Sample records for simple room temperature

  1. Efficient simple sealed-off CO laser at room temperature

    NASA Astrophysics Data System (ADS)

    Peters, P. J. M.; Witteman, W. J.; Zuidema, R. J.

    1980-07-01

    The paper reports a simple sealed-off CW CO laser with gold electrodes. A constant long-life output power of more than 29 W/m and a maximum efficiency of 15% at room temperature are reported. No auxiliary features, such as a palladium hydrogen extraction tube, are necessary.

  2. Negative differential resistance in GaN nanocrystals above room temperature.

    PubMed

    Chitara, Basant; Ivan Jebakumar, D S; Rao, C N R; Krupanidhi, S B

    2009-10-07

    Negative differential resistance (NDR) has been observed for the first time above room temperature in gallium nitride nanocrystals synthesized by a simple chemical route. Current-voltage characteristics have been used to investigate this effect through a metal-semiconductor-metal (M-S-M) configuration on SiO2. The NDR effect is reversible and reproducible through many cycles. The threshold voltage is approximately 7 V above room temperature.

  3. ROOM TEMPERATURE BULK AND TEMPLATE-FREE SYNTHESIS OF LEUCOEMARLDINE POLYANILINE NANOFIBERS

    EPA Science Inventory

    Herein, we describe a simple strategy for the bulk and template-free synthesis of reduced leucoemarldine polyaniline nanofibers size ranging from as low as 10 nm to 50 nm without the use of any reducing agents at room temperature.

  4. Stability of procalcitonin at room temperature.

    PubMed

    Milcent, Karen; Poulalhon, Claire; Fellous, Christelle Vauloup; Petit, François; Bouyer, Jean; Gajdos, Vincent

    2014-01-01

    The aim was to assess procalcitonin (PCT) stability after two days of storage at room temperature. Samples were collected from febrile children aged 7 to 92 days and were rapidly frozen after sampling. PCT levels were measured twice after thawing: immediately (named y) and 48 hours later after storage at room temperature (named x). PCT values were described with medians and interquartile ranges or by categorizing them into classes with thresholds 0.25, 0.5, and 2 ng/mL. The relationship between x and y PCT levels was analyzed using fractional polynomials in order to predict the PCT value immediately after thawing (named y') from x. A significant decrease in PCT values was observed after 48 hours of storage at room temperature, either in median, 30% lowering (p < 0.001), or as categorical variable (p < 0.001). The relationship between x and y can be accurately modeled with a simple linear model: y = 1.37 x (R2 = 0.99). The median of the predicted PCT values y' was quantitatively very close to the median of y and the distributions of y and y' across categories were very similar and not statistically different. PCT levels noticeably decrease after 48 hours of storage at room temperature. It is possible to pre- dict accurately effective PCT values from the values after 48 hours of storage at room temperature with a simple statistical model.

  5. AN EFFICIENT AND CHEMOSELECTIVE CBZ-PROTECTION OF AMINES USING SILICA-SULFURIC ACID AT ROOM TEMPERATURE

    EPA Science Inventory

    A simple, facile, and chemoselective N-benzyloxycarbonylation of amines using silica-sulfuric acid that proceeds under solvent-free conditions at room temperature has been achieved. These reactions are applicable to a wide variety of primary (aliphatic, cyclic) secondary amines, ...

  6. High pressure–low temperature phase diagram of barium: Simplicity versus complexity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desgreniers, Serge; Tse, John S., E-mail: John.Tse@usask.ca; State Key Laboratory of Superhard Materials, Jilin University, 130012 Changchun

    2015-11-30

    Barium holds a distinctive position among all elements studied upon densification. Indeed, it was the first example shown to violate the long-standing notion that high compression of simple metals should preserve or yield close-packed structures. From modest pressure conditions at room temperature, barium transforms at higher pressures from its simple structures to the extraordinarily complex atomic arrangements of the incommensurate and self-hosting Ba-IV phases. By a detailed mapping of the pressure/temperature structures of barium, we demonstrate the existence of another crystalline arrangement of barium, Ba-VI, at low temperature and high pressure. The simple structure of Ba-VI is unlike that ofmore » complex Ba-IV, the phase encountered in a similar pressure range at room temperature. First-principles calculations predict Ba-VI to be stable at high pressure and superconductive. The results illustrate the complexity of the low temperature-high pressure phase diagram of barium and the significant effect of temperature on structural phase transformations.« less

  7. Room temperature organic magnets derived from sp3 functionalized graphene.

    PubMed

    Tuček, Jiří; Holá, Kateřina; Bourlinos, Athanasios B; Błoński, Piotr; Bakandritsos, Aristides; Ugolotti, Juri; Dubecký, Matúš; Karlický, František; Ranc, Václav; Čépe, Klára; Otyepka, Michal; Zbořil, Radek

    2017-02-20

    Materials based on metallic elements that have d orbitals and exhibit room temperature magnetism have been known for centuries and applied in a huge range of technologies. Development of room temperature carbon magnets containing exclusively sp orbitals is viewed as great challenge in chemistry, physics, spintronics and materials science. Here we describe a series of room temperature organic magnets prepared by a simple and controllable route based on the substitution of fluorine atoms in fluorographene with hydroxyl groups. Depending on the chemical composition (an F/OH ratio) and sp 3 coverage, these new graphene derivatives show room temperature antiferromagnetic ordering, which has never been observed for any sp-based materials. Such 2D magnets undergo a transition to a ferromagnetic state at low temperatures, showing an extraordinarily high magnetic moment. The developed theoretical model addresses the origin of the room temperature magnetism in terms of sp 2 -conjugated diradical motifs embedded in an sp 3 matrix and superexchange interactions via -OH functionalization.

  8. Room temperature organic magnets derived from sp3 functionalized graphene

    PubMed Central

    Tuček, Jiří; Holá, Kateřina; Bourlinos, Athanasios B.; Błoński, Piotr; Bakandritsos, Aristides; Ugolotti, Juri; Dubecký, Matúš; Karlický, František; Ranc, Václav; Čépe, Klára; Otyepka, Michal; Zbořil, Radek

    2017-01-01

    Materials based on metallic elements that have d orbitals and exhibit room temperature magnetism have been known for centuries and applied in a huge range of technologies. Development of room temperature carbon magnets containing exclusively sp orbitals is viewed as great challenge in chemistry, physics, spintronics and materials science. Here we describe a series of room temperature organic magnets prepared by a simple and controllable route based on the substitution of fluorine atoms in fluorographene with hydroxyl groups. Depending on the chemical composition (an F/OH ratio) and sp3 coverage, these new graphene derivatives show room temperature antiferromagnetic ordering, which has never been observed for any sp-based materials. Such 2D magnets undergo a transition to a ferromagnetic state at low temperatures, showing an extraordinarily high magnetic moment. The developed theoretical model addresses the origin of the room temperature magnetism in terms of sp2-conjugated diradical motifs embedded in an sp3 matrix and superexchange interactions via –OH functionalization. PMID:28216636

  9. GREEN SYNTHESIS OF SILVER AND PALLADIUM NANOPARTICLES AT ROOM TEMPERATURE USING COFFEE AND TEA EXTRACT

    EPA Science Inventory

    An extremely simple green approach that generates bulk quantities of nanocrystals of noble metals such as silver (Ag) and palladium (Pd) using coffee and tea extract at room temperature is described. The single-pot method uses no surfactant, capping agent, and/or template. The ob...

  10. Synthesis and characterization of CoPt nanoparticles prepared by room temperature chemical reduction with PAMAM dendrimer as template.

    PubMed

    Wan, Haiying; Shi, Shifan; Bai, Litao; Shamsuzzoha, Mohammad; Harrell, J W; Street, Shane C

    2010-08-01

    We describe an approach to synthesize monodisperse CoPt nanoparticles with dendrimer as template by a simple chemical reduction method in aqueous solution using NaBH4 as reducing agent at room temperature. The as-made CoPt nanoparticles buried in the dendrimer matrix have the chemically disordered fcc structure and can be transformed to the fct phase after annealing at 700 degrees C. This is the first report of dendrimer-mediated room temperature synthesis of monodisperse magnetic nanoparticles in aqueous solution.

  11. Red-light-emitting laser diodes operating CW at room temperature

    NASA Technical Reports Server (NTRS)

    Kressel, H.; Hawrylo, F. Z.

    1976-01-01

    Heterojunction laser diodes of AlGaAs have been prepared with threshold current densities substantially below those previously achieved at room temperature in the 7200-8000-A spectral range. These devices operate continuously with simple oxide-isolated stripe contacts to 7400 A, which extends CW operation into the visible (red) portion of the spectrum.

  12. Prediction of plastic instabilities under thermo-mechanical loadings in tension and simple shear

    NASA Astrophysics Data System (ADS)

    Manach, P. Y.; Mansouri, L. F.; Thuillier, S.

    2016-08-01

    Plastic instabilities like Portevin-Le Châtelier were quite thoroughly investigated experimentally in tension, under a large range of strain rates and temperatures. Such instabilities are characterized both by a jerky flow and a localization of the strain in bands. Similar phenomena were also recorded for example in simple shear [1]. Modelling of this phenomenon is mainly performed at room temperature, taking into account the strain rate sensitivity, though an extension of the classical Estrin-Kubin-McCormick was proposed in the literature, by making some of the material parameters dependent on temperature. A similar approach is considered in this study, furthermore extended for anisotropic plasticity with Hill's 1948 yield criterion. Material parameters are identified at 4 different temperatures, ranging from room temperature up to 250°C. The identification procedure is split in 3 steps, related to the elasticity, the average stress level and the magnitude of the stress drops. The anisotropy is considered constant in this temperature range, as evidenced by experimental results [2]. The model is then used to investigate the temperature dependence of the critical strain, as well as its capability to represent the propagation of the bands. Numerical predictions of the instabilities in tension and simple shear at room temperature and up to 250°C are compared with experimental results [3]. In the case of simple shear, a monotonic loading followed by unloading and reloading in the reverse direction (“Bauschinger-type” test) is also considered, showing that (i) kinematic hardening should be taken into account to fully describe the transition at re-yielding (ii) the modelling of the critical strain has to be improved.

  13. Amorphous Inorganic Electron-Selective Layers for Efficient Perovskite Solar Cells: Feasible Strategy Towards Room-Temperature Fabrication.

    PubMed

    Wang, Kai; Shi, Yantao; Li, Bo; Zhao, Liang; Wang, Wei; Wang, Xiangyuan; Bai, Xiaogong; Wang, Shufeng; Hao, Ce; Ma, Tingli

    2016-03-02

    Inorganic electron-selective layers (ESLs) are fabricated at extremely low temperatures of 70°C or even 25°C by a simple solution route. This is of great significance because the attained PCEs confirm the feasibility of room-temperature coating of inorganic amorphous ESLs through a solution method for the first time. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. On-site chemical pre-lithiation of S cathode at room temperature on a 3D nano-structured current collector

    NASA Astrophysics Data System (ADS)

    Wu, Yunwen; Momma, Toshiyuki; Ahn, Seongki; Yokoshima, Tokihiko; Nara, Hiroki; Osaka, Tetsuya

    2017-10-01

    This work reports a new chemical pre-lithiation method to fabricate lithium sulfide (Li2S) cathode. This pre-lithiation process is taken place simply by dropping the organolithium reagent lithium naphthalenide (Li+Naph-) on the prepared sulfur cathode. It is the first time realizing the room temperature chemical pre-lithaition reaction attributed by the 3D nanostructured carbon nanotube (CNT) current collector. It is confirmed that the Li2S cathode fabricated at room temperature showing higher capacity and lower hysteresis than the Li2S cathode fabricated at high temperature pre-lithiation. The pre-lithiated Li2S cathode at room temperature shows stable cycling performance with a 600 mAh g-1 capacity after 100 cycles at 0.1 C-rate and high capacity of 500 mAh g-1 at 2 C-rate. This simple on-site pre-lithiation method at room temperature is demonstrated to be applicable for the in-situ pre-lithiation in a Li metal free battery.

  15. A Simple Calorimetric Experiment that Highlights Aspects of Global Heat Retention and Global Warming

    ERIC Educational Resources Information Center

    Burley, Joel D.; Johnston, Harold S.

    2007-01-01

    In this laboratory experiment, general chemistry students measure the heating curves for three different systems: (i) 500 g of room-temperature water heated by a small desk lamp, (ii) 500 g of an ice-water mixture warmed by conduction with room-temperature surroundings, and (iii) 500 g of an ice-water mixture heated by a small desk lamp and by…

  16. Facile room-temperature solution-phase synthesis of a spherical covalent organic framework for high-resolution chromatographic separation.

    PubMed

    Yang, Cheng-Xiong; Liu, Chang; Cao, Yi-Meng; Yan, Xiu-Ping

    2015-08-07

    A simple and facile room-temperature solution-phase synthesis was developed to fabricate a spherical covalent organic framework with large surface area, good solvent stability and high thermostability for high-resolution chromatographic separation of diverse important industrial analytes including alkanes, cyclohexane and benzene, α-pinene and β-pinene, and alcohols with high column efficiency and good precision.

  17. High Temperature Tensile Properties of Unidirectional Hi-Nicalon/Celsian Composites In Air

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John Z.; Bansal, Narottam P.

    2000-01-01

    High temperature tensile properties of unidirectional BN/SiC-coated Hi-Nicalon SiC fiber reinforced celsian matrix composites have been measured from room temperature to 1200 C (2190 F) in air. Young's modulus, the first matrix cracking stress, and the ultimate strength decreased from room temperature to 1200 C (2190 F). The applicability of various micromechanical models, in predicting room temperature values of various mechanical properties for this CMC, has also been investigated. The simple rule of mixtures produced an accurate estimate of the primary composite modulus. The first matrix cracking stress estimated from ACK theory was in good agreement with the experimental value. The modified fiber bundle failure theory of Evans gave a good estimate of the ultimate strength.

  18. THERMOSTAT FOR LOWER TEMPERATURES

    PubMed Central

    Stier, T. J. B.; Crozier, W. J.

    1933-01-01

    Details are given concerning the construction and operation of relatively simple thermostats which permit maintaining precise temperatures down to 0°C. (with water), or temperatures above that of the ordinary room, and in which the temperature may be quickly altered at short intervals to new levels. PMID:19872736

  19. Copper-catalyzed aerobic oxidative synthesis of α-ketoamides from methyl ketones, amines and NIS at room temperature.

    PubMed

    Zhang, Juan; Wei, Ying; Lin, Shaoxia; Liang, Fushun; Liu, Pengjun

    2012-12-14

    A simple, efficient and practical copper-catalyzed aerobic oxidative synthesis of α-ketoamides from aryl methyl ketones, aliphatic amines and N-iodosuccinimide (NIS) has been developed. The one-pot reaction may proceed smoothly at room temperature in the open air. The possible mechanism for the formation of α-ketoamides was proposed. Molecular oxygen in air functions as both an oxidant and an oxygen source.

  20. Fun and Interdisciplinary Daytime Astrophysical Activities

    ERIC Educational Resources Information Center

    Aroca, S. C.; Schiel, D.; Silva, C. C.

    2008-01-01

    The present article describes some activities performed with high-school students in the "Solar Physics" course developed in a Brazilian science centre. The topics of chemical composition, temperature and stellar evolution were taught in a room totally dedicated to study of the Sun, a solar room, designed with simple and inexpensive…

  1. Exploiting fast detectors to enter a new dimension in room-temperature crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, Robin L., E-mail: robin.owen@diamond.ac.uk; Paterson, Neil; Axford, Danny

    2014-05-01

    A departure from a linear or an exponential decay in the diffracting power of macromolecular crystals is observed and accounted for through consideration of a multi-state sequential model. A departure from a linear or an exponential intensity decay in the diffracting power of protein crystals as a function of absorbed dose is reported. The observation of a lag phase raises the possibility of collecting significantly more data from crystals held at room temperature before an intolerable intensity decay is reached. A simple model accounting for the form of the intensity decay is reintroduced and is applied for the first timemore » to high frame-rate room-temperature data collection.« less

  2. Design of the thermal insulating test system for doors and windows of buildings

    NASA Astrophysics Data System (ADS)

    Yu, Yan; Qi, Jinqing; Xu, Yunwei; Wu, Hao; Ou, Jinping

    2011-04-01

    Thermal insulating properties of doors and widows are important parameter to measure the quality of windows and doors. This paper develops the thermal insulating test system of doors and windows for large temperature difference in winter in north of China according to national standards. This system is integrated with temperature measurement subsystem, temperature control subsystem, the heating power measurement subsystem, and heat transfer coefficient calculated subsystem. The temperature measurement subsystem includes temperature sensor which is implemented by sixty-four thermocouple sensors to measure the key positions of cold room and hot room, and the temperature acquisition unit which adopts Agilent 34901A data acquisition card to achieve self-compensation and accurate temperature capture. The temperature control subsystem including temperature controller and compressor system is used to control the temperature between 0 degree to 20 degree for hot room and -20 degree to 0 degree for cold room. The hot room controller uses fuzzy control algorithm to achieve accurate control of temperature and the cold room controller firstly uses compressor to achieve coarse control and then uses more accurate temperature controller unit to obtain constant temperature(-20 degree). The heating power measurement is mainly to get the heat power of hot room heating devices. After above constant temperature environment is constructed, software of the test system is developed. Using software, temperature data and heat power data can be accurately got and then the heat transfer coefficient, representing the thermal insulating properties of doors and widows, is calculated using the standard formula. Experimental results show that the test system is simple, reliable and precise. It meets the testing requirements of national standard and has a good application prospect.

  3. Guggenheim's rule and the enthalpy of vaporization of simple and polar fluids, molten salts, and room temperature ionic liquids.

    PubMed

    Weiss, Volker C

    2010-07-22

    One of Guggenheim's many corresponding-states rules for simple fluids implies that the molar enthalpy of vaporization (determined at the temperature at which the pressure reaches 1/50th of its critical value, which approximately coincides with the normal boiling point) divided by the critical temperature has a value of roughly 5.2R, where R is the universal gas constant. For more complex fluids, such as strongly polar and ionic fluids, one must expect deviations from Guggenheim's rule. Such a deviation has far-reaching consequences for other empirical rules related to the vaporization of fluids, namely Guldberg's rule and Trouton's rule. We evaluate these characteristic quantities for simple fluids, polar fluids, hydrogen-bonding fluids, simple inorganic molten salts, and room temperature ionic liquids (RTILs). For the ionic fluids, the critical parameters are not accessible to direct experimental observation; therefore, suitable extrapolation schemes have to be applied. For the RTILs [1-n-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imides, where the alkyl chain is ethyl, butyl, hexyl, or octyl], the critical temperature is estimated by extrapolating the surface tension to zero using Guggenheim's and Eotvos' rules; the critical density is obtained using the linear-diameter rule. It is shown that the RTILs adhere to Guggenheim's master curve for the reduced surface tension of simple and moderately polar fluids, but that they deviate significantly from his rule for the reduced enthalpy of vaporization of simple fluids. Consequences for evaluating the Trouton constant of RTILs, the value of which has been discussed controversially in the literature, are indicated.

  4. Red Phosphorescence from Benzo[2,1,3]thiadiazoles at Room Temperature.

    PubMed

    Gutierrez, Gregory D; Sazama, Graham T; Wu, Tony; Baldo, Marc A; Swager, Timothy M

    2016-06-03

    We describe the red phosphorescence exhibited by a class of structurally simple benzo[2,1,3]thiadiazoles at room temperature. The photophysical properties of these molecules in deoxygenated cyclohexane, including their absorption spectra, steady-state photoluminescence and excitation spectra, and phosphorescence lifetimes, are presented. Time-dependent density functional theory calculations were carried out to better understand the electronic excited states of these benzo[2,1,3]thiadiazoles and why they are capable of phosphorescence.

  5. THz Discrimination of Materials: Development of an Apparatus Based on Room Temperature Detection and Metasurfaces Selective Filters

    NASA Astrophysics Data System (ADS)

    Carelli, P.; Chiarello, F.; Torrioli, G.; Castellano, M. G.

    2017-03-01

    We present an apparatus for terahertz discrimination of materials designed to be fast, simple, compact, and economical in order to be suitable for preliminary on-field analysis. The system working principles, bio-inspired by the human vision of colors, are based on the use of an incoherent source, a room temperature detector, a series of microfabricated metamaterials selective filters, a very compact optics based on metallic ellipsoidal mirrors in air, and a treatment of the mirrors' surfaces that select the frequency band of interest. We experimentally demonstrate the operation of the apparatus in discriminating simple substances such as salt, staple foods, and grease. We present the system and the obtained results and discuss issues and possible developments.

  6. The structural properties of barium cobalt hexaferrite powder prepared by a simple heat treatment method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauhan, Chetna, E-mail: chetna.chauhan@nirmauni.ac.in; Jotania, Rajshree, E-mail: rbjotania@gmail.com

    2016-05-06

    The W-type barium hexaferrite was prepared using a simple heat treatment method. The precursor was calcinated at 650°C for 3 hours and then slowly cooled to room temperature in order to obtain barium cobalt hexaferrite powder. The prepared powder was characterised by different experimental techniques like XRD, FTIR and SEM. The X-ray diffractogram of the sample shows W-and M phases. The particle size calculated by Debye Scherrer formula. The FTIR spectra of the sample was taken at room temperature by using KBr pallet method which confirms the formation of hexaferrite phase. The morphological study on the hexaferrite powder was carriedmore » out by SEM analysis.« less

  7. Red phosphorescence from benzo[2,1,3]thiadiazoles at room temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutierrez, Gregory D.; Sazama, Graham T.; Wu, Tony

    2016-05-23

    In this paper, we describe the red phosphorescence exhibited by a class of structurally simple benzo[2,1,3]thiadiazoles at room temperature. The photophysical properties of these molecules in deoxygenated cyclohexane, including their absorption spectra, steady-state photoluminescence and excitation spectra, and phosphorescence lifetimes, are presented. Finally, time-dependent density functional theory calculations were carried out to better understand the electronic excited states of these benzo[2,1,3]thiadiazoles and why they are capable of phosphorescence.

  8. Room-temperature synthesis and photoluminescence of hexagonal CePO4 nanorods

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Zhang, K.; Zhao, H. Y.

    2018-01-01

    Hexagonal CePO4 nanorods were synthesized via a simple chemical precipitation route at room-temperature without the presence of surfactants and then characterized by powder X-ray diffraction (XRD), energy-dispersive X-ray (EDX) spectrometry, scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorption and photoluminescence (PL) spectroscopy. Hexagonal CePO4 nanorods exhibit strong ultraviolet absorption and ultraviolet luminescence, which correspond to the electronic transitions between 4f and 5d state of Ce3+ ions.

  9. Synthesis of phenanthridinones from N-methoxybenzamides and arenes by multiple palladium-catalyzed C-H activation steps at room temperature.

    PubMed

    Karthikeyan, Jaganathan; Cheng, Chien-Hong

    2011-10-10

    Many steps make light work: substituted phenanthridinones can be obtained with high regioselectivity and in very good yields by palladium-catalyzed cyclization reactions of N-methoxybenzamides with arenes. The reaction proceeds through multiple oxidative C-H activation and C-C/C-N formation steps in one pot at room temperature, and thus provides a simple method for generating bioactive phenanthridinones. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Polymer functionalized nanostructured porous silicon for selective water vapor sensing at room temperature

    NASA Astrophysics Data System (ADS)

    Dwivedi, Priyanka; Das, Samaresh; Dhanekar, Saakshi

    2017-04-01

    This paper highlights the surface treatment of porous silicon (PSi) for enhancing the sensitivity of water vapors at room temperature. A simple and low cost technique was used for fabrication and functionalization of PSi. Spin coated polyvinyl alcohol (PVA) was used for functionalizing PSi surface. Morphological and structural studies were conducted to analyze samples using SEM and XRD/Raman spectroscopy respectively. Contact angle measurements were performed for assessing the wettability of the surfaces. PSi and functionalized PSi samples were tested as sensors in presence of different analytes like ethanol, acetone, isopropyl alcohol (IPA) and water vapors in the range of 50-500 ppm. Electrical measurements were taken from parallel aluminium electrodes fabricated on the functionalized surface, using metal mask and thermal evaporation. Functionalized PSi sensors in comparison to non-functionalized sensors depicted selective and enhanced response to water vapor at room temperature. The results portray an efficient and selective water vapor detection at room temperature.

  11. High-resolution ionization detector and array of such detectors

    DOEpatents

    McGregor, Douglas S [Ypsilanti, MI; Rojeski, Ronald A [Pleasanton, CA

    2001-01-16

    A high-resolution ionization detector and an array of such detectors are described which utilize a reference pattern of conductive or semiconductive material to form interaction, pervious and measurement regions in an ionization substrate of, for example, CdZnTe material. The ionization detector is a room temperature semiconductor radiation detector. Various geometries of such a detector and an array of such detectors produce room temperature operated gamma ray spectrometers with relatively high resolution. For example, a 1 cm.sup.3 detector is capable of measuring .sup.137 Cs 662 keV gamma rays with room temperature energy resolution approaching 2% at FWHM. Two major types of such detectors include a parallel strip semiconductor Frisch grid detector and the geometrically weighted trapezoid prism semiconductor Frisch grid detector. The geometrically weighted detector records room temperature (24.degree. C.) energy resolutions of 2.68% FWHM for .sup.137 Cs 662 keV gamma rays and 2.45% FWHM for .sup.60 Co 1.332 MeV gamma rays. The detectors perform well without any electronic pulse rejection, correction or compensation techniques. The devices operate at room temperature with simple commercially available NIM bin electronics and do not require special preamplifiers or cooling stages for good spectroscopic results.

  12. High-density magnetoresistive random access memory operating at ultralow voltage at room temperature.

    PubMed

    Hu, Jia-Mian; Li, Zheng; Chen, Long-Qing; Nan, Ce-Wen

    2011-11-22

    The main bottlenecks limiting the practical applications of current magnetoresistive random access memory (MRAM) technology are its low storage density and high writing energy consumption. Although a number of proposals have been reported for voltage-controlled memory device in recent years, none of them simultaneously satisfy the important device attributes: high storage capacity, low power consumption and room temperature operation. Here we present, using phase-field simulations, a simple and new pathway towards high-performance MRAMs that display significant improvements over existing MRAM technologies or proposed concepts. The proposed nanoscale MRAM device simultaneously exhibits ultrahigh storage capacity of up to 88 Gb inch(-2), ultralow power dissipation as low as 0.16 fJ per bit and room temperature high-speed operation below 10 ns.

  13. High-density magnetoresistive random access memory operating at ultralow voltage at room temperature

    PubMed Central

    Hu, Jia-Mian; Li, Zheng; Chen, Long-Qing; Nan, Ce-Wen

    2011-01-01

    The main bottlenecks limiting the practical applications of current magnetoresistive random access memory (MRAM) technology are its low storage density and high writing energy consumption. Although a number of proposals have been reported for voltage-controlled memory device in recent years, none of them simultaneously satisfy the important device attributes: high storage capacity, low power consumption and room temperature operation. Here we present, using phase-field simulations, a simple and new pathway towards high-performance MRAMs that display significant improvements over existing MRAM technologies or proposed concepts. The proposed nanoscale MRAM device simultaneously exhibits ultrahigh storage capacity of up to 88 Gb inch−2, ultralow power dissipation as low as 0.16 fJ per bit and room temperature high-speed operation below 10 ns. PMID:22109527

  14. Electrical and magnetic properties of spherical SmFeO{sub 3} synthesized by aspartic acid assisted combustion method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuvaraj, Subramanian; Layek, Samar; Vidyavathy, S. Manisha

    2015-12-15

    Highlights: • SmFeO{sub 3} is synthesized by simple combustion method using aspartic acid as the fuel. • The particles are spherical in shape with the size ranges between 150 and 300 nm. • Cole–Cole plot infers the bulk conduction mechanism. • Room temperature VSM analysis reveal the weak ferromagnetic behaviour of SmFeO{sub 3}. • Mössbauer analysis elucidates the +3 oxidation state of Fe atoms. - Abstract: Samarium orthoferrite (SmFeO{sub 3}) is synthesized by a simple combustion method using aspartic acid as fuel. Phase purity and functional groups are analyzed via X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) analysis, whichmore » confirms the single phase formation of orthorhombic SmFeO{sub 3}. Approximately spherical particles with size range 150–300 nm is revealed by scanning electron microscope (SEM). The conductivity of the material is identified by the single semicircle obtained in the solid state impedance spectra at elevated temperatures. The calculated electrical conductivity increases with increasing temperature, inferring the semiconducting nature of SmFeO{sub 3}. A magnetic study at room temperature revealed weak ferromagnetic behaviour in SmFeO{sub 3} due to Dzyaloshinsky–Moriya antisymmetric exchange interaction mechanism. Mössbauer analysis confirmed the +3 oxidation state of iron and magnetic ordering of the sample at room temperature.« less

  15. Proinsulin is stable at room temperature for 24 hours in EDTA: A clinical laboratory analysis (adAPT 3).

    PubMed

    Davidson, Jane; McDonald, Timothy; Sutherland, Calum; Mostazir, Mohammod; VanAalten, Lidy; Wilkin, Terence

    2017-01-01

    Reference laboratories advise immediate separation and freezing of samples for the assay of proinsulin, which limit its practicability for smaller centres. Following the demonstration that insulin and C-peptide are stable in EDTA at room temperature for at least 24hours, we undertook simple stability studies to establish whether the same might apply to proinsulin. Venous blood samples were drawn from six adult women, some fasting, some not, aliquoted and assayed immediately and after storage at either 4°C or ambient temperature for periods from 2h to 24h. There was no significant variation or difference with storage time or storage condition in either individual or group analysis. Proinsulin appears to be stable at room temperature in EDTA for at least 24h. Immediate separation and storage on ice of samples for proinsulin assay is not necessary, which will simplify sample transport, particularly for multicentre trials.

  16. Continuous flow room temperature reductive aqueous homo-coupling of aryl halides using supported Pd catalysts

    PubMed Central

    Feiz, Afsaneh; Bazgir, Ayoob; Balu, Alina M.; Luque, Rafael

    2016-01-01

    A convenient and environmentally friendly protocol for the preparation of biaryls at room temperature under continuous flow conditions is reported. A simple reductive homo-coupling Ullmann-type reaction was performed in an H-Cube mini using commercially available supported Pd catalysts under mild reaction conditions, with quantitative conversion to target products. Commercial Pd catalysts were found to be highly stable under the investigated reaction conditions, with a minimum Pd leaching into solution after several reaction runs (ca. 20 h on stream). PMID:27600989

  17. One-pot synthesis of β-acetamido ketones using boric acid at room temperature.

    PubMed

    Karimi-Jaberi, Zahed; Mohammadi, Korosh

    2012-01-01

    β-acetamido ketones were synthesized in excellent yields through one-pot condensation reaction of aldehydes, acetophenones, acetyl chloride, and acetonitrile in the presence of boric acid as a solid heterogeneous catalyst at room temperature. It is the first successful report of boric acid that has been used as solid acid catalyst for the preparation of β-acetamido ketones. The remarkable advantages offered by this method are green catalyst, mild reaction conditions, simple procedure, short reaction times, and good-to-excellent yields of products.

  18. One-Pot Synthesis of β-Acetamido Ketones Using Boric Acid at Room Temperature

    PubMed Central

    Karimi-Jaberi, Zahed; Mohammadi, Korosh

    2012-01-01

    β-acetamido ketones were synthesized in excellent yields through one-pot condensation reaction of aldehydes, acetophenones, acetyl chloride, and acetonitrile in the presence of boric acid as a solid heterogeneous catalyst at room temperature. It is the first successful report of boric acid that has been used as solid acid catalyst for the preparation of β-acetamido ketones. The remarkable advantages offered by this method are green catalyst, mild reaction conditions, simple procedure, short reaction times, and good-to-excellent yields of products. PMID:22666168

  19. Wide-band-gap, alkaline-earth-oxide semiconductor and devices utilizing same

    DOEpatents

    Abraham, Marvin M.; Chen, Yok; Kernohan, Robert H.

    1981-01-01

    This invention relates to novel and comparatively inexpensive semiconductor devices utilizing semiconducting alkaline-earth-oxide crystals doped with alkali metal. The semiconducting crystals are produced by a simple and relatively inexpensive process. As a specific example, a high-purity lithium-doped MgO crystal is grown by conventional techniques. The crystal then is heated in an oxygen-containing atmosphere to form many [Li].degree. defects therein, and the resulting defect-rich hot crystal is promptly quenched to render the defects stable at room temperature and temperatures well above the same. Quenching can be effected conveniently by contacting the hot crystal with room-temperature air.

  20. Room temperature ionic liquids: A simple model. Effect of chain length and size of intermolecular potential on critical temperature.

    PubMed

    Chapela, Gustavo A; Guzmán, Orlando; Díaz-Herrera, Enrique; del Río, Fernando

    2015-04-21

    A model of a room temperature ionic liquid can be represented as an ion attached to an aliphatic chain mixed with a counter ion. The simple model used in this work is based on a short rigid tangent square well chain with an ion, represented by a hard sphere interacting with a Yukawa potential at the head of the chain, mixed with a counter ion represented as well by a hard sphere interacting with a Yukawa potential of the opposite sign. The length of the chain and the depth of the intermolecular forces are investigated in order to understand which of these factors are responsible for the lowering of the critical temperature. It is the large difference between the ionic and the dispersion potentials which explains this lowering of the critical temperature. Calculation of liquid-vapor equilibrium orthobaric curves is used to estimate the critical points of the model. Vapor pressures are used to obtain an estimate of the triple point of the different models in order to calculate the span of temperatures where they remain a liquid. Surface tensions and interfacial thicknesses are also reported.

  1. Pd/C Synthesized with Citric Acid: An Efficient Catalyst for Hydrogen Generation from Formic Acid/Sodium Formate

    PubMed Central

    Wang, Zhi-Li; Yan, Jun-Min; Wang, Hong-Li; Ping, Yun; Jiang, Qing

    2012-01-01

    A highly efficient hydrogen generation from formic acid/sodium formate aqueous solution catalyzed by in situ synthesized Pd/C with citric acid has been successfully achieved at room temperature. Interestingly, the presence of citric acid during the formation and growth of the Pd nanoparticles on carbon can drastically enhance the catalytic property of the resulted Pd/C, on which the conversion and turnover frequency for decomposition of formic acid/sodium formate system can reach the highest values ever reported of 85% within 160 min and 64 mol H2 mol−1 catalyst h−1, respectively, at room temperature. The present simple, low cost, but highly efficient CO-free hydrogen generation system at room temperature is believed to greatly promote the practical application of formic acid system on fuel cells. PMID:22953041

  2. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1988-01-01

    Details three demonstrations for use in chemistry classrooms. Includes: "A Demonstration of Corrosion by Differential Aeration"; "A Simple Demonstration of the Activation Energy Concept"; and "A Boiling Demonstration at Room Temperature." Each description includes equipment, materials, and methods. (CW)

  3. A Highly Reversible Room-Temperature Sodium Metal Anode

    PubMed Central

    2015-01-01

    Owing to its low cost and high natural abundance, sodium metal is among the most promising anode materials for energy storage technologies beyond lithium ion batteries. However, room-temperature sodium metal anodes suffer from poor reversibility during long-term plating and stripping, mainly due to formation of nonuniform solid electrolyte interphase as well as dendritic growth of sodium metal. Herein we report for the first time that a simple liquid electrolyte, sodium hexafluorophosphate in glymes (mono-, di-, and tetraglyme), can enable highly reversible and nondendritic plating–stripping of sodium metal anodes at room temperature. High average Coulombic efficiencies of 99.9% were achieved over 300 plating–stripping cycles at 0.5 mA cm–2. The long-term reversibility was found to arise from the formation of a uniform, inorganic solid electrolyte interphase made of sodium oxide and sodium fluoride, which is highly impermeable to electrolyte solvent and conducive to nondendritic growth. As a proof of concept, we also demonstrate a room-temperature sodium–sulfur battery using this class of electrolytes, paving the way for the development of next-generation, sodium-based energy storage technologies. PMID:27163006

  4. A Highly Reversible Room-Temperature Sodium Metal Anode.

    PubMed

    Seh, Zhi Wei; Sun, Jie; Sun, Yongming; Cui, Yi

    2015-11-25

    Owing to its low cost and high natural abundance, sodium metal is among the most promising anode materials for energy storage technologies beyond lithium ion batteries. However, room-temperature sodium metal anodes suffer from poor reversibility during long-term plating and stripping, mainly due to formation of nonuniform solid electrolyte interphase as well as dendritic growth of sodium metal. Herein we report for the first time that a simple liquid electrolyte, sodium hexafluorophosphate in glymes (mono-, di-, and tetraglyme), can enable highly reversible and nondendritic plating-stripping of sodium metal anodes at room temperature. High average Coulombic efficiencies of 99.9% were achieved over 300 plating-stripping cycles at 0.5 mA cm(-2). The long-term reversibility was found to arise from the formation of a uniform, inorganic solid electrolyte interphase made of sodium oxide and sodium fluoride, which is highly impermeable to electrolyte solvent and conducive to nondendritic growth. As a proof of concept, we also demonstrate a room-temperature sodium-sulfur battery using this class of electrolytes, paving the way for the development of next-generation, sodium-based energy storage technologies.

  5. A Photoactivated Gas Detector for Toluene Sensing at Room Temperature Based on New Coral-Like ZnO Nanostructure Arrays

    PubMed Central

    Yeh, Li-Ko; Luo, Jie-Chun; Chen, Min-Chun; Wu, Chih-Hung; Chen, Jian-Zhang; Cheng, I-Chun; Hsu, Cheng-Che; Tian, Wei-Cheng

    2016-01-01

    A photoactivated gas detector operated at room temperature was microfabricated using a simple hydrothermal method. We report that the photoactivated gas detector can detect toluene using a UV illumination of 2 μW/cm2. By ultraviolet (UV) illumination, gas detectors sense toluene at room temperature without heating. A significant enhancement of detector sensitivity is achieved because of the high surface-area-to-volume ratio of the morphology of the coral-like ZnO nanorods arrays (NRAs) and the increased number of photo-induced oxygen ions under UV illumination. The corresponding sensitivity (ΔR/R0) of the detector based on coral-like ZnO NRAs is enhanced by approximately 1022% compared to that of thin-film detectors. The proposed detector greatly extends the dynamic range of detection of metal-oxide-based detectors for gas sensing applications. We report the first-ever detection of toluene with a novel coral-like NRAs gas detector at room temperature. A sensing mechanism model is also proposed to explain the sensing responses of gas detectors based on coral-like ZnO NRAs. PMID:27809222

  6. Study of the heavy atom-induced room temperature phosphorescence properties of melatonin and its analytical application

    NASA Astrophysics Data System (ADS)

    Amjadi, Mohammad; Manzoori, Jamshid L.; Miller, James N.

    2006-02-01

    Liquid phase room temperature phosphorescence (RTP) properties of melatonin were studied using heavy atom induced-room temperature phosphorescence (HAI-RTP) technique. 1.2 M potassium iodide was used as a heavy atom reagent together with 0.002 M sodium sulphite as deoxygenating agent to produce the RTP signal. The maximum phosphorescence emission and excitation wavelengths of melatonin were 290 and 457 nm, respectively. The effect of potassium iodide concentration on the RTP lifetime of melatonin was also investigated and based on the results, the rate constants for phosphorescence decay ( kp) and radiationless deactivation through reaction with heavy atom ( kh) were determined. Based on the obtained results, a simple and sensitive room temperature phosphorimetric method was developed for the determination of melatonin. The method allowed the determination of 10.0-200 ng ml -1 melatonin in aqueous solution with the limits of detection and quantification of 3.6 and 12 ng ml -1, respectively. The proposed method was satisfactorily applied to the determination of melatonin in commercial pharmaceutical formulations.

  7. A Photoactivated Gas Detector for Toluene Sensing at Room Temperature Based on New Coral-Like ZnO Nanostructure Arrays.

    PubMed

    Yeh, Li-Ko; Luo, Jie-Chun; Chen, Min-Chun; Wu, Chih-Hung; Chen, Jian-Zhang; Cheng, I-Chun; Hsu, Cheng-Che; Tian, Wei-Cheng

    2016-10-31

    A photoactivated gas detector operated at room temperature was microfabricated using a simple hydrothermal method. We report that the photoactivated gas detector can detect toluene using a UV illumination of 2 μW/cm². By ultraviolet (UV) illumination, gas detectors sense toluene at room temperature without heating. A significant enhancement of detector sensitivity is achieved because of the high surface-area-to-volume ratio of the morphology of the coral-like ZnO nanorods arrays (NRAs) and the increased number of photo-induced oxygen ions under UV illumination. The corresponding sensitivity (ΔR/R₀) of the detector based on coral-like ZnO NRAs is enhanced by approximately 1022% compared to that of thin-film detectors. The proposed detector greatly extends the dynamic range of detection of metal-oxide-based detectors for gas sensing applications. We report the first-ever detection of toluene with a novel coral-like NRAs gas detector at room temperature. A sensing mechanism model is also proposed to explain the sensing responses of gas detectors based on coral-like ZnO NRAs.

  8. Simple and advanced ferromagnet/molecule spinterfaces

    NASA Astrophysics Data System (ADS)

    Gruber, M.; Ibrahim, F.; Djedhloul, F.; Barraud, C.; Garreau, G.; Boukari, S.; Isshiki, H.; Joly, L.; Urbain, E.; Peter, M.; Studniarek, M.; Da Costa, V.; Jabbar, H.; Bulou, H.; Davesne, V.; Halisdemir, U.; Chen, J.; Xenioti, D.; Arabski, J.; Bouzehouane, K.; Deranlot, C.; Fusil, S.; Otero, E.; Choueikani, F.; Chen, K.; Ohresser, P.; Bertran, F.; Le Fèvre, P.; Taleb-Ibrahimi, A.; Wulfhekel, W.; Hajjar-Garreau, S.; Wetzel, P.; Seneor, P.; Mattana, R.; Petroff, F.; Scheurer, F.; Weber, W.; Alouani, M.; Beaurepaire, E.; Bowen, M.

    2016-10-01

    Spin-polarized charge transfer between a ferromagnet and a molecule can promote molecular ferromagnetism 1, 2 and hybridized interfacial states3, 4. Observations of high spin-polarization of Fermi level states at room temperature5 designate such interfaces as a very promising candidate toward achieving a highly spin-polarized, nanoscale current source at room temperature, when compared to other solutions such as half-metallic systems and solid-state tunnelling over the past decades. We will discuss three aspects of this research. 1) Does the ferromagnet/molecule interface, also called an organic spinterface, exhibit this high spin-polarization as a generic feature? Spin-polarized photoemission experiments reveal that a high spin-polarization of electronics states at the Fermi level also exist at the simple interface between ferromagnetic cobalt and amorphous carbon6. Furthermore, this effect is general to an array of ferromagnetic and molecular candidates7. 2) Integrating molecules with intrinsic properties (e.g. spin crossover molecules) into a spinterface toward enhanced functionality requires lowering the charge transfer onto the molecule8 while magnetizing it1,2. We propose to achieve this by utilizing interlayer exchange coupling within a more advanced organic spinterface architecture. We present results at room temperature across the fcc Co(001)/Cu/manganese phthalocyanine (MnPc) system9. 3) Finally, we discuss how the Co/MnPc spinterface's ferromagnetism stabilizes antiferromagnetic ordering at room temperature onto subsequent molecules away from the spinterface, which in turn can exchange bias the Co layer at low temperature10. Consequences include tunnelling anisotropic magnetoresistance across a CoPc tunnel barrier11. This augurs new possibilities to transmit spin information across organic semiconductors using spin flip excitations12.

  9. Simple DNA extraction of urine samples: Effects of storage temperature and storage time.

    PubMed

    Ng, Huey Hian; Ang, Hwee Chen; Hoe, See Ying; Lim, Mae-Lynn; Tai, Hua Eng; Soh, Richard Choon Hock; Syn, Christopher Kiu-Choong

    2018-06-01

    Urine samples are commonly analysed in cases with suspected illicit drug consumption. In events of alleged sample mishandling, urine sample source identification may be necessary. A simple DNA extraction procedure suitable for STR typing of urine samples was established on the Promega Maxwell ® 16 paramagnetic silica bead platform. A small sample volume of 1.7mL was used. Samples were stored at room temperature, 4°C and -20°C for 100days to investigate the influence of storage temperature and time on extracted DNA quantity and success rate of STR typing. Samples stored at room temperature exhibited a faster decline in DNA yield with time and lower typing success rates as compared to those at 4°C and -20°C. This trend can likely be attributed to DNA degradation. In conclusion, this study presents a quick and effective DNA extraction protocol from a small urine volume stored for up to 100days at 4°C and -20°C. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Ambient temperature influences the neural benefits of exercise.

    PubMed

    Maynard, Mark E; Chung, Chasity; Comer, Ashley; Nelson, Katharine; Tran, Jamie; Werries, Nadja; Barton, Emily A; Spinetta, Michael; Leasure, J Leigh

    2016-02-15

    Many of the neural benefits of exercise require weeks to manifest. It would be useful to accelerate onset of exercise-driven plastic changes, such as increased hippocampal neurogenesis. Exercise represents a significant challenge to the brain because it produces heat, but brain temperature does not rise during exercise in the cold. This study tested the hypothesis that exercise in cold ambient temperature would stimulate hippocampal neurogenesis more than exercise in room or hot conditions. Adult female rats had exercise access 2h per day for 5 days at either room (20 °C), cold (4.5 °C) or hot (37.5 °C) temperature. To label dividing hippocampal precursor cells, animals received daily injections of BrdU. Brains were immunohistochemically processed for dividing cells (Ki67+), surviving cells (BrdU+) and new neurons (doublecortin, DCX) in the hippocampal dentate gyrus. Animals exercising at room temperature ran significantly farther than animals exercising in cold or hot conditions (room 1490 ± 400 m; cold 440 ± 102 m; hot 291 ± 56 m). We therefore analyzed the number of Ki67+, BrdU+ and DCX+ cells normalized for shortest distance run. Contrary to our hypothesis, exercise in either cold or hot conditions generated significantly more Ki67+, BrdU+ and DCX+ cells compared to exercise at room temperature. Thus, a limited amount of running in either cold or hot ambient conditions generates more new cells than a much greater distance run at room temperature. Taken together, our results suggest a simple means by which to augment exercise effects, yet minimize exercise time. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Stability of sotalol hydrochloride in extemporaneously prepared oral suspension formulations.

    PubMed

    Sidhom, Madiha B; Rivera, Nadya; Almoazen, Hassan; Taft, David R; Kirschenbaum, Harold L

    2005-01-01

    The physical, chemical, and microbial stabilities of extemporaneously compounded oral liquid formulations of sotalol hydrochloride were studied. Sotalol hydrochloride oral liquid suspensions (5mg/mL) were prepared from commercially available tablets (Betapace) in a 1:1 mixture of Ora-Plus: Ora-Sweet, a 1:1 mixture of Ora-Plus:Ora-Sweet SF, and a 1:2.4 mixture of simple syrup:methylcellulose vehicle. Six batches of each formulation were prepared; three were stored at refrigerated temperature (2 deg to 8 deg C) and three at room temperature (20 deg to 25 deg C). Samples were collected from each batch weekly for 6 weeks, and again at 12 weeks. Samples were analyzed by means of a high-performance liquid chromatographic method, and the concentrations obtained were compared to the theoretical time zero value. Samples were examined for pH, odor, color, and consistency changes. The suspensions also were evaluated for their microbial stability. Sotalol hydrochloride oral liquid suspensions (5mg/mL) were chemically stable for 12 weeks regardless of storage conditions (room temperature or refrigerated). Bacterial growth was not supported by any of the formulations. Suspensions stored at refrigerated temperature retained better physical quality (e.g., odor, color, and consistency) than suspensions stored at room temperature. Overall, this study demonstrates that oral formulations of sotalol hydrochloride can be readily prepared with commercially available vehicles. The method of preparation is relatively simple, the materials are relatively inexpensive, and the products have a shelf-life of at least 12 weeks.

  12. Room temperature ferromagnetism in a phthalocyanine based carbon material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honda, Z., E-mail: honda@fms.saitama-u.ac.jp; Sato, K.; Sakai, M.

    2014-02-07

    We report on a simple method to fabricate a magnetic carbon material that contains nitrogen-coordinated transition metals and has a large magnetic moment. Highly chlorinated iron phthalocyanine was used as building blocks and potassium as a coupling reagent to uniformly disperse nitrogen-coordinated iron atoms on the phthalocyanine based carbon material. The iron phthalocyanine based carbon material exhibits ferromagnetic properties at room temperature and the ferromagnetic phase transition occurs at T{sub c} = 490 ± 10 K. Transmission electron microscopy observation, X-ray diffraction analysis, and the temperature dependence of magnetization suggest that the phthalocyanine molecules form three-dimensional random networks in the iron phthalocyanine based carbon material.

  13. Long-term storage of salivary cortisol samples at room temperature

    NASA Technical Reports Server (NTRS)

    Chen, Yu-Ming; Cintron, Nitza M.; Whitson, Peggy A.

    1992-01-01

    Collection of saliva samples for the measurement of cortisol during space flights provides a simple technique for studying changes in adrenal function due microgravity. In the present work, several methods for preserving saliva cortisol at room temperature were investigated using radioimmunoassays for determining cortisol in saliva samples collected on a saliva-collection device called Salivettes. It was found that a pretreatment of Salivettes with citric acid resulted in preserving more than 85 percent of the salivary cortisol for as long as six weeks. The results correlated well with those for a sample stored in a freezer on an untreated Salivette.

  14. Palladium-catalyzed stereoretentive olefination of unactivated C(sp3)-H bonds with vinyl iodides at room temperature: synthesis of β-vinyl α-amino acids.

    PubMed

    Wang, Bo; Lu, Chengxi; Zhang, Shu-Yu; He, Gang; Nack, William A; Chen, Gong

    2014-12-05

    A method is reported for palladium-catalyzed N-quinolyl carboxamide-directed olefination of the unactivated C(sp(3))-H bonds of phthaloyl alanine with a broad range of vinyl iodides at room temperature. This reaction represents the first example of the stereoretentive installation of multisubstituted terminal and internal olefins onto unactivated C(sp(3))-H bonds. These methods enable access to a wide range of challenging β-vinyl α-amino acid products in a streamlined and controllable fashion, beginning from simple precursors.

  15. Room-temperature transition-metal-free one-pot synthesis of 3-aryl imidazo[1,2-a]pyridines via iodo-hemiaminal intermediate.

    PubMed

    Lee, Seul Ki; Park, Jin Kyoon

    2015-04-03

    A mild and efficient one-pot synthesis of 3-aryl imidazo[1,2-a]pyridines in up to 88% yield was developed. An adduct was formed after the simple mixing of 2-amino-4-methylpyridine, 2-phenylacetaldehyde, and N-iodosuccinimide in CH2Cl2, and the structure of the adduct was characterized by 2D NMR, IR, and high-resolution mass analysis. The adduct was readily cyclized by treatment with a saturated aqueous solution of NaHCO3. The reactions proceeded to completion after several hours at room temperature.

  16. Tannic acid assisted synthesis of flake-like hydroxyapatite nanostructures at room temperature

    NASA Astrophysics Data System (ADS)

    Vázquez, Maricela Santana; Estevez, O.; Ascencio-Aguirre, F.; Mendoza-Cruz, R.; Bazán-Díaz, L.; Zorrila, C.; Herrera-Becerra, R.

    2016-09-01

    A simple and non-expensive procedure was performed to synthesize hydroxyapatite (HAp) flake-like nanostructures, by using a co-precipitation method with tannic acid as stabilizing agent at room temperature and freeze drying. Samples were synthesized with two different salts, Ca(NO3)2 and CaCl2. X-ray diffraction analysis, Raman spectroscopy, scanning and transmission electron microscopy characterizations reveal Ca10(PO4)6(OH)2 HAp particles with hexagonal structure and P63/m space group in both cases. In addition, the particle size was smaller than 20 nm. The advantage of this method over the works reported to date lies in the ease for obtaining HAp particles with a single morphology (flakes), in high yield. This opens the possibility of expanding the view to the designing of new composite materials based on the HAp synthesized at room temperature.

  17. Functionalized Ga2O3 nanowires as active material in room temperature capacitance-based gas sensors.

    PubMed

    Mazeina, Lena; Perkins, F Keith; Bermudez, Victor M; Arnold, Stephen P; Prokes, S M

    2010-08-17

    We report the first evidence for functionalization of Ga(2)O(3) nanowires (NWs), which have been incorporated as the active material in room temperature capacitance gas-sensing devices. An adsorbed layer of pyruvic acid (PA) was successfully formed on Ga(2)O(3) NWs by simple room temperature vapor transport, which was confirmed by Fourier transform infrared spectroscopy. The effect of the adsorbed PA on the surface properties was demonstrated by the change in the response of the NW gas-sensing devices. Results indicate that the adsorption of PA reduced the sensitivity of the Ga(2)O(3) NW device to common hydrocarbons such as nitromethane and acetone while improving the response to triethylamine by an order of magnitude. Taking into account the simplicity of this functionalization together with the ease of producing these capacitance-based gas-sensing devices, this approach represents a viable technique for sensor development.

  18. Numerical modeling of cold room's hinged door opening and closing processes

    NASA Astrophysics Data System (ADS)

    Carneiro, R.; Gaspar, P. D.; Silva, P. D.; Domingues, L. C.

    2016-06-01

    The need of rationalize energy consumption in agrifood industry has fasten the development of methodologies to improve the thermal and energy performances of cold rooms. This paper presents a three-dimensional (3D) transient Computational Fluid Dynamics (CFD) modelling of a cold room to evaluate the air infiltration rate through hinged doors. A species transport model is used for modelling the tracer gas concentration decay technique. Numerical predictions indicate that air temperature difference between spaces affects the air infiltration. For this case study, the infiltration rate increases 0.016 m3 s-1 per K of air temperature difference. The knowledge about the evolution of air infiltration during door opening/closing times allows to draw some conclusions about its influence on the air conditions inside the cold room, as well as to suggest best practices and simple technical improvements that can minimize air infiltration, and consequently improve thermal performance and energy consumption rationalization.

  19. Imprinting bulk amorphous alloy at room temperature

    DOE PAGES

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; ...

    2015-11-13

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the abilitymore » of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. In conclusion, our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment.« less

  20. Proinsulin is stable at room temperature for 24 hours in EDTA: A clinical laboratory analysis (adAPT 3)

    PubMed Central

    Davidson, Jane; McDonald, Timothy; Sutherland, Calum; Mostazir, Mohammod; VanAalten, Lidy

    2017-01-01

    Aims Reference laboratories advise immediate separation and freezing of samples for the assay of proinsulin, which limit its practicability for smaller centres. Following the demonstration that insulin and C-peptide are stable in EDTA at room temperature for at least 24hours, we undertook simple stability studies to establish whether the same might apply to proinsulin. Methods Venous blood samples were drawn from six adult women, some fasting, some not, aliquoted and assayed immediately and after storage at either 4°C or ambient temperature for periods from 2h to 24h. Results There was no significant variation or difference with storage time or storage condition in either individual or group analysis. Conclusion Proinsulin appears to be stable at room temperature in EDTA for at least 24h. Immediate separation and storage on ice of samples for proinsulin assay is not necessary, which will simplify sample transport, particularly for multicentre trials. PMID:28426711

  1. Stability of allopurinol and of five antineoplastics in suspension.

    PubMed

    Dressman, J B; Poust, R I

    1983-04-01

    The stability of allopurinol, azathioprine, chlorambucil, melphalan, mercaptopurine, and thioguanine each in an extemporaneously prepared suspension was studied. Tablets of each drug were crushed, mixed with a suspending agent, and brought to a final volume of 10, 15, or 20 ml with a 2:1 mixture of simple syrup and wild cherry syrup. Suspensions were prepared in the following concentrations: allopurinol (20 mg/ml), azathioprine (50 mg/ml), chlorambucil (2 mg/ml), melphalan (2 mg/ml), mercaptopurine (50 mg/ml), and thioguanine (40 mg/ml). Using high-performance liquid chromatography or ultraviolet scans, duplicate assays were performed on each suspension periodically during storage for up to 84 days at ambient room temperature or 5 degrees C. The time required for the suspensions to drop below 90% of labeled strength was used as an indicator of drug stability. Allopurinol and azathioprine were stable for at least 56 days at room temperature and at 5 degrees C. Chlorambucil decomposed rapidly at room temperature but was stable for seven days when stored at 5 degrees C. Melphalan suspensions did not meet the stated criteria for stability even at the time of initial assay. Mercaptopurine and thioguanine were stable for 14 and 84 days, respectively, at room temperature; at 5 degrees C, assay values dropped below those obtained at room temperature. In the suspension formulation tested, allopurinol, azathioprine, mercaptopurine, and thioguanine are stable for at least 14 days at room temperature; chlorambucil suspensions should be refrigerated and discarded after seven days. Melphalan decomposes too rapidly to make this suspension formulation feasible for extemporaneous compounding.

  2. Sensitive and Selective NH₃ Monitoring at Room Temperature Using ZnO Ceramic Nanofibers Decorated with Poly(styrene sulfonate).

    PubMed

    Andre, Rafaela S; Kwak, Dongwook; Dong, Qiuchen; Zhong, Wei; Correa, Daniel S; Mattoso, Luiz H C; Lei, Yu

    2018-04-01

    Ammonia (NH₃) gas is a prominent air pollutant that is frequently found in industrial and livestock production environments. Due to the importance in controlling pollution and protecting public health, the development of new platforms for sensing NH₃ at room temperature has attracted great attention. In this study, a sensitive NH₃ gas device with enhanced selectivity is developed based on zinc oxide nanofibers (ZnO NFs) decorated with poly(styrene sulfonate) (PSS) and operated at room temperature. ZnO NFs were prepared by electrospinning followed by calcination at 500 °C for 3 h. The electrospun ZnO NFs are characterized to evaluate the properties of the as-prepared sensing materials. The loading of PSS to prepare ZnO NFs/PSS composite is also optimized based on the best sensing performance. Under the optimal composition, ZnO NFs/PSS displays rapid, reversible, and sensitive response upon NH₃ exposure at room temperature. The device shows a dynamic linear range up to 100 ppm and a limit of detection of 3.22 ppm and enhanced selectivity toward NH₃ in synthetic air, against NO₂ and CO, compared to pure ZnO NFs. Additionally, a sensing mechanism is proposed to illustrate the sensing performance using ZnO NFs/PSS composite. Therefore, this study provides a simple methodology to design a sensitive platform for NH₃ monitoring at room temperature.

  3. The Copper-nicotinamide complex: sustainable applications in coupling and cycloaddition reactions

    EPA Science Inventory

    Crystalline copper (II)-nicotinamide complex, synthesized via simple mixing of copper chloride and nicotinamide solution at room temperature, catalyzes the C-S, C-N bond forming and cycloaddition reactions under a variety of sustainable reaction conditions.

  4. A highly reversible room-temperature sodium metal anode

    DOE PAGES

    Seh, Zhi Wei; Sun, Jie; Sun, Yongming; ...

    2015-11-02

    Owing to its low cost and high natural abundance, sodium metal is among the most promising anode materials for energy storage technologies beyond lithium ion batteries. However, room-temperature sodium metal anodes suffer from poor reversibility during long-term plating and stripping, mainly due to formation of nonuniform solid electrolyte interphase as well as dendritic growth of sodium metal. Herein we report for the first time that a simple liquid electrolyte, sodium hexafluorophosphate in glymes (mono-, di-, and tetraglyme), can enable highly reversible and nondendritic plating–stripping of sodium metal anodes at room temperature. High average Coulombic efficiencies of 99.9% were achieved overmore » 300 plating–stripping cycles at 0.5 mA cm –2. In this study, the long-term reversibility was found to arise from the formation of a uniform, inorganic solid electrolyte interphase made of sodium oxide and sodium fluoride, which is highly impermeable to electrolyte solvent and conducive to nondendritic growth. As a proof of concept, we also demonstrate a room-temperature sodium–sulfur battery using this class of electrolytes, paving the way for the development of next-generation, sodium-based energy storage technologies.« less

  5. Reliability and efficacy of organic passivation for polycrystalline silicon solar cells at room temperature

    NASA Astrophysics Data System (ADS)

    Shinde, Onkar S.; Funde, Adinath M.; Jadkar, Sandesh R.; Dusane, Rajiv O.; Dhere, Neelkanth G.; Ghaisas, Subhash V.

    2016-09-01

    Oleylamine is used as a passivating layer instead of commercial high temperature SiNx. Oleylamine coating applied on the n-type emitter side with p-type base polycrystalline silicon solar cells at room temperature using a simple spin coating method. It has been observed that there is 16% increase in efficiency after Oleylamine coating. Further, the solar cell was subjected to standard characterization namely current-voltage measurement for electrical parameters and Fourier transform infrared spectroscopy to understand the interaction of emitter surface and passivating Oleylamine. However, the passivation layer is not stable due to the reaction between Oleylamine and ambient air content such as humidity and carbon dioxide. This degradation can be prevented with suitable overcoating.

  6. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1982-01-01

    Three chemistry demonstrations are described: (1) modification of copper catalysis demonstration apparatus; (2) experiments in gas-liquid chromatography with simple gas chromatography at room temperature; and (3) equilibria in silver arsenate-arsenic acid and silver phosphate-phosphoric acid systems. Procedures and materials needed are provided.…

  7. A simplified heat transfer model for predicting temperature change inside food package kept in cold room.

    PubMed

    Raval, A H; Solanki, S C; Yadav, Rajvir

    2013-04-01

    A simple analytical heat flow model for a closed rectangular food package containing fruits or vegetables is proposed for predicting time temperature distribution during transient cooling in a controlled environment cold room. It is based on the assumption of only conductive heat transfer inside a closed food package with effective thermal properties, and convective and radiative heat transfer at the outside of the package. The effective thermal conductivity of the food package is determined by evaluating its effective thermal resistance to heat conduction in the packages. Food packages both as an infinite slab and a finite slab have been investigated. The finite slab solution has been obtained as the product of three infinite slab solutions describe in ASHRAE guide and data book. Time temperature variation has been determined and is presented graphically. The cooling rate and the half cooling time were also obtained. These predicted values, are compared with the experimentally measured values for both the finite and infinite closed packages containing oranges. An excellent agreement between them validated the simple proposed model.

  8. Tactical Missile Conceptual Design,

    DTIC Science & Technology

    1980-09-01

    Temperature ..... ........... 110 a. Example I .... ................. 111 6 Page b. Example II ... ............... .. 112 6. Simple IR System...meet a current threat. An example of this might be an advance in material science, which allows higher inlet turbine temperatures for a turbojet...Pmin = k TO B n N 0)min Boltzmans constant is k = 1.38 x 10- 2 3 joule/ k. The value of kT0 at room temperature is 4 x 10 - 21 watt/cps of bandwidth

  9. Effect of buffer and antioxidant on stability of a mercaptopurine suspension.

    PubMed

    Aliabadi, Hamidreza Montazeri; Romanick, Marcel; Desai, Sunil; Lavasanifar, Afsaneh

    2008-03-01

    The stability of standard and modified mercaptopurine suspensions when stored at room temperature and under refrigerated conditions to test the feasibility of increasing shelf life was studied. A 50-mg/mL mercaptopurine suspension was compounded by adding simple syrup, cherry syrup, and sterile water for irrigation to triturated mercaptopurine tablets for the initial reference formulation. Three additional formulations were prepared by adding an antioxidant (ascorbic acid 10 mg), a buffer (sodium phosphate monobasic monohydrate 500 mg), and a combination of antioxidant and buffer to the reference formulation. Each compounded batch was divided into two parts and stored in amber bottles at room temperature (19-23 degrees C) or under refrigerated conditions (4-8 degrees C). Analysis through high-performance liquid chromatography determined mercaptopurine levels after three and seven days and weekly thereafter for at least two weeks after shelf life was reached under specified storage conditions. Solutions with at least 93% of the original mercaptopurine concentration and with no observable sign of aggregation or cake formation were considered stable. The reference suspension of mercaptopurine showed an acceptable physical and chemical stability of up to 5 weeks when stored at room temperature. The addition of ascorbic acid extended the shelf life of the compounded suspension to 11 weeks. However, the addition of sodium phosphate monobasic did not improve the stability of mercaptopurine in the suspension. The results showed a higher stability for all formulations after storage at room temperature compared with those stored in a refrigerator. A standard oral suspension of mercaptopurine contained an acceptable drug concentration for up to 5 weeks when stored at room temperature. The addition of ascorbic acid at a concentration of 0.1% w/v to the standard formulation increased the suspension's shelf life at room temperature to 11 weeks.

  10. Preservation of sperm within the mouse cauda epididymidis in salt or sugars at room temperature.

    PubMed

    Ono, Tetsuo; Mizutani, Eiji; Li, Chong; Wakayama, Teruhiko

    2010-08-01

    The development of preservation techniques for male gametes at room temperature might allow us to store them in a simple and cost-effective manner. In this study, we studied the use of pure salt or sugar to preserve the whole cauda epididymidis, because it is known that food can be preserved in this way at room temperature for long periods. Mouse epididymides were placed directly in powdered salt (NaCl) or sugars (glucose or raffinose) for 1 day to 1 year at room temperature. Spermatozoa were recovered from the preserved organs after being rehydrated with medium and then isolated sperm heads were microinjected into fresh oocytes. Importantly, the oocyte activation capacity of spermatozoa was maintained after epididymal storage in NaCl for 1 year, whereas most untreated spermatozoa failed to activate oocytes within 1 month of storage. Pronuclear morphology, the rate of extrusion of a second polar body and the methylation status of histone H3 lysine 9 (H3K9me3) in those zygotes were similar to those of zygotes fertilized with fresh spermatozoa. However, the developmental ability of the zygotes decreased within 1 day of sperm storage. This effect led to nuclear fragmentation at the 2-cell embryo stage, irrespective of the storage method used. Thus, although the preserved sperm failed to allow embryo development, their oocyte activation factors were maintained by salt storage of the epididymis for up to 1 year at room temperature.

  11. A Simple Tubular Reactor Experiment.

    ERIC Educational Resources Information Center

    Hudgins, Robert R.; Cayrol, Bertrand

    1981-01-01

    Using the hydrolysis of crystal violet dye by sodium hydroxide as an example, the theory, apparatus, and procedure for a laboratory demonstration of tubular reactor behavior are described. The reaction presented can occur at room temperature and features a color change to reinforce measured results. (WB)

  12. ROOM TEMPERATURE BULK AND TEMPLATE-FREE SYNTHESIS OF LEUCOEMARLDINE POLYANILINE NANOFIBERS

    EPA Science Inventory

    An extremely simple single-step method is described for the bulk synthesis of nanofibers of the electronic polymer polyaniline in fully reduced state (leucoemarldine form) without using any reducing agents, surfactants, and/or large amounts of insoluble templates. Chemical oxida...

  13. Room temperature solution processed low dimensional CH3NH3PbI3 NIR detector

    NASA Astrophysics Data System (ADS)

    Besra, N.; Paul, T.; Sarkar, P. K.; Thakur, S.; Sarkar, S.; Das, A.; Chanda, K.; Sardar, K.; Chattopadhyay, K. K.

    2018-05-01

    Metal halide perovskites have recently drawn immense research interests among the worldwide scientific community due to their excellent light harvesting capabilities and above all, cost effectiveness. These new class of materials have already been used as efficient optoelectronic devices e.g. solar cells, photo detectors, etc. Here in this work, room temperature NIR (near infra red) response of organic-inorganic lead halide perovskite CH3NH3PbI3 (Methylammonium lead tri iodide) nanorods has been studied. A very simple solution process technique has been adopted to synthesize CH3NH3PbI3 nanostructures at room temperature. The NIR exposure upon the sample resulted in a considerable hike in its dark current with very good responsivity (0.37 mA/W). Along with that, a good on-off ratio (41.8) was also obtained when the sample was treated under a pulsed NIR exposure with operating voltage of 2 V. The specific detectivity of the device came in the order of 1010 Jone.

  14. AN APPROACH FOR SCREENING CHOLINESTERASE INHIBITORS IN DRINKING WATER USING AN IMMOBILIZED ENZYME ASSAY

    EPA Science Inventory

    A simple, inexpensive and sensitive method for detecting organophosphate and carbamate insecticides is reported. Acetylcholinesterase was immobilized to PorexR Lateral-FloTM membrane material and remained active for several months at room temperature. The assay was sensitive ...

  15. Preparation and characterization of some alkanethiolatoosmium compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schobert, Harold Harris

    1970-11-01

    Results of magnetic susceptibility and infrared spectroscopy studies are presented and briefly discussed. The reaction of osmium tetrachloride with simple alkanethiols was found to proceed readily at room temperature, yielding in a few days a product of black amorphous solid soluble in most common organic solvents.

  16. Optical waveguide and room temperature high-quality nanolasers from tin-catalyzed CdSSe nanostructures

    NASA Astrophysics Data System (ADS)

    Guo, Pengfei; Shen, Xia; Zhang, Baolong; Sun, Haibin; Zou, Zhijun; Yang, Wenchao; Gong, Ke; Luo, Yongsong

    2018-05-01

    A simple two-step CVD method is developed to realize the growth of high-quality tin-catalyzed CdSSe alloy nanowires. Microstructural characterizations demonstrate that these wires are high-quality crystalline nanostructures. Local photoluminescence investigation of these nanostructures shows a typical band edge emission at 656 nm with a full-width at half-maximum of 22.3 nm. Optical waveguide measurement along an individual nanowire indicates that the output signal of the guided light has a rapid linear decrease accompanied with maximum red-shift about 109 meV after the transmission of 102 μm. This obvious red-shift is caused by the intensive band-tail absorption during the optical transmission process. Moreover, optically pumped nanolasers are successfully realized at room temperature based on these unique wires, further demonstrating the achievement of stimulated emission from spontaneous emission, promoted by the pump power intensity. This work may find a simple route to the manufacture of superior nanowires for applications in waveguide and integrated photonic devices.

  17. Optical waveguide and room temperature high-quality nanolasers from tin-catalyzed CdSSe nanostructures.

    PubMed

    Guo, Pengfei; Shen, Xia; Zhang, Baolong; Sun, Haibin; Zou, Zhijun; Yang, Wenchao; Gong, Ke; Luo, Yongsong

    2018-05-04

    A simple two-step CVD method is developed to realize the growth of high-quality tin-catalyzed CdSSe alloy nanowires. Microstructural characterizations demonstrate that these wires are high-quality crystalline nanostructures. Local photoluminescence investigation of these nanostructures shows a typical band edge emission at 656 nm with a full-width at half-maximum of 22.3 nm. Optical waveguide measurement along an individual nanowire indicates that the output signal of the guided light has a rapid linear decrease accompanied with maximum red-shift about 109 meV after the transmission of 102 μm. This obvious red-shift is caused by the intensive band-tail absorption during the optical transmission process. Moreover, optically pumped nanolasers are successfully realized at room temperature based on these unique wires, further demonstrating the achievement of stimulated emission from spontaneous emission, promoted by the pump power intensity. This work may find a simple route to the manufacture of superior nanowires for applications in waveguide and integrated photonic devices.

  18. Simple and Efficient Generation of Aryl Radicals from Aryl Triflates: Synthesis of Aryl Boronates and Aryl Iodides at Room Temperature.

    PubMed

    Liu, Wenbo; Yang, Xiaobo; Gao, Yang; Li, Chao-Jun

    2017-06-28

    Despite the wide use of aryl radicals in organic synthesis, current methods to prepare them from aryl halides, carboxylic acids, boronic acids, and diazonium salts suffer from limitations. Aryl triflates, easily obtained from phenols, are promising aryl radical progenitors but remain elusive in this regard. Inspired by the single electron transfer process for aryl halides to access aryl radicals, we developed a simple and efficient protocol to convert aryl triflates to aryl radicals. Our success lies in exploiting sodium iodide as the soft electron donor assisted by light. This strategy enables the scalable synthesis of two types of important organic molecules, i.e., aryl boronates and aryl iodides, in good to high yields, with broad functional group compatibility in a transition-metal-free manner at room temperature. This protocol is anticipated to find potential applications in other aryl-radical-involved reactions by using aryl triflates as aryl radical precursors.

  19. Surface-plasmon distributed-feedback quantum cascade lasers operating pulsed, room temperature

    NASA Astrophysics Data System (ADS)

    Bousseksou, A.; Chassagneux, Y.; Coudevylle, J. R.; Colombelli, R.; Sirtori, C.; Patriarche, G.; Beaudoin, G.; Sagnes, I.

    2009-08-01

    We report distributed-feedback surface-plasmon quantum cascade lasers operating at λ ≈7.6μm. The distributed feedback is obtained by the sole patterning of the top metal contact on a surface plasmon waveguide. Single mode operation with more than 30dB side mode suppression ratio is obtained in pulsed mode and at room temperature. A careful experimental study confirms that by varying the grating duty cycle, one can reduce the waveguide losses with respect to standard, unpatterned surface-plasmon devices. This allows one to reduce the laser threshold current of more than a factor of 2 in the 200-300K temperature range. This approach may lead to a fabrication technology for midinfrared distributed-feedback lasers based on a very simple processing.

  20. A classical density functional theory of ionic liquids.

    PubMed

    Forsman, Jan; Woodward, Clifford E; Trulsson, Martin

    2011-04-28

    We present a simple, classical density functional approach to the study of simple models of room temperature ionic liquids. Dispersion attractions as well as ion correlation effects and excluded volume packing are taken into account. The oligomeric structure, common to many ionic liquid molecules, is handled by a polymer density functional treatment. The theory is evaluated by comparisons with simulations, with an emphasis on the differential capacitance, an experimentally measurable quantity of significant practical interest.

  1. A Na+ Superionic Conductor for Room-Temperature Sodium Batteries

    NASA Astrophysics Data System (ADS)

    Song, Shufeng; Duong, Hai M.; Korsunsky, Alexander M.; Hu, Ning; Lu, Li

    2016-08-01

    Rechargeable lithium ion batteries have ruled the consumer electronics market for the past 20 years and have great significance in the growing number of electric vehicles and stationary energy storage applications. However, in addition to concerns about electrochemical performance, the limited availability of lithium is gradually becoming an important issue for further continued use and development of lithium ion batteries. Therefore, a significant shift in attention has been taking place towards new types of rechargeable batteries such as sodium-based systems that have low cost. Another important aspect of sodium battery is its potential compatibility with the all-solid-state design where solid electrolyte is used to replace liquid one, leading to simple battery design, long life span, and excellent safety. The key to the success of all-solid-state battery design is the challenge of finding solid electrolytes possessing acceptable high ionic conductivities at room temperature. Herein, we report a novel sodium superionic conductor with NASICON structure, Na3.1Zr1.95Mg0.05Si2PO12 that shows high room-temperature ionic conductivity of 3.5 × 10-3 S cm-1. We also report successful fabrication of a room-temperature solid-state Na-S cell using this conductor.

  2. A Na+ Superionic Conductor for Room-Temperature Sodium Batteries

    PubMed Central

    Song, Shufeng; Duong, Hai M.; Korsunsky, Alexander M.; Hu, Ning; Lu, Li

    2016-01-01

    Rechargeable lithium ion batteries have ruled the consumer electronics market for the past 20 years and have great significance in the growing number of electric vehicles and stationary energy storage applications. However, in addition to concerns about electrochemical performance, the limited availability of lithium is gradually becoming an important issue for further continued use and development of lithium ion batteries. Therefore, a significant shift in attention has been taking place towards new types of rechargeable batteries such as sodium-based systems that have low cost. Another important aspect of sodium battery is its potential compatibility with the all-solid-state design where solid electrolyte is used to replace liquid one, leading to simple battery design, long life span, and excellent safety. The key to the success of all-solid-state battery design is the challenge of finding solid electrolytes possessing acceptable high ionic conductivities at room temperature. Herein, we report a novel sodium superionic conductor with NASICON structure, Na3.1Zr1.95Mg0.05Si2PO12 that shows high room-temperature ionic conductivity of 3.5 × 10−3 S cm−1. We also report successful fabrication of a room-temperature solid-state Na-S cell using this conductor. PMID:27572915

  3. A Na(+) Superionic Conductor for Room-Temperature Sodium Batteries.

    PubMed

    Song, Shufeng; Duong, Hai M; Korsunsky, Alexander M; Hu, Ning; Lu, Li

    2016-08-30

    Rechargeable lithium ion batteries have ruled the consumer electronics market for the past 20 years and have great significance in the growing number of electric vehicles and stationary energy storage applications. However, in addition to concerns about electrochemical performance, the limited availability of lithium is gradually becoming an important issue for further continued use and development of lithium ion batteries. Therefore, a significant shift in attention has been taking place towards new types of rechargeable batteries such as sodium-based systems that have low cost. Another important aspect of sodium battery is its potential compatibility with the all-solid-state design where solid electrolyte is used to replace liquid one, leading to simple battery design, long life span, and excellent safety. The key to the success of all-solid-state battery design is the challenge of finding solid electrolytes possessing acceptable high ionic conductivities at room temperature. Herein, we report a novel sodium superionic conductor with NASICON structure, Na3.1Zr1.95Mg0.05Si2PO12 that shows high room-temperature ionic conductivity of 3.5 × 10(-3) S cm(-1). We also report successful fabrication of a room-temperature solid-state Na-S cell using this conductor.

  4. Room-temperature solution synthesis of Ag nanoparticle functionalized molybdenum oxide nanowires and their catalytic applications.

    PubMed

    Dong, Wenjun; Huang, Huandi; Zhu, Yanjun; Li, Xiaoyun; Wang, Xuebin; Li, Chaorong; Chen, Benyong; Wang, Ge; Shi, Zhan

    2012-10-26

    A simple chemical solution route for the synthesis of large-scale high-quality Ag nanoparticle functionalized molybdenum oxide nanowire at room temperature has been developed. In the synthesis, the protonated amine was intercalated into the molybdenum bronze layers to reduce the electrostatic force of the lamellar structures, and then the Ag nanoparticle functionalized long nanowires could be easily induced by a redox reaction between a molybdenum oxide-amine intermediate and Ag(+) at room temperature. The intercalation lamellar structures improved the nucleation and growth of the Ag nanoparticles, with the result that uniform Ag nanoparticles occurred on the surface of the MoO(3) nanowire. In this way Ag nanoparticles with average sizes of around 6 nm, and high-purity nanowires with mean diameter of around 50 nm and with typical lengths of several tens to hundreds of micrometers were produced. The heteronanostructured nanowires were intricately and inseparably connected to each other with hydrogen bonds and/or bridge oxygen atoms and packed together, forming a paper-like porous network film. The Ag-MoO(3) nanowire film performs a promoted catalytic property for the epoxidation of cis-cyclooctene, and the heteronanostructured nanowire film sensor shows excellent sensing performance to hydrogen and oxygen at room temperature.

  5. An 11 cm long atmospheric pressure cold plasma plume for applications of plasma medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu Xinpei; Jiang Zhonghe; Xiong Qing

    2008-02-25

    In this letter, a room temperature atmospheric pressure plasma jet device is reported. The high voltage electrode of the device is covered by a quartz tube with one end closed. The device, which is driven by a kilohertz ac power supply, is capable of generating a plasma plume up to 11 cm long in the surrounding room air. The rotational and vibrational temperatures of the plasma plume are 300 and 2300 K, respectively. A simple electrical model shows that, when the plasma plume is contacted with a human, the voltage drop on the human is less than 66 V formore » applied voltage of 5 kV (rms)« less

  6. The cooling rate dependence of cation distributions in CoFe2O4

    NASA Technical Reports Server (NTRS)

    De Guire, Mark R.; O'Handley, Robert C.; Kalonji, Gretchen

    1989-01-01

    The room-temperature cation distributions in bulk CoFe2O4 samples, cooled at rates between less than 0.01 and about 1000 C/sec, have been determined using Mossbauer spectroscopy in an 80-kOe magnetic field. With increasing cooling rate, the quenched structure departs increasingly from the mostly ordered cation distribution ordinarily observed at room temperature. However, the cation disorder appears to saturate just short of a random distribution at very high cooling rates. These results are interpreted in terms of a simple relaxation model of cation redistribution kinetics. The disordered cation distributions should lead to increased magnetization and decreased coercivity in CoFe2O4.

  7. Investigation on the Room-temperature preparation of Cobalt hybrid/Graphene Nanocomposite and application in wastewater purification: Highly Efficient Removal of Congo Red

    NASA Astrophysics Data System (ADS)

    Wang, L. X.; Zhao, Y. F.; Meng, Q. M.

    2018-01-01

    Here, we are going to report a simple, low-cost and environmental friendly process to prepare the cobalt hybrid/graphene (Co/G) nanocomposite at room temperature. NaBH4 was used as the reducing agent. Such an approach can be extended to grow some other metal/G nanocomposites, for example, Ni/G, Co/G nanocomposite possesses narrow size-distribution and good dispersion. Because of the special appearance with large surface area, and the special synthesis process of the productions, adsorption experiments for Congo Red were carried out in synthetic wastewater. The CR removal ability of Co/G nanocomposite can reach 263.2 mg/g.

  8. Improved dewpoint-probe calibration

    NASA Technical Reports Server (NTRS)

    Stephenson, J. G.; Theodore, E. A.

    1978-01-01

    Relatively-simple pressure-control apparatus calibrates dewpoint probes considerably faster than conventional methods, with no loss of accuracy. Technique requires only pressure measurement at each calibration point and single absolute-humidity measurement at beginning of run. Several probes can be calibrated simultaneously and points can be checked above room temperature.

  9. Nanoindentation hardness and atomic force microscope imaging studies of pressure-quenched zirconium metal

    NASA Astrophysics Data System (ADS)

    Catledge, Shane A.; Spencer, Philemon T.; Vohra, Yogesh K.

    2000-11-01

    We have carried out mechanical property measurements on zirconium metal compressed in a diamond anvil cell to 19 GPa at room temperature with subsequent quenching to room pressure. The irreversible transformation from the ambient hexagonal-close-packed phase to the simple hexagonal ω phase (AlB2 structure) is confirmed by synchrotron energy dispersive x-ray diffraction followed by nanoindentation of the pressure-quenched sample. We document an 80% increase in hardness as a consequence of the pressure-induced transformation to the ω phase at room temperature. This is a large increase for a metallic phase transformation and can be attributed to the presence of sp2-hybrid bonds forming graphite-like nets in the (0001) plane of the AlB2 structure. Atomic force microscopy of the indents shows that a plastic deformation of 2 μm in depth was achieved with a force of 200 mN.

  10. Room Temperature Ferromagnetic Mn:Ge(001).

    PubMed

    Lungu, George Adrian; Stoflea, Laura Elena; Tanase, Liviu Cristian; Bucur, Ioana Cristina; Răduţoiu, Nicoleta; Vasiliu, Florin; Mercioniu, Ionel; Kuncser, Victor; Teodorescu, Cristian-Mihail

    2013-12-27

    We report the synthesis of a room temperature ferromagnetic Mn-Ge system obtained by simple deposition of manganese on Ge(001), heated at relatively high temperature (starting with 250 °C). The samples were characterized by low energy electron diffraction (LEED), scanning tunneling microscopy (STM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), superconducting quantum interference device (SQUID), and magneto-optical Kerr effect (MOKE). Samples deposited at relatively elevated temperature (350 °C) exhibited the formation of ~5-8 nm diameter Mn₅Ge₃ and Mn 11 Ge₈ agglomerates by HRTEM, while XPS identified at least two Mn-containing phases: the agglomerates, together with a Ge-rich MnGe ~2.5 phase, or manganese diluted into the Ge(001) crystal. LEED revealed the persistence of long range order after a relatively high amount of Mn (100 nm) deposited on the single crystal substrate. STM probed the existence of dimer rows on the surface, slightly elongated as compared with Ge-Ge dimers on Ge(001). The films exhibited a clear ferromagnetism at room temperature, opening the possibility of forming a magnetic phase behind a nearly ideally terminated Ge surface, which could find applications in integration of magnetic functionalities on semiconductor bases. SQUID probed the co-existence of a superparamagnetic phase, with one phase which may be attributed to a diluted magnetic semiconductor. The hypothesis that the room temperature ferromagnetic phase might be the one with manganese diluted into the Ge crystal is formulated and discussed.

  11. Room Temperature Ferromagnetic Mn:Ge(001)

    PubMed Central

    Lungu, George Adrian; Stoflea, Laura Elena; Tanase, Liviu Cristian; Bucur, Ioana Cristina; Răduţoiu, Nicoleta; Vasiliu, Florin; Mercioniu, Ionel; Kuncser, Victor; Teodorescu, Cristian-Mihail

    2014-01-01

    We report the synthesis of a room temperature ferromagnetic Mn-Ge system obtained by simple deposition of manganese on Ge(001), heated at relatively high temperature (starting with 250 °C). The samples were characterized by low energy electron diffraction (LEED), scanning tunneling microscopy (STM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), superconducting quantum interference device (SQUID), and magneto-optical Kerr effect (MOKE). Samples deposited at relatively elevated temperature (350 °C) exhibited the formation of ~5–8 nm diameter Mn5Ge3 and Mn11Ge8 agglomerates by HRTEM, while XPS identified at least two Mn-containing phases: the agglomerates, together with a Ge-rich MnGe~2.5 phase, or manganese diluted into the Ge(001) crystal. LEED revealed the persistence of long range order after a relatively high amount of Mn (100 nm) deposited on the single crystal substrate. STM probed the existence of dimer rows on the surface, slightly elongated as compared with Ge–Ge dimers on Ge(001). The films exhibited a clear ferromagnetism at room temperature, opening the possibility of forming a magnetic phase behind a nearly ideally terminated Ge surface, which could find applications in integration of magnetic functionalities on semiconductor bases. SQUID probed the co-existence of a superparamagnetic phase, with one phase which may be attributed to a diluted magnetic semiconductor. The hypothesis that the room temperature ferromagnetic phase might be the one with manganese diluted into the Ge crystal is formulated and discussed. PMID:28788444

  12. A simple route to shape controlled CdS nanoparticles

    NASA Astrophysics Data System (ADS)

    Nejo, Ayorinde O.; Nejo, Adeola A.; Pullabhotla, Rajasekhar V. S. R.; Revaprasadu, Neerish

    2013-02-01

    We report the synthesis of CdS nanoparticles in the form of spheres, triangles and wire-like structures. The method involves the reaction of reduced sulfur with a cadmium salt followed by thermolysis in hexadecylamine (HDA). The different shapes were obtained by variation of reaction conditions such as reaction time, temperature and cadmium source. The optical studies show the particles to be quantum confined and luminescent at room temperature.

  13. Topical formulations with superoxide dismutase: influence of formulation composition on physical stability and enzymatic activity.

    PubMed

    Di Mambro, Valéria M; Borin, Maria F; Fonseca, Maria J V

    2003-04-24

    Three different topical formulations were supplemented with superoxide dismutase (SOD) and evaluated concerning physical and chemical stabilities in order to determine the most stable formulation that would maintain SOD activity. Physical stability was evaluated by storing the formulation at room temperature, and at 37 and 45 degrees C for 28 days. Samples were collected at 7-day intervals for assessment of rheological behavior. Chemical stability was evaluated by the measurement of enzymatic activity in formulations stored at room temperature and at 45 degrees C for 75 days. The formulations showed a pseudoplastic behavior, with a flow index of less than 1. There was no significant difference in the initial values of flow index, hysteresis loop or minimum apparent viscosity. The simple emulsion and the one stabilized with hydroxyethylcellulose showed decreased viscosity by the 21st day and with higher temperature, but no significant changes concerning the presence of SOD. Although there were no significant changes concerning storage time or temperature, the formulation stabilized with hydroxyethylcellulose showed a marked loss of SOD activity. The addition of SOD to the formulations studied did not affect their physical stability. Simple emulsions or emulsions stabilized with carboxypolymethylene seem to be better bases for enzyme addition than emulsion stabilized with hydroxyethylcellulose.

  14. Measuring Seebeck Coefficient

    NASA Technical Reports Server (NTRS)

    Snyder, G. Jeffrey (Inventor)

    2015-01-01

    A high temperature Seebeck coefficient measurement apparatus and method with various features to minimize typical sources of errors is described. Common sources of temperature and voltage measurement errors which may impact accurate measurement are identified and reduced. Applying the identified principles, a high temperature Seebeck measurement apparatus and method employing a uniaxial, four-point geometry is described to operate from room temperature up to 1300K. These techniques for non-destructive Seebeck coefficient measurements are simple to operate, and are suitable for bulk samples with a broad range of physical types and shapes.

  15. Room-Temperature and Solution-Processable Cu-Doped Nickel Oxide Nanoparticles for Efficient Hole-Transport Layers of Flexible Large-Area Perovskite Solar Cells.

    PubMed

    He, Qiqi; Yao, Kai; Wang, Xiaofeng; Xia, Xuefeng; Leng, Shifeng; Li, Fan

    2017-12-06

    Flexible perovskite solar cells (PSCs) using plastic substrates have become one of the most attractive points in the field of thin-film solar cells. Low-temperature and solution-processable nanoparticles (NPs) enable the fabrication of semiconductor thin films in a simple and low-cost approach to function as charge-selective layers in flexible PSCs. Here, we synthesized phase-pure p-type Cu-doped NiO x NPs with good electrical properties, which can be processed to smooth, pinhole-free, and efficient hole transport layers (HTLs) with large-area uniformity over a wide range of film thickness using a room-temperature solution-processing technique. Such a high-quality inorganic HTL allows for the fabrication of flexible PSCs with an active area >1 cm 2 , which have a power conversion efficiency over 15.01% without hysteresis. Moreover, the Cu/NiO x NP-based flexible devices also demonstrate excellent air stability and mechanical stability compared to their counterpart fabricated on the pristine NiO x films. This work will contribute to the evolution of upscaling flexible PSCs with a simple fabrication process and high device performances.

  16. A simple route to vertical array of quasi-1D ZnO nanofilms on FTO surfaces: 1D-crystal growth of nanoseeds under ammonia-assisted hydrolysis process

    PubMed Central

    2011-01-01

    A simple method for the synthesis of ZnO nanofilms composed of vertical array of quasi-1D ZnO nanostructures (quasi-NRs) on the surface was demonstrated via a 1D crystal growth of the attached nanoseeds under a rapid hydrolysis process of zinc salts in the presence of ammonia at room temperature. In a typical procedure, by simply controlling the concentration of zinc acetate and ammonia in the reaction, a high density of vertically oriented nanorod-like morphology could be successfully obtained in a relatively short growth period (approximately 4 to 5 min) and at a room-temperature process. The average diameter and the length of the nanostructures are approximately 30 and 110 nm, respectively. The as-prepared quasi-NRs products were pure ZnO phase in nature without the presence of any zinc complexes as confirmed by the XRD characterisation. Room-temperature optical absorption spectroscopy exhibits the presence of two separate excitonic characters inferring that the as-prepared ZnO quasi-NRs are high-crystallinity properties in nature. The mechanism of growth for the ZnO quasi-NRs will be proposed. Due to their simplicity, the method should become a potential alternative for a rapid and cost-effective preparation of high-quality ZnO quasi-NRs nanofilms for use in photovoltaic or photocatalytics applications. PACS: 81.07.Bc; 81.16.-c; 81.07.Gf. PMID:22027275

  17. BULK AND TEMPLATE-FREE SYNTHESIS OF SILVER NANOWIRES USING CAFFEINE AT ROOM TEMPERATURE

    EPA Science Inventory

    A simple eco-friendly one-pot method is described to synthesize bulk quantities of nanowires of silver (Ag) using caffeine without the need of reducing agent, surfactants, and/or large amounts of insoluble templates. Chemical reduction of silver salts with caffeine dramatically c...

  18. Dependence of Tritium Release from Stainless Steel on Temperature and Water Vapor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shmayda, W. T.; Sharpe, M.; Boyce, A. M.

    The impact of water vapor and temperature on the release of tritium from stainless steel was studied. Degreased stainless steel samples loaded with tritium at room temperature following a 24-h degassing in vacuum at room temperature were subjected to increasing temperatures or humidity. In general, increasing either the sample temperature or the humidity causes an increased quantity of tritium to be removed. Increasing the temperature to 300°C in a dry gas stream results in a significant release of tritium and is therefore an effective means for reducing the tritium inventory in steel. For humid purges at 30°C, a sixfold increasemore » in humidity results in a tenfold increase in the peak outgassing rate. Increasing the humidity from 4 parts per million (ppm) to 1000 ppm when the sample temperature is 100°C causes a significant increase in the tritium outgassing rate. Finally, a simple calculation shows that only 15% of the activity present in the sample was removed in these experiments, suggesting that the surface layer of adsorbed water participates in regulating tritium desorption from the surface.« less

  19. Dependence of Tritium Release from Stainless Steel on Temperature and Water Vapor

    DOE PAGES

    Shmayda, W. T.; Sharpe, M.; Boyce, A. M.; ...

    2015-09-15

    The impact of water vapor and temperature on the release of tritium from stainless steel was studied. Degreased stainless steel samples loaded with tritium at room temperature following a 24-h degassing in vacuum at room temperature were subjected to increasing temperatures or humidity. In general, increasing either the sample temperature or the humidity causes an increased quantity of tritium to be removed. Increasing the temperature to 300°C in a dry gas stream results in a significant release of tritium and is therefore an effective means for reducing the tritium inventory in steel. For humid purges at 30°C, a sixfold increasemore » in humidity results in a tenfold increase in the peak outgassing rate. Increasing the humidity from 4 parts per million (ppm) to 1000 ppm when the sample temperature is 100°C causes a significant increase in the tritium outgassing rate. Finally, a simple calculation shows that only 15% of the activity present in the sample was removed in these experiments, suggesting that the surface layer of adsorbed water participates in regulating tritium desorption from the surface.« less

  20. Facile synthesis of PbTe nanoparticles and thin films in alkaline aqueous solution at room temperature

    NASA Astrophysics Data System (ADS)

    Wang, Y. Y.; Cai, K. F.; Yao, X.

    2009-12-01

    A novel, simple, and cost-effective route to PbTe nanoparticles and films is reported in this paper. The PbTe nanoparticles and films are fabricated by a chemical bath method, at room temperature and ambient pressure, using conventional chemicals as starting materials. The average grain size of the nanoparticles collected at the bottom of the bath is ˜25 nm. The film deposited on glass substrate is dense, smooth, and uniform with silver gray metallic luster. The film exhibits p-type conduction and has a moderate Seebeck coefficient value (˜147 μV K -1) and low electrical conductivity (˜0.017 S cm -1). The formation mechanism of the PbTe nanoparticles and films is proposed.

  1. A novel one-pot room-temperature synthesis route to produce very small photoluminescent silicon nanocrystals

    NASA Astrophysics Data System (ADS)

    Douglas-Gallardo, Oscar A.; Burgos-Paci, Maxi A.; Mendoza-Cruz, Rubén; Putnam, Karl G.; Josefina Arellano-Jiménez, M.; José-Yacamán, Miguel; Mariscal, Marcelo M.; Macagno, Vicente A.; Sánchez, Cristián G.; Pérez, Manuel A.

    2018-03-01

    A novel strategy to synthesize photoluminescent silicon nanocrystals (SiNCs) from a reaction between tetraethylorthosilicate (TEOS) and trimethyl-hexadecyl-ammonium borohydride (CTABH4) in organic solvent is presented. The formation reaction occurs spontaneously at room temperature in homogeneous phase. The produced silicon nanocrystals are characterized by using their photoluminescent properties and via HRTEM. In addition, theoretical calculations of the optical absorption spectrum of silicon quantum dots in vacuum with different sizes and surface moieties were performed in order to compare with the experimental findings. The new chemical reaction is simple and can be implemented to produce silicon nanocrystal with regular laboratory materials by performing easy and safe procedures. [Figure not available: see fulltext.

  2. Application of TlBr to nuclear medicine imaging

    NASA Astrophysics Data System (ADS)

    Cirignano, Leonard; Kim, Hadong; Kargar, Alireza; Churilov, Alexei V.; Ciampi, Guido; Higgins, William; Kim, Suyoung; Barber, Bradford; Haston, Kyle; Shah, Kanai

    2012-10-01

    Thallium bromide (TlBr) has been under development for room temperature gamma ray spectroscopy due to high density, high Z and wide bandgap of the material. Furthermore, its low melting point (460 °C), cubic crystal structure and congruent melting with no solid-solid phase transitions between the melting point and room temperature, TlBr can be grown by relatively simple melt based methods. As a result of improvements in material processing and detector fabrication over the last several years, TlBr with electron mobility-lifetime products (μeτe) in the mid 10-3 cm2/V range has been obtained. In this paper we are going to report on our unipolar charging TlBr results for the application as a small animal imaging. For SPECT application, about 5 mm thick pixellated detectors were fabricated and tested. About 1 % FWHM at 662 keV energy resolution was estimated at room temperature. By applying the depth correction technique, less than 1 % energy resolution was estimated. We are going to report the results from orthogonal strip TlBr detector for PET application. In this paper we also present our latest detector highlights and recent progress made in long term stability of TlBr detectors at or near room temperature. This work is being supported by the Domestic Nuclear Detection Office (DNDO) and the Department of Energy (DOE).

  3. A highly sensitive room temperature H2S gas sensor based on SnO2 multi-tube arrays bio-templated from insect bristles.

    PubMed

    Tian, Junlong; Pan, Feng; Xue, Ruiyang; Zhang, Wang; Fang, Xiaotian; Liu, Qinglei; Wang, Yuhua; Zhang, Zhijian; Zhang, Di

    2015-05-07

    A tin oxide multi-tube array (SMTA) with a parallel effect was fabricated through a simple and promising method combining chemosynthesis and biomimetic techniques; a biomimetic template was derived from the bristles on the wings of the Alpine Black Swallowtail butterfly (Papilio maackii). SnO2 tubes are hollow and porous structures with micro-pores regularly distributed on the wall. The morphology, the delicate microstructure and the crystal structure of this SMTA were characterized by super resolution digital microscopy, scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The SMTA exhibits a high sensitivity to H2S gas at room temperature. It also exhibits a short response/recovery time, with an average value of 14/30 s at 5 ppm. In particular, heating is not required for the SMTA in the gas sensitivity measurement process. On the basis of these results, SMTA is proposed as a suitable new material for the design and fabrication of room-temperature H2S gas sensors.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seh, Zhi Wei; Sun, Jie; Sun, Yongming

    Owing to its low cost and high natural abundance, sodium metal is among the most promising anode materials for energy storage technologies beyond lithium ion batteries. However, room-temperature sodium metal anodes suffer from poor reversibility during long-term plating and stripping, mainly due to formation of nonuniform solid electrolyte interphase as well as dendritic growth of sodium metal. Herein we report for the first time that a simple liquid electrolyte, sodium hexafluorophosphate in glymes (mono-, di-, and tetraglyme), can enable highly reversible and nondendritic plating–stripping of sodium metal anodes at room temperature. High average Coulombic efficiencies of 99.9% were achieved overmore » 300 plating–stripping cycles at 0.5 mA cm –2. In this study, the long-term reversibility was found to arise from the formation of a uniform, inorganic solid electrolyte interphase made of sodium oxide and sodium fluoride, which is highly impermeable to electrolyte solvent and conducive to nondendritic growth. As a proof of concept, we also demonstrate a room-temperature sodium–sulfur battery using this class of electrolytes, paving the way for the development of next-generation, sodium-based energy storage technologies.« less

  5. Polyaniline-Cadmium Ferrite Nanostructured Composite for Room-Temperature Liquefied Petroleum Gas Sensing

    NASA Astrophysics Data System (ADS)

    Kotresh, S.; Ravikiran, Y. T.; Tiwari, S. K.; Vijaya Kumari, S. C.

    2017-08-01

    We introduce polyaniline-cadmium ferrite (PANI-CdFe2O4) nanostructured composite as a room-temperature-operable liquefied petroleum gas (LPG) sensor. The structure of PANI and the composite prepared by chemical polymerization was characterized by Fourier-transform infrared (FT-IR) spectroscopy, x-ray diffraction (XRD) analysis, and field-emission scanning electron microscopy. Comparative XRD and FT-IR analysis confirmed CdFe2O4 embedded in PANI matrix with mutual interfacial interaction. The nanostructure of the composite was confirmed by transmission electron microscopy. A simple LPG sensor operable at room temperature, exclusively based on spin-coated PANI-CdFe2O4 nanocomposite, was fabricated with maximum sensing response of 50.83% at 1000 ppm LPG. The response and recovery time of the sensor were 50 s and 110 s, respectively, and it was stable over a period of 1 month with slight degradation of 4%. The sensing mechanism is discussed on the basis of the p- n heterojunction barrier formed at the interface of PANI and CdFe2O4.

  6. Nonstoichiometric control of tunnel-filling order, thermal expansion, and dielectric relaxation in tetragonal tungsten Bronzes Ba0.5-xTaO3-x.

    PubMed

    Pan, Fengjuan; Li, Xiaohui; Lu, Fengqi; Wang, Xiaoming; Cao, Jiang; Kuang, Xiaojun; Véron, Emmanuel; Porcher, Florence; Suchomel, Matthew R; Wang, Jing; Allix, Mathieu

    2015-09-21

    Ordering of interpolated Ba(2+) chains and alternate Ta-O rows (TaO)(3+) in the pentagonal tunnels of tetragonal tungsten bronzes (TTB) is controlled by the nonstoichiometry in the highly nonstoichiometric Ba0.5-xTaO3-x system. In Ba0.22TaO2.72, the filling of Ba(2+) and (TaO)(3+) groups is partially ordered along the ab-plane of the simple TTB structure, resulting in a √2-type TTB superstructure (Pbmm), while in Ba0.175TaO2.675, the pentagonal tunnel filling is completely ordered along the b-axis of the simple TTB structure, leading to a triple TTB superstructure (P21212). Both superstructures show completely empty square tunnels favoring Ba(2+) conduction and feature unusual accommodation of Ta(5+) cations in the small triangular tunnels. In contrast with stoichiometric Ba6GaTa9O30, which shows linear thermal expansion of the cell parameters and monotonic decrease of permittivity with temperature within 100-800 K, these TTB superstructures and slightly nonstoichiometric simple TTB Ba0.4TaO2.9 display abnormally broad and frequency-dependent extrinsic dielectric relaxations in 10(3)-10(5) Hz above room temperature, a linear deviation of the c-axis thermal expansion around 600 K, and high dielectric permittivity ∼60-95 at 1 MHz at room temperature.

  7. Short-Term Storage of Platelet-Rich Plasma at Room Temperature Does Not Affect Growth Factor or Catabolic Cytokine Concentration.

    PubMed

    Wilson, Brooke H; Cole, Brian J; Goodale, Margaret B; Fortier, Lisa A

    2018-04-01

    The aim of this study was to provide clinical recommendations about the use of platelet-rich plasma (PRP) that was subjected to short-term storage at room temperature. We determined bioactive growth factor and cytokine concentrations as indicators of platelet and white blood cell degranulation in blood and PRP. Additionally, this study sought to validate the use of manual, direct smear analysis as an alternative to automated methods for platelet quantification in PRP. Blood was used to generate low-leukocyte PRP (Llo PRP) or high-leukocyte PRP (Lhi PRP). Blood was either processed immediately or kept at room temperature for 2 or 4 hours prior to generation of PRP, which was then held at room temperature for 0, 1, 2, or 4 hours. Subsequently, bioactive transforming growth factor beta-1 and matrix metalloproteinase-9 were measured by ELISA (enzyme-linked immunosorbent assay). Manual and automated platelet counts were performed on all blood and PRP samples. There were no differences in growth factor or cytokine concentration when blood or Llo PRP or Lhi PRP was retained at room temperature for up to 4 hours. Manual, direct smear analysis for platelet quantification was not different from the use of automated machine counting for PRP samples, but in the starting blood samples, manual platelet counts were significantly higher than those generated using automated technology. When there is a delay of up to 4 hours in the generation of PRP from blood or in the application of PRP to the patient, bioactive growth factor and cytokine concentrations remain stable in both blood and PRP. A manual direct counting method is a simple, cost-effective, and valid method to measure the contents of the PRP product being delivered to the patient.

  8. Tungsten-catalyzed asymmetric epoxidation of allylic and homoallylic alcohols with hydrogen peroxide.

    PubMed

    Wang, Chuan; Yamamoto, Hisashi

    2014-01-29

    A simple, efficient, and environmentally friendly asymmetric epoxidation of primary, secondary, tertiary allylic, and homoallylic alcohols has been accomplished. This process was promoted by a tungsten-bishydroxamic acid complex at room temperature with the use of aqueous 30% H2O2 as oxidant, yielding the products in 84-98% ee.

  9. Stability of Metronidazole Suspensions.

    PubMed

    Donnelly, Ronald F; Ying, James

    2015-01-01

    Metronidazole is an antiprotozoal agent used in the treatment of bacterial and protozoal anaerobic infections. The objectives of this study were to develop concentrated metronidazole suspensions that are inexpensive and easy to prepare and determine the stability of these suspensions after storage in amber polyvinyl chloride bottles at room temperature (23°C) and under refrigeration (5°C). Metronidazole suspensions (50 mg/mL) were prepared from powder using Ora-Blend or simple syrup as the vehicles. Samples were collected in triplicate from each container on days 0, 7, 14, 28, 56, and 93. Samples were assayed using a high-performance liquid chromatography method that had been validated as stability indicating. Color, change in physical appearance, and pH were also monitored at each time interval. There was no apparent change in color or physical appearance. The pH values changed by less than 0.20 units over the 93 days. The stability of metronidazole suspensions compounded from United States Pharmacopeia powder using Ora-Blend or simple syrup and packaged in amber polyvinyl chloride bottles was determined to be 93 days when stored at either room temperature or under refrigeration.

  10. Room temperature current-voltage (I-V) characteristics of Ag/InGaN/n-Si Schottky barrier diode

    NASA Astrophysics Data System (ADS)

    Erdoğan, Erman; Kundakçı, Mutlu

    2017-02-01

    Metal-semiconductors (MSs) or Schottky barrier diodes (SBDs) have a significant potential in the integrated device technology. In the present paper, electrical characterization of Ag/InGaN/n-Si Schottky diode have been systematically carried out by simple Thermionic method (TE) and Norde function based on the I-V characteristics. Ag ohmic and schottky contacts are deposited on InGaN/n-Si film by thermal evaporation technique under a vacuum pressure of 1×10-5 mbar. Ideality factor, barrier height and series resistance values of this diode are determined from I-V curve. These parameters are calculated by TE and Norde methods and findings are given in a comparetive manner. The results show the consistency for both method and also good agreement with other results obtained in the literature. The value of ideality factor and barrier height have been determined to be 2.84 and 0.78 eV at room temperature using simple TE method. The value of barrier height obtained with Norde method is calculated as 0.79 eV.

  11. Facile fabrication of CNT-based chemical sensor operating at room temperature

    NASA Astrophysics Data System (ADS)

    Sheng, Jiadong; Zeng, Xian; Zhu, Qi; Yang, Zhaohui; Zhang, Xiaohua

    2017-12-01

    This paper describes a simple, low cost and effective route to fabricate CNT-based chemical sensors, which operate at room temperature. Firstly, the incorporation of silk fibroin in vertically aligned CNT arrays (CNTA) obtained through a thermal chemical vapor deposition (CVD) method makes the direct removal of CNT arrays from substrates without any rigorous acid or sonication treatment feasible. Through a simple one-step in situ polymerization of anilines, the functionalization of CNT arrays with polyaniline (PANI) significantly improves the sensing performance of CNT-based chemical sensors in detecting ammonia (NH3) and hydrogen chloride (HCl) vapors. Chemically modified CNT arrays also show responses to organic vapors like menthol, ethyl acetate and acetone. Although the detection limits of chemically modified CNT-based chemical sensors are of the same orders of magnitudes reported in previous studies, these CNT-based chemical sensors show advantages of simplicity, low cost and energy efficiency in preparation and fabrication of devices. Additionally, a linear relationship between the relative sensitivity and concentration of analyte makes precise estimations on the concentrations of trace chemical vapors possible.

  12. Temperature dependence of material gain of InGaAsP/InP nano-heterostructure

    NASA Astrophysics Data System (ADS)

    Yadav, Rashmi; Alvi, P. A.

    2014-04-01

    This paper deals with temperature dependent study on material gain of InGaAsP/InP lasing nano-heterostructure with in TE mode. The model is based on simple separate confinement heterostructure (SCH). Material gain for the structure has been simulated for below and above the room temperatures. Different behaviors of the material gain for both ranges of the temperature have been reported in this paper. The results obtained in the simulation of the heterostructures suggest that only the shift in maximum gain takes place that appears at the lasing wavelength ˜ 1.40 μm.

  13. Tunable multi-wavelength SOA based linear cavity dual-output port fiber laser using Lyot-Sagnac loop mirror.

    PubMed

    Ummy, M A; Madamopoulos, N; Joyo, A; Kouar, M; Dorsinville, R

    2011-02-14

    We propose and demonstrate a simple dual port tunable from the C- to the L-band multi-wavelength fiber laser based on a SOA designed for C-band operation and fiber loop mirrors. The laser incorporates a polarization maintaining fiber in one of the fiber loop mirrors and delivers multi-wavelength operation at 9 laser lines with a wavelength separation of ~2.8 nm at room temperature. We show that the number of lasing wavelengths increases with the increase of the bias current of the SOA. Wavelength tunability from the C to L-band is achieved by exploiting the gain compression of a SOA. Stable multi-wavelength operation is achieved at room temperature without temperature compensation techniques, with measured power and the wavelength stability within < ±0.5 dB and 
±0.1 nm, respectively.

  14. Raman and dielectric studies of GdMnO3 bulk ceramics synthesized from nano powders

    NASA Astrophysics Data System (ADS)

    Samantaray, S.; Mishra, D. K.; Roul, B. K.

    2017-05-01

    Nanocrystalline GdMnO3 (GMO) powders has been synthesized by a simple chemical route i. e. pyrophoric reaction technique and then sintered in the form of bulk pellet at 850°C for 24 hours by adopting slow step sintering schedule. It is observed that by reducing the particles size, chemical route enhances the mixing process as well as decreasing the sintering temperature to get single phase material system in compared to the polycrystalline sample prepared directly from the micron sized commercial powder. Raman spectroscopic studies confirm that the sample is in single phase without any detectable impurity. Frequency dependent dielectric properties i.e., dielectric constant (K) and dielectric loss (tanδ) of GMO ceramics sintered at 850°C for 24 hours were studied at room temperature. The sample showed high K value (˜2736) in the frequency of 100 Hz at room temperature.

  15. Annealing effect on the magnetic induced austenite transformation in polycrystalline freestanding Ni-Co-Mn-In films produced by co-sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crouïgneau, G., E-mail: guillaume.crouigneau@neel.cnrs.fr; Univ. Grenoble Alpes, CRETA, F-38000 Grenoble; CNRS, Inst. NEEL, F-38000 Grenoble

    2015-01-21

    Ni-Co-Mn-In freestanding films, with a magneto-structural transformation at room temperature were successfully produced by co-sputtering and post-annealing methods leading to film composition mastering. For a post-annealing temperature of 700 °C, the phase transformation occurs slightly above room temperature, with a twisted martensitic microstructure phase observed at 300 K by Field Emission Scanning Electron Microscopy. Magnetization measurements on a polycrystalline film showed a phase transformation from a weakly magnetic martensite to a magnetic austenite phase. Moreover, an inverse magnetocaloric effect with an entropy variation of 4 J/kg K under 5 T was also measured. A simple magneto-actuation experiment based on the magnetic induced austenite transformation wasmore » also successfully completed. The possibility to insert such films in microsystems is clearly demonstrated in this work.« less

  16. Thermotropic liquid crystals from biomacromolecules

    PubMed Central

    Liu, Kai; Chen, Dong; Marcozzi, Alessio; Zheng, Lifei; Su, Juanjuan; Pesce, Diego; Zajaczkowski, Wojciech; Kolbe, Anke; Pisula, Wojciech; Müllen, Klaus; Clark, Noel A.; Herrmann, Andreas

    2014-01-01

    Complexation of biomacromolecules (e.g., nucleic acids, proteins, or viruses) with surfactants containing flexible alkyl tails, followed by dehydration, is shown to be a simple generic method for the production of thermotropic liquid crystals. The anhydrous smectic phases that result exhibit biomacromolecular sublayers intercalated between aliphatic hydrocarbon sublayers at or near room temperature. Both this and low transition temperatures to other phases enable the study and application of thermotropic liquid crystal phase behavior without thermal degradation of the biomolecular components. PMID:25512508

  17. A Simple and Green Route for Room-Temperature Synthesis of Gold Nanoparticles and Selective Colorimetric Detection of Cysteine.

    PubMed

    Bagci, Pelin Onsekizoglu; Wang, Yi-Cheng; Gunasekaran, Sundaram

    2015-09-01

    Gold nanoparticles (AuNPs) were synthesized at room temperature following a simple, rapid, and green route using fresh-squeezed apple juice as a reducing reagent. The optimal AuNPs, based on the particle color, stability, and color change suitable for colorimetric detection of cysteine (Cys), are synthesized using 5 mL of 10% apple juice, 1 mL of 10 mM gold precursor solution, and 1 mL of 0.1 M NaOH. Under this set of parameters, the AuNPs are synthesized within 30 min at room temperature. The average size (11.1 ± 3.2 nm) and ζ potential (-36.5 mV) of the AuNPs synthesized were similar to those of AuNPs prepared via the conventional citrate-reduction method. In the presence of Cys, unlike with any other amino acid, the AuNPs aggregated, possibly due to the gold-sulfur covalent interaction, yielding red-to-purple color change of the sample solution. The red-shift of the localized surface plasmon resonance peak of the AuNPs responsible for the color change was recorded by UV-vis spectrometer. The effect of other potential interferents such as glucose, ascorbic acid, K(+) , Na(+) , Ca(2+) , Zn(2+) , Ag(+) , Ni(2+) , Cu(2+) , Co(2+) , and Hg(2+) were also examined. The results show that AuNPs can be used to selectively detect and measure Cys with a linear dependency in the range of 2 to 100 μM and a limit of detection (signal-to-noise ratio > 3) of 50 nM. The results suggest that the green-synthesized AuNPs are useful for simple, rapid, and sensitive colorimetric detection of Cys, which is an essential amino acid in food and biological systems. © 2015 Institute of Food Technologists®

  18. Room temperature ferromagnetism in Fe-doped CuO nanoparticles.

    PubMed

    Layek, Samar; Verma, H C

    2013-03-01

    The pure and Fe-doped CuO nanoparticles of the series Cu(1-x)Fe(x)O (x = 0.00, 0.02, 0.04, 0.06 and 0.08) were successfully prepared by a simple low temperature sol-gel method using metal nitrates and citric acid. Rietveld refinement of the X-ray diffraction data showed that all the samples were single phase crystallized in monoclinic structure of space group C2/c with average crystallite size of about 25 nm and unit cell volume decreases with increasing iron doping concentration. TEM micrograph showed nearly spherical shaped agglomerated particles of 4% Fe-doped CuO with average diameter 26 nm. Pure CuO showed weak ferromagnetic behavior at room temperature with coercive field of 67 Oe. The ferromagnetic properties were greatly enhanced with Fe-doping in the CuO matrix. All the doped samples showed ferromagnetism at room temperature with a noticeable coercive field. Saturation magnetization increases with increasing Fe-doping, becomes highest for 4% doping then decreases for further doping which confirms that the ferromagnetism in these nanoparticles are intrinsic and are not resulting from any impurity phases. The ZFC and FC branches of the temperature dependent magnetization (measured in the range of 10-350 K by SQUID magnetometer) look like typical ferromagnetic nanoparticles and indicates that the ferromagnetic Curie temperature is above 350 K.

  19. Development of sleep monitoring system for observing the effect of the room ambient toward the quality of sleep

    NASA Astrophysics Data System (ADS)

    Saad, W. H. M.; Khoo, C. W.; Rahman, S. I. Ab; Ibrahim, M. M.; Saad, N. H. M.

    2017-06-01

    Getting enough sleep at the right times can help in improving quality of life and protect mental and physical health. This study proposes a portable sleep monitoring device to determine the relationship between the room ambient and quality of sleep. Body condition parameter such as heart rate, body temperature and body movement was used to determine quality of sleep and Audio/video-based monitoring system. The functionality test on all sensors is carried out to make sure that all sensors is working properly. The functionality of the overall system is designed for a better experience with a very minimal intervention to the user. The simple test on the body condition (body temperature and heart rate) while asleep with several different ambient parameters (humidity, brightness and temperature) are varied and the result shows that someone has a better sleep in a dark and colder ambient. This can prove by lower body temperature and lower heart rate.

  20. Gas sensing properties of very thin TiO2 films prepared by atomic layer deposition (ALD)

    NASA Astrophysics Data System (ADS)

    Boyadjiev, S.; Georgieva, V.; Vergov, L.; Baji, Zs; Gáber, F.; Szilágyi, I. M.

    2014-11-01

    Very thin titanium dioxide (TiO2) films of less than 10 nm were deposited by atomic layer deposition (ALD) in order to study their gas sensing properties. Applying the quartz crystal microbalance (QCM) method, prototype structures with the TiO2 ALD deposited thin films were tested for sensitivity to NO2. Although being very thin, the films were sensitive at room temperature and could register low concentrations as 50-100 ppm. The sorption is fully reversible and the films seem to be capable to detect for long term. These initial results for very thin ALD deposited TiO2 films give a promising approach for producing gas sensors working at room temperature on a fast, simple and cost-effective technology.

  1. Near room temperature and large-area synthesis of ZnO/Cu2O heterojunction for photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Gao, Shiyong; Zhang, Jiejing; Li, Wenqiang; Jiao, Shujie; Nie, Yanguang; Fan, Huaiyun; Zeng, Zhi; Yu, Qingjiang; Wang, Jinzhong; Zhang, Xitian

    2018-01-01

    Large-area ZnO/Cu2O heterojunction have been successfully synthesized on Cu foil through a simple two-step solution method at near room temperature. The field emission scanning electron microscopy characterization indicates that the morphology of as-prepared Cu2O film grown on Cu foil is octahedral structure with diameter of ∼450 nm and ZnO is nanorod arrays structure with diameter of ∼150 nm. The current-voltage measurement of ZnO/Cu2O heterojunction shows a typical rectifying characteristics. Moreover, the photocatalytic test indicates that ZnO/Cu2O heterojunction exhibits high photocatalytic efficient for degradation of congo red dyes. The possible photocatalytic mechanism of ZnO/Cu2O heterojunction is also presented.

  2. Deoxygenation of Unhindered Alcohols via Reductive Dealkylation of Derived Phosphate Esters

    DOE PAGES

    Chowdhury, Sarwat; Standaert, Robert F.

    2016-09-15

    Primary alcohols can be deoxygenated cleanly and in high yield by reduction of derived diphenyl phosphate esters with lithium triethylborohydride in tetrahydrofuran at room temperature. Selective deoxygenation of a primary alcohol in the presence of a secondary alcohol was demonstrated. The two-step process can be performed in one pot, making it both simple and convenient.

  3. Anchoring and Upgrading Ultrafine NiPd on Room-Temperature-Synthesized Bifunctional NH2 -N-rGO toward Low-Cost and Highly Efficient Catalysts for Selective Formic Acid Dehydrogenation.

    PubMed

    Yan, Jun-Min; Li, Si-Jia; Yi, Sha-Sha; Wulan, Ba-Ri; Zheng, Wei-Tao; Jiang, Qing

    2018-03-01

    Hydrogen is widely considered to be a sustainable and clean energy alternative to the use of fossil fuels in the future. Its high hydrogen content, nontoxicity, and liquid state at room temperature make formic acid a promising hydrogen carrier. Designing highly efficient and low-cost heterogeneous catalysts is a major challenge for realizing the practical application of formic acid in the fuel-cell-based hydrogen economy. Herein, a simple but effective and rapid strategy is proposed, which demonstrates the synthesis of NiPd bimetallic ultrafine particles (UPs) supported on NH 2 -functionalized and N-doped reduced graphene oxide (NH 2 -N-rGO) at room temperature. The introduction of the NH 2 N group to rGO is the key reason for the formation of the ultrafine and well-dispersed Ni 0.4 Pd 0.6 UPs (1.8 nm) with relatively large surface area and more active sites. Surprisingly, the as-prepared low-cost NiPd/NH 2 -N-rGO dsiplays excellent hydrophilicity, 100% H 2 selectivity, 100% conversion, and remarkable catalytic activity (up to 954.3 mol H 2 (mol catalyst) -1 h -1 ) for FA decomposition at room temperature even with no additive, which is much higher than that of the best catalysts so far reported. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Copper-Exchanged Zeolite L Traps Oxygen

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K.; Seshan, Panchalam K.

    1991-01-01

    Brief series of simple chemical treatments found to enhance ability of zeolite to remove oxygen from mixture of gases. Thermally stable up to 700 degrees C and has high specific surface area which provides high capacity for adsorption of gases. To increase ability to adsorb oxygen selectively, copper added by ion exchange, and copper-exchanged zeolite reduced with hydrogen. As result, copper dispersed atomically on inner surfaces of zeolite, making it highly reactive to oxygen, even at room temperature. Reactivity to oxygen even greater at higher temperatures.

  5. Bolt clampup relaxation in a graphite/epoxy laminate

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Crews, J. H., Jr.

    1982-01-01

    A simple bolted joint was analyzed to calculate bolt clampup relaxation for a graphite/epoxy (T300/5208) laminate. A viscoelastic finite element analysis of a double-lap joint with a steel bolt was conducted. Clampup forces were calculated for various steady-state temperature-moisture conditions using a 20-year exposure duration. The finite element analysis predicted that clampup forces relax even for the room-temperature-dry condition. The relaxations were 8, 13, 20, and 30 percent for exposure durations of 1 day, 1 month, 1 year, and 20 years, respectively. As expected, higher temperatures and moisture levels each increased the relaxation rate. The combined viscoelastic effects of steady-state temperature and moisture appeared to be additive. From the finite-element analysis, a simple equation was developed for clampup force relaxation. This generalized equation was used to calculate clampup forces for the same temperature-moisture conditions as used in the finite-element analysis. The two sets of calculated results agreed well.

  6. Platinum nanoparticles on carbon-nanotube support prepared by room-temperature reduction with H2 in ethylene glycol/water mixed solvent as catalysts for polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Zheng, Yuying; Dou, Zhengjie; Fang, Yanxiong; Li, Muwu; Wu, Xin; Zeng, Jianhuang; Hou, Zhaohui; Liao, Shijun

    2016-02-01

    Polyol approach is commonly used in synthesizing Pt nanoparticles in polymer electrolyte membrane fuel cells. However, the application of this process consumes a great deal of time and energy, as the reduction of precursors requires elevated temperatures and several hours. Moreover, the ethylene glycol and its oxidizing products bound to Pt are difficult to remove. In this work, we utilize the advantages of ethylene glycol and prepare Pt nanoparticles through a room-temperature hydrogen gas reduction in an ethylene glycol/water mixed solvent, which is followed by subsequent harvesting by carbon nanotubes as electrocatalysts. This method is simple, facile, and time-efficient, as the entire room-temperature reduction process is completed in a few minutes. As the solvent changes from water to an ethylene glycol/water mix, the size of Pt nanoparticles varies from 10 to 3 nm and their shape transitions from polyhedral to spherical. Pt nanoparticles prepared in a 1:1 volume ratio mixture of ethylene glycol/water are uniformly dispersed with an average size of ∼3 nm. The optimized carbon nanotube-supported Pt electrocatalyst exhibits excellent methanol oxidation and oxygen reduction activities. This work demonstrates the potential use of mixed solvents as an approach in materials synthesis.

  7. A simple vibrating sample magnetometer for macroscopic samples

    NASA Astrophysics Data System (ADS)

    Lopez-Dominguez, V.; Quesada, A.; Guzmán-Mínguez, J. C.; Moreno, L.; Lere, M.; Spottorno, J.; Giacomone, F.; Fernández, J. F.; Hernando, A.; García, M. A.

    2018-03-01

    We here present a simple model of a vibrating sample magnetometer (VSM). The system allows recording magnetization curves at room temperature with a resolution of the order of 0.01 emu and is appropriated for macroscopic samples. The setup can be mounted with different configurations depending on the requirements of the sample to be measured (mass, saturation magnetization, saturation field, etc.). We also include here examples of curves obtained with our setup and comparison curves measured with a standard commercial VSM that confirms the reliability of our device.

  8. Metal-Free Oxidation of Primary Amines to Nitriles through Coupled Catalytic Cycles.

    PubMed

    Lambert, Kyle M; Bobbitt, James M; Eldirany, Sherif A; Kissane, Liam E; Sheridan, Rose K; Stempel, Zachary D; Sternberg, Francis H; Bailey, William F

    2016-04-04

    Synergism among several intertwined catalytic cycles allows for selective, room temperature oxidation of primary amines to the corresponding nitriles in 85-98% isolated yield. This metal-free, scalable, operationally simple method employs a catalytic quantity of 4-acetamido-TEMPO (ACT; TEMPO=2,2,6,6-tetramethylpiperidine N-oxide) radical and the inexpensive, environmentally benign triple salt oxone as the terminal oxidant under mild conditions. Simple filtration of the reaction mixture through silica gel affords pure nitrile products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A catalytic tethering strategy: simple aldehydes catalyze intermolecular alkene hydroaminations.

    PubMed

    MacDonald, Melissa J; Schipper, Derek J; Ng, Peter J; Moran, Joseph; Beauchemin, André M

    2011-12-21

    Herein we describe a catalytic tethering strategy in which simple aldehyde precatalysts enable, through temporary intramolecularity, room-temperature intermolecular hydroamination reactivity and the synthesis of vicinal diamines. The catalyst allows the formation of a mixed aminal from an allylic amine and a hydroxylamine, resulting in a facile intramolecular hydroamination event. The promising enantioselectivities obtained with a chiral aldehyde also highlight the potential of this catalytic tethering approach in asymmetric catalysis and demonstrate that efficient enantioinduction relying only on temporary intramolecularity is possible. © 2011 American Chemical Society

  10. Incubation at room temperature may be an independent factor that induces chlamydospore production in Candida dubliniensis.

    PubMed

    Sancak, Banu; Colakoglu, Sule; Acikgoz, Ziya Cibali; Arikan, Sevtap

    2005-08-01

    Production of chlamydospores is one of the phenotypic features used to differentiate Candida albicans and Candida dubliniensis. C. albicans produces few chlamydospores on only cornmeal/rice-Tween agar at room temperature, whereas C. dubliniensis produces abundant chlamydospores at this temperature both on cornmeal agar and some other commonly used media. We tried to determine whether the room temperature is the main factor that induces chlamydospore production of C. dubliniensis, regardless of the medium used. For this purpose, 100 C. albicans and 24 C. dubliniensis isolates were tested for chlamydospore production at room temperature and at 37 degrees C on some routinely used media, including eosin-methylene blue agar (EMB), nutrient agar (NA), nutrient broth (NB), and also on an investigational medium, phenol red agar (PR). At 37 degrees C, none of the isolates produced chlamydospores on any of the tested media. At 26 degrees C, all C. dubliniensis isolates produced abundant chlamydospores and pseudohyphae after 24-48 h on all tested media. At this incubation temperature, all C. albicans isolates failed to produce chlamydospores and pseudohyphae on EMB, NA, and NB, whereas 2 of the C. albicans isolates produced a few chlamydospores on PR. We also observed that all C. dubliniensis isolates tested on EMB and PR produced rough colonies with a hyphal fringe around the colonies, whereas none of the C. albicans isolates showed this property. In conclusion, incubation at 26 degrees C may play the key role for production of abundant chlamydospores and pseudohyphae by C. dubliniensis. Comprehensive molecular studies are needed to clarify the genetic basis of this observation. Using EMB and PR may be an inexpensive, a time-saving, and a simple way of presumptive identification of C. dubliniensis based on chlamydospore formation and colony morphology.

  11. A fast and simple bonding method for low cost microfluidic chip fabrication

    NASA Astrophysics Data System (ADS)

    Yin, Zhifu; Zou, Helin

    2018-01-01

    With the development of the microstructure fabrication technique, microfluidic chips are widely used in biological and medical researchers. Future advances in their commercial applications depend on the mass bonding of microfluidic chip. In this study we are presenting a simple, low cost and fast way of bonding microfluidic chips at room temperature. The influence of the bonding pressure on the deformation of the microchannel and adhesive tape was analyzed by numerical simulation. By this method, the microfluidic chip can be fully sealed at low temperature and pressure without using any equipment. The dye water and gas leakage test indicated that the microfluidic chip can be bonded without leakage or block and its bonding strength can up to 0.84 MPa.

  12. A highly sensitive solid substrate room temperature phosphorimetry for carbaryl detection based on its activating effect on NaIO4 oxidizing fluorescein.

    PubMed

    Liu, Jiaming; Huang, Qitong; Liu, Zhen-bo; Lin, Xiaofeng; Zhang, Li-Hong; Lin, Chang-Qing; Zheng, Zhi-Yong

    2014-11-01

    Fluorescein (HFin) could emit strong and stable room temperature phosphorescence (RTP) signal on polyamide membrane (PAM) using Pb(2+) as the ion perturber. Carbaryl could activate effect on NaIO4 oxidating HFin, which caused the RTP signal of the system to quench sharply. The phosphorescence intensity (ΔI p) of activating system higher 3.3 times (119.4/36.0) than that of non-activating system, and is directly proportional to the content of carbaryl. Thus, an activating solid substrate room temperature phosphorimetry (SSRTP) for carbaryl detection has been established. This sensitive (the limit of quantification (LOQ) was 2.0 × 10(-13) g mL(-1)), selective, simple and rapid method has been applied to determine trace carbaryl in water samples with the results consisting with those obtained by fluorimetry, showing its high accuracy. The apparent activation energy (E) and rate constant (k) of this activating reaction were 20.77 kJ mol(-1) and 1.85 × 10(-4) s(-1), respectively. Meanwhile, the mechanism of activating SSRTP for carbaryl detection was also discussed using infrared spectra (IR).

  13. Achieving Very Low Levels of Detection: An Improved Surface-Enhanced Raman Scattering Experiment for the Physical Chemistry Teaching Laboratory

    ERIC Educational Resources Information Center

    McMillan, Brian G.

    2016-01-01

    This experiment was designed and successfully introduced to complement the nanochemistry taught to undergraduate students in a useful and interesting way. Colloidal Ag nanoparticles were synthesized by a simple, room-temperature method, and the resulting suspension was then used to study the surface-enhanced Raman scattering (SERS) of methylene…

  14. Oxidation of Borneol to Camphor Using Oxone and Catalytic Sodium Chloride: A Green Experiment for the Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Lang, Patrick T.; Harned, Andrew M.; Wissinger, Jane E.

    2011-01-01

    A new green oxidation procedure was developed for the undergraduate organic teaching laboratories using Oxone and a catalytic quantity of sodium chloride for the conversion of borneol to camphor. This simple 1 h, room temperature reaction afforded high quality and yield of product, was environmentally friendly, and produced negligible quantities…

  15. Specific Method for the Determination of Ozone in the Atmosphere.

    ERIC Educational Resources Information Center

    Sachdev, Sham L.; And Others

    A description is given of work undertaken to develop a simple, specific, and reliable method for ozone. Reactions of ozone with several 1-alkenes were studied at room temperature (25C). Eugenol (4-allyl-2-methoxy phenol), when reacted with ozone, was found to produce relatively large amounts of formaldehyde as compared to other 1-alkenes tested.…

  16. Efficient Three-Component Strecker Reaction of Aldehydes/Ketones via NHC-Amidate Palladium(II) Complex Catalysis

    PubMed Central

    Jarusiewicz, Jamie; Choe, Yvonne; Yoo, Kyung Soo; Park, Chan Pil

    2009-01-01

    A simple and efficient one-pot three-component method has been developed for the synthesis of α-aminonitriles. This Strecker reaction is applicable for aldehydes and ketones with aliphatic or aromatic amines and trimethyl siliyl cyanide in the presence of a palladium Lewis aid catalyst in dichloromethane solvent at room temperature. PMID:19265413

  17. Synthesis of a novel glucose capped gold nanoparticle as a better theranostic candidate

    PubMed Central

    Suvarna, Saritha; Das, Ujjal; KC, Sunil; Mishra, Snehasis; Sudarshan, Mathummal; Saha, Krishna Das; Dey, Sanjit; Chakraborty, Anindita; Narayana, Y.

    2017-01-01

    Gold nanoparticles are predominantly used in diagnostics, therapeutics and biomedical applications. The present study has been designed to synthesize differently capped gold nanoparticles (AuNps) by a simple, one-step, room temperature procedure and to evaluate the potential of these AuNps for biomedical applications. The AuNps are capped with glucose, 2-deoxy-D-glucose (2DG) and citrate using different reducing agents. This is the first report of synthesis of 2DG-AuNp by the simple room temperature method. The synthesized gold nanoparticles are characterized with UV-Visible Spectroscopy, Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM) and selected area electron diffraction (SAED), Dynamic light scattering (DLS), and Energy-dispersive X-ray spectroscopy (SEM-EDS). Surface-enhanced Raman scattering (SERS) study of the synthesized AuNps shows increase in Raman signals up to 50 times using 2DG. 3-(4, 5-dimethylthiozol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay has been performed using all the three differently capped AuNps in different cell lines to assess cytotoxcity if any, of the nanoparticles. The study shows that 2DG-AuNps is a better candidate for theranostic application. PMID:28582426

  18. Facile synthesis of hierarchical dendritic PtPd nanogarlands supported on reduced graphene oxide with enhanced electrocatalytic properties

    NASA Astrophysics Data System (ADS)

    Li, Shan-Shan; Zheng, Jie-Ning; Ma, Xiaohong; Hu, Yuan-Yuan; Wang, Ai-Jun; Chen, Jian-Rong; Feng, Jiu-Ju

    2014-05-01

    A simple and facile method is developed for one-pot preparation of hierarchical dendritic PtPd nanogarlands supported on reduced graphene oxide (PtPd/RGO) at room temperature, without using any seed, organic solvent, or complex apparatus. It is found that octylphenoxypolyethoxyethanol (NP-40) as a soft template and its amount are critical to the formation of PtPd garlands. The as-prepared nanocomposites are further applied to methanol and ethanol oxidation with significantly enhanced electrocatalytic activity and better stability in alkaline media.A simple and facile method is developed for one-pot preparation of hierarchical dendritic PtPd nanogarlands supported on reduced graphene oxide (PtPd/RGO) at room temperature, without using any seed, organic solvent, or complex apparatus. It is found that octylphenoxypolyethoxyethanol (NP-40) as a soft template and its amount are critical to the formation of PtPd garlands. The as-prepared nanocomposites are further applied to methanol and ethanol oxidation with significantly enhanced electrocatalytic activity and better stability in alkaline media. Electronic supplementary information (ESI) available: Experimental section, Fig. S1-S12 and Tables S1 and S2. See DOI: 10.1039/c3nr06808k

  19. Heat capacity and magnetic properties of fluoride CsFe{sup 2+}Fe{sup 3+}F{sub 6} with defect pyrochlore structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorev, M.V., E-mail: gorev@iph.krasn.ru; Institute of Engineering Physics and Radio Electronics, Siberian State University, 660074 Krasnoyarsk; Flerov, I.N.

    2016-05-15

    Heat capacity, Mössbauer and Raman spectra as well as magnetic properties of fluoride CsFe{sub 2}F{sub 6} with defect pyrochlore structure were studied. In addition to recently found above room temperature three successive structural transformations Pnma-Imma-I4{sub 1}amd-Fd-3m, phase transition of antiferromagnetic nature with the 13.7 K Neel temperature and a broad heat capacity anomaly with a maximum at about 30 K were observed. The room temperature symmetry Pnma is unchanged at least down to 7 K. Simple model of indirect bond used to estimate the exchange interactions and to propose a magnetic structure model. - Graphical abstract: The ordered arrangement ofmore » Fe{sup 2+} and Fe{sup 3+} ions in high-spin states as well as antiferromagnetic phase transition followed by significant magnetic frustrations were found in pyrocholore-related CsFe{sup 2+}Fe{sup 3+}F{sub 6}. A magnetic structure was proposed using a simple model of indirect bonds. - Highlights: • The Pnma structure in pyrocholore CsFe{sub 2}F{sub 6} is stable down to helium temperature. • Mössbauer spectra confirmed the ordering of Fe{sup 2+} and Fe{sup 3+} ions. • Antiferromagnetic transformation and significant magnetic frustrations are found. • Experimental magnetic entropy agrees with entropy for Fe ions in high-spin state. • Superexchange interactions were calculated and a magnetic structure was proposed.« less

  20. Growth of GaN micro/nanolaser arrays by chemical vapor deposition.

    PubMed

    Liu, Haitao; Zhang, Hanlu; Dong, Lin; Zhang, Yingjiu; Pan, Caofeng

    2016-09-02

    Optically pumped ultraviolet lasing at room temperature based on GaN microwire arrays with Fabry-Perot cavities is demonstrated. GaN microwires have been grown perpendicularly on c-GaN/sapphire substrates through simple catalyst-free chemical vapor deposition. The GaN microwires are [0001] oriented single-crystal structures with hexagonal cross sections, each with a diameter of ∼1 μm and a length of ∼15 μm. A possible growth mechanism of the vertical GaN microwire arrays is proposed. Furthermore, we report room-temperature lasing in optically pumped GaN microwire arrays based on the Fabry-Perot cavity. Photoluminescence spectra exhibit lasing typically at 372 nm with an excitation threshold of 410 kW cm(-2). The result indicates that these aligned GaN microwire arrays may offer promising prospects for ultraviolet-emitting micro/nanodevices.

  1. Zinc Oxide Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Fortunato, E.; Barquinha, P.; Pimentel, A.; Gonçalves, A.; Marques, A.; Pereira, L.; Martins, R.

    ZnO thin film transistors (ZnO-TFT) have been fabricated by rf magnetron sputtering at room temperature with a bottom-gate configuration. The ZnO-TFT operates in the enhancement mode with a threshold voltage of 21 V, a field effect mobility of 20 cm2/Vs, a gate voltage swing of 1.24 V/decade and an on/off ratio of 2×105. The ZnO-TFT present an average optical transmission (including the glass substrate) of 80 % in the visible part of the spectrum. The combination of transparency, high channel mobility and room temperature processing makes the ZnO-TFT a very promising low cost optoelectronic device for the next generation of invisible and flexible electronics. Moreover, the processing technology used to fabricate this device is relatively simple and it is compatible with inexpensive plastic/flexible substrate technology.

  2. A new chemical route to a hybrid nanostructure: room-temperature solid-state reaction synthesis of Ag@AgCl with efficient photocatalysis.

    PubMed

    Hu, Pengfei; Cao, Yali

    2012-08-07

    The room-temperature solid-state chemical reaction technique has been used to synthesize the silver nanoparticle-loaded semiconductor silver@silver chloride for the first time. It has the advantages of convenient operation, lower cost, less pollution, and mass production. This simple technique created a wide array of nanosized silver particles which had a strong surface plasmon resonance effect in the visible region, and built up an excellent composite structure of silver@silver chloride hybrid which exhibited high photocatalytic activity and stability towards decomposition of organic methyl orange under visible-light illumination. Moreover, this work achieved the control of composition of the silver@silver chloride composite simply by adjusting the feed ratio of reactants. It offers an alternative method for synthesising metal@semiconductor composites.

  3. Rapid and high throughput fabrication of high temperature stable structures through PDMS transfer printing

    NASA Astrophysics Data System (ADS)

    Hohenberger, Erik; Freitag, Nathan; Korampally, Venumadhav

    2017-07-01

    We report on a facile and low cost fabrication approach for structures—gratings and enclosed nanochannels, through simple solution processed chemistries in conjunction with nanotransfer printing techniques. The ink formulation primarily consisting of an organosilicate polymeric network with a small percentage of added 3-aminopropyl triethoxysilane crosslinker allows one to obtain robust structures that are not only stable towards high temperature processing steps as high as 550 °C but also exhibit exceptional stability against a host of organic solvent washes. No discernable structure distortion was observed compared to the as-printed structures (room temperature processed) when printed structures were subjected to temperatures as high as 550 °C. We further demonstrate the applicability of this technique towards the fabrication of more complex nanostructures such as enclosed channels through a double transfer method, leveraging the exceptional room temperature cross-linking ability of the printed structures and their subsequent resistance to dissolution in organic solvent washes. The exceptional temperature and physico-chemical stability of the nanotransfer printed structures makes this a useful fabrication tool that may be applied as is, or integrated with conventional lithographic techniques for the large area fabrication of functional nanostructures and devices.

  4. Resistivity of a simple metal from room temperature to 10 to the 6th K

    NASA Astrophysics Data System (ADS)

    Milchberg, H. M.; Freeman, R. R.; Davey, S. C.; More, R. M.

    1988-11-01

    The resistivity of nearly solid-density Al was measured as a function of temperature over 4 orders of magnitude above ambient by observing the self-reflection of an intense, less than 0.5 psec, 308-nm light pulse incident on a planar Al target. As an increasing function of electron temperature, the resistivity is observed initially to increase, reach a maximum which is relatively constant over an extended temperature range, and then decrease at the highest temperatures. The broad maximum is interpreted as resistivity saturation, a condition in which the mean free path of the conduction electrons reaches a minimum value as a function of temperature, regardless of the extent of any further disorder in the material.

  5. ZnO nanorod arrays and direct wire bonding on GaN surfaces for rapid fabrication of antireflective, high-temperature ultraviolet sensors

    NASA Astrophysics Data System (ADS)

    So, Hongyun; Senesky, Debbie G.

    2016-11-01

    Rapid, cost-effective, and simple fabrication/packaging of microscale gallium nitride (GaN) ultraviolet (UV) sensors are demonstrated using zinc oxide nanorod arrays (ZnO NRAs) as an antireflective layer and direct bonding of aluminum wires to the GaN surface. The presence of the ZnO NRAs on the GaN surface significantly reduced the reflectance to less than 1% in the UV and 4% in the visible light region. As a result, the devices fabricated with ZnO NRAs and mechanically stable aluminum bonding wires (pull strength of 3-5 gf) showed higher sensitivity (136.3% at room temperature and 148.2% increase at 250 °C) when compared with devices with bare (uncoated) GaN surfaces. In addition, the devices demonstrated reliable operation at high temperatures up to 300 °C, supporting the feasibility of simple and cost-effective UV sensors operating with higher sensitivity in high-temperature conditions, such as in combustion, downhole, and space exploration applications.

  6. One-dimensional carbon-sulfur composite fibers for Na-S rechargeable batteries operating at room temperature.

    PubMed

    Hwang, Tae Hoon; Jung, Dae Soo; Kim, Joo-Seong; Kim, Byung Gon; Choi, Jang Wook

    2013-09-11

    Na-S batteries are one type of molten salt battery and have been used to support stationary energy storage systems for several decades. Despite their successful applications based on long cycle lives and low cost of raw materials, Na-S cells require high temperatures above 300 °C for their operations, limiting their propagation into a wide range of applications. Herein, we demonstrate that Na-S cells with solid state active materials can perform well even at room temperature when sulfur-containing carbon composites generated from a simple thermal reaction were used as sulfur positive electrodes. Furthermore, this structure turned out to be robust during repeated (de)sodiation for ~500 cycles and enabled extraordinarily high rate performance when one-dimensional morphology is adopted using scalable electrospinning processes. The current study suggests that solid-state Na-S cells with appropriate atomic configurations of sulfur active materials could cover diverse battery applications where cost of raw materials is critical.

  7. Anatase TiO2 ultrathin nanobelts derived from room-temperature-synthesized titanates for fast and safe lithium storage

    PubMed Central

    Wen, Wei; Wu, Jin-ming; Jiang, Yin-zhu; Yu, Sheng-lan; Bai, Jun-qiang; Cao, Min-hua; Cui, Jie

    2015-01-01

    Lithium-ion batteries (LIBs) are promising energy storage devices for portable electronics, electric vehicles, and power-grid applications. It is highly desirable yet challenging to develop a simple and scalable method for constructions of sustainable materials for fast and safe LIBs. Herein, we exploit a novel and scalable route to synthesize ultrathin nanobelts of anatase TiO2, which is resource abundant and is eligible for safe anodes in LIBs. The achieved ultrathin nanobelts demonstrate outstanding performances for lithium storage because of the unique nanoarchitecture and appropriate composition. Unlike conventional alkali-hydrothermal approaches to hydrogen titanates, the present room temperature alkaline-free wet chemistry strategy guarantees the ultrathin thickness for the resultant titanate nanobelts. The anatase TiO2 ultrathin nanobelts were achieved simply by a subsequent calcination in air. The synthesis route is convenient for metal decoration and also for fabricating thin films of one/three dimensional arrays on various substrates at low temperatures, in absence of any seed layers. PMID:26133276

  8. Oxygen quenching in a LAB based liquid scintillator and the nitrogen bubbling model

    NASA Astrophysics Data System (ADS)

    Xiao, Hua-Lin; Deng, Jing-Shan; Wang, Nai-Yan

    2010-05-01

    The oxygen quenching effect in a Linear Alkl Benzene (LAB) based liquid scintillator (LAB as the solvent, 3 g/L 2, 5 diphe-nyloxazole (PPO) as the fluor and 15 mg/L p-bis-(o-methylstyryl)-benzene (bis-MSB) as the λ-shifter) is studied by measuring the light yield as a function of the nitrogen bubbling time. It is shown that the light yield of the fully purged liquid scintillator is increased by 11% at room temperature and the room atmospheric pressure. A simple nitrogen bubbling model is proposed to describe the relationship between the relative light yield (oxygen quenching factor) and the bubbling time.

  9. Heat pump/refrigerator using liquid working fluid

    DOEpatents

    Wheatley, John C.; Paulson, Douglas N.; Allen, Paul C.; Knight, William R.; Warkentin, Paul A.

    1982-01-01

    A heat transfer device is described that can be operated as a heat pump or refrigerator, which utilizes a working fluid that is continuously in a liquid state and which has a high temperature-coefficient of expansion near room temperature, to provide a compact and high efficiency heat transfer device for relatively small temperature differences as are encountered in heating or cooling rooms or the like. The heat transfer device includes a pair of heat exchangers that may be coupled respectively to the outdoor and indoor environments, a regenerator connecting the two heat exchangers, a displacer that can move the liquid working fluid through the heat exchangers via the regenerator, and a means for alternately increasing and decreasing the pressure of the working fluid. The liquid working fluid enables efficient heat transfer in a compact unit, and leads to an explosion-proof smooth and quiet machine characteristic of hydraulics. The device enables efficient heat transfer as the indoor-outdoor temperature difference approaches zero, and enables simple conversion from heat pumping to refrigeration as by merely reversing the direction of a motor that powers the device.

  10. Amino-functionalized sub-40 nm ultrathin Ag/ZnO transparent electrodes for flexible polymer dispersed liquid crystal devices

    NASA Astrophysics Data System (ADS)

    Huang, Jinhua; Lu, Yuehui; Wu, Wenxuan; Li, Jia; Zhang, Xianpeng; Zhu, Chaoting; Yang, Ye; Xu, Feng; Song, Weijie

    2017-11-01

    Various flexible transparent conducting electrodes (FTCEs) have been studied for promising applications in flexible optoelectronic devices, but there are still challenges in achieving higher transparency and conductivity, lower thickness, better mechanical flexibility, and lower preparation temperatures. In this work, we prepared a sub-40 nm Ag(9 nm)/ZnO(30 nm) FTCE at room temperature, where each layer played a relatively independent role in the tailoring of the optoelectronic properties. A continuous and smooth 9-nm Ag thin film was grown on amino-functionalized glass and polyethylene terephthalate (PET) substrates to provide good conductivity. A 30-nm ZnO cladding, as an antireflection layer, further improved the transmittance while hardly affecting the conductivity. The room-temperature grown sub-40 nm Ag/ZnO thin films on PET substrate exhibited a transmittance of 88.6% at 550 nm and a sheet resistance of 7.6 Ω.sq-1, which were superior to those of the commercial ITO. The facile preparation benefits the integration of FTCEs into various flexible optoelectronic devices, where the excellent performance of the sub-40 nm Ag/ZnO FTCEs in a flexible polymer dispersed liquid crystal device was demonstrated. Sub-40 nm Ag/ZnO FTCEs that have the characteristics of simple structure, room-temperature preparation, and easily tailored optoelectronic properties would provide flexible optoelectronic devices with more degrees of freedom.

  11. High-temperature quantum oscillations caused by recurring Bloch states in graphene superlattices

    NASA Astrophysics Data System (ADS)

    Krishna Kumar, R.; Chen, X.; Auton, G. H.; Mishchenko, A.; Bandurin, D. A.; Morozov, S. V.; Cao, Y.; Khestanova, E.; Ben Shalom, M.; Kretinin, A. V.; Novoselov, K. S.; Eaves, L.; Grigorieva, I. V.; Ponomarenko, L. A.; Fal'ko, V. I.; Geim, A. K.

    2017-07-01

    Cyclotron motion of charge carriers in metals and semiconductors leads to Landau quantization and magneto-oscillatory behavior in their properties. Cryogenic temperatures are usually required to observe these oscillations. We show that graphene superlattices support a different type of quantum oscillation that does not rely on Landau quantization. The oscillations are extremely robust and persist well above room temperature in magnetic fields of only a few tesla. We attribute this phenomenon to repetitive changes in the electronic structure of superlattices such that charge carriers experience effectively no magnetic field at simple fractions of the flux quantum per superlattice unit cell. Our work hints at unexplored physics in Hofstadter butterfly systems at high temperatures.

  12. Cyclic Fatigue of Brittle Materials with an Indentation-Induced Flaw System

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Salem, Jonathan A.

    1996-01-01

    The ratio of static to cyclic fatigue life, or 'h ratio', was obtained numerically for an indentation flaw system subjected to sinusoidal loading conditions. Emphasis was placed on developing a simple, quick lifetime prediction tool. The solution for the h ratio was compared with experimental static and cyclic fatigue data obtained from as-indented 96 wt.% alumina specimens tested in room-temperature distilled water.

  13. A charge-density-wave oscillator based on an integrated tantalum disulfide-boron nitride-graphene device operating at room temperature.

    PubMed

    Liu, Guanxiong; Debnath, Bishwajit; Pope, Timothy R; Salguero, Tina T; Lake, Roger K; Balandin, Alexander A

    2016-10-01

    The charge-density-wave (CDW) phase is a macroscopic quantum state consisting of a periodic modulation of the electronic charge density accompanied by a periodic distortion of the atomic lattice in quasi-1D or layered 2D metallic crystals. Several layered transition metal dichalcogenides, including 1T-TaSe 2 , 1T-TaS 2 and 1T-TiSe 2 exhibit unusually high transition temperatures to different CDW symmetry-reducing phases. These transitions can be affected by the environmental conditions, film thickness and applied electric bias. However, device applications of these intriguing systems at room temperature or their integration with other 2D materials have not been explored. Here, we demonstrate room-temperature current switching driven by a voltage-controlled phase transition between CDW states in films of 1T-TaS 2 less than 10 nm thick. We exploit the transition between the nearly commensurate and the incommensurate CDW phases, which has a transition temperature of 350 K and gives an abrupt change in current accompanied by hysteresis. An integrated graphene transistor provides a voltage-tunable, matched, low-resistance load enabling precise voltage control of the circuit. The 1T-TaS 2 film is capped with hexagonal boron nitride to provide protection from oxidation. The integration of these three disparate 2D materials in a way that exploits the unique properties of each yields a simple, miniaturized, voltage-controlled oscillator suitable for a variety of practical applications.

  14. Biased Metropolis Sampling for Rugged Free Energy Landscapes

    NASA Astrophysics Data System (ADS)

    Berg, Bernd A.

    2003-11-01

    Metropolis simulations of all-atom models of peptides (i.e. small proteins) are considered. Inspired by the funnel picture of Bryngelson and Wolyness, a transformation of the updating probabilities of the dihedral angles is defined, which uses probability densities from a higher temperature to improve the algorithmic performance at a lower temperature. The method is suitable for canonical as well as for generalized ensemble simulations. A simple approximation to the full transformation is tested at room temperature for Met-Enkephalin in vacuum. Integrated autocorrelation times are found to be reduced by factors close to two and a similar improvement due to generalized ensemble methods enters multiplicatively.

  15. Predicting the stability of nanodevices

    NASA Astrophysics Data System (ADS)

    Lin, Z. Z.; Yu, W. F.; Wang, Y.; Ning, X. J.

    2011-05-01

    A simple model based on the statistics of single atoms is developed to predict the stability or lifetime of nanodevices without empirical parameters. Under certain conditions, the model produces the Arrhenius law and the Meyer-Neldel compensation rule. Compared with the classical molecular-dynamics simulations for predicting the stability of monatomic carbon chain at high temperature, the model is proved to be much more accurate than the transition state theory. Based on the ab initio calculation of the static potential, the model can give out a corrected lifetime of monatomic carbon and gold chains at higher temperature, and predict that the monatomic chains are very stable at room temperature.

  16. Combined Loads Test Fixture for Thermal-Structural Testing Aerospace Vehicle Panel Concepts

    NASA Technical Reports Server (NTRS)

    Fields, Roger A.; Richards, W. Lance; DeAngelis, Michael V.

    2004-01-01

    A structural test requirement of the National Aero-Space Plane (NASP) program has resulted in the design, fabrication, and implementation of a combined loads test fixture. Principal requirements for the fixture are testing a 4- by 4-ft hat-stiffened panel with combined axial (either tension or compression) and shear load at temperatures ranging from room temperature to 915 F, keeping the test panel stresses caused by the mechanical loads uniform, and thermal stresses caused by non-uniform panel temperatures minimized. The panel represents the side fuselage skin of an experimental aerospace vehicle, and was produced for the NASP program. A comprehensive mechanical loads test program using the new test fixture has been conducted on this panel from room temperature to 500 F. Measured data have been compared with finite-element analyses predictions, verifying that uniform load distributions were achieved by the fixture. The overall correlation of test data with analysis is excellent. The panel stress distributions and temperature distributions are very uniform and fulfill program requirements. This report provides details of an analytical and experimental validation of the combined loads test fixture. Because of its simple design, this unique test fixture can accommodate panels from a variety of aerospace vehicle designs.

  17. Highly Conductive Solid-State Hybrid Electrolytes Operating at Subzero Temperatures.

    PubMed

    Kwon, Taeyoung; Choi, Ilyoung; Park, Moon Jeong

    2017-07-19

    We report a unique, highly conductive, dendrite-inhibited, solid-state polymer electrolyte platform that demonstrates excellent battery performance at subzero temperatures. A design based on functionalized inorganic nanoparticles with interconnected mesopores that contain surface nitrile groups is the key to this development. Solid-state hybrid polymer electrolytes based on succinonitrile (SN) electrolytes and porous nanoparticles were fabricated via a simple UV-curing process. SN electrolytes were effectively confined within the mesopores. This stimulated favorable interactions with lithium ions, reduced leakage of SN electrolytes over time, and improved mechanical strength of membranes. Inhibition of lithium dendrite growth and improved electrochemical stability up to 5.2 V were also demonstrated. The hybrid electrolytes exhibited high ionic conductivities of 2 × 10 -3 S cm -1 at room temperature and >10 -4 S cm -1 at subzero temperatures, leading to stable and improved battery performance at subzero temperatures. Li cells made with lithium titanate anodes exhibited stable discharge capacities of 151 mAh g -1 at temperatures below -10 °C. This corresponds to 92% of the capacity achieved at room temperature (164 mAh g -1 ). Our work represents a significant advance in solid-state polymer electrolyte technology and far exceeds the performance available with conventional polymeric battery separators.

  18. Multi-color IR sensors based on QWIP technology for security and surveillance applications

    NASA Astrophysics Data System (ADS)

    Sundaram, Mani; Reisinger, Axel; Dennis, Richard; Patnaude, Kelly; Burrows, Douglas; Cook, Robert; Bundas, Jason

    2006-05-01

    Room-temperature targets are detected at the furthest distance by imaging them in the long wavelength (LW: 8-12 μm) infrared spectral band where they glow brightest. Focal plane arrays (FPAs) based on quantum well infrared photodetectors (QWIPs) have sensitivity, noise, and cost metrics that have enabled them to become the best commercial solution for certain security and surveillance applications. Recently, QWIP technology has advanced to provide pixelregistered dual-band imaging in both the midwave (MW: 3-5 μm) and longwave infrared spectral bands in a single chip. This elegant technology affords a degree of target discrimination as well as the ability to maximize detection range for hot targets (e.g. missile plumes) by imaging in the midwave and for room-temperature targets (e.g. humans, trucks) by imaging in the longwave with one simple camera. Detection-range calculations are illustrated and FPA performance is presented.

  19. An exciton-polariton laser based on biologically produced fluorescent protein

    PubMed Central

    Dietrich, Christof P.; Steude, Anja; Tropf, Laura; Schubert, Marcel; Kronenberg, Nils M.; Ostermann, Kai; Höfling, Sven; Gather, Malte C.

    2016-01-01

    Under adequate conditions, cavity polaritons form a macroscopic coherent quantum state, known as polariton condensate. Compared to Wannier-Mott excitons in inorganic semiconductors, the localized Frenkel excitons in organic emitter materials show weaker interaction with each other but stronger coupling to light, which recently enabled the first realization of a polariton condensate at room temperature. However, this required ultrafast optical pumping, which limits the applications of organic polariton condensates. We demonstrate room temperature polariton condensates of cavity polaritons in simple laminated microcavities filled with biologically produced enhanced green fluorescent protein (eGFP). The unique molecular structure of eGFP prevents exciton annihilation even at high excitation densities, thus facilitating polariton condensation under conventional nanosecond pumping. Condensation is clearly evidenced by a distinct threshold, an interaction-induced blueshift of the condensate, long-range coherence, and the presence of a second threshold at higher excitation density that is associated with the onset of photon lasing. PMID:27551686

  20. Room temperature synthesis of Cu₂O nanospheres: optical properties and thermal behavior.

    PubMed

    Nunes, Daniela; Santos, Lídia; Duarte, Paulo; Pimentel, Ana; Pinto, Joana V; Barquinha, Pedro; Carvalho, Patrícia A; Fortunato, Elvira; Martins, Rodrigo

    2015-02-01

    The present work reports a simple and easy wet chemistry synthesis of cuprous oxide (Cu2O) nanospheres at room temperature without surfactants and using different precursors. Structural characterization was carried out by X-ray diffraction, transmission electron microscopy, and scanning electron microscopy coupled with focused ion beam and energy-dispersive X-ray spectroscopy. The optical band gaps were determined from diffuse reflectance spectroscopy. The photoluminescence behavior of the as-synthesized nanospheres showed significant differences depending on the precursors used. The Cu2O nanospheres were constituted by aggregates of nanocrystals, in which an on/off emission behavior of each individual nanocrystal was identified during transmission electron microscopy observations. The thermal behavior of the Cu2O nanospheres was investigated with in situ X-ray diffraction and differential scanning calorimetry experiments. Remarkable structural differences were observed for the nanospheres annealed in air, which turned into hollow spherical structures surrounded by outsized nanocrystals.

  1. Robust, Self-Healing Superhydrophobic Fabrics Prepared by One-Step Coating of PDMS and Octadecylamine

    PubMed Central

    Xue, Chao-Hua; Bai, Xue; Jia, Shun-Tian

    2016-01-01

    A robust, self-healing superhydrophobic poly(ethylene terephthalate) (PET) fabric was fabricated by a convenient solution-dipping method using an easily available material system consisting of polydimethylsiloxane and octadecylamine (ODA). The surface roughness was formed by self-roughening of ODA coating on PET fibers without any lithography steps or adding any nanomaterials. The fabric coating was durable to withstand 120 cycles of laundry and 5000 cycles of abrasion without apparently changing the superhydrophobicity. More interestingly, the fabric can restore its super liquid-repellent property by 72 h at room temperature even after 20000 cycles of abrasion. Meanwhile, after being damaged chemically, the fabric can restore its superhydrophobicity automatically in 12 h at room temperature or by a short-time heating treatment. We envision that this simple but effective coating system may lead to the development of robust protective clothing for various applications. PMID:27264995

  2. Rapid, room-temperature synthesis of amorphous selenium/protein composites using Capsicum annuum L extract

    NASA Astrophysics Data System (ADS)

    Li, Shikuo; Shen, Yuhua; Xie, Anjian; Yu, Xuerong; Zhang, Xiuzhen; Yang, Liangbao; Li, Chuanhao

    2007-10-01

    We describe the formation of amorphous selenium (α-Se)/protein composites using Capsicum annuum L extract to reduce selenium ions (SeO32-) at room temperature. The reaction occurs rapidly and the process is simple and easy to handle. A protein with a molecular weight of 30 kDa extracted from Capsicum annuum L not only reduces the SeO32- ions to Se0, but also controls the nucleation and growth of Se0, and even participates in the formation of α-Se/protein composites. The size and shell thickness of the α-Se/protein composites increases with high Capsicum annuum L extract concentration, and decreases with low reaction solution pH. The results suggest that this eco-friendly, biogenic synthesis strategy could be widely used for preparing inorganic/organic biocomposites. In addition, we also discuss the possible mechanism of the reduction of SeO32- ions by Capsicum annuum L extract.

  3. 230 s room-temperature storage time and 1.14 eV hole localization energy in In{sub 0.5}Ga{sub 0.5}As quantum dots on a GaAs interlayer in GaP with an AlP barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonato, Leo, E-mail: leo.bonato@tu-berlin.de; Sala, Elisa M.; Stracke, Gernot

    2015-01-26

    A GaP n{sup +}p-diode containing In{sub 0.5}Ga{sub 0.5}As quantum dots (QDs) and an AlP barrier is characterized electrically, together with two reference samples: a simple n{sup +}p-diode and an n{sup +}p-diode with AlP barrier. Localization energy, capture cross-section, and storage time for holes in the QDs are determined using deep-level transient spectroscopy. The localization energy is 1.14(±0.04) eV, yielding a storage time at room temperature of 230(±60) s, which marks an improvement of 2 orders of magnitude compared to the former record value in QDs. Alternative material systems are proposed for still higher localization energies and longer storage times.

  4. Simple design for DNA nanotubes from a minimal set of unmodified strands: rapid, room-temperature assembly and readily tunable structure.

    PubMed

    Hamblin, Graham D; Hariri, Amani A; Carneiro, Karina M M; Lau, Kai L; Cosa, Gonzalo; Sleiman, Hanadi F

    2013-04-23

    DNA nanotubes have great potential as nanoscale scaffolds for the organization of materials and the templation of nanowires and as drug delivery vehicles. Current methods for making DNA nanotubes either rely on a tile-based step-growth polymerization mechanism or use a large number of component strands and long annealing times. Step-growth polymerization gives little control over length, is sensitive to stoichiometry, and is slow to generate long products. Here, we present a design strategy for DNA nanotubes that uses an alternative, more controlled growth mechanism, while using just five unmodified component strands and a long enzymatically produced backbone. These tubes form rapidly at room temperature and have numerous, orthogonal sites available for the programmable incorporation of arrays of cargo along their length. As a proof-of-concept, cyanine dyes were organized into two distinct patterns by inclusion into these DNA nanotubes.

  5. Room-temperature Synthesis of Amorphous Molybdenum Oxide Nanodots with Tunable Localized Surface Plasmon Resonances.

    PubMed

    Zhu, Chuanhui; Xu, Qun; Ji, Liang; Ren, Yumei; Fang, Mingming

    2017-12-05

    Two-dimensional (2D) semiconductors have recently emerged as a remarkable class of plasmonic alternative to conventional noble metals. However, tuning of their plasmonic resonances towards different wavelengths in the visible-light region with physical or chemical methods still remains challenging. In this work, we design a simple room-temperature chemical reaction route to synthesize amorphous molybdenum oxide (MoO 3-x ) nanodots that exhibit strong localized surface plasmon resonances (LSPR) in the visible and near-infrared region. Moreover, tunable plasmon resonances can be achieved in a wide range with the changing surrounding solvent, and accordingly the photoelectrocatalytic activity can be optimized with the varying LSPR peaks. This work boosts the light-matter interaction at the nanoscale and could enable photodetectors, sensors, and photovoltaic devices in the future. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Room temperature synthesis and optical properties of small diameter (5 nm) ZnO nanorod arrays.

    PubMed

    Cho, Seungho; Jang, Ji-Wook; Lee, Jae Sung; Lee, Kun-Hong

    2010-10-01

    We report a simple wet-chemical synthesis of ∼5 nm diameter ZnO nanorod arrays at room temperature (20 °C) and normal atmospheric pressure (1 atm) and their optical properties. They were single crystalline in nature, and grew in the [001] direction. These small diameter ZnO nanorod arrays can also be synthesized at 0 °C. Control experiments were also conducted. On the basis of the results, we propose a mechanism for the spontaneous growth of the small diameter ZnO structures. The optical properties of the 5 nm diameter ZnO nanorod arrays synthesized using this method were probed by UV-Visible diffuse reflectance spectroscopy. A clear blue-shift, relative to the absorption band from 50 nm diameter ZnO nanorod arrays, was attributed to the quantum confinement effects caused by the small nanocrystal size in the 5 nm diameter ZnO nanorods.

  7. Effects of Silica Nanostructures in Poly(ethylene oxide)-Based Composite Polymer Electrolytes.

    PubMed

    Mohanta, Jagdeep; Anwar, Shahid; Si, Satyabrata

    2016-06-01

    The present work describes the synthesis of some poly(ethylene oxide)-based nanocomposite polymer electrolyte films using various silica nanostructures as the inorganic filler by simple solution mixing technique, in which the nature of the silica nanostructures play a vital role in modulating their electrochemical performances at room temperature. The silica nanostructures are prepared by ammonical hydrolysis of tetraethyl orthosilicate following the modified St6ber method. The resulting films are characterized by X-ray diffraction and differential scanning calorimeter to study their crystallinity. Room temperature AC impedance spectroscopy is utilized to determine the Li+ ion conductivity of the resulting films. The observed conductivity values of various NCPE films depend on the nature of silica filling as well as on their surface characteristics and also on the varying PEO-Li+ ratio, which is observed to be in the order of 10(-7)-10(-6) S cm(-1).

  8. Alcohols react with MCM-41 at room temperature and chemically modify mesoporous silica.

    PubMed

    Björklund, Sebastian; Kocherbitov, Vitaly

    2017-08-30

    Mesoporous silica has received much attention due to its well-defined structural order, high surface area, and tunable pore diameter. To successfully employ mesoporous silica for nanotechnology applications it is important to consider how it is influenced by solvent molecules due to the fact that most preparation procedures involve treatment in various solvents. In the present work we contribute to this important topic with new results on how MCM-41 is affected by a simple treatment in alcohol at room temperature. The effects of alcohol treatment are characterized by TGA, FTIR, and sorption calorimetry. The results are clear and show that treatment of MCM-41 in methanol, ethanol, propanol, butanol, pentanol, or octanol at room temperature introduces alkoxy groups that are covalently bound to the silica surface. It is shown that alcohol treated MCM-41 becomes more hydrophobic and that this effect is sequentially more prominent going from methanol to octanol. Chemical formation of alkoxy groups onto MCM-41 occurs both for calcined and hydroxylated MCM-41 and the alkoxy groups are hydrolytically unstable and can be replaced by silanol groups after exposure to water. The results are highly relevant for mesoporous silica applications that involve contact or treatment in protic solvents, which is very common.

  9. Ultrahigh Charpy impact toughness (~450J) achieved in high strength ferrite/martensite laminated steels

    PubMed Central

    Cao, Wenquan; Zhang, Mingda; Huang, Chongxiang; Xiao, Shuyang; Dong, Han; Weng, Yuqing

    2017-01-01

    Strength and toughness are a couple of paradox as similar as strength-ductility trade-off in homogenous materials, body-centered-cubic steels in particular. Here we report a simple way to get ultrahigh toughness without sacrificing strength. By simple alloying design and hot rolling the 5Mn3Al steels in ferrite/austenite dual phase temperature region, we obtain a series of ferrite/martensite laminated steels that show up-to 400–450J Charpy V-notch impact energy combined with a tensile strength as high as 1.0–1.2 GPa at room temperature, which is nearly 3–5 times higher than that of conventional low alloy steels at similar strength level. This remarkably enhanced toughness is mainly attributed to the delamination between ferrite and martensite lamellae. The current finding gives us a promising way to produce high strength steel with ultrahigh impact toughness by simple alloying design and hot rolling in industry. PMID:28150692

  10. Ultrahigh Charpy impact toughness (~450J) achieved in high strength ferrite/martensite laminated steels

    NASA Astrophysics Data System (ADS)

    Cao, Wenquan; Zhang, Mingda; Huang, Chongxiang; Xiao, Shuyang; Dong, Han; Weng, Yuqing

    2017-02-01

    Strength and toughness are a couple of paradox as similar as strength-ductility trade-off in homogenous materials, body-centered-cubic steels in particular. Here we report a simple way to get ultrahigh toughness without sacrificing strength. By simple alloying design and hot rolling the 5Mn3Al steels in ferrite/austenite dual phase temperature region, we obtain a series of ferrite/martensite laminated steels that show up-to 400-450J Charpy V-notch impact energy combined with a tensile strength as high as 1.0-1.2 GPa at room temperature, which is nearly 3-5 times higher than that of conventional low alloy steels at similar strength level. This remarkably enhanced toughness is mainly attributed to the delamination between ferrite and martensite lamellae. The current finding gives us a promising way to produce high strength steel with ultrahigh impact toughness by simple alloying design and hot rolling in industry.

  11. The heat is on: room temperature affects laboratory equipment--an observational study.

    PubMed

    Butler, Julia M; Johnson, Jane E; Boone, William R

    2013-10-01

    To evaluate the effect of ambient room temperature on equipment typically used in in vitro fertilization (IVF). We set the control temperature of the room to 20 °C (+/-0.3) and used CIMScan probes to record temperatures of the following equipment: six microscope heating stages, four incubators, five slide warmers and three heating blocks. We then increased the room temperature to 26 °C (+/-0.3) or decreased it to 17 °C (+/-0.3) and monitored the same equipment again. We wanted to determine what role, if any, changing room temperature has on equipment temperature fluctuation. There was a direct relationship between room temperature and equipment temperature stability. When room temperature increased or decreased, equipment temperature reacted in a corresponding manner. Statistical differences between equipment were found when the room temperature changed. What is also noteworthy is that temperature of equipment responded within 5 min to a change in room temperature. Clearly, it is necessary to be aware of the affect of room temperature on equipment when performing assisted reproductive procedures. Room and equipment temperatures should be monitored faithfully and adjusted as frequently as needed, so that consistent culture conditions can be maintained. If more stringent temperature control can be achieved, human assisted reproduction success rates may improve.

  12. Stability of Cyclophosphamide in Extemporaneous Oral Suspensions

    PubMed Central

    Kennedy, Rachel; Groepper, Daniel; Tagen, Michael; Christensen, Robbin; Navid, Fariba; Gajjar, Amar; Stewart, Clinton F.

    2010-01-01

    Background Cyclophosphamide, an alkylating agent, is widely used for the treatment of many adult and pediatric malignancies. The stability of cyclophosphamide in aqueous- and methylcellulose-based oral suspending vehicles is currently unknown. Objectives The goals of this study were (1) to develop and validate a stability-indicating HPLC method to measure cyclophosphamide concentrations in simple syrup and Ora-Plus, and (2) to assess the 56-day chemical stability and physical appearance of cyclophosphamide in these suspensions at both room temperature and 4°C. Methods The i.v. formulation of cyclophosphamide was diluted to 20 mg/mL in normal saline, compounded 1:1 with either suspending vehicle, and stored in the dark in 3mL amber polypropylene oral syringes at 4°C and 22°C. Aliquots from each syringe were obtained on days 0, 3, 7, 14, 21, 28, 35, 42, 49, and 56 and assayed using the validated stability-indicating HPLC-UV method. A C18 analytical column was used to separate cyclophosphamide from the internal standard, ifosfamide, with a mobile phase of 21% acetonitrile in 79% sodium phosphate buffer. The suspension was examined for odor change, visually examined under normal fluorescent light for color change, and examined under a light microscope for evidence of microbial growth. Results Samples of cyclophosphamide in both simple syrup and Ora-Plus were stable when kept at 4°C for at least 56 days. At room temperature, cyclophosphamide in simple syrup and Ora-Plus had a shelf life of 8 and 3 days, respectively. No changes in color or odor or evidence of microbial growth were observed. Conclusion Cyclophosphamide can be extemporaneously prepared in simple syrup or Ora-Plus and stored at least 2 months under refrigeration without significant degradation. PMID:20103616

  13. Stability of cyclophosphamide in extemporaneous oral suspensions.

    PubMed

    Kennedy, Rachel; Groepper, Daniel; Tagen, Michael; Christensen, Robbin; Navid, Fariba; Gajjar, Amar; Stewart, Clinton F

    2010-02-01

    Cyclophosphamide, an alkylating agent, is widely used for the treatment of many adult and pediatric malignancies. The stability of cyclophosphamide in aqueous- and methylcellulose-based oral suspending vehicles is currently unknown. To develop and validate a stability-indicating high-performance liquid chromatography (HPLC) method to measure cyclophosphamide concentrations in simple syrup and Ora-Plus, and assess the 56-day chemical stability and physical appearance of cyclophosphamide in these suspensions at both room temperature (22 degrees C) and 4 degrees C. The intravenous formulation of cyclophosphamide was diluted to 20 mg/mL in NaCl 0.9%, compounded 1:1 with either suspending vehicle, and stored in the dark in 3-mL amber polypropylene oral syringes at 4 degrees C and 22 degrees C. Aliquots from each syringe were obtained on days 0, 3, 7, 14, 21, 28, 35, 42, 49, and 56 and assayed using the validated stability-indicating HPLC-UV method. A C18 analytical column was used to separate cyclophosphamide from the internal standard, ifosfamide, with a mobile phase of 21% acetonitrile in 79% sodium phosphate buffer. The suspension was examined for odor change, visually examined under normal fluorescent light for color change, and examined under a light microscope for evidence of microbial growth. Samples of cyclophosphamide in both simple syrup and Ora-Plus were stable when kept at 4 degrees C for at least 56 days. At room temperature, cyclophosphamide in simple syrup and Ora-Plus had a shelf life of 8 and 3 days, respectively. No changes in color or odor or evidence of microbial growth were observed. Cyclophosphamide can be extemporaneously prepared in simple syrup or Ora-Plus and stored for at least 2 months under refrigeration without significant degradation.

  14. Uniform manganese hexacyanoferrate hydrate nanocubes featuring superior performance for low-cost supercapacitors and nonenzymatic electrochemical sensors

    NASA Astrophysics Data System (ADS)

    Pang, Huan; Zhang, Yizhou; Cheng, Tao; Lai, Wen-Yong; Huang, Wei

    2015-09-01

    Uniform manganese hexacyanoferrate hydrate nanocubes are prepared via a simple chemical precipitation method at room temperature. Due to both micro/mesopores of the Prussian blue analogue and nanocubic structures, the manganese hexacyanoferrate hydrate nanocubes allow the efficient charge transfer and mass transport for electrolyte solution and chemical species. Thus, the manganese hexacyanoferrate hydrate nanocube electrode shows a good rate capability and cycling stability for electrochemical capacitors. Furthermore, electrodes modified with manganese hexacyanoferrate hydrate nanocubes demonstrate a sensitive electrochemical response to hydrogen peroxide (H2O2) in buffer solutions with a high selectivity.Uniform manganese hexacyanoferrate hydrate nanocubes are prepared via a simple chemical precipitation method at room temperature. Due to both micro/mesopores of the Prussian blue analogue and nanocubic structures, the manganese hexacyanoferrate hydrate nanocubes allow the efficient charge transfer and mass transport for electrolyte solution and chemical species. Thus, the manganese hexacyanoferrate hydrate nanocube electrode shows a good rate capability and cycling stability for electrochemical capacitors. Furthermore, electrodes modified with manganese hexacyanoferrate hydrate nanocubes demonstrate a sensitive electrochemical response to hydrogen peroxide (H2O2) in buffer solutions with a high selectivity. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04322k

  15. Direct Detection of Singlet-Triplet Interconversion in OLED Magnetoelectroluminescence with a Metal-Free Fluorescence-Phosphorescence Dual Emitter

    NASA Astrophysics Data System (ADS)

    Ratzke, Wolfram; Bange, Sebastian; Lupton, John M.

    2018-05-01

    We demonstrate that a simple phenazine derivative can serve as a dual emitter for organic light-emitting diodes, showing simultaneous luminescence from the singlet and triplet excited states at room temperature without the need of heavy-atom substituents. Although devices made with this emitter achieve only low quantum efficiencies of <0.2 % , changes in fluorescence and phosphorescence intensity on the subpercent scale caused by an external magnetic field of up to 30 mT are clearly resolved with an ultra-low-noise optical imaging technique. The results demonstrate the concept of using simple reporter molecules, available commercially, to optically detect the spin of excited states formed in an organic light-emitting diode and thereby probe the underlying spin statistics of recombining electron-hole pairs. A clear anticorrelation of the magnetic-field dependence of singlet and triplet emission shows that it is the spin interconversion between singlet and triplet which dominates the magnetoluminescence response: the phosphorescence intensity decreases by the same amount as the fluorescence intensity increases. The concurrent detection of singlet and triplet emission as well as device resistance at cryogenic and room temperature constitute a useful tool to disentangle the effects of spin-dependent recombination from spin-dependent transport mechanisms.

  16. Synthesis and Characterization of AlCl3 Impregnated Molybdenum Oxide as Heterogeneous Nano-Catalyst for the Friedel-Crafts Acylation Reaction in Ambient Condition.

    PubMed

    Jadhav, Arvind H; Chinnappan, Amutha; Hiremath, Vishwanath; Seo, Jeong Gil

    2015-10-01

    Aluminum trichloride (AlCl3) impregnated molybdenum oxide heterogeneous nano-catalyst was prepared by using simple impregnation method. The prepared heterogeneous catalyst was characterized by powder X-ray diffraction, FT-IR spectroscopy, solid-state NMR spectroscopy, SEM imaging, and EDX mapping. The catalytic activity of this protocol was evaluated as heterogeneous catalyst for the Friedel-Crafts acylation reaction at room temperature. The impregnated MoO4(AlCl2)2 catalyst showed tremendous catalytic activity in Friedel-Crafts acylation reaction under solvent-free and mild reaction condition. As a result, 84.0% yield of acyl product with 100% consumption of reactants in 18 h reaction time at room temperature was achieved. The effects of different solvents system with MoO4(AlCl2)2 catalyst in acylation reaction was also investigated. By using optimized reaction condition various acylated derivatives were prepared. In addition, the catalyst was separated by simple filtration process after the reaction and reused several times. Therefore, heterogeneous MoO4(AlCl2)2 catalyst was found environmentally benign catalyst, very convenient, high yielding, and clean method for the Friedel-Crafts acylation reaction under solvent-free and ambient reaction condition.

  17. A numerical and experimental study of temperature effects on deformation behavior of carbon steels at high strain rates

    NASA Astrophysics Data System (ADS)

    Pouya, M.; Winter, S.; Fritsch, S.; F-X Wagner, M.

    2017-03-01

    Both in research and in the light of industrial applications, there is a growing interest in methods to characterize the mechanical behavior of materials at high strain rates. This is particularly true for steels (the most important structural materials), where often the strain rate-dependent material behavior also needs to be characterized in a wide temperature range. In this study, we use the Finite Element Method (FEM), first, to model the compressive deformation behavior of carbon steels under quasi-static loading conditions. The results are then compared to experimental data (for a simple C75 steel) at room temperature, and up to testing temperatures of 1000 °C. Second, an explicit FEM model that captures wave propagation phenomena during dynamic loading is developed to closely reflect the complex loading conditions in a Split-Hopkinson Pressure Bar (SHPB) - an experimental setup that allows loading of compression samples with strain rates up to 104 s-1 The dynamic simulations provide a useful basis for an accurate analysis of dynamically measured experimental data, which considers reflected elastic waves. By combining numerical and experimental investigations, we derive material parameters that capture the strain rate- and temperature-dependent behavior of the C75 steel from room temperature to 1000 °C, and from quasi-static to dynamic loading.

  18. DC and AC conductivity properties of bovine dentine hydroxyapatite (BDHA)

    NASA Astrophysics Data System (ADS)

    Dumludag, F.; Gunduz, O.; Kılıc, O.; Ekren, N.; Kalkandelen, C.; Ozbek, B.; Oktar, F. N.

    2017-12-01

    Bovine dentine bio-waste may be used as a potential natural source of hydroxyapatite (BDHA), thus extraction of bovine dentin hydroxyapatite (BDHA) from bio-waste is significantly important to fabricate in a simple, economically and environmentally preferable. DC and AC conductivity properties of BDHA were investigated depending on sintering temperature (1000ºC - 1300°C) in air and vacuum (<10-2 mbar) ambient at room temperature. DC conductivity measurements performed between -1 and 1 V. AC conductivity measurements performed in the frequency range of 40 Hz - 100 kHz. DC conductivity results showed that dc conductivity values of the BDHA decrease with increasing sintering temperature in air ambient. It is not observed remarkable/systematic behavior for ac conductivity depending on sintering temperature.

  19. Temperature and voltage stress dependent dielectric relaxation process of the doped Ba0.67Sr0.33TiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Yan, Shiguang; Mao, Chaoliang; Wang, Genshui; Yao, Chunhua; Cao, Fei; Dong, Xianlin

    2013-09-01

    The current decay characteristic in the time domain is studied in Y3+ and Mn2+ modified Ba0.67Sr0.33TiO3 ceramics under different temperatures (25 °C-213 °C) and voltage stresses (0 V-800 V). The decay of the current is correlated with the overlapping of the relaxation process and leakage current. With respect to the inherent remarkable dielectric nonlinearity, a simple method through curve fitting is derived to differentiate these two currents. Two mechanisms of the relaxation process are proposed: a distribution of the potential barriers mode around room temperature and an electron injection mode at the elevated temperature of 110 °C.

  20. Polymer Stabilization of Liquid-Crystal Blue Phase II toward Photonic Crystals.

    PubMed

    Jo, Seong-Yong; Jeon, Sung-Wook; Kim, Byeong-Cheon; Bae, Jae-Hyun; Araoka, Fumito; Choi, Suk-Won

    2017-03-15

    The temperature ranges where a pure simple-cubic blue phase (BPII) emerges are quite narrow compared to the body-centered-cubic BP (BPI) such that the polymer stabilization of BPII is much more difficult. Hence, a polymer-stabilized BPII possessing a wide temperature range has been scarcely reported. Here, we fabricate a polymer-stabilized BPII over a temperature range of 50 °C including room temperature. The fabricated polymer-stabilized BPII is confirmed via polarized optical microscopy, Bragg reflection, and Kossel diagram observations. Furthermore, we demonstrate reflective BP liquid-crystal devices utilizing the reflectance-voltage performance as a potential application of the polymer-stabilized BPII. Our work demonstrates the possibility of practical application of the polymer-stabilized BPII to photonic crystals.

  1. Synthesis, surface chemistry and pseudocapacitance mechanisms of VN nanocrystals derived by a simple two-step halide approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Daiwon; Jampani, Prashanth H.; Jayakody, J. R. P.

    Chloroamide precursors generated via a simple two-step ammonolysis reaction of transition metal chloride in the liquid phase at room temperature were heat treated in ammonia at moderate temperature to yield nano-sized VN crystallites. Grain growth inhibited by lowering the synthesis temperature (≈400°C) yielded agglomerated powders of spherical crystallites of cubic phase of VN with particle sizes as small as 6nm in diameter. X-ray diffraction, FTIR, mass spectroscopy (MS), and nuclear magnetic resonance (NMR) spectroscopy assessed the ammonolysis and nitridation reaction of the VCl 4-NH 3 system. X-ray Rietveld refinement, the BET technique and high-resolution transmission microscopy (HRTEM), energy dispersive x-raymore » (EDX) and thermogravimetric analysis (TGA) helped assess the crystallographic and microstructural nature of the VN nanocrystals. The surface chemistry and redox reaction leading to the gravimetric pseudo-capacitance value of (≈855 F/g) measured for the VN nanocrystals was determined and validated using FTIR, XPS and cyclic voltammetry analyses.« less

  2. Thermally programmable gas storage and release in single crystals of an organic van der Waals host.

    PubMed

    Enright, Gary D; Udachin, Konstantin A; Moudrakovski, Igor L; Ripmeester, John A

    2003-08-20

    A single crystal of a low density form of guest-free p-tert-butylcalix[4]arene can take up and release small guest molecules by controlling the temperature and pressure without changing the structure. Using NMR spectroscopy with flowing hyperpolarized xenon, we have shown that at room temperature access of xenon to the pore system is difficult, whereas it is relatively easy at 100 degrees C. There are good prospects for simple van der Waals materials such as the title material to be used as programmable zeolite mimics.

  3. Nanoscale patterning of electronic devices at the amorphous LaAlO3/SrTiO3 oxide interface using an electron sensitive polymer mask

    NASA Astrophysics Data System (ADS)

    Bjørlig, Anders V.; von Soosten, Merlin; Erlandsen, Ricci; Dahm, Rasmus Tindal; Zhang, Yu; Gan, Yulin; Chen, Yunzhong; Pryds, Nini; Jespersen, Thomas S.

    2018-04-01

    A simple approach is presented for designing complex oxide mesoscopic electronic devices based on the conducting interfaces of room temperature grown LaAlO3/SrTiO3 heterostructures. The technique is based entirely on methods known from conventional semiconductor processing technology, and we demonstrate a lateral resolution of ˜100 nm. We study the low temperature transport properties of nanoscale wires and demonstrate the feasibility of the technique for defining in-plane gates allowing local control of the electrostatic environment in mesoscopic devices.

  4. Room temperature large-scale synthesis of layered frameworks as low-cost 4 V cathode materials for lithium ion batteries.

    PubMed

    Hameed, A Shahul; Reddy, M V; Nagarathinam, M; Runčevski, Tomče; Dinnebier, Robert E; Adams, Stefan; Chowdari, B V R; Vittal, Jagadese J

    2015-11-23

    Li-ion batteries (LIBs) are considered as the best available technology to push forward the production of eco-friendly electric vehicles (EVs) and for the efficient utilization of renewable energy sources. Transformation from conventional vehicles to EVs are hindered by the high upfront price of the EVs and are mainly due to the high cost of LIBs. Hence, cost reduction of LIBs is one of the major strategies to bring forth the EVs to compete in the market with their gasoline counterparts. In our attempt to produce cheaper high-performance cathode materials for LIBs, an rGO/MOPOF (reduced graphene oxide/Metal-Organic Phosphate Open Framework) nanocomposite with ~4 V of operation has been developed by a cost effective room temperature synthesis that eliminates any expensive post-synthetic treatments at high temperature under Ar/Ar-H2. Firstly, an hydrated nanocomposite, rGO/K2[(VO)2(HPO4)2(C2O4)]·4.5H2O has been prepared by simple magnetic stirring at room temperature which releases water to form the anhydrous cathode material while drying at 90 °C during routine electrode fabrication procedure. The pristine MOPOF material undergoes highly reversible lithium storage, however with capacity fading. Enhanced lithium cycling has been witnessed with rGO/MOPOF nanocomposite which exhibits minimal capacity fading thanks to increased electronic conductivity and enhanced Li diffusivity.

  5. Room temperature large-scale synthesis of layered frameworks as low-cost 4 V cathode materials for lithium ion batteries

    PubMed Central

    Hameed, A. Shahul; Reddy, M. V.; Nagarathinam, M.; Runčevski, Tomče; Dinnebier, Robert E; Adams, Stefan; Chowdari, B. V. R.; Vittal, Jagadese J.

    2015-01-01

    Li-ion batteries (LIBs) are considered as the best available technology to push forward the production of eco-friendly electric vehicles (EVs) and for the efficient utilization of renewable energy sources. Transformation from conventional vehicles to EVs are hindered by the high upfront price of the EVs and are mainly due to the high cost of LIBs. Hence, cost reduction of LIBs is one of the major strategies to bring forth the EVs to compete in the market with their gasoline counterparts. In our attempt to produce cheaper high-performance cathode materials for LIBs, an rGO/MOPOF (reduced graphene oxide/Metal-Organic Phosphate Open Framework) nanocomposite with ~4 V of operation has been developed by a cost effective room temperature synthesis that eliminates any expensive post-synthetic treatments at high temperature under Ar/Ar-H2. Firstly, an hydrated nanocomposite, rGO/K2[(VO)2(HPO4)2(C2O4)]·4.5H2O has been prepared by simple magnetic stirring at room temperature which releases water to form the anhydrous cathode material while drying at 90 °C during routine electrode fabrication procedure. The pristine MOPOF material undergoes highly reversible lithium storage, however with capacity fading. Enhanced lithium cycling has been witnessed with rGO/MOPOF nanocomposite which exhibits minimal capacity fading thanks to increased electronic conductivity and enhanced Li diffusivity. PMID:26593096

  6. Room temperature large-scale synthesis of layered frameworks as low-cost 4 V cathode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Hameed, A. Shahul; Reddy, M. V.; Nagarathinam, M.; Runčevski, Tomče; Dinnebier, Robert E.; Adams, Stefan; Chowdari, B. V. R.; Vittal, Jagadese J.

    2015-11-01

    Li-ion batteries (LIBs) are considered as the best available technology to push forward the production of eco-friendly electric vehicles (EVs) and for the efficient utilization of renewable energy sources. Transformation from conventional vehicles to EVs are hindered by the high upfront price of the EVs and are mainly due to the high cost of LIBs. Hence, cost reduction of LIBs is one of the major strategies to bring forth the EVs to compete in the market with their gasoline counterparts. In our attempt to produce cheaper high-performance cathode materials for LIBs, an rGO/MOPOF (reduced graphene oxide/Metal-Organic Phosphate Open Framework) nanocomposite with ~4 V of operation has been developed by a cost effective room temperature synthesis that eliminates any expensive post-synthetic treatments at high temperature under Ar/Ar-H2. Firstly, an hydrated nanocomposite, rGO/K2[(VO)2(HPO4)2(C2O4)]·4.5H2O has been prepared by simple magnetic stirring at room temperature which releases water to form the anhydrous cathode material while drying at 90 °C during routine electrode fabrication procedure. The pristine MOPOF material undergoes highly reversible lithium storage, however with capacity fading. Enhanced lithium cycling has been witnessed with rGO/MOPOF nanocomposite which exhibits minimal capacity fading thanks to increased electronic conductivity and enhanced Li diffusivity.

  7. Ex vivo instability of glycated albumin: A role for autoxidative glycation.

    PubMed

    Jeffs, Joshua W; Ferdosi, Shadi; Yassine, Hussein N; Borges, Chad R

    2017-09-01

    Ex vivo protein modifications occur within plasma and serum (P/S) samples due to prolonged exposure to the thawed state-which includes temperatures above -30 °C. Herein, the ex vivo glycation of human serum albumin from healthy and diabetic subjects was monitored in P/S samples stored for hours to months at -80 °C, -20 °C, and room temperature, as well as in samples subjected to multiple freeze-thaw cycles, incubated at different surface area-to-volume ratios or under different atmospheric compositions. A simple dilute-and-shoot method utilizing trap-and-elute LC-ESI-MS was employed to determine the relative abundances of the glycated forms of albumin-including forms of albumin bearing more than one glucose molecule. Significant increases in glycated albumin were found to occur within hours at room temperature, and within days at -20 °C. These increases continued over a period of 1-2 weeks at room temperature and over 200 days at -20 °C, ultimately resulting in a doubling of glycated albumin in both healthy and diabetic patients. It was also shown that samples stored at lower surface area-to-volume ratios or incubated under a nitrogen atmosphere experienced less rapid glucose adduction of albumin-suggesting a role for oxidative glycation in the ex vivo glycation of albumin. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Landau theory and giant room-temperature barocaloric effect in M F 3 metal trifluorides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corrales-Salazar, A.; Brierley, R. T.; Littlewood, P. B.

    The structural phase transitions of MF 3 (M = Al, Cr, V, Fe, Ti, Sc) metal trifluorides are studied within a simple Landau theory consisting of tilts of rigid MF 6 octahedra associated with soft antiferrodistortive optic modes that are coupled to long-wavelength strain generating acoustic phonons. We calculate the temperature and pressure dependence of several quantities such as the spontaneous distortions, volume expansion, and shear strains as well as T - P phase diagrams. By contrasting our model to experiments we quantify the deviations from mean-field behavior and find that the tilt fluctuations of the MF 6 octahedra increasemore » with metal cation size. We apply our model to predict giant barocaloric effects in Sc-substituted TiF 3 of up to about 15 JK -1 kg -1 for modest hydrostatic compressions of 0.2GPa. The effect extends over a wide temperature range of over 140K (including room temperature) due to a large predicted rate, dT c/dP = 723K GPa -1, which exceeds those of typical barocaloric materials. Our results suggest that open lattice frameworks such as the trifluorides are an attractive platform to search for giant barocaloric effects.« less

  9. Controllable Growth of Perovskite Films by Room-Temperature Air Exposure for Efficient Planar Heterojunction Photovoltaic Cells.

    PubMed

    Yang, Bin; Dyck, Ondrej; Poplawsky, Jonathan; Keum, Jong; Das, Sanjib; Puretzky, Alexander; Aytug, Tolga; Joshi, Pooran C; Rouleau, Christopher M; Duscher, Gerd; Geohegan, David B; Xiao, Kai

    2015-12-01

    A two-step solution processing approach has been established to grow void-free perovskite films for low-cost high-performance planar heterojunction photovoltaic devices. A high-temperature thermal annealing treatment was applied to drive the diffusion of CH3NH3I precursor molecules into a compact PbI2 layer to form perovskite films. However, thermal annealing for extended periods led to degraded device performance owing to the defects generated by decomposition of perovskite into PbI2. A controllable layer-by-layer spin-coating method was used to grow "bilayer" CH3NH3I/PbI2 films, and then drive the interdiffusion between PbI2 and CH3NH3I layers by a simple air exposure at room temperature for making well-oriented, highly crystalline perovskite films without thermal annealing. This high degree of crystallinity resulted in a carrier diffusion length of ca. 800 nm and a high device efficiency of 15.6%, which is comparable to values reported for thermally annealed perovskite films. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Room Temperature Electrochemical Sintering of Zn Microparticles and Its Use in Printable Conducting Inks for Bioresorbable Electronics.

    PubMed

    Lee, Yoon Kyeung; Kim, Jeonghyun; Kim, Yerim; Kwak, Jean Won; Yoon, Younghee; Rogers, John A

    2017-10-01

    This study describes a conductive ink formulation that exploits electrochemical sintering of Zn microparticles in aqueous solutions at room temperature. This material system has relevance to emerging classes of biologically and environmentally degradable electronic devices. The sintering process involves dissolution of a surface passivation layer of zinc oxide in CH 3 COOH/H 2 O and subsequent self-exchange of Zn and Zn 2+ at the Zn/H 2 O interface. The chemical specificity associated with the Zn metal and the CH 3 COOH/H 2 O solution is critically important, as revealed by studies of other material combinations. The resulting electrochemistry establishes the basis for a remarkably simple procedure for printing highly conductive (3 × 10 5 S m -1 ) features in degradable materials at ambient conditions over large areas, with key advantages over strategies based on liquid phase (fusion) sintering that requires both oxide-free metal surfaces and high temperature conditions. Demonstrations include printed magnetic loop antennas for near-field communication devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Evolution of structural and optical properties of rutile TiO2 thin films synthesized at room temperature by chemical bath deposition method

    NASA Astrophysics Data System (ADS)

    Mayabadi, A. H.; Waman, V. S.; Kamble, M. M.; Ghosh, S. S.; Gabhale, B. B.; Rondiya, S. R.; Rokade, A. V.; Khadtare, S. S.; Sathe, V. G.; Pathan, H. M.; Gosavi, S. W.; Jadkar, S. R.

    2014-02-01

    Nanocrystalline thin films of TiO2 were prepared on glass substrates from an aqueous solution of TiCl3 and NH4OH at room temperature using the simple and cost-effective chemical bath deposition (CBD) method. The influence of deposition time on structural, morphological and optical properties was systematically investigated. TiO2 transition from a mixed anatase-rutile phase to a pure rutile phase was revealed by low-angle XRD and Raman spectroscopy. Rutile phase formation was confirmed by FTIR spectroscopy. Scanning electron micrographs revealed that the multigrain structure of as-deposited TiO2 thin films was completely converted into semi-spherical nanoparticles. Optical studies showed that rutile thin films had a high absorption coefficient and a direct bandgap. The optical bandgap decreased slightly (3.29-3.07 eV) with increasing deposition time. The ease of deposition of rutile thin films at low temperature is useful for the fabrication of extremely thin absorber (ETA) solar cells, dye-sensitized solar cells, and gas sensors.

  12. Simple, rapid and effective preservation and reactivation of anaerobic ammonium oxidizing bacterium "Candidatus Brocadia sinica".

    PubMed

    Ali, Muhammad; Oshiki, Mamoru; Okabe, Satoshi

    2014-06-15

    It is still the biggest challenge to secure enough seeding biomass for rapid start-up of full-scale (anaerobic ammonium oxidation) anammox processes due to slow growth. Preservation of active anammox biomass could be one of the solutions. In this study, biomass of anammox bacterium, "Candidatus Brocadia sinica", immersed in various nutrient media were preserved at -80 °C, 4 °C and room temperature. After 45, 90 and 150 days of preservation, specific anammox activity (SAA) of the preserved anammox biomass was determined by measuring (29)N2 production rate and transcription levels of hzsA gene encoding hydrazine synthase alpha subunit. Storage in nutrient medium containing 3 mM of molybdate at room temperature with periodical (every 45 days) supply of NH4(+) and NO2(-) was proved to be the most effective storage technique for "Ca. Brocadia sinica" biomass. Using this preservation condition, 96, 92 and 65% of the initial SAA was sustained after 45, 90 and 150 days of storage, respectively. Transcription levels of hzsA gene in biomass correlated with the SAA (R(2) = 0.83), indicating it can be used as a genetic marker to evaluate the anammox activity of preserved biomass. Furthermore, the 90-day-stored biomass was successfully reactivated by immobilizing in polyvinyl alcohol (6%, w/v) and sodium alginate (2%, w/v) gel and then inoculated to up-flow column reactors. Total nitrogen removal rates rapidly increased to 7 kg-N m(-3) d(-1) within 35 days of operation. Based on these results, the room temperature preservation with molybdate addition is simple, cost-effective and feasible at a practical scale, which will accelerate the practical use of anammox process for wastewater treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Ultra-low-noise, high-impedance preamp for cryogenic detectors

    NASA Technical Reports Server (NTRS)

    Brown, E. R.

    1985-01-01

    A relatively simple room-temperature preamp design that satisfies both the low-noise and wideband requirements for the InSb Putley-mode detector and which is based on a common-drain JFET input, is presented. The design has an input capacitance of 28 pf which is much less than comparably noisy common-source amplifiers. It can be used for preamplification of 0.1 to 10 MHz signals from liquid-helium-cooled radiation detectors.

  14. AUTOMATIC RECORDING OF THE RADIOACTIVITY OF ZONES ELUTED FROM THE GAS- LIQUID CHROMATOGRAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, A.T.; Piper, E.A.

    1961-03-01

    A simple proportional flow counter for use with the gas chromatogram is described. which is operated at room temperature by burning all eluted material to CO/sub 2/ over heated copper oxide. The gas stream is dried. 5% CO/sub 2/ is injected and the mixture passed into the counter. Details are given of the necessary circuitry. Examples are provided of its use with long chain fatty acids. (auth)

  15. [Studies on the health standard for room temperature in cold regions].

    PubMed

    Meng, Z L

    1990-03-01

    The microclimate of 205 rooms of single storey houses in four new rural residential districts in coastal and inland Shandong was monitored and studied the blood circulation of the finger, skin temperature, sweating function and other physiological indexes among 2,401 peasants. We interrogated their personal sensation to cold and warmth. The count was done by the application of thermal equilibrium index (TEI), predicted 4-hour Sweat Rate (P4SR) and the uncomfortable index. The standard room temperature is recommended as follows. In rural area in winter the appropriate room temperature is 14-16 degrees C, the comfortable room temperature is 16-20 degrees C, the lowest room temperature must not be below 14 degrees C. In summer the appropriate room temperature is 25-28 degrees C, the comfortable room temperature is 26-27 degrees C, the highest temperature must not be above 28 degrees C.

  16. Measurement of the quantum capacitance from two-dimensional surface state of a topological insulator at room temperature

    NASA Astrophysics Data System (ADS)

    Choi, Hyunwoo; Kim, Tae Geun; Shin, Changhwan

    2017-06-01

    A topological insulator (TI) is a new kind of material that exhibits unique electronic properties owing to its topological surface state (TSS). Previous studies focused on the transport properties of the TSS, since it can be used as the active channel layer in metal-oxide-semiconductor field-effect transistors (MOSFETs). However, a TI with a negative quantum capacitance (QC) effect can be used in the gate stack of MOSFETs, thereby facilitating the creation of ultra-low power electronics. Therefore, it is important to study the physics behind the QC in TIs in the absence of any external magnetic field, at room temperature. We fabricated a simple capacitor structure using a TI (TI-capacitor: Au-TI-SiO2-Si), which shows clear evidence of QC at room temperature. In the capacitance-voltage (C-V) measurement, the total capacitance of the TI-capacitor increases in the accumulation regime, since QC is the dominant capacitive component in the series capacitor model (i.e., CT-1 = CQ-1 + CSiO2-1). Based on the QC model of the two-dimensional electron systems, we quantitatively calculated the QC, and observed that the simulated C-V curve theoretically supports the conclusion that the QC of the TI-capacitor is originated from electron-electron interaction in the two-dimensional surface state of the TI.

  17. A unified equation for calculating methane vapor pressures in the CH4-H2O system with measured Raman shifts

    USGS Publications Warehouse

    Lu, W.; Chou, I.-Ming; Burruss, R.C.; Song, Y.

    2007-01-01

    A unified equation has been derived by using all available data for calculating methane vapor pressures with measured Raman shifts of C-H symmetric stretching band (??1) in the vapor phase of sample fluids near room temperature. This equation eliminates discrepancies among the existing data sets and can be applied at any Raman laboratory. Raman shifts of C-H symmetric stretching band of methane in the vapor phase of CH4-H2O mixtures prepared in a high-pressure optical cell were also measured at temperatures between room temperature and 200 ??C, and pressures up to 37 MPa. The results show that the CH4 ??1 band position shifts to higher wavenumber as temperature increases. We also demonstrated that this Raman band shift is a simple function of methane vapor density, and, therefore, when combined with equation of state of methane, methane vapor pressures in the sample fluids at elevated temperatures can be calculated from measured Raman peak positions. This method can be applied to determine the pressure of CH4-bearing systems, such as methane-rich fluid inclusions from sedimentary basins or experimental fluids in hydrothermal diamond-anvil cell or other types of optical cell. ?? 2007 Elsevier Ltd. All rights reserved.

  18. Temperature oscillation suppression of GM cryocooler

    NASA Astrophysics Data System (ADS)

    Okidono, K.; Oota, T.; Kurihara, H.; Sumida, T.; Nishioka, T.; Kato, H.; Matsumura, M.; Sasaki, O.

    2012-12-01

    GM cryocooler is a convenient refrigerator to achieve low temperatures about 4 K, while it is not suitable for precise measurements because of the large temperature oscillation of typically about 0.3 K. To resolve this problem, we have developed an adapter (He-pot) with a simple structure as possible. From the thermodynamic consideration, both heat capacity and thermal conductance should be large in order to reduce the temperature oscillation without compromising cooling power. Optimal structure of the He-pot is a copper cylinder filled with high pressure He-gas at room temperature. This can reduce the temperature oscillation to less than 10 mK below a certain temperature TH without compromising cooling power. TH are 3.8 and 4.5 for filled He-gas pressures of 90 and 60 atm, respectively. By using this He-pot, GM cryocooler can be applied to such as precise physical property measurements and THz detection.

  19. Temperature-dependent mid-IR absorption spectra of gaseous hydrocarbons

    NASA Astrophysics Data System (ADS)

    Klingbeil, Adam E.; Jeffries, Jay B.; Hanson, Ronald K.

    2007-10-01

    Quantitative mid-IR absorption spectra (2500 3400 cm-1) for 12 pure hydrocarbon compounds are measured at temperatures ranging from 25 to 500 °C using an FTIR spectrometer. The hydrocarbons studied are n-pentane, n-heptane, n-dodecane, 2,2,4-trimethyl-pentane (iso-octane), 2-methyl-butane, 2-methyl-pentane, 2,4,4-trimethyl-1-pentene, 2-methyl-2-butene, propene, toluene, m-xylene, and ethylbenzene. Room-temperature measurements of neat hydrocarbon vapor were made with an instrument resolution of both 0.1 and 1 cm-1 (FWHM) to confirm that the high-resolution setting was required only to resolve the propene absorption spectrum while the spectra of the other hydrocarbons could be resolved with 1 cm-1 resolution. High-resolution (0.1 cm-1), room-temperature measurements of neat hydrocarbons were made at low pressure (˜1 Torr, 133 Pa) and compared to measurements of hydrocarbon/N2 mixtures at atmospheric pressure to verify that no pressure broadening could be observed over this pressure range. The temperature was varied between 25 and 500 °C for atmospheric-pressure measurements of hydrocarbon/N2 mixtures (Xhydrocarbon˜0.06 1.5%) and it was found that the absorption cross section shows simple temperature-dependent behavior for a fixed wavelength over this temperature range. Comparisons with previous FTIR data over a limited temperature range and with high-resolution laser absorption data over a wide temperature range show good agreement.

  20. Reference breast temperature: proposal of an equation.

    PubMed

    Souza, Gladis Aparecida Galindo Reisemberger de; Brioschi, Marcos Leal; Vargas, José Viriato Coelho; Morais, Keli Cristiane Correia; Dalmaso Neto, Carlos; Neves, Eduardo Borba

    2015-01-01

    To develop an equation to estimate the breast reference temperature according to the variation of room and core body temperatures. Four asymptomatic women were evaluated for three consecutive menstrual cycles. Using thermography, the temperature of breasts and eyes was measured as indirect reference of core body and room temperatures. To analyze the thermal behavior of the breasts during the cycle, the core body and room temperatures were normalized by means of a mathematical equation. We performed 180 observations and the core temperature had the highest correlation with the breast temperature, followed by room temperature. The proposed prediction model could explain 45.3% of the breast temperature variation, with variable room temperature variable; it can be accepted as a way to estimate the reference breast temperature at different room temperatures. The average breast temperature in healthy women had a direct relation with the core and room temperature and can be estimated mathematically. It is suggested that an equation could be used in clinical practice to estimate the normal breast reference temperature in young women, regardless of the day of the cycle, therefore assisting in evaluation of anatomical studies.

  1. Preparation and characterization of ALD deposited ZnO thin films studied for gas sensors

    NASA Astrophysics Data System (ADS)

    Boyadjiev, S. I.; Georgieva, V.; Yordanov, R.; Raicheva, Z.; Szilágyi, I. M.

    2016-11-01

    Applying atomic layer deposition (ALD), very thin zinc oxide (ZnO) films were deposited on quartz resonators, and their gas sensing properties were studied using the quartz crystal microbalance (QCM) method. The gas sensing of the ZnO films to NO2 was tested in the concentration interval between 10 and 5000 ppm. On the basis of registered frequency change of the QCM, for each concentration the sorbed mass was calculated. Further characterization of the films was carried out by various techniques, i.e. by SEM-EDS, XRD, ellipsometry, and FTIR spectroscopy. Although being very thin, the films were gas sensitive to NO2 already at room temperature and could register very well as low concentrations as 100 ppm, while the sorption was fully reversible. Our results for very thin ALD ZnO films show that the described fast, simple and cost-effective technology could be implemented for producing gas sensors working at room temperature and being capable to detect in real time low concentrations of NO2.

  2. Determination of trace tin by solid substrate-room temperature phosphorimetry using sodium dodecyl sulfate as sensitizer

    NASA Astrophysics Data System (ADS)

    Jiaming, Liu; Guohui, Zhu; Tianlong, Yang; Aihong, Wu; Yan, Fu; Longdi, Li

    2003-07-01

    The effects of different surfactants on solid substrate-room temperature phosphorescence (SS-RTP) properties of Sn4+-morin systems were investigated. It was found that the SS-RTP intensity of luminescence system was increased greatly in presence of sodium dodecyl sulfate (SDS). A new highly sensitive method for the determination of trace tin has been proposed based on sensitization of SDS on SS-RTP intensity of morin-tin system on the filter paper substrate. The linear dynamic range of this method is 8.0-112 ag per spot (with the volume of 0.4 μl per spot) with a detection limit of 4.0 ag per spot, and the regression equation is ΔIp=199.7+3.456mSn(IV) (ag per spot), with the correlation coefficient r=0.9998 (n=7). This simple, rapid and reproducible method has been applied to determine the amount of tin in real samples with satisfactory results.

  3. Ultra-Low-Power Smart Electronic Nose System Based on Three-Dimensional Tin Oxide Nanotube Arrays.

    PubMed

    Chen, Jiaqi; Chen, Zhuo; Boussaid, Farid; Zhang, Daquan; Pan, Xiaofang; Zhao, Huijuan; Bermak, Amine; Tsui, Chi-Ying; Wang, Xinran; Fan, Zhiyong

    2018-06-04

    In this work, we present a high-performance smart electronic nose (E-nose) system consisting of a multiplexed tin oxide (SnO 2 ) nanotube sensor array, read-out circuit, wireless data transmission unit, mobile phone receiver, and data processing application (App). Using the designed nanotube sensor device structure in conjunction with multiple electrode materials, high-sensitivity gas detection and discrimination have been achieved at room temperature, enabling a 1000 times reduction of the sensor's power consumption as compared to a conventional device using thin film SnO 2 . The experimental results demonstrate that the developed E-nose can identify indoor target gases using a simple vector-matching gas recognition algorithm. In addition, the fabricated E-nose has achieved state-of-the-art sensitivity for H 2 and benzene detection at room temperature with metal oxide sensors. Such a smart E-nose system can address the imperative needs for distributed environmental monitoring in smart homes, smart buildings, and smart cities.

  4. Single-electron random-number generator (RNG) for highly secure ubiquitous computing applications

    NASA Astrophysics Data System (ADS)

    Uchida, Ken; Tanamoto, Tetsufumi; Fujita, Shinobu

    2007-11-01

    Since the security of all modern cryptographic techniques relies on unpredictable and irreproducible digital keys generated by random-number generators (RNGs), the realization of high-quality RNG is essential for secure communications. In this report, a new RNG, which utilizes single-electron phenomena, is proposed. A room-temperature operating silicon single-electron transistor (SET) having nearby an electron pocket is used as a high-quality, ultra-small RNG. In the proposed RNG, stochastic single-electron capture/emission processes to/from the electron pocket are detected with high sensitivity by the SET, and result in giant random telegraphic signals (GRTS) on the SET current. It is experimentally demonstrated that the single-electron RNG generates extremely high-quality random digital sequences at room temperature, in spite of its simple configuration. Because of its small-size and low-power properties, the single-electron RNG is promising as a key nanoelectronic device for future ubiquitous computing systems with highly secure mobile communication capabilities.

  5. Room temperature chemical bath deposition of cadmium selenide, cadmium sulfide and cadmium sulfoselenide thin films with novel nanostructures

    NASA Astrophysics Data System (ADS)

    VanderHyde, Cephas A.; Sartale, S. D.; Patil, Jayant M.; Ghoderao, Karuna P.; Sawant, Jitendra P.; Kale, Rohidas B.

    2015-10-01

    A simple, convenient and low cost chemical synthesis route has been used to deposit nanostructured cadmium sulfide, selenide and sulfoselenide thin films at room temperature. The films were deposited on glass substrates, using cadmium acetate as cadmium ion and sodium selenosulfate/thiourea as a selenium/sulfur ion sources. Aqueous ammonia was used as a complex reagent and also to adjust the pH of the final solution. The as-deposited films were uniform, well adherent to the glass substrate, specularly reflective and red/yellow in color depending on selenium and sulfur composition. The X-ray diffraction pattern of deposited cadmium selenide thin film revealed the nanocrystalline nature with cubic phase; cadmium sulfide revealed mixture of cubic along with hexagonal phase and cadmium sulfoselenide thin film were grown with purely hexagonal phase. The morphological observations revealed the growth and formation of interesting one, two and three-dimensional nanostructures. The band gap of thin films was calculated and the results are reported.

  6. Application of Micro-cloud point extraction for spectrophotometric determination of Malachite green, Crystal violet and Rhodamine B in aqueous samples

    NASA Astrophysics Data System (ADS)

    Ghasemi, Elham; Kaykhaii, Massoud

    2016-07-01

    A novel, green, simple and fast method was developed for spectrophotometric determination of Malachite green, Crystal violet, and Rhodamine B in water samples based on Micro-cloud Point extraction (MCPE) at room temperature. This is the first report on the application of MCPE on dyes. In this method, to reach the cloud point at room temperature, the MCPE procedure was carried out in brine using Triton X-114 as a non-ionic surfactant. The factors influencing the extraction efficiency were investigated and optimized. Under the optimized condition, calibration curves were found to be linear in the concentration range of 0.06-0.60 mg/L, 0.10-0.80 mg/L, and 0.03-0.30 mg/L with the enrichment factors of 29.26, 85.47 and 28.36, respectively for Malachite green, Crystal violet, and Rhodamine B. Limit of detections were between 2.2 and 5.1 μg/L.

  7. Application of Micro-cloud point extraction for spectrophotometric determination of Malachite green, Crystal violet and Rhodamine B in aqueous samples.

    PubMed

    Ghasemi, Elham; Kaykhaii, Massoud

    2016-07-05

    A novel, green, simple and fast method was developed for spectrophotometric determination of Malachite green, Crystal violet, and Rhodamine B in water samples based on Micro-cloud Point extraction (MCPE) at room temperature. This is the first report on the application of MCPE on dyes. In this method, to reach the cloud point at room temperature, the MCPE procedure was carried out in brine using Triton X-114 as a non-ionic surfactant. The factors influencing the extraction efficiency were investigated and optimized. Under the optimized condition, calibration curves were found to be linear in the concentration range of 0.06-0.60mg/L, 0.10-0.80mg/L, and 0.03-0.30mg/L with the enrichment factors of 29.26, 85.47 and 28.36, respectively for Malachite green, Crystal violet, and Rhodamine B. Limit of detections were between 2.2 and 5.1μg/L. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Room-temperature synthesis of zinc oxide nanoparticles in different media and their application in cyanide photodegradation

    PubMed Central

    2013-01-01

    Cyanide is an extreme hazard and extensively found in the wastes of refinery, coke plant, and metal plating industries. A simple, fast, cost-effective, room-temperature wet chemical route, based on cyclohexylamine, for synthesizing zinc oxide nanoparticles in aqueous and enthanolic media was established and tested for the photodegradation of cyanide ions. Particles of polyhedra morphology were obtained for zinc oxide, prepared in ethanol (ZnOE), while spherical and some chunky particles were observed for zinc oxide, prepared in water (ZnOW). The morphology was crucial in enhancing the cyanide ion photocatalytic degradation efficiency of ZnOE by a factor of 1.5 in comparison to the efficiency of ZnOW at an equivalent concentration of 0.02 wt.% ZnO. Increasing the concentration wt.% of ZnOE from 0.01 to 0.09 led to an increase in the photocatalytic degradation efficiency from 85% to almost 100% after 180 min and a doubling of the first-order rate constant (k). PMID:24314056

  9. Influence of Thin-Film Adhesives in Pullout Tests Between Nickel-Titanium Shape Memory Alloy and Carbon Fiber-Reinforced Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Quade, Derek J.; Jana, Sadhan; McCorkle, Linda S.

    2018-01-01

    Strips of nickel-titanium (NiTi) shape memory alloy (SMA) and carbon fiber-reinforced polymer matrix composite (PMC) were bonded together using multiple thin film adhesives and their mechanical strengths were evaluated under pullout test configuration. Tensile and lap shear tests were conducted to confirm the deformation of SMAs at room temperature and to evaluate the adhesive strength between the NiTi strips and the PMC. Optical and scanning electron microscopy techniques were used to examine the interfacial bonding after failure. Simple equations on composite tensile elongation were used to fit the experimental data on tensile properties. ABAQUS models were generated to show the effects of enhanced bond strength and the distribution of stress in SMA and PMC. The results revealed that the addition of thin film adhesives increased the average adhesive strength between SMA and PMC while halting the room temperature shape memory effect within the pullout specimen.

  10. Large low-field magnetoresistance in Fe3O4/molecule nanoparticles at room temperature

    NASA Astrophysics Data System (ADS)

    Yue, F. J.; Wang, S.; Lin, L.; Zhang, F. M.; Li, C. H.; Zuo, J. L.; Du, Y. W.; Wu, D.

    2011-01-01

    Acetic acid molecule-coated Fe3O4 nanoparticles, 450-650 nm in size, have been synthesized using a chemical solvothermal reduction method. Fourier transform infrared spectroscopy measurements confirm one monolayer acetic acid molecules chemically bond to the Fe3O4 nanoparticles. The low-field magnetoresistance (LFMR) of more than -10% at room temperature and -23% at 140 K is achieved with saturation field of less than 2 kOe. In comparison, the resistivity of cold-pressed bare Fe3O4 nanoparticles is six orders of magnitudes smaller than that of Fe3O4/molecule nanoparticles, and the LFMR ratio is one order of magnitude smaller. Our results indicate that the large LFMR in Fe3O4/molecule nanoparticles is associated with spin-polarized electrons tunnelling through molecules instead of direct nanoparticle contacts. These results suggest that magnetic oxide-molecule hybrid materials are an alternative type of materials to develop spin-based devices by a simple low-cost approach.

  11. Stability of medicines after repackaging into multicompartment compliance aids: eight criteria for detection of visual alteration.

    PubMed

    Albert, Valerie; Lanz, Michael; Imanidis, Georgios; Hersberger, Kurt E; Arnet, Isabelle

    2017-01-01

    Multicompartment compliance aids (MCA) are widely used by patients. They support the management of medication and reduce unintentional nonadherence. MCA are filled with medicines unpacked from their original packaging. Swiss pharmacists currently provide MCA for 1-2 weeks, although little and controversial information exists on the stability of repackaged medicines. We aimed to validate the usefulness of a simple screening method capable of detecting visual stability problems with repackaged medicines. We selected eight criteria for solid formulations from The International Pharmacopoeia : (1) rough surface, (2) chipping, (3) cracking, (4) capping, (5) mottling, (6) discoloration, (7) swelling, and (8) crushing. A selection of 24 critical medicines was repackaged in three different MCA (Pharmis ® , SureMed™, and self-produced blister) and stored at room temperature for 4 weeks. Pharmis ® was additionally stored at accelerated conditions. Appearance was scored weekly. Six alterations (rough surface, cracking, mottling, discoloration, swelling, and crushing) were observed at accelerated conditions. No alteration was observed at room temperature, except for the chipping of tablets that had been stuck to cold seal glue. The eight criteria can detect alterations of the appearance of oral solid medicines repackaged in MCA. In the absence of specific guidelines, they can serve as a simple screening method in community pharmacies for identifying medicines unsuitable for repackaging.

  12. A simple, compact, and rigid piezoelectric step motor with large step size.

    PubMed

    Wang, Qi; Lu, Qingyou

    2009-08-01

    We present a novel piezoelectric stepper motor featuring high compactness, rigidity, simplicity, and any direction operability. Although tested in room temperature, it is believed to work in low temperatures, owing to its loose operation conditions and large step size. The motor is implemented with a piezoelectric scanner tube that is axially cut into almost two halves and clamp holds a hollow shaft inside at both ends via the spring parts of the shaft. Two driving voltages that singly deform the two halves of the piezotube in one direction and recover simultaneously will move the shaft in the opposite direction, and vice versa.

  13. A simple, compact, and rigid piezoelectric step motor with large step size

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Lu, Qingyou

    2009-08-01

    We present a novel piezoelectric stepper motor featuring high compactness, rigidity, simplicity, and any direction operability. Although tested in room temperature, it is believed to work in low temperatures, owing to its loose operation conditions and large step size. The motor is implemented with a piezoelectric scanner tube that is axially cut into almost two halves and clamp holds a hollow shaft inside at both ends via the spring parts of the shaft. Two driving voltages that singly deform the two halves of the piezotube in one direction and recover simultaneously will move the shaft in the opposite direction, and vice versa.

  14. Microwave-Assisted Synthesis Cd Metal Hexagonal Nanosheets

    NASA Astrophysics Data System (ADS)

    Sun, Yidong; She, Houde; Bai, Wencai; Li, Liangshan; Zhou, Hua

    2018-07-01

    Sodium borohydride (NaBH4) as reducing agent, oleic acid (OA) as surfactant, deionized water as the dispersant, reducing cadmium nitrate (Cd(NO3)2 · 4H2O) can get Cd nanosheets by microwave method. Room temperature photoluminescence (PL) spectrum for Cd nanosheets recorded under xenon light wavelength of 325 nm exhibited obviously emission bands at 331, 379, and 390 nm. By analyzing the results of XRD and TEM, the nanosheets are thought as hexagonal phase and the size is about 20 nm. This synthesis performs in a lower temperature. Moreover our method is quite simple and the cost of the experiment is relatively lower.

  15. Design and measure of a tunable double-band metamaterial absorber in the THz spectrum

    NASA Astrophysics Data System (ADS)

    Guiming, Han

    2018-04-01

    We demonstrate and measure a hybrid double-band tunable metamaterial absorber in the terahertz region. The measured metamaterial absorber contains of a hybrid dielectric layer structure: a SU-8 layer and a VO2 layer. Near perfect double-band absorption performances are achieved by optimizing the SU-8 layer thickness at room temperature 25 °C. Measured results show that the phase transition can be observed when the measured temperature reaches 68 °C. Further measured results indicate that the resonance frequency and absorption amplitude of the proposed metamaterial absorber are tunable through increasing the measured temperature, while structural parameters unchanged. The proposed hybrid metamaterial absorber shows many advantages, such as frequency agility, absorption amplitude tunable, and simple fabrication.

  16. Evaluation of equine urine reactivity towards phase II metabolites of 17-hydroxy steroids by liquid chromatography/tandem mass spectrometry.

    PubMed

    Fidani, M; Gamberini, M C; Pasello, E; Palazzoli, F; De Iuliis, P; Montana, M; Arioli, F

    2009-01-01

    Proper storage conditions of biological samples are fundamental to avoid microbiological contamination that can cause chemical modifications of the target analytes. A simple liquid chromatography/tandem mass spectrometry (LC/MS/MS) method through direct injection of diluted samples, without prior extraction, was used to evaluate the stability of phase II metabolites of boldenone and testosterone (glucuronides and sulphates) in intentionally poorly stored equine urine samples. We also considered the stability of some deuterated conjugated steroids generally used as internal standards, such as deuterated testosterone and epitestosterone glucuronides, and deuterated boldenone and testosterone sulphates. The urines were kept for 1 day at room temperature, to mimic poor storage conditions, then spiked with the above steroids and kept at different temperatures (-18 degrees C, 4 degrees C, room temperature). It has been possible to confirm the instability of glucuronide compounds when added to poorly stored equine urine samples. In particular, both 17beta- and 17alpha-glucuronide steroids were exposed to hydrolysis leading to non-conjugated steroids. Only 17beta-hydroxy steroids were exposed to oxidation to their keto derivatives whereas the 17alpha-hydroxy steroids were highly stable. The sulphate compounds were completely stable. The deuterated compounds underwent the same behaviour as the unlabelled compounds. The transformations were observed in urine samples kept at room temperature and at a temperature of 4 degrees C (at a slower rate). No modifications were observed in frozen urine samples. In the light of the latter results, the immediate freezing at -18 degrees C of the collected samples and their instant analysis after thawing is the proposed procedure for preventing the transformations that occur in urine, usually due to microbiological contamination. (c) 2008 John Wiley & Sons, Ltd.

  17. Reference breast temperature: proposal of an equation

    PubMed Central

    de Souza, Gladis Aparecida Galindo Reisemberger; Brioschi, Marcos Leal; Vargas, José Viriato Coelho; Morais, Keli Cristiane Correia; Dalmaso, Carlos; Neves, Eduardo Borba

    2015-01-01

    ABSTRACT Objective To develop an equation to estimate the breast reference temperature according to the variation of room and core body temperatures. Methods Four asymptomatic women were evaluated for three consecutive menstrual cycles. Using thermography, the temperature of breasts and eyes was measured as indirect reference of core body and room temperatures. To analyze the thermal behavior of the breasts during the cycle, the core body and room temperatures were normalized by means of a mathematical equation. Results We performed 180 observations and the core temperature had the highest correlation with the breast temperature, followed by room temperature. The proposed prediction model could explain 45.3% of the breast temperature variation, with variable room temperature variable; it can be accepted as a way to estimate the reference breast temperature at different room temperatures. Conclusion The average breast temperature in healthy women had a direct relation with the core and room temperature and can be estimated mathematically. It is suggested that an equation could be used in clinical practice to estimate the normal breast reference temperature in young women, regardless of the day of the cycle, therefore assisting in evaluation of anatomical studies. PMID:26761549

  18. Adequacy of solar energy to keep babies warm.

    PubMed

    Daga, S R; Sequera, D; Goel, S; Desai, B; Gajendragadkar, A

    1996-02-01

    Solar energy could be used as an alternate energy source for keeping neonates warm especially in tropical countries. The present study investigated the efficacy of solar powered room heating system. Referral center for neonatal care. A fluid system heated by solar panels and circulated into a room was used to maintain room temperature. A servocontrolled heating device was used to regulate and maintain desired room temperature. Neonatal rectal temperature and room temperature. Infants between 1750-2250 g were observed to require a mean room temperature of 32.5 degrees C to maintain normothermia. In 85 infants less than 1500 g, of the 5050 infant temperature records, only 3% showed a record less than 36 degrees C. Solar powered room heating is effective in maintaining infant temperature and is cost-effective as compared to the existing warming devices.

  19. First signal from a broadband cryogenic preamplifier cooled by circulating liquid nitrogen in a 7 T Fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Choi, Myoung Choul; Lee, Jeong Min; Lee, Se Gyu; Choi, Sang Hwan; Choi, Yeon Suk; Lee, Kyung Jae; Kim, SeungYong; Kim, Hyun Sik; Stahl, Stefan

    2012-12-18

    Despite the outstanding performance of Fourier transform ion cyclotron/mass spectrometry (FTICR/MS), the complexity of the cellular proteome or natural compounds presents considerable challenges. Sensitivity is a key performance parameter of a FTICR mass spectrometer. By improving this parameter, the dynamic range of the instrument can be increased to improve the detection signal of low-abundance compounds or fragment ion peaks. In order to improve sensitivity, a cryogenic detection system was developed by the KBSI (Korean Basic Science Institute) in collaboration with Stahl-Electronics (Mettenheim, Germany). A simple, efficient liquid circulation cooling system was designed and a cryogenic preamplifier implemented inside a FTICR mass spectrometer. This cooling system circulates a cryoliquid from a Dewar to the "liquid circulation unit" through a CF flange to cool a copper block and a cryopreamplifier; the cooling medium is subsequently exhausted into the air. The cryopreamplifier can be operated over a very wide temperature range, from room temperature to low temperature environments (4.2 K). First, ion signals detected by the cryopreamplifier using a circulating liquid nitrogen cooling system were observed and showed a signal-to-noise ratio (S/N) about 130% better than that obtained at room temperature.

  20. High P-T phase transitions and P-V-T equation of state of hafnium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hrubiak, Rostislav; Drozd, Vadym; Karbasi, Ali

    2016-07-29

    We measured the volume of hafnium at several pressures up to 67 GPa and at temperatures between 300 to 780 K using a resistively heated diamond anvil cell with synchrotron x-ray diffraction at the Advanced Photon Source. The measured data allows us to determine the P-V-T equation of state of hafnium. The previously described [Xia et al., Phys. Rev. B 42, 6736-6738 (1990)] phase transition from hcp ({alpha}) to simple hexagonal ({omega}) phase at 38 GPa at room temperature was not observed even up to 51 GPa. The {omega} phase was only observed at elevated temperatures. Our measurements have alsomore » improved the experimental constraint on the high P-T phase boundary between the {omega} phase and high pressure bcc ({beta}) phase of hafnium. Isothermal room temperature bulk modulus and its pressure derivative for the {alpha}-phase of hafnium were measured to be B{sub 0} = 112.9{+-}0.5 GPa and B{sub 0}'=3.29{+-}0.05, respectively. P-V-T data for the {alpha}-phase of hafnium was used to obtain a fit to a thermodynamic P-V-T equation of state based on model by Brosh et al. [CALPHAD 31, 173-185 (2007)].« less

  1. The n-type conduction of indium-doped Cu{sub 2}O thin films fabricated by direct current magnetron co-sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Xing-Min; Su, Xiao-Qiang; Ye, Fan, E-mail: yefan@szu.edu.cn

    2015-08-24

    Indium-doped Cu{sub 2}O thin films were fabricated on K9 glass substrates by direct current magnetron co-sputtering in an atmosphere of Ar and O{sub 2}. Metallic copper and indium disks were used as the targets. X-ray diffraction showed that the diffraction peaks could only be indexed to simple cubic Cu{sub 2}O, with no other phases detected. Indium atoms exist as In{sup 3+} in Cu{sub 2}O. Ultraviolet-visible spectroscopy showed that the transmittance of the samples was relatively high and that indium doping increased the optical band gaps. The Hall effect measurement showed that the samples were n-type semiconductors at room temperature. Themore » Seebeck effect test showed that the films were n-type semiconductors near or over room temperature (<400 K), changing to p-type at relatively high temperatures. The conduction by the samples in the temperature range of the n-type was due to thermal band conduction and the donor energy level was estimated to be 620.2–713.8 meV below the conduction band. The theoretical calculation showed that indium doping can raise the Fermi energy level of Cu{sub 2}O and, therefore, lead to n-type conduction.« less

  2. Structure and magnetic/electrochemical properties of Cu-doped BiFeO3 nanoparticles prepared by a simple solution method

    NASA Astrophysics Data System (ADS)

    Khajonrit, Jessada; Phumying, Santi; Maensiri, Santi

    2016-06-01

    BiFe1- x Cu x O3 (x = 0, 0.05, 0.1, 0.2, and 0.3) nanoparticles were prepared by a simple solution method. The prepared nanoparticles were characterized by X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) method analysis using the Barret-Joyner-Halenda (BJH) model, and X-ray absorption spectroscopy (XAS). Magnetization properties were obtained using a vibrating sample magnetometer (VSM) at room temperature. Magnetization was clearly enhanced by increasing Cu content and decreasing particle size. Zero-field-cooled (ZFC) and field-cooled (FC) temperature-dependent magnetization measurements showed that blocking temperature increased with increasing Cu content. Electrochemical properties were investigated by cyclic voltammetry (CV) and the galvanostatic charge-discharge (GCD) method. The performance of the fabricated supercapacitor was improved for the BiFe0.95Cu0.05O3 electrode. The highest specific capacitance was 568.13 F g-1 at 1 A g-1 and the capacity retention was 77.13% after 500 cycles.

  3. Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity.

    PubMed

    Shen, Wenfeng; Zhang, Xianpeng; Huang, Qijin; Xu, Qingsong; Song, Weijie

    2014-01-01

    Silver nanoparticles (NPs) which could be kept in solid form and were easily stored without degeneration or oxidation at room temperature for a long period of time were synthesized by a simple and environmentally friendly wet chemistry method in an aqueous phase. Highly stable dispersions of aqueous silver NP inks, sintered at room temperature, for printing highly conductive tracks (∼8.0 μΩ cm) were prepared simply by dispersing the synthesized silver NP powder in water. These inks are stable, fairly homogeneous and suitable for a wide range of patterning techniques. The inks were successfully printed on paper and polyethylene terephthalate (PET) substrates using a common color printer. Upon annealing at 180 °C, the resistivity of the printed silver patterns decreased to 3.7 μΩ cm, which is close to twice that of bulk silver. Various factors affecting the resistivity of the printed silver patterns, such as annealing temperature and the number of printing cycles, were investigated. The resulting high conductivity of the printed silver patterns reached over 20% of the bulk silver value under ambient conditions, which enabled the fabrication of flexible electronic devices, as demonstrated by the inkjet printing of conductive circuits of LED devices.

  4. Environmental Effects on Graphite-Epoxy Fatigue Properties

    NASA Technical Reports Server (NTRS)

    Sumsion, H. T.

    1976-01-01

    Effects of torsional and flexural fatigue on the long-time Integrity of advanced graphite-epoxy structural composites have been investigated. Torsional fatigue tests were run at stress ratios of R = 0 (zero to maximum, repeated) and R = -1 (zero mean stress) on unidirectional, angleply, and woven graphite fiber materials in air and water at room temperature and at 74 C. Flexural fatigue tests (four-point bending) with R = -1 were run in air and water at room temperature, and with R = 0 in air. Results show that, in torsional cycling, both water environment and higher test temperature contribute to significant degradation of torsional stiffness. The degradation of stiffness from torsional stress cycling was observed to be much greater with R = -1 than with simple R = 0 cycling. The effect of environment also is greater in the fully reversed cycling. Flexural fatigue results on +/- 30 deg material show a large fatigue effect, with fatigue limits of less than 50% and 30% of the static failure strength for specimens tested under stress ratios of R = 0 and R = -1, respectively. Compliance measurements indicate that the final failures are preceded by damage initiation and accumulation, which begins at about 1% of the specimen life.

  5. Thermally robust and biomolecule-friendly room-temperature bonding for the fabrication of elastomer-plastic hybrid microdevices.

    PubMed

    Nguyen, T P O; Tran, B M; Lee, N Y

    2016-08-16

    Here, we introduce a simple and fast method for bonding a poly(dimethylsiloxane) (PDMS) silicone elastomer to different plastics. In this technique, surface modification and subsequent bonding processes are performed at room temperature. Furthermore, only one chemical is needed, and no surface oxidation step is necessary prior to bonding. This bonding method is particularly suitable for encapsulating biomolecules that are sensitive to external stimuli, such as heat or plasma treatment, and for embedding fracturable materials prior to the bonding step. Microchannel-fabricated PDMS was first oxidized by plasma treatment and reacted with aminosilane by forming strong siloxane bonds (Si-O-Si) at room temperature. Without the surface oxidation of the amine-terminated PDMS and plastic, the two heterogeneous substrates were brought into intimate physical contact and left at room temperature. Subsequently, aminolysis occurred, leading to the generation of a permanent seal via the formation of robust urethane bonds after only 5 min of assembling. Using this method, large-area (10 × 10 cm) bonding was successfully realized. The surface was characterized by contact angle measurements and X-ray photoelectron spectroscopy (XPS) analyses, and the bonding strength was analyzed by performing peel, delamination, leak, and burst tests. The bond strength of the PDMS-polycarbonate (PC) assembly was approximately 409 ± 6.6 kPa, and the assembly withstood the injection of a tremendous amount of liquid with the per-minute injection volume exceeding 2000 times its total internal volume. The thermal stability of the bonded microdevice was confirmed by performing a chamber-type multiplex polymerase chain reaction (PCR) of two major foodborne pathogens - Escherichia coli O157:H7 and Salmonella typhimurium - and assessing the possibility for on-site direct detection of PCR amplicons. This bonding method demonstrated high potential for the stable construction of closed microfluidic systems socketed with biomolecule-immobilized surfaces such as DNA, antibody, enzyme, peptide, and protein microarrays.

  6. Generation of an ultrafast femtosecond soliton fiber laser by carbon nanotube as saturable absorber

    NASA Astrophysics Data System (ADS)

    Salim, M. A. M.; Ahmad, H.; Harun, S. W.; Bidin, N.; Krishnan, G.

    2018-05-01

    This paper reports the demonstration of ultrafast fiber laser in a simple erbium-doped fiber (EDF) laser that employed a carbon nanotube (CNT) thin film saturable absorber (SA) to generate a stable soliton pulse. The repetition rate of 10.8 MHz pulse consistently achieved has narrowest pulse width of 640 fs and 1555.78 nm central wavelength for an hour operation in room temperature. This proposed setup has the capability for reliable and stable system features.

  7. Synthesis of Chiral 1,2-Oxazinanes and Isoxazolidines via Nitroso Aldol Reaction of Distal Dialdehydes.

    PubMed

    Ramakrishna, Isai; Ramaraju, Panduga; Baidya, Mahiuddin

    2018-02-16

    The first catalytic enantioselective nitroso aldol reaction of distal dialdehydes is reported. The reaction is catalyzed by simple l-proline at room temperature and subsequent reduction delivered biologically potent and synthetically versatile N-O bond containing five- and six-membered heterocycles, 1,2-oxazinanes, and isoxazolidines in high yields and excellent enantioselectivities (up to >99% ee). The method was further exploited to prepare chiral 3-hydroxypiperidines and -pyrrolidines that are otherwise difficult to access.

  8. Operating experience review of an INL gas monitoring system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadwallader, Lee C.; DeWall, K. G.; Herring, J. S.

    2015-03-12

    This article describes the operations of several types of gas monitors in use at the Idaho National Laboratory (INL) High Temperature Electrolysis Experiment (HTE) laboratory. The gases monitored in the lab room are hydrogen, carbon monoxide, carbon dioxide, and oxygen. The operating time, calibration, and both actual and unwanted alarms are described. The calibration session time durations are described. In addition, some simple calculations are given to estimate the reliability of these monitors and the results are compared to operating experiences of other types of monitors.

  9. Virtually Instantaneous, Room-temperature [11C]-Cyanation Using Biaryl Phosphine Pd(0) Complexes

    PubMed Central

    Lee, Hong Geun; Milner, Phillip J.; Placzek, Michael S.; Buchwald, Stephen L.; Hooker, Jacob M.

    2015-01-01

    A new radiosynthetic protocol for the preparation of [11C]aryl nitriles has been developed. This process is based on the direct reaction of in situ prepared L•Pd(Ar)X complexes (L=biaryl phosphine) with [11C]HCN. The strategy is operationally simple, exhibits a remarkably wide substrate scope with short reaction times, and demonstrates superior reactivity compared to previously reported systems. With this procedure, a variety of [11C]nitrile-containing pharmaceuticals were prepared with high radiochemical efficiency. PMID:25565277

  10. Inverse Temperature Dependence of Nuclear Quantum Effects in DNA Base Pairs

    PubMed Central

    2016-01-01

    Despite the inherently quantum mechanical nature of hydrogen bonding, it is unclear how nuclear quantum effects (NQEs) alter the strengths of hydrogen bonds. With this in mind, we use ab initio path integral molecular dynamics to determine the absolute contribution of NQEs to the binding in DNA base pair complexes, arguably the most important hydrogen-bonded systems of all. We find that depending on the temperature, NQEs can either strengthen or weaken the binding within the hydrogen-bonded complexes. As a somewhat counterintuitive consequence, NQEs can have a smaller impact on hydrogen bond strengths at cryogenic temperatures than at room temperature. We rationalize this in terms of a competition of NQEs between low-frequency and high-frequency vibrational modes. Extending this idea, we also propose a simple model to predict the temperature dependence of NQEs on hydrogen bond strengths in general. PMID:27195654

  11. Chemical kinetics of Cs species in an alkali-activated municipal solid waste incineration fly ash and pyrophyllite-based system using Cs K-edge in situ X-ray absorption fine structure analysis

    NASA Astrophysics Data System (ADS)

    Shiota, Kenji; Nakamura, Takafumi; Takaoka, Masaki; Nitta, Kiyofumi; Oshita, Kazuyuki; Fujimori, Takashi; Ina, Toshiaki

    2017-05-01

    We conducted in situ X-ray absorption fine structure (in situ XAFS) analysis at the Cs K-edge to investigate the chemical kinetics of Cs species during reaction in an alkali-activated municipal solid waste incineration fly ash (MSWIFA) and pyrophyllite-based system. Understanding the kinetics of Cs is essential to the design of appropriate conditions for Cs stabilization. In situ XAFS analysis of four pastes, prepared from NaOHaq, sodium silicate solution, pyrophyllite, and MSWIFA with the addition of CsCl, was conducted in custom-built reaction cells at four curing temperatures (room temperature, 60 °C, 80 °C, 105 °C) for approximately 34 h. The results indicated that the change in Cs species during reaction at room temperature was small, while changes at higher temperatures were faster and more extreme, with the fastest conversion to pollucite occurring at 105 °C. Further analysis using a leaching test and a simple reaction model for Cs species during reaction showed that the pollucite formation rate was dependent on the curing temperature and had a significant negative correlation with Cs leaching. The activation energy of pollucite formation was estimated to be 31.5 kJ/mol. These results revealed that an important change in the chemical state of Cs occurs during reaction in the system.

  12. Real-time modeling of heat distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamann, Hendrik F.; Li, Hongfei; Yarlanki, Srinivas

    Techniques for real-time modeling temperature distributions based on streaming sensor data are provided. In one aspect, a method for creating a three-dimensional temperature distribution model for a room having a floor and a ceiling is provided. The method includes the following steps. A ceiling temperature distribution in the room is determined. A floor temperature distribution in the room is determined. An interpolation between the ceiling temperature distribution and the floor temperature distribution is used to obtain the three-dimensional temperature distribution model for the room.

  13. The influence of room temperature on Mg isotope measurements by MC-ICP-MS.

    PubMed

    Zhang, Xing-Chao; Zhang, An-Yu; Zhang, Zhao-Feng; Huang, Fang; Yu, Hui-Min

    2018-03-24

    We observed that the accuracy and precision of magnesium (Mg) isotope analyses could be affected if the room temperature oscillated during measurements. To achieve high quality Mg isotopic data, it is critical to evaluate how the unstable room temperature affects Mg isotope measurements by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). We measured the Mg isotopes for the reference material DSM-3 using MC-ICP-MS under oscillating room temperatures in spring. For a comparison, we also measured the Mg isotopes under stable room temperatures, which was achieved by the installation of an improved temperature control system in the laboratory. The δ 26 Mg values measured under oscillating room temperatures have a larger deviation (δ 26 Mg from -0.09 to 0.08‰, with average δ 26 Mg = 0.00 ± 0.08 ‰) than those measured under a stable room temperature (δ 26 Mg from -0.03 to 0.03‰, with average δ 26 Mg = 0.00 ± 0.02 ‰) using the same MC-ICP-MS system. The room temperature variation can influence the stability of MC-ICP-MS. Therefore, it is critical to keep the room temperature stable to acquire high precise and accurate isotopic data when using MC-ICP-MS, especially when using the sample-standard bracketing (SSB) correction method. This article is protected by copyright. All rights reserved.

  14. Self supporting heat transfer element

    DOEpatents

    Story, Grosvenor Cook; Baldonado, Ray Orico

    2002-01-01

    The present invention provides an improved internal heat exchange element arranged so as to traverse the inside diameter of a container vessel such that it makes good mechanical contact with the interior wall of that vessel. The mechanical element is fabricated from a material having a coefficient of thermal conductivity above about 0.8 W cm.sup.-1.degree. K.sup.-1 and is designed to function as a simple spring member when that member has been cooled to reduce its diameter to just below that of a cylindrical container or vessel into which it is placed and then allowed to warm to room temperature. A particularly important application of this invention is directed to a providing a simple compartmented storage container for accommodating a hydrogen absorbing alloy.

  15. Dehydration Polymerization for Poly(hetero)arene Conjugated Polymers.

    PubMed

    Mirabal, Rafael A; Vanderzwet, Luke; Abuadas, Sara; Emmett, Michael R; Schipper, Derek

    2018-02-18

    The lack of scalable and sustainable methods to prepare conjugated polymers belies their importance in many enabling technologies. Accessing high-performance poly(hetero)arene conjugated polymers by dehydration has remained an unsolved problem in synthetic chemistry and has historically required transitional-metal coupling reactions. Herein, we report a dehydration method that allows access to conjugated heterocyclic materials. By using the technique, we have prepared a series of small molecules and polymers. The reaction avoids using transition metals, proceeds at room temperature, the only required reactant is a simple base and water is the sole by-product. The dehydration reaction is technically simple and provides a sustainable and straightforward method to prepare conjugated heteroarene motifs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Synthesis and characterization of ionic liquid immobilized on magnetic nanoparticles: A recyclable heterogeneous organocatalyst for the acetylation of alcohols

    NASA Astrophysics Data System (ADS)

    Ghorbani-Choghamarani, Arash; Norouzi, Masoomeh

    2016-03-01

    Herein, we describe a simple and efficient procedure for the preparation of 3-((3-(trisilyloxy)propyl)propionamide)-1-methylimidazolium chloride ionic liquid supported on magnetic nanoparticle (TPPA-IL-Fe3O4). The structure of this magnetic ionic liquid is fully characterized by FT-IR, TGA, XRD, VSM, SEM, EDX and DLS techniques. TPPA-IL-Fe3O4 is employed as a catalyst for the acetylation of alcohols with acetic anhydride under mild and heterogeneous conditions at room temperature with good to excellent yields. The magnetic catalyst could be readily separate from the reaction media by simple magnetic decantation, and reused several times without significant loss of its catalytic activity.

  17. Biosynthesis of silver nanoparticles using citrus sinensis peel extract and its antibacterial activity.

    PubMed

    Kaviya, S; Santhanalakshmi, J; Viswanathan, B; Muthumary, J; Srinivasan, K

    2011-08-01

    Biosynthesis of silver nanoparticles (AgNPs) was achieved by a novel, simple green chemistry procedure using citrus sinensis peel extract as a reducing and a capping agent. The effect of temperature on the synthesis of silver nanoparticles was carried out at room temperature (25°C) and 60°C. The successful formation of silver nanoparticles has been confirmed by UV-vis, FTIR, XRD, EDAX, FESEM and TEM analysis and their antibacterial activity against Escherichia coli, Pseudomonas aeruginosa (gram-negative), and Staphylococcus aureus (gram-positive) has been studied. The results suggest that the synthesized AgNPs act as an effective antibacterial agent. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Facile and green synthesis of highly stable L-cysteine functionalized copper nanoparticles

    NASA Astrophysics Data System (ADS)

    Kumar, Nikhil; Upadhyay, Lata Sheo Bachan

    2016-11-01

    A simple eco-friendly method for L-cysteine capped copper nanoparticles (CCNPs) synthesis in aqueous solution has been developed. Glucose and L-cysteine were used as reducing agent and capping/functionalizing agent, respectively. Different parameters such as capping agent concentration, pH, reaction temperature, and reducing agent concentration were optimized during the synthesis. The L-cysteine capped copper nanoparticle were characterized by ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, Particle size and zeta potential analyser, and high resolution transmission electron microscopy. Spherical shaped cysteine functionalized/capped copper nanoparticles with an average size of 40 nm were found to be highly stable at room temperature (RT) for a period of 1 month

  19. Black silicon with self-cleaning surface prepared by wetting processes

    PubMed Central

    2013-01-01

    This paper reports on a simple method to prepare a hydrophobic surface on black silicon, which is fabricated by metal-assisted wet etching. To increase the reaction rate, the reaction device was placed in a heat collection-constant temperature type magnetic stirrer and set at room temperature. It was demonstrated that the micro- and nanoscale spikes on the black silicon made the surface become hydrophobic. As the reaction rate increases, the surface hydrophobicity becomes more outstanding and presents self-cleaning until the very end. The reflectance of the black silicon is drastically suppressed over a broad spectral range due to the unique geometry, which is effective for the enhancement of absorption. PMID:23941184

  20. Double quantum dot memristor

    NASA Astrophysics Data System (ADS)

    Li, Ying; Holloway, Gregory W.; Benjamin, Simon C.; Briggs, G. Andrew D.; Baugh, Jonathan; Mol, Jan A.

    2017-08-01

    Memristive systems are generalizations of memristors, which are resistors with memory. In this paper, we present a quantum description of quantum dot memristive systems. Using this model we propose and experimentally demonstrate a simple and practical scheme for realizing memristive systems with quantum dots. The approach harnesses a phenomenon that is commonly seen as a bane of nanoelectronics, i.e., switching of a trapped charge in the vicinity of the device. We show that quantum dot memristive systems have hysteresis current-voltage characteristics and quantum jump-induced stochastic behavior. While our experiment requires low temperatures, the same setup could, in principle, be realized with a suitable single-molecule transistor and operated at or near room temperature.

  1. Room temperature single-photon detectors for high bit rate quantum key distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comandar, L. C.; Patel, K. A.; Engineering Department, Cambridge University, 9 J J Thomson Ave., Cambridge CB3 0FA

    We report room temperature operation of telecom wavelength single-photon detectors for high bit rate quantum key distribution (QKD). Room temperature operation is achieved using InGaAs avalanche photodiodes integrated with electronics based on the self-differencing technique that increases avalanche discrimination sensitivity. Despite using room temperature detectors, we demonstrate QKD with record secure bit rates over a range of fiber lengths (e.g., 1.26 Mbit/s over 50 km). Furthermore, our results indicate that operating the detectors at room temperature increases the secure bit rate for short distances.

  2. Seasonal mapping of NICU temperature.

    PubMed

    Thomas, Karen A; Magbalot, Almita; Shinabarger, Kelley; Mokhnach, Larisa; Anderson, Marilyn; Diercks, Kristi; Millar, April; Thorngate, Lauren; Walker, Wendy; Dilback, Nancy; Berkan, Maureen

    2010-04-01

    To create a thermal map of ambient air, radiant, and evaporative temperatures and humidity throughout the NICU nursery by season across a calendar year. Each cubicle of the 32-bed NICU, distributed across 5 rooms, in a level III nursery was measured. Temperatures were recorded at a consistent time on one day during January, April, July, and October. An electronic monitor (QUESTemp degrees 34; Quest Technologies, Oconomowoc, Wisconsin) was used to measure dry bulb, wet bulb, and globe thermometer temperatures. Analysis of variance revealed statistically significant (P < .000) differences in season, room, and season by room interaction. Room ambient air temperatures differed by less than 2 degrees F across season. Radiant temperature paralleled air temperature. Humidity, the predominant difference across season, produced evaporative temperatures considerably lower than room air temperature, and the gradient between mean nursery dry bulb temperature and wet bulb temperature was 9.3 degrees F in summer and 16.8 degrees F in winter. The thermal map revealed seasonal thermal differences, particularly in humidity level and evaporative temperature. Room temperature alone does not reflect the total thermal environment. Recommendations include periodic assessment of nurseries along with air, evaporative, and radiant temperatures as well as humidity to fully appreciate the impact of the thermal environment on infants.

  3. Seasonal mapping of NICU temperature.

    PubMed

    Thomas, Karen A; Magbalot, Almita; Shinabarger, Kelley; Mokhnach, Larisa; Anderson, Marilyn; Diercks, Kristi; Millar, April; Thorngate, Lauren; Walker, Wendy; Dilback, Nancy; Berkan, Maureen

    2010-10-01

    To create a thermal map of ambient air, radiant, and evaporative temperatures and humidity throughout the NICU nursery by season across a calendar year. Each cubicle of the 32-bed NICU, distributed across 5 rooms, in a level III nursery was measured. Temperatures were recorded at a consistent time on one day during January, April, July, and October. : An electronic monitor (QUESTemp ° 34; Quest Technologies, Oconomowoc, Wisconsin) was used to measure dry bulb, wet bulb, and globe thermometer temperatures. Analysis of variance revealed statistically significant (P ≤ .000) differences in season, room, and season by room interaction. Room ambient air temperatures differed by less than 2 ° F across season. Radiant temperature paralleled air temperature. Humidity, the predominant difference across season, produced evaporative temperatures considerably lower than room air temperature, and the gradient between mean nursery dry bulb temperature and wet bulb temperature was 9.3 ° F in summer and 16.8 ° F in winter. The thermal map revealed seasonal thermal differences, particularly in humidity level and evaporative temperature. Room temperature alone does not reflect the total thermal environment. Recommendations include periodic assessment of nurseries along with air, evaporative, and radiant temperatures as well as humidity to fully appreciate the impact of the thermal environment on infants.

  4. Long-term room temperature preservation of corpse soft tissue: an approach for tissue sample storage

    PubMed Central

    2011-01-01

    Background Disaster victim identification (DVI) represents one of the most difficult challenges in forensic sciences, and subsequent DNA typing is essential. Collected samples for DNA-based human identification are usually stored at low temperature to halt the degradation processes of human remains. We have developed a simple and reliable procedure for soft tissue storage and preservation for DNA extraction. It ensures high quality DNA suitable for PCR-based DNA typing after at least 1 year of room temperature storage. Methods Fragments of human psoas muscle were exposed to three different environmental conditions for diverse time periods at room temperature. Storage conditions included: (a) a preserving medium consisting of solid sodium chloride (salt), (b) no additional substances and (c) garden soil. DNA was extracted with proteinase K/SDS followed by organic solvent treatment and concentration by centrifugal filter devices. Quantification was carried out by real-time PCR using commercial kits. Short tandem repeat (STR) typing profiles were analysed with 'expert software'. Results DNA quantities recovered from samples stored in salt were similar up to the complete storage time and underscored the effectiveness of the preservation method. It was possible to reliably and accurately type different genetic systems including autosomal STRs and mitochondrial and Y-chromosome haplogroups. Autosomal STR typing quality was evaluated by expert software, denoting high quality profiles from DNA samples obtained from corpse tissue stored in salt for up to 365 days. Conclusions The procedure proposed herein is a cost efficient alternative for storage of human remains in challenging environmental areas, such as mass disaster locations, mass graves and exhumations. This technique should be considered as an additional method for sample storage when preservation of DNA integrity is required for PCR-based DNA typing. PMID:21846338

  5. Natural convection flows and associated heat transfer processes in room fires

    NASA Astrophysics Data System (ADS)

    Sargent, William Stapf

    This report presents the results of experimental investigations of natural convection flows and associated heat transfer processes produced by small fires in rooms with a single door or window opening. Calculation procedures have been developed to model the major aspects of these flows.Two distinct sets of experiments were undertaken.First, in a roughly 1/4 scale facility, a slightly dense solution of brine was allowed to flow into a tank of fresh water. The resulting density difference produced a flow which simulated a very small fire in a room with adiabatic walls. Second, in an approximately 1/2 scale test room, a nearly stoichioinetric mixture of air and natural gas was burned at floor level to model moderate strength fires. In this latter facility, we directly measured the heat conducted through the walls, in addition to determining the gas temperature and composition throughout the room.These two facilities complemented each other. The former offered good flow visualization and allowed us to observe the basic flow phenomena in the absence of heat transfer effects. On the other hand, the latter, which involved relatively larger fires, was a more realistic simulation of an actual room fire, and allowed us to calculate the convective heat transfer to the ceiling and walls. In addition, the stronger sources present in these 1/2 scale tests produced significant secondary flows. These secondary flows along with heat transfer effects act to modify the gas temperature or density profiles within the room from those observed in the 1/4 scale experiments.Several calculation procedures have been developed, based on the far field properties of plumes when the density differences are small (the Boussinesq approximation). The simple point source plume solution is used along with hydraulic analysis of flow through an orifice to estimate the temperatures of the hot ceiling layer gas and of the cooler floor zone fluid, as well as the height of the interface between them. A finite source plume model is combined with conservation equations across the interface to compute the evolution of the plume above the interface. This calculation then provides the starting point for an integral analysis of the flow and heat transfer in the turbulent ceiling jet.The computed results both for the average floor and ceiling zone gas temperatures, and for the connective heat transfer in the ceiling jet agreed reasonably well with our experimental data. This agreement suggests that our computational procedures can be applied to answer practical questions, such as whether the connective heat flux from a given fire in a real room would be sufficient to trigger sprinklers or other detection systems in a given amount of time.

  6. A novel optical biosensor for direct and selective determination of serotonin in serum by Solid Surface-Room Temperature Phosphorescence.

    PubMed

    Ramon-Marquez, Teresa; Medina-Castillo, Antonio L; Fernandez-Gutierrez, Alberto; Fernandez-Sanchez, Jorge F

    2016-08-15

    This paper describes a novel biosensor which combines the use of nanotechnology (non-woven nanofibre mat) with Solid Surface-Room Temperature Phosphorescence (SS-RTP) measurement for the determination of serotonin in human serum. The developed biosensor is simple and can be directly applied in serum; only requires a simple clean-up protocol. Therefore it is the first time that serotonin is analysed directly in serum with a non-enzymatic technique. This new approach is based on the covalent immobilization of serotonin directly from serum on a functional nanofibre material (Tiss®-Link) with a preactivated surface for direct covalent immobilization of primary and secondary amines, and the subsequent measurement of serotonin phosphorescent emission from the solid surface. The phosphorescent detection allows avoiding the interference from any fluorescence emission or scattering light from any molecule present in the serum sample which can be also immobilised on the nanofibre material. The determination of serotonin with this SS-RTP sensor overcomes some limitations, such as large interference from the matrix and high cost and complexity of many of the methods widely used for serotonin analysis. The potential applicability of the sensor in the clinical diagnosis was demonstrated by analysing serum samples from seven healthy volunteers. The method was validated with an external reference laboratory, obtaining a correlation coefficient of 0.997 which indicates excellent correlation between the two methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Simple room-temperature preparation of high-yield large-area graphene oxide

    PubMed Central

    Huang, NM; Lim, HN; Chia, CH; Yarmo, MA; Muhamad, MR

    2011-01-01

    Graphene has attracted much attention from researchers due to its interesting mechanical, electrochemical, and electronic properties. It has many potential applications such as polymer filler, sensor, energy conversion, and energy storage devices. Graphene-based nanocomposites are under an intense spotlight amongst researchers. A large amount of graphene is required for preparation of such samples. Lately, graphene-based materials have been the target for fundamental life science investigations. Despite graphene being a much sought-after raw material, the drawbacks in the preparation of graphene are that it is a challenge amongst researchers to produce this material in a scalable quantity and that there is a concern about its safety. Thus, a simple and efficient method for the preparation of graphene oxide (GO) is greatly desired to address these problems. In this work, one-pot chemical oxidation of graphite was carried out at room temperature for the preparation of large-area GO with ~100% conversion. This high-conversion preparation of large-area GO was achieved using a simplified Hummer’s method from large graphite flakes (an average flake size of 500 μm). It was found that a high degree of oxidation of graphite could be realized by stirring graphite in a mixture of acids and potassium permanganate, resulting in GO with large lateral dimension and area, which could reach up to 120 μm and ~8000 μm2, respectively. The simplified Hummer’s method provides a facile approach for the preparation of large-area GO. PMID:22267928

  8. Covalent modification and exfoliation of graphene oxide using ferrocene

    NASA Astrophysics Data System (ADS)

    Avinash, M. B.; Subrahmanyam, K. S.; Sundarayya, Y.; Govindaraju, T.

    2010-09-01

    Large scale preparation of single-layer graphene and graphene oxide is of great importance due to their potential applications. We report a simple room temperature method for the exfoliation of graphene oxide using covalent modification of graphene oxide with ferrocene to obtain single-layer graphene oxide sheets. The samples were characterized by FESEM, HRTEM, AFM, EDAX, FT-IR, Raman and Mössbauer spectroscopic studies. HRTEM micrograph of the covalently modified graphene oxide showed increased interlayer spacing of ~2.4 nm due to ferrocene intercalation. The presence of single-layer graphene oxide sheets were confirmed by AFM studies. The covalently modified ferrocene-graphene oxide composite showed interesting magnetic behavior.Large scale preparation of single-layer graphene and graphene oxide is of great importance due to their potential applications. We report a simple room temperature method for the exfoliation of graphene oxide using covalent modification of graphene oxide with ferrocene to obtain single-layer graphene oxide sheets. The samples were characterized by FESEM, HRTEM, AFM, EDAX, FT-IR, Raman and Mössbauer spectroscopic studies. HRTEM micrograph of the covalently modified graphene oxide showed increased interlayer spacing of ~2.4 nm due to ferrocene intercalation. The presence of single-layer graphene oxide sheets were confirmed by AFM studies. The covalently modified ferrocene-graphene oxide composite showed interesting magnetic behavior. Electronic supplementary information (ESI) available: Magnetic data; AFM images; TEM micrographs; and Mössbauer spectroscopic data. See DOI: 10.1039/c0nr00024h

  9. How mothers keep their babies warm.

    PubMed Central

    Bacon, C J; Bell, S A; Clulow, E E; Beattie, A B

    1991-01-01

    Details of room temperature, clothing, and bedding used by night and by day and in winter and in summer were recorded for 649 babies aged 8 to 26 weeks. Room temperature at night was significantly related to outside temperature and duration of heating. Total insulation was significantly related to outside temperature and to minimum room temperature, but there was wide variation in insulation at the same room temperature. High levels of insulation for a given room temperature were found particularly at night and in winter, and were associated with the use of thick or doubled duvets and with swaddling. At least half the babies threw off some or all of their bedding at night, and at least a quarter sweated. Younger mothers and mothers in the lower social groups put more bedclothes over their babies, and the latter also kept their rooms warmer. Many mothers kept their babies warmer during infections. PMID:2039255

  10. The reduction and oxidation of ceria: A natural abundance triple oxygen isotope perspective

    NASA Astrophysics Data System (ADS)

    Hayles, Justin; Bao, Huiming

    2015-06-01

    Ceria (CeO2) is a heavily studied material in catalytic chemistry for use as an oxygen storage medium, oxygen partial pressure regulator, fuel additive, and for the production of syngas, among other applications. Ceria powders are readily reduced and lose structural oxygen when subjected to low pO2 and/or high temperature conditions. Such dis-stoichiometric ceria can then re-oxidize under higher pO2 and/or lower temperature by incorporating new oxygen into the previously formed oxygen site vacancies. Despite extensive studies on ceria, the mechanisms for oxygen adsorption-desorption, dissociation-association, and diffusion of oxygen species on ceria surface and within the crystal structure are not well known. We predict that a large kinetic oxygen isotope effect should accompany the release and incorporation of ceria oxygen. As the first attempt to determine the existence and the degree of the isotope effect, this study focuses on a set of simple room-temperature re-oxidation experiments that are also relevant to a laboratory procedure using ceria to measure the triple oxygen isotope composition of CO2. Triple-oxygen-isotope labeled ceria powders are heated at 700 °C and cooled under vacuum prior to exposure to air. By combining results from independent experimental sets with different initial oxygen isotope labels and using a combined mass-balance and triangulation approach, we have determined the isotope fractionation factors for both high temperature reduction in vacuum (⩽10-4 mbar) and room temperature re-oxidation in air. Results indicate that there is a 1.5‰ ± 0.8‰ increase in the δ18O value of ceria after being heated in vacuum at 700 °C for 1 h. When the vacuum is broken at room temperature, the previously heated ceria incorporates 3-19% of its final structural oxygen from air, with a δ18O value of 2.1-4.1+7.7 ‰ for the incorporated oxygen. The substantial incorporation of oxygen from air supports that oxygen mobility is high in vacancy-rich ceria during re-oxidation at room temperature. The quantified oxygen isotope fractionation factors are consistent with the direct involvement of O2 in the rate limiting step for ceria reoxidation in air at room temperature. While additional parameters may reduce some of the uncertainties in our approach, this study demonstrates that isotope effects can be an encouraging tool for studying oxygen transport kinetics in ceria and other oxides. In addition, our finding warns of the special cares and limits in using ceria as an exchange medium for laboratory triple oxygen isotope analysis of CO2 or other oxygen-bearing gases.

  11. Structural and Spectral Characterization of Co2+- and Ni2+-DOPED CdO Powder Prepared From Solution at Room Temperature

    NASA Astrophysics Data System (ADS)

    Reddy, C. V.; Rao, L. V. Krishna; Satish, D. V.; Shim, J.; Ravikumar, R. V. S. S. N.

    2015-11-01

    The mild and simple solution method was used for the synthesis of Co2+- and Ni2+-doped CdO powders at room temperature. The prepared powders were characterized using powder X-ray diffraction, scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS), optical absorption, and Fourier transform infrared spectroscopy (FTIR). From the powder X-ray diffraction patterns, it has been observed that the prepared Co2+ and Ni2+ ion-doped CdO powders belong to the cubic phase, and the evaluated average crystalline sizes of the powders are 20 and 14 nm, respectively. The SEM images and the EDS spectra show that the prepared powders are distributed over different sizes in the grain boundaries. Optical absorption studies allow determination of site symmetry of the metal ion with its ligands. The crystal field (Dq) and inter-electronic repulsion (B and C) parameters have been evaluated from the optical absorption spectra. The FTIR spectra show the characteristic fundamental vibrations of the metal oxide and CdO.

  12. Photoinduced, copper-catalyzed alkylation of amides with unactivated secondary alkyl halides at room temperature.

    PubMed

    Do, Hien-Quang; Bachman, Shoshana; Bissember, Alex C; Peters, Jonas C; Fu, Gregory C

    2014-02-05

    The development of a mild and general method for the alkylation of amides with relatively unreactive alkyl halides (i.e., poor substrates for SN2 reactions) is an ongoing challenge in organic synthesis. We describe herein a versatile transition-metal-catalyzed approach: in particular, a photoinduced, copper-catalyzed monoalkylation of primary amides. A broad array of alkyl and aryl amides (as well as a lactam and a 2-oxazolidinone) couple with unactivated secondary (and hindered primary) alkyl bromides and iodides using a single set of comparatively simple and mild conditions: inexpensive CuI as the catalyst, no separate added ligand, and C-N bond formation at room temperature. The method is compatible with a variety of functional groups, such as an olefin, a carbamate, a thiophene, and a pyridine, and it has been applied to the synthesis of an opioid receptor antagonist. A range of mechanistic observations, including reactivity and stereochemical studies, are consistent with a coupling pathway that includes photoexcitation of a copper-amidate complex, followed by electron transfer to form an alkyl radical.

  13. Characterization of Thallium Bromide Detectors Made From Material Purified by the Filter Method

    NASA Astrophysics Data System (ADS)

    Onodera, Toshiyuki; Hitomi, Keitaro; Tada, Tsutomu; Shoji, Tadayoshi; Mochizuki, Katsumi

    2013-10-01

    Thallium bromide (TlBr) has been regarded as candidate detector materials for the gamma-ray spectrometers operating at room temperature. In this study, a simple and rapid method, the filter method, was performed to purify a raw TlBr material used for fabrication of TlBr detectors. The material was loaded on shards of crashed quartz and installed in a Pyrex tube, and was melted using a furnace. A purified material passing through interspaces of the shards of quartz was collected in a quartz ampoule located at the outlet of the Pyrex tube. After the purification, impurities colored black extracted from the raw material remained. TlBr crystals were then grown by the travelling molten zone method both from the raw material and the purified material. TlBr detectors were fabricated from the grown crystals, and were characterized by measuring mobility-lifetime products (μτ) for carriers and gamma-ray spectra ( 137Cs) at room temperature. μτ for electrons of a TlBr detector fabricated from the purified material was around 5 times higher than that of a detector fabricated from the raw material.

  14. Single molecule quantum-confined Stark effect measurements of semiconductor nanoparticles at room temperature

    NASA Astrophysics Data System (ADS)

    Park, Kyoung Won; Deutsch, Zvicka; Li, J. Jack; Oron, Dan; Weiss, Shimon

    2013-02-01

    We investigate the quantum confined Stark effect (QCSE) of various nanoparticles (NPs) on the single molecule level at room temperature. We tested 8 different NPs with different geometry, material composition and electronic structure, and measured their QCSE by single molecule spectroscopy. This study reveals that suppressing the Coulomb interaction force between electron and hole by asymmetric type-II interface is critical for an enhanced QCSE. For example, ZnSe-CdS and CdSe(Te)-CdS-CdZnSe asymmetric nanorods (type-II) display respectively twice and more than three times larger QCSE than that of simple type-I nanorods (CdSe). In addition, wavelength blue-shift of QCSE and roughly linear Δλ-F (emission wavelength shift vs. the applied electric field) relation are observed for the type-II nanorods. Experimental results (Δλ-F or ΔE-F) are successfully reproduced by self-consistent quantum mechanical calculation. Intensity reduction in blue-shifted spectrum is also accounted for. Both calculations and experiments suggest that the magnitude of the QCSE is predominantly determined by the degree of initial charge separation in these structures.

  15. Interfacial effects in ZnO nanotubes/needle-structured graphitic diamond nanohybrid for detecting dissolved acetone at room temperature

    NASA Astrophysics Data System (ADS)

    Kathiravan, Deepa; Huang, Bohr-Ran; Saravanan, Adhimoorthy; Yeh, Chien-Jui; Leou, Keh-Chyang; Lin, I.-Nan

    2017-12-01

    A high-performance ZnO nanotubes (ZNTs)/needle-structured graphitic diamond (NGD) nanohybrid material was prepared and observed the electrochemical sensing properties of liquid acetone in water. Initially, we synthesized NGD film using bias-enhanced growth (BEG) process. Afterwards, a well-etched ZNTs were spatially grown on the NGD film using simple hydrothermal method, and utilized as sensing material for assemble an electrochemical sensor (via EGFET configuration) operating at room temperature. The systematic investigations depict the ultra-high sensing properties attained from ZNTs grown on NGD film. The NGD film mostly have needle or wire shaped diamond grains, which contributes extremely high electrical conductivity. Furthermore, needle shaped diamond grains cover with multi-layer graphitic material generates conduction channels for ZNTs and leads to enhance the oxygen residuals and species. The material stability and conductivity of NGD as well the defects exist with oxygen vacancies in ZNTs offers superior sensing properties. Thus, the interesting combination of these wide band gap semiconductor materials exhibit high sensor response (89 mV/mL), high stability and long-term reliability (tested after 60 days).

  16. Synthesis of Novel Sea-Urchin-Like CdS and Their Optical Properties.

    PubMed

    Kamran, Muhammad Arshad; Liu, Ruibin; Shi, Li-Jie; Bukhtiar, Arfan; Li, Jing; Zou, Bingsuo

    2015-06-01

    A novel morphology of CdS sea-urchin-like microstructures is synthesized by simple thermal evaporation process. Microstructures with average size of 20-50 μm are composed of single crystalline CdS nanobelts. The structural, compositional, morphological characterization of the product were examined by X-ray diffraction, energy dispersive X-ray spectroscopy, Raman spectroscopy, scanning electron microscope, transmission electron microscopy and selected area electron diffraction while optical properties are investigated by Photoluminescence spectroscopy and time-resolved Photoluminescence measurements. The tentative growth mechanism for the growth of sea-urchin-like CdS is proposed and described briefly. A strong green emission with a maximum around 517 nm was observed from the individual CdS microstructure at room temperature, which was attributed to band-edge emission of CdS. These Novel structures exhibit excellent lasing (stimulated emission) with low threshold (9.07 μJ cm(-2)) at room temperature. We analyze the physical mechanism of stimulated emission. These results are important in the design of green luminescence, low-threshold laser and display devices in the future.

  17. Highly hydrogenated graphene via active hydrogen reduction of graphene oxide in the aqueous phase at room temperature.

    PubMed

    Sofer, Zdeněk; Jankovský, Ondřej; Šimek, Petr; Soferová, Lýdie; Sedmidubský, David; Pumera, Martin

    2014-02-21

    Hydrogenated graphene and graphane are in the forefront of graphene research. Hydrogenated graphene is expected to exhibit ferromagnetism, tunable band gap, fluorescence, and high thermal and low electrical conductivity. Currently available techniques for fabrication of highly hydrogenated graphene use either a liquid ammonia (-33 °C) reduction pathway using alkali metals or plasma low pressure or ultra high pressure hydrogenation. These methods are either technically challenging or pose inherent risks. Here we wish to demonstrate that highly hydrogenated graphene can be prepared at room temperature in the aqueous phase by reduction of graphene oxide by nascent hydrogen generated by dissolution of metal in acid. Nascent hydrogen is known to be a strong reducing agent. We studied the influence of metal involved in nascent hydrogen generation and characterized the samples in detail. The resulting reduced graphenes and hydrogenated graphenes were characterized in detail. The resulting hydrogenated graphene had the chemical formula C1.16H1O0.66. Such simple hydrogenation of graphene is of high importance for large scale safe synthesis of hydrogenated graphene.

  18. Room temperature synthesis of silver nanowires from tabular silver bromide crystals in the presence of gelatin

    NASA Astrophysics Data System (ADS)

    Liu, Suwen; Wehmschulte, Rudolf J.; Lian, Guoda; Burba, Christopher M.

    2006-03-01

    Long silver nanowires were synthesized at room temperature by a simple and fast process derived from the development of photographic films. A film consisting of an emulsion of tabular silver bromide grains in gelatin was treated with a photographic developer (4-(methylamino)phenol sulfate (metol), citric acid) in the presence of additional aqueous silver nitrate. The silver nanowires have lengths of more than 50 μm, some even more than 100 μm, and average diameters of about 80 nm. Approximately, 70% of the metallic silver formed in the reduction consists of silver nanowires. Selected area electron diffraction (SAED) results indicate that the silver nanowires grow along the [111] direction. It was found that the presence of gelatin, tabular silver bromide crystals and silver ions in solution are essential for the formation of the silver nanowires. The nanowires appear to originate from the edges of the silver bromide crystals. They were characterized by transmission electron microscopy (TEM), SAED, scanning electron microscopy (SEM), and powder X-ray diffraction (XRD).

  19. Room temperature synthesis of silver nanowires from tabular silver bromide crystals in the presence of gelatin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Suwen; Wehmschulte, Rudolf J.; Lian Guoda

    2006-03-15

    Long silver nanowires were synthesized at room temperature by a simple and fast process derived from the development of photographic films. A film consisting of an emulsion of tabular silver bromide grains in gelatin was treated with a photographic developer (4-(methylamino)phenol sulfate (metol), citric acid) in the presence of additional aqueous silver nitrate. The silver nanowires have lengths of more than 50 {mu}m, some even more than 100 {mu}m, and average diameters of about 80 nm. Approximately, 70% of the metallic silver formed in the reduction consists of silver nanowires. Selected area electron diffraction (SAED) results indicate that the silvermore » nanowires grow along the [111] direction. It was found that the presence of gelatin, tabular silver bromide crystals and silver ions in solution are essential for the formation of the silver nanowires. The nanowires appear to originate from the edges of the silver bromide crystals. They were characterized by transmission electron microscopy (TEM), SAED, scanning electron microscopy (SEM), and powder X-ray diffraction (XRD)« less

  20. The impact of morning light intensity and environmental temperature on body temperatures and alertness.

    PubMed

    Te Kulve, Marije; Schlangen, Luc J M; Schellen, Lisje; Frijns, Arjan J H; van Marken Lichtenbelt, Wouter D

    2017-06-01

    Indoor temperature and light exposure are known to affect body temperature, productivity and alertness of building occupants. However, not much is known about the interaction between light and temperature exposure and the relationship between morning light induced alertness and its effect on body temperature. Light intensity and room temperature during morning office hours were investigated under strictly controlled conditions. In a randomized crossover study, two white light conditions (4000K, either bright 1200lx or dim 5lx) under three different room temperatures (26, 29 and 32°C) were investigated. A lower room temperature increased the core body temperature (CBT) and lowered skin temperature and the distal-proximal temperature gradient (DPG). Moreover, a lower room temperature reduced the subjective sleepiness and reaction time on an auditory psychomotor vigilance task (PVT), irrespective of the light condition. Interestingly, the morning bright light exposure did affect thermophysiological parameters, i.e. it decreased plasma cortisol, CBT and proximal skin temperature and increased the DPG, irrespective of the room temperature. During the bright light session, subjective sleepiness decreased irrespective of the room temperature. However, the change in sleepiness due to the light exposure was not related to these physiological changes. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. High temperature 1 MHz capacitance-voltage method for evaluation of border traps in 4H-SiC MOS system

    NASA Astrophysics Data System (ADS)

    Peng, Zhao-Yang; Wang, Sheng-Kai; Bai, Yun; Tang, Yi-Dan; Chen, Xi-Ming; Li, Cheng-Zhan; Liu, Ke-An; Liu, Xin-Yu

    2018-04-01

    In this work, border traps located in SiO2 at different depths in 4H-SiC MOS system are evaluated by a simple and effective method based on capacitance-voltage (C-V) measurements. This method estimates the border traps between two adjacent depths through C-V measurement at various frequencies at room and elevated temperatures. By comparison of these two C-V characteristics, the correlation between time constant of border traps and temperatures is obtained. Then the border trap density is determined by integration of capacitance difference against gate voltage at the regions where border traps dominate. The results reveal that border trap concentration a few nanometers away from the interface increases exponentially towards the interface, which is in good agreement with previous work. It has been proved that high temperature 1 MHz C-V method is effective for border trap evaluation.

  2. Fiber optic distributed temperature sensing for fire source localization

    NASA Astrophysics Data System (ADS)

    Sun, Miao; Tang, Yuquan; Yang, Shuang; Sigrist, Markus W.; Li, Jun; Dong, Fengzhong

    2017-08-01

    A method for localizing a fire source based on a distributed temperature sensor system is proposed. Two sections of optical fibers were placed orthogonally to each other as the sensing elements. A tray of alcohol was lit to act as a fire outbreak in a cabinet with an uneven ceiling to simulate a real scene of fire. Experiments were carried out to demonstrate the feasibility of the method. Rather large fluctuations and systematic errors with respect to predicting the exact room coordinates of the fire source caused by the uneven ceiling were observed. Two mathematical methods (smoothing recorded temperature curves and finding temperature peak positions) to improve the prediction accuracy are presented, and the experimental results indicate that the fluctuation ranges and systematic errors are significantly reduced. The proposed scheme is simple and appears reliable enough to locate a fire source in large spaces.

  3. Thermal monitoring, measurement, and control system for a Volatile Condensable Materials (VCM) test apparatus

    NASA Technical Reports Server (NTRS)

    Ives, R. E.

    1982-01-01

    A thermal monitoring and control concept is described for a volatile condensable materials (VCM) test apparatus where electric resistance heaters are employed. The technique is computer based, but requires only proportioning ON/OFF relay control signals supplied through a programmable scanner and simple quadrac power controllers. System uniqueness is derived from automatic temperature measurements and the averaging of these measurements in discrete overlapping temperature zones. Overall control tolerance proves to be better than + or - 0.5 C from room ambient temperature to 150 C. Using precisely calibrated thermocouples, the method provides excellent temperature control of a small copper VCM heating plate at 125 + or - 0.2 C over a 24 hr test period. For purposes of unattended operation, the programmable computer/controller provides a continual data printout of system operation. Real time operator command is also provided for, as is automatic shutdown of the system and operator alarm in the event of malfunction.

  4. Room Temperature Curing Resin Systems for Graphite/Epoxy Composite Repair.

    DTIC Science & Technology

    1979-12-01

    ROOM TEMPERATURE CURING RESIN SYSTEMS FOR GRAPHITE/EPOXY COMPOS--ETC(UI DEC 79 0 J CRABTREE N62269-79-C-G224 UNCLASSIFIE O80-46 NADC -781 1-6 NL END...Room Temperature Curing Resin Sys-U3 linal for Graphite/Epoxy Composite Repair •.Dec *79 NOR- -46h: V111IT NUM8ER(s) 4362269-79- ,722 S. PERFORMING...repair, composite repair room temperature cure resin , moderate temperature cure resins , epoxies, adhesives, vinyl eater polymers, anaerobic curing polymers

  5. Studies on color-center formation in glass utilizing measurements made during 1 to 3 MeV electron irradiation

    NASA Technical Reports Server (NTRS)

    Swyler, K. J.; Levy, P. W.

    1976-01-01

    The coloring of NBS 710 glass was studied using a facility for making optical absorption measurements during and after electron irradiation. The induced absorption contains three Gaussian shaped bands. The color center growth curves contain two saturating exponential and one linear components. After irradiation the coloring decays can be described by three decreasing exponentials. At room temperature both the coloring curve plateau and coloring rate increases with increasing dose rate. Coloring measurements made at fixed dose rate but at increasing temperature indicate: (1) The coloring curve plateau decreases with increasing temperature and coloring is barely measurable near 400 C. (2) The plateau is reached more rapidly as the temperature increases. (3) The decay occurring after irradiation cannot be described by Arrhenius kinetics. At each temperature the coloring can be explained by simple kinetics. The temperature dependence of the decay can be explained if it is assumed that the thermal untrapping is controlled by a distribution of activation energies.

  6. Reducing pain with genetic amniocentesis-A randomized trial of subfreezing versus room temperature needles.

    PubMed

    Wax, Joseph R; Pinette, Michael G; Carpenter, Molly; Chard, Renée; Blackstone, Jacquelyn; Cartin, Angelina

    2005-10-01

    To determine whether pain associated with second trimester genetic amniocentesis is decreased by using subfreezing rather than room temperature needles. Subjects were randomized to a -14 degrees C or room temperature (20-22 degrees C) 22-gauge spinal needle. Patients, blinded to allocation, recorded anticipated and actual pain before and after the procedure, respectively, using a 0-10 visual analog scale with 0 = no pain and 10 = excruciating pain. Thirty-three subjects were randomized to room temperature and 29 subjects to subfreezing needles. Anticipated pain was similar in room temperature, 5.1 +/- 1.7, and subfreezing groups, 4.9 +/- 2.0, respectively (p = 0.6). Actual pain was also similar in the room temperature, 3.6 +/- 2.0, and subfreezing groups, 2.8 +/- 2.0, respectively (p = 0.14). Similar numbers of subjects in the room temperature and subfreezing groups reported less actual pain (20 vs. 18), greater actual pain (4 vs. 4) or no difference in pain (9 vs. 5) than anticipated (p = 0.6). A subfreezing 22-gauge spinal needle does not decrease perceived pain associated with second trimester genetic amniocentesis.

  7. Room Temperature and Elevated Temperature Composite Sandwich Joint Testing

    NASA Technical Reports Server (NTRS)

    Walker, Sandra P.

    1998-01-01

    Testing of composite sandwich joint elements has been completed to verify the strength capacity of joints designed to carry specified running loads representative of a high speed civil transport wing. Static tension testing at both room and an elevated temperature of 350 F and fatigue testing at room temperature were conducted to determine strength capacity, fatigue life, and failure modes. Static tension test results yielded failure loads above the design loads for the room temperature tests, confirming the ability of the joint concepts tested to carry their design loads. However, strength reductions as large as 30% were observed at the elevated test temperature, where all failure loads were below the room temperature design loads for the specific joint designs tested. Fatigue testing resulted in lower than predicted fatigue lives.

  8. On the transmission of terahertz radiation through silicon-based structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Persano, Anna, E-mail: anna.persano@le.imm.cnr.it; Francioso, Luca; Cola, Adriano

    2014-07-28

    We report on the transmission of a terahertz (THz) radiation through prototype structures based on a p-type silicon substrate. In particular, the bare substrate and progressively more complicated multilayer structures were investigated, allowing to address the effect on the transmission of different factors, such as the orientation of interdigitated contacts with respect to the polarized beam, the temperature, and the current flowing through a conductive SnO{sub 2} nanorods layer. A suitable experimental set-up was developed for the direct spectral measurement of transmission in the range of 0.75–1.1 THz at room and low temperatures. A simple Drude-Lorentz model was formulated, findingmore » a quantitative agreement with the experimental transmission spectrum of the bare substrate at room temperature. For the multilayer structures, the spectra variations observed with temperature are well accounted by the corresponding change of the mobility of holes in the silicon p-type substrate. The influence of the contact orientation is consistent with that of a polarizing metallic grating. Finally, Joule heating effects are observed in the spectra performed as a function of the current flowing through the SnO{sub 2} nanorods layer. The experimental results shown here, together with their theoretical interpretation, provide insights for the development of devices fabricated on conductive substrates aimed to absorb/modulate radiation in the THz range.« less

  9. Microcontroller based automatic temperature control for oyster mushroom plants

    NASA Astrophysics Data System (ADS)

    Sihombing, P.; Astuti, T. P.; Herriyance; Sitompul, D.

    2018-03-01

    In the cultivation of Oyster Mushrooms need special treatment because oyster mushrooms are susceptible to disease. Mushroom growth will be inhibited if the temperature and humidity are not well controlled because temperature and inertia can affect mold growth. Oyster mushroom growth usually will be optimal at temperatures around 22-28°C and humidity around 70-90%. This problem is often encountered in the cultivation of oyster mushrooms. Therefore it is very important to control the temperature and humidity of the room of oyster mushroom cultivation. In this paper, we developed an automatic temperature monitoring tool in the cultivation of oyster mushroom-based Arduino Uno microcontroller. We have designed a tool that will control the temperature and humidity automatically by Android Smartphone. If the temperature increased more than 28°C in the room of mushroom plants, then this tool will turn on the pump automatically to run water in order to lower the room temperature. And if the room temperature of mushroom plants below of 22°C, then the light will be turned on in order to heat the room. Thus the temperature in the room oyster mushrooms will remain stable so that the growth of oyster mushrooms can grow with good quality.

  10. Influence of perfusate temperature on nasal potential difference.

    PubMed

    Bronsveld, Inez; Vermeulen, François; Sands, Dorotha; Leal, Teresinha; Leonard, Anissa; Melotti, Paola; Yaakov, Yasmin; de Nooijer, Roel; De Boeck, Kris; Sermet, Isabelle; Wilschanski, Michael; Middleton, Peter G

    2013-08-01

    Nasal potential difference (NPD) quantifies abnormal ion transport in cystic fibrosis. It has gained acceptance as an outcome measure for the investigation of new therapies. To quantify the effect of solution temperature on NPD, we first examined the effect of switching from room temperature (20-25°C) to warmed (32-37°C) solutions and vice versa during each perfusion step. Secondly, standard protocols were repeated at both temperatures in the same subjects. Changing solution temperature did not alter NPD during perfusion with Ringer's solution (<1 mV) (p>0.1). During perfusion with zero chloride solution, changing from room temperature to warmed solutions tended to decrease absolute NPD (i.e. it became less negative) by 0.9 mV (p>0.1); changing from warmed to room temperature increased NPD by 2.1 mV (p<0.05). During isoprenaline perfusion, changing from room temperature to warmed solutions increased NPD by 1.5 mV (p<0.01) and from warmed to room temperature decreased NPD by 1.4 mV (p<0.05). For full protocols at room temperature or warmed in the same subjects, mean values were similar (n = 24). During warmed perfusion, group results for total chloride response had a larger standard deviation. As this increased variability will probably decrease the power of trials, this study suggests that solutions at room temperature should be recommended for the measurement of NPD.

  11. In situ intercalation strategies for device-quality hybrid inorganic-organic self-assembled quantum wells

    NASA Astrophysics Data System (ADS)

    Pradeesh, K.; Baumberg, J. J.; Prakash, G. Vijaya

    2009-07-01

    Thin films of self-organized quantum wells of inorganic-organic hybrid perovskites of (C6H9C2H4NH3)2PbI4 are formed from a simple intercalation strategy to yield well-ordered uniform films over centimeter-size scales. These films compare favorably with traditional solution-chemistry-synthesized thin films. The hybrid films show strong room-temperature exciton-related absorption and photoluminescence, which shift with fabrication protocol. We demonstrate the potential of this method for electronic and photonic device applications.

  12. Effect of polyvinylpyrrolidone content on alternating current conductivity of polyaniline

    NASA Astrophysics Data System (ADS)

    Megha, R.; Kumar, T. G. Naveen; Ravikiran, Y. T.; Prakash, H. G. Raj; Revanasiddappa, M.; Kumari, S. C. Vijaya

    2018-05-01

    In the present work, Polyaniline (PANI) and Polyaniline-polyvinylpyrrolidone (PANI-PVP) composites of two different weight percentages of PVP were synthesized separately by simple chemical polymerization method. The interaction between PANI and PVP in each of the composite was confirmed by Attenuated total reflection infrared spectroscopic (AT-IR) technique. The alternate current (AC) response characteristics at room temperature of PANI and the composites in the frequency range 50 Hz-1 MHz were comparatively studied. Both the composites have shown decreased conductivity as compared to that of PANI.

  13. Crack Growth Modeling in an Advanced Powder Metallurgy Alloy

    DTIC Science & Technology

    1980-07-01

    Figure ~ ~ ~ ~ ~ 1 90. SpcmnCniuain CorMtra ulfcto Experiments. .= is5.9 mm__ C ,, . 625 inch) , so t’ 0 1 ".6 12.7 mm (0.50 inch) Figure 5. Configuration...best simple correlation of hold time and stress ratio (R = 0.05 through 0.8) effects on Inconel 718 at 650* C (1200" F) was by the maximum stress...in the work done in another studyt22) on Inconel 718. Based on these room-temperature studies, the interpolative model was ex- pected to have a

  14. Developing porous ceramics on the base of zirconia oxide with thin and permeable pores by crystallization of organic additive method

    NASA Astrophysics Data System (ADS)

    Kamyshnaya, K. S.; Khabas, T. A.

    2016-11-01

    In this paper porous ceramics on the base of ZrO2 nanopowders and micropowders has been developed by freeze-casting method. A zirconia/carbamide slurry was frozen in mold and dehydrated in CaCl2 at room temperature. This simple process enabled the formation of porous ceramics with highly aligned pores as a replica of the carbamide crystals. The samples showed higher porosity of 47.9%. In addition, these materials could be used as membrane for air cleaning.

  15. Correlation of Handheld Infrared Skin Thermometer and Infrared Videothermography Device for Measurement of Corneal Temperature.

    PubMed

    Oztas, Zafer; Barut Selver, Ozlem; Akkin, Cezmi; Canturk, Ecem; Afrashi, Filiz

    2016-05-01

    In our study, we aimed to investigate the correlation of handheld infrared skin thermometer and videothermography device for the measurement of corneal temperature. Forty healthy individuals (80 eyes) were enrolled to the study. Participants underwent a detailed ophthalmologic examination and medical history review for excluding any ocular and systemic diseases. The measurements of the central corneal temperature were performed in a room having constant temperature, humidity, and brightness levels. To avoid any variability, all the temperature measurements were performed in the same examination room by a single examiner. The temperature was measured with a handheld infrared skin thermometer (MEDISANA, FTN) from the corneal surface. The same instrument was also used to measure the subjects' body temperature. Moreover, the subjects underwent the corneal temperature measurement by a noncontact videothermography device (Optris PI 450; Optris GmbH). The male to female ratio was 19:21 among the subjects. The mean age was 25.1±4.7 years. The mean body temperature was 36.93±0.33°C. The mean corneal temperatures measured by the handheld infrared skin thermometer and the ocular videothermography device were 36.94±0.28°C and 35.61±0.61°C, respectively (P<0.01). The mean temperature difference was 1.34±0.57°C, with a 95% confidence interval. There was a moderate correlation between the corneal temperatures measured by the 2 devices in the right, the left eyes, and both eyes, respectively (P=0.450, 0.539, 0.490). Handheld infrared skin thermometers can be used for the evaluation of the corneal temperature. These devices may provide a simple, practical, and cheaper way to detect the corneal temperature, and the widely performed corneal temperature measurements may afford us to understand the temperature variability in numerous ocular conditions in a better way.

  16. Phase Transitions and Melting in Magnesium to 200 GPa and 4500 K

    NASA Astrophysics Data System (ADS)

    Stinton, G.; MacLeod, S.; Cynn, H.; Errandonea, D.; Proctor, J.; Meng, Y.; McMahon, M.

    2013-06-01

    Magnesium is a ``simple'' nearly free-electron metal up to around 100 GPa. Despite similarly-simple group II metals being the subject of numerous studies that have revealed complex high-pressure behaviour, Mg has very few high-pressure diffraction studies, particularly above room temperature. Here we describe such studies to above 200 GPa at 300 K, combined with resistive- and laser-heating experiments to 4500 K and 100 GPa. The hcp-bcc transition at ~50 GPa exhibits a large region of phase co-existence at all temperatures up to 800 K, and the transition pressure is found to decrease with temperature at the rate of ~3.4 GPa per 100 K, somewhat smaller than the rate calculated by Mehta et al.,. At lower pressures, below the melting curve at 10 GPa, we find the dhcp phase to be stable, in agreement with Errandonea et al.. Laser heating studies to 4500 K and 100 GPa show that Mg remains bcc up to the melting curve, our measurement of which is in good agreement with the previous ``speckle'' studies of Errandonea et al.. This work was performed under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344.

  17. Electrodrift purification of materials for room temperature radiation detectors

    DOEpatents

    James, R.B.; Van Scyoc, J.M. III; Schlesinger, T.E.

    1997-06-24

    A method of purifying nonmetallic, crystalline semiconducting materials useful for room temperature radiation detecting devices by applying an electric field across the material is disclosed. The present invention discloses a simple technology for producing purified ionic semiconducting materials, in particular PbI{sub 2} and preferably HgI{sub 2}, which produces high yields of purified product, requires minimal handling of the material thereby reducing the possibility of introducing or reintroducing impurities into the material, is easy to control, is highly selective for impurities, retains the stoichiometry of the material and employs neither high temperatures nor hazardous materials such as solvents or liquid metals. An electric field is applied to a bulk sample of the material causing impurities present in the sample to drift in a preferred direction. After all of the impurities have been transported to the ends of the sample the current flowing through the sample, a measure of the rate of transport of mobile impurities, falls to a low, steady state value, at which time the end sections of the sample where the impurities have concentrated are removed leaving a bulk sample of higher purity material. Because the method disclosed here only acts on the electrically active impurities, the stoichiometry of the host material remains substantially unaffected. 4 figs.

  18. Electrodrift purification of materials for room temperature radiation detectors

    DOEpatents

    James, Ralph B.; Van Scyoc, III, John M.; Schlesinger, Tuviah E.

    1997-06-24

    A method of purifying nonmetallic, crystalline semiconducting materials useful for room temperature radiation detecting devices by applying an electric field across the material. The present invention discloses a simple technology for producing purified ionic semiconducting materials, in particular PbI.sub.2 and preferably HgI.sub.2, which produces high yields of purified product, requires minimal handling of the material thereby reducing the possibility of introducing or reintroducing impurities into the material, is easy to control, is highly selective for impurities, retains the stoichiometry of the material and employs neither high temperatures nor hazardous materials such as solvents or liquid metals. An electric field is applied to a bulk sample of the material causing impurities present in the sample to drift in a preferred direction. After all of the impurities have been transported to the ends of the sample the current flowing through the sample, a measure of the rate of transport of mobile impurities, falls to a low, steady state value, at which time the end sections of the sample where the impurities have concentrated are removed leaving a bulk sample of higher purity material. Because the method disclosed here only acts on the electrically active impurities, the stoichiometry of the host material remains substantially unaffected.

  19. Controllable Growth of Perovskite Films by Room-Temperature Air Exposure for Efficient Planar Heterojunction Photovoltaic Cells

    DOE PAGES

    Yang, Bin; Dyck, Ondrej; Poplawsky, Jonathan; ...

    2015-12-01

    A two-step-solution-processing approach has been established to grow void-free perovskite films for low-cost and high-performance planar heterojunction photovoltaic devices. We generally applied a high-temperature thermal annealing treatment in order to drive the diffusion of CH 3NH 3I precursor molecules into the compact PbI 2 layer to form perovskite films. But, thermal annealing for extended periods would lead to degraded device performance due to the defects generated by decomposition of perovskite into PbI 2. In this work, we explored a controllable layer-by-layer spin-coating method to grow bilayer CH 3NH 3I/PbI 2 films, and then drive the interdiffusion between PbI 2 andmore » CH 3NH 3I layers by a simple room-temperature-air-exposure for making well-oriented, highly-crystalline perovskite films without thermal annealing. This high degree of crystallinity resulted in a carrier diffusion length of ~ 800 nm and high device efficiency of 15.6%, which is comparable to the reported values from thermally-annealed perovskite films based counterparts. Finally, the simplicity and high device performance of this processing approach is highly promising for direct integration into industrial-scale device manufacture.« less

  20. Effects of room temperature aging on two cryogenic temperature sensor models used in aerospace applications

    NASA Astrophysics Data System (ADS)

    Courts, S. Scott; Krause, John

    2012-06-01

    Cryogenic temperature sensors used in aerospace applications are typically procured far in advance of the mission launch date. Depending upon the program, the temperature sensors may be stored at room temperature for extended periods as installation and groundbased testing can take years before the actual flight. The effects of long term storage at room temperature are sometimes approximated by the use of accelerated aging at temperatures well above room temperature, but this practice can yield invalid results as the sensing material and/or electrical contacting method can be increasingly unstable with higher temperature exposure. To date, little data are available on the effects of extended room temperature aging on sensors commonly used in aerospace applications. This research examines two such temperature sensors models - the Lake Shore Cryotronics, Inc. model CernoxTM and DT-670-SD temperature sensors. Sample groups of each model type have been maintained for ten years or longer with room temperature storage between calibrations. Over an eighteen year period, the CernoxTM temperature sensors exhibited a stability of better than ±20 mK for T<30 K and better than ±0.1% of temperature for T>30 K. Over a ten year period the model DT-670-SD sensors exhibited a stability of better than ±140 mK for T<25 K and better than ±75 mK for T>25 K.

  1. Transient natural ventilation of a room with a distributed heat source

    NASA Astrophysics Data System (ADS)

    Fitzgerald, Shaun D.; Woods, Andrew W.

    We report on an experimental and theoretical study of the transient flows which develop as a naturally ventilated room adjusts from one temperature to another. We focus on a room heated from below by a uniform heat source, with both high- and low-level ventilation openings. Depending on the initial temperature of the room relative to (i) the final equilibrium temperature and (ii) the exterior temperature, three different modes of ventilation may develop. First, if the room temperature lies between the exterior and the equilibrium temperature, the interior remains well-mixed and gradually heats up to the equilibrium temperature. Secondly, if the room is initially warmer than the equilibrium temperature, then a thermal stratification develops in which the upper layer of originally hot air is displaced upwards by a lower layer of relatively cool inflowing air. At the interface, some mixing occurs owing to the effects of penetrative convection. Thirdly, if the room is initially cooler than the exterior, then on opening the vents, the original air is displaced downwards and a layer of ambient air deepens from above. As this lower layer drains, it is eventually heated to the ambient temperature, and is then able to mix into the overlying layer of external air, and the room becomes well-mixed. For each case, we present new laboratory experiments and compare these with some new quantitative models of the transient flows. We conclude by considering the implications of our work for natural ventilation of large auditoria.

  2. Rapid and Efficient Conversion of (11) CO2 to (11) CO through Silacarboxylic Acids: Applications in Pd-Mediated Carbonylations.

    PubMed

    Nordeman, Patrik; Friis, Stig D; Andersen, Thomas L; Audrain, Hélène; Larhed, Mats; Skrydstrup, Troels; Antoni, Gunnar

    2015-12-01

    Herein, we present a new rapid, efficient, and low-cost radiosynthetic protocol for the conversion of (11) CO2 to (11) CO and its subsequent application in Pd-mediated reactions of importance for PET applications. This room-temperature methodology, using readily available chemical reagents, is carried out in simple glass vials, thus eliminating the need for expensive and specialized high-temperature equipment to access (11) CO. With this fast and near-quantitative conversion of (11) CO2 into (11) CO, aryl and heteroaryl iodides were easily converted into a broad selection of biologically active amides in radiochemical yields ranging from 29-84 %. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A passive terahertz video camera based on lumped element kinetic inductance detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowe, Sam, E-mail: sam.rowe@astro.cf.ac.uk; Pascale, Enzo; Doyle, Simon

    We have developed a passive 350 GHz (850 μm) video-camera to demonstrate lumped element kinetic inductance detectors (LEKIDs)—designed originally for far-infrared astronomy—as an option for general purpose terrestrial terahertz imaging applications. The camera currently operates at a quasi-video frame rate of 2 Hz with a noise equivalent temperature difference per frame of ∼0.1 K, which is close to the background limit. The 152 element superconducting LEKID array is fabricated from a simple 40 nm aluminum film on a silicon dielectric substrate and is read out through a single microwave feedline with a cryogenic low noise amplifier and room temperature frequencymore » domain multiplexing electronics.« less

  4. A simple and low-cost chip bonding solution for high pressure, high temperature and biological applications.

    PubMed

    Serra, M; Pereiro, I; Yamada, A; Viovy, J-L; Descroix, S; Ferraro, D

    2017-02-14

    The sealing of microfluidic devices remains a complex and time-consuming process requiring specific equipment and protocols: a universal method is thus highly desirable. We propose here the use of a commercially available sealing tape as a robust, versatile, reversible solution, compatible with cell and molecular biology protocols, and requiring only the application of manually achievable pressures. The performance of the seal was tested with regards to the most commonly used chip materials. For most materials, the bonding resisted 5 bars at room temperature and 1 bar at 95 °C. This method should find numerous uses, ranging from fast prototyping in the laboratory to implementation in low technology environments or industrial production.

  5. Sputtered magnesium diboride thin films: Growth conditions and surface morphology

    NASA Astrophysics Data System (ADS)

    O'Brien, April; Villegas, Brendon; Gu, J. Y.

    2009-01-01

    Magnesium diboride (MgB 2) thin films were deposited on C-plane sapphire substrates by sputtering pure B and Mg targets at different substrate temperatures, and were followed by in situ annealing. A systematic study about the effects of the various growth and annealing parameters on the physical properties of MgB 2 thin films showed that the substrate temperature is the most critical factor that determines the superconducting transition temperature ( Tc), while annealing plays a minor role. There was no superconducting transition in the thin films grown at room temperature without post-annealing. The highest Tc of the samples grown at room temperature after the optimized annealing was 22 K. As the temperature of the substrate ( Ts) increased, Tc rose. However, the maximum Ts was limited due to the low magnesium sticking coefficient and thus the Tc value was limited as well. The highest Tc, 29 K, was obtained for the sample deposited at 180 °C, annealed at 620 °C, and was subsequently annealed a second time at 800 °C. Three-dimensional (3D) AFM images clearly demonstrated that the thin films with no transition, or very low Tc, did not have the well-developed MgB 2 grains while the films with higher Tc displayed the well-developed grains and smooth surface. Although the Tc of sputtered MgB 2 films in the current work is lower than that for the bulk and ex situ annealed thin films, this work presents an important step towards the fabrication of MgB 2 heterostructures using rather simple physical vapor deposition method such as sputtering.

  6. Effective Surfactants Blend Concentration Determination for O/W Emulsion Stabilization by Two Nonionic Surfactants by Simple Linear Regression.

    PubMed

    Hassan, A K

    2015-01-01

    In this work, O/W emulsion sets were prepared by using different concentrations of two nonionic surfactants. The two surfactants, tween 80(HLB=15.0) and span 80(HLB=4.3) were used in a fixed proportions equal to 0.55:0.45 respectively. HLB value of the surfactants blends were fixed at 10.185. The surfactants blend concentration is starting from 3% up to 19%. For each O/W emulsion set the conductivity was measured at room temperature (25±2°), 40, 50, 60, 70 and 80°. Applying the simple linear regression least squares method statistical analysis to the temperature-conductivity obtained data determines the effective surfactants blend concentration required for preparing the most stable O/W emulsion. These results were confirmed by applying the physical stability centrifugation testing and the phase inversion temperature range measurements. The results indicated that, the relation which represents the most stable O/W emulsion has the strongest direct linear relationship between temperature and conductivity. This relationship is linear up to 80°. This work proves that, the most stable O/W emulsion is determined via the determination of the maximum R² value by applying of the simple linear regression least squares method to the temperature-conductivity obtained data up to 80°, in addition to, the true maximum slope is represented by the equation which has the maximum R² value. Because the conditions would be changed in a more complex formulation, the method of the determination of the effective surfactants blend concentration was verified by applying it for more complex formulations of 2% O/W miconazole nitrate cream and the results indicate its reproducibility.

  7. Instantaneous radioiodination of rose bengal at room temperature and a cold-kit therefor. [DOE patent application

    DOEpatents

    O'Brien, H. Jr.; Hupf, H.B.; Wanek, P.M.

    The disclosure relates to the radioiodination of rose bengal at room temperature and a cold-kit therefor. A purified rose bengal tablet is stirred into acidified ethanol at or near room temperature, until a suspension forms. Reductant-free /sup 125/I/sup -/ is added and the resulting mixture stands until the exchange label reaction occurs at room temperature. A solution of sterile isotonic phosphate buffer and sodium hydroxide is added and the final resulting mixture is sterilized by filtration.

  8. Instantaneous radioiodination of rose bengal at room temperature and a cold kit therefor

    DOEpatents

    O'Brien, Jr., Harold A.; Hupf, Homer B.; Wanek, Philip M.

    1981-01-01

    The disclosure relates to the radioiodination of rose bengal at room temperature and a cold-kit therefor. A purified rose bengal tablet is stirred into acidified ethanol at or near room temperature, until a suspension forms. Reductant-free .sup.125 I.sup.- is added and the resulting mixture stands until the exchange label reaction occurs at room temperature. A solution of sterile isotonic phosphate buffer and sodium hydroxide is added and the final resulting mixture is sterilized by filtration.

  9. Room-temperature d0 ferromagnetism in carbon-doped Y2O3 for spintronic applications: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Chakraborty, Brahmananda; Nandi, Prithwish K.; Kawazoe, Yoshiyuki; Ramaniah, Lavanya M.

    2018-05-01

    Through density functional theory simulations with the generalized gradient approximation, confirmed by the more sophisticated hybrid functional, we predict the triggering of d0 ferromagnetism in C doped Y2O3 at a hole density of 3.36 ×1021c m-3 (one order less than the critical hole density of ZnO) having magnetic moment of 2.0 μB per defect with ferromagnetic coupling large enough to promote room-temperature ferromagnetism. The persistence of ferromagnetism at room temperature is established through computation of the Curie temperature by the mean field approximation and ab initio molecular dynamics simulations. The induced magnetic moment is mainly contributed by the 2 p orbital of the impurity C and the 2 p orbital of O and we quantitatively and extensively demonstrate through the analysis of density of states and ferromagnetic coupling that the Stoner criterion is satisfied to activate room-temperature ferromagnetism. As the system is stable at room temperature, C doped Y2O3 has feasible defect formation energy and ferromagnetism survives for the choice of hybrid exchange functional, and at room temperature we strongly believe that C doped Y2O3 can be tailored as a room-temperature diluted magnetic semiconductor for spintronic applications.

  10. Structural and electronic engineering of 3DOM WO3 by alkali metal doping for improved NO2 sensing performance

    NASA Astrophysics Data System (ADS)

    Wang, Zhihua; Fan, Xiaoxiao; Han, Dongmei; Gu, Fubo

    2016-05-01

    Novel alkali metal doped 3DOM WO3 materials were prepared using a simple colloidal crystal template method. Raman, XRD, SEM, TEM, XPS, PL, Hall and UV-Vis techniques were used to characterize the structural and electronic properties of all the products, while the corresponding sensing performances targeting ppb level NO2 were determined at different working temperatures. For the overall goal of structural and electronic engineering, the co-effect of structural and electronic properties on the improved NO2 sensing performance of alkali metal doped 3DOM WO3 was studied. The test results showed that the gas sensing properties of 3DOM WO3/Li improved the most, with the fast response-recovery time and excellent selectivity. More importantly, the response of 3DOM WO3/Li to 500 ppb NO2 was up to 55 at room temperature (25 °C). The especially high response to ppb level NO2 at room temperature (25 °C) in this work has a very important practical significance. The best sensing performance of 3DOM WO3/Li could be ascribed to the most structure defects and the highest carrier mobility. And the possible gas sensing mechanism based on the model of the depletion layer was proposed to demonstrate that both structural and electronic properties are responsible for the NO2 sensing behavior.Novel alkali metal doped 3DOM WO3 materials were prepared using a simple colloidal crystal template method. Raman, XRD, SEM, TEM, XPS, PL, Hall and UV-Vis techniques were used to characterize the structural and electronic properties of all the products, while the corresponding sensing performances targeting ppb level NO2 were determined at different working temperatures. For the overall goal of structural and electronic engineering, the co-effect of structural and electronic properties on the improved NO2 sensing performance of alkali metal doped 3DOM WO3 was studied. The test results showed that the gas sensing properties of 3DOM WO3/Li improved the most, with the fast response-recovery time and excellent selectivity. More importantly, the response of 3DOM WO3/Li to 500 ppb NO2 was up to 55 at room temperature (25 °C). The especially high response to ppb level NO2 at room temperature (25 °C) in this work has a very important practical significance. The best sensing performance of 3DOM WO3/Li could be ascribed to the most structure defects and the highest carrier mobility. And the possible gas sensing mechanism based on the model of the depletion layer was proposed to demonstrate that both structural and electronic properties are responsible for the NO2 sensing behavior. Electronic supplementary information (ESI) available: Raman, SEM, TEM, mapping, XPS and PL images; transient plot; response of 3DOM WO3/Li to NO2 concentration, sensing stability and the corresponding log (Sg - 1) versus log Cg curves. See DOI: 10.1039/c6nr00858e

  11. Factors affecting the energy consumption of two refrigerator-freezers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kao, J.Y.; Kelley, G.E.

    Two refrigerator-freezers, one with a top-mounted freezer and one with side-by-side doors, were tested in the laboratory to determine the sensitivity of their energy consumption to various operational factors. Room temperature, room humidity, door openings, and the setting of the anti-sweat heater switch were the factors examined. The results indicated that the room temperature and door openings had a significantly greater effect on energy consumption than the other two factors. More detailed tests were then performed under different room temperature and door-opening combinations. The relationship of door openings and the equivalent test room temperature was established. Finally, the effect onmore » energy of different temperature settings was studied. Test results are presented and discussed.« less

  12. Ordered iron aluminide alloys having an improved room-temperature ductility and method thereof

    DOEpatents

    Sikka, Vinod K.

    1992-01-01

    A process is disclosed for improving the room temperature ductility and strength of iron aluminide intermetallic alloys. The process involves thermomechanically working an iron aluminide alloy by means which produce an elongated grain structure. The worked alloy is then heated at a temperature in the range of about 650.degree. C. to about 800.degree. C. to produce a B2-type crystal structure. The alloy is rapidly cooled in a moisture free atmosphere to retain the B2-type crystal structure at room temperature, thus providing an alloy having improved room temperature ductility and strength.

  13. Characterization of biologic response modifiers in the supernatant of conventional, refrigerated, and cryopreserved platelets.

    PubMed

    Johnson, Lacey; Tan, Shereen; Jenkins, Emily; Wood, Ben; Marks, Denese C

    2018-04-01

    Alternatives to room temperature storage of platelets (PLTs) are of interest to support blood banking logistics. The aim of this study was to compare the presence of biologic response modifiers (BRMs) in PLT concentrates stored under conventional room temperature conditions with refrigerated or cryopreserved PLTs. A three-arm pool-and-split study was carried out using buffy coat-derived PLTs stored in 30% plasma/70% SSP+. The three matched treatment arms were as follows: room temperature (20-24°C), cold (2-6°C), and cryopreserved (-80°C with DMSO). Liquid-stored PLTs were tested over a 21-day period, while cryopreserved PLTs were tested immediately after thawing and reconstitution in 30% plasma/70% SSP+ and after storage at room temperature. Coagulation factor activity was comparable between room temperature and cold PLTs, with the exception of protein S, while cryopreserved PLTs had reduced Factor (F)V and FVIII activity. Cold-stored PLTs retained α-granule proteins better than room temperature or cryopreserved PLTs. Cryopreservation resulted in 10-fold higher microparticle generation than cold-stored PLTs, but both groups contained significantly more microparticles than those stored at room temperature. The supernatant from both cold and cryopreserved PLTs initiated faster clot formation and thrombin generation than room temperature PLTs. Cold storage and cryopreservation alter the composition of the soluble fraction of stored PLTs. These differences in coagulation proteins, cytokines, and microparticles likely influence both the hemostatic capacity of the components and the auxiliary functions. © 2017 AABB.

  14. Wide bandgap BaSnO3 films with room temperature conductivity exceeding 104 S cm−1

    PubMed Central

    Prakash, Abhinav; Xu, Peng; Faghaninia, Alireza; Shukla, Sudhanshu; Ager, Joel W.; Lo, Cynthia S.; Jalan, Bharat

    2017-01-01

    Wide bandgap perovskite oxides with high room temperature conductivities and structural compatibility with a diverse family of organic/inorganic perovskite materials are of significant interest as transparent conductors and as active components in power electronics. Such materials must also possess high room temperature mobility to minimize power consumption and to enable high-frequency applications. Here, we report n-type BaSnO3 films grown using hybrid molecular beam epitaxy with room temperature conductivity exceeding 104 S cm−1. Significantly, these films show room temperature mobilities up to 120 cm2 V−1 s−1 even at carrier concentrations above 3 × 1020 cm−3 together with a wide bandgap (3 eV). We examine the mobility-limiting scattering mechanisms by calculating temperature-dependent mobility, and Seebeck coefficient using the Boltzmann transport framework and ab-initio calculations. These results place perovskite oxide semiconductors for the first time on par with the highly successful III–N system, thereby bringing all-transparent, high-power oxide electronics operating at room temperature a step closer to reality. PMID:28474675

  15. Proposal for a room-temperature diamond maser

    PubMed Central

    Jin, Liang; Pfender, Matthias; Aslam, Nabeel; Neumann, Philipp; Yang, Sen; Wrachtrup, Jörg; Liu, Ren-Bao

    2015-01-01

    The application of masers is limited by its demanding working conditions (high vacuum or low temperature). A room-temperature solid-state maser is highly desirable, but the lifetimes of emitters (electron spins) in solids at room temperature are usually too short (∼ns) for population inversion. Masing from pentacene spins in p-terphenyl crystals, which have a long spin lifetime (∼0.1 ms), has been demonstrated. This maser, however, operates only in the pulsed mode. Here we propose a room-temperature maser based on nitrogen-vacancy centres in diamond, which features the longest known solid-state spin lifetime (∼5 ms) at room temperature, high optical pumping efficiency (∼106 s−1) and material stability. Our numerical simulation demonstrates that a maser with a coherence time of approximately minutes is feasible under readily accessible conditions (cavity Q-factor ∼5 × 104, diamond size ∼3 × 3 × 0.5 mm3 and pump power <10 W). A room-temperature diamond maser may facilitate a broad range of microwave technologies. PMID:26394758

  16. Wide bandgap BaSnO 3 films with room temperature conductivity exceeding 10 4 S cm -1

    DOE PAGES

    Prakash, Abhinav; Xu, Peng; Faghaninia, Alireza; ...

    2017-05-05

    Wide bandgap perovskite oxides with high room temperature conductivities and structural compatibility with a diverse family of organic/inorganic perovskite materials are of sign ificant interest as transparent conductors and as active components in power electronics. Such materials must also possess high room temperature mobility to minimize power consumption and to enable high-frequency applications. Here, we report n-type BaSnO 3 films grown using hybrid molecular beam epitaxy with room temperature conductivity exceeding 10 4 S cm -1 . Significantly, these films show room temperature mobilities up to 120 cm 2 V -1 s -1 even at carrier concentrations abovemore » 3 × 10 20 cm -3 together with a wide bandgap (3 eV). We examine the mobility-limiting scattering mechanisms by calculating temperature-dependent mobility, and Seebeck coefficient using the Boltzmann transport framework and ab-initio calculations. These results place perovskite oxide semiconductors for the first time on par with the highly successful III-N system, thereby bringing all-transparent, high-power oxide electronics operating at room temperature a step closer to reality.« less

  17. Impacts of exhalation flow on the microenvironment around the human body under different room temperatures

    NASA Astrophysics Data System (ADS)

    Jafari, Mohammad Javad; Gharari, Noradin; Azari, Mansour Rezazade; Ashrafi, Khosro

    2018-04-01

    Exhalation flow and room temperature can have a considerable effect on the microenvironment in the vicinity of human body. In this study, impacts of exhalation flow and room temperature on the microenvironment around a human body were investigated using a numerical simulation. For this purpose, a computational fluid dynamic program was applied to study thermal plume around a sitting human body at different room temperatures of a calm indoor room by considering the exhalation flow. The simulation was supported by some experimental measurements. Six different room temperatures (18 to 28 °C) with two nose exhalation modes (exhalation and non-exhalation) were investigated. Overhead and breathing zone velocities and temperatures were simulated in different scenarios. This study finds out that the exhalation through the nose has a significant impact on both quantitative and qualitative features of the human microenvironment in different room temperatures. At a given temperature, the exhalation through the nose can change the location and size of maximum velocity at the top of the head. In the breathing zone, the effect of exhalation through the nose on velocity and temperature distribution was pronounced for the point close to mouth. Also, the exhalation through the nose strongly influences the thermal boundary layer on the breathing zone while it only minimally influences the convective boundary layer on the breathing zone. Overall results demonstrate that it is important to take the exhalation flow into consideration in all areas, especially at a quiescent flow condition with low temperature.

  18. Assessment of Durable SiC JFET Technology for +600 C to -125 C Integrated Circuit Operation

    NASA Technical Reports Server (NTRS)

    Neudeck, P. G.; Krasowski, M. J.; Prokop, N. F.

    2011-01-01

    Electrical characteristics and circuit design considerations for prototype 6H-SiC JFET integrated circuits (ICs) operating over the broad temperature range of -125 C to +600 C are described. Strategic implementation of circuits with transistors and resistors in the same 6H-SiC n-channel layer enabled ICs with nearly temperature-independent functionality to be achieved. The frequency performance of the circuits declined at temperatures increasingly below or above room temperature, roughly corresponding to the change in 6H-SiC n-channel resistance arising from incomplete carrier ionization at low temperature and decreased electron mobility at high temperature. In addition to very broad temperature functionality, these simple digital and analog demonstration integrated circuits successfully operated with little change in functional characteristics over the course of thousands of hours at 500 C before experiencing interconnect-related failures. With appropriate further development, these initial results establish a new technology foundation for realizing durable 500 C ICs for combustion engine sensing and control, deep-well drilling, and other harsh-environment applications.

  19. A lithium-ion capacitor model working on a wide temperature range

    NASA Astrophysics Data System (ADS)

    Barcellona, S.; Piegari, L.

    2017-02-01

    Energy storage systems are spreading both in stationary and transport applications. Among innovative storage devices, lithium ion capacitors (LiCs) are very interesting. They combine the advantages of both traditional electric double layer capacitors (EDLCs) and lithium ion batteries (LiBs). The behavior of this device is much more similar to ELDCs than to batteries. For this reason, several models developed for traditional ELDCs were extended to LiCs. Anyway, at low temperatures LiCs behavior is quite different from ELDCs and it is more similar to a LiB. Consequently, EDLC models works fine at room temperature but give worse results at low temperatures. This paper proposes a new electric model that, overcoming this issue, is a valid solution in a wide temperature range. Based on only five parameters, depending on polarization voltage and temperature, the proposed model is very simple to be implemented. Its accuracy is verified through experimental tests. From the reported results, it is also shown that, at very low temperatures, the dependence of the resistance from the current has to be taken into account.

  20. Fabrication method for a room temperature hydrogen sensor

    NASA Technical Reports Server (NTRS)

    Shukla, Satyajit V. (Inventor); Cho, Hyoung (Inventor); Seal, Sudipta (Inventor); Ludwig, Lawrence (Inventor)

    2011-01-01

    A sensor for selectively determining the presence and measuring the amount of hydrogen in the vicinity of the sensor. The sensor comprises a MEMS device coated with a nanostructured thin film of indium oxide doped tin oxide with an over layer of nanostructured barium cerate with platinum catalyst nanoparticles. Initial exposure to a UV light source, at room temperature, causes burning of organic residues present on the sensor surface and provides a clean surface for sensing hydrogen at room temperature. A giant room temperature hydrogen sensitivity is observed after making the UV source off. The hydrogen sensor of the invention can be usefully employed for the detection of hydrogen in an environment susceptible to the incursion or generation of hydrogen and may be conveniently used at room temperature.

  1. An indicator device for monitoring of room illuminance level in the radiological image viewing environment.

    PubMed

    Azlan, C A; Ng, K H; Anandan, S; Nizam, M S

    2006-09-01

    Illuminance level in the softcopy image viewing room is a very important factor to optimize productivity in radiological diagnosis. In today's radiological environment, the illuminance measurements are normally done during the quality control procedure and performed annually. Although the room is equipped with dimmer switches, radiologists are not able to decide the level of illuminance according to the standards. The aim of this study is to develop a simple real-time illuminance detector system to assist the radiologists in deciding an adequate illuminance level during radiological image viewing. The system indicates illuminance in a very simple visual form by using light emitting diodes. By employing the device in the viewing room, illuminance level can be monitored and adjusted effectively.

  2. Simple and rapid silver nanoparticles based antioxidant capacity assays: Reactivity study for phenolic compounds.

    PubMed

    Della Pelle, Flavio; Scroccarello, Annalisa; Sergi, Manuel; Mascini, Marcello; Del Carlo, Michele; Compagnone, Dario

    2018-08-01

    A single-step, rapid (10 min), sensitive silver nanoparticles (AgNPs) based spectrophotometric method for antioxidant capacity (AOC) assay has been developed. The assay is based on the ability of natural polyphenols to reduce Ag(I) and stabilize the produced AgNPs(0) at room temperature. Localized surface plasmon resonance (LSPR) of AgNPs at ≈420 nm is then measured. Using different conditions of pH (8.4) and temperature (45 °C) a further assay based on the production of AgNPs with selectivity for flavonols was also developed. The reactivity of the two AgNPs based assays vs. 15 polyphenols belonging to different chemical classes and 9 different samples has been studied and compared with ABTS, Folin and AuNPs based methods for AOC. The proposed assays had good reproducibility (RSD ≤ 13) and are simple, sensitive and cost effective. Moreover, used in conjunction with the classical AOC assays, can improve the information on the polyphenolic pool of food samples. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Precipitation hardening behaviour of Al-Mg-Si alloy processed by cryorolling and room temperature rolling

    NASA Astrophysics Data System (ADS)

    Hussain, Maruff; Nageswara rao, P.; Singh, Dharmendra; Jayaganthan, R.

    2018-04-01

    The precipitation hardenable aluminium alloy (Al-Mg-Si) plates were solutionized and subjected to rolling at room temperature and liquid nitrogen temperature (RTR, CR) up to a true strain of ∼2.7. The rolled sheets were uniformly aged at room temperature and above room temperature (125 °C) to induce precipitation. The rolled and aged samples were analysed using differential scanning calorimetry (DSC), X-ray diffraction (XRD), transmission electron microscopy (TEM), hardness and tensile tests. The strength and ductility were simultaneously improved after controlled ageing of the cryorolled (CR) and room temperature rolled (RTR) samples. However, the increment in strength is more in RTR material than CR material with same ductility. Transmission electron microscopy analysis revealed the formation of ultrafine grains (UFG) filled with dislocations and nanosized precipitates in the CR and RTR conditions after ageing treatment. The behaviour of CR and RTR alloy is same under natural ageing conditions.

  4. Low conductive support for thermal insulation of a sample holder of a variable temperature scanning tunneling microscope

    NASA Astrophysics Data System (ADS)

    Hanzelka, Pavel; Vonka, Jakub; Musilova, Vera

    2013-08-01

    We have designed a supporting system to fix a sample holder of a scanning tunneling microscope in an UHV chamber at room temperature. The microscope will operate down to a temperature of 20 K. Low thermal conductance, high mechanical stiffness, and small dimensions are the main features of the supporting system. Three sets of four glass balls placed in vertices of a tetrahedron are used for thermal insulation based on small contact areas between the glass balls. We have analyzed the thermal conductivity of the contacts between the balls mutually and between a ball and a metallic plate while the results have been applied to the entire support. The calculation based on a simple model of the setup has been verified with some experimental measurements. In comparison with other feasible supporting structures, the designed support has the lowest thermal conductance.

  5. Low conductive support for thermal insulation of a sample holder of a variable temperature scanning tunneling microscope.

    PubMed

    Hanzelka, Pavel; Vonka, Jakub; Musilova, Vera

    2013-08-01

    We have designed a supporting system to fix a sample holder of a scanning tunneling microscope in an UHV chamber at room temperature. The microscope will operate down to a temperature of 20 K. Low thermal conductance, high mechanical stiffness, and small dimensions are the main features of the supporting system. Three sets of four glass balls placed in vertices of a tetrahedron are used for thermal insulation based on small contact areas between the glass balls. We have analyzed the thermal conductivity of the contacts between the balls mutually and between a ball and a metallic plate while the results have been applied to the entire support. The calculation based on a simple model of the setup has been verified with some experimental measurements. In comparison with other feasible supporting structures, the designed support has the lowest thermal conductance.

  6. Tunable, Room Temperature THZ Emitters Based on Nonlinear Photonics

    NASA Astrophysics Data System (ADS)

    Sinha, Raju

    The Terahertz (1012 Hz) region of the electromagnetic spectrum covers the frequency range from roughly 300 GHz to 10 THz, which is in between the microwave and infrared regimes. The increasing interest in the development of ultra-compact, tunable room temperature Terahertz (THz) emitters with wide-range tunability has stimulated in-depth studies of different mechanisms of THz generation in the past decade due to its various potential applications such as biomedical diagnosis, security screening, chemical identification, life sciences and very high speed wireless communication. Despite the tremendous research and development efforts, all the available state-of-the-art THz emitters suffer from either being large, complex and costly, or operating at low temperatures, lacking tunability, having a very short spectral range and a low output power. Hence, the major objective of this research was to develop simple, inexpensive, compact, room temperature THz sources with wide-range tunability. We investigated THz radiation in a hybrid optical and THz micro-ring resonators system. For the first time, we were able to satisfy the DFG phase matching condition for the above-mentioned THz range in one single device geometry by employing a modal phase matching technique and using two separately designed resonators capable of oscillating at input optical waves and generated THz waves. In chapter 6, we proposed a novel plasmonic antenna geometry – the dimer rod-tapered antenna (DRTA), where we created a hot-spot in the nanogap between the dimer arms with a very large intensity enhancement of 4.1x105 at optical resonant wavelength. Then, we investigated DFG operation in the antenna geometry by incorporating a nonlinear nanodot in the hot-spot of the antenna and achieved continuously tunable enhanced THz radiation across 0.5-10 THz range. In chapter 8, we designed a multi-metallic resonators providing an ultrasharp toroidal response at THz frequency, then fabricated and experimentally demonstrated an efficient polarization dependent plasmonic toroid switch operating at THz frequency. In summary, we have successfully designed, analytically and numerically investigated novel THz emitters with the advantages of wide range tunability, compactness, room temperature operation, fast modulation and the possibility for monolithic integration, which are the most sought after properties in the new generation THz sources.

  7. Near-room-temperature Mid-infrared Photoconductor Signal and Noise Characterization

    DTIC Science & Technology

    2012-09-01

    Near-room-temperature Mid-infrared Photoconductor Signal and Noise Characterization by Justin R. Bickford, Neal K. Bambha, and Wayne H. Chang...Adelphi, MD 20783-1197 ARL-TR-6169 September 2012 Near-room-temperature Mid-infrared Photoconductor Signal and Noise Characterization...temperature Mid-infrared Photoconductor Signal and Noise Characterization 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  8. Introduction of a rapid, simple radioimmunoassay and quality control scheme for thyroxine.

    PubMed Central

    Nye, L; Hassan, M; Willmott, E; Landon, J

    1976-01-01

    A simple radioimmunoassay has been developed for service purposes to determine serum total thyroxine levels. Only three additions are required, of standard or sample, labelled thyroxine and antibody in polyethylene glycol. After 2 hours' incubation at room temperature the antibody-bound and free fractions are separated by centrifugation. Serum total thyroxine levels were measured in 195 euthyroid subjects and it was established that normal values lay within the range 57 to 155 nmol/1. Serial blood samples taken over a 24-hour period, from 11 subjects, indicated that there was no circadian rhythm so that samples for total thyroxine assay can be taken at any time of the day. Similar results were obtained using serum or plasma. Satisfactory results were obtained for three quality control sera when measured by seven different laboratories using this method. PMID:932232

  9. The adsorption of silver on potassium cyanocobalt(II)ferrate(II).

    PubMed

    Wald, M; Soyka, W; Kaysser, B

    1973-04-01

    A procedure is described for recovering silver from industrial sewage (mining and photo-industry etc) with the aid of the ion-exchanger potassium cyanocobalt(II)ferrate(II) (KCFC). Silver is easily removed by simple mixing with KCFC, even from solutions containing less than 1 g of silver per ton of solution. The process is performed at room temperature at pH < 7. There is no interference from a 600-fold amount of Ca, Cu(II), Zn, Cd, Pb, and Fe(II). Pure silver may be obtained by dissolution of the ion-exchanger in potassium cyanide solution, subsequent precipitation as sulphide, and roasting, or by melting it out of the ion-exchanger after heat treatment in a high-frequency furnace. With 1 kg of KCFC, 1.25 kg of silver may be extracted from solution. The process is simple and economic.

  10. Air-dried cells from the anhydrobiotic insect, Polypedilum vanderplanki, can survive long term preservation at room temperature and retain proliferation potential after rehydration.

    PubMed

    Watanabe, Kazuyo; Imanishi, Shigeo; Akiduki, Gaku; Cornette, Richard; Okuda, Takashi

    2016-08-01

    Pv11, a cell line derived from the anhydrobiotic insect, Polypedilum vanderplanki, was preserved in a dry form (only 6% residual moisture) at room temperature for up to 251 days and restarted proliferating after rehydration. A previous study already reported survival of Pv11 cells after desiccation, but without subsequent proliferation. Here, the protocol was improved to increase survival and achieve proliferation of Pv11 cells after dry storage. The method basically included preincubation, desiccation and rehydration processes and each step was investigated. So far, preincubation in a 600 mM trehalose solution for 48 h before dehydration was the most favourable preconditioning to achieve successful dry preservation of Pv11 cells, allowing about 16% of survival after rehydration and subsequent cell proliferation. Although the simple air-dry method established for Pv11 cells here was not applicable for successful dry-preservation of other insect cell lines, Pv11 is the first dry-preservable animal cell line and will surely contribute not only to basic but also applied sciences. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Upgrade possibilities for continuous wave rf electron guns based on room-temperature very high frequency technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sannibale, F.; Filippetto, D.; Johnson, M.

    The past decade was characterized by an increasing scientific demand for extending towards higher repetition rates (MHz class and beyond) the performance of already operating lower repetition rate accelerator-based instruments such as x-ray free electron lasers (FELs) and ultrafast electron diffraction (UED) and microscopy (UEM) instruments. Such a need stimulated a worldwide spread of a vibrant R & D activity targeting the development of high-brightness electron sources capable of operating at these challenging rates. Among the different technologies pursued, rf guns based on room-temperature structures resonating in the very high frequency (VHF) range (30-300 MHz) and operating in continuous wavemore » successfully demonstrated in the past few years the targeted brightness and reliability. Nonetheless, recently proposed upgrades for x-ray FELs and the always brightness-frontier applications such as UED and UEM are now requiring a further step forward in terms of beam brightness in electron sources. Here, we present a few possible upgrade paths that would allow one to extend, in a relatively simple and cost-effective way, the performance of the present VHF technology to the required new goals.« less

  12. Upgrade possibilities for continuous wave rf electron guns based on room-temperature very high frequency technology

    DOE PAGES

    Sannibale, F.; Filippetto, D.; Johnson, M.; ...

    2017-11-27

    The past decade was characterized by an increasing scientific demand for extending towards higher repetition rates (MHz class and beyond) the performance of already operating lower repetition rate accelerator-based instruments such as x-ray free electron lasers (FELs) and ultrafast electron diffraction (UED) and microscopy (UEM) instruments. Such a need stimulated a worldwide spread of a vibrant R & D activity targeting the development of high-brightness electron sources capable of operating at these challenging rates. Among the different technologies pursued, rf guns based on room-temperature structures resonating in the very high frequency (VHF) range (30-300 MHz) and operating in continuous wavemore » successfully demonstrated in the past few years the targeted brightness and reliability. Nonetheless, recently proposed upgrades for x-ray FELs and the always brightness-frontier applications such as UED and UEM are now requiring a further step forward in terms of beam brightness in electron sources. Here, we present a few possible upgrade paths that would allow one to extend, in a relatively simple and cost-effective way, the performance of the present VHF technology to the required new goals.« less

  13. Giant and universal magnetoelectric coupling in soft materials and concomitant ramifications for materials science and biology

    NASA Astrophysics Data System (ADS)

    Liu, Liping; Sharma, Pradeep

    2013-10-01

    Magnetoelectric coupling—the ability of a material to magnetize upon application of an electric field and, conversely, to polarize under the action of a magnetic field—is rare and restricted to a rather small set of exotic hard crystalline materials. Intense research activity has recently ensued on materials development, fundamental scientific issues, and applications related to this phenomenon. This tantalizing property, if present in adequate strength at room temperature, can be used to pave the way for next-generation memory devices such as miniature magnetic random access memories and multiple state memory bits, sensors, energy harvesting, spintronics, among others. In this Rapid Communication, we prove the existence of an overlooked strain mediated nonlinear mechanism that can be used to universally induce the giant magnetoelectric effect in all (sufficiently) soft dielectric materials. For soft polymer foams—which, for instance, may be used in stretchable electronics—we predict room-temperature magnetoelectric coefficients that are comparable to the best known (hard) composite materials created. We also argue, based on a simple quantitative model, that magnetoreception in some biological contexts (e.g., birds) most likely utilizes this very mechanism.

  14. Preparation, characterization and electroluminescence studies of ZnO nanorods for optoelectronic device applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Anju, E-mail: singh-nk24@yahoo.com; Vishwakarma, H. L., E-mail: horilal5@yahoo.com

    2015-07-31

    In this work, ZnO nanorods were achieved by a simple chemical precipitation method in the presence of capping agent Poly Vinyl Pyrrolidone (PVP) at room temperature. X-Ray Diffraction (XRD) result indicates that the synthesized undoped ZnO nanorods have wurtzite hexagonal structure without any impurities. It has been seen that the growth orientation of the prepared ZnO nanorods were (101). XRD analysis revealed that the nanorods having the crystallite size 49 nm. The Scanning Electron Microscopy (SEM) image confirmed the size and shape of these nanorods. The diameter of nanorods has been found that 1.52 µm to 1.61 µm and the lengthmore » of about 4.89 µm. It has also been found that at room temperature Ultra Violet Visible (UV-VIS) absorption band is around 355 nm (blue shifted as compared to bulk). Electroluminescence (EL) studies show that emission of light is possible at very small threshold voltage and increases rapidly with increasing applied voltage. It is seen that smaller ZnO nanoparticles give higher electroluminescence brightness starting at lower threshold voltage. The brightness is also affected by increasing the frequency of AC signal.« less

  15. Flexible room-temperature formaldehyde sensors based on rGO film and rGo/MoS2 hybrid film

    NASA Astrophysics Data System (ADS)

    Li, Xian; Wang, Jing; Xie, Dan; Xu, Jianlong; Xia, Yi; Li, Weiwei; Xiang, Lan; Li, Zhemin; Xu, Shiwei; Komarneni, Sridhar

    2017-08-01

    Gas sensors based on reduced graphene oxide (rGO) films and rGO/MoS2 hybrid films were fabricated on polyethylene naphthalate substrates by a simple self-assembly method, which yielded flexible devices for detection of formaldehyde (HCHO) at room temperature. The sensing test results indicated that the rGO and rGO/MoS2 sensors were highly sensitive and fully recoverable to a ppm-level of HCHO. The bending and fatigue test results revealed that the sensors were also mechanically robust, durable and effective for long-term use. The rGO/MoS2 sensors showed higher sensitivities than rGO sensors, which was attributed to the enhanced HCHO adsorption and electron transfer mediated by MoS2. Furthermore, two kinds of MoS2 nanosheets were prepared by either hydrothermal synthesis or chemical exfoliation and were compared for their detection of HCHO, which revealed that the hydrothermally produced MoS2 nanosheets with rich defects led to enhanced sensitivity of the rGO/MoS2 sensors. Moreover, these fabricated flexible sensors can be applied for the HCHO detection in food packaging.

  16. A convenient sol-gel route for the synthesis of salicylate-titania nanocomposites having visible absorption and blue luminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitra, Atanu; Bhaumik, Asim, E-mail: msab@iacs.res.i; Nandi, Mahasweta

    2009-05-15

    Syntheses of titania-based nanomaterials by simple sol-gel route using a mixture of CTAB and salicylate as well as salicylate ions as templates have been reported. The materials are characterized by the powder X-ray diffraction (XRD), thermal analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and spectroscopic (FT IR, UV-VIS) analyses. A disordered mesoscale orientation of nanoparticles (ca. 2-4 nm) composed of TiO{sub 2}-salicylate surface complex has been obtained when 1:1 mixing ratio of CTAB and salicylate at the CTAB concentration of 0.001 M was employed as a template. All these nanocomposites exhibit a considerable red shift at the onsetsmore » of their absorption band compared to pure (organic-free) nanocrystalline TiO{sub 2} and show blue luminescence at room temperature. This assembly of nanoparticles is highly interesting in the context of visible light sensitization and nanodevice fabrication. - Graphical abstract: A new titania-salicylate nanostructure material has been synthesized, which exhibit a considerable red shift towards the visible region vis-a-vis nanocrystalline (organic-free) TiO{sub 2} and blue luminescence at room temperature.« less

  17. Flexible room-temperature formaldehyde sensors based on rGO film and rGo/MoS2 hybrid film.

    PubMed

    Li, Xian; Wang, Jing; Xie, Dan; Xu, Jianlong; Xia, Yi; Li, Weiwei; Xiang, Lan; Li, Zhemin; Xu, Shiwei; Komarneni, Sridhar

    2017-08-11

    Gas sensors based on reduced graphene oxide (rGO) films and rGO/MoS 2 hybrid films were fabricated on polyethylene naphthalate substrates by a simple self-assembly method, which yielded flexible devices for detection of formaldehyde (HCHO) at room temperature. The sensing test results indicated that the rGO and rGO/MoS 2 sensors were highly sensitive and fully recoverable to a ppm-level of HCHO. The bending and fatigue test results revealed that the sensors were also mechanically robust, durable and effective for long-term use. The rGO/MoS 2 sensors showed higher sensitivities than rGO sensors, which was attributed to the enhanced HCHO adsorption and electron transfer mediated by MoS 2 . Furthermore, two kinds of MoS 2 nanosheets were prepared by either hydrothermal synthesis or chemical exfoliation and were compared for their detection of HCHO, which revealed that the hydrothermally produced MoS 2 nanosheets with rich defects led to enhanced sensitivity of the rGO/MoS 2 sensors. Moreover, these fabricated flexible sensors can be applied for the HCHO detection in food packaging.

  18. Oxygen content and oxidation in frying oil.

    PubMed

    Totani, Nagao; Yawata, Miho; Mori, Terutoshi; Hammond, Earl G

    2013-01-01

    The relation between oxygen content and oxidation was investigated in frying oils. When canola oil, a canola-soybean oil blend or a trioctanoylglycerol (glycerol tricaprate) sample were heated with stirring, their dissolved oxygen content decreased abruptly at about 120°C and the carbonyl values (CV) increased gradually with heating and reached values of 6-7 at 180°C in the blended and canola oils, while the CV of trioctanoylglycerol was zero up to 150°C. Probably this abrupt decrease in oxygen content above 120°C can be attributed to the solubility of oxygen in oil rather than because of oxidative reactions. The oxygen content of oil that has been stripped of part of its oxygen, increased at temperatures between 25 and 120°C. In oils that have lost their oxygen by being heated to 180°C, standing at room temperature will slowly restore their oxygen content as the oil cools. Intermittent simple heating of oil promoted oxygen absorbance during cooling periods and standing times, and it resulted in an elevated content of polar compounds (PC). Domestic deep-frying conditions also favor the presence of oxygen in oil below 120°C and during the oil's long standing at room temperature. The oxygen content in oil was low during deep-frying, but oxidation was active at the oil/air interface of bubbles generated by foods being fried. Repeated use of oil at temperatures between 25-180°C resulted in oil with low oxygen values.

  19. Enhanced High-Temperature Cyclic Stability of Al-Doped Manganese Dioxide and Morphology Evolution Study Through in situ NMR under High Magnetic Field.

    PubMed

    Huang, Shenggen; Sun, Jian; Yan, Jian; Liu, Jiaqin; Wang, Weijie; Qin, Qingqing; Mao, Wenping; Xu, Wei; Wu, Yucheng; Wang, Junfeng

    2018-03-21

    In this work, Al-doped MnO 2 (Al-MO) nanoparticles have been synthesized by a simple chemical method with the aim to enhance cycling stability. At room temperature and 50 °C, the specific capacitances of Al-MO are well-maintained after 10 000 cycles. Compared with pure MnO 2 nanospheres (180.6 F g -1 at 1 A g -1 ), Al-MO also delivers an enhanced specific capacitance of 264.6 F g -1 at 1 A g -1 . During the cycling test, Al-MO exhibited relatively stable structure initially and transformed to needlelike structures finally both at room temperature and high temperature. In order to reveal the morphology evolution process, in situ NMR under high magnetic field has been carried out to probe the dynamics of structural properties. The 23 Na spectra and the SEM observation suggest that the morphology evolution may follow pulverization/reassembling process. The Na + intercalation/deintercalation induced pulverization, leading to the formation of tiny MnO 2 nanoparticles. After that, the pulverized tiny nanoparticles reassembled into new structures. In Al-MO electrodes, doping of Al 3+ could slow down this structure evolution process, resulting in a better electrochemical stability. This work deepens the understanding on the structural changes in faradic reaction of pseudocapacitive materials. It is also important for the practical applications of MnO 2 -based supercapacitors.

  20. Pt/ZnO nanoarray nanogenerator as self-powered active gas sensor with linear ethanol sensing at room temperature.

    PubMed

    Zhao, Yayu; Lai, Xuan; Deng, Ping; Nie, Yuxin; Zhang, Yan; Xing, Lili; Xue, Xinyu

    2014-03-21

    A self-powered gas sensor that can actively detect ethanol at room temperature has been realized from a Pt/ZnO nanoarray nanogenerator. Pt nanoparticles are uniformly distributed on the whole surface of ZnO nanowires. The piezoelectric output of Pt/ZnO nanoarrays can act not only as a power source, but also as a response signal to ethanol at room temperature. Upon exposure to dry air and 1500 ppm ethanol at room temperature, the piezoelectric output of the device under the same compressive strain is 0.672 and 0.419 V, respectively. Moreover, a linear dependence of the sensitivity on the ethanol concentration is observed. Such a linear ethanol sensing at room temperature can be attributed to the atmosphere-dependent variety of the screen effect on the piezoelectric output of ZnO nanowires, the catalytic properties of Pt nanoparticles, and the Schottky barriers at Pt/ZnO interfaces. The present results can stimulate research in the direction of designing new material systems for self-powered room-temperature gas sensing.

  1. Assessment of the RNASound RNA Sampling Card for the Preservation of Influenza Virus RNA

    PubMed Central

    Lau, Hilda; Hurt, Aeron C.

    2016-01-01

    Shipping influenza virus specimens, isolates or purified RNA is normally conducted at ultra-low temperatures using dry ice to ensure minimal degradation of the samples but this is expensive and requires special packaging and shipping conditions. Therefore, alternative methods for shipping influenza viruses or RNA at ambient temperatures would be desirable. The RNASound RNA Sampling Card (FortiusBio LLC, San Diego, CA, USA) is a device that enables specimens or isolates to be applied to a card, whereby viruses are inactivated, while RNA is preserved and purified RNA can also easily be eluted. To evaluate this card, we applied influenza virus cell culture isolate supernatants to either the RNASound card or Whatman Grade No. 1 filter paper (GE Healthcare, Rydalmere, NSW, Australia) and compared the preservation to that of material stored in liquid form. Preservation was tested using influenza A and B viruses at two different storage temperatures [cool (2–8°C) or room temperature (18–22°C)] and these were compared with control material stored at -80°C, for 7, 14, or 28 days. The quality of the RNA recovered was assessed using real time RT-PCR and Sanger sequencing. The RNASound card was effective in preserving influenza RNA at room temperature for up to 28 days, with only a minor change in real-time RT-PCR cycle threshold values for selected gene targets when comparing between viruses applied to the card or stored at -80°C. Similar results were obtained with filter paper, whilst virus in liquid form performed the worst. Nevertheless, as the RNASound card also has the capability to inactivate viruses in addition to preserving RNA at room temperature for many weeks, this makes it feasible to send samples to laboratories using regular mail, and thus avoid the need for expensive shipping conditions requiring biohazard containers and dry ice. Moreover, the quick and simple RNA recovery from the RNASound card allows recipient labs to obtain RNA without the need for special reagents or equipment. PMID:27853455

  2. Magnetic Properties of Fe-49Co-2V Alloy and Pure Fe at Room and Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    De Groh, Henry C., III; Geng, Steven M.; Niedra, Janis M.; Hofer, Richard R.

    2018-01-01

    The National Aeronautics and Space Administration (NASA) has a need for soft magnetic materials for fission power and ion propulsion systems. In this work the magnetic properties of the soft magnetic materials Hiperco 50 (Fe-49wt%Cr-2V) and CMI-C (commercially pure magnetic iron) were examined at various temperatures up to 600 C. Toroidal Hiperco 50 samples were made from stacks of 0.35 mm thick sheet, toroidal CMI-C specimens were machined out of solid bar stock, and both were heat treated prior to testing. The magnetic properties of a Hiperco 50 sample were measured at various temperatures up to 600 C and then again after returning to room temperature; the magnetic properties of CMI-C were tested at temperatures up to 400 C. For Hiperco 50 coercivity decreased as temperature increased, and remained low upon returning to room temperature; maximum permeability improved (increased) with increasing temperature and was dramatically improved upon returning to room temperature; remanence was not significantly affected by temperature; flux density at H = 0.1 kA/m increased slightly with increasing temperature, and was about 20% higher upon returning to room temperature; flux density at H = 0.5 kA/m was insensitive to temperature. It appears that the properties of Hiperco 50 improved with increasing temperature due to grain growth. There was no significant magnetic property difference between annealed and aged CMI-C iron material; permeability tended to decrease with increasing temperature; the approximate decline in the permeability at 400 C compared to room temperature was 30%; saturation flux density, B(sub S), was approximately equal for all temperatures below 400 C; B(sub S) was lower at 400 C.

  3. Uniform manganese hexacyanoferrate hydrate nanocubes featuring superior performance for low-cost supercapacitors and nonenzymatic electrochemical sensors.

    PubMed

    Pang, Huan; Zhang, Yizhou; Cheng, Tao; Lai, Wen-Yong; Huang, Wei

    2015-10-14

    Uniform manganese hexacyanoferrate hydrate nanocubes are prepared via a simple chemical precipitation method at room temperature. Due to both micro/mesopores of the Prussian blue analogue and nanocubic structures, the manganese hexacyanoferrate hydrate nanocubes allow the efficient charge transfer and mass transport for electrolyte solution and chemical species. Thus, the manganese hexacyanoferrate hydrate nanocube electrode shows a good rate capability and cycling stability for electrochemical capacitors. Furthermore, electrodes modified with manganese hexacyanoferrate hydrate nanocubes demonstrate a sensitive electrochemical response to hydrogen peroxide (H2O2) in buffer solutions with a high selectivity.

  4. Photoinduced Miyaura Borylation by a Rare Earth Photoreductant: the Hexachlorocerate(III) Anion.

    PubMed

    Qiao, Yusen; Yang, Qiaomu; Schelter, Eric

    2018-05-12

    The first photoinduced sp2 carbon-heteroatom bond forming reaction by a rare earth photoreductant, a Miyaura borylation, has been achieved. This simple, scalable, and novel borylation method that makes use of the hexachlorocerate(III) anion, [CeIIICl6]3-, has a broad substrate scope and functional group tolerance and can be conducted at room temperature. Combined with Suzuki-Miyaura cross-coupling, the methodology is applicable to the synthesis of various biaryl products, including through the use of aryl chloride substrates. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Negative Avalanche Feedback Detectors for Photon-Counting Optical Communications

    NASA Technical Reports Server (NTRS)

    Farr, William H.

    2009-01-01

    Negative Avalanche Feedback photon counting detectors with near-infrared spectral sensitivity offer an alternative to conventional Geiger mode avalanche photodiode or phototube detectors for free space communications links at 1 and 1.55 microns. These devices demonstrate linear mode photon counting without requiring any external reset circuitry and may even be operated at room temperature. We have now characterized the detection efficiency, dark count rate, after-pulsing, and single photon jitter for three variants of this new detector class, as well as operated these uniquely simple to use devices in actual photon starved free space optical communications links.

  6. Shaken not stirred: a facile synthesis of 1,4-bis(furo[2,3-d]-pyrimidine-2,4(1H,3H)-dione-5-yl)benzenes by one-pot reaction of isocyanides, N,N'-dimethylbarbituric acid, and terephthaldialdehyde.

    PubMed

    Teimouri, Mohammad Bagher; Bazhrang, Reihaneh

    2006-07-15

    A simple and efficient synthesis of 1,4-bis(furo[2,3-d]pyrimidine-2,4(1H,3H)-dione-5-yl)benzene derivatives was achieved via a one-pot three-component reaction of isocyanides, N,N'-dimethylbarbituric acid, and terephthaldialdehyde in DMF at room temperature for 30 min. These improved reaction conditions allow the preparation of highly substituted furopyrimidinones in high yields and purity under mild reaction conditions.

  7. Thermally Generated Spin Signals in a Nondegenerate Silicon Spin Valve

    NASA Astrophysics Data System (ADS)

    Yamashita, Naoto; Ando, Yuichiro; Koike, Hayato; Miwa, Shinji; Suzuki, Yoshishige; Shiraishi, Masashi

    2018-05-01

    Thermally generated spin signals are observed in a nondegenerate Si spin valve. The spin-dependent Seebeck effect is used for thermal spin-signal generation. A thermal gradient of about 200 mK at the interface of Fe and Si enables the generation of a spin voltage of 8 μ V at room temperature. A simple expansion of the conventional spin-drift-diffusion model that takes into account the spin-dependent Seebeck effect shows that semiconductor materials are more promising for thermal spin-signal generation comparing than metallic materials, and thus enable efficient heat recycling in semiconductor spin devices.

  8. Transverse junction vertical-cavity surface-emitting laser

    NASA Astrophysics Data System (ADS)

    Schaus, C. F.; Torres, A. J.; Cheng, Julian; Sun, S.; Hains, C.

    1991-04-01

    An all-epitaxial, transverse-junction GaAs/AlGaAs vertical-cavity surface-emitting laser (TJ-VCSEL) incorporating wavelength-resonant periodic gain is reported. Metalorganic chemical vapor deposition is used for epitaxial growth of a structure containing five GaAs quantum wells. The simple p(+)-p-n(+) transverse junction is fabricated using reactive ion etching and diffusion techniques. Contacts are situated on the wafer surface resulting in a nearly planar structure. The device exhibits a room-temperature threshold of 48 mA (pulsed) and a resolution-limited spectral width of 0.11 nm at an 855.8-nm lasing wavelength.

  9. Terahertz spectral detection of potassium sorbate in milk powder

    NASA Astrophysics Data System (ADS)

    Li, Pengpeng; Zhang, Yuan; Ge, Hongyi

    2017-02-01

    The spectral characteristics of potassium sorbate in milk powder in the range of 0.2 2.0 THz have been measured with THz time-domain spectroscopy(THz-TDS). Its absorption and refraction spectra are obtained at room temperature in the nitrogen atmosphere. The results showed that potassium sorbate at 0.98 THz obvious characteristic absorption peak. The simple linear regression(SLR) model was taken to analyze the content of potassium sorbate in milk powder. The results showed that the absorption coefficient increases as the mixture potassium sorbate increases. The research is important to food quality and safety testing.

  10. 68Ga-THP-PSMA: A PET Imaging Agent for Prostate Cancer Offering Rapid, Room-Temperature, 1-Step Kit-Based Radiolabeling.

    PubMed

    Young, Jennifer D; Abbate, Vincenzo; Imberti, Cinzia; Meszaros, Levente K; Ma, Michelle T; Terry, Samantha Y A; Hider, Robert C; Mullen, Greg E; Blower, Philip J

    2017-08-01

    The clinical impact and accessibility of 68 Ga tracers for the prostate-specific membrane antigen (PSMA) and other targets would be greatly enhanced by the availability of a simple, 1-step kit-based labeling process. Radiopharmacy staff are accustomed to such procedures in the daily preparation of 99m Tc radiopharmaceuticals. Currently, chelating agents used in 68 Ga radiopharmaceuticals do not meet this ideal. The aim of this study was to develop and evaluate preclinically a 68 Ga radiotracer for imaging PSMA expression that could be radiolabeled simply by addition of 68 Ga generator eluate to a cold kit. Methods: A conjugate of a tris(hydroxypyridinone) (THP) chelator with the established urea-based PSMA inhibitor was synthesized and radiolabeled with 68 Ga by adding generator eluate directly to a vial containing the cold precursors THP-PSMA and sodium bicarbonate, with no further manipulation. It was analyzed after 5 min by instant thin-layer chromatography and high-performance liquid chromatography. The product was subjected to in vitro studies to determine PSMA affinity using PSMA-expressing DU145-PSMA cells, with their nonexpressing analog DU145 as a control. In vivo PET imaging and ex vivo biodistribution studies were performed in mice bearing xenografts of the same cell lines, comparing 68 Ga-THP-PSMA with 68 Ga-HBED-CC-PSMA. Results: Radiolabeling was complete (>95%) within 5 min at room temperature, showing a single radioactive species by high-performance liquid chromatography that was stable in human serum for more than 6 h and showed specific binding to PSMA-expressing cells (concentration giving 50% inhibition of 361 ± 60 nM). In vivo PET imaging showed specific uptake in PSMA-expressing tumors, reaching 5.6 ± 1.2 percentage injected dose per cubic centimeter at 40-60 min and rapid clearance from blood to kidney and bladder. The tumor uptake, biodistribution, and pharmacokinetics were not significantly different from those of 68 Ga-HBED-CC-PSMA except for reduced uptake in the spleen. Conclusion: 68 Ga-THP-PSMA has equivalent imaging properties but greatly simplified radiolabeling compared with other 68 Ga-PSMA conjugates. THP offers the prospect of rapid, simple, 1-step, room-temperature syringe-and-vial radiolabeling of 68 Ga radiopharmaceuticals. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  11. Determination of the out-of-plane anisotropy contributions (first and second anisotropy terms) in amorphous Nd-Co thin films by micromagnetic numerical simulations

    NASA Astrophysics Data System (ADS)

    Alvarez-Prado, L. M.; Cid, R.; Morales, R.; Diaz, J.; Vélez, M.; Rubio, H.; Hierro-Rodriguez, A.; Alameda, J. M.

    2018-06-01

    Amorphous Nd-Co thin films exhibit stripe shaped periodic magnetic domains with local out-of-plane magnetization components due to their perpendicular magnetic anisotropy. This anisotropy has been quantified in a fairly simple way by reproducing the experimental magnetization curves by means of micromagnetic numerical simulations. The simulations show that the first (K1) and second (K2) anisotropy constants must be used to properly describe the variation of the stripe domains with the in plane applied magnetic field. A strong temperature dependence of both K1 and K2 has been obtained between 10 K and room temperature. This anisotropy behavior is characteristic of two magnetically coupled 3d-4f sublattices with competing anisotropies.

  12. A method for UV-bonding in the fabrication of glass electrophoretic microchips.

    PubMed

    Huang, Z; Sanders, J C; Dunsmor, C; Ahmadzadeh, H; Landers, J P

    2001-10-01

    This paper presents an approach for the development of methodologies amenable to simple and inexpensive microchip fabrication, potentially applicable to dissimilar materials bonding and chip integration. The method involves a UV-curable glue that can be used for glass microchip fabrication bonding at room temperature. This involves nothing more than fabrication of glue "guide channels" into the microchip architecture that upon exposure to the appropriate UV light source, bonds the etched plate and cover plate together. The microchip performance was verified by capillary zone electrophoresis (CZE) of small fluorescent molecules with no microchannel surface modification carried out, as well as with a DNA fragment separation following surface modification. The performance of these UV-bonded electrophoretic microchips indicates that this method may provide an alternative to high temperature bonding.

  13. Fastener load tests and retention systems tests for cryogenic wind-tunnel models

    NASA Technical Reports Server (NTRS)

    Wallace, J. W.

    1984-01-01

    A-286 stainless steel screws were tested to determine the tensile load capability and failure mode of various screw sizes and types at both cryogenic and room temperature. Additionally, five fastener retention systems were tested by using A-286 screws with specimens made from the primary metallic alloys that are currently used for cryogenic models. The locking system effectiveness was examined by simple no-load cycling to cryogenic temperatures (-275 F) as well as by dynamic and static loading at cryogenic temperatures. In general, most systems were found to be effective retention devices. There are some differences between the various devices with respect to ease of application, cleanup, and reuse. Results of tests at -275 F imply that the cold temperatures act to improve screw retention. The improved retention is probably the result of differential thermal contraction and/or increased friction (thread-binding effects). The data provided are useful in selecting screw sizes, types, and locking devices for model systems to be tested in cryogenic wind tunnels.

  14. Hyperfine interaction in K 2Ba[Fe(NO 2) 6

    NASA Astrophysics Data System (ADS)

    Padmakumar, K.; Manoharan, P. T.

    2000-04-01

    Magnetic hyperfine splitting observed in the low temperature Mössbauer spectrum of potassium barium hexanitro ferrate(II), in the absence of any external field, is attributed to the 5T 2g state of the central metal atom further split into a ground 5E g state and a first excited 5B 2g state under a distorted octahedral symmetry in contrast to the earlier prediction of 1A 1g ground state on the basis of room temperature Mössbauer spectral and other properties. The central iron atom is co-ordianted to six nitrito groups (NO 2-), having an oxidation state of +2. The temperature dependence of Mössbauer spectra is explained on the basis of electronic relaxation among the spin-orbit coupled levels of the 5E g ground state. Various kinds of electronic relaxation mechanisms have been compared to explain the proposed mechanism. The observed temperature dependent spectra with varying internal magnetic field and line width can be explained by simple spin lattice relaxation.

  15. In Situ Irradiation and Measurement of Triple Junction Solar Cells at Low Intensity, Low Temperature (LILT) Conditions

    NASA Technical Reports Server (NTRS)

    Harris, R.D.; Imaizumi, M.; Walters, R.J.; Lorentzen, J.R.; Messenger, S.R.; Tischler, J.G.; Ohshima, T.; Sato, S.; Sharps, P.R.; Fatemi, N.S.

    2008-01-01

    The performance of triple junction InGaP/(In)GaAs/Ge space solar cells was studied following high energy electron irradiation at low temperature. Cell characterization was carried out in situ at the irradiation temperature while using low intensity illumination, and, as such, these conditions reflect those found for deep space, solar powered missions that are far from the sun. Cell characterization consisted of I-V measurements and quantum efficiency measurements. The low temperature irradiations caused substantial degradation that differs in some ways from that seen after room temperature irradiations. The short circuit current degrades more at low temperature while the open circuit voltage degrades more at room temperature. A room temperature anneal after the low temperature irradiation produced a substantial recovery in the degradation. Following irradiation at both temperatures and an extended room temperature anneal, quantum efficiency measurement suggests that the bulk of the remaining damage is in the (In)GaAs sub-cell

  16. Rapid direct conversion of Cu(2-x)Se to CuAgSe nanoplatelets via ion exchange reactions at room temperature.

    PubMed

    Moroz, N A; Olvera, A; Willis, G M; Poudeu, P F P

    2015-06-07

    The use of template nanostructures for the creation of photovoltaic and thermoelectric semiconductors is becoming a quickly expanding synthesis strategy. In this work we report a simple two-step process enabling the formation of ternary CuAgSe nanoplatelets with a great degree of control over the composition and shape. Starting with hexagonal nanoplatelets of cubic Cu2-xSe, ternary CuAgSe nanoplatelets were generated through a rapid ion exchange reaction at 300 K using AgNO3 solution. The Cu2-xSe nanoplatelet template and the final CuAgSe nanoplatelets were analyzed by electron microscopy and X-ray diffraction (XRD). It was found that both the low temperature pseudotetragonal and the high temperature cubic forms of CuAgSe phase were created while maintaining the morphology of the Cu2-xSe nanoplatelet template. Thermal and electronic transport measurements of hot-pressed pellets of the synthesized CuAgSe nanoplatelets showed a drastic reduction in the thermal conductivity and a sharp transition from n-type (S = -45 μV K(-1)) to p-type (S = +200 μV K(-1)) semiconducting behavior upon heating above the structural transition from the low temperature orthorhombic to the high temperature super-ionic cubic phase. This simple reaction process utilizing a template nanostructure matrix represents an energy efficient, cost-efficient, and versatile strategy to create interesting materials with lower defect density and superior thermoelectric performance.

  17. Sulfophenyl-Functionalized Reduced Graphene Oxide Networks on Electrospun 3D Scaffold for Ultrasensitive NO₂ Gas Sensor.

    PubMed

    Zou, Bin; Guo, Yunlong; Shen, Nannan; Xiao, Anshan; Li, Mingjun; Zhu, Liang; Wan, Pengbo; Sun, Xiaoming

    2017-12-19

    Ultrasensitive room temperature real-time NO₂ sensors are highly desirable due to potential threats on environmental security and personal respiratory. Traditional NO₂ gas sensors with highly operated temperatures (200-600 °C) and limited reversibility are mainly constructed from semiconducting oxide-deposited ceramic tubes or inter-finger probes. Herein, we report the functionalized graphene network film sensors assembled on an electrospun three-dimensional (3D) nanonetwork skeleton for ultrasensitive NO₂ sensing. The functional 3D scaffold was prepared by electrospinning interconnected polyacrylonitrile (PAN) nanofibers onto a nylon window screen to provide a 3D nanonetwork skeleton. Then, the sulfophenyl-functionalized reduced graphene oxide (SFRGO) was assembled on the electrospun 3D nanonetwork skeleton to form SFRGO network films. The assembled functionalized graphene network film sensors exhibit excellent NO₂ sensing performance (10 ppb to 20 ppm) at room temperature, reliable reversibility, good selectivity, and better sensing cycle stability. These improvements can be ascribed to the functionalization of graphene with electron-withdrawing sulfophenyl groups, the high surface-to-volume ratio, and the effective sensing channels from SFRGO wrapping onto the interconnected 3D scaffold. The SFRGO network-sensing film has the advantages of simple preparation, low cost, good processability, and ultrasensitive NO₂ sensing, all advantages that can be utilized for potential integration into smart windows and wearable electronic devices for real-time household gas sensors.

  18. Real behavior in virtual environments: psychology experiments in a simple virtual-reality paradigm using video games.

    PubMed

    Kozlov, Michail D; Johansen, Mark K

    2010-12-01

    The purpose of this research was to illustrate the broad usefulness of simple video-game-based virtual environments (VEs) for psychological research on real-world behavior. To this end, this research explored several high-level social phenomena in a simple, inexpensive computer-game environment: the reduced likelihood of helping under time pressure and the bystander effect, which is reduced helping in the presence of bystanders. In the first experiment, participants had to find the exit in a virtual labyrinth under either high or low time pressure. They encountered rooms with and without virtual bystanders, and in each room, a virtual person requested assistance. Participants helped significantly less frequently under time pressure but the presence/absence of a small number of bystanders did not significantly moderate helping. The second experiment increased the number of virtual bystanders, and participants were instructed to imagine that these were real people. Participants helped significantly less in rooms with large numbers of bystanders compared to rooms with no bystanders, thus demonstrating a bystander effect. These results indicate that even sophisticated high-level social behaviors can be observed and experimentally manipulated in simple VEs, thus implying the broad usefulness of this paradigm in psychological research as a good compromise between experimental control and ecological validity.

  19. Stability of headspace volatiles in a ‘Fallglo’ tangerine juice matrix system at room temperature

    USDA-ARS?s Scientific Manuscript database

    Gas chromatography systems are usually equipped with autosamplers. Samples held in the autosampler tray can stay up to one day or longer at room temperature, if the tray is not equipped with a cooling mechanism. The objective of this research was to determine if holding samples at room temperature i...

  20. A Simple Prelithiation Strategy To Build a High-Rate and Long-Life Lithium-Ion Battery with Improved Low-Temperature Performance.

    PubMed

    Liu, Yao; Yang, Bingchang; Dong, Xiaoli; Wang, Yonggang; Xia, Yongyao

    2017-12-22

    Lithium-ion batteries (LIBs) are being used to power the commercial electric vehicles (EVs). However, the charge/discharge rate and life of current LIBs still cannot satisfy the further development of EVs. Furthermore, the poor low-temperature performance of LIBs limits their application in cold climates and high altitude areas. Herein, a simple prelithiation method is developed to fabricate a new LIB. In this strategy, a Li 3 V 2 (PO 4 ) 3 cathode and a pristine hard carbon anode are used to form a primary cell, and the initial Li + extraction from Li 3 V 2 (PO 4 ) 3 is used to prelithiate the hard carbon. Then, the self-formed Li 2 V 2 (PO 4 ) 3 cathode and prelithiated hard carbon anode are used to form a 4 V LIB. The LIB exhibits a maximum energy density of 208.3 Wh kg -1 , a maximum power density of 8291 W kg -1 and a long life of 2000 cycles. When operated at -40 °C, the LIB can keep 67 % capacity of room temperature, which is much better than conventional LIBs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Room-temperature multiferroic and magnetocapacitance effects in M-type hexaferrite BaFe10.2Sc1.8O19

    NASA Astrophysics Data System (ADS)

    Tang, Rujun; Zhou, Hao; You, Wenlong; Yang, Hao

    2016-08-01

    The room-temperature multiferroic and magnetocapacitance (MC) effects of polycrystalline M-type hexaferrite BaFe10.2Sc1.8O19 have been investigated. The results show that the magnetic moments of insulating BaFe10.2Sc1.8O19 can be manipulated by the electric field at room temperature, indicating the existence of magnetoelectric coupling. Moreover, large MC effects are also observed around the room temperature. A frequency dependence analysis shows that the Maxwell-Wagner type magnetoresistance effect is the dominant mechanism for MC effects at low frequencies. Both the magnetoelectric-type and non-magnetoelectric-type spin-phonon couplings contribute to the MC effects at high frequencies with the former being the dominant mechanism. The above results show that the hexaferrite BaFe10.2Sc1.8O19 is a room-temperature multiferroic material that can be potentially used in magnetoelectric devices.

  2. Hydrogen-atmosphere induction furnace has increased temperature range

    NASA Technical Reports Server (NTRS)

    Caves, R. M.; Gresslin, C. H.

    1966-01-01

    Improved hydrogen-atmosphere induction furnace operates at temperatures up to 5,350 deg F. The furnace heats up from room temperature to 4,750 deg F in 30 seconds and cools down to room temperature in 2 minutes.

  3. Highly sensitive response of solution-processed bismuth sulfide nanobelts for room-temperature nitrogen dioxide detection.

    PubMed

    Kan, Hao; Li, Min; Song, Zhilong; Liu, Sisi; Zhang, Baohui; Liu, Jingyao; Li, Ming-Yu; Zhang, Guangzu; Jiang, ShengLin; Liu, Huan

    2017-11-15

    Low dimensional nanomaterials have emerged as candidates for gas sensors owing to their unique size-dependent properties. In this paper, Bi 2 S 3 nanobelts were synthesized via a facile solvothermal process and spin-coated onto alumina substrates at room temperature. The conductometric devices can even sensitively response to the relatively low concentrations of NO 2 at room temperature, and their sensing performance can be effectively enhanced by the ligand exchange treatment with inorganic salts. The Pb(NO 3 ) 2 -treated device exhibited superior sensing performance of 58.8 under 5ppm NO 2 at room-temperature, with the response and recovery time of 28 and 106s. The competitive adsorption of NO 2 against O 2 on Bi 2 S 3 nanobelts, with the enhancement both in gas adsorption and charge transfer caused by the porous network of the very thin Bi 2 S 3 nanobelts, can be a reasonable explanation for the improved performance at room temperature. Their sensitive room-temperature response behaviors combined with the excellent solution processability, made Bi 2 S 3 nanobelts very attractive for the construction of low-cost gas sensors with lower power consumption. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Investigation of tension-compression fatigue behavior of a cross-ply metal matrix composite at room and elevated temperatures. Master's thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyum, E.A.

    1993-12-01

    This research, the first load-controlled tension-compression fatigue testing to be performed on a MMC, extends the existing knowledge of MMC fatigue damage mechanisms to include the tension compression loading condition. To accomplish this, a (0/90)2, SCS-6/Ti-15-3 laminate was subjected to tension-tension fatigue at room temperature, and tension-compression fatigue at both room temperature and 427 deg C. Stress and strain data was taken to evaluate the macro-mechanic behavior of the material. Microscopy and fractography were performed to characterize the damage on a micro-mechanic level. On a maximum applied stress basis, the room temperature tension-tension specimens had longer fatigue lives than themore » room temperature tension-compression specimens. The room and high temperature tension-compression fatigue lives were nearly identical in the fiber-dominated high stress region of the SN curve. However, the increased ductility and diffused plasticity of the titanium matrix at 427 deg C delayed the onset and severity of matrix cracking, and thus increased the elevated temperature fatigue lives in the matrix dominated region of the SN curve. In all cases, matrix damage initiated at reaction zone cracks which nucleated both matrix plasticity and matrix cracking. Metal matrix composite, Elevated temperature, Fatigue testing, Compression, Fully-reversed, Titanium, Silicon carbide.« less

  5. Room-temperature electron spin relaxation of nitroxides immobilized in trehalose: Effect of substituents adjacent to NO-group

    NASA Astrophysics Data System (ADS)

    Kuzhelev, Andrey A.; Strizhakov, Rodion K.; Krumkacheva, Olesya A.; Polienko, Yuliya F.; Morozov, Denis A.; Shevelev, Georgiy Yu.; Pyshnyi, Dmitrii V.; Kirilyuk, Igor A.; Fedin, Matvey V.; Bagryanskaya, Elena G.

    2016-05-01

    Trehalose has been recently promoted as efficient immobilizer of biomolecules for room-temperature EPR studies, including distance measurements between attached nitroxide spin labels. Generally, the structure of nitroxide influences the electron spin relaxation times, being crucial parameters for room-temperature pulse EPR measurements. Therefore, in this work we investigated a series of nitroxides with different substituents adjacent to NO-moiety including spirocyclohexane, spirocyclopentane, tetraethyl and tetramethyl groups. Electron spin relaxation times (T1, Tm) of these radicals immobilized in trehalose were measured at room temperature at X- and Q-bands (9/34 GHz). In addition, a comparison was made with the corresponding relaxation times in nitroxide-labeled DNA immobilized in trehalose. In all cases phase memory times Tm were close to 700 ns and did not essentially depend on structure of substituents. Comparison of temperature dependences of Tm at T = 80-300 K shows that the benefit of spirocyclohexane substituents well-known at medium temperatures (∼100-180 K) becomes negligible at 300 K. Therefore, unless there are specific interactions between spin labels and biomolecules, the room-temperature value of Tm in trehalose is weakly dependent on the structure of substituents adjacent to NO-moiety of nitroxide. The issues of specific interactions and stability of nitroxide labels in biological media might be more important for room temperature pulsed dipolar EPR than differences in intrinsic spin relaxation of radicals.

  6. Murder or Not? Cold Temperature Makes Criminals Appear to Be Cold-Blooded and Warm Temperature to Be Hot-Headed

    PubMed Central

    Gockel, Christine; Kolb, Peter M.; Werth, Lioba

    2014-01-01

    Temperature-related words such as cold-blooded and hot-headed can be used to describe criminal behavior. Words associated with coldness describe premeditated behavior and words associated with heat describe impulsive behavior. Building on recent research about the close interplay between physical and interpersonal coldness and warmth, we examined in a lab experiment how ambient temperature within a comfort zone influences judgments of criminals. Participants in rooms with low temperature regarded criminals to be more cold-blooded than participants in rooms with high temperature. Specifically, they were more likely to attribute premeditated crimes, ascribed crimes resulting in higher degrees of penalty, and attributed more murders to criminals. Likewise, participants in rooms with high temperature regarded criminals to be more hot-headed than participants in rooms with low temperature: They were more likely to attribute impulsive crimes. Results imply that cognitive representations of temperature are closely related to representations of criminal behavior and attributions of intent. PMID:24788725

  7. Murder or not? Cold temperature makes criminals appear to be cold-blooded and warm temperature to be hot-headed.

    PubMed

    Gockel, Christine; Kolb, Peter M; Werth, Lioba

    2014-01-01

    Temperature-related words such as cold-blooded and hot-headed can be used to describe criminal behavior. Words associated with coldness describe premeditated behavior and words associated with heat describe impulsive behavior. Building on recent research about the close interplay between physical and interpersonal coldness and warmth, we examined in a lab experiment how ambient temperature within a comfort zone influences judgments of criminals. Participants in rooms with low temperature regarded criminals to be more cold-blooded than participants in rooms with high temperature. Specifically, they were more likely to attribute premeditated crimes, ascribed crimes resulting in higher degrees of penalty, and attributed more murders to criminals. Likewise, participants in rooms with high temperature regarded criminals to be more hot-headed than participants in rooms with low temperature: They were more likely to attribute impulsive crimes. Results imply that cognitive representations of temperature are closely related to representations of criminal behavior and attributions of intent.

  8. Short-term hot hardness characteristics of rolling-element steels

    NASA Technical Reports Server (NTRS)

    Chevalier, J. L.; Dietrich, M. W.; Zaretsky, E. V.

    1972-01-01

    Short-term hot hardness studies were performed with five vacuum-melted steels at temperatures from 294 to 887 K (70 to 1140 F). Based upon a minimum Rockwell C hardness of 58, the temperature limitation on all materials studied was dependent on the initial room temperature hardness and the tempering temperature of each material. For the same room temperature hardness, the short-term hot hardness characteristics were identical and independent of material composition. An equation was developed to predict the short-term hardness at temperature as a function of initial room temperature hardness for AISI 52100, as well as the high-speed tool steels.

  9. One-pot synthesis of monodisperse CoFe2O4@Ag core-shell nanoparticles and their characterization.

    PubMed

    Hara, Shuta; Aisu, Jumpei; Kato, Masahiro; Aono, Takashige; Sugawa, Kosuke; Takase, Kouichi; Otsuki, Joe; Shimizu, Shigeru; Ikake, Hiroki

    2018-06-08

    In recent years, monodispersed magnetic nanoparticles with a core/shell structure are expected for their wide applications including magnetic fluid, recoverable catalysts, and biological analysis. However, their synthesis method needs numerous processes such as solvent substitution, exchange of protective agents, and centrifugation. A simple and rapid method for the synthesis of monodispersed core-shell nanoparticles makes it possible to accelerate their further applications. This paper describes a simple and rapid one-pot synthesis of core (CoFe 2 O 4 )-shell (Ag) nanoparticles with high monodispersity. The synthesized nanoparticles showed plasmonic light absorption owing to the Ag shell. Moreover, the magnetic property of the nanoparticles had a soft magnetic behavior at room temperature and a hard magnetic behavior at 5 K. In addition, the nanoparticles showed high monodispersity with a low polydispersity index (PDI) value of 0.083 in hexane.

  10. A simple method to synthesize modified Fe3O4 for the removal of organic pollutants on water surface

    NASA Astrophysics Data System (ADS)

    Zhu, Ling; Li, Chuanhao; Wang, Juan; Zhang, Hui; Zhang, Jian; Shen, Yuhua; Li, Cun; Wang, Cuiping; Xie, Anjian

    2012-06-01

    In this article, a simple, economic and environment-friendly approach is explored to prepare Fe3O4 nanoparticles by using air oxidation at room temperature. Furthermore, the Fe3O4 magnetic nanoparticles (MNPs) have been modified with sodium oleate successfully to form super-hydrophobic surfaces. The alkali source played an important role in controlling the morphologies of Fe3O4 MNPs. Either Fe3O4 MNPs or sodium oleate modified Fe3O4 MNPs possessed good magnetic property, and the as-prepared modified Fe3O4 nanoparticles are both hydrophobic and lipophilic. Therefore, Fe3O4/sodium oleate could be dispersed stable in the oil medium and have been applied in the cleanup engine oil from the water surface. It will open up a potential and broad application in wastewater treatment.

  11. One-pot synthesis of monodisperse CoFe2O4@Ag core-shell nanoparticles and their characterization

    NASA Astrophysics Data System (ADS)

    Hara, Shuta; Aisu, Jumpei; Kato, Masahiro; Aono, Takashige; Sugawa, Kosuke; Takase, Kouichi; Otsuki, Joe; Shimizu, Shigeru; Ikake, Hiroki

    2018-06-01

    In recent years, monodispersed magnetic nanoparticles with a core/shell structure are expected for their wide applications including magnetic fluid, recoverable catalysts, and biological analysis. However, their synthesis method needs numerous processes such as solvent substitution, exchange of protective agents, and centrifugation. A simple and rapid method for the synthesis of monodispersed core-shell nanoparticles makes it possible to accelerate their further applications. This paper describes a simple and rapid one-pot synthesis of core (CoFe2O4)-shell (Ag) nanoparticles with high monodispersity. The synthesized nanoparticles showed plasmonic light absorption owing to the Ag shell. Moreover, the magnetic property of the nanoparticles had a soft magnetic behavior at room temperature and a hard magnetic behavior at 5 K. In addition, the nanoparticles showed high monodispersity with a low polydispersity index (PDI) value of 0.083 in hexane.

  12. Characterisation of commercial Perna canaliculus samples and development of extemporaneous oral veterinary paste formulations containing Perna.

    PubMed

    Juliano, Claudia; Manconi, Paola; Cossu, Massimo

    2016-09-01

    Perna canaliculus is a nutritional supplement recently studied and highly recommended for its anti-inflammatory effects in both animals and humans. In this study, the physicochemical properties, the microbiological quality, the total lipid content and fatty acids composition of three commercial samples of Perna powder were determined. Subsequently, three simple formulations of extemporaneous oral pastes containing Perna were prepared and designed for veterinary use. Their microbiological stability was assessed after 1-month storage at either room temperature or 35 °C. The results demonstrated that commercial Perna samples lack homogeneity, in regard to some technological properties and fatty acid composition; therefore, a preliminary characterisation of commercial Perna samples is recommended to assure the quality of formulations containing this nutritional supplement. Oral paste formulations are easy and simple to prepare and show good physical and microbiological stability, suggesting their large-scale production.

  13. Effect of Air Pollution on Exacerbations of Bronchiectasis in Badalona, Spain, 2008-2016.

    PubMed

    Garcia-Olivé, Ignasi; Stojanovic, Zoran; Radua, Joaquim; Rodriguez-Pons, Laura; Martinez-Rivera, Carlos; Ruiz Manzano, Juan

    2018-05-17

    Air pollution has been widely associated with respiratory diseases. Nevertheless, the association between air pollution and exacerbations of bronchiectasis has been less studied. To analyze the effect of air pollution on exacerbations of bronchiectasis. This was a retrospective observational study conducted in Badalona. The number of daily hospital admissions and emergency room visits related to exacerbation of bronchiectasis (ICD-9 code 494.1) between 2008 and 2016 was obtained. We used simple Poisson regressions to test the effects of daily mean temperature, SO2, NO2, CO, and PM10 levels on bronchiectasis-related emergencies and hospitalizations on the same day and 1-4 days after. All p values were corrected for multiple comparisons. SO2 was significantly associated with an increase in the number of hospitalizations (lags 0, 1, 2, and 3). None of these associations remained significant after correcting for multiple comparisons. The number of emergency room visits was associated with higher levels of SO2 (lags 0-4). After correcting for multiple comparisons, the association between emergency room visits and SO2 levels was statistically significant for lag 0 (p = 0.043), lag 1 (p = 0.018), and lag 3 (p = 0.050). The number of emergency room visits for exacerbation of bronchiectasis is associated with higher levels of SO2. © 2018 S. Karger AG, Basel.

  14. High-Temperature Thermal Diffusivity Measurements of Silicate Glasses

    NASA Astrophysics Data System (ADS)

    Pertermann, M.; Hofmeister, A. M.; Whittington, A. G.; Spera, F. J.; Zayac, J.

    2005-12-01

    Transport of heat in geologically relevant materials is of great interest because of its key role in heat transport, magmatism and volcanic activity on Earth. To better understand the thermal properties of magmatic materials at high temperatures, we measured the thermal diffusivity of four synthetic end-member silicate glasses with the following compositions: albite (NaAlSi3O8), orthoclase (KAlSi3O8), anorthite (CaAl2Si2O8), and diopside (CaMgSi2O6). Thermal diffusivity measurements were conducted with the laser-flash technique and data were acquired from room temperature to a maximum temperature near 1100°C, depending on the glass transition temperature. The presence of sub-mm sized bubbles in one of the orthoclase samples had no discernable effect on measured diffusivities. At room temperature, the three feldspar-type glasses have thermal diffusivity (D) values of 0.58-0.61 mm2/s, whereas the diopside glass has 0.52 mm2/s. With increasing temperature, D decreases by 5-10% (relative) for all samples and becomes virtually constant at intermediate temperatures. At higher temperatures, the anorthite and diopside glasses exhibit significant drops in thermal diffusivity over a 50-100°C interval, correlating with previously published heat capacity changes near the glass transition for these compositions. For anorthite, D (in mm2/s) decreases from 0.48 at 750-860°C to 0.36 at 975-1075°C; for diopside, D changes from 0.42 at 630-750°C to 0.30 at 850-910°C, corresponding to relative drops of 24 and 29%, respectively. Albite and orthoclase glasses do not exhibit this change and also lack significant changes in heat capacity near the glass transition. Instead, D is constant at 400-800°C for albite, and for orthoclase values go through a minimum at 500-600°C before increasing slightly towards 1100°C but it never exceeds the room temperature D. Our data on thermal diffusivity correlate closely with other thermophysical properties. Thus, at least in case of simple compositions, measurement of thermal diffusivity of glasses above the glass transition may closely approximate the behavior of magmatic liquids. For the orthoclase composition, our new data show that the thermal diffusivity of glass in the range of 20-1100°C is clearly lower than that of orthoclase single crystals (Hoefer and Schilling, 2002, Phys Chem Minerals, 29, 571-584).

  15. The effects of heated and room-temperature abdominal lavage solutions on core body temperature in dogs undergoing celiotomy.

    PubMed

    Nawrocki, Michael A; McLaughlin, Ron; Hendrix, P K

    2005-01-01

    To document the magnitude of temperature elevation obtained with heated lavage solutions during abdominal lavage, 18 dogs were lavaged with sterile isotonic saline intraoperatively (i.e., during a celiotomy). In nine dogs, room-temperature saline was used. In the remaining nine dogs, saline heated to 43+/-2 degrees C (110+/-4 degrees F) was used. Esophageal, rectal, and tympanic temperatures were recorded every 60 seconds for 15 minutes after initiation of the lavage. Temperature levels decreased in dogs lavaged with room-temperature saline. Temperature levels increased significantly in dogs lavaged with heated saline after 2 to 6 minutes of lavage, and temperatures continued to increase throughout the 15-minute lavage period.

  16. Use of infrared thermography to assess the influence of high environmental temperature on rabbits.

    PubMed

    de Lima, V; Piles, M; Rafel, O; López-Béjar, M; Ramón, J; Velarde, A; Dalmau, A

    2013-10-01

    The aim of this work was to ascertain if infrared thermography (IRT) can be used on rabbits to assess differences in surface body temperature when they are subjected to two different environmental temperatures outside the comfort zone. Rabbits housed in room A were maintained at a temperature of below 30°C and rabbits in room B at a temperature of above 32°C for a year. Faeces were collected six times during the year to assess stress by means of faecal cortisol metabolites (FCM). The assessment of IRT was carried out to assess maximum and minimum temperatures on the eyes, nose and ears. FCM concentration was higher in room B than A, to confirm that stress conditions were higher in room B. Significant differences in IRT were found between the animals housed in both rooms. It was observed that it was more difficult for animals from room B to maintain a regular heat loss. Although all the body zones used to assess temperature with IRT gave statistical differences, the correlations found between the eyes, nose and ears were moderate, suggesting that they were giving different information. In addition, differences up to 3.36°C were found in the eye temperature of rabbits housed in the same room, with a clear effect of their position in relation to extractors and heating equipments. Therefore, IRT could be a good tool to assess heat stress in animals housed on typical rabbit farm buildings, giving a measure of how the animal is perceiving a combination of humidity, temperature and ventilation. Some face areas were better for analysing images. Minimum temperature on eyes and temperatures on nose are suggested to assess heat losses and critical areas of the farm for heat stress in rabbits. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Energy transfer simulation for radiantly heated and cooled enclosures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, K.S.; Zhang, P.

    1996-11-01

    This paper presents the development of a three-dimensional mathematical model to compute heat transfer within a radiantly heated or cooled room, which then calculates the mass-averaged room air temperature and the wall surface temperature distributions. The radiation formulation used in the model accommodates arbitrary placement of walls and objects within the room. The convection model utilizes Nusselt number correlations published in the open literature. The complete energy transfer model is validated by comparing calculated room temperatures to temperatures measured in a radiantly heated room. This three-dimensional model may be applied to a building to assist the heating/cooling system design engineermore » in sizing a radiant heating/cooling system. By coupling this model with a thermal comfort model, the comfort levels throughout the room can be easily and efficiently mapped for a given radiant heater/cooler location. In addition, obstacles such as airplanes, trucks, furniture, and partitions can be easily incorporated to determine their effect on the radiant heating system performance.« less

  18. Room-Temperature Processing of TiOx Electron Transporting Layer for Perovskite Solar Cells.

    PubMed

    Deng, Xiaoyu; Wilkes, George C; Chen, Alexander Z; Prasad, Narasimha S; Gupta, Mool C; Choi, Joshua J

    2017-07-20

    In order to realize high-throughput roll-to-roll manufacturing of flexible perovskite solar cells, low-temperature processing of all device components must be realized. However, the most commonly used electron transporting layer in high-performance perovskite solar cells is based on TiO 2 thin films processed at high temperature (>450 °C). Here, we demonstrate room temperature solution processing of the TiO x layer that performs as well as the high temperature TiO 2 layer in perovskite solar cells, as evidenced by a champion solar cell efficiency of 16.3%. Using optical spectroscopy, electrical measurements, and X-ray diffraction, we show that the room-temperature processed TiO x is amorphous with organic residues, and yet its optical and electrical properties are on par with the high-temperature TiO 2 . Flexible perovskite solar cells that employ a room-temperature TiO x layer with a power conversion efficiency of 14.3% are demonstrated.

  19. Room-temperature photomagnetism in the spinel ferrite (Mn,Zn,Fe)3O4 as seen via soft x-ray magnetic circular dichroism

    NASA Astrophysics Data System (ADS)

    Bettinger, J. S.; Piamonteze, C.; Chopdekar, R. V.; Liberati, M.; Arenholz, E.; Suzuki, Y.

    2009-10-01

    We have used x-ray magnetic circular dichroism (XMCD) in conjunction with multiplet simulations to directly probe the origin of photomagnetism in nanocrystalline (Mn,Zn,Fe)3O4 . A photomagnetic effect at room temperature has been observed in these films with HeNe illumination. We have verified an intervalence charge transfer among octahedral Fe cations to account for the increase in magnetization observed at and above room temperature in small magnetic fields. Using XMCD, we demonstrate that the dichroism of Fe in octahedral sites increases by 18% at room temperature, while the dichroism of Fe in tetrahedral sites does not change.

  20. Room-temperature ferromagnetism observed in C-/N-/O-implanted MgO single crystals

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Ye, Bonian; Hao, Yingping; Liu, Jiandang; Zhang, Jie; Zhang, Lijuan; Kong, Wei; Weng, Huimin; Ye, Bangjiao

    2013-01-01

    MgO single crystals were implanted with 70 keV C/N/O ions at room temperature with respective doses of 2 × 1016 and 2 × 1017 ions/cm2. All samples with high-dose implantation showed room temperature hysteresis in magnetization loops. Magnetization and slow positron annihilation measurements confirmed that room temperature ferromagnetism in O-implanted samples was attributed to the presence of Mg vacancies. Furthermore, the introduction of C or N played more effective role in ferromagnetic performance than Mg vacancies. Moreover, the magnetic moment possibly occurred from the localized wave function of unpaired electrons and the exchange interaction formed a long-range magnetic order.

  1. Room Temperature ppb Level Chlorine Gas Sensor Based on Copper (II) 1, 4, 8, 11, 15, 18, 22, 25-octabutoxy-29 H, 31 H-phthalocyanine Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bedi, R. K.; Saini, Rajan; Mahajan, Aman

    2010-12-01

    Spin coating technique has been used to fabricate room temperature chlorine gas sensor based on copper (II) 1, 4, 8, 11, 15, 18, 22, 25-octabutoxy-29 H, 31 H-phthalocyanine (CuPc(OBu){sub 8}) films. Gas sensor shows a response of 185% to few parts per billion level of Cl{sub 2} gas with response time of 9.5 minutes at room temperature. The interactions between sensor and analytes followed first order kinetics with rate constant 0.01{<=}k{<=}0.02. The chemiresistive sensor showed very good stability at room temperature over a long period of time.

  2. A microfluidic thermometer: Precise temperature measurements in microliter- and nanoliter-scale volumes

    PubMed Central

    McKenzie, Brittney A.

    2017-01-01

    Measuring the temperature of a sample is a fundamental need in many biological and chemical processes. When the volume of the sample is on the microliter or nanoliter scale (e.g., cells, microorganisms, precious samples, or samples in microfluidic devices), accurate measurement of the sample temperature becomes challenging. In this work, we demonstrate a technique for accurately determining the temperature of microliter volumes using a simple 3D-printed microfluidic chip. We accomplish this by first filling “microfluidic thermometer” channels on the chip with substances with precisely known freezing/melting points. We then use a thermoelectric cooler to create a stable and linear temperature gradient along these channels within a measurement region on the chip. A custom software tool (available as online Supporting Information) is then used to find the locations of solid-liquid interfaces in the thermometer channels; these locations have known temperatures equal to the freezing/melting points of the substances in the channels. The software then uses the locations of these interfaces to calculate the temperature at any desired point within the measurement region. Using this approach, the temperature of any microliter-scale on-chip sample can be measured with an uncertainty of about a quarter of a degree Celsius. As a proof-of-concept, we use this technique to measure the unknown freezing point of a 50 microliter volume of solution and demonstrate its feasibility on a 400 nanoliter sample. Additionally, this technique can be used to measure the temperature of any on-chip sample, not just near-zero-Celsius freezing points. We demonstrate this by using an oil that solidifies near room temperature (coconut oil) in a microfluidic thermometer to measure on-chip temperatures well above zero Celsius. By providing a low-cost and simple way to accurately measure temperatures in small volumes, this technique should find applications in both research and educational laboratories. PMID:29284028

  3. Room Temperature Hard Radiation Detectors Based on Solid State Compound Semiconductors: An Overview

    NASA Astrophysics Data System (ADS)

    Mirzaei, Ali; Huh, Jeung-Soo; Kim, Sang Sub; Kim, Hyoun Woo

    2018-05-01

    Si and Ge single crystals are the most common semiconductor radiation detectors. However, they need to work at cryogenic temperatures to decrease their noise levels. In contrast, compound semiconductors can be operated at room temperature due to their ability to grow compound materials with tunable densities, band gaps and atomic numbers. Highly efficient room temperature hard radiation detectors can be utilized in biomedical diagnostics, nuclear safety and homeland security applications. In this review, we discuss room temperature compound semiconductors. Since the field of radiation detection is broad and a discussion of all compound materials for radiation sensing is impossible, we discuss the most important materials for the detection of hard radiation with a focus on binary heavy metal semiconductors and ternary and quaternary chalcogenide compounds.

  4. Room-Temperature Determination of Two-Dimensional Electron Gas Concentration and Mobility in Heterostructures

    NASA Technical Reports Server (NTRS)

    Schacham, S. E.; Mena, R. A.; Haugland, E. J.; Alterovitz, S. A.

    1993-01-01

    A technique for determination of room-temperature two-dimensional electron gas (2DEG) concentration and mobility in heterostructures is presented. Using simultaneous fits of the longitudinal and transverse voltages as a function of applied magnetic field, we were able to separate the parameters associated with the 2DEG from those of the parallel layer. Comparison with the Shubnikov-de Haas data derived from measurements at liquid helium temperatures proves that the analysis of the room-temperature data provides an excellent estimate of the 2DEG concentration. In addition we were able to obtain for the first time the room-temperature mobility of the 2DEG, an important parameter to device application. Both results are significantly different from those derived from conventional Hall analysis.

  5. Induced hypothermia for infants with hypoxic- ischemic encephalopathy using a servo-controlled fan: an exploratory pilot study.

    PubMed

    Horn, Alan; Thompson, Clare; Woods, David; Nel, Alida; Bekker, Adrie; Rhoda, Natasha; Pieper, Clarissa

    2009-06-01

    Several trials suggest that hypothermia is beneficial in selected infants with hypoxic-ischemic encephalopathy. However, the cooling methods used required repeated interventions and were either expensive or reported significant temperature variation. The objective of this pilot study was to describe the use, efficacy, and physiologic impact of an inexpensive servo-controlled cooling fan blowing room-temperature air. A servo-controlled fan was manufactured and used to cool 10 infants with hypoxic-ischemic encephalopathy to a rectal temperature of 33 degrees C to 34 degrees C. The infants were sedated with phenobarbital, but clonidine was administered to some infants if shivering or discomfort occurred. A servo-controlled radiant warmer was used simultaneously with the fan to prevent overcooling. The settings used on the fan and radiant warmer differed slightly between some infants as the technique evolved. A rectal temperature of 34 degrees C was achieved in a median time of 58 minutes. Overcooling did not occur, and the mean temperature during cooling was 33.6 degrees C +/- 0.2 degrees C. Inspired oxygen requirements increased in 6 infants, and 5 infants required inotropic support during cooling, but this was progressively reduced after 1 to 2 days. Dehydration did not occur. Five infants shivered when faster fan speeds were used, but 4 of the 5 infants had hypomagnesemia. Shivering was controlled with clonidine in 4 infants, but 1 infant required morphine. Servo-controlled fan cooling with room-temperature air, combined with servo-controlled radiant warming, was an effective, simple, and safe method of inducing and maintaining rectal temperatures of 33 degrees C to 34 degrees C in sedated infants with hypoxic-ischemic encephalopathy. After induction of hypothermia, a low fan speed facilitated accurate temperature control, and warmer-controlled rewarming at 0.2 degrees C increments every 30 minutes resulted in more appropriate rewarming than when 0.5 degrees C increments every hour were used.

  6. High-quality RNA extracted from biopsied samples dehydrated and stored dried at room temperature without chemical preservation for up to 3 months as evidenced by RT-PCR results.

    PubMed

    Sadler, Theodore R; Khodavirdi, Ani C

    2015-07-01

    Handling and maintenance of biological tissues for nucleic acid and/or protein analysis has long been a challenge because of the perceived instability of these molecules at room temperature if not preserved or processed. Structural damage and compromised integrity of aforementioned biomolecules subsequent to preservation have also posed difficulties in their use in research. The development of technologies employing nonfixative methods with the capability to store at room temperature have been of growing interest. Our previous publication exploring preservation of proteins by desiccation challenged the convention of their unstable nature. Herein, we report the results of quantitative and qualitative analyses of RNA from tissue samples that were desiccated and stored at room temperature for up to 3 months. Our results indicate that viable RNA can be obtained from dehydrated ex vivo tissue samples that have been stored at room temperature.

  7. Room-temperature processed tin oxide thin film as effective hole blocking layer for planar perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Tao, Hong; Ma, Zhibin; Yang, Guang; Wang, Haoning; Long, Hao; Zhao, Hongyang; Qin, Pingli; Fang, Guojia

    2018-03-01

    Tin oxide (SnO2) film with high mobility and good transmittance has been reported as a promising semiconductor material for high performance perovskite solar cells (PSCs). In this study, ultrathin SnO2 film synthesized by radio frequency magnetron sputtering (RFMS) method at room temperature was employed as hole blocking layer for planar PSCs. The room-temperature sputtered SnO2 film not only shows favourable energy band structure but also improves the surface topography of fluorine doped SnO2 (FTO) substrate and perovskite (CH3NH3PbI3) layer. Thus, this SnO2 hole blocking layer can efficiently promote electron transport and suppress carrier recombination. Furthermore, the best efficiency of 13.68% was obtained for planar PSC with SnO2 hole blocking layer prepared at room temperature. This research highlights the room-temperature preparation process of hole blocking layer in PSC and has a certain reference significance for the usage of flexible and low-cost substrates.

  8. Structure determination of an integral membrane protein at room temperature from crystals in situ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Axford, Danny; Foadi, James; Imperial College London, London SW7 2AZ

    2015-05-14

    The X-ray structure determination of an integral membrane protein using synchrotron diffraction data measured in situ at room temperature is demonstrated. The structure determination of an integral membrane protein using synchrotron X-ray diffraction data collected at room temperature directly in vapour-diffusion crystallization plates (in situ) is demonstrated. Exposing the crystals in situ eliminates manual sample handling and, since it is performed at room temperature, removes the complication of cryoprotection and potential structural anomalies induced by sample cryocooling. Essential to the method is the ability to limit radiation damage by recording a small amount of data per sample from many samplesmore » and subsequently assembling the resulting data sets using specialized software. The validity of this procedure is established by the structure determination of Haemophilus influenza TehA at 2.3 Å resolution. The method presented offers an effective protocol for the fast and efficient determination of membrane-protein structures at room temperature using third-generation synchrotron beamlines.« less

  9. Considerations on thermal effects in doped scintillators for dark matter and other rare events searches

    NASA Astrophysics Data System (ADS)

    Chapellier, M.

    2009-08-01

    The scintillation properties of luminescent crystals are well known at room temperature. It is only recently, for the sake of dark matter and rare events searches that the studies have been extended to very low temperatures in the millikelvin range. Some little-known facts on the behaviour of bolometers , and more specifically on scintillating ones, are recalled in a simple manner. A few experiments to better understand them are proposed. The term bolometer is used here for calorimeter. Normally a bolometer will measure a flux of energy whereas a calorimeter measures a deposited energy. The tendency is to use bolometer for both types of measurement. A germanium bolometer does not measure the total energy received, part of it is transformed in ionization energy. The same is true for scintillating bolometer.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Sangbae; Yoon, Daseob; Son, Junwoo, E-mail: jwson@postech.ac.kr

    We report the enhancement of room-temperature electron mobility in La-doped BaSnO{sub 3} (LBSO) thin films with thermal strain induced by high temperature nitrogen (N{sub 2}) annealing. Simple annealing under an N{sub 2} environment consistently doubled the electron mobility of the LBSO films on the SrTiO{sub 3} (STO) substrates to as high as 78 cm{sup 2} V{sup −1} s{sup −1} at a carrier concentration of 4.0 × 10{sup 20 }cm{sup −3}. This enhancement is mainly attributed to annihilation of extended defects as a consequence of compressive strain induced by the difference in the thermal expansion coefficients of LBSO and STO. Our study suggests that thermalmore » strain can be exploited to reduce extended defects and to facilitate electron transport in transparent oxide semiconductors.« less

  11. Broad-gain (Δλ/λ0

    PubMed

    Fujita, Kazuue; Furuta, Shinichi; Dougakiuchi, Tatsuo; Sugiyama, Atsushi; Edamura, Tadataka; Yamanishi, Masamichi

    2011-01-31

    Broad-gain operation of λ~8.7 μm quantum cascade lasers based on dual-upper-state to multiple-lower-state transition design is reported. The devices exhibit surprisingly wide (~500 cm(-1)) electroluminescence spectra which are very insensitive to voltage and temperature changes above room temperature. With recourse to the temperature-insensitivity of electroluminescence spectra, the lasers demonstrate an extremely-weak temperature-dependence of laser performances: T0-value of 510 K, associated with a room temperature threshold current density of 2.6 kA/cm2. In addition, despite such wide gain spectra, room temperature, continuous wave operation of the laser with buried hetero structure is achieved.

  12. Light-Driven Reversible Transformation between Self-Organized Simple Cubic Lattice and Helical Superstructure Enabled by a Molecular Switch Functionalized Nanocage.

    PubMed

    Zhou, Kang; Bisoyi, Hari Krishna; Jin, Jian-Qiu; Yuan, Cong-Long; Liu, Zhen; Shen, Dong; Lu, Yan-Qing; Zheng, Zhi-Gang; Zhang, Weian; Li, Quan

    2018-04-23

    Self-organized stimuli-responsive smart materials with adjustable attributes are highly desirable for a plethora of device applications. Simple cubic lattice is quite uncommon in soft condensed matter due to its lower packing factor. Achieving a stable simple cubic soft lattice and endowing such a lattice with dynamic reconstruction capability solely by a facile light irradiation are of paramount significance for both fundamental studies and engineering explorations. Herein, an elegant stable self-organized simple cubic soft lattice, i.e., blue phase II, in a chiral liquid crystal (LC) system is disclosed, which is stable down to room temperature and exhibits both reversible lattice deformation and transformation to a helical superstructure, i.e., cholesteric LC, by light stimulation. Such an amazing trait is attained by doping a judiciously designed achiral photoresponsive molecular switch functionalized polyhedral oligomeric silsesquioxane nanocage into a chiral LC host. An unprecedented reversible collapse and reconstruction of such a high symmetric simple cubic blue phase II driven by light has been achieved. Furthermore, a well-defined conglomerate micropattern composed of simple cubic soft lattice and helical superstructure, which is challenging to fabricate in organic and inorganic crystalline materials, is produced using photomasking technology. Moreover, the promising photonic application based on such a micropattern is demonstrated. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Ultra-Low-Cost Room Temperature SiC Thin Films

    NASA Technical Reports Server (NTRS)

    Faur, Maria

    1997-01-01

    The research group at CSU has conducted theoretical and experimental research on 'Ultra-Low-Cost Room Temperature SiC Thin Films. The effectiveness of a ultra-low-cost room temperature thin film SiC growth technique on Silicon and Germanium substrates and structures with applications to space solar sells, ThermoPhotoVoltaic (TPV) cells and microelectronic and optoelectronic devices was investigated and the main result of this effort are summarized.

  14. Neutron absorbing room temperature vulcanizable silicone rubber compositions

    DOEpatents

    Zoch, Harold L.

    1979-11-27

    A neutron absorbing composition comprising a one-component room temperature vulcanizable silicone rubber composition or a two-component room temperature vulcanizable silicone rubber composition in which the composition contains from 25 to 300 parts by weight based on the base silanol or vinyl containing diorganopolysiloxane polymer of a boron compound or boron powder as the neutron absorbing ingredient. An especially useful boron compound in this application is boron carbide.

  15. Novel Nanocomposite Structures as Active and Passive Barrier Materials

    DTIC Science & Technology

    2010-06-01

    during the course of this ARO-funded project. The development of a novel polymer material based on a diol-functionalized room-temperature ionic liquid ...material based on a diol-functionalized room- temperature ionic liquid (RTIL) monomer led to fabrication of membranes, which were tested for their...stimulant vapor. Technical Report A polymerizable room-temperature ionic liquid (4, Figure 1) was chosen as the starting material for making poly(RTIL

  16. Development of Pasteuria penetrans in Meloidogyne javanica females as affected by constantly high vs fluctuating temperature in an in-vivo system.

    PubMed

    Darban, D A; Gowen, S R; Pembroke, B; Mahar, A N

    2005-03-01

    Growth room and glasshouse experiment was conducted to investigate the effect of constant and fluctuating temperatures on the development of Pasteuria penetrans a hyperparasite of root-knot nematodes. Tomato plants (Lycopersicon esculentum Mill) were inoculated with Meloidogyne javanica second-stage juveniles attached with endospores of P. penetrans and were grown in growth room at 26-29 degrees C and in glasshouse at 20-32 degrees C. The tomato plants were sampled from the growth room after 600 degree-days based on 17 degrees C/d, accumulating each day above a base temperature of 10 degrees C and from the glasshouse after 36 calendar days. Temperature affected the development of P. penetrans directly. The rate of development at constant temperature in growth room was faster than that in the glasshouse at fluctuating temperatures.

  17. Development of Pasteuria penetrans in Meloidogyne javanica females as affected by constantly high vs fluctuating temperature in an in-vivo system

    PubMed Central

    Darban, D.A.; Gowen, S.R.; Pembroke, B.; Mahar, A.N.

    2005-01-01

    Growth room and glasshouse experiment was conducted to investigate the effect of constant and fluctuating temperatures on the development of Pasteuria penetrans a hyperparasite of root-knot nematodes. Tomato plants (Lycopersicon esculentum Mill) were inoculated with Meloidogyne javanica second-stage juveniles attached with endospores of P. penetrans and were grown in growth room at 26–29 °C and in glasshouse at 20–32 °C. The tomato plants were sampled from the growth room after 600 degree-days based on 17 °C/d, accumulating each day above a base temperature of 10 °C and from the glasshouse after 36 calendar days. Temperature affected the development of P. penetrans directly. The rate of development at constant temperature in growth room was faster than that in the glasshouse at fluctuating temperatures. PMID:15682497

  18. Effects of reduced nocturnal temperature on pig performance and energy consumption in swine nursery rooms.

    PubMed

    Johnston, L J; Brumm, M C; Moeller, S J; Pohl, S; Shannon, M C; Thaler, R C

    2013-07-01

    The objective of this investigation was to determine the effect of a reduced nocturnal temperature (RNT) regimen on performance of weaned pigs and energy consumption during the nursery phase of production. The age of weaned pigs assigned to experiments ranged from 16 to 22 d. In Exp. 1, 3 stations conducted 2 trials under a common protocol that provided data from 6 control rooms (CON; 820 pigs) and 6 RNT rooms (818 pigs). Two mirror-image nursery rooms were used at each station. Temperature in the CON room was set to 30°C for the first 7 d, then reduced by 2°C per week through the remainder of the experiment. Room temperature settings were held constant throughout the day and night. The temperature setting in the RNT room was the same as CON during the first 7 d, but beginning on the night of d 7, the room temperature setting was reduced 6°C from the daytime temperature from 1900 to 0700 h. The use of heating fuel and electricity were measured weekly in each room. Overall, ADG (0.43 kg), ADFI (0.62 kg), and G:F (0.69) were identical for CON and RNT rooms. Consumption of heating fuel [9,658 vs. 7,958 British thermal units (Btu)·pig(-1)·d(-1)] and electricity (0.138 vs. 0.125 kilowatt-hour (kWh)·pig(-1)·d(-1)] were not statistically different for CON and RNT rooms, respectively. In Exp. 2, 4 stations conducted at least 2 trials that provided data from 9 CON rooms (2,122 pigs) and 10 RNT rooms (2,176 pigs). Experimental treatments and protocols were the same as Exp. 1, except that the RNT regimen was imposed on the night of d 5 and the targeted nighttime temperature reduction was 8.3°C. Neither final pig BW (21.8 vs. 21.5 kg; SE = 0.64), ADG (0.45 vs. 0.44 kg; SE = 0.016), ADFI (0.61 vs. 0.60 kg; SE = 0.019), nor G:F (0.75 vs. 0.75; SE = 0.012) were different for pigs housed in CON or RNT rooms, respectively. Consumption of heating fuel and electricity was consistently reduced in RNT rooms for all 4 stations. Consumption of heating fuel (10,019 vs. 7,061 Btu·pig(-1)·d(-1); SE = 1,467) and electricity (0.026 vs. 0.021 kWh·pig-1·d-1; SE = 0.004) were lower (P < 0.05) in the RNT rooms compared with CON rooms. This represents a 30% reduction in heating fuel use and a 20% reduction in electrical use with no differences in pig growth performance or health. From these experiments, we conclude that imposing a RNT regimen from 1900 to 0700 h is effective in reducing energy costs in the nursery without compromising pig performance, which will reduce production costs and decrease emissions of greenhouse gases.

  19. Practical and efficient magnetic heat pump

    NASA Technical Reports Server (NTRS)

    Brown, G. V.

    1978-01-01

    Method for pumping heat magnetically at room temperature is more economical than existing refrigeration systems. Method uses natural magneto-thermal effect of gadolinium metal to establish temperature gradient across length of tube. Regenerative cyclic process in which gadolinium sample is magnetized and gives off heat at one end of tube, and then is demagnetized at other end to absorb heat has established temperature gradients of 144 degrees F in experiments near room temperature. Other materials with large magnetothermal effects can be used below room temperature. Possible commercial applications include freeze-drying and food processing, cold storage, and heating and cooling of buildings, plants, and ships.

  20. Low-temperature operation of a Buck DC/DC converter

    NASA Technical Reports Server (NTRS)

    Ray, Biswajit; Gerber, Scott S.; Patterson, Richard L.; Myers, Ira T.

    1995-01-01

    Low-temperature (77 K) operation of a 42/28 V, 175 W, 50 kHz PWM Buck DC/DC converter designed with commercially available components is reported. Overall, the converter losses decreased at 77 K compared to room temperature operation. A full-load efficiency of 97 percent was recorded at liquid-nitrogen temperature, compared to 95.8 percent at room temperature. Power MOSFET operation improved significantly where as the output rectifier operation deteriorated at low-temperature. The performance of the output filter inductor and capacitor did not change significantly at 77 K compared to room temperature performance. It is possible to achieve high-density and high efficiency power conversion at low-temperatures due to improved electronic, electrical and thermal properties of materials.

  1. Solid-Liquid Lithium Electrolyte Nanocomposites Derived from Porous Molecular Cages.

    PubMed

    Petronico, Aaron; Moneypenny, Timothy P; Nicolau, Bruno G; Moore, Jeffrey S; Nuzzo, Ralph G; Gewirth, Andrew A

    2018-06-20

    We demonstrate that solid-liquid nanocomposites derived from porous organic cages are effective lithium ion electrolytes at room temperature. A solid-liquid electrolyte nanocomposite (SLEN) fabricated from a LiTFSI/DME electrolyte system and a porous organic cage exhibits ionic conductivity on the order of 1 × 10 -3 S cm -1 . With an experimentally measured activation barrier of 0.16 eV, this composite is characterized as a superionic conductor. Furthermore, the SLEN displays excellent oxidative stability up to 4.7 V vs Li/Li + . This simple three-component system enables the rational design of electrolytes from tunable discrete molecular architectures.

  2. Preparation of graphene by electrical explosion of graphite sticks.

    PubMed

    Gao, Xin; Xu, Chunxiao; Yin, Hao; Wang, Xiaoguang; Song, Qiuzhi; Chen, Pengwan

    2017-08-03

    Graphene nanosheets were produced by electrical explosion of high-purity graphite sticks in distilled water at room temperature. The as-prepared samples were characterized by various techniques to find different forms of carbon phases, including graphite nanosheets, few-layer graphene, and especially, mono-layer graphene with good crystallinity. Delicate control of energy injection is critical for graphene nanosheet formation, whereas mono-layer graphene was produced under the charging voltage of 22.5-23.5 kV. On the basis of electrical wire explosion and our experimental results, the underlying mechanism that governs the graphene generation was carefully illustrated. This work provides a simple but innovative route for producing graphene nanosheets.

  3. Weight-controlled capillary viscometer

    NASA Astrophysics Data System (ADS)

    Digilov, Rafael M.; Reiner, M.

    2005-11-01

    The draining of a water column through a vertical discharge capillary tube is examined with the aid of a force sensor. The change of the mass of the liquid in the column with time is found to be not purely exponential as implied by Poiseuille's law. Using observed residuals associated with a kinetic energy correction, an approximate formula for the mass as a function of time is derived and excellent agreement with experimental data is attained. These results are verified by a viscosity test of distilled water at room temperature. A simple and inexpensive weight-controlled capillary viscometer is proposed that is especially suitable for undergraduate physics and chemistry laboratories.

  4. Zirconium diselenite microstructures, formation and mechanism

    NASA Astrophysics Data System (ADS)

    Naik, Chandan C.; Salker, A. V.

    2018-04-01

    In this work, a series of microstructures of zirconium diselenite (Zr(SeO3)2) has been prepared via a simple precipitation method at room temperature without adding any organic surfactants. Phase purity of the sample has been checked by X-ray Diffraction. From the SEM, FESEM, and TEM images spheroid nanoparticles to the starfish-like structure of zirconium diselenite are detected. The morphological evolution processes were investigated carefully following time-dependent experiments and a growth mechanism has been proposed. Two different crystal growth processes, the oriented attachment process accompanying the Ostwald ripening process were held responsible for the formation of a structure resembling starfish having four arms.

  5. Design of two blackbody sources for millimeter and sub-millimeter wave Fourier transform spectrometry

    NASA Astrophysics Data System (ADS)

    Colin, Angel

    2014-03-01

    This paper describes an experimental setup for the spectral calibration of bolometric detectors used in radioastronomy. The system is composed of a Martin-Puplett interferometer with two identical artificial blackbody sources operating in the vacuum mode at 77 K and 300 K simultaneously. One source is integrated into a liquid nitrogen cryostat, and the other one into a vacuum chamber at room temperature. The sources were designed with a combination of conical with cylindrical geometries thus forming an orthogonal configuration to match the internal optics of the interfermometer. With a simple mathematical model we estimated emissivities of ε 0.995 for each source.

  6. Alkali vapor pressure modulation on the 100 ms scale in a single-cell vacuum system for cold atom experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dugrain, Vincent; Reichel, Jakob; Rosenbusch, Peter

    2014-08-15

    We describe and characterize a device for alkali vapor pressure modulation on the 100 ms timescale in a single-cell cold atom experiment. Its mechanism is based on optimized heat conduction between a current-modulated alkali dispenser and a heat sink at room temperature. We have studied both the short-term behavior during individual pulses and the long-term pressure evolution in the cell. The device combines fast trap loading and relatively long trap lifetime, enabling high repetition rates in a very simple setup. These features make it particularly suitable for portable atomic sensors.

  7. Superacid Passivation of Crystalline Silicon Surfaces.

    PubMed

    Bullock, James; Kiriya, Daisuke; Grant, Nicholas; Azcatl, Angelica; Hettick, Mark; Kho, Teng; Phang, Pheng; Sio, Hang C; Yan, Di; Macdonald, Daniel; Quevedo-Lopez, Manuel A; Wallace, Robert M; Cuevas, Andres; Javey, Ali

    2016-09-14

    The reduction of parasitic recombination processes commonly occurring within the silicon crystal and at its surfaces is of primary importance in crystalline silicon devices, particularly in photovoltaics. Here we explore a simple, room temperature treatment, involving a nonaqueous solution of the superacid bis(trifluoromethane)sulfonimide, to temporarily deactivate recombination centers at the surface. We show that this treatment leads to a significant enhancement in optoelectronic properties of the silicon wafer, attaining a level of surface passivation in line with state-of-the-art dielectric passivation films. Finally, we demonstrate its advantage as a bulk lifetime and process cleanliness monitor, establishing its compatibility with large area photoluminescence imaging in the process.

  8. Optical properties of β-Ga2O3 nanorods synthesized by a simple and cost-effective method using egg white solution

    NASA Astrophysics Data System (ADS)

    Phumying, Santi; Labauyai, Sarawut; Chareonboon, Wirat; Phokha, Sumalin; Maensiri, Santi

    2015-06-01

    In this paper, we report on the optical properties of gallium oxide (β-Ga2O3) nanorods synthesized by a simple, cost-effective and environment-friendly method using gallium(III) nitrate hydrate and freshly extracted egg white (ovalbumin) in an aqueous medium. The extracted egg white acted as a matrix for the entrapment of gallium ions to generate a gelled precursor. The structure of the prepared samples was studied by X-ray diffraction and Raman spectroscopy to confirm the formation of β-Ga2O3 with a monoclinic structure after calcination of the precursor in air at 750, 850, and 950 °C for 3 h. Scanning electron microscopy images revealed the morphology and formation of nanorods with different sizes and shapes in the samples, resulting from the effect of the calcination temperature. All the samples showed a strong UV absorption with the band gap in the range of 3.87-3.97 eV. Room-temperature photoluminescence spectra of all the samples also showed a strong UV emission. The UV emission results were discussed based on the basis of charge recombination.

  9. Optimizing photon-pair generation electronically using a p-i-n diode incorporated in a silicon microring resonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savanier, Marc, E-mail: msavanier@eng.ucsd.edu; Kumar, Ranjeet; Mookherjea, Shayan, E-mail: smookherjea@eng.ucsd.edu

    Silicon photonic microchips may be useful for compact, inexpensive, room-temperature optically pumped photon-pair sources, which unlike conventional photon-pair generators based on crystals or optical fibers, can be manufactured using CMOS-compatible processes on silicon wafers. It has been shown that photon pairs can be created in simple structures such as microring resonators at a rate of a few hundred kilohertz using less than a milliwatt of optical pump power, based on the process of spontaneous four-wave mixing. To create a practical photon-pair source, however, also requires some way of monitoring the device and aligning the pump wavelength when the temperature varies,more » since silicon resonators are highly sensitive to temperature. In fact, monitoring photodiodes are standard components in classical laser diodes, but the incorporation of germanium or InGaAs photodiodes would raise the cost and fabrication complexity. Here, we present a simple and effective all-electronic technique for finding the optimum operating point for the microring used to generate photon pairs, based on measuring the reverse-biased current in a silicon p-i-n junction diode fabricated across the waveguide that constitutes the silicon microring. We show that by monitoring the current, and using it to tune the pump laser wavelength, the photon-pair generation properties of the microring can be preserved over a temperature range of more than 30 °C.« less

  10. Electric Field Dependence of Quantum Efficiencies of Ag/n-Si Composites in the Infrared at Room Temperature

    DTIC Science & Technology

    2009-09-10

    Howard University 2300 6th Street NW, Room 1016 Washington, D.C. 20059 Air Force Office of Scientific Research 875 North Randolph Street Room 3112...Department of Electrical Engineering, Howard University , Washington, DC 20059 Room temperature quantum efficiencies of Ag/n-Si composite...at the Howard University CREST Center for Nanomaterials Characterization Science and Processing Technology were used in this investigation. The

  11. Room-Temperature Low-Threshold Lasing from Monolithically Integrated Nanostructured Porous Silicon Hybrid Microcavities.

    PubMed

    Robbiano, Valentina; Paternò, Giuseppe M; La Mattina, Antonino A; Motti, Silvia G; Lanzani, Guglielmo; Scotognella, Francesco; Barillaro, Giuseppe

    2018-05-22

    Silicon photonics would strongly benefit from monolithically integrated low-threshold silicon-based laser operating at room temperature, representing today the main challenge toward low-cost and power-efficient electronic-photonic integrated circuits. Here we demonstrate low-threshold lasing from fully transparent nanostructured porous silicon (PSi) monolithic microcavities (MCs) infiltrated with a polyfluorene derivative, namely, poly(9,9-di- n-octylfluorenyl-2,7-diyl) (PFO). The PFO-infiltrated PSiMCs support single-mode blue lasing at the resonance wavelength of 466 nm, with a line width of ∼1.3 nm and lasing threshold of 5 nJ (15 μJ/cm 2 ), a value that is at the state of the art of PFO lasers. Furthermore, time-resolved photoluminescence shows a significant shortening (∼57%) of PFO emission lifetime in the PSiMCs, with respect to nonresonant PSi reference structures, confirming a dramatic variation of the radiative decay rate due to a Purcell effect. Our results, given also that blue lasing is a worst case for silicon photonics, are highly appealing for the development of low-cost, low-threshold silicon-based lasers with wavelengths tunable from visible to the near-infrared region by simple infiltration of suitable emitting polymers in monolithically integrated nanostructured PSiMCs.

  12. CMOS-Compatible Room-Temperature Rectifier Toward Terahertz Radiation Detection

    NASA Astrophysics Data System (ADS)

    Varlamava, Volha; De Amicis, Giovanni; Del Monte, Andrea; Perticaroli, Stefano; Rao, Rosario; Palma, Fabrizio

    2016-08-01

    In this paper, we present a new rectifying device, compatible with the technology of CMOS image sensors, suitable for implementing a direct-conversion detector operating at room temperature for operation at up to terahertz frequencies. The rectifying device can be obtained by introducing some simple modifications of the charge-storage well in conventional CMOS integrated circuits, making the proposed solution easy to integrate with the existing imaging systems. The rectifying device is combined with the different elements of the detector, composed of a 3D high-performance antenna and a charge-storage well. In particular, its position just below the edge of the 3D antenna takes maximum advantage of the high electric field concentrated by the antenna itself. In addition, the proposed structure ensures the integrity of the charge-storage well of the detector. In the structure, it is not necessary to use very scaled and costly technological nodes, since the CMOS transistor only provides the necessary integrated readout electronics. On-wafer measurements of RF characteristics of the designed junction are reported and discussed. The overall performances of the entire detector in terms of noise equivalent power (NEP) are evaluated by combining low-frequency measurements of the rectifier with numerical simulations of the 3D antenna and the semiconductor structure at 1 THz, allowing prediction of the achievable NEP.

  13. Oxygen sensor via the quenching of room-temperature phosphorescence of perdeuterated phenanthrene adsorbed on Whatman 1PS filter paper.

    PubMed

    Ramasamy, S M; Hurtubise, R J

    1998-11-01

    Perdeuterated phenanthrene (d-phen) exhibits strong room-temperature phosphorescence (RTP) when adsorbed on Whatman 1PS filter paper. An oxygen sensor was developed that depends on oxygen quenching of RTP intensity of adsorbed d-phen. The system designed employed a continuous flow of nitrogen or nitrogen-air onto the adsorbed phosphor. The sensor is simple to prepare and needs no elaborate fabrication procedure, but did show a somewhat drifting baseline for successive determinations of oxygen. Nevertheless, very good reproducibility was achieved with the RTP quenching data by measuring the RTP intensities just before and at the end of each oxygen determination. The calibration plots gave a nonlinear relationship over the entire range of oxygen (0-21%). However, a linear range was obtained up to 1.10% oxygen. A detection limit of 0.09% oxygen in dry nitrogen was acquired. Also, carbon dioxide was found to have a minimal effect on the RTP quenching. Thus, oxygen could be measured accurately in relatively large amounts of carbon dioxide. The performance of the oxygen sensor was evaluated by comparing data obtained with a commercial electrochemical trace oxygen analyzer. Also, additional information on the quenching phenomena for this system was obtained from the RTP lifetime data acquired at various oxygen contents.

  14. Photochemical synthesis of simple organic free radicals on simulated planetary surfaces - An ESR study

    NASA Technical Reports Server (NTRS)

    Tseng, S.-S.; Chang, S.

    1975-01-01

    Electron spin resonance (ESR) spectroscopy provided evidence for formation of hydroxyl radicals during ultraviolet photolysis (254 nm) at -170 C of H2O adsorbed on silica gel or of silica gel alone. The carboxyl radical was observed when CO or CO2 or a mixture of CO and CO2 adsorbed on silica gel at -170 C was irradiated. The ESR signals of these radicals slowly disappeared when the irradiated samples were warmed to room temperature. However, reirradiation of CO or CO2, or the mixture CO and CO2 on silica gel at room temperature then produced a new species, the carbon dioxide anion radical, which slowly decayed and was identical with that produced by direct photolysis of formic acid adsorbed on silica gel. The primary photochemical process may involve formation of hydrogen and hydroxyl radicals. Subsequent reactions of these radicals with adsorbed CO or CO2 or both yield carboxyl radicals, CO2H, the precursors of formic acid. These results confirm the formation of formic acid under simulated Martian conditions and provide a mechanistic basis for gauging the potential importance of gas-solid photochemistry for chemical evolution on other extraterrestrial bodies, on the primitive earth, and on dust grains in the interstellar medium.

  15. Green synthesis of silver nanoparticles from aqueous Aegle marmelos leaf extract

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jagajjanani Rao, K.; Paria, Santanu, E-mail: santanuparia@yahoo.com

    Graphical abstract: Silver nanoparticles capped with polyphenols present in Aegle marmelos leaf extract. Display Omitted Highlights: ► Silver nanoparticles are synthesized using Aegle marmelos leaf extract in aqueous media. ► Reduction reaction is fast and occurs at room temperature. ► The presence of polyphenols acts as in situ capping agent. -- Abstract: Synthesis of nanoparticles by green route is an emerging technique drawing more attention recently because of several advantages over the convention chemical routes. The present study reports one-pot synthesis and in situ stabilization of silver nanoparticles using Aegle marmelos leaf extract. Nanoparticles of almost uniform spherical size (∼60more » nm) were synthesized within ∼25 min reaction time at room temperature. The size of particles depends on the ratio of AgNO{sub 3} and leaf extract. The crystallinity, size, and shape of the nanoparticles were characterized by X-ray diffraction, dynamic light scattering, and scanning electron microscopy respectively. The size stability was attained by the capping effect of polyphenolic tannin compound, procatacheuate in the extract. The capped polyphenols can be removed from the particle surface by simple NaOH/methanol wash. The involvement of phenolic compounds in metal ion reduction and capping were supported by UV–visible spectroscopy, infrared spectroscopy, high performance liquid chromatography, and zeta potential measurements.« less

  16. Room-Temperature Solution Synthesis of Mesoporous Silicon for Lithium Ion Battery Anodes.

    PubMed

    Sun, Lin; Wang, Fei; Su, Tingting; Du, Hongbin

    2017-11-22

    As an important optoelectronic and energy-storage material, porous silicon (PSi) has attracted great interest in various fields. The preparation of PSi, however, usually suffers from low yields and/or complicated syntheses. Herein, we report a facile solution method to prepare PSi with controllable high specific surface area. Commercial Zintl compound Mg 2 Si readily reacts with HSiCl 3 in the presence of amines at room temperature to produce amorphous PSi in high yields, where in situ formed salt byproducts serve as templates to generate uniform mesopores of ca. 3.8 nm in diameter. After crystallization treatment at 700 °C in flow Ar gas for 40 min, the obtained crystalline PSi coated with carbon layers shows excellent electrochemical performance when served as lithium ion battery anodes. The reversible specific capacity is about 2250 mA h g -1 at 0.1 A g -1 and the capacity retention is maintained at 90% after cycling at high current density of 2 A g -1 for 320 times. This simple, facile preparation method is very promising and paves the way for massive production of porous Si as high-performance anodes in Li-ion battery industry or for other applications, such as drug delivery systems and catalysis.

  17. Current rectification for transport of room-temperature ionic liquids through conical nanopores

    DOE PAGES

    Jiang, Xikai; Liu, Ying; Qiao, Rui

    2016-02-09

    Here, we studied the transport of room-temperature ionic liquids (RTILs) through charged conical nanopores using a Landau-Ginzburg-type continuum model that takes steric effect and strong ion-ion correlations into account. When the surface charge is uniform on the pore wall, weak current rectification is observed. When the charge density near the pore base is removed, the ionic current is greatly suppressed under negative bias voltage while nearly unchanged under positive bias voltage, thereby leading to enhanced current rectification. These predictions agree qualitatively with prior experimental observations, and we elucidated them by analyzing the different components of the ionic current and themore » structural changes of electrical double layers (EDLs) at the pore tip under different bias voltages and surface charge patterns. These analyses reveal that the different modifications of the EDL structure near the pore tip by the positive and negative bias voltages cause the current rectification and the observed dependence on the distribution of surface charge on the pore wall. The fact that the current rectification phenomena are captured qualitatively by the simple model originally developed for describing EDLs at equilibrium conditions suggests that this model may be promising for understanding the ionic transport under nonequilibrium conditions when the EDL structure is strongly perturbed by external fields.« less

  18. Elaborate Manipulation for Sub-10 nm Hollow Catalyst Sensitized Heterogeneous Oxide Nanofibers for Room Temperature Chemical Sensors.

    PubMed

    Jang, Ji-Soo; Choi, Seon-Jin; Koo, Won-Tae; Kim, Sang-Joon; Cheong, Jun Young; Kim, Il-Doo

    2017-07-26

    Room-temperature (RT) operation sensors are constantly in increasing demand because of their low power consumption, simple operation, and long lifetime. However, critical challenges such as low sensing performance, vulnerability under highly humid state, and poor recyclability hinder their commercialization. In this work, sub-10 nm hollow, bimetallic Pt-Ag nanoparticles (NPs) were successfully formed by galvanic replacement reaction in bioinspired hollow protein templates and sensitized on the multidimensional SnO 2 -WO 3 heterojunction nanofibers (HNFs). Formation of hollow, bimetallic NPs resulted in the double-side catalytic effect, rendering both surface and inner side chemical reactions. Subsequently, SnO 2 -WO 3 HNFs were synthesized by incorporating 2D WO 3 nanosheets (NSs) with 0D SnO 2 sphere by c-axis growth inhibition effect and fluid dynamics of liquid Sn during calcination. Hierarchically assembled HNFs effectively modulate surface depletion layer of 2D WO 3 NSs by electron transfers from WO 3 to SnO 2 stemming from creation of heterojunction. Careful combination of bimetallic catalyst NPs with HNFs provided an extreme recyclability under exhaled breath (95 RH%) with outstanding H 2 S sensitivity. Such sensing platform clearly distinguished between the breath of healthy people and simulated halitosis patients.

  19. 46 CFR 111.01-15 - Temperature ratings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... assumed for all rotating electrical machinery in boiler rooms, engine rooms, auxiliary machinery rooms...-rotating electrical equipment in boiler rooms, in engine rooms, in auxiliary machinery rooms, and on...

  20. 46 CFR 111.01-15 - Temperature ratings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... assumed for all rotating electrical machinery in boiler rooms, engine rooms, auxiliary machinery rooms...-rotating electrical equipment in boiler rooms, in engine rooms, in auxiliary machinery rooms, and on...

  1. Correlation between structural, electrical and magnetic properties of GdMnO3 bulk ceramics

    NASA Astrophysics Data System (ADS)

    Samantaray, S.; Mishra, D. K.; Pradhan, S. K.; Mishra, P.; Sekhar, B. R.; Behera, Debdhyan; Rout, P. P.; Das, S. K.; Sahu, D. R.; Roul, B. K.

    2013-08-01

    This paper reports the effect of sintering temperature on ferroelectric properties of GdMnO3 (GMO) bulk ceramics at room temperature prepared by the conventional solid state reaction route following slow step sintering schedule. Ferroelectric hysteresis loop as well as sharp dielectric anomaly in pure (99.999%) GMO sintered ceramics has been clearly observed. Samples sintered at 1350 °C become orthorhombic with Pbnm space group and showed frequency independent sharp dielectric anomalies at 373 K and a square type of novel ferroelectric hysteresis loop was observed at room temperature. Interestingly, dielectric anomalies and ferroelectric behavior were observed to be dependent upon sintering temperature of GdMnO3. Room temperature dielectric constant (ɛr) value at different frequencies is observed to be abnormally high. The magnetic field and temperature dependent magnetization show antiferromagnetic behavior at 40 K for both 1350 °C and 1700 °C sintered GMO. Present findings showed the possibility of application of GdMnO3 at room temperature as multifunctional materials.

  2. Design of a Tunable, Room Temperature, Continuous-Wave Terahertz Source and Detector using Silicon Waveguides

    DTIC Science & Technology

    2008-01-30

    that will use conventional diode- or hotomultiplier-tube-based optical detectors , which are xtremely sensitive . . HEATING AND FREE-CARRIER IMITATIONS...CONTRACT NUMBER IN-HOUSE Design of a tunable, room temperature, continuous-wave terahertz source and detector using silicon waveguides 5b. GRANT...B 261Design of a tunable, room temperature, continuous-wave terahertz source and detector using silicon waveguides T. Baehr-Jones,1,* M. Hochberg,1,3

  3. Room temperature polariton light emitting diode with integrated tunnel junction.

    PubMed

    Brodbeck, S; Jahn, J-P; Rahimi-Iman, A; Fischer, J; Amthor, M; Reitzenstein, S; Kamp, M; Schneider, C; Höfling, S

    2013-12-16

    We present a diode incorporating a large number (12) of GaAs quantum wells that emits light from exciton-polariton states at room temperature. A reversely biased tunnel junction is placed in the cavity region to improve current injection into the device. Electroluminescence studies reveal two polariton branches which are spectrally separated by a Rabi splitting of 6.5 meV. We observe an anticrossing of the two branches when the temperature is lowered below room temperature as well as a Stark shift of both branches in a bias dependent photoluminescence measurement.

  4. A study of the vacancy loop formation probability in Ni-Cu and Ag-Pd alloys. [50-keV Kr sup + ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smalinskas, K.; Chen, Gengsheng; Haworth, J.

    1992-04-01

    The molten-zone model of vacancy loop formation from a displacement cascade predicts that the loop formation probability should scale with the melting temperature. To investigate this possibility the vacancy loop formation probability has been determined in a series of Cu-Ni and Ag-Pd alloys. The irradiations were performed at room temperature with 50 keV Kr+ ions and the resulting damage structure was examined by using transmission electron microscopy. In the Cu-Ni alloy series, the change in loop formation probability with increasing Ni concentration was complex, and at low- and high- nickel concentrations, the defect yield did not change in the predictedmore » manner. The defect yield was higher in the Cu-rich alloys than in the Ni-rich alloys. In the Ag-Pd alloy the change in the loop formation probability followed more closely the change in melting temperature, but no simple relationship was determined.« less

  5. Low-temperature growth of aligned ZnO nanorods: effect of annealing gases on the structural and optical properties.

    PubMed

    Umar, Ahmad; Hahn, Yoon-Bong; Al-Hajry, A; Abaker, M

    2014-06-01

    Aligned ZnO nanorods were grown on ZnO/Si substrate via simple aqueous solution process at low-temperature of - 65 degrees C by using zinc nitrate and hexamethylenetetramine (HMTA). The detailed morphological and structural properties measured by FESEM, XRD, EDS and TEM confirmed that the as-grown nanorods are vertically aligned, well-crystalline possessing wurtzite hexagonal phase and grown along the [0001] direction. The room-temperature photoluminescence spectrum of the grown nanorods exhibited a strong and broad green emission and small ultraviolet emission. The as-prepared ZnO nanorods were post-annealed in nitrogen (N2) and oxygen (O2) environments and further characterized in terms of their morphological, structural and optical properties. After annealing the nanorods exhibit well-crystallinity and wurtzite hexagonal phase. Moreover, by annealing the PL spectra show the enhancement in the UV emission and suppression in the green emission. The presented results demonstrate that simply by post-annealing process, the optical properties of ZnO nanostructures can be controlled.

  6. Preservation of protein expression systems at elevated temperatures for portable therapeutic production

    PubMed Central

    Bessling, Seneca; Thielen, Peter; Zhang, Sherry; Wolfe, Joshua

    2017-01-01

    Many biotechnology capabilities are limited by stringent storage needs of reagents, largely prohibiting use outside of specialized laboratories. Focusing on a large class of protein-based biotechnology applications, we address this issue by developing a method for preserving cell-free protein expression systems for months above room temperature. Our approach realizes unprecedented long-term stability at elevated temperatures by leveraging the sugar alcohol trehalose, a simple, low-cost, open-air drying step, and strategic separation of reaction components during drying. The resulting preservation capacity enables efficient production of a wide range of on-demand proteins under adverse conditions, for instance during emergency outbreaks or in remote locations. To demonstrate application potential, we use cell-free reagents subjected to months of exposure at 37°C and atmospheric conditions to produce sufficient concentrations of a pyocin protein to kill Pseudomonas aeruginosa, a troublesome pathogen for traumatic and burn wound injuries. Our work makes possible new biotechnology applications that demand ruggedness and scalability. PMID:28446704

  7. Trace detection of oxygen--ionic liquids in gas sensor design.

    PubMed

    Baltes, N; Beyle, F; Freiner, S; Geier, F; Joos, M; Pinkwart, K; Rabenecker, P

    2013-11-15

    This paper presents a novel electrochemical membrane sensor on basis of ionic liquids for trace analysis of oxygen in gaseous atmospheres. The faradaic response currents for the reduction of oxygen which were obtained by multiple-potential-step-chronoamperometry could be used for real time detection of oxygen down to concentrations of 30 ppm. The theoretical limit of detection was 5 ppm. The simple, non-expensive sensors varied in electrolyte composition and demonstrated a high sensitivity, a rapid response time and an excellent reproducibility at room temperature. Some of them were continuously used for at least one week and first results promise good long term stability. Voltammetric, impedance and oxygen detection studies at temperatures up to 200 °C (in the presence and absence of humidity and CO2) revealed also the limitations of certain ionic liquids for some electrochemical high temperature applications. Application areas of the developed sensors are control and analysis processes of non oxidative and oxygen free atmospheres. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Predicting critical temperatures of ionic and non-ionic fluids from thermophysical data obtained near the melting point.

    PubMed

    Weiss, Volker C

    2015-10-14

    In the correlation and prediction of thermophysical data of fluids based on a corresponding-states approach, the critical temperature Tc plays a central role. For some fluids, in particular ionic ones, however, the critical region is difficult or even impossible to access experimentally. For molten salts, Tc is on the order of 3000 K, which makes accurate measurements a challenging task. Room temperature ionic liquids (RTILs) decompose thermally between 400 K and 600 K due to their organic constituents; this range of temperatures is hundreds of degrees below recent estimates of their Tc. In both cases, reliable methods to deduce Tc based on extrapolations of experimental data recorded at much lower temperatures near the triple or melting points are needed and useful because the critical point influences the fluid's behavior in the entire liquid region. Here, we propose to employ the scaling approach leading to universal fluid behavior [Román et al., J. Chem. Phys. 123, 124512 (2005)] to derive a very simple expression that allows one to estimate Tc from the density of the liquid, the surface tension, or the enthalpy of vaporization measured in a very narrow range of low temperatures. We demonstrate the validity of the approach for simple and polar neutral fluids, for which Tc is known, and then use the methodology to obtain estimates of Tc for ionic fluids. When comparing these estimates to those reported in the literature, good agreement is found for RTILs, whereas the ones for the molten salts NaCl and KCl are lower than previous estimates by 10%. The coexistence curve for ionic fluids is found to be more adequately described by an effective exponent of βeff = 0.5 than by βeff = 0.33.

  9. Stability of Retained Austenite in High-Al, Low-Si TRIP-Assisted Steels Processed via Continuous Galvanizing Heat Treatments

    NASA Astrophysics Data System (ADS)

    McDermid, J. R.; Zurob, H. S.; Bian, Y.

    2011-12-01

    Two galvanizable high-Al, low-Si transformation-induced plasticity (TRIP)-assisted steels were subjected to isothermal bainitic transformation (IBT) temperatures compatible with the continuous galvanizing (CGL) process and the kinetics of the retained austenite (RA) to martensite transformation during room temperature deformation studied as a function of heat treatment parameters. It was determined that there was a direct relationship between the rate of strain-induced transformation and optimal mechanical properties, with more gradual transformation rates being favored. The RA to martensite transformation kinetics were successfully modeled using two methodologies: (1) the strain-based model of Olsen and Cohen and (2) a simple relationship with the normalized flow stress, ( {{{σ_{{flow}} - σ_{YS} }/{σ_{YS }}}} ) . For the strain-based model, it was determined that the model parameters were a strong function of strain and alloy thermal processing history and a weak function of alloy chemistry. It was verified that the strain-based model in the present work agrees well with those derived by previous workers using TRIP-assisted steels of similar composition. It was further determined that the RA to martensite transformation kinetics for all alloys and heat treatments could be described using a simple model vs the normalized flow stress, indicating that the RA to martensite transformation is stress-induced rather than strain-induced for temperatures above the Ms^{σ }.

  10. Determination of free sulfites (SO3-2) in dried fruits processed with sulfur dioxide by ion chromatography through anion exchange column and conductivity detection.

    PubMed

    Liao, Benjamin S; Sram, Jacqueline C; Files, Darin J

    2013-01-01

    A simple and effective anion ion chromatography (IC) method with anion exchange column and conductivity detector has been developed to determine free sulfites (SO3-2) in dried fruits processed with sulfur dioxide. No oxidation agent, such as hydrogen peroxide, is used to convert sulfites to sulfates for IC analysis. In addition, no stabilizing agent, such as formaldehyde, fructose or EDTA, is required during the sample extraction. This method uses aqueous 0.2 N NaOH as the solvent for standard preparation and sample extraction. The sulfites, either prepared from standard sodium sulfite powder or extracted from food samples, are presumed to be unbound SO3-2 in aqueous 0.2 N NaOH (pH > 13), because the bound sulfites in the sample matrix are released at pH > 10. In this study, sulfites in the standard solutions were stable at room temperature (i.e., 15-25 degrees C) for up to 12 days. The lowest standard of the linear calibration curve is set at 1.59 microg/mL SO3-2 (equivalent to 6.36 microg/g sample with no dilution) for analysis of processed dried fruits that would contain high levels (>1000 microg/g) of sulfites. As a consequence, this method typically requires significant dilution of the sample extract. Samples are prepared with a simple procedure of sample compositing, extraction with aqueous 0.2 N NaOH, centrifugation, dilution as needed, and filtration prior to IC. The sulfites in these sample extracts are stable at room temperature for up to 20 h. Using anion IC, the sulfites are eluted under isocratic conditions with 10 mM aqueous sodium carbonate solution as the mobile phase passing through an anion exchange column. The sulfites are easily separated, with an analysis run time of 18 min, regardless of the dried fruit matrix. Recoveries from samples spiked with sodium sulfites were demonstrated to be between 81 and 105% for five different fruit matrixes (apricot, golden grape, white peach, fig, and mango). Overall, this method is simple to perform and effective for the determination of high levels of sulfites in dried fruits.

  11. Entanglement and Bell's inequality violation above room temperature in metal carboxylates

    NASA Astrophysics Data System (ADS)

    Souza, A. M.; Soares-Pinto, D. O.; Sarthour, R. S.; Oliveira, I. S.; Reis, M. S.; Brandão, P.; Dos Santos, A. M.

    2009-02-01

    In the present work we show that a particular family of materials, the metal carboxylates, may have entangled states up to very high temperatures. From magnetic-susceptibility measurements, we have estimated the critical temperature below which entanglement exists in the copper carboxylate {Cu2(O2CH)4}{Cu(O2CH)2(2-methylpyridine)2} , and we have found this to be above room temperature (Te˜630K) . Furthermore, the results show that the system remains maximally entangled until close to ˜100K and the Bell’s inequality is violated up to nearly room temperature (˜290K) .

  12. Entanglement and Bell's inequality violation above room temperature in metal carboxylates.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souza, A M; Soares-Pinto, D O; Sarthour, R S

    In the present work we show that a particular family of materials, the metal carboxylates, may have entangled states up to very high temperatures. From magnetic-susceptibility measurements, we have estimated the critical temperature below which entanglement exists in the copper carboxylate {Cu-2(O2CH)(4)}{Cu(O2CH)(2)(2-methylpyridine)(2)}, and we have found this to be above room temperature (T-e similar to 630 K). Furthermore, the results show that the system remains maximally entangled until close to similar to 100 K and the Bell's inequality is violated up to nearly room temperature (similar to 290 K).

  13. Tailoring the magnetostructural transition and magnetocaloric properties around room temperature: In-doped Ni-Mn-Ga alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Linfang; Wang, Jingmin; Hua, Hui; Jiang, Chengbao; Xu, Huibin

    2014-09-01

    Some off-stoichiometric Ni-Mn-Ga alloys undergo a coupled magnetostructural transition from ferromagnetic martensite to paramagnetic austenite, giving rise to the large magnetocaloric effect. However, the magnetostructural transitions of Ni-Mn-Ga alloys generally take place at temperatures higher than room temperature. Here, we report that by the partial substitution of In for Ga, the paramagnetic austenite phase is well stabilized, and the magnetostructural transition can be tailored around room temperature. Sizable magnetic entropy change and adiabatic temperature change were induced by magnetic field change in the vicinity of the magnetostructural transition of the In-doped Ni-Mn-Ga alloys.

  14. Evaluation of Ultra High Pressure (UHP) Firefighting in a Room-and-Contents Fire

    DTIC Science & Technology

    2017-03-15

    Burn Room and Hangar Temperature Prior to Ignition ............................................... 18 Figure 12. Effect of Temperature on Normalized...Figure 20. Maximum Average Temperature and Heat Flux ......................................................... 22 Figure 21. Effect of Maximum Average...Aspirated Ceiling Temperature .................................... 23 Figure 22. Effect of Maximum Average Floor Heat Flux on Extinguishment Quantity

  15. Simple, mild, one-step labelling of proteins with gallium-68 using a tris(hydroxypyridinone) bifunctional chelator: a 68Ga-THP-scFv targeting the prostate-specific membrane antigen.

    PubMed

    Nawaz, Saima; Mullen, Gregory E D; Sunassee, Kavitha; Bordoloi, Jayanta; Blower, Philip J; Ballinger, James R

    2017-10-25

    Labelling proteins with gallium-68 using bifunctional chelators is often problematic because of unsuitably harsh labelling conditions such as low pH or high temperature and may entail post-labelling purification. To determine whether tris(hydroxypyridinone) (THP) bifunctional chelators offer a potential solution to this problem, we have evaluated the labelling and biodistribution of a THP conjugate with a new single-chain antibody against the prostate-specific membrane antigen (PSMA), an attractive target for staging prostate cancer (PCa). A single-chain variable fragment (scFv) of J591, a monoclonal antibody that recognises an external epitope of PSMA, was prepared in order to achieve biokinetics matched to the half-life of gallium-68. The scFv, J591c-scFv, was engineered with a C-terminal cysteine. J591c-scFv was produced in HEK293T cells and purified by size-exclusion chromatography. A maleimide THP derivative (THP-mal) was coupled site-specifically to the C-terminal cysteine residue. The THP-mal-J591c-scFv conjugate was labelled with ammonium acetate-buffered gallium-68 from a 68 Ge/ 68 Ga generator at room temperature and neutral pH. The labelled conjugate was evaluated in the PCa cell line DU145 and its PSMA-overexpressing variant in vitro and xenografted in SCID mice. J591c-scFv was produced in yields of 4-6 mg/l culture supernatant and efficiently coupled with the THP-mal bifunctional chelator. Labelling yields > 95% were achieved at room temperature following incubation of 5 μg conjugate with gallium-68 for 5 min without post-labelling purification. 68 Ga-THP-mal-J591c-scFv was stable in serum and showed selective binding to the DU145-PSMA cell line, allowing an IC50 value of 31.5 nM to be determined for unmodified J591c-scFv. Serial PET/CT imaging showed rapid, specific tumour uptake and clearance via renal elimination. Accumulation in DU145-PSMA xenografts at 90 min post-injection was 5.4 ± 0.5%ID/g compared with 0.5 ± 0.2%ID/g in DU145 tumours (n = 4). The bifunctional chelator THP-mal enabled simple, rapid, quantitative, one-step room temperature radiolabelling of a protein with gallium-68 at neutral pH without a need for post-labelling purification. The resultant gallium-68 complex shows high affinity for PSMA and favourable in vivo targeting properties in a xenograft model of PCa.

  16. [Association between ambient temperature and hospital emergency room visits for cardiovascular diseases: a case-crossover study].

    PubMed

    Guo, Yu-Ming; Wang, Jia-Jia; Li, Guo-Xing; Zheng, Ya-An; He, Wichmann; Pan, Xiao-Chuan

    2009-08-01

    To explore the association between ambient average temperature and hospital emergency room visits for cardiovascular diseases (International Classification of Diseases, Tenth Vision ICD-10: I00 - I99) in Beijing, China. Data was collected on daily hospital emergency room visits for cardiovascular diseases from Peking University Third Hospital, including meteorological data (daily average temperature, relative humidity, wind speed, and atmospheric pressure) from the China Meteorological Data Sharing Service System, and on air pollution from the Beijing Municipal Environmental Monitoring Center. Time-stratified case-crossover design was used to analyze data on 4 seasons. After adjusting data on air pollution, 1 degree ( degrees C) increase of ambient average temperature would associate with the emergency room visits of odds ratio (ORs) as 1.282 (95%CI: 1.250 - 1.315), 1.027 (95%CI: 1.001 - 1.055), 0.661 (95%CI: 0.637 - 0.687), and 0.960 (95%CI: 0.937 - 0.984) in spring, summer, autumn, and winter respectively. After controlling the influence of relative humidity, wind speed, and atmospheric pressure, 1 degrees C increase in the ambient average temperature would be associated with the emergency room visits on ORs value as 1.423 (95%CI: 1.377 - 1.471), 1.082 (95%CI: 1.041 - 1.124), 0.633 (95%CI: 0.607 - 0.660) and 0.971 (95%CI: 0.944 - 1.000) in spring, summer, autumn, and winter respectively. These data on outcomes suggested that the elevated level of ambient temperature would increase the hospital emergency room visits for cardiovascular diseases in spring and summer while the elevated level of ambient temperature would decrease the hospital emergency room visits for the cardiovascular diseases in autumn and winter, suggesting that patients with cardiovascular diseases should pay attention to the climate change.

  17. The effect of preheated versus room-temperature skin disinfection on bacterial colonization during pacemaker device implantation: a randomized controlled non-inferiority trial.

    PubMed

    Wistrand, Camilla; Söderquist, Bo; Magnusson, Anders; Nilsson, Ulrica

    2015-01-01

    In clinical practice, patients who are awake often comment that cold surgical skin disinfectant is unpleasant. This is not only a problem of patients' experience; heat loss during the disinfection process is a problem that can result in hypothermia. Evidence for the efficacy of preheated disinfection is scarce. We tested whether preheated skin disinfectant was non-inferior to room-temperature skin disinfectant on reducing bacterial colonization during pacemaker implantation. This randomized, controlled, non-inferiority trial included 220 patients allocated to skin disinfection with preheated (36 °C) or room-temperature (20 °C) chlorhexidine solution in 70 % ethanol. Cultures were obtained by swabbing at 4 time-points; 1) before skin disinfection (skin surface), 2) after skin disinfection (skin surface), 3) after the incision (subcutaneously in the wound), and 4) before suturing (subcutaneously in the wound). The absolute difference in growth between patients treated with preheated versus room-temperature skin disinfectant was zero (90 % CI -0.101 to 0.101; preheated: 30 of 105 [28.6 %] vs. room-temperature: 32 of 112 [28.6 %]). The pre-specified margin for statistical non-inferiority in the protocol was set at 10 % for the preheated disinfectant. There were no significant differences between groups regarding SSIs three month postoperatively, which occurred in 0.9 % (1 of 108) treated with preheated and 1.8 % (2 of 112) treated with room-temperature skin disinfectant. Preheated skin disinfection is non-inferior to room-temperature disinfection in bacterial reduction. We therefore suggest that preheated skin disinfection become routine in clean surgery. The study is registered at ClinicalTrials.gov (NCTO2260479).

  18. Polymer Electrolyte-Based Ambient Temperature Oxygen Microsensors for Environmental Monitoring

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Xu, Jennifer C.; Liu, Chung-Chiun

    2011-01-01

    An ambient temperature oxygen microsensor, based on a Nafion polymer electrolyte, has been developed and was microfabricated using thin-film technologies. A challenge in the operation of Nafion-based sensor systems is that the conductivity of Nafion film depends on the humidity in the film. Nafion film loses conductivity when the moisture content in the film is too low, which can affect sensor operation. The advancement here is the identification of a method to retain the operation of the Nafion films in lower humidity environments. Certain salts can hold water molecules in the Nafion film structure at room temperature. By mixing salts with the Nafion solution, water molecules can be homogeneously distributed in the Nafion film increasing the film s hydration to prevent Nafion film from being dried out in low-humidity environment. The presence of organics provides extra sites in the Nafion film to promote proton (H+) mobility and thus improving Nafion film conductivity and sensor performance. The fabrication of ambient temperature oxygen microsensors includes depositing basic electrodes using noble metals, and metal oxides layer on one of the electrode as a reference electrode. The use of noble metals for electrodes is due to their strong catalytic properties for oxygen reduction. A conducting polymer Nafion, doped with water-retaining components and extra sites facilitating proton movement, was used as the electrolyte material, making the design adequate for low humidity environment applications. The Nafion solution was coated on the electrodes and air-dried. The sensor operates at room temperature in potentiometric mode, which measures voltage differences between working and reference electrodes in different gases. Repeat able responses to 21-percent oxygen in nitrogen were achieved using nitrogen as a baseline gas. Detection of oxygen from 7 to 21 percent has also been demonstrated. The room-temperature oxygen micro sensor developed has extremely low power consumption (no heating for operation, no voltage applied to the sensor, only a voltmeter is needed to measure the output), is small in size, is simple to batch-fabricate, and is high in sensor yield. It is applicable in a wide humidity range, with improved operation in low humidity after the additives were added to the Nafion film. Through further improvement and development, the sensor can be used for aerospace applications such as fuel leak detection, fire detection, and environmental monitoring.

  19. Checking the validity of Busquet's ionization temperature with detailed collisional radiative models.

    NASA Astrophysics Data System (ADS)

    Klapisch, M.; Bar-Shalom, A.

    1997-12-01

    Busquet's RADIOM model for effective ionization temperature Tz is an appealing and simple way to introduce non LTE effects in hydrocodes. The authors report checking the validity of RADIOM in the optically thin case by comparison with two collisional radiative models, MICCRON (level-by-level) for C and Al and SCROLL (superconfiguration- by-superconfiguration) for Lu and Au. MICCRON is described in detail. The agreement between the average ion charge >Z< and the corresponding Tz obtained from RADIOM on the one hand, and from MICCRON on the other hand for C and Al is excellent. The absorption spectra at Tz agree very well with the one generated by SCROLL near LTE conditions (small β). Farther from LTE (large β) the agreement is still good, but another effective temperature gives an excellent agreement. It is concluded that the model of Busquet is very good in most cases. There is however room for improvement when the departure from LTE is more pronounced for heavy atoms and for emissivity. Improvement appears possible because the concept of ionization temperature seems to hold in a broader range of parameters.

  20. Fast and precise thermoregulation system in physiological brain slice experiment

    NASA Astrophysics Data System (ADS)

    Sheu, Y. H.; Young, M. S.

    1995-12-01

    We have developed a fast and precise thermoregulation system incorporated within a physiological experiment on a brain slice. The thermoregulation system is used to control the temperature of a recording chamber in which the brain slice is placed. It consists of a single-chip microcomputer, a set command module, a display module, and an FLC module. A fuzzy control algorithm was developed and a fuzzy logic controller then designed for achieving fast, smooth thermostatic performance and providing precise temperature control with accuracy to 0.1 °C, from room temperature through 42 °C (experimental temperature range). The fuzzy logic controller is implemented by microcomputer software and related peripheral hardware circuits. Six operating modes of thermoregulation are offered with the system and this can be further extended according to experimental needs. The test results of this study demonstrate that the fuzzy control method is easily implemented by a microcomputer and also verifies that this method provides a simple way to achieve fast and precise high-performance control of a nonlinear thermoregulation system in a physiological brain slice experiment.

  1. Photonic crystal fiber modal interferometer based on thin-core-fiber mode exciter.

    PubMed

    Miao, Yinping; Ma, Xixi; Wu, Jixuan; Song, Binbin; Zhang, Hao; Liu, Bo; Yao, Jianquan

    2015-11-10

    A thin-core-fiber excited photonic crystal fiber modal interferometer has been proposed and experimentally demonstrated. By employing a thin-core fiber as the mode exciter, both of the core and cladding modes propagate in the photonic crystal fiber and interfere with each other. The experimental results show that the transmission dips corresponding to different-order modes have various strain responses with opposite shift directions. The strain sensitivity could be improved to 58.57  pm/με for the applied strain from 0 to 491 με by utilizing the wavelength interval between the dips with opposite shift directions. Moreover, due to the pure silica property of the employed photonic crystal fiber, the proposed fiber modal interferometer exhibits a low-temperature sensitivity of about 0.56  pm/°C within a temperature range from 26.4°C (room temperature) to 70°C. Additionally, the proposed fiber modal interferometer has several advantages, such as good stability, compact structure, and simple fabrication. Therefore, it is more applicable for strain measurement with reducing temperature cross-sensitivity.

  2. Graphene-based room-temperature implementation of a modified Deutsch-Jozsa quantum algorithm.

    PubMed

    Dragoman, Daniela; Dragoman, Mircea

    2015-12-04

    We present an implementation of a one-qubit and two-qubit modified Deutsch-Jozsa quantum algorithm based on graphene ballistic devices working at room temperature. The modified Deutsch-Jozsa algorithm decides whether a function, equivalent to the effect of an energy potential distribution on the wave function of ballistic charge carriers, is constant or not, without measuring the output wave function. The function need not be Boolean. Simulations confirm that the algorithm works properly, opening the way toward quantum computing at room temperature based on the same clean-room technologies as those used for fabrication of very-large-scale integrated circuits.

  3. Thermal responses from repeated exposures to severe cold with intermittent warmer temperatures.

    PubMed

    Ozaki, H; Enomoto-Koshimizu, H; Tochihara, Y; Nakamura, K

    1998-09-01

    This study was conducted to evaluate physiological reaction and manual performance during exposure to warm (30 degrees C) and cool (10 degrees C) environments after exposure to very low temperatures (-25 degrees C). Furthermore, this experiment was conducted to study whether it is desirable to remove cold-protective jackets in warmer rooms after severe cold exposure. Eight male students remained in an extremely cold room for 20 min, after which they transferred into either the warm room or the cool room for 20 min. This pattern was repeated three times, and the total cold exposure time was 60 min. In the warm and cool rooms, the subjects either removed their cold-protective jackets (Condition A), or wore them continuously (Condition B). Rectal temperature, skin temperatures, manual performance, blood pressure, thermal, comfort and pain sensations were measured during the experiment. The effects of severe cold on almost all measurements in the cool (10 degrees C) environment were greater than those in the warm (30 degrees C) environment under both clothing conditions. The effects of severe cold on all measurements under Condition A except rectal temperature and toe skin temperature were significantly greater than those under Condition B in the cool environment but, not at all differences between Condition A and Condition B in the warm environments were significant. It was recognized that to remove cold-protective jackets in the cool room (10 degrees C) after severe cold exposure promoted the effects of severe cold. When rewarming in the warm resting room (30 degrees C), the physiological and psychological responses and manual performance were not influenced by the presence or absence of cold-protective clothing. These results suggest that it is necessary for workers to make sure to rewarm in the warm room outside of the cold storage and continue to wear cold-protective clothing in the cool room.

  4. Room-temperature nine-µm-wavelength photodetectors and GHz-frequency heterodyne receivers.

    PubMed

    Palaferri, Daniele; Todorov, Yanko; Bigioli, Azzurra; Mottaghizadeh, Alireza; Gacemi, Djamal; Calabrese, Allegra; Vasanelli, Angela; Li, Lianhe; Davies, A Giles; Linfield, Edmund H; Kapsalidis, Filippos; Beck, Mattias; Faist, Jérôme; Sirtori, Carlo

    2018-04-05

    Room-temperature operation is essential for any optoelectronics technology that aims to provide low-cost, compact systems for widespread applications. A recent technological advance in this direction is bolometric detection for thermal imaging, which has achieved relatively high sensitivity and video rates (about 60 hertz) at room temperature. However, owing to thermally induced dark current, room-temperature operation is still a great challenge for semiconductor photodetectors targeting the wavelength band between 8 and 12 micrometres, and all relevant applications, such as imaging, environmental remote sensing and laser-based free-space communication, have been realized at low temperatures. For these devices, high sensitivity and high speed have never been compatible with high-temperature operation. Here we show that a long-wavelength (nine micrometres) infrared quantum-well photodetector fabricated from a metamaterial made of sub-wavelength metallic resonators exhibits strongly enhanced performance with respect to the state of the art up to room temperature. This occurs because the photonic collection area of each resonator is much larger than its electrical area, thus substantially reducing the dark current of the device. Furthermore, we show that our photonic architecture overcomes intrinsic limitations of the material, such as the drop of the electronic drift velocity with temperature, which constrains conventional geometries at cryogenic operation. Finally, the reduced physical area of the device and its increased responsivity allow us to take advantage of the intrinsic high-frequency response of the quantum detector at room temperature. By mixing the frequencies of two quantum-cascade lasers on the detector, which acts as a heterodyne receiver, we have measured a high-frequency signal, above four gigahertz (GHz). Therefore, these wide-band uncooled detectors could benefit technologies such as high-speed (gigabits per second) multichannel coherent data transfer and high-precision molecular spectroscopy.

  5. Room-temperature nine-µm-wavelength photodetectors and GHz-frequency heterodyne receivers

    NASA Astrophysics Data System (ADS)

    Palaferri, Daniele; Todorov, Yanko; Bigioli, Azzurra; Mottaghizadeh, Alireza; Gacemi, Djamal; Calabrese, Allegra; Vasanelli, Angela; Li, Lianhe; Davies, A. Giles; Linfield, Edmund H.; Kapsalidis, Filippos; Beck, Mattias; Faist, Jérôme; Sirtori, Carlo

    2018-04-01

    Room-temperature operation is essential for any optoelectronics technology that aims to provide low-cost, compact systems for widespread applications. A recent technological advance in this direction is bolometric detection for thermal imaging, which has achieved relatively high sensitivity and video rates (about 60 hertz) at room temperature. However, owing to thermally induced dark current, room-temperature operation is still a great challenge for semiconductor photodetectors targeting the wavelength band between 8 and 12 micrometres, and all relevant applications, such as imaging, environmental remote sensing and laser-based free-space communication, have been realized at low temperatures. For these devices, high sensitivity and high speed have never been compatible with high-temperature operation. Here we show that a long-wavelength (nine micrometres) infrared quantum-well photodetector fabricated from a metamaterial made of sub-wavelength metallic resonators exhibits strongly enhanced performance with respect to the state of the art up to room temperature. This occurs because the photonic collection area of each resonator is much larger than its electrical area, thus substantially reducing the dark current of the device. Furthermore, we show that our photonic architecture overcomes intrinsic limitations of the material, such as the drop of the electronic drift velocity with temperature, which constrains conventional geometries at cryogenic operation. Finally, the reduced physical area of the device and its increased responsivity allow us to take advantage of the intrinsic high-frequency response of the quantum detector at room temperature. By mixing the frequencies of two quantum-cascade lasers on the detector, which acts as a heterodyne receiver, we have measured a high-frequency signal, above four gigahertz (GHz). Therefore, these wide-band uncooled detectors could benefit technologies such as high-speed (gigabits per second) multichannel coherent data transfer and high-precision molecular spectroscopy.

  6. Mechanical properties of ZrB2- and HfB2-based ultra-high temperature ceramics fabricated by spark plasma sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zapata-Solvas, E.; Jayaseelan, D.; Lin, Hua-Tay

    2013-01-01

    Flexural strengths at room temperature, at 1400 C in air and at room temperature after 1 h oxidation at 1400 C were determined for ZrB2- and HfB2-based ultra-high temperature ceramics (UHTCs). Defects caused by electrical discharge machining (EDM) lowered measured strengths significantly and were used to calculate fracture toughness via a fracture mechanics approach. ZrB2 with 20 vol.% SiC had room temperature strength of 700 90 MPa, fracture toughness of 6.4 0.6 MPa, Vickers hardness at 9.8 N load of 21.1 0.6 GPa, 1400 C strength of 400 30 MPa and room temperature strength after 1 h oxidation at 1400more » C of 678 15 MPa with an oxide layer thickness of 45 5 m. HfB2 with 20 vol.% SiC showed room temperature strength of 620 50 MPa, fracture toughness of 5.0 0.4 MPa, Vickers hardness at 9.8 N load of 27.0 0.6 GPa, 1400 C strength of 590 150 MPa and room temperature strength after 1 h oxidation at 1400 C of 660 25 MPa with an oxide layer thickness of 12 1 m. 2 wt.% La2O3 addition to UHTCs slightly reduced mechanical performance while increasing tolerance to property degradation after oxidation and effectively aided internal stress relaxation during spark plasma sintering (SPS) cooling, as quantified by X-ray diffraction (XRD). Slow crack growth was suggested as the failure mechanism at high temperatures as a consequence of sharp cracks formation during oxidation.« less

  7. Room-temperature multiferroic and magnetocapacitance effects in M-type hexaferrite BaFe{sub 10.2}Sc{sub 1.8}O{sub 19}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Rujun, E-mail: tangrj@suda.edu.cn, E-mail: yanghao@nuaa.edu.cn; Zhou, Hao; You, Wenlong

    2016-08-22

    The room-temperature multiferroic and magnetocapacitance (MC) effects of polycrystalline M-type hexaferrite BaFe{sub 10.2}Sc{sub 1.8}O{sub 19} have been investigated. The results show that the magnetic moments of insulating BaFe{sub 10.2}Sc{sub 1.8}O{sub 19} can be manipulated by the electric field at room temperature, indicating the existence of magnetoelectric coupling. Moreover, large MC effects are also observed around the room temperature. A frequency dependence analysis shows that the Maxwell-Wagner type magnetoresistance effect is the dominant mechanism for MC effects at low frequencies. Both the magnetoelectric-type and non-magnetoelectric-type spin-phonon couplings contribute to the MC effects at high frequencies with the former being the dominantmore » mechanism. The above results show that the hexaferrite BaFe{sub 10.2}Sc{sub 1.8}O{sub 19} is a room-temperature multiferroic material that can be potentially used in magnetoelectric devices.« less

  8. Crystal induced phosphorescence from Benz(a)anthracene microcrystals at room temperature

    NASA Astrophysics Data System (ADS)

    Maity, Samir; Mazumdar, Prativa; Shyamal, Milan; Sahoo, Gobinda Prasad; Misra, Ajay

    2016-03-01

    Pure organic compounds that are also phosphorescent at room temperature are very rare in literature. Here, we report efficient phosphorescence emission from aggregated hydrosol of Benz(a)anthracene (BaA) at room temperature. Aggregated hydrosol of BaA has been synthesized by re-precipitation method and SDS is used as morphology directing agent. Morphology of the particles is characterized using optical and scanning electronic microcopy (SEM). Photophysical properties of the aggregated hydrosol are carried out using UV-vis, steady state and time resolved fluorescence study. The large stoke shifted structured emission from aggregated hydrosol of BaA has been explained due to phosphorescence emission of BaA at room temperature. In the crystalline state, the restricted intermolecular motions (RIM) such as rotations and vibrations are activated by crystal lattice. This rigidification effect makes the chromophore phosphorescent at room temperature. The possible stacking arrangement of the neighboring BaA within the aggregates has been substantiated by computing second order Fukui parameter as local reactivity descriptors. Computational study also reveals that the neighboring BaA molecules are present in parallel slipped conformation in its aggregated crystalline form.

  9. Quantitative Investigation of Room-Temperature Breakdown Effects in Pixelated TlBr Detectors

    NASA Astrophysics Data System (ADS)

    Koehler, Will; He, Zhong; Thrall, Crystal; O'Neal, Sean; Kim, Hadong; Cirignano, Leonard; Shah, Kanai

    2014-10-01

    Due to favorable material properties such as high atomic number (Tl: 81, Br: 35), high density ( 7.56 g/cm3), and a wide band gap (2.68 eV), thallium-bromide (TlBr) is currently under investigation for use as an alternative room-temperature semiconductor gamma-ray spectrometer. TlBr detectors can achieve less than 1% FWHM energy resolution at 662 keV, but these results are limited to stable operation at - 20°C. After days to months of room-temperature operation, ionic conduction causes these devices to fail. This work correlates the varying leakage current with alpha-particle and gamma-ray spectroscopic performances at various operating temperatures. Depth-dependent photopeak centroids exhibit time-dependent transient behavior, which indicates trapping sites form near the anode surface during room-temperature operation. After refabrication, similar performance and functionality of failed detectors returned.

  10. Giant Room-Temperature Magnetodielectric Response in a MOF at 0.1 Tesla.

    PubMed

    Chen, Li-Hong; Guo, Jiang-Bin; Wang, Xuan; Dong, Xin-Wei; Zhao, Hai-Xia; Long, La-Sheng; Zheng, Lan-Sun

    2017-11-01

    A giant room-temperature magnetodielectric (MD) response upon the application of a small magnetic field is of fundamental importance for the practical application of a new generation of devices. Here, the giant room-temperature magnetodielectric response is demonstrated in the metal-organic framework (MOF) of [NH 2 (CH 3 ) 2 ] n [Fe III Fe II (1- x ) Ni II x (HCOO) 6 ] n (x ≈ 0.63-0.69) (1) with its MD coefficient remaining between -20% and -24% in the 300-410 K temperature range, even at 0.1 T. Because a room-temperature magnetodielectric response has never been observed in MOFs, the present work not only provides a new type of magnetodielectric material but also takes a solid step toward the practical application of MOFs in a new generation of devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Room-temperature creation and spin-orbit torque-induced manipulation of skyrmions in thin film

    NASA Astrophysics Data System (ADS)

    Yu, Guoqiang; Upadhyaya, Pramey; Li, Xiang; Li, Wenyuan; Im, Se Kwon K.; Fan, Yabin; Wong, Kin L.; Tserkovnyak, Yaroslav; Amiri, Pedram Khalili; Wang, Kang L.

    Magnetic skyrmions, which are topologically protected spin texture, are promising candidates for ultra-low energy and ultra-high density magnetic data storage and computing applications1, 2. To date, most experiments on skyrmions have been carried out at low temperatures. The choice of materials available is limited and there is a lack of electrical means to control of skyrmions. Here, we experimentally demonstrate a method for creating skyrmion bubbles phase in the ferromagnetic thin film at room temperature. We further demonstrate that the created skyrmion bubbles can be manipulated by electric current. This room-temperature creation and manipulation of skyrmion in thin film is of particular interest for applications, being suitable for room-temperature operation and compatible with existing semiconductor manufacturing tools. 1. Nagaosa, N., Tokura, Y. Nature Nanotechnology 8, 899-911 (2013). 2. Fert, A., et al., Nature Nanotechnology 8, 152-156 (2013).

  12. Room-temperature ferroelectricity of SrTiO{sub 3} films modulated by cation concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Fang; Zhang, Qinghua; Yang, Zhenzhong

    2015-08-24

    The room-temperature ferroelectricity of SrTiO{sub 3} is promising for oxide electronic devices controlled by multiple fields. An effective way to control the ferroelectricity is highly demanded. Here, we show that the off-centered antisite-like defects in SrTiO{sub 3} films epitaxially grown on Si (001) play the determinative role in the emergence of room-temperature ferroelectricity. The density of these defects changes with the film cation concentration sensitively, resulting in a varied coercive field of the ferroelectric behavior. Consequently, the room-temperature ferroelectricity of SrTiO{sub 3} films can be effectively modulated by tuning the temperature of metal sources during the molecular beam epitaxy growth.more » Such an easy and reliable modulation of the ferroelectricity enables the flexible engineering of multifunctional oxide electronic devices.« less

  13. A Stable Room-Temperature Luminescent Biphenylmethyl Radical.

    PubMed

    Ai, Xin; Chen, Yingxin; Feng, Yuting; Li, Feng

    2018-03-05

    There is only one family of room-temperature luminescent radicals, the triphenylmethyl radicals, to date. Herein, we synthesize a new stable room-temperature luminescent radical, (N-carbazolyl)bis(2,4,6-tirchlorophenyl)methyl radical (CzBTM), which has improved properties compared to the triphenylmethyl radicals. X-ray crystallography, electron paramagnetic resonance spectroscopy, and magnetic susceptibility measurements confirmed the radical structure. CzBTM shows room-temperature deep-red to near-infrared emission in various solutions. Both thermal and photo stability were significantly enhanced by the replacement of trichlorobenzene by the carbazole moiety. The electroluminescence results of CzBTM verify its potential application to circumvent the problem of triplet harvesting in traditional fluorescent OLEDs. A new family of stable luminescent radicals based on CzBTM is anticipated. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Collaborative Research: Polymeric Multiferroics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Shenqiang

    2017-04-20

    The goal of this project is to investigate room temperature magnetism and magnetoelectric coupling of polymeric multiferroics. A new family of molecular charge-transfer crystals has been emerged as a fascinating opportunity for the development of all-organic electrics and spintronics due to its weak hyperfine interaction and low spin-orbit coupling; nevertheless, direct observations of room temperature magnetic spin ordering have yet to be accomplished in organic charge-transfer solids. Furthermore, room temperature magnetoelectric coupling effect hitherto known multiferroics, is anticipated in organic donor-acceptor complexes because of magnetic field effects on charge-transfer dipoles, yet this is also unexplored. The PI seeks to fundamentalmore » understanding of the control of organic crystals to demonstrate and explore room temperature multiferroicity. The experimental results have been verified through the theoretical modeling.« less

  15. Preparation of Boron Nitride Nanoparticles with Oxygen Doping and a Study of Their Room-Temperature Ferromagnetism.

    PubMed

    Lu, Qing; Zhao, Qi; Yang, Tianye; Zhai, Chengbo; Wang, Dongxue; Zhang, Mingzhe

    2018-04-18

    In this work, oxygen-doped boron nitride nanoparticles with room-temperature ferromagnetism have been synthesized by a new, facile, and efficient method. There are no metal magnetic impurities in the nanoparticles analyzed by X-ray photoelectron spectroscopy. The boron nitride nanoparticles exhibit a parabolic shape with increase in the reaction time. The saturation magnetization value reaches a maximum of 0.2975 emu g -1 at 300 K when the reaction time is 12 h, indicating that the Curie temperature ( T C ) is higher than 300 K. Combined with first-principles calculation, the coupling between B 2p orbital, N 2p orbital, and O 2p orbital in the conduction bands is the main origin of room-temperature ferromagnetism and also proves that the magnetic moment changes according the oxygen-doping content change. Compared with other room temperature ferromagnetic semiconductors, boron nitride nanoparticles have widely potential applications in spintronic devices because of high temperature oxidation resistance and excellent chemical stability.

  16. Direct synthesis of ultrafine tetragonal BaTiO3 nanoparticles at room temperature

    PubMed Central

    2011-01-01

    A large quantity of ultrafine tetragonal barium titanate (BaTiO3) nanoparticles is directly synthesized at room temperature. The crystalline form and grain size are checked by both X-ray diffraction and transmission electron microscopy. The results revealed that the perovskite nanoparticles as fine as 7 nm have been synthesized. The phase transition of the as-prepared nanoparticles is investigated by the temperature-dependent Raman spectrum and shows the similar tendency to that of bulk BaTiO3 materials. It is confirmed that the nanoparticles have tetragonal phase at room temperature. PMID:21781339

  17. Room-temperature magnetoelectric multiferroic thin films and applications thereof

    DOEpatents

    Katiyar, Ram S; Kuman, Ashok; Scott, James F.

    2014-08-12

    The invention provides a novel class of room-temperature, single-phase, magnetoelectric multiferroic (PbFe.sub.0.67W.sub.0.33O.sub.3).sub.x (PbZr.sub.0.53Ti.sub.0.47O.sub.3).sub.1-x (0.2.ltoreq.x.ltoreq.0.8) (PFW.sub.x-PZT.sub.1-x) thin films that exhibit high dielectric constants, high polarization, weak saturation magnetization, broad dielectric temperature peak, high-frequency dispersion, low dielectric loss and low leakage current. These properties render them to be suitable candidates for room-temperature multiferroic devices. Methods of preparation are also provided.

  18. Room temperature ferromagnetic and semiconducting properties of graphene adsorbed with cobalt oxide using electrochemical method

    NASA Astrophysics Data System (ADS)

    Park, Chang-Soo; Lee, Kyung Su; Chu, Dongil; Lee, Juwon; Shon, Yoon; Kim, Eun Kyu

    2017-12-01

    We report the room temperature ferromagnetic properties of graphene adsorbed by cobalt oxide using electrochemical method. The cobalt oxide doping onto graphene was carried out in 0.1 M LiCoO2/DI-water solution. The doped graphene thin film was determined to be a single layer from Raman analysis. The CoO doped graphene has a clear ferromagnetic hysteresis at room temperature and showed a remnant magnetization, 128.2 emu/cm3. The temperature dependent conductivity of the adsorbed graphene showed the semiconducting behavior and a band gap opening of 0.12 eV.

  19. Inherently aligned microfluidic electrodes composed of liquid metal.

    PubMed

    So, Ju-Hee; Dickey, Michael D

    2011-03-07

    This paper describes the fabrication and characterization of microelectrodes that are inherently aligned with microfluidic channels and in direct contact with the fluid in the channels. Injecting low melting point alloys, such as eutectic gallium indium (EGaIn), into microchannels at room temperature (or just above room temperature) offers a simple way to fabricate microelectrodes. The channels that define the shape and position of the microelectrodes are fabricated simultaneously with other microfluidic channels (i.e., those used to manipulate fluids) in a single step; consequently, all of the components are inherently aligned. In contrast, conventional techniques require multiple fabrication steps and registration (i.e., alignment of the electrodes with the microfluidic channels), which are technically challenging. The distinguishing characteristic of this work is that the electrodes are in direct contact with the fluid in the microfluidic channel, which is useful for a number of applications such as electrophoresis. Periodic posts between the microelectrodes and the microfluidic channel prevent the liquid metal from entering the microfluidic channel during injection. A thin oxide skin that forms rapidly and spontaneously on the surface of the metal stabilizes mechanically the otherwise low viscosity, high surface tension fluid within the channel. Moreover, the injected electrodes vertically span the sidewalls of the channel, which allows for the application of uniform electric field lines throughout the height of the channel and perpendicular to the direction of flow. The electrodes are mechanically stable over operating conditions commonly used in microfluidic applications; the mechanical stability depends on the magnitude of the applied bias, the nature of the bias (DC vs. AC), and the conductivity of the solutions in the microfluidic channel. Electrodes formed using alloys with melting points above room temperature ensure mechanical stability over all of the conditions explored. As a demonstration of their utility, the fluidic electrodes are used for electrohydrodynamic mixing, which requires extremely high electric fields (~10(5) V m(-1)).

  20. Long-term hot-hardness characteristics of five through-hardened bearing steels

    NASA Technical Reports Server (NTRS)

    Anderson, N. E.

    1978-01-01

    Five vacuum-melted bearing steels tempered to various room temperature hardnesses: AISI 52100 and the tool steels AISI M-1, AISI M-50, Halmo, and WB-49 were studied. Hardness measurements were taken on AISI 52100 at room temperature and at elevated temperatures after soaking it at temperatures to 478 K (400 F) for as long as 1000 hours. Hardness measurements were also taken on the tool steels after soaking them at temperatures to 700 K (800 F) for as long at 1000 hours. None of the tool steel tempered during soaking and AISI 52100 did not temper when soaked at 366 K (200 F) for 1000 hours. However, AISI 52100 that was initially hardened to room temperature hardness of 62.5 or 64.5 lost hardness during the first 500 hours of the 1000-hour soak tests at temperatures greater than 394 K (250 F), but it maintained its hardness during the final 500 hours of soaking. Similarly, AISI 52100 initially hardened to room temperature hardness of 60.5 lost hardness during the first 500 hours of the 1000-hour soaking at temperatures greater than 422 K (300 F), but it maintained its hardness during the final 500 hours of soaking.

  1. 46 CFR 111.01-15 - Temperature ratings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... is assumed for all rotating electrical machinery in boiler rooms, engine rooms, auxiliary machinery...-rotating electrical equipment in boiler rooms, in engine rooms, in auxiliary machinery rooms, and on...

  2. 46 CFR 111.01-15 - Temperature ratings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... is assumed for all rotating electrical machinery in boiler rooms, engine rooms, auxiliary machinery...-rotating electrical equipment in boiler rooms, in engine rooms, in auxiliary machinery rooms, and on...

  3. 46 CFR 111.01-15 - Temperature ratings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... is assumed for all rotating electrical machinery in boiler rooms, engine rooms, auxiliary machinery...-rotating electrical equipment in boiler rooms, in engine rooms, in auxiliary machinery rooms, and on...

  4. Self-locking threaded fasteners

    DOEpatents

    Glovan, Ronald J.; Tierney, John C.; McLean, Leroy L.; Johnson, Lawrence L.

    1996-01-01

    A threaded fastener with a shape memory alloy (SMA) coatings on its threads is disclosed. The fastener has special usefulness in high temperature applications where high reliability is important. The SMA coated fastener is threaded into or onto a mating threaded part at room temperature to produce a fastened object. The SMA coating is distorted during the assembly. At elevated temperatures the coating tries to recover its original shape and thereby exerts locking forces on the threads. When the fastened object is returned to room temperature the locking forces dissipate. Consequently the threaded fasteners can be readily disassembled at room temperature but remains securely fastened at high temperatures. A spray technique is disclosed as a particularly useful method of coating of threads of a fastener with a shape memory alloy.

  5. Synthesis of isoflavones by room-temperature nickel-catalyzed cross-couplings of 3-iodo(bromo)chromones with arylzincs.

    PubMed

    Zhang, Zunting; Qiao, Jinfeng; Wang, Ding; Han, Ling; Ding, Ru

    2014-05-01

    A new concise, facile method for synthesis of isoflavones was accomplished in moderate to good yields for 3-iodochromones or 3-bromochromones and arylzinc bromides via Negishi cross-coupling reaction catalyzed by NiCl(2)/PPh(3) or NiCl(2)(PPh(3))(2) at room temperature. The Isoflavone core was synthesized in four steps in good yield, starting from commercially available 2-hydroxyacetophenone and aromatic bromide. Three steps of the procedure were carried out at room temperature.

  6. Temperature autocontrol system for the coud%eacute; room of the 1.2 m telescope

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-Hua

    The setting up of temperature autocontrol system for the coudé room of the 1.2 m telescope at Yunnan Observatory and realizing the airflow autocirculation, purified the air, keeping the temperature in the coudé room constantly by autocontrol the heater, and then keeping the optical system in the best condition are introduced in this paper. The autocontrol system is designed and developed at the basis of having only the air circulator and the heater controlled by hand.

  7. Advancing the Capabilities of an Authentic Ex Vivo Model of Primary Human Prostate Cancer

    DTIC Science & Technology

    2014-10-01

    maintained the PTEN expression of the native tissues after 5 days in culture. Prostate-specific membrane antigen ( PSMA ) was detected in benign and malignant...room temperature 1 h room temperature 30 min room temperature Abcam, Cambridge, MA, USA p63 SMA CD68 PSMA Mouse monoclonal Mouse monoclonal Mouse...Prostate-specific membrane antigen ( PSMA ) was detected in benign and malignant glands as expected in both native tissue and in TSCs after 5 days.47

  8. Mossbauer Study of Low Temperature Magnetic and magnetooptic Properties of Amorphous Tb/Fe Multilayers

    NASA Astrophysics Data System (ADS)

    Chowdhury, Ataur

    Magnetic and magnetooptic properties of multilayers critically depend on detailed magnetic and structural ordering of the interface. To study these properties in Tb/Fe multilayers, samples with varying layer thicknesses were fabricated by planar magnetic sputtering on polyester substrates. Mossbauer effect spectra were recorded at different temperatures ranging between 20 K and 300 K. The results show that perpendicular magnetic anisotropy (PMA) increases as temperature decreases for samples that show parallel anisotropy at room temperature, and for samples that show strong PMA at room temperature, no significant change in PMA is observed at low temperature (<100 K). Hyperfine field of samples that display parallel anisotropy at room temperature shows oscillatory behavior, reminiscent of RKKY oscillations, at low temperatures (<100 K). Plausible causes of these properties will be discussed in the paper.

  9. Conformational variation of proteins at room temperature is not dominated by radiation damage

    DOE PAGES

    Russi, Silvia; González, Ana; Kenner, Lillian R.; ...

    2017-01-01

    Protein crystallography data collection at synchrotrons is routinely carried out at cryogenic temperatures to mitigate radiation damage. Although damage still takes place at 100 K and below, the immobilization of free radicals increases the lifetime of the crystals by approximately 100-fold. Recent studies have shown that flash-cooling decreases the heterogeneity of the conformational ensemble and can hide important functional mechanisms from observation. These discoveries have motivated increasing numbers of experiments to be carried out at room temperature. However, the trade-offs between increased risk of radiation damage and increased observation of alternative conformations at room temperature relative to cryogenic temperature havemore » not been examined. A considerable amount of effort has previously been spent studying radiation damage at cryo-temperatures, but the relevance of these studies to room temperature diffraction is not well understood. Here, the effects of radiation damage on the conformational landscapes of three different proteins ( T. danielli thaumatin, hen egg-white lysozyme and human cyclophilin A) at room (278 K) and cryogenic (100 K) temperatures are investigated. Increasingly damaged datasets were collected at each temperature, up to a maximum dose of the order of 10 7 Gy at 100 K and 10 5 Gy at 278 K. Although it was not possible to discern a clear trend between damage and multiple conformations at either temperature, it was observed that disorder, monitored by B-factor-dependent crystallographic order parameters, increased with higher absorbed dose for the three proteins at 100 K. At 278 K, however, the total increase in this disorder was only statistically significant for thaumatin. A correlation between specific radiation damage affecting side chains and the amount of disorder was not observed. Lastly, this analysis suggests that elevated conformational heterogeneity in crystal structures at room temperature is observed despite radiation damage, and not as a result thereof.« less

  10. Conformational variation of proteins at room temperature is not dominated by radiation damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russi, Silvia; González, Ana; Kenner, Lillian R.

    Protein crystallography data collection at synchrotrons is routinely carried out at cryogenic temperatures to mitigate radiation damage. Although damage still takes place at 100 K and below, the immobilization of free radicals increases the lifetime of the crystals by approximately 100-fold. Recent studies have shown that flash-cooling decreases the heterogeneity of the conformational ensemble and can hide important functional mechanisms from observation. These discoveries have motivated increasing numbers of experiments to be carried out at room temperature. However, the trade-offs between increased risk of radiation damage and increased observation of alternative conformations at room temperature relative to cryogenic temperature havemore » not been examined. A considerable amount of effort has previously been spent studying radiation damage at cryo-temperatures, but the relevance of these studies to room temperature diffraction is not well understood. Here, the effects of radiation damage on the conformational landscapes of three different proteins ( T. danielli thaumatin, hen egg-white lysozyme and human cyclophilin A) at room (278 K) and cryogenic (100 K) temperatures are investigated. Increasingly damaged datasets were collected at each temperature, up to a maximum dose of the order of 10 7 Gy at 100 K and 10 5 Gy at 278 K. Although it was not possible to discern a clear trend between damage and multiple conformations at either temperature, it was observed that disorder, monitored by B-factor-dependent crystallographic order parameters, increased with higher absorbed dose for the three proteins at 100 K. At 278 K, however, the total increase in this disorder was only statistically significant for thaumatin. A correlation between specific radiation damage affecting side chains and the amount of disorder was not observed. Lastly, this analysis suggests that elevated conformational heterogeneity in crystal structures at room temperature is observed despite radiation damage, and not as a result thereof.« less

  11. Gas selectivity of SILAR grown CdS nano-bulk junction

    NASA Astrophysics Data System (ADS)

    Jayakrishnan, R.; Nair, Varun G.; Anand, Akhil M.; Venugopal, Meera

    2018-03-01

    Nano-particles of cadmium sulphide were deposited on cleaned copper substrate by an automated sequential ionic layer adsorption reaction (SILAR) system. The grown nano-bulk junction exhibits Schottky diode behavior. The response of the nano-bulk junction was investigated under oxygen and hydrogen atmospheric conditions. The gas response ratio was found to be 198% for Oxygen and 34% for Hydrogen at room temperature. An increase in the operating temperature of the nano-bulk junction resulted in a decrease in their gas response ratio. A logarithmic dependence on the oxygen partial pressure to the junction response was observed, indicating a Temkin isothermal behavior. Work function measurements using a Kelvin probe demonstrate that the exposure to an oxygen atmosphere fails to effectively separate the charges due to the built-in electric field at the interface. Based on the benefits like simple structure, ease of fabrication and response ratio the studied device is a promising candidate for gas detection applications.

  12. Removal of copper(II) from some environmental samples by sorptive-flotation using powdered marble wastes as sorbents and oleic acid as surfactant.

    PubMed

    Ghazy, S E; Samra, S E; Mahdy, A F M; El-Morsy, S M

    2004-11-01

    A simple and economic experimental sorptive -flotation procedure is presented for the removal of copper(II) species from aqueous solutions. It is based on using powdered marble wastes (PMW), which are widespread and inexpensive and may represent an environmental problem, as the effective inorganic sorbent and oleic (HOL) as the surfactant. The main parameters (i.e. initial solution pH, sorbent, surfactant and copper concentrations, stirring times, ionic strength, temperature and the presence of foreign ions) influencing the flotation of PMW and /or Cu(II) were examined. Nearly, 100% of PMW and Cu(II) were removed from aqueous solutions at pH7 after stirring for 10 min and at room temperature, (approximately 25 degrees C). The procedure was successfully applied to recover Cu(II) spiked to some natural water samples. A mechanism for sorption and flotation is suggested.

  13. Microscopic origin of the magnetoelectronic phase separation in Sr-doped LaCoO3

    NASA Astrophysics Data System (ADS)

    Németh, Zoltán; Szabó, András; Knížek, Karel; Sikora, Marcin; Chernikov, Roman; Sas, Norbert; Bogdán, Csilla; Nagy, Dénes Lajos; Vankó, György

    2013-07-01

    The nanoscopic magnetoelectronic phase separation in doped La1-xSrxCoO3 perovskites was studied with local probes. The phase separation is directly observed by Mössbauer spectroscopy in the studied doping range of 0.05 ≤ x ≤ 0.25 both at room temperature and in the low-temperature magnetic phase. Extended with current synchrotron-based x-ray spectroscopies, these data help to characterize the volume as well as the local electric and magnetic properties of the distinct phases. A simple model based on a random distribution of the doping Sr ions describes well both the evolution of the separated phases and the variation of the Co spin state. The experiments suggest that Sr doping initiates small droplets and a high degree of doping-driven cobalt spin-state transition, while the Sr-free second phase vanishes rapidly with increasing Sr content.

  14. Photonic Architectures for Equilibrium High-Temperature Bose-Einstein Condensation in Dichalcogenide Monolayers

    PubMed Central

    Jiang, Jian-Hua; John, Sajeev

    2014-01-01

    Semiconductor-microcavity polaritons are composite quasiparticles of excitons and photons, emerging in the strong coupling regime. As quantum superpositions of matter and light, polaritons have much stronger interparticle interactions compared with photons, enabling rapid equilibration and Bose-Einstein condensation (BEC). Current realizations based on 1D photonic structures, such as Fabry-Pérot microcavities, have limited light-trapping ability resulting in picosecond polariton lifetime. We demonstrate, theoretically, above-room-temperature (up to 590 K) BEC of long-lived polaritons in MoSe2 monolayers sandwiched by simple TiO2 based 3D photonic band gap (PBG) materials. The 3D PBG induces very strong coupling of 40 meV (Rabi splitting of 62 meV) for as few as three dichalcogenide monolayers. Strong light-trapping in the 3D PBG enables the long-lived polariton superfluid to be robust against fabrication-induced disorder and exciton line-broadening. PMID:25503586

  15. Fabricating continuous electroconductive polyacrylonitrile fibers with thermosensitive property via wet-spinning

    NASA Astrophysics Data System (ADS)

    Liu, Wanwan; Jin, Yang; Wang, Yangyi; Ge, Mingqiao; Gao, Qiang

    2017-12-01

    In this work, conductive polyacrylonitrile (PAN) composite fiber with thermosensitive property was successfully prepared via wet-spinning. Thermochromic pigment (TCP) microsphere capsules were applied to manufacture color-changing fibers. Meanwhile, light-colored conductive whiskers (ATO@TiO2) were employed to endow polyacrylonitrile fibers with conductivity without prejudicing their thermosensitive property. Interestingly, unlike other conductive fibers in dark color, this kind of conductive composite fiber can be dyed by thermosensitive pigment. The obtained composite fiber containing 20 vol% ATO@TiO2 whiskers shows a resistivity of 105 Ω · cm and could generate heat by Joule heating when being applied under a certain voltage. The composite fiber shows a red color at room temperature, while the color of the composite fiber fades gradually and finally becomes white as temperature rise. This simple and cost-effective approach is expected to inspire more research into the applications of multifunctional conductive fibers.

  16. Scaling properties of ballistic nano-transistors

    PubMed Central

    2011-01-01

    Recently, we have suggested a scale-invariant model for a nano-transistor. In agreement with experiments a close-to-linear thresh-old trace was found in the calculated ID - VD-traces separating the regimes of classically allowed transport and tunneling transport. In this conference contribution, the relevant physical quantities in our model and its range of applicability are discussed in more detail. Extending the temperature range of our studies it is shown that a close-to-linear thresh-old trace results at room temperatures as well. In qualitative agreement with the experiments the ID - VG-traces for small drain voltages show thermally activated transport below the threshold gate voltage. In contrast, at large drain voltages the gate-voltage dependence is weaker. As can be expected in our relatively simple model, the theoretical drain current is larger than the experimental one by a little less than a decade. PMID:21711899

  17. Hygrothermal properties of composites

    NASA Technical Reports Server (NTRS)

    Arsenovic, Petar

    1996-01-01

    The testing procedure and acceptance criteria for outgassing selection of materials to be used in spacecraft has been reviewed. Outgassing testing should be conducted according to ASTM Standard E 595-90. In general, materials with CVCM less than or equal to 0.10% and TML less than or equal to 1.00% are acceptable for space applications. Next, test data on several types of graphite-epoxy composite materials are presented over time at various relative humidity levels at room temperature for moisture absorption, and under vacuum at several temperatures for moisture desorption (outgassing). The data can be accurately represented by simple equations which are useful for materials characterization. Finally, a laser dilatometer systems of extremely high sensitivity and accuracy was assembled and used to measure the coefficient of thermal expansion (CTE) of several types of graphite-epoxy structures, culminating in the ability to perform loading and thermal expansion tests on a prototype optical bench.

  18. High resolution NMR imaging using a high field yokeless permanent magnet.

    PubMed

    Kose, Katsumi; Haishi, Tomoyuki

    2011-01-01

    We measured the homogeneity and stability of the magnetic field of a high field (about 1.04 tesla) yokeless permanent magnet with 40-mm gap for high resolution nuclear magnetic resonance (NMR) imaging. Homogeneity was evaluated using a 3-dimensional (3D) lattice phantom and 3D spin-echo imaging sequences. In the central sphere (20-mm diameter), peak-to-peak magnetic field inhomogeneity was about 60 ppm, and the root-mean-square was 8 ppm. We measured room temperature, magnet temperature, and NMR frequency of the magnet simultaneously every minute for about 68 hours with and without the thermal insulator of the magnet. A simple mathematical model described the magnet's thermal property. Based on magnet performance, we performed high resolution (up to [20 µm](2)) imaging with internal NMR lock sequences of several biological samples. Our results demonstrated the usefulness of the high field small yokeless permanent magnet for high resolution NMR imaging.

  19. Alternative generation of well-aligned uniform lying helix texture in a cholesteric liquid crystal cell

    NASA Astrophysics Data System (ADS)

    Yu, Chia-Hua; Wu, Po-Chang; Lee, Wei

    2017-10-01

    This work demonstrates a simple approach for obtaining a well-aligned uniform lying helix (ULH) texture and a tri-bistable feature at ambient temperature in a typical 90°-twisted cell filled with a short-pitch cholesteric liquid crystal. This ULH texture is obtained at room temperature from initially field-induced helix-free homeotropic state by gradually decreasing the applied voltage. Depending on the way and rate of reducing the voltage, three stable states (i.e., Grandjean planar, focal conic, and ULH) are generated and switching between any two of them is realized. Moreover, the electrical operation of the cell in the ULH state enables the tunability in phase retardation via the deformation of the ULH. The observations made in this work may be useful for applications such as tunable phase modulators and energy-efficient photonic devices.

  20. Enhanced NH3 gas sensing properties of a QCM sensor by increasing the length of vertically orientated ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Minh, Vu Anh; Tuan, Le Anh; Huy, Tran Quang; Hung, Vu Ngoc; Quy, Nguyen Van

    2013-01-01

    Vertically aligned ZnO nanorods were directly synthesised on a gold electrode of quartz crystal microbalance (QCM) by a simple low-temperature hydrothermal method for a NH3 gas sensing application. The length of vertically aligned ZnO nanorods was increased to purpose enhancement in the gas sensing response of the sensor. The length of ZnO nanorods increased with an increase in growth time. The growth time of ZnO nanorods was systematically varied in the range of 1-4 h to examine the effect of the length of the ZnO nanorods on the gas sensing properties of the fabricated sensors. The gas sensing properties of sensors with different ZnO nanorods lengths was examined at room temperature for various concentrations of NH3 (50-800 ppm) in synthetic air. Enhancement in gas sensing response by increasing the length of ZnO nanorods was observed.

  1. Ultra precision and reliable bonding method

    NASA Technical Reports Server (NTRS)

    Gwo, Dz-Hung (Inventor)

    2001-01-01

    The bonding of two materials through hydroxide-catalyzed hydration/dehydration is achieved at room temperature by applying hydroxide ions to at least one of the two bonding surfaces and by placing the surfaces sufficiently close to each other to form a chemical bond between them. The surfaces may be placed sufficiently close to each other by simply placing one surface on top of the other. A silicate material may also be used as a filling material to help fill gaps between the surfaces caused by surface figure mismatches. A powder of a silica-based or silica-containing material may also be used as an additional filling material. The hydroxide-catalyzed bonding method forms bonds which are not only as precise and transparent as optical contact bonds, but also as strong and reliable as high-temperature frit bonds. The hydroxide-catalyzed bonding method is also simple and inexpensive.

  2. Low-Temperature Photochemically Activated Amorphous Indium-Gallium-Zinc Oxide for Highly Stable Room-Temperature Gas Sensors.

    PubMed

    Jaisutti, Rawat; Kim, Jaeyoung; Park, Sung Kyu; Kim, Yong-Hoon

    2016-08-10

    We report on highly stable amorphous indium-gallium-zinc oxide (IGZO) gas sensors for ultraviolet (UV)-activated room-temperature detection of volatile organic compounds (VOCs). The IGZO sensors fabricated by a low-temperature photochemical activation process and exhibiting two orders higher photocurrent compared to conventional zinc oxide sensors, allowed high gas sensitivity against various VOCs even at room temperature. From a systematic analysis, it was found that by increasing the UV intensity, the gas sensitivity, response time, and recovery behavior of an IGZO sensor were strongly enhanced. In particular, under an UV intensity of 30 mW cm(-2), the IGZO sensor exhibited gas sensitivity, response time and recovery time of 37%, 37 and 53 s, respectively, against 750 ppm concentration of acetone gas. Moreover, the IGZO gas sensor had an excellent long-term stability showing around 6% variation in gas sensitivity over 70 days. These results strongly support a conclusion that a low-temperature solution-processed amorphous IGZO film can serve as a good candidate for room-temperature VOCs sensors for emerging wearable electronics.

  3. The effect of ultraviolet irradiation on the ultra-thin HfO{sub 2} based CO gas sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karaduman, Irmak; Barin, Özlem; Acar, Selim

    2015-11-07

    In this work, an effort has been made to fabricate ultrathin HfO{sub 2}/Al{sub 2}O{sub 3} sample by atomic layer deposition method for the fast detection of CO gas at room temperature. The effect of the operating temperature and the UV light on the gas sensing characteristics has been studied. We investigated the optimum operating temperature for the sample by sensing 25 ppm CO and CO{sub 2} gases from room temperature to 150 °C for 10 °C steps. The maximum response was obtained at 150 °C for both gases in the measurement temperature range. Also, the photoresponse measurements clearly show the effect of UV lightmore » on the sample. At room temperature, sensor showed superior response (14%) for 5 ppm CO gas. The response time of sensor is 6 s to 5 ppm CO gas concentration. The ultrathin HfO{sub 2} based sample shows acceptable gas sensitivity for 5 ppm CO gas at room temperature under UV light irradiation.« less

  4. Effect of deep cryogenic temperature on silicon-on-insulator CMOS mismatch: A circuit designer’s perspective

    NASA Astrophysics Data System (ADS)

    Das, Kushal; Lehmann, Torsten

    2014-07-01

    The effect of ultra low operating temperature on mismatch among identically designed Silicon-on-Sapphire CMOS devices is investigated in detail from a circuit design view point. The evolution of transistor matching properties for different operating conditions at both room and 4.2 K temperature are presented. The statistical analysis reveals that mismatch at low temperature is effectively unrelated to that at room temperature, which disagrees with previously published literature. The measurement data was used to extract key transistor parameters and the consequence of temperature lowering on their respective variance is estimated. We find that standard deviation of the threshold-voltage mismatch deteriorates by a factor ∼2 at 4.2 K temperature. Similar to room temperature operation, mismatch at 4.2 K is bias point dependent and the degradation of matching at very low temperature depends to some extent on how the bias point shifts upon cooling.

  5. Validation of time and temperature values as critical limits for Salmonella and background flora growth during the production of fresh ground and boneless pork products.

    PubMed

    Mann, J E; Smith, L; Brashears, M M

    2004-07-01

    To provide pork processors with valuable data to validate the critical limits set for temperature during pork fabrication and grinding, a study was conducted to determine the growth of Salmonella serotypes and background flora at various temperatures. Growth of Salmonella Typhimurium and Salmonella Enteritidis and of background flora was monitored in ground pork and boneless pork chops held at various temperatures to determine growth patterns. Case-ready modified atmosphere packaged ground pork and fresh whole pork loins were obtained locally. Boneless chops and ground pork were inoculated with a cocktail mixture of streptomycin-resistant Salmonella to facilitate recovery in the presence of background flora. Samples were held at 4.4, 7.2C, and 10 degrees C and at room temperature (22.2 to 23.3 degrees C) to mimic typical processing and holding temperatures observed in pork processing environments. Salmonella counts were determined at regular intervals over 12 and 72 h for both room and refrigeration temperatures. No significant growth of Salmonella (P < 0.05) was observed in boneless pork chops held at refrigeration temperatures. However, Salmonella in boneless pork chops held at room temperature had grown significantly by 8 h. Salmonella grew at faster rates in ground pork. Significant growth was observed at 6, 24. and 72 h when samples were held at room temperature, 10 degrees C, and 7.2 degrees C, respectively. No significant growth was observed at 4.4 degrees C. Background flora in ground pork samples increased significantly after 10 h at room temperature and after 12 h for samples held at 10 and 7.2 degrees C. Background flora in samples held at refrigeration temperatures did not increase until 72 h. Background flora in the boneless chops increased significantly after 6 h at room temperature and after 24 h when held at 10 and 4.4 degrees C. These results illustrate that meat processors can utilize a variety of time and temperature combinations as critical limits to minimize Salmonella growth during production and storage of raw pork products.

  6. Protocols for dry DNA storage and shipment at room temperature

    PubMed Central

    Ivanova, Natalia V; Kuzmina, Masha L

    2013-01-01

    The globalization of DNA barcoding will require core analytical facilities to develop cost-effective, efficient protocols for the shipment and archival storage of DNA extracts and PCR products. We evaluated three dry-state DNA stabilization systems: commercial Biomatrica® DNAstable® plates, home-made trehalose and polyvinyl alcohol (PVA) plates on 96-well panels of insect DNA stored at 56 °C and at room temperature. Controls included unprotected samples that were stored dry at room temperature and at 56 °C, and diluted samples held at 4 °C and at −20 °C. PCR and selective sequencing were performed over a 4-year interval to test the condition of DNA extracts. Biomatrica® provided better protection of DNA at 56 °C and at room temperature than trehalose and PVA, especially for diluted samples. PVA was the second best protectant after Biomatrica® at room temperature, whereas trehalose was the second best protectant at 56 °C. In spite of lower PCR success, the DNA stored at −20 °C yielded longer sequence reads and stronger signal, indicating that temperature is a crucial factor for DNA quality which has to be considered especially for long-term storage. Although it is premature to advocate a transition to DNA storage at room temperature, dry storage provides an additional layer of security for frozen samples, protecting them from degradation in the event of freezer failure. All three forms of DNA preservation enable shipment of dry DNA and PCR products between barcoding facilities. PMID:23789643

  7. Fast detection and low power hydrogen sensor using edge-oriented vertically aligned 3-D network of MoS2 flakes at room temperature

    NASA Astrophysics Data System (ADS)

    Agrawal, A. V.; Kumar, R.; Venkatesan, S.; Zakhidov, A.; Zhu, Z.; Bao, Jiming; Kumar, Mahesh; Kumar, Mukesh

    2017-08-01

    The increased usage of hydrogen as a next generation clean fuel strongly demands the parallel development of room temperature and low power hydrogen sensors for their safety operation. In this work, we report strong evidence for preferential hydrogen adsorption at edge-sites in an edge oriented vertically aligned 3-D network of MoS2 flakes at room temperature. The vertically aligned edge-oriented MoS2 flakes were synthesised by a modified CVD process on a SiO2/Si substrate and confirmed by Scanning Electron Microscopy. Raman spectroscopy and PL spectroscopy reveal the signature of few-layer MoS2 flakes in the sample. The sensor's performance was tested from room temperature to 150 °C for 1% hydrogen concentration. The device shows a fast response of 14.3 s even at room temperature. The sensitivity of the device strongly depends on temperature and increases from ˜1% to ˜11% as temperature increases. A detail hydrogen sensing mechanism was proposed based on the preferential hydrogen adsorption at MoS2 edge sites. The proposed gas sensing mechanism was verified by depositing ˜2-3 nm of ZnO on top of the MoS2 flakes that partially passivated the edge sites. We found a decrease in the relative response of MoS2-ZnO hybrid structures. This study provides a strong experimental evidence for the role of MoS2 edge-sites in the fast hydrogen sensing and a step closer towards room temperature, low power (0.3 mW), hydrogen sensor development.

  8. Reversible photoinduced spectral change in Eu2O3 at room temperature

    NASA Astrophysics Data System (ADS)

    Mochizuki, Shosuke; Nakanishi, Tauto; Suzuki, Yuya; Ishi, Kimihiro

    2001-12-01

    When Eu2O3 powder compact and film are irradiated with ultraviolet (UV) laser light in a vacuum, their photoluminescence (PL) spectra change from a red sharp-line structure to a white broad band, which can be clearly seen with the naked eye. After removing the UV laser light, the white PL continues for more than several months at room temperature under room light, in spite of any changes of atmosphere. By irradiating with the same UV laser light at room temperature under O2 gas atmosphere, the original red PL state reappears. Such a reversible phenomenon may well yield materials for white-light-emitting devices and erasable optical storage.

  9. Potential of energy harvesting in barium titanate based laminates from room temperature to cryogenic/high temperatures: measurements and linking phase field and finite element simulations

    NASA Astrophysics Data System (ADS)

    Narita, Fumio; Fox, Marina; Mori, Kotaro; Takeuchi, Hiroki; Kobayashi, Takuya; Omote, Kenji

    2017-11-01

    This paper studies the energy harvesting characteristics of piezoelectric laminates consisting of barium titanate (BaTiO3) and copper (Cu) from room temperature to cryogenic/high temperatures both experimentally and numerically. First, the output voltages of the piezoelectric BaTiO3/Cu laminates were measured from room temperature to a cryogenic temperature (77 K). The output power was evaluated for various values of load resistance. The results showed that the maximum output power density is approximately 2240 nW cm-3. The output voltages of the BaTiO3/Cu laminates were also measured from room temperature to a higher temperature (333 K). To discuss the output voltages of the BaTiO3/Cu laminates due to temperature changes, phase field and finite element simulations were combined. A phase field model for grain growth was used to generate grain structures. The phase field model was then employed for BaTiO3 polycrystals, coupled with the time-dependent Ginzburg-Landau theory and the oxygen vacancies diffusion, to calculate the temperature-dependent piezoelectric coefficient and permittivity. Using these properties, the output voltages of the BaTiO3/Cu laminates from room temperature to both 77 K and 333 K were analyzed by three dimensional finite element methods, and the results are presented for several grain sizes and oxygen vacancy densities. It was found that electricity in the BaTiO3 ceramic layer is generated not only through the piezoelectric effect caused by a thermally induced bending stress but also by the temperature dependence of the BaTiO3 piezoelectric coefficient and permittivity.

  10. Method of solution preparation of polyolefin class polymers for electrospinning processing included

    NASA Technical Reports Server (NTRS)

    Rabolt, John F. (Inventor); Givens, Steven R. (Inventor); Lee, Keun-Hyung (Inventor)

    2011-01-01

    A process to make a polyolefin fiber which has the following steps: mixing at least one polyolefin into a solution at room temperature or a slightly elevated temperature to form a polymer solution and electrospinning at room temperature said polymer solution to form a fiber.

  11. Room temperature synthesis of biodiesel using sulfonated graphitic carbon nitride

    EPA Science Inventory

    Sulfonation of graphitic carbon nitride (g-CN) affords a polar and strongly acidic catalyst, Sg-CN, which displays unprecedented reactivity and selectivity in biodiesel synthesis and esterification reactions at room temperature.

  12. Room temperature synthesis of biodiesel using sulfonated graphitic carbon nitride

    DOE PAGES

    Baig, R. B. Nasir; Verma, Sanny; Nadagouda, Mallikarjuna N.; ...

    2016-12-19

    Sulfonation of graphitic carbon nitride (g-CN) affords a polar and strongly acidic catalyst, Sg-CN, which displays unprecedented reactivity and selectivity in biodiesel synthesis and esterification reactions at room temperature.

  13. Simulation of effects of direction and air flow speed on temperature distribution in the room covered by various roof materials

    NASA Astrophysics Data System (ADS)

    Sukanto, H.; Budiana, E. P.; Putra, B. H. H.

    2016-03-01

    The objective of this research is to get a comparison of the distribution of the room temperature by using three materials, namely plastic-rubber composite, clay, and asbestos. The simulation used Ansys Fluent to get the temperature distribution. There were two conditions in this simulations, first the air passing beside the room and second the air passing in front of the room. Each condition will be varied with the air speed of 1 m/s, 2 m/s, 3 m/s, 4 m/s, 5 m/s for each material used. There are three heat transfers in this simulation, namely radiation, convection, and conduction. Based on the ANSI/ ASHRAE Standard 55-2004, the results of the simulation showed that the best temperature distribution was the roof of plastic-rubber composites.

  14. Aspects of fracture mechanics in cryogenic model design. Part 2: NTF materials

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Lisagor, W. B.

    1983-01-01

    Results of fatigue crack growth and fracture toughness tests conducted on three candidate materials are presented. Fatigue crack growth and fracture toughness tests were conducted on NITRONIC 40 at room temperature and -275 F. Fracture toughness tests were also conducted on Vascomax 200 and 250 maraging steel from room temperature to -320 F. NITRONIC 40 was used to make the Pathfinder 1 model. The fatigue crack growth rate tests were conducted at room temperature and -275 F on three-point notch bend specimens. The fracture toughness tests on the as received and stress relieved materials at -275 F were conducted on the center crack tension specimens. Toughness tests were also conducted on Vascomax CVM-200 and CVM-250 maraging steel from room temperature to -320 F using round and rectangular compact specimens.

  15. Room temperature synthesis of agarose/sol-gel glass pieces with tailored interconnected porosity.

    PubMed

    Cabañas, M V; Peña, J; Román, J; Vallet-Regí, M

    2006-09-01

    An original shaping technique has been applied to prepare porous bodies at room temperature. Agarose, a biodegradable polysaccharide, was added as binder of a sol-gel glass in powder form, yielding an easy to mold paste. Interconnected tailored porous bodies can be straightforwardly prepared by pouring the slurry into a polymeric scaffold, previously designed by stereolitography, which is subsequently eliminated by alkaline dissolution at room temperature. The so obtained pieces behave like a hydrogel with an enhanced consistency that makes them machinable and easy to manipulate. These materials generate an apatite-like layer when immersed in a simulated body fluid, indicating a potential in vivo bioactivity. The proposed method can be applied to different powdered materials to produce pieces, at room temperature, with various shapes and sizes and with tailored interconnected porosity.

  16. Achieving High Luminescent Performance K2SiF6:Mn4+ Phosphor by Co-precipitation Process with Controlling the Reaction Temperature

    NASA Astrophysics Data System (ADS)

    Tran, Tat-Dat; Nguyen, Duy-Hung; Pham, Thanh-Huy; Nguyen, Duy-Cuong; Duong, Thanh-Tung

    2018-05-01

    K2SiF6:Mn4+ (KSF:Mn) phosphor was synthesized by the one-step co-precipitation process, at different temperatures. It was found that the reaction temperature played a key role in photoluminescence performance of the product. When the reaction temperature decreased from 0°C to - 20°C, the doping concentration, Mn/Si ratio, increased from 2% to 10%. However, further decrement of temperature (to - 30°C) reduced the Mn/Si ratio to 7%. The photo-luminescence (PL) intensity was maximized at the highest Mn/Si (10%), which corresponds to a reaction temperature of - 20°C. The KSF:Mn phosphor showed excellent luminescent properties at a wide range of temperatures (from room temperature to 470 K), especially after being dispersed in a polymer matrix. When combined with a commercial white light emitting diode (WLED), KSF:Mn significantly improved luminescent properties, such as color rendering index (CRI), correlated color temperature (CCT) and luminous efficiency. In particular, CRI increased from 67.3 to 87.4, while the CCT decreased from 7800 K to 3204 K. The luminous efficiency increased from 82.0 lm/W to 95.3 lm/W. The results indicated that the high quality KSF:Mn red phosphor could be achieved by a simple one-step co-precipitation method with a fine control of reaction temperature.

  17. Beneficial effects of warmed humidified oxygen combined with nebulized albuterol and ipratropium in pediatric patients with acute exacerbation of asthma in winter months.

    PubMed

    Nibhanipudi, Kumara; Hassen, Getaw Worku; Smith, Arthur

    2009-11-01

    The objective of this study was to determine whether a combination of nebulized albuterol and ipratropium with warmed humidified oxygen would be more beneficial when compared to the same combination with humidified oxygen at room temperature. Albuterol alone was tested in the same settings. All patients between 6 and 17 years of age who presented to a pediatric emergency department in the winter months with acute exacerbation of bronchial asthma were given a combination of nebulized albuterol and ipratropium with warmed or room temperature humidified oxygen. Peak flow was measured before and after the treatment. Sixty patients were enrolled in the study, with 15 subjects in each group. The mean increase in peak flow in the albuterol-ipratropium with warm humidified oxygen group was 52.6, and in the albuterol-ipratropium with humidified oxygen at room temperature group, it was 26.2. The results of the albuterol with warmed humidified oxygen and with humidified oxygen at room temperature groups were 20.6 and 34.3, respectively. The differences between the groups were statistically significant. Our study shows that warmed humidified oxygen given along with the combination of nebulized albuterol and ipratropium is more beneficial for pediatric patients having an acute exacerbation of bronchial asthma in the winter months when compared to nebulized albuterol alone with warmed humidified oxygen, nebulized albuterol alone with room temperature humidified oxygen, or a combination of nebulized albuterol and ipratropium with room temperature humidified oxygen.

  18. Recommendations to Improve Employee Thermal Comfort When Working in 40°F Refrigerated Cold Rooms.

    PubMed

    Ceballos, Diana; Mead, Kenneth; Ramsey, Jessica

    2015-01-01

    Cold rooms are commonly used for food storage and preparation, and are usually kept around 40°F following food safety guidelines. Some food preparation employees may spend 8 or more hours inside cold rooms. These employees may not be aware of the risks associated with mildly cold temperatures, dampness, and limited ventilation. We performed an evaluation of cold rooms at an airline catering facility because of concerns with exposure to cold temperatures. We spoke with and observed employees in two cold rooms, reviewed daily temperature logs, evaluated employee's physical activity, work/rest schedule, and protective clothing. We measured temperature, percent relative humidity, and air velocities at different work stations inside the cold rooms. We concluded that thermal comfort concerns perceived by cold room employees may have been the result of air drafts at their workstations, insufficient use of personal protective equipment due to dexterity concerns, work practices, and lack of knowledge about good health and safety practices in cold rooms. These moderately cold work conditions with low air velocities are not well covered in current occupational health and safety guidelines, and wind chill calculations do not apply. We provide practical recommendations to improve thermal comfort of cold room employees. Engineering control recommendations include the redesigning of air deflectors and installing of suspended baffles. Administrative controls include the changing out of wet clothing, providing hand warmers outside of cold rooms, and educating employees on cold stress. We also recommended providing more options on personal protective equipment. However, there is a need for guidelines and educational materials tailored to employees in moderately cold environments to improve thermal comfort and minimize health and safety problems.

  19. Recommendations to Improve Employee Thermal Comfort When Working in 40°F Refrigerated Cold Rooms

    PubMed Central

    Ceballos, Diana; Mead, Kenneth; Ramsey, Jessica

    2015-01-01

    Cold rooms are commonly used for food storage and preparation, and are usually kept around 40°F following food safety guidelines. Some food preparation employees may spend 8 or more hours inside cold rooms. These employees may not be aware of the risks associated with mildly cold temperatures, dampness, and limited ventilation. We performed an evaluation of cold rooms at an airline catering facility because of concerns with exposure to cold temperatures. We spoke with and observed employees in two cold rooms, reviewed daily temperature logs, evaluated employee’s physical activity, work/rest schedule, and protective clothing. We measured temperature, percent relative humidity, and air velocities at different work stations inside the cold rooms. We concluded that thermal comfort concerns perceived by cold room employees may have been the result of air drafts at their workstations, insufficient use of personal protective equipment due to dexterity concerns, work practices, and lack of knowledge about good health and safety practices in cold rooms. These moderately cold work conditions with low air velocities are not well covered in current occupational health and safety guidelines, and wind chill calculations do not apply. We provide practical recommendations to improve thermal comfort of cold room employees. Engineering control recommendations include the redesigning of air deflectors and installing of suspended baffles. Administrative controls include the changing out of wet clothing, providing hand warmers outside of cold rooms, and educating employees on cold stress. We also recommended providing more options on personal protective equipment. However, there is a need for guidelines and educational materials tailored to employees in moderately cold environments to improve thermal comfort and minimize health and safety problems. PMID:25961447

  20. Fracture Sustainability Pressure, Temperature, Differential Pressure, and Aperture Closure Data

    DOE Data Explorer

    Tim Kneafsey

    2016-09-30

    In these data sets, the experiment time, actual date and time, room temperature, sample temperature, upstream and downstream pressures (measured independently), corrected differential pressure (measured independently and corrected for offset and room temperature) indication of aperture closure by linear variable differential transformer are presented. An indication of the sample is in the file name and in the first line of data.

  1. Room-temperature storage of medications labeled for refrigeration.

    PubMed

    Cohen, Victor; Jellinek, Samantha P; Teperikidis, Leftherios; Berkovits, Elliot; Goldman, William M

    2007-08-15

    Data regarding the recommended maximum duration that refrigerated medications available in hospital pharmacies may be stored safely at room temperature were collected and compiled in a tabular format. During May and June of 2006, the prescribing information for medications labeled for refrigeration as obtained from the supplier were reviewed for data addressing room-temperature storage. Telephone surveys of the products' manufacturers were conducted when this information was not available in the prescribing information. Medications were included in the review if they were labeled to be stored at 2-8 degrees C and purchased by the pharmacy department for uses indicated on the hospital formulary. Frozen antibiotics thawed in the refrigerator and extemporaneously compounded medications were excluded. Information was compiled and arranged in tabular format. The U.S. Pharmacopeia's definition of room temperature (20-25 degrees C [68-77 degrees F]) was used for this review. Of the 189 medications listed in AHFS Drug Information 2006 for storage in a refrigerator, 89 were present in the pharmacy department's refrigerator. Since six manufacturers were unable to provide information for 10 medications, only 79 medications were included in the review. This table may help to avoid unnecessary drug loss and expenditures due to improper storage temperatures. Information regarding the room-temperature storage of 79 medications labeled for refrigerated storage was compiled.

  2. Room temperature ferrimagnetism and ferroelectricity in strained, thin films of BiFe 0.5Mn 0.5O 3

    DOE PAGES

    Choi, Eun -Mi; Fix, Thomas; Kursumovic, Ahmed; ...

    2014-10-14

    In this study, highly strained films of BiFe 0.5Mn 0.5O 3 (BFMO) grown at very low rates by pulsed laser deposition were demonstrated to exhibit both ferrimagnetism and ferroelectricity at room temperature and above. Magnetization measurements demonstrated ferrimagnetism (T C ~ 600K), with a room temperature saturation moment (M S) of up to 90 emu/cc (~0.58μ B/f.u) on high quality (001) SrTiO 3. X-ray magnetic circular dichroism showed that the ferrimagnetism arose from antiferromagnetically coupled Fe 3+ and Mn 3+ . While scanning transmission electron microscope studies showed there was no long range ordering of Fe and Mn, the magneticmore » properties were found to be strongly dependent on the strain state in the films. The magnetism is explained to arise from one of three possible mechanisms with Bi polarization playing a key role. A signature of room temperature ferroelectricity in the films was measured by piezoresponse force microscopy and was confirmed using angular dark field scanning transmission electron microscopy. The demonstration of strain induced, high temperature multiferroism is a promising development for future spintronic and memory applications at room temperature and above.« less

  3. Study on room temperature gas-sensing performance of CuO film-decorated ordered porous ZnO composite by In2O3 sensitization

    NASA Astrophysics Data System (ADS)

    Li, Tian-tian; Bao, Na; Geng, Ai-fang; Yu, Hui; Yang, Ying; Dong, Xiang-ting

    2018-02-01

    For the first time, ordered mesoporous ZnO nanoparticles have been synthesized by a template method. The electroplating after chemical plating method was creatively used to form copper film on the surface of the prepared ZnO, and then a CuO film-decorated ordered porous ZnO composite (CuO/ZnO) was obtained by a high-temperature oxidation method. In2O3 was loaded into the prepared CuO film-ZnO by an ultrasonic-assisted method to sensitize the room temperature gas-sensing performance of the prepared CuO/ZnO materials. The doped In2O3 could effectively improve the gas-sensing properties of the prepared materials to nitrogen oxides (NOx) at room temperature. The 1% In2O3 doped CuO/ZnO sample (1 wt% In2O3-CuO/ZnO) showed the best gas-sensing properties whose response to 100 ppm NOx reached 82%, and the detectable minimum concentration reached 1 ppm at room temperature. The prepared materials had a good selectivity, better response, very low detection limit, and high sensitivity to NOx gas at room temperature, which would have a great development space in the gas sensor field and a great research value.

  4. Electrical and thermal conductance quantization in nanostructures

    NASA Astrophysics Data System (ADS)

    Nawrocki, Waldemar

    2008-10-01

    In the paper problems of electron transport in mesoscopic structures and nanostructures are considered. The electrical conductance of nanowires was measured in a simple experimental system. Investigations have been performed in air at room temperature measuring the conductance between two vibrating metal wires with standard oscilloscope. Conductance quantization in units of G0 = 2e2/h = (12.9 kΩ)-1 up to five quanta of conductance has been observed for nanowires formed in many metals. The explanation of this universal phenomena is the formation of a nanometer-sized wire (nanowire) between macroscopic metallic contacts which induced, due to theory proposed by Landauer, the quantization of conductance. Thermal problems in nanowires are also discussed in the paper.

  5. SILAR deposited Bi2S3 thin film towards electrochemical supercapacitor

    NASA Astrophysics Data System (ADS)

    Raut, Shrikant S.; Dhobale, Jyotsna A.; Sankapal, Babasaheb R.

    2017-03-01

    Bi2S3 thin film electrode has been synthesized by simple and low cost successive ionic layer adsorption and reaction (SILAR) method on stainless steel (SS) substrate at room temperature. The formation of interconnected nanoparticles with nanoporous surface morphology has been achieved and which is favourable to the supercapacitor applications. Electrochemical supercapacitive performance of Bi2S3 thin film electrode has been performed through cyclic voltammetry, charge-discharge and stability studies in aqueous Na2SO4 electrolyte. The Bi2S3 thin film electrode exhibits the specific capacitance of 289 Fg-1 at 5 mVs-1 scan rate in 1 M Na2SO4 electrolyte.

  6. In situ characterization of catalytic activity of graphene stabilized small-sized Pd nanoparticles for CO oxidation

    NASA Astrophysics Data System (ADS)

    Mao, Bao-Hua; Liu, Chang-Hai; Gao, Xu; Chang, Rui; Liu, Zhi; Wang, Sui-Dong

    2013-10-01

    The room-temperature ionic liquid assisted sputtering method is utilized to achieve the Pd-nanoparticle (NP)-graphene hybrid. The supported Pd NPs possess uniformly small sizes of 1-2 nm, which create huge surface area with ultralow Pd consumption and high NP stability. The Pd-NP-graphene hybrid is in situ characterized by the ambient pressure X-ray photoelectron spectroscopy using synchrotron radiation, and the results demonstrate high catalytic activity of the hybrid for CO oxidation. The catalytic behavior is reproducible for several catalytic cycles. The present simple and clean approach is promising to produce metal-NP-based high-efficiency catalysts for CO oxidation.

  7. Vertically aligned multiwalled carbon nanotubes for pressure, tactile and vibration sensing.

    PubMed

    Yilmazoglu, O; Popp, A; Pavlidis, D; Schneider, J J; Garth, D; Schüttler, F; Battenberg, G

    2012-03-02

    We report a simple method for the micro-nano integration of flexible, vertically aligned multiwalled CNT arrays sandwiched between a top and bottom carbon layer via a porous alumina (Al(2)O(3)) template approach. The electromechanical properties of the flexible CNT arrays have been investigated under mechanical stress conditions. First experiments show highly sensitive piezoresistive sensors with a resistance decrease of up to ∼35% and a spatial resolution of <1 mm. The results indicate that these CNT structures can be utilized for tactile sensing components. They also confirm the feasibility of accessing and utilizing nanoscopic CNT bundles via lithographic processing. The method involves room-temperature processing steps and standard microfabrication techniques.

  8. Additive Manufacturing of Transparent Silica Glass from Solutions.

    PubMed

    Cooperstein, Ido; Shukrun, Efrat; Press, Ofir; Kamyshny, Alexander; Magdassi, Shlomo

    2018-06-06

    A sol, aqueous solution-based ink is presented for fabrication of 3D transparent silica glass objects with complex geometries, by a simple 3D printing process conducted at room temperature. The ink combines a hybrid ceramic precursor that can undergo both the photopolymerization reaction and a sol-gel process, both in the solution form, without any particles. The printing is conducted by localized photopolymerization with the use of a low-cost 3D printer. Following printing, upon aging and densifying, the resulting objects convert from a gel to a xerogel and then to a fused silica. The printed objects, which are composed of fused silica, are transparent and have tunable density and refractive indices.

  9. Biocompatible silicon quantum dots by ultrasound-induced solution route

    NASA Astrophysics Data System (ADS)

    Lee, Soojin; Cho, Woon-Jo

    2004-10-01

    The water-soluble silicon quantum dots (QDs) of average diameter ~3 nm were prepared in organic solvent by ultrasound-induced solution route. This speedy rout produces the silicon QDs in the size range from 2 nm to 4 nm at room temperature and ambient pressure. The product yield of QDs was estimated to be higher than 60 % based on the initial NaSi weight. The surfaces of QDs were terminated with organic molecules including biocompatible ending groups (hydroxyl, amine and carboxyl) during simple preparation. Covalent attached molecules were characterized by FT-IR spectroscopy. These water-soluble passivation of QDs has just a little effect on the optical properties of original QDs.

  10. Squids in the Study of Cerebral Magnetic Field

    NASA Astrophysics Data System (ADS)

    Romani, G. L.; Narici, L.

    The following sections are included: * INTRODUCTION * HISTORICAL OVERVIEW * NEUROMAGNETIC FIELDS AND AMBIENT NOISE * DETECTORS * Room temperature sensors * SQUIDs * DETECTION COILS * Magnetometers * Gradiometers * Balancing * Planar gradiometers * Choice of the gradiometer parameters * MODELING * Current pattern due to neural excitations * Action potentials and postsynaptic currents * The current dipole model * Neural population and detected fields * Spherically bounded medium * SPATIAL CONFIGURATION OF THE SENSORS * SOURCE LOCALIZATION * Localization procedure * Experimental accuracy and reproducibility * SIGNAL PROCESSING * Analog Filtering * Bandpass filters * Line rejection filters * DATA ANALYSIS * Analysis of evoked/event-related responses * Simple average * Selected average * Recursive techniques * Similarity analysis * Analysis of spontaneous activity * Mapping and localization * EXAMPLES OF NEUROMAGNETIC STUDIES * Neuromagnetic measurements * Studies on the normal brain * Clinical applications * Epilepsy * Tinnitus * CONCLUSIONS * ACKNOWLEDGEMENTS * REFERENCES

  11. Preparation and characterization of silica-coated ZnSe nanowires with thermal stability and photoluminescence.

    PubMed

    Xiong, Shenglin; Xi, Baojuan; Wang, Weizhi; Zhou, Hongyang; Zhang, Shuyuan; Qian, Yitai

    2007-12-01

    Silica-coated ZnSe nanowires with well-controlled the thickness of sheath in the range of 10-60 nm have been synthesized through a simple sol-gel process. The thickness of silica coating could be controlled through altering reaction parameters such as volume ratio of TEOS and ammonia. XRD, high-resolution TEM, X-ray photoelectron spectroscopy (XPS), Raman spectra, thermogravimetric analysis (TGA), and photoluminescence (PL) spectra were used to characterize the core/sheath nanostructures. Room-temperature PL measurements indicate these silica-coated ZnSe nanowires remarkably improve the PL intensity. Meanwhile, the thermal stability has been enhanced greatly, which is useful for their potential applications in advanced semiconductor devices.

  12. Cucurbit[7]uril as a tool in the green synthesis of gold nanoparticles.

    PubMed

    Premkumar, Thathan; Geckeler, Kurt E

    2010-12-03

    A simple, green, one-pot synthesis of gold nanoparticles was achieved through the reaction of an aqueous mixture of potassium tetrachloroaurate(III) and the macrocycle cucurbit[7]uril in the presence of sodium hydroxide at room temperature without introducing any kind of traditional reducing agents and/or external energy. The as-prepared gold nanoparticles showed catalytic activity for the reduction reaction of 4-nitrophenol in the presence of NaBH(4), which has been established by visual inspection and UV/Vis spectroscopy. This report is the first for the preparation of gold nanoparticles using cucurbit[7]uril in aqueous media through chemical reduction without employing conventional reducing agents and/or external energy.

  13. Synthesis and electrochemical property of few-layer molybdenum disulfide nanosheets

    NASA Astrophysics Data System (ADS)

    Fu, Yanjue; Wang, Chunrui; Wang, Linlin; Peng, Xia; Wu, Binhe; Sun, Xingqu; Chen, Xiaoshuang

    2016-12-01

    Large-scale few-layer MoS2 nanosheets have been fabricated via a simple hydrothermal route using molybdenum powder as precursors. The as-prepared MoS2 samples were characterized by X-ray powder diffraction (XRD) analysis, transmission electron microscopy (TEM), and Raman and photoluminescence (PL) spectral analyses at room temperature. The results confirm that the as-prepared MoS2 displays a sheet-like morphology with a thickness of few (bi- to tri-) layers. Electrochemical measurements showed that the as-prepared few-layer MoS2 exhibited the highest reversible capacity of 1127 mAh g-1 and a stable reversible capacity of 1057 mAh g-1 after 30 cycles.

  14. Nanoindentation study of bulk zirconium hydrides at elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cinbiz, Mahmut Nedim; Balooch, Mehdi; Hu, Xunxiang

    Here, the mechanical properties of zirconium hydrides was studied using nano-indentation technique at a temperature range of 25 – 400 °C. Temperature dependency of reduced elastic modulus and hardness of δ- and ε-zirconium hydrides were obtained by conducting nanoindentation experiments on the bulk hydride samples with independently heating capability of indenter and heating stage. The reduced elastic modulus of δ-zirconium hydride (H/Zr ratio =1.61) decreased from ~113 GPa to ~109 GPa while temperature increased from room temperature to 400°C. For ε-zirconium hydrides (H/Zr ratio=1.79), the reduced elastic modulus decreased from 61 GPa to 54 GPa as temperature increased from roommore » temperature to 300 °C. Whereas, hardness of δ-zirconium hydride significantly decreased from 4.1 GPa to 2.41 GPa when temperature increased from room temperature to 400 °C. Similarly, hardness of ε-zirconium hydride decreased from 3.06 GPa to 2.19 GPa with temperature increase from room temperature to 300°C.« less

  15. Nanoindentation study of bulk zirconium hydrides at elevated temperatures

    DOE PAGES

    Cinbiz, Mahmut Nedim; Balooch, Mehdi; Hu, Xunxiang; ...

    2017-08-02

    Here, the mechanical properties of zirconium hydrides was studied using nano-indentation technique at a temperature range of 25 – 400 °C. Temperature dependency of reduced elastic modulus and hardness of δ- and ε-zirconium hydrides were obtained by conducting nanoindentation experiments on the bulk hydride samples with independently heating capability of indenter and heating stage. The reduced elastic modulus of δ-zirconium hydride (H/Zr ratio =1.61) decreased from ~113 GPa to ~109 GPa while temperature increased from room temperature to 400°C. For ε-zirconium hydrides (H/Zr ratio=1.79), the reduced elastic modulus decreased from 61 GPa to 54 GPa as temperature increased from roommore » temperature to 300 °C. Whereas, hardness of δ-zirconium hydride significantly decreased from 4.1 GPa to 2.41 GPa when temperature increased from room temperature to 400 °C. Similarly, hardness of ε-zirconium hydride decreased from 3.06 GPa to 2.19 GPa with temperature increase from room temperature to 300°C.« less

  16. High-Temperature Dielectric Properties of Aluminum Nitride Ceramic for Wireless Passive Sensing Applications

    PubMed Central

    Liu, Jun; Yuan, Yukun; Ren, Zhong; Tan, Qiulin; Xiong, Jijun

    2015-01-01

    The accurate characterization of the temperature-dependent permittivity of aluminum nitride (AlN) ceramic is quite critical to the application of wireless passive sensors for harsh environments. Since the change of the temperature-dependent permittivity will vary the ceramic-based capacitance, which can be converted into the change of the resonant frequency, an LC resonator, based on AlN ceramic, is prepared by the thick film technology. The dielectric properties of AlN ceramic are measured by the wireless coupling method, and discussed within the temperature range of 12 °C (room temperature) to 600 °C. The results show that the extracted relative permittivity of ceramic at room temperature is 2.3% higher than the nominal value of 9, and increases from 9.21 to 10.79, and the quality factor Q is decreased from 29.77 at room temperature to 3.61 at 600 °C within the temperature range. PMID:26370999

  17. Self-locking threaded fasteners

    DOEpatents

    Glovan, R.J.; Tierney, J.C.; McLean, L.L.; Johnson, L.L.

    1996-01-16

    A threaded fastener with a shape memory alloy (SMA) coatings on its threads is disclosed. The fastener has special usefulness in high temperature applications where high reliability is important. The SMA coated fastener is threaded into or onto a mating threaded part at room temperature to produce a fastened object. The SMA coating is distorted during the assembly. At elevated temperatures the coating tries to recover its original shape and thereby exerts locking forces on the threads. When the fastened object is returned to room temperature the locking forces dissipate. Consequently the threaded fasteners can be readily disassembled at room temperature but remains securely fastened at high temperatures. A spray technique is disclosed as a particularly useful method of coating of threads of a fastener with a shape memory alloy. 13 figs.

  18. Interpretation of styles of simple stations in Korea

    NASA Astrophysics Data System (ADS)

    Hwang, Minhye; Shin, Yekyeong

    2018-06-01

    The purpose of this paper is to apply stylistic interpretation through the exterior of simple stations in Korea. Simple Station is a kind of railway stations. It was installed when there were not a lot of passengers and it was not necessary to operate the station at a high cost. It has minimal functions such as a waiting room, an office, an operating room, and toilets and was built between the 1910s and the 1960s. The form of the building is as simple as the name of "Simple Station". That is why the reading its style is easy and obvious. But it is also difficult to interpret because of the lack of stylistic evidences. Nevertheless, in the relationship between the station and the station tree, the concept of the Picturesque and Palladian Style are found. But it is still hard to distinguish whether the whole building style is Western or Japanese. Simple Station is one of the things that Japan has built as Western Culture in Korea during the Japanese colonial era, so it is natural that its style of form is complex.

  19. Room temperature, air crystallized perovskite film for high performance solar cells

    DOE PAGES

    Dubey, Ashish; Kantack, Nicholas; Adhikari, Nirmal; ...

    2016-05-31

    For the first time, room temperature heating free growth and crystallization of perovskite films in ambient air without the use of thermal annealing is reported. Highly efficient perovskite nanorod-based solar cells were made using ITO/PEDOT:PSS/CH 3NH 3PbI 3 nanorods/PC 60BM/rhodamine/Ag. All the layers except PEDOT:PSS were processed at room temperature thereby eliminating the need for thermal treatment. Perovskite films were spin coated inside a N-2 filled glovebox and immediately were taken outside in air having 40% relative humidity (RH). Exposure to humid air was observed to promote the crystallization process in perovskite films even at room temperature. Perovskite films keptmore » for 5 hours in ambient air showed nanorod-like morphology having high crystallinity, with devices exhibiting the highest PCE of 16.83%, which is much higher than the PCE of 11.94% for traditional thermally annealed perovskite film based devices. Finally, it was concluded that moisture plays an important role in room temperature crystallization of pure perovskite nanorods, showing improved optical and charge transport properties, which resulted in high performance solar cells.« less

  20. Non-local electrical spin injection and detection in germanium at room temperature

    NASA Astrophysics Data System (ADS)

    Rortais, F.; Vergnaud, C.; Marty, A.; Vila, L.; Attané, J.-P.; Widiez, J.; Zucchetti, C.; Bottegoni, F.; Jaffrès, H.; George, J.-M.; Jamet, M.

    2017-10-01

    Non-local carrier injection/detection schemes lie at the very foundation of information manipulation in integrated systems. This paradigm consists in controlling with an external signal the channel where charge carriers flow between a "source" and a well separated "drain." The next generation electronics may operate on the spin of carriers in addition to their charge and germanium appears as the best hosting material to develop such a platform for its compatibility with mainstream silicon technology and the predicted long electron spin lifetime at room temperature. In this letter, we demonstrate injection of pure spin currents (i.e., with no associated transport of electric charges) in germanium, combined with non-local spin detection at 10 K and room temperature. For this purpose, we used a lateral spin valve with epitaxially grown magnetic tunnel junctions as spin injector and spin detector. The non-local magnetoresistance signal is clearly visible and reaches ≈15 mΩ at room temperature. The electron spin lifetime and diffusion length are 500 ps and 1 μm, respectively, the spin injection efficiency being as high as 27%. This result paves the way for the realization of full germanium spintronic devices at room temperature.

Top