniques. The response and sensitivity of alcohol (ethanol) vapor sensor are obtained from the recovery curves at optimum working temperature range from 20∘C to 50∘C. The result shows that maximum sensitivity of the sensor is observed at 25∘C operating temperature. On varying alcohol vapor concentration, minor variation in resistance has been observed. The sensing mechanism of sensor has been described in terms of physical adsorption and chemical absorption of alcohol vapors on cadmium-doped zinc oxide film surface and inside film lattice network through weak hydrogen bonding, respectively.
Kazami, Nao; Sakaguchi, Masayoshi; Mizutani, Daisuke; Masuda, Tatsuhiko; Wakita, Satoshi; Oyama, Fumitaka; Kawakita, Masao; Sugahara, Yasusato
2015-11-05
Chitin oligomers are of interest because of their numerous biologically relevant properties. To prepare chitin oligomers containing 4-6 GlcNAc units [(GlcNAc)4-6], α- and β-chitin were hydrolyzed with concentrated hydrochloric acid at 40 °C. The reactant was mixed with acetone to recover the acetone-insoluble material, and (GlcNAc)4-6 was efficiently recovered after subsequent water extraction. Composition analysis using gel permeation chromatography and MALDI-TOF mass spectrometry indicated that (GlcNAc)4-6 could be isolated from the acetone-insoluble material with recoveries of approximately 17% and 21% from the starting α-chitin and β-chitin, respectively. The acetone precipitation method is highly useful for recovering chitin oligomers from the acid hydrolysate of chitin. The changes in the molecular size and higher-order structure of chitin during the course of hydrolysis were also analyzed, and a model that explains the process of oligomer accumulation is proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.
A simple stochastic rainstorm generator for simulating spatially and temporally varying rainfall
NASA Astrophysics Data System (ADS)
Singer, M. B.; Michaelides, K.; Nichols, M.; Nearing, M. A.
2016-12-01
In semi-arid to arid drainage basins, rainstorms often control both water supply and flood risk to marginal communities of people. They also govern the availability of water to vegetation and other ecological communities, as well as spatial patterns of sediment, nutrient, and contaminant transport and deposition on local to basin scales. All of these landscape responses are sensitive to changes in climate that are projected to occur throughout western North America. Thus, it is important to improve characterization of rainstorms in a manner that enables statistical assessment of rainfall at spatial scales below that of existing gauging networks and the prediction of plausible manifestations of climate change. Here we present a simple, stochastic rainstorm generator that was created using data from a rich and dense network of rain gauges at the Walnut Gulch Experimental Watershed (WGEW) in SE Arizona, but which is applicable anywhere. We describe our methods for assembling pdfs of relevant rainstorm characteristics including total annual rainfall, storm area, storm center location, and storm duration. We also generate five fitted intensity-duration curves and apply a spatial rainfall gradient to generate precipitation at spatial scales below gauge spacing. The model then runs by Monte Carlo simulation in which a total annual rainfall is selected before we generate rainstorms until the annual precipitation total is reached. The procedure continues for decadal simulations. Thus, we keep track of the hydrologic impact of individual storms and the integral of precipitation over multiple decades. We first test the model using ensemble predictions until we reach statistical similarity to the input data from WGEW. We then employ the model to assess decadal precipitation under simulations of climate change in which we separately vary the distribution of total annual rainfall (trend in moisture) and the intensity-duration curves used for simulation (trends in storminess). We demonstrate the model output through spatial maps of rainfall and through statistical comparisons of relevant parameters and distributions. Finally, discuss how the model can be used to understand basin-scale hydrology in terms of soil moisture, runoff, and erosion.
Rocks and Rain: orographic precipitation and the form of mountain ranges
NASA Astrophysics Data System (ADS)
Roe, G. H.; Anders, A. M.; Durran, D. R.; Montgomery, D. R.; Hallet, B.
2005-12-01
In mountainous landscapes patterns of erosion reflect patterns of precipitation that are, in turn, controlled by the orography. Ultimately therefore, the feedbacks between orography and the climate it creates are responsible for the sculpting of mountain ranges. Key questions concerning these interactions are: 1) how robust are patterns of precipitation on geologic time scales? and 2) how do those patterns affect landscape form? Since climate is by definition the statistics of weather, there is tremendous information to be gleaned from how patterns of precipitation vary between different weather events. However up to now sparse measurements and computational limitations have hampered our knowledge of such variations. For the Olympics in Washington State, a characteristic midlatitude mountain range, we report results from a high-resolution, state-of-the-art numerical weather prediction model and a dense network of precipitation gauges. Down to scales around 10 km, the patterns of precipitation are remarkably robust both storm-by-storm and year-to-year, lending confidence that they are indeed persistent on the relevant time scales. Secondly, the consequences of the coupled interactions are presented using a landscape evolution model coupled with a simple model of orographic precipitation that is able to substantially reproduce the observed precipitation patterns.
NASA Astrophysics Data System (ADS)
Lee, David S.; Longhurst, James W. S.
Precipitation chemistry data from a dense urban monitoring network in Greater Manchester, northwest England, were compared with interpolated values from the U.K. secondary national acid deposition monitoring network for the year 1988. Differences were found to be small. However, when data from individual sites from the Greater Manchester network were compared with data from the two nearest secondary national network sites, significant differences were found using simple and complex statistical analyses. Precipitation chemistry at rural sites could be similar to that at urban sites, but the sources of some ions were thought to be different. The synoptic-scale gradients of precipitation chemistry, as shown by the secondary national network, also accounted for some of the differences.
PDF added value of a high resolution climate simulation for precipitation
NASA Astrophysics Data System (ADS)
Soares, Pedro M. M.; Cardoso, Rita M.
2015-04-01
General Circulation Models (GCMs) are models suitable to study the global atmospheric system, its evolution and response to changes in external forcing, namely to increasing emissions of CO2. However, the resolution of GCMs, of the order of 1o, is not sufficient to reproduce finer scale features of the atmospheric flow related to complex topography, coastal processes and boundary layer processes, and higher resolution models are needed to describe observed weather and climate. The latter are known as Regional Climate Models (RCMs) and are widely used to downscale GCMs results for many regions of the globe and are able to capture physically consistent regional and local circulations. Most of the RCMs evaluations rely on the comparison of its results with observations, either from weather stations networks or regular gridded datasets, revealing the ability of RCMs to describe local climatic properties, and assuming most of the times its higher performance in comparison with the forcing GCMs. The additional climatic details given by RCMs when compared with the results of the driving models is usually named as added value, and it's evaluation is still scarce and controversial in the literuature. Recently, some studies have proposed different methodologies to different applications and processes to characterize the added value of specific RCMs. A number of examples reveal that some RCMs do add value to GCMs in some properties or regions, and also the opposite, elighnening that RCMs may add value to GCM resuls, but improvements depend basically on the type of application, model setup, atmospheric property and location. The precipitation can be characterized by histograms of daily precipitation, or also known as probability density functions (PDFs). There are different strategies to evaluate the quality of both GCMs and RCMs in describing the precipitation PDFs when compared to observations. Here, we present a new method to measure the PDF added value obtained from dynamical downscaling, based on simple PDF skill scores. The measure can assess the full quality of the PDFs and at the same time integrates a flexible manner to weight differently the PDF tails. In this study we apply the referred method to characaterize the PDF added value of a high resolution simulation with the WRF model. Results from a WRF climate simulation centred at the Iberian Penisnula with two nested grids, a larger one at 27km and a smaller one at 9km. This simulation is forced by ERA-Interim. The observational data used covers from rain gauges precipitation records to observational regular grids of daily precipitation. Two regular gridded precipitation datasets are used. A Portuguese grid precipitation dataset developed at 0.2°× 0.2°, from observed rain gauges daily precipitation. A second one corresponding to the ENSEMBLES observational gridded dataset for Europe, which includes daily precipitation values at 0.25°. The analisys shows an important PDF added value from the higher resolution simulation, regarding the full PDF and the extremes. This method shows higher potential to be applied to other simulation exercises and to evaluate other variables.
Junnotula, Venkatraman; Licea-Perez, Hermes
2013-05-01
A simple, selective, and sensitive quantitative method has been developed for the simultaneous determination of levodopa and carbidopa in rat and monkey plasma by protein precipitation using acetonitrile containing the derivatizing reagent, flourescamine. Derivatized products of levodopa and carbidopa were separated on a BEH C18 column (2.1 mm × 50 mm; 1.7 μm particle size) using ultra high performance liquid chromatography (UHPLC) without any further purification. Tandem mass spectrometry (MS/MS) was used for detection. The method was validated over the concentration range of 5-5000 ng/mL and 3-3000 ng/mL for levodopa and carbidopa, respectively in rat and monkey plasma. Due to the poor stability of the investigated analytes in biological matrices, a mixture of sodium metabisulfite and hydrazine dihydrochloride was used as a stabilizer. This method was successfully utilized to support pharmacokinetic studies in both species. The results from assay validations and incurred samples re-analysis show that the method is selective, sensitive and robust. To our knowledge, this is the first UHPLC-MS/MS based method that utilizes derivatization with fluorescamine and provides adequate sensitivity for both levodopa and carbidopa with 50 μL of sample and a run time of 3.5 min. Copyright © 2013 Elsevier B.V. All rights reserved.
Precipitation interpolation in mountainous areas
NASA Astrophysics Data System (ADS)
Kolberg, Sjur
2015-04-01
Different precipitation interpolation techniques as well as external drift covariates are tested and compared in a 26000 km2 mountainous area in Norway, using daily data from 60 stations. The main method of assessment is cross-validation. Annual precipitation in the area varies from below 500 mm to more than 2000 mm. The data were corrected for wind-driven undercatch according to operational standards. While temporal evaluation produce seemingly acceptable at-station correlation values (on average around 0.6), the average daily spatial correlation is less than 0.1. Penalising also bias, Nash-Sutcliffe R2 values are negative for spatial correspondence, and around 0.15 for temporal. Despite largely violated assumptions, plain Kriging produces better results than simple inverse distance weighting. More surprisingly, the presumably 'worst-case' benchmark of no interpolation at all, simply averaging all 60 stations for each day, actually outperformed the standard interpolation techniques. For logistic reasons, high altitudes are under-represented in the gauge network. The possible effect of this was investigated by a) fitting a precipitation lapse rate as an external drift, and b) applying a linear model of orographic enhancement (Smith and Barstad, 2004). These techniques improved the results only marginally. The gauge density in the region is one for each 433 km2; higher than the overall density of the Norwegian national network. Admittedly the cross-validation technique reduces the gauge density, still the results suggest that we are far from able to provide hydrological models with adequate data for the main driving force.
Liu, Wenhui; Wang, Qi; Zheng, Yan; Wang, Shubin; Yan, Yan; Yang, Yanzhao
2017-06-06
In this study, a method of one-step separation and recycling of high purity Pd(ii) and Pt(iv) using an ionic liquid, 1-butyl-3-benzimidazolium bromate ([HBBIm]Br), was investigated. The effects of [HBBIm]Br concentration, initial metal concentration, and loading capacity of [HBBIm]Br were examined in detail. It was observed that [HBBIm]Br was a very effective extractant for selectively extracting Pd(ii) and precipitating Pt(iv). Through selectively extracting Pd(ii) and precipitating Pt(iv), each metal with high purity was separately obtained from mixed Pd(ii) and Pt(iv) multi-metal solution. The method of one-step separation of Pd(ii) and Pt(iv) is simple and convenient. The anion exchange mechanism between [HBBIm]Br and Pt(iv) was proven through Job's method and FTIR and 1 H NMR spectroscopies. The coordination mechanism between [HBBIm]Br and Pd(ii) was demonstrated via single X-ray diffraction and was found to be robust and distinct, as supported by the ab initio quantum-chemical studies. The crystals of the [PdBr 2 ·2BBIm] complex were formed first. Moreover, the influence of the concentrations of hydrochloric acid, sodium chloride, and sodium nitrate on the precipitation of Pt(iv) and extraction of Pd(ii) was studied herein. It was found that only the concentration of H + could inhibit the separation of Pt(iv) because H + could attract the anion PtCl 6 2- ; thus, the exchange (anion exchange mechanism) between the anions PtCl 6 2- and Br - was prevented. However, both the concentration of H + and Cl - can obviously inhibit the extraction of Pd(ii) because H + and Cl - are the reaction products and increasing their concentration can inhibit the progress of the reaction (coordination mechanism).
A Ricin Forensic Profiling Approach Based on a Complex Set of Biomarkers
Fredriksson, Sten-Ake; Wunschel, David S.; Lindstrom, Susanne Wiklund; ...
2018-03-28
A forensic method for the retrospective determination of preparation methods used for illicit ricin toxin production was developed. The method was based on a complex set of biomarkers, including carbohydrates, fatty acids, seed storage proteins, in combination with data on ricin and Ricinus communis agglutinin. The analyses were performed on samples prepared from four castor bean plant (R. communis) cultivars by four different sample preparation methods (PM1 – PM4) ranging from simple disintegration of the castor beans to multi-step preparation methods including different protein precipitation methods. Comprehensive analytical data was collected by use of a range of analytical methods andmore » robust orthogonal partial least squares-discriminant analysis- models (OPLS-DA) were constructed based on the calibration set. By the use of a decision tree and two OPLS-DA models, the sample preparation methods of test set samples were determined. The model statistics of the two models were good and a 100% rate of correct predictions of the test set was achieved.« less
A Ricin Forensic Profiling Approach Based on a Complex Set of Biomarkers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fredriksson, Sten-Ake; Wunschel, David S.; Lindstrom, Susanne Wiklund
A forensic method for the retrospective determination of preparation methods used for illicit ricin toxin production was developed. The method was based on a complex set of biomarkers, including carbohydrates, fatty acids, seed storage proteins, in combination with data on ricin and Ricinus communis agglutinin. The analyses were performed on samples prepared from four castor bean plant (R. communis) cultivars by four different sample preparation methods (PM1 – PM4) ranging from simple disintegration of the castor beans to multi-step preparation methods including different protein precipitation methods. Comprehensive analytical data was collected by use of a range of analytical methods andmore » robust orthogonal partial least squares-discriminant analysis- models (OPLS-DA) were constructed based on the calibration set. By the use of a decision tree and two OPLS-DA models, the sample preparation methods of test set samples were determined. The model statistics of the two models were good and a 100% rate of correct predictions of the test set was achieved.« less
Ye, Guangming; Cai, Xuejian; Wang, Biao; Zhou, Zhongxian; Yu, Xiaohua; Wang, Weibin; Zhang, Jiandong; Wang, Yuhai; Dong, Jierong; Jiang, Yunyun
2008-11-04
A simple, accurate and rapid method for simultaneous analysis of vancomycin and ceftazidime in cerebrospinal fluid (CSF), utilizing high-performance liquid chromatography (HPLC), has been developed and thoroughly validated to satisfy strict FDA guidelines for bioanalytical methods. Protein precipitation was used as the sample pretreatment method. In order to increase the accuracy, tinidazole was chosen as the internal standard. Separation was achieved on a Diamonsil C18 column (200 mm x 4.6mm I.D., 5 microm) using a mobile phase composed of acetonitrile and acetate buffer (pH 3.5) (8:92, v/v) at room temperature (25 degrees C), and the detection wavelength was 240 nm. All the validation data, such as accuracy, precision, and inter-day repeatability, were within the required limits. The method was applied to determine vancomycin and ceftazidime concentrations in CSF in five craniotomy patients.
An efficient method for purifying high quality RNA from wheat pistils.
Manickavelu, A; Kambara, Kumiko; Mishina, Kohei; Koba, Takato
2007-02-15
Many methods are available for total RNA extraction from plants, except the floral organs like wheat pistils containing high levels of polysaccharides that bind/or co-precipitate with RNA. In this protocol, a simple and effective method for extracting total RNA from small and feathery wheat pistils has been developed. Lithium chloride (LiCl) and phenol:chloroform:isoamylalcohol (PCI) were employed and the samples were ground in microcentrifuge tube using plastic pestle. A jacket of liquid nitrogen and simplified procedures were applied to ensure thorough grinding of the pistils and to minimize the samples loss. These measures substantially increased the recovery of total RNA (approximately 50%) in the extraction process. Reliable differential display by cDNA-AFLP was successfully achieved with the total RNA after DNase treatment and reverse transcription. This method is also practicable for gene expression and gene regulation studies in floral parts of other plants.
Rao, R R; Chatt, A
1991-07-01
A simple preconcentration neutron activation analysis (PNAA) method has been developed for the determination of low levels of iodine in biological and nutritional materials. The method involves dissolution of the samples by microwave digestion in the presence of acids in closed Teflon bombs and preconcentration of total iodine, after reduction to iodide with hydrazine sulfate, by coprecipitation with bismuth sulfide. The effects of different factors such as acidity, time for complete precipitation, and concentrations of bismuth, sulfide, and diverse ions on the quantitative recovery of iodide have been studied. The absolute detection limit of the PNAA method is 5 ng of iodine. Precision of measurement, expressed in terms of relative standard deviation, is about 5% at 100 ppb and 10% at 20 ppb levels of iodine. The PNAA method has been applied to several biological reference materials and total diet samples.
Cheng, H; Pittman, K A; Dandekar, K A
1987-12-01
A simple and sensitive assay for quantitating 9-methyl-3-(1H-tetrazol-5-yl)-4H-pyrido[1,2-a]pyrimidin-4-one (1; BMY 26517) in human plasma was developed using high-performance liquid chromatography with fluorescence detection. The method involves precipitation of protein and reversed-phase chromatography. The method is linear in the range of 4.3-429 ng/mL of 1, and the limit of detection is 0.4 ng/mL. The day-to-day precision values of this method at 25.7 and 386 ng/mL are 2.1 and 2.6%, respectively. The day-to-day accuracy values at these concentrations are 99.7 and 99.8%, respectively. The recovery of 1 is 98.3%.
Moncrieff, J
1994-03-18
A simple, extractionless method for the determination of dapsone in serum and saliva is described. Reversed-phase high-performance liquid chromatography is used with UV detection at 295 nm or electrochemical detection at 0.7 V. Diazoxide in buffer is the internal standard for UV detection and practolol for electrochemical detection. Sample preparation is minimal with protein precipitation of serum samples whilst saliva samples are simply diluted with addition of an internal standard. Low-level serum and saliva samples are front-cut on-line with a 3 cm laboratory-made precolumn in the loop position on a standard Valco injection valve. Isocratic separation is achieved on a 250 mm x 4.6 mm I.D. stainless-steel Spherisorb S5 ODS-1 column. The mobile phase for high levels of dapsone is acetonitrile-elution buffer (12:88, v/v) at 2 ml/min and a column temperature of 40 degrees C for both serum and saliva separations. For the low-level assays using electrochemical detection and solid-phase clean-up, the mobile phase is acetonitrile-methanol-elution buffer (9:4:87, v/v/v). The UV and electrochemical detection limits are 25 ng/ml and 200 pg/ml, respectively, in both serum and saliva. This simple method is applicable to the routine monitoring of dapsone levels in serum from leprotic patients and electrochemical detection gives a simple, reliable method for the monitoring of trough values in subjects on anti-malarial prophylaxis.
NASA Astrophysics Data System (ADS)
Chen, Chunping; Yee, Lee Kim; Gong, Hua; Zhang, Yong; Xu, Rong
2013-05-01
In this work, a new multifunctional nanovehicle for tumor optical imaging and therapy was developed using Y2O3:Er3+,Yb3+ nanoparticles as near infrared fluorescent nanophosphors, and MgAl-layered double hydroxide (LDH) nanosheets as anticancer drug nanovehicles. Monodispersed Y2O3:Er3+,Yb3+ nanophosphors were readily synthesized by the urea assisted homogenous precipitation method. Hierarchically structured LDH nanosheets intercalated with an anticancer drug, fluorouracil (5FU), were deposited on the surface of Y2O3:Er3+,Yb3+@SiO2 by a simple precipitation method followed by hydrothermal treatment. The resultant Y2O3:Er3+,Yb3+@SiO2@LDH-5FU nanovehicles exhibit strong red upconversion fluorescence under the excitation of a 980 nm laser, which allows tracking of the nanovehicles after localization in cancer cells. A better anticancer efficiency was obtained over the nanovehicles than the free drug which can be attributed to their positively charged surfaces for favorable interaction with the negatively charged cell membranes. The multifunctional nanovehicles designed in this work are expected to be promising material candidates for simultaneous tumor optical imaging and therapy.In this work, a new multifunctional nanovehicle for tumor optical imaging and therapy was developed using Y2O3:Er3+,Yb3+ nanoparticles as near infrared fluorescent nanophosphors, and MgAl-layered double hydroxide (LDH) nanosheets as anticancer drug nanovehicles. Monodispersed Y2O3:Er3+,Yb3+ nanophosphors were readily synthesized by the urea assisted homogenous precipitation method. Hierarchically structured LDH nanosheets intercalated with an anticancer drug, fluorouracil (5FU), were deposited on the surface of Y2O3:Er3+,Yb3+@SiO2 by a simple precipitation method followed by hydrothermal treatment. The resultant Y2O3:Er3+,Yb3+@SiO2@LDH-5FU nanovehicles exhibit strong red upconversion fluorescence under the excitation of a 980 nm laser, which allows tracking of the nanovehicles after localization in cancer cells. A better anticancer efficiency was obtained over the nanovehicles than the free drug which can be attributed to their positively charged surfaces for favorable interaction with the negatively charged cell membranes. The multifunctional nanovehicles designed in this work are expected to be promising material candidates for simultaneous tumor optical imaging and therapy. Electronic supplementary information (ESI) available: TEM images of Y2O3:Er3+,Yb3+@SiO2 synthesized by using different amounts of TEOS, and confocal scanning laser microscopy images (Z stack) of MCF-7 cells incubated with Y2O3:Er3+,Yb3+@SiO2@LDH-5FU for 30 min and 24 h. See DOI: 10.1039/c3nr00781b
Improving the Statistical Modeling of the TRMM Extreme Precipitation Monitoring System
NASA Astrophysics Data System (ADS)
Demirdjian, L.; Zhou, Y.; Huffman, G. J.
2016-12-01
This project improves upon an existing extreme precipitation monitoring system based on the Tropical Rainfall Measuring Mission (TRMM) daily product (3B42) using new statistical models. The proposed system utilizes a regional modeling approach, where data from similar grid locations are pooled to increase the quality and stability of the resulting model parameter estimates to compensate for the short data record. The regional frequency analysis is divided into two stages. In the first stage, the region defined by the TRMM measurements is partitioned into approximately 27,000 non-overlapping clusters using a recursive k-means clustering scheme. In the second stage, a statistical model is used to characterize the extreme precipitation events occurring in each cluster. Instead of utilizing the block-maxima approach used in the existing system, where annual maxima are fit to the Generalized Extreme Value (GEV) probability distribution at each cluster separately, the present work adopts the peak-over-threshold (POT) method of classifying points as extreme if they exceed a pre-specified threshold. Theoretical considerations motivate the use of the Generalized-Pareto (GP) distribution for fitting threshold exceedances. The fitted parameters can be used to construct simple and intuitive average recurrence interval (ARI) maps which reveal how rare a particular precipitation event is given its spatial location. The new methodology eliminates much of the random noise that was produced by the existing models due to a short data record, producing more reasonable ARI maps when compared with NOAA's long-term Climate Prediction Center (CPC) ground based observations. The resulting ARI maps can be useful for disaster preparation, warning, and management, as well as increased public awareness of the severity of precipitation events. Furthermore, the proposed methodology can be applied to various other extreme climate records.
NASA Technical Reports Server (NTRS)
Yong, Bin; Hong, Yang; Ren, Li-Liang; Gourley, Jonathan; Huffman, George J.; Chen, Xi; Wang, Wen; Khan, Sadiq I.
2013-01-01
The real-time availability of satellite-derived precipitation estimates provides hydrologists an opportunity to improve current hydrologic prediction capability for medium to large river basins. Due to the availability of new satellite data and upgrades to the precipitation algorithms, the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis real-time estimates (TMPA-RT) have been undergoing several important revisions over the past ten years. In this study, the changes of the relative accuracy and hydrologic potential of TMPA-RT estimates over its three major evolving periods were evaluated and inter-compared at daily, monthly and seasonal scales in the high-latitude Laohahe basin in China. Assessment results show that the performance of TMPA-RT in terms of precipitation estimation and streamflow simulation was significantly improved after 3 February 2005. Overestimation during winter months was noteworthy and consistent, which is suggested to be a consequence from interference of snow cover to the passive microwave retrievals. Rainfall estimated by the new version 6 of TMPA-RT starting from 1 October 2008 to present has higher correlations with independent gauge observations and tends to perform better in detecting rain compared to the prior periods, although it suffers larger mean error and relative bias. After a simple bias correction, this latest dataset of TMPA-RT exhibited the best capability in capturing hydrologic response among the three tested periods. In summary, this study demonstrated that there is an increasing potential in the use of TMPA-RT in hydrologic streamflow simulations over its three algorithm upgrade periods, but still with significant challenges during the winter snowing events.
Three-dimensional digital microfluidic manipulation of droplets in oil medium
Hong, Jiwoo; Kim, Young Kwon; Won, Dong-Joon; Kim, Joonwon; Lee, Sang Joon
2015-01-01
We here develop a three-dimensional DMF (3D DMF) platform with patterned electrodes submerged in an oil medium to provide fundamental solutions to the technical limitations of 2D DMF platforms and water–air systems. 3D droplet manipulation on patterned electrodes is demonstrated by programmably controlling electrical signals. We also demonstrate the formation of precipitates on the 3D DMF platform through the reaction of different chemical samples. A droplet containing precipitates, hanging on the top electrode, can be manipulated without adhesion of precipitates to the solid surface. This method could be a good alternative strategy to alleviate the existing problems of 2D DMF systems such as cross-contamination and solute adsorption. In addition, we ascertain the feasibility of temperature-controlled chemical reaction on the 3D DMF platform by introducing a simple heating process. To demonstrate applicability of the 3D DMF system to 3D biological process, we examine the 3D manipulation of droplets containing mouse fibroblasts in the 3D DMF platform. Finally, we show detachment of droplets wrapped by a flexible thin film by adopting the electro-elasto-capillarity (EEC). The employment of the EEC may offer a strong potential in the development of 3D DMF platforms for drug encapsulation and actuation of microelectromechanical devices. PMID:26033440
Feng, Lei; Yin, Junyi; Nie, Shaoping; Wan, Yiqun; Xie, Mingyong
2016-10-01
The seeds of Cassia obtusifolia are widely used as a drink in Asia and an additive in food industry. Considerable amounts of water-soluble polysaccharides were found in the whole seeds, while conflicting results on structure characteristics have been reported, and few studies have been reported on physicochemical properties and immunomodulatory activities. In the present study, gradient ethanol precipitation was applied to fractionate the water-soluble polysaccharide (CP), and two sub-fractions CP-30 (30% ethanol precipitate) and CP-40 (40% ethanol precipitate) were obtained. Different rheological properties for CP-30 and CP-40 were found, indicating the differences in structure characteristics between CP-30 and CP-40. Chemical properties, including molecular weight, monosaccharide composition, and glycosidic linkage were investigated. Compared with CP-30, CP-40 had lower molecular weight and higher content of xylose. The immunomodulatory effects of CP, CP-30 and CP-40 were assessed. All of them were found to possess significant immunomodulation activities, while varied effects of them on macrophage functions were observed. The aim of the present study was to develop a simple and efficient method to purify cassia polysaccharides, and investigate their physicochemical properties and biological activities, which was meaningful for their potential use in food industry and folk medicine. Copyright © 2016. Published by Elsevier B.V.
Griffith, William Louis; Compere, Alicia Lucille; Leitten, Jr., Carl Frederick
2010-04-20
A method for separating carbohydrates from pulping liquors includes the steps of providing a wood pulping or wood or biomass hydrolysis pulping liquor having lignin therein, and mixing the liquor with an acid or a gas which forms an acid upon contact with water to initiate precipitation of carbohydrate to begin formation of a precipitate. During precipitation, at least one long chain carboxylated carbohydrate and at least one cationic polymer, such as a polyamine or polyimine are added, wherein the precipitate aggregates into larger precipitate structures. Carbohydrate gel precipitates are then selectively removed from the larger precipitate structures. The method process yields both a carbohydrate precipitate and a high purity lignin.
Precipitation Organization in a Warmer Climate
NASA Astrophysics Data System (ADS)
Rickenbach, T. M.; Nieto Ferreira, R.; Nissenbaum, M.
2014-12-01
This study will investigate changes in precipitation organization in a warmer climate using the Weather Research and Forecasting (WRF) model and CMIP-5 ensemble climate simulations. This work builds from an existing four-year NEXRAD radar-based precipitation climatology over the southeastern U.S. that uses a simple two-category framework of precipitation organization based on instantaneous precipitating feature size. The first category - mesoscale precipitation features (MPF) - dominates winter precipitation and is linked to the more predictable large-scale forcing provided by the extratropical cyclones. In contrast, the second category - isolated precipitation - dominates the summer season precipitation in the southern coastal and inland regions but is linked to less predictable mesoscale circulations and to local thermodynamics more crudely represented in climate models. Most climate modeling studies suggest that an accelerated water cycle in a warmer world will lead to an overall increase in precipitation, but few studies have addressed how precipitation organization may change regionally. To address this, WRF will simulate representative wintertime and summertime precipitation events in the Southeast US under the current and future climate. These events will be simulated in an environment resembling the future climate of the 2090s using the pseudo-global warming (PGW) approach based on an ensemble of temperature projections. The working hypothesis is that the higher water vapor content in the future simulation will result in an increase in the number of isolated convective systems, while MPFs will be more intense and longer-lasting. In the context of the seasonal climatology of MPF and isolated precipitation, these results have implications for assessing the predictability of future regional precipitation in the southeastern U.S.
NASA Technical Reports Server (NTRS)
Lennartsson, W.
1977-01-01
A simple model of a static electric field with a component parallel to the magnetic field is proposed for calculating the electric field and current distributions at various altitudes when the horizontal distribution of the convection electric field is given at a certain altitude above the auroral ionosphere. The model is shown to be compatible with satellite observations of inverted-V electron precipitation structures and associated irregularities in the convection electric field.
Geophysical methods for monitoring soil stabilization processes
NASA Astrophysics Data System (ADS)
Saneiyan, Sina; Ntarlagiannis, Dimitrios; Werkema, D. Dale; Ustra, Andréa
2018-01-01
Soil stabilization involves methods used to turn unconsolidated and unstable soil into a stiffer, consolidated medium that could support engineered structures, alter permeability, change subsurface flow, or immobilize contamination through mineral precipitation. Among the variety of available methods carbonate precipitation is a very promising one, especially when it is being induced through common soil borne microbes (MICP - microbial induced carbonate precipitation). Such microbial mediated precipitation has the added benefit of not harming the environment as other methods can be environmentally detrimental. Carbonate precipitation, typically in the form of calcite, is a naturally occurring process that can be manipulated to deliver the expected soil strengthening results or permeability changes. This study investigates the ability of spectral induced polarization and shear-wave velocity for monitoring calcite driven soil strengthening processes. The results support the use of these geophysical methods as soil strengthening characterization and long term monitoring tools, which is a requirement for viable soil stabilization projects. Both tested methods are sensitive to calcite precipitation, with SIP offering additional information related to long term stability of precipitated carbonate. Carbonate precipitation has been confirmed with direct methods, such as direct sampling and scanning electron microscopy (SEM). This study advances our understanding of soil strengthening processes and permeability alterations, and is a crucial step for the use of geophysical methods as monitoring tools in microbial induced soil alterations through carbonate precipitation.
Zhao, Wei; Zhang, Yan; Li, Quanmin
2008-05-01
Although the determination methods of sodium ceftriaxone has been increasingly reported, these methods have their inherent limits preventing them from being broadly applied in common laboratories. In order to circumvent this problem, a rapid and simple method for the indirect spectrophotometric determination of sodium ceftriaxone is reported. Sodium ceftriaxone was degraded completely in the presence of 0.20 mol/l sodium hydroxide in boiling water bath for 20 min. The thiol group (-SH) of the degradation product (I) of sodium ceftriaxone could reduce cupric to cuprous ions, and the resulting which was precipitated with the thiol group (-SH) of the degradation product (II) at pH 4.0. By determining the residual amount of copper (II), the indirect determination of sodium ceftriaxone can be achieved. Standard curve of sodium ceftriaxone versus the flotation yield of copper(II) showed that sodium ceftriaxone could be determined in low concentrations. The linear range of sodium ceftriaxone was 0.70-32 microg/ml and the detection limit evaluated by calibration curve (3sigma/k) was found to be 0.60 microg/ml. A simple and efficient method was developed and it has been successfully applied to the determination of sodium ceftriaxone in human serum and urine samples, respectively. It is expected that this method will find broad applications in the detection of cephalosporin derivatives with similar structure.
Prieto, Esther; Vispe, Eugenio; Otín-Mallada, Sofía; Garcia-Martin, Elena; Polo-Llorens, Vicente; Fraile, José M; Pablo, Luis E; Mayoral, José A
2017-02-01
To develop a simple, specific, and rapid method to determine corticosteroid concentrations in vitreous humor. An analytical method based on high-pressure liquid chromatography-tandem mass spectrometry (HPLC-MS) with a simple extraction procedure was developed. New Zealand albino rabbits (n = 54) received a single (0.1 mL) intravitreal injection of dexamethasone (DXM, 0.1 mg), methylprednisolone (MP, 2 mg), or triamcinolone acetonide (TA, 10 mg). Eyes were enucleated and mean vitreous steroid levels were quantified at 12 h and 1, 2, 3, 7, and 14 days. Corticosteroids were extracted from the vitreous with acetonitrile, and TA was extracted with ethyl acetate, yielding high protein precipitation and clean solution samples. Vitreous samples were analyzed by isocratic HPLC-MS with mobile phase comprising acetonitrile and 2 mM ammonium formate buffer in water, pH 3.5. The linear range was 50-100,000 ng/g with a lower quantification limit of 45 ng/g for DXM and MP, and 50 ng/g for TA. Vitreous levels of DXM and MP were not detectable 14 days post-administration. Vitreous levels of TA were positive and stable throughout the study in both injected and control eyes. The HPLC-MS analytical method is an alternative to HPLC-MS/MS methods, sensitive enough for identifying and quantifying steroids in vitreous humor at a therapeutic dosage scale.
Memory effects in a Al/Ti:HfO2/CuPc metal-oxide-semiconductor device
NASA Astrophysics Data System (ADS)
Tripathi, Udbhav; Kaur, Ramneek
2016-05-01
Metal oxide semiconductor structured organic memory device has been successfully fabricated. Ti doped hafnium oxide (Ti:HfO2) nanoparticles has been fabricated by precipitation method and further calcinated at 800 °C. Copper phthalocyanine, a hole transporting material has been utilized as an organic semiconductor. The electrical properties of the fabricated device have been studied by measuring the current-voltage and capacitance-voltage characteristics. The amount of charge stored in the nanoparticles has been calculated by using flat band condition. This simple approach for fabricating MOS memory device has opens up opportunities for the development of next generation memory devices.
Gao, Guoxin; Lu, Shiyao; Xiang, Yang; Dong, Bitao; Yan, Wei; Ding, Shujiang
2015-11-21
Ultrathin CoMn2O4 nanosheets supported on reduced graphene oxide (rGO) are successfully synthesized through a simple co-precipitation method with a post-annealing treatment. With the assistance of citrate, the free-standing CoMn2O4 ultrathin nanosheets can form porous overlays on both sides of the rGO sheets. Such a novel hybrid nanostructure can effectively promote charge transport and accommodate volume variation upon prolonged charge/discharge cycling. When evaluated as a promising electrode for supercapacitors in a 6 M KOH solution electrolyte, the hybrid nanocomposites demonstrate highly enhanced capacitance and excellent cycling stability.
Zirconium diselenite microstructures, formation and mechanism
NASA Astrophysics Data System (ADS)
Naik, Chandan C.; Salker, A. V.
2018-04-01
In this work, a series of microstructures of zirconium diselenite (Zr(SeO3)2) has been prepared via a simple precipitation method at room temperature without adding any organic surfactants. Phase purity of the sample has been checked by X-ray Diffraction. From the SEM, FESEM, and TEM images spheroid nanoparticles to the starfish-like structure of zirconium diselenite are detected. The morphological evolution processes were investigated carefully following time-dependent experiments and a growth mechanism has been proposed. Two different crystal growth processes, the oriented attachment process accompanying the Ostwald ripening process were held responsible for the formation of a structure resembling starfish having four arms.
NASA Astrophysics Data System (ADS)
Labhane, P. K.; Sapkal, B. M.; Sonawane, G. H.
2018-05-01
Carbon (C) doped ZnO rod like nanoparticles were prepared by simple co-precipitation method. The effect of C doping on ZnO has been evaluated by using XRD, Williamson-Hall Plot, FESEM and EDX data. UV light assisted photocatalytic activities of prepared samples were evaluated spectrophotometrically by the degradation of methylene blue (MB). C doped ZnO shows excellent catalytic efficiency compared to pure ZnO, degrading MB completely within 100 min under UV light. Photocatalysis follows the first order kinetics law and the calculated apparent reaction kinetics rate constant suggest the better activity of C-ZnO.
2009-01-01
SiC nanowires have been synthesized at 1,600 °C by using a simple and low-cost method in a high-frequency induction furnace. The commercial SiO powder and the arc-discharge plasma pretreated carbon black were mixed and used as the source materials. The heating-up and reaction time is less than half an hour. It was found that most of the nanowires have core-shell SiC/SiO2nanostructures. The nucleation, precipitation, and growth processes were discussed in terms of the oxide-assisted cluster-solid mechanism. PMID:20596456
NASA Astrophysics Data System (ADS)
Halubok, M.; Yang, Z. L.
2016-12-01
This study investigates how gross primary production (GPP) estimates can be improved with the use of solar-induced chlorophyll fluorescence (SIF) and presents an effort to produce GPP predictions based on the interdependence between SIF, precipitation, soil moisture and GPP using Global Ozone Monitoring Experiment-2 (GOME-2), Tropical Rainfall Measuring Mission (TRMM), European Space Agency Climate Change Initiative Soil Moisture (ESA CCI SM) datasets and FLUXNET observations. We found that considering the relationships between SIF, precipitation and soil moisture, isolating SIF-GPP relationships for different plant functional types (PFTs), and using precipitation and soil moisture conditions pertinent to the continental US provides the most accurate GPP estimates over the Great Plains and Texas. We found that there exists a lag between a precipitation event and corresponding fluorescence levels, ranging from about 2 weeks for grasses to a month for crops. Using these lead-lag relationships, we estimate GPP using SIF, precipitation and soil moisture data for two different PFTs (C3 non-arctic grass and crop) over the US applying the multiple linear regression technique. GPP values estimated from our lead-lag based SIF show the closest possible match with the observational data from the FLUXNET stations. During the drought 2011 year over Texas, our GPP values show a decrease by 100 gC/m2/month as compared to the reference year of 2007. In 2012 (drought year over the Great Plains), we observe significant decrease in GPP, especially in the area of high production (>500 gC/m2/month) that is reduced in July and August 2012. Hence, estimating GPP using specific SIF-GPP relationships, considering the differences in biomes and their interactions with precipitation and soil moisture pertinent to a certain region can detect the drought trends and produce reasonable GPP estimates. Thus, this simple and computationally efficient method based on derived linear equations can be used to obtain GPP predictions.
On Time/Space Aggregation of Fine-Scale Error Estimates (Invited)
NASA Astrophysics Data System (ADS)
Huffman, G. J.
2013-12-01
Estimating errors inherent in fine time/space-scale satellite precipitation data sets is still an on-going problem and a key area of active research. Complicating features of these data sets include the intrinsic intermittency of the precipitation in space and time and the resulting highly skewed distribution of precipitation rates. Additional issues arise from the subsampling errors that satellites introduce, the errors due to retrieval algorithms, and the correlated error that retrieval and merger algorithms sometimes introduce. Several interesting approaches have been developed recently that appear to make progress on these long-standing issues. At the same time, the monthly averages over 2.5°x2.5° grid boxes in the Global Precipitation Climatology Project (GPCP) Satellite-Gauge (SG) precipitation data set follow a very simple sampling-based error model (Huffman 1997) with coefficients that are set using coincident surface and GPCP SG data. This presentation outlines the unsolved problem of how to aggregate the fine-scale errors (discussed above) to an arbitrary time/space averaging volume for practical use in applications, reducing in the limit to simple Gaussian expressions at the monthly 2.5°x2.5° scale. Scatter diagrams with different time/space averaging show that the relationship between the satellite and validation data improves due to the reduction in random error. One of the key, and highly non-linear, issues is that fine-scale estimates tend to have large numbers of cases with points near the axes on the scatter diagram (one of the values is exactly or nearly zero, while the other value is higher). Averaging 'pulls' the points away from the axes and towards the 1:1 line, which usually happens for higher precipitation rates before lower rates. Given this qualitative observation of how aggregation affects error, we observe that existing aggregation rules, such as the Steiner et al. (2003) power law, only depend on the aggregated precipitation rate. Is this sufficient, or is it necessary to aggregate the precipitation error estimates across the time/space data cube used for averaging? At least for small time/space data cubes it would seem that the detailed variables that affect each precipitation error estimate in the aggregation, such as sensor type, land/ocean surface type, convective/stratiform type, and so on, drive variations that must be accounted for explicitly.
Zafra-Gómez, Alberto; Garballo, Antonio; Morales, Juan C; García-Ayuso, Luis E
2006-06-28
A fast, simple, and reliable method for the isolation and determination of the vitamins thiamin, riboflavin, niacin, pantothenic acid, pyridoxine, folic acid, cyanocobalamin, and ascorbic acid in food samples is proposed. The most relevant advantages of the proposed method are the simultaneous determination of the eight more common vitamins in enriched food products and a reduction of the time required for quantitative extraction, because the method consists merely of the addition of a precipitation solution and centrifugation of the sample. Furthermore, this method saves a substantial amount of reagents as compared with official methods, and minimal sample manipulation is achieved due to the few steps required. The chromatographic separation is carried out on a reverse phase C18 column, and the vitamins are detected at different wavelengths by either fluorescence or UV-visible detection. The proposed method was applied to the determination of water-soluble vitamins in supplemented milk, infant nutrition products, and milk powder certified reference material (CRM 421, BCR) with recoveries ranging from 90 to 100%.
Structural and optical properties of hydrazine hydrate capped cadmium sulphide nanoparticles
NASA Astrophysics Data System (ADS)
Solanki, Rekha Garg; Rajaram, P.
2018-05-01
Semiconductor nanoparticles have received considerable interest due to their size-dependent optical properties. CdS is an important semiconductor material widely used in low cost photovoltaic devices, light-emitting diodes and biological imaging. The nanoparticles of CdS were prepared by a simple chemical precipitation method in aqueous medium. The reaction was carried out at room temperature. The cadmium sulphide nanoparticles were characterized using X-ray powder diffraction (XRD) and UV-visible spectroscopy. The lattice strain, crystallite size and dislocation density were calculated using the Williamson-Hall (W-H) method. The band gap was obtained from the UV-Visible spectra of CdS nanoparticles. The band gap of CdS nanoparticles is around 2.68 eV and the crystallite size is around 5.8 nm.
Chen, Feng; Hu, Zhe-Yi; Laizure, S Casey; Hudson, Joanna Q
2017-03-01
Optimal dosing of antibiotics in critically ill patients is complicated by the development of resistant organisms requiring treatment with multiple antibiotics and alterations in systemic exposure due to diseases and extracorporeal drug removal. Developing guidelines for optimal antibiotic dosing is an important therapeutic goal requiring robust analytical methods to simultaneously measure multiple antibiotics. An LC-MS/MS assay using protein precipitation for cleanup followed by a 6-min gradient separation was developed to simultaneously determine five antibiotics in human plasma. The precision and accuracy were within the 15% acceptance range. The formic acid concentration was an important determinant of signal intensity, peak shape and matrix effects. The method was designed to be simple and successfully applied to a clinical pharmacokinetic study.
Deng, Shuang; Scott, David; Myers, Douglas; Garg, Uttam
2016-01-01
Triosephosphate isomerase (TPI) is a glycolytic enzyme which catalyzes the interconversion between glyceraldehyde-3-phosphate (G3P) and dihydroxyacetone phosphate (DHAP). TPI deficiency results in accumulation of DHAP in human red blood cells and other tissues. The disease is characterized by congenital hemolytic anemia, and progressive neuromuscular dysfunction. The laboratory diagnosis is generally made by measurement of TPI activity in RBCs. Measurement of DHAP can be useful in further confirmation and follow-up of the disease. We developed HPLC/TOF-MS method for quantitation of DHAP in RBCs. The method involves simple protein precipitation, reverse phase C8 column chromatography, ion pairing with tributylamine, and long run time of 50 min to separate the two isomers (G3P and DHAP).
The development of a new method to detect the adulteration of commercial aloe gel powders.
Kim, K H; Lee, J G; Kim, D G; Kim, M K; Park, J H; Shin, Y G; Lee, S K; Jo, T H; Oh, S T
1998-10-01
Simple and accurate methods to detect the adulteration of commercial aloe gel powder were developed. Crude polysaccharide in aloe gel powder was isolated by precipitating with excess ethyl alcohol and total hexose in isolated polysaccharide was determined by Dubois assay. After hydrolysis of non-dialysable polysaccharides, resultant free sugar was determined by gas chromatography for sugar recognition and ash contents was considered simultaneously. In some products, the content of ash was very low while the content of total hexose was very high. And polysaccharides of these products revealed typical dextran pattern, therefore, these products could be identified that adulterated with commercial maltodextrin. The content of maltodextrin in adulterated product was determined by HPLC and TLC analysis which could be adopted as a part of a certification process.
Backcasting long-term climate data: evaluation of hypothesis
NASA Astrophysics Data System (ADS)
Saghafian, Bahram; Aghbalaghi, Sara Ghasemi; Nasseri, Mohsen
2018-05-01
Most often than not, incomplete datasets or short-term recorded data in vast regions impedes reliable climate and water studies. Various methods, such as simple correlation with stations having long-term time series, are practiced to infill or extend the period of observation at stations with missing or short-term data. In the current paper and for the first time, the hypothesis on the feasibility of extending the downscaling concept to backcast local observation records using large-scale atmospheric predictors is examined. Backcasting is coined here to contrast forecasting/projection; the former is implied to reconstruct in the past, while the latter represents projection in the future. To assess our hypotheses, daily and monthly statistical downscaling models were employed to reconstruct past precipitation data and lengthen the data period. Urmia and Tabriz synoptic stations, located in northwestern Iran, constituted two case study stations. SDSM and data-mining downscaling model (DMDM) daily as well as the group method of data handling (GMDH) and model tree (Mp5) monthly downscaling models were trained with National Center for Environmental Prediction (NCEP) data. After training, reconstructed precipitation data of the past was validated against observed data. Then, the data was fully extended to the 1948 to 2009 period corresponding to available NCEP data period. The results showed that DMDM performed superior in generation of monthly average precipitation compared with the SDSM, Mp5, and GMDH models, although none of the models could preserve the monthly variance. This overall confirms practical value of the proposed approach in extension of the past historic data, particularly for long-term climatological and water budget studies.
Uncertainty in determining extreme precipitation thresholds
NASA Astrophysics Data System (ADS)
Liu, Bingjun; Chen, Junfan; Chen, Xiaohong; Lian, Yanqing; Wu, Lili
2013-10-01
Extreme precipitation events are rare and occur mostly on a relatively small and local scale, which makes it difficult to set the thresholds for extreme precipitations in a large basin. Based on the long term daily precipitation data from 62 observation stations in the Pearl River Basin, this study has assessed the applicability of the non-parametric, parametric, and the detrended fluctuation analysis (DFA) methods in determining extreme precipitation threshold (EPT) and the certainty to EPTs from each method. Analyses from this study show the non-parametric absolute critical value method is easy to use, but unable to reflect the difference of spatial rainfall distribution. The non-parametric percentile method can account for the spatial distribution feature of precipitation, but the problem with this method is that the threshold value is sensitive to the size of rainfall data series and is subjected to the selection of a percentile thus make it difficult to determine reasonable threshold values for a large basin. The parametric method can provide the most apt description of extreme precipitations by fitting extreme precipitation distributions with probability distribution functions; however, selections of probability distribution functions, the goodness-of-fit tests, and the size of the rainfall data series can greatly affect the fitting accuracy. In contrast to the non-parametric and the parametric methods which are unable to provide information for EPTs with certainty, the DFA method although involving complicated computational processes has proven to be the most appropriate method that is able to provide a unique set of EPTs for a large basin with uneven spatio-temporal precipitation distribution. The consistency between the spatial distribution of DFA-based thresholds with the annual average precipitation, the coefficient of variation (CV), and the coefficient of skewness (CS) for the daily precipitation further proves that EPTs determined by the DFA method are more reasonable and applicable for the Pearl River Basin.
Reconstruction of March-June precipitation from tree rings in central Liaoning, China
NASA Astrophysics Data System (ADS)
Wang, Yanchao; Liu, Yu
2017-11-01
A dendrochronological profile was generated from Chinese pines ( Pinus tabulaeformis Carr.) in the Qianshan Mountains in northeastern China. Based on correlation analyses, the pattern of precipitation from March to June ( P 36 ) was reconstructed using a simple linear model, which explained 42.7% of the total variance in observed precipitation from 1951 to 2012. The reconstructed P 36 series revealed a consistently increasing trend in precipitation during the twentieth century in the Qianshan Mountains. The reconstructed data showed trends that were similar to those in the variation in trends for March-June precipitation observed at the Shenyang station, the reconstructed January-May precipitation trends in Shenyang City, and the reconstructed average June-September relative humidity for Yiwulü Mountain. The reconstructed data also showed good agreement with the droughts reported in historical documents and recorded by meteorological stations in Liaoning. Spatial correlation analyses show that the reconstructed data reflect the variability in precipitation that occurs over much of northeastern China. In addition, our reconstruction showed a significant periodicity. The significant correlations between the reconstructed P 36 and the El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO) and sunspot numbers indicate that precipitation variability in the Qianshan Mountain region is probably driven by extensive atmosphere-sea interactions and solar activities.
NASA Technical Reports Server (NTRS)
Bromwich, David H.; Chen, Qiu-shi
2002-01-01
Observations of precipitation over Greenland are limited. Direct precipitation measurements for the whole ice sheet are impractical, and those in the coastal region have substantial uncertainty but may be correctable with some effort. However, the analyzed wind, geopotential height and moisture fields are available for recent years, and the precipitation is retrievable from these fields by a dynamic method. Based on recent Greenland precipitation from dynamic studies, several deficiencies in the precipitation spatial distributions from these dynamic methods were evaluated by Bromwich et al.
Application of physical scaling towards downscaling climate model precipitation data
NASA Astrophysics Data System (ADS)
Gaur, Abhishek; Simonovic, Slobodan P.
2018-04-01
Physical scaling (SP) method downscales climate model data to local or regional scales taking into consideration physical characteristics of the area under analysis. In this study, multiple SP method based models are tested for their effectiveness towards downscaling North American regional reanalysis (NARR) daily precipitation data. Model performance is compared with two state-of-the-art downscaling methods: statistical downscaling model (SDSM) and generalized linear modeling (GLM). The downscaled precipitation is evaluated with reference to recorded precipitation at 57 gauging stations located within the study region. The spatial and temporal robustness of the downscaling methods is evaluated using seven precipitation based indices. Results indicate that SP method-based models perform best in downscaling precipitation followed by GLM, followed by the SDSM model. Best performing models are thereafter used to downscale future precipitations made by three global circulation models (GCMs) following two emission scenarios: representative concentration pathway (RCP) 2.6 and RCP 8.5 over the twenty-first century. The downscaled future precipitation projections indicate an increase in mean and maximum precipitation intensity as well as a decrease in the total number of dry days. Further an increase in the frequency of short (1-day), moderately long (2-4 day), and long (more than 5-day) precipitation events is projected.
Ling, Xueping; Guo, Jing; Zheng, Chuqiang; Ye, Chiming; Lu, Yinghua; Pan, Xueshan; Chen, Zhengqi; Ng, I-Son
2015-12-01
Polyunsaturated fatty acids (PUFAs) are valuable ingredients in the food and pharmaceutical products due to their beneficial influence on human health. Most studies paid attention on the production of PUFAs from oleaginous micro-organisms but seldom on the comparative proteomics of cells. In the study, three methods (i.e., cold shock, acetone precipitation and ethanol precipitation) for lipid removal from crude protein extracts were applied in different PUFAs-producing micro-organisms. Among the selective strains, Schizochytrium was used as an oleaginous strain with high lipid of 60.3 (w/w%) in biomass. The Mortierella alpina and Cunninghamella echinulata were chosen as the low-lipid-content strains with 25.8 (w/w%) and 21.8 (w/w%) of lipid in biomass, respectively. The cold shock resulted as the most effective method for lipid removed, thus obtained higher protein amount for Schizochytrium. Moreover, from the comparative proteomics for the three PUFAs-producing strains, it showed more significant proteins of up or down-regulation were explored under cold shock treatment. Therefore, the essential proteins (i.e., polyunsaturated fatty acid synthase) and regulating proteins were observed. In conclusion, this study provides a valuable and practical approach for analysis of high PUFAs-producing strains at the proteomics level, and would further accelerate the understanding of the metabolic flux in oleaginous micro-organisms.
New validated method for piracetam HPLC determination in human plasma.
Curticapean, Augustin; Imre, Silvia
2007-01-10
The new method for HPLC determination of piracetam in human plasma was developed and validated by a new approach. The simple determination by UV detection was performed on supernatant, obtained from plasma, after proteins precipitation with perchloric acid. The chromatographic separation of piracetam under a gradient elution was achieved at room temperature with a RP-18 LiChroSpher 100 column and aqueous mobile phase containing acetonitrile and methanol. The quantitative determination of piracetam was performed at 200 nm with a lower limit of quantification LLQ=2 microg/ml. For this limit, the calculated values of the coefficient of variation and difference between mean and the nominal concentration are CV%=9.7 and bias%=0.9 for the intra-day assay, and CV%=19.1 and bias%=-7.45 for the between-days assay. For precision, the range was CV%=1.8/11.6 in the intra-day and between-days assay, and for accuracy, the range was bias%=2.3/14.9 in the intra-day and between-days assay. In addition, the stability of piracetam in different conditions was verified. Piracetam proved to be stable in plasma during 4 weeks at -20 degrees C and for 36 h at 20 degrees C in the supernatant after protein precipitation. The new proposed method was used for a bioequivalence study of two medicines containing 800 mg piracetam.
Inagaki, Kazumi; Narukawa, Tomohiro; Yarita, Takashi; Takatsu, Akiko; Okamoto, Kensaku; Chiba, Koichi
2007-10-01
A coprecipitation method using sample constituents as carrier precipitants was developed that can remove molybdenum, which interferes with the determination of cadmium in grain samples via isotope dilution inductively coupled plasma mass spectrometry (ID-ICPMS). Samples were digested with HNO3, HF, and HClO4, and then purified 6 M sodium hydroxide solution was added to generate colloidal hydrolysis compounds, mainly magnesium hydroxide. Cadmium can be effectively separated from molybdenum because the cadmium forms hydroxides and adsorbs onto and/or is occluded in the colloid, while the molybdenum does not form hydroxides or adsorb onto the hydrolysis colloid. The colloid was separated by centrifugation and then dissolved with 0.2 M HNO3 solution to recover the cadmium. The recovery of Cd achieved using the coprecipitation was >97%, and the removal efficiency of Mo was approximately 99.9%. An extremely low procedural blank (below the detection limit of ICPMS) was achieved by purifying the 6 M sodium hydroxide solution via Mg coprecipitation using Mg(NO3)2 solution. The proposed method was applied to two certified reference materials (NIST SRM 1567a wheat flour and SRM 1568a rice flour) and CCQM-P64 soybean powder. Good analytical results with small uncertainties were obtained for all samples. This method is simple and reliable for the determination of Cd in grain samples by ID-ICPMS.
NASA Astrophysics Data System (ADS)
Yoon, J.; Zeng, N.; Mariotti, A.; Swenson, S.
2007-12-01
In an approach termed the P-E-R (or simply PER) method, we apply the basin water budget equation to diagnose the long-term variability of the total terrestrial water storage (TWS). The key input variables are observed precipitation (P) and runoff (R), and estimated evaporation (E). Unlike typical offline land-surface model estimate where only atmospheric variables are used as input, the direct use of observed runoff in the PER method imposes an important constraint on the diagnosed TWS. Although there lack basin-scale observations of evaporation, the tendency of E to have significantly less variability than the difference between precipitation and runoff (P-R) minimizes the uncertainties originating from estimated evaporation. Compared to the more traditional method using atmospheric moisture convergence (MC) minus R (MCR method), the use of observed precipitation in PER method is expected to lead to general improvement, especially in regions atmospheric radiosonde data are too sparse to constrain the atmospheric model analyzed MC such as in the remote tropics. TWS was diagnosed using the PER method for the Amazon (1970-2006) and the Mississippi Basin (1928-2006), and compared with MCR method, land-surface model and reanalyses, and NASA's GRACE satellite gravity data. The seasonal cycle of diagnosed TWS over the Amazon is about 300 mm. The interannual TWS variability in these two basins are 100-200 mm, but multi-dacadal changes can be as large as 600-800 mm. Major droughts such as the Dust Bowl period had large impact with water storage depleted by 500 mm over a decade. Within the short period 2003-2006 when GRACE data was available, PER and GRACE show good agreement both for seasonal cycle and interannual variability, providing potential to cross-validate each other. In contrast, land-surface model results are significantly smaller than PER and GRACE, especially towards longer timescales. While we currently lack independent means to verify these long-term changes, simple error analysis using 3 precipitation datasets and 3 evaporation estimates suggest that the multi-decadal amplitude can be uncertain up to a factor of 2, while the agreement is high on interannual timescales. The large TWS variability implies the remarkable capacity of land-surface in storing and taking up water that may be under-represented in models. The results also suggest the existence of water storage memories on multi-year time scales, significantly longer than typically assumed seasonal timescales associated with surface soil moisture.
Synthesis, characterization and biological studies of copper oxide nanostructures
NASA Astrophysics Data System (ADS)
Jillani, Saquf; Jelani, Mohsan; Hassan, Najam Ul; Ahmad, Shahbaz; Hafeez, Muhammad
2018-04-01
The development of synthetic methods has been broadly accepted as an area of fundamental importance to the understanding and application of nanoscale materials. It allows the individual to modulate basic parameters such as morphology, particle size, size distributions, and composition. Several methods have been developed to synthesize CuO nanostructures with diverse morphologies, sizes, and dimensions using different chemical and physical based approaches. In this work, CuO nanostructures have been synthesized by aqueous precipitation method and simple chemical deposition method. The characterization of these products has been carried out by the x-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Fourier Transform Infrared (FTIR) and UV–vis spectroscopy. Biological activity such as antibacterial nature of synthesized CuO is also explored. XRD peaks analysis revealed the monoclinic crystalline phase of copper oxide nanostructures. While the rod-like and particle-like morphologies have been observed in SEM results. FTIR spectra have confirmed the formation of CuO nanoparticles by exhibiting its characteristic peaks corresponding to 494 cm‑1 and 604 cm‑1. The energy band gap of the as-prepared CuO nanostructures determined from UV–vis spectra is found to be 2.18 eV and 2.0 eV for precipitation and chemically deposited samples respectively. The antibacterial activity results described that the synthesized CuO nanoparticles showed better activity against Staphylococcus aureus. The investigated results suggested the synthesis of highly stable CuO nanoparticles with significant antibacterial activities.
NASA Astrophysics Data System (ADS)
Frieler, Katja; Meinshausen, Malte; Braun, Nadine; Hare, Bill
2010-05-01
Given the expected and already observed impacts of climate change there is growing agreement that global mean temperature rise should be limited to below 2 or 1.5 degrees. The translation of such a temperature target into guidelines for global emission reduction over the coming decades has become one of the most important and urgent tasks. In fact, there are four recent studies (Meinshausen et al. 2009, Allen et al. 2009, Matthews et al. 2009 and Zickfeld et al. 2009) which take a very comprehensive approach to quantifying the current uncertainties related to the question of what are the "allowed amounts" of global emissions given specific limits of global warming. Here, we present an extension of this budget approach allowing to focus on specific regional impacts. The method is based on probabilistic projections of regional temperature and precipitation changes providing the input for available impact functions. Using the example of Greenland's surface mass balance (Gregory et al., 2006) we will demonstrate how the probability of specific impacts can be described in dependence of global GHG emission budgets taking into account the uncertainty of global mean temperature projections as well as uncertainties of regional climate patterns varying from AOGCM to AOGCM. The method utilizes the AOGCM based linear relation between global mean temperature changes and regionally averaged changes in temperature and precipitation. It allows to handle the variations of regional climate projections from AR4 AOGCM runs independent of the uncertainties of global mean temperature change that are estimated by a simple climate model (Meinshausen et al., 2009). While the linearity of this link function is already established for temperature and to a lesser degree (depending on the region) also for precipitation (Santer et al. 1990; Mitchell et al. 1999; Giorgi et al., 2008; Solomon et al., 2009), we especially focus on the quantification of the uncertainty (in particularly the inter-AOGCM variations) of the associated scaling coefficients. Our approach is based on a linear mixed effects model (e.g. Bates and Pinheiro, 2001). In comparison to other scaling approaches we do not fit separate models for the temperature and precipitation data but we apply a two-dimensional model, i.e., we explicitly account for the fact that models (scenarios or runs) showing an especially high temperature increase may also show high precipitation increases or vice versa. Coupling the two-dimensional distribution of the scaling coefficients with the uncertainty distributions of global mean temperature change given different GHG emission trajectories finally provides time series of two dimensional uncertainty distributions of regional changes in temperature and precipitation, where both components might be correlated. These samples provide the input for regional specific impact functions. In case of Greenland we use a function by Gregory et al., 2006 that allows us to calculate changes in sea level rise due to changes in Greenland's surface mass balance in dependence of regionally averaged changes in temperature and precipitation. The precipitation signal turns out to be relatively strong for Greenland with AOGCMs consistently showing increasing precipitation with increasing global mean temperature. In addition, temperature and precipitation increases turned out to be highly correlated for Greenland: Models showing an especially high temperature increase also show high precipitation increases reflected by a correlation coefficient of 0.88 for the inter-model variations of both components of the scaling coefficients. Taking these correlations into account is especially important because the surface mass balance of the Greenland ice sheet critically depends on the interaction of the temperature and precipitation component of climate change: Increasing precipitation may at least partly balance the loss due to increasing temperatures.
Precipitation-centered Conceptual Model for Sub-humid Uplands in Lampasas Cut Plains, TX
NASA Astrophysics Data System (ADS)
Potter, S. R.; Tu, M.; Wilcox, B. P.
2011-12-01
Conceptual understandings of dominant hydrological processes, system interactions and feedbacks, and external forcings operating within catchments often defy simple definition and explanation, especially catchments encompassing transition zones, degraded landscapes, rapid development, and where climate forcings exhibit large variations across time and space. However, it is precisely those areas for which understanding and knowledge are most needed to innovate sustainable management strategies and counter past management blunders and failed restoration efforts. The cut plain of central Texas is one such area. Complex geographic and climatic factors lead to spatially and temporally variable precipitation having frequent dry periods interrupted by intense high-volume precipitation. Fort Hood, an army post located in the southeast cut plain contains landscapes ranging from highly degraded to nearly pristine with a topography mainly comprised of flat-topped mesas separated by broad u-shaped valleys. To understand the hydrology of the area and responses to wet-dry cycles we analyzed 4-years of streamflow and rainfall from 8 catchments, sized between 1819 and 16,000 ha. Since aquifer recharge/discharge and surface stream-groundwater interactions are unimportant, we hypothesized a simple conceptual model driven by precipitation and radiative forcings and having stormflow, baseflow, ET, and two hypothetical storage components. The key storage component was conceptualized as a buffer that was highly integrated with the ET component and exerted controls on baseflow. Radiative energy controlled flux from the buffer to ET. We used the conceptual model in making a bimonthly hydrologic budget, which included buffer volumes and a deficit-surplus indicator. Through the analysis, we were led to speculate that buffer capacity plays key roles in these landscapes and even relatively minor changes in capacity, due to soil compaction for example, might lead to ecological shifts. The model led us to other hypotheses concerning stormflow mechanisms and controls on baseflow, which we then tested against observations. It was instructive that such a simple model could lead to interesting new theories.
Evaluation of three methods for the concentration of poliovirus from oysters.
Bouchriti, N; Goyal, S M
1992-10-01
Three methods for the concentration of poliovirus from oyster homogenates were compared. The adsorption-elution-precipitation method gave the lowest average virus recovery (24.1%), while the beef extract elution-acid precipitation method and the non-fat dry milk elution-acid precipitation methods gave recoveries of 47.2% and 39.6%, respectively. Although the overall recovery rates with these methods were lower than those reported in previous studies, recoveries of 40-47% obtained with the elution-precipitation methods used in the present study are considered to be above average in terms of recovery efficiency.
Li, Fuqiang; Li, Guangyu; Zhao, Jinsong; Xiao, Jun; Liu, Zaoxia; Su, Guanfang
2016-06-01
A simple, specific, and sensitive liquid chromatography-mass spectrometry (LC-MS) method for determination of cyasterone in rat plasma was developed in our laboratory. Cucurbitacin B was used as an internal standard (IS). After protein precipitation with twofold volume of acetonitrile, the analyte and IS were separated on a Luna C18 column (100 × 4.6 mm, i.d., 3.0 µm; Phenomenex) by isocratic elution with acetonitrile-water (80:20, v/v) as the mobile phase at a flow rate of 0.4 mL/min. An electrospray ionization source was applied and operated in the positive ion mode; selected ion monitoring scan mode was used for quantification, and the target ions m/z 543.3 for cyasterone and m/z 581.3 for IS were chosen. Good linearity was observed in the concentration range of 0.40-400 ng/mL for cyasterone in rat plasma. Intra-day and inter-day precision were both <7.4%. This method was proved to be suitable for pharmacokinetic studies after oral (5.0 mg/kg) or intravenous (0.5 mg/kg) administration of cyasterone in rats. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Yagi, Shigeaki; Nishizawa, Manabu; Ando, Itiro; Oguma, Shiro; Sato, Emiko; Imai, Yutaka; Fujiwara, Masako
2016-08-01
A simple, rapid, and selective method for determination of plasma biotin was developed using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). After single-step protein precipitation with methanol, biotin and stable isotope-labeled biotin as an internal standard (IS) were chromatographed on a pentafluorophenyl stationary-phase column (2.1 × 100 mm, 2.7 μm) under isocratic conditions using 10 mm ammonium formate-acetonitrile (93:7, v/v) at a flow rate of 0.6 mL/min. The total chromatographic runtime was 5 min for each injection. Detection was performed in a positive electrospray ionization mode by monitoring selected ion transitions at m/z 245.1/227.0 and 249.1/231.0 for biotin and the IS, respectively. The calibration curve was linear in the range of 0.05-2 ng/mL using 300 μL of plasma. The intra- and inter-day precisions were all <7.1%. The accuracy varied from -0.7 to 8.2%. The developed UHPLC-MS/MS method was successfully applied to determine plasma biotin concentrations in hemodialysis patients. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Cooper, Stephen D; Fletcher, Brenda L; Silinski, Melanie A Rehder; Brown, Sherri S; Lodge, Jon W; Fernando, Reshan A; Collins, Bradley J
2011-07-01
A rapid and simple liquid chromatography tandem mass spectrometry method was developed and validated for the simultaneous determination of L-ephedrine, pseudoephedrine, and caffeine in male Fisher-344 rat plasma at nanogram-per-milliliter concentrations for use in support of toxicology studies. Only 25 μL of plasma is required, and extraction is performed using a simple, single-step protein precipitation. The method was validated over a range of 2.09 to 5460 ng/mL for L-ephedrine, 2.09 to 5050 ng/mL for pseudoephedrine and 2.03 to 5340 ng/mL for caffeine. A binary gradient elution at 0.3 mL/min was used with a Waters XBridge Phenyl (2.1 × 150 mm, 3.5 μm) column and a Waters XBridge Phenyl 2.1- × 10-mm guard column at ambient temperature. The mobile phase consisted of 10 mM ammonium acetate in water (pH 5.0) and methanol. Caffeine trimethyl-(13)C(3) was used as the internal standard. The method was evaluated for linearity, recovery, precision, accuracy, and stability, and it was successfully applied in toxicokinetic studies of ephedrine, administered alone, in combination with caffeine, and in the herbal source Ma Huang.
Determination of hydroxyurea in human plasma by HPLC-UV using derivatization with xanthydrol.
Legrand, Tiphaine; Rakotoson, Marie-Georgine; Galactéros, Frédéric; Bartolucci, Pablo; Hulin, Anne
2017-10-01
A simple and rapid high performance liquid chromatography (HPLC) method using ultraviolet (UV) detection was developed to determine hydroxyurea (HU) concentration in plasma sample after derivatization with xanthydrol. Two hundred microliters samples were spiked with methylurea (MeU) as internal standard and proteins were precipitated by adding methanol. Derivatization of HU and MeU was immediately performed by adding 0.02M xanthydrol and 1.5M HCl in order to obtain xanthyl-derivatives of HU and MeU that can be further separated using HPLC and quantified using UV detection at 240nm. Separation was achieved using a C18 column with a mobile phase composed of 20mM ammonium acetate and acetonitrile in gradient elution mode at a flow rate of 1mL/min. The total analysis time did not exceed 18min. The method was found linear from 5 to 400μM and all validation parameters fulfilled the international requirements. Between- and within-run accuracy error ranged from -4.7% to 3.2% and precision was lower than 12.8%. This simple method requires small volume samples and can be easily implemented in most clinical laboratories to develop pharmacokinetics studies of HU and to promote its therapeutic monitoring. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Muñoz, Randy; Paredes, Javier; Huggel, Christian; Drenkhan, Fabian; García, Javier
2017-04-01
The availability and consistency of data is a determining factor for the reliability of any hydrological model and simulated results. Unfortunately, there are many regions worldwide where data is not available in the desired quantity and quality. The Santa River basin (SRB), located within a complex topographic and climatic setting in the tropical Andes of Peru is a clear example of this challenging situation. A monitoring network of in-situ stations in the SRB recorded series of hydro-meteorological variables which finally ceased to operate in 1999. In the following years, several researchers evaluated and completed many of these series. This database was used by multiple research and policy-oriented projects in the SRB. However, hydroclimatic information remains limited, making it difficult to perform research, especially when dealing with the assessment of current and future water resources. In this context, here the evaluation of different methodologies to interpolate temperature and precipitation data at a monthly time step as well as ice volume data in glacierized basins with limited data is presented. The methodologies were evaluated for the Quillcay River, a tributary of the SRB, where the hydro-meteorological data is available from nearby monitoring stations since 1983. The study period was 1983 - 1999 with a validation period among 1993 - 1999. For temperature series the aim was to extend the observed data and interpolate it. Data from Reanalysis NCEP was used to extend the observed series: 1) using a simple correlation with multiple field stations, or 2) applying the altitudinal correction proposed in previous studies. The interpolation then was applied as a function of altitude. Both methodologies provide very close results, by parsimony simple correlation is shown as a viable choice. For precipitation series, the aim was to interpolate observed data. Two methodologies were evaluated: 1) Inverse Distance Weighting whose results underestimate the amount of precipitation in high-altitudinal zones, and 2) ordinary Kriging (OK) whose variograms were calculated with the multi-annual monthly mean precipitation applying them to the whole study period. OK leads to better results in both low and high altitudinal zones. For ice volume, the aim was to estimate values from historical data: 1) with the GlabTop algorithm which needs digital elevation models, but these are available in an appropriate scale since 2009, 2) with a widely applied but controversially discussed glacier area-volume relation whose parameters were calibrated with results from the GlabTop model. Both methodologies provide reasonable results, but for historical data, the area-volume scaling only requires the glacial area easy to calculate from satellite images since 1986. In conclusion, the simple correlation, the OK and the calibrated relation for ice volume showed the best ways to interpolate glacio-climatic information. However, these methods must be carefully applied and revisited for the specific situation with high complexity. This is a first step in order to identify the most appropriate methods to interpolate and extend observed data in glacierized basins with limited information. New research should be done evaluating another methodologies and meteorological data in order to improve hydrological models and water management policies.
Colombet, J; Robin, A; Lavie, L; Bettarel, Y; Cauchie, H M; Sime-Ngando, T
2007-12-01
We have described the use of Polyethylene glycol (PEG) for the precipitation of natural communities of aquatic viruses, and its comparison with the usual concentration method based on ultracentrifugation. Experimental samples were obtained from different freshwater ecosystems whose trophic status varied. Based on transmission electron microscope observations and counting of phage-shaped particles, our results showed that the greatest recovery efficiency for all ecosystems was obtained when we used the PEG protocol. On average, this protocol allowed the recovery of >2-fold more viruses, compared to ultracentrifugation. In addition, the diversity of virioplankton, based on genomic size profiling using pulsed field gel electrophoresis, was higher and better discriminated when we used the PEG method. We conclude that pegylation offers a valid, simple and cheaper alternative method to ultracentrifugation, for the concentration and the purification of pelagic viruses.
Srivastava, Abhishek; Waterhouse, David; Ardrey, Alison; Ward, Stephen A
2012-11-01
A highly sensitive and rapid liquid chromatography tandem mass spectrometry (LC-MS/MS) method has been developed to measure the levels of the antitubercular drug rifampicin (RIF) in human plasma and cerebrospinal fluid (CSF). The analyte and internal standard (IS) were isolated from plasma and CSF by a simple organic solvent based precipitation of proteins followed by centrifugation. Detection was carried out by electrospray positive ionization mass spectrometry in the multiple-reaction monitoring (MRM) mode. The assay was linear in the concentration range 25-6400 ng/mL with intra- and inter-day precision of <7% and <8%, respectively. The validated method was applied to the study of RIF pharmacokinetics in human CSF and plasma over 25 h period after a 10 mg/kg oral dose. Copyright © 2012 Elsevier B.V. All rights reserved.
Saraner, Nihal; Özkan, Güler Yağmur; Güney, Berrak; Alkan, Erkin; Burul-Bozkurt, Nihan; Sağlam, Onursal; Fikirdeşici, Ezgi; Yıldırım, Mevlüt
2016-06-01
A rapid, simple and sensitive method was developed and validated using liquid chromatography-tandem mass spectrometry (LC-MS/MS) for determination of albendazole sulfoxide (ABZOX) in human plasma. The plasma samples were extracted by protein precipitation using albendazole sulfoxide-d3 as internal standard (IS). The chromatographic separation was performed on Waters Xbridge C18Column (100×4.6mm, 3.5μm) with a mobile phase consisting of ammonia solution, water and methanol at a flow rate of 0.70mL/min. ABZOX was detected and identified by mass spectrometry with electrospray ionization (ESI) in positive ion and multiple-reaction monitoring (MRM) mode. The method was linear in the range of 3-1500ng/mL for ABZOX. This method was successfully applied to the bioequivalence study in human plasma samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Kellermeier, Matthias; Cölfen, Helmut; Gebauer, Denis
2013-01-01
Despite the importance of crystallization for various areas of research, our understanding of the early stages of the mineral precipitation from solution and of the actual mechanism of nucleation is still rather limited. Indeed, detailed insights into the processes underlying nucleation may enable a systematic development of novel strategies for controlling mineralization, which is highly relevant for fields ranging from materials chemistry to medicine. In this work, we describe experimental aspects of a quantitative assay, which relies on pH titrations combined with in situ metal ion potentiometry and conductivity measurements. The assay has originally been designed to study the crystallization of calcium carbonate, one of the most abundant biominerals. However, the developed procedures can also be readily applied to any compound containing cations for which ion-selective electrodes are available. Besides the possibility to quantitatively assess ion association prior to nucleation and to directly determine thermodynamic solubility products of precipitated phases, the main advantage of the crystallization assay is the unambiguous identification of the different stages of precipitation (i.e., prenucleation, nucleation, and early postnucleation) and the characterization of the multiple effects of additives. Furthermore, the experiments permit targeted access to distinct precursor species and intermediate stages, which thus can be analyzed by additional methods such as cryo-electron microscopy or analytical ultracentrifugation (AUC). Regarding ion association in solution, AUC detects entities significantly larger than simple ion pairs, so-called prenucleation clusters. Sedimentation coefficient values and distributions obtained for the calcium carbonate system are discussed in light of recent insights into the structural nature of prenucleation clusters. © 2013 Elsevier Inc. All rights reserved.
Bendel, David; Beck, Ferdinand; Dittmer, Ulrich
2013-01-01
In the presented study climate change impacts on combined sewer overflows (CSOs) in Baden-Wuerttemberg, Southern Germany, were assessed based on continuous long-term rainfall-runoff simulations. As input data, synthetic rainfall time series were used. The applied precipitation generator NiedSim-Klima accounts for climate change effects on precipitation patterns. Time series for the past (1961-1990) and future (2041-2050) were generated for various locations. Comparing the simulated CSO activity of both periods we observe significantly higher overflow frequencies for the future. Changes in overflow volume and overflow duration depend on the type of overflow structure. Both values will increase at simple CSO structures that merely divide the flow, whereas they will decrease when the CSO structure is combined with a storage tank. However, there is a wide variation between the results of different precipitation time series (representative for different locations).
Troutman, Brent M.
1982-01-01
Errors in runoff prediction caused by input data errors are analyzed by treating precipitation-runoff models as regression (conditional expectation) models. Independent variables of the regression consist of precipitation and other input measurements; the dependent variable is runoff. In models using erroneous input data, prediction errors are inflated and estimates of expected storm runoff for given observed input variables are biased. This bias in expected runoff estimation results in biased parameter estimates if these parameter estimates are obtained by a least squares fit of predicted to observed runoff values. The problems of error inflation and bias are examined in detail for a simple linear regression of runoff on rainfall and for a nonlinear U.S. Geological Survey precipitation-runoff model. Some implications for flood frequency analysis are considered. A case study using a set of data from Turtle Creek near Dallas, Texas illustrates the problems of model input errors.
A New Wet Deposition Module in SILAM Chemical Transport Model
NASA Astrophysics Data System (ADS)
Kouznetsov, R.; Sofiev, M.
2013-12-01
The System for Integrated modeLling of Atmopsheric coMposition SILAM (http://silam.fmi.fi/) is a CTM model of FMI air-quality research unit. SILAM is used for research, operational and emergency-response assessments and forecasting of the atmospheric composition within the scope of European and Finnish national projects. Characteristic scales of the SILAM applications vary from -mesoscale (grid spacing 1 km) up to the globe with characteristic resolution of 1 degree. Till recently, a simple approach based on scavenging coefficients and their species-dependent scaling was used in SILAM. Due to the lack of information on the vertical structure of precipitation in older meteorological datasets, it was prescribed. The new scheme uses a mechanistic description of the scavenging process and utilizes the vertical profiles of cloud water content. A simple model for dissociation of H2SO3 accounts for saturation of SO2 scavenging. As the vertical profiles of precipitation rates are rarely available from meteorological models, they are reconstructed from the profiles of cloud water and surface precipitation fields. The rain/snow increment in a 3D model grid cell is taken as a fraction of surface precipitation intensity equal to the cell's fraction of total cloud water column. The phase of precipitation (liquid/solid) is a function of air temperature. The fall speed is derived from the size of water drops given by a function of rain/snow intensity. In-cloud scavenging is considered as an equilibrium process: . the concentrations in cloud water are assumed to be in equilibrium with ambient air. The sub-cloud scavenging is driven by the precipitation that comes from above the cell. The scavenging by a single droplet is considered as a two-way equilibration process of in-water and in-air concentrations, controlled by the hydrometeors size, cross-section and a time the droplet falls through a cell, effective solubility and amount of already dissolved pollutant. The solubility for most species is given by their effective Henry factors as functions of temperature. An exception is SO2 since the in-water amount of [S(IV)] is not a linear function of SO2 partial pressure in the air. The effective Henry factor for SO2 is then calculated from a dissociation equation after all other species in a cell are processed and their in-water concentrations are known. The new scheme results in substantially more realistic vertical patterns for scavenging. The consideration of equilibration rather than one-way scavenging allows modelling the vertical redistribution of pollutants by precipitation. The scheme provides a simple and well-grounded means to account for saturation of scavenging for SO2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrestha, Roshan; Houser, Paul R.; Anantharaj, Valentine G.
2011-04-01
Precipitation products are currently available from various sources at higher spatial and temporal resolution than any time in the past. Each of the precipitation products has its strengths and weaknesses in availability, accuracy, resolution, retrieval techniques and quality control. By merging the precipitation data obtained from multiple sources, one can improve its information content by minimizing these issues. However, precipitation data merging poses challenges of scale-mismatch, and accurate error and bias assessment. In this paper we present Optimal Merging of Precipitation (OMP), a new method to merge precipitation data from multiple sources that are of different spatial and temporal resolutionsmore » and accuracies. This method is a combination of scale conversion and merging weight optimization, involving performance-tracing based on Bayesian statistics and trend-analysis, which yields merging weights for each precipitation data source. The weights are optimized at multiple scales to facilitate multiscale merging and better precipitation downscaling. Precipitation data used in the experiment include products from the 12-km resolution North American Land Data Assimilation (NLDAS) system, the 8-km resolution CMORPH and the 4-km resolution National Stage-IV QPE. The test cases demonstrate that the OMP method is capable of identifying a better data source and allocating a higher priority for them in the merging procedure, dynamically over the region and time period. This method is also effective in filtering out poor quality data introduced into the merging process.« less
Evaluation of a New and Rapid Serologic Test for Detecting Brucellosis: Brucella Coombs Gel Test.
Hanci, Hayrunisa; Igan, Hakan; Uyanik, Muhammet Hamidullah
2017-01-01
Many serological tests have been used for the diagnosis of human brucellosis. A new serological method is identified as Brucella Coombs gel test based on the principle of centrifugation gel system similar to the gel system used in blood group determination. In this system, if Brucella antibodies were present in the serum, antigen and antibody would remain as a pink complex on the gel. Otherwise, the pink Brucella antigens would precipitate at the bottom of the gel card system. In this study, we aimed to compare the Brucella Coombs gel test, a new, rapid screen and titration method for detection of non-agglutinating IgG with the Brucella Coombs test. For this study, a total of 88 serum samples were obtained from 45 healthy persons and 43 individuals who had clinical signs and symptoms of brucellosis. For each specimen, Rose Bengal test, standard agglutination test, Coombs test and Brucella Coombs gel test were carried out. Sensitivity and specificity of Brucella Coombs gel test were found as 100.0 and 82.2%, respectively. Brucella Coombs gel test can be used as a screening test with high sensitivity. By the help of pink Brucella antigen precipitation, the tests' evaluation is simple and objective. In addition, determination of Brucella antibody by rapid titration offers another important advantage.
Climate, soil water storage, and the average annual water balance
Milly, P.C.D.
1994-01-01
This paper describes the development and testing of the hypothesis that the long-term water balance is determined only by the local interaction of fluctuating water supply (precipitation) and demand (potential evapotranspiration), mediated by water storage in the soil. Adoption of this hypothesis, together with idealized representations of relevant input variabilities in time and space, yields a simple model of the water balance of a finite area having a uniform climate. The partitioning of average annual precipitation into evapotranspiration and runoff depends on seven dimensionless numbers: the ratio of average annual potential evapotranspiration to average annual precipitation (index of dryness); the ratio of the spatial average plant-available water-holding capacity of the soil to the annual average precipitation amount; the mean number of precipitation events per year; the shape parameter of the gamma distribution describing spatial variability of storage capacity; and simple measures of the seasonality of mean precipitation intensity, storm arrival rate, and potential evapotranspiration. The hypothesis is tested in an application of the model to the United States east of the Rocky Mountains, with no calibration. Study area averages of runoff and evapotranspiration, based on observations, are 263 mm and 728 mm, respectively; the model yields corresponding estimates of 250 mm and 741 mm, respectively, and explains 88% of the geographical variance of observed runoff within the study region. The differences between modeled and observed runoff can be explained by uncertainties in the model inputs and in the observed runoff. In the humid (index of dryness <1) parts of the study area, the dominant factor producing runoff is the excess of annual precipitation over annual potential evapotranspiration, but runoff caused by variability of supply and demand over time is also significant; in the arid (index of dryness >1) parts, all of the runoff is caused by variability of forcing over time. Contributions to model runoff attributable to small-scale spatial variability of storage capacity are insignificant throughout the study area. The consistency of the model with observational data is supportive of the supply-demand-storage hypothesis, which neglects infiltration excess runoff and other finite-permeability effects on the soil water balance.
Alpha chymotrypsin coated clusters of Fe3O4 nanoparticles for biocatalysis in low water media.
Mukherjee, Joyeeta; Gupta, Munishwar N
2012-11-08
Enzymes in low water containing non aqueous media are useful for organic synthesis. For example, hydrolases in such media can be used for synthetic purposes. Initial work in this area was carried out with lyophilized powders of enzymes. These were found to have poor activity. Drying (removing bulk water) by precipitation turned out to be a better approach. As enzymes in such media are heterogeneous catalysts, spreading these precipitates over a large surface gave even better results. In this context, nanoparticles with their better surface to volume ratio provide obvious advantage. Magnetic nanoparticles have an added advantage of easy separation after the reaction. Keeping this in view, alpha chymotrypsin solution in water was precipitated over a stirred population of Fe3O4 nanoparticles in n-propanol. This led to alpha chymotrypsin activity coated over clusters of Fe3O4 nanoparticles. These preparations were found to have quite high transesterification activity in low water containing n-octane. Precipitation of alpha chymotrypsin over a stirred suspension of Fe3O4 nanoparticles (3.6 nm diameter) led to the formation of enzyme coated clusters of nanoparticles (ECCNs). These clusters were also magnetic and their hydrodynamic diameter ranged from 1.2- 2.6 microns (as measured by dynamic light scattering). Transmission electron microscopy (TEM), showed that these clusters had highly irregular shapes. Transesterification assay of various clusters in anhydrous n-octane led to optimization of concentration of nanoparticles in suspension during precipitation. Optimized design of enzyme coated magnetic clusters of nanoparticles (ECCN 3) showed the highest initial rate of 465 nmol min-1 mg-1protein which was about 9 times higher as compared to the simple precipitates with an initial rate of 52 nmol min-1 mg-1 protein.Circular Dichroism (CD)(with a spinning cell accessory) showed that secondary structure content of the alpha Chymotrypsin in ECCN 3 [15% α-helix, 37% β-sheet and 48% random coil] was identical to the simple precipitates of alpha chymotrypsin. A strategy for obtaining a high activity preparation of alpha chymotrypsin for application in low water media is described. Such high activity biocatalysts are useful in organic synthesis.
Chen, Lili; Liao, Linchuan; Zuo, Zhong; Yan, Youyi; Yang, Lin; Fu, Qiang; Chen, Yu; Hou, Junhong
2007-04-11
Nikethamide and lidocaine are often requested to be quantified simultaneously in forensic toxicological analysis. A simple reversed-phase high performance liquid chromatography (RP-HPLC) method has been developed for their simultaneous determination in human blood and cerebrospinal fluid. The method involves simple protein precipitation sample treatment followed by quantification of analytes using HPLC at 263 nm. Analytes were separated on a 5 microm Zorbax Dikema C18 column (150 mm x 4.60 mm, i.d.) with a mobile phase of 22:78 (v/v) mixture of methanol and a diethylamine-acetic acid buffer, pH 4.0. The mean recoveries were between 69.8 and 94.4% for nikethamide and between 78.9 and 97.2% for lidocaine. Limits of detection (LODs) for nikethamide and lidocaine were 0.008 and 0.16 microg/ml in plasma and 0.007 and 0.14 microg/ml in cerebrospinal fluid, respectively. The mean intra-assay and inter-assay coefficients of variation (CVs) for both analytes were less than 9.2 and 10.8%, respectively. The developed method was applied to blood sample analyses in eight forensic cases, where blood concentrations of lidocaine ranged from 0.68 to 34.4 microg/ml and nikethamide ranged from 1.25 to 106.8 microg/ml. In six cases cerebrospinal fluid analysis was requested. The values ranged from 20.3 to 185.6 microg/ml of lidocaine and 8.0 to 72.4 microg/ml of nikethamide. The method is simple and sensitive enough to be used in toxicological analysis for simultaneous determination of nikethamide and lidocaine in blood and cerebrospinal fluid.
Javorska, Lenka; Krcmova, Lenka Kujovska; Solich, Petr; Kaska, Milan
2017-08-05
Management of the therapy of life-threatening bacterial infection is extremely based on an optimal antibiotic treatment. Achieving the correct vancomycin dosage in blood and target tissues can be complicated in special situations, e.g., where large fluid sequestration and/or acute renal failure occur. A UHPLC-MS/MS method operating in electrospray (ESI) positive ion mode was applied for the determination of vancomycin in serum, urine and peritoneal/pleural effusion. Sample pretreatment was composed of dilution and simple protein precipitation where only a small volume (50μL) of serum, urine or peritoneal/pleural effusion was required. The separation of vancomycin was performed on a Meteoric Core C18 BIO column (100×4.6mm, 2.7μm) by gradient elution with 0.1% formic acid in water and acetonitrile. The total time of analysis was 4.5min. The method was found to be linear in the range of 2-60μM (or 0.5-10μM) for serum, 0.27-10μM (or 2-60μM) for peritoneal/pleural effusion and 25-300μM for urine, which was adequate for the determination of vancomycin in patient samples. The intra- and inter-day precision was below 8% RSD, and accuracy was from 89 to 104%. The UHPLC/MS-MS method offers a fast and reliable approach to determine vancomycin concentrations in three different human body fluid samples (serum, urine and peritoneal/pleural effusion) with a simple sample pretreatment that was the same for all selected specimens. This method should be applicable to large sample series in clinical (pharmacokinetic/pharmacodynamic) studies. Copyright © 2017 Elsevier B.V. All rights reserved.
Goutal, Sébastien; Auvity, Sylvain; Legrand, Tiphaine; Hauquier, Fanny; Cisternino, Salvatore; Chapy, Hélène; Saba, Wadad; Tournier, Nicolas
2016-05-10
In clinical practice, rifampicin exposure is estimated from its concentration in venous blood samples. In this study, we hypothesized that differences in rifampicin concentration may exist between arterial and venous plasma. An HPLC-UV method for determining rifampicin concentration in plasma using rifapentine as an internal standard was validated. The method, which requires a simple protein precipitation procedure as sample preparation, was performed to compare venous and arterial plasma kinetics after a single therapeutic dose of rifampicin (8.6 mg/kg i.v, infused over 30 min) in baboons (n=3). The method was linear from 0.1 to 40 μg mL(-1) and all validation parameters fulfilled the international requirements. In baboons, rifampicin concentration in arterial plasma was higher than in venous plasma. Arterial Cmax was 2.1±0.2 fold higher than venous Cmax. The area under the curve (AUC) from 0 to 120 min was ∼80% higher in arterial plasma, indicating a significant arteriovenous concentration gradient in early rifampicin pharmacokinetics. Arterial and venous plasma concentrations obtained 6h after rifampicin injection were not different. An important arteriovenous equilibration delay for rifampicin pharmacokinetics is reported. Determination in venous plasma concentrations may considerably underestimate rifampicin exposure to organs during the distribution phase. Copyright © 2016 Elsevier B.V. All rights reserved.
Pimentel, Lígia; Fontes, Ana Luiza; Salsinha, Sofia; Machado, Manuela; Correia, Inês; Gomes, Ana Maria; Pintado, Manuela; Rodríguez-Alcalá, Luís Miguel
2018-03-08
Lipids are gaining relevance over the last 20 years, as our knowledge about their role has changed from merely energy/structural molecules to compounds also involved in several biological processes. This led to the creation in 2003 of a new emerging research field: lipidomics. In particular the phospholipids have pharmacological/food applications, participate in cell signalling/homeostatic pathways while their analysis faces some challenges. Their fractionation/purification is, in fact, especially difficult, as they are amphiphilic compounds. Moreover, it usually involves SPE or TLC procedures requiring specific materials hampering their suitableness for routine analysis. Finally, they can interfere with the ionization of other molecules during mass spectrometry analysis. Thus, simple high-throughput reliable methods to selectively isolate these compounds based on the difference between chemical characteristics of lipids would represent valuable tools for their study besides that of other compounds. The current review work aims to describe the state-of-the-art related to the extraction of phospholipids using liquid-liquid methods for their targeted isolation. The technological and biological importance of these compounds and ion suppression phenomena are also reviewed. Methods by precipitation with acetone or isolation using methanol seem to be suitable for selective isolation of phospholipids in both biological and food samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chandrasekhar, Devaraj V; Suresh, Ponnayyan Sulochana; Dittakavi, Sreekanth; Hiremath, Rakesh A; Bhamidipati, Ravi Kanth; Richter, Wolfgang; Srinivas, Nuggehally R; Mullangi, Ramesh
2018-02-01
A simple, specific, sensitive and rapid LC-ESI-MS/MS method has been developed and validated for the quantification of 4-methylpyrazole in dog plasma using N-methylnicotinamide-d 4 as an internal standard (IS) as per regulatory guidelines. Sample preparation was accomplished through a simple protein precipitation. Chromatographic separation of 4-methylpyrazole and the IS was performed on a monolithic (Chromolith RP 18e ) column using an isocratic mobile phase comprising 0.2% formic acid in water and acetonitrile (20:80, v/v) at a flow rate of 1.0 mL/min. Elution of 4-methylpyrazole and the IS occurred at ~1.60 and 1.56 min, respectively. The total chromatographic run time was 3.2 min. A linear response function was established in the concentration range of 4.96-4955 ng/mL. The intra- and inter-day accuracy and precision were in the ranges 1.81-12.9 and 3.80-11.1%, respectively. This novel method has been applied to a pharmacokinetic study in dogs. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Hariharan, S.; Karthikeyan, B.
2018-03-01
In the evolution of nanotechnology research for smart and precise sensor fabrication, here we report the implementation of simple logic gate operations performing by luminescent nanostructures in biomolecule environment based on photoluminescence (PL) technique. This present work deals with the luminescence property of α-Bi2O3 and Ag modified α-Bi2O3 nanostructures for D-glucose and Bovine serum albumin (BSA) sensing applications. These nanostructures are prepared by simple co-precipitation method and their morphology are examined using transmission electron microscope (TEM). We explore the PL characteristics of the prepared nanostructures and observe their change in PL intensity in the presence of D-glucose and BSA molecules. Enhancement in PL intensity is observed in the presence of D-glucose and BSA. Based on the PL response of prepared nanostructures in the biomolecule environment, we demonstrate biophotonic logic gates including YES, PASS 0, OR and INHIBIT gates.
NASA Astrophysics Data System (ADS)
Gao, Xiang; Schlosser, C. Adam
2018-04-01
Regional climate models (RCMs) can simulate heavy precipitation more accurately than general circulation models (GCMs) through more realistic representation of topography and mesoscale processes. Analogue methods of downscaling, which identify the large-scale atmospheric conditions associated with heavy precipitation, can also produce more accurate and precise heavy precipitation frequency in GCMs than the simulated precipitation. In this study, we examine the performances of the analogue method versus direct simulation, when applied to RCM and GCM simulations, in detecting present-day and future changes in summer (JJA) heavy precipitation over the Midwestern United States. We find analogue methods are comparable to MERRA-2 and its bias-corrected precipitation in characterizing the occurrence and interannual variations of observed heavy precipitation events, all significantly improving upon MERRA precipitation. For the late twentieth-century heavy precipitation frequency, RCM precipitation improves upon the corresponding driving GCM with greater accuracy yet comparable inter-model discrepancies, while both RCM- and GCM-based analogue results outperform their model-simulated precipitation counterparts in terms of accuracy and model consensus. For the projected trends in heavy precipitation frequency through the mid twenty-first century, analogue method also manifests its superiority to direct simulation with reduced intermodel disparities, while the RCM-based analogue and simulated precipitation do not demonstrate a salient improvement (in model consensus) over the GCM-based assessment. However, a number of caveats preclude any overall judgement, and further work—over any region of interest—should include a larger sample of GCMs and RCMs as well as ensemble simulations to comprehensively account for internal variability.
NASA Astrophysics Data System (ADS)
Roth, Aurora; Hock, Regine; Schuler, Thomas V.; Bieniek, Peter A.; Pelto, Mauri; Aschwanden, Andy
2018-03-01
Assessing and modeling precipitation in mountainous areas remains a major challenge in glacier mass balance modeling. Observations are typically scarce and reanalysis data and similar climate products are too coarse to accurately capture orographic effects. Here we use the linear theory of orographic precipitation model (LT model) to downscale winter precipitation from a regional climate model over the Juneau Icefield, one of the largest ice masses in North America (>4000 km2), for the period 1979-2013. The LT model is physically-based yet computationally efficient, combining airflow dynamics and simple cloud microphysics. The resulting 1 km resolution precipitation fields show substantially reduced precipitation on the northeastern portion of the icefield compared to the southwestern side, a pattern that is not well captured in the coarse resolution (20 km) WRF data. Net snow accumulation derived from the LT model precipitation agrees well with point observations across the icefield. To investigate the robustness of the LT model results, we perform a series of sensitivity experiments varying hydrometeor fall speeds, the horizontal resolution of the underlying grid, and the source of the meteorological forcing data. The resulting normalized spatial precipitation pattern is similar for all sensitivity experiments, but local precipitation amounts vary strongly, with greatest sensitivity to variations in snow fall speed. Results indicate that the LT model has great potential to provide improved spatial patterns of winter precipitation for glacier mass balance modeling purposes in complex terrain, but ground observations are necessary to constrain model parameters to match total amounts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ann V. Rowan; Simon H. Brocklehurst; David M. Schultz
2014-05-01
Glaciers respond to climate variations and leave geomorphic evidence that represents an important terrestrial paleoclimate record. However, the accuracy of paleoclimate reconstructions from glacial geology is limited by the challenge of representing mountain meteorology in numerical models. Precipitation is usually treated in a simple manner and yet represents difficult-to-characterize variables such as amount, distribution, and phase. Furthermore, precipitation distributions during a glacial probably differed from present-day interglacial patterns. We applied two models to investigate glacier sensitivity to temperature and precipitation in the eastern Southern Alps of New Zealand. A 2-D model was used to quantify variations in the length ofmore » the reconstructed glaciers resulting from plausible precipitation distributions compared to variations in length resulting from change in mean annual air temperature and precipitation amount. A 1-D model was used to quantify variations in length resulting from interannual climate variability. Assuming that present-day interglacial values represent precipitation distributions during the last glacial, a range of plausible present-day precipitation distributions resulted in uncertainty in the Last Glacial Maximum length of the Pukaki Glacier of 17.1?km (24%) and the Rakaia Glacier of 9.3?km (25%), corresponding to a 0.5°C difference in temperature. Smaller changes in glacier length resulted from a 50% decrease in precipitation amount from present-day values (-14% and -18%) and from a 50% increase in precipitation amount (5% and 9%). Our results demonstrate that precipitation distribution can produce considerable variation in simulated glacier extents and that reconstructions of paleoglaciers should include this uncertainty.« less
Method of precipitating uranium from an aqueous solution and/or sediment
Tokunaga, Tetsu K; Kim, Yongman; Wan, Jiamin
2013-08-20
A method for precipitating uranium from an aqueous solution and/or sediment comprising uranium and/or vanadium is presented. The method includes precipitating uranium as a uranyl vanadate through mixing an aqueous solution and/or sediment comprising uranium and/or vanadium and a solution comprising a monovalent or divalent cation to form the corresponding cation uranyl vanadate precipitate. The method also provides a pathway for extraction of uranium and vanadium from an aqueous solution and/or sediment.
Calcite phase determination of CaCO3 nanoparticles synthesized by one step drying method
NASA Astrophysics Data System (ADS)
Sulimai, N. H.; Rani, Rozina Abdul; Khusaimi, Z.; Abdullah, S.; Salifairus, M. J.; Alrokayan, Salman; Khan, Haseeb; Rusop, M.
2018-05-01
Calcium Carbonate (CaCO3) is a type of carbonic salt. It exist naturally as white odourless solid and may also be synthesized by chemical reactions. This work studies one-step precipitation of CaCO3 that was prepared by novel method of one-step precipitation method. The method was then proceeded by different types of drying. The first type is by normal drying in oven whereas the second type is with the presence of hydrothermal influence. From the results, precipitated CaCO3 dried by normal drying method produces CaCO3 with two polymorphs present; calcite and vaterite. Normal drying at 500°C has no vaterite phase left. Drying by hydrothermal precipitated CaCO3 has Nitrogen (N) left on the surfaces of the precipitated CaCO3. This work successfully identified calcite phase in the precipitated CaCO3.
Weber, Eva; Guth, Christina; Weiss, Ingrid M.
2012-01-01
Insolubility is one of the possible functions of proteins involved in biomineralization, which often limits their native purification. This becomes a major problem especially when recombinant expression systems are required to obtain larger amounts. For example, the mollusc shell provides a rich source of unconventional proteins, which can interfere in manifold ways with different mineral phases and interfaces. Therefore, the relevance of such proteins for biotechnological processes is still in its infancy. Here we report a simple and reproducible purification procedure for a GFP-tagged lectin involved in biomineralization, originally isolated from mother-of-pearl in abalone shells. An optimization of E. coli host cell culture conditions was the key to obtain reasonable yields and high degrees of purity by using simple one-step affinity chromatography. We identified a dual functional role for the GFP domain when it became part of a mineralizing system in vitro. First, the GFP domain improved the solubility of an otherwise insoluble protein, in this case recombinant perlucin derivatives. Second, GFP inhibited calcium carbonate precipitation in a concentration dependent manner. This was demonstrated here using a simple bulk assay over a time period of 400 seconds. At concentrations of 2 µg/ml and higher, the inhibitory effect was observed predominantly for HCO3 − as the first ionic interaction partner, but not necessarily for Ca2+ . The interference of GFP-tagged perlucin derivatives with the precipitation of calcium carbonate generated different types of GFP-fluorescent composite calcite crystals. GFP-tagging offers therefore a genetically tunable tool to gently modify mechanical and optical properties of synthetic biocomposite minerals. PMID:23056388
NASA Astrophysics Data System (ADS)
Guo, Enliang; Zhang, Jiquan; Si, Ha; Dong, Zhenhua; Cao, Tiehua; Lan, Wu
2017-10-01
Environmental changes have brought about significant changes and challenges to water resources and management in the world; these include increasing climate variability, land use change, intensive agriculture, and rapid urbanization and industrial development, especially much more frequency extreme precipitation events. All of which greatly affect water resource and the development of social economy. In this study, we take extreme precipitation events in the Midwest of Jilin Province as an example; daily precipitation data during 1960-2014 are used. The threshold of extreme precipitation events is defined by multifractal detrended fluctuation analysis (MF-DFA) method. Extreme precipitation (EP), extreme precipitation ratio (EPR), and intensity of extreme precipitation (EPI) are selected as the extreme precipitation indicators, and then the Kolmogorov-Smirnov (K-S) test is employed to determine the optimal probability distribution function of extreme precipitation indicators. On this basis, copulas connect nonparametric estimation method and the Akaike Information Criterion (AIC) method is adopted to determine the bivariate copula function. Finally, we analyze the characteristics of single variable extremum and bivariate joint probability distribution of the extreme precipitation events. The results show that the threshold of extreme precipitation events in semi-arid areas is far less than that in subhumid areas. The extreme precipitation frequency shows a significant decline while the extreme precipitation intensity shows a trend of growth; there are significant differences in spatiotemporal of extreme precipitation events. The spatial variation trend of the joint return period gets shorter from the west to the east. The spatial distribution of co-occurrence return period takes on contrary changes and it is longer than the joint return period.
Effective precipitation duration for runoff peaks based on catchment modelling
NASA Astrophysics Data System (ADS)
Sikorska, A. E.; Viviroli, D.; Seibert, J.
2018-01-01
Despite precipitation intensities may greatly vary during one flood event, detailed information about these intensities may not be required to accurately simulate floods with a hydrological model which rather reacts to cumulative precipitation sums. This raises two questions: to which extent is it important to preserve sub-daily precipitation intensities and how long does it effectively rain from the hydrological point of view? Both questions might seem straightforward to answer with a direct analysis of past precipitation events but require some arbitrary choices regarding the length of a precipitation event. To avoid these arbitrary decisions, here we present an alternative approach to characterize the effective length of precipitation event which is based on runoff simulations with respect to large floods. More precisely, we quantify the fraction of a day over which the daily precipitation has to be distributed to faithfully reproduce the large annual and seasonal floods which were generated by the hourly precipitation rate time series. New precipitation time series were generated by first aggregating the hourly observed data into daily totals and then evenly distributing them over sub-daily periods (n hours). These simulated time series were used as input to a hydrological bucket-type model and the resulting runoff flood peaks were compared to those obtained when using the original precipitation time series. We define then the effective daily precipitation duration as the number of hours n, for which the largest peaks are simulated best. For nine mesoscale Swiss catchments this effective daily precipitation duration was about half a day, which indicates that detailed information on precipitation intensities is not necessarily required to accurately estimate peaks of the largest annual and seasonal floods. These findings support the use of simple disaggregation approaches to make usage of past daily precipitation observations or daily precipitation simulations (e.g. from climate models) for hydrological modeling at an hourly time step.
ERIC Educational Resources Information Center
Gilbert, George L., Ed.
1979-01-01
Presents two demonstrations for classroom use related to precipitation of ferrous hydroxide and to variation of vapor pressure with temperature. The former demonstration is simple and useful when discussing solubility of ionic compounds electrode potential of transition elements, and mixed valence compounds. (Author/SA)
NASA Astrophysics Data System (ADS)
Tran, Tat-Dat; Nguyen, Duy-Hung; Pham, Thanh-Huy; Nguyen, Duy-Cuong; Duong, Thanh-Tung
2018-05-01
K2SiF6:Mn4+ (KSF:Mn) phosphor was synthesized by the one-step co-precipitation process, at different temperatures. It was found that the reaction temperature played a key role in photoluminescence performance of the product. When the reaction temperature decreased from 0°C to - 20°C, the doping concentration, Mn/Si ratio, increased from 2% to 10%. However, further decrement of temperature (to - 30°C) reduced the Mn/Si ratio to 7%. The photo-luminescence (PL) intensity was maximized at the highest Mn/Si (10%), which corresponds to a reaction temperature of - 20°C. The KSF:Mn phosphor showed excellent luminescent properties at a wide range of temperatures (from room temperature to 470 K), especially after being dispersed in a polymer matrix. When combined with a commercial white light emitting diode (WLED), KSF:Mn significantly improved luminescent properties, such as color rendering index (CRI), correlated color temperature (CCT) and luminous efficiency. In particular, CRI increased from 67.3 to 87.4, while the CCT decreased from 7800 K to 3204 K. The luminous efficiency increased from 82.0 lm/W to 95.3 lm/W. The results indicated that the high quality KSF:Mn red phosphor could be achieved by a simple one-step co-precipitation method with a fine control of reaction temperature.
Yamashita, Taro; Ozaki, Shunsuke; Kushida, Ikuo
2011-10-31
96-well plate based anti-precipitant screening using bio-relevant medium FaSSIF (fasted-state simulated small intestinal fluid) is a useful technique for discovering anti-precipitants that maintain supersaturation of poorly soluble drugs. In a previous report, two disadvantages of the solvent evaporation method (solvent casting method) were mentioned: precipitation during the evaporation process and the use of volatile solvents to dissolve compounds. In this report, we propose a solvent shift method using DMSO (dimethyl sulfoxide). Initially, the drug substance was dissolved in DMSO at a high concentration and diluted with FaSSIF that contained anti-precipitants. To evaluate the validity of the method, itraconazole (ITZ) was used as the poorly soluble model drug. The solvent shift method resolved the disadvantages of the evaporation method, and AQOAT (HPMC-AS) was found as the most appropriate anti-precipitant for ITZ in a facile and expeditious manner when compared with the solvent evaporation method. In the large scale JP paddle method, AQOAT-based solid dispersion maintained a higher concentration than Tc-5Ew (HPMC)-based formulation; this result corresponded well with the small scale of the solvent shift method. Copyright © 2011 Elsevier B.V. All rights reserved.
Size and shape of uniform particles precipitated in homogeneous solutions
NASA Astrophysics Data System (ADS)
Sevonkaev, Igor V.
The assembly of nanosize crystals into larger uniform colloids is a fundamental process that plays a critical role in the formation of a very broad range of fine-particles used in numerous applications in technology, medicine, and national security. It is widely accepted that, along with size, in most of these applications the shape of the particles represents a critical factor. In the current research, we investigate the size and shape control of uniform particles prepared by precipitation in homogeneous solutions. In the first---theoretical---part a combinational mechanism of the shape control during particle growth was proposed and analyzed numerically. The main finding of our simulation is that a proper balance of two processes, preferential attachment of transported monomers at the protruding features of the growing cluster and monomer rearrangement at the cluster surface, can yield a well-defined particle shape that persist for sizes much larger than the original seed over a large interval of time. In the experimental part, three chemically simple systems were selected MgF2, NaMgF3, and PbS for defining and evaluating the key parameters of the shape and size control of the precipitates. Thus, uniform dispersions of particles of different morphologies (spherical, cubic, platelet, and prismatic) were prepared by precipitation in aqueous solutions. The mechanisms of the formation of the resulting particles of different shapes are explained by the role of the pH, temperature, solubility, and ionic strength. Stages of particles growth were evaluated on short and long time scales, winch allowed to propose multistage mechanisms of NaMgF3 growth and estimate induction time and critical nuclei size for MgF2. In addition, for prospective numerical modeling the surface tensions of spherical and platelet particles of MgF2 were evaluated from the X-ray data by a lattice parameter change method. Also, a new method for the evaluation of the variation in the density distribution in colloidal spherical particles was proposed. This method utilizes transmission electron microscopy without high resolution mode and processes acquired images. Suggested method eliminates the dependency of the image contrast on sample crystallinity. The advantage of such approach manifested by the short time sample preparation, fast instrument tune-up, rapid image acquisition and analysis, all of which shortens the processing time.
Verdin, Andrew; Funk, Christopher C.; Rajagopalan, Balaji; Kleiber, William
2016-01-01
Robust estimates of precipitation in space and time are important for efficient natural resource management and for mitigating natural hazards. This is particularly true in regions with developing infrastructure and regions that are frequently exposed to extreme events. Gauge observations of rainfall are sparse but capture the precipitation process with high fidelity. Due to its high resolution and complete spatial coverage, satellite-derived rainfall data are an attractive alternative in data-sparse regions and are often used to support hydrometeorological early warning systems. Satellite-derived precipitation data, however, tend to underrepresent extreme precipitation events. Thus, it is often desirable to blend spatially extensive satellite-derived rainfall estimates with high-fidelity rain gauge observations to obtain more accurate precipitation estimates. In this research, we use two different methods, namely, ordinary kriging and κ-nearest neighbor local polynomials, to blend rain gauge observations with the Climate Hazards Group Infrared Precipitation satellite-derived precipitation estimates in data-sparse Central America and Colombia. The utility of these methods in producing blended precipitation estimates at pentadal (five-day) and monthly time scales is demonstrated. We find that these blending methods significantly improve the satellite-derived estimates and are competitive in their ability to capture extreme precipitation.
NASA Astrophysics Data System (ADS)
Yozgatligil, Ceylan; Aslan, Sipan; Iyigun, Cem; Batmaz, Inci
2013-04-01
This study aims to compare several imputation methods to complete the missing values of spatio-temporal meteorological time series. To this end, six imputation methods are assessed with respect to various criteria including accuracy, robustness, precision, and efficiency for artificially created missing data in monthly total precipitation and mean temperature series obtained from the Turkish State Meteorological Service. Of these methods, simple arithmetic average, normal ratio (NR), and NR weighted with correlations comprise the simple ones, whereas multilayer perceptron type neural network and multiple imputation strategy adopted by Monte Carlo Markov Chain based on expectation-maximization (EM-MCMC) are computationally intensive ones. In addition, we propose a modification on the EM-MCMC method. Besides using a conventional accuracy measure based on squared errors, we also suggest the correlation dimension (CD) technique of nonlinear dynamic time series analysis which takes spatio-temporal dependencies into account for evaluating imputation performances. Depending on the detailed graphical and quantitative analysis, it can be said that although computational methods, particularly EM-MCMC method, are computationally inefficient, they seem favorable for imputation of meteorological time series with respect to different missingness periods considering both measures and both series studied. To conclude, using the EM-MCMC algorithm for imputing missing values before conducting any statistical analyses of meteorological data will definitely decrease the amount of uncertainty and give more robust results. Moreover, the CD measure can be suggested for the performance evaluation of missing data imputation particularly with computational methods since it gives more precise results in meteorological time series.
Precipitation Extremes in Dynamically Downscaled Climate Scenarios over the Greater Horn of Africa
NASA Astrophysics Data System (ADS)
Shiferaw, A. S.; Tadesse, T.; Oglesby, R. J.; Rowe, C. M.
2017-12-01
The precipitation extremes were generated over the Greater Horn of Africa (GHA) using the Regional Climate Models (RCMs) simulations from the Coordinated Regional Downscaling Experiment (CORDEX). To assess how well the RCM simulations are capturing the historical observed precipitation extremes, they were compared with the precipitation extremes derived from Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS v2). The result shows that RCM simulations have reasonably captured observed patterns of the precipitation extremes (i.e., the pattern correlation is greater than 0.5). However, significant overestimations or underestimations were observed over some localized areas in the region. The study then assessed the projected changes in these precipitation extremes during 2069-2098 and compared to the 1976-2005 period that were both derived from the RCM simulations. Projected changes in total annual precipitation (PRCPTOT), annual number of heavy (>10mm) and very heavy (>20mm) precipitation days by 2069-2098 show a general north-south pattern with a decrease over southern-half and increase over the northern-half of GHA. These changes are often greatest over parts of Somalia, Eritrea, Ethiopian highlands and southern Tanzania. Maximum 1 and 5-day total precipitation in a year and "Simple Daily Precipitation Intensity Index" (ratio of PRCPTOT to rainy days) are projected to increase over majority of GHA, including areas where PRCPTOT is projected to decrease, suggesting fewer but heavier rainy days in the future. Changes in annual sum of daily precipitation above 95th and 99th percentile are not statistically significant except Eritrea and northwestern Sudan/Somalia. Projected changes in consecutive dry days (CDD) suggest longer periods of dryness over majority of GHA. Among these areas, a substantial increases in CDD are located over southern Tanzania and Ethiopian highlands.
The Evolution of El Nino-Precipitation Relationships from Satellites and Gauges
NASA Technical Reports Server (NTRS)
Curtis, Scott; Adler, Robert F.; Starr, David OC (Technical Monitor)
2002-01-01
This study uses a twenty-three year (1979-2001) satellite-gauge merged community data set to further describe the relationship between El Nino Southern Oscillation (ENSO) and precipitation. The globally complete precipitation fields reveal coherent bands of anomalies that extend from the tropics to the polar regions. Also, ENSO-precipitation relationships were analyzed during the six strongest El Ninos from 1979 to 2001. Seasons of evolution, Pre-onset, Onset, Peak, Decay, and Post-decay, were identified based on the strength of the El Nino. Then two simple and independent models, first order harmonic and linear, were fit to the monthly time series of normalized precipitation anomalies for each grid block. The sinusoidal model represents a three-phase evolution of precipitation, either dry-wet-dry or wet-dry-wet. This model is also highly correlated with the evolution of sea surface temperatures in the equatorial Pacific. The linear model represents a two-phase evolution of precipitation, either dry-wet or wet-dry. These models combine to account for over 50% of the precipitation variability for over half the globe during El Nino. Most regions, especially away from the Equator, favor the linear model. Areas that show the largest trend from dry to wet are southeastern Australia, eastern Indian Ocean, southern Japan, and off the coast of Peru. The northern tropical Pacific and Southeast Asia show the opposite trend.
A ricin forensic profiling approach based on a complex set of biomarkers.
Fredriksson, Sten-Åke; Wunschel, David S; Lindström, Susanne Wiklund; Nilsson, Calle; Wahl, Karen; Åstot, Crister
2018-08-15
A forensic method for the retrospective determination of preparation methods used for illicit ricin toxin production was developed. The method was based on a complex set of biomarkers, including carbohydrates, fatty acids, seed storage proteins, in combination with data on ricin and Ricinus communis agglutinin. The analyses were performed on samples prepared from four castor bean plant (R. communis) cultivars by four different sample preparation methods (PM1-PM4) ranging from simple disintegration of the castor beans to multi-step preparation methods including different protein precipitation methods. Comprehensive analytical data was collected by use of a range of analytical methods and robust orthogonal partial least squares-discriminant analysis- models (OPLS-DA) were constructed based on the calibration set. By the use of a decision tree and two OPLS-DA models, the sample preparation methods of test set samples were determined. The model statistics of the two models were good and a 100% rate of correct predictions of the test set was achieved. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Leeper, R. D.; Kochendorfer, J.
2014-12-01
The effects of evaporation on precipitation measurements have been understood to bias total precipitation lower. For automated weighing-bucket gauges, the World Meteorological Organization (WMO) suggests the use of evaporative suppressants with frequent observations. However, the use of evaporation suppressants is not always feasible due to environmental hazards and the added cost of maintenance, transport, and disposal of the gauge additive. In addition, research has suggested that evaporation prior to precipitation may affect precipitation measurements from auto-recording gauges operating at sub-hourly frequencies. For further evaluation, a field campaign was conducted to monitor evaporation and its impacts on the quality of precipitation measurements from gauges used at US Climate Reference Network (USCRN) stations. Collocated Geonor gauges with (nonEvap) and without (evap) an evaporative suppressant were compared to evaluate evaporative losses and evaporation biases on precipitation measurements. From June to August, evaporative losses from the evap gauge exceeded accumulated precipitation, with an average loss of 0.12 mm h-1. However, the impact of evaporation on precipitation measurements was sensitive to calculation methods. In general, methods that utilized a longer time series to smooth out sensor noise were more sensitive to gauge (-4.6% bias with respect to control) evaporation than methods computing depth change without smoothing (< +1% bias). These results indicate that while climate and gauge design affect gauge evaporation rates computational methods can influence the magnitude of evaporation bias on precipitation measurements. It is hoped this study will advance QA techniques that mitigate the impact of evaporation biases on precipitation measurements from other automated networks.
Improved nutrient removal using in situ continuous on-line sensors with short response time.
Ingildsen, P; Wendelboe, H
2003-01-01
Nutrient sensors that can be located directly in the activated sludge processes are gaining in number at wastewater treatment plants. The in situ location of the sensors means that they can be located close to the processes that they aim to control and hence are perfectly suited for automatic process control. Compared to the location of automatic analysers in the effluent from the sedimentation reactors the in situ location means a large reduction in the response time. The settlers typically work as a first-order delay on the signal with a retention time in the range of 4-12 hours depending on the size of the settlers. Automatic process control of the nitrogen and phosphorus removal processes means that considerable improvements in the performance of aeration, internal recirculation, carbon dosage and phosphate precipitation dosage can be reached by using a simple control structure as well as simple PID controllers. The performance improvements can be seen in decreased energy and chemicals consumption and less variation in effluent concentrations of ammonium, total nitrogen and phosphate. Simple control schemes are demonstrated for the pre-denitrification and the post precipitation system by means of full-scale plant experiments and model simulations.
NASA Astrophysics Data System (ADS)
Deschamps, A.; de Geuser, F.; Decreus, B.; Malard, B.
Al-Cu-Li based alloys are experiencing a rapid development for aerospace applications. The main hardening phase of this system (T1-Al2CuLi) forms as thin platelets (1 nm) that can reach diameters of 50 to 100 nm with remarkable stability in temperature. The nucleation, growth and thickening mechanisms of this phase are of crucial importance for the understanding of the microstructures resulting from simple to complex thermo-mechanical treatments, including friction stir welding of such alloys.
SEPARATION OF Cs$sup 137$ FROM HIGH-ACTIVITY RADIOACTIVE WASTE (in Dutch)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1963-01-01
A process was developed on a laboratory scale to separate Cs/sup 137/ from waste fuels of atomic reactors. The recovery of this powerful and industrially important gamma emitter of 30 years half life is said to be so simple as to make it possible on an industrial scale. It is based on the preferential absorption of Cs by ammonium phosphor-molybdate from the nitric acid solution of the waste material and the subsequent extraction of Cs from its absorber. This method is more practical than other processes which are based upon precipitation and recrystallization of cesium salts. It was successfully testedmore » on waste solutions of very different compositions. (OID)« less
Xin, Baoping; Huang, Qun; Chen, Shi; Tang, Xuemei
2008-01-01
High-purity nanoparticles ZnS has been successfully synthesized using a simple coupling reaction process of biological reduction and chemical precipitation mediated with EDTA referred to as the CRBRCP-EDTA process. This research investigated the optimum conditions of the transformation of SO(4) (2-) into S(2-) by SRB, and the production of ZnS in the CRBRCP-EDTA process. The results showed that the molar ratio of Zn(2+) to EDTA = 1:1 was crucial for SRB growth and ZnS synthesis. At the ratio(n) (Zn2+)/n) (EDTA) = 1:1, lower Zn(2+) concentration enhanced both the growth of SRB and the reduction of SO(4) (2-), leading to higher ZnS production. Although increase in Na(2)SO(4) concentration resulted in decrease in both SRB growth and SO(4) (2-) reduction, it improved the S(2-) and ZnS production. Under the optimum conditions (0.05 mol L(-1) ZnCl(2), 0.05 mol L(-1) EDTA, and 0.1 mol L(-1) Na(2)SO(4)), the synthesized ZnS was characterized by X-ray diffraction (XRD), X-ray energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The analysis showed that the obtained ZnS were high-purity and well-distributed solid spheres with diameters of about 15 nm for primary particles and around 400 nm for secondary particles. When polyacrylamide (PAM) was incorporated in the CRBRCP-EDTA process, the secondary particle's diameters were reduced to less than 100 nm. The photoluminescence (PL) spectra of produced ZnS centered at 396 nm, the spectrum with PAM added showed the gradual increase in absorption and stronger intensity in PL property. The present simple, low-cost, and safe method may be extended to prepare other metal-sulfide nanocomposites.
How does bias correction of RCM precipitation affect modelled runoff?
NASA Astrophysics Data System (ADS)
Teng, J.; Potter, N. J.; Chiew, F. H. S.; Zhang, L.; Vaze, J.; Evans, J. P.
2014-09-01
Many studies bias correct daily precipitation from climate models to match the observed precipitation statistics, and the bias corrected data are then used for various modelling applications. This paper presents a review of recent methods used to bias correct precipitation from regional climate models (RCMs). The paper then assesses four bias correction methods applied to the weather research and forecasting (WRF) model simulated precipitation, and the follow-on impact on modelled runoff for eight catchments in southeast Australia. Overall, the best results are produced by either quantile mapping or a newly proposed two-state gamma distribution mapping method. However, the difference between the tested methods is small in the modelling experiments here (and as reported in the literature), mainly because of the substantial corrections required and inconsistent errors over time (non-stationarity). The errors remaining in bias corrected precipitation are typically amplified in modelled runoff. The tested methods cannot overcome limitation of RCM in simulating precipitation sequence, which affects runoff generation. Results further show that whereas bias correction does not seem to alter change signals in precipitation means, it can introduce additional uncertainty to change signals in high precipitation amounts and, consequently, in runoff. Future climate change impact studies need to take this into account when deciding whether to use raw or bias corrected RCM results. Nevertheless, RCMs will continue to improve and will become increasingly useful for hydrological applications as the bias in RCM simulations reduces.
A simple reactive-transport model of calcite precipitation in soils and other porous media
NASA Astrophysics Data System (ADS)
Kirk, G. J. D.; Versteegen, A.; Ritz, K.; Milodowski, A. E.
2015-09-01
Calcite formation in soils and other porous media generally occurs around a localised source of reactants, such as a plant root or soil macro-pore, and the rate depends on the transport of reactants to and from the precipitation zone as well as the kinetics of the precipitation reaction itself. However most studies are made in well mixed systems, in which such transport limitations are largely removed. We developed a mathematical model of calcite precipitation near a source of base in soil, allowing for transport limitations and precipitation kinetics. We tested the model against experimentally-determined rates of calcite precipitation and reactant concentration-distance profiles in columns of soil in contact with a layer of HCO3--saturated exchange resin. The model parameter values were determined independently. The agreement between observed and predicted results was satisfactory given experimental limitations, indicating that the model correctly describes the important processes. A sensitivity analysis showed that all model parameters are important, indicating a simpler treatment would be inadequate. The sensitivity analysis showed that the amount of calcite precipitated and the spread of the precipitation zone were sensitive to parameters controlling rates of reactant transport (soil moisture content, salt content, pH, pH buffer power and CO2 pressure), as well as to the precipitation rate constant. We illustrate practical applications of the model with two examples: pH changes and CaCO3 precipitation in the soil around a plant root, and around a soil macro-pore containing a source of base such as urea.
NASA Astrophysics Data System (ADS)
Zhao, Guangju; Zhai, Jianqing; Tian, Peng; Zhang, Limei; Mu, Xingmin; An, Zhengfeng; Han, Mengwei
2017-08-01
Assessing regional patterns and trends in extreme precipitation is crucial for facilitating flood control and drought adaptation because extreme climate events have more damaging impacts on society and ecosystems than simple shifts in the mean values. In this study, we employed daily precipitation data from 231 climate stations spanning 1961 to 2014 to explore the changes in precipitation extremes on the Loess Plateau, China. Nine of the 12 extreme precipitation indices suggested decreasing trends, and only the annual total wet-day precipitation (PRCPTOT) and R10 declined significantly: - 0.69 mm/a and - 0.023 days/a at the 95% confidence level. The spatial patterns in all of the extreme precipitation indices indicated mixed trends on the Loess Plateau, with decreasing trends in the precipitation extremes at the majority of the stations examined in the Fen-Wei River valley and high-plain plateau. Most of extreme precipitation indices suggested apparent regional differences, whereas R25 and R20 had spatially similar patterns on the Loess Plateau, with many stations revealing no trends. In addition, we found a potential decreasing trend in rainfall amounts and rainy days and increasing trends in rainfall intensities and storm frequencies in some regions due to increasing precipitation events in recent years. The relationships between extreme rainfall events and atmospheric circulation indices suggest that the weakening trend in the East Asia summer monsoon has limited the northward extension of the rainfall belt to northern China, thereby leading to a decrease in rainfall on the Loess Plateau.
Rapid and sensitive method for determination of withaferin-A in human plasma by HPLC.
Patial, Pankaj; Gota, Vikram
2011-02-01
To develop and validate a rapid and sensitive high-performance liquid chromatographic method for determination of withaferin-A in human plasma. Withaferin-A, the active molecule of a traditional Indian herb, has demonstrated several biological activities in preclinical models. A validated bioassay is not available for its pharmacokinetic evaluation. The chromatographic system used a reverse-phase C18 column with UV-visible detection at 225 nm. The mobile phase consisted of water and acetonitrile applied in a gradient flow. Withaferin-A was extracted by simple protein-precipitation technique. The calibration curve was linear in the concentration range of 0.05-1.6 µg/ml. The method has the desired sensitivity to detect the plasma concentration range of withaferin-A that is likely to show biological activity based on in vitro data. This is the first HPLC method ever described for the estimation of withaferin-A in human plasma which could be applied for pharmacokinetic studies.
Gravimetric method for the determination of diclofenac in pharmaceutical preparations.
Tubino, Matthieu; De Souza, Rafael L
2005-01-01
A gravimetric method for the determination of diclofenac in pharmaceutical preparations was developed. Diclofenac is precipitated from aqueous solution with copper(II) acetate in pH 5.3 (acetic acid/acetate buffer). Sample aliquots had approximately the same quantity of the drug content in tablets (50 mg) or in ampules (75 mg). The observed standard deviation was about +/- 2 mg; therefore, the relative standard deviation (RSD) was approximately 4% for tablet and 3% for ampule preparations. The results were compared with those obtained with the liquid chromatography method recommended in the United States Pharmacopoeia using the statistical Student's t-test. Complete agreement was observed. It is possible to obtain more precise results using higher aliquots, for example 200 mg, in which case the RSD falls to 1%. This gravimetric method, contrary to what is expected for this kind of procedure, is relatively fast and simple to perform. The main advantage is the absolute character of the gravimetric analysis.
Growth dynamics and composition of tubular structures in a reaction-precipitation system
NASA Astrophysics Data System (ADS)
Pagano, Jason John
Self-organization in reaction precipitation systems occurs in many physical, chemical, biological, and geological systems. In particular, chemical reactions provide a wealth of examples for this intriguing process. Permanent tubular structures arise from the interplay of chemical and transport phenomena such as diffusion and fluid flow. These astonishing tubular structures are prevalent throughout nature. Examples include black smokers at hydrothermal vents, silica tubes in setting cement, soda-straw stalactites in caves, and biological structures such as the outer skeleton of certain algae. In this work, the aim is to establish and understand a laboratory scale model by examining the, seemingly simple, precipitation reaction between sodium silicate and copper sulfate as well as zinc sulfate. The tubular precipitation structures in so-called silica gardens are known to many scientists and non-scientists alike. However, little is known regarding their growth dynamics and chemical composition. We devised an injection technique which provides control over parameters that are not accessible in the classic silica garden system. For the example of cupric sulfate injection into waterglass solution, we identify three distinct growth regimes (jetting, popping, and budding) and study their concentration dependent transitions. Here we describe the composition and morphology of the tube material using techniques such as electron microscopy and vibrational spectroscopy. Specifically, we find that the tube wall consists of metal hydroxide that is stabilized by a thin, exterior silica layer. After synthesis the tubes can be further modified by using chemical and/or physical means. A second study aims to understand tubule formation under "reverse" conditions. More specifically, waterglass is being injected into lighter cupric sulfate solution. In these experiments, single, downward growing precipitation tubes are created. Four distinct growth regimes are observed and their stability in terms of flow rate and cupric sulfate concentration is investigated. Three of these growth regimes (reverse jetting, reverse popping, and reverse budding) resemble the same behavior for the injection of cupric sulfate into silicate solution. However, the reverse conditions studied herein reveal one novel regime in which the tube is limited by repetitive fracturing. The lengths of the broken-off tube segments and times between subsequent break-off events can be described by log-normal distributions. We also discuss the development of a method for synthesizing highly linear precipitation tubes via gas bubble injection and templating. In this method, an aqueous metal salt is injected into a large reservoir of waterglass. Systematic measurements show that the size of the bubble governs the tube radius. According to this radius, the system selects its growth velocity following volume conservation of the injected metal salt solution. Moreover, scanning electron microscopy reveals intricate ring patterns on the walls. We also show evidence for the existence of minimal and maximal tube radius. Lastly, we report the collapse of tubes at high concentrations of silicate solution, yielding twisted ribbon-like structures. Critical radii and tube collapse are discussed in terms of simple competing forces. Concluding, the latter study suggests that one can create interesting geometries and the possible production of speciality materials. Furthermore, we extend our results toward other metals. This study reveals that silica-supported zinc hydroxide walls can be reacted to form zinc oxide. The chemically activated walls are composed of zinc oxide nanoparticles that can be used for technical applications.
NASA Astrophysics Data System (ADS)
Gimeno-Sotelo, Luis; Nieto, Raquel; Vázquez, Marta; Gimeno, Luis
2018-05-01
In this study we use the term moisture transport for precipitation for a target region as the moisture coming to this region from its major moisture sources resulting in precipitation over the target region (MTP). We have identified changes in the pattern of moisture transport for precipitation over the Arctic region, the Arctic Ocean, and its 13 main subdomains concurrent with the major sea ice decline that occurred in 2003. The pattern consists of a general decrease in moisture transport in summer and enhanced moisture transport in autumn and early winter, with different contributions depending on the moisture source and ocean subregion. The pattern is statistically significant and consistent with changes in the vertically integrated moisture fluxes and frequency of circulation types. The results of this paper also reveal that the assumed and partially documented enhanced poleward moisture transport from lower latitudes as a consequence of increased moisture from climate change seems to be less simple and constant than typically recognised in relation to enhanced Arctic precipitation throughout the year in the present climate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zipper, Lauren E.; Binghamton University, 4400 Vestal Parkway East, Vestal, NY 13902; Aristide, Xavier
This article describes the use of evaporation control lids that are fitted to crystallization plates to improve the reproducibility of trials using as little as 5 nl. The plate lids contain apertures which are large enough for the transfer of protein containing droplets, but small enough to greatly reduce the rate of evaporation during the time needed to prepare the plate. A method is described for using plate lids to reduce evaporation in low-volume vapor-diffusion crystallization experiments. The plate lids contain apertures through which the protein and precipitants were added to different crystallization microplates (the reservoir was filled before fittingmore » the lids). Plate lids were designed for each of these commonly used crystallization microplates. This system minimizes the dehydration of crystallization droplets containing just a few nanolitres of protein and precipitant, and results in more reproducible diffraction from the crystals. For each lid design, changes in the weight of the plates were used to deduce the rate of evaporation under different conditions of temperature, air movement, droplet size and precipitant. For comparison, the state of dehydration was also visually assessed throughout the experiment. Finally, X-ray diffraction methods were used to compare the diffraction of protein crystals that were conventionally prepared against those that were prepared on plates with plate lids. The measurements revealed that the plate lids reduced the rate of evaporation by 63–82%. Crystals grown in 5 nl drops that were set up with plate lids diffracted to higher resolution than similar crystals from drops that were set up without plate lids. The results demonstrate that plate lids can be instrumental for improving few-nanolitre crystallizations.« less
Sensitive radioimmunoassay of total thyroxine (T4) in horses using a simple extraction method.
Tangyuenyong, Siriwan; Nambo, Yasuo; Nagaoka, Kentaro; Tanaka, Tomomi; Watanabe, Gen
2017-07-28
Most thyroid hormone determinations in animals are based on immunoassays adapted from those used to test human samples, which may not reflect the actual values of thyroid hormone in horses because of the presence of binding proteins. The aims of the present study were i) to establish a novel radioimmunoassay (RIA) using a more simple and convenient method to separate binding proteins for the measurement of total thyroxine (T4) in horses and ii) to validate the assay by comparing total T4 concentrations in yearling horses raised in different climates. Blood samples were collected from trained yearlings in Hokkaido (temperate climate) and Miyazaki (subtropical climate) in Japan and from adult horses in estrus and diestrus. T4 was extracted from both serum and plasma using modified acid ethanol cryo-precipitation and sodium acetate ethanol methods. Circulating total T4 concentrations were determined by RIA. T4 concentration by sodium acetate ethanol was appropriately detectable rather than sodium salicylate method and was the same as for acid ethanol method. Furthermore, this sodium acetate ethanol method required fewer extraction steps than the other methods. Circulating T4 concentrations in yearlings were 225.98 ± 20.89 ng/ml, which was higher than the previous reference values. With respect to climate, T4 levels in Hokkaido yearlings tended to be higher than those in Miyazaki yearlings throughout the study period. These results indicated that this RIA protocol using a modified sodium acetate ethanol separation technique might be an appropriate tool for specific measurement of total T4 in horses.
Khan, Ismail; Iqbal, Zafar; Khan, Abad; Hassan, Muhammad; Nasir, Fazle; Raza, Abida; Ahmad, Lateef; Khan, Amjad; Akhlaq Mughal, Muhammad
2016-10-15
A simple, economical, fast, and sensitive RP-HPLC-UV method has been developed for the simultaneous quantification of Sorafenib and paclitaxel in biological samples and formulations using piroxicam as an internal standard. The experimental conditions were optimized and method was validated according to the standard guidelines. The separation of both the analytes and internal standard was achieved on Discovery HS C18 column (250mm×4.6mm, 5μm) using Acetonitrile and TFA (0.025%) in the ratio of (65:35V/V) as the mobile phase in isocratic mode at a flow rate of 1ml/min, with a wavelength of 245nm and at a column oven temperature of 25°Cin a short run time of 12min. The limits of detection (LLOD) were 5 and 10ng/ml while the limits of quantification (LLOQ) were 10 and 15ng/ml for sorafenib and paclitaxel, respectively. Sorafenib, paclitaxel and piroxicam (IS) were extracted from biological samples by applying acetonitrile as a precipitating and extraction solvent. The method is linear in the range of 15-20,000ng/ml for paclitaxel and 10-5000ng/ml for sorafenib, respectively. The method is sensitive and reliable by considering both of its intra-day and inter-day co-efficient of variance. The method was successfully applied for the quantification of the above mentioned drugs in plasma. The developed method will be applied towards sorafenib and paclitaxel pharmacokinetics studies in animal models. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Díaz-Torres, E., E-mail: ediaz@cinvestav.mx; Ortega-López, M.; Matsumoto, Y.
2016-08-15
Highlights: • PbSe is obtained in a simple way by the co-precipitation method at low-temperature. • The structural, morphological and optical properties of PbSe were studied. • Adding NH{sub 4}OH to the precursor solutions influences on the morphology. • 2D- and 1D-PbSe structures assemble by oriented attachment. • PbSe can be a potential candidate for thermoelectric applications. - Abstract: This work presents a simple and low-temperature method to prepare a variety of Lead selenide (PbSe) nanostructures, using aqueous solutions of Pb(NO{sub 3}){sub 2} and NaHSe. Nanostructures with different morphology were obtained by varying the Pb:Se molar ratio, as well asmore » the mixing sequence of NH{sub 4}OH with either Pb(NO{sub 3}){sub 2} or NaHSe. Nanoparticles with different shapes (spherical and octahedral), and self-assembled structures (flakes and ribbons) were observed by Transmission Electron Microscopy. X-ray results confirmed that the PbSe rock-salt crystalline structure was obtained for all of the prepared samples. The crystal size is in the order of 7.3 to 8.9 nm for single nanocrystals. The absorption spectra of the samples show exciton absorption bands at 1395 nm and 1660 nm. This material could be used to develop more advanced structures for thermoelectric generators.« less
Particle-Size-Grouping Model of Precipitation Kinetics in Microalloyed Steels
NASA Astrophysics Data System (ADS)
Xu, Kun; Thomas, Brian G.
2012-03-01
The formation, growth, and size distribution of precipitates greatly affects the microstructure and properties of microalloyed steels. Computational particle-size-grouping (PSG) kinetic models based on population balances are developed to simulate precipitate particle growth resulting from collision and diffusion mechanisms. First, the generalized PSG method for collision is explained clearly and verified. Then, a new PSG method is proposed to model diffusion-controlled precipitate nucleation, growth, and coarsening with complete mass conservation and no fitting parameters. Compared with the original population-balance models, this PSG method saves significant computation and preserves enough accuracy to model a realistic range of particle sizes. Finally, the new PSG method is combined with an equilibrium phase fraction model for plain carbon steels and is applied to simulate the precipitated fraction of aluminum nitride and the size distribution of niobium carbide during isothermal aging processes. Good matches are found with experimental measurements, suggesting that the new PSG method offers a promising framework for the future development of realistic models of precipitation.
NASA Astrophysics Data System (ADS)
Leeper, R. D.; Kochendorfer, J.
2015-06-01
Evaporation from a precipitation gauge can cause errors in the amount of measured precipitation. For automated weighing-bucket gauges, the World Meteorological Organization (WMO) suggests the use of evaporative suppressants and frequent observations to limit these biases. However, the use of evaporation suppressants is not always feasible due to environmental hazards and the added cost of maintenance, transport, and disposal of the gauge additive. In addition, research has suggested that evaporation prior to precipitation may affect precipitation measurements from auto-recording gauges operating at sub-hourly frequencies. For further evaluation, a field campaign was conducted to monitor evaporation and its impacts on the quality of precipitation measurements from gauges used at U.S. Climate Reference Network (USCRN) stations. Two Geonor gauges were collocated, with one gauge using an evaporative suppressant (referred to as Geonor-NonEvap) and the other with no suppressant (referred to as Geonor-Evap) to evaluate evaporative losses and evaporation biases on precipitation measurements. From June to August, evaporative losses from the Geonor-Evap gauge exceeded accumulated precipitation, with an average loss of 0.12 mm h-1. The impact of evaporation on precipitation measurements was sensitive to the choice of calculation method. In general, the pairwise method that utilized a longer time series to smooth out sensor noise was more sensitive to gauge evaporation (-4.6% bias with respect to control) than the weighted-average method that calculated depth change over a smaller window (<+1% bias). These results indicate that while climate and gauge design affect gauge evaporation rates, computational methods also influence the magnitude of evaporation biases on precipitation measurements. This study can be used to advance quality insurance (QA) techniques used in other automated networks to mitigate the impact of evaporation biases on precipitation measurements.
Dynamically controlled crystallization method and apparatus and crystals obtained thereby
NASA Technical Reports Server (NTRS)
Arnowitz, Leonard (Inventor); Steinberg, Emanuel (Inventor)
2003-01-01
A method and apparatus for dynamically controlling the crystallization of molecules including a crystallization chamber (14) or chambers for holding molecules in a precipitant solution, one or more precipitant solution reservoirs (16, 18), communication passages (17, 19) respectively coupling the crystallization chamber(s) with each of the precipitant solution reservoirs, and transfer mechanisms (20, 21, 22, 24, 26, 28) configured to respectively transfer precipitant solution between each of the precipitant solution reservoirs and the crystallization chamber(s). The transfer mechanisms are interlocked to maintain a constant volume of precipitant solution in the crystallization chamber(s). Precipitant solutions of different concentrations are transferred into and out of the crystallization chamber(s) to adjust the concentration of precipitant in the crystallization chamber(s) to achieve precise control of the crystallization process. The method and apparatus can be used effectively to grow crystals under reduced gravity conditions such as microgravity conditions of space, and under conditions of reduced or enhanced effective gravity as induced by a powerful magnetic field.
Duarte, Ana Rita C; Maniglio, Devid; Sousa, Nuno; Mano, João F; Reis, Rui L; Migliaresi, Claudio
2017-01-26
This study investigated the preparation of ordered patterned surfaces and/or microspheres from a natural-based polymer, using the breath figure and reverse breath figure methods. Poly(D,L-lactic acid) and starch poly(lactic acid) solutions were precipitated in different conditions - namely, polymer concentration, vapor atmosphere temperature and substrate - to evaluate the effect of these conditions on the morphology of the precipitates obtained. The possibility of fine-tuning the properties of the final patterns simply by changing the vapor atmosphere was also demonstrated here using a range of compositions of the vapor phase. Porous films or discrete particles are formed when the differences in surface tension determine the ability of polymer solution to surround water droplets or methanol to surround polymer droplets, respectively. In vitro cytotoxicity was assessed applying a simple standard protocol to evaluate the possibility to use these materials in biomedical applications. Moreover, fluorescent microscopy images showed a good interaction of cells with the material, which were able to adhere on the patterned surfaces after 24 hours in culture. The development of patterned surfaces using the breath figure method was tested in this work for the preparation of both poly(lactic acid) and a blend containing starch and poly(lactic acid). The potential of these films to be used in the biomedical area was confirmed by a preliminary cytotoxicity test and by morphological observation of cell adhesion.
Atlas of depth-duration frequency of precipitation annual maxima for Texas
Asquith, William H.; Roussel, Meghan C.
2004-01-01
The objective of this Texas Department of Transportation (TxDOT) and U.S. Geological Survey (USGS) cooperatively funded project was to develop a simple-to-use atlas of precipitation depths in Texas for selected storm durations and frequencies on the basis of the research results and unpublished digital archives of Asquith (1998). The selected storm durations are 15 and 30 minutes; 1, 2, 3, 6, and 12 hours; and 1, 2, 3, 5, and 7 days. The selected storm frequencies or annual recurrence intervals are 2, 5, 10, 25, 50, 100, 250, and 500 years. Depth-duration frequency (DDF) of annual precipitation maxima is important for cost-effective, risk-mitigated hydrologic design. DDF values are in common and wide-spread use by public and private entities throughout Texas.
Conceptual models governing leaching behavior and their long-term predictive capability
Claassen, Hans C.
1981-01-01
Six models that may be used to describe the interaction of radioactive waste solids with aqueous solutions are as follows:Simple linear mass transfer;Simple parabolic mass transfer;Parabolic mass transfer with the formation of a diffusion-limiting surface layer at an arbitrary time;Initial parabolic mass transfer followed by linear mass transfer at an arbitrary time;Parabolic (or linear) mass transfer and concomitant surface sorption; andParabolic (or linear) mass transfer and concomitant chemical precipitation.Some of these models lead to either illogical or unrealistic predictions when published data are extrapolated to long times. These predictions result because most data result from short-term experimentation. Probably for longer times, processes will occur that have not been observed in the shorter experiments. This hypothesis has been verified by mass-transfer data from laboratory experiments using natural volcanic glass to predict the composition of groundwater. That such rate-limiting mechanisms do occur is reassuring, although now it is not possible to deduce a single mass-transfer limiting mechanism that could control the solution concentration of all components of all waste forms being investigated. Probably the most reasonable mechanisms are surface sorption and chemical precipitation of the species of interest. Another is limiting of mass transfer by chemical precipitation on the waste form surface of a substance not containing the species of interest, that is, presence of a diffusion-limiting layer. The presence of sorption and chemical precipitation as factors limiting mass transfer has been verified in natural groundwater systems, whereas the diffusion-limiting mechanism has not been verified yet.
NASA Astrophysics Data System (ADS)
Kousari, Mohammad Reza; Hosseini, Mitra Esmaeilzadeh; Ahani, Hossein; Hakimelahi, Hemila
2017-01-01
An effective forecast of the drought definitely gives lots of advantages in regard to the management of water resources being used in agriculture, industry, and households consumption. To introduce such a model applying simple data inputs, in this study a regional drought forecast method on the basis of artificial intelligence capabilities (artificial neural networks) and Standardized Precipitation Index (SPI in 3, 6, 9, 12, 18, and 24 monthly series) has been presented in Fars Province of Iran. The precipitation data of 41 rain gauge stations were applied for computing SPI values. Besides, weather signals including Multivariate ENSO Index (MEI), North Atlantic Oscillation (NAO), Southern Oscillation Index (SOI), NINO1+2, anomaly NINO1+2, NINO3, anomaly NINO3, NINO4, anomaly NINO4, NINO3.4, and anomaly NINO3.4 were also used as the predictor variables for SPI time series forecast the next 12 months. Frequent testing and validating steps were considered to obtain the best artificial neural networks (ANNs) models. The forecasted values were mapped in verification sector then they were compared with the observed maps at the same dates. Results showed considerable spatial and temporal relationships even among the maps of different SPI time series. Also, the first 6 months forecasted maps showed an average of 73 % agreements with the observed ones. The most important finding and the strong point of this study was the fact that although drought forecast in each station and time series was completely independent, the relationships between spatial and temporal predictions remained. This strong point mainly referred to frequent testing and validating steps in order to explore the best drought forecast models from plenty of produced ANNs models. Finally, wherever the precipitation data are available, the practical application of the presented method is possible.
Convective adjustment timescale (τ) for cumulus clouds is one of the most influential parameters controlling parameterized convective precipitation in climate and weather simulation models at global and regional scales. Due to the complex nature of deep convection, a pres...
Ren, Ping; Rossi, Sergio; Gricar, Jozica; Liang, Eryuan; Cufar, Katarina
2015-01-01
Background and Aims A series of studies have shown that temperature triggers the onset of xylogenesis of trees after winter dormancy. However, little is known about whether and how moisture availability influences xylogenesis in spring in drought-prone areas. Methods Xylogenesis was monitored in five mature Qilian junipers (Juniperus przewalskii) by microcore sampling from 2009 to 2011 in a semi-arid area of the north-eastern Tibetan Plateau. A simple physical model of xylem cell production was developed and its sensitivity was analysed. The relationship between climate and growth was then evaluated, using weekly wood production data and climatic data from the study site. Key Results Delayed onset of xylogenesis in 2010 corresponded to a negative standardized precipitation evapotranspiration index (SPEI) value and a continuous period without rainfall in early May. The main period of wood formation was in June and July, and drier conditions from May to July led to a smaller number of xylem cells. Dry conditions in July could cause early cessation of xylem differentiation. The final number of xylem cells was mainly determined by the average production rate rather than the duration of new cell production. Xylem growth showed a positive and significant response to precipitation, but not to temperature. Conclusions Precipitation in late spring and summer can play a critical role in the onset of xylogenesis and xylem cell production. The delay in the initiation of xylogenesis under extremely dry conditions seems to be a stress-avoidance strategy against hydraulic failure. These findings could thus demonstrate an evolutionary adaptation of Qilian juniper to the extremely dry conditions of the north-eastern Tibetan Plateau. PMID:25725006
Meyer, Michael W.; Walker, John F.; Kenow, Kevin P.; Rasmussen, Paul W.; Garrison, Paul J.; Hanson, Paul C.; Hunt, Randall J.
2013-01-01
F statewide, and an increase in precipitation of 1”–2”. However, summer precipitation in the northern part of the state is expected to be less and winter precipitation will be greater. By the end of the 21st century, the magnitude of changes in temperature and precipitation are expected to intensify. Such climatic changes have altered, and would further alter hydrological, chemical, and physical properties of inland lakes. Lake-dependent wildlife sensitive to changes in water quality, are particularly susceptible to lake quality-associated habitat changes and are likely to suffer restrictions to current breeding distributions under some climate change scenarios. We have selected the common loon (Gavia immer) to serve as a sentinel lake-dependent piscivorous species to be used in the development of a template for linking primary lake-dependent biota endpoints (e.g., decline in productivity and/or breeding range contraction) to important lake quality indicators. In the current project, we evaluate how changes in freshwater habitat quality (specifically lake clarity) may impact common loon lake occupancy in Wisconsin under detailed climate-change scenarios. In addition, we employ simple land-use/land cover and habitat scenarios to illustrate the potential interaction of climate and land-use/land cover effects. The methods employed here provide a template for studies where integration of physical and biotic models is used to project future conditions under various climate and land use change scenarios. Findings presented here project the future conditions of lakes and loons within an important watershed in northern Wisconsin – of importance to water resource managers and state citizens alike.
Spectrophotometric Analysis of Phenolic Compounds in Grapes and Wines.
Aleixandre-Tudo, Jose Luis; Buica, Astrid; Nieuwoudt, Helene; Aleixandre, Jose Luis; du Toit, Wessel
2017-05-24
Phenolic compounds are of crucial importance for red wine color and mouthfeel attributes. A large number of enzymatic and chemical reactions involving phenolic compounds take place during winemaking and aging. Despite the large number of published analytical methods for phenolic analyses, the values obtained may vary considerably. In addition, the existing scientific knowledge needs to be updated, but also critically evaluated and simplified for newcomers and wine industry partners. The most used and widely cited spectrophotometric methods for grape and wine phenolic analysis were identified through a bibliometric search using the Science Citation Index-Expanded (SCIE) database accessed through the Web of Science (WOS) platform from Thompson Reuters. The selection of spectrophotometry was based on its ease of use as a routine analytical technique. On the basis of the number of citations, as well as the advantages and disadvantages reported, the modified Somers assay appears as a multistep, simple, and robust procedure that provides a good estimation of the state of the anthocyanins equilibria. Precipitation methods for total tannin levels have also been identified as preferred protocols for these types of compounds. Good reported correlations between methods (methylcellulose precipitable vs bovine serum albumin) and between these and perceived red wine astringency, in combination with the adaptation to high-throughput format, make them suitable for routine analysis. The bovine serum albumin tannin assay also allows for the estimation of the anthocyanins content with the measurement of small and large polymeric pigments. Finally, the measurement of wine color using the CIELab space approach is also suggested as the protocol of choice as it provides good insight into the wine's color properties.
Vikingsson, Svante; Dahlberg, Jan-Olof; Hansson, Johan; Höiom, Veronica; Gréen, Henrik
2017-06-01
Dabrafenib is an inhibitor of BRAF V600E used for treating metastatic melanoma but a majority of patients experience adverse effects. Methods to measure the levels of dabrafenib and major metabolites during treatment are needed to allow development of individualized dosing strategies to reduce the burden of such adverse events. In this study, an LC-MS/MS method capable of measuring dabrafenib quantitatively and six metabolites semi-quantitatively is presented. The method is fully validated with regard to dabrafenib in human plasma in the range 5-5000 ng/mL. The analytes were separated on a C18 column after protein precipitation and detected in positive electrospray ionization mode using a Xevo TQ triple quadrupole mass spectrometer. As no commercial reference standards are available, the calibration curve of dabrafenib was used for semi-quantification of dabrafenib metabolites. Compared to earlier methods the presented method represents a simpler and more cost-effective approach suitable for clinical studies. Graphical abstract Combined multi reaction monitoring transitions of dabrafenib and metabolites in a typical case sample.
Begou, O; Kontou, A; Raikos, N; Sarafidis, K; Roilides, E; Papadoyannis, I N; Gika, H G
2017-03-15
The development and validation of an ultra-high pressure liquid chromatography (UHPLC) tandem mass spectrometry (MS/MS) method was performed with the aim to be applied for the quantification of plasma teicoplanin concentrations in neonates. Pharmacokinetic data of teicoplanin in the neonatal population is very limited, therefore, a sensitive and reliable method for the determination of all isoforms of teicoplanin applied in a low volume of sample is of real importance. Teicoplanin main components were extracted by a simple acetonitrile precipitation step and analysed on a C18 chromatographic column by a triple quadrupole MS with electrospray ionization. The method provides quantitative data over a linear range of 25-6400ng/mL with LOD 8.5ng/mL and LOQ 25ng/mL for total teicoplanin. The method was applied in plasma samples from neonates to support pharmacokinetic data and proved to be a reliable and fast method for the quantification of teicoplanin concentration levels in plasma of infants during therapy in Intensive Care Unit. Copyright © 2016 Elsevier B.V. All rights reserved.
How does bias correction of regional climate model precipitation affect modelled runoff?
NASA Astrophysics Data System (ADS)
Teng, J.; Potter, N. J.; Chiew, F. H. S.; Zhang, L.; Wang, B.; Vaze, J.; Evans, J. P.
2015-02-01
Many studies bias correct daily precipitation from climate models to match the observed precipitation statistics, and the bias corrected data are then used for various modelling applications. This paper presents a review of recent methods used to bias correct precipitation from regional climate models (RCMs). The paper then assesses four bias correction methods applied to the weather research and forecasting (WRF) model simulated precipitation, and the follow-on impact on modelled runoff for eight catchments in southeast Australia. Overall, the best results are produced by either quantile mapping or a newly proposed two-state gamma distribution mapping method. However, the differences between the methods are small in the modelling experiments here (and as reported in the literature), mainly due to the substantial corrections required and inconsistent errors over time (non-stationarity). The errors in bias corrected precipitation are typically amplified in modelled runoff. The tested methods cannot overcome limitations of the RCM in simulating precipitation sequence, which affects runoff generation. Results further show that whereas bias correction does not seem to alter change signals in precipitation means, it can introduce additional uncertainty to change signals in high precipitation amounts and, consequently, in runoff. Future climate change impact studies need to take this into account when deciding whether to use raw or bias corrected RCM results. Nevertheless, RCMs will continue to improve and will become increasingly useful for hydrological applications as the bias in RCM simulations reduces.
An analytic solution of the stochastic storage problem applicable to soil water
Milly, P.C.D.
1993-01-01
The accumulation of soil water during rainfall events and the subsequent depletion of soil water by evaporation between storms can be described, to first order, by simple accounting models. When the alternating supplies (precipitation) and demands (potential evaporation) are viewed as random variables, it follows that soil-water storage, evaporation, and runoff are also random variables. If the forcing (supply and demand) processes are stationary for a sufficiently long period of time, an asymptotic regime should eventually be reached where the probability distribution functions of storage, evaporation, and runoff are stationary and uniquely determined by the distribution functions of the forcing. Under the assumptions that the potential evaporation rate is constant, storm arrivals are Poisson-distributed, rainfall is instantaneous, and storm depth follows an exponential distribution, it is possible to derive the asymptotic distributions of storage, evaporation, and runoff analytically for a simple balance model. A particular result is that the fraction of rainfall converted to runoff is given by (1 - R−1)/(eα(1−R−1) − R−1), in which R is the ratio of mean potential evaporation to mean rainfall and a is the ratio of soil water-holding capacity to mean storm depth. The problem considered here is analogous to the well-known problem of storage in a reservoir behind a dam, for which the present work offers a new solution for reservoirs of finite capacity. A simple application of the results of this analysis suggests that random, intraseasonal fluctuations of precipitation cannot by themselves explain the observed dependence of the annual water balance on annual totals of precipitation and potential evaporation.
Climate, interseasonal storage of soil water, and the annual water balance
Milly, P.C.D.
1994-01-01
The effects of annual totals and seasonal variations of precipitation and potential evaporation on the annual water balance are explored. It is assumed that the only other factor of significance to annual water balance is a simple process of water storage, and that the relevant storage capacity is the plant-available water-holding capacity of the soil. Under the assumption that precipitation and potential evaporation vary sinusoidally through the year, it is possible to derive an analytic solution of the storage problem, and this yields an expression for the fraction of precipitation that evaporates (and the fraction that runs off) as a function of three dimensionless numbers: the ratio of annual potential evaporation to annual precipitation (index of dryness); an index of the seasonality of the difference between precipitation and potential evaporation; and the ratio of plant-available water-holding capacity to annual precipitation. The solution is applied to the area of the United States east of 105??W, using published information on precipitation, potential evaporation, and plant-available water-holding capacity as inputs, and using an independent analysis of observed river runoff for model evaluation. The model generates an areal mean annual runoff of only 187 mm, which is about 30% less than the observed runoff (263 mm). The discrepancy is suggestive of the importance of runoff-generating mechanisms neglected in the model. These include intraseasonal variability (storminess) of precipitation, spatial variability of storage capacity, and finite infiltration capacity of land. ?? 1994.
NASA Astrophysics Data System (ADS)
Li, Jiqing; Duan, Zhipeng; Huang, Jing
2018-06-01
With the aggravation of the global climate change, the shortage of water resources in China is becoming more and more serious. Using reasonable methods to study changes in precipitation is very important for planning and management of water resources. Based on the time series of precipitation in Beijing from 1951 to 2015, the multi-scale features of precipitation are analyzed by the Extreme-point Symmetric Mode Decomposition (ESMD) method to forecast the precipitation shift. The results show that the precipitation series have periodic changes of 2.6, 4.3, 14 and 21.7 years, and the variance contribution rate of each modal component shows that the inter-annual variation dominates the precipitation in Beijing. It is predicted that precipitation in Beijing will continue to decrease in the near future.
NASA Astrophysics Data System (ADS)
Prakash, Satya; Mahesh, C.; Gairola, Rakesh M.
2011-12-01
Large-scale precipitation estimation is very important for climate science because precipitation is a major component of the earth's water and energy cycles. In the present study, the GOES precipitation index technique has been applied to the Kalpana-1 satellite infrared (IR) images of every three-hourly, i.e., of 0000, 0300, 0600,…., 2100 hours UTC, for rainfall estimation as a preparatory to the INSAT-3D. After the temperatures of all the pixels in a grid are known, they are distributed to generate a three-hourly 24-class histogram of brightness temperatures of IR (10.5-12.5 μm) images for a 1.0° × 1.0° latitude/longitude box. The daily, monthly, and seasonal rainfall have been estimated using these three-hourly rain estimates for the entire south-west monsoon period of 2009 in the present study. To investigate the potential of these rainfall estimates, the validation of monthly and seasonal rainfall estimates has been carried out using the Global Precipitation Climatology Project and Global Precipitation Climatology Centre data. The validation results show that the present technique works very well for the large-scale precipitation estimation qualitatively as well as quantitatively. The results also suggest that the simple IR-based estimation technique can be used to estimate rainfall for tropical areas at a larger temporal scale for climatological applications.
Removal of phosphate from greenhouse wastewater using hydrated lime.
Dunets, C Siobhan; Zheng, Youbin
2014-01-01
Phosphate (P) contamination in nutrient-laden wastewater is currently a major topic of discussion in the North American greenhouse industry. Precipitation of P as calcium phosphate minerals using hydrated lime could provide a simple, inexpensive method for retrieval. A combination of batch experiments and chemical equilibrium modelling was used to confirm the viability of this P removal method and determine lime addition rates and pH requirements for greenhouse wastewater of varying nutrient compositions. Lime: P ratio (molar ratio of CaMg(OH)₄: PO₄‒P) provided a consistent parameter for estimating lime addition requirements regardless of initial P concentration, with a ratio of 1.5 providing around 99% removal of dissolved P. Optimal P removal occurred when lime addition increased the pH from 8.6 to 9.0, suggesting that pH monitoring during the P removal process could provide a simple method for ensuring consistent adherence to P removal standards. A Visual MINTEQ model, validated using experimental data, provided a means of predicting lime addition and pH requirements as influenced by changes in other parameters of the lime-wastewater system (e.g. calcium concentration, temperature, and initial wastewater pH). Hydrated lime addition did not contribute to the removal of macronutrient elements such as nitrate and ammonium, but did decrease the concentration of some micronutrients. This study provides basic guidance for greenhouse operators to use hydrated lime for phosphate removal from greenhouse wastewater.
Ocque, Andrew J; Stubbs, Jason R; Nolin, Thomas D
2015-05-10
A simple, sensitive, and precise ultra-high performance liquid chromatography-tandem mass spectrometry method was developed and validated for the simultaneous determination of trimethylamine N-oxide, choline, and betaine in human plasma and urine. Sample preparation involved protein precipitation with methanol containing internal standards. Chromatographic separation was achieved using an Acquity BEH Amide (2.1mm×50mm, 1.7μm) analytical column with gradient elution of solvent A (10mM ammonium formate, pH 3.5) and solvent B (acetonitrile). The flow rate was 0.4mL/min and the total run time was 5min. Detection of analytes was performed using heated electrospray ionization (positive mode) and selected reaction monitoring. Excellent linearity was observed over the standard curve concentration ranges of 0.010-5.00μg/mL (plasma) and 1.00-150μg/mL (urine) for all analytes. The intra- and inter-day accuracy and precision for all quality controls were within ±10%. Excellent recovery was observed. The method is rapid, accurate and reproducible, and was successfully applied to a pilot study of markers of atherosclerosis in patients with kidney disease who underwent successful kidney transplantation. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gao, Y.
2017-12-01
Regional precipitation recycling (i.e., the contribution of local evaporation to local precipitation) is an important component of water cycle over the Tibetan Plateau (TP). Two methods were used to investigate regional precipitation recycling: 1) tracking of tagged atmospheric water parcels originating from evaporation in a source region (i.e., E-tagging), and 2) back-trajectory approach to track the evaporative sources contributed to precipitation in a specific region. These two methods were applied to Weather Research and Forecasting (WRF) regional climate simulations to quantify the precipitation recycling ratio in the TP for three selected years: climatologically normal, dry and wet year. The simulation region is characterized by high average elevation above 4000 m and complex terrain. The back-trajectory approach is also calculated over three sub-regions over the TP: namely western, northeastern and southeastern TP, and the E-tagging approach could provide recycling-ratio distributions over the whole TP. Three aspects are investigated to characterize the precipitation recycling: annual mean, seasonal variations and spatial distributions. Averaged over the TP, the precipitation recycling ratio estimated by the E-tagging approach is higher than that from the back-trajectory method. The back-trajectory approach uses a precipitation threshold as total precipitation in five days divided by a random number, and this number was set to 500 as a tread off between equilibrium and computational efficiency. Lower recycling ratio derived from the back-trajectory approach is related to the precipitation threshold used. The E-tagging, however, tracks every air parcel of evaporation regardless of the precipitation amount. There is no obvious seasonal variation in the recycling ratio using both methods. The E-tagging approach shows high recycling ratios in the center TP, indicating stronger land-atmospheric interactions than elsewhere.
NASA Astrophysics Data System (ADS)
Mehran, A.; AghaKouchak, A.; Phillips, T. J.
2014-02-01
The objective of this study is to cross-validate 34 Coupled Model Intercomparison Project Phase 5 (CMIP5) historical simulations of precipitation against the Global Precipitation Climatology Project (GPCP) data, quantifying model pattern discrepancies, and biases for both entire distributions and their upper tails. The results of the volumetric hit index (VHI) analysis of the total monthly precipitation amounts show that most CMIP5 simulations are in good agreement with GPCP patterns in many areas but that their replication of observed precipitation over arid regions and certain subcontinental regions (e.g., northern Eurasia, eastern Russia, and central Australia) is problematical. Overall, the VHI of the multimodel ensemble mean and median also are superior to that of the individual CMIP5 models. However, at high quantiles of reference data (75th and 90th percentiles), all climate models display low skill in simulating precipitation, except over North America, the Amazon, and Central Africa. Analyses of total bias (B) in CMIP5 simulations reveal that most models overestimate precipitation over regions of complex topography (e.g., western North and South America and southern Africa and Asia), while underestimating it over arid regions. Also, while most climate model simulations show low biases over Europe, intermodel variations in bias over Australia and Amazonia are considerable. The quantile bias analyses indicate that CMIP5 simulations are even more biased at high quantiles of precipitation. It is found that a simple mean field bias removal improves the overall B and VHI values but does not make a significant improvement at high quantiles of precipitation.
Mohammadpour, Amir Hooshang; Ramezani, Mohammad; Tavakoli Anaraki, Nasim; Malaekeh-Nikouei, Bizhan; Amel Farzad, Sara; Hosseinzadeh, Hossein
2013-01-01
Objective(s): The present study reports the development and validation of a sensitive and rapid extraction method beside high performance liquid chromatographic method for the determination of crocetin in human serum. Materials and Methods: The HPLC method was carried out by using a C18 reversed-phase column and a mobile phase composed of methanol/water/acetic acid (85:14.5:0.5 v/v/v) at the flow rate of 0.8 ml/min. The UV detector was set at 423 nm and 13-cis retinoic acid was used as the internal standard. Serum samples were pretreated with solid-phase extraction using Bond Elut C18 (200mg) cartridges or with direct precipitation using acetonitrile. Results: The calibration curves were linear over the range of 0.05-1.25 µg/ml for direct precipitation method and 0.5-5 µg/ml for solid-phase extraction. The mean recoveries of crocetin over a concentration range of 0.05-5 µg/ml serum for direct precipitation method and 0.5-5 µg/ml for solid-phase extraction were above 70 % and 60 %, respectively. The intraday coefficients of variation were 0.37- 2.6% for direct precipitation method and 0.64 - 5.43% for solid-phase extraction. The inter day coefficients of variation were 1.69 – 6.03% for direct precipitation method and 5.13-12.74% for solid-phase extraction, respectively. The lower limit of quantification for crocetin was 0.05 µg/ml for direct precipitation method and 0.5 µg/ml for solid-phase extraction. Conclusion: The validated direct precipitation method for HPLC satisfied all of the criteria that were necessary for a bioanalytical method and could reliably quantitate crocetin in human serum for future clinical pharmacokinetic study. PMID:23638292
Adamowicz, Piotr; Tokarczyk, Bogdan
2016-07-01
In recent years, many new psychoactive substances (NPS) from several drug classes have appeared on the drug market. These substances, also known as 'legal highs', belong to different chemical classes. Despite the increasing number of NPS, there are few comprehensive screening methods for their detection in biological specimens. In this context, the purpose of this study was to develop a fast and simple liquid chromatography-tandem mass spectrometry (LC-MS/MS) screening procedure for NPS in blood. The elaborated method allows the simultaneous screening of 143 compounds from different groups (number of compounds): cathinones (36), phenethylamines (26), tryptamines (18), piperazines (9), piperidines (2), synthetic cannabinoids (34), arylalkylamines (7), arylcyclohexylamines (3), aminoindanes (2), and other drugs (6). Blood samples (0.2 mL) were precipitated with acetonitrile (0.6 mL). The separation was achieved with gradient mobile phase of 0.1% formic acid in acetonitrile and 0.1% formic acid in water in 14 min. Detection of all compounds was based on multiple reaction monitoring (MRM) transitions. The total number of transitions monitored in dynamic mode was 432. The whole procedure was rapid and simple. The limits of detection (LODs) estimated for 104 compounds were in the range 0.01-3.09 ng/mL. The extraction recoveries determined for 32 compounds were from 1.8 to 133%. The procedure was successfully applied to the analysis of forensic blood samples in routine casework. The developed method should have wide applicability for rapid screening of new drugs of abuse in forensic or clinical samples. The procedure can be easily expanded for more substances. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
GPS-based PWV for precipitation forecasting and its application to a typhoon event
NASA Astrophysics Data System (ADS)
Zhao, Qingzhi; Yao, Yibin; Yao, Wanqiang
2018-01-01
The temporal variability of precipitable water vapour (PWV) derived from Global Navigation Satellite System (GNSS) observations can be used to forecast precipitation events. A number of case studies of precipitation events have been analysed in Zhejiang Province, and a forecasting method for precipitation events was proposed. The PWV time series retrieved from the Global Positioning System (GPS) observations was processed by using a least-squares fitting method, so as to obtain the line tendency of ascents and descents over PWV. The increment of PWV for a short time (two to six hours) and PWV slope for a longer time (a few hours to more than ten hours) during the PWV ascending period are considered as predictive factors with which to forecast the precipitation event. The numerical results show that about 80%-90% of precipitation events and more than 90% of heavy rain events can be forecasted two to six hours in advance of the precipitation event based on the proposed method. 5-minute PWV data derived from GPS observations based on real-time precise point positioning (RT-PPP) were used for the typhoon event that passed over Zhejiang Province between 10 and 12 July, 2015. A good result was acquired using the proposed method and about 74% of precipitation events were predicted at some ten to thirty minutes earlier than their onset with a false alarm rate of 18%. This study shows that the GPS-based PWV was promising for short-term and now-casting precipitation forecasting.
A Simple Qualitative Analysis Scheme for Several Environmentally Important Elements
ERIC Educational Resources Information Center
Lambert, Jack L.; Meloan, Clifton E.
1977-01-01
Describes a scheme that uses precipitation, gas evolution, complex ion formation, and flame tests to analyze for the following ions: Hg(I), Hg(II), Sb(III), Cr(III), Pb(II), Sr(II), Cu(II), Cd(II), As(III), chloride, nitrate, and sulfate. (MLH)
NASA Astrophysics Data System (ADS)
Casas-Castillo, M. Carmen; Rodríguez-Solà, Raúl; Navarro, Xavier; Russo, Beniamino; Lastra, Antonio; González, Paula; Redaño, Angel
2018-01-01
The fractal behavior of extreme rainfall intensities registered between 1940 and 2012 by the Retiro Observatory of Madrid (Spain) has been examined, and a simple scaling regime ranging from 25 min to 3 days of duration has been identified. Thus, an intensity-duration-frequency (IDF) master equation of the location has been constructed in terms of the simple scaling formulation. The scaling behavior of probable maximum precipitation (PMP) for durations between 5 min and 24 h has also been verified. For the statistical estimation of the PMP, an envelope curve of the frequency factor ( k m ) based on a total of 10,194 station-years of annual maximum rainfall from 258 stations in Spain has been developed. This curve could be useful to estimate suitable values of PMP at any point of the Iberian Peninsula from basic statistical parameters (mean and standard deviation) of its rainfall series. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Zhang, H.; Tang, H.; He, Y. Z.; Zhang, J. L.; Li, W. H.; Guo, S.
2017-11-01
Effects of heat treatment on borides precipitation and mechanical properties of arc-melted and laser-cladded CoCrNiFeAl1.8Cu0.7B0.3Si0.1 high-entropy alloys were comparatively studied. The arc-melted alloy contains lots of long strip borides distributed in the body-centered cubic phase, with a hardness about 643 HV0.5. Laser-cladding can effectively inhibit the boride precipitation and the laser-cladded alloy is mainly composed of a simple bcc solid solution, with a high hardness about 769 HV0.5, indicating the strengthening effect by interstitial boron atoms is greater than the strengthening by borides precipitation. Heat treatments between 800°C and 1200°C can simultaneously improve the hardness and fracture toughness of arc-melted alloys, owing to the boride spheroidization, dissolution, re-precipitation, and hence the increased boron solubility and nano-precipitation in the bcc solid solution. By contrast, the hardness of laser-cladded alloys reduce after heat treatments in the same temperature range, due to the decreased boron solubility in the matrix.
Positron Annihilation Spectroscopy Characterization of Nanostructural Features in Reactor Steels
NASA Astrophysics Data System (ADS)
Glade, Stephen; Wirth, Brian; Asoka-Kumar, Palakkal; Sterne, Philip; Alinger, Matthew; Odette, George
2004-03-01
Irradiation embrittlement in nuclear reactor pressure vessel steels results from the formation of a high number density of nanometer sized copper rich precipitates and sub-nanometer defect-solute clusters. We present results of study to characterize the size and compositions of simple binary and ternary Fe-Cu-Mn model alloys and more representative Fe-Cu-Mn-Ni-Si-Mo-C reactor pressure vessel steels using positron annihilation spectroscopy (PAS). Using a recently developed spin-polarized PAS technique, we have also measured the magnetic properties of the nanometer-sized copper rich precipitates. Mn retards the precipitation kinetics and inhibits large vacancy cluster formation, suggesting a strong Mn-vacancy interaction which reduces radiation enhanced diffusion. The spin-polarized PAS measurements reveal the non-magnetic nature of the copper precipitates, discounting the notion that the precipitates contain significant quantities of Fe and providing an upper limit of at most a few percent Fe in the precipitates. PAS results on oxide dispersion-strengthened steel for use in fusion reactors will also be presented. Part of this work was performed under the auspices of the US Department of Energy by the University of California, Lawrence Livermore National Laboratory, under contract No. W-7405-ENG-48 with partial support provided from Basic Energy Sciences, Division of Materials Science.
Koh, Gar Yee; Chou, Guixin; Liu, Zhijun
2009-01-01
The aqueous extraction process of the leaves of Rubus suavissimus often brings in a large amount of non-active polysaccharides as part of the constituents. To purify this water extract for potential elevated bioactivity, alcohol precipitation (AP) consisting of gradient regimens was applied, and its resultants were examined through colorimetric and HPLC analyses. AP was effective in partitioning the aqueous crude extract into a soluble supernatant and an insoluble precipitant, and its effect varied significantly with alcohol regimens. Generally, the higher the alcohol concentration, the purer was the resultant extract. At its maximum, approximately 36% (w/w) of the crude extract, of which 23% was polysaccharides, was precipitated and removed, resulting in a purified extract consisting of over 20% bioactive marker compounds (gallic acid, ellagic acid, rutin, rubusoside, and steviol monoside). The removal of 11% polysaccharides from the crude water extract by using alcohol precipitation was complete at 70% alcohol regimen. Higher alcohol levels resulted in even purer extracts, possibly by removing some compounds of uncertain bioactivity. Alcohol precipitation is an effective way of removing polysaccharides from the water extract of sweet tea plant and could be used as an initial simple purification tool for many water plant extracts that contain large amounts of polysaccharides. PMID:19419169
Alpha chymotrypsin coated clusters of Fe3O4 nanoparticles for biocatalysis in low water media
2012-01-01
Background Enzymes in low water containing non aqueous media are useful for organic synthesis. For example, hydrolases in such media can be used for synthetic purposes. Initial work in this area was carried out with lyophilized powders of enzymes. These were found to have poor activity. Drying (removing bulk water) by precipitation turned out to be a better approach. As enzymes in such media are heterogeneous catalysts, spreading these precipitates over a large surface gave even better results. In this context, nanoparticles with their better surface to volume ratio provide obvious advantage. Magnetic nanoparticles have an added advantage of easy separation after the reaction. Keeping this in view, alpha chymotrypsin solution in water was precipitated over a stirred population of Fe3O4 nanoparticles in n-propanol. This led to alpha chymotrypsin activity coated over clusters of Fe3O4 nanoparticles. These preparations were found to have quite high transesterification activity in low water containing n-octane. Results Precipitation of alpha chymotrypsin over a stirred suspension of Fe3O4 nanoparticles (3.6 nm diameter) led to the formation of enzyme coated clusters of nanoparticles (ECCNs). These clusters were also magnetic and their hydrodynamic diameter ranged from 1.2- 2.6 microns (as measured by dynamic light scattering). Transmission electron microscopy (TEM), showed that these clusters had highly irregular shapes. Transesterification assay of various clusters in anhydrous n-octane led to optimization of concentration of nanoparticles in suspension during precipitation. Optimized design of enzyme coated magnetic clusters of nanoparticles (ECCN 3) showed the highest initial rate of 465 nmol min-1 mg-1protein which was about 9 times higher as compared to the simple precipitates with an initial rate of 52 nmol min-1 mg-1 protein. Circular Dichroism (CD)(with a spinning cell accessory) showed that secondary structure content of the alpha Chymotrypsin in ECCN 3 [15% α-helix, 37% β-sheet and 48% random coil] was identical to the simple precipitates of alpha chymotrypsin. Conclusion A strategy for obtaining a high activity preparation of alpha chymotrypsin for application in low water media is described. Such high activity biocatalysts are useful in organic synthesis. PMID:23137100
Geographically weighted regression based methods for merging satellite and gauge precipitation
NASA Astrophysics Data System (ADS)
Chao, Lijun; Zhang, Ke; Li, Zhijia; Zhu, Yuelong; Wang, Jingfeng; Yu, Zhongbo
2018-03-01
Real-time precipitation data with high spatiotemporal resolutions are crucial for accurate hydrological forecasting. To improve the spatial resolution and quality of satellite precipitation, a three-step satellite and gauge precipitation merging method was formulated in this study: (1) bilinear interpolation is first applied to downscale coarser satellite precipitation to a finer resolution (PS); (2) the (mixed) geographically weighted regression methods coupled with a weighting function are then used to estimate biases of PS as functions of gauge observations (PO) and PS; and (3) biases of PS are finally corrected to produce a merged precipitation product. Based on the above framework, eight algorithms, a combination of two geographically weighted regression methods and four weighting functions, are developed to merge CMORPH (CPC MORPHing technique) precipitation with station observations on a daily scale in the Ziwuhe Basin of China. The geographical variables (elevation, slope, aspect, surface roughness, and distance to the coastline) and a meteorological variable (wind speed) were used for merging precipitation to avoid the artificial spatial autocorrelation resulting from traditional interpolation methods. The results show that the combination of the MGWR and BI-square function (MGWR-BI) has the best performance (R = 0.863 and RMSE = 7.273 mm/day) among the eight algorithms. The MGWR-BI algorithm was then applied to produce hourly merged precipitation product. Compared to the original CMORPH product (R = 0.208 and RMSE = 1.208 mm/hr), the quality of the merged data is significantly higher (R = 0.724 and RMSE = 0.706 mm/hr). The developed merging method not only improves the spatial resolution and quality of the satellite product but also is easy to implement, which is valuable for hydrological modeling and other applications.
Liu, Yingxia; Ma, Yaqian; Wan, Yiqun; Guo, Lan; Wan, Xiaofen
2016-06-01
Most organotin compounds that have been widely used in food packaging materials and production process show serious toxicity effects to human health. In this study, a simple and low-cost method based on high-performance liquid chromatography with inductively coupled plasma mass spectrometry for the simultaneous determination of four organotins in edible vegetable oil samples was developed. Four organotins including dibutyltin dichloride, tributyltin chloride, diphenyltin dichloride, and triphenyltin chloride were simultaneously extracted with methanol using the low-temperature precipitation process. After being concentrated, the extracts were purified by matrix solid-phase dispersion using graphitized carbon black. The experimental parameters such as extraction solvent and clean-up material were optimized. To evaluate the accuracy of the new method, the recoveries were investigated. In addition, a liquid chromatography with tandem mass spectrometry method was also proposed for comparison. The procedures of extracting and purifying samples for the analysis were simple and easy to perform batch operations, also showed good efficiency with lower relative standard deviation. The limits of detection of the four organotins were 0.28-0.59 μg/L, and the limits of quantification of the four organotins were 0.93-1.8 μg/L, respectively. The proposed method was successfully applied to the simultaneous analysis of the four organotins in edible vegetable oil. Some analytes were detected at the level of 2.5-28.8 μg/kg. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Haidong; Yang, Guangsheng; Zhou, Jinyu; Pei, Jiang; Zhang, Qiangfeng; Song, Xingfa; Sun, Zengxian
2016-08-01
In this study, a simple and sensitive ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for quantitation of droxidopa in human plasma for the first time. A simple plasma protein precipitation method using methanol containing 3% formic acid was selected, and the separation was achieved by an Acquity UPLC™ BEH Amide column (2.1mm×50mm, 1.7μm) with a gradient elution using acetonitrile, ammonium formate buffer and formic acid as mobile phase. The detection of droxidopa and benserazide (internal standard, IS) was performed using positive-ion electrospray tandem mass spectrometry via multiple reaction monitoring (MRM). The precursor-to-product ion transitions m/z 214.2→m/z 152.0 for droxidopa, and m/z 258.1→m/z 139.1 for IS were used for quantification. A lower limit of quantification of 5.00ng/mL was achieved and the linear curve range was 5.00-4000ng/mL using a weighted (1/x(2)) linear regression model. Intra-assay and inter-assay precision was less than 10.2%, and the accuracy ranged from 0.1% to 2.1%. Stability, recovery and matrix effects were within the acceptance criteria recommended by the regulatory bioanalytical guidelines. The method was successfully applied to a pharmacokinetic study of droxidopa in healthy Chinese volunteers. Copyright © 2016. Published by Elsevier B.V.
Yuan, Yin; Zhou, Xuan; Li, Jian; Ye, Suofu; Ji, Xiwei; Li, Liang; Zhou, Tianyan; Lu, Wei
2015-04-01
In the current study, a simple, sensitive and rapid analytical method for the determination of dexamethasone was developed and applied to a pharmacokinetic study in nude mice. Using testosterone as an internal standard, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach after one-step precipitation with acetonitrile was validated and used to determine the concentrations of dexamethasone in nude mice plasma. The method utilized a simple isocratic reverse phase separation over a Dionex C18 column with a mobile phase composed of acetonitrile-water (40:60, v/v). The analyte was detected by a triple quadrupole tandem mass spectrometer via electrospray and multiple reaction monitoring was employed to select both dexamethasone at m/z 393.0/147.1 and testosterone at m/z 289.5/97.3 in the positive ion mode. The calibration curves were linear (r >0.99) ranging from 2.5 to 500 ng/mL with a lower limit of quantitation of 2.5 ng/mL. The relative standard deviation ranged from 1.69 to 9.22% while the relative error ranged from -1.92 to -8.46%. This method was successfully applied to a preclinical pharmacokinetic study of dexamethasone and its pharmacokinetics was characterized by a two-compartment model with first-order absorption in female nude mice. Copyright © 2014 John Wiley & Sons, Ltd.
Poly(ethylene oxide) functionalization
Pratt, Russell Clayton
2014-04-08
A simple procedure is provided by which the hydroxyl termini of poly(ethylene oxide) can be appended with functional groups to a useful extent by reaction and precipitation. The polymer is dissolved in warmed toluene, treated with an excess of organic base and somewhat less of an excess of a reactive acylating reagent, reacted for several hours, then precipitated in isopropanol so that the product can be isolated as a solid, and salt byproducts are washed away. This procedure enables functionalization of the polymer while not requiring laborious purification steps such as solvent-solvent extraction or dialysis to remove undesirable side products.
NASA Astrophysics Data System (ADS)
Theiss, Frederick L.; Ayoko, Godwin A.; Frost, Ray L.
2016-10-01
Co-precipitation is a common method for the preparation of layered double hydroxides (LDHs) and related materials. This review article is aimed at providing newcomers to the field with some examples of the types of co-precipitation reactions that have been reported previously and to briefly investigate some of the properties of the products of these reactions. Due to the sheer volume of literature on the subject, the authors have had to limit this article to the synthesis of Mg/Al, Zn/Al and Ca/Al LDHs by co-precipitation and directly related methods. LDHs have been synthesised from various reagents including metal salts, oxides and hydroxides. Co-precipitation is also useful for the direct synthesis of LDHs with a wide range of interlayer anions and various bases have been successfully employed to prepare LDHs. Examples of other synthesis techniques including the urea method, hydrothermal synthesis and various mechanochemical methods that are undoubtedly related to co-precipitation have also been included in this review. The effect of post synthesis hydrothermal has also been summarised.
Mohammadpour, Amir Hooshang; Ramezani, Mohammad; Tavakoli Anaraki, Nasim; Malaekeh-Nikouei, Bizhan; Amel Farzad, Sara; Hosseinzadeh, Hossein
2013-01-01
The present study reports the development and validation of a sensitive and rapid extraction method beside high performance liquid chromatographic method for the determination of crocetin in human serum. The HPLC method was carried out by using a C18 reversed-phase column and a mobile phase composed of methanol/water/acetic acid (85:14.5:0.5 v/v/v) at the flow rate of 0.8 ml/min. The UV detector was set at 423 nm and 13-cis retinoic acid was used as the internal standard. Serum samples were pretreated with solid-phase extraction using Bond Elut C18 (200mg) cartridges or with direct precipitation using acetonitrile. The calibration curves were linear over the range of 0.05-1.25 µg/ml for direct precipitation method and 0.5-5 µg/ml for solid-phase extraction. The mean recoveries of crocetin over a concentration range of 0.05-5 µg/ml serum for direct precipitation method and 0.5-5 µg/ml for solid-phase extraction were above 70 % and 60 %, respectively. The intraday coefficients of variation were 0.37- 2.6% for direct precipitation method and 0.64 - 5.43% for solid-phase extraction. The inter day coefficients of variation were 1.69 - 6.03% for direct precipitation method and 5.13-12.74% for solid-phase extraction, respectively. The lower limit of quantification for crocetin was 0.05 µg/ml for direct precipitation method and 0.5 µg/ml for solid-phase extraction. The validated direct precipitation method for HPLC satisfied all of the criteria that were necessary for a bioanalytical method and could reliably quantitate crocetin in human serum for future clinical pharmacokinetic study.
NASA Astrophysics Data System (ADS)
Rendel, Pedro M.; Gavrieli, Ittai; Wolff-Boenisch, Domenik; Ganor, Jiwchar
2018-03-01
The main obstacle in the formulation of a quantitative rate-model for mineral precipitation is the absence of a rigorous method for coupling nucleation and growth processes. In order to link both processes, we conducted a series of batch experiments in which gypsum nucleation was followed by crystal growth. Experiments were carried out using various stirring methods in several batch vessels made of different materials. In the experiments, the initial degree of supersaturation of the solution with respect to gypsum (Ωgyp) was set between 1.58 and 1.82. Under these conditions, heterogeneous nucleation is the dominant nucleation mode. Based on changes in SO42- concentration with time, the induction time of gypsum nucleation and the following rate of crystal growth were calculated for each experiment. The induction time (6-104 h) was found to be a function of the vessel material, while the rates of crystal growth, which varied over three orders of magnitude, were strongly affected by the stirring speed and its mode (i.e. rocking, shaking, magnetic stirrer, and magnetic impeller). The SO42- concentration data were then used to formulate a forward model that couples the simple rate laws for nucleation and crystal growth of gypsum into a single kinetic model. Accordingly, the obtained rate law is based on classical nucleation theory and heterogeneous crystal growth.
Analysis of O-Glycopeptides by Acetone Enrichment and Capillary Electrophoresis-Mass Spectrometry.
Mancera-Arteu, Montserrat; Giménez, Estela; Benavente, Fernando; Barbosa, José; Sanz-Nebot, Victòria
2017-11-03
Acetone precipitation was evaluated as a rapid, simple, low-cost, and efficient method for the selective purification of O-glycopeptides from enzymatic digests of glycoproteins. Ovalbumin (OVA), human and bovine α 1 -acid glycoprotein (hAGP and bAGP), human apolipoprotein C-III (APO-C3), and recombinant human erythropoietin (rhEPO) were used to obtain enzymatic digests with a broad and varied set of peptides, N-glycopeptides, and O-glycopeptides. After digestion and before capillary electrophoresis mass spectrometry (CE-MS) analysis, the amount of ice-cold acetone added to the digests was optimized to maximize recoveries of O-glycopeptides. Furthermore, the different behavior of peptides, N- and O-glycopeptides was explained by studying with multivariate data analysis methods the influence of several physicochemical parameters and properties related to their composition and structure. Principal component analysis (PCA) and, afterward, partial least-squares discriminant analysis (PLS-DA) were used to identify the most significant variables and their importance to differentiate between peptides, N-glycopeptides and O-glycopeptides, or within these classes. This information was useful to understand precipitation of these compounds after addition of acetone and for the selection of the optimal conditions for purification of specific O-glycopeptide biomarkers. Special attention was paid to O 126 -glycopeptide glycoforms of rhEPO because of their applicability in biopharmaceutical quality control and doping analysis.
Arroyo, Fátima; Font, Oriol; Fernández-Pereira, Constantino; Querol, Xavier; Juan, Roberto; Ruiz, Carmen; Coca, Pilar
2009-08-15
In this study the purity of the germanium end-products obtained by two different precipitation methods carried out on germanium-bearing solutions was evaluated as a last step of a hydrometallurgy process for the recovery of this valuable element from the Puertollano Integrated Gasification Combined Cycle (IGCC) fly ash. Since H(2)S is produced as a by-product in the gas cleaning system of the Puertollano IGCC plant, precipitation of germanium as GeS(2) was tested by sulfiding the Ge-bearing solutions. The technological and hazardous issues that surround H(2)S handling conducted to investigate a novel precipitation procedure: precipitation as an organic complex by adding 1,2-dihydroxy benzene pyrocatechol (CAT) and cetyltrimethylammonium bromide (CTAB) to the Ge-bearing solutions. Relatively high purity Ge end-products (90 and 93% hexagonal-GeO(2) purity, respectively) were obtained by precipitating Ge from enriched solutions, as GeS(2) sulfiding the solutions with H(2)S, or as organic complex with CAT/CTAB mixtures and subsequent roasting of the precipitates. Both methods showed high efficiency (>99%) to precipitate selectively Ge using a single precipitation stage from germanium-bearing solutions.
Micro to Nanoscale Engineering of Surface Precipitates Using Reconfigurable Contact Lines.
Kabi, Prasenjit; Chaudhuri, Swetaprovo; Basu, Saptarshi
2018-02-06
Nanoscale engineering has traditionally adopted the chemical route of synthesis or optochemical techniques such as lithography requiring large process times, expensive equipment, and an inert environment. Directed self-assembly using evaporation of nanocolloidal droplet can be a potential low-cost alternative across various industries ranging from semiconductors to biomedical systems. It is relatively simple to scale and reorient the evaporation-driven internal flow field in an evaporating droplet which can direct dispersed matter into functional agglomerates. The resulting functional precipitates not only exhibit macroscopically discernible changes but also nanoscopic variations in the particulate assembly. Thus, the evaporating droplet forms an autonomous system for nanoscale engineering without the need for external resources. In this article, an indigenous technique of interfacial re-engineering, which is both simple and inexpensive to implement, is developed. Such re-engineering widens the horizon for surface patterning previously limited by the fixed nature of the droplet interface. It involves handprinting hydrophobic lines on a hydrophilic substrate to form a confinement of any selected geometry using a simple document stamp. Droplets cast into such confinements get modulated into a variety of shapes. The droplet shapes control the contact line behavior, evaporation dynamics, and complex internal flow pattern. By exploiting the dynamic interplay among these variables, we could control the deposit's macro- as well as nanoscale assembly not possible with simple circular droplets. We provide a detailed mechanism of the coupling at various length scales enabling a predictive capability in custom engineering, particularly useful in nanoscale applications such as photonic crystals.
Hydrophobic duck feathers and their simulation on textile substrates for water repellent treatment.
Liu, Yuyang; Chen, Xianqiong; Xin, J H
2008-12-01
Inspired by the non-wetting phenomena of duck feathers, the water repellent property of duck feathers was studied at the nanoscale. The microstructures of the duck feather were investigated by a scanning electron microscope (SEM) imaging method through a step-by-step magnifying procedure. The SEM results show that duck feathers have a multi-scale structure and that this multi-scale structure as well as the preening oil are responsible for their super hydrophobic behavior. The microstructures of the duck feather were simulated on textile substrates using the biopolymer chitosan as building blocks through a novel surface solution precipitation (SSP) method, and then the textile substrates were further modified with a silicone compound to achieve low surface energy. The resultant textiles exhibit super water repellent properties, thus providing a simple bionic way to create super hydrophobic surfaces on soft substrates using flexible material as building blocks.
Low-temperature direct synthesis of mesoporous vanadium nitrides for electrochemical capacitors
NASA Astrophysics Data System (ADS)
Lee, Hae-Min; Jeong, Gyoung Hwa; Kim, Sang-Wook; Kim, Chang-Koo
2017-04-01
Mesoporous vanadium nitrides are directly synthesized by a one-step chemical precipitation method at a low temperature (70 °C). Structural and morphological analyses reveal that vanadium nitride consist of long and slender nanowhiskers, and mesopores with diameters of 2-5 nm. Compositional analysis confirms the presence of vanadium in the VN structure, along with oxidized vanadium. The cyclic voltammetry and charge-discharge tests indicate that the obtained material stores charges via a combination of electric double-layer capacitance and pseudocapacitance mechanisms. The vanadium nitride electrode exhibits a specific capacitance of 598 F/g at a current density of 4 A/g. After 5000 charge-discharge cycles, the electrode has an equivalent series resistance of 1.42 Ω and retains 83% of its initial specific capacitance. This direct low-temperature synthesis of mesoporous vanadium nitrides is a simple and promising method to achieve high specific capacitance and low equivalent series resistance for electrochemical capacitor applications.
Tannic acid assisted synthesis of flake-like hydroxyapatite nanostructures at room temperature
NASA Astrophysics Data System (ADS)
Vázquez, Maricela Santana; Estevez, O.; Ascencio-Aguirre, F.; Mendoza-Cruz, R.; Bazán-Díaz, L.; Zorrila, C.; Herrera-Becerra, R.
2016-09-01
A simple and non-expensive procedure was performed to synthesize hydroxyapatite (HAp) flake-like nanostructures, by using a co-precipitation method with tannic acid as stabilizing agent at room temperature and freeze drying. Samples were synthesized with two different salts, Ca(NO3)2 and CaCl2. X-ray diffraction analysis, Raman spectroscopy, scanning and transmission electron microscopy characterizations reveal Ca10(PO4)6(OH)2 HAp particles with hexagonal structure and P63/m space group in both cases. In addition, the particle size was smaller than 20 nm. The advantage of this method over the works reported to date lies in the ease for obtaining HAp particles with a single morphology (flakes), in high yield. This opens the possibility of expanding the view to the designing of new composite materials based on the HAp synthesized at room temperature.
MnFe2O4: Synthesis, morphology and electrochemical properties
NASA Astrophysics Data System (ADS)
Kulkarni, Shrikant; Thombare, Balu; Patil, Shankar
2017-05-01
MnFe2O4 has been synthesized by simple ammonia assisted co-precipitation method to obtain nanocrystalline powder. X-ray diffraction studies confirmed its crystallinity and phase purity. The MnFe2O4 calcined at 1000°C for 4 h has spinel crystal structure with Fd3m space group and lattice constant 8.511 Å. The electrode was prepared by dip coating method on stainless steel substrate and fired at 600°C for 2 h. Random shape grains of 0.2 to 1.5 micron with pores of 1-2 micron dimensions were observed in SEM images. The electrochemical studies of MnFe2O4 were carried out with 1 mole Na2SO4 electrolyte. The MnFe2O4 electrode shows highest specific capacitance of 27.53 F.g-1 and interfacial capacitance of 0.83 F.cm-2.
Liu, Shiming; Chen, Kaoshan; Schliemann, Willibald; Strack, Dieter
2005-01-01
A simple method involving polyamide column chromatography in combination with HPLC-PAD and HPLC-ESI/MS for isolating and identifying two kinds of lignans, arctiin and arctigenin, in the leaves of burdock (Arctium lappa L.) has been established. After extraction of burdock leaves with 80% methanol, the aqueous phase of crude extracts was partitioned between water and chloroform and the aqueous phase was fractionated on a polyamide glass column. The fraction, eluting with 100% methanol, was concentrated and gave a white precipitate at 4 degrees C from which two main compounds were purified by semi-preparative HPLC. In comparison with the UV and ESI-MS spectra and the HPLC retention time of authentic standards, the compounds were determined to be arctiin and arctigenin. The extraction/separation technique was validated using an internal standard method.
Statistical simulation of ensembles of precipitation fields for data assimilation applications
NASA Astrophysics Data System (ADS)
Haese, Barbara; Hörning, Sebastian; Chwala, Christian; Bárdossy, András; Schalge, Bernd; Kunstmann, Harald
2017-04-01
The simulation of the hydrological cycle by models is an indispensable tool for a variety of environmental challenges such as climate prediction, water resources management, or flood forecasting. One of the crucial variables within the hydrological system, and accordingly one of the main drivers for terrestrial hydrological processes, is precipitation. A correct reproduction of the spatio-temporal distribution of precipitation is crucial for the quality and performance of hydrological applications. In our approach we stochastically generate precipitation fields conditioned on various precipitation observations. Rain gauges provide high-quality information for a specific measurement point, but their spatial representativeness is often rare. Microwave links, e. g. from commercial cellular operators, on the other hand can be used to estimate line integrals of near-surface rainfall information. They provide a very dense observational system compared to rain gauges. A further prevalent source of precipitation information are weather radars, which provide rainfall pattern informations. In our approach we derive precipitation fields, which are conditioned on combinations of these different observation types. As method to generate precipitation fields we use the random mixing method. Following this method a precipitation field is received as a linear combination of unconditional spatial random fields, where the spatial dependence structure is described by copulas. The weights of the linear combination are chosen in the way that the observations and the spatial structure of precipitation are reproduced. One main advantage of the random mixing method is the opportunity to consider linear and non-linear constraints. For a demonstration of the method we use virtual observations generated from a virtual reality of the Neckar catchment. These virtual observations mimic advantages and disadvantages of real observations. This virtual data set allows us to evaluate simulated precipitation fields in a very detailed manner as well as to quantify uncertainties which are conveyed by measurement inaccuracies. In a further step we use real observations as a basis for the generation of precipitation fields. The resulting ensembles of precipitation fields are used for example for data assimilation applications or as input data for hydrological models.
Etherson, Kelly; Halbert, Gavin; Elliott, Moira
2016-09-01
The aim of this study was to determine the influence of non-ionisable excipients hydroxypropyl-β-cyclodextrin (HPβCD) and poloxamers 407 and 188 on the supersaturation and precipitation kinetics of ibuprofen, gliclazide, propranolol and atenolol induced through solution pH shifts using the CheqSol method. The drug's kinetic and intrinsic aqueous solubilities were measured in the presence of increasing excipient concentrations using the CheqSol method. Experimental data rate of change of pH with time was also examined to determine excipient-induced parachute effects and influence on precipitation rates. The measured kinetic and intrinsic solubilities provide a determination of the influence of each excipient on supersaturation index, and the area under the CheqSol curve can measure the parachute capability of excipients. The excipients influence on precipitation kinetics can be measured with novel parameters; for example, the precipitation pH or percentage ionised drug at the precipitation point, which provide further information on the excipient-induced changes in precipitation performance. This method can therefore be employed to measure the influence of non-ionisable excipients on the kinetic solubility behaviour of supersaturated solutions of ionisable drugs and to provide data, which discriminates between excipient systems during precipitation. © 2016 Royal Pharmaceutical Society.
Liu, Yu; Xi, Du-Gang; Li, Zhao-Liang; Ji, Wei
2015-01-01
The prediction of the short-term quantitative precipitation nowcasting (QPN) from consecutive gestational satellite images has important implications for hydro-meteorological modeling and forecasting. However, the systematic analysis of the predictability of QPN is limited. The objective of this study is to evaluate effects of the forecasting model, precipitation character, and satellite resolution on the predictability of QPN using images of a Chinese geostationary meteorological satellite Fengyun-2F (FY-2F) which covered all intensive observation since its launch despite of only a total of approximately 10 days. In the first step, three methods were compared to evaluate the performance of the QPN methods: a pixel-based QPN using the maximum correlation method (PMC); the Horn-Schunck optical-flow scheme (PHS); and the Pyramid Lucas-Kanade Optical Flow method (PPLK), which is newly proposed here. Subsequently, the effect of the precipitation systems was indicated by 2338 imageries of 8 precipitation periods. Then, the resolution dependence was demonstrated by analyzing the QPN with six spatial resolutions (0.1atial, 0.3a, 0.4atial rand 0.6). The results show that the PPLK improves the predictability of QPN with better performance than the other comparison methods. The predictability of the QPN is significantly determined by the precipitation system, and a coarse spatial resolution of the satellite reduces the predictability of QPN.
Liu, Yu; Xi, Du-Gang; Li, Zhao-Liang; Ji, Wei
2015-01-01
The prediction of the short-term quantitative precipitation nowcasting (QPN) from consecutive gestational satellite images has important implications for hydro-meteorological modeling and forecasting. However, the systematic analysis of the predictability of QPN is limited. The objective of this study is to evaluate effects of the forecasting model, precipitation character, and satellite resolution on the predictability of QPN usingimages of a Chinese geostationary meteorological satellite Fengyun-2F (FY-2F) which covered all intensive observation since its launch despite of only a total of approximately 10 days. In the first step, three methods were compared to evaluate the performance of the QPN methods: a pixel-based QPN using the maximum correlation method (PMC); the Horn-Schunck optical-flow scheme (PHS); and the Pyramid Lucas-Kanade Optical Flow method (PPLK), which is newly proposed here. Subsequently, the effect of the precipitation systems was indicated by 2338 imageries of 8 precipitation periods. Then, the resolution dependence was demonstrated by analyzing the QPN with six spatial resolutions (0.1atial, 0.3a, 0.4atial rand 0.6). The results show that the PPLK improves the predictability of QPN with better performance than the other comparison methods. The predictability of the QPN is significantly determined by the precipitation system, and a coarse spatial resolution of the satellite reduces the predictability of QPN. PMID:26447470
Immobilization of heavy metals in electroplating sludge by biochar and iron sulfide.
Lyu, Honghong; Gong, Yanyan; Tang, Jingcshun; Huang, Yao; Wang, Qilin
2016-07-01
Electroplating sludge (ES) containing large quantities of heavy metals is regarded as a hazardous waste in China. This paper introduced a simple method of treating ES using environmentally friendly fixatives biochar (BC) and iron sulfide (FeS), respectively. After 3 days of treatment with FeS at a FeS-to-ES mass ratio of 1:5, the toxicity characteristic leaching procedure (TCLP)-based leachability of total Cr (TCr), Cu(II), Ni(II), Pb(II), and Zn(II) was decreased by 59.6, 100, 63.8, 73.5, and 90.5 %, respectively. After 5 days of treatment with BC at a BC-to-ES mass ratio of 1:2, the TCLP-based leachability was declined by 35.1, 30.6, 22.3, 23.1, and 22.4 %, respectively. Pseudo first-order kinetic model adequately simulated the sorption kinetic data. Structure and morphology analysis showed that adsorption, electrostatic attraction, surface complexation, and chemical precipitation were dominant mechanisms for heavy metals immobilization by BC, and that chemical precipitation (formation of metal sulfide and hydroxide precipitates), iron exchange (formation of CuFeS2), and surface complexation were mainly responsible for heavy metals removal by FeS. Economic costs of BC and FeS were 500 and 768 CNY/t, lower than that of Na2S (940 CNY/t). The results suggest that BC and FeS are effective, economic, and environmentally friendly fixatives for immobilization of heavy metals in ES before landfill disposal.
NASA Astrophysics Data System (ADS)
Xu, Yanjie; Wang, Lincai; Cao, Peiqi; Cai, Chuanlin; Fu, Yanbao; Ma, Xiaohua
2016-02-01
A simple co-precipitation method utilizing SDS (sodium dodecyl sulfate) as template and ammonia as precipitant is successfully employed to synthesize nickel cobalt oxide/graphene oxide (NiCo2O4/GO) composite. The as-prepared composite (NCG-10) exhibits a high capacitance of 1211.25 F g-1, 687 F g-1 at the current density of 1 A g-1, 10 A g-1 and good cycling ability which renders NCG-10 as promising electrode material for supercapacitors. An asymmetric supercapacitor (ASC) (full button cell) has been constructed with NCG-10 as positive electrode and lab-made reduced graphene oxide (rGO) as negative electrode. The fabricated NCG-10//rGO with an extended stable operational voltage of 1.6 V can deliver a high specific capacitance of 144.45 F g-1 at a current density of 1 A g-1. The as-prepared NCG-10//rGO demonstrates remarkable energy density (51.36 W h kg-1 at 1 A g-1), high power density (50 kW kg-1 at 20 A g-1). The retention of capacitance is 88.6% at the current density of 8 A g-1 after 2000 cycles. The enhanced capacitive performance can be attributed to the improved specific surface area and 3D open area of NCG-10 generated by the pores and channels with the substantial function of SDS.
A novel strategy for phosphopeptide enrichment using lanthanide phosphate co-precipitation.
Mirza, Munazza Raza; Rainer, Matthias; Güzel, Yüksel; Choudhary, Iqbal M; Bonn, Günther K
2012-08-01
Reversible phosphorylation of proteins is a common theme in the regulation of important cellular functions such as growth, metabolism, and differentiation. The comprehensive understanding of biological processes requires the characterization of protein phosphorylation at the molecular level. Although, the number of cellular phosphoproteins is relatively high, the phosphorylated residues themselves are generally of low abundance due to the sub-stoichiometric nature. However, low abundance of phosphopeptides and low degree of phosphorylation typically necessitates isolation and concentration of phosphopeptides prior to mass spectrometric analysis. In this study, we used trivalent lanthanide ions (LaCl(3), CeCl(3), EuCl(3), TbCl(3), HoCl(3), ErCl(3), and TmCl(3)) for phosphopeptide enrichment and cleaning-up. Due to their low solubility product, lanthanide ions form stable complexes with the phosphate groups of phosphopeptides and precipitate out of solution. In a further step, non-phosphorylated compounds can easily be removed by simple centrifugation and washing before mass spectrometric analysis using Matrix-assisted laser desorption/ionisation-time of flight. The precipitation method was applied for the isolation of phosphopeptides from standard proteins such as ovalbumin, α-casein, and β-casein. High enrichment of phosphopeptides could also be achieved for real samples such as fresh milk and egg white. The technology presented here represents an excellent and highly selective tool for phosphopeptide recovery; it is easily applicable and shows several advantages as compared with standard approaches such as TiO(2) or IMAC.
Wang, Jing; Dai, Xiao-jian; Zhang, Yi-fan; Zhong, Da-fang; Wu, Yu-lin; Chen, Xiao-yan
2015-10-01
A simple and rapid method was developed based on high performance liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) to determine sivelestat and its metabolite XW-IMP-A in human plasma. After a simple protein precipitation, the samples and internal standards were analyzed on a C18 column by a gradient elution program. The mobile phase consisted of 30% acetonitrile in methanol and 5 mmol · L(-1) ammonium acetate at a flow rate of 0.7 mL · min(-1). The mass spectrometric data was collected in multiple reaction monitoring mode (MRM) in the negative electrospray ionization. The standard curves were linear in the range of 10.0-15,000 ng · mL(-1) for sivelestat, and 2.50-1000 ng · mL(-1) for XW-IMP-A. The low limits of quantitation were identified at 10.0 and 2.50 ng · mL for sivelestat and XW-IMP-A, respectively. The intra- and inter-day precision were within 11.3% and 13.1% for sivelestat and XW-IMP-A, and accuracy was 0.3% and 0.6% for sivelestat and XW-IMP-A, within the acceptable limits across all concentrations. The method was successfully validated in the pharmacokinetic study of sivelestat in healthy Chinese volunteers.
Mu, Bin; Tang, Jie; Zhang, Long; Wang, Aiqin
2017-07-13
Using graphene as adsorbent for removal of pollutants from polluted water is commonly recognized to be costly because the graphene is usually produced by a very complex process. Herein, a simple and eco-friendly method was employed to fabricate efficient superparamagnetic graphene/polyaniline/Fe 3 O 4 nanocomposites for removal of dyes. The exfoliation of graphite as nanosheets and the functionalization of nanosheets with polyaniline and Fe 3 O 4 nanoparticles were simultaneously achieved via a one-pot reaction process combining the intercalation polymerization of aniline and the co-precipitation of the residual Fe 3+ and the generated Fe 2+ . The obtained graphene/polyaniline/Fe 3 O 4 nanocomposites exhibited excellent adsorption performance for Congo red, even in the presence of Brilliant green. The adsorption kinetics and adsorption isotherms were well fitted with pseudo second-order kinetic model and Langmuir isotherm model, respectively. In a word, this method is simple and industrially feasible, which provides a new approach to fabricate highly efficient graphene-based adsorbents on large scale for removal of dyes. In addition, it also can be used to exfoliate other two-dimensional materials, such as boron nitride, carbon nitride and MoS 2 for a range of possible applications.
Ohgami, Masahiro; Homma, Masato; Suzuki, Yoshiharu; Naito, Kanako; Yamada, Motoko; Mitsuhashi, Shoichi; Fujisawa, Fumie; Kojima, Hiroshi; Kaburagi, Takayuki; Uchiumi, Keiko; Yamada, Yutaka; Bando, Hiroko; Hara, Hisato; Takei, Keiji
2016-12-01
Lapatinib and erlotinib are used for cancer treatment, showing large interindividual variability. Therapeutic drug monitoring may be useful for assessing the clinical outcomes and adverse events. A simple high-performance liquid chromatography UV method was developed for the determination of lapatinib and erlotinib in human plasma. An aliquot of plasma sample spiked with internal standard was treated with acetonitrile to precipitate the proteins. Lapatinib and erlotinib were separated on an octadecylsilyl silica gel column using a mobile phase consisting of acetonitrile, methanol, water, and trifluoroacetic acid (26:26:48:0.1) pumped at a flow rate of 1.0 mL/min. The detection wavelength was set at 316 nm. The calibration curves for lapatinib and erlotinib were linear (r = 0.9999) in the range of 0.125-8.00 mcg/mL. The extraction recoveries for both lapatinib and erlotinib at the plasma concentration of 0.125-8.00 mcg/mL were higher than 89.9% with coefficients of variation less than 3.5%. The coefficients of variation for intraday and interday assays of lapatinib and erlotinib were less than 5.1% and 6.1%, respectively. The present method can be used for blood concentration monitoring for lapatinib or erlotinib in exactly the same conditions.
Bhatti, M M; Hanson, G D; Schultz, L
1998-03-01
The Bioanalytical Chemistry Department at the Madison facility of Covance Laboratories, has developed and validated a simple and sensitive method for the simultaneous determination of phenytoin (PHT), carbamazepine (CBZ) and 10,11-carbamazepine epoxide (CBZ-E) in human plasma by high-performance liquid chromatography with 10,11 dihydrocarbamazepine as the internal standard. Acetonitrile was added to plasma samples containing PHT, CBZ and CBZ-E to precipitate the plasma proteins. After centrifugation, the acetonitrile supernatant was transferred to a clean tube and evaporated under N2. The dried sample extract was reconstituted in 0.4 ml of mobile phase and injected for analysis by high-performance liquid chromatography. Separation was achieved on a Spherisorb ODS2 analytical column with a mobile phase of 18:18:70 acetonitrile:methanol:potassium phosphate buffer. Detection was at 210 nm using an ultraviolet detector. The mean retention times of CBZ-E, PHT and CBZ were 5.8, 9.9 and 11.8 min, respectively. Peak height ratios were fit to a least squares linear regression algorithm with a 1/(concentration)2 weighting. The method produces acceptable linearity, precision and accuracy to a minimum concentration of 0.050 micrograms ml-1 in human plasma. It is also simple and convenient, with no observable matrix interferences.
Satellite precipitation estimation over the Tibetan Plateau
NASA Astrophysics Data System (ADS)
Porcu, F.; Gjoka, U.
2012-04-01
Precipitation characteristics over the Tibetan Plateau are very little known, given the scarcity of reliable and widely distributed ground observation, thus the satellite approach is a valuable choice for large scale precipitation analysis and hydrological cycle studies. However,the satellite perspective undergoes various shortcomings at the different wavelengths used in atmospheric remote sensing. In the microwave spectrum often the high soil emissivity masks or hides the atmospheric signal upwelling from light-moderate precipitation layers, while low and relatively thin precipitating clouds are not well detected in the visible-infrared, because of their low contrast with cold and bright (if snow covered) background. In this work an IR-based, statistical rainfall estimation technique is trained and applied over the Tibetan Plateau hydrological basin to retrive precipitation intensity at different spatial and temporal scales. The technique is based on a simple artificial neural network scheme trained with two supervised training sets assembled for monsoon season and for the rest of the year. For the monsoon season (estimated from June to September), the ground radar precipitation data for few case studies are used to build the training set: four days in summer 2009 are considered. For the rest of the year, CloudSat-CPR derived snowfall rate has been used as reference precipitation data, following the Kulie and Bennartz (2009) algorithm. METEOSAT-7 infrared channels radiance (at 6.7 and 11 micometers) and derived local variability features (such as local standard deviation and local average) are used as input and the actual rainrate is obtained as output for each satellite slot, every 30 minutes on the satellite grid. The satellite rainrate maps for three years (2008-2010) are computed and compared with available global precipitation products (such as C-MORPH and TMPA products) and with other techniques applied to the Plateau area: similarities and differences are discussed. Relevant characteristics of precipitation fields are derived and analyzed, such as diurnal cycle, precipitation frequency, maximum rainrate distribution and dry areas detection. Interannual variability of precipitation pattern and intensity is also discussed.
Li, Yin; Liao, Ming; He, Xiao; Zhou, Yi; Luo, Rong; Li, Hongtao; Wang, Yun; He, Min
2012-11-01
To compare the effects of acetonitrile precipitation, ethanol precipitation and multiple affinity chromatography column Human 14 removal to eliminate high-abundance proteins in human serum. Elimination of serum high-abundance proteins performed with acetonitrile precipitation, ethanol precipitation and multiple affinity chromatography column Human 14 removal. Bis-Tris Mini Gels electrophoresis and two-dimensional gel electrophoresis to detect the effect. Grey value analysis from 1-DE figure showed that after serum processed by acetonitrile method, multiple affinity chromatography column Human 14 removal method and ethanol method, the grey value of albumin changed into 157.2, 40.8 and 8.2 respectively from the original value of 19. 2-DE analysis results indicated that using multiple affinity chromatography column Human 14 method, the protein points noticeable increased by 137 compared to the original serum. After processed by acetonitrile method and ethanol method, the protein point reduced, but the low abundance protein point emerged. The acetonitrile precipitation could eliminate the vast majority of high abundance proteins in serum and gain more proteins of low molecular weight, ethanol precipitation could eliminate part of high abundance proteins in serum, but low abundance proteins less harvested, and multiple affinity chromatography column Human 14 method could effectively removed the high abundance proteins, and keep a large number of low abundance proteins.
Lead detection in living plant tissue using a new histochemical method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glater, R.A.B.; Hernandez, L. Jr.
1972-06-01
A quick, simple method for identifying and distinguishing lead from other heavy metals in living plants has been developed using sodium rhodizonate (C/sub 6/O/sub 6/Na/sub 2/) which forms a scarlet precipitate with lead at approximately pH 2.8. Hand sections of plant tissues are treated with rhodizonate reagent, buffered, and examined microscopically. Very little time and/or effect is required for this method. Those cells and tissues contaminated with lead turn scarlet - color intensity being directly related to concentration. Lead may be detected in quite low concentrations and, most importantly, may be observed in situ; its entry and movement through themore » plant can thus be followed. In an area of moderate traffic of Downey, California (Southeast Los Angeles), lead was found abundantly on leaves as well as on and in roots of garden-grown lettuce; origin of this lead is presumed to be from car exhausts.« less
Synthesis of alumina ceramic encapsulation for self-healing materials on thermal barrier coating
NASA Astrophysics Data System (ADS)
Golim, O. P.; Prastomo, N.; Izzudin, H.; Hastuty, S.; Sundawa, R.; Sugiarti, E.; Thosin, K. A. Z.
2018-03-01
Durability of Thermal Barrier Coating or TBC can be optimized by inducing Self-Healing capabilities with intermetallic materials MoSi2. Nevertheless, high temperature operation causes the self-healing materials to become oxidized and lose its healing capabilities. Therefore, a method to introduce ceramic encapsulation for MoSi2 is needed to protect it from early oxidation. The encapsulation process is synthesized through a simple precipitation method with colloidal aluminum hydroxide as precursor and variations on calcination process. Semi-quantitative analysis on the synthesized sample is done by using X-ray diffraction (XRD) method. Meanwhile, qualitative analysis on the morphology of the encapsulation was carried out by using Scanning Electron Microscope (SEM) and Field Emission Scanning Electron Microscope (FESEM) equipped with dual Focus Ion Beam (FIB). The result of the experiment shows that calcination process significantly affects the final characteristic of encapsulation. The optimum encapsulation process was synthesized by colloidal aluminum hydroxide as a precursor, with a double step calcination process in low pressure until 900 °C.
Evaluation of the Plant-Craig stochastic convection scheme in an ensemble forecasting system
NASA Astrophysics Data System (ADS)
Keane, R. J.; Plant, R. S.; Tennant, W. J.
2015-12-01
The Plant-Craig stochastic convection parameterization (version 2.0) is implemented in the Met Office Regional Ensemble Prediction System (MOGREPS-R) and is assessed in comparison with the standard convection scheme with a simple stochastic element only, from random parameter variation. A set of 34 ensemble forecasts, each with 24 members, is considered, over the month of July 2009. Deterministic and probabilistic measures of the precipitation forecasts are assessed. The Plant-Craig parameterization is found to improve probabilistic forecast measures, particularly the results for lower precipitation thresholds. The impact on deterministic forecasts at the grid scale is neutral, although the Plant-Craig scheme does deliver improvements when forecasts are made over larger areas. The improvements found are greater in conditions of relatively weak synoptic forcing, for which convective precipitation is likely to be less predictable.
Durães, Nuno; Bobos, Iuliu; da Silva, Eduardo Ferreira
2017-02-01
Acid mine waters (AMW) collected during high- and low-flow water conditions from the Lousal, Aljustrel, and São Domingos mining areas (Iberian Pyrite Belt) were physicochemically analyzed. Speciation calculation using PHREEQC code confirms the predominance of Me n+ and Me-SO 4 species in AMW samples. Higher concentration of sulfate species (Me-SO 4 ) than free ion species (Me n+ , i.e., Al, Fe, and Pb) were found, whereas opposite behavior is verified for Mg, Cu, and Zn. A high mobility of Zn than Cu and Pb was identified. The sulfate species distribution shows that Fe 3+ -SO 4 2- , SO 4 2- , HSO 4 - , Al-SO 4 , MgSO 4 0 , and CaSO 4 0 are the dominant species, in agreement with the simple and mixed metal sulfates and oxy-hydroxysulphates precipitated from AMW. The saturation indices (SI) of melanterite and epsomite show a positive correlation with Cu and Zn concentrations in AMW, which are frequently retained in simple metal sulfates. Lead is well correlated with jarosite and alunite (at least in very acid conditions) than with simple metal sulfates. The Pb for K substitution in jarosite occurs as increasing Pb concentration in solution. Lead mobility is also controlled by anglesite precipitation (a fairly insoluble sulfate), where a positive correlation was ascertained when the SI approaches equilibrium. The zeta potential of AMW decreased as pH increased due to colloidal particles aggregation, where water species change from SO 4 2- to OH - species during acid to alkaline conditions, respectively. The AMW samples were supersaturated in schwertmannite and goethite, confirmed by the Me n+ -SO 4 , Me n+ -Fe-O-OH, or Me n+ -S-O-Fe-O complexes identified by attenuated total reflectance infrared spectroscopy (ATR-IR). The ATR-IR spectrum of an AMW sample with pH 3.5 (sample L1) shows well-defined vibration plans attributed to SO 4 tetrahedron bonded with Fe-(oxy)hydroxides and the Me n+ sorbed by either SO 4 or Fe-(oxy)hydroxides. For samples with lower pH values (pH ~ 2.5-samples SD1 and SD4), the vibration plans attributed to Me n+ sorption are not evidenced, indicating its release in solution. The sorption of heavy metals on the first precipitated simple metal sulfates was ascertained by scanning electron microscopy coupled with X-ray spectrometry (SEM-EDX), where X-ray maps of Cu and Zn confirm a distribution of both metals in the melanterite structure.
Probabilistic clustering of rainfall condition for landslide triggering
NASA Astrophysics Data System (ADS)
Rossi, Mauro; Luciani, Silvia; Cesare Mondini, Alessandro; Kirschbaum, Dalia; Valigi, Daniela; Guzzetti, Fausto
2013-04-01
Landslides are widespread natural and man made phenomena. They are triggered by earthquakes, rapid snow melting, human activities, but mostly by typhoons and intense or prolonged rainfall precipitations. In Italy mostly they are triggered by intense precipitation. The prediction of landslide triggered by rainfall precipitations over large areas is commonly based on the exploitation of empirical models. Empirical landslide rainfall thresholds are used to identify rainfall conditions for the possible landslide initiation. It's common practice to define rainfall thresholds by assuming a power law lower boundary in the rainfall intensity-duration or cumulative rainfall-duration space above which landslide can occur. The boundary is defined considering rainfall conditions associated to landslide phenomena using heuristic approaches, and doesn't consider rainfall events not causing landslides. Here we present a new fully automatic method to identify the probability of landslide occurrence associated to rainfall conditions characterized by measures of intensity or cumulative rainfall and rainfall duration. The method splits the rainfall events of the past in two groups: a group of events causing landslides and its complementary, then estimate their probabilistic distributions. Next, the probabilistic membership of the new event to one of the two clusters is estimated. The method doesn't assume a priori any threshold model, but simple exploits the real empirical distribution of rainfall events. The approach was applied in the Umbria region, Central Italy, where a catalogue of landslide timing, were obtained through the search of chronicles, blogs and other source of information in the period 2002-2012. The approach was tested using rain gauge measures and satellite rainfall estimates (NASA TRMM-v6), allowing in both cases the identification of the rainfall condition triggering landslides in the region. Compared to the other existing threshold definition methods, the prosed one (i) largely reduces the subjectivity in the choice of the threshold model and in how it is calculated, and (ii) it can be easier set-up in other study areas. The proposed approach can be conveniently integrated in existing early-warning system to improve the accuracy of the estimation of the real landslide occurrence probability associated to rainfall events and its uncertainty.
NASA Astrophysics Data System (ADS)
Yoshimura, K.; Oki, T.; Ohte, N.; Kanae, S.; Ichiyanagi, K.
2004-12-01
A simple water isotope circulation model on a global scale that includes a Rayleigh equation and the use of _grealistic_h external meteorological forcings estimates short-term variability of precipitation 18O. The results are validated by Global Network of Isotopes in Precipitation (GNIP) monthly observations and by daily observations at three sites in Thailand. This good agreement highlights the importance of large scale transport and mixing of vapor masses as a control factor for spatial and temporal variability of precipitation isotopes, rather than in-cloud micro processes. It also indicates the usefulness of the model and the isotopes observation databases for evaluation of two-dimensional atmospheric water circulation fields in forcing datasets. In this regard, two offline simulations for 1978-1993 with major reanalyses, i.e. NCEP and ERA15, were implemented, and the results show that, over Europe ERA15 better matched observations at both monthly and interannual time scales, mainly owing to better precipitation fields in ERA15, while in the tropics both produced similarly accurate isotopic fields. The isotope analyses diagnose accuracy of two-dimensional water circulation fields in datasets with a particular focus on precipitation processes.
NASA Technical Reports Server (NTRS)
Kubota, Takuji; Iguchi, Toshio; Kojima, Masahiro; Liao, Liang; Masaki, Takeshi; Hanado, Hiroshi; Meneghini, Robert; Oki, Riko
2016-01-01
A statistical method to reduce the sidelobe clutter of the Ku-band precipitation radar (KuPR) of the Dual-Frequency Precipitation Radar (DPR) on board the Global Precipitation Measurement (GPM) Core Observatory is described and evaluated using DPR observations. The KuPR sidelobe clutter was much more severe than that of the Precipitation Radar on board the Tropical Rainfall Measuring Mission (TRMM), and it has caused the misidentification of precipitation. The statistical method to reduce sidelobe clutter was constructed by subtracting the estimated sidelobe power, based upon a multiple regression model with explanatory variables of the normalized radar cross section (NRCS) of surface, from the received power of the echo. The saturation of the NRCS at near-nadir angles, resulting from strong surface scattering, was considered in the calculation of the regression coefficients.The method was implemented in the KuPR algorithm and applied to KuPR-observed data. It was found that the received power from sidelobe clutter over the ocean was largely reduced by using the developed method, although some of the received power from the sidelobe clutter still remained. From the statistical results of the evaluations, it was shown that the number of KuPR precipitation events in the clutter region, after the method was applied, was comparable to that in the clutter-free region. This confirms the reasonable performance of the method in removing sidelobe clutter. For further improving the effectiveness of the method, it is necessary to improve the consideration of the NRCS saturation, which will be explored in future work.
Global Precipitation Measurement: Methods, Datasets and Applications
NASA Technical Reports Server (NTRS)
Tapiador, Francisco; Turk, Francis J.; Petersen, Walt; Hou, Arthur Y.; Garcia-Ortega, Eduardo; Machado, Luiz, A. T.; Angelis, Carlos F.; Salio, Paola; Kidd, Chris; Huffman, George J.;
2011-01-01
This paper reviews the many aspects of precipitation measurement that are relevant to providing an accurate global assessment of this important environmental parameter. Methods discussed include ground data, satellite estimates and numerical models. First, the methods for measuring, estimating, and modeling precipitation are discussed. Then, the most relevant datasets gathering precipitation information from those three sources are presented. The third part of the paper illustrates a number of the many applications of those measurements and databases. The aim of the paper is to organize the many links and feedbacks between precipitation measurement, estimation and modeling, indicating the uncertainties and limitations of each technique in order to identify areas requiring further attention, and to show the limits within which datasets can be used.
NASA Astrophysics Data System (ADS)
DeAngelis, Anthony M.
Changes in the characteristics of daily precipitation in response to global warming may have serious impacts on human life and property. An analysis of precipitation in climate models is performed to evaluate how well the models simulate the present climate and how precipitation may change in the future. Models participating in phase 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5) have substantial biases in their simulation of heavy precipitation intensity over parts of North America during the 20th century. Despite these biases, the large-scale atmospheric circulation accompanying heavy precipitation is either simulated realistically or the strength of the circulation is overestimated. The biases are not related to the large-scale flow in a simple way, pointing toward the importance of other model deficiencies, such as coarse horizontal resolution and convective parameterizations, for the accurate simulation of intense precipitation. Although the models may not sufficiently simulate the intensity of precipitation, their realistic portrayal of the large-scale circulation suggests that projections of future precipitation may be reliable. In the CMIP5 ensemble, the distribution of daily precipitation is projected to undergo substantial changes in response to future atmospheric warming. The regional distribution of these changes was investigated, revealing that dry days and days with heavy-extreme precipitation are projected to increase at the expense of light-moderate precipitation over much of the middle and low latitudes. Such projections have serious implications for future impacts from flood and drought events. In other places, changes in the daily precipitation distribution are characterized by a shift toward either wetter or drier conditions in the future, with heavy-extreme precipitation projected to increase in all but the driest subtropical subsidence regions. Further analysis shows that increases in heavy precipitation in midlatitudes are largely explained by thermodynamics, including increases in atmospheric water vapor. However, in low latitudes and northern high latitudes, changes in vertical velocity accompanying heavy precipitation are also important. The strength of the large-scale atmospheric circulation is projected to change in accordance with vertical velocity in many places, though the circulation patterns, and therefore physical mechanisms that generate heavy precipitation, may remain the same.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Kai
Size, number density and volume fraction of nano-precipitates are important microstructural parameters controlling the strengthening of materials. In this work a widely accessible, convenient, moderately time efficient method with acceptable accuracy and precision has been provided for measurement of volume fraction of nano-precipitates in crystalline materials. The method is based on the traditional but highly accurate technique of measuring foil thickness via convergent beam electron diffraction. A new equation is proposed and verified with the aid of 3-dimensional atom probe (3DAP) analysis, to compensate for the additional error resulted from the hardly distinguishable contrast of too short incomplete precipitates cutmore » by the foil surface. The method can be performed on a regular foil specimen with a modern LaB{sub 6} or field-emission-gun transmission electron microscope. Precisions around ± 16% have been obtained for precipitate volume fractions of needle-like β″/C and Q precipitates in an aged Al-Mg-Si-Cu alloy. The measured number density is close to that directly obtained using 3DAP analysis by a misfit of 4.5%, and the estimated precision for number density measurement is about ± 11%. The limitations of the method are also discussed. - Highlights: •A facile method for measuring volume fraction of nano-precipitates based on CBED •An equation to compensate for small invisible precipitates, with 3DAP verification •Precisions around ± 16% for volume fraction and ± 11% for number density.« less
NASA Astrophysics Data System (ADS)
Mathias, Simon A.; Gluyas, Jon G.; GonzáLez MartíNez de Miguel, Gerardo J.; Hosseini, Seyyed A.
2011-12-01
This work extends an existing analytical solution for pressure buildup because of CO2 injection in brine aquifers by incorporating effects associated with partial miscibility. These include evaporation of water into the CO2 rich phase and dissolution of CO2 into brine and salt precipitation. The resulting equations are closed-form, including the locations of the associated leading and trailing shock fronts. Derivation of the analytical solution involves making a number of simplifying assumptions including: vertical pressure equilibrium, negligible capillary pressure, and constant fluid properties. The analytical solution is compared to results from TOUGH2 and found to accurately approximate the extent of the dry-out zone around the well, the resulting permeability enhancement due to residual brine evaporation, the volumetric saturation of precipitated salt, and the vertically averaged pressure distribution in both space and time for the four scenarios studied. While brine evaporation is found to have a considerable effect on pressure, the effect of CO2 dissolution is found to be small. The resulting equations remain simple to evaluate in spreadsheet software and represent a significant improvement on current methods for estimating pressure-limited CO2 storage capacity.
Mogi, Motoyoshi; Armbruster, Peter; Tuno, Nobuko; Campos, Raúl; Eritja, Roger
2015-07-01
Aedes albopictus (Skuse) has expanded its distribution worldwide during the past decades. Despite attempts to explain and predict its geographic occurrence, analyses of the distribution of Ae. albopictus in the context of broad climatic regions (biomes) has not been performed. We analyzed climate conditions at its distribution sites in the range before the worldwide invasions (from the easternmost Hawaii through westernmost Madagascar) by using thermal and aridity-humidity indices descriptive of major biomes. A significant advantage of this approach is that it uses simple indices clearly related to the population dynamics of Ae. albopictus. Although Ae. albopictus has been regarded as a forest species preferring humid climate, in areas with significant human habitation, the distribution sites extended from the perhumid, rain forest zone to the semiarid, steppe zone. This pattern was common from the tropics through the temperate zone. Across the distribution range, there was no seasonal discordance between temperature and precipitation; at sites where winter prevents Ae. albopictus reproduction (monthly means<10°C), precipitation was concentrated in warm months (>10°C) under the Asian summer monsoon. Absence of the species in northern and eastern coastal Australia and eastern coastal Africa was not attributable solely to climate conditions. However, Asia west of the summer monsoon range was climatically unsuitable because of low precipitation throughout the year or in warm months favorable to reproduction (concentration of precipitation in winter). We hypothesized that Ae. albopictus originated in continental Asia under the monsoon climate with distinct dry seasons and hot, wet summer, enabling rapid population growth. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
A precipitation regionalization and regime for Iran based on multivariate analysis
NASA Astrophysics Data System (ADS)
Raziei, Tayeb
2018-02-01
Monthly precipitation time series of 155 synoptic stations distributed over Iran, covering 1990-2014 time period, were used to identify areas with different precipitation time variability and regimes utilizing S-mode principal component analysis (PCA) and cluster analysis (CA) preceded by T-mode PCA, respectively. Taking into account the maximum loading values of the rotated components, the first approach revealed five sub-regions characterized by different precipitation time variability, while the second method delineated eight sub-regions featured with different precipitation regimes. The sub-regions identified by the two used methods, although partly overlapping, are different considering their areal extent and complement each other as they are useful for different purposes and applications. Northwestern Iran and the Caspian Sea area were found as the two most distinctive Iranian precipitation sub-regions considering both time variability and precipitation regime since they were well captured with relatively identical areas by the two used approaches. However, the areal extents of the other three sub-regions identified by the first approach were not coincident with the coverage of their counterpart sub-regions defined by the second approach. Results suggest that the precipitation sub-region identified by the two methods would not be necessarily the same, as the first method which accounts for the variance of the data grouped stations with similar temporal variability while the second one which considers a fixed climatology defined by the average over the period 1990-2014 clusters stations having a similar march of monthly precipitation.
Spaced-antenna wind estimation using an X-band active phased-array weather radar
NASA Astrophysics Data System (ADS)
Venkatesh, Vijay
Over the past few decades, several single radar methods have been developed to probe the kinematic structure of storms. All these methods trade angular-resolution to retrieve the wind-field. To date, the spaced-antenna method has been employed for profiling the ionosphere and the precipitation free lower atmosphere. This work focuses on applying the spaced-antenna method on an X-band active phased-array radar for high resolution horizontal wind-field retrieval from precipitation echoes. The ability to segment the array face into multiple displaced apertures allows for flexible spaced-antenna implementations. The methodology employed herein comprises of Monte-Carlo simulations to optimize the spaced-antenna system design and analysis of real data collected with the designed phased-array system. The contribution that underpins this dissertation is the demonstration of qualitative agreement between spaced-antenna and Doppler beam swinging retrievals based on real data. First, simulations of backscattered electric fields at the antenna array elements are validated using theoretical expressions. Based on the simulations, the degrees of freedom in the spaced-antenna system design are optimized for retrieval of mean baseline wind. We show that the designed X-band spaced-antenna system has lower retrieval uncertainty than the existing S-band spaced-antenna implementation on the NWRT. This is because of the flexibility to synthesize small overlapping apertures and the ability to obtain statistically independent samples at a faster rate at X-band. We then demonstrate a technique to make relative phase-center displacement measurements based on simulations and real data from the phased-array spaced-antenna system. This simple method uses statistics of precipitation echoes and apriori beamwidth measurements to make field repeatable phase-center displacement measurements. Finally, we test the hypothesis that wind-field curvature effects are common to both the spaced-antenna and Doppler beam swinging methods. Based on a close-range winter storm data set, we find that the spaced-antenna and fine-resolution Doppler beam swinging retrievals are in qualitative agreement. The correlation between the spaced-antenna and fine-resolution Doppler beam swinging retrievals was 0.57. The lowered correlation coefficient was, in part, due to the high standard deviation of the DBS retrievals. At high wind-speeds, the spaced-antenna retrievals significantly departed from variational retrievals of mean baseline wind.
NASA Astrophysics Data System (ADS)
Gautam, Nitin
The main objectives of this thesis are to develop a robust statistical method for the classification of ocean precipitation based on physical properties to which the SSM/I is sensitive and to examine how these properties vary globally and seasonally. A two step approach is adopted for the classification of oceanic precipitation classes from multispectral SSM/I data: (1)we subjectively define precipitation classes using a priori information about the precipitating system and its possible distinct signature on SSM/I data such as scattering by ice particles aloft in the precipitating cloud, emission by liquid rain water below freezing level, the difference of polarization at 19 GHz-an indirect measure of optical depth, etc.; (2)we then develop an objective classification scheme which is found to reproduce the subjective classification with high accuracy. This hybrid strategy allows us to use the characteristics of the data to define and encode classes and helps retain the physical interpretation of classes. The classification methods based on k-nearest neighbor and neural network are developed to objectively classify six precipitation classes. It is found that the classification method based neural network yields high accuracy for all precipitation classes. An inversion method based on minimum variance approach was used to retrieve gross microphysical properties of these precipitation classes such as column integrated liquid water path, column integrated ice water path, and column integrated min water path. This classification method is then applied to 2 years (1991-92) of SSM/I data to examine and document the seasonal and global distribution of precipitation frequency corresponding to each of these objectively defined six classes. The characteristics of the distribution are found to be consistent with assumptions used in defining these six precipitation classes and also with well known climatological patterns of precipitation regions. The seasonal and global distribution of these six classes is also compared with the earlier results obtained from Comprehensive Ocean Atmosphere Data Sets (COADS). It is found that the gross pattern of the distributions obtained from SSM/I and COADS data match remarkably well with each other.
Guo, Bin; Chen, Zhongsheng; Guo, Jinyun; Liu, Feng; Chen, Chuanfa; Liu, Kangli
2016-01-01
Changes in precipitation could have crucial influences on the regional water resources in arid regions such as Xinjiang. It is necessary to understand the intrinsic multi-scale variations of precipitation in different parts of Xinjiang in the context of climate change. In this study, based on precipitation data from 53 meteorological stations in Xinjiang during 1960–2012, we investigated the intrinsic multi-scale characteristics of precipitation variability using an adaptive method named ensemble empirical mode decomposition (EEMD). Obvious non-linear upward trends in precipitation were found in the north, south, east and the entire Xinjiang. Changes in precipitation in Xinjiang exhibited significant inter-annual scale (quasi-2 and quasi-6 years) and inter-decadal scale (quasi-12 and quasi-23 years). Moreover, the 2–3-year quasi-periodic fluctuation was dominant in regional precipitation and the inter-annual variation had a considerable effect on the regional-scale precipitation variation in Xinjiang. We also found that there were distinctive spatial differences in variation trends and turning points of precipitation in Xinjiang. The results of this study indicated that compared to traditional decomposition methods, the EEMD method, without using any a priori determined basis functions, could effectively extract the reliable multi-scale fluctuations and reveal the intrinsic oscillation properties of climate elements. PMID:27007388
Bayesian Non-Stationary Index Gauge Modeling of Gridded Precipitation Extremes
NASA Astrophysics Data System (ADS)
Verdin, A.; Bracken, C.; Caldwell, J.; Balaji, R.; Funk, C. C.
2017-12-01
We propose a Bayesian non-stationary model to generate watershed scale gridded estimates of extreme precipitation return levels. The Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) dataset is used to obtain gridded seasonal precipitation extremes over the Taylor Park watershed in Colorado for the period 1981-2016. For each year, grid cells within the Taylor Park watershed are aggregated to a representative "index gauge," which is input to the model. Precipitation-frequency curves for the index gauge are estimated for each year, using climate variables with significant teleconnections as proxies. Such proxies enable short-term forecasting of extremes for the upcoming season. Disaggregation ratios of the index gauge to the grid cells within the watershed are computed for each year and preserved to translate the index gauge precipitation-frequency curve to gridded precipitation-frequency maps for select return periods. Gridded precipitation-frequency maps are of the same spatial resolution as CHIRPS (0.05° x 0.05°). We verify that the disaggregation method preserves spatial coherency of extremes in the Taylor Park watershed. Validation of the index gauge extreme precipitation-frequency method consists of ensuring extreme value statistics are preserved on a grid cell basis. To this end, a non-stationary extreme precipitation-frequency analysis is performed on each grid cell individually, and the resulting frequency curves are compared to those produced by the index gauge disaggregation method.
Mehran, Ali; AghaKouchak, Amir; Phillips, Thomas J.
2014-02-25
Numerous studies have emphasized that climate simulations are subject to various biases and uncertainties. The objective of this study is to cross-validate 34 Coupled Model Intercomparison Project Phase 5 (CMIP5) historical simulations of precipitation against the Global Precipitation Climatology Project (GPCP) data, quantifying model pattern discrepancies and biases for both entire data distributions and their upper tails. The results of the Volumetric Hit Index (VHI) analysis of the total monthly precipitation amounts show that most CMIP5 simulations are in good agreement with GPCP patterns in many areas, but that their replication of observed precipitation over arid regions and certain sub-continentalmore » regions (e.g., northern Eurasia, eastern Russia, central Australia) is problematical. Overall, the VHI of the multi-model ensemble mean and median also are superior to that of the individual CMIP5 models. However, at high quantiles of reference data (e.g., the 75th and 90th percentiles), all climate models display low skill in simulating precipitation, except over North America, the Amazon, and central Africa. Analyses of total bias (B) in CMIP5 simulations reveal that most models overestimate precipitation over regions of complex topography (e.g. western North and South America and southern Africa and Asia), while underestimating it over arid regions. Also, while most climate model simulations show low biases over Europe, inter-model variations in bias over Australia and Amazonia are considerable. The Quantile Bias (QB) analyses indicate that CMIP5 simulations are even more biased at high quantiles of precipitation. Lastly, we found that a simple mean-field bias removal improves the overall B and VHI values, but does not make a significant improvement in these model performance metrics at high quantiles of precipitation.« less
NASA Astrophysics Data System (ADS)
Herrera-Oliva, C. S.
2013-05-01
In this work we design and implement a method for the determination of precipitation forecast through the application of an elementary neuronal network (perceptron) to the statistical analysis of the precipitation reported in catalogues. The method is limited mainly by the catalogue length (and, in a smaller degree, by its accuracy). The method performance is measured using grading functions that evaluate a tradeoff between positive and negative aspects of performance. The method is applied to the Guadalupe Valley, Baja California, Mexico. Using consecutive intervals of dt=0.1 year, employing the data of several climatological stations situated in and surrounding this important wine industries zone. We evaluated the performance of different models of ANN, whose variables of entrance are the heights of precipitation. The results obtained were satisfactory, except for exceptional values of rain. Key words: precipitation forecast, artificial neural networks, statistical analysis
Spatio-temporal interpolation of precipitation during monsoon periods in Pakistan
NASA Astrophysics Data System (ADS)
Hussain, Ijaz; Spöck, Gunter; Pilz, Jürgen; Yu, Hwa-Lung
2010-08-01
Spatio-temporal estimation of precipitation over a region is essential to the modeling of hydrologic processes for water resources management. The changes of magnitude and space-time heterogeneity of rainfall observations make space-time estimation of precipitation a challenging task. In this paper we propose a Box-Cox transformed hierarchical Bayesian multivariate spatio-temporal interpolation method for the skewed response variable. The proposed method is applied to estimate space-time monthly precipitation in the monsoon periods during 1974-2000, and 27-year monthly average precipitation data are obtained from 51 stations in Pakistan. The results of transformed hierarchical Bayesian multivariate spatio-temporal interpolation are compared to those of non-transformed hierarchical Bayesian interpolation by using cross-validation. The software developed by [11] is used for Bayesian non-stationary multivariate space-time interpolation. It is observed that the transformed hierarchical Bayesian method provides more accuracy than the non-transformed hierarchical Bayesian method.
NASA Astrophysics Data System (ADS)
Park, Shin-Young; Lee, Hyo-Jung; Kang, Jeong-Eon; Lee, Taehyoung; Kim, Cheol-Hee
2018-01-01
The online model, Weather Research and Forecasting Model with Chemistry (WRF-Chem) is employed to interpret the effects of aerosol-cloud-precipitation interaction on mesoscale meteorological fields over Northeast Asia during the Megacity Air Pollution Study-Seoul (MAPS-Seoul) 2015 campaign. The MAPS-Seoul campaign is a pre-campaign of the Korea-United States Air Quality (KORUS-AQ) campaign conducted over the Korean Peninsula. We validated the WRF-Chem simulations during the campaign period, and analyzed aerosol-warm cloud interactions by diagnosing both aerosol direct, indirect, and total effects. The results demonstrated that aerosol directly decreased downward shortwave radiation up to -44% (-282 W m-2) for this period and subsequently increased downward longwave radiation up to +15% (∼52 W m-2) in the presence of low-level clouds along the thematic area. Aerosol increased cloud fraction indirectly up to ∼24% with the increases of both liquid water path and the droplet number mixing ratio. Precipitation properties were altered both directly and indirectly. Direct effects simply changed cloud-precipitation quantities via simple updraft process associated with perturbed radiation and temperature, while indirect effects mainly suppressed precipitation, but sometimes increased precipitation in the higher relative humidity atmosphere or near vapor-saturated condition. The total aerosol effects caused a time lag of the precipitation rate with the delayed onset time of up to 9 h. This implies the importance of aerosol effects in improving mesoscale precipitation rate prediction in the online approach in the presence of non-linear warm cloud.
NASA Astrophysics Data System (ADS)
Sanchez-Mejia, Z. M.; Papuga, S. A.
2013-12-01
In semiarid regions, where water resources are limited and precipitation dynamics are changing, understanding land surface-atmosphere interactions that regulate the coupled soil moisture-precipitation system is key for resource management and planning. We present a modeling approach to study soil moisture and albedo controls on planetary boundary layer height (PBLh). We used data from the Santa Rita Creosote Ameriflux site and Tucson Airport atmospheric sounding to generate empirical relationships between soil moisture, albedo and PBLh. We developed empirical relationships and show that at least 50% of the variation in PBLh can be explained by soil moisture and albedo. Then, we used a stochastically driven two-layer bucket model of soil moisture dynamics and our empirical relationships to model PBLh. We explored soil moisture dynamics under three different mean annual precipitation regimes: current, increase, and decrease, to evaluate at the influence on soil moisture on land surface-atmospheric processes. While our precipitation regimes are simple, they represent future precipitation regimes that can influence the two soil layers in our conceptual framework. For instance, an increase in annual precipitation, could impact on deep soil moisture and atmospheric processes if precipitation events remain intense. We observed that the response of soil moisture, albedo, and the PBLh will depend not only on changes in annual precipitation, but also on the frequency and intensity of this change. We argue that because albedo and soil moisture data are readily available at multiple temporal and spatial scales, developing empirical relationships that can be used in land surface - atmosphere applications are of great value.
Analysis of an ethanol precipitate from ileal digesta: evaluation of a method to determine mucin.
Miner-Williams, Warren M; Moughan, Paul J; Fuller, Malcolm F
2013-11-06
The precipitation of mucin using high concentrations of ethanol has been used by many researchers while others have questioned the validity of the technique. In this study, analysis of an ethanol precipitate, from the soluble fraction of ileal digesta from pigs was undertaken using molecular weight profiling and polyacrylamide gel electrophoresis. The precipitate contained 201 mg·g⁻¹ protein, 87% of which had a molecular weight >20 KDa. Polyacrylamide gel electrophoresis stained with Coomassie blue and periodic acid/Schiff, revealed that most glycoprotein had a molecular weight between 37-100 KDa. The molecular weight of glycoprotein in the precipitate was therefore lower than that of intact mucin. These observations indicated that the glycoprotein in the ethanol precipitate was significantly degraded. The large amount of protein and carbohydrate in the supernatant from ethanol precipitation indicated that the precipitation of glycoprotein was incomplete. As a method for determining the concentration of mucin in digesta, ethanol precipitation is unreliable.
Overview of global climate change and carbon sequestration
Kurt Johnsen
2004-01-01
The potential influence of global climate change on southern forests is uncertain. Outputs of climate change models differ considerably in their projections for precipitation and other variables that affect forests. Forest responses, particularly effects on competition among species, are difficult to assess. Even the responses of relatively simple ecosystems, such as...
THE WATER BALANCE OF THE SUSQUEHANNA RIVER BASIN AND ITS RESPONSE TO CLIMATE CHANGE. (R824995)
Historical precipitation, temperature and streamflow data for the Susquehanna River Basin (SRB) are analyzed with the objective of developing simple statistical and water balance models of streamflow at the watershed's outlet. Annual streamflow is highly corre...
USDA-ARS?s Scientific Manuscript database
Semiarid grasslands contribute significantly to net terrestrial carbon flux as plant productivity and heterotrophic respiration in these moisture-limited systems are correlated with metrics related to water availability (e.g., precipitation, Actual EvapoTranspiration or AET). These variables are als...
Advanced electromagnetic methods for aerospace vehicles
NASA Technical Reports Server (NTRS)
Balanis, Constantine A.; El-Sharawy, El-Budawy; Hashemi-Yeganeh, Shahrokh; Aberle, James T.; Birtcher, Craig R.
1991-01-01
During this period the research program addressed the following three topics: (1) composite materials; (2) precipitation static (P-Static); and (3) antenna technology. On the topic of Composite Materials our main efforts were directed toward making measurements on several new samples of composite materials made available to ASU by Stanford Research Institute (SRI) through the efforts of Mr. Frank Casler of AVRADA. These samples can be classified into three distinct materials with each material having its own distinct electrical properties. In addition, attempts were made to make predictions of the effects on antenna patterns by composite materials. This will take a greater emphasis in the next reporting period. In Precipitation Static (P-Static), the main effort was devoted toward developing a Voltage Finite-Difference Time-Domain computer code to account for the voltage variation on a conducting body as the primary source of corona discharge, instead of the electric field. Due to complexities stemming from the interactions between the potentials, the fields, and current sources, the decision was made to begin with a simple two-dimensional problem without the corona discharge and check our programs in a series of simple models, culminating in the full corona discharge problem. This report deals with the first stage of such development. During this reporting period, the main effort in Antenna Technology was toward the design, fabrication, and testing of a cavity-backed slot antenna using ferrite material. Using the ferrite material available to us during this period, the resonances of this antenna were around 5 and 8 GHz. Attempts will be made to model such an antenna and to lower its resonance down into the VHF and UHF bands.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Österreicher, Johannes Albert; Kumar, Manoj
Characterization of Mg-Si precipitates is crucial for optimizing the homogenization heat treatment of Al-Mg-Si alloys. Although sample preparation is key for high quality scanning electron microscopy imaging, most common methods lead to dealloying of Mg-Si precipitates. In this article we systematically evaluate different sample preparation methods: mechanical polishing, etching with various reagents, and electropolishing using different electrolytes. We demonstrate that the use of a nitric acid and methanol electrolyte for electropolishing a homogenized Al-Mg-Si alloy prevents the dissolution of Mg-Si precipitates, resulting in micrographs of higher quality. This preparation method is investigated in depth and the obtained scanning electron microscopymore » images are compared with transmission electron micrographs: the shape and size of Mg-Si precipitates appear very similar in either method. The scanning electron micrographs allow proper identification and measurement of the Mg-Si phases including needles with lengths of roughly 200 nm. These needles are β″ precipitates as confirmed by high resolution transmission electron microscopy. - Highlights: •Secondary precipitation in homogenized 6xxx Al alloys is crucial for extrudability. •Existing sample preparation methods for SEM are improvable. •Electropolishing with nitric acid/methanol yields superior quality in SEM. •The obtained micrographs are compared to TEM micrographs.« less
NASA Astrophysics Data System (ADS)
Westerberg, I.; Walther, A.; Guerrero, J.-L.; Coello, Z.; Halldin, S.; Xu, C.-Y.; Chen, D.; Lundin, L.-C.
2010-08-01
An accurate description of temporal and spatial precipitation variability in Central America is important for local farming, water supply and flood management. Data quality problems and lack of consistent precipitation data impede hydrometeorological analysis in the 7,500 km2 Choluteca River basin in central Honduras, encompassing the capital Tegucigalpa. We used precipitation data from 60 daily and 13 monthly stations in 1913-2006 from five local authorities and NOAA's Global Historical Climatology Network. Quality control routines were developed to tackle the specific data quality problems. The quality-controlled data were characterised spatially and temporally, and compared with regional and larger-scale studies. Two gap-filling methods for daily data and three interpolation methods for monthly and mean annual precipitation were compared. The coefficient-of-correlation-weighting method provided the best results for gap-filling and the universal kriging method for spatial interpolation. In-homogeneity in the time series was the main quality problem, and 22% of the daily precipitation data were too poor to be used. Spatial autocorrelation for monthly precipitation was low during the dry season, and correlation increased markedly when data were temporally aggregated from a daily time scale to 4-5 days. The analysis manifested the high spatial and temporal variability caused by the diverse precipitation-generating mechanisms and the need for an improved monitoring network.
Drought characterisation based on an agriculture-oriented standardised precipitation index
NASA Astrophysics Data System (ADS)
Tigkas, Dimitris; Vangelis, Harris; Tsakiris, George
2018-03-01
Drought is a major natural hazard with significant effects in the agricultural sector, especially in arid and semi-arid regions. The accurate and timely characterisation of agricultural drought is crucial for devising contingency plans, including the necessary mitigation measures. Many drought indices have been developed during the last decades for drought characterisation and analysis. One of the most widely used indices worldwide is the Standardised Precipitation Index (SPI). Although other comprehensive indices have been introduced over the years, SPI remains the most broadly accepted index due to a number of reasons, the most important of which are its simple structure and the fact that it uses only precipitation data. In this paper, a modified version of SPI is proposed, namely the Agricultural Standardised Precipitation Index (aSPI), based on the substitution of the total precipitation by the effective precipitation, which describes more accurately the amount of water that can be used productively by the plants. Further, the selection of the most suitable reference periods and time steps for agricultural drought identification using aSPI is discussed. This conceptual enhancement of SPI aims at improving the suitability of the index for agricultural drought characterisation, while retaining the advantages of the original index, including its dependence only on precipitation data. The evaluation of the performance of both SPI and aSPI in terms of correlating drought magnitude with crop yield response in four regions of Greece under Mediterranean conditions indicated that aSPI is more robust than the original index in identifying agricultural drought.
An Innovative Metric to Evaluate Satellite Precipitation's Spatial Distribution
NASA Astrophysics Data System (ADS)
Liu, H.; Chu, W.; Gao, X.; Sorooshian, S.
2011-12-01
Thanks to its capability to cover the mountains, where ground measurement instruments cannot reach, satellites provide a good means of estimating precipitation over mountainous regions. In regions with complex terrains, accurate information on high-resolution spatial distribution of precipitation is critical for many important issues, such as flood/landslide warning, reservoir operation, water system planning, etc. Therefore, in order to be useful in many practical applications, satellite precipitation products should possess high quality in characterizing spatial distribution. However, most existing validation metrics, which are based on point/grid comparison using simple statistics, cannot effectively measure satellite's skill of capturing the spatial patterns of precipitation fields. This deficiency results from the fact that point/grid-wised comparison does not take into account of the spatial coherence of precipitation fields. Furth more, another weakness of many metrics is that they can barely provide information on why satellite products perform well or poor. Motivated by our recent findings of the consistent spatial patterns of the precipitation field over the western U.S., we developed a new metric utilizing EOF analysis and Shannon entropy. The metric can be derived through two steps: 1) capture the dominant spatial patterns of precipitation fields from both satellite products and reference data through EOF analysis, and 2) compute the similarities between the corresponding dominant patterns using mutual information measurement defined with Shannon entropy. Instead of individual point/grid, the new metric treat the entire precipitation field simultaneously, naturally taking advantage of spatial dependence. Since the dominant spatial patterns are shaped by physical processes, the new metric can shed light on why satellite product can or cannot capture the spatial patterns. For demonstration, a experiment was carried out to evaluate a satellite precipitation product, CMORPH, against the U.S. daily precipitation analysis of Climate Prediction Center (CPC) at a daily and .25o scale over the Western U.S.
Calibration of collection procedures for the determination of precipitation chemistry
James N. Galloway; Gene E. Likens
1976-01-01
Precipitation is currently collected by several methods, including several different designs of collection apparatus. We are investigating these differing methods and designs to determine which gives the most representative sample of precipitation for the analysis of some 25 chemical parameters. The experimental site, located in Ithaca, New York, has 22 collectors of...
Petruševska, Marija; Urleb, Uroš; Peternel, Luka
2013-11-01
The excipient-mediated precipitation inhibition is classically determined by the quantification of the dissolved compound in the solution. In this study, two alternative approaches were evaluated, one is the light scattering (nephelometer) and other is the turbidity (plate reader) microtiter plate-based methods which are based on the quantification of the compound precipitate. Following the optimization of the nephelometer settings (beam focus, laser gain) and the experimental conditions, the screening of 23 excipients on the precipitation inhibition of poorly soluble fenofibrate and dipyridamole was performed. The light scattering method resulted in excellent correlation (r>0.91) between the calculated precipitation inhibitor parameters (PIPs) and the precipitation inhibition index (PI(classical)) obtained by the classical approach for fenofibrate and dipyridamole. Among the evaluated PIPs AUC100 (nephelometer) resulted in only four false positives and lack of false negatives. In the case of the turbidity-based method a good correlation of the PI(classical) was obtained for the PIP maximal optical density (OD(max), r=0.91), however, only for fenofibrate. In the case of the OD(max) (plate reader) five false positives and two false negatives were identified. In conclusion, the light scattering-based method outperformed the turbidity-based one and could be reliably used for identification of novel precipitation inhibitors. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
van Osnabrugge, B.; Weerts, A. H.; Uijlenhoet, R.
2017-11-01
To enable operational flood forecasting and drought monitoring, reliable and consistent methods for precipitation interpolation are needed. Such methods need to deal with the deficiencies of sparse operational real-time data compared to quality-controlled offline data sources used in historical analyses. In particular, often only a fraction of the measurement network reports in near real-time. For this purpose, we present an interpolation method, generalized REGNIE (genRE), which makes use of climatological monthly background grids derived from existing gridded precipitation climatology data sets. We show how genRE can be used to mimic and extend climatological precipitation data sets in near real-time using (sparse) real-time measurement networks in the Rhine basin upstream of the Netherlands (approximately 160,000 km2). In the process, we create a 1.2 × 1.2 km transnational gridded hourly precipitation data set for the Rhine basin. Precipitation gauge data are collected, spatially interpolated for the period 1996-2015 with genRE and inverse-distance squared weighting (IDW), and then evaluated on the yearly and daily time scale against the HYRAS and EOBS climatological data sets. Hourly fields are compared qualitatively with RADOLAN radar-based precipitation estimates. Two sources of uncertainty are evaluated: station density and the impact of different background grids (HYRAS versus EOBS). The results show that the genRE method successfully mimics climatological precipitation data sets (HYRAS/EOBS) over daily, monthly, and yearly time frames. We conclude that genRE is a good interpolation method of choice for real-time operational use. genRE has the largest added value over IDW for cases with a low real-time station density and a high-resolution background grid.
Derogis, Priscilla Bento Matos; Sanches, Livia Rentas; de Aranda, Valdir Fernandes; Colombini, Marjorie Paris; Mangueira, Cristóvão Luis Pitangueira; Katz, Marcelo; Faulhaber, Adriana Caschera Leme; Mendes, Claudio Ernesto Albers; Ferreira, Carlos Eduardo Dos Santos; França, Carolina Nunes; Guerra, João Carlos de Campos
2017-01-01
Rivaroxaban is an oral direct factor Xa inhibitor, therapeutically indicated in the treatment of thromboembolic diseases. As other new oral anticoagulants, routine monitoring of rivaroxaban is not necessary, but important in some clinical circumstances. In our study a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was validated to measure rivaroxaban plasmatic concentration. Our method used a simple sample preparation, protein precipitation, and a fast chromatographic run. It was developed a precise and accurate method, with a linear range from 2 to 500 ng/mL, and a lower limit of quantification of 4 pg on column. The new method was compared to a reference method (anti-factor Xa activity) and both presented a good correlation (r = 0.98, p < 0.001). In addition, we validated hemolytic, icteric or lipemic plasma samples for rivaroxaban measurement by HPLC-MS/MS without interferences. The chromogenic and HPLC-MS/MS methods were highly correlated and should be used as clinical tools for drug monitoring. The method was applied successfully in a group of 49 real-life patients, which allowed an accurate determination of rivaroxaban in peak and trough levels.
Nasiri, H; Forouzandeh, M; Rasaee, M J; Rahbarizadeh, F
2005-01-01
Different approaches have been used to extract DNA from whole blood. In most of these methods enzymes (such as proteinase K and RNAse A) or toxic organic solvents (such as phenol or guanidine isothiocyanate) are used. Since these enzymes are expensive, and most of the materials that are used routinely are toxic, it is desirable to apply an efficient DNA extraction procedure that does not require the use of such materials. In this study, genomic DNA was extracted by the salting-out method, but instead of using an analytical-grade enzyme and chemical detergents, as normally used for DNA isolation, a common laundry powder was used. Different concentrations of the powder were tested, and proteins were precipitated by NaCl-saturated distilled water. Finally, DNA precipitation was performed with the use of 96% ethanol. From the results, we conclude that the optimum concentration of laundry powder for the highest yield and purity of isolated DNA is 30 mg/mL. The procedure was optimized, and a final protocol is suggested. Following the same protocol, DNA was extracted from 100 blood samples, and their amounts were found to be >50 microg/mL of whole blood. The integrity of the DNA fragments was confirmed by agarose gel electrophoresis. Furthermore, the extracted DNA was used as a template for PCR reaction. The results obtained from PCR showed that the final solutions of extracted DNA did not contain any inhibitory material for the enzyme used in the PCR reaction, and indicated that the isolated DNA was of good quality. These results show that this method is simple, fast, safe, and cost-effective, and can be used in medical laboratories and research centers. Copyright 2005 Wiley-Liss, Inc.
Mehta, Dhiraj; Mondal, Poonam; Saharan, Virendra Kumar; George, Suja
2017-07-01
This research work presents the synthesis of hydroxyapatite (Hap) nanorods for defluoridation of drinking water by using both conventional (CM) and ultrasonication with precipitation (USPM) methods. Calcium nitrate was reacted with potassium phosphate in presence of ammonia for controlled pH to synthesize Hap nanorods, which was characterized using FTIR, XRD, SEM, TG-DTA, and TEM/EDS for determining its phase composition, structural and thermal decomposition behavior. When USPM method was used for synthesis, the yield of the Hap nanorods was improved from 83.24±1.0% to 90.2±1.0%, and complete phase transformation occurred with formation of elongated Hap nanorods. Effects of process parameters such as solution pH, contact time and adsorbent dose were studied through response surface methodology (RSM). A simple quadratic model was developed using Central Composite Design (CCD) and optimum parameters for fluoride adsorption process were determined to be pH 7, contact time 3h and adsorbent dose 7g/L for maximum removal capacity. Fluoride removal efficiency was predicted to be 93.64% which was very close to the experimental value obtained at 92.86% using ultrasonically prepared Hap. Fluoride adsorption isotherms fitted the Freundlich isotherm with an adsorption capacity of 1.49mg/g, while the kinetic studies revealed that the process followed pseudo-second order model. The treated water quality parameters such as residual fluoride, calcium leached, total hardness and alkalinity was investigated, and it was observed that all these parameters were within the permissible limits as per WHO and BIS standards. Copyright © 2017 Elsevier B.V. All rights reserved.
A simple and efficient HPLC method for benznidazole dosage in human breast milk.
Marson, María E; Padró, Juan M; Reta, Mario R; Altcheh, Jaime; García-Bournissen, Facundo; Mastrantonio, Guido
2013-08-01
Due to migration, Chagas disease is a significant public health problem in Latin America, and in other nonendemic regions. The 2 drugs currently available for the treatment, nifurtimox and benznidazole (BNZ), are associated with a high risk of toxicity in therapeutic doses. Excretion of drug into human breast milk is a potential source of unwanted exposure and pharmacologic effects in the nursing infant. However, this phenomenon was not evaluated until now, and measurement techniques for both drugs in milk were not developed. In this work, we described the development of a simple and fast method to quantify BNZ in human milk using a pretreatment that involves acid protein precipitation followed by tandem microfiltration, and reverse phase high-performance liquid chromatography/ultraviolet analysis. It is simple because it takes only 3 steps to obtain a clean extracted solution that is ready to inject into the high-performance liquid chromatography equipment. It is fast because a complete analysis of a sample takes only 36 minutes. Although the human breast milk composition is very variable, and lipids are one of the most difficult compounds to clean up on a milk sample, the procedure has proven to be robust and sensitive with a limit of detection of 0.3 μg/mL and quantization of 0.9 μg/mL. Despite a 70% recovery value, which could be considered a relatively low result, this recovery is reproducible (coefficient of variation <10%) and the analytical response under the linear range is very good (r = 0.9969 adjusted). Real samples of human breast milk from patients in treatment with BNZ were dosed to support the validation process of the method. The method described is fast, specific, accurate, precise, and sufficiently sensitive in the clinical context for the quantification of BNZ in human milk. For all these reasons, it is suitable for clinical risk evaluation studies.
Cao, Xiaolin; Stimpfl, Gregory; Wen, Zai-Qing; Frank, Gregory; Hunter, Glenn
2013-01-01
High-temperature/short-time (HTST) treatment of cell culture media is one of the proven techniques used in the biopharmaceutical manufacturing industry for the prevention and mitigation of media viral contamination. With the HTST method, the formulated media is pasteurized (virus-deactivated) by heating and pumping the media continuously through the preset high-temperature holding tubes to achieve a specified period of time at a specific temperature. Recently, during the evaluation and implementation of HTST method in multiple Amgen, Inc. manufacturing facilities, media precipitates were observed in the tests of HTST treatments. The media precipitates may have adverse consequences such as clogging the HTST system, altering operating conditions and compromising the efficacy of viral deactivation, and ultimately affecting the media composition and cell growth. In this study, we report the identification of the composition of media precipitates from multiple media HTST runs using combined microspectroscopic methods including Raman, Fourier transform infrared spectroscopy, and scanning electron microscopy with energy-dispersive X-ray spectroscopy. The major composition in the precipitates was determined to be metal phosphates, including calcium phosphate, magnesium phosphate, and iron (III) phosphate. Based on the composition, stoichiometry, and root-cause study of media precipitations, methods were implemented for the mitigation and prevention of the occurrence of the media precipitation. Viral contamination in cell culture media is an important issue in the biopharmaceutical manufacturing industry and may have serious consequences on product quality, efficacy, and safety. High-temperature/short-time (HTST) treatment of cell culture media is one of the proven techniques used in the industry for the prevention and mitigation of media viral contamination. With the HTST method, the formulated media is pasteurized (virus-deactivated) by heating at preset conditions. This paper provides the identification and root-cause study of the media precipitates that adversely affected the HTST process and discusses the possible solutions to mitigate the precipitation problem.
NASA Astrophysics Data System (ADS)
Hachani, Roxanne; Lowdell, Mark; Birchall, Martin; Hervault, Aziliz; Mertz, Damien; Begin-Colin, Sylvie; Thanh, Nguy&Ecirtil; N. Thi&Cmb. B. Dot; Kim
2016-02-01
Iron oxide nanoparticles (IONPs) of low polydispersity were obtained through a simple polyol synthesis in high pressure and high temperature conditions. The control of the size and morphology of the nanoparticles was studied by varying the solvent used, the amount of iron precursor and the reaction time. Compared with conventional synthesis methods such as thermal decomposition or co-precipitation, this process yields nanoparticles with a narrow particle size distribution in a simple, reproducible and cost effective manner without the need for an inert atmosphere. For example, IONPs with a diameter of ca. 8 nm could be made in a reproducible manner and with good crystallinity as evidenced by X-ray diffraction analysis and high saturation magnetization value (84.5 emu g-1). The surface of the IONPs could be tailored post synthesis with two different ligands which provided functionality and stability in water and phosphate buffer saline (PBS). Their potential as a magnetic resonance imaging (MRI) contrast agent was confirmed as they exhibited high r1 and r2 relaxivities of 7.95 mM-1 s-1 and 185.58 mM-1 s-1 respectively at 1.4 T. Biocompatibility and viability of IONPs in primary human mesenchymal stem cells (hMSCs) was studied and confirmed.Iron oxide nanoparticles (IONPs) of low polydispersity were obtained through a simple polyol synthesis in high pressure and high temperature conditions. The control of the size and morphology of the nanoparticles was studied by varying the solvent used, the amount of iron precursor and the reaction time. Compared with conventional synthesis methods such as thermal decomposition or co-precipitation, this process yields nanoparticles with a narrow particle size distribution in a simple, reproducible and cost effective manner without the need for an inert atmosphere. For example, IONPs with a diameter of ca. 8 nm could be made in a reproducible manner and with good crystallinity as evidenced by X-ray diffraction analysis and high saturation magnetization value (84.5 emu g-1). The surface of the IONPs could be tailored post synthesis with two different ligands which provided functionality and stability in water and phosphate buffer saline (PBS). Their potential as a magnetic resonance imaging (MRI) contrast agent was confirmed as they exhibited high r1 and r2 relaxivities of 7.95 mM-1 s-1 and 185.58 mM-1 s-1 respectively at 1.4 T. Biocompatibility and viability of IONPs in primary human mesenchymal stem cells (hMSCs) was studied and confirmed. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03867g
Multiresolution comparison of precipitation datasets for large-scale models
NASA Astrophysics Data System (ADS)
Chun, K. P.; Sapriza Azuri, G.; Davison, B.; DeBeer, C. M.; Wheater, H. S.
2014-12-01
Gridded precipitation datasets are crucial for driving large-scale models which are related to weather forecast and climate research. However, the quality of precipitation products is usually validated individually. Comparisons between gridded precipitation products along with ground observations provide another avenue for investigating how the precipitation uncertainty would affect the performance of large-scale models. In this study, using data from a set of precipitation gauges over British Columbia and Alberta, we evaluate several widely used North America gridded products including the Canadian Gridded Precipitation Anomalies (CANGRD), the National Center for Environmental Prediction (NCEP) reanalysis, the Water and Global Change (WATCH) project, the thin plate spline smoothing algorithms (ANUSPLIN) and Canadian Precipitation Analysis (CaPA). Based on verification criteria for various temporal and spatial scales, results provide an assessment of possible applications for various precipitation datasets. For long-term climate variation studies (~100 years), CANGRD, NCEP, WATCH and ANUSPLIN have different comparative advantages in terms of their resolution and accuracy. For synoptic and mesoscale precipitation patterns, CaPA provides appealing performance of spatial coherence. In addition to the products comparison, various downscaling methods are also surveyed to explore new verification and bias-reduction methods for improving gridded precipitation outputs for large-scale models.
NASA Astrophysics Data System (ADS)
Chairunnisak, A.; Arifin, B.; Sofyan, H.; Lubis, M. R.; Darmadi
2018-03-01
This research focuses on the Chemical Oxygen Demand (COD) treatment in palm oil mill effluent by electrocoagulation and electro-Fenton methods to solve it. Initially, the aqueous solution precipitates in acid condition at pH of about two. This study focuses on the palm oil mill effluent degradation by Fe electrodes in a simple batch reactor. This work is conducted by using different parameters such as voltage, electrolyte concentration of NaCl, volume of H2O2 and operation time. The processing of data resulted is by using response surface method coupled with Box-Behnken design. The electrocoagulation method results in the optimum COD reduction of 94.53% from operating time of 39.28 minutes, 20 volts, and without electrolyte concentration. For electro-Fenton process, experiment points out that voltage 15.78 volts, electrolyte concentration 0.06 M and H2O2 volume 14.79 ml with time 35.92 minutes yield 99.56% degradation. The result concluded that the electro-Fenton process was more effective to degrade COD of the palm-oil-mill effluent compared to electrocoagulation process.
Tomasi, Ivan; Marconi, Ombretta; Sileoni, Valeria; Perretti, Giuseppe
2017-01-01
Beer wort β-glucans are high-molecular-weight non-starch polysaccharides of that are great interest to the brewing industries. Because glucans can increase the viscosity of the solutions and form gels, hazes, and precipitates, they are often related to poor lautering performance and beer filtration problems. In this work, a simple and suitable method was developed to determine and characterize β-glucans in beer wort using size exclusion chromatography coupled with a triple-detector array, which is composed of a light scatterer, a viscometer, and a refractive-index detector. The method performances are comparable to the commercial reference method as result from the statistical validation and enable one to obtain interesting parameters of β-glucan in beer wort, such as the molecular weight averages, fraction description, hydrodynamic radius, intrinsic viscosity, polydispersity and Mark-Houwink parameters. This characterization can be useful in brewing science to understand filtration problems, which are not always explained through conventional analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Turbidimetric Method for the Assay of Antiviral Antibodies
Dandliker, W. B.; de Saussure, V. A.; Grow, T. E.
1969-01-01
A rapid, simple assay method has been developed for antiviral antibodies. The technique has been applied to antisera, immune γ-globulins, and immunospecifically purified antibody for two strains of influenza virus, Asian 305 and PR8, and to antisera to tobacco mosaic virus. Turbidity changes due to the specific interaction of a virus with its antibody were measured by the increase in optical density in a sensitive wavelength region, e.g., 436 nm. Successful application of the method required that nonspecific effects which give rise to turbidity changes be eliminated. This was accomplished by proper choice of ionic strength (0.3 m) and pH (5.5), and by the addition of normal serum or serum albumin to the virus before contact with the antibody. Sensitivity of the method allowed quantitation of antibody down to the level of 10 μg of antibody protein per ml. The specificity of the reaction causing the turbidity change was established by experiments which showed that precipitation of virus-antibody complexes removed the reactive component in the serum, and by the absence of turbidity changes for nonspecific pairs (virus plus unrelated antisera). PMID:4181163
Trujillo-Esquivel, Elías; Franco, Bernardo; Flores-Martínez, Alberto; Ponce-Noyola, Patricia; Mora-Montes, Héctor M
2016-08-02
Analysis of gene expression is a common research tool to study networks controlling gene expression, the role of genes with unknown function, and environmentally induced responses of organisms. Most of the analytical tools used to analyze gene expression rely on accurate cDNA synthesis and quantification to obtain reproducible and quantifiable results. Thus far, most commercial kits for isolation and purification of cDNA target double-stranded molecules, which do not accurately represent the abundance of transcripts. In the present report, we provide a simple and fast method to purify single-stranded cDNA, exhibiting high purity and yield. This method is based on the treatment with RNase H and RNase A after cDNA synthesis, followed by separation in silica spin-columns and ethanol precipitation. In addition, our method avoids the use of DNase I to eliminate genomic DNA from RNA preparations, which improves cDNA yield. As a case report, our method proved to be useful in the purification of single-stranded cDNA from the pathogenic fungus Sporothrix schenckii.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holt, E; Bench, G
2007-12-05
Growth rates and the ability to date an organism can greatly contribute to understanding its population biology and community dynamics. 1n 1954, Andreev proposed a method to date Cladina, a fruticose lichen, using total thallus length and number of internodes. No research, however, has demonstrated the reliability of this technique or compared its estimates to those derived by other means. In this study, we demonstrate the utility of {sup 14}C/C ratios to determine lichen age and growth rate in Cladina stygia (Fr.) Ahti collected from northwestern Alaska, USA. The average growth rate using {sup 14}C/C ratios was 6.5 mm {center_dot}more » yr{sup -1}, which was not significantly different from growth rates derived by Andreev's internode method (average = 6.2 mm {center_dot} yr{sup -1}); thus, suggesting the reliability of Andreev's simple field method for dating lichens. In addition, we found lichen growth rates appeared to differ with geographic location, yet did not seem related to ambient temperature and total precipitation.« less
Quench-Induced Stresses in AA2618 Forgings for Impellers: A Multiphysics and Multiscale Problem
NASA Astrophysics Data System (ADS)
Chobaut, Nicolas; Saelzle, Peter; Michel, Gilles; Carron, Denis; Drezet, Jean-Marie
2015-05-01
In the fabrication of heat-treatable aluminum parts such as AA2618 compressor impellers for turbochargers, solutionizing and quenching are key steps to obtain the required mechanical characteristics. Fast quenching is necessary to avoid coarse precipitation as it reduces the mechanical properties obtained after heat treatment. However, fast quenching induces residual stresses that can cause unacceptable distortions during machining. Furthermore, the remaining residual stresses after final machining can lead to unfavorable stresses in service. Predicting and controlling internal stresses during the whole processing from heat treatment to final machining is therefore of particular interest to prevent negative impacts of residual stresses. This problem is multiphysics because processes such as heat transfer during quenching, precipitation phenomena, thermally induced deformations, and stress generation are interacting and need to be taken into account. The problem is also multiscale as precipitates of nanosize form during quenching at locations where the cooling rate is too low. This precipitation affects the local yield strength of the material and thus impacts the level of macroscale residual stresses. A thermomechanical model accounting for precipitation in a simple but realistic way is presented. Instead of modelling precipitation that occurs during quenching, the model parameters are identified using a limited number of tensile tests achieved after representative interrupted cooling paths in a Gleeble machine. The simulation results are compared with as-quenched residual stresses in a forging measured by neutron diffraction.
Essa, Ebtessam A; Elmarakby, Amira O; Donia, Ahmed M A; El Maghraby, Gamal M
2017-09-01
The aim of this work was to investigate the potential of controlled precipitation of flurbiprofen on solid surface, in the presence or absence of hydrophilic polymers, as a tool for enhanced dissolution rate of the drug. The work was extended to develop rapidly disintegrated tablets. This strategy provides simple technique for dissolution enhancement of slowly dissolving drugs with high scaling up potential. Aerosil was dispersed in ethanolic solution of flurbiprofen in the presence and absence of hydrophilic polymers. Acidified water was added as antisolvent to produce controlled precipitation. The resultant particles were centrifuged and dried at ambient temperature before monitoring the dissolution pattern. The particles were also subjected to FTIR spectroscopic, X-ray diffraction and thermal analyses. The FTIR spectroscopy excluded any interaction between flurbiprofen and excipients. The thermal analysis reflected possible change in the crystalline structure and or crystal size of the drug after controlled precipitation in the presence of hydrophilic polymers. This was further confirmed by X-ray diffraction. The modulation in the crystalline structure and size was associated with a significant enhancement in the dissolution rate of flurbiprofen. Optimum formulations were successfully formulated as rapidly disintegrating tablet with subsequent fast dissolution. Precipitation on a large solid surface area is a promising strategy for enhanced dissolution rate with the presence of hydrophilic polymers during precipitation process improving the efficiency.
The Regional Differences of Gpp Estimation by Solar Induced Fluorescence
NASA Astrophysics Data System (ADS)
Wang, X.; Lu, S.
2018-04-01
Estimating gross primary productivity (GPP) at large spatial scales is important for studying the global carbon cycle and global climate change. In this study, the relationship between solar-induced chlorophyll fluorescence (SIF) and GPP is analysed in different levels of annual average temperature and annual total precipitation respectively using simple linear regression analysis. The results showed high correlation between SIF and GPP, when the area satisfied annual average temperature in the range of -5 °C to 15 °C and the annual total precipitation is higher than 200 mm. These results can provide a basis for future estimation of GPP research.
Tian, Peng; Yang, David; Mandrell, Robert
2011-06-30
Human norovirus (NoV) outbreaks are major food safety concerns. The virus has to be concentrated from food samples in order to be detected. PEG precipitation is the most common method to recover the virus. Recently, histo-blood group antigens (HBGA) have been recognized as receptors for human NoV, and have been utilized as an alternative method to concentrate human NoV for samples up to 40 mL in volume. However, to wash off the virus from contaminated fresh food samples, at least 250 mL of wash volume is required. Recirculating affinity magnetic separation system (RCAMS) has been tried by others to concentrate human NoV from large-volume samples and failed to yield consistent results with the standard procedure of 30 min of recirculation at the default flow rate. Our work here demonstrates that proper recirculation time and flow rate are key factors for success in using the RCAMS. The bead recovery rate was increased from 28% to 47%, 67% and 90% when recirculation times were extended from 30 min to 60 min, 120 min and 180 min, respectively. The kinetics study suggests that at least 120 min recirculation is required to obtain a good recovery of NoV. In addition, different binding and elution conditions were compared for releasing NoV from inoculated lettuce. Phosphate-buffered saline (PBS) and water results in similar efficacy for virus release, but the released virus does not bind to RCAMS effectively unless pH was adjusted to acidic. Either citrate-buffered saline (CBS) wash, or water wash followed by CBS adjustment, resulted in an enhanced recovery of virus. We also demonstrated that the standard curve generated from viral RNA extracted from serially-diluted virus samples is more accurate for quantitative analysis than standard curves generated from serially-diluted plasmid DNA or transcribed-RNA templates, both of which tend to overestimate the concentration power. The efficacy of recovery of NoV from produce using RCAMS was directly compared with that of the PEG method in NoV inoculated lettuce. 40, 4, 0.4, and 0.04 RTU can be detected by both methods. At 0.004 RTU, NoV was detectable in all three samples concentrated by the RCAMS method, while none could be detected by the PEG precipitation method. RCAMS is a simple and rapid method that is more sensitive than conventional methods for recovery of NoV from food samples with a large sample size. In addition, the RTU value detected through RCAMS-processed samples is more biologically relevant. Published by Elsevier B.V.
Karimi, Shima; Talebpour, Zahra; Adib, Noushin
2016-06-14
A poly acrylate-ethylene glycol (PA-EG) thin film is introduced for the first time as a novel polar sorbent for sorptive extraction method coupled directly to solid-state spectrofluorimetry without the necessity of a desorption step. The structure, polarity, fluorescence property and extraction performance of the developed thin film were investigated systematically. Carvedilol was used as the model analyte to evaluate the proposed method. The entire procedure involved one-step extraction of carvedilol from plasma using PA-EG thin film sorptive phase without protein precipitation. Extraction variables were studied in order to establish the best experimental conditions. Optimum extraction conditions were the followings: stirring speed of 1000 rpm, pH of 6.8, extraction temperature of 60 °C, and extraction time of 60 min. Under optimal conditions, extraction of carvedilol was carried out in spiked human plasma; and the linear range of calibration curve was 15-300 ng mL(-1) with regression coefficient of 0.998. Limit of detection (LOD) for the method was 4.5 ng mL(-1). The intra- and inter-day accuracy and precision of the proposed method were evaluated in plasma sample spiked with three concentration levels of carvedilol; yielding a recovery of 91-112% and relative standard deviation of less than 8%, respectively. The established procedure was successfully applied for quantification of carvedilol in plasma sample of a volunteer patient. The developed PA-EG thin film sorptive phase followed by solid-state spectrofluorimetric method provides a simple, rapid and sensitive approach for the analysis of carvedilol in human plasma. Copyright © 2016 Elsevier B.V. All rights reserved.
Investigating Soil Moisture Feedbacks on Precipitation With Tests of Granger Causality
NASA Astrophysics Data System (ADS)
Salvucci, G. D.; Saleem, J. A.; Kaufmann, R.
2002-05-01
Granger causality (GC) is used in the econometrics literature to identify the presence of one- and two-way coupling between terms in noisy multivariate dynamical systems. Here we test for the presence of GC to identify a soil moisture (S) feedback on precipitation (P) using data from Illinois. In this framework S is said to Granger cause P if F(Pt;At-dt)does not equal F(P;(A-S)t-dt) where F denotes the conditional distribution of P at time t, At-dt represents the set of all knowledge available at time t-dt, and (A-S)t-dt represents all knowledge available at t-dt except S. Critical for land-atmosphere interaction research is that At-dt includes all past information on P as well as S. Therefore that part of the relation between past soil moisture and current precipitation which results from precipitation autocorrelation and soil water balance will be accounted for and not attributed to causality. Tests for GC usually specify all relevant variables in a coupled vector autoregressive (VAR) model and then calculate the significance level of decreased predictability as various coupling coefficients are omitted. But because the data (daily precipitation and soil moisture) are distinctly non-Gaussian, we avoid using a VAR and instead express the daily precipitation events as a Markov model. We then test whether the probability of storm occurrence, conditioned on past information on precipitation, changes with information on soil moisture. Past information on precipitation is expressed both as the occurrence of previous day precipitation (to account for storm-scale persistence) and as a simple soil moisture-like precipitation-wetness index derived solely from precipitation (to account for seasonal-scale persistence). In this way only those fluctuations in moisture not attributable to past fluctuations in precipitation (e.g., those due to temperature) can influence the outcome of the test. The null hypothesis (no moisture influence) is evaluated by comparing observed changes in storm probability to Monte-Carlo simulated differences generated with unconditional occurrence probabilities. The null hypothesis is not rejected (p>0.5) suggesting that contrary to recently published results, insufficient evidence exists to support an influence of soil moisture on precipitation in Illinois.
Estimating the Risk of Domestic Water Source Contamination following Precipitation Events
Eisenhauer, Ian F.; Hoover, Christopher M.; Remais, Justin V.; Monaghan, Andrew; Celada, Marco; Carlton, Elizabeth J.
2016-01-01
Climate change is expected to increase precipitation extremes, threatening water quality. In low resource settings, it is unclear which water sources are most vulnerable to contamination following rainfall events. We evaluated the relationship between rainfall and drinking water quality in southwest Guatemala where heavy rainfall is frequent and access to safe water is limited. We surveyed 59 shallow household wells, measured precipitation, and calculated simple hydrological variables. We compared Escherichia coli concentration at wells where recent rainfall had occurred versus had not occurred, and evaluated variability in the association between rainfall and E. coli concentration under different conditions using interaction models. Rainfall in the past 24 hours was associated with greater E. coli concentrations, with the strongest association between rainfall and fecal contamination at wells where pigs were nearby. Because of the small sample size, these findings should be considered preliminary, but provide a model to evaluate vulnerability to climate change. PMID:27114298
Stoner, D. L.; Watson, S. M.; Stedtfeld, R. D.; Meakin, P.; Griffel, L. K.; Tyler, T. L.; Pegram, L. M.; Barnes, J. M.; Deason, V. A.
2005-01-01
Here we introduce the use of transparent experimental models fabricated by stereolithography for studying the impacts of biomass accumulation, minerals precipitation, and physical configuration of flow paths on liquid flow in fracture apertures. The internal configuration of the models ranged in complexity from simple geometric shapes to those that incorporate replicated surfaces of natural fractures and computationally derived fracture surfaces. High-resolution digital time-lapse imaging was employed to qualitatively observe the migration of colloidal and soluble dyes through the flow models. In this study, a Sphingomonas sp. and Sporosarcina (Bacillus) pasteurii influenced the fluid dynamics by physically altering flow paths. Microbial colonization and calcite deposition enhanced the stagnant regions adjacent to solid boundaries. Microbial growth and calcite precipitation occurred to a greater extent in areas behind the fabricated obstacles and less in high-velocity orifices. PMID:16332867
Stoner, D L; Watson, S M; Stedtfeld, R D; Meakin, P; Griffel, L K; Tyler, T L; Pegram, L M; Barnes, J M; Deason, V A
2005-12-01
Here we introduce the use of transparent experimental models fabricated by stereolithography for studying the impacts of biomass accumulation, minerals precipitation, and physical configuration of flow paths on liquid flow in fracture apertures. The internal configuration of the models ranged in complexity from simple geometric shapes to those that incorporate replicated surfaces of natural fractures and computationally derived fracture surfaces. High-resolution digital time-lapse imaging was employed to qualitatively observe the migration of colloidal and soluble dyes through the flow models. In this study, a Sphingomonas sp. and Sporosarcina (Bacillus) pasteurii influenced the fluid dynamics by physically altering flow paths. Microbial colonization and calcite deposition enhanced the stagnant regions adjacent to solid boundaries. Microbial growth and calcite precipitation occurred to a greater extent in areas behind the fabricated obstacles and less in high-velocity orifices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. L. Stoner; S. M. Watson; R. D. Stedtfeld
Here we introduce the use of transparent experimental models fabricated by stereolithography for studying the impacts of biomass accumulation, minerals precipitation, and physical configuration of flow paths on liquid flow in fracture apertures. The internal configuration of the models ranged in complexity from simple geometric shapes to those that incorporate replicated surfaces of natural fractures and computationally derived fracture surfaces. High-resolution digital time-lapse imaging was employed to qualitatively observe the migration of colloidal and soluble dyes through the flow models. In this study, a Sphingomonas sp. and Sporosarcina (Bacillus) pasteurii influenced the fluid dynamics by physically altering flow paths. Microbialmore » colonization and calcite deposition enhanced the stagnant regions adjacent to solid boundaries. Microbial growth and calcite precipitation occurred to a greater extent in areas behind the fabricated obstacles and less in high-velocity orifices.« less
A Data-Driven Approach for Daily Real-Time Estimates and Forecasts of Near-Surface Soil Moisture
NASA Technical Reports Server (NTRS)
Koster, Randal D.; Reichle, Rolf H.; Mahanama, Sarith P. P.
2017-01-01
NASAs Soil Moisture Active Passive (SMAP) mission provides global surface soil moisture retrievals with a revisit time of 2-3 days and a latency of 24 hours. Here, to enhance the utility of the SMAP data, we present an approach for improving real-time soil moisture estimates (nowcasts) and for forecasting soil moisture several days into the future. The approach, which involves using an estimate of loss processes (evaporation and drainage) and precipitation to evolve the most recent SMAP retrieval forward in time, is evaluated against subsequent SMAP retrievals themselves. The nowcast accuracy over the continental United States (CONUS) is shown to be markedly higher than that achieved with the simple yet common persistence approach. The accuracy of soil moisture forecasts, which rely on precipitation forecasts rather than on precipitation measurements, is reduced relative to nowcast accuracy but is still significantly higher than that obtained through persistence.
NASA Astrophysics Data System (ADS)
Keane, Richard J.; Plant, Robert S.; Tennant, Warren J.
2016-05-01
The Plant-Craig stochastic convection parameterization (version 2.0) is implemented in the Met Office Regional Ensemble Prediction System (MOGREPS-R) and is assessed in comparison with the standard convection scheme with a simple stochastic scheme only, from random parameter variation. A set of 34 ensemble forecasts, each with 24 members, is considered, over the month of July 2009. Deterministic and probabilistic measures of the precipitation forecasts are assessed. The Plant-Craig parameterization is found to improve probabilistic forecast measures, particularly the results for lower precipitation thresholds. The impact on deterministic forecasts at the grid scale is neutral, although the Plant-Craig scheme does deliver improvements when forecasts are made over larger areas. The improvements found are greater in conditions of relatively weak synoptic forcing, for which convective precipitation is likely to be less predictable.
NASA Astrophysics Data System (ADS)
Chobaut, Nicolas; Carron, Denis; Saelzle, Peter; Drezet, Jean-Marie
2016-11-01
Solutionizing and quenching are the key steps in the fabrication of heat-treatable aluminum parts such as AA2618 compressor impellers for turbochargers as they highly impact the mechanical characteristics of the product. In particular, quenching induces residual stresses that can cause unacceptable distortions during machining and unfavorable stresses in service. Predicting and controlling stress generation during quenching of large AA2618 forgings are therefore of particular interest. Since possible precipitation during quenching may affect the local yield strength of the material and thus impact the level of macroscale residual stresses, consideration of this phenomenon is required. A material model accounting for precipitation in a simple but realistic way is presented. Instead of modeling precipitation that occurs during quenching, the model parameters are identified using a limited number of tensile tests achieved after representative interrupted cooling paths in a Gleeble machine. This material model is presented, calibrated, and validated against constrained coolings in a Gleeble blocked-jaws configuration. Applications of this model are FE computations of stress generation during quenching of large AA2618 forgings for compressor impellers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Yiqun; Jordanova, Vania K.; Ridley, Aaron J.
Electron precipitation down to the atmosphere due to wave-particle scattering in the magnetosphere contributes significantly to the auroral ionospheric conductivity. In order to obtain the auroral conductivity in global MHD models that are incapable of capturing kinetic physics in the magnetosphere, MHD parameters are often used to estimate electron precipitation flux for the conductivity calculation. Such an MHD approach, however, lacks self-consistency in representing the magnetosphere-ionosphere coupling processes. In this study we improve the coupling processes in global models with a more physical method. We calculate the physics-based electron precipitation from the ring current and map it to the ionosphericmore » altitude for solving the ionospheric electrodynamics. In particular, we use the BATS-R-US (Block Adaptive Tree Scheme-Roe type-Upstream) MHD model coupled with the kinetic ring current model RAM-SCB (Ring current-Atmosphere interaction Model with Self-Consistent Magnetic field (B)) that solves pitch angle-dependent electron distribution functions, to study the global circulation dynamics during the 25–26 January 2013 storm event. Since the electron precipitation loss is mostly governed by wave-particle resonant scattering in the magnetosphere, we further investigate two loss methods of specifying electron precipitation loss associated with wave-particle interactions: (1) using pitch angle diffusion coefficients D αα(E,α) determined from the quasi-linear theory, with wave spectral and plasma density obtained from statistical observations (named as “diffusion coefficient method”) and (2) using electron lifetimes τ(E) independent on pitch angles inferred from the above diffusion coefficients (named as “lifetime method”). We found that both loss methods demonstrate similar temporal evolution of the trapped ring current electrons, indicating that the impact of using different kinds of loss rates is small on the trapped electron population. Furthermore, for the precipitated electrons, the lifetime method hardly captures any precipitation in the large L shell (i.e., 4 < L < 6.5) region, while the diffusion coefficient method produces much better agreement with NOAA/POES measurements, including the spatial distribution and temporal evolution of electron precipitation in the region from the premidnight through the dawn to the dayside. Further comparisons of the precipitation energy flux to DMSP observations indicates that the new physics-based precipitation approach using diffusion coefficients for the ring current electron loss can explain the diffuse electron precipitation in the dawn sector, such as the enhanced precipitation flux at auroral latitudes and flux drop near the subauroral latitudes, but the traditional MHD approach largely overestimates the precipitation flux at lower latitudes.« less
Yu, Yiqun; Jordanova, Vania K.; Ridley, Aaron J.; ...
2016-09-01
Electron precipitation down to the atmosphere due to wave-particle scattering in the magnetosphere contributes significantly to the auroral ionospheric conductivity. In order to obtain the auroral conductivity in global MHD models that are incapable of capturing kinetic physics in the magnetosphere, MHD parameters are often used to estimate electron precipitation flux for the conductivity calculation. Such an MHD approach, however, lacks self-consistency in representing the magnetosphere-ionosphere coupling processes. In this study we improve the coupling processes in global models with a more physical method. We calculate the physics-based electron precipitation from the ring current and map it to the ionosphericmore » altitude for solving the ionospheric electrodynamics. In particular, we use the BATS-R-US (Block Adaptive Tree Scheme-Roe type-Upstream) MHD model coupled with the kinetic ring current model RAM-SCB (Ring current-Atmosphere interaction Model with Self-Consistent Magnetic field (B)) that solves pitch angle-dependent electron distribution functions, to study the global circulation dynamics during the 25–26 January 2013 storm event. Since the electron precipitation loss is mostly governed by wave-particle resonant scattering in the magnetosphere, we further investigate two loss methods of specifying electron precipitation loss associated with wave-particle interactions: (1) using pitch angle diffusion coefficients D αα(E,α) determined from the quasi-linear theory, with wave spectral and plasma density obtained from statistical observations (named as “diffusion coefficient method”) and (2) using electron lifetimes τ(E) independent on pitch angles inferred from the above diffusion coefficients (named as “lifetime method”). We found that both loss methods demonstrate similar temporal evolution of the trapped ring current electrons, indicating that the impact of using different kinds of loss rates is small on the trapped electron population. Furthermore, for the precipitated electrons, the lifetime method hardly captures any precipitation in the large L shell (i.e., 4 < L < 6.5) region, while the diffusion coefficient method produces much better agreement with NOAA/POES measurements, including the spatial distribution and temporal evolution of electron precipitation in the region from the premidnight through the dawn to the dayside. Further comparisons of the precipitation energy flux to DMSP observations indicates that the new physics-based precipitation approach using diffusion coefficients for the ring current electron loss can explain the diffuse electron precipitation in the dawn sector, such as the enhanced precipitation flux at auroral latitudes and flux drop near the subauroral latitudes, but the traditional MHD approach largely overestimates the precipitation flux at lower latitudes.« less
Shaikh, Abdul S; Guo, Ruichen
2017-01-01
Phenytoin has very challenging pharmacokinetic properties. To prevent its toxicity and ensure efficacy, continuous therapeutic monitoring is required. It is hard to get a simple, accurate, rapid, easily available, economical and highly sensitive assay in one method for therapeutic monitoring of phenytoin. The present study is directed towards establishing and validating a simpler, rapid, an accurate, highly sensitive, novel and environment friendly liquid chromatography/mass spectrometry (LC/MS) method for offering rapid and reliable TDM results of phenytoin in epileptic patients to physicians and clinicians for making immediate and rational decision. 27 epileptics patients with uncontrolled seizures or suspected of non-compliance or toxicity of phenytoin were selected and advised for TDM of phenytoin by neurologists of Qilu Hospital Jinan, China. The LC/MS assay was used for performing of therapeutic monitoring of phenytoin. The Agilent 1100 LC/MS system was used for TDM. The mixture of Ammonium acetate 5mM: Methanol at (35: 65 v/v) was used for the composition of mobile phase. The Diamonsil C18 (150mm×4.6mm, 5μm) column was used for the extraction of analytes in plasma. The samples were prepared with one step simple protein precipitation method. The technique was validated with the guidelines of International Conference on Harmonisation (ICH). The calibration curve demonstrated decent linearity within (0.2-20 µg/mL) concentration range with linearity equation, y= 0.0667855 x +0.00241785 and correlation coefficient (R2) of 0.99928. The specificity, recovery, linearity, accuracy, precision and stability results were within the accepted limits. The concentration of 0.2 µg/mL was observed as lower limit of quantitation (LLOQ), which is 12.5 times lower than the currently available enzyme-multiplied immunoassay technique (EMIT) for measurement of phenytoin in epilepsy patients. A rapid, simple, economical, precise, highly sensitive and novel LC/MS assay has been established, validated and applied successfully in TDM of 27 epileptics patients. It was alarmingly found that TDM results of all these patients were out of safe range except two patients. However, it needs further evaluation. Besides TDM, the stated method can also be applied in bioequivalence, pharmacokinetics, toxicokinetics and pharmacovigilance studies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Astrophysics Data System (ADS)
Werner, Micha; Westerhoff, Rogier; Moore, Catherine
2017-04-01
Quantitative estimates of recharge due to precipitation excess are an important input to determining sustainable abstraction of groundwater resources, as well providing one of the boundary conditions required for numerical groundwater modelling. Simple water balance models are widely applied for calculating recharge. In these models, precipitation is partitioned between different processes and stores; including surface runoff and infiltration, storage in the unsaturated zone, evaporation, capillary processes, and recharge to groundwater. Clearly the estimation of recharge amounts will depend on the estimation of precipitation volumes, which may vary, depending on the source of precipitation data used. However, the partitioning between the different processes is in many cases governed by (variable) intensity thresholds. This means that the estimates of recharge will not only be sensitive to input parameters such as soil type, texture, land use, potential evaporation; but mainly to the precipitation volume and intensity distribution. In this paper we explore the sensitivity of recharge estimates due to difference in precipitation volumes and intensity distribution in the rainfall forcing over the Canterbury region in New Zealand. We compare recharge rates and volumes using a simple water balance model that is forced using rainfall and evaporation data from; the NIWA Virtual Climate Station Network (VCSN) data (which is considered as the reference dataset); the ERA-Interim/WATCH dataset at 0.25 degrees and 0.5 degrees resolution; the TRMM-3B42 dataset; the CHIRPS dataset; and the recently releases MSWEP dataset. Recharge rates are calculated at a daily time step over the 14 year period from the 2000 to 2013 for the full Canterbury region, as well as at eight selected points distributed over the region. Lysimeter data with observed estimates of recharge are available at four of these points, as well as recharge estimates from the NGRM model, an independent model constructed using the same base data and forced with the VCSN precipitation dataset. Results of the comparison of the rainfall products show that there are significant differences in precipitation volume between the forcing products; in the order of 20% at most points. Even more significant differences can be seen, however, in the distribution of precipitation. For the VCSN data wet days (defined as >0.1mm precipitation) occur on some 20-30% of days (depending on location). This is reasonably reflected in the TRMM and CHIRPS data, while for the re-analysis based products some 60%to 80% of days are wet, albeit at lower intensities. These differences are amplified in the recharge estimates. At most points, volumetric differences are in the order of 40-60%, though difference may range into several orders of magnitude. The frequency distributions of recharge also differ significantly, with recharge over 0.1 mm occurring on 4-6% of days for the VCNS, CHIRPS, and TRMM datasets, but up to the order of 12% of days for the re-analysis data. Comparison against the lysimeter data show estimates to be reasonable, in particular for the reference datasets. Surprisingly some estimates of the lower resolution re-analysis datasets are reasonable, though this does seem to be due to lower recharge being compensated by recharge occurring more frequently. These results underline the importance of correct representation of rainfall volumes, as well as of distribution, particularly when evaluating possible changes to for example changes in precipitation intensity and volume. This holds for precipitation data derived from satellite based and re-analysis products, but also for interpolated data from gauges, where the distribution of intensities is strongly influenced by the interpolation process.
Helmy, Sally A.; El Bedaiwy, Heba M.
2013-01-01
A new and simple HPLC assay method was developed and validated for the determination of etamsylate in human plasma. After protein precipitation with 6% perchloric acid, satisfactory separation was achieved on a HyPURITY C18 column (250 mm × 4.6 mm, 5 μm) using a mobile phase comprising 20 mM sodium dihydrogen phosphate-2 hydrate (pH was adjusted to 3.5 by phosphoric acid) and acetonitrile at a ratio of 95:5 v/v. The elution was isocratic at ambient temperature with a flow rate of 0.75 ml/min. Allopurinol was used as internal standard. The calibration curve was linear over the range from 0.25 to 20 μg/ml (r2 = 0.999). The limit of quantification for etamsylate in plasma was 0.25 μg/ml. The within day coefficient of variance (%CV) ranged from 3.9% to 10.2%, whereas the between-day %CV ranged from 3.1% to 8.7%. The assay method has been successfully used to estimate the pharmacokinetics of etamsylate after oral administration of a 500 mg tablet under fasting conditions to 24 healthy Egyptian human male volunteers. Various pharmacokinetic parameters including AUC0–t, AUC0–∞, Cmax, Tmax, t1/2, MRT, Cl/F, and Vd/F were determined from plasma concentration–time profile of etamsylate. PMID:24227961
Leveque, Nathalie L; Charman, William N; Chiu, Francis C K
2006-01-18
A sensitive, simple and fast liquid chromatography tandem mass spectrometry (HPLC-MS/MS) method for the determination of proguanil (PG) and its metabolites, cycloguanil (CG) and 1-(4-chlorophenyl)biguanide (4CPB), was developed and validated over a concentration range of 1-2000 ng/mL using only 50 microL of blood or plasma. After a simple solvent precipitation procedure, the supernatant was analysed directly by HPLC-MS/MS. Separation was achieved using an ethyl-linked phenyl reverse phase column with polar endcapping with an acetonitrile-water-formic acid gradient. Mass spectrometry was performed using a triple quadrupole mass spectrometer operating in positive electrospray ionization mode. The elution of PG (254.07-->169.99), CG (252.12-->195.02) and 4CPB (212.06-->153.06) was monitored using selected reaction monitoring. The three compounds and the internal standard (chloroproguanil) were well separated by HPLC and no interfering peaks were detected at the usual concentrations found in blood and plasma. The limit of quantification of PG and CG was 1 ng/mL and 5 ng/mL for 4CPB in rat blood and plasma. The extraction efficiency of PG, CG and 4CPB from rat blood and plasma was higher than 73%. The intra- and inter-assay variability of PG, CG and 4CPB were within 12% and the accuracy within +/-5%. This new assay offers higher sensitivity and a much shorter run time over earlier methods.
Ahmadi-Jouibari, Toraj; Fattahi, Nazir; Shamsipur, Mojtaba; Pirsaheb, Meghdad
2013-11-01
A novel, simple, rapid and sensitive dispersive liquid-liquid microextraction method based on the solidification of floating organic drop (DLLME-SFO) combined with high-performance liquid chromatography-ultraviolet detection (HPLC-UV) was used to determine opium alkaloids in human plasma. During the extraction procedure, plasma protein was precipitated by using a mixture of zinc sulfate solution and acetonitrile. Some effective parameters on extraction were studied and optimized. Under the optimum conditions (extraction solvent: 30.0 μl 1-undecanol; disperser solvent: 470 μl acetone; pH: 9; salt addition: 1%(w/v) NaCl and extraction time: 0.5 min), calibration curves are linear in the range of 1.5-1000 μgl(-1) and limit of detections (LODs) are in the range of 0.5-5 μgl(-1). The relative standard deviations (RSDs) for 100 μgl(-1) of morphine and codeine, 10.0 μgl(-1) of papaverine and 20.0 μgl(-1) of noscapine in diluted human plasma are in the range of 4.3-7.4% (n=5). Finally, the method was successfully applied in the determination of opium alkaloids in the actual human plasma samples. The relative recoveries of plasma samples spiked with alkaloids are 88-110.5%. The obtained results show that DLLME-SFO combined with HPLC-UV is a fast and simple method for the determination of opium alkaloids in human plasma. Copyright © 2013 Elsevier B.V. All rights reserved.
Effect of the precipitation interpolation method on the performance of a snowmelt runoff model
NASA Astrophysics Data System (ADS)
Jacquin, Alexandra
2014-05-01
Uncertainties on the spatial distribution of precipitation seriously affect the reliability of the discharge estimates produced by watershed models. Although there is abundant research evaluating the goodness of fit of precipitation estimates obtained with different gauge interpolation methods, few studies have focused on the influence of the interpolation strategy on the response of watershed models. The relevance of this choice may be even greater in the case of mountain catchments, because of the influence of orography on precipitation. This study evaluates the effect of the precipitation interpolation method on the performance of conceptual type snowmelt runoff models. The HBV Light model version 4.0.0.2, operating at daily time steps, is used as a case study. The model is applied in Aconcagua at Chacabuquito catchment, located in the Andes Mountains of Central Chile. The catchment's area is 2110[Km2] and elevation ranges from 950[m.a.s.l.] to 5930[m.a.s.l.] The local meteorological network is sparse, with all precipitation gauges located below 3000[m.a.s.l.] Precipitation amounts corresponding to different elevation zones are estimated through areal averaging of precipitation fields interpolated from gauge data. Interpolation methods applied include kriging with external drift (KED), optimal interpolation method (OIM), Thiessen polygons (TP), multiquadratic functions fitting (MFF) and inverse distance weighting (IDW). Both KED and OIM are able to account for the existence of a spatial trend in the expectation of precipitation. By contrast, TP, MFF and IDW, traditional methods widely used in engineering hydrology, cannot explicitly incorporate this information. Preliminary analysis confirmed that these methods notably underestimate precipitation in the study catchment, while KED and OIM are able to reduce the bias; this analysis also revealed that OIM provides more reliable estimations than KED in this region. Using input precipitation obtained by each method, HBV parameters are calibrated with respect to Nash-Sutcliffe efficiency. The performance of HBV in the study catchment is not satisfactory. Although volumetric errors are modest, efficiency values are lower than 70%. Discharge estimates resulting from the application of TP, MFF and IDW obtain similar model efficiencies and volumetric errors. These error statistics moderately improve if KED or OIM are used instead. Even though the quality of precipitation estimates of distinct interpolation methods is dissimilar, the results of this study show that these differences do not necessarily produce noticeable changes in HBV's model performance statistics. This situation arises because the calibration of the model parameters allows some degree of compensation of deficient areal precipitation estimates, mainly through the adjustment of model simulated evaporation and glacier melt, as revealed by the analysis of water balances. In general, even if there is a good agreement between model estimated and observed discharge, this information is not sufficient to assert that the internal hydrological processes of the catchment are properly simulated by a watershed model. Other calibration criteria should be incorporated if a more reliable representation of these processes is desired. Acknowledgements: This research was funded by FONDECYT, Research Project 1110279. The HBV Light software used in this study was kindly provided by J. Seibert, Department of Geography, University of Zürich.
Associating extreme precipitation events to parent cyclones in gridded data
NASA Astrophysics Data System (ADS)
Rhodes, Ruari; Shaffrey, Len; Gray, Sue
2015-04-01
When analysing the relationship of regional precipitation to its parent cyclone, it is insufficient to consider the cyclone's region of influence as a fixed radius from the centre due to the irregular shape of rain bands. A new method is therefore presented which allows the use of objective feature tracking data in the analysis of regional precipitation. Utilising the spatial extent of precipitation in gridded datasets, the most appropriate cyclone(s) may be associated with regional precipitation events. This method is applied in the context of an analysis of the influence of clustering and stalling of extra-tropical cyclones in the North Atlantic on total precipitation accumulations over England and Wales. Cyclone counts and residence times are presented for historical records (ERA-Interim) and future projections (HadGEM2-ES) of extreme (> 98th percentile) precipitation accumulations over England and Wales, for accumulation periods ranging from one day to one month.
Agrawal, Poonam; Laddha, Kirti
2017-04-01
This study was undertaken to isolate and quantify aristolochic acid in Aristolochia indica stem and Apama siliquosa root. Aristolochic acid is an important biomarker component present in the Aristolochiaceae family. The isolation method involved simple solvent extraction, precipitation and further purification, using recrystallization. The structure of the compound was confirmed using infrared spectroscopy, mass spectrometry and nuclear magnetic resonance. A specific and rapid high-performance thin layer chromatography (HPTLC) method was developed for analysis of aristolochic acid. The method involved separation on the silica gel 60 F 254 plates using the single solvent system of n-hexane: chloroform: methanol. The method showed good linear relationship in the range 0.4-2.0 μg/spot with r 2 = 0.998. The limit of detection and limit of quantification were 62.841 ng/spot and 209.47 ng/spot, respectively. The proposed validated HPTLC method was found to be an easy to use, accurate and convenient method that could be successfully used for standardization and quality assessment of herbal material as well as formulations containing different species of the Aristolochiaceae family. Copyright © 2016. Published by Elsevier B.V.
Hao, Ruijie; Adoligbe, Camus; Jiang, Bijie; Zhao, Xianlin; Gui, Linsheng; Qu, Kaixing; Wu, Sen; Zan, Linsen
2015-01-01
Longissimus dorsi muscle (LD) proteomics provides a novel opportunity to reveal the molecular mechanism behind intramuscular fat deposition. Unfortunately, the vast amounts of lipids and nucleic acids in this tissue hampered LD proteomics analysis. Trichloroacetic acid (TCA)/acetone precipitation is a widely used method to remove contaminants from protein samples. However, the high speed centrifugation employed in this method produces hard precipitates, which restrict contaminant elimination and protein re-dissolution. To address the problem, the centrifugation precipitates were first grinded with a glass tissue grinder and then washed with 90% acetone (TCA/acetone-G-W) in the present study. According to our result, the treatment for solid precipitate facilitated non-protein contaminant removal and protein re-dissolution, ultimately improving two-dimensional gel electrophoresis (2-DE) analysis. Additionally, we also evaluated the effect of sample drying on 2-DE profile as well as protein yield. It was found that 30 min air-drying did not result in significant protein loss, but reduced horizontal streaking and smearing on 2-DE gel compared to 10 min. In summary, we developed an optimized TCA/acetone precipitation method for protein extraction of LD, in which the modifications improved the effectiveness of TCA/acetone method.
Hao, Ruijie; Adoligbe, Camus; Jiang, Bijie; Zhao, Xianlin; Gui, Linsheng; Qu, Kaixing; Wu, Sen; Zan, Linsen
2015-01-01
Longissimus dorsi muscle (LD) proteomics provides a novel opportunity to reveal the molecular mechanism behind intramuscular fat deposition. Unfortunately, the vast amounts of lipids and nucleic acids in this tissue hampered LD proteomics analysis. Trichloroacetic acid (TCA)/acetone precipitation is a widely used method to remove contaminants from protein samples. However, the high speed centrifugation employed in this method produces hard precipitates, which restrict contaminant elimination and protein re-dissolution. To address the problem, the centrifugation precipitates were first grinded with a glass tissue grinder and then washed with 90% acetone (TCA/acetone-G-W) in the present study. According to our result, the treatment for solid precipitate facilitated non-protein contaminant removal and protein re-dissolution, ultimately improving two-dimensional gel electrophoresis (2-DE) analysis. Additionally, we also evaluated the effect of sample drying on 2-DE profile as well as protein yield. It was found that 30 min air-drying did not result in significant protein loss, but reduced horizontal streaking and smearing on 2-DE gel compared to 10 min. In summary, we developed an optimized TCA/acetone precipitation method for protein extraction of LD, in which the modifications improved the effectiveness of TCA/acetone method. PMID:25893432
Handlogten, Michael W; Stefanick, Jared F; Deak, Peter E; Bilgicer, Basar
2014-09-07
In a previous study, we demonstrated a non-chromatographic affinity-based precipitation method, using trivalent haptens, for the purification of mAbs. In this study, we significantly improved this process by using a simplified bivalent peptidic hapten (BPH) design, which enables facile and rapid purification of mAbs while overcoming the limitations of the previous trivalent design. The improved affinity-based precipitation method (ABP(BPH)) combines the simplicity of salt-induced precipitation with the selectivity of affinity chromatography for the purification of mAbs. The ABP(BPH) method involves 3 steps: (i) precipitation and separation of protein contaminants larger than immunoglobulins with ammonium sulfate; (ii) selective precipitation of the target-antibody via BPH by inducing antibody-complex formation; (iii) solubilization of the antibody pellet and removal of BPH with membrane filtration resulting in the pure antibody. The ABP(BPH) method was evaluated by purifying the pharmaceutical antibody trastuzumab from common contaminants including CHO cell conditioned media, DNA, ascites fluid, other antibodies, and denatured antibody with >85% yield and >97% purity. Importantly, the purified antibody demonstrated native binding activity to cell lines expressing the target protein, HER2. Combined, the ABP(BPH) method is a rapid and scalable process for the purification of antibodies with the potential to improve product quality while decreasing purification costs.
NASA Astrophysics Data System (ADS)
Alharbi, Raied; Hsu, Kuolin; Sorooshian, Soroosh; Braithwaite, Dan
2018-01-01
Precipitation is a key input variable for hydrological and climate studies. Rain gauges are capable of providing reliable precipitation measurements at point scale. However, the uncertainty of rain measurements increases when the rain gauge network is sparse. Satellite -based precipitation estimations appear to be an alternative source of precipitation measurements, but they are influenced by systematic bias. In this study, a method for removing the bias from the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) over a region where the rain gauge is sparse is investigated. The method consists of monthly empirical quantile mapping, climate classification, and inverse-weighted distance method. Daily PERSIANN-CCS is selected to test the capability of the method for removing the bias over Saudi Arabia during the period of 2010 to 2016. The first six years (2010 - 2015) are calibrated years and 2016 is used for validation. The results show that the yearly correlation coefficient was enhanced by 12%, the yearly mean bias was reduced by 93% during validated year. Root mean square error was reduced by 73% during validated year. The correlation coefficient, the mean bias, and the root mean square error show that the proposed method removes the bias on PERSIANN-CCS effectively that the method can be applied to other regions where the rain gauge network is sparse.
Labala, Suman; Mandapalli, Praveen Kumar; Bhatnagar, Shubhmita; Venuganti, Venkata Vamsi Krishna
2015-01-01
The objective of this study is to prepare and characterize polymeric self-assembled layer-by-layer microcapsules (LbL-MC) to deliver a model protein, bovine serum albumin (BSA). The aim is to compare the BSA encapsulation in LbL-MC using co-precipitation and adsorption methods. In co-precipitation method, BSA was co-precipitated with growing calcium carbonate particles to form a core template. Later, poly(styrene sulfonate) and poly(allylamine hydrochloride) were sequentially adsorbed onto the CaCO3 templates. In adsorption method, preformed LbL-MC were incubated with BSA and encapsulation efficiency is optimized for pH and salt concentration. Free and BSA-encapsulated LbL-MC were characterized using Zetasizer, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy and differential scanning calorimeter. Later, in vitro release studies were performed using dialysis membrane method at pH 4, 7.4 and 9. Results from Zetasizer and SEM showed free LbL-MC with an average size and zeta-potential of 2.0 ± 0.6 μm and 8.1 ± 1.9 mV, respectively. Zeta-potential of BSA-loaded LbL-MC was (-)7.4 ± 0.7 mV and (-)5.7 ± 1.0 mV for co-precipitation and adsorption methods, respectively. In adsorption method, BSA encapsulation in LbL-MC was found to be greater at pH 6.0 and 0.2 M NaCl. Co-precipitation method provided four-fold greater encapsulation efficiency (%) of BSA in LbL-MC compared with adsorption method. At pH 4, the BSA release from LbL-MC was extended up to 120 h. Polyacrylamide gel electrophoresis showed that BSA encapsulated in LBL-MC through co-precipitation is stable toward trypsin treatment. In conclusion, co-precipitation method provided greater encapsulation of BSA in LbL-MC. Furthermore, LbL-MC can be developed as carriers for pH-controlled protein delivery.
NASA Astrophysics Data System (ADS)
Zeimetz, Fraenz; Schaefli, Bettina; Artigue, Guillaume; García Hernández, Javier; Schleiss, Anton J.
2017-08-01
Extreme floods are commonly estimated with the help of design storms and hydrological models. In this paper, we propose a new method to take into account the relationship between precipitation intensity (P) and air temperature (T) to account for potential snow accumulation and melt processes during the elaboration of design storms. The proposed method is based on a detailed analysis of this P-T relationship in the Swiss Alps. The region, no upper precipitation intensity limit is detectable for increasing temperature. However, a relationship between the highest measured temperature before a precipitation event and the duration of the subsequent event could be identified. An explanation for this relationship is proposed here based on the temperature gradient measured before the precipitation events. The relevance of these results is discussed for an example of Probable Maximum Precipitation-Probable Maximum Flood (PMP-PMF) estimation for the high mountainous Mattmark dam catchment in the Swiss Alps. The proposed method to associate a critical air temperature to a PMP is easily transposable to similar alpine settings where meteorological soundings as well as ground temperature and precipitation measurements are available. In the future, the analyses presented here might be further refined by distinguishing between precipitation event types (frontal versus orographic).
USDA-ARS?s Scientific Manuscript database
Net Primary Production (NPP), the difference between CO2 fixed by photosynthesis and CO2 lost to autotrophic respiration, is one of the most important components of the carbon cycle. Our goal was to develop a simple regression model to estimate global NPP using climate and land cover data. Approxima...
A simple diagnostic model of cumulus convective clouds is developed and used in a sensitivity study to examine the extent to which the rate of change of mixed and cloud layer pollutant concentration is influenced by vertical transport and chemical transformation processes occurri...
Investigating Dissolution and Precipitation Phenomena with a Smartphone Microscope
ERIC Educational Resources Information Center
Lumetta, Gregg J.; Arcia, Edgar
2016-01-01
A novel smartphone microscope can be used to observe the dissolution and crystallization of sodium chloride at a microscopic level. Observation of these seemingly simple phenomena through the microscope at 100× magnification can actually reveal some surprising behavior. These experiments offer the opportunity to discuss some basic concepts such as…
Recycling Lithium Carbonate/Lithium Hydroxide Waste
NASA Technical Reports Server (NTRS)
Flowers, J.; Flowers, J.
1983-01-01
Hazardous waste disposal problem eliminated by regeneration. Li2CO3/ LiOH recycling process relies on low solubility of alkali carbonates in corresponding hydroxides. Li2CO3 precipitate calcined to LI2O, then rehydrated LiOH. Regeneration eliminates need to dispose caustic waste and uses less energy than simple calcination of entire waste mass.
Soxhlet Extraction of Caffeine from Beverage Plants
NASA Astrophysics Data System (ADS)
Adam, D. J.; Mainwaring, J.; Quigley, Michael N.
1996-12-01
A simple procedure is described for the extraction of caffeine from coffee beans or granules, tea leaves, mat leaves, etc. Since dichloromethane and several other hazardous substances are used, the procedure is best performed in a fume hood. Following extraction, melting point determination of the crystalline precipitate establishes its positive identity. Includes 33 references.
Air quality climate in the Columbia River Basin.
Sue A. Ferguson
1998-01-01
Aspects of climate that influence air quality in the Columbia River basin of the Northwestern United States are described. A few, relatively simple, analytical tools were developed to show the spatial and temporal patterns of mean-monthly mixing heights, precipitation scavenging, upper level and surface trajectory winds, and drought that inhibit pollution uptake. Also...
NASA Astrophysics Data System (ADS)
Lui, Yuk Sing; Tam, Chi-Yung; Lau, Ngar-Cheung
2018-04-01
This study examines the impacts of climate change on precipitation extremes in the Asian monsoon region during boreal summer, based on simulations from the 20-km Meteorological Research Institute atmospheric general circulation model. The model can capture the summertime monsoon rainfall, with characteristics similar to those from Tropical Rainfall Measuring Mission and Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation. By comparing the 2075-2099 with the present-day climate simulations, there is a robust increase of the mean rainfall in many locations due to a warmer climate. Over southeastern China, the Baiu rainband, Bay of Bengal and central India, extreme precipitation rates are also enhanced in the future, which can be inferred from increases of the 95th percentile of daily precipitation, the maximum accumulated precipitation in 5 consecutive days, the simple daily precipitation intensity index, and the scale parameter of the fitted gamma distribution. In these regions, with the exception of the Baiu rainband, most of these metrics give a fractional change of extreme rainfall per degree increase of the lower-tropospheric temperature of 5 to 8.5% K-1, roughly consistent with the Clausius-Clapeyron relation. However, over the Baiu area extreme precipitation change scales as 3.5% K-1 only. We have also stratified the rainfall data into those associated with tropical cyclones (TC) and those with other weather systems. The AGCM gives an increase of the accumulated TC rainfall over southeastern China, and a decrease in southern Japan in the future climate. The latter can be attributed to suppressed TC occurrence in southern Japan, whereas increased accumulated rainfall over southeastern China is due to more intense TC rain rate under global warming. Overall, non-TC weather systems are the main contributor to enhanced precipitation extremes in various locations. In the future, TC activities over southeastern China tend to further exacerbate the precipitation extremes, whereas those in the Baiu region lead to weaker changes of these extremes.
NASA Astrophysics Data System (ADS)
Li, Mao-Fen; Luo, Wei; Li, Hailiang; Liu, Enping; Li, Yuping
2018-04-01
Frequent occurrences of extreme precipitation events have significant impacts on agricultural production. Tropical agriculture has been playing an important role in national economy in China. A precise understanding of variability in extreme precipitation indices and their impacts on crop yields are of great value for farmers and policy makers at county level, particularly in tropical China where almost all agriculture is rainfed. This research has studied observed trends in extreme precipitation indices (a total of 10) during 1988-2013 over Hainan island, tropical China. Mann-Kendall nonparametric test was adopted for trend detection and the results showed that most of precipitation indices showed increasing trend. Since rice is the most important staple food in Hainan island, the impacts of extreme precipitation indices on rice yields were also analyzed through simple correlations. In general, the rainy days and rain intensity in late rice growing season showed increasing trend over Hainan island. The rice yield presented ninth-degree polynomial technological trend at all stations and increasing trend for early rice yield. Late rice yield showed a decreasing trend in some parts of Hainan island. Spearman rank correlation coefficient indicated that the correlation was more pronounced between extreme precipitation indices and yields at Haikou site for early rice, and Haikou, Sanya, and Qionghai stations for late rice, respectively. Further results also indicated that there were statistically significant positive trends of R10 and R20 (number of days with precipitation ≥10 mm and precipitation ≥20 mm, respectively) from July to November at Haikou (located in north of Hainan island), and this positive trend may be a disadvantage for late rice yield. The cut-off value of extreme precipitation indices and its correlation with rice yield anomaly indices for Hainan island provided a foundation for vulnerability assessment as well as a contribution to set up contingency program under potential climate change conditions.
Estimating the Response of Mid-latitude Orographic Precipitation to Global Warming
NASA Astrophysics Data System (ADS)
Shi, Xiaoming
The possible change in orographic precipitation in response to global warming is a rising concern under climate change, which could potentially cause significant societal impact. A general circulation model was employed to simulate the climate on an aquaplanet which has idealized mountains at its mid-latitudes. It was found that orographic precipitation at northern mid-latitudes could increase by rates faster than the Clausius-Clapeyron scaling, ˜7%/K of surface warming, in doubling CO2 simulations, while at southern mid-latitudes orographic precipitation decreased. The frequency of extreme events increased at all latitudes of the idealized mountains. Through a simple diagnostic model it was revealed that the changes in the climatological means of orographic precipitation rates were mostly determined by the changes in three variables: the speed of the wind component perpendicular to a mountain, the vertical displacement of saturated parcels, and the moist adiabatic lapse rate of saturation specific humidity. The last variable had relatively uniform contribution to the total changes in orographic precipitation across different latitudes, about 4 -- 5%/K. But contributions from the changes in wind speed and saturated vertical displacement were found to have strong north-south asymmetry, which were linked to the poleward shift of storm tracks. The changes in wind speed had positive contributions in general, with larger contributions at higher mid-latitudes. While the changes in saturated vertical displacement had negative contributions at all latitudes, but larger negative contributions were located at lower mid-latitudes. Although the poleward shift of storm tracks greatly affects regional precipitation, following the poleward shift of storm tracks the cumulative distribution function (CDF) of precipitation at the latitudes of maximum precipitation in the control simulation is very similar to that in the warm climate simulation, except that precipitation intensity was positively shifted by a constant factor --- mainly due to changes in the moist adiabatic lapse rate of saturation specific humidity.
McAfee, Stephanie A.; Pederson, Gregory T.; Woodhouse, Connie A.; McCabe, Gregory
2017-01-01
Water managers are increasingly interested in better understanding and planning for projected resource impacts from climate change. In this management-guided study, we use a very large suite of synthetic climate scenarios in a statistical modeling framework to simultaneously evaluate how (1) average temperature and precipitation changes, (2) initial basin conditions, and (3) temporal characteristics of the input climate data influence water-year flow in the Upper Colorado River. The results here suggest that existing studies may underestimate the degree of uncertainty in future streamflow, particularly under moderate temperature and precipitation changes. However, we also find that the relative severity of future flow projections within a given climate scenario can be estimated with simple metrics that characterize the input climate data and basin conditions. These results suggest that simple testing, like the analyses presented in this paper, may be helpful in understanding differences between existing studies or in identifying specific conditions for physically based mechanistic modeling. Both options could reduce overall cost and improve the efficiency of conducting climate change impacts studies.
Yue, Yanfeng; Li, Yunchao; Bridges, Craig A.; ...
2016-11-29
A novel and simple perturbation-assisted nanofusion (PNF) synthetic strategy was developed for the fabrication of stable hierarchically superstructured metal sulfides. This promising approach, based on a kinetically controlled precipitation to simultaneously condense and re-dissolve polymorphic nanocrystallites, provides the resultant samples with a unique mesoporous framework. This PNF approach is environmentally friendly, produces gram-scale products in a matter of hours, and is complimentary to traditional hard or soft templating methods for the construction of mesoporous metal sulfides. PNF derived hierarchical porous CdS exhibited a vastly improved photocatalytic performance over its commercial bulk counterpart under visible light irradiation, demonstrating the advantage ofmore » the porous morphology for photocatalysis resulting from the enlarged surface area and the easy accessibility of the mesopores.« less
Heli, Hossein
2015-01-01
Investigation of the redox properties of drugs and their determination are performed by electrochemical techniques. Data obtained from electrochemical techniques are often correlated with molecular structure and pharmacological activity of drugs. In this regard, different modified electrodes were applied as sensors for quantification of different drugs. A nanocomposite of reduced graphene oxide-cobalt hexacyanoferrate was synthesized by a simple precipitation route. Scanning electron microscopy revealed that the nanocomposite comprised nanoparticles of cobalt hexacyanoferrate attached to the reduced graphene oxide nanosheets. A nanocomposite-modified carbon paste electrode was then fabricated. It represented prominent activity toward the electrocatalytic oxidation of ascorbic acid, and the kinetics of the electrooxidation process was evaluated. Finally, an amperometric method was developed for the quantification of ascorbic acid in different pharmaceutical formulations. PMID:25901152
NASA Astrophysics Data System (ADS)
Hisamochi, R.; Watanabe, Y.; Kurita, N.; Sano, M.; Nakatsuka, T.; Matsuo, M.; Yamamoto, H.; Sugiyama, J.; Tsuda, T.; Tagami, T.
2016-12-01
Oxygen isotope composition (δ18O) of tree-ring cellulose has been used as paleoclimate proxy because its origin is atmospheric precipitation. However, interpretation of tree-ring cellulose δ18O is not simple because source water of tree-ring cellulose (the water took up by tree) is not atmospheric precipitation but soil water or ground water in growing season, precisely. In this study, we investigate the relationship between source water of tree-ring cellulose and precipitation in order to improve interpretation of tree-ring cellulose δ18O as paleoclimate proxy. We collected ten teak (Tectona grandis) plantation samples in Java Island, Indonesia. Teak is deciduous tree and grows in rainy season. Samples were cut into annual rings after cellulose extraction. δ18O of individual rings were measured by TCEA-IRMS at the Research Institute of Humanity and Nature. We calculatedδ18O of source water by means of tree-ring oxygen isotope model and then comparedδ18O of source water and that of monthly atmospheric precipitation at Jakarta (GNIP; Global Network of isotopes in Precipitation). Source waterδ18O shows two types of significant correlation withδ18O in atmospheric precipitation. One is positive correlation withδ18O of atmospheric precipitation in previous rainy season. Another is negative correlation with δ18O of atmospheric precipitation in beginning of the growing season. The former indicates that soil water in growing season contains rainfall in previous rainy season and teak mainly takes it up. The latter is difficult to interpret. It may be related to soil moisutre in beginning of growing season.
NASA Astrophysics Data System (ADS)
Ongoma, Victor; Chen, Haishan; Omony, George William
2018-01-01
This study investigates the variability of extreme rainfall events over East Africa (EA), using indices from the World Meteorological Organization (WMO) Expert Team on Climate Change Detection and Indices (ETCCDI). The analysis was based on observed daily rainfall from 23 weather stations, with length varying within 1961 and 2010. The indices considered are: wet days ( R ≥1 mm), annual total precipitation in wet days (PRCPTOT), simple daily intensity index (SDII), heavy precipitation days ( R ≥ 10 mm), very heavy precipitation days ( R ≥ 20 mm), and severe precipitation ( R ≥ 50 mm). The non-parametric Mann-Kendall statistical analysis was carried out to identify trends in the data. Temporal precipitation distribution was different from station to station. Almost all indices considered are decreasing with time. The analysis shows that the PRCPTOT, very heavy precipitation, and severe precipitation are generally declining insignificantly at 5 % significant level. The PRCPTOT is evidently decreasing over Arid and Semi-Arid Land (ASAL) as compared to other parts of EA. The number of days that recorded heavy rainfall is generally decreasing but starts to rise in the last decade although the changes are insignificant. Both PRCPTOT and heavy precipitation show a recovery in trend starting in the 1990s. The SDII shows a reduction in most areas, especially the in ASAL. The changes give a possible indication of the ongoing climate variability and change which modify the rainfall regime of EA. The results form a basis for further research, utilizing longer datasets over the entire region to reduce the generalizations made herein. Continuous monitoring of extreme events in EA is critical, given that rainfall is projected to increase in the twenty-first century.
Observed heavy precipitation increase confirms theory and early model
NASA Astrophysics Data System (ADS)
Fischer, E. M.; Knutti, R.
2016-12-01
Environmental phenomena are often first observed, and then explained or simulated quantitatively. The complexity and diversity of processes, the range of scales involved, and the lack of first principles to describe many processes make it challenging to predict conditions beyond the ones observed. Here we use the intensification of heavy precipitation as a counterexample, where seemingly complex and potentially computationally intractable processes to first order manifest themselves in simple ways: the intensification of heavy precipitation is now emerging in the observed record across many regions of the world, confirming both theory and a variety of model predictions made decades ago, before robust evidence arose from observations. We here compare heavy precipitation changes over Europe and the contiguous United States across station series and gridded observations, theoretical considerations and multi-model ensembles of GCMs and RCMs. We demonstrate that the observed heavy precipitation intensification aggregated over large areas agrees remarkably well with Clausius-Clapeyron scaling. The observed changes in heavy precipitation are consistent yet somewhat larger than predicted by very coarse resolution GCMs in the 1980s and simulated by the newest generation of GCMs and RCMs. For instance the number of days with very heavy precipitation over Europe has increased by about 45% in observations (years 1981-2013 compared to 1951-1980) and by about 25% in the model average in both GCMs and RCMs, although with substantial spread across models and locations. As the anthropogenic climate signal strengthens, there will be more opportunities to test climate predictions for other variables against observations and across a hierarchy of different models and theoretical concepts. *Fischer, E.M., and R. Knutti, 2016, Observed heavy precipitation increase confirms theory and early models, Nature Climate Change, in press.
Hydrologic Response to Climate Change: Missing Precipitation Data Matters for Computed Timing Trends
NASA Astrophysics Data System (ADS)
Daniels, B.
2016-12-01
This work demonstrates the derivation of climate timing statistics and applying them to determine resulting hydroclimate impacts. Long-term daily precipitation observations from 50 California stations were used to compute climate trends of precipitation event Intensity, event Duration and Pause between events. Each precipitation event trend was then applied as input to a PRMS hydrology model which showed hydrology changes to recharge, baseflow, streamflow, etc. An important concern was precipitation uncertainty induced by missing observation values and causing errors in quantification of precipitation trends. Many standard statistical techniques such as ARIMA and simple endogenous or even exogenous imputation were applied but failed to help resolve these uncertainties. What helped resolve these uncertainties was use of multiple imputation techniques. This involved fitting of Weibull probability distributions to multiple imputed values for the three precipitation trends.Permutation resampling techniques using Monte Carlo processing were then applied to the multiple imputation values to derive significance p-values for each trend. Significance at the 95% level for Intensity was found for 11 of the 50 stations, Duration from 16 of the 50, and Pause from 19, of which 12 were 99% significant. The significance weighted trends for California are Intensity -4.61% per decade, Duration +3.49% per decade, and Pause +3.58% per decade. Two California basins with PRMS hydrologic models were studied: Feather River in the northern Sierra Nevada mountains and the central coast Soquel-Aptos. Each local trend was changed without changing the other trends or the total precipitation. Feather River Basin's critical supply to Lake Oroville and the State Water Project benefited from a total streamflow increase of 1.5%. The Soquel-Aptos Basin water supply was impacted by a total groundwater recharge decrease of -7.5% and streamflow decrease of -3.2%.
NASA Astrophysics Data System (ADS)
Bahr, A.; Pape, T.; Bohrmann, G.; Mazzini, A.; Haeckel, M.; Reitz, A.; Ivanov, M.
2009-04-01
Carbonate precipitates recovered from 2,000 m water depth at the Dolgovskoy Mound (Shatsky Ridge, north eastern Black Sea) were studied using mineralogical, geochemical and lipid biomarker analyses. The carbonates differ in shape from simple pavements to cavernous structures with thick microbial mats attached to their lower side and within cavities. Low δ13C values measured on carbonates (-41 to -32‰ V-PDB) and extracted lipid biomarkers indicate that anaerobic oxidation of methane (AOM) played a crucial role in precipitating these carbonates. The internal structure of the carbonates is dominated by finely laminated coccolith ooze and homogeneous clay layers, both cemented by micritic high-magnesium calcite (HMC), and pure, botryoidal, yellowish low-magnesium calcite (LMC) grown in direct contact to microbial mats. δ18O measurements suggest that the authigenic HMC precipitated in equilibrium with the Black Sea bottom water while the yellowish LMC rims have been growing in slightly 18O-depleted interstitial water. Although precipitated under significantly different environmental conditions, especially with respect to methane availability, all analysed carbonate samples show lipid patterns that are typical for ANME-1 dominated AOM consortia, in the case of the HMC samples with significant contributions of allochthonous components of marine and terrestrial origin, reflecting the hemipelagic nature of the primary sediment.
Kashiwaya, Koki; Muto, Yuta; Kubo, Taiki; Ikawa, Reo; Nakaya, Shinji; Koike, Katsuaki; Marui, Atsunao
2017-10-03
Spatial variations in tritium concentrations in groundwater were identified in the southern part of the coastal region in Fukushima Prefecture, Japan. Higher tritium concentrations were measured at wells near the Fukushima Daiichi Nuclear Power Station (F1NPS). Mean tritium concentrations in precipitation in the 5 weeks after the F1NPS accident were estimated to be 433 and 139 TU at a distance of 25 and 50 km, respectively, from the F1NPS. The elevations of tritium concentrations in groundwater were calculated using a simple mixing model of the precipitation and groundwater. By assuming that these precipitation was mixed into groundwater with a background tritium concentration in a hypothetical well, concentrations of 13 and 7 TU at distances of 25 and 50 km from the F1NPS, respectively, were obtained. The calculated concentrations are consistent with those measured at the studied wells. Therefore, the spatial variation in tritium concentrations in groundwater was probably caused by precipitation with high tritium concentrations as a result of the F1NPS accident. However, the highest estimated tritium concentrations in precipitation for the study site were much lower than the WHO limits for drinking water, and the concentrations decreased to almost background level at the wells by mixing with groundwater.
Butterfield, Bradley J.; Munson, Seth M.
2016-01-01
QuestionHow closely do plant communities track climate? Research suggests that plant species converge toward similar environmental tolerances relative to the environments that they experience. Whether these patterns apply to severe environments or scale up to plant community-level patterns of relative climatic tolerances is poorly understood. Using estimates of species' climatic tolerances acquired from occurrence records, we determined the contributions of individual species' climatic niche breadths and environmental filtering to the relationships between community-average climatic tolerances and the local climates experienced by those communities.LocationSouthwestern United States drylands.MethodsInterspecific variation in niche breadth was assessed as a function of species' climatic optima (median climatic niche value). The relationships between climatic optima and tolerances were used as null expectations for the relationship between abundance-weighted mean climatic tolerances of communities and the local climate of that community. Deviations from this null expectation indicate that species with greater or lesser climatic tolerances are favoured relative to co-occurring species. The intensity of environmental filtering was estimated by comparing the range of climatic tolerances within each community to a null distribution generated from a random assembly algorithm.ResultsThe temperature niches of species were consistently symmetrical and of similar breadths, regardless of their temperature optima. In contrast, precipitation niches were skewed toward wetter conditions, and niche breadth increased with increasing precipitation optima. At the community level, relationships with climate were much stronger for temperature than for precipitation. Furthermore, cold and heat were stronger assembly filters than drought or precipitation, with the intensity of environmental filtering increasing at both ends of climatic gradients. Community-average climatic tolerances did deviate significantly from null expectations, indicating that species with higher or lower relative climatic tolerances were favoured under certain conditions.ConclusionsDespite strong water limitation of plant performance in dryland ecosystems, communities tracked variation in temperature much more closely, intimating strong responses to anticipated temperature increases. Furthermore, abundance distributions were biased toward species with higher or lower relative climatic tolerances under different climatic conditions, but predictably so, indicating the need for assembly models that include processes other than simple environmental filtering.
NASA Astrophysics Data System (ADS)
Gibon, François; Pellarin, Thierry; Alhassane, Agali; Traoré, Seydou; Baron, Christian
2017-04-01
West Africa is greatly vulnerable, especially in terms of food sustainability. Mainly based on rainfed agriculture, the high variability of the rainy season strongly impacts the crop production driven by the soil water availability in the soil. To monitor this water availability, classical methods are based on daily precipitation measurements. However, the raingauge network suffers from the poor network density in Africa (1/10000km2). Alternatively, real-time satellite-derived precipitations can be used, but they are known to suffer from large uncertainties which produce significant error on crop yield estimations. The present study proposes to use root soil moisture rather than precipitation to evaluate crop yield variations. First, a local analysis of the spatiotemporal impact of water deficit on millet crop production in Niger was done, from in-situ soil moisture measurements (AMMA-CATCH/OZCAR (French Critical Zone exploration network)) and in-situ millet yield survey. Crop yield measurements were obtained for 10 villages located in the Niamey region from 2005 to 2012. The mean production (over 8 years) is 690 kg/ha, and ranges from 381 to 872 kg/ha during this period. Various statistical relationships based on soil moisture estimates were tested, and the most promising one (R>0.9) linked the 30-cm soil moisture anomalies from mid-August to mid-September (grain filling period) to the crop yield anomalies. Based on this local study, it was proposed to derive regional statistical relationships using 30-cm soil moisture maps over West Africa. The selected approach was to use a simple hydrological model, the Antecedent Precipitation Index (API), forced by real-time satellite-based precipitation (CMORPH, PERSIANN, TRMM3B42). To reduce uncertainties related to the quality of real-time rainfall satellite products, SMOS soil moisture measurements were assimilated into the API model through a Particular Filter algorithm. Then, obtained soil moisture anomalies were compared to 17 years of crop yield estimates from the FAOSTAT database (1998-2014). Results showed that the 30-cm soil moisture anomalies explained 89% of the crop yield variation in Niger, 72% in Burkina Faso, 82% in Mali and 84% in Senegal.
NASA Astrophysics Data System (ADS)
Prat, O. P.; Nelson, B. R.; Stevens, S. E.; Seo, D. J.; Kim, B.
2014-12-01
The processing of radar-only precipitation via the reanalysis from the National Mosaic and Multi-Sensor Quantitative (NMQ/Q2) based on the WSR-88D Next-generation Radar (Nexrad) network over Continental United States (CONUS) is nearly completed for the period covering from 2000 to 2012. This important milestone constitutes a unique opportunity to study precipitation processes at a 1-km spatial resolution for a 5-min temporal resolution. However, in order to be suitable for hydrological, meteorological and climatological applications, the radar-only product needs to be bias-adjusted and merged with in-situ rain gauge information. Rain gauge networks such as the Hydrometeorological Automated Data System (HADS), the Automated Surface Observing Systems (ASOS), the Climate Reference Network (CRN), and the Global Historical Climatology Network - Daily (GHCN-D) are used to adjust for those biases and to merge with the radar only product to provide a multi-sensor estimate. The challenges related to incorporating non-homogeneous networks over a vast area and for a long-term record are enormous. Among the challenges we are facing are the difficulties incorporating differing resolution and quality surface measurements to adjust gridded estimates of precipitation. Another challenge is the type of adjustment technique. After assessing the bias and applying reduction or elimination techniques, we are investigating the kriging method and its variants such as simple kriging (SK), ordinary kriging (OK), and conditional bias-penalized Kriging (CBPK) among others. In addition we hope to generate estimates of uncertainty for the gridded estimate. In this work the methodology is presented as well as a comparison between the radar-only product and the final multi-sensor QPE product. The comparison is performed at various time scales from the sub-hourly, to annual. In addition, comparisons over the same period with a suite of lower resolution QPEs derived from ground based radar measurements (Stage IV) and satellite products (TMPA, CMORPH, PERSIANN) are provided in order to give a detailed picture of the improvements and remaining challenges.
Synthesis and LPG sensing properties of nano-sized cadmium oxide.
Waghulade, R B; Patil, P P; Pasricha, Renu
2007-04-30
This paper reports the synthesis and liquid petroleum gas (LPG) sensing properties of nano-sized cadmium oxide (CdO). The nano-sized CdO powder was successfully synthesized by using a chemical co-precipitation method using cadmium acetate and the ammonium hydroxide, as starting materials and water as a carrier. The resulting nano-sized powder was characterized by X-ray diffraction (XRD) measurements and the transmission electron microscopy (TEM). The LPG sensing properties of the synthesized nano-sized CdO were investigated at different operating temperatures and LPG concentrations. It was found that the calcination temperature and the operating temperature significantly affect the sensitivity of the nano-sized CdO powder to the LPG. The sensitivity is found to be maximum when the calcination temperature was 400 degrees C. The sensitivity to 75ppm of LPG is maximum at an operating temperature 450 degrees C and it was found to be approximately 341%. The response and recovery times were found to be nearly 3-5s and 8-10s, respectively. The synthesized nano-sized CdO powder is able to detect up to 25ppm for LPG with reasonable sensitivity at an operating temperature 450 degrees C and it can be reliably used to monitor the concentration of LPG over the range (25-75ppm). The experimental results of the LPG sensing studies reveal that the nano-sized CdO powder synthesized by a simple co-precipitation method is a suitable material for the fabrication of the LPG sensor.
NASA Astrophysics Data System (ADS)
Li, Xin; Babovic, Vladan
2017-04-01
Observed studies on inter-annual variation of precipitation provide insight into the response of precipitation to anthropogenic climate change and natural climate variability. Inter-annual variation of precipitation results from the concurrent variations of precipitation frequency and intensity, understanding of the relative importance of frequency and intensity in the variability of precipitation can help fathom its changing properties. Investigation of the long-term changes of precipitation schemes has been extensively carried out in many regions across the world, however, detailed studies of the relative importance of precipitation frequency and intensity in inter-annual variation of precipitation are still limited, especially in the tropics. Therefore, this study presents a comprehensive framework to investigate the inter-annual variation of precipitation and the dominance of precipitation frequency and intensity in a tropical urban city-state, Singapore, based on long-term (1980-2013) daily precipitation series from 22 rain gauges. First, an iterative Mann-Kendall trend test method is applied to detect long-term trends in precipitation total, frequency and intensity at both annual and seasonal time scales. Then, the relative importance of precipitation frequency and intensity in inducing the inter-annual variation of wet-day precipitation total is analyzed using a dominance analysis method based on linear regression. The results show statistically significant upward trends in wet-day precipitation total, frequency and intensity at annual time scale, however, these trends are not evident during the monsoon seasons. The inter-annual variation of wet-day precipitation is mainly dominated by precipitation intensity for most of the stations at annual time scale and during the Northeast monsoon season. However, during the Southwest monsoon season, the inter-annual variation of wet-day precipitation is mainly dominated by precipitation frequency. These results have implications for water resources management practices in Singapore.
PRECIPITATION METHOD OF SEPARATING PLUTONIUM FROM CONTAMINATING ELEMENTS
Sutton, J.B.
1958-02-18
This patent relates to an improved method for the decontamination of plutonium. The process consists broadly in an improvement in a method for recovering plutonium from radioactive uranium fission products in aqueous solutions by decontamination steps including byproduct carrier precipitation comprising the step of introducing a preformed aqueous slurry of a hydroxide of a metal of group IV B into any aqueous acidic solution which contains the plutonium in the hexavalent state, radioactive uranium fission products contaminant and a by-product carrier precipitate and separating the metal hydroxide and by-product precipitate from the solution. The process of this invention is especially useful in the separation of plutonium from radioactive zirconium and columbium fission products.
Climate Change Impact on Variability of Rainfall Intensity in Upper Blue Nile Basin, Ethiopia
NASA Astrophysics Data System (ADS)
Worku, L. Y.
2015-12-01
Extreme rainfall events are major problems in Ethiopia with the resulting floods that usually could cause significant damage to agriculture, ecology, infrastructure, disruption to human activities, loss of property, loss of lives and disease outbreak. The aim of this study was to explore the likely changes of precipitation extreme changes due to future climate change. The study specifically focuses to understand the future climate change impact on variability of rainfall intensity-duration-frequency in Upper Blue Nile basin. Precipitations data from two Global Climate Models (GCMs) have been used in the study are HadCM3 and CGCM3. Rainfall frequency analysis was carried out to estimate quantile with different return periods. Probability Weighted Method (PWM) selected estimation of parameter distribution and L-Moment Ratio Diagrams (LMRDs) used to find the best parent distribution for each station. Therefore, parent distributions for derived from frequency analysis are Generalized Logistic (GLOG), Generalized Extreme Value (GEV), and Gamma & Pearson III (P3) parent distribution. After analyzing estimated quantile simple disaggregation model was applied in order to find sub daily rainfall data. Finally the disaggregated rainfall is fitted to find IDF curve and the result shows in most parts of the basin rainfall intensity expected to increase in the future. As a result of the two GCM outputs, the study indicates there will be likely increase of precipitation extremes over the Blue Nile basin due to the changing climate. This study should be interpreted with caution as the GCM model outputs in this part of the world have huge uncertainty.
NASA Astrophysics Data System (ADS)
Sidhom, H.; Amadou, T.; Sahlaoui, H.; Braham, C.
2007-06-01
The evaluation of the degree of sensitization (DOS) to intergranular corrosion (IGC) of a commercial AISI 316L austenitic stainless steel aged at temperatures ranging from 550 °C to 800 °C during 100 to 80,000 hours was carried out using three different assessment methods. (1) The microstructural method coupled with the Strauss standard test (ASTM A262). This method establishes the kinetics of the precipitation phenomenon under different aging conditions, by transmission electronic microscope (TEM) examination of thin foils and electron diffraction. The subsequent chromium-depleted zones are characterized by X-ray microanalysis using scanning transmission electronic microscope (STEM). The superimposition of microstructural time-temperature-precipitation (TTP) and ASTM A262 time-temperature-sensitization (TTS) diagrams provides the relationship between aged microstructure and IGC. Moreover, by considering the chromium-depleted zone characteristics, sensitization and desensitization criteria could be established. (2) The electrochemical method involving the double loop-electrochemical potentiokinetic reactivation (DL-EPR) test. The operating conditions of this test were initially optimized using the experimental design method on the bases of the reliability, the selectivity, and the reproducibility of test responses for both annealed and sensitized steels. The TTS diagram of the AISI 316L stainless steel was established using this method. This diagram offers a quantitative assessment of the DOS and a possibility to appreciate the time-temperature equivalence of the IGC sensitization and desensitization. (3) The analytical method based on the chromium diffusion models. Using the IGC sensitization and desensitization criteria established by the microstructural method, numerical solving of the chromium diffusion equations leads to a calculated AISI 316L TTS diagram. Comparison of these three methods gives a clear advantage to the nondestructive DL-EPR test when it is used with its optimized operating conditions. This quantitative method is simple to perform; it is fast, reliable, economical, and presents the best ability to detect the lowest DOS to IGC. For these reasons, this method can be considered as a serious candidate for IGC checking of stainless steel components of industrial plants.
NASA Technical Reports Server (NTRS)
Bosilovich, Michael G.; Chern, Jiun-Dar
2005-01-01
An atmospheric general circulation model simulation for 1948-1997 of the water budgets for the MacKenzie, Mississippi and Amazon River basins is presented. In addition to the water budget, we include passive tracers to identify the geographic sources of water for the basins, and the analysis focuses on the mechanisms contributing to precipitation recycling in each basin. While each basin s precipitation recycling has a strong dependency on evaporation during the mean annual cycle, the interannual variability of the recycling shows important relationships with the atmospheric circulation. The MacKenzie River basin has only a weak interannual dependency on evaporation, where the variations in zonal moisture transport from the Pacific Ocean can affect the basin water cycle. On the other hand, the Mississippi River basin has strong interannual dependencies on evaporation. While the precipitation recycling weakens with increased low level jet intensity, the evaporation variations exert stronger influence in providing water vapor for convective precipitation at the convective cloud base. High precipitation recycling is also found to be partly connected to warm SSTs in the tropical Pacific Ocean. The Amazon River basin evaporation exhibits small interannual variations, so that the interannual variations of precipitation recycling are related to atmospheric moisture transport from the tropical south Atlantic Ocean. Increasing SSTs over the 50-year period are causing increased easterly transport across the basin. As moisture transport increases, the Amazon precipitation recycling decreases (without real time varying vegetation changes). In addition, precipitation recycling from a bulk diagnostic method is compared to the passive tracer method used in the analysis. While the mean values are different, the interannual variations are comparable between each method. The methods also exhibit similar relationships to the terms of the basin scale water budgets.
NASA Astrophysics Data System (ADS)
Beck, F.; Bárdossy, A.
2013-07-01
Many hydraulic applications like the design of urban sewage systems require projections of future precipitation in high temporal resolution. We developed a method to predict the regional distribution of hourly precipitation sums based on daily mean sea level pressure and temperature data from a Global Circulation Model. It is an indirect downscaling method avoiding uncertain precipitation data from the model. It is based on a fuzzy-logic classification of atmospheric circulation patterns (CPs) that is further subdivided by means of the average daily temperature. The observed empirical distributions at 30 rain gauges to each CP-temperature class are assumed as constant and used for projections of the hourly precipitation sums in the future. The method was applied to the CP-temperature sequence derived from the 20th century run and the scenario A1B run of ECHAM5. According to ECHAM5, the summers in southwest Germany will become progressively drier. Nevertheless, the frequency of the highest hourly precipitation sums will increase. According to the predictions, estival water stress and the risk of extreme hourly precipitation will both increase simultaneously during the next decades.
Statistical-Dynamical Seasonal Forecasts of Central-Southwest Asian Winter Precipitation.
NASA Astrophysics Data System (ADS)
Tippett, Michael K.; Goddard, Lisa; Barnston, Anthony G.
2005-06-01
Interannual precipitation variability in central-southwest (CSW) Asia has been associated with East Asian jet stream variability and western Pacific tropical convection. However, atmospheric general circulation models (AGCMs) forced by observed sea surface temperature (SST) poorly simulate the region's interannual precipitation variability. The statistical-dynamical approach uses statistical methods to correct systematic deficiencies in the response of AGCMs to SST forcing. Statistical correction methods linking model-simulated Indo-west Pacific precipitation and observed CSW Asia precipitation result in modest, but statistically significant, cross-validated simulation skill in the northeast part of the domain for the period from 1951 to 1998. The statistical-dynamical method is also applied to recent (winter 1998/99 to 2002/03) multimodel, two-tier December-March precipitation forecasts initiated in October. This period includes 4 yr (winter of 1998/99 to 2001/02) of severe drought. Tercile probability forecasts are produced using ensemble-mean forecasts and forecast error estimates. The statistical-dynamical forecasts show enhanced probability of below-normal precipitation for the four drought years and capture the return to normal conditions in part of the region during the winter of 2002/03.May Kabul be without gold, but not without snow.—Traditional Afghan proverb
NASA Astrophysics Data System (ADS)
McAfee, S. A.; Woodhouse, C. A.; McCabe, G. J., Jr.; Pederson, G. T.
2016-12-01
Approximately 40 million people depend on the Colorado River, and that number is likely to grow in the future, making the River's response to projected increases in temperature and possible changes in precipitation a critical societal issue. By far the most common way of approaching the problem is synthesize results obtained by forcing a hydrological model with a set of downscaled future climate scenarios. One weakness with this type of analysis is that full hydrologic model simulations can be computationally demanding, and so the number of potential climate futures is generally somewhat limited. Here we sidestep that issue by using a very large set of synthetic climate futures to drive a simple statistical model of water year flow at Lees Ferry. 62,500 climate series, comprising 500 iterations of 125 unique combinations of summer temperature changes ranging from 0 to +4°C and summer and winter precipitation changes ranging from -20 to +20% were input into the flow model. Without substantial temperature increases, significant increases in the occurrence of very low flows (<75%) were unlikely, even with sharp decreases in temperature. Conversely, increases in precipitation, could buffer the effect of summer temperature increases up to about 3°C on mean water year flows. While very simple models like this one are inappropriate for some questions, they do provide an effective way of prioritizing and framing more complex investigations, and facilitate conversations with stakeholders about research directions.
NASA Astrophysics Data System (ADS)
Zhang, J.; Lin, L. F.; Bras, R. L.
2017-12-01
Hydrological applications rely on the availability and quality of precipitation products, specially model- and satellite-based products for use in areas without ground measurements. It is known that the quality of model- and satellite-based precipitation products are complementary—model-based products exhibiting high quality during winters while satellite-based products seem to be better during summers. To explore that behavior, this study uses 2-m air temperature as auxiliary information to evaluate high-resolution (0.1°×0.1° every hour) precipitation products from Weather Research and Forecasting (WRF) simulations and from version-4 Integrated Multi-satellite Retrievals for GPM (IMERG) early and final runs. The products are evaluated relative to the reference NCEP Stage IV precipitation estimates over the central United States in 2016. The results show that the WRF and IMERG final-run estimates are nearly unbiased while the IMERG early-run estimates positively biased. The results also show that the WRF estimates exhibit high correlations with the reference data when the temperature falls below 280°K and the IMERG estimates (i.e., both early and final runs) do so when the temperature exceeds 280°K. Moreover, the temperature threshold of 280°K, which distinguishes the quality of the WRF and the IMERG products, does not vary significantly with either season or location. This study not only adds insight into current precipitation research on the quality of precipitation products but also suggests a simple way for choosing either a model- or satellite-based product or a hybrid model/satellite product for applications.
Heuss-Aßbichler, Soraya; John, Melanie; Klapper, Daniel; Bläß, Ulrich W; Kochetov, Gennadii
2016-10-01
Recently the focus of interest changed from merely purification of the waste water to recover heavy metals. With the slightly modified ferritization process presented here it is possible to decrease initial Cu(2+) concentrations up to 10 g/l to values <0.3 mg/l. The recovery rates of copper of all experiments are in the rage of 99.98 to almost 100%. Copper can be precipitated as oxide or zero valent metal (almost) free of hydroxide. All precipitates are exclusively of nanoparticle size. The phase assemblage depends strongly on experimental conditions as e.g. reaction temperature, pH-value, initial concentration and ageing time and condition. Three different options were developed depending on the reaction conditions. Option 1.) copper incorporation into the ferrite structure ((Cu,Fe)Fe2O4) and/or precipitation as cuprite (Cu2O) and zero-valent copper, option 2.) copper incorporation into the ferrite structure and/or precipitation as cuprite and/or tenorite (CuO) and option 3.) copper precipitation as tenorite. Ferrite is formed by the oxidation of GR in alkaline solution without additional oxygen supply. The chemistry reaches from pure magnetite up to 45% copper ferrite component. First experiments with wastewater from electroplating industry confirm the results obtained from synthetic solutions. In all cases the volume of the precipitates is extremely low compared to typical wastewater treatment by hydroxide precipitation. Therefore, pollution and further dissipation of copper can be avoided using this simple and economic process. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Akbar, Ruzbeh; Short Gianotti, Daniel; McColl, Kaighin A.; Haghighi, Erfan; Salvucci, Guido D.; Entekhabi, Dara
2018-03-01
The soil water content profile is often well correlated with the soil moisture state near the surface. They share mutual information such that analysis of surface-only soil moisture is, at times and in conjunction with precipitation information, reflective of deeper soil fluxes and dynamics. This study examines the characteristic length scale, or effective depth Δz, of a simple active hydrological control volume. The volume is described only by precipitation inputs and soil water dynamics evident in surface-only soil moisture observations. To proceed, first an observation-based technique is presented to estimate the soil moisture loss function based on analysis of soil moisture dry-downs and its successive negative increments. Then, the length scale Δz is obtained via an optimization process wherein the root-mean-squared (RMS) differences between surface soil moisture observations and its predictions based on water balance are minimized. The process is entirely observation-driven. The surface soil moisture estimates are obtained from the NASA Soil Moisture Active Passive (SMAP) mission and precipitation from the gauge-corrected Climate Prediction Center daily global precipitation product. The length scale Δz exhibits a clear east-west gradient across the contiguous United States (CONUS), such that large Δz depths (>200 mm) are estimated in wetter regions with larger mean precipitation. The median Δz across CONUS is 135 mm. The spatial variance of Δz is predominantly explained and influenced by precipitation characteristics. Soil properties, especially texture in the form of sand fraction, as well as the mean soil moisture state have a lesser influence on the length scale.
A multimodel intercomparison of resolution effects on precipitation: simulations and theory
Rauscher, Sara A.; O?Brien, Travis A.; Piani, Claudio; ...
2016-02-27
An ensemble of six pairs of RCM experiments performed at 25 and 50 km for the period 1961–2000 over a large European domain is examined in order to evaluate the effects of resolution on the simulation of daily precipitation statistics. Application of the non-parametric two-sample Kolmorgorov–Smirnov test, which tests for differences in the location and shape of the probability distributions of two samples, shows that the distribution of daily precipitation differs between the pairs of simulations over most land areas in both summer and winter, with the strongest signal over southern Europe. Two-dimensional histograms reveal that precipitation intensity increases with resolutionmore » over almost the entire domain in both winter and summer. In addition, the 25 km simulations have more dry days than the 50 km simulations. The increase in dry days with resolution is indicative of an improvement in model performance at higher resolution, while the more intense precipitation exceeds observed values. The systematic increase in precipitation extremes with resolution across all models suggests that this response is fundamental to model formulation. Simple theoretical arguments suggest that fluid continuity, combined with the emergent scaling properties of the horizontal wind field, results in an increase in resolved vertical transport as grid spacing decreases. This increase in resolution-dependent vertical mass flux then drives an intensification of convergence and resolvable-scale precipitation as grid spacing decreases. In conclusion, this theoretical result could help explain the increasingly, and often anomalously, large stratiform contribution to total rainfall observed with increasing resolution in many regional and global models.« less
A multimodel intercomparison of resolution effects on precipitation: simulations and theory
NASA Astrophysics Data System (ADS)
Rauscher, Sara A.; O'Brien, Travis A.; Piani, Claudio; Coppola, Erika; Giorgi, Filippo; Collins, William D.; Lawston, Patricia M.
2016-10-01
An ensemble of six pairs of RCM experiments performed at 25 and 50 km for the period 1961-2000 over a large European domain is examined in order to evaluate the effects of resolution on the simulation of daily precipitation statistics. Application of the non-parametric two-sample Kolmorgorov-Smirnov test, which tests for differences in the location and shape of the probability distributions of two samples, shows that the distribution of daily precipitation differs between the pairs of simulations over most land areas in both summer and winter, with the strongest signal over southern Europe. Two-dimensional histograms reveal that precipitation intensity increases with resolution over almost the entire domain in both winter and summer. In addition, the 25 km simulations have more dry days than the 50 km simulations. The increase in dry days with resolution is indicative of an improvement in model performance at higher resolution, while the more intense precipitation exceeds observed values. The systematic increase in precipitation extremes with resolution across all models suggests that this response is fundamental to model formulation. Simple theoretical arguments suggest that fluid continuity, combined with the emergent scaling properties of the horizontal wind field, results in an increase in resolved vertical transport as grid spacing decreases. This increase in resolution-dependent vertical mass flux then drives an intensification of convergence and resolvable-scale precipitation as grid spacing decreases. This theoretical result could help explain the increasingly, and often anomalously, large stratiform contribution to total rainfall observed with increasing resolution in many regional and global models.
Tracing the hydrological cycle by water stable isotopes on the Tibetan plateau
NASA Astrophysics Data System (ADS)
Tian, L.; Yao, T.; Yu, W.
2013-05-01
A network of precipitation, river, lake water, ice core and atmospheric vapor sampling was set up on the Tibetan Plateau to trance the moisture origins supplied to the plateau, the inland hydrological cycle process and land surface evaporation processes. This work shows different moisture from Indian Ocean monsoon and the westerlies dominate the precipitation δ18O in the south and north of the plateau respectively, which can cause a difference in precipitation δ18O of about 5‰ in average. Precipitation δ18O bears "temperature effect" in the northern Tibetan Plateau, whereas the seasonal precipitation δ18O shows precipitation "amount effect" in the south. This relation is also held in the ice core records on the plateau. An instance is the δ18O record from shallow ice cores in Muztagata Glacier, Dunde ice cap and Naimona'Nyi Glacier. The ice core δ18O record from monsoon region in south Tibet, such as Dasuopu glacier in Xixiabangma, shows a precipitation "amount effect" at least in the annual scale. Further isotope enrichment can be found in the land surface evaporation processes. A simple case is in the close lake system in Yamdruk-tso catchment, southern part of Tibetan Plateau. Both observation and simulation work shows the enrichment of heavy isotope in lake water can be over 10‰ for δ18O, which is much linked to the local climatic condition. Simulation work also shows that atmospheric vapor isotope is also very important to capture the lake water δD value. However, vapor isotopes data are usually less available on the plateau.
Changes of Climate Extremes in Urmia Lake Basin: Observations and Multimodel Ensemble Projections
NASA Astrophysics Data System (ADS)
Ashraf, B.; AghaKouchak, A.
2017-12-01
This study presents an analysis of the changes in temperature and precipitation extremes in Urmia Lake Basin, in Iran in 21th century. The latest observations in the past three decades and multimodel ensemble projections from eleven General Circulation Models (GCMs) under the three Representative Concentration Pathways (RCPs) 2.6, 4.5 and 8.5 scenarios are employed for analysis in this study. The twenty-seven indicative temperature and precipitation indices recommended by the joint World Meteorological Organization CCL/CLIVAR/JCOMM Expert Team on Climate Change Detection and Indices (ETCCDI) were used for assessing changes in extremes. Results indicate that most warm (cold) extreme temperature indices have shown significantly positive (negative) trends in the Urmia Lake Basin in past three decades, while only slight changes in precipitation extremes can be observed. Ensemble projection from Bayesian Model Averaging (BMA) of Phase 5 of the Coupled Model Intercomparison Project (CMIP5) suggests that the increasing consecutive dry days (CDD), together with the decreasing frost day (FD) and increasing warm nights frequency (TN90) contribute to more frequent/severe droughts in Urmia Lake Basin. Meanwhile, the results show slight increase of annual count of days with precipitation of more than 10 mm (R10), maximum 5-day precipitation total (R5D), simple daily intensity index (SDII), and annual total precipitation with precipitation >95th percentile (R95) in projections. Our finding provides information on how extremes might change in the future from a wide range of scenarios that can potentially be sued for water resource and eco-environmental planning and adaptation strategies.
Hydrologic Implications of Dynamical and Statistical Approaches to Downscaling Climate Model Outputs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Andrew W; Leung, Lai R; Sridhar, V
Six approaches for downscaling climate model outputs for use in hydrologic simulation were evaluated, with particular emphasis on each method's ability to produce precipitation and other variables used to drive a macroscale hydrology model applied at much higher spatial resolution than the climate model. Comparisons were made on the basis of a twenty-year retrospective (1975–1995) climate simulation produced by the NCAR-DOE Parallel Climate Model (PCM), and the implications of the comparison for a future (2040–2060) PCM climate scenario were also explored. The six approaches were made up of three relatively simple statistical downscaling methods – linear interpolation (LI), spatial disaggregationmore » (SD), and bias-correction and spatial disaggregation (BCSD) – each applied to both PCM output directly (at T42 spatial resolution), and after dynamical downscaling via a Regional Climate Model (RCM – at ½-degree spatial resolution), for downscaling the climate model outputs to the 1/8-degree spatial resolution of the hydrological model. For the retrospective climate simulation, results were compared to an observed gridded climatology of temperature and precipitation, and gridded hydrologic variables resulting from forcing the hydrologic model with observations. The most significant findings are that the BCSD method was successful in reproducing the main features of the observed hydrometeorology from the retrospective climate simulation, when applied to both PCM and RCM outputs. Linear interpolation produced better results using RCM output than PCM output, but both methods (PCM-LI and RCM-LI) lead to unacceptably biased hydrologic simulations. Spatial disaggregation of the PCM output produced results similar to those achieved with the RCM interpolated output; nonetheless, neither PCM nor RCM output was useful for hydrologic simulation purposes without a bias-correction step. For the future climate scenario, only the BCSD-method (using PCM or RCM) was able to produce hydrologically plausible results. With the BCSD method, the RCM-derived hydrology was more sensitive to climate change than the PCM-derived hydrology.« less
NASA Astrophysics Data System (ADS)
Tang, G.; Li, C.; Hong, Y.; Long, D.
2017-12-01
Proliferation of satellite and reanalysis precipitation products underscores the need to evaluate their reliability, particularly over ungauged or poorly gauged regions. However, it is really challenging to perform such evaluations over regions lacking ground truth data. Here, using the triple collocation (TC) method that is capable of evaluating relative uncertainties in different products without ground truth, we evaluate five satellite-based precipitation products and comparatively assess uncertainties in three types of independent precipitation products, e.g., satellite-based, ground-observed, and model reanalysis over Mainland China, including a ground-based precipitation dataset (the gauge based daily precipitation analysis, CGDPA), the latest version of the European reanalysis agency reanalysis (ERA-interim) product, and five satellite-based products (i.e., 3B42V7, 3B42RT of TMPA, IMERG, CMORPH-CRT, PERSIANN-CDR) on a regular 0.25° grid at the daily timescale from 2013 to 2015. First, the effectiveness of the TC method is evaluated by comparison with traditional methods based on ground observations in a densely gauged region. Results show that the TC method is reliable because the correlation coefficient (CC) and root mean square error (RMSE) are close to those based on the traditional method with a maximum difference only up to 0.08 and 0.71 (mm/day) for CC and RMSE, respectively. Then, the TC method is applied to Mainland China and the Tibetan Plateau (TP). Results indicate that: (1) the overall performance of IMERG is better than the other satellite products over Mainland China; (2) over grid cells without rain gauges in the TP, IMERG and ERA show better performance than CGDPA, indicating the potential of remote sensing and reanalysis data over these regions and the inherent uncertainty of CGDPA due to interpolation using sparsely gauged data; (3) both TMPA-3B42 and CMORPH-CRT have some unexpected CC values over certain grid cells that contain water bodies, reaffirming the overestimation of precipitation over inland water bodies. Overall, the TC method provides not only reliable cross-validation results of precipitation estimates over Mainland China but also a new perspective as to compressively assess multi-source precipitation products, particularly over poorly gauged regions.
Satellite and Model Analysis of the Atmospheric Moisture Budget in High Latitudes
NASA Technical Reports Server (NTRS)
Bromwich, David H.; Chen, Qui-Shi
2001-01-01
In order to understand variations of accumulation over Greenland, it is necessary to investigate precipitation and its variations. Observations of precipitation over Greenland are limited and generally inaccurate, but the analyzed wind, geopotential height, and moisture fields are available for recent years. The objective of this study is to enhance the dynamic method for retrieving high resolution precipitation over Greenland from the analyzed fields. The dynamic method enhanced in this study is referred to as the improved dynamic method.
NASA Astrophysics Data System (ADS)
Prat, Olivier; Nelson, Brian; Stevens, Scott; Seo, Dong-Jun; Kim, Beomgeun
2015-04-01
The processing of radar-only precipitation via the reanalysis from the National Mosaic and Multi-Sensor Quantitative (NMQ/Q2) based on the WSR-88D Next-generation Radar (NEXRAD) network over Continental United States (CONUS) is completed for the period covering from 2001 to 2012. This important milestone constitutes a unique opportunity to study precipitation processes at a 1-km spatial resolution for a 5-min temporal resolution. However, in order to be suitable for hydrological, meteorological and climatological applications, the radar-only product needs to be bias-adjusted and merged with in-situ rain gauge information. Several in-situ datasets are available to assess the biases of the radar-only product and to adjust for those biases to provide a multi-sensor QPE. The rain gauge networks that are used such as the Global Historical Climatology Network-Daily (GHCN-D), the Hydrometeorological Automated Data System (HADS), the Automated Surface Observing Systems (ASOS), and the Climate Reference Network (CRN), have different spatial density and temporal resolution. The challenges related to incorporating non-homogeneous networks over a vast area and for a long-term record are enormous. Among the challenges we are facing are the difficulties incorporating differing resolution and quality surface measurements to adjust gridded estimates of precipitation. Another challenge is the type of adjustment technique. The objective of this work is threefold. First, we investigate how the different in-situ networks can impact the precipitation estimates as a function of the spatial density, sensor type, and temporal resolution. Second, we assess conditional and un-conditional biases of the radar-only QPE for various time scales (daily, hourly, 5-min) using in-situ precipitation observations. Finally, after assessing the bias and applying reduction or elimination techniques, we are using a unique in-situ dataset merging the different RG networks (CRN, ASOS, HADS, GHCN-D) to adjust the radar-only QPE product via an Inverse Distance Weighting (IDW) approach. In addition, we also investigate alternate adjustment techniques such as the kriging method and its variants (Simple Kriging: SK; Ordinary Kriging: OK; Conditional Bias-Penalized Kriging: CBPK). From this approach, we also hope to generate estimates of uncertainty for the gridded bias-adjusted QPE. Further comparison with a suite of lower resolution QPEs derived from ground based radar measurements (Stage IV) and satellite products (TMPA, CMORPH, PERSIANN) is also provided in order to give a detailed picture of the improvements and remaining challenges.
Separation of strontium from fecal matter
Kester, D.K.
1995-01-03
A method is presented of separating strontium from a sample of biomass potentially contaminated with various radionuclides. After the sample is reduced, dissociated, and carried on a first precipitate of actinides, the first precipitate is removed to leave a supernate. Next, oxalic acid is added to the supernate to cause a second precipitate of strontium and calcium. Then, after separating the second precipitate, nitric acid is added to the second precipitate to cause a third precipitate of strontium. The calcium remains in solution and is discarded to leave essentially the precipitate of strontium.
Separation of strontium from fecal matter
Kester, Dianne K.
1995-01-01
A method of separating strontium from a sample of biomass potentially contaminated with various radionuclides. After the sample is reduced, dissociated, and carried on a first precipitate of actinides, the first precipitate is removed to leave a supernate. Next, oxalic acid is added to the supernate to cause a second precipitate of strontium and calcium. Then, after separating the second precipitate, nitric acid is added to the second precipitate to cause a third precipitate of strontium. The calcium remains in solution and is discarded to leave essentially the precipitate of strontium.
Phosphates behaviours in conversion of FP chlorides
NASA Astrophysics Data System (ADS)
Amamoto, I.; Kofuji, H.; Myochin, M.; Takasaki, Y.; Terai, T.
2009-06-01
The spent electrolyte of the pyroprocessing by metal electrorefining method should be considered for recycling after removal of fission products (FP) such as, alkali metals (AL), alkaline earth metals (ALE), and/or rare earth elements (REE), to reduce the volume of high-level radioactive waste. Among the various methods suggested for this purpose is precipitation by converting FP from chlorides to phosphates. Authors have been carrying out the theoretical analysis and experiment showing the behaviours of phosphate precipitates so as to estimate the feasibility of this method. From acquired results, it was found that AL except lithium and ALE are unlikely to form phosphate precipitates. However their conversion behaviours including REE were compatible with the theoretical analysis; in the case of LaPO 4 as one of the REE precipitates, submicron-size particles could be observed while that of Li 3PO 4 was larger; the precipitates were apt to grow larger at higher temperature; etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esmaeili, Shahrzad; Lloyd, David J.
2005-11-15
Differential scanning calorimetry is used to quantify the evolution of the volume fraction of precipitates during age hardening in AlMgSiCu alloys. The calorimetry tests are run on alloy samples after aging for various times at 180 deg. C and the change in the collective heat effects from the major precipitation and dissolution processes in each run are used to determine the precipitation state of the samples. The method is implemented on alloys with various thermal histories prior to artificial aging, including commercial pre-aging histories. The estimated values for the relative volume fraction of precipitates are compared with the results frommore » a newly developed analytical method using isothermal calorimetry and a related quantitative transmission electron microscopy work. Excellent agreement is obtained between the results from various methods.« less
Uney, Kamil; Altan, Feray; Elmas, Muammer
2011-02-01
Cefquinome has a broad spectrum of antibacterial activity and was developed especially for use in animals. A simple and sensitive high-performance liquid chromatography (HPLC) method with UV-visible detection for quantification of cefquinome concentrations in sheep plasma was developed and validated. Separation of cefquinome from plasma components was achieved on a Phenomenex Gemini C(18) column (250 mm by 4.6 mm; internal diameter [i.d.], 5 μm). The mobile phase consisted of acetonitrile and 0.1% trifluoroacetic acid in water and was delivered at a rate of 0.9 ml/min. A simple and rapid sample preparation involved the addition of methanol to 200 μl of plasma to precipitate plasma proteins followed by direct injection of 50 μl of supernatant into the high-performance liquid chromatography system. The linearity range of the proposed method was 0.02 to 12 μg/ml. The intraday and interday coefficients of variation obtained from cefquinome were less than 5%, and biases ranged from -3.76% to 1.24%. Mean recovery based on low-, medium-, and high-quality control standards ranged between 92.0 and 93.9%. Plasma samples were found to be stable in various storage conditions (freeze-thaw, postpreparative, short-term, and long-term stability). The method described was found to be readily available, practicable, cheap, rapid, sensitive, precise, and accurate. It was successfully applied to the study of the pharmacokinetics of cefquinome in sheep. This method can be very useful and an alternate to performing pharmacokinetic studies in the determination of cefquinome for clinical use.
NASA Astrophysics Data System (ADS)
Lee, Taesam
2018-05-01
Multisite stochastic simulations of daily precipitation have been widely employed in hydrologic analyses for climate change assessment and agricultural model inputs. Recently, a copula model with a gamma marginal distribution has become one of the common approaches for simulating precipitation at multiple sites. Here, we tested the correlation structure of the copula modeling. The results indicate that there is a significant underestimation of the correlation in the simulated data compared to the observed data. Therefore, we proposed an indirect method for estimating the cross-correlations when simulating precipitation at multiple stations. We used the full relationship between the correlation of the observed data and the normally transformed data. Although this indirect method offers certain improvements in preserving the cross-correlations between sites in the original domain, the method was not reliable in application. Therefore, we further improved a simulation-based method (SBM) that was developed to model the multisite precipitation occurrence. The SBM preserved well the cross-correlations of the original domain. The SBM method provides around 0.2 better cross-correlation than the direct method and around 0.1 degree better than the indirect method. The three models were applied to the stations in the Nakdong River basin, and the SBM was the best alternative for reproducing the historical cross-correlation. The direct method significantly underestimates the correlations among the observed data, and the indirect method appeared to be unreliable.
Measurement of Neuropeptides in Crustacean Hemolymph via MALDI Mass Spectrometry
Chen, Ruibing; Ma, Mingming; Hui, Limei; Zhang, Jiang; Li, Lingjun
2009-01-01
Neuropeptides are often released into circulatory fluid (hemolymph) to act as circulating hormones and regulate many physiological processes. However, the detection of these low-level peptide hormones in circulation is often complicated by high salt interference and rapid degradation of proteins and peptides in crude hemolymph extracts. In this study, we systematically evaluated three different neuropeptide extraction protocols and developed a simple and effective hemolymph preparation method suitable for MALDI MS profiling of neuropeptides by combining acid-induced abundant protein precipitation/depletion, ultrafiltration, and C18 micro-column desalting. In hemolymph samples collected from crab Cancer borealis several secreted neuropeptides have been detected, including members from at least five neuropeptide families, such as RFamide, allatostatin, orcokinin, tachykinin-related peptide (TRP), and crustacean cardioactive peptide (CCAP). Furthermore, two TRPs were detected in the hemolymph collected from food-deprived animals, suggesting the potential role of these neuropeptides in feeding regulation. In addition, a novel peptide with a Lys-Phe-amide C-terminus was identified and de novo sequenced directly from the Cancer borealis hemolymph sample. To better characterize the hemolymph peptidome, we also identified several abundant peptide signals in C. borealis hemolymph that were assigned to protein degradation products. Collectively, our study describes a simple and effective sample preparation method for neuropeptide analysis directly from crude crustacean hemolymph. Numerous endogenous neuropeptides were detected including both known ones and new peptides whose functions remain to be characterized. PMID:19185513
NASA Astrophysics Data System (ADS)
Ding, Xiangyi; Liu, Jiahong; Gong, Jiaguo
2018-02-01
Precipitation is one of the important factors of water cycle and main sources of regional water resources. It is of great significance to analyze the evolution of precipitation under changing environment for identifying the evolution law of water resources, thus can provide a scientific reference for the sustainable utilization of water resources and the formulation of related policies and measures. Generally, analysis of the evolution of precipitation consists of three levels: analysis the observed precipitation change based on measured data, explore the possible factors responsible for the precipitation change, and estimate the change trend of precipitation under changing environment. As the political and cultural centre of China, the climatic conditions in the Haihe river basin have greatly changed in recent decades. This study analyses the evolution of precipitation in the basin under changing environment based on observed meteorological data, GCMs and statistical methods. Firstly, based on the observed precipitation data during 1961-2000 at 26 meteorological stations in the basin, the actual precipitation change in the basin is analyzed. Secondly, the observed precipitation change in the basin is attributed using the fingerprint-based attribution method, and the causes of the observed precipitation change is identified. Finally, the change trend of precipitation in the basin under climate change in the future is predicted based on GCMs and a statistical downscaling model. The results indicate that: 1) during 1961-2000, the precipitation in the basin showed a decreasing trend, and the possible mutation time was 1965; 2) natural variability may be the factor responsible for the observed precipitation change in the basin; 3) under climate change in the future, precipitation in the basin will slightly increase by 4.8% comparing with the average, and the extremes will not vary significantly.
Spatial distribution of precipitation extremes in Norway
NASA Astrophysics Data System (ADS)
Verpe Dyrrdal, Anita; Skaugen, Thomas; Lenkoski, Alex; Thorarinsdottir, Thordis; Stordal, Frode; Førland, Eirik J.
2015-04-01
Estimates of extreme precipitation, in terms of return levels, are crucial in planning and design of important infrastructure. Through two separate studies, we have examined the levels and spatial distribution of daily extreme precipitation over catchments in Norway, and hourly extreme precipitation in a point. The analyses were carried out through the development of two new methods for estimating extreme precipitation in Norway. For daily precipitation we fit the Generalized Extreme Value (GEV) distribution to areal time series from a gridded dataset, consisting of daily precipitation during the period 1957-today with a resolution of 1x1 km². This grid-based method is more objective and less manual and time-consuming compared to the existing method at MET Norway. In addition, estimates in ungauged catchments are easier to obtain, and the GEV approach includes a measure of uncertainty, which is a requirement in climate studies today. Further, we go into depth on the debated GEV shape parameter, which plays an important role for longer return periods. We show that it varies according to dominating precipitation types, having positive values in the southeast and negative values in the southwest. We also find indications that the degree of orographic enhancement might affect the shape parameter. For hourly precipitation, we estimate return levels on a 1x1 km² grid, by linking GEV distributions with latent Gaussian fields in a Bayesian hierarchical model (BHM). Generalized linear models on the GEV parameters, estimated from observations, are able to incorporate location-specific geographic and meteorological information and thereby accommodate these effects on extreme precipitation. Gaussian fields capture additional unexplained spatial heterogeneity and overcome the sparse grid on which observations are collected, while a Bayesian model averaging component directly assesses model uncertainty. We find that mean summer precipitation, mean summer temperature, latitude, longitude, mean annual precipitation and elevation are good covariate candidates for hourly precipitation in our model. Summer indices succeed because hourly precipitation extremes often occur during the convective season. The spatial distribution of hourly and daily precipitation differs in Norway. Daily precipitation extremes are larger along the southwestern coast, where large-scale frontal systems dominate during fall season and the mountain ridge generates strong orographic enhancement. The largest hourly precipitation extremes are mostly produced by intense convective showers during summer, and are thus found along the entire southern coast, including the Oslo-region.
NASA Technical Reports Server (NTRS)
Olson, William S.
1990-01-01
A physical retrieval method for estimating precipitating water distributions and other geophysical parameters based upon measurements from the DMSP-F8 SSM/I is developed. Three unique features of the retrieval method are (1) sensor antenna patterns are explicitly included to accommodate varying channel resolution; (2) precipitation-brightness temperature relationships are quantified using the cloud ensemble/radiative parameterization; and (3) spatial constraints are imposed for certain background parameters, such as humidity, which vary more slowly in the horizontal than the cloud and precipitation water contents. The general framework of the method will facilitate the incorporation of measurements from the SSMJT, SSM/T-2 and geostationary infrared measurements, as well as information from conventional sources (e.g., radiosondes) or numerical forecast model fields.
Riometer based Neural Network Prediction of Kp
NASA Astrophysics Data System (ADS)
Arnason, K. M.; Spanswick, E.; Chaddock, D.; Tabrizi, A. F.; Behjat, L.
2017-12-01
The Canadian Geospace Observatory Riometer Array is a network of 11 wide-beam riometers deployed across Central and Northern Canada. The geographic coverage of the network affords a near continent scale view of high energy (>30keV) electron precipitation at a very course spatial resolution. In this paper we present the first results from a neural network based analysis of riometer data. Trained on decades of riometer data, the neural network is tuned to predict a simple index of global geomagnetic activity (Kp) based solely on the information provided by the high energy electron precipitation over Canada. We present results from various configurations of training and discuss the applicability of this technique for short term prediction of geomagnetic activity.
21st Century Changes in Precipitation Extremes Based on Resolved Atmospheric Patterns
NASA Astrophysics Data System (ADS)
Gao, X.; Schlosser, C. A.; O'Gorman, P. A.; Monier, E.
2014-12-01
Global warming is expected to alter the frequency and/or magnitude of extreme precipitation events. Such changes could have substantial ecological, economic, and sociological consequences. However, climate models in general do not correctly reproduce the frequency distribution of precipitation, especially at the regional scale. In this study, a validated analogue method is employed to diagnose the potential future shifts in the probability of extreme precipitation over the United States under global warming. The method is based on the use of the resolved large-scale meteorological conditions (i.e. flow features, moisture supply) to detect the occurrence of extreme precipitation. The CMIP5 multi-model projections have been compiled for two radiative forcing scenarios (Representative Concentration Pathways 4.5 and 8.5). We further analyze the accompanying circulation features and their changes that may be responsible for shifts in extreme precipitation in response to changed climate. The application of such analogue method to detect other types of hazard events, i.e. landslides is also explored. The results from this study may guide hazardous weather watches and help society develop adaptive strategies for preventing catastrophic losses.
O'Reilly, Andrew M.
2004-01-01
A relatively simple method is needed that provides estimates of transient ground-water recharge in deep water-table settings that can be incorporated into other hydrologic models. Deep water-table settings are areas where the water table is below the reach of plant roots and virtually all water that is not lost to surface runoff, evaporation at land surface, or evapotranspiration in the root zone eventually becomes ground-water recharge. Areas in central Florida with a deep water table generally are high recharge areas; consequently, simulation of recharge in these areas is of particular interest to water-resource managers. Yet the complexities of meteorological variations and unsaturated flow processes make it difficult to estimate short-term recharge rates, thereby confounding calibration and predictive use of transient hydrologic models. A simple water-balance/transfer-function (WBTF) model was developed for simulating transient ground-water recharge in deep water-table settings. The WBTF model represents a one-dimensional column from the top of the vegetative canopy to the water table and consists of two components: (1) a water-balance module that simulates the water storage capacity of the vegetative canopy and root zone; and (2) a transfer-function module that simulates the traveltime of water as it percolates from the bottom of the root zone to the water table. Data requirements include two time series for the period of interest?precipitation (or precipitation minus surface runoff, if surface runoff is not negligible) and evapotranspiration?and values for five parameters that represent water storage capacity or soil-drainage characteristics. A limiting assumption of the WBTF model is that the percolation of water below the root zone is a linear process. That is, percolating water is assumed to have the same traveltime characteristics, experiencing the same delay and attenuation, as it moves through the unsaturated zone. This assumption is more accurate if the moisture content, and consequently the unsaturated hydraulic conductivity, below the root zone does not vary substantially with time. Results of the WBTF model were compared to those of the U.S. Geological Survey variably saturated flow model, VS2DT, and to field-based estimates of recharge to demonstrate the applicability of the WBTF model for a range of conditions relevant to deep water-table settings in central Florida. The WBTF model reproduced independently obtained estimates of recharge reasonably well for different soil types and water-table depths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babko, A.K.; Shtokalo, M.I.
The influence exercised by ethylenediamino-tetraacetic acid upon some processes of precipitation was investigated. A sharp mopdification of the form of precipitate as well as a decrease of coprecipitation was ium and titanium by means of the phosphate ;method are given. (TCO-W.D.M.)
Application of hierarchical clustering method to classify of space-time rainfall patterns
NASA Astrophysics Data System (ADS)
Yu, Hwa-Lung; Chang, Tu-Je
2010-05-01
Understanding the local precipitation patterns is essential to the water resources management and flooding mitigation. The precipitation patterns can vary in space and time depending upon the factors from different spatial scales such as local topological changes and macroscopic atmospheric circulation. The spatiotemporal variation of precipitation in Taiwan is significant due to its complex terrain and its location at west pacific and subtropical area, where is the boundary between the pacific ocean and Asia continent with the complex interactions among the climatic processes. This study characterizes local-scale precipitation patterns by classifying the historical space-time precipitation records. We applied the hierarchical ascending clustering method to analyze the precipitation records from 1960 to 2008 at the six rainfall stations located in Lan-yang catchment at the northeast of the island. Our results identify the four primary space-time precipitation types which may result from distinct driving forces from the changes of atmospheric variables and topology at different space-time scales. This study also presents an important application of the statistical downscaling to combine large-scale upper-air circulation with local space-time precipitation patterns.
NASA Astrophysics Data System (ADS)
Rahimi, D.; Movahedi, S.
2009-04-01
In the last decades, water crisis is one of the most important critical phenomenons in the environment planning and human society's management which affecting on development aspects in the international, national and regional levels. In this research, have been considered the Drought as the main parameter in water rare serious. For drought assessment, can treat the different methods, such as statistical model, meteorological and hydrological methods. In this research, have been used the Normal Precipitation index to meteorological analysis of drought severity in Sistan and Baluchistan province with high drought severity during recent years. According to the obtained result, the annual precipitation of studied area was between 36 to 52 percent more than mean precipitation of province. 10%-23 percent of precipitation amount involved the drought threshold border, 3%-13 percent of precipitations contain the weakness drought, 6.7% -23 percent were considered for moderate drought, 6%-20 percent involved the severe drought and ultimately, 6.7% to 23 percent of precipitations were considered as very severe drought. Keywords: Drought, Normal index, precipitation, Sistan and Baluchistan
Development of the Ion Exchange-Gravimetric Method for Sodium in Serum as a Definitive Method
Moody, John R.; Vetter, Thomas W.
1996-01-01
An ion exchange-gravimetric method, previously developed as a National Committee for Clinical Laboratory Standards (NCCLS) reference method for the determination of sodium in human serum, has been re-evaluated and improved. Sources of analytical error in this method have been examined more critically and the overall uncertainties decreased. Additionally, greater accuracy and repeatability have been achieved by the application of this definitive method to a sodium chloride reference material. In this method sodium in serum is ion-exchanged, selectively eluted and converted to a weighable precipitate as Na2SO4. Traces of sodium eluting before or after the main fraction, and precipitate contaminants are determined instrumentally. Co-precipitating contaminants contribute less than 0.1 % while the analyte lost to other eluted ion-exchange fractions contributes less than 0.02 % to the total precipitate mass. With improvements, the relative expanded uncertainty (k = 2) of the method, as applied to serum, is 0.3 % to 0.4 % and is less than 0.1 % when applied to a sodium chloride reference material. PMID:27805122
Khan, Amjad; Iqbal, Zafar; Khadra, Ibrahim; Ahmad, Lateef; Khan, Abad; Khan, Muhammad Imran; Ullah, Zia; Ismail
2016-03-20
Domperidone and Itopride are pro-kinetic agents, regulating the gastric motility and are commonly prescribed as anti emetic drugs. In the present study a simple, rapid and sensitive RP-HPLC/UV method was developed for simultaneous determination of Domperidone and Itopride in pharmaceutical samples and human plasma, using Tenofavir as internal standard. Experimental conditions were optimized and method was validated according to the standard guidelines. Combination of water (pH 3.0) and acetonitrile (65:35 v/v) was used as mobile phase, pumped at the flow rate of 1.5 ml/min. Detector wavelength was set at 210 nm and column oven temperature was 40oC. Unlike conventional liquid-liquid extraction, simple precipitation technique was applied for drug extraction from human plasma using acetonitrile for deprotienation. The method showed adequate separation of both the analytes and best resolution was achieved using Hypersil BDS C8 column (150 mm × 4.6 mm, 5 μm). The method was quite linear in the range of 20-600 ng/ml. Recovery of the method was 92.31% and 89.82% for Domperidone and Itopride, respectively. Retention time of both the analytes and internal standard was below 15 min. The lower limit of detection (LLOD) and lower limit of quantification (LLOQ) for Domperidone were 5 and 10 ng/ml while for Itopride was 12 and 15 ng/ml, respectively. The developed method was successfully applied for in-vivo analysis of fast dispersible tablets of Domperidone in healthy human volunteer. The proposed method was a part of formulation development study and was efficiently applied for determination of the two drugs in various pharmaceutical products and human plasma. Copyright © 2015 Elsevier B.V. All rights reserved.