Sample records for simple semiclassical model

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nomura, Yasunori; Salzetta, Nico; Sanches, Fabio

    We study the Hilbert space structure of classical spacetimes under the assumption that entanglement in holographic theories determines semiclassical geometry. We show that this simple assumption has profound implications; for example, a superposition of classical spacetimes may lead to another classical spacetime. Despite its unconventional nature, this picture admits the standard interpretation of superpositions of well-defined semiclassical spacetimes in the limit that the number of holographic degrees of freedom becomes large. We illustrate these ideas using a model for the holographic theory of cosmological spacetimes.

  2. Semiclassical theory of electronically nonadiabatic transitions in molecular collision processes

    NASA Technical Reports Server (NTRS)

    Lam, K. S.; George, T. F.

    1979-01-01

    An introductory account of the semiclassical theory of the S-matrix for molecular collision processes is presented, with special emphasis on electronically nonadiabatic transitions. This theory is based on the incorporation of classical mechanics with quantum superposition, and in practice makes use of the analytic continuation of classical mechanics into the complex space of time domain. The relevant concepts of molecular scattering theory and related dynamical models are described and the formalism is developed and illustrated with simple examples - collinear collision of the A+BC type. The theory is then extended to include the effects of laser-induced nonadiabatic transitions. Two bound continuum processes collisional ionization and collision-induced emission also amenable to the same general semiclassical treatment are discussed.

  3. Opening-assisted coherent transport in the semiclassical regime

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Celardo, G. Luca; Borgonovi, Fausto; Kaplan, Lev

    2017-02-01

    We study quantum enhancement of transport in open systems in the presence of disorder and dephasing. Quantum coherence effects may significantly enhance transport in open systems even in the semiclassical regime (where the decoherence rate is greater than the intersite hopping amplitude), as long as the disorder is sufficiently strong. When the strengths of disorder and dephasing are fixed, there is an optimal opening strength at which the coherent transport enhancement is optimized. Analytic results are obtained in two simple paradigmatic tight-binding models of large systems: the linear chain and the fully connected network. The physical behavior is also reflected in the Fenna-Matthews-Olson (FMO) photosynthetic complex, which may be viewed as intermediate between these paradigmatic models.

  4. Semiclassical modelling of finite-pulse effects on non-adiabatic photodynamics via initial condition filtering: The predissociation of NaI as a test case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez-Mesa, Aliezer; Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam-Golm; Saalfrank, Peter

    2015-05-21

    Femtosecond-laser pulse driven non-adiabatic spectroscopy and dynamics in molecular and condensed phase systems continue to be a challenge for theoretical modelling. One of the main obstacles is the “curse of dimensionality” encountered in non-adiabatic, exact wavepacket propagation. A possible route towards treating complex molecular systems is via semiclassical surface-hopping schemes, in particular if they account not only for non-adiabatic post-excitation dynamics but also for the initial optical excitation. One such approach, based on initial condition filtering, will be put forward in what follows. As a simple test case which can be compared with exact wavepacket dynamics, we investigate the influencemore » of the different parameters determining the shape of a laser pulse (e.g., its finite width and a possible chirp) on the predissociation dynamics of a NaI molecule, upon photoexcitation of the A(0{sup +}) state. The finite-pulse effects are mapped into the initial conditions for semiclassical surface-hopping simulations. The simulated surface-hopping diabatic populations are in qualitative agreement with the quantum mechanical results, especially concerning the subpicosend photoinduced dynamics, the main deviations being the relative delay of the non-adiabatic transitions in the semiclassical picture. Likewise, these differences in the time-dependent electronic populations calculated via the semiclassical and the quantum methods are found to have a mild influence on the overall probability density distribution. As a result, the branching ratios between the bound and the dissociative reaction channels and the time-evolution of the molecular wavepacket predicted by the semiclassical method agree with those computed using quantum wavepacket propagation. Implications for more challenging molecular systems are given.« less

  5. Phase-Space Approach to the Tunnel Effect: A New Semiclassical Traversal Time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xavier, A.L. Jr.; de Aguiar, M.A.

    1997-11-01

    We determine the semiclassical coherent-state propagator for a particle going through one-dimensional evolution in a simple barrier potential. The described semiclassical method makes use of complex trajectories which, by its turn, enables the definition of (real) traversal times in the complexified phase space. We then discuss the behavior of this time for a wave packet whose average energy is below the barrier height. {copyright} {ital 1997} {ital The American Physical Society}

  6. Instanton and noninstanton tunneling in periodically perturbed barriers: semiclassical and quantum interpretations.

    PubMed

    Takahashi, Kin'ya; Ikeda, Kensuke S

    2012-11-01

    In multidimensional barrier tunneling, there exist two different types of tunneling mechanisms, instanton-type tunneling and noninstanton tunneling. In this paper we investigate transitions between the two tunneling mechanisms from the semiclassical and quantum viewpoints taking two simple models: a periodically perturbed Eckart barrier for the semiclassical analysis and a periodically perturbed rectangular barrier for the quantum analysis. As a result, similar transitions are observed with change of the perturbation frequency ω for both systems, and we obtain a comprehensive scenario from both semiclassical and quantum viewpoints for them. In the middle range of ω, in which the plateau spectrum is observed, noninstanton tunneling dominates the tunneling process, and the tunneling amplitude takes the maximum value. Noninstanton tunneling explained by stable-unstable manifold guided tunneling (SUMGT) from the semiclassical viewpoint is interpreted as multiphoton-assisted tunneling from the quantum viewpoint. However, in the limit ω→0, instanton-type tunneling takes the place of noninstanton tunneling, and the tunneling amplitude converges on a constant value depending on the perturbation strength. The spectrum localized around the input energy is observed, and there is a scaling law with respect to the width of the spectrum envelope, i.e., the width ∝ℏω. In the limit ω→∞, the tunneling amplitude converges on that of the unperturbed system, i.e., the instanton of the unperturbed system.

  7. A new semiclassical decoupling scheme for electronic transitions in molecular collisions - Application to vibrational-to-electronic energy transfer

    NASA Technical Reports Server (NTRS)

    Lee, H.-W.; Lam, K. S.; Devries, P. L.; George, T. F.

    1980-01-01

    A new semiclassical decoupling scheme (the trajectory-based decoupling scheme) is introduced in a computational study of vibrational-to-electronic energy transfer for a simple model system that simulates collinear atom-diatom collisions. The probability of energy transfer (P) is calculated quasiclassically using the new scheme as well as quantum mechanically as a function of the atomic electronic-energy separation (lambda), with overall good agreement between the two sets of results. Classical mechanics with the new decoupling scheme is found to be capable of predicting resonance behavior whereas an earlier decoupling scheme (the coordinate-based decoupling scheme) failed. Interference effects are not exhibited in P vs lambda results.

  8. Semiclassical approximations in the coherent-state representation

    NASA Technical Reports Server (NTRS)

    Kurchan, J.; Leboeuf, P.; Saraceno, M.

    1989-01-01

    The semiclassical limit of the stationary Schroedinger equation in the coherent-state representation is analyzed simultaneously for the groups W1, SU(2), and SU(1,1). A simple expression for the first two orders for the wave function and the associated semiclassical quantization rule is obtained if a definite choice for the classical Hamiltonian and expansion parameter is made. The behavior of the modulus of the wave function, which is a distribution function in a curved phase space, is studied for the three groups. The results are applied to the quantum triaxial rotor.

  9. Using the thermal Gaussian approximation for the Boltzmann operator in semiclassical initial value time correlation functions.

    PubMed

    Liu, Jian; Miller, William H

    2006-12-14

    The thermal Gaussian approximation (TGA) recently developed by Frantsuzov et al. [Chem. Phys. Lett. 381, 117 (2003)] has been demonstrated to be a practical way for approximating the Boltzmann operator exp(-betaH) for multidimensional systems. In this paper the TGA is combined with semiclassical (SC) initial value representations (IVRs) for thermal time correlation functions. Specifically, it is used with the linearized SC-IVR (LSC-IVR, equivalent to the classical Wigner model), and the "forward-backward semiclassical dynamics" approximation developed by Shao and Makri [J. Phys. Chem. A 103, 7753 (1999); 103, 9749 (1999)]. Use of the TGA with both of these approximate SC-IVRs allows the oscillatory part of the IVR to be integrated out explicitly, providing an extremely simple result that is readily applicable to large molecular systems. Calculation of the force-force autocorrelation for a strongly anharmonic oscillator demonstrates its accuracy, and calculation of the velocity autocorrelation function (and thus the diffusion coefficient) of liquid neon demonstrates its applicability.

  10. A new fitting law of rovibrationally inelastic rate constants for rapidly rotating molecules

    NASA Astrophysics Data System (ADS)

    Strekalov, M. L.

    2005-04-01

    Semiclassical scattering of a particle from a three-dimensional ellipsoid with internal structure is used to model vibration-rotation-translation (VRT) collisional transfer between atoms and diatomic molecules. The result is a very simple analytical expression containing two variable parameters that have a clear physical meaning. Predictions of the model for the Li 2 + Ne system are in reasonably good agreement with experimental results.

  11. Wentzel-Kramers-Brillouin method in the Bargmann representation. [of quantum mechanics

    NASA Technical Reports Server (NTRS)

    Voros, A.

    1989-01-01

    It is demonstrated that the Bargmann representation of quantum mechanics is ideally suited for semiclassical analysis, using as an example the WKB method applied to the bound-state problem in a single well of one degree of freedom. For the harmonic oscillator, this WKB method trivially gives the exact eigenfunctions in addition to the exact eigenvalues. For an anharmonic well, a self-consistent variational choice of the representation greatly improves the accuracy of the semiclassical ground state. Also, a simple change of scale illuminates the relationship of semiclassical versus linear perturbative expansions, allowing a variety of multidimensional extensions.

  12. Essential core of the Hawking–Ellis types

    NASA Astrophysics Data System (ADS)

    Martín-Moruno, Prado; Visser, Matt

    2018-06-01

    The Hawking–Ellis (Segre–Plebański) classification of possible stress–energy tensors is an essential tool in analyzing the implications of the Einstein field equations in a more-or-less model-independent manner. In the current article the basic idea is to simplify the Hawking–Ellis type I, II, III, and IV classification by isolating the ‘essential core’ of the type II, type III, and type IV stress–energy tensors; this being done by subtracting (special cases of) type I to simplify the (Lorentz invariant) eigenvalue structure as much as possible without disturbing the eigenvector structure. We will denote these ‘simplified cores’ type II0, type III0, and type IV0. These ‘simplified cores’ have very nice and simple algebraic properties. Furthermore, types I and II0 have very simple classical interpretations, while type IV0 is known to arise semi-classically (in renormalized expectation values of standard stress–energy tensors). In contrast type III0 stands out in that it has neither a simple classical interpretation, nor even a simple semi-classical interpretation. We will also consider the robustness of this classification considering the stability of the different Hawking–Ellis types under perturbations. We argue that types II and III are definitively unstable, whereas types I and IV are stable.

  13. Simple model dielectric functions for insulators

    NASA Astrophysics Data System (ADS)

    Vos, Maarten; Grande, Pedro L.

    2017-05-01

    The Drude dielectric function is a simple way of describing the dielectric function of free electron materials, which have an uniform electron density, in a classical way. The Mermin dielectric function describes a free electron gas, but is based on quantum physics. More complex metals have varying electron densities and are often described by a sum of Drude dielectric functions, the weight of each function being taken proportional to the volume with the corresponding density. Here we describe a slight variation on the Drude dielectric functions that describes insulators in a semi-classical way and a form of the Levine-Louie dielectric function including a relaxation time that does the same within the framework of quantum physics. In the optical limit the semi-classical description of an insulator and the quantum physics description coincide, in the same way as the Drude and Mermin dielectric function coincide in the optical limit for metals. There is a simple relation between the coefficients used in the classical and quantum approaches, a relation that ensures that the obtained dielectric function corresponds to the right static refractive index. For water we give a comparison of the model dielectric function at non-zero momentum with inelastic X-ray measurements, both at relative small momenta and in the Compton limit. The Levine-Louie dielectric function including a relaxation time describes the spectra at small momentum quite well, but in the Compton limit there are significant deviations.

  14. Semi-classical approach to compute RABBITT traces in multi-dimensional complex field distributions.

    PubMed

    Lucchini, M; Ludwig, A; Kasmi, L; Gallmann, L; Keller, U

    2015-04-06

    We present a semi-classical model to calculate RABBITT (Reconstruction of Attosecond Beating By Interference of Two-photon Transitions) traces in the presence of a reference infrared field with a complex two-dimensional (2D) spatial distribution. The evolution of the electron spectra as a function of the pump-probe delay is evaluated starting from the solution of the classical equation of motion and incorporating the quantum phase acquired by the electron during the interaction with the infrared field. The total response to an attosecond pulse train is then evaluated by a coherent sum of the contributions generated by each individual attosecond pulse in the train. The flexibility of this model makes it possible to calculate spectrograms from non-trivial 2D field distributions. After confirming the validity of the model in a simple 1D case, we extend the discussion to describe the probe-induced phase in photo-emission experiments on an ideal metallic surface.

  15. Phenomenological implications of an alternative Hamiltonian constraint for quantum cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kagan, Mikhail

    2005-11-15

    In this paper we review a model based on loop quantum cosmology that arises from a symmetry reduction of the self-dual Plebanski action. In this formulation the symmetry reduction leads to a very simple Hamiltonian constraint that can be quantized explicitly in the framework of loop quantum cosmology. We investigate the phenomenological implications of this model in the semiclassical regime and compare those with the known results of the standard Loop Quantum Cosmology.

  16. Improved multidimensional semiclassical tunneling theory.

    PubMed

    Wagner, Albert F

    2013-12-12

    We show that the analytic multidimensional semiclassical tunneling formula of Miller et al. [Miller, W. H.; Hernandez, R.; Handy, N. C.; Jayatilaka, D.; Willets, A. Chem. Phys. Lett. 1990, 172, 62] is qualitatively incorrect for deep tunneling at energies well below the top of the barrier. The origin of this deficiency is that the formula uses an effective barrier weakly related to the true energetics but correctly adjusted to reproduce the harmonic description and anharmonic corrections of the reaction path at the saddle point as determined by second order vibrational perturbation theory. We present an analytic improved semiclassical formula that correctly includes energetic information and allows a qualitatively correct representation of deep tunneling. This is done by constructing a three segment composite Eckart potential that is continuous everywhere in both value and derivative. This composite potential has an analytic barrier penetration integral from which the semiclassical action can be derived and then used to define the semiclassical tunneling probability. The middle segment of the composite potential by itself is superior to the original formula of Miller et al. because it incorporates the asymmetry of the reaction barrier produced by the known reaction exoergicity. Comparison of the semiclassical and exact quantum tunneling probability for the pure Eckart potential suggests a simple threshold multiplicative factor to the improved formula to account for quantum effects very near threshold not represented by semiclassical theory. The deep tunneling limitations of the original formula are echoed in semiclassical high-energy descriptions of bound vibrational states perpendicular to the reaction path at the saddle point. However, typically ab initio energetic information is not available to correct it. The Supporting Information contains a Fortran code, test input, and test output that implements the improved semiclassical tunneling formula.

  17. Semiclassical matrix model for quantum chaotic transport with time-reversal symmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novaes, Marcel, E-mail: marcel.novaes@gmail.com

    2015-10-15

    We show that the semiclassical approach to chaotic quantum transport in the presence of time-reversal symmetry can be described by a matrix model. In other words, we construct a matrix integral whose perturbative expansion satisfies the semiclassical diagrammatic rules for the calculation of transport statistics. One of the virtues of this approach is that it leads very naturally to the semiclassical derivation of universal predictions from random matrix theory.

  18. Monte Carlo solution of Boltzmann equation for a simple model of highly nonequilibrium diatomic gases: Translational rotational energy relaxation

    NASA Technical Reports Server (NTRS)

    Yoshikawa, K. K.

    1978-01-01

    The semiclassical transition probability was incorporated in the simulation for energy exchange between rotational and translational energy. The results provide details on the fundamental mechanisms of gas kinetics where analytical methods were impractical. The validity of the local Maxwellian assumption and relaxation time, rotational-translational energy transition, and a velocity analysis of the inelastic collision were discussed in detail.

  19. Coherence penalty functional: A simple method for adding decoherence in Ehrenfest dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akimov, Alexey V., E-mail: alexvakimov@gmail.com, E-mail: oleg.prezhdo@rochester.edu; Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973; Long, Run

    2014-05-21

    We present a new semiclassical approach for description of decoherence in electronically non-adiabatic molecular dynamics. The method is formulated on the grounds of the Ehrenfest dynamics and the Meyer-Miller-Thoss-Stock mapping of the time-dependent Schrödinger equation onto a fully classical Hamiltonian representation. We introduce a coherence penalty functional (CPF) that accounts for decoherence effects by randomizing the wavefunction phase and penalizing development of coherences in regions of strong non-adiabatic coupling. The performance of the method is demonstrated with several model and realistic systems. Compared to other semiclassical methods tested, the CPF method eliminates artificial interference and improves agreement with the fullymore » quantum calculations on the models. When applied to study electron transfer dynamics in the nanoscale systems, the method shows an improved accuracy of the predicted time scales. The simplicity and high computational efficiency of the CPF approach make it a perfect practical candidate for applications in realistic systems.« less

  20. Bell's Theorem and Einstein's "Spooky Actions" from a Simple Thought Experiment

    ERIC Educational Resources Information Center

    Kuttner, Fred; Rosenblum, Bruce

    2010-01-01

    In 1964 John Bell proved a theorem allowing the experimental test of whether what Einstein derided as "spooky actions at a distance" actually exist. We will see that they "do". Bell's theorem can be displayed with a simple, nonmathematical thought experiment suitable for a physics course at "any" level. And a simple, semi-classical derivation of…

  1. Coupled forward-backward trajectory approach for nonequilibrium electron-ion dynamics

    NASA Astrophysics Data System (ADS)

    Sato, Shunsuke A.; Kelly, Aaron; Rubio, Angel

    2018-04-01

    We introduce a simple ansatz for the wave function of a many-body system based on coupled forward and backward propagating semiclassical trajectories. This method is primarily aimed at, but not limited to, treating nonequilibrium dynamics in electron-phonon systems. The time evolution of the system is obtained from the Euler-Lagrange variational principle, and we show that this ansatz yields Ehrenfest mean-field theory in the limit that the forward and backward trajectories are orthogonal, and in the limit that they coalesce. We investigate accuracy and performance of this method by simulating electronic relaxation in the spin-boson model and the Holstein model. Although this method involves only pairs of semiclassical trajectories, it shows a substantial improvement over mean-field theory, capturing quantum coherence of nuclear dynamics as well as electron-nuclear correlations. This improvement is particularly evident in nonadiabatic systems, where the accuracy of this coupled trajectory method extends well beyond the perturbative electron-phonon coupling regime. This approach thus provides an attractive route forward to the ab initio description of relaxation processes, such as thermalization, in condensed phase systems.

  2. Sequential Double lonization: The Timing of Release

    NASA Astrophysics Data System (ADS)

    Pfeiffer, A.

    2011-05-01

    The timing of electron release in strong field double ionization poses great challenges both for conceptual definition and for conducting experimental measurement. Here we present coincidence momentum measurements of the doubly charged ion and of the two electrons arising from double ionization of Argon using elliptically (close to circularly) polarized laser pulses. Based on a semi-classical model, the ionization times are calculated from the measured electron momenta across a large intensity range. Exploiting the attoclock technique we have direct access to timings on a coarse and on a fine scale, similar to the hour and the minute hand of a clock. In our attoclock, the magnitude of the electron momenta follows the envelope of the laser pulse and gives a coarse timing for the electron releases (the hour hand), while the fine timing (the minute hand) is provided by the emission angle of the electrons. The first of our findings is that due to depletion the averaged ionization time moves towards the beginning of the pulse with increasing intensity, confirming the results of Maharjan et al., and that the ion momentum distribution projected onto the minor polarization axis shows a bifurcation from a 3-peak to a 4-peak structure. This effect can be fully understood by modeling the process semi-classically in the independent electron approximation following the simple man's model. The ionization time measurement performed with the attoclock shows that the release time of the first electron is in good agreement with the semi-classical simulation performed on the basis of Sequential Double lonization (SDI), whereas the ionization of the second electron occurs significantly earlier than predicted. This observation suggests that electron correlation and other Non-Sequential Double lonization (NSDI) mechanisms may play an important role also in the case of strong field double ionization by close-to-circularly polarized laser pulses. The timing of electron release in strong field double ionization poses great challenges both for conceptual definition and for conducting experimental measurement. Here we present coincidence momentum measurements of the doubly charged ion and of the two electrons arising from double ionization of Argon using elliptically (close to circularly) polarized laser pulses. Based on a semi-classical model, the ionization times are calculated from the measured electron momenta across a large intensity range. Exploiting the attoclock technique we have direct access to timings on a coarse and on a fine scale, similar to the hour and the minute hand of a clock. In our attoclock, the magnitude of the electron momenta follows the envelope of the laser pulse and gives a coarse timing for the electron releases (the hour hand), while the fine timing (the minute hand) is provided by the emission angle of the electrons. The first of our findings is that due to depletion the averaged ionization time moves towards the beginning of the pulse with increasing intensity, confirming the results of Maharjan et al., and that the ion momentum distribution projected onto the minor polarization axis shows a bifurcation from a 3-peak to a 4-peak structure. This effect can be fully understood by modeling the process semi-classically in the independent electron approximation following the simple man's model. The ionization time measurement performed with the attoclock shows that the release time of the first electron is in good agreement with the semi-classical simulation performed on the basis of Sequential Double lonization (SDI), whereas the ionization of the second electron occurs significantly earlier than predicted. This observation suggests that electron correlation and other Non-Sequential Double lonization (NSDI) mechanisms may play an important role also in the case of strong field double ionization by close-to-circularly polarized laser pulses. In collaboration with C. Cirelli and M. Smolarski, Physics Department, ETH Zurich, 8093 Zurich, Switzerland; R. Doerner, Institut fiir Kernphysik, Johann Wolfgang Goethe Universitat, 60438 Frankfurt am Main, Germany; and U. Keller, ETH Zurich.

  3. Transverse-velocity scaling of femtoscopy in \\sqrt{s}=7\\,{TeV} proton–proton collisions

    NASA Astrophysics Data System (ADS)

    Humanic, T. J.

    2018-05-01

    Although transverse-mass scaling of femtoscopic radii is found to hold to a good approximation in heavy-ion collision experiments, it is seen to fail for high-energy proton–proton collisions. It is shown that if invariant radius parameters are plotted versus the transverse velocity instead, scaling with the transverse velocity is seen in \\sqrt{s}=7 TeV proton–proton experiments. A simple semi-classical model is shown to qualitatively reproduce this transverse velocity scaling.

  4. Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo

    DOE PAGES

    White, Alexander J.; Gorshkov, Vyacheslav N.; Tretiak, Sergei; ...

    2015-07-07

    Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficientmore » as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In many cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems.« less

  5. Semiclassical Models for Virtual Antiparticle Pairs, the Unit of Charge e, and the QCD Coupling alpha(sub s)

    NASA Technical Reports Server (NTRS)

    Batchelor, David; Zukor, Dorothy (Technical Monitor)

    2001-01-01

    New semiclassical models of virtual antiparticle pairs are used to compute the pair lifetimes, and good agreement with the Heisenberg lifetimes from quantum field theory (QFT) is found. The modeling method applies to both the electromagnetic and color forces. Evaluation of the action integral of potential field fluctuation for each interaction potential yields approximately Planck's constant/2 for both electromagnetic and color fluctuations, in agreement with QFT. Thus each model is a quantized semiclassical representation for such virtual antiparticle pairs, to good approximation. When the results of the new models and QFT are combined, formulae for e and alpha(sub s)(q) are derived in terms of only Planck's constant and c.

  6. Image charge models for accurate construction of the electrostatic self-energy of 3D layered nanostructure devices.

    PubMed

    Barker, John R; Martinez, Antonio

    2018-04-04

    Efficient analytical image charge models are derived for the full spatial variation of the electrostatic self-energy of electrons in semiconductor nanostructures that arises from dielectric mismatch using semi-classical analysis. The methodology provides a fast, compact and physically transparent computation for advanced device modeling. The underlying semi-classical model for the self-energy has been established and validated during recent years and depends on a slight modification of the macroscopic static dielectric constants for individual homogeneous dielectric regions. The model has been validated for point charges as close as one interatomic spacing to a sharp interface. A brief introduction to image charge methodology is followed by a discussion and demonstration of the traditional failure of the methodology to derive the electrostatic potential at arbitrary distances from a source charge. However, the self-energy involves the local limit of the difference between the electrostatic Green functions for the full dielectric heterostructure and the homogeneous equivalent. It is shown that high convergence may be achieved for the image charge method for this local limit. A simple re-normalisation technique is introduced to reduce the number of image terms to a minimum. A number of progressively complex 3D models are evaluated analytically and compared with high precision numerical computations. Accuracies of 1% are demonstrated. Introducing a simple technique for modeling the transition of the self-energy between disparate dielectric structures we generate an analytical model that describes the self-energy as a function of position within the source, drain and gated channel of a silicon wrap round gate field effect transistor on a scale of a few nanometers cross-section. At such scales the self-energies become large (typically up to ~100 meV) close to the interfaces as well as along the channel. The screening of a gated structure is shown to reduce the self-energy relative to un-gated nanowires.

  7. Image charge models for accurate construction of the electrostatic self-energy of 3D layered nanostructure devices

    NASA Astrophysics Data System (ADS)

    Barker, John R.; Martinez, Antonio

    2018-04-01

    Efficient analytical image charge models are derived for the full spatial variation of the electrostatic self-energy of electrons in semiconductor nanostructures that arises from dielectric mismatch using semi-classical analysis. The methodology provides a fast, compact and physically transparent computation for advanced device modeling. The underlying semi-classical model for the self-energy has been established and validated during recent years and depends on a slight modification of the macroscopic static dielectric constants for individual homogeneous dielectric regions. The model has been validated for point charges as close as one interatomic spacing to a sharp interface. A brief introduction to image charge methodology is followed by a discussion and demonstration of the traditional failure of the methodology to derive the electrostatic potential at arbitrary distances from a source charge. However, the self-energy involves the local limit of the difference between the electrostatic Green functions for the full dielectric heterostructure and the homogeneous equivalent. It is shown that high convergence may be achieved for the image charge method for this local limit. A simple re-normalisation technique is introduced to reduce the number of image terms to a minimum. A number of progressively complex 3D models are evaluated analytically and compared with high precision numerical computations. Accuracies of 1% are demonstrated. Introducing a simple technique for modeling the transition of the self-energy between disparate dielectric structures we generate an analytical model that describes the self-energy as a function of position within the source, drain and gated channel of a silicon wrap round gate field effect transistor on a scale of a few nanometers cross-section. At such scales the self-energies become large (typically up to ~100 meV) close to the interfaces as well as along the channel. The screening of a gated structure is shown to reduce the self-energy relative to un-gated nanowires.

  8. Semiclassical description of resonance-assisted tunneling in one-dimensional integrable models

    NASA Astrophysics Data System (ADS)

    Le Deunff, Jérémy; Mouchet, Amaury; Schlagheck, Peter

    2013-10-01

    Resonance-assisted tunneling is investigated within the framework of one-dimensional integrable systems. We present a systematic recipe, based on Hamiltonian normal forms, to construct one-dimensional integrable models that exhibit resonance island chain structures with accurately controlled sizes and positions of the islands. Using complex classical trajectories that evolve along suitably defined paths in the complex time domain, we construct a semiclassical theory of the resonance-assisted tunneling process. This semiclassical approach yields a compact analytical expression for tunnelling-induced level splittings which is found to be in very good agreement with the exact splittings obtained through numerical diagonalization.

  9. Quantum break-time of de Sitter

    NASA Astrophysics Data System (ADS)

    Dvali, Gia; Gómez, César; Zell, Sebastian

    2017-06-01

    The quantum break-time of a system is the time-scale after which its true quantum evolution departs from the classical mean field evolution. For capturing it, a quantum resolution of the classical background—e.g., in terms of a coherent state—is required. In this paper, we first consider a simple scalar model with anharmonic oscillations and derive its quantum break-time. Next, following [1], we apply these ideas to de Sitter space. We formulate a simple model of a spin-2 field, which for some time reproduces the de Sitter metric and simultaneously allows for its well-defined representation as quantum coherent state of gravitons. The mean occupation number N of background gravitons turns out to be equal to the de Sitter horizon area in Planck units, while their frequency is given by the de Sitter Hubble parameter. In the semi-classical limit, we show that the model reproduces all the known properties of de Sitter, such as the redshift of probe particles and thermal Gibbons-Hawking radiation, all in the language of quantum S-matrix scatterings and decays of coherent state gravitons. Most importantly, this framework allows to capture the 1/N-effects to which the usual semi-classical treatment is blind. They violate the de Sitter symmetry and lead to a finite quantum break-time of the de Sitter state equal to the de Sitter radius times N. We also point out that the quantum-break time is inversely proportional to the number of particle species in the theory. Thus, the quantum break-time imposes the following consistency condition: older and species-richer universes must have smaller cosmological constants. For the maximal, phenomenologically acceptable number of species, the observed cosmological constant would saturate this bound if our Universe were 10100 years old in its entire classical history.

  10. Semiclassical initial value representation for the quantum propagator in the Heisenberg interaction representation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, Jakob; Pollak, Eli, E-mail: eli.pollak@weizmann.ac.il

    2015-12-14

    One of the challenges facing on-the-fly ab initio semiclassical time evolution is the large expense needed to converge the computation. In this paper, we suggest that a significant saving in computational effort may be achieved by employing a semiclassical initial value representation (SCIVR) of the quantum propagator based on the Heisenberg interaction representation. We formulate and test numerically a modification and simplification of the previous semiclassical interaction representation of Shao and Makri [J. Chem. Phys. 113, 3681 (2000)]. The formulation is based on the wavefunction form of the semiclassical propagation instead of the operator form, and so is simpler andmore » cheaper to implement. The semiclassical interaction representation has the advantage that the phase and prefactor vary relatively slowly as compared to the “standard” SCIVR methods. This improves its convergence properties significantly. Using a one-dimensional model system, the approximation is compared with Herman-Kluk’s frozen Gaussian and Heller’s thawed Gaussian approximations. The convergence properties of the interaction representation approach are shown to be favorable and indicate that the interaction representation is a viable way of incorporating on-the-fly force field information within a semiclassical framework.« less

  11. On the substructure of the cosmological constant

    NASA Astrophysics Data System (ADS)

    Dvali, G.; Gomez, C.; Zell, S.

    We summarize the findings of our paper arXiv:1701.08776 [hep-th]. We start by defining the quantum break-time. Once one understands a classical solution as expectation value of an underlying quantum state, it emerges as time-scale after which the true quantum evolution departs from the classical mean field evolution. We apply this idea to de Sitter space. Following earlier work, we construct a simple model of a spin-2 field, which for some time reproduces the de Sitter metric and simultaneously allows for its well-defined representation as coherent quantum state of gravitons. The mean occupation number N of background gravitons turns out to be equal to the de Sitter horizon area in Planck units, while their frequency is given by the de Sitter Hubble parameter. In the semi-classical limit, we show that the model reproduces all semi-classical calculations in de Sitter, such as thermal Gibbons-Hawking radiation, all in the language of quantum S-matrix scatterings and decays of coherent state gravitons. Most importantly, this framework allows to capture the (1/N)-effects of back reaction to which the usual semi-classical treatment is blind. They violate the de Sitter symmetry and lead to a finite quantum break-time of the de Sitter state equal to the de Sitter radius times N. We also point out that the quantum-break time is inversely proportional to the number of particle species in the theory. Thus, the quantum break-time imposes the following consistency condition: Older and species-richer universes must have smaller cosmological constants. For the maximal, phenomenologically acceptable number of species, the observed cosmological constant would saturate this bound if our Universe were 10100 years old in its entire classical history.

  12. Semiclassical excited-state signatures of quantum phase transitions in spin chains with variable-range interactions

    NASA Astrophysics Data System (ADS)

    Gessner, Manuel; Bastidas, Victor Manuel; Brandes, Tobias; Buchleitner, Andreas

    2016-04-01

    We study the excitation spectrum of a family of transverse-field spin chain models with variable interaction range and arbitrary spin S , which in the case of S =1 /2 interpolates between the Lipkin-Meshkov-Glick and the Ising model. For any finite number N of spins, a semiclassical energy manifold is derived in the large-S limit employing bosonization methods, and its geometry is shown to determine not only the leading-order term but also the higher-order quantum fluctuations. Based on a multiconfigurational mean-field ansatz, we obtain the semiclassical backbone of the quantum spectrum through the extremal points of a series of one-dimensional energy landscapes—each one exhibiting a bifurcation when the external magnetic field drops below a threshold value. The obtained spectra become exact in the limit of vanishing or very strong external, transverse magnetic fields. Further analysis of the higher-order corrections in 1 /√{2 S } enables us to analytically study the dispersion relations of spin-wave excitations around the semiclassical energy levels. Within the same model, we are able to investigate quantum bifurcations, which occur in the semiclassical (S ≫1 ) limit, and quantum phase transitions, which are observed in the thermodynamic (N →∞ ) limit.

  13. Vibration-translation energy transfer in vibrationally excited diatomic molecules. Ph.D. Thesis - York Univ., Toronto

    NASA Technical Reports Server (NTRS)

    Mckenzie, R. L.

    1976-01-01

    A semiclassical collision model is applied to the study of energy transfer rates between a vibrationally excited diatomic molecule and a structureless atom. The molecule is modeled as an anharmonic oscillator with a multitude of dynamically coupled vibrational states. Three main aspects in the prediction of vibrational energy transfer rates are considered. The applicability of the semiclassical model to an anharmonic oscillator is first evaluated for collinear encounters. Second, the collinear semiclassical model is applied to obtain numerical predictions of the vibrational energy transfer rate dependence on the initial vibrational state quantum number. Thermally averaged vibration-translation rate coefficients are predicted and compared with CO-He experimental values for both ground and excited initial states. The numerical model is also used as a basis for evaluating several less complete but analytic models. Third, the role of rational motion in the dynamics of vibrational energy transfer is examined. A three-dimensional semiclassical collision model is constructed with coupled rotational motion included. Energy transfer within the molecule is shown to be dominated by vibration-rotation transitions with small changes in angular momentum. The rates of vibrational energy transfer in molecules with rational frequencies that are very small in comparison to their vibrational frequency are shown to be adequately treated by the preceding collinear models.

  14. High order harmonic generation in rare gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budil, Kimberly Susan

    1994-05-01

    The process of high order harmonic generation in atomic gases has shown great promise as a method of generating extremely short wavelength radiation, extending far into the extreme ultraviolet (XUV). The process is conceptually simple. A very intense laser pulse (I ~10 13-10 14 W/cm 2) is focused into a dense (~10 17 particles/cm 3) atomic medium, causing the atoms to become polarized. These atomic dipoles are then coherently driven by the laser field and begin to radiate at odd harmonics of the laser field. This dissertation is a study of both the physical mechanism of harmonic generation as wellmore » as its development as a source of coherent XUV radiation. Recently, a semiclassical theory has been proposed which provides a simple, intuitive description of harmonic generation. In this picture the process is treated in two steps. The atom ionizes via tunneling after which its classical motion in the laser field is studied. Electron trajectories which return to the vicinity of the nucleus may recombine and emit a harmonic photon, while those which do not return will ionize. An experiment was performed to test the validity of this model wherein the trajectory of the electron as it orbits the nucleus or ion core is perturbed by driving the process with elliptically, rather than linearly, polarized laser radiation. The semiclassical theory predicts a rapid turn-off of harmonic production as the ellipticity of the driving field is increased. This decrease in harmonic production is observed experimentally and a simple quantum mechanical theory is used to model the data. The second major focus of this work was on development of the harmonic "source". A series of experiments were performed examining the spatial profiles of the harmonics. The quality of the spatial profile is crucial if the harmonics are to be used as the source for experiments, particularly if they must be refocused.« less

  15. A simple expression for the cold compression curve.

    NASA Astrophysics Data System (ADS)

    Čelebonović, V.

    1996-10-01

    The aim of this contribution is to present expressions for the bulk modulus of a material and its pressure derivative obtained by using the semi-classical theory of dense matter proposed by P. Savić and R. Kašanin. Some possibilities for the application of these expressions are briefly discussed.

  16. Magnon edge states in the hardcore- Bose-Hubbard model.

    PubMed

    Owerre, S A

    2016-11-02

    Quantum Monte Carlo (QMC) simulation has uncovered nonzero Berry curvature and bosonic edge states in the hardcore-Bose-Hubbard model on the gapped honeycomb lattice. The competition between the chemical potential and staggered onsite potential leads to an interesting quantum phase diagram comprising the superfluid phase, Mott insulator, and charge density wave insulator. In this paper, we present a semiclassical perspective of this system by mapping to a spin-1/2 quantum XY model. We give an explicit analytical origin of the quantum phase diagram, the Berry curvatures, and the edge states using semiclassical approximations. We find very good agreement between the semiclassical analyses and the QMC results. Our results show that the topological properties of the hardcore-Bose-Hubbard model are the same as those of magnon in the corresponding quantum spin system. Our results are applicable to systems of ultracold bosonic atoms trapped in honeycomb optical lattices.

  17. A model for explaining fusion suppression using classical trajectory method

    NASA Astrophysics Data System (ADS)

    Phookan, C. K.; Kalita, K.

    2015-01-01

    We adopt a semi-classical approach for explanation of projectile breakup and above barrier fusion suppression for the reactions 6Li+152Sm and 6Li+144Sm. The cut-off impact parameter for fusion is determined by employing quantum mechanical ideas. Within this cut-off impact parameter for fusion, the fraction of projectiles undergoing breakup is determined using the method of classical trajectory in two-dimensions. For obtaining the initial conditions of the equations of motion, a simplified model of the 6Li nucleus has been proposed. We introduce a simple formula for explanation of fusion suppression. We find excellent agreement between the experimental and calculated fusion cross section. A slight modification of the above formula for fusion suppression is also proposed for a three-dimensional model.

  18. Phase-space analysis of the Schwinger effect in inhomogeneous electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Kohlfürst, Christian

    2018-05-01

    Schwinger pair production in spatially and temporally inhomogeneous electric and magnetic fields is studied. The focus is on the particle phase-space distribution within a high-intensity few-cycle pulse. Accurate numerical solutions of a quantum kinetic theory (DHW formalism) are presented in momentum space and, with the aid of coarse-graining techniques, in a mixed spatial-momentum representation. Additionally, signatures of the carrier-envelope phase as well as spin-field interactions are discussed on the basis of a trajectory-based model taking into account instantaneous pair production and relativistic single-particle dynamics. Although our simple semi-classical single-particle model cannot describe every aspect of the particle production process (quantum interferences), essential features such as spin-field interactions are captured.

  19. Cooperative effects in spherical spasers: Ab initio analytical model

    NASA Astrophysics Data System (ADS)

    Bordo, V. G.

    2017-06-01

    A fully analytical semiclassical theory of cooperative optical processes which occur in an ensemble of molecules embedded in a spherical core-shell nanoparticle is developed from first principles. Both the plasmonic Dicke effect and spaser generation are investigated for the designs in which a shell/core contains an arbitrarily large number of active molecules in the vicinity of a metallic core/shell. An essential aspect of the theory is an ab initio account of the feedback from the core/shell boundaries which significantly modifies the molecular dynamics. The theory provides rigorous, albeit simple and physically transparent, criteria for both plasmonic superradiance and surface plasmon generation.

  20. Newtonian semiclassical gravity in three ontological quantum theories that solve the measurement problem: Formalisms and empirical predictions

    NASA Astrophysics Data System (ADS)

    Derakhshani, Maaneli

    In this thesis, we consider the implications of solving the quantum measurement problem for the Newtonian description of semiclassical gravity. First we review the formalism of the Newtonian description of semiclassical gravity based on standard quantum mechanics---the Schroedinger-Newton theory---and two well-established predictions that come out of it, namely, gravitational 'cat states' and gravitationally-induced wavepacket collapse. Then we review three quantum theories with 'primitive ontologies' that are well-known known to solve the measurement problem---Schroedinger's many worlds theory, the GRW collapse theory with matter density ontology, and Nelson's stochastic mechanics. We extend the formalisms of these three quantum theories to Newtonian models of semiclassical gravity and evaluate their implications for gravitational cat states and gravitational wavepacket collapse. We find that (1) Newtonian semiclassical gravity based on Schroedinger's many worlds theory is mathematically equivalent to the Schroedinger-Newton theory and makes the same predictions; (2) Newtonian semiclassical gravity based on the GRW theory differs from Schroedinger-Newton only in the use of a stochastic collapse law, but this law allows it to suppress gravitational cat states so as not to be in contradiction with experiment, while allowing for gravitational wavepacket collapse to happen as well; (3) Newtonian semiclassical gravity based on Nelson's stochastic mechanics differs significantly from Schroedinger-Newton, and does not predict gravitational cat states nor gravitational wavepacket collapse. Considering that gravitational cat states are experimentally ruled out, but gravitational wavepacket collapse is testable in the near future, this implies that only the latter two are viable theories of Newtonian semiclassical gravity and that they can be experimentally tested against each other in future molecular interferometry experiments that are anticipated to be capable of testing the gravitational wavepacket collapse prediction.

  1. Multiband corrections for the semi-classical simulation of interband tunneling in GaAs tunnel junctions

    NASA Astrophysics Data System (ADS)

    Louarn, K.; Claveau, Y.; Hapiuk, D.; Fontaine, C.; Arnoult, A.; Taliercio, T.; Licitra, C.; Piquemal, F.; Bounouh, A.; Cavassilas, N.; Almuneau, G.

    2017-09-01

    The aim of this study is to investigate the impact of multiband corrections on the current density in GaAs tunnel junctions (TJs) calculated with a refined yet simple semi-classical interband tunneling model (SCITM). The non-parabolicity of the considered bands and the spin-orbit effects are considered by using a recently revisited SCITM available in the literature. The model is confronted to experimental results from a series of molecular beam epitaxy grown GaAs TJs and to numerical results obtained with a full quantum model based on the non-equilibrium Green’s function formalism and a 6-band k.p Hamiltonian. We emphasize the importance of considering the non-parabolicity of the conduction band by two different measurements of the energy-dependent electron effective mass in N-doped GaAs. We also propose an innovative method to compute the non-uniform electric field in the TJ for the SCITM simulations, which is of prime importance for a successful operation of the model. We demonstrate that, when considering the multiband corrections and this new computation of the non-uniform electric field, the SCITM succeeds in predicting the electrical characteristics of GaAs TJs, and are also in agreement with the quantum model. Besides the fundamental study of the tunneling phenomenon in TJs, the main benefit of this SCITM is that it can be easily embedded into drift-diffusion software, which are the most widely-used simulation tools for electronic and opto-electronic devices such as multi-junction solar cells, tunnel field-effect transistors, or vertical-cavity surface-emitting lasers.

  2. Quantum break-time of de Sitter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dvali, Gia; Gómez, César; Zell, Sebastian, E-mail: georgi.dvali@physik.uni-muenchen.de, E-mail: cesar.gomez@uam.es, E-mail: sebastian.zell@campus.lmu.de

    The quantum break-time of a system is the time-scale after which its true quantum evolution departs from the classical mean field evolution. For capturing it, a quantum resolution of the classical background—e.g., in terms of a coherent state—is required. In this paper, we first consider a simple scalar model with anharmonic oscillations and derive its quantum break-time. Next, following [1], we apply these ideas to de Sitter space. We formulate a simple model of a spin-2 field, which for some time reproduces the de Sitter metric and simultaneously allows for its well-defined representation as quantum coherent state of gravitons. Themore » mean occupation number N of background gravitons turns out to be equal to the de Sitter horizon area in Planck units, while their frequency is given by the de Sitter Hubble parameter. In the semi-classical limit, we show that the model reproduces all the known properties of de Sitter, such as the redshift of probe particles and thermal Gibbons-Hawking radiation, all in the language of quantum S -matrix scatterings and decays of coherent state gravitons. Most importantly, this framework allows to capture the 1/ N -effects to which the usual semi-classical treatment is blind. They violate the de Sitter symmetry and lead to a finite quantum break-time of the de Sitter state equal to the de Sitter radius times N . We also point out that the quantum-break time is inversely proportional to the number of particle species in the theory. Thus, the quantum break-time imposes the following consistency condition: older and species-richer universes must have smaller cosmological constants. For the maximal, phenomenologically acceptable number of species, the observed cosmological constant would saturate this bound if our Universe were 10{sup 100} years old in its entire classical history.« less

  3. Shells, orbit bifurcations, and symmetry restorations in Fermi systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magner, A. G., E-mail: magner@kinr.kiev.ua; Koliesnik, M. V.; Arita, K.

    The periodic-orbit theory based on the improved stationary-phase method within the phase-space path integral approach is presented for the semiclassical description of the nuclear shell structure, concerning themain topics of the fruitful activity ofV.G. Soloviev. We apply this theory to study bifurcations and symmetry breaking phenomena in a radial power-law potential which is close to the realistic Woods–Saxon one up to about the Fermi energy. Using the realistic parametrization of nuclear shapes we explain the origin of the double-humped fission barrier and the asymmetry in the fission isomer shapes by the bifurcations of periodic orbits. The semiclassical origin of themore » oblate–prolate shape asymmetry and tetrahedral shapes is also suggested within the improved periodic-orbit approach. The enhancement of shell structures at some surface diffuseness and deformation parameters of such shapes are explained by existence of the simple local bifurcations and new non-local bridge-orbit bifurcations in integrable and partially integrable Fermi-systems. We obtained good agreement between the semiclassical and quantum shell-structure components of the level density and energy for several surface diffuseness and deformation parameters of the potentials, including their symmetry breaking and bifurcation values.« less

  4. Cross-section and rate formulas for electron-impact ionization, excitation, deexcitation, and total depopulation of excited atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vriens, L.; Smeets, A.H.M.

    1980-09-01

    For electron-induced ionization, excitation, and de-excitation, mainly from excited atomic states, a detailed analysis is presented of the dependence of the cross sections and rate coefficients on electron energy and temperature, and on atomic parameters. A wide energy range is covered, including sudden as well as adiabatic collisions. By combining the available experimental and theoretical information, a set of simple analytical formulas is constructed for the cross sections and rate coefficients of the processes mentioned, for the total depopulation, and for three-body recombination. The formulas account for large deviations from classical and semiclassical scaling, as found for excitation. They agreemore » with experimental data and with the theories in their respective ranges of validity, but have a wider range of validity than the separate theories. The simple analytical form further facilitates the application in plasma modeling.« less

  5. Signature of charge migration in modulations of double ionization

    NASA Astrophysics Data System (ADS)

    Mauger, François; Abanador, Paul M.; Bruner, Adam; Sissay, Adonay; Gaarde, Mette B.; Lopata, Kenneth; Schafer, Kenneth J.

    2018-04-01

    We present a theoretical investigation of charge migration following strong-field ionization in a multielectron system. We study a model homonuclear molecule with two electrons, each restricted to one dimension (1 +1 D ), interacting with a strong, static electric field. We show that in this system charge migration results from the interplay between multiple ionization channels that overlap in space, creating a coherent electron-hole wave packet in the cation. We also find that, in our case, charge migration following the first ionization manifests as a modulation of the subsequent double-ionization signal. We derive a parametrized semiclassical model from the full multielectron system and we discuss the importance of the choice of cation electronic-structure basis for the efficacy of the semiclassical representation. We use the ab initio solution of the full 1 +1 D system as a reference for the qualitative and quantitative results of the parametrized semiclassical model. We discuss the extension of our model to long-wavelength time-dependent fields with full-dimension, many-electron targets.

  6. Semi-Classical Models for Virtual Antiparticle Pairs

    NASA Technical Reports Server (NTRS)

    Batchelor, David; Zukor, Dorothy (Technical Monitor)

    2001-01-01

    Virtual particle-antiparticle pairs of massive elementary particle& are predicted in Quantum Field Theory (QFT) to appear from the vacuum and annihilate each other again within their Heisenberg lifetimes h/4mc(exp 2). In this work, semiclassical models of this process - for the cases of massive leptons, quarks, and the massive weak bosons W and Z - are constructed. It is shown that the dynamical lifetime of the particle- antiparticle system in each case equals the Heisenberg lifetime to good approximation, and obeys appropriate quantization conditions on the field fluctuation action. In other words, the dynamical lifetime of the semiclassical model agrees with QED and QCD to good approximation. But the formula for the dynamical lifetime in each model includes the force strength coupling constant (e in the lepton case, alpha(sup s) (q(exp 2)) in the quark cases), while the Heisenberg lifetime formula does not. Observing the agreement of the Heisenberg and dynamical lifetimes, we may derive the QED and QCD coupling constants in terms of h, c, and numerical factors only.

  7. Semiclassics for matrix Hamiltonians: The Gutzwiller trace formula with applications to graphene-type systems

    NASA Astrophysics Data System (ADS)

    Vogl, M.; Pankratov, O.; Shallcross, S.

    2017-07-01

    We present a tractable and physically transparent semiclassical theory of matrix-valued Hamiltonians, i.e., those that describe quantum systems with internal degrees of freedoms, based on a generalization of the Gutzwiller trace formula for a n ×n dimensional Hamiltonian H (p ̂,q ̂) . The classical dynamics is governed by n Hamilton-Jacobi (HJ) equations that act in a phase space endowed with a classical Berry curvature encoding anholonomy in the parallel transport of the eigenvectors of H (p ,q ) ; these vectors describe the internal structure of the semiclassical particles. At the O (ℏ1) level and for nondegenerate HJ systems, this curvature results in an additional semiclassical phase composed of (i) a Berry phase and (ii) a dynamical phase resulting from the classical particles "moving through the Berry curvature". We show that the dynamical part of this semiclassical phase will, generally, be zero only for the case in which the Berry phase is topological (i.e., depends only on the winding number). We illustrate the method by calculating the Landau spectrum for monolayer graphene, the four-band model of AB bilayer graphene, and for a more complicated matrix Hamiltonian describing the silicene band structure. Finally, we apply our method to an inhomogeneous system consisting of a strain engineered one-dimensional moiré in bilayer graphene, finding localized states near the Dirac point that arise from electron trapping in a semiclassical moiré potential. The semiclassical density of states of these localized states we show to be in perfect agreement with an exact quantum mechanical calculation of the density of states.

  8. Can chaos be observed in quantum gravity?

    NASA Astrophysics Data System (ADS)

    Dittrich, Bianca; Höhn, Philipp A.; Koslowski, Tim A.; Nelson, Mike I.

    2017-06-01

    Full general relativity is almost certainly 'chaotic'. We argue that this entails a notion of non-integrability: a generic general relativistic model, at least when coupled to cosmologically interesting matter, likely possesses neither differentiable Dirac observables nor a reduced phase space. It follows that the standard notion of observable has to be extended to include non-differentiable or even discontinuous generalized observables. These cannot carry Poisson-algebraic structures and do not admit a standard quantization; one thus faces a quantum representation problem of gravitational observables. This has deep consequences for a quantum theory of gravity, which we investigate in a simple model for a system with Hamiltonian constraint that fails to be completely integrable. We show that basing the quantization on standard topology precludes a semiclassical limit and can even prohibit any solutions to the quantum constraints. Our proposed solution to this problem is to refine topology such that a complete set of Dirac observables becomes continuous. In the toy model, it turns out that a refinement to a polymer-type topology, as e.g. used in loop gravity, is sufficient. Basing quantization of the toy model on this finer topology, we find a complete set of quantum Dirac observables and a suitable semiclassical limit. This strategy is applicable to realistic candidate theories of quantum gravity and thereby suggests a solution to a long-standing problem which implies ramifications for the very concept of quantization. Our work reveals a qualitatively novel facet of chaos in physics and opens up a new avenue of research on chaos in gravity which hints at deep insights into the structure of quantum gravity.

  9. Vibration-translation energy transfer in anharmonic diatomic molecules. 2: The vibrational quantum number dependence

    NASA Technical Reports Server (NTRS)

    Mckenzie, R. L.

    1975-01-01

    A semiclassical model of the inelastic collision between a vibrationally excited anharmonic oscillator and a structureless atom was used to predict the variation of thermally averaged vibration-translation rate coefficients with temperature and initial-state quantum number. Multiple oscillator states were included in a numerical solution for collinear encounters. The results are compared with CO-He experimental values for both ground and excited initial states using several simplified forms of the interaction potential. The numerical model was also used as a basis for evaluating several less complete but analytic models. Two computationally simple analytic approximations were found that successfully reproduced the numerical rate coefficients for a wide range of molecular properties and collision partners. Their limitations were also identified. The relative rates of multiple-quantum transitions from excited states were evaluated for several molecular types.

  10. Regular black holes from semi-classical down to Planckian size

    NASA Astrophysics Data System (ADS)

    Spallucci, Euro; Smailagic, Anais

    In this paper, we review various models of curvature singularity free black holes (BHs). In the first part of the review, we describe semi-classical solutions of the Einstein equations which, however, contains a “quantum” input through the matter source. We start by reviewing the early model by Bardeen where the metric is regularized by-hand through a short-distance cutoff, which is justified in terms of nonlinear electro-dynamical effects. This toy-model is useful to point-out the common features shared by all regular semi-classical black holes. Then, we solve Einstein equations with a Gaussian source encoding the quantum spread of an elementary particle. We identify, the a priori arbitrary, Gaussian width with the Compton wavelength of the quantum particle. This Compton-Gauss model leads to the estimate of a terminal density that a gravitationally collapsed object can achieve. We identify this density to be the Planck density, and reformulate the Gaussian model assuming this as its peak density. All these models, are physically reliable as long as the BH mass is big enough with respect to the Planck mass. In the truly Planckian regime, the semi-classical approximation breaks down. In this case, a fully quantum BH description is needed. In the last part of this paper, we propose a nongeometrical quantum model of Planckian BHs implementing the Holographic Principle and realizing the “classicalization” scenario recently introduced by Dvali and collaborators. The classical relation between the mass and radius of the BH emerges only in the classical limit, far away from the Planck scale.

  11. Modification of Schrödinger-Newton equation due to braneworld models with minimal length

    NASA Astrophysics Data System (ADS)

    Bhat, Anha; Dey, Sanjib; Faizal, Mir; Hou, Chenguang; Zhao, Qin

    2017-07-01

    We study the correction of the energy spectrum of a gravitational quantum well due to the combined effect of the braneworld model with infinite extra dimensions and generalized uncertainty principle. The correction terms arise from a natural deformation of a semiclassical theory of quantum gravity governed by the Schrödinger-Newton equation based on a minimal length framework. The two fold correction in the energy yields new values of the spectrum, which are closer to the values obtained in the GRANIT experiment. This raises the possibility that the combined theory of the semiclassical quantum gravity and the generalized uncertainty principle may provide an intermediate theory between the semiclassical and the full theory of quantum gravity. We also prepare a schematic experimental set-up which may guide to the understanding of the phenomena in the laboratory.

  12. Modeling direct interband tunneling. I. Bulk semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Andrew, E-mail: pandrew@ucla.edu; Chui, Chi On; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095

    Interband tunneling is frequently studied using the semiclassical Kane model, despite uncertainty about its validity. Revisiting the physical basis of this formula, we find that it neglects coupling to other bands and underestimates transverse tunneling. As a result, significant errors can arise at low and high fields for small and large gap materials, respectively. We derive a simple multiband tunneling model to correct these defects analytically without arbitrary parameters. Through extensive comparison with band structure and quantum transport calculations for bulk InGaAs, InAs, and InSb, we probe the accuracy of the Kane and multiband formulas and establish the superiority ofmore » the latter. We also show that the nonlocal average electric field should be used when applying either of these models to nonuniform potentials. Our findings are important for efficient analysis and simulation of bulk semiconductor devices involving tunneling.« less

  13. InGaAs tunnel diodes for the calibration of semi-classical and quantum mechanical band-to-band tunneling models

    NASA Astrophysics Data System (ADS)

    Smets, Quentin; Verreck, Devin; Verhulst, Anne S.; Rooyackers, Rita; Merckling, Clément; Van De Put, Maarten; Simoen, Eddy; Vandervorst, Wilfried; Collaert, Nadine; Thean, Voon Y.; Sorée, Bart; Groeseneken, Guido; Heyns, Marc M.

    2014-05-01

    Promising predictions are made for III-V tunnel-field-effect transistor (FET), but there is still uncertainty on the parameters used in the band-to-band tunneling models. Therefore, two simulators are calibrated in this paper; the first one uses a semi-classical tunneling model based on Kane's formalism, and the second one is a quantum mechanical simulator implemented with an envelope function formalism. The calibration is done for In0.53Ga0.47As using several p+/intrinsic/n+ diodes with different intrinsic region thicknesses. The dopant profile is determined by SIMS and capacitance-voltage measurements. Error bars are used based on statistical and systematic uncertainties in the measurement techniques. The obtained parameters are in close agreement with theoretically predicted values and validate the semi-classical and quantum mechanical models. Finally, the models are applied to predict the input characteristics of In0.53Ga0.47As n- and p-lineTFET, with the n-lineTFET showing competitive performance compared to MOSFET.

  14. Schwinger effect in de Sitter space

    NASA Astrophysics Data System (ADS)

    Fröb, Markus B.; Garriga, Jaume; Kanno, Sugumi; Sasaki, Misao; Soda, Jiro; Tanaka, Takahiro; Vilenkin, Alexander

    2014-04-01

    We consider Schwinger pair production in 1+1 dimensional de Sitter space, filled with a constant electric field E. This can be thought of as a model for describing false vacuum decay beyond the semiclassical approximation, where pairs of a quantum field phi of mass m and charge e play the role of vacuum bubbles. We find that the adiabatic ``in" vacuum associated with the flat chart develops a space-like expectation value for the current J, which manifestly breaks the de Sitter invariance of the background fields. We derive a simple expression for J(E), showing that both ``upward" and ``downward" tunneling contribute to the build-up of the current. For heavy fields, with m2 gg eE,H2, the current is exponentially suppressed, in agreement with the results of semiclassical instanton methods. Here, H is the inverse de Sitter radius. On the other hand, light fields with m ll H lead to a phenomenon of infrared hyperconductivity, where a very small electric field mHlesssimeE ll H2 leads to a very large current J ~ H3/E. We also show that all Hadamard states for phi necessarily break de Sitter invariance. Finally, we comment on the role of initial conditions, and ``persistence of memory" effects.

  15. Path integral approach to the Wigner representation of canonical density operators for discrete systems coupled to harmonic baths.

    PubMed

    Montoya-Castillo, Andrés; Reichman, David R

    2017-01-14

    We derive a semi-analytical form for the Wigner transform for the canonical density operator of a discrete system coupled to a harmonic bath based on the path integral expansion of the Boltzmann factor. The introduction of this simple and controllable approach allows for the exact rendering of the canonical distribution and permits systematic convergence of static properties with respect to the number of path integral steps. In addition, the expressions derived here provide an exact and facile interface with quasi- and semi-classical dynamical methods, which enables the direct calculation of equilibrium time correlation functions within a wide array of approaches. We demonstrate that the present method represents a practical path for the calculation of thermodynamic data for the spin-boson and related systems. We illustrate the power of the present approach by detailing the improvement of the quality of Ehrenfest theory for the correlation function C zz (t)=Re⟨σ z (0)σ z (t)⟩ for the spin-boson model with systematic convergence to the exact sampling function. Importantly, the numerically exact nature of the scheme presented here and its compatibility with semiclassical methods allows for the systematic testing of commonly used approximations for the Wigner-transformed canonical density.

  16. Quantum description of the high-order harmonic generation in multiphoton and tunneling regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez-Hernandez, J. A.; Plaja, L.

    2007-08-15

    We employ a recently developed S-matrix approach [L. Plaja and J. A. Perez-Hernandez, Opt. Express 15, 3629 (2007)] to investigate the process of harmonic generation in tunnel and multiphoton ionization regimes. In contrast with most of the previous approaches, this model is developed without the stationary phase approximation and including the relevant continuum-continuum transitions. Therefore, it provides a full quantum description of the harmonic generation process in these two ionization regimes, with a good quantitative accuracy with the exact results of the time-dependent Schroedinger equation. We show how this model can be used to investigate the contribution of the electronicmore » population ionized at different times, thus giving a time-resolved description that, up to now, was reserved only to semiclassical models. In addition, we will show some aspects of harmonic generation beyond the semiclassical predictions as, for instance, the emission of radiation while the electron is leaving the parent ion and the generation of harmonics in semiclassically forbidden situations.« less

  17. Influence of semiclassical plasma on the energy levels and radiative transitions in highly charged ions★

    NASA Astrophysics Data System (ADS)

    Hu, Hong-Wei; Chen, Zhan-Bin; Chen, Wen-Cong; Liu, Xiao-Bin; Fu, Nian; Wang, Kai

    2017-11-01

    Considering the quantum effects of diffraction and the collective screening effects, the potential of test charge in semiclassical plasmas is derived. It is generalized exponential screened Coulomb potential. Using the Ritz variational method incorporating this potential, the effects of semiclassical plasma on the energy levels and radiative transitions are investigated systematically, taking highly charged H-like ion as an example. The Debye plasma model is also employed for comparison purposes. Comparisons and analysis are made between these two sets of results and the differences are discussed. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.

  18. Simplified approach to the mixed time-averaging semiclassical initial value representation for the calculation of dense vibrational spectra

    NASA Astrophysics Data System (ADS)

    Buchholz, Max; Grossmann, Frank; Ceotto, Michele

    2018-03-01

    We present and test an approximate method for the semiclassical calculation of vibrational spectra. The approach is based on the mixed time-averaging semiclassical initial value representation method, which is simplified to a form that contains a filter to remove contributions from approximately harmonic environmental degrees of freedom. This filter comes at no additional numerical cost, and it has no negative effect on the accuracy of peaks from the anharmonic system of interest. The method is successfully tested for a model Hamiltonian and then applied to the study of the frequency shift of iodine in a krypton matrix. Using a hierarchic model with up to 108 normal modes included in the calculation, we show how the dynamical interaction between iodine and krypton yields results for the lowest excited iodine peaks that reproduce experimental findings to a high degree of accuracy.

  19. Numerical solutions of the semiclassical Boltzmann ellipsoidal-statistical kinetic model equation

    PubMed Central

    Yang, Jaw-Yen; Yan, Chin-Yuan; Huang, Juan-Chen; Li, Zhihui

    2014-01-01

    Computations of rarefied gas dynamical flows governed by the semiclassical Boltzmann ellipsoidal-statistical (ES) kinetic model equation using an accurate numerical method are presented. The semiclassical ES model was derived through the maximum entropy principle and conserves not only the mass, momentum and energy, but also contains additional higher order moments that differ from the standard quantum distributions. A different decoding procedure to obtain the necessary parameters for determining the ES distribution is also devised. The numerical method in phase space combines the discrete-ordinate method in momentum space and the high-resolution shock capturing method in physical space. Numerical solutions of two-dimensional Riemann problems for two configurations covering various degrees of rarefaction are presented and various contours of the quantities unique to this new model are illustrated. When the relaxation time becomes very small, the main flow features a display similar to that of ideal quantum gas dynamics, and the present solutions are found to be consistent with existing calculations for classical gas. The effect of a parameter that permits an adjustable Prandtl number in the flow is also studied. PMID:25104904

  20. Non-Condon equilibrium Fermi’s golden rule electronic transition rate constants via the linearized semiclassical method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiang; Geva, Eitan

    2016-06-28

    In this paper, we test the accuracy of the linearized semiclassical (LSC) expression for the equilibrium Fermi’s golden rule rate constant for electronic transitions in the presence of non-Condon effects. We do so by performing a comparison with the exact quantum-mechanical result for a model where the donor and acceptor potential energy surfaces are parabolic and identical except for shifts in the equilibrium energy and geometry, and the coupling between them is linear in the nuclear coordinates. Since non-Condon effects may or may not give rise to conical intersections, both possibilities are examined by considering: (1) A modified Garg-Onuchic-Ambegaokar modelmore » for charge transfer in the condensed phase, where the donor-acceptor coupling is linear in the primary mode coordinate, and for which non-Condon effects do not give rise to a conical intersection; (2) the linear vibronic coupling model for electronic transitions in gas phase molecules, where non-Condon effects give rise to conical intersections. We also present a comprehensive comparison between the linearized semiclassical expression and a progression of more approximate expressions. The comparison is performed over a wide range of frictions and temperatures for model (1) and over a wide range of temperatures for model (2). The linearized semiclassical method is found to reproduce the exact quantum-mechanical result remarkably well for both models over the entire range of parameters under consideration. In contrast, more approximate expressions are observed to deviate considerably from the exact result in some regions of parameter space.« less

  1. Semiclassical propagation of Wigner functions.

    PubMed

    Dittrich, T; Gómez, E A; Pachón, L A

    2010-06-07

    We present a comprehensive study of semiclassical phase-space propagation in the Wigner representation, emphasizing numerical applications, in particular as an initial-value representation. Two semiclassical approximation schemes are discussed. The propagator of the Wigner function based on van Vleck's approximation replaces the Liouville propagator by a quantum spot with an oscillatory pattern reflecting the interference between pairs of classical trajectories. Employing phase-space path integration instead, caustics in the quantum spot are resolved in terms of Airy functions. We apply both to two benchmark models of nonlinear molecular potentials, the Morse oscillator and the quartic double well, to test them in standard tasks such as computing autocorrelation functions and propagating coherent states. The performance of semiclassical Wigner propagation is very good even in the presence of marked quantum effects, e.g., in coherent tunneling and in propagating Schrodinger cat states, and of classical chaos in four-dimensional phase space. We suggest options for an effective numerical implementation of our method and for integrating it in Monte-Carlo-Metropolis algorithms suitable for high-dimensional systems.

  2. Semiclassics, Goldstone bosons and CFT data

    NASA Astrophysics Data System (ADS)

    Monin, A.; Pirtskhalava, D.; Rattazzi, R.; Seibold, F. K.

    2017-06-01

    Hellerman et al. (arXiv:1505.01537) have shown that in a generic CFT the spectrum of operators carrying a large U(1) charge can be analyzed semiclassically in an expansion in inverse powers of the charge. The key is the operator state correspondence by which such operators are associated with a finite density superfluid phase for the theory quantized on the cylinder. The dynamics is dominated by the corresponding Goldstone hydrodynamic mode and the derivative expansion coincides with the inverse charge expansion. We illustrate and further clarify this situation by first considering simple quantum mechanical analogues. We then systematize the approach by employing the coset construction for non-linearly realized space-time symmetries. Focussing on CFT3 we illustrate the case of higher rank and non-abelian groups and the computation of higher point functions. Three point function coefficients turn out to satisfy universal scaling laws and correlations as the charge and spin are varied.

  3. Kuang's Semi-Classical Formalism for Calculating Electron Capture Cross Sections: A Space- Physics Application

    NASA Technical Reports Server (NTRS)

    Barghouty, A. F.

    2014-01-01

    Accurate estimates of electroncapture cross sections at energies relevant to the modeling of the transport, acceleration, and interaction of energetic neutral atoms (ENA) in space (approximately few MeV per nucleon) and especially for multi-electron ions must rely on detailed, but computationally expensive, quantum-mechanical description of the collision process. Kuang's semi-classical approach is an elegant and efficient way to arrive at these estimates. Motivated by ENA modeling efforts for apace applications, we shall briefly present this approach along with sample applications and report on current progress.

  4. Phase-space methods for the spin dynamics in condensed matter systems

    PubMed Central

    Hurst, Jérôme; Manfredi, Giovanni

    2017-01-01

    Using the phase-space formulation of quantum mechanics, we derive a four-component Wigner equation for a system composed of spin- fermions (typically, electrons) including the Zeeman effect and the spin–orbit coupling. This Wigner equation is coupled to the appropriate Maxwell equations to form a self-consistent mean-field model. A set of semiclassical Vlasov equations with spin effects is obtained by expanding the full quantum model to first order in the Planck constant. The corresponding hydrodynamic equations are derived by taking velocity moments of the phase-space distribution function. A simple closure relation is proposed to obtain a closed set of hydrodynamic equations. This article is part of the themed issue ‘Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces’. PMID:28320903

  5. Semiclassical approaches to nuclear dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magner, A. G., E-mail: magner@kinr.kiev.ua; Gorpinchenko, D. V.; Bartel, J.

    The extended Gutzwiller trajectory approach is presented for the semiclassical description of nuclear collective dynamics, in line with the main topics of the fruitful activity of V.G. Solovjov. Within the Fermi-liquid droplet model, the leptodermous effective surface approximation was applied to calculations of energies, sum rules, and transition densities for the neutron–proton asymmetry of the isovector giant-dipole resonance and found to be in good agreement with the experimental data. By using the Strutinsky shell correction method, the semiclassical collective transport coefficients, such as nuclear inertia, friction, stiffness, and moments of inertia, can be derived beyond the quantum perturbation approximation ofmore » the response function theory and the cranking model. The averaged particle-number dependences of the low-lying collective vibrational states are described in good agreement with the basic experimental data, mainly due to the enhancement of the collective inertia as compared to its irrotational flow value. Shell components of the moment of inertia are derived in terms of the periodic-orbit free-energy shell corrections. A good agreement between the semiclassical extended Thomas–Fermi moments of inertia with shell corrections and the quantum results is obtained for different nuclear deformations and particle numbers. Shell effects are shown to be exponentially dampted out with increasing temperature in all the transport coefficients.« less

  6. Analysis of a semiclassical model for rotational transition probabilities. [in highly nonequilibrium flow of diatomic molecules

    NASA Technical Reports Server (NTRS)

    Deiwert, G. S.; Yoshikawa, K. K.

    1975-01-01

    A semiclassical model proposed by Pearson and Hansen (1974) for computing collision-induced transition probabilities in diatomic molecules is tested by the direct-simulation Monte Carlo method. Specifically, this model is described by point centers of repulsion for collision dynamics, and the resulting classical trajectories are used in conjunction with the Schroedinger equation for a rigid-rotator harmonic oscillator to compute the rotational energy transition probabilities necessary to evaluate the rotation-translation exchange phenomena. It is assumed that a single, average energy spacing exists between the initial state and possible final states for a given collision.

  7. Bell's Theorem and Einstein's `Spooky Actions' from a Simple Thought Experiment

    NASA Astrophysics Data System (ADS)

    Kuttner, Fred; Rosenblum, Bruce

    2010-02-01

    In 1964 John Bell proved a theorem2 allowing the experimental test of whether what Einstein derided as "spooky actions at a distance" actually exist. We will see that they do. Bell's theorem can be displayed with a simple, nonmathematical thought experiment suitable for a physics course at any level. And a simple, semi-classical derivation of the quantum theory result can be given for physics students. These entanglement phenomena are today applied in industrial laboratories and are increasingly discussed in the popular literature. Unfortunately, they are also misappropriated by the purveyors of pseudoscience, something physicists have a responsibility to address.3 Students can be intrigued by the quantum strangeness physics has encountered at a boundary of our discipline.

  8. Diffraction catastrophes and semiclassical quantum mechanics for Veselago lensing in graphene

    NASA Astrophysics Data System (ADS)

    Reijnders, K. J. A.; Katsnelson, M. I.

    2017-07-01

    We study the effect of trigonal warping on the focusing of electrons by n-p junctions in graphene. We find that perfect focusing, which was predicted for massless Dirac fermions, is only preserved for one specific lattice orientation. In the general case, trigonal warping leads to the formation of cusp caustics, with a different position of the focus for graphene's two valleys. We develop a semiclassical theory to compute these positions and find very good agreement with tight-binding simulations. Considering the transmission as a function of potential strength, we find that trigonal warping splits the single Dirac peak into two distinct peaks, leading to valley polarization. We obtain the transmission curves from tight-binding simulations and find that they are in very good agreement with the results of a billiard model that incorporates trigonal warping. Furthermore, the positions of the transmission maxima and the scaling of the peak width are accurately predicted by our semiclassical theory. Our semiclassical analysis can easily be carried over to other Dirac materials, which generally have different Fermi surface distortions.

  9. Approximate solution to the Callan-Giddings-Harvey-Strominger field equations for two-dimensional evaporating black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ori, Amos

    2010-11-15

    Callan, Giddings, Harvey, and Strominger (CGHS) previously introduced a two-dimensional semiclassical model of gravity coupled to a dilaton and to matter fields. Their model yields a system of field equations which may describe the formation of a black hole in gravitational collapse as well as its subsequent evaporation. Here we present an approximate analytical solution to the semiclassical CGHS field equations. This solution is constructed using the recently introduced formalism of flux-conserving hyperbolic systems. We also explore the asymptotic behavior at the horizon of the evaporating black hole.

  10. Scale-invariant curvature fluctuations from an extended semiclassical gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinamonti, Nicola, E-mail: pinamont@dima.unige.it, E-mail: siemssen@dima.unige.it; INFN Sezione di Genova, Via Dodecaneso 33, 16146 Genova; Siemssen, Daniel, E-mail: pinamont@dima.unige.it, E-mail: siemssen@dima.unige.it

    2015-02-15

    We present an extension of the semiclassical Einstein equations which couple n-point correlation functions of a stochastic Einstein tensor to the n-point functions of the quantum stress-energy tensor. We apply this extension to calculate the quantum fluctuations during an inflationary period, where we take as a model a massive conformally coupled scalar field on a perturbed de Sitter space and describe how a renormalization independent, almost-scale-invariant power spectrum of the scalar metric perturbation is produced. Furthermore, we discuss how this model yields a natural basis for the calculation of non-Gaussianities of the considered metric fluctuations.

  11. Elastic scattering of low energy electrons in partially ionized dense semiclassical plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dzhumagulova, K. N., E-mail: dzhumagulova.karlygash@gmail.com; Shalenov, E. O.; Ramazanov, T. S.

    2015-08-15

    Elastic scattering of electrons by hydrogen atoms in a dense semiclassical hydrogen plasma for low impact energies has been studied. Differential scattering cross sections were calculated within the effective model of electron-atom interaction taking into account the effect of screening as well as the quantum mechanical effect of diffraction. The calculations were carried out on the basis of the phase-function method. The influence of the diffraction effect on the Ramsauer–Townsend effect was studied on the basis of a comparison with results made within the effective polarization model of the Buckingham type.

  12. Semiclassical Monte Carlo: A first principles approach to non-adiabatic molecular dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Alexander J.; Center for Nonlinear Studies; Gorshkov, Vyacheslav N.

    2014-11-14

    Modeling the dynamics of photophysical and (photo)chemical reactions in extended molecular systems is a new frontier for quantum chemistry. Many dynamical phenomena, such as intersystem crossing, non-radiative relaxation, and charge and energy transfer, require a non-adiabatic description which incorporate transitions between electronic states. Additionally, these dynamics are often highly sensitive to quantum coherences and interference effects. Several methods exist to simulate non-adiabatic dynamics; however, they are typically either too expensive to be applied to large molecular systems (10's-100's of atoms), or they are based on ad hoc schemes which may include severe approximations due to inconsistencies in classical and quantummore » mechanics. We present, in detail, an algorithm based on Monte Carlo sampling of the semiclassical time-dependent wavefunction that involves running simple surface hopping dynamics, followed by a post-processing step which adds little cost. The method requires only a few quantities from quantum chemistry calculations, can systematically be improved, and provides excellent agreement with exact quantum mechanical results. Here we show excellent agreement with exact solutions for scattering results of standard test problems. Additionally, we find that convergence of the wavefunction is controlled by complex valued phase factors, the size of the non-adiabatic coupling region, and the choice of sampling function. These results help in determining the range of applicability of the method, and provide a starting point for further improvement.« less

  13. Asymptotics of quantum weighted Hurwitz numbers

    NASA Astrophysics Data System (ADS)

    Harnad, J.; Ortmann, Janosch

    2018-06-01

    This work concerns both the semiclassical and zero temperature asymptotics of quantum weighted double Hurwitz numbers. The partition function for quantum weighted double Hurwitz numbers can be interpreted in terms of the energy distribution of a quantum Bose gas with vanishing fugacity. We compute the leading semiclassical term of the partition function for three versions of the quantum weighted Hurwitz numbers, as well as lower order semiclassical corrections. The classical limit is shown to reproduce the simple single and double Hurwitz numbers studied by Okounkov and Pandharipande (2000 Math. Res. Lett. 7 447–53, 2000 Lett. Math. Phys. 53 59–74). The KP-Toda τ-function that serves as generating function for the quantum Hurwitz numbers is shown to have the τ-function of Okounkov and Pandharipande (2000 Math. Res. Lett. 7 447–53, 2000 Lett. Math. Phys. 53 59–74) as its leading term in the classical limit, and, with suitable scaling, the same holds for the partition function, the weights and expectations of Hurwitz numbers. We also compute the zero temperature limit of the partition function and quantum weighted Hurwitz numbers. The KP or Toda τ-function serving as generating function for the quantum Hurwitz numbers are shown to give the one for Belyi curves in the zero temperature limit and, with suitable scaling, the same holds true for the partition function, the weights and the expectations of Hurwitz numbers.

  14. Few-body semiclassical approach to nucleon transfer and emission reactions

    NASA Astrophysics Data System (ADS)

    Sultanov, Renat A.; Guster, D.

    2014-04-01

    A three-body semiclassical model is proposed to describe the nucleon transfer and emission reactions in a heavy-ion collision. In this model the two heavy particles, i.e. nuclear cores A1(ZA1, MA1) and A2(ZA2, MA2), move along classical trajectories {{R}_1}( t ) and {{R}_2}( t ) respectively, while the dynamics of the lighter neutron (n) is considered from a quantum mechanical point of view. Here, Mi are the nucleon masses and Zi are the Coulomb charges of the heavy nuclei (i = 1, 2). A Faddeev-type semiclassical formulation using realistic paired nuclear-nuclear potentials is applied so that all three channels (elastic, rearrangement and break-up) are described in a unified manner. In order to solve the time-dependent equations the Faddeev components of the total three-body wave-function are expanded in terms of the input and output channel target eigenfunctions. In the special case, when the nuclear cores are identical (A1 ≡ A2) and also the two-level approximation in the expansion over the target (subsystem) functions is used, the time-dependent semiclassical Faddeev equations are resolved in an explicit way. To determine the realistic {{R}_1}( t ) and {{R}_2}( t ) trajectories of the nuclear cores, a self-consistent approach based on the Feynman path integral theory is applied.

  15. Electronic excitation and quenching of atoms at insulator surfaces

    NASA Technical Reports Server (NTRS)

    Swaminathan, P. K.; Garrett, Bruce C.; Murthy, C. S.

    1988-01-01

    A trajectory-based semiclassical method is used to study electronically inelastic collisions of gas atoms with insulator surfaces. The method provides for quantum-mechanical treatment of the internal electronic dynamics of a localized region involving the gas/surface collision, and a classical treatment of all the nuclear degrees of freedom (self-consistently and in terms of stochastic trajectories), and includes accurate simulation of the bath-temperature effects. The method is easy to implement and has a generality that holds promise for many practical applications. The problem of electronically inelastic dynamics is solved by computing a set of stochastic trajectories that on thermal averaging directly provide electronic transition probabilities at a given temperature. The theory is illustrated by a simple model of a two-state gas/surface interaction.

  16. Quantum dynamics of the Einstein-Rosen wormhole throat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunstatter, Gabor; Peltola, Ari; Louko, Jorma

    2011-02-15

    We consider the polymer quantization of the Einstein wormhole throat theory for an eternal Schwarzschild black hole. We numerically solve the difference equation describing the quantum evolution of an initially Gaussian, semiclassical wave packet. As expected from previous work on loop quantum cosmology, the wave packet remains semiclassical until it nears the classical singularity at which point it enters a quantum regime in which the fluctuations become large. The expectation value of the radius reaches a minimum as the wave packet is reflected from the origin and emerges to form a near-Gaussian but asymmetrical semiclassical state at late times. Themore » value of the minimum depends in a nontrivial way on the initial mass/energy of the pulse, its width, and the polymerization scale. For wave packets that are sufficiently narrow near the bounce, the semiclassical bounce radius is obtained. Although the numerics become difficult to control in this limit, we argue that for pulses of finite width the bounce persists as the polymerization scale goes to zero, suggesting that in this model the loop quantum gravity effects mimicked by polymer quantization do not play a crucial role in the quantum bounce.« less

  17. A Semiclassical Derivation of the QCD Coupling

    NASA Technical Reports Server (NTRS)

    Batchelor, David

    2009-01-01

    The measured value of the QCD coupling alpha(sub s) at the energy M(sub Zo), the variation of alpha(sub s) as a function of energy in QCD, and classical relativistic dynamics are used to investigate virtual pairs of quarks and antiquarks in vacuum fluctuations. For virtual pairs of bottom quarks and antiquarks, the pair lifetime in the classical model agrees with the lifetime from quantum mechanics to good approximation, and the action integral in the classical model agrees as well with the action that follows from the Uncertainty Principle. This suggests that the particles might have small de Broglie wavelengths and behave with well-localized pointlike dynamics. It also permits alpha(sub s) at the mass energy twice the bottom quark mass to be expressed as a simple fraction: 3/16. This is accurate to approximately 10%. The model in this paper predicts the measured value of alpha(sub s)(M(sub Zo)) to be 0.121, which is in agreement with recent measurements within statistical uncertainties.

  18. Semiclassical Wigner theory of photodissociation in three dimensions: Shedding light on its basis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arbelo-González, W.; CNRS, Institut des Sciences Moléculaires, UMR 5255, 33405 Talence; Université Bordeaux, Institut des Sciences Moléculaires, UMR 5255, 33405 Talence

    2015-04-07

    The semiclassical Wigner theory (SCWT) of photodissociation dynamics, initially proposed by Brown and Heller [J. Chem. Phys. 75, 186 (1981)] in order to describe state distributions in the products of direct collinear photodissociations, was recently extended to realistic three-dimensional triatomic processes of the same type [Arbelo-González et al., Phys. Chem. Chem. Phys. 15, 9994 (2013)]. The resulting approach, which takes into account rotational motions in addition to vibrational and translational ones, was applied to a triatomic-like model of methyl iodide photodissociation and its predictions were found to be in nearly quantitative agreement with rigorous quantum results, but at a muchmore » lower computational cost, making thereby SCWT a potential tool for the study of polyatomic reaction dynamics. Here, we analyse the main reasons for this agreement by means of an elementary model of fragmentation explicitly dealing with the rotational motion only. We show that our formulation of SCWT makes it a semiclassical approximation to an approximate planar quantum treatment of the dynamics, both of sufficient quality for the whole treatment to be satisfying.« less

  19. Many-Body Quantum Chaos: Analytic Connection to Random Matrix Theory

    NASA Astrophysics Data System (ADS)

    Kos, Pavel; Ljubotina, Marko; Prosen, Tomaž

    2018-04-01

    A key goal of quantum chaos is to establish a relationship between widely observed universal spectral fluctuations of clean quantum systems and random matrix theory (RMT). Most prominent features of such RMT behavior with respect to a random spectrum, both encompassed in the spectral pair correlation function, are statistical suppression of small level spacings (correlation hole) and enhanced stiffness of the spectrum at large spectral ranges. For single-particle systems with fully chaotic classical counterparts, the problem has been partly solved by Berry [Proc. R. Soc. A 400, 229 (1985), 10.1098/rspa.1985.0078] within the so-called diagonal approximation of semiclassical periodic-orbit sums, while the derivation of the full RMT spectral form factor K (t ) (Fourier transform of the spectral pair correlation function) from semiclassics has been completed by Müller et al. [Phys. Rev. Lett. 93, 014103 (2004), 10.1103/PhysRevLett.93.014103]. In recent years, the questions of long-time dynamics at high energies, for which the full many-body energy spectrum becomes relevant, are coming to the forefront even for simple many-body quantum systems, such as locally interacting spin chains. Such systems display two universal types of behaviour which are termed the "many-body localized phase" and "ergodic phase." In the ergodic phase, the spectral fluctuations are excellently described by RMT, even for very simple interactions and in the absence of any external source of disorder. Here we provide a clear theoretical explanation for these observations. We compute K (t ) in the leading two orders in t and show its agreement with RMT for nonintegrable, time-reversal invariant many-body systems without classical counterparts, a generic example of which are Ising spin-1 /2 models in a periodically kicking transverse field. In particular, we relate K (t ) to partition functions of a class of twisted classical Ising models on a ring of size t ; hence, the leading-order RMT behavior K (t )≃2 t is a consequence of translation and reflection symmetry of the Ising partition function.

  20. Non-Condon nonequilibrium Fermi’s golden rule rates from the linearized semiclassical method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiang; Geva, Eitan

    2016-08-14

    The nonequilibrium Fermi’s golden rule describes the transition between a photoexcited bright donor electronic state and a dark acceptor electronic state, when the nuclear degrees of freedom start out in a nonequilibrium state. In a previous paper [X. Sun and E. Geva, J. Chem. Theory Comput. 12, 2926 (2016)], we proposed a new expression for the nonequilibrium Fermi’s golden rule within the framework of the linearized semiclassical approximation and based on the Condon approximation, according to which the electronic coupling between donor and acceptor is assumed constant. In this paper we propose a more general expression, which is applicable tomore » the case of non-Condon electronic coupling. We test the accuracy of the new non-Condon nonequilibrium Fermi’s golden rule linearized semiclassical expression on a model where the donor and acceptor potential energy surfaces are parabolic and identical except for shifts in the equilibrium energy and geometry, and the coupling between them is linear in the nuclear coordinates. Since non-Condon effects may or may not give rise to conical intersections, both possibilities are examined by considering the following: (1) A modified Garg-Onuchic-Ambegaokar model for charge transfer in the condensed phase, where the donor-acceptor coupling is linear in the primary-mode coordinate, and for which non-Condon effects do not give rise to a conical intersection; (2) the linear vibronic coupling model for electronic transitions in gas phase molecules, where non-Condon effects give rise to conical intersections. We also present a comprehensive comparison between the linearized semiclassical expression and a progression of more approximate expressions, in both normal and inverted regions, and over a wide range of initial nonequilibrium states, temperatures, and frictions.« less

  1. Boundary conditions for the Swain-Schaad relationship as a criterion for hydrogen tunneling.

    PubMed

    Kohen, Amnon; Jensen, Jan H

    2002-04-17

    Hydrogen quantum mechanical tunneling has been suggested to play a role in a wide variety of hydrogen-transfer reactions in chemistry and enzymology. An important experimental criterion for tunneling is based on the breakdown of the semiclassical prediction for the relationship among the rates of the three isotopes of hydrogen (hydrogen -H, deuterium -D, and tritium -T). This is denoted the Swain-Schaad relationship. This study examines the breakdown of the Swain-Schaad relationship as criterion for tunneling. The semiclassical (no tunneling) limit used hereto (e.g., 3.34, for H/T to D/T kinetic isotope effects), was based on simple theoretical considerations of a diatomic cleavage of a stable covalent bond, for example, a C-H bond. Yet, most experimental evidence for a tunneling contribution has come from breakdown of those relationship for a secondary hydrogen, that is, not the hydrogen whose bond is being cleaved but its geminal neighbor. Furthermore, many of the reported experiments have been mixed-labeling experiments, in which a secondary H/T kinetic isotope effect was measured for C-H cleavage, while the D/T secondary effect accompanied C-D cleavage. In experiments of this type, the breakdown of the Swain-Schaad relationship indicates both tunneling and the degree of coupled motion between the primary and secondary hydrogens. We found a new semiclassical limit (e.g., 4.8 for H/T to D/T kinetic isotope effects), whose breakdown can serve as a more reliable experimental evidence for tunneling in this common mixed-labeling experiment. We study the tunneling contribution to C-H bond activation, for which many relevant experimental and theoretical data are available. However, these studies can be applied to any hydrogen-transfer reaction. First, an extension of the original approach was applied, and then vibrational analysis studies were carried out for a model system (the enzyme alcohol dehydrogenase). Finally, the effect of complex kinetics on the observed Swain-Schaad relationship was examined. All three methods yield a new semiclassical limit (4.8), above which tunneling must be considered. Yet, it was found that for many cases the original, localized limit (3.34), holds fairly well. For experimental results that are between the original and new limits (within statistical errors), several methods are suggested that can support or exclude tunneling. These new and clearer criteria provide a basis for future applications of the Swain-Schaad relationship to demonstrate tunneling in complex systems.

  2. Semi-classical Reissner-Nordstrom model for the structure of charged leptons

    NASA Technical Reports Server (NTRS)

    Rosen, G.

    1980-01-01

    The lepton self-mass problem is examined within the framework of the quantum theory of electromagnetism and gravity. Consideration is given to the Reissner-Nordstrom solution to the Einstein-Maxwell classical field equations for an electrically charged mass point, and the WKB theory for a semiclassical system with total energy zero is used to obtain an expression for the Einstein-Maxwell action factor. The condition obtained is found to account for the observed mass values of the three charged leptons, and to be in agreement with the correspondence principle.

  3. Entangled photon pair generation by spontaneous parametric down-conversion in finite-length one-dimensional photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Centini, M.; Sciscione, L.; Sibilia, C.

    A description of spontaneous parametric down-conversion in finite-length one-dimensional nonlinear photonic crystals is developed using semiclassical and quantum approaches. It is shown that if a suitable averaging is added to the semiclassical model, its results are in very good agreement with the quantum approach. We propose two structures made with GaN/AlN that generate both degenerate and nondegenerate entangled photon pairs. Both structures are designed so as to achieve a high efficiency of the nonlinear process.

  4. On the semiclassical treatment of hot nuclear systems

    NASA Astrophysics Data System (ADS)

    Bartel, J.; Brack, M.; Guet, C.; Håkansson, H.-B.

    1984-05-01

    We discuss two different semiclassical approaches for calculating properties of hot nuclei and compare them to Hartree-Fock calculations using the same effective interaction. Good agreement is found for the entropy and the root-mean square radii as functions of the excitation energy. For a realistic Skyrme force we evaluate the temperature dependence of the free surface, curvature and constant energy coefficients of the liquid drop model, considering a plane interface of condensed symmetric nuclear matter in thermodynamical equilibrium with a nucleon gas. Present address: ASEA-PFBC AB, S-61220 Finspong, Sweden.

  5. Principle of least decoherence for Newtonian semiclassical gravity

    NASA Astrophysics Data System (ADS)

    Tilloy, Antoine; Diósi, Lajos

    2017-11-01

    Recent works have proved that semiclassical theories of gravity needed not be fundamentally inconsistent, at least in the Newtonian regime. Using the machinery of continuous measurement theory and feedback, it was shown that one could construct well-behaved models of hybrid quantum-classical dynamics at the price of an imposed (nonunique) decoherence structure. We introduce a principle of least decoherence (PLD) which allows us to naturally single out a unique model from all the available options; up to some unspecified short distance regularization scale. Interestingly, the resulting model is found to coincide with the old—erstwhile only heuristically motivated—proposal of Penrose and one of us for gravity-related spontaneous decoherence and collapse. Finally, this paper suggests that it is in the submillimeter behavior of gravity that new phenomena might be found.

  6. Cooking strongly coupled plasmas

    NASA Astrophysics Data System (ADS)

    Clérouin, Jean

    2015-09-01

    We present the orbital-free method for dense plasmas which allows for efficient variable ionisation molecular dynamics. This approach is a literal application of density functional theory where the use of orbitals is bypassed by a semi-classical estimation of the electron kinetic energy through the Thomas-Fermi theory. Thanks to a coherent definition of ionisation, we evidence a particular regime in which the static structure no longer depends on the temperature: the Γ-plateau. With the help of the well-known Thomas-Fermi scaling laws, we derive the conditions required to obtain a plasma at a given value of the coupling parameter and deduce useful fits. Static and dynamical properties are predicted as well as a a simple equation of state valid on the Γ-plateau. We show that the one component plasma model can be helpful to describe the correlations in real systems.

  7. QED (quantum-electrodynamical) theory of excess spontaneous emission noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milonni, P.W.

    1990-01-01

    The results of a quantum-electrodynamical theory of excess spontaneous emission noise in lossy resonators will be presented. The Petermann K factor'' does not enter into the spontaneous emission rate of a single atom in the cavity. The QED theory allows different interpretations of the K factor, and we use this fact to justify semiclassical analyses and to provide in one example a simple derivation of K in terms of the amplification of the quantum vacuum field entering the resonator through its mirrors. 17 refs.

  8. Theory of some laser noise effects.

    NASA Technical Reports Server (NTRS)

    Wang, Y. K.; Lamb, W. E., Jr.

    1973-01-01

    A simple version of the semiclassical theory is applied to the shot effect. Considerations of thermal noise reported by Lamb (1965) are extended to take into account amplitude fluctuations. The laser is considered to be a lossy cavity of the Fabry-Perot type in single-mode operation with a circular frequency driven by an inverted population of active atoms. The electric field is taken to be transverse to the cavity axis. The amplitude and phase are assumed to be slowly varying functions which satisfy two self-consistency equations.

  9. Virtual Antiparticle Pairs, the Unit of Charge Epsilon and the QCD Coupling Alpha(sub s)

    NASA Technical Reports Server (NTRS)

    Batchelor, David

    2001-01-01

    New semi-classical models of virtual antiparticle pairs are used to compute the pair lifetimes, and good agreement with the Heisenberg lifetimes from quantum field theory (QFT) is found. When the results of the new models and QFT are combined, formulae for e and alpha(sub s)(q) are derived in terms of only h and c. The modeling method applies to both the electromagnetic and color forces. Evaluation of the action integral of potential field fluctuation for each interaction potential yields approx. = h/2 for both electromagnetic and color fluctuations, in agreement with QFT. Thus each model is a quantized semiclassical representation for such virtual antiparticle pairs, to good approximation. This work reduces the number of arbitrary parameters of the Standard Model by two from 18 to 16. These are remarkable, unexpected results from a basically classical method.

  10. Remote Joule heating by a carbon nanotube.

    PubMed

    Baloch, Kamal H; Voskanian, Norvik; Bronsgeest, Merijntje; Cumings, John

    2012-04-08

    Minimizing Joule heating remains an important goal in the design of electronic devices. The prevailing model of Joule heating relies on a simple semiclassical picture in which electrons collide with the atoms of a conductor, generating heat locally and only in regions of non-zero current density, and this model has been supported by most experiments. Recently, however, it has been predicted that electric currents in graphene and carbon nanotubes can couple to the vibrational modes of a neighbouring material, heating it remotely. Here, we use in situ electron thermal microscopy to detect the remote Joule heating of a silicon nitride substrate by a single multiwalled carbon nanotube. At least 84% of the electrical power supplied to the nanotube is dissipated directly into the substrate, rather than in the nanotube itself. Although it has different physical origins, this phenomenon is reminiscent of induction heating or microwave dielectric heating. Such an ability to dissipate waste energy remotely could lead to improved thermal management in electronic devices.

  11. Remote Joule heating by a carbon nanotube

    NASA Astrophysics Data System (ADS)

    Baloch, Kamal H.; Voskanian, Norvik; Bronsgeest, Merijntje; Cumings, John

    2012-05-01

    Minimizing Joule heating remains an important goal in the design of electronic devices. The prevailing model of Joule heating relies on a simple semiclassical picture in which electrons collide with the atoms of a conductor, generating heat locally and only in regions of non-zero current density, and this model has been supported by most experiments. Recently, however, it has been predicted that electric currents in graphene and carbon nanotubes can couple to the vibrational modes of a neighbouring material, heating it remotely. Here, we use in situ electron thermal microscopy to detect the remote Joule heating of a silicon nitride substrate by a single multiwalled carbon nanotube. At least 84% of the electrical power supplied to the nanotube is dissipated directly into the substrate, rather than in the nanotube itself. Although it has different physical origins, this phenomenon is reminiscent of induction heating or microwave dielectric heating. Such an ability to dissipate waste energy remotely could lead to improved thermal management in electronic devices.

  12. EPRL/FK asymptotics and the flatness problem

    NASA Astrophysics Data System (ADS)

    Oliveira, José Ricardo

    2018-05-01

    Spin foam models are an approach to quantum gravity based on the concept of sum over states, which aims to describe quantum spacetime dynamics in a way that its parent framework, loop quantum gravity, has not as of yet succeeded. Since these models’ relation to classical Einstein gravity is not explicit, an important test of their viabilitiy is the study of asymptotics—the classical theory should be obtained in a limit where quantum effects are negligible, taken to be the limit of large triangle areas in a triangulated manifold with boundary. In this paper we will briefly introduce the EPRL/FK spin foam model and known results about its asymptotics, proceeding then to describe a practical computation of spin foam and semiclassical geometric data for a simple triangulation with only one interior triangle. The results are used to comment on the ‘flatness problem’—a hypothesis raised by Bonzom (2009 Phys. Rev. D 80 064028) suggesting that EPRL/FK’s classical limit only describes flat geometries in vacuum.

  13. Stable long-time semiclassical description of zero-point energy in high-dimensional molecular systems.

    PubMed

    Garashchuk, Sophya; Rassolov, Vitaly A

    2008-07-14

    Semiclassical implementation of the quantum trajectory formalism [J. Chem. Phys. 120, 1181 (2004)] is further developed to give a stable long-time description of zero-point energy in anharmonic systems of high dimensionality. The method is based on a numerically cheap linearized quantum force approach; stabilizing terms compensating for the linearization errors are added into the time-evolution equations for the classical and nonclassical components of the momentum operator. The wave function normalization and energy are rigorously conserved. Numerical tests are performed for model systems of up to 40 degrees of freedom.

  14. Identical superdeformed bands in yrast 152Dy: a systematic description

    NASA Astrophysics Data System (ADS)

    Dadwal, Anshul; Mittal, H. M.

    2018-06-01

    The nuclear softness (NS) formula, semiclassical particle rotor model (PRM) and modified exponential model with pairing attenuation are used for the systematic study of the identical superdeformed bands in the A ∼ 150 mass region. These formulae/models are employed to study the identical superdeformed bands relative to the yrast SD band 152Dy(1), {152Dy(1), 151Tb(2)}, {152Dy(1), 151Dy(4)} (midpoint), {152Dy(1), 153Dy(2)} (quarter point), {152Dy(1), 153Dy(3)} (three-quarter point). The parameters, baseline moment of inertia ({{I}}0), alignment (i) and effective pairing parameter (Δ0) are calculated using the least-squares fitting of the γ-ray transitions energies in the NS formula, semiclassical-PRM and modified exponential model with pairing attenuation, respectively. The calculated parameters are found to depend sensitively on the proposed baseline spin (I 0).

  15. Semi-classical analysis and pseudo-spectra

    NASA Astrophysics Data System (ADS)

    Davies, E. B.

    We prove an approximate spectral theorem for non-self-adjoint operators and investigate its applications to second-order differential operators in the semi-classical limit. This leads to the construction of a twisted FBI transform. We also investigate the connections between pseudo-spectra and boundary conditions in the semi-classical limit.

  16. Charge Exchange in Slow Collisions of O+ with He

    NASA Astrophysics Data System (ADS)

    Zhao, L. B.; Joseph, D. C.; Saha, B. C.; Lebermann, H. P.; Funke, P.; Buenker, R. J.

    2009-03-01

    A comparative study is reported for the charge transfer in collisions of O^+ with He using the fully quantal and semiclassical molecular-orbital close-coupling (MOCC) approaches in the adiabatic representation. The electron capture processes O^+(^4S^o, ^2D^o, ^2P^o) + He -> O(^3P) + He^+ are recalculated. The semiclassical MOCC approach was examined by a detailed comparision of cross sections and transition probabilities from both the fully quantal and semiclassical MOCC approaches. The discrepancies reported previously between the semiclassical and the quantal MOCC cross sections may be attributed due to the insufficient step-size resolution of the semiclassical calculations. Our results are also compared with the experimental cross sections and found good agreements. This work is supported by NSF, CREST program (Grant#0630370).

  17. GENERAL: Scattering Phase Correction for Semiclassical Quantization Rules in Multi-Dimensional Quantum Systems

    NASA Astrophysics Data System (ADS)

    Huang, Wen-Min; Mou, Chung-Yu; Chang, Cheng-Hung

    2010-02-01

    While the scattering phase for several one-dimensional potentials can be exactly derived, less is known in multi-dimensional quantum systems. This work provides a method to extend the one-dimensional phase knowledge to multi-dimensional quantization rules. The extension is illustrated in the example of Bogomolny's transfer operator method applied in two quantum wells bounded by step potentials of different heights. This generalized semiclassical method accurately determines the energy spectrum of the systems, which indicates the substantial role of the proposed phase correction. Theoretically, the result can be extended to other semiclassical methods, such as Gutzwiller trace formula, dynamical zeta functions, and semiclassical Landauer-Büttiker formula. In practice, this recipe enhances the applicability of semiclassical methods to multi-dimensional quantum systems bounded by general soft potentials.

  18. Semiclassical S-matrix for black holes

    DOE PAGES

    Bezrukov, Fedor; Levkov, Dmitry; Sibiryakov, Sergey

    2015-12-01

    In this study, we propose a semiclassical method to calculate S-matrix elements for two-stage gravitational transitions involving matter collapse into a black hole and evaporation of the latter. The method consistently incorporates back-reaction of the collapsing and emitted quanta on the metric. We illustrate the method in several toy models describing spherical self-gravitating shells in asymptotically flat and AdS space-times. We find that electrically neutral shells reflect via the above collapse-evaporation process with probability exp(–B), where B is the Bekenstein-Hawking entropy of the intermediate black hole. This is consistent with interpretation of exp(B) as the number of black hole states.more » The same expression for the probability is obtained in the case of charged shells if one takes into account instability of the Cauchy horizon of the intermediate Reissner-Nordström black hole. As a result, our semiclassical method opens a new systematic approach to the gravitational S-matrix in the non-perturbative regime.« less

  19. Trace identities and their semiclassical implications

    NASA Astrophysics Data System (ADS)

    Smilansky, Uzy

    2000-03-01

    The compatibility of the semiclassical quantization of area-preserving maps with some exact identities which follow from the unitarity of the quantum evolution operator is discussed. The quantum identities involve relations between traces of powers of the evolution operator. For classically integrable maps, the semiclassical approximation is shown to be compatible with the trace identities. This is done by the identification of stationary phase manifolds which give the main contributions to the result. The compatibility of the semiclassical quantization with the trace identities demonstrates the crucial importance of non-diagonal contributions. The same technique is not applicable for chaotic maps, and the compatibility of the semiclassical theory in this case remains unsettled. However, the trace identities are applied to maps which appear naturally in the theory of quantum graphs, revealing some features of the periodic orbit theory for these paradigms of quantum chaos.

  20. Path integral measure and triangulation independence in discrete gravity

    NASA Astrophysics Data System (ADS)

    Dittrich, Bianca; Steinhaus, Sebastian

    2012-02-01

    A path integral measure for gravity should also preserve the fundamental symmetry of general relativity, which is diffeomorphism symmetry. In previous work, we argued that a successful implementation of this symmetry into discrete quantum gravity models would imply discretization independence. We therefore consider the requirement of triangulation independence for the measure in (linearized) Regge calculus, which is a discrete model for quantum gravity, appearing in the semi-classical limit of spin foam models. To this end we develop a technique to evaluate the linearized Regge action associated to Pachner moves in 3D and 4D and show that it has a simple, factorized structure. We succeed in finding a local measure for 3D (linearized) Regge calculus that leads to triangulation independence. This measure factor coincides with the asymptotics of the Ponzano Regge Model, a 3D spin foam model for gravity. We furthermore discuss to which extent one can find a triangulation independent measure for 4D Regge calculus and how such a measure would be related to a quantum model for 4D flat space. To this end, we also determine the dependence of classical Regge calculus on the choice of triangulation in 3D and 4D.

  1. Absence of Vacuum Induced Berry Phases without the Rotating Wave Approximation in Cavity QED

    NASA Astrophysics Data System (ADS)

    Larson, Jonas

    2012-01-01

    We revisit earlier studies on Berry phases suggested to appear in certain cavity QED settings. It has been especially argued that a nontrivial geometric phase is achievable even in the situation of no cavity photons. We, however, show that such results hinge on imposing the rotating wave approximation (RWA), while without the RWA no Berry phases occur in these schemes. A geometrical interpretation of our results is obtained by introducing semiclassical energy surfaces which in a simple way brings out the phase-space dynamics. With the RWA, a conical intersection between the surfaces emerges and encircling it gives rise to the Berry phase. Without the RWA, the conical intersection is absent and therefore the Berry phase vanishes. It is believed that this is a first example showing how the application of the RWA in the Jaynes-Cummings model may lead to false conclusions, regardless of the mutual strengths between the system parameters.

  2. Classical geometry to quantum behavior correspondence in a virtual extra dimension

    NASA Astrophysics Data System (ADS)

    Dolce, Donatello

    2012-09-01

    In the Lorentz invariant formalism of compact space-time dimensions the assumption of periodic boundary conditions represents a consistent semi-classical quantization condition for relativistic fields. In Dolce (2011) [18] we have shown, for instance, that the ordinary Feynman path integral is obtained from the interference between the classical paths with different winding numbers associated with the cyclic dynamics of the field solutions. By means of the boundary conditions, the kinematical information of interactions can be encoded on the relativistic geometrodynamics of the boundary, see Dolce (2012) [8]. Furthermore, such a purely four-dimensional theory is manifestly dual to an extra-dimensional field theory. The resulting correspondence between extra-dimensional geometrodynamics and ordinary quantum behavior can be interpreted in terms of AdS/CFT correspondence. By applying this approach to a simple Quark-Gluon-Plasma freeze-out model we obtain fundamental analogies with basic aspects of AdS/QCD phenomenology.

  3. Application of one-dimensional semiclassical transition state theory to the CH3OH + H ⇌ CH2OH/CH3O + H2 reactions.

    PubMed

    Shan, Xiao; Clary, David C

    2018-03-13

    The rate constants of the two branches of H-abstractions from CH 3 OH by the H-atom and the corresponding reactions in the reverse direction are calculated using the one-dimensional semiclassical transition state theory (1D SCTST). In this method, only the reaction mode vibration of the transition state (TS) is treated anharmonically, while the remaining internal degrees of freedom are treated as they would have been in a standard TS theory calculation. A total of eight ab initio single-point energy calculations are performed in addition to the computational cost of a standard TS theory calculation. This allows a second-order Richardson extrapolation method to be employed to improve the numerical estimation of the third- and fourth-order derivatives, which in turn are used in the calculation of the anharmonic constant. Hindered-rotor (HR) vibrations are identified in the equilibrium states of CH 3 OH and CH 2 OH, and the TSs of the reactions. The partition function of the HRs are calculated using both a simple harmonic oscillator model and a more sophisticated one-dimensional torsional eigenvalue summation (1D TES) method. The 1D TES method can be easily adapted in 1D SCTST computation. The resulting 1D SCTST with 1D TES rate constants show good agreement to previous theoretical and experimental works. The effects of the HR on rate constants for different reactions are also investigated.This article is part of the theme issue 'Modern theoretical chemistry'. © 2018 The Author(s).

  4. Some Remarks about Semiclassical Trace Invariants and Quantum Normal Forms

    NASA Astrophysics Data System (ADS)

    Guillemin, Victor; Paul, Thierry

    2010-02-01

    In this paper we explore the connection between semi-classical and quantum Birkhoff canonical forms (BCF) for Schrödinger operators. In particular we give a “non-symbolic” operator theoretic derivation of the quantum Birkhoff canonical form and provide an explicit recipe for expressing the quantum BCF in terms of the semi-classical BCF.

  5. Average Nuclear Potentials from Selfconsistent Semiclassical Calculations

    NASA Astrophysics Data System (ADS)

    Bartel, J.

    1999-03-01

    Using the selfconsistent semiclassical Extended Thomas-Fermi (ETF) method up to 4th order in connection with Skyrme forces it is demonstrated that the neutron and proton average potentials obtained using the semiclassical functionals τ (ETF)[ρ] and vec {J}(ETF)[ρ] reproduce the corresponding Hartree-Fock fields extremely well, except for shell oscillations in the nuclear center.

  6. Two-proton pickup studies with the (6Li,8B) reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisenmiller, R.B.

    1976-12-03

    The (/sup 6/Li,/sup 8/B) reaction has been investigated on targets of /sup 26/Mg, /sup 24/Mg, /sup 16/O, /sup 13/C, /sup 12/C, /sup 11/B, /sup 10/B, and /sup 9/Be at a bombarding energy of 80.0 MeV, and on targets of /sup 16/O, /sup 12/C, /sup 9/Be, /sup 7/Li, and /sup 6/Li at a bombarding energy of 93.3 MeV. Only levels consistent with direct, single-step two-proton pickup reaction mechanisms were observed to be strongly populated. On T/sub z/ = 0 targets, the spectroscopic selectivity of this reaction resembles that of the analogous (p,t) reaction. Additionally, these data demonstrate the dominance of spatiallymore » symmetric transfer of the two protons. On T/sub z/ greater than 0 targets the (/sup 6/Li,/sup 8/B) reaction was employed to locate two previously unreported levels (at 7.47 +- 0.05 MeV and 8.86 +- 0.07 MeV) in the T/sub z/ = 2 nuclide /sup 24/Ne and to establish the low-lying 1p-shell states in the T/sub z/ = /sup 3///sub 2/ nuclei /sup 11/Be, /sup 9/Li, and /sup 7/He. However, no evidence was seen for any narrow levels in the T/sub z/ = /sup 3///sub 2/ nuclide /sup 5/H nor for any narrow excited states in /sup 7/He. The angular distributions reported here are rather featureless and decrease monotonically with increasing angle. This behavior can be shown by a semi-classical reaction theory to be a consequence of the reaction kinematics. A semi-classical approach also suggests that the kinematic term in the transition matrix element is only weakly dependent upon the angular momentum transfer (which is consistent with simple Distorted Wave Born Approximation calculations). However, only qualitative agreement was obtained between the observed relative transition yields and semi-classical predictions, using the two-nucleon coefficients of fractional parentage of Cohen and Kurath, probably due to the limitations of the semi-classical reaction theory.« less

  7. Maslov indices, Poisson brackets, and singular differential forms

    NASA Astrophysics Data System (ADS)

    Esterlis, I.; Haggard, H. M.; Hedeman, A.; Littlejohn, R. G.

    2014-06-01

    Maslov indices are integers that appear in semiclassical wave functions and quantization conditions. They are often notoriously difficult to compute. We present methods of computing the Maslov index that rely only on typically elementary Poisson brackets and simple linear algebra. We also present a singular differential form, whose integral along a curve gives the Maslov index of that curve. The form is closed but not exact, and transforms by an exact differential under canonical transformations. We illustrate the method with the 6j-symbol, which is important in angular-momentum theory and in quantum gravity.

  8. Semiclassical quantization of Bohr orbits in the helium atom

    NASA Astrophysics Data System (ADS)

    Belov, V. V.; Maksimov, V. A.

    2007-05-01

    We use the complex WKB-Maslov method to construct the semiclassical spectral series corresponding to the resonance Bohr orbits in the helium atom. The semiclassical energy levels represented as the Rydberg tetra series correspond to the doubly symmetrically excited states of helium-like atoms. This level series contains the Rydberg triple series reported by Richter and Wintgen in 1991, which corresponds to the Z2+e-e- configuration of electrons observed by Eichmann and his collaborators in experiments on the laser excitation of the barium atom in 1992. The lower-level extrapolation of the formula obtained for the semiclassical spectrum gives the value of the ground state energy, which differs by 6% from the experimental value obtained by Bergeson and his collaborators in 1998. We also calculate the fine structure of the semiclassical spectrum due to the spin-orbit and spin-spin interactions of electrons.

  9. Experimental Evidence for Hydrogen Tunneling when the Isotopic Arrhenius Prefactor (AH/AD) is Unity

    PubMed Central

    Sharma, Sudhir C.; Klinman, Judith P.

    2009-01-01

    The temperature dependence of the kinetic isotope effect (KIE) is one of the major tools used for the investigation of hydrogen tunneling in condensed phase. Hydrogen transfer reactions displaying isotopic Arrhenius prefactor ratios (AH/AD) of unity are generally ascribed to a semi-classical mechanism. Here, we have identified a double mutant of soybean lipoxygenase (SLO-1, an enzyme previously shown to follow quantum mechanical hydrogen tunneling), that displays an AH/AD of unity and highly elevated (non-classical) KIEs. This observation highlights the shortcoming of assigning a hydrogen transfer reaction to a semi-classical model based solely on an Arrhenius prefactor ratio. PMID:19061319

  10. On Generalized Continuous D Semi-Classical Hermite and Chebychev Orthogonal Polynomials of Class One

    NASA Astrophysics Data System (ADS)

    Azatassou, E.; Hounkonnou, M. N.

    2002-10-01

    In this contribution, starting from the system of equations for recurrence coefficients generated by continuous D semi-classical Laguerre-Freud equations of class 1, we deduce the β constant recurrence relation coefficient γn leading to the generalized D semi-classical Hermite and Chebychev orthogonal polynomials of class 1. Various interesting cases are pointed out.

  11. Semiclassical fermion pair creation in de Sitter spacetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stahl, Clément, E-mail: clement.stahl@icranet.org; Eckhard, Strobel, E-mail: eckhard.strobel@irap-phd.eu; Dipartimento di Fisica, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome

    2015-12-17

    We present a method to semiclassically compute the pair creation rate of bosons and fermions in de Sitter spacetime. The results in the bosonic case agree with the ones in the literature. We find that for the constant electric field the fermionic and bosonic pair creation rate are the same. This analogy of bosons and fermions in the semiclassical limit is known from several flat spacetime examples.

  12. Semiclassical regularization of Vlasov equations and wavepackets for nonlinear Schrödinger equations

    NASA Astrophysics Data System (ADS)

    Athanassoulis, Agissilaos

    2018-03-01

    We consider the semiclassical limit of nonlinear Schrödinger equations with initial data that are well localized in both position and momentum (non-parametric wavepackets). We recover the Wigner measure (WM) of the problem, a macroscopic phase-space density which controls the propagation of the physical observables such as mass, energy and momentum. WMs have been used to create effective models for wave propagation in: random media, quantum molecular dynamics, mean field limits, and the propagation of electrons in graphene. In nonlinear settings, the Vlasov-type equations obtained for the WM are often ill-posed on the physically interesting spaces of initial data. In this paper we are able to select the measure-valued solution of the 1  +  1 dimensional Vlasov-Poisson equation which correctly captures the semiclassical limit, thus finally resolving the non-uniqueness in the seminal result of Zhang et al (2012 Comm. Pure Appl. Math. 55 582-632). The same approach is also applied to the Vlasov-Dirac-Benney equation with small wavepacket initial data, extending several known results.

  13. Uniform semiclassical sudden approximation for rotationally inelastic scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korsch, H.J.; Schinke, R.

    1980-08-01

    The infinite-order-sudden (IOS) approximation is investigated in the semiclassical limit. A simplified IOS formula for rotationally inelastic differential cross sections is derived involving a uniform stationary phase approximation for two-dimensional oscillatory integrals with two stationary points. The semiclassical analysis provides a quantitative description of the rotational rainbow structure in the differential cross section. The numerical calculation of semiclassical IOS cross sections is extremely fast compared to numerically exact IOS methods, especially if high ..delta..j transitions are involved. Rigid rotor results for He--Na/sub 2/ collisions with ..delta..j< or approx. =26 and for K--CO collisions with ..delta..j< or approx. =70 show satisfactorymore » agreement with quantal IOS calculations.« less

  14. Comparative study of quantal and semiclassical treatments of charge transfer between O+ and He

    NASA Astrophysics Data System (ADS)

    Zhao, L. B.; Joseph, D. C.; Saha, B. C.; Liebermann, H. P.; Funke, P.; Buenker, R. J.

    2009-03-01

    A comparative study for the electron capture process O+(S40,D20,P20)+He→O(P3)+He+ is reported. The cross sections are calculated using fully quantal and semiclassical molecular-orbital close-coupling (MOCC) approaches in the adiabatic representation. Detailed comparison of transition probabilities and cross sections is made from both MOCC approaches and displays close agreement above ˜125eV/u . The remarkable discrepancies between the earlier semiclassical and quantal MOCC approaches may be attributed to the insufficient step-size resolution in their semiclassical calculation [M. Kimura , Phys. Rev. A 50, 4854 (1994)]. Our results have also been compared with experiment and found to be in good agreement.

  15. Symmetry and conservation laws in semiclassical wave packet dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohsawa, Tomoki, E-mail: tomoki@utdallas.edu

    2015-03-15

    We formulate symmetries in semiclassical Gaussian wave packet dynamics and find the corresponding conserved quantities, particularly the semiclassical angular momentum, via Noether’s theorem. We consider two slightly different formulations of Gaussian wave packet dynamics; one is based on earlier works of Heller and Hagedorn and the other based on the symplectic-geometric approach by Lubich and others. In either case, we reveal the symplectic and Hamiltonian nature of the dynamics and formulate natural symmetry group actions in the setting to derive the corresponding conserved quantities (momentum maps). The semiclassical angular momentum inherits the essential properties of the classical angular momentum asmore » well as naturally corresponds to the quantum picture.« less

  16. Quasi-classical modeling of molecular quantum-dot cellular automata multidriver gates

    NASA Astrophysics Data System (ADS)

    Rahimi, Ehsan; Nejad, Shahram Mohammad

    2012-05-01

    Molecular quantum-dot cellular automata (mQCA) has received considerable attention in nanoscience. Unlike the current-based molecular switches, where the digital data is represented by the on/off states of the switches, in mQCA devices, binary information is encoded in charge configuration within molecular redox centers. The mQCA paradigm allows high device density and ultra-low power consumption. Digital mQCA gates are the building blocks of circuits in this paradigm. Design and analysis of these gates require quantum chemical calculations, which are demanding in computer time and memory. Therefore, developing simple models to probe mQCA gates is of paramount importance. We derive a semi-classical model to study the steady-state output polarization of mQCA multidriver gates, directly from the two-state approximation in electron transfer theory. The accuracy and validity of this model are analyzed using full quantum chemistry calculations. A complete set of logic gates, including inverters and minority voters, are implemented to provide an appropriate test bench in the two-dot mQCA regime. We also briefly discuss how the QCADesigner tool could find its application in simulation of mQCA devices.

  17. Closed almost-periodic orbits in semiclassical quantization of generic polygons

    PubMed

    Biswas

    2000-05-01

    Periodic orbits are the central ingredients of modern semiclassical theories and corrections to these are generally nonclassical in origin. We show here that, for the class of generic polygonal billiards, the corrections are predominantly classical in origin owing to the contributions from closed almost-periodic (CAP) orbit families. Furthermore, CAP orbit families outnumber periodic families but have comparable weights. They are hence indispensable for semiclassical quantization.

  18. Computational comparison of quantum-mechanical models for multistep direct reactions

    NASA Astrophysics Data System (ADS)

    Koning, A. J.; Akkermans, J. M.

    1993-02-01

    We have carried out a computational comparison of all existing quantum-mechanical models for multistep direct (MSD) reactions. The various MSD models, including the so-called Feshbach-Kerman-Koonin, Tamura-Udagawa-Lenske and Nishioka-Yoshida-Weidenmüller models, have been implemented in a single computer system. All model calculations thus use the same set of parameters and the same numerical techniques; only one adjustable parameter is employed. The computational results have been compared with experimental energy spectra and angular distributions for several nuclear reactions, namely, 90Zr(p,p') at 80 MeV, 209Bi(p,p') at 62 MeV, and 93Nb(n,n') at 25.7 MeV. In addition, the results have been compared with the Kalbach systematics and with semiclassical exciton model calculations. All quantum MSD models provide a good fit to the experimental data. In addition, they reproduce the systematics very well and are clearly better than semiclassical model calculations. We furthermore show that the calculated predictions do not differ very strongly between the various quantum MSD models, leading to the conclusion that the simplest MSD model (the Feshbach-Kerman-Koonin model) is adequate for the analysis of experimental data.

  19. NMR lineshape equations for hindered methyl group: a comparison of the semi-classical and quantum mechanical models

    NASA Astrophysics Data System (ADS)

    Bernatowicz, P.; Szymański, S.

    2003-09-01

    The semiclassical and quantum mechanical NMR lineshape equations for a hindered methyl group are compared. In both the approaches, the stochastic dynamics can be interpreted in terms of a progressive symmetrization of the spin density matrix. However, the respective ways of achieving the same limiting symmetry can be remarkably different. From numerical lineshape simulations it is inferred that in the regime of intermediate exchange, where the conventional theory predicts occurrence of a single Lorentzian, the actual spectrum can have nontrivial features. This observation may open new perspectives in the search for nonclassical effects in the stochastic behavior of methyl groups in liquid-phase NMR.

  20. On the Treatment of l-changing Proton-hydrogen Rydberg Atom Collisions

    NASA Astrophysics Data System (ADS)

    Vrinceanu, Daniel; Onofrio, Roberto; Sadeghpour, Hossein

    2018-01-01

    Energy-conserving, angular momentum-changing collisions between protons and highly excited Rydberg hydrogen atoms are important for precise understanding of the primordial recombination cascade, and the elemental abundance.Early approaches to l-changing collisions used perturbation theory for only dipole-allowed (Δl = ±1) transitions. An exact non-perturbative quantum mechanical treatment is possible, but it comes at computational cost for highly excited Rydberg states. In this note we show how to obtain a semi-classical limit that is accurate and simple, and develop further physical insights afforded by the non-perturbative quantum mechanical treatment.

  1. The exact eigenfunctions and eigenvalues of a two-dimensional rigid rotor obtained using Gaussian wave packet dynamics

    NASA Technical Reports Server (NTRS)

    Reimers, J. R.; Heller, E. J.

    1985-01-01

    Exact eigenfunctions for a two-dimensional rigid rotor are obtained using Gaussian wave packet dynamics. The wave functions are obtained by propagating, without approximation, an infinite set of Gaussian wave packets that collectively have the correct periodicity, being coherent states appropriate to this rotational problem. This result leads to a numerical method for the semiclassical calculation of rovibrational, molecular eigenstates. Also, a simple, almost classical, approximation to full wave packet dynamics is shown to give exact results: this leads to an a posteriori justification of the De Leon-Heller spectral quantization method.

  2. Violations of a new inequality for classical fields

    NASA Technical Reports Server (NTRS)

    Franson, J. D.

    1992-01-01

    Two entangled photons incident upon two distant interferometers can give a coincidence counting rate that depends nonlocally on the sum of the phases of the two interferometers. It has recently been shown that experiments of this kind may violate a simple inequality that must be satisfied by any classical or semi-classical field theory. The inequality provides a graphic illustration of the lack of objective realism of the electric field. The results of a recent experiment which violates this inequality and in which the optical path length between the two interferometers was greater than 100 m are briefly described.

  3. The isentropic quantum drift-diffusion model in two or three space dimensions

    NASA Astrophysics Data System (ADS)

    Chen, Xiuqing

    2009-05-01

    We investigate the isentropic quantum drift-diffusion model, a fourth order parabolic system, in space dimensions d = 2, 3. First, we establish the global weak solutions with large initial value and periodic boundary conditions. Then we show the semiclassical limit by delicate interpolation estimates and compactness argument.

  4. Toward simulating complex systems with quantum effects

    NASA Astrophysics Data System (ADS)

    Kenion-Hanrath, Rachel Lynn

    Quantum effects like tunneling, coherence, and zero point energy often play a significant role in phenomena on the scales of atoms and molecules. However, the exact quantum treatment of a system scales exponentially with dimensionality, making it impractical for characterizing reaction rates and mechanisms in complex systems. An ongoing effort in the field of theoretical chemistry and physics is extending scalable, classical trajectory-based simulation methods capable of capturing quantum effects to describe dynamic processes in many-body systems; in the work presented here we explore two such techniques. First, we detail an explicit electron, path integral (PI)-based simulation protocol for predicting the rate of electron transfer in condensed-phase transition metal complex systems. Using a PI representation of the transferring electron and a classical representation of the transition metal complex and solvent atoms, we compute the outer sphere free energy barrier and dynamical recrossing factor of the electron transfer rate while accounting for quantum tunneling and zero point energy effects. We are able to achieve this employing only a single set of force field parameters to describe the system rather than parameterizing along the reaction coordinate. Following our success in describing a simple model system, we discuss our next steps in extending our protocol to technologically relevant materials systems. The latter half focuses on the Mixed Quantum-Classical Initial Value Representation (MQC-IVR) of real-time correlation functions, a semiclassical method which has demonstrated its ability to "tune'' between quantum- and classical-limit correlation functions while maintaining dynamic consistency. Specifically, this is achieved through a parameter that determines the quantumness of individual degrees of freedom. Here, we derive a semiclassical correction term for the MQC-IVR to systematically characterize the error introduced by different choices of simulation parameters, and demonstrate the ability of this approach to optimize MQC-IVR simulations.

  5. Simplified Formulae System for Resonant Inverse Compton Scattering of a Fast Electron in an Intense Magnetic Field

    NASA Technical Reports Server (NTRS)

    You, J. H.; Chen, W. P.; Zhang, S. N.; Chen, L.; Liu, D.; Chou, C. K.

    2003-01-01

    We present simple analytical formulae for the emission spectrum and total power of a special kind of resonant inverse Compton scattering (RICS) of a relativistic electron in an intense magnetic field. In contrast with the available formulae system, we obtain a markedly simplified one based on the semiclassical quantum theory, which is more understandable for people who are unfamiliar with quantum electrodynamics. We show that the RICS process, under an appropriate 'accommodation condition' derived in this paper, is predominantly much more efficient than the coexistent ordinary inverse Compton scattering, and produces highly beamed high-frequency radiation with moderately good monochromaticity. Our formulae are simple to use - thus offering a lucid physical intuition for the theory - and may find wide applications in hard X-ray and gamma-ray astrophysics.

  6. Quantized mode of a leaky cavity

    NASA Astrophysics Data System (ADS)

    Dutra, S. M.; Nienhuis, G.

    2000-12-01

    We use Thomson's classical concept of mode of a leaky cavity to develop a quantum theory of cavity damping. This theory generalizes the conventional system-reservoir theory of high-Q cavity damping to arbitrary Q. The small system now consists of damped oscillators corresponding to the natural modes of the leaky cavity rather than undamped oscillators associated with the normal modes of a fictitious perfect cavity. The formalism unifies semiclassical Fox-Li modes and the normal modes traditionally used for quantization. It also lays the foundations for a full quantum description of excess noise. The connection with Siegman's semiclassical work is straightforward. In a wider context, this theory constitutes a radical departure from present models of dissipation in quantum mechanics: unlike conventional models, system and reservoir operators no longer commute with each other. This noncommutability is an unavoidable consequence of having to use natural cavity modes rather than normal modes of a fictitious perfect cavity.

  7. Binding energies and modelling of nuclei in semiclassical simulations

    NASA Astrophysics Data System (ADS)

    Pérez-García, M. Ángeles; Tsushima, K.; Valcarce, A.

    2008-03-01

    We study the binding energies of spin isospin saturated nuclei with nucleon number 8⩽A⩽100 in semiclassical Monte Carlo many-body simulations. The model Hamiltonian consists of (i) nucleon kinetic energy, (ii) a nucleon nucleon interaction potential, and (iii) an effective Pauli potential which depends on density. The basic ingredients of the nucleon nucleon potential are a short-range repulsion, and a medium-range attraction. Our results demonstrate that one can always expect to obtain the empirical binding energies for a set of nuclei by introducing a proper density dependent Pauli potential in terms of a single variable, the nucleon number, A. The present work shows that in the suggested procedure there is a delicate counterbalance of kinetic and potential energetic contributions allowing a good reproduction of the experimental nuclear binding energies. This type of calculations may be of interest in further reproduction of other properties of nuclei such as radii and also exotic nuclei.

  8. An application of the Maslov complex germ method to the one-dimensional nonlocal Fisher-KPP equation

    NASA Astrophysics Data System (ADS)

    Shapovalov, A. V.; Trifonov, A. Yu.

    A semiclassical approximation approach based on the Maslov complex germ method is considered in detail for the one-dimensional nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov (Fisher-KPP) equation under the supposition of weak diffusion. In terms of the semiclassical formalism developed, the original nonlinear equation is reduced to an associated linear partial differential equation and some algebraic equations for the coefficients of the linear equation with a given accuracy of the asymptotic parameter. The solutions of the nonlinear equation are constructed from the solutions of both the linear equation and the algebraic equations. The solutions of the linear problem are found with the use of symmetry operators. A countable family of the leading terms of the semiclassical asymptotics is constructed in explicit form. The semiclassical asymptotics are valid by construction in a finite time interval. We construct asymptotics which are different from the semiclassical ones and can describe evolution of the solutions of the Fisher-KPP equation at large times. In the example considered, an initial unimodal distribution becomes multimodal, which can be treated as an example of a space structure.

  9. Error of semiclassical eigenvalues in the semiclassical limit - an asymptotic analysis of the Sinai billiard

    NASA Astrophysics Data System (ADS)

    Dahlqvist, Per

    1999-10-01

    We estimate the error in the semiclassical trace formula for the Sinai billiard under the assumption that the largest source of error is due to penumbra diffraction: namely, diffraction effects for trajectories passing within a distance Ricons/Journals/Common/cdot" ALT="cdot" ALIGN="TOP"/>O((kR)-2/3) to the disc and trajectories being scattered in very forward directions. Here k is the momentum and R the radius of the scatterer. The semiclassical error is estimated by perturbing the Berry-Keating formula. The analysis necessitates an asymptotic analysis of very long periodic orbits. This is obtained within an approximation originally due to Baladi, Eckmann and Ruelle. We find that the average error, for sufficiently large values of kR, will exceed the mean level spacing.

  10. Semiclassical relation between open trajectories and periodic orbits for the Wigner time delay.

    PubMed

    Kuipers, Jack; Sieber, Martin

    2008-04-01

    The Wigner time delay of a classically chaotic quantum system can be expressed semiclassically either in terms of pairs of scattering trajectories that enter and leave the system or in terms of the periodic orbits trapped inside the system. We show how these two pictures are related on the semiclassical level. We start from the semiclassical formula with the scattering trajectories and derive from it all terms in the periodic orbit formula for the time delay. The main ingredient in this calculation are correlations between scattering trajectories which are due to trajectories that approach the trapped periodic orbits closely. The equivalence between the two pictures is also demonstrated by considering correlation functions of the time delay. A corresponding calculation for the conductance gives no periodic orbit contributions in leading order.

  11. Semiclassical states on Lie algebras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsobanjan, Artur, E-mail: artur.tsobanjan@gmail.com

    2015-03-15

    The effective technique for analyzing representation-independent features of quantum systems based on the semiclassical approximation (developed elsewhere) has been successfully used in the context of the canonical (Weyl) algebra of the basic quantum observables. Here, we perform the important step of extending this effective technique to the quantization of a more general class of finite-dimensional Lie algebras. The case of a Lie algebra with a single central element (the Casimir element) is treated in detail by considering semiclassical states on the corresponding universal enveloping algebra. Restriction to an irreducible representation is performed by “effectively” fixing the Casimir condition, following themore » methods previously used for constrained quantum systems. We explicitly determine the conditions under which this restriction can be consistently performed alongside the semiclassical truncation.« less

  12. Vibration-translation energy transfer in anharmonic diatomic molecules. 1: A critical evaluation of the semiclassical approximation

    NASA Technical Reports Server (NTRS)

    Mckenzie, R. L.

    1974-01-01

    The semiclassical approximation is applied to anharmonic diatomic oscillators in excited initial states. Multistate numerical solutions giving the vibrational transition probabilities for collinear collisions with an inert atom are compared with equivalent, exact quantum-mechanical calculations. Several symmetrization methods are shown to correlate accurately the predictions of both theories for all initial states, transitions, and molecular types tested, but only if coupling of the oscillator motion and the classical trajectory of the incident particle is considered. In anharmonic heteronuclear molecules, the customary semiclassical method of computing the classical trajectory independently leads to transition probabilities with anomalous low-energy resonances. Proper accounting of the effects of oscillator compression and recoil on the incident particle trajectory removes the anomalies and restores the applicability of the semiclassical approximation.

  13. Semiclassical stochastic mechanics for the Coulomb potential with applications to modelling dark matter

    NASA Astrophysics Data System (ADS)

    Neate, Andrew; Truman, Aubrey

    2016-05-01

    Little is known about dark matter particles save that their most important interactions with ordinary matter are gravitational and that, if they exist, they are stable, slow moving and relatively massive. Based on these assumptions, a semiclassical approximation to the Schrödinger equation under the action of a Coulomb potential should be relevant for modelling their behaviour. We investigate the semiclassical limit of the Schrödinger equation for a particle of mass M under a Coulomb potential in the context of Nelson's stochastic mechanics. This is done using a Freidlin-Wentzell asymptotic series expansion in the parameter ɛ = √{ ħ / M } for the Nelson diffusion. It is shown that for wave functions ψ ˜ exp((R + iS)/ɛ2) where R and S are real valued, the ɛ = 0 behaviour is governed by a constrained Hamiltonian system with Hamiltonian Hr and constraint Hi = 0 where the superscripts r and i denote the real and imaginary parts of the Bohr correspondence limit of the quantum mechanical Hamiltonian, independent of Nelson's ideas. Nelson's stochastic mechanics is restored in dealing with the nodal surface singularities and by computing (correct to first order in ɛ) the relevant diffusion process in terms of Jacobi fields thereby revealing Kepler's laws in a new light. The key here is that the constrained Hamiltonian system has just two solutions corresponding to the forward and backward drifts in Nelson's stochastic mechanics. We discuss the application of this theory to modelling dark matter particles under the influence of a large gravitating point mass.

  14. Symplectic semiclassical wave packet dynamics II: non-Gaussian states

    NASA Astrophysics Data System (ADS)

    Ohsawa, Tomoki

    2018-05-01

    We generalize our earlier work on the symplectic/Hamiltonian formulation of the dynamics of the Gaussian wave packet to non-Gaussian semiclassical wave packets. We find the symplectic forms and asymptotic expansions of the Hamiltonians associated with these semiclassical wave packets, and obtain Hamiltonian systems governing their dynamics. Numerical experiments demonstrate that the dynamics give a very good approximation to the short-time dynamics of the expectation values computed by a method based on Egorov’s theorem or the initial value representation.

  15. Tunable axial gauge fields in engineered Weyl semimetals: semiclassical analysis and optical lattice implementations

    NASA Astrophysics Data System (ADS)

    Roy, Sthitadhi; Kolodrubetz, Michael; Goldman, Nathan; Grushin, Adolfo G.

    2018-04-01

    In this work, we describe a toolbox to realize and probe synthetic axial gauge fields in engineered Weyl semimetals. These synthetic electromagnetic fields, which are sensitive to the chirality associated with Weyl nodes, emerge due to spatially and temporally dependent shifts of the corresponding Weyl momenta. First, we introduce two realistic models, inspired by recent cold-atom developments, which are particularly suitable for the exploration of these synthetic axial gauge fields. Second, we describe how to realize and measure the effects of such axial fields through center-of-mass observables, based on semiclassical equations of motion and exact numerical simulations. In particular, we suggest realistic protocols to reveal an axial Hall response due to the axial electric field \

  16. Communication: importance sampling including path correlation in semiclassical initial value representation calculations for time correlation functions.

    PubMed

    Pan, Feng; Tao, Guohua

    2013-03-07

    Full semiclassical (SC) initial value representation (IVR) for time correlation functions involves a double phase space average over a set of two phase points, each of which evolves along a classical path. Conventionally, the two initial phase points are sampled independently for all degrees of freedom (DOF) in the Monte Carlo procedure. Here, we present an efficient importance sampling scheme by including the path correlation between the two initial phase points for the bath DOF, which greatly improves the performance of the SC-IVR calculations for large molecular systems. Satisfactory convergence in the study of quantum coherence in vibrational relaxation has been achieved for a benchmark system-bath model with up to 21 DOF.

  17. Time-dependent importance sampling in semiclassical initial value representation calculations for time correlation functions.

    PubMed

    Tao, Guohua; Miller, William H

    2011-07-14

    An efficient time-dependent importance sampling method is developed for the Monte Carlo calculation of time correlation functions via the initial value representation (IVR) of semiclassical (SC) theory. A prefactor-free time-dependent sampling function weights the importance of a trajectory based on the magnitude of its contribution to the time correlation function, and global trial moves are used to facilitate the efficient sampling the phase space of initial conditions. The method can be generally applied to sampling rare events efficiently while avoiding being trapped in a local region of the phase space. Results presented in the paper for two system-bath models demonstrate the efficiency of this new importance sampling method for full SC-IVR calculations.

  18. Extended generalized geometry and a DBI-type effective action for branes ending on branes

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav; Schupp, Peter; Vysoký, Jan

    2014-08-01

    Starting from the Nambu-Goto bosonic membrane action, we develop a geometric description suitable for p-brane backgrounds. With tools of generalized geometry we derive the pertinent generalization of the string open-closed relations to the p-brane case. Nambu-Poisson structures are used in this context to generalize the concept of semi-classical noncommutativity of D-branes governed by a Poisson tensor. We find a natural description of the correspondence of recently proposed commutative and noncommutative versions of an effective action for p-branes ending on a p '-brane. We calculate the power series expansion of the action in background independent gauge. Leading terms in the double scaling limit are given by a generalization of a (semi-classical) matrix model.

  19. Generalized Gibbs distribution and energy localization in the semiclassical FPU problem

    NASA Astrophysics Data System (ADS)

    Hipolito, Rafael; Danshita, Ippei; Oganesyan, Vadim; Polkovnikov, Anatoli

    2011-03-01

    We investigate dynamics of the weakly interacting quantum mechanical Fermi-Pasta-Ulam (qFPU) model in the semiclassical limit below the stochasticity threshold. Within this limit we find that initial quantum fluctuations lead to the damping of FPU oscillations and relaxation of the system to a slowly evolving steady state with energy localized within few momentum modes. We find that in large systems this state can be described by the generalized Gibbs ensemble (GGE), with the Lagrange multipliers being very weak functions of time. This ensembles gives accurate description of the instantaneous correlation functions, both quadratic and quartic. Based on these results we conjecture that GGE generically appears as a prethermalized state in weakly non-integrable systems.

  20. Quantum and semiclassical physics behind ultrafast optical nonlinearity in the midinfrared: the role of ionization dynamics within the field half cycle.

    PubMed

    Serebryannikov, E E; Zheltikov, A M

    2014-07-25

    Ultrafast ionization dynamics within the field half cycle is shown to be the key physical factor that controls the properties of optical nonlinearity as a function of the carrier wavelength and intensity of a driving laser field. The Schrödinger-equation analysis of a generic hydrogen quantum system reveals universal tendencies in the wavelength dependence of optical nonlinearity, shedding light on unusual properties of optical nonlinearities in the midinfrared. For high-intensity low-frequency fields, free-state electrons are shown to dominate over bound electrons in the overall nonlinear response of a quantum system. In this regime, semiclassical models are shown to offer useful insights into the physics behind optical nonlinearity.

  1. Spurious Excitations in Semiclassical Scattering Theory.

    ERIC Educational Resources Information Center

    Gross, D. H. E.; And Others

    1980-01-01

    Shows how through proper handling of the nonuniform motion of semiclassical coordinates spurious excitation terms are eliminated. An application to the problem of nuclear Coulomb excitation is presented as an example. (HM)

  2. Renner-Teller quantum dynamics of NH(a(1)Delta) + H reactions on the NH(2) A(2)A(1) and X(2)B(1) coupled surfaces.

    PubMed

    Defazio, P; Gamallo, P; González, M; Petrongolo, C

    2010-09-16

    Four reactions NH(a1Delta) + H′(2S) are investigated by the quantum mechanical real wavepacket method, taking into account nonadiabatic Renner-Teller (RT) and rovibronic Coriolis couplings between the involved states. We consider depletion (d) to N(2D) + H2(X1Sigmag+), exchange (e) to NH′(a1Delta) + H(2S), quenching (q) to NH(X3Sigma-) + H′(2S), and exchange-quenching (eq) to NH′(X3Sigma-) + H(2S). We extend our RT theory to a general AB + C collision using a geometry-dependent but very simple and empirical RT matrix element. Reaction probabilities, cross sections, and rate constants are presented, and RT results are compared with Born-Oppenheimer (BO), experimental, and semiclassical data. The nonadiabatic couplings open two new channels, (q) and (eq), and increase the (d) and (e) reactivity with respect to the BO one, when NH(a1Delta) is rotationally excited. In this case, the quantum cross sections are larger than the semiclassical ones at low collision energies. The calculated rate constants at 300 K are k(d) = 3.06, k(e) = 3.32, k(q) = 1.44, and k(eq) = 1.70 in 10(-11) cm3 s(-1) compared with the measured values k(d) = (3.2 =/- 1.7), k(q + eq) = (1.7 +/- 0.3), and k(total) = (4.8 +/- 1.7). The theoretical depletion rate is thus in good agreement with the experimental value, but the quenching and total rates are overestimated, because the present RT couplings are too large. This discrepancy is probably due to our simple and empirical RT matrix element.

  3. Possible Mechanism for the Generation of a Fundamental Unit of Charge (long version)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lestone, John Paul

    2017-06-16

    Various methods for calculating particle-emission rates from hot systems are reviewed. Semi-classically derived photon-emission rates often contain the term exp(-ε/T) which needs to be replaced with the corresponding Planckian factor of [exp(-ε/T)-1] -1 to obtain the correct rate. This replacement is associated with the existence of stimulated emission. Simple arguments are used to demonstrate that black holes can also undergo stimulated emission, as previously determined by others. We extend these concepts to fundamental particles, and assume they can be stimulated to emit virtual photons with a cross section of πλ 2, in the case of an isolated particle when themore » incident virtual-photon energy is < 2πmc 2. Stimulated-virtual photons can be exchanged with other particles generating a force. With the inclusion of near-field effects, the model choices presented give a calculated fundamental unit of charge of 1.6022x10 -19 C. If these choices are corroborated by detailed calculations then an understanding of the numerical value of the fine structure constant may emerge. The present study suggests charge might be an emergent property generated by a simple interaction mechanism between point-like particles and the electromagnetic vacuum, similar to the process that generates the Lamb shift.« less

  4. Gyrotropic Magnetic Effect and the Magnetic Moment on the Fermi Surface.

    PubMed

    Zhong, Shudan; Moore, Joel E; Souza, Ivo

    2016-02-19

    The current density j^{B} induced in a clean metal by a slowly-varying magnetic field B is formulated as the low-frequency limit of natural optical activity, or natural gyrotropy. Working with a multiband Pauli Hamiltonian, we obtain from the Kubo formula a simple expression for α_{ij}^{GME}=j_{i}^{B}/B_{j} in terms of the intrinsic magnetic moment (orbital plus spin) of the Bloch electrons on the Fermi surface. An alternate semiclassical derivation provides an intuitive picture of the effect, and takes into account the influence of scattering processes in dirty metals. This "gyrotropic magnetic effect" is fundamentally different from the chiral magnetic effect driven by the chiral anomaly and governed by the Berry curvature on the Fermi surface, and the two effects are compared for a minimal model of a Weyl semimetal. Like the Berry curvature, the intrinsic magnetic moment should be regarded as a basic ingredient in the Fermi-liquid description of transport in broken-symmetry metals.

  5. Gyrotropic Magnetic Effect and the Magnetic Moment on the Fermi Surface

    NASA Astrophysics Data System (ADS)

    Zhong, Shudan; Moore, Joel E.; Souza, Ivo

    2016-02-01

    The current density jB induced in a clean metal by a slowly-varying magnetic field B is formulated as the low-frequency limit of natural optical activity, or natural gyrotropy. Working with a multiband Pauli Hamiltonian, we obtain from the Kubo formula a simple expression for αij GME=jiB/Bj in terms of the intrinsic magnetic moment (orbital plus spin) of the Bloch electrons on the Fermi surface. An alternate semiclassical derivation provides an intuitive picture of the effect, and takes into account the influence of scattering processes in dirty metals. This "gyrotropic magnetic effect" is fundamentally different from the chiral magnetic effect driven by the chiral anomaly and governed by the Berry curvature on the Fermi surface, and the two effects are compared for a minimal model of a Weyl semimetal. Like the Berry curvature, the intrinsic magnetic moment should be regarded as a basic ingredient in the Fermi-liquid description of transport in broken-symmetry metals.

  6. On the Charge transport regime of crystalline organic semiconductors: diffusion limited by thermal off-diagonal electronic disorder

    NASA Astrophysics Data System (ADS)

    Troisi, Alessandro

    2006-03-01

    In organic crystalline semiconductor molecular components are held together by very weak interactions and the transfer integrals between neighboring molecular orbitals are extremely sensitive to small nuclear displacements. We used a mixed quantum chemical and molecular dynamic methodology to assess the effect of thermal structural fluctuations on the modulation of the transfer integrals between close molecules. We have found that the fluctuations of the transfer integrals are of the same order of magnitude of their average value for pentacene and anthracene. This condition makes the band description inadequate because a dynamic localization takes place and the translational symmetry is completely broken for the electronic states. We also present a simple one-dimensional semiclassical model that incorporates the effects of dynamical localization and allows the numerical computation of the charge mobility for ordered organic semiconductors. These results explain several contrasting experimental observations pointing sometimes to a delocalized ``band-like'' transport and sometimes to the existence of strongly localized charge carriers.

  7. Semiclassical Virasoro blocks from AdS 3 gravity

    DOE PAGES

    Hijano, Eliot; Kraus, Per; Perlmutter, Eric; ...

    2015-12-14

    We present a unified framework for the holographic computation of Virasoro conformal blocks at large central charge. In particular, we provide bulk constructions that correctly reproduce all semiclassical Virasoro blocks that are known explicitly from conformal field theory computations. The results revolve around the use of geodesic Witten diagrams, recently introduced in [1], evaluated in locally AdS 3 geometries generated by backreaction of heavy operators. We also provide an alternative computation of the heavy-light semiclassical block — in which two external operators become parametrically heavy — as a certain scattering process involving higher spin gauge fields in AdS 3; thismore » approach highlights the chiral nature of Virasoro blocks. Finally, these techniques may be systematically extended to compute corrections to these blocks and to interpolate amongst the different semiclassical regimes.« less

  8. Semiclassical evaluation of quantum fidelity

    NASA Astrophysics Data System (ADS)

    Vanicek, Jiri

    2004-03-01

    We present a numerically feasible semiclassical method to evaluate quantum fidelity (Loschmidt echo) in a classically chaotic system. It was thought that such evaluation would be intractable, but instead we show that a uniform semiclassical expression not only is tractable but it gives remarkably accurate numerical results for the standard map in both the Fermi-golden-rule and Lyapunov regimes. Because it allows a Monte-Carlo evaluation, this uniform expression is accurate at times where there are 10^70 semiclassical contributions. Remarkably, the method also explicitly contains the ``building blocks'' of analytical theories of recent literature, and thus permits a direct test of approximations made by other authors in these regimes, rather than an a posteriori comparison with numerical results. We explain in more detail the extended validity of the classical perturbation approximation and thus provide a ``defense" of the linear response theory from the famous Van Kampen objection. We point out the potential use of our uniform expression in other areas because it gives a most direct link between the quantum Feynman propagator based on the path integral and the semiclassical Van Vleck propagator based on the sum over classical trajectories. Finally, we test the applicability of our method in integrable and mixed systems.

  9. Kinetic isotope effects and how to describe them

    PubMed Central

    Karandashev, Konstantin; Xu, Zhen-Hao; Meuwly, Markus; Vaníček, Jiří; Richardson, Jeremy O.

    2017-01-01

    We review several methods for computing kinetic isotope effects in chemical reactions including semiclassical and quantum instanton theory. These methods describe both the quantization of vibrational modes as well as tunneling and are applied to the ⋅H + H2 and ⋅H + CH4 reactions. The absolute rate constants computed with the semiclassical instanton method both using on-the-fly electronic structure calculations and fitted potential-energy surfaces are also compared directly with exact quantum dynamics results. The error inherent in the instanton approximation is found to be relatively small and similar in magnitude to that introduced by using fitted surfaces. The kinetic isotope effect computed by the quantum instanton is even more accurate, and although it is computationally more expensive, the efficiency can be improved by path-integral acceleration techniques. We also test a simple approach for designing potential-energy surfaces for the example of proton transfer in malonaldehyde. The tunneling splittings are computed, and although they are found to deviate from experimental results, the ratio of the splitting to that of an isotopically substituted form is in much better agreement. We discuss the strengths and limitations of the potential-energy surface and based on our findings suggest ways in which it can be improved. PMID:29282447

  10. Line mixing effects in isotropic Raman spectra of pure N{sub 2}: A classical trajectory study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, Sergey V., E-mail: serg.vict.ivanov@gmail.com; Boulet, Christian; Buzykin, Oleg G.

    2014-11-14

    Line mixing effects in the Q branch of pure N{sub 2} isotropic Raman scattering are studied at room temperature using a classical trajectory method. It is the first study using an extended modified version of Gordon's classical theory of impact broadening and shift of rovibrational lines. The whole relaxation matrix is calculated using an exact 3D classical trajectory method for binary collisions of rigid N{sub 2} molecules employing the most up-to-date intermolecular potential energy surface (PES). A simple symmetrizing procedure is employed to improve off-diagonal cross-sections to make them obeying exactly the principle of detailed balance. The adequacy of themore » results is confirmed by the sum rule. The comparison is made with available experimental data as well as with benchmark fully quantum close coupling [F. Thibault, C. Boulet, and Q. Ma, J. Chem. Phys. 140, 044303 (2014)] and refined semi-classical Robert-Bonamy [C. Boulet, Q. Ma, and F. Thibault, J. Chem. Phys. 140, 084310 (2014)] results. All calculations (classical, quantum, and semi-classical) were made using the same PES. The agreement between classical and quantum relaxation matrices is excellent, opening the way to the analysis of more complex molecular systems.« less

  11. Reaching quantum limits for phase-shift detection with semiclassical states

    NASA Astrophysics Data System (ADS)

    Luis, Alfredo

    2004-01-01

    We present two measuring strategies reaching the Heisenberg limit for phase-shift measurements using semiclassical coherent states exclusively. We examine their performance by assuming practical experimental conditions such as losses and nonideal detectors.

  12. Exact semiclassical expansions for one-dimensional quantum oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delabaere, E.; Dillinger, H.; Pham, F.

    1997-12-01

    A set of rules is given for dealing with WKB expansions in the one-dimensional analytic case, whereby such expansions are not considered as approximations but as exact encodings of wave functions, thus allowing for analytic continuation with respect to whichever parameters the potential function depends on, with an exact control of small exponential effects. These rules, which include also the case when there are double turning points, are illustrated on various examples, and applied to the study of bound state or resonance spectra. In the case of simple oscillators, it is thus shown that the Rayleigh{endash}Schr{umlt o}dinger series is Borelmore » resummable, yielding the exact energy levels. In the case of the symmetrical anharmonic oscillator, one gets a simple and rigorous justification of the Zinn-Justin quantization condition, and of its solution in terms of {open_quotes}multi-instanton expansions.{close_quotes} {copyright} {ital 1997 American Institute of Physics.}« less

  13. The extreme wings of atomic emission and absorption lines. [in low pressure gases

    NASA Technical Reports Server (NTRS)

    Dalgarno, A.; Sando, K. M.

    1973-01-01

    Consideration of the extreme wings of atomic and molecular emission and absorption lines in low pressure gases. Classical and semiclassical results are compared with accurate quantal calculations of the self-broadening of Lyman-alpha in the hydrogen absorption spectrum that arises from quasimolecular transition. The results of classical, quantal, and semiclassical calculations of the absorption coefficient in the red wing are shown for temperatures of 500, 200, and 100 K. The semiclassical and quantal spectra agree well in shape at 500 K. Various other findings are discused.

  14. On the treatment of ℓ-changing proton-hydrogen Rydberg atom collisions

    NASA Astrophysics Data System (ADS)

    Vrinceanu, D.; Onofrio, R.; Sadeghpour, H. R.

    2017-11-01

    Energy-conserving, angular momentum changing collisions between protons and highly excited Rydberg hydrogen atoms are important for precise understanding of atomic recombination at the photon decoupling era and the elemental abundance after primordial nucleosynthesis. Early approaches to ℓ-changing collisions used perturbation theory only for dipole-allowed (Δℓ = ±1) transitions. An exact non-perturbative quantum mechanical treatment is possible, but it comes at a computational cost for highly excited Rydberg states. In this paper, we show how to obtain a semiclassical limit that is accurate and simple, and develop further physical insights afforded by the non-perturbative quantum mechanical treatment.

  15. An Experimental and Theoretical Study of Nitrogen-Broadened Acetylene Lines

    NASA Technical Reports Server (NTRS)

    Thibault, Franck; Martinez, Raul Z.; Bermejo, Dionisio; Ivanov, Sergey V.; Buzykin, Oleg G.; Ma, Qiancheng

    2014-01-01

    We present experimental nitrogen-broadening coefficients derived from Voigt profiles of isotropic Raman Q-lines measured in the 2 band of acetylene (C2H2) at 150 K and 298 K, and compare them to theoretical values obtained through calculations that were carried out specifically for this work. Namely, full classical calculations based on Gordon's approach, two kinds of semi-classical calculations based on Robert Bonamy method as well as full quantum dynamical calculations were performed. All the computations employed exactly the same ab initio potential energy surface for the C2H2N2 system which is, to our knowledge, the most realistic, accurate and up-to-date one. The resulting calculated collisional half-widths are in good agreement with the experimental ones only for the full classical and quantum dynamical methods. In addition, we have performed similar calculations for IR absorption lines and compared the results to bibliographic values. Results obtained with the full classical method are again in good agreement with the available room temperature experimental data. The quantum dynamical close-coupling calculations are too time consuming to provide a complete set of values and therefore have been performed only for the R(0) line of C2H2. The broadening coefficient obtained for this line at 173 K and 297 K also compares quite well with the available experimental data. The traditional Robert Bonamy semi-classical formalism, however, strongly overestimates the values of half-width for both Qand R-lines. The refined semi-classical Robert Bonamy method, first proposed for the calculations of pressure broadening coefficients of isotropic Raman lines, is also used for IR lines. By using this improved model that takes into account effects from line coupling, the calculated semi-classical widths are significantly reduced and closer to the measured ones.

  16. Is the Filinov integral conditioning technique useful in semiclassical initial value representation methods?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spanner, Michael; Batista, Victor S.; Brumer, Paul

    2005-02-22

    The utility of the Filinov integral conditioning technique, as implemented in semiclassical initial value representation (SC-IVR) methods, is analyzed for a number of regular and chaotic systems. For nonchaotic systems of low dimensionality, the Filinov technique is found to be quite ineffective at accelerating convergence of semiclassical calculations since, contrary to the conventional wisdom, the semiclassical integrands usually do not exhibit significant phase oscillations in regions of large integrand amplitude. In the case of chaotic dynamics, it is found that the regular component is accurately represented by the SC-IVR, even when using the Filinov integral conditioning technique, but that quantummore » manifestations of chaotic behavior was easily overdamped by the filtering technique. Finally, it is shown that the level of approximation introduced by the Filinov filter is, in general, comparable to the simpler ad hoc truncation procedure introduced by Kay [J. Chem. Phys. 101, 2250 (1994)].« less

  17. Wavepacket propagation using time-sliced semiclassical initial value methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, Brett B.; Reimers, Jeffrey R.; School of Chemistry, University of Sydney, Sydney NSW 2006

    2004-12-22

    A new semiclassical initial value representation (SC-IVR) propagator and a SC-IVR propagator originally introduced by Kay [J. Chem. Phys. 100, 4432 (1994)], are investigated for use in the split-operator method for solving the time-dependent Schroedinger equation. It is shown that the SC-IVR propagators can be derived from a procedure involving modified Filinov filtering of the Van Vleck expression for the semiclassical propagator. The two SC-IVR propagators have been selected for investigation because they avoid the need to perform a coherent state basis set expansion that is necessary in other time-slicing propagation schemes. An efficient scheme for solving the propagators ismore » introduced and can be considered to be a semiclassical form of the effective propagators of Makri [Chem. Phys. Lett. 159, 489 (1989)]. Results from applications to a one-dimensional, two-dimensional, and three-dimensional Hamiltonian for a double-well potential are presented.« less

  18. Why firewalls need not exist

    DOE PAGES

    Nomura, Yasunori; Salzetta, Nico

    2016-08-04

    The firewall paradox for black holes is often viewed as indicating a conflict between unitarity and the equivalence principle. We elucidate how the paradox manifests as a limitation of semiclassical theory, rather than presents a conflict between fundamental principles. Two principal features of the fundamental and semiclassical theories address two versions of the paradox: the entanglement and typicality arguments. First, the physical Hilbert space describing excitations on a fixed black hole background in the semiclassical theory is exponentially smaller than the number of physical states in the fundamental theory of quantum gravity. Second, in addition to the Hilbert space formore » physical excitations, the semiclassical theory possesses an unphysically large Fock space built by creation and annihilation operators on the fixed black hole background. Understanding these features not only eliminates the necessity of firewalls but also leads to a new picture of Hawking emission contrasting pair creation at the horizon.« less

  19. Cross Section Calculations and Comparison to Experiment

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Ford, W. P.; Dewet, W. C.; Werneth, C. M.

    2016-01-01

    Understanding fragmentation of galactic cosmic ray nuclei in collisions within spacecraft structures and human tissues is an important element in assessing biological risk to crew members from this radiation source. Over the past four decades, various models have been developed to describe these important processes. Some models invoke semi-classical concepts based upon geometric descriptions of collisions between spherical nuclei.

  20. Semiclassical electron transport at the edge of a two-dimensional topological insulator: Interplay of protected and unprotected modes

    NASA Astrophysics Data System (ADS)

    Khalaf, E.; Skvortsov, M. A.; Ostrovsky, P. M.

    2016-03-01

    We study electron transport at the edge of a generic disordered two-dimensional topological insulator, where some channels are topologically protected from backscattering. Assuming the total number of channels is large, we consider the edge as a quasi-one-dimensional quantum wire and describe it in terms of a nonlinear sigma model with a topological term. Neglecting localization effects, we calculate the average distribution function of transmission probabilities as a function of the sample length. We mainly focus on the two experimentally relevant cases: a junction between two quantum Hall (QH) states with different filling factors (unitary class) and a relatively thick quantum well exhibiting quantum spin Hall (QSH) effect (symplectic class). In a QH sample, the presence of topologically protected modes leads to a strong suppression of diffusion in the other channels already at scales much shorter than the localization length. On the semiclassical level, this is accompanied by the formation of a gap in the spectrum of transmission probabilities close to unit transmission, thereby suppressing shot noise and conductance fluctuations. In the case of a QSH system, there is at most one topologically protected edge channel leading to weaker transport effects. In order to describe `topological' suppression of nearly perfect transparencies, we develop an exact mapping of the semiclassical limit of the one-dimensional sigma model onto a zero-dimensional sigma model of a different symmetry class, allowing us to identify the distribution of transmission probabilities with the average spectral density of a certain random-matrix ensemble. We extend our results to other symmetry classes with topologically protected edges in two dimensions.

  1. A quantum model of option pricing: When Black-Scholes meets Schrödinger and its semi-classical limit

    NASA Astrophysics Data System (ADS)

    Contreras, Mauricio; Pellicer, Rely; Villena, Marcelo; Ruiz, Aaron

    2010-12-01

    The Black-Scholes equation can be interpreted from the point of view of quantum mechanics, as the imaginary time Schrödinger equation of a free particle. When deviations of this state of equilibrium are considered, as a product of some market imperfection, such as: Transaction cost, asymmetric information issues, short-term volatility, extreme discontinuities, or serial correlations; the classical non-arbitrage assumption of the Black-Scholes model is violated, implying a non-risk-free portfolio. From Haven (2002) [1] we know that an arbitrage environment is a necessary condition to embedding the Black-Scholes option pricing model in a more general quantum physics setting. The aim of this paper is to propose a new Black-Scholes-Schrödinger model based on the endogenous arbitrage option pricing formulation introduced by Contreras et al. (2010) [2]. Hence, we derive a more general quantum model of option pricing, that incorporates arbitrage as an external time dependent force, which has an associated potential related to the random dynamic of the underlying asset price. This new resultant model can be interpreted as a Schrödinger equation in imaginary time for a particle of mass 1/σ2 with a wave function in an external field force generated by the arbitrage potential. As pointed out above, this new model can be seen as a more general formulation, where the perfect market equilibrium state postulated by the Black-Scholes model represent a particular case. Finally, since the Schrödinger equation is in place, we can apply semiclassical methods, of common use in theoretical physics, to find an approximate analytical solution of the Black-Scholes equation in the presence of market imperfections, as it is the case of an arbitrage bubble. Here, as a numerical illustration of the potential of this Schrödinger equation analogy, the semiclassical approximation is performed for different arbitrage bubble forms (step, linear and parabolic) and compare with the exact solution of our general quantum model of option pricing.

  2. Double-wells and double-layers in dusty Fermi-Dirac plasmas: Comparison with the semiclassical Thomas-Fermi counterpart

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbari-Moghanjoughi, M.

    Based on the quantum hydrodynamics (QHD) model, a new relationship between the electrostatic-potential and the electron-density in the ultradense plasma is derived. Propagation of arbitrary amplitude nonlinear ion waves is, then, investigated in a completely degenerate dense dusty electron-ion plasma, using this new energy relation for the relativistic electrons, in the ground of quantum hydrodynamics model and the results are compared to the case of semiclassical Thomas-Fermi dusty plasma. Based on the standard pseudopotential approach, it is remarked that the Fermi-Dirac plasma, in contrast to the Thomas-Fermi counterpart, accommodates a wide variety of nonlinear excitations such as positive/negative-potential ion solitarymore » and periodic waves, double-layers, and double-wells. It is also remarked that the relativistic degeneracy parameter which relates to the mass-density of plasma has significant effects on the allowed matching-speed range in Fermi-Dirac dusty plasmas.« less

  3. Unified semiclassical theory for the two-state system: an analytical solution for general nonadiabatic tunneling.

    PubMed

    Zhu, Chaoyuan; Lin, Sheng Hsien

    2006-07-28

    Unified semiclasical solution for general nonadiabatic tunneling between two adiabatic potential energy surfaces is established by employing unified semiclassical solution for pure nonadiabatic transition [C. Zhu, J. Chem. Phys. 105, 4159 (1996)] with the certain symmetry transformation. This symmetry comes from a detailed analysis of the reduced scattering matrix for Landau-Zener type of crossing as a special case of nonadiabatic transition and nonadiabatic tunneling. Traditional classification of crossing and noncrossing types of nonadiabatic transition can be quantitatively defined by the rotation angle of adiabatic-to-diabatic transformation, and this rotational angle enters the analytical solution for general nonadiabatic tunneling. The certain two-state exponential potential models are employed for numerical tests, and the calculations from the present general nonadiabatic tunneling formula are demonstrated in very good agreement with the results from exact quantum mechanical calculations. The present general nonadiabatic tunneling formula can be incorporated with various mixed quantum-classical methods for modeling electronically nonadiabatic processes in photochemistry.

  4. Reliable semiclassical computations in QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dine, Michael; Department of Physics, Stanford University Stanford, California 94305-4060; Festuccia, Guido

    We revisit the question of whether or not one can perform reliable semiclassical QCD computations at zero temperature. We study correlation functions with no perturbative contributions, and organize the problem by means of the operator product expansion, establishing a precise criterion for the validity of a semiclassical calculation. For N{sub f}>N, a systematic computation is possible; for N{sub f}

  5. Reply to ``Comment on `Quantum time-of-flight distribution for cold trapped atoms' ''

    NASA Astrophysics Data System (ADS)

    Ali, Md. Manirul; Home, Dipankar; Majumdar, A. S.; Pan, Alok K.

    2008-02-01

    In their comment Gomes [Phys. Rev. A 77, 026101 (2008)] have questioned the possibility of empirically testable differences existing between the semiclassical time of flight distribution for cold trapped atoms and a quantum distribution discussed by us recently [Ali , Phys. Rev. A 75, 042110 (2007).]. We argue that their criticism is based on a semiclassical treatment having restricted applicability for a particular trapping potential. Their claim does not preclude, in general, the possibility of differences between the semiclassical calculations and fully quantum results for the arrival time distribution of freely falling atoms.

  6. Semiclassical limit of the focusing NLS: Whitham equations and the Riemann-Hilbert Problem approach

    NASA Astrophysics Data System (ADS)

    Tovbis, Alexander; El, Gennady A.

    2016-10-01

    The main goal of this paper is to put together: a) the Whitham theory applicable to slowly modulated N-phase nonlinear wave solutions to the focusing nonlinear Schrödinger (fNLS) equation, and b) the Riemann-Hilbert Problem approach to particular solutions of the fNLS in the semiclassical (small dispersion) limit that develop slowly modulated N-phase nonlinear wave in the process of evolution. Both approaches have their own merits and limitations. Understanding of the interrelations between them could prove beneficial for a broad range of problems involving the semiclassical fNLS.

  7. Reply to 'Comment on 'Quantum time-of-flight distribution for cold trapped atoms''

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, Md. Manirul; Home, Dipankar; Pan, Alok K.

    2008-02-15

    In their comment Gomes et al. [Phys. Rev. A 77, 026101 (2008)] have questioned the possibility of empirically testable differences existing between the semiclassical time of flight distribution for cold trapped atoms and a quantum distribution discussed by us recently [Ali et al., Phys. Rev. A 75, 042110 (2007).]. We argue that their criticism is based on a semiclassical treatment having restricted applicability for a particular trapping potential. Their claim does not preclude, in general, the possibility of differences between the semiclassical calculations and fully quantum results for the arrival time distribution of freely falling atoms.

  8. Do semiclassical zero temperature black holes exist?

    PubMed

    Anderson, P R; Hiscock, W A; Taylor, B E

    2000-09-18

    The semiclassical Einstein equations are solved to first order in epsilon = Planck's over 2pi/M2 for the case of a Reissner-Nordström black hole perturbed by the vacuum stress energy of quantized free fields. Massless and massive fields of spin 0, 1/2, and 1 are considered. We show that in all physically realistic cases, macroscopic zero temperature black hole solutions do not exist. Any static zero temperature semiclassical black hole solutions must then be microscopic and isolated in the space of solutions; they do not join smoothly onto the classical extreme Reissner-Nordström solution as epsilon-->0.

  9. Semiclassical propagator of the Wigner function.

    PubMed

    Dittrich, Thomas; Viviescas, Carlos; Sandoval, Luis

    2006-02-24

    Propagation of the Wigner function is studied on two levels of semiclassical propagation: one based on the Van Vleck propagator, the other on phase-space path integration. Leading quantum corrections to the classical Liouville propagator take the form of a time-dependent quantum spot. Its oscillatory structure depends on whether the underlying classical flow is elliptic or hyperbolic. It can be interpreted as the result of interference of a pair of classical trajectories, indicating how quantum coherences are to be propagated semiclassically in phase space. The phase-space path-integral approach allows for a finer resolution of the quantum spot in terms of Airy functions.

  10. Universal functions of nuclear proximity potential for Skyrme nucleus-nucleus interaction in a semiclassical approach

    NASA Astrophysics Data System (ADS)

    Gupta, Raj K.; Singh, Dalip; Kumar, Raj; Greiner, Walter

    2009-07-01

    The universal function of the nuclear proximity potential is obtained for the Skyrme nucleus-nucleus interaction in the semiclassical extended Thomas-Fermi (ETF) approach. This is obtained as a sum of the spin-orbit-density-independent and spin-orbit-density-dependent parts of the Hamiltonian density, since the two terms behave differently, the spin-orbit-density-independent part mainly attractive and the spin-orbit-density-dependent part mainly repulsive. The semiclassical expansions of kinetic energy density and spin-orbit density are allowed up to second order, and the two-parameter Fermi density, with its parameters fitted to experiments, is used for the nuclear density. The universal functions or the resulting nuclear proximity potential reproduce the 'exact' Skyrme nucleus-nucleus interaction potential in the semiclassical approach, within less than ~1 MeV of difference, both at the maximum attraction and in the surface region. An application of the resulting interaction potential to fusion excitation functions shows clearly that the parameterized universal functions of nuclear proximity potential substitute completely the 'exact' potential in the Skyrme energy density formalism based on the semiclassical ETF method, including also the modifications of interaction barriers at sub-barrier energies in terms of modifying the constants of the universal functions.

  11. Semiclassical dynamics, Berry curvature, and spiral holonomy in optical quasicrystals

    NASA Astrophysics Data System (ADS)

    Spurrier, Stephen; Cooper, Nigel R.

    2018-04-01

    We describe the theory of the dynamics of atoms in two-dimensional quasicrystalline optical lattices. We focus on a regime of shallow lattice depths under which the applied force can cause Landau-Zener tunneling past a dense hierarchy of gaps in the quasiperiodic energy spectrum. We derive conditions on the external force that allow for a "semiadiabatic" regime in which semiclassical equations of motion can apply, leading to Bloch oscillations between the edges of a pseudo-Brillouin-zone. We verify this semiclassical theory by comparing to the results of an exact numerical solution. Interesting features appear in the semiclassical dynamics for the quasicrystal for a particle driven in a cyclic trajectory around the corner of the pseudo-Brillouin-zone: The particle fails to return to its initial state, providing a realization of a "spiral holonomy" in the dynamics. We show that there can appear anomalous velocity contributions, associated with nonzero Berry curvature. We relate these to the Berry phase associated with the spiral holonomy, and show how the Berry curvature can be accessed from the semiclassical dynamics. Finally, by identifying the pseudo-Brillouin-zone as a higher genus surface, we show that the Chern number classification for periodic systems can be extended to a quasicrystal, thereby determining a topological index for the system.

  12. Jacobi Shape Transitions Within the LSD Model and the Skyrme-Etf Approach

    NASA Astrophysics Data System (ADS)

    Bartel, Johann; Pomorski, Krzysztof

    The "Modified Funny-Hills parametrisation" is used together with the Lublin-Strasbourg Drop Model to evaluate the stability of rotating nuclei. The Jacobi transition into triaxial shapes is studied. By a comparison with selfconsistent semiclassical calculations in the framework of the Extended Thomas-Fermi method, the validity of the present approach is demonstrated and possible improvements are indicated.

  13. On the late-time behavior of Virasoro blocks and a classification of semiclassical saddles

    DOE PAGES

    Fitzpatrick, A. Liam; Kaplan, Jared

    2017-04-12

    Recent work has demonstrated that black hole thermodynamics and information loss/restoration in AdS 3/CFT 2 can be derived almost entirely from the behavior of the Virasoro conformal blocks at large central charge, with relatively little dependence on the precise details of the CFT spectrum or OPE coefficients. Here, we elaborate on the non-perturbative behavior of Virasoro blocks by classifying all ‘saddles’ that can contribute for arbitrary values of external and internal operator dimensions in the semiclassical large central charge limit. The leading saddles, which determine the naive semiclassical behavior of the Virasoro blocks, all decay exponentially at late times, andmore » at a rate that is independent of internal operator dimensions. Consequently, the semiclassical contribution of a finite number of high-energy states cannot resolve a well-known version of the information loss problem in AdS 3. Furthermore, we identify two infinite classes of sub-leading saddles, and one of these classes does not decay at late times.« less

  14. On the late-time behavior of Virasoro blocks and a classification of semiclassical saddles

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, A. Liam; Kaplan, Jared

    2017-04-01

    Recent work has demonstrated that black hole thermodynamics and information loss/restoration in AdS3/CFT2 can be derived almost entirely from the behavior of the Virasoro conformal blocks at large central charge, with relatively little dependence on the precise details of the CFT spectrum or OPE coefficients. Here, we elaborate on the non-perturbative behavior of Virasoro blocks by classifying all `saddles' that can contribute for arbitrary values of external and internal operator dimensions in the semiclassical large central charge limit. The leading saddles, which determine the naive semiclassical behavior of the Virasoro blocks, all decay exponentially at late times, and at a rate that is independent of internal operator dimensions. Consequently, the semiclassical contribution of a finite number of high-energy states cannot resolve a well-known version of the information loss problem in AdS3. However, we identify two infinite classes of sub-leading saddles, and one of these classes does not decay at late times.

  15. Frozen Gaussian approximation based domain decomposition methods for the linear Schrödinger equation beyond the semi-classical regime

    NASA Astrophysics Data System (ADS)

    Lorin, E.; Yang, X.; Antoine, X.

    2016-06-01

    The paper is devoted to develop efficient domain decomposition methods for the linear Schrödinger equation beyond the semiclassical regime, which does not carry a small enough rescaled Planck constant for asymptotic methods (e.g. geometric optics) to produce a good accuracy, but which is too computationally expensive if direct methods (e.g. finite difference) are applied. This belongs to the category of computing middle-frequency wave propagation, where neither asymptotic nor direct methods can be directly used with both efficiency and accuracy. Motivated by recent works of the authors on absorbing boundary conditions (Antoine et al. (2014) [13] and Yang and Zhang (2014) [43]), we introduce Semiclassical Schwarz Waveform Relaxation methods (SSWR), which are seamless integrations of semiclassical approximation to Schwarz Waveform Relaxation methods. Two versions are proposed respectively based on Herman-Kluk propagation and geometric optics, and we prove the convergence and provide numerical evidence of efficiency and accuracy of these methods.

  16. Secret loss of unitarity due to the classical background

    NASA Astrophysics Data System (ADS)

    Yang, I.-Sheng

    2017-07-01

    We show that a quantum subsystem can become significantly entangled with a classical background through a process with few or no semiclassical backreactions. We study two quantum harmonic oscillators coupled to each other in a time-independent Hamiltonian. We compare it to its semiclassical approximation in which one of the oscillators is treated as the classical background. In this approximation, the remaining quantum oscillator has an effective Hamiltonian which is time-dependent, and its evolution appears to be unitary. However, in the fully quantum model, the two oscillators can entangle each other. Thus, the unitarity of either individual oscillator is never guaranteed. We derive the critical time scale after which the unitarity of either individual oscillator is irrevocably lost. In particular, we give an example that in the adiabatic limit, unitarity is lost before other relevant questions can be addressed.

  17. Entropy production in a photovoltaic cell

    NASA Astrophysics Data System (ADS)

    Ansari, Mohammad H.

    2017-05-01

    We evaluate entropy production in a photovoltaic cell that is modeled by four electronic levels resonantly coupled to thermally populated field modes at different temperatures. We use a formalism recently proposed, the so-called multiple parallel worlds, to consistently address the nonlinearity of entropy in terms of density matrix. Our result shows that entropy production is the difference between two flows: a semiclassical flow that linearly depends on occupational probabilities, and another flow that depends nonlinearly on quantum coherence and has no semiclassical analog. We show that entropy production in the cells depends on environmentally induced decoherence time and energy detuning. We characterize regimes where reversal flow of information takes place from a cold to hot bath. Interestingly, we identify a lower bound on entropy production, which sets limitations on the statistics of dissipated heat in the cells.

  18. Remnants of semiclassical bistability in the few-photon regime of cavity QED.

    PubMed

    Kerckhoff, Joseph; Armen, Michael A; Mabuchi, Hideo

    2011-11-21

    Broadband homodyne detection of the light transmitted by a Fabry-Perot cavity containing a strongly-coupled (133)Cs atom is used to probe the dynamic optical response in a regime where semiclassical theory predicts bistability but strong quantum corrections should apply. While quantum fluctuations destabilize true equilibrium bistability, our observations confirm the existence of metastable states with finite lifetimes and a hysteretic response is apparent when the optical drive is modulated on comparable timescales. Our experiment elucidates remnant semiclassical behavior in the attojoule (~10 photon) regime of single-atom cavity QED, of potential significance for ultra-low power photonic signal processing. © 2011 Optical Society of America

  19. Numerical studies on the electromagnetic properties of the nonlinear Lorentz Computational model for the dielectric media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abe, H.; Okuda, H.

    We study linear and nonlinear properties of a new computer simulation model developed to study the propagation of electromagnetic waves in a dielectric medium in the linear and nonlinear regimes. The model is constructed by combining a microscopic model used in the semi-classical approximation for the dielectric media and the particle model developed for the plasma simulations. It is shown that the model may be useful for studying linear and nonlinear wave propagation in the dielectric media.

  20. The symmetric = ω -semi-classical orthogonal polynomials of class one

    NASA Astrophysics Data System (ADS)

    Maroni, P.; Mejri, M.

    2008-12-01

    We give the system of Laguerre-Freud equations associated with the = ω -semi-classical functionals of class one, where = ω is the divided difference operator. This system is solved in the symmetric case. There are essentially two canonical cases. The corresponding integral representations are given.

  1. Semiclassical geometry of integrable systems

    NASA Astrophysics Data System (ADS)

    Reshetikhin, Nicolai

    2018-04-01

    The main result of this paper is a formula for the scalar product of semiclassical eigenvectors of two integrable systems on the same symplectic manifold. An important application of this formula is the Ponzano–Regge type of asymptotic of Racah–Wigner coefficients. Dedicated to the memory of P P Kulish.

  2. A semi-classical approach to the calculation of highly excited rotational energies for asymmetric-top molecules

    PubMed Central

    Schmiedt, Hanno; Schlemmer, Stephan; Yurchenko, Sergey N.; Yachmenev, Andrey

    2017-01-01

    We report a new semi-classical method to compute highly excited rotational energy levels of an asymmetric-top molecule. The method forgoes the idea of a full quantum mechanical treatment of the ro-vibrational motion of the molecule. Instead, it employs a semi-classical Green's function approach to describe the rotational motion, while retaining a quantum mechanical description of the vibrations. Similar approaches have existed for some time, but the method proposed here has two novel features. First, inspired by the path integral method, periodic orbits in the phase space and tunneling paths are naturally obtained by means of molecular symmetry analysis. Second, the rigorous variational method is employed for the first time to describe the molecular vibrations. In addition, we present a new robust approach to generating rotational energy surfaces for vibrationally excited states; this is done in a fully quantum-mechanical, variational manner. The semi-classical approach of the present work is applied to calculating the energies of very highly excited rotational states and it reduces dramatically the computing time as well as the storage and memory requirements when compared to the fullly quantum-mechanical variational approach. Test calculations for excited states of SO2 yield semi-classical energies in very good agreement with the available experimental data and the results of fully quantum-mechanical calculations. PMID:28000807

  3. Quantitative verification of ab initio self-consistent laser theory.

    PubMed

    Ge, Li; Tandy, Robert J; Stone, A D; Türeci, Hakan E

    2008-10-13

    We generalize and test the recent "ab initio" self-consistent (AISC) time-independent semiclassical laser theory. This self-consistent formalism generates all the stationary lasing properties in the multimode regime (frequencies, thresholds, internal and external fields, output power and emission pattern) from simple inputs: the dielectric function of the passive cavity, the atomic transition frequency, and the transverse relaxation time of the lasing transition.We find that the theory gives excellent quantitative agreement with full time-dependent simulations of the Maxwell-Bloch equations after it has been generalized to drop the slowly-varying envelope approximation. The theory is infinite order in the non-linear hole-burning interaction; the widely used third order approximation is shown to fail badly.

  4. Theoretical Studies of Spectroscopic Line Mixing in Remote Sensing Applications

    NASA Astrophysics Data System (ADS)

    Ma, Q.

    2015-12-01

    The phenomenon of collisional transfer of intensity due to line mixing has an increasing importance for atmospheric monitoring. From a theoretical point of view, all relevant information about the collisional processes is contained in the relaxation matrix where the diagonal elements give half-widths and shifts, and the off-diagonal elements correspond to line interferences. For simple systems such as those consisting of diatom-atom or diatom-diatom, accurate fully quantum calculations based on interaction potentials are feasible. However, fully quantum calculations become unrealistic for more complex systems. On the other hand, the semi-classical Robert-Bonamy (RB) formalism, which has been widely used to calculate half-widths and shifts for decades, fails in calculating the off-diagonal matrix elements. As a result, in order to simulate atmospheric spectra where the effects from line mixing are important, semi-empirical fitting or scaling laws such as the ECS and IOS models are commonly used. Recently, while scrutinizing the development of the RB formalism, we have found that these authors applied the isolated line approximation in their evaluating matrix elements of the Liouville scattering operator given in exponential form. Since the criterion of this assumption is so stringent, it is not valid for many systems of interest in atmospheric applications. Furthermore, it is this assumption that blocks the possibility to calculate the whole relaxation matrix at all. By eliminating this unjustified application, and accurately evaluating matrix elements of the exponential operators, we have developed a more capable formalism. With this new formalism, we are now able not only to reduce uncertainties for calculated half-widths and shifts, but also to remove a once insurmountable obstacle to calculate the whole relaxation matrix. This implies that we can address the line mixing with the semi-classical theory based on interaction potentials between molecular absorber and molecular perturber. We have applied this formalism to address the line mixing for Raman and infrared spectra of molecules such as N2, C2H2, CO2, NH3, and H2O. By carrying out rigorous calculations, our calculated relaxation matrices are in good agreement with both experimental data and results derived from the ECS model.

  5. Laguerre-Freud Equations for the Recurrence Coefficients of Some Discrete Semi-Classical Orthogonal Polynomials of Class Two

    NASA Astrophysics Data System (ADS)

    Hounga, C.; Hounkonnou, M. N.; Ronveaux, A.

    2006-10-01

    In this paper, we give Laguerre-Freud equations for the recurrence coefficients of discrete semi-classical orthogonal polynomials of class two, when the polynomials in the Pearson equation are of the same degree. The case of generalized Charlier polynomials is also presented.

  6. Theoretical and experimental analyses to determine the effects of crystal orientation and grain size on the thermoelectric properties of oblique deposited bismuth telluride thin films

    NASA Astrophysics Data System (ADS)

    Morikawa, Satoshi; Satake, Yuji; Takashiri, Masayuki

    2018-06-01

    The effects of crystal orientation and grain size on the thermoelectric properties of Bi2Te3 thin films were investigated by conducting experimental and theoretical analyses. To vary the crystal orientation and grain size, we performed oblique deposition, followed by thermal annealing treatment. The crystal orientation decreased as the oblique angle was increased, while the grain size was not changed significantly. The thermoelectric properties were measured at room temperature. A theoretical analysis was performed using a first principles method based on density functional theory. Then the semi-classical Boltzmann transport equation was used in the relaxation time approximation, with the effect of grain size included. Furthermore, the effect of crystal orientation was included in the calculation based on a simple semi-experimental model. A maximum power factor of 11.6 µW/(cm·K2) was obtained at an oblique angle of 40°. The calculated thermoelectric properties were in very good agreement with the experimentally measured values.

  7. Determination of the dissipation in superconducting Josephson junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mugnai, D., E-mail: d.mugnai@ifac.cnr.it; Ranfagni, A.; Cacciari, I.

    2015-02-07

    The results relative to macroscopic quantum tunneling rate, out of the metastable state of Josephson junctions, are examined in view of determining the effect of dissipation. We adopt a simple criterion in accordance to which the effect of dissipation can be evaluated by analyzing the shortening of the semiclassical traversal time of the barrier. In almost all the considered cases, especially those with relatively large capacitance values, the relative time shortening turns out to be about 20% and with a corresponding quality factor Q ≃ 5.5. However, beyond the specific cases here considered, still in the regime of moderate dissipation,more » the method is applicable also to different situations with different values of the quality factor. The method allows, within the error limits, for a reliable determination of the load resistance R{sub L}, the less accessible quantity in the framework of the resistively and capacitively shunted junction model, provided that the characteristics of the junction (intrinsic capacitance, critical current, and the ratio of the bias current to the critical one) are known with sufficient accuracy.« less

  8. Shortcuts to adiabaticity using flow fields

    NASA Astrophysics Data System (ADS)

    Patra, Ayoti; Jarzynski, Christopher

    2017-12-01

    A shortcut to adiabaticity is a recipe for generating adiabatic evolution at an arbitrary pace. Shortcuts have been developed for quantum, classical and (most recently) stochastic dynamics. A shortcut might involve a counterdiabatic (CD) Hamiltonian that causes a system to follow the adiabatic evolution at all times, or it might utilize a fast-forward (FF) potential, which returns the system to the adiabatic path at the end of the process. We develop a general framework for constructing shortcuts to adiabaticity from flow fields that describe the desired adiabatic evolution. Our approach encompasses quantum, classical and stochastic dynamics, and provides surprisingly compact expressions for both CD Hamiltonians and FF potentials. We illustrate our method with numerical simulations of a model system, and we compare our shortcuts with previously obtained results. We also consider the semiclassical connections between our quantum and classical shortcuts. Our method, like the FF approach developed by previous authors, is susceptible to singularities when applied to excited states of quantum systems; we propose a simple, intuitive criterion for determining whether these singularities will arise, for a given excited state.

  9. Kicking atoms with finite duration pulses

    NASA Astrophysics Data System (ADS)

    Fekete, Julia; Chai, Shijie; Daszuta, Boris; Andersen, Mikkel F.

    2016-05-01

    The atom optics delta-kicked particle is a paradigmatic system for experimental studies of quantum chaos and classical-quantum correspondence. It consists of a cloud of laser cooled atoms exposed to a periodically pulsed standing wave of far off-resonant laser light. A purely quantum phenomena in such systems are quantum resonances which transfers the atoms into a coherent superposition of largely separated momentum states. Using such large momentum transfer ``beamsplitters'' in atom interferometers may have applications in high precision metrology. The growth in momentum separation cannot be maintained indefinitely due to finite laser power. The largest momentum transfer is achieved by violating the usual delta-kick assumption. Therefore we explore the behavior of the atom optics kicked particle with finite pulse duration. We have developed a semi-classical model which shows good agreement with the full quantum description as well as our experiments. Furthermore we have found a simple scaling law that helps to identify optimal parameters for an atom interferometer. We verify this by measurements of the ``Talbot time'' (a measurement of h/m) which together with other well-known constants constitute a measurement of the fine structure constant.

  10. The recurrence coefficients of semi-classical Laguerre polynomials and the fourth Painlevé equation

    NASA Astrophysics Data System (ADS)

    Filipuk, Galina; Van Assche, Walter; Zhang, Lun

    2012-05-01

    We show that the coefficients of the three-term recurrence relation for orthogonal polynomials with respect to a semi-classical extension of the Laguerre weight satisfy the fourth Painlevé equation when viewed as functions of one of the parameters in the weight. We compare different approaches to derive this result, namely, the ladder operators approach, the isomonodromy deformations approach and combining the Toda system for the recurrence coefficients with a discrete equation. We also discuss a relation between the recurrence coefficients for the Freud weight and the semi-classical Laguerre weight and show how it arises from the Bäcklund transformation of the fourth Painlevé equation.

  11. Time-dependent variational approach in terms of squeezed coherent states: Implication to semi-classical approximation

    NASA Technical Reports Server (NTRS)

    Tsue, Yasuhiko

    1994-01-01

    A general framework for time-dependent variational approach in terms of squeezed coherent states is constructed with the aim of describing quantal systems by means of classical mechanics including higher order quantal effects with the aid of canonicity conditions developed in the time-dependent Hartree-Fock theory. The Maslov phase occurring in a semi-classical quantization rule is investigated in this framework. In the limit of a semi-classical approximation in this approach, it is definitely shown that the Maslov phase has a geometric nature analogous to the Berry phase. It is also indicated that this squeezed coherent state approach is a possible way to go beyond the usual WKB approximation.

  12. Relativistic space-charge-limited transport in Dirac semiconductor

    NASA Astrophysics Data System (ADS)

    Ang, Yee Sin; Zubair, M.; Ang, L. K.; Lavoie, Philippe

    The theory of space-charge-limited (SCL) current was first formulated by Mott and Gurney more than 70 years ago based on the semiclassical transport of quasi-free electron in dielectric solids. Its validity for recently fabricated 2D materials, which can host different classes of exotic quasiparticles, remains questionable. Recently, SCL transport measurements in 2D Dirac semiconductor, such as MoS2 and hBN monolayers, revealed anomalous current-voltage scaling of J V 1 . 7 which cannot be satisfactorily explained by conventional theories. In this work, we propose a theory of space-charge-limited transport that takes into account the relativistic quasiparticle dynamics in 2D Dirac semiconductor based on semiclassical Boltzmann transport equation. Our relativistic SCL model reveals an unconventional scaling relation of J Vα with 3 / 2 < α < 2 in the trap-free (or trap-filled) regime, which is in stark contrast to the Mott-Gurney relation of α = 2 and the Mark-Helfrich relation of α > 2 . The α < 2 scaling is a unique manifestation of the massive Dirac quasiparticles and is supported by the experimental data of MoS2. The relativistic SCL model proposed here shall provide a physical basis for the modelling of Dirac-material-based devices

  13. Semiclassical transport in nearly symmetric quantum dots. II. Symmetry breaking due to asymmetric leads.

    PubMed

    Whitney, Robert S; Schomerus, Henning; Kopp, Marten

    2009-11-01

    In this work-the second of a pair of articles-we consider transport through spatially symmetric quantum dots with leads whose widths or positions do not obey the spatial symmetry. We use the semiclassical theory of transport to find the symmetry-induced contributions to weak localization corrections and universal conductance fluctuations for dots with left-right, up-down, inversion, and fourfold symmetries. We show that all these contributions are suppressed by asymmetric leads; however, they remain finite whenever leads intersect with their images under the symmetry operation. For an up-down symmetric dot, this means that the contributions can be finite even if one of the leads is completely asymmetric. We find that the suppression of the contributions to universal conductance fluctuations is the square of the suppression of contributions to weak localization. Finally, we develop a random-matrix theory model which enables us to numerically confirm these results.

  14. Stopping power of dense plasmas: The collisional method and limitations of the dielectric formalism.

    PubMed

    Clauser, C F; Arista, N R

    2018-02-01

    We present a study of the stopping power of plasmas using two main approaches: the collisional (scattering theory) and the dielectric formalisms. In the former case, we use a semiclassical method based on quantum scattering theory. In the latter case, we use the full description given by the extension of the Lindhard dielectric function for plasmas of all degeneracies. We compare these two theories and show that the dielectric formalism has limitations when it is used for slow heavy ions or atoms in dense plasmas. We present a study of these limitations and show the regimes where the dielectric formalism can be used, with appropriate corrections to include the usual quantum and classical limits. On the other hand, the semiclassical method shows the correct behavior for all plasma conditions and projectile velocity and charge. We consider different models for the ion charge distributions, including bare and dressed ions as well as neutral atoms.

  15. Modeling Synchronization in Networks of Delay-Coupled Fiber Ring Lasers

    DTIC Science & Technology

    2011-11-21

    synchronication of delay-couple oscillators,” Chaos 20, 043127 (2010). 10. J. Mulet , C. Mirasso, T. Heil, and I. Fischer, “Synchronication scenario of two...distant mutually coupled semi- conductor lasers,” J. Opt. B: Quantum Semiclassical Opt. 6, 97–105 (2004). 11. T. Heil, I. Fischer, W. Elsasser, J. Mulet

  16. Phase space deformations in phantom cosmology

    NASA Astrophysics Data System (ADS)

    López, J. L.; Sabido, M.; Yee-Romero, C.

    2018-03-01

    We discuss the physical consequences of general phase space deformations on the minisuperspace of phantom cosmology. Based on the principle of physically equivalent descriptions in the deformed theory, we investigate for what values of the deformation parameters the arising descriptions are physically equivalent. We also construct and solve the quantum model and derive the semiclassical dynamics.

  17. Big-bounce cosmology from quantum gravity: The case of a cyclical Bianchi I universe

    NASA Astrophysics Data System (ADS)

    Moriconi, Riccardo; Montani, Giovanni; Capozziello, Salvatore

    2016-07-01

    We analyze the classical and quantum dynamics of a Bianchi I model in the presence of a small negative cosmological constant characterizing its evolution in term of the dust-time dualism. We demonstrate that in a canonical metric approach, the cosmological singularity is removed in correspondence to a positive defined value of the dust energy density. Furthermore, the quantum big bounce is connected to the Universe's turning point via a well-defined semiclassical limit. Then we can reliably infer that the proposed scenario is compatible with a cyclical universe picture. We also show how, when the contribution of the dust energy density is sufficiently high, the proposed scenario can be extended to the Bianchi IX cosmology and therefore how it can be regarded as a paradigm for the generic cosmological model. Finally, we investigate the origin of the observed cutoff on the cosmological dynamics, demonstrating how the big-bounce evolution can be mimicked by the same semiclassical scenario, where the negative cosmological constant is replaced via a polymer discretization of the Universe's volume. A direct proportionality law between these two parameters is then established.

  18. A holographic model for black hole complementarity

    DOE PAGES

    Lowe, David A.; Thorlacius, Larus

    2016-12-07

    Here, we explore a version of black hole complementarity, where an approximate semiclassical effective field theory for interior infalling degrees of freedom emerges holo-graphically from an exact evolution of exterior degrees of freedom. The infalling degrees of freedom have a complementary description in terms of outgoing Hawking radiation and must eventually decohere with respect to the exterior Hamiltonian, leading to a breakdown of the semiclassical description for an infaller. Trace distance is used to quantify the difference between the complementary time evolutions, and to define a decoherence time. We propose a dictionary where the evolution with respect to the bulkmore » effective Hamiltonian corresponds to mean field evolution in the holographic theory. In a particular model for the holographic theory, which exhibits fast scrambling, the decoherence time coincides with the scrambling time. The results support the hypothesis that decoherence of the infalling holographic state and disruptive bulk effects near the curvature singularity are comple-mentary descriptions of the same physics, which is an important step toward resolving the black hole information paradox.« less

  19. What is dynamics in quantum gravity?

    NASA Astrophysics Data System (ADS)

    Małkiewicz, Przemysław

    2017-10-01

    The appearance of the Hamiltonian constraint in the canonical formalism for general relativity reflects the lack of a fixed external time. The dynamics of general relativistic systems can be expressed with respect to an arbitrarily chosen internal degree of freedom, the so-called internal clock. We investigate the way in which the choice of internal clock determines the quantum dynamics and how much different quantum dynamics induced by different clocks are. We develop our method of comparison by extending the Hamilton-Jacobi theory of contact transformations to include a new type of transformation which transforms both the canonical variables and the internal clock. We employ our method to study the quantum dynamics of the Friedmann-Lemaitre model and obtain semiclassical corrections to the classical dynamics, which depend on the choice of internal clock. For a unique quantisation map we find the abundance of inequivalent semiclassical corrections induced by quantum dynamics taking place in different internal clocks. It follows that the concepts like minimal volume, maximal curvature and the number of quantum bounces, often used to describe quantum effects in cosmological models, depend on the choice of internal clock.

  20. Quantum Stark broadening of Ar XV lines. Strong collision and quadrupolar potential contributions

    NASA Astrophysics Data System (ADS)

    Elabidi, H.; Sahal-Bréchot, S.; Dimitrijević, M. S.

    2014-10-01

    We present in this paper electron impact broadening for six Ar XV lines using our quantum mechanical formalism and the semiclassical perturbation one. Additionally, our calculations of the corresponding atomic structure data (energy levels and oscillator strengths) and collision strengths are given as well. The lines considered here are divided into two sets: a first set of four lines involving the ground level: 1s22s21S0- 1s22snp 1P1o where 2⩽n⩽5 and a second set of two lines involving excited levels: 1s22s2p 1P1o-1s22s3s 1S0 and 1s22s2p 3P0o-1s22s3s 3S1. An extensive comparison between the quantum and the semiclassical results was performed in order to analyze the reason for differences between quantum and semiclassical results up to the factor of two. It has been shown that the difference between the two results may be due to the evaluation of strong collision contributions by the semiclassical formalism. Except few semiclassical results, the present results are the first to be published. After the recent discovery of the far UV lines of Ar VII in the spectra of very hot central stars of planetary nebulae and white dwarfs, the present -and may be further- results can be used also for the corresponding future spectral analysis.

  1. Quantum Chaos

    NASA Astrophysics Data System (ADS)

    Casati, Giulio; Chirikov, Boris

    2006-11-01

    Preface; Acknowledgments; Introduction: 1. The legacy of chaos in quantum mechanics G. Casati and B. V. Chirikov; Part I. Classical Chaos and Quantum Localization: 2. Stochastic behaviour of a quantum pendulum under a periodic perturbation G. Casati, B. V. Chirikov, F. M. Izrailev and J. Ford; 3. Quantum dynamics of a nonintegrable system D. R. Grempel, R. E. Prange and S. E. Fishman; 4. Excitation of molecular rotation by periodic microwave pulses. A testing ground for Anderson localization R. Blümel, S. Fishman and U. Smilansky; 5. Localization of diffusive excitation in multi-level systems D. K. Shepelyansky; 6. Classical and quantum chaos for a kicked top F. Haake, M. Kus and R. Scharf; 7. Self-similarity in quantum dynamics L. E. Reichl and L. Haoming; 8. Time irreversibility of classically chaotic quantum dynamics K. Ikeda; 9. Effect of noise on time-dependent quantum chaos E. Ott, T. M. Antonsen Jr and J. D. Hanson; 10. Dynamical localization, dissipation and noise R. F. Graham; 11. Maximum entropy models and quantum transmission in disordered systems J.-L. Pichard and M. Sanquer; 12. Solid state 'atoms' in intense oscillating fields M. S. Sherwin; Part II. Atoms in Strong Fields: 13. Localization of classically chaotic diffusion for hydrogen atoms in microwave fields J. E. Bayfield, G. Casati, I. Guarneri and D. W. Sokol; 14. Inhibition of quantum transport due to 'scars' of unstable periodic orbits R. V. Jensen, M. M. Sanders, M. Saraceno and B. Sundaram; 15. Rubidium Rydberg atoms in strong fields G. Benson, G. Raithel and H. Walther; 16. Diamagnetic Rydberg atom: confrontation of calculated and observed spectra C.-H. Iu, G. R. Welch, M. M. Kash, D. Kleppner, D. Delande and J. C. Gay; 17. Semiclassical approximation for the quantum states of a hydrogen atom in a magnetic field near the ionization limit M. Y. Kuchiev and O. P. Sushkov; 18. The semiclassical helium atom D. Wintgen, K. Richter and G. Tanner; 19. Stretched helium: a model for quantum chaos in two-electron atoms R. Blümel and W. P. Reinhardt; Part III. Semiclassical Approximations: 20. Semiclassical theory of spectral rigidity M. V. Berry; 21. Semiclassical structure of trace formulas R. G. Littlejohn; 22. h-Expansion for quantum trace formulas P. Gaspard; 23. Pinball scattering B. Eckhardt, G. Russberg, P. Cvitanovic, P. E. Rosenqvist and P. Scherer; 24. Logarithm breaking time in quantum chaos G. P. Berman and G. M. Zaslavsky; 25. Semiclassical propagation: how long can it last? M. A. Sepulveda, S. Tomsovic and E. J. Heller; 26. The quantized Baker's transformation N. L. Balazs and A. Voros; 27. Classical structures in the quantized baker transformation M. Saraceno; 28. Quantum nodal points as fingerprints of classical chaos P. Leboeuf and A. Voros; 29. Chaology of action billiards A. M. Ozorio de Almeida and M. A. M. de Aguiar; Part IV. Level Statistics and Random Matrix Theory: 30. Characterization of chaotic quantum spectra and universality of level fluctuation laws O. Bohigas, M. J. Giannono, and C. Schmit; 31. Quantum chaos, localization and band random matrices F. M. Izrailev; 32. Structural invariance in channel space: a step toward understanding chaotic scattering in quantum mechanics T. H. Seligman; 33. Spectral properties of a Fermi accelerating disk R. Badrinarayanan and J. J. José; 34. Spectral properties of systems with dynamical localization T. Dittrich and U. Smilansky; 35. Unbound quantum diffusion and fractal spectra T. Geisel, R. Ketzmerick and G. Petschel; 36. Microwave studies in irregularly shaped billiards H.-J. Stöckmann, J. Stein and M. Kollman; Index.

  2. Quantum Chaos

    NASA Astrophysics Data System (ADS)

    Casati, Giulio; Chirikov, Boris

    1995-04-01

    Preface; Acknowledgments; Introduction: 1. The legacy of chaos in quantum mechanics G. Casati and B. V. Chirikov; Part I. Classical Chaos and Quantum Localization: 2. Stochastic behaviour of a quantum pendulum under a periodic perturbation G. Casati, B. V. Chirikov, F. M. Izrailev and J. Ford; 3. Quantum dynamics of a nonintegrable system D. R. Grempel, R. E. Prange and S. E. Fishman; 4. Excitation of molecular rotation by periodic microwave pulses. A testing ground for Anderson localization R. Blümel, S. Fishman and U. Smilansky; 5. Localization of diffusive excitation in multi-level systems D. K. Shepelyansky; 6. Classical and quantum chaos for a kicked top F. Haake, M. Kus and R. Scharf; 7. Self-similarity in quantum dynamics L. E. Reichl and L. Haoming; 8. Time irreversibility of classically chaotic quantum dynamics K. Ikeda; 9. Effect of noise on time-dependent quantum chaos E. Ott, T. M. Antonsen Jr and J. D. Hanson; 10. Dynamical localization, dissipation and noise R. F. Graham; 11. Maximum entropy models and quantum transmission in disordered systems J.-L. Pichard and M. Sanquer; 12. Solid state 'atoms' in intense oscillating fields M. S. Sherwin; Part II. Atoms in Strong Fields: 13. Localization of classically chaotic diffusion for hydrogen atoms in microwave fields J. E. Bayfield, G. Casati, I. Guarneri and D. W. Sokol; 14. Inhibition of quantum transport due to 'scars' of unstable periodic orbits R. V. Jensen, M. M. Sanders, M. Saraceno and B. Sundaram; 15. Rubidium Rydberg atoms in strong fields G. Benson, G. Raithel and H. Walther; 16. Diamagnetic Rydberg atom: confrontation of calculated and observed spectra C.-H. Iu, G. R. Welch, M. M. Kash, D. Kleppner, D. Delande and J. C. Gay; 17. Semiclassical approximation for the quantum states of a hydrogen atom in a magnetic field near the ionization limit M. Y. Kuchiev and O. P. Sushkov; 18. The semiclassical helium atom D. Wintgen, K. Richter and G. Tanner; 19. Stretched helium: a model for quantum chaos in two-electron atoms R. Blümel and W. P. Reinhardt; Part III. Semiclassical Approximations: 20. Semiclassical theory of spectral rigidity M. V. Berry; 21. Semiclassical structure of trace formulas R. G. Littlejohn; 22. h-Expansion for quantum trace formulas P. Gaspard; 23. Pinball scattering B. Eckhardt, G. Russberg, P. Cvitanovic, P. E. Rosenqvist and P. Scherer; 24. Logarithm breaking time in quantum chaos G. P. Berman and G. M. Zaslavsky; 25. Semiclassical propagation: how long can it last? M. A. Sepulveda, S. Tomsovic and E. J. Heller; 26. The quantized Baker's transformation N. L. Balazs and A. Voros; 27. Classical structures in the quantized baker transformation M. Saraceno; 28. Quantum nodal points as fingerprints of classical chaos P. Leboeuf and A. Voros; 29. Chaology of action billiards A. M. Ozorio de Almeida and M. A. M. de Aguiar; Part IV. Level Statistics and Random Matrix Theory: 30. Characterization of chaotic quantum spectra and universality of level fluctuation laws O. Bohigas, M. J. Giannono, and C. Schmit; 31. Quantum chaos, localization and band random matrices F. M. Izrailev; 32. Structural invariance in channel space: a step toward understanding chaotic scattering in quantum mechanics T. H. Seligman; 33. Spectral properties of a Fermi accelerating disk R. Badrinarayanan and J. J. José; 34. Spectral properties of systems with dynamical localization T. Dittrich and U. Smilansky; 35. Unbound quantum diffusion and fractal spectra T. Geisel, R. Ketzmerick and G. Petschel; 36. Microwave studies in irregularly shaped billiards H.-J. Stöckmann, J. Stein and M. Kollman; Index.

  3. Cluster-model calculations of exotic decays from heavy nuclei

    NASA Astrophysics Data System (ADS)

    Buck, B.; Merchant, A. C.

    1989-05-01

    A cluster model employing a local, effective cluster-core potential is used to investigate exotic decay from heavy nuclei as a quantum tunneling phenomenon within a semiclassical approximation. Excellent agreement with all reported experimental measurements of the decay widths for 14C and 24Ne emission is obtained. As an added bonus, the width for alpha particle emission from 212Po is also calculated in good agreement with experiment.

  4. Quantum information processing by a continuous Maxwell demon

    NASA Astrophysics Data System (ADS)

    Stevens, Josey; Deffner, Sebastian

    Quantum computing is believed to be fundamentally superior to classical computing; however quantifying the specific thermodynamic advantage has been elusive. Experimentally motivated, we generalize previous minimal models of discrete demons to continuous state space. Analyzing our model allows one to quantify the thermodynamic resources necessary to process quantum information. By further invoking the semi-classical limit we compare the quantum demon with its classical analogue. Finally, this model also serves as a starting point to study open quantum systems.

  5. Semiclassical spectrum for BMN string in Sch 5 × S 5

    NASA Astrophysics Data System (ADS)

    Ouyang, Hao

    2017-12-01

    We investigate the algebraic curve for string in Sch 5 × S 5. We compute the semiclassical spectrum for BMN string in Sch 5 × S 5 from the algebraic curve. We compare our results with the anomalous dimensions in sl(2) sector of the null dipole deformation of N=4 superYang-Millstheory.

  6. Semiclassical description of hyperfine interaction in calculating chemically induced dynamic nuclear polarization in weak magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purtov, P.A.; Salikhov, K.M.

    1987-09-01

    Semiclassical HFI description is applicable to calculating the integral CIDNP effect in weak fields. The HFI has been calculated for radicals with sufficiently numerous magnetically equivalent nuclei (n greater than or equal to 5) in satisfactory agreement with CIDNP calculations based on quantum-mechanical description of radical-pair spin dynamics.

  7. Statistics of Gaussian packets on metric and decorated graphs.

    PubMed

    Chernyshev, V L; Shafarevich, A I

    2014-01-28

    We study a semiclassical asymptotics of the Cauchy problem for a time-dependent Schrödinger equation on metric and decorated graphs with a localized initial function. A decorated graph is a topological space obtained from a graph via replacing vertices with smooth Riemannian manifolds. The main term of an asymptotic solution at an arbitrary finite time is a sum of Gaussian packets and generalized Gaussian packets (localized near a certain set of codimension one). We study the number of packets as time tends to infinity. We prove that under certain assumptions this number grows in time as a polynomial and packets fill the graph uniformly. We discuss a simple example of the opposite situation: in this case, a numerical experiment shows a subexponential growth.

  8. Asymptotic Analysis of the Ponzano-Regge Model with Non-Commutative Metric Boundary Data

    NASA Astrophysics Data System (ADS)

    Oriti, Daniele; Raasakka, Matti

    2014-06-01

    We apply the non-commutative Fourier transform for Lie groups to formulate the non-commutative metric representation of the Ponzano-Regge spin foam model for 3d quantum gravity. The non-commutative representation allows to express the amplitudes of the model as a first order phase space path integral, whose properties we consider. In particular, we study the asymptotic behavior of the path integral in the semi-classical limit. First, we compare the stationary phase equations in the classical limit for three different non-commutative structures corresponding to the symmetric, Duflo and Freidel-Livine-Majid quantization maps. We find that in order to unambiguously recover discrete geometric constraints for non-commutative metric boundary data through the stationary phase method, the deformation structure of the phase space must be accounted for in the variational calculus. When this is understood, our results demonstrate that the non-commutative metric representation facilitates a convenient semi-classical analysis of the Ponzano-Regge model, which yields as the dominant contribution to the amplitude the cosine of the Regge action in agreement with previous studies. We also consider the asymptotics of the SU(2) 6j-symbol using the non-commutative phase space path integral for the Ponzano-Regge model, and explain the connection of our results to the previous asymptotic results in terms of coherent states.

  9. Search for black holes and sphalerons in high-multiplicity final states in proton-proton collisions at $$\\sqrt{s} =$$ 13 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, Albert M; et al.

    A search in energetic, high-multiplicity final states for evidence of physics beyond the standard model, such as black holes, string balls, and electroweak sphalerons, is presented. The data sample corresponds to an integrated luminosity of 35.9 fbmore » $$^{-1}$$ collected with the CMS experiment at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV in 2016. Standard model backgrounds, dominated by multijet production, are determined from control regions in data without any reliance on simulation. No evidence for excesses above the predicted background is observed. Model-independent 95% confidence level upper limits on the cross section of beyond the standard model signals in these final states are set and further interpreted in terms of limits on semiclassical black hole, string ball, and sphaleron production. In the context of models with large extra dimensions, semiclassical black holes with minimum masses as high as 10.1 TeV and string balls with masses as high as 9.5 TeV are excluded by this search. Results of the first dedicated search for electroweak sphalerons are presented. An upper limit of 0.021 is set on the fraction of all quark-quark interactions above the nominal threshold energy of 9 TeV resulting in the sphaleron transition.« less

  10. Discrete quantum spectrum of black holes

    NASA Astrophysics Data System (ADS)

    Lochan, Kinjalk; Chakraborty, Sumanta

    2016-04-01

    The quantum genesis of Hawking radiation is a long-standing puzzle in black hole physics. Semi-classically one can argue that the spectrum of radiation emitted by a black hole look very much sparse unlike what is expected from a thermal object. It was demonstrated through a simple quantum model that a quantum black hole will retain a discrete profile, at least in the weak energy regime. However, it was suggested that this discreteness might be an artifact of the simplicity of eigen-spectrum of the model considered. Different quantum theories can, in principle, give rise to different complicated spectra and make the radiation from black hole dense enough in transition lines, to make them look continuous in profile. We show that such a hope from a geometry-quantized black hole is not realized as long as large enough black holes are dubbed with a classical mass area relation in any gravity theory ranging from GR, Lanczos-Lovelock to f(R) gravity. We show that the smallest frequency of emission from black hole in any quantum description, is bounded from below, to be of the order of its inverse mass. That leaves the emission with only two possibilities. It can either be non-thermal, or it can be thermal only with the temperature being much larger than 1/M.

  11. Possibility of observation of polaron normal modes at the far-infrared spectrum of acetanilide and related organics

    NASA Astrophysics Data System (ADS)

    Kalosakas, G.; Aubry, S.; Tsironis, G. P.

    1998-10-01

    We use a stationary and normal mode analysis of the semiclassical Holstein model in order to connect the low-frequency linear polaron modes to low-lying far-infrared lines of the acetanilide spectrum and through parameter fitting we comment on the validity of the polaron results in this system.

  12. Density matrix Monte Carlo modeling of quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Jirauschek, Christian

    2017-10-01

    By including elements of the density matrix formalism, the semiclassical ensemble Monte Carlo method for carrier transport is extended to incorporate incoherent tunneling, known to play an important role in quantum cascade lasers (QCLs). In particular, this effect dominates electron transport across thick injection barriers, which are frequently used in terahertz QCL designs. A self-consistent model for quantum mechanical dephasing is implemented, eliminating the need for empirical simulation parameters. Our modeling approach is validated against available experimental data for different types of terahertz QCL designs.

  13. Low-Dimensional Nanostructures and a Semiclassical Approach for Teaching Feynman's Sum-over-Paths Quantum Theory

    ERIC Educational Resources Information Center

    Onorato, P.

    2011-01-01

    An introduction to quantum mechanics based on the sum-over-paths (SOP) method originated by Richard P. Feynman and developed by E. F. Taylor and coworkers is presented. The Einstein-Brillouin-Keller (EBK) semiclassical quantization rules are obtained following the SOP approach for bounded systems, and a general approach to the calculation of…

  14. A semiclassical study of laser-induced atomic fluorescence from Na2, K2 and NaK

    NASA Technical Reports Server (NTRS)

    Yuan, J.-M.; Bhattacharyya, D. K.; George, T. F.

    1982-01-01

    A semiclassical treatment of laser-induced atomic fluorescence for the alkali-dimer systems Na2, K2 and NaK is presented. The variation of the fluorescence intensity with the frequency of the exciting laser photon is studied and a comparison of theoretical results with a set of experimental data is presented.

  15. Ultrafast dynamics induced by the interaction of molecules with electromagnetic fields: Several quantum, semiclassical, and classical approaches.

    PubMed

    Antipov, Sergey V; Bhattacharyya, Swarnendu; El Hage, Krystel; Xu, Zhen-Hao; Meuwly, Markus; Rothlisberger, Ursula; Vaníček, Jiří

    2017-11-01

    Several strategies for simulating the ultrafast dynamics of molecules induced by interactions with electromagnetic fields are presented. After a brief overview of the theory of molecule-field interaction, we present several representative examples of quantum, semiclassical, and classical approaches to describe the ultrafast molecular dynamics, including the multiconfiguration time-dependent Hartree method, Bohmian dynamics, local control theory, semiclassical thawed Gaussian approximation, phase averaging, dephasing representation, molecular mechanics with proton transfer, and multipolar force fields. In addition to the general overview, some focus is given to the description of nuclear quantum effects and to the direct dynamics, in which the ab initio energies and forces acting on the nuclei are evaluated on the fly. Several practical applications, performed within the framework of the Swiss National Center of Competence in Research "Molecular Ultrafast Science and Technology," are presented: These include Bohmian dynamics description of the collision of H with H 2 , local control theory applied to the photoinduced ultrafast intramolecular proton transfer, semiclassical evaluation of vibrationally resolved electronic absorption, emission, photoelectron, and time-resolved stimulated emission spectra, infrared spectroscopy of H-bonding systems, and multipolar force fields applications in the condensed phase.

  16. Ultrafast dynamics induced by the interaction of molecules with electromagnetic fields: Several quantum, semiclassical, and classical approaches

    PubMed Central

    Antipov, Sergey V.; Bhattacharyya, Swarnendu; El Hage, Krystel; Xu, Zhen-Hao; Meuwly, Markus; Rothlisberger, Ursula; Vaníček, Jiří

    2018-01-01

    Several strategies for simulating the ultrafast dynamics of molecules induced by interactions with electromagnetic fields are presented. After a brief overview of the theory of molecule-field interaction, we present several representative examples of quantum, semiclassical, and classical approaches to describe the ultrafast molecular dynamics, including the multiconfiguration time-dependent Hartree method, Bohmian dynamics, local control theory, semiclassical thawed Gaussian approximation, phase averaging, dephasing representation, molecular mechanics with proton transfer, and multipolar force fields. In addition to the general overview, some focus is given to the description of nuclear quantum effects and to the direct dynamics, in which the ab initio energies and forces acting on the nuclei are evaluated on the fly. Several practical applications, performed within the framework of the Swiss National Center of Competence in Research “Molecular Ultrafast Science and Technology,” are presented: These include Bohmian dynamics description of the collision of H with H2, local control theory applied to the photoinduced ultrafast intramolecular proton transfer, semiclassical evaluation of vibrationally resolved electronic absorption, emission, photoelectron, and time-resolved stimulated emission spectra, infrared spectroscopy of H-bonding systems, and multipolar force fields applications in the condensed phase. PMID:29376107

  17. Including Memory Friction in Single- and Two-State Quantum Dynamics Simulations.

    PubMed

    Brown, Paul A; Messina, Michael

    2016-03-03

    We present a simple computational algorithm that allows for the inclusion of memory friction in a quantum dynamics simulation of a small, quantum, primary system coupled to many atoms in the surroundings. We show how including a memory friction operator, F̂, in the primary quantum system's Hamiltonian operator builds memory friction into the dynamics of the primary quantum system. We show that, in the harmonic, semi-classical limit, this friction operator causes the classical phase-space centers of a wavepacket to evolve exactly as if it were a classical particle experiencing memory friction. We also show that this friction operator can be used to include memory friction in the quantum dynamics of an anharmonic primary system. We then generalize the algorithm so that it can be used to treat a primary quantum system that is evolving, non-adiabatically on two coupled potential energy surfaces, i.e., a model that can be used to model H atom transfer, for example. We demonstrate this approach's computational ease and flexibility by showing numerical results for both harmonic and anharmonic primary quantum systems in the single surface case. Finally, we present numerical results for a model of non-adiabatic H atom transfer between a reactant and product state that includes memory friction on one or both of the non-adiabatic potential energy surfaces and uncover some interesting dynamical effects of non-memory friction on the H atom transfer process.

  18. Dynamical cluster approximation plus semiclassical approximation study for a Mott insulator and d-wave pairing

    NASA Astrophysics Data System (ADS)

    Kim, SungKun; Lee, Hunpyo

    2017-06-01

    Via a dynamical cluster approximation with N c = 4 in combination with a semiclassical approximation (DCA+SCA), we study the doped two-dimensional Hubbard model. We obtain a plaquette antiferromagnetic (AF) Mott insulator, a plaquette AF ordered metal, a pseudogap (or d-wave superconductor) and a paramagnetic metal by tuning the doping concentration. These features are similar to the behaviors observed in copper-oxide superconductors and are in qualitative agreement with the results calculated by the cluster dynamical mean field theory with the continuous-time quantum Monte Carlo (CDMFT+CTQMC) approach. The results of our DCA+SCA differ from those of the CDMFT+CTQMC approach in that the d-wave superconducting order parameters are shown even in the high doped region, unlike the results of the CDMFT+CTQMC approach. We think that the strong plaquette AF orderings in the dynamical cluster approximation (DCA) with N c = 4 suppress superconducting states with increasing doping up to strongly doped region, because frozen dynamical fluctuations in a semiclassical approximation (SCA) approach are unable to destroy those orderings. Our calculation with short-range spatial fluctuations is initial research, because the SCA can manage long-range spatial fluctuations in feasible computational times beyond the CDMFT+CTQMC tool. We believe that our future DCA+SCA calculations should supply information on the fully momentum-resolved physical properties, which could be compared with the results measured by angle-resolved photoemission spectroscopy experiments.

  19. Experimental studies by complementary terahertz techniques and semi-classical calculations of N2- broadening coefficients of CH335Cl

    NASA Astrophysics Data System (ADS)

    Guinet, M.; Rohart, F.; Buldyreva, J.; Gupta, V.; Eliet, S.; Motiyenko, R. A.; Margulès, L.; Cuisset, A.; Hindle, F.; Mouret, G.

    2012-07-01

    Room-temperature N2-broadening coefficients of methyl chloride rotational lines are measured over a large interval of quantum numbers (6≤J≤50, 0≤K≤18) by a submillimeter frequency-multiplication chain (J≤31) and a terahertz photomixing continuous-wave spectrometer (J≥31). In order to check the accuracy of both techniques, the measurements of identical lines are compared for J=31. The pressure broadening coefficients are deduced from line fits using mainly a Voigt profile model. The excellent signal-to-noise ratio of the frequency-multiplication scheme highlights some speed dependence effect on the line shape. Theoretical values of these coefficients are calculated by a semi-classical approach with exact trajectories. An intermolecular potential including atom-atom interactions is used for the first time. It is shown that, contrary to the previous theoretical predictions, the contributions of short-range forces are important for all values of the rotational quantum numbers. Additional testing of modifications required in the semi-classical formalism for a correct application of the cumulant expansion is also performed. It is stated that the use of the cumulant average on the rotational states of the perturbing molecule leads, for high J and small K values, to slightly higher line-broadening coefficients, as expected for the relatively strong interacting CH3Cl-N2 system. The excellent agreement between the theoretical and the experimental results ensures the reliability of these data.

  20. Short distance modification of the quantum virial theorem

    NASA Astrophysics Data System (ADS)

    Zhao, Qin; Faizal, Mir; Zaz, Zaid

    2017-07-01

    In this letter, we will analyse the deformation of a semi-classical gravitational system from minimal measurable length scale. In the semi-classical approximation, the gravitational field will be analysed as a classical field, and the matter fields will be treated quantum mechanically. Thus, using this approximation, this system will be represented by a deformation of Schrödinger-Newton equation by the generalised uncertainty principle (GUP). We will analyse the effects of this GUP deformed Schrödinger-Newton equation on the behaviour of such a semi-classical gravitational system. As the quantum mechanical virial theorem can be obtained using the Schrödinger-Newton equation, a short distance modification of the Schrödinger-Newton equation will also result in a short distance modification of the quantum mechanical virial theorem.

  1. On Large Time Behavior and Selection Principle for a Diffusive Carr-Penrose Model

    NASA Astrophysics Data System (ADS)

    Conlon, Joseph G.; Dabkowski, Michael; Wu, Jingchen

    2016-04-01

    This paper is concerned with the study of a diffusive perturbation of the linear LSW model introduced by Carr and Penrose. A main subject of interest is to understand how the presence of diffusion acts as a selection principle, which singles out a particular self-similar solution of the linear LSW model as determining the large time behavior of the diffusive model. A selection principle is rigorously proven for a model which is a semiclassical approximation to the diffusive model. Upper bounds on the rate of coarsening are also obtained for the full diffusive model.

  2. 2D Quantum Simulation of MOSFET Using the Non Equilibrium Green's Function Method

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexel; Anantram, M. P.; Govindan, T. R.; Yan, Jerry (Technical Monitor)

    2000-01-01

    The objectives this viewgraph presentation summarizes include: (1) the development of a quantum mechanical simulator for ultra short channel MOSFET simulation, including theory, physical approximations, and computer code; (2) explore physics that is not accessible by semiclassical methods; (3) benchmarking of semiclassical and classical methods; and (4) study other two-dimensional devices and molecular structure, from discretized Hamiltonian to tight-binding Hamiltonian.

  3. Semiclassical theory of Landau levels and magnetic breakdown in topological metals

    NASA Astrophysics Data System (ADS)

    Alexandradinata, A.; Glazman, Leonid

    2018-04-01

    The Bohr-Sommerfeld quantization rule lies at the heart of the semiclassical theory of a Bloch electron in a magnetic field. This rule is predictive of Landau levels and de Haas-van Alphen oscillations for conventional metals, as well as for a host of topological metals which have emerged in the recent intercourse between band theory, crystalline symmetries, and topology. The essential ingredients in any quantization rule are connection formulas that match the semiclassical (WKB) wave function across regions of strong quantum fluctuations. Here, we propose (a) a multicomponent WKB wave function that describes transport within degenerate-band subspaces, and (b) the requisite connection formulas for saddle points and type-II Dirac points, where tunneling respectively occurs within the same band, and between distinct bands. (a) and (b) extend previous works by incorporating phase corrections that are subleading in powers of the field; these corrections include the geometric Berry phase, and account for the orbital magnetic moment and the Zeeman coupling. A comprehensive symmetry analysis is performed for such phase corrections occurring in closed orbits, which is applicable to solids in any (magnetic) space group. We have further formulated a graph-theoretic description of semiclassical orbits. This allows us to systematize the construction of quantization rules for a large class of closed orbits (with or without tunneling), as well as to formulate the notion of a topological invariant in semiclassical magnetotransport—as a quantity that is invariant under continuous deformations of the graph. Landau levels in the presence of tunneling are generically quasirandom, i.e., disordered on the scale of nearest-neighbor level spacings but having longer-ranged correlations; we develop a perturbative theory to determine Landau levels in such quasirandom spectra.

  4. Conditional symmetries in axisymmetric quantum cosmologies with scalar fields and the fate of the classical singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zampeli, Adamantia; Pailas, Theodoros; Terzis, Petros A.

    2016-05-01

    In this paper, the classical and quantum solutions of some axisymmetric cosmologies coupled to a massless scalar field are studied in the context of minisuperspace approximation. In these models, the singular nature of the Lagrangians entails a search for possible conditional symmetries. These have been proven to be the simultaneous conformal symmetries of the supermetric and the superpotential. The quantization is performed by adopting the Dirac proposal for constrained systems, i.e. promoting the first-class constraints to operators annihilating the wave function. To further enrich the approach, we follow [1] and impose the operators related to the classical conditional symmetries onmore » the wave function. These additional equations select particular solutions of the Wheeler-DeWitt equation. In order to gain some physical insight from the quantization of these cosmological systems, we perform a semiclassical analysis following the Bohmian approach to quantum theory. The generic result is that, in all but one model, one can find appropriate ranges of the parameters, so that the emerging semiclassical geometries are non-singular. An attempt for physical interpretation involves the study of the effective energy-momentum tensor which corresponds to an imperfect fluid.« less

  5. Fluctuations of the gluon distribution from the small- x effective action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumitru, Adrian; Skokov, Vladimir

    The computation of observables in high-energy QCD involves an average over stochastic semiclassical small-x gluon fields. The weight of various configurations is determined by the effective action. We introduce a method to study fluctuations of observables, functionals of the small-x fields, which does not explicitly involve dipoles. We integrate out those fluctuations of the semiclassical gluon field under which a given observable is invariant. Thereby we obtain the effective potential for that observable describing its fluctuations about the average. Here, we determine explicitly the effective potential for the covariant gauge gluon distribution both for the McLerran-Venugopalan (MV) model and formore » a (nonlocal) Gaussian approximation for the small-x effective action. This provides insight into the correlation of fluctuations of the number of hard gluons versus their typical transverse momentum. We find that the spectral shape of the fluctuations of the gluon distribution is fundamentally different in the MV model, where there is a pileup of gluons near the saturation scale, versus the solution of the small-x JIMWLK renormalization group, which generates essentially scale-invariant fluctuations above the absorptive boundary set by the saturation scale.« less

  6. Fluctuations of the gluon distribution from the small- x effective action

    DOE PAGES

    Dumitru, Adrian; Skokov, Vladimir

    2017-09-29

    The computation of observables in high-energy QCD involves an average over stochastic semiclassical small-x gluon fields. The weight of various configurations is determined by the effective action. We introduce a method to study fluctuations of observables, functionals of the small-x fields, which does not explicitly involve dipoles. We integrate out those fluctuations of the semiclassical gluon field under which a given observable is invariant. Thereby we obtain the effective potential for that observable describing its fluctuations about the average. Here, we determine explicitly the effective potential for the covariant gauge gluon distribution both for the McLerran-Venugopalan (MV) model and formore » a (nonlocal) Gaussian approximation for the small-x effective action. This provides insight into the correlation of fluctuations of the number of hard gluons versus their typical transverse momentum. We find that the spectral shape of the fluctuations of the gluon distribution is fundamentally different in the MV model, where there is a pileup of gluons near the saturation scale, versus the solution of the small-x JIMWLK renormalization group, which generates essentially scale-invariant fluctuations above the absorptive boundary set by the saturation scale.« less

  7. Thermal conductivity of III-V semiconductor superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, S., E-mail: song.mei@wisc.edu; Knezevic, I., E-mail: irena.knezevic@wisc.edu

    2015-11-07

    This paper presents a semiclassical model for the anisotropic thermal transport in III-V semiconductor superlattices (SLs). An effective interface rms roughness is the only adjustable parameter. Thermal transport inside a layer is described by the Boltzmann transport equation in the relaxation time approximation and is affected by the relevant scattering mechanisms (three-phonon, mass-difference, and dopant and electron scattering of phonons), as well as by diffuse scattering from the interfaces captured via an effective interface scattering rate. The in-plane thermal conductivity is obtained from the layer conductivities connected in parallel. The cross-plane thermal conductivity is calculated from the layer thermal conductivitiesmore » in series with one another and with thermal boundary resistances (TBRs) associated with each interface; the TBRs dominate cross-plane transport. The TBR of each interface is calculated from the transmission coefficient obtained by interpolating between the acoustic mismatch model (AMM) and the diffuse mismatch model (DMM), where the weight of the AMM transmission coefficient is the same wavelength-dependent specularity parameter related to the effective interface rms roughness that is commonly used to describe diffuse interface scattering. The model is applied to multiple III-arsenide superlattices, and the results are in very good agreement with experimental findings. The method is both simple and accurate, easy to implement, and applicable to complicated SL systems, such as the active regions of quantum cascade lasers. It is also valid for other SL material systems with high-quality interfaces and predominantly incoherent phonon transport.« less

  8. The predictive accuracy of analytical formulas and semiclassical approaches for α decay half-lives of superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Zhao, T. L.; Bao, X. J.; Guo, S. Q.

    2018-02-01

    Systematic calculations on the α decay half-lives are performed by using three analytical formulas and two semiclassical approaches. For the three analytical formulas, the experimental α decay half-lives and {Q}α values of the 66 reference nuclei have been used to obtain the coefficients. We get only four adjustable parameters to describe α decay half-lives for even-even, odd-A, and odd-odd nuclei. By comparison between the calculated values from ten analytical formulas and experimental data, it is shown that the new universal decay law (NUDL) foumula is the most accurate one to reproduce the experimental α decay half-lives of the superheavy nuclei (SHN). Meanwhile it is found that the experimental α decay half-lives of SHN are well reproduced by the Royer formula although many parameters are contained. The results show that the NUDL formula and the generalized liquid drop model (GLDM2) with consideration of the preformation factor can give fairly equivalent results for the superheavy nuclei.

  9. Semi-classical statistical description of Fröhlich condensation.

    PubMed

    Preto, Jordane

    2017-06-01

    Fröhlich's model equations describing phonon condensation in open systems of biological relevance are reinvestigated within a semi-classical statistical framework. The main assumptions needed to deduce Fröhlich's rate equations are identified and it is shown how they lead us to write an appropriate form for the corresponding master equation. It is shown how solutions of the master equation can be numerically computed and can highlight typical features of the condensation effect. Our approach provides much more information compared to the existing ones as it allows to investigate the time evolution of the probability density function instead of following single averaged quantities. The current work is also motivated, on the one hand, by recent experimental evidences of long-lived excited modes in the protein structure of hen-egg white lysozyme, which were reported as a consequence of the condensation effect, and, on the other hand, by a growing interest in investigating long-range effects of electromagnetic origin and their influence on the dynamics of biochemical reactions.

  10. Footprints of electron correlation in strong-field double ionization of Kr close to the sequential-ionization regime

    NASA Astrophysics Data System (ADS)

    Li, Xiaokai; Wang, Chuncheng; Yuan, Zongqiang; Ye, Difa; Ma, Pan; Hu, Wenhui; Luo, Sizuo; Fu, Libin; Ding, Dajun

    2017-09-01

    By combining kinematically complete measurements and a semiclassical Monte Carlo simulation we study the correlated-electron dynamics in the strong-field double ionization of Kr. Interestingly, we find that, as we step into the sequential-ionization regime, there are still signatures of correlation in the two-electron joint momentum spectrum and, more intriguingly, the scaling law of the high-energy tail is completely different from early predictions on the low-Z atom (He). These experimental observations are well reproduced by our generalized semiclassical model adapting a Green-Sellin-Zachor potential. It is revealed that the competition between the screening effect of inner-shell electrons and the Coulomb focusing of nuclei leads to a non-inverse-square central force, which twists the returned electron trajectory at the vicinity of the parent core and thus significantly increases the probability of hard recollisions between two electrons. Our results might have promising applications ranging from accurately retrieving atomic structures to simulating celestial phenomena in the laboratory.

  11. Numerical solutions of ideal quantum gas dynamical flows governed by semiclassical ellipsoidal-statistical distribution.

    PubMed

    Yang, Jaw-Yen; Yan, Chih-Yuan; Diaz, Manuel; Huang, Juan-Chen; Li, Zhihui; Zhang, Hanxin

    2014-01-08

    The ideal quantum gas dynamics as manifested by the semiclassical ellipsoidal-statistical (ES) equilibrium distribution derived in Wu et al. (Wu et al . 2012 Proc. R. Soc. A 468 , 1799-1823 (doi:10.1098/rspa.2011.0673)) is numerically studied for particles of three statistics. This anisotropic ES equilibrium distribution was derived using the maximum entropy principle and conserves the mass, momentum and energy, but differs from the standard Fermi-Dirac or Bose-Einstein distribution. The present numerical method combines the discrete velocity (or momentum) ordinate method in momentum space and the high-resolution shock-capturing method in physical space. A decoding procedure to obtain the necessary parameters for determining the ES distribution is also devised. Computations of two-dimensional Riemann problems are presented, and various contours of the quantities unique to this ES model are illustrated. The main flow features, such as shock waves, expansion waves and slip lines and their complex nonlinear interactions, are depicted and found to be consistent with existing calculations for a classical gas.

  12. Semiclassical treatment of fusion and breakup processes of ^{6,8}He halo nuclei

    NASA Astrophysics Data System (ADS)

    Majeed, Fouad A.; Abdul-Hussien, Yousif A.

    2016-06-01

    A semiclassical approach has been used to study the effect of channel coupling on the calculations of the total fusion reaction cross section σ _{fus}, and the fusion barrier distribution D_{fus} for the systems 6He +^{238}U and 8He +^{197}Au. Since these systems invloves light exotic nuclei, breakup states channel play an important role that should be considered in the calculations. In semiclassical treatment, the relative motion between the projectile and target nuclei is approximated by a classical trajectory while the intrinsic dynamics is handled by time-dependent quantum mechanics. The calculations of the total fusion cross section σ _{fus}, and the fusion barrier distribution D_{fus} are compared with the full quantum mechanical calculations using the coupled-channels calculations with all order coupling using the computer code and with the available experimental data.

  13. Semiclassical propagation: Hilbert space vs. Wigner representation

    NASA Astrophysics Data System (ADS)

    Gottwald, Fabian; Ivanov, Sergei D.

    2018-03-01

    A unified viewpoint on the van Vleck and Herman-Kluk propagators in Hilbert space and their recently developed counterparts in Wigner representation is presented. Based on this viewpoint, the Wigner Herman-Kluk propagator is conceptually the most general one. Nonetheless, the respective semiclassical expressions for expectation values in terms of the density matrix and the Wigner function are mathematically proven here to coincide. The only remaining difference is a mere technical flexibility of the Wigner version in choosing the Gaussians' width for the underlying coherent states beyond minimal uncertainty. This flexibility is investigated numerically on prototypical potentials and it turns out to provide neither qualitative nor quantitative improvements. Given the aforementioned generality, utilizing the Wigner representation for semiclassical propagation thus leads to the same performance as employing the respective most-developed (Hilbert-space) methods for the density matrix.

  14. Stellar Equilibrium in Semiclassical Gravity.

    PubMed

    Carballo-Rubio, Raúl

    2018-02-09

    The phenomenon of quantum vacuum polarization in the presence of a gravitational field is well understood and is expected to have a physical reality, but studies of its backreaction on the dynamics of spacetime are practically nonexistent outside of the specific context of homogeneous cosmologies. Building on previous results of quantum field theory in curved spacetimes, in this Letter we first derive the semiclassical equations of stellar equilibrium in the s-wave Polyakov approximation. It is highlighted that incorporating the polarization of the quantum vacuum leads to a generalization of the classical Tolman-Oppenheimer-Volkoff equation. Despite the complexity of the resulting field equations, it is possible to find exact solutions. Aside from being the first known exact solutions that describe relativistic stars including the nonperturbative backreaction of semiclassical effects, these are identified as a nontrivial combination of the black star and gravastar proposals.

  15. Firewall or smooth horizon?

    NASA Astrophysics Data System (ADS)

    Ori, Amos

    2016-01-01

    Almheiri, Marolf, Polchinski, and Sully pointed out that for a sufficiently old black hole (BH), the set of assumptions known as the complementarity postulates appears to be inconsistent with the assumption of local regularity at the horizon. They concluded that the horizon of an old BH is likely to be the locus of local irregularity, a "firewall". Here I point out that if one adopts a different assumption, namely that semiclassical physics holds throughout its anticipated domain of validity, then the inconsistency is avoided, and the horizon retains its regularity. In this alternative view-point, the vast portion of the original BH information remains trapped inside the BH throughout the semiclassical domain of evaporation, and possibly leaks out later on. This appears to be an inevitable outcome of semiclassical gravity (if assumed to apply throughout its anticipated domain of validity).

  16. Semiclassical (qft) and Quantum (string) Rotating Black Holes and Their Evaporation:. New Results

    NASA Astrophysics Data System (ADS)

    Bouchareb, A.; Ramón Medrano, M.; Sánchez, N. G.

    Combination of both quantum field theory (QFT) and string theory in curved backgrounds in a consistent framework, the string analogue model, allows us to provide a full picture of the Kerr-Newman black hole and its evaporation going beyond the current picture. We compute the quantum emission cross-section of strings by a Kerr-Newman black hole (KNbh). It shows the black hole emission at the Hawking temperature Tsem in the early stage of evaporation and the new string emission featuring a Hagedorn transition into a string state of temperature Ts at the last stages. New bounds on J and Q emerge in the quantum string regime (besides the known ones of the classical/semiclassical QFT regime). The last state of evaporation of a semiclassical Kerr-Newman black hole with mass M > mPl, angular momentum J and charge Q is a string state of temperature Ts, string mass Ms, J = 0 and Q = 0, decaying as usual quantum strings do into all kinds of particles. (Naturally, in this framework, there is no loss of information, (there is no paradox at all).) We compute the string entropy Ss(m, j) from the microscopic string density of states of mass m and spin mode j, ρ(m, j). (Besides the Hagedorn transition at Ts) we find for high j (extremal string states j → m2α‧c), a new phase transition at a temperature Tsj = √ {j/hbar }Ts, higher than Ts. By precisely identifying the semiclassical and quantum (string) gravity regimes, we find a new formula for the Kerr black hole entropy Ssem(M, J), as a function of the usual Bekenstein-Hawking entropy S sem(0). For M ≫ mPl and J < GM2/c, S sem(0) is the leading term, but for high angular momentum, (nearly extremal case J = GM2/c), a gravitational phase transition operates and the whole entropy Ssem is drastically different from the Bekenstein-Hawking entropy S sem(0). This new extremal black hole transition occurs at a temperature Tsem J = (J/ℏ)Tsem, higher than the Hawking temperature Tsem.

  17. Increasing the efficiency and accuracy of time-resolved electronic spectra calculations with on-the-fly ab initio quantum dynamics methods

    NASA Astrophysics Data System (ADS)

    Vanicek, Jiri

    2014-03-01

    Rigorous quantum-mechanical calculations of coherent ultrafast electronic spectra remain difficult. I will present several approaches developed in our group that increase the efficiency and accuracy of such calculations: First, we justified the feasibility of evaluating time-resolved spectra of large systems by proving that the number of trajectories needed for convergence of the semiclassical dephasing representation/phase averaging is independent of dimensionality. Recently, we further accelerated this approximation with a cellular scheme employing inverse Weierstrass transform and optimal scaling of the cell size. The accuracy of potential energy surfaces was increased by combining the dephasing representation with accurate on-the-fly ab initio electronic structure calculations, including nonadiabatic and spin-orbit couplings. Finally, the inherent semiclassical approximation was removed in the exact quantum Gaussian dephasing representation, in which semiclassical trajectories are replaced by communicating frozen Gaussian basis functions evolving classically with an average Hamiltonian. Among other examples I will present an on-the-fly ab initio semiclassical dynamics calculation of the dispersed time-resolved stimulated emission spectrum of the 54-dimensional azulene. This research was supported by EPFL and by the Swiss National Science Foundation NCCR MUST (Molecular Ultrafast Science and Technology) and Grant No. 200021124936/1.

  18. "Divide-and-conquer" semiclassical molecular dynamics: An application to water clusters

    NASA Astrophysics Data System (ADS)

    Di Liberto, Giovanni; Conte, Riccardo; Ceotto, Michele

    2018-03-01

    We present an investigation of vibrational features in water clusters performed by means of our recently established divide-and-conquer semiclassical approach [M. Ceotto, G. Di Liberto, and R. Conte, Phys. Rev. Lett. 119, 010401 (2017)]. This technique allows us to simulate quantum vibrational spectra of high-dimensional systems starting from full-dimensional classical trajectories and projection of the semiclassical propagator onto a set of lower dimensional subspaces. The potential energy surface employed is a many-body representation up to three-body terms, in which monomers and two-body interactions are described by the high level Wang-Huang-Braams-Bowman (WHBB) water potential, while, for three-body interactions, calculations adopt a fast permutationally invariant ab initio surface at the same level of theory of the WHBB 3-body potential. Applications range from the water dimer up to the water decamer, a system made of 84 vibrational degrees of freedom. Results are generally in agreement with previous variational estimates in the literature. This is particularly true for the bending and the high-frequency stretching motions, while estimates of modes strongly influenced by hydrogen bonding are red shifted, in a few instances even substantially, as a consequence of the dynamical and global picture provided by the semiclassical approach.

  19. Theoretical Studies of Spectroscopic Line Mixing in Remote Sensing Applications

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Boulet, C.; Tipping, R. H.

    2015-01-01

    The phenomenon of collisional transfer of intensity due to line mixing has an increasing importance for atmospheric monitoring. From a theoretical point of view, all relevant information about the collisional processes is contained in the relaxation matrix where the diagonal elements give half-widths and shifts, and the off-diagonal elements correspond to line interferences. For simple systems such as those consisting of diatom-atom or diatom-diatom, accurate fully quantum calculations based on interaction potentials are feasible. However, fully quantum calculations become unrealistic for more complex systems. On the other hand, the semi-classical Robert-Bonamy (RB) formalism, which has been widely used to calculate half-widths and shifts for decades, fails in calculating the off-diagonal matrix elements. As a result, in order to simulate atmospheric spectra where the effects from line mixing are important, semi-empirical fitting or scaling laws such as the ECS (Energy-Corrected Sudden) and IOS (Infinite-Order Sudden) models are commonly used. Recently, while scrutinizing the development of the RB formalism, we have found that these authors applied the isolated line approximation in their evaluating matrix elements of the Liouville scattering operator given in exponential form. Since the criterion of this assumption is so stringent, it is not valid for many systems of interest in atmospheric applications. Furthermore, it is this assumption that blocks the possibility to calculate the whole relaxation matrix at all. By eliminating this unjustified application, and accurately evaluating matrix elements of the exponential operators, we have developed a more capable formalism. With this new formalism, we are now able not only to reduce uncertainties for calculated half-widths and shifts, but also to remove a once insurmountable obstacle to calculate the whole relaxation matrix. This implies that we can address the line mixing with the semi-classical theory based on interaction potentials between molecular absorber and molecular perturber. We have applied this formalism to address the line mixing for Raman and infrared spectra of molecules such as N2, C2H2, CO2, NH3, and H2O. By carrying out rigorous calculations, our calculated relaxation matrices are in good agreement with both experimental data and results derived from the ECS model.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cirilo Antonio, N.; Manojlovic, N.; Departamento de Matematica, FCT, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro

    sl{sub 2} Gaudin model with jordanian twist is studied. This system can be obtained as the semiclassical limit of the XXX spin chain deformed by the jordanian twist. The appropriate creation operators that yield the Bethe states of the Gaudin model and consequently its spectrum are defined. Their commutation relations with the generators of the corresponding loop algebra as well as with the generating function of integrals of motion are given. The inner products and norms of Bethe states and the relation to the solutions of the Knizhnik-Zamolodchikov equations are discussed.

  1. Direct Simulation Monte Carlo Application of the Three Dimensional Forced Harmonic Oscillator Model

    DTIC Science & Technology

    2017-12-07

    quasi -classical scattering theory [3,4] or trajectory [5] calculations, semiclassical, as well as close-coupled [6,7] or full [8] quantum mechanical...the quasi -classical trajectory (QCT) calculations approach for ab initio modeling of collision processes. The DMS method builds on an earlier work...nu ar y 30 , 2 01 8 | h ttp :// ar c. ai aa .o rg | D O I: 1 0. 25 14 /1 .T 52 28 to directly use quasi -classical or quantum mechanic

  2. Regular-to-Chaotic Tunneling Rates: From the Quantum to the Semiclassical Regime

    NASA Astrophysics Data System (ADS)

    Löck, Steffen; Bäcker, Arnd; Ketzmerick, Roland; Schlagheck, Peter

    2010-03-01

    We derive a prediction of dynamical tunneling rates from regular to chaotic phase-space regions combining the direct regular-to-chaotic tunneling mechanism in the quantum regime with an improved resonance-assisted tunneling theory in the semiclassical regime. We give a qualitative recipe for identifying the relevance of nonlinear resonances in a given ℏ regime. For systems with one or multiple dominant resonances we find excellent agreement to numerics.

  3. Quantum Bound to Chaos and the Semiclassical Limit

    NASA Astrophysics Data System (ADS)

    Kurchan, Jorge

    2018-06-01

    We discuss the quantum bound on chaos in the context of the free propagation of a particle in an arbitrarily curved surface at low temperatures. The semiclassical calculation of the Lyapunov exponent can be performed in much the same way as the corresponding one for the `Loschmidt echo'. The bound appears here as the impossibility to scatter a wave, by effect of the curvature, over characteristic lengths smaller than the deBroglie wavelength.

  4. Hadronic density of states from string theory.

    PubMed

    Pando Zayas, Leopoldo A; Vaman, Diana

    2003-09-12

    We present an exact calculation of the finite temperature partition function for the hadronic states corresponding to a Penrose-Güven limit of the Maldacena-Nùñez embedding of the N=1 super Yang-Mills (SYM) into string theory. It is established that the theory exhibits a Hagedorn density of states. We propose a semiclassical string approximation to the finite temperature partition function for confining gauge theories admitting a supergravity dual, by performing an expansion around classical solutions characterized by temporal windings. This semiclassical approximation reveals a hadronic energy density of states of a Hagedorn type, with the coefficient determined by the gauge theory string tension as expected for confining theories. We argue that our proposal captures primarily information about states of pure N=1 SYM theory, given that this semiclassical approximation does not entail a projection onto states of large U(1) charge.

  5. Hawking radiation due to photon and gravitino tunneling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majhi, Bibhas Ranjan, E-mail: bibhas@bose.res.i; Samanta, Saurav, E-mail: srvsmnt@gmail.co

    2010-11-15

    Applying the Hamilton-Jacobi method we investigate the tunneling of photon across the event horizon of a static spherically symmetric black hole. The necessity of the gauge condition on the photon field, to derive the semiclassical Hawking temperature, is explicitly shown. Also, the tunneling of photon and gravitino beyond this semiclassical approximation are presented separately. Quantum corrections of the action for both cases are found to be proportional to the semiclassical contribution. Modifications to the Hawking temperature and Bekenstein-Hawking area law are thereby obtained. Using this corrected temperature and Hawking's periodicity argument, the modified metric for the Schwarzschild black hole ismore » given. This corrected version of the metric, up to h order is equivalent to the metric obtained by including one loop back reaction effect. Finally, the coefficient of the leading order correction of entropy is shown to be related to the trace anomaly.« less

  6. Implementation of the semiclassical quantum Fourier transform in a scalable system.

    PubMed

    Chiaverini, J; Britton, J; Leibfried, D; Knill, E; Barrett, M D; Blakestad, R B; Itano, W M; Jost, J D; Langer, C; Ozeri, R; Schaetz, T; Wineland, D J

    2005-05-13

    We report the implementation of the semiclassical quantum Fourier transform in a system of three beryllium ion qubits (two-level quantum systems) confined in a segmented multizone trap. The quantum Fourier transform is the crucial final step in Shor's algorithm, and it acts on a register of qubits to determine the periodicity of the quantum state's amplitudes. Because only probability amplitudes are required for this task, a more efficient semiclassical version can be used, for which only single-qubit operations conditioned on measurement outcomes are required. We apply the transform to several input states of different periodicities; the results enable the location of peaks corresponding to the original periods. This demonstration incorporates the key elements of a scalable ion-trap architecture, suggesting the future capability of applying the quantum Fourier transform to a large number of qubits as required for a useful quantum factoring algorithm.

  7. The quantum holonomy-diffeomorphism algebra and quantum gravity

    NASA Astrophysics Data System (ADS)

    Aastrup, Johannes; Grimstrup, Jesper Møller

    2016-03-01

    We introduce the quantum holonomy-diffeomorphism ∗-algebra, which is generated by holonomy-diffeomorphisms on a three-dimensional manifold and translations on a space of SU(2)-connections. We show that this algebra encodes the canonical commutation relations of canonical quantum gravity formulated in terms of Ashtekar variables. Furthermore, we show that semiclassical states exist on the holonomy-diffeomorphism part of the algebra but that these states cannot be extended to the full algebra. Via a Dirac-type operator we derive a certain class of unbounded operators that act in the GNS construction of the semiclassical states. These unbounded operators are the type of operators, which we have previously shown to entail the spatial three-dimensional Dirac operator and Dirac-Hamiltonian in a semiclassical limit. Finally, we show that the structure of the Hamilton constraint emerges from a Yang-Mills-type operator over the space of SU(2)-connections.

  8. Semiclassical magnetotransport in strongly spin-orbit coupled Rashba two-dimensional electron systems.

    PubMed

    Xiao, Cong; Li, Dingping

    2016-06-15

    Semiclassical magnetoelectric and magnetothermoelectric transport in strongly spin-orbit coupled Rashba two-dimensional electron systems is investigated. In the presence of a perpendicular classically weak magnetic field and short-range impurity scattering, we solve the linearized Boltzmann equation self-consistently. Using the solution, it is found that when Fermi energy E F locates below the band crossing point (BCP), the Hall coefficient is a nonmonotonic function of electron density n e and not inversely proportional to n e. While the magnetoresistance (MR) and Nernst coefficient vanish when E F locates above the BCP, non-zero MR and enhanced Nernst coefficient emerge when E F decreases below the BCP. Both of them are nonmonotonic functions of E F below the BCP. The different semiclassical magnetotransport behaviors between the two sides of the BCP can be helpful to experimental identifications of the band valley regime and topological change of Fermi surface in considered systems.

  9. Semiclassical magnetotransport in strongly spin-orbit coupled Rashba two-dimensional electron systems

    NASA Astrophysics Data System (ADS)

    Xiao, Cong; Li, Dingping

    2016-06-01

    Semiclassical magnetoelectric and magnetothermoelectric transport in strongly spin-orbit coupled Rashba two-dimensional electron systems is investigated. In the presence of a perpendicular classically weak magnetic field and short-range impurity scattering, we solve the linearized Boltzmann equation self-consistently. Using the solution, it is found that when Fermi energy E F locates below the band crossing point (BCP), the Hall coefficient is a nonmonotonic function of electron density n e and not inversely proportional to n e. While the magnetoresistance (MR) and Nernst coefficient vanish when E F locates above the BCP, non-zero MR and enhanced Nernst coefficient emerge when E F decreases below the BCP. Both of them are nonmonotonic functions of E F below the BCP. The different semiclassical magnetotransport behaviors between the two sides of the BCP can be helpful to experimental identifications of the band valley regime and topological change of Fermi surface in considered systems.

  10. Geometric constraints in semiclassical initial value representation calculations in Cartesian coordinates: accurate reduction in zero-point energy.

    PubMed

    Issack, Bilkiss B; Roy, Pierre-Nicholas

    2005-08-22

    An approach for the inclusion of geometric constraints in semiclassical initial value representation calculations is introduced. An important aspect of the approach is that Cartesian coordinates are used throughout. We devised an algorithm for the constrained sampling of initial conditions through the use of multivariate Gaussian distribution based on a projected Hessian. We also propose an approach for the constrained evaluation of the so-called Herman-Kluk prefactor in its exact log-derivative form. Sample calculations are performed for free and constrained rare-gas trimers. The results show that the proposed approach provides an accurate evaluation of the reduction in zero-point energy. Exact basis set calculations are used to assess the accuracy of the semiclassical results. Since Cartesian coordinates are used, the approach is general and applicable to a variety of molecular and atomic systems.

  11. Semiclassical evaluation of quantum fidelity

    NASA Astrophysics Data System (ADS)

    Vaníček, Jiří; Heller, Eric J.

    2003-11-01

    We present a numerically feasible semiclassical (SC) method to evaluate quantum fidelity decay (Loschmidt echo) in a classically chaotic system. It was thought that such evaluation would be intractable, but instead we show that a uniform SC expression not only is tractable but it also gives remarkably accurate numerical results for the standard map in both the Fermi-golden-rule and Lyapunov regimes. Because it allows Monte Carlo evaluation, the uniform expression is accurate at times when there are 1070 semiclassical contributions. Remarkably, it also explicitly contains the “building blocks” of analytical theories of recent literature, and thus permits a direct test of the approximations made by other authors in these regimes, rather than an a posteriori comparison with numerical results. We explain in more detail the extended validity of the classical perturbation approximation and show that within this approximation, the so-called “diagonal approximation” is automatic and does not require ensemble averaging.

  12. Model for Ultrafast Carrier Scattering in Semiconductors

    DTIC Science & Technology

    2012-11-14

    energy transfer between semi-classical carrier drift-diffusion under an electric field and quantum kinetics of interband /intersubband transitions...from an electron during each phonon-emission event. The net rate of phonon emission is determined by the Boltzmann scattering equation which depends ...energy-drift term under a strong dc field was demonstrated to reduce the field- dependent drift velocity and mobility. The Doppler shift in the energy

  13. Quantum mechanical models for the Fermi shuttle

    NASA Astrophysics Data System (ADS)

    Sternberg, James; Ovchinnikov, S. Yu.; Macek, J. H.

    2009-05-01

    Although the Fermi shuttle was originally proposed as an explanation for highly energetic cosmic rays, it is also a mechanism for the production of high energy electrons in atomic collisions [1]. The Fermi shuttle is usually thought of as a classical effect and most models of this process rely on classical or semi-classical approximations. In this work we explore several quantum mechanical models for ion-atom collisions and examine the evidence for the Fermi shuttle in these models. [4pt] [1] B. Sulik, Cs. Koncz, K. Tok'esi, A. Orb'an, and D. Ber'enyi, Phys Rev. Lett. 88 073201 (2002)

  14. Black hole mining in the RST model

    NASA Astrophysics Data System (ADS)

    Basavaraju, Rohitvarma; Lowe, David A.

    2017-06-01

    We consider the possibility of mining black holes in the 1  +  1-dimensional dilaton gravity model of Russo, Susskind and Thorlacius. The model correctly incorporates Hawking radiation and back-reaction in a semiclassical expansion in 1/N, where N is the number of matter species. It is shown that the lifetime of a perturbed black hole is independent of the addition of any extra apparatus when realized by an arbitrary positive energy matter source. We conclude that mining does not occur in the RST model and comment on the implications of this for the black hole information paradox.

  15. Electron emission perpendicular to the polarization direction in laser-assisted XUV atomic ionization

    NASA Astrophysics Data System (ADS)

    Gramajo, A. A.; Della Picca, R.; Arbó, D. G.

    2017-08-01

    We present a theoretical study of ionization of the hydrogen atom due to an XUV pulse in the presence of an infrared (IR) laser with both fields linearly polarized in the same direction. In particular, we study the energy distribution of photoelectrons emitted perpendicularly to the polarization direction. As we previously showed in Gramajo et al. [Phys. Rev. A 94, 053404 (2016), 10.1103/PhysRevA.94.053404] for parallel emission, by means of a very simple semiclassical model which considers electron trajectories born at different ionization times, the electron energy spectrum can be interpreted as the interplay of intra- and intercycle interferences. However, contrary to the case of parallel emission the intracycle interference pattern stems from the coherent superposition of four electron trajectories giving rise to (i) interference of electron trajectories born during the same half cycle (intra-half-cycle interference) and (ii) interference between electron trajectories born during the first half cycle with those born during the second half cycle (inter-half-cycle interference). The intercycle interference is responsible for the formation of the sidebands. We also show that the destructive inter-half-cycle interference for the absorption and emission of an even number of IR laser photons is responsible for the characteristic sidebands in the perpendicular direction separated by twice the IR photon energy. This contrasts with the emission along the polarization axis (all sideband orders are present) since intra-half-cycle interferences do not exist in that case. The intracycle interference pattern works as a modulation of the sidebands and, in the same way, it is modulated by the intra-half-cycle interference pattern. We analyze the dependence of the energy spectrum on the laser intensity and the time delay between the XUV pulse and the IR laser. Finally, we show that our semiclassical simulations are in very good agreement with quantum calculations within the strong-field approximation and the numerical solution of the time-dependent Schrödinger equation, giving rise to nonzero emission, in contraposition to other theories.

  16. The Holst spin foam model via cubulations

    NASA Astrophysics Data System (ADS)

    Baratin, Aristide; Flori, Cecilia; Thiemann, Thomas

    2012-10-01

    Spin foam models are an attempt at a covariant or path integral formulation of canonical loop quantum gravity. The construction of such models usually relies on the Plebanski formulation of general relativity as a constrained BF theory and is based on the discretization of the action on a simplicial triangulation, which may be viewed as an ultraviolet regulator. The triangulation dependence can be removed by means of group field theory techniques, which allows one to sum over all triangulations. The main tasks for these models are the correct quantum implementation of the Plebanski constraints, the existence of a semiclassical sector implementing additional ‘Regge-like’ constraints arising from simplicial triangulations and the definition of the physical inner product of loop quantum gravity via group field theory. Here we propose a new approach to tackle these issues stemming directly from the Holst action for general relativity, which is also a proper starting point for canonical loop quantum gravity. The discretization is performed by means of a ‘cubulation’ of the manifold rather than a triangulation. We give a direct interpretation of the resulting spin foam model as a generating functional for the n-point functions on the physical Hilbert space at finite regulator. This paper focuses on ideas and tasks to be performed before the model can be taken seriously. However, our analysis reveals some interesting features of this model: firstly, the structure of its amplitudes differs from the standard spin foam models. Secondly, the tetrad n-point functions admit a ‘Wick-like’ structure. Thirdly, the restriction to simple representations does not automatically occur—unless one makes use of the time gauge, just as in the classical theory.

  17. Application of semiclassical and geometrical optics theories to resonant modes of a coated sphere.

    PubMed

    Bambino, Túlio M; Breitschaft, Ana Maria S; Barbosa, Valmar C; Guimarães, Luiz G

    2003-03-01

    This work deals with some aspects of the resonant scattering of electromagnetic waves by a metallic sphere covered by a dielectric layer, in the weak-absorption approximation. We carry out a geometrical optics treatment of the scattering and develop semiclassical formulas to determine the positions and widths of the system resonances. In addition, we show that the mean lifetime of broad resonances is strongly dependent on the polarization of the incident light.

  18. Coherent and Semiclassical States of a Charged Particle in a Constant Electric Field

    NASA Astrophysics Data System (ADS)

    Adorno, T. C.; Pereira, A. S.

    2018-05-01

    The method of integrals of motion is used to construct families of generalized coherent states of a nonrelativistic spinless charged particle in a constant electric field. Families of states, differing in the values of their standard deviations at the initial time, are obtained. Depending on the initial values of the standard deviations, and also on the electric field, it turns out to be possible to identify some families with semiclassical states.

  19. Role of the phase-matching condition in nondegenerate four-wave mixing in hot vapors for the generation of squeezed states of light

    NASA Astrophysics Data System (ADS)

    Turnbull, M. T.; Petrov, P. G.; Embrey, C. S.; Marino, A. M.; Boyer, V.

    2013-09-01

    Nondegenerate forward four-wave mixing in hot atomic vapors has been shown to produce strong quantum correlations between twin beams of light [McCormick , Opt. Lett.OPLEDP0146-959210.1364/OL.32.000178 32, 178 (2007)], in a configuration which minimizes losses by absorption. In this paper, we look at the role of the phase-matching condition in the trade-off that occurs between the efficiency of the nonlinear process and the absorption of the twin beams. To this effect, we develop a semiclassical model by deriving the atomic susceptibilities in the relevant double-Λ configuration and by solving the classical propagation of the twin-beam fields for parameters close to those found in typical experiments. These theoretical results are confirmed by a simple experimental study of the nonlinear gain experienced by the twin beams as a function of the phase mismatch. The model shows that the amount of phase mismatch is key to the realization of the physical conditions in which the absorption of the twin beams is minimized while the cross coupling between the twin beams is maintained at the level required for the generation of strong quantum correlations. The optimum is reached when the four-wave mixing process is not phase matched for fully resonant four-wave mixing.

  20. Problem of time in slightly inhomogeneous cosmology

    NASA Astrophysics Data System (ADS)

    Anderson, Edward

    2016-07-01

    The problem of time (PoT) is a multi-faceted conceptual incompatibility between various areas of Theoretical Physics. While usually stated as between GR and QM, in fact 8/9ths of it is already present at the classical level. Thus we adopt a ‘top-down’ classical and then quantum approach. I consider a local resolution to the PoT that is Machian, which was previously realized for relational triangle and minisuperspace models. This resolution has three levels: classical, semiclassical and combined semiclassical-histories-records. This article’s specific model is a slightly inhomogeneous cosmology considered for now at the classical level. This is motivated by how the inhomogeneous fluctuations that underlie structure formation—galaxies and CMB hotspots—might have been seeded by quantum cosmological fluctuations, as magnified by some inflationary mechanism. In particular, I consider the perturbations about {{{S}}}3 case of this involving up to second order, which has a number of parallels with the Halliwell-Hawking model but has a number of conceptual differences and useful upgrades. The article’s main features are that the elimination part of the model’s thin sandwich is straightforward, but the modewise split of the constraints fail to be first-class constraints. Thus the elimination part only arises as an intermediate geometry between superspace and Riem. The reduced geometries have surprising singularities influenced by the matter content of the Universe, though the N-body problem anticipates these with its collinear singularities. I also give a ‘basis set’ of Kuchař beables for this model arena.

  1. Theory for electron transfer from a mixed-valence dimer with paramagnetic sites to a mononuclear acceptor

    NASA Astrophysics Data System (ADS)

    Bominaar, E. L.; Achim, C.; Borshch, S. A.

    1999-06-01

    Polynuclear transition-metal complexes, such as Fe-S clusters, are the prosthetic groups in a large number of metalloproteins and serve as temporary electron storage units in a number of important redox-based biological processes. Polynuclearity distinguishes clusters from mononuclear centers and confers upon them unique properties, such as spin ordering and the presence of thermally accessible excited spin states in clusters with paramagnetic sites, and fractional valencies in clusters of the mixed-valence type. In an earlier study we presented an effective-mode (EM) analysis of electron transfer from a binuclear mixed-valence donor with paramagnetic sites to a mononuclear acceptor which revealed that the cluster-specific attributes have an important impact on the kinetics of long-range electron transfer. In the present study, the validity of these results is tested in the framework of more detailed theories which we have termed the multimode semiclassical (SC) model and the quantum-mechanical (QM) model. It is found that the qualitative trends in the rate constant are the same in all treatments and that the semiclassical models provide a good approximation of the more rigorous quantum-mechanical description of electron transfer under physiologically relevant conditions. In particular, the present results corroborate the importance of electron transfer via excited spin states in reactions with a low driving force and justify the use of semiclassical theory in cases in which the QM model is computationally too demanding. We consider cases in which either one or two donor sites of a dimer are electronically coupled to the acceptor. In the case of multiconnectivity, the rate constant for electron transfer from a valence-delocalized (class-III) donor is nonadditive with respect to transfer from individual metal sites of the donor and undergoes an order-of-magnitude change by reversing the sign of the intradimer metal-metal resonance parameter (β). In the case of single connectivity, the rate constant for electron transfer from a valence-localized (class-II) donor can readily be tuned over several orders of magnitude by introducing differences in the electronic potentials at the two metal sites of the donor. These results indicate that theories of cluster-based electron transfer, in order to be realistic, need to consider both intrinsic electronic structure and extrinsic interactions of the cluster with the protein environment.

  2. Predictions of the quantum landscape multiverse

    NASA Astrophysics Data System (ADS)

    Mersini-Houghton, Laura

    2017-02-01

    The 2015 Planck data release has placed tight constraints on the class of inflationary models allowed. The current best fit region favors concave downwards inflationary potentials, since they produce a suppressed tensor to scalar index ratio r. Concave downward potentials have a negative curvature {{V}\\prime \\prime} , therefore a tachyonic mass square that drives fluctuations. Furthermore, their use can become problematic if the field rolls in a part of the potential away from the extrema, since the semiclassical approximation of quantum cosmology, used for deriving the most probable wavefunction of the universe from the landscape and for addressing the quantum to classical transition, breaks down away from the steepest descent region. We here propose a way of dealing with such potentials by inverting the metric signature and solving for the wavefunction of the universe in the Euclidean sector. This method allows us to extend our theory of the origin of the universe from a quantum multiverse, to a more general class of concave inflationary potentials where a straightforward application of the semiclassical approximation fails. The work here completes the derivation of modifications to the Newtonian potential and to the inflationary potential, which originate from the quantum entanglement of our universe with all others in the quantum landscape multiverse, leading to predictions of observational signatures for both types of inflationary models, concave and convex potentials.

  3. First-Principles Calculation of the Third Virial Coefficient of Helium

    PubMed Central

    Garberoglio, Giovanni; Harvey, Allan H.

    2009-01-01

    Knowledge of the pair and three-body potential-energy surfaces of helium is now sufficient to allow calculation of the third density virial coefficient, C(T), with significantly smaller uncertainty than that of existing experimental data. In this work, we employ the best available pair and three-body potentials for helium and calculate C(T) with path-integral Monte Carlo (PIMC) calculations supplemented by semiclassical calculations. The values of C(T) presented extend from 24.5561 K to 10 000 K. In the important metrological range of temperatures near 273.16 K, our uncertainties are smaller than the best experimental results by approximately an order of magnitude, and the reduction in uncertainty at other temperatures is at least as great. For convenience in calculation of C(T) and its derivatives, a simple correlating equation is presented. PMID:27504226

  4. Semiclassical neutral atom as a reference system in density functional theory.

    PubMed

    Constantin, Lucian A; Fabiano, E; Laricchia, S; Della Sala, F

    2011-05-06

    We use the asymptotic expansions of the semiclassical neutral atom as a reference system in density functional theory to construct accurate generalized gradient approximations (GGAs) for the exchange-correlation and kinetic energies without any empiricism. These asymptotic functionals are among the most accurate GGAs for molecular systems, perform well for solid state, and overcome current GGA state of the art in frozen density embedding calculations. Our results also provide evidence for the conjointness conjecture between exchange and kinetic energies of atomic systems.

  5. Semiclassical wave packet treatment of scattering resonances: application to the delta zero-point energy effect in recombination reactions.

    PubMed

    Vetoshkin, Evgeny; Babikov, Dmitri

    2007-09-28

    For the first time Feshbach-type resonances important in recombination reactions are characterized using the semiclassical wave packet method. This approximation allows us to determine the energies, lifetimes, and wave functions of the resonances and also to observe a very interesting correlation between them. Most important is that this approach permits description of a quantum delta-zero-point energy effect in recombination reactions and reproduces the anomalous rates of ozone formation.

  6. Some semiclassical structure constants for AdS 4 × CP 3

    NASA Astrophysics Data System (ADS)

    Ahn, Changrim; Bozhilov, Plamen

    2018-02-01

    We compute structure constants in three-point functions of three string states in AdS 4× CP 3 in the framework of the semiclassical approach. We consider HHL correlation functions where two of the states are "heavy" string states of finite-size giant magnons carrying one or two angular momenta and the other one corresponds to such "light" states as dilaton operators with non-zero momentum, primary scalar operators, and singlet scalar operators with higher string levels.

  7. Relativistic extended Thomas-Fermi calculations with exchange term contributions

    NASA Astrophysics Data System (ADS)

    Haddad, S.; Weigel, M. K.

    1994-10-01

    In this investigation we present self-consistent relativistic extended Thomas-Fermi (ETF) and extended Thomas-Fermi-Fock (ETFF) approaches, derived from the semiclassical treatment of the relativistic nuclear Hartree-Fock problem. The approximations are used to describe the ground-state properties of finite nuclei. The resulting equations are solved numerically for several one-boson-exchange (OBE) lagrangians. The results are discussed and compared with the outcome of full quantal Hartree and Hartree-Fock calculations, other semiclassical treatments and experimental data.

  8. Suppression of Bekenstein-Hawking radiation in f(T)-gravity

    NASA Astrophysics Data System (ADS)

    Addazi, Andrea

    2018-01-01

    We discuss semiclassical Nariai black holes in the framework of f(T)-gravity. For a diagonal choice of tetrads, stable Nariai metrics can be found, emitting Bekenstein-Hawking radiation in semiclassical limit. However, for a nondiagonal choice of tetrads, evaporation and anti-evaporation instabilities are turned on. In turn, this causes a backreaction effect suppressing the Bekenstein-Hawking radiation. In particular, evaporation instabilities produce a new radiation — different by Bekenstein-Hawking emission — nonviolating unitarity in particle physics sector.

  9. Semiclassical perturbation Stark widths of singly charged argon spectral lines

    NASA Astrophysics Data System (ADS)

    Hamdi, Rafik; Ben Nessib, Nabil; Sahal-Bréchot, Sylvie; Dimitrijević, Milan S.

    2018-03-01

    Using a semiclassical perturbation approach with the impact approximation, Stark widths for singly charged argon (Ar II) spectral lines have been calculated. Energy levels and oscillator strengths needed for this calculation have been determined using the Hartree-Fock method with relativistic corrections. Our Stark widths are compared with experimental results for 178 spectral lines. Our results may be of interest not only for laboratory plasma, lasers and technological plasmas but also for white dwarfs and A- and B-type stars.

  10. Transition from AdS universe to DS universe in the BPP model

    NASA Astrophysics Data System (ADS)

    Kim, Wontae; Yoon, Myungseok

    2007-04-01

    It can be shown that in the BPP model the smooth phase transition from the asymptotically decelerated AdS universe to the asymptotically accelerated DS universe is possible by solving the modified semiclassical equations of motion. This transition comes from noncommutative Poisson algebra, which gives the constant curvature scalars asymptotically. The decelerated expansion of the early universe is due to the negative energy density with the negative pressure induced by quantum back reaction, and the accelerated late-time universe comes from the positive energy and the negative pressure which behave like dark energy source in recent cosmological models.

  11. Semiclassical theory for liquidlike behavior of the frustrated magnet Ca10Cr7O28

    NASA Astrophysics Data System (ADS)

    Biswas, Sounak; Damle, Kedar

    2018-03-01

    We identify the low energy effective Hamiltonian that is expected to describe the low temperature properties of the frustrated magnet Ca10Cr7O28 . Motivated by the fact that this effective Hamiltonian has S =3 /2 effective moments as its degrees of freedom, we use semiclassical spin-wave theory to study the T =0 physics of this effective model and argue that singular spin-wave fluctuations destabilize the spiral order favored by the exchange couplings of this effective Hamiltonian. We also use a combination of classical Monte-Carlo simulations and molecular dynamics, as well as analytical approximations, to study the physics at low, nonzero temperatures. The results of these nonzero temperature calculations capture the liquidlike structure factors observed in the temperature range accessed by recent experiments. Additionally, at still lower temperatures, they predict that a transition to nematic order in the bond energies reflects itself in the spin channel in the form of a crossover to a regime with large but finite correlation length for spiral spin correlations and a corresponding slowing down of spin dynamics.

  12. Simulation of vibrational dephasing of I(2) in solid Kr using the semiclassical Liouville method.

    PubMed

    Riga, Jeanne M; Fredj, Erick; Martens, Craig C

    2006-02-14

    In this paper, we present simulations of the decay of quantum coherence between vibrational states of I(2) in its ground (X) electronic state embedded in a cryogenic Kr matrix. We employ a numerical method based on the semiclassical limit of the quantum Liouville equation, which allows the simulation of the evolution and decay of quantum vibrational coherence using classical trajectories and ensemble averaging. The vibrational level-dependent interaction of the I(2)(X) oscillator with the rare-gas environment is modeled using a recently developed method for constructing state-dependent many-body potentials for quantum vibrations in a many-body classical environment [J. M. Riga, E. Fredj, and C. C. Martens, J. Chem. Phys. 122, 174107 (2005)]. The vibrational dephasing rates gamma(0n) for coherences prepared between the ground vibrational state mid R:0 and excited vibrational state mid R:n are calculated as a function of n and lattice temperature T. Excellent agreement with recent experiments performed by Karavitis et al. [Phys. Chem. Chem. Phys. 7, 791 (2005)] is obtained.

  13. Semiclassical Path Integral Calculation of Nonlinear Optical Spectroscopy.

    PubMed

    Provazza, Justin; Segatta, Francesco; Garavelli, Marco; Coker, David F

    2018-02-13

    Computation of nonlinear optical response functions allows for an in-depth connection between theory and experiment. Experimentally recorded spectra provide a high density of information, but to objectively disentangle overlapping signals and to reach a detailed and reliable understanding of the system dynamics, measurements must be integrated with theoretical approaches. Here, we present a new, highly accurate and efficient trajectory-based semiclassical path integral method for computing higher order nonlinear optical response functions for non-Markovian open quantum systems. The approach is, in principle, applicable to general Hamiltonians and does not require any restrictions on the form of the intrasystem or system-bath couplings. This method is systematically improvable and is shown to be valid in parameter regimes where perturbation theory-based methods qualitatively breakdown. As a test of the methodology presented here, we study a system-bath model for a coupled dimer for which we compare against numerically exact results and standard approximate perturbation theory-based calculations. Additionally, we study a monomer with discrete vibronic states that serves as the starting point for future investigation of vibronic signatures in nonlinear electronic spectroscopy.

  14. Thermoelectric properties of fully hydrogenated graphene: Semi-classical Boltzmann theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reshak, A. H., E-mail: maalidph@yahoo.co.uk; Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis

    2015-06-14

    Based on the calculated band structure, the electronic transport coefficients of chair-/boat-like graphane were evaluated by using the semi-classical Boltzmann theory and rigid band model. The maximum value of electrical conductivity for chair (boat)-like graphane of about 1.4 (0.6) × 10{sup 19} (Ωms){sup −1} is achieved at 600 K. The charge carrier concentration and the electrical conductivity linearly increase with increasing the temperature in agreement with the experimental work for graphene. The investigated materials exhibit the highest value of Seebeck coefficient at 300 K. We should emphasize that in the chemical potential between ∓0.125 μ(eV) the investigated materials exhibit minimum value of electronic thermalmore » conductivity, therefore, maximum efficiency. As the temperature increases, the electronic thermal conductivity increases exponentially, in agreement with the experimental data of graphene. We also calculated the power factor of chair-/boat-like graphane at 300 and 600 K as a function of chemical potential between ∓0.25 μ(eV)« less

  15. Numerical solutions of ideal quantum gas dynamical flows governed by semiclassical ellipsoidal-statistical distribution

    PubMed Central

    Yang, Jaw-Yen; Yan, Chih-Yuan; Diaz, Manuel; Huang, Juan-Chen; Li, Zhihui; Zhang, Hanxin

    2014-01-01

    The ideal quantum gas dynamics as manifested by the semiclassical ellipsoidal-statistical (ES) equilibrium distribution derived in Wu et al. (Wu et al. 2012 Proc. R. Soc. A 468, 1799–1823 (doi:10.1098/rspa.2011.0673)) is numerically studied for particles of three statistics. This anisotropic ES equilibrium distribution was derived using the maximum entropy principle and conserves the mass, momentum and energy, but differs from the standard Fermi–Dirac or Bose–Einstein distribution. The present numerical method combines the discrete velocity (or momentum) ordinate method in momentum space and the high-resolution shock-capturing method in physical space. A decoding procedure to obtain the necessary parameters for determining the ES distribution is also devised. Computations of two-dimensional Riemann problems are presented, and various contours of the quantities unique to this ES model are illustrated. The main flow features, such as shock waves, expansion waves and slip lines and their complex nonlinear interactions, are depicted and found to be consistent with existing calculations for a classical gas. PMID:24399919

  16. Nonadiabatic Molecular Dynamics and Orthogonality Constrained Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Shushkov, Philip Georgiev

    The exact quantum dynamics of realistic, multidimensional systems remains a formidable computational challenge. In many chemical processes, however, quantum effects such as tunneling, zero-point energy quantization, and nonadiabatic transitions play an important role. Therefore, approximate approaches that improve on the classical mechanical framework are of special practical interest. We propose a novel ring polymer surface hopping method for the calculation of chemical rate constants. The method blends two approaches, namely ring polymer molecular dynamics that accounts for tunneling and zero-point energy quantization, and surface hopping that incorporates nonadiabatic transitions. We test the method against exact quantum mechanical calculations for a one-dimensional, two-state model system. The method reproduces quite accurately the tunneling contribution to the rate and the distribution of reactants between the electronic states for this model system. Semiclassical instanton theory, an approach related to ring polymer molecular dynamics, accounts for tunneling by the use of periodic classical trajectories on the inverted potential energy surface. We study a model of electron transfer in solution, a chemical process where nonadiabatic events are prominent. By representing the tunneling electron with a ring polymer, we derive Marcus theory of electron transfer from semiclassical instanton theory after a careful analysis of the tunneling mode. We demonstrate that semiclassical instanton theory can recover the limit of Fermi's Golden Rule rate in a low-temperature, deep-tunneling regime. Mixed quantum-classical dynamics treats a few important degrees of freedom quantum mechanically, while classical mechanics describes affordably the rest of the system. But the interface of quantum and classical description is a challenging theoretical problem, especially for low-energy chemical processes. We therefore focus on the semiclassical limit of the coupled nuclear-electronic dynamics. We show that the time-dependent Schrodinger equation for the electrons employed in the widely used fewest switches surface hopping method is applicable only in the limit of nearly identical classical trajectories on the different potential energy surfaces. We propose a short-time decoupling algorithm that restricts the use of the Schrodinger equation only to the interaction regions. We test the short-time approximation on three model systems against exact quantum-mechanical calculations. The approximation improves the performance of the surface hopping approach. Nonadiabatic molecular dynamics simulations require the efficient and accurate computation of ground and excited state potential energy surfaces. Unlike the ground state calculations where standard methods exist, the computation of excited state properties is a challenging task. We employ time-independent density functional theory, in which the excited state energy is represented as a functional of the total density. We suggest an adiabatic-like approximation that simplifies the excited state exchange-correlation functional. We also derive a set of minimal conditions to impose exactly the orthogonality of the excited state Kohn-Sham determinant to the ground state determinant. This leads to an efficient, variational algorithm for the self-consistent optimization of the excited state energy. Finally, we assess the quality of the excitation energies obtained by the new method on a set of 28 organic molecules. The new approach provides results of similar accuracy to time-dependent density functional theory.

  17. Exact transition probabilities in a 6-state Landau–Zener system with path interference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinitsyn, Nikolai A.

    2015-04-23

    In this paper, we identify a nontrivial multistate Landau–Zener (LZ) model for which transition probabilities between any pair of diabatic states can be determined analytically and exactly. In the semiclassical picture, this model features the possibility of interference of different trajectories that connect the same initial and final states. Hence, transition probabilities are generally not described by the incoherent successive application of the LZ formula. Finally, we discuss reasons for integrability of this system and provide numerical tests of the suggested expression for the transition probability matrix.

  18. Stability of Internal Space in Kaluza-Klein Theory

    NASA Astrophysics Data System (ADS)

    Maeda, K.; Soda, J.

    1998-12-01

    We extend a model studied by Li and Gott III to investigate a stability of internal space in Kaluza-Klein theory. Our model is a four-dimensional de-Sitter space plus a n-dimensional compactified internal space. We introduce a solution of the semi-classical Einstein equation which shows us the fact that a n-dimensional compactified internal space can be stable by the Casimir effect. The self-consistency of this solution is checked. One may apply this solution to study the issue of the Black Hole singularity.

  19. Volume simplicity constraint in the Engle-Livine-Pereira-Rovelli spin foam model

    NASA Astrophysics Data System (ADS)

    Bahr, Benjamin; Belov, Vadim

    2018-04-01

    We propose a quantum version of the quadratic volume simplicity constraint for the Engle-Livine-Pereira-Rovelli spin foam model. It relies on a formula for the volume of 4-dimensional polyhedra, depending on its bivectors and the knotting class of its boundary graph. While this leads to no further condition for the 4-simplex, the constraint becomes nontrivial for more complicated boundary graphs. We show that, in the semiclassical limit of the hypercuboidal graph, the constraint turns into the geometricity condition observed recently by several authors.

  20. Superconducting Microwave Multivibrator Produced by Coherent Feedback

    NASA Astrophysics Data System (ADS)

    Kerckhoff, Joseph; Lehnert, K. W.

    2012-10-01

    We investigate a nonlinear coherent feedback circuit constructed from preexisting superconducting microwave devices. The network exhibits emergent bistable and astable states, and we demonstrate its operation as a latch and the frequency locking of its oscillations. While the network is tedious to model by hand, our observations agree quite well with the semiclassical dynamical model produced by a new software package (N. Tezak , arXiv:1111.3081v1 [Phil. Trans. R. Soc. A (to be published)]) that systematically interpreted an idealized schematic of the system as a quantum optic feedback network.

  1. Analysis of non-equilibrium phenomena in inductively coupled plasma generators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, W.; Panesi, M., E-mail: mpanesi@illinois.edu; Lani, A.

    This work addresses the modeling of non-equilibrium phenomena in inductively coupled plasma discharges. In the proposed computational model, the electromagnetic induction equation is solved together with the set of Navier-Stokes equations in order to compute the electromagnetic and flow fields, accounting for their mutual interaction. Semi-classical statistical thermodynamics is used to determine the plasma thermodynamic properties, while transport properties are obtained from kinetic principles, with the method of Chapman and Enskog. Particle ambipolar diffusive fluxes are found by solving the Stefan-Maxwell equations with a simple iterative method. Two physico-mathematical formulations are used to model the chemical reaction processes: (1) Amore » Local Thermodynamics Equilibrium (LTE) formulation and (2) a thermo-chemical non-equilibrium (TCNEQ) formulation. In the TCNEQ model, thermal non-equilibrium between the translational energy mode of the gas and the vibrational energy mode of individual molecules is accounted for. The electronic states of the chemical species are assumed in equilibrium with the vibrational temperature, whereas the rotational energy mode is assumed to be equilibrated with translation. Three different physical models are used to account for the coupling of chemistry and energy transfer processes. Numerical simulations obtained with the LTE and TCNEQ formulations are used to characterize the extent of non-equilibrium of the flow inside the Plasmatron facility at the von Karman Institute. Each model was tested using different kinetic mechanisms to assess the sensitivity of the results to variations in the reaction parameters. A comparison of temperatures and composition profiles at the outlet of the torch demonstrates that the flow is in non-equilibrium for operating conditions characterized by pressures below 30 000 Pa, frequency 0.37 MHz, input power 80 kW, and mass flow 8 g/s.« less

  2. Analysis of non-equilibrium phenomena in inductively coupled plasma generators

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Lani, A.; Panesi, M.

    2016-07-01

    This work addresses the modeling of non-equilibrium phenomena in inductively coupled plasma discharges. In the proposed computational model, the electromagnetic induction equation is solved together with the set of Navier-Stokes equations in order to compute the electromagnetic and flow fields, accounting for their mutual interaction. Semi-classical statistical thermodynamics is used to determine the plasma thermodynamic properties, while transport properties are obtained from kinetic principles, with the method of Chapman and Enskog. Particle ambipolar diffusive fluxes are found by solving the Stefan-Maxwell equations with a simple iterative method. Two physico-mathematical formulations are used to model the chemical reaction processes: (1) A Local Thermodynamics Equilibrium (LTE) formulation and (2) a thermo-chemical non-equilibrium (TCNEQ) formulation. In the TCNEQ model, thermal non-equilibrium between the translational energy mode of the gas and the vibrational energy mode of individual molecules is accounted for. The electronic states of the chemical species are assumed in equilibrium with the vibrational temperature, whereas the rotational energy mode is assumed to be equilibrated with translation. Three different physical models are used to account for the coupling of chemistry and energy transfer processes. Numerical simulations obtained with the LTE and TCNEQ formulations are used to characterize the extent of non-equilibrium of the flow inside the Plasmatron facility at the von Karman Institute. Each model was tested using different kinetic mechanisms to assess the sensitivity of the results to variations in the reaction parameters. A comparison of temperatures and composition profiles at the outlet of the torch demonstrates that the flow is in non-equilibrium for operating conditions characterized by pressures below 30 000 Pa, frequency 0.37 MHz, input power 80 kW, and mass flow 8 g/s.

  3. Entropy evolution of moving mirrors and the information loss problem

    NASA Astrophysics Data System (ADS)

    Chen, Pisin; Yeom, Dong-han

    2017-07-01

    We investigate the entanglement entropy and the information flow of two-dimensional moving mirrors. Here we point out that various mirror trajectories can help to mimic different candidate resolutions to the information loss paradox following the semiclassical quantum field theory: (i) a suddenly stopping mirror corresponds to the assertion that all information is attached to the last burst, (ii) a slowly stopping mirror corresponds to the assertion that thermal Hawking radiation carries information, and (iii) a long propagating mirror corresponds to the remnant scenario. Based on such analogy, we find that the last burst of a black hole cannot contain enough information, while slowly emitting radiation can restore unitarity. For all cases, there is an apparent inconsistency between the picture based on quantum entanglements and that based on the semiclassical quantum field theory. Based on the quantum entanglement theory, a stopping mirror will generate a firewall-like violent emission which is in conflict with notions based on the semiclassical quantum field theory.

  4. Quantum diffraction and shielding effects on the low-energy electron-ion bremsstrahlung in two-component semiclassical plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590

    2015-10-15

    The quantum diffraction and shielding effects on the low-energy bremsstrahlung process are investigated in two-component semiclassical plasmas. The impact-parameter analysis with the micropotential taking into account the quantum diffraction and shielding effects is employed to obtain the electron-ion bremsstrahlung radiation cross section as a function of the de Broglie wavelength, density parameter, impact parameter, photon energy, and projectile energy. The result shows that the influence of quantum diffraction and shielding strongly suppresses the bremsstrahlung radiation spectrum in semiclassical plasmas. It is found that the quantum diffraction and shielding effects have broaden the photon emission domain. It is also found thatmore » the photon emission domain is almost independent of the radiation photon energy. In addition, it is found that the influence of quantum diffraction and shielding on the bremsstrahlung spectrum decreases with an increase of the projectile energy. The density effect on the electron-ion bremsstrahlung cross section is also discussed.« less

  5. Thermal helium clusters at 3.2 Kelvin in classical and semiclassical simulations

    NASA Astrophysics Data System (ADS)

    Schulte, J.

    1993-03-01

    The thermodynamic stability of4He4-13 at 3.2 K is investigated with the classical Monte Carlo method, with the semiclassical path-integral Monte Carlo (PIMC) method, and with the semiclassical all-order many-body method. In the all-order many-body simulation the dipole-dipole approximation including short-range correction is used. The resulting stability plots are discussed and related to recent TOF experiments by Stephens and King. It is found that with classical Monte Carlo of course the characteristics of the measured mass spectrum cannot be resolved. With PIMC, switching on more and more quantum mechanics. by raising the number of virtual time steps results in more structure in the stability plot, but this did not lead to sufficient agreement with the TOF experiment. Only the all-order many-body method resolved the characteristic structures of the measured mass spectrum, including magic numbers. The result shows the influence of quantum statistics and quantum mechanics on the stability of small neutral helium clusters.

  6. On-the-Fly ab Initio Semiclassical Calculation of Glycine Vibrational Spectrum

    PubMed Central

    2017-01-01

    We present an on-the-fly ab initio semiclassical study of vibrational energy levels of glycine, calculated by Fourier transform of the wavepacket correlation function. It is based on a multiple coherent states approach integrated with monodromy matrix regularization for chaotic dynamics. All four lowest-energy glycine conformers are investigated by means of single-trajectory semiclassical spectra obtained upon classical evolution of on-the-fly trajectories with harmonic zero-point energy. For the most stable conformer I, direct dynamics trajectories are also run for each vibrational mode with energy equal to the first harmonic excitation. An analysis of trajectories evolved up to 50 000 atomic time units demonstrates that, in this time span, conformers II and III can be considered as isolated species, while conformers I and IV show a pretty facile interconversion. Therefore, previous perturbative studies based on the assumption of isolated conformers are often reliable but might be not completely appropriate in the case of conformer IV and conformer I for which interconversion occurs promptly. PMID:28489368

  7. Communication: Overcoming the root search problem in complex quantum trajectory calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zamstein, Noa; Tannor, David J.

    2014-01-28

    Three new developments are presented regarding the semiclassical coherent state propagator. First, we present a conceptually different derivation of Huber and Heller's method for identifying complex root trajectories and their equations of motion [D. Huber and E. J. Heller, J. Chem. Phys. 87, 5302 (1987)]. Our method proceeds directly from the time-dependent Schrödinger equation and therefore allows various generalizations of the formalism. Second, we obtain an analytic expression for the semiclassical coherent state propagator. We show that the prefactor can be expressed in a form that requires solving significantly fewer equations of motion than in alternative expressions. Third, the semiclassicalmore » coherent state propagator is used to formulate a final value representation of the time-dependent wavefunction that avoids the root search, eliminates problems with caustics and automatically includes interference. We present numerical results for the 1D Morse oscillator showing that the method may become an attractive alternative to existing semiclassical approaches.« less

  8. Semiclassical transport properties of IrGa3: a promising thermoelectric material.

    PubMed

    Alvarez Quiceno, Juan Camilo; Dalpian, Gustavo; Fazzio, Adalberto; Osorio-Guillén, Jorge M

    2018-01-09

    IrGa3 is an intermetallic compound which is expected to be a metal, but a study on the electronic properties of this material to confirm its metallic character is not available in the literature. In this work, we report for the first time a first-principles Density Functional Theory and semiclassical Boltzmann theory study of the structural, electronic and transport properties of this material. The inclusion of the spin-orbit coupling term is crucial to calculate accurately the electronic properties of this compound. We have established that IrGa3 is an indirect semiconductor with a narrow gap of 0.07 eV. From semiclassical Boltzmann transport theory, it is inferred that this material, with the appropriate hole concentration, could have a thermoelectric figure of merit at room temperature comparable to other intermetallic compounds such as FeGa3, though the transport properties of IrGa3 are highly anisotropic. . © 2018 IOP Publishing Ltd.

  9. Initial-value semiclassical propagators for the Wigner phase space representation: Formulation based on the interpretation of the Moyal equation as a Schrödinger equation.

    PubMed

    Koda, Shin-ichi

    2015-12-28

    We formulate various semiclassical propagators for the Wigner phase space representation from a unified point of view. As is shown in several studies, the Moyal equation, which is an equation of motion for the Wigner distribution function, can be regarded as the Schrödinger equation of an extended Hamiltonian system where its "position" and "momentum" correspond to the middle point of two points of the original phase space and the difference between them, respectively. Then we show that various phase-space semiclassical propagators can be formulated just by applying existing semiclassical propagators to the extended system. As a result, a phase space version of the Van Vleck propagator, the initial-value Van Vleck propagator, the Herman-Kluk propagator, and the thawed Gaussian approximation are obtained. In addition, we numerically compare the initial-value phase-space Van Vleck propagator, the phase-space Herman-Kluk propagator, and the classical mechanical propagation as approximation methods for the time propagation of the Wigner distribution function in terms of both accuracy and convergence speed. As a result, we find that the convergence speed of the Van Vleck propagator is far slower than others as is the case of the Hilbert space, and the Herman-Kluk propagator keeps its accuracy for a long period compared with the classical mechanical propagation while the convergence speed of the latter is faster than the former.

  10. Stark broadening of resonant Cr II 3d5-3d44p spectral lines in hot stellar atmospheres

    NASA Astrophysics Data System (ADS)

    Simić, Z.; Dimitrijević, M. S.; Sahal-Bréchot, S.

    2013-07-01

    New Stark broadening parameters of interest for the astrophysical, laboratory and technological plasma modelling, investigations and analysis for nine resonant Cr II multiplets have been determined within the semiclassical perturbation approach. In order to demonstrate one possibility for their usage in astrophysical plasma research, obtained results have been applied to the analysis of the Stark broadening influence on stellar spectral line shapes.

  11. Pressure broadening of the electric dipole and Raman lines of CO2 by argon: Stringent test of the classical impact theory at different temperatures on a benchmark system

    NASA Astrophysics Data System (ADS)

    Ivanov, Sergey V.; Buzykin, Oleg G.

    2016-12-01

    A classical approach is applied to calculate pressure broadening coefficients of CO2 vibration-rotational spectral lines perturbed by Ar. Three types of spectra are examined: electric dipole (infrared) absorption; isotropic and anisotropic Raman Q branches. Simple and explicit formulae of the classical impact theory are used along with exact 3D Hamilton equations for CO2-Ar molecular motion. The calculations utilize vibrationally independent most accurate ab initio potential energy surface (PES) of Hutson et al. expanded in Legendre polynomial series up to lmax = 24. New improved algorithm of classical rotational frequency selection is applied. The dependences of CO2 half-widths on rotational quantum number J up to J=100 are computed for the temperatures between 77 and 765 K and compared with available experimental data as well as with the results of fully quantum dynamical calculations performed on the same PES. To make the picture complete, the predictions of two independent variants of the semi-classical Robert-Bonamy formalism for dipole absorption lines are included. This method. however, has demonstrated poor accuracy almost for all temperatures. On the contrary, classical broadening coefficients are in excellent agreement both with measurements and with quantum results at all temperatures. The classical impact theory in its present variant is capable to produce quickly and accurately the pressure broadening coefficients of spectral lines of linear molecules for any J value (including high Js) using full-dimensional ab initio - based PES in the cases where other computational methods are either extremely time consuming (like the quantum close coupling method) or give erroneous results (like semi-classical methods).

  12. Quantum Tunneling from Apparent Horizon of Rainbow-FRW Universe

    NASA Astrophysics Data System (ADS)

    Lin, Kai; Yang, Shuzheng

    2009-07-01

    The quantum tunneling from the apparent horizon of rainbow-FRW universe is studied in this paper. We apply the semi-classical approximation, which is put forward by Parikh and Wilczek et al., to research on the scalar field particles tunneling from the apparent horizon of the rainbow-FRW universe, and then use the spin 1/2 Fermions tunneling theory, which brought forward by Kerner and Mann firstly, to research on the Fermions Hawking radiation via semi-classical approximation. Finally, we discuss the meanings of the quantum effect via Finsler geometry.

  13. Semiclassical gravitoelectromagnetic inflation in a Lorentz gauge: Seminal inflaton fluctuations and electromagnetic fields from a 5D vacuum state

    NASA Astrophysics Data System (ADS)

    Membiela, Federico Agustín; Bellini, Mauricio

    2010-02-01

    Using a semiclassical approach to Gravitoelectromagnetic Inflation (GEMI), we study the origin and evolution of seminal inflaton and electromagnetic fields in the early inflationary universe from a 5D vacuum state. The difference with other previous works is that in this one we use a Lorentz gauge. Our formalism is naturally not conformal invariant on the effective 4D de Sitter metric, which make possible the super adiabatic amplification of magnetic field modes during the early inflationary epoch of the universe on cosmological scales.

  14. Semi-classical Electrodynamics

    NASA Astrophysics Data System (ADS)

    Lestone, John

    2016-03-01

    Quantum electrodynamics is complex and its associated mathematics can appear overwhelming for those not trained in this field. We describe semi-classical approaches that can be used to obtain a more intuitive physical feel for several QED processes including electro-statics, Compton scattering, pair annihilation, the anomalous magnetic moment, and the Lamb shift, that could be taught easily to undergraduate students. Any physicist who brings their laptop to the talk will be able to build spread sheets in less than 10 minutes to calculate g/2 =1.001160 and a Lamb shift of 1057 MHz.

  15. A two-dimensional Dirac fermion microscope

    NASA Astrophysics Data System (ADS)

    Bøggild, Peter; Caridad, José M.; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads

    2017-06-01

    The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.

  16. A two-dimensional Dirac fermion microscope

    PubMed Central

    Bøggild, Peter; Caridad, José M.; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads

    2017-01-01

    The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots. PMID:28598421

  17. From global to heavy-light: 5-point conformal blocks

    NASA Astrophysics Data System (ADS)

    Alkalaev, Konstantin; Belavin, Vladimir

    2016-03-01

    We consider Virasoro conformal blocks in the large central charge limit. There are different regimes depending on the behavior of the conformal dimensions. The most simple regime is reduced to the global sl(2,C) conformal blocks while the most complicated one is known as the classical conformal blocks. Recently, Fitzpatrick, Kaplan, and Walters showed that the two regimes are related through the intermediate stage of the so-called heavy-light semiclassical limit. We study this idea in the particular case of the 5-point conformal block. To find the 5-point global block we use the projector technique and the Casimir operator approach. Furthermore, we discuss the relation between the global and the heavy-light limits and construct the heavy-light block from the global block. In this way we reproduce our previous results for the 5-point perturbative classical block obtained by means of the monodromy method.

  18. Theory of Stochastic Laplacian Growth

    NASA Astrophysics Data System (ADS)

    Alekseev, Oleg; Mineev-Weinstein, Mark

    2017-07-01

    We generalize the diffusion-limited aggregation by issuing many randomly-walking particles, which stick to a cluster at the discrete time unit providing its growth. Using simple combinatorial arguments we determine probabilities of different growth scenarios and prove that the most probable evolution is governed by the deterministic Laplacian growth equation. A potential-theoretical analysis of the growth probabilities reveals connections with the tau-function of the integrable dispersionless limit of the two-dimensional Toda hierarchy, normal matrix ensembles, and the two-dimensional Dyson gas confined in a non-uniform magnetic field. We introduce the time-dependent Hamiltonian, which generates transitions between different classes of equivalence of closed curves, and prove the Hamiltonian structure of the interface dynamics. Finally, we propose a relation between probabilities of growth scenarios and the semi-classical limit of certain correlation functions of "light" exponential operators in the Liouville conformal field theory on a pseudosphere.

  19. Investigation of the cluster formation in lithium niobate crystals by computer modeling method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voskresenskii, V. M.; Starodub, O. R., E-mail: ol-star@mail.ru; Sidorov, N. V.

    The processes occurring upon the formation of energetically equilibrium oxygen-octahedral clusters in the ferroelectric phase of a stoichiometric lithium niobate (LiNbO{sub 3}) crystal have been investigated by the computer modeling method within the semiclassical atomistic model. An energetically favorable cluster size (at which a structure similar to that of a congruent crystal is organized) is shown to exist. A stoichiometric cluster cannot exist because of the electroneutrality loss. The most energetically favorable cluster is that with a Li/Nb ratio of about 0.945, a value close to the lithium-to-niobium ratio for a congruent crystal.

  20. Terahertz-Radiation-Enhanced Emission of Fluorescence from Gas Plasma

    NASA Astrophysics Data System (ADS)

    Liu, Jingle; Zhang, X.-C.

    2009-12-01

    We report the study of femtosecond laser-induced air plasma fluorescence under the illumination of terahertz (THz) pulses. Semiclassical modeling and experimental verification indicate that time-resolved THz radiation-enhanced emission of fluorescence is dominated by the electron kinetics and the electron-impact excitation of gas molecules or ions. We demonstrate that the temporal waveform of the THz field could be retrieved from the transient enhanced fluorescence, making omnidirectional, coherent detection available for THz time-domain spectroscopy.

  1. Generalization of the coherent-state path integrals and systematic derivation of semiclassical propagators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koda, Shin-ichi; Takatsuka, Kazuo

    The coherent path integral is generalized such that the identity operator represented in a complete (actually overcomplete) set of the coherent states with the ''time-variable'' exponents are inserted between two consecutive short-time propagators. Since such a complete set of any given exponent can constitute the identity operator, the exponent may be varied from time to time without loss of generality as long as it is set common to all the Gaussians. However, a finite truncation of the coherent state expansion should result in different values of the propagator depending on the choice of the exponents. Furthermore, approximation methodology to treatmore » with the exact propagator can also depend on this choice, and thereby many different semiclassical propagators may emerge from these combinations. Indeed, we show that the well-known semiclassical propagators such as those of Van Vleck, Herman-Kluk, Heller's thawed Gaussian, and many others can be derived in a systematic manner, which enables one to comprehend these semiclassical propagators from a unified point of view. We are particularly interested in our generalized form of the Herman-Kluk propagator, since the relative accuracy of this propagator has been well established by Kay, and since, nevertheless, its derivation was not necessarily clear. Thus our generalized Herman-Kluk propagator replaces the classical Hamiltonian with a Gaussian averaged quantum Hamiltonian, generating non-Newtonian trajectories. We perform a numerical test to assess the quality of such a family of generalized Herman-Kluk propagators and find that the original Herman-Kluk gives an accurate result. The reason why this has come about is also discussed.« less

  2. The state of Hawking radiation is non-classical

    NASA Astrophysics Data System (ADS)

    Brustein, Ram; Medved, A. J. M.; Zigdon, Yoav

    2018-01-01

    We show that the state of the Hawking radiation emitted from a large Schwarzschild black hole (BH) deviates significantly from a classical state, in spite of its apparent thermal nature. For this state, the occupation numbers of single modes of massless asymptotic fields, such as photons, gravitons and possibly neutrinos, are small and, as a result, their relative fluctuations are large. The occupation numbers of massive fields are much smaller and suppressed beyond even the expected Boltzmann suppression. It follows that this type of thermal state cannot be viewed as classical or even semiclassical. We substantiate this claim by showing that, in a state with low occupation numbers, physical observables have large quantum fluctuations and, as such, cannot be faithfully described by a mean-field or by a WKB-like semiclassical state. Since the evolution of the BH is unitary, our results imply that the state of the BH interior must also be non-classical when described in terms of the asymptotic fields. We show that such a non-classical interior cannot be described in terms of a semiclassical geometry, even though the average curvature is sub-Planckian.

  3. Barrier modification in sub-barrier fusion reaction 64Ni+100Mo using Wong formula with Skyrme forces in semiclassical formalism

    NASA Astrophysics Data System (ADS)

    Kumar, Raj; Gupta, Raj K.

    2011-09-01

    We obtain the nuclear proximity potential by using semiclassical extended Thomas Fermi (ETF) approach in Skyrme energy density formalism (SEDF), and use it in the extended l-summed Wong formula under frozen density approximation. This method has the advantage of allowing the use of different Skyrme forces, giving different barriers. Thus, for a given reaction, we could choose a Skyrme force with proper barrier characteristics, not-requiring extra "barrier lowering" or "barrier narrowing" for a best fit to data. For the 64Ni+100Mo reaction, the l-summed Wong formula, with effects of deformations and orientations of nuclei included, fits the fusion-evaporation cross section data exactly for the force GSkI, requiring additional barrier modifications for forces SIII and SV. However, the same for other similar reactions, like 58,64Ni+58,64Ni, fit the data best for SIII force. Hence, the barrier modification effects in l-summed Wong expression depend on the choice of Skyrme force in semiclassical ETF method.

  4. Stringent and efficient assessment of boson-sampling devices.

    PubMed

    Tichy, Malte C; Mayer, Klaus; Buchleitner, Andreas; Mølmer, Klaus

    2014-07-11

    Boson sampling holds the potential to experimentally falsify the extended Church-Turing thesis. The computational hardness of boson sampling, however, complicates the certification that an experimental device yields correct results in the regime in which it outmatches classical computers. To certify a boson sampler, one needs to verify quantum predictions and rule out models that yield these predictions without true many-boson interference. We show that a semiclassical model for many-boson propagation reproduces coarse-grained observables that are proposed as witnesses of boson sampling. A test based on Fourier matrices is demonstrated to falsify physically plausible alternatives to coherent many-boson propagation.

  5. Landau-Zener extension of the Tavis-Cummings model: Structure of the solution

    DOE PAGES

    Sun, Chen; Sinitsyn, Nikolai A.

    2016-09-07

    We explore the recently discovered solution of the driven Tavis-Cummings model (DTCM). It describes interaction of an arbitrary number of two-level systems with a bosonic mode that has linearly time-dependent frequency. We derive compact and tractable expressions for transition probabilities in terms of the well-known special functions. In this form, our formulas are suitable for fast numerical calculations and analytical approximations. As an application, we obtain the semiclassical limit of the exact solution and compare it to prior approximations. Furthermore, we also reveal connection between DTCM and q-deformed binomial statistics.

  6. Evolution of the modern photon

    NASA Astrophysics Data System (ADS)

    Kidd, Richard; Ardini, James; Anton, Anatol

    1989-01-01

    The term ``photon'' represents at least four distinct models and carries different connotations for students and for practicing physicists. This reflects the long and complex historical evolution of the concept and its association with the largely misinterpreted principle of duality. The unsatisfactory nature of the corpuscular and wave packet models is discussed, and the pedagogical desirability urged of replacing them with a semiclassical approach in elementary presentations. Derivations of the photoelectric (PE) effect without photons are cited and a vector analysis is given, demonstrating that the PE effect cannot be considered as simply the interaction of a photon and electron.

  7. Modeling direct interband tunneling. II. Lower-dimensional structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Andrew, E-mail: pandrew@ucla.edu; Chui, Chi On; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095

    We investigate the applicability of the two-band Hamiltonian and the widely used Kane analytical formula to interband tunneling along unconfined directions in nanostructures. Through comparisons with k·p and tight-binding calculations and quantum transport simulations, we find that the primary correction is the change in effective band gap. For both constant fields and realistic tunnel field-effect transistors, dimensionally consistent band gap scaling of the Kane formula allows analytical and numerical device simulations to approximate non-equilibrium Green's function current characteristics without arbitrary fitting. This allows efficient first-order calibration of semiclassical models for interband tunneling in nanodevices.

  8. Nano-Transistor Modeling: Two Dimensional Green's Function Method

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan

    2001-01-01

    Two quantum mechanical effects that impact the operation of nanoscale transistors are inversion layer energy quantization and ballistic transport. While the qualitative effects of these features are reasonably understood, a comprehensive study of device physics in two dimensions is lacking. Our work addresses this shortcoming and provides: (a) a framework to quantitatively explore device physics issues such as the source-drain and gate leakage currents, DIBL (Drain Induced Barrier Lowering), and threshold voltage shift due to quantization, and b) a means of benchmarking quantum corrections to semiclassical models (such as density-gradient and quantum-corrected MEDICI).

  9. Counting statistics of chaotic resonances at optical frequencies: Theory and experiments

    NASA Astrophysics Data System (ADS)

    Lippolis, Domenico; Wang, Li; Xiao, Yun-Feng

    2017-07-01

    A deformed dielectric microcavity is used as an experimental platform for the analysis of the statistics of chaotic resonances, in the perspective of testing fractal Weyl laws at optical frequencies. In order to surmount the difficulties that arise from reading strongly overlapping spectra, we exploit the mixed nature of the phase space at hand, and only count the high-Q whispering-gallery modes (WGMs) directly. That enables us to draw statistical information on the more lossy chaotic resonances, coupled to the high-Q regular modes via dynamical tunneling. Three different models [classical, Random-Matrix-Theory (RMT) based, semiclassical] to interpret the experimental data are discussed. On the basis of least-squares analysis, theoretical estimates of Ehrenfest time, and independent measurements, we find that a semiclassically modified RMT-based expression best describes the experiment in all its realizations, particularly when the resonator is coupled to visible light, while RMT alone still works quite well in the infrared. In this work we reexamine and substantially extend the results of a short paper published earlier [L. Wang et al., Phys. Rev. E 93, 040201(R) (2016), 10.1103/PhysRevE.93.040201].

  10. Charge Transfer Processes in Collisions of Si4+ Ions with He Atoms at Intermediate Energies

    NASA Astrophysics Data System (ADS)

    Suzuki, R.; Watanabe, A.; Sato, H.; Gu, J. P.; Hirsch, G.; Buenker, R. J.; Kimura, M.; Stancil, P. C.

    Charge transfer in collisions of Si4+ ions with He atoms below 100 keV/u is studied by using a molecular orbital representation within both the semiclassical and quantal representations. Single transfer reaction Si4++He →Si3++He+ has been studied by a number of theoretical investigations. In addition to the reaction (1), the first semiclassical MOCC calculations are performed for the double transfer channel Si4++HE→Si2++He2+ Nine molecular states that connect both with single and double electron transfer processes are considered in the present model. Electronic states and corresponding couplings are determined by the multireference single- and double- excitation configuration interaction method. The present cross sections tie well with the earlier calculations of Stancil et al., Phys. Rev. A 55, 1064 (1997) at lower energies, but show a rather different magnitude from those of Bacchus-Montabonel and Ceyzeriat, Phys. Rev. A 58, 1162 (1998). The present rate constant is found to be significantly different from the experimental finding of Fang and Kwong, Phys. Rev. A 59, 342 (1996) at 4,600 K, and hence does not support the experiment.

  11. Deterministic generation of remote entanglement with active quantum feedback

    DOE PAGES

    Martin, Leigh; Motzoi, Felix; Li, Hanhan; ...

    2015-12-10

    We develop and study protocols for deterministic remote entanglement generation using quantum feedback, without relying on an entangling Hamiltonian. In order to formulate the most effective experimentally feasible protocol, we introduce the notion of average-sense locally optimal feedback protocols, which do not require real-time quantum state estimation, a difficult component of real-time quantum feedback control. We use this notion of optimality to construct two protocols that can deterministically create maximal entanglement: a semiclassical feedback protocol for low-efficiency measurements and a quantum feedback protocol for high-efficiency measurements. The latter reduces to direct feedback in the continuous-time limit, whose dynamics can bemore » modeled by a Wiseman-Milburn feedback master equation, which yields an analytic solution in the limit of unit measurement efficiency. Our formalism can smoothly interpolate between continuous-time and discrete-time descriptions of feedback dynamics and we exploit this feature to derive a superior hybrid protocol for arbitrary nonunit measurement efficiency that switches between quantum and semiclassical protocols. Lastly, we show using simulations incorporating experimental imperfections that deterministic entanglement of remote superconducting qubits may be achieved with current technology using the continuous-time feedback protocol alone.« less

  12. Noncommutative spherically symmetric spacetimes at semiclassical order

    NASA Astrophysics Data System (ADS)

    Fritz, Christopher; Majid, Shahn

    2017-07-01

    Working within the recent formalism of Poisson-Riemannian geometry, we completely solve the case of generic spherically symmetric metric and spherically symmetric Poisson-bracket to find a unique answer for the quantum differential calculus, quantum metric and quantum Levi-Civita connection at semiclassical order O(λ) . Here λ is the deformation parameter, plausibly the Planck scale. We find that r, t, d r, d t are all forced to be central, i.e. undeformed at order λ, while for each value of r, t we are forced to have a fuzzy sphere of radius r with a unique differential calculus which is necessarily nonassociative at order λ2 . We give the spherically symmetric quantisation of the FLRW cosmology in detail and also recover a previous analysis for the Schwarzschild black hole, now showing that the quantum Ricci tensor for the latter vanishes at order λ. The quantum Laplace-Beltrami operator for spherically symmetric models turns out to be undeformed at order λ while more generally in Poisson-Riemannian geometry we show that it deforms to □f+λ2ωαβ(Ricγα-Sγα)(∇^βdf)γ+O(λ2) in terms of the classical Levi-Civita connection \\widehat\

  13. Mean-trajectory approximation for electronic and vibrational-electronic nonlinear spectroscopy

    NASA Astrophysics Data System (ADS)

    Loring, Roger F.

    2017-04-01

    Mean-trajectory approximations permit the calculation of nonlinear vibrational spectra from semiclassically quantized trajectories on a single electronically adiabatic potential surface. By describing electronic degrees of freedom with classical phase-space variables and subjecting these to semiclassical quantization, mean-trajectory approximations may be extended to compute both nonlinear electronic spectra and vibrational-electronic spectra. A general mean-trajectory approximation for both electronic and nuclear degrees of freedom is presented, and the results for purely electronic and for vibrational-electronic four-wave mixing experiments are quantitatively assessed for harmonic surfaces with linear electronic-nuclear coupling.

  14. Subdiffraction incoherent optical imaging via spatial-mode demultiplexing: Semiclassical treatment

    NASA Astrophysics Data System (ADS)

    Tsang, Mankei

    2018-02-01

    I present a semiclassical analysis of a spatial-mode demultiplexing (SPADE) measurement scheme for far-field incoherent optical imaging under the effects of diffraction and photon shot noise. Building on previous results that assume two point sources or the Gaussian point-spread function, I generalize SPADE for a larger class of point-spread functions and evaluate its errors in estimating the moments of an arbitrary subdiffraction object. Compared with the limits to direct imaging set by the Cramér-Rao bounds, the results show that SPADE can offer far superior accuracy in estimating second- and higher-order moments.

  15. Swings and roundabouts: optical Poincaré spheres for polarization and Gaussian beams

    NASA Astrophysics Data System (ADS)

    Dennis, M. R.; Alonso, M. A.

    2017-02-01

    The connection between Poincaré spheres for polarization and Gaussian beams is explored, focusing on the interpretation of elliptic polarization in terms of the isotropic two-dimensional harmonic oscillator in Hamiltonian mechanics, its canonical quantization and semiclassical interpretation. This leads to the interpretation of structured Gaussian modes, the Hermite-Gaussian, Laguerre-Gaussian and generalized Hermite-Laguerre-Gaussian modes as eigenfunctions of operators corresponding to the classical constants of motion of the two-dimensional oscillator, which acquire an extra significance as families of classical ellipses upon semiclassical quantization. This article is part of the themed issue 'Optical orbital angular momentum'.

  16. Can Black Hole Relax Unitarily?

    NASA Astrophysics Data System (ADS)

    Solodukhin, S. N.

    2005-03-01

    We review the way the BTZ black hole relaxes back to thermal equilibrium after a small perturbation and how it is seen in the boundary (finite volume) CFT. The unitarity requires the relaxation to be quasi-periodic. It is preserved in the CFT but is not obvious in the case of the semiclassical black hole the relaxation of which is driven by complex quasi-normal modes. We discuss two ways of modifying the semiclassical black hole geometry to maintain unitarity: the (fractal) brick wall and the worm-hole modification. In the latter case the entropy comes out correctly as well.

  17. On the semi-classical limit of scalar products of the XXZ spin chain

    NASA Astrophysics Data System (ADS)

    Jiang, Yunfeng; Brunekreef, Joren

    2017-03-01

    We study the scalar products between Bethe states in the XXZ spin chain with anisotropy |Δ| > 1 in the semi-classical limit where the length of the spin chain and the number of magnons tend to infinity with their ratio kept finite and fixed. Our method is a natural yet non-trivial generalization of similar methods developed for the XXX spin chain. The final result can be written in a compact form as a contour integral in terms of Faddeev's quantum dilogarithm function, which in the isotropic limit reduces to the classical dilogarithm function.

  18. Semiclassical analysis for pseudo-relativistic Hartree equations

    NASA Astrophysics Data System (ADS)

    Cingolani, Silvia; Secchi, Simone

    2015-06-01

    In this paper we study the semiclassical limit for the pseudo-relativistic Hartree equation $\\sqrt{-\\varepsilon^2 \\Delta + m^2}u + V u = (I_\\alpha * |u|^{p}) |u|^{p-2}u$ in $\\mathbb{R}^N$ where $m>0$, $2 \\leq p < \\frac{2N}{N-1}$, $V \\colon \\mathbb{R}^N \\to \\mathbb{R}$ is an external scalar potential, $I_\\alpha (x) = \\frac{c_{N,\\alpha}}{|x|^{N-\\alpha}}$ is a convolution kernel, $c_{N,\\alpha}$ is a positive constant and $(N-1)p-N<\\alpha

  19. The quantum N-body problem in the mean-field and semiclassical regime

    NASA Astrophysics Data System (ADS)

    Golse, François

    2018-04-01

    The present work discusses the mean-field limit for the quantum N-body problem in the semiclassical regime. More precisely, we establish a convergence rate for the mean-field limit which is uniform as the ratio of Planck constant to the action of the typical single particle tends to zero. This convergence rate is formulated in terms of a quantum analogue of the quadratic Monge-Kantorovich or Wasserstein distance. This paper is an account of some recent collaboration with C. Mouhot, T. Paul and M. Pulvirenti. This article is part of the themed issue `Hilbert's sixth problem'.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berenstein, David; Kavli Institute for Theoretical Physics, University of California at Santa Barbara, California 93106; Correa, Diego H.

    We study an XXX open spin chain with variable number of sites, where the variability is introduced only at the boundaries. This model arises naturally in the study of giant gravitons in the anti-de Sitter-space/conformal field-theory correspondence. We show how to quantize the spin chain by mapping its states to a bosonic lattice of finite length with sources and sinks of particles at the boundaries. Using coherent states, we show how the Hamiltonian for the bosonic lattice gives the correct description of semiclassical open strings ending on giant gravitons.

  1. Role of the supersymmetric semiclassical approach in barrier penetration and heavy-ion fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sil, T.; Dutt, R.; Varshni, Y.P.

    1994-11-01

    The problem of heavy-ion fusion reactions in the one-dimensional barrier penetration model (BPM) has been reexamined in light of supersymmetry-inspired WKB (SWKB) method. Motivated by our recent work [Phys. Lett. A 184, 209 (1994)] describing the SWKB method for the computation of the transmission coefficient [ital T]([ital E]), we have performed similar calculations for a potential barrier that mimics the proximity potential obtained by fitting experimentally measured fusion cross section [sigma][sub [ital F

  2. Theory of ionizing neutrino-atom collisions: The role of atomic recoil

    NASA Astrophysics Data System (ADS)

    Kouzakov, Konstantin A.; Studenikin, Alexander I.

    2016-04-01

    We consider theoretically ionization of an atom by neutrino impact taking into account electromagnetic interactions predicted for massive neutrinos by theories beyond the Standard Model. The effects of atomic recoil in this process are estimated using the one-electron and semiclassical approximations and are found to be unimportant unless the energy transfer is very close to the ionization threshold. We show that the energy scale where these effects become important is insignificant for current experiments searching for magnetic moments of reactor antineutrinos.

  3. Femtojoule-scale all-optical latching and modulation via cavity nonlinear optics.

    PubMed

    Kwon, Yeong-Dae; Armen, Michael A; Mabuchi, Hideo

    2013-11-15

    We experimentally characterize Hopf bifurcation phenomena at femtojoule energy scales in a multiatom cavity quantum electrodynamical (cavity QED) system and demonstrate how such behaviors can be exploited in the design of all-optical memory and modulation devices. The data are analyzed by using a semiclassical model that explicitly treats heterogeneous coupling of atoms to the cavity mode. Our results highlight the interest of cavity QED systems for ultralow power photonic signal processing as well as for fundamental studies of mesoscopic nonlinear dynamics.

  4. Nanoscale rotary motors driven by electron tunneling.

    PubMed

    Wang, Boyang; Vuković, Lela; Král, Petr

    2008-10-31

    We examine by semiclassical molecular dynamics simulations the possibility of driving nanoscale rotary motors by electron tunneling. The model systems studied have a carbon nanotube shaft with covalently attached "isolating" molecular stalks ending with "conducting" blades. Periodic charging and discharging of the blades at two metallic electrodes maintains an electric dipole on the blades that is rotated by an external electric field. Our simulations demonstrate that these molecular motors can be efficient under load and in the presence of noise and defects.

  5. Timing Recollision in Nonsequential Double Ionization by Intense Elliptically Polarized Laser Pulses.

    PubMed

    Kang, H; Henrichs, K; Kunitski, M; Wang, Y; Hao, X; Fehre, K; Czasch, A; Eckart, S; Schmidt, L Ph H; Schöffler, M; Jahnke, T; Liu, X; Dörner, R

    2018-06-01

    We examine correlated electron and doubly charged ion momentum spectra from strong field double ionization of neon employing intense elliptically polarized laser pulses. An ellipticity-dependent asymmetry of correlated electron and ion momentum distributions has been observed. Using a 3D semiclassical model, we demonstrate that our observations reflect the subcycle dynamics of the recollision process. Our Letter reveals a general physical picture for recollision impact double ionization with elliptical polarization and demonstrates the possibility of ultrafast control of the recollision dynamics.

  6. Timing Recollision in Nonsequential Double Ionization by Intense Elliptically Polarized Laser Pulses

    NASA Astrophysics Data System (ADS)

    Kang, H.; Henrichs, K.; Kunitski, M.; Wang, Y.; Hao, X.; Fehre, K.; Czasch, A.; Eckart, S.; Schmidt, L. Ph. H.; Schöffler, M.; Jahnke, T.; Liu, X.; Dörner, R.

    2018-06-01

    We examine correlated electron and doubly charged ion momentum spectra from strong field double ionization of neon employing intense elliptically polarized laser pulses. An ellipticity-dependent asymmetry of correlated electron and ion momentum distributions has been observed. Using a 3D semiclassical model, we demonstrate that our observations reflect the subcycle dynamics of the recollision process. Our Letter reveals a general physical picture for recollision impact double ionization with elliptical polarization and demonstrates the possibility of ultrafast control of the recollision dynamics.

  7. Bloch equation and atom-field entanglement scenario in three-level systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, Surajit; Nath, Mihir Ranjan; Dey, Tushar Kanti

    2011-09-23

    We study the exact solution of the lambda, vee and cascade type of three-level system with distinct Hamiltonian for each configuration expressed in the SU(3) basis. The semiclassical models are solved by solving respective Bloch equation and the existence of distinct non-linear constants are discussed which are different for different configuration. Apart from proposing a qutrit wave function, the atom-field entanglement is studied for the quantized three-level systems using the Phoenix-Knight formalism and corresponding population inversion are compared.

  8. Mixed semiclassical-classical propagators for the Wigner phase space representation

    NASA Astrophysics Data System (ADS)

    Koda, Shin-ichi

    2016-04-01

    We formulate mixed semiclassical-classical (SC-Cl) propagators by adding a further approximation to the phase-space SC propagators, which have been formulated in our previous paper [S. Koda, J. Chem. Phys. 143, 244110 (2015)]. We first show that the stationary phase approximation over the operation of the phase-space van Vleck propagator on initial distribution functions results in the classical mechanical time propagation. Then, after dividing the degrees of freedom (DOFs) of the total system into the semiclassical DOFs and the classical DOFs, the SC-Cl van Vleck propagator and the SC-Cl Herman-Kluk (HK) propagator are derived by performing the stationary phase approximation only with respect to the classical DOFs. These SC-Cl propagators are naturally decomposed to products of the phase-space SC propagators and the classical mechanical propagators when the system does not have any interaction between the semiclassical and the classical DOFs. In addition, we also numerically compare the original phase-space HK (full HK) propagator and the SC-Cl HK propagator in terms of accuracy and efficiency to find that the accuracy of the SC-Cl HK propagator can be comparable to that of the full HK propagator although the latter is more accurate than the former in general. On the other hand, we confirm that the convergence speed of the SC-Cl HK propagator is faster than that of the full HK propagator. The present numerical tests indicate that the SC-Cl HK propagator can be more accurate than the full HK propagator when they use a same and finite number of classical trajectories due to the balance of the accuracy and the efficiency.

  9. Mixed semiclassical-classical propagators for the Wigner phase space representation.

    PubMed

    Koda, Shin-Ichi

    2016-04-21

    We formulate mixed semiclassical-classical (SC-Cl) propagators by adding a further approximation to the phase-space SC propagators, which have been formulated in our previous paper [S. Koda, J. Chem. Phys. 143, 244110 (2015)]. We first show that the stationary phase approximation over the operation of the phase-space van Vleck propagator on initial distribution functions results in the classical mechanical time propagation. Then, after dividing the degrees of freedom (DOFs) of the total system into the semiclassical DOFs and the classical DOFs, the SC-Cl van Vleck propagator and the SC-Cl Herman-Kluk (HK) propagator are derived by performing the stationary phase approximation only with respect to the classical DOFs. These SC-Cl propagators are naturally decomposed to products of the phase-space SC propagators and the classical mechanical propagators when the system does not have any interaction between the semiclassical and the classical DOFs. In addition, we also numerically compare the original phase-space HK (full HK) propagator and the SC-Cl HK propagator in terms of accuracy and efficiency to find that the accuracy of the SC-Cl HK propagator can be comparable to that of the full HK propagator although the latter is more accurate than the former in general. On the other hand, we confirm that the convergence speed of the SC-Cl HK propagator is faster than that of the full HK propagator. The present numerical tests indicate that the SC-Cl HK propagator can be more accurate than the full HK propagator when they use a same and finite number of classical trajectories due to the balance of the accuracy and the efficiency.

  10. From Classical to Quantum: New Canonical Tools for the Dynamics of Gravity

    NASA Astrophysics Data System (ADS)

    Höhn, P. A.

    2012-05-01

    In a gravitational context, canonical methods offer an intuitive picture of the dynamics and simplify an identification of the degrees of freedom. Nevertheless, extracting dynamical information from background independent approaches to quantum gravity is a highly non-trivial challenge. In this thesis, the conundrum of (quantum) gravitational dynamics is approached from two different directions by means of new canonical tools. This thesis is accordingly divided into two parts: In the first part, a general canonical formalism for discrete systems featuring a variational action principle is developed which is equivalent to the covariant formulation following directly from the action. This formalism can handle evolving phase spaces and is thus appropriate for describing evolving lattices. Attention will be devoted to a characterization of the constraints, symmetries and degrees of freedom appearing in such discrete systems which, in the case of evolving phase spaces, is time step dependent. The advantage of this formalism is that it does not depend on the particular discretization and, hence, is suitable for coarse graining procedures. This formalism is applicable to discrete mechanics, lattice field theories and discrete gravity models---underlying some approaches to quantum gravity---and, furthermore, may prove useful for numerical imple mentations. For concreteness, these new tools are employed to formulate Regge Calculus canonically as a theory of the dynamics of discrete hypersurfaces in discrete spacetimes, thereby removing a longstanding obstacle to connecting covariant simplicial gravity models with canonical frameworks. This result is interesting in view of several background independent approaches to quantum gravity. In addition, perturbative expansions around symmetric background solutions of Regge Calculus are studied up to second order. Background gauge modes generically become propagating at second order as a consequence of a symmetry breaking. In the second part of this thesis, the paradigm of relational dynamics is considered. Dynamical observables in gravity are relational. Unfortunately, their construction and evaluation is notoriously difficult, especially in the quantum theory. An effective canonical framework is devised which permits to evaluate the semiclassical relational dynamics of constrained quantum systems by sidestepping technical problems associated with explicit constructions of physical Hilbert spaces. This effective approach is well-geared for addressing the concept of relational evolution in general quantum cosmological models since it (i) allows to depart from idealized relational `clock references’ and, instead, to employ generic degrees of freedom as imperfect relational `clocks’, (ii) enables one to systematically switch between different such `clocks’ and (iii) yields a consistent (temporally) local time evolution with transient observables so long as semiclassicality holds. These techniques are illustrated by toy models and, finally, are applied to a non-integrable cosmological model. It is argued that relational evolution is generically only a transient and semiclassical phenomenon

  11. Theory of molecular rate processes in the presence of intense laser radiation

    NASA Technical Reports Server (NTRS)

    George, T. F.; Zimmerman, I. H.; Devries, P. L.; Yuan, J.-M.; Lam, K.-S.; Bellum, J. C.; Lee, H.-W.; Slutsky, M. S.; Lin, J.-T.

    1979-01-01

    The present paper deals with the influence of intense laser radiation on gas-phase molecular rate processes. Representations of the radiation field, the particle system, and the interaction involving these two entities are discussed from a general rather than abstract point of view. The theoretical methods applied are outlined, and the formalism employed is illustrated by application to a variety of specific processes. Quantum mechanical and semiclassical treatments of representative atom-atom and atom-diatom collision processes in the presence of a field are examined, and examples of bound-continuum processes and heterogeneous catalysis are discussed within the framework of both quantum-mechanical and semiclassical theories.

  12. Gravitational decoherence, alternative quantum theories and semiclassical gravity

    NASA Astrophysics Data System (ADS)

    Hu, B. L.

    2014-04-01

    In this report we discuss three aspects: 1) Semiclassical gravity theory (SCG): 4 levels of theories describing the interaction of quantum matter with classical gravity. 2) Alternative Quantum Theories: Discerning those which are derivable from general relativity (GR) plus quantum field theory (QFT) from those which are not 3) Gravitational Decoherence: derivation of a master equation and examination of the assumptions which led to the claims of observational possibilities. We list three sets of corresponding problems worthy of pursuit: a) Newton-Schrödinger Equations in relation to SCG; b) Master equation of gravity-induced effects serving as discriminator of 2); and c) Role of gravity in macroscopic quantum phenomena.

  13. Quadratic Forms and Semiclassical Eigenfunction Hypothesis for Flat Tori

    NASA Astrophysics Data System (ADS)

    T. Sardari, Naser

    2018-03-01

    Let Q( X) be any integral primitive positive definite quadratic form in k variables, where {k≥4}, and discriminant D. For any integer n, we give an upper bound on the number of integral solutions of Q( X) = n in terms of n, k, and D. As a corollary, we prove a conjecture of Lester and Rudnick on the small scale equidistribution of almost all functions belonging to any orthonormal basis of a given eigenspace of the Laplacian on the flat torus {T^d} for {d≥ 5}. This conjecture is motivated by the work of Berry [2,3] on the semiclassical eigenfunction hypothesis.

  14. Semiclassical Wheeler-DeWitt equation: Solutions for long-wavelength fields

    NASA Astrophysics Data System (ADS)

    Salopek, D. S.; Stewart, J. M.; Parry, J.

    1993-07-01

    In the long-wavelength approximation, a general set of semiclassical wave functionals is given for gravity and matter interacting in 3+1 dimensions. In the long-wavelength theory, one neglects second-order spatial gradients in the energy constraint. These solutions satisfy the Hamilton-Jacobi equation, the momentum constraint, and the equation of continuity. It is essential to introduce inhomogeneities to discuss the role of time. The time hypersurface is chosen to be a homogeneous field in the wave functional. It is shown how to introduce tracer particles through a dust field χ into the dynamical system. The formalism can be used to describe stochastic inflation.

  15. Periodic Orbits and Semiclassical Form Factor in Barrier Billiards

    NASA Astrophysics Data System (ADS)

    Giraud, O.

    2005-11-01

    Using heuristic arguments based on the trace formulas, we analytically calculate the semiclassical two-point correlation form factor for a family of rectangular billiards with a barrier of height irrational with respect to the side of the billiard and located at any rational position p/q from the side. To do this, we first obtain the asymptotic density of lengths for each family of periodic orbits by a Siegel-Veech formula. The result obtained for these pseudo-integrable, non-Veech billiards is different but not far from the value of 1/2 expected for semi-Poisson statistics and from values of obtained previously in the case of Veech billiards.

  16. Estimates of the thermal conductivity and the thermoelectric properties of PbTiO3 from first principles

    NASA Astrophysics Data System (ADS)

    Roy, Anindya

    2016-03-01

    The lattice thermal conductivity (κL) of PbTiO3 is estimated using a combination of ab initio calculations and the semiclassical Boltzmann transport equation. The computed κL is remarkably low, nearly comparable with the κL of good thermoelectric materials such as PbTe. In addition, a semiclassical analysis of the electronic transport quantities is presented, which suggests excellent thermoelectric properties, with a figure of merit z T well over 1 for a wide range of temperatures. For thermoelectric applications, the κL could be further reduced by utilizing different morphologies and compositions.

  17. Rydberg Atoms in Strong Fields: a Testing Ground for Quantum Chaos.

    NASA Astrophysics Data System (ADS)

    Courtney, Michael

    1995-01-01

    Rydberg atoms in strong static electric and magnetic fields provide experimentally accessible systems for studying the connections between classical chaos and quantum mechanics in the semiclassical limit. This experimental accessibility has motivated the development of reliable quantum mechanical solutions. This thesis uses both experimental and computed quantum spectra to test the central approaches to quantum chaos. These central approaches consist mainly of developing methods to compute the spectra of quantum systems in non -perturbative regimes, correlating statistical descriptions of eigenvalues with the classical behavior of the same Hamiltonian, and the development of semiclassical methods such as periodic-orbit theory. Particular emphasis is given to identifying the spectral signature of recurrences --quantum wave packets which follow classical orbits. The new findings include: the breakdown of the connection between energy-level statistics and classical chaos in odd-parity diamagnetic lithium, the discovery of the signature of very long period orbits in atomic spectra, quantitative evidence for the scattering of recurrences by the alkali -metal core, quantitative description of the behavior of recurrences near bifurcations, and a semiclassical interpretation of the evolution of continuum Stark spectra. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).

  18. Symmetry-Based Techniques for Qualitative Understanding of Rovibrational Effects in Spherical-Top Molecular Spectra and Dynamics

    NASA Astrophysics Data System (ADS)

    Mitchell, Justin Chadwick

    2011-12-01

    Using light to probe the structure of matter is as natural as opening our eyes. Modern physics and chemistry have turned this art into a rich science, measuring the delicate interactions possible at the molecular level. Perhaps the most commonly used tool in computational spectroscopy is that of matrix diagonalization. While this is invaluable for calculating everything from molecular structure and energy levels to dipole moments and dynamics, the process of numerical diagonalization is an opaque one. This work applies symmetry and semi-classical techniques to elucidate numerical spectral analysis for high-symmetry molecules. Semi-classical techniques, such as the Potential Energy Surfaces, have long been used to help understand molecular vibronic and rovibronic spectra and dynamics. This investigation focuses on newer semi-classical techniques that apply Rotational Energy Surfaces (RES) to rotational energy level clustering effects in high-symmetry molecules. Such clusters exist in rigid rotor molecules as well as deformable spherical tops. This study begins by using the simplicity of rigid symmetric top molecules to clarify the classical-quantum correspondence of RES semi-classical analysis and then extends it to a more precise and complete theory of modern high-resolution spectra. RES analysis is extended to molecules having more complex and higher rank tensorial rotational and rovibrational Hamiltonians than were possible to understand before. Such molecules are shown to produce an extraordinary range of rotational level clusters, corresponding to a panoply of symmetries ranging from C4v to C2 and C1 (no symmetry) with a corresponding range of new angular momentum localization and J-tunneling effects. Using RES topography analysis and the commutation duality relations between symmetry group operators in the lab-frame to those in the body-frame, it is shown how to better describe and catalog complex splittings found in rotational level clusters. Symmetry character analysis is generalized to give analytic eigensolutions. An appendix provides vibrational analogies. For the first time, interactions between molecular vibrations (polyads) are described semi-classically by multiple RES. This is done for the nu 3/2nu4 dyad of CF4. The nine-surface RES topology of the U(9)-dyad agrees with both computational and experimental work. A connection between this and a simpler U(2) example is detailed in an Appendix.

  19. Phonon conduction in GaN-diamond composite substrates

    NASA Astrophysics Data System (ADS)

    Cho, Jungwan; Francis, Daniel; Altman, David H.; Asheghi, Mehdi; Goodson, Kenneth E.

    2017-02-01

    The integration of strongly contrasting materials can enable performance benefits for semiconductor devices. One example is composite substrates of gallium nitride (GaN) and diamond, which promise dramatically improved conduction cooling of high-power GaN transistors. Here, we examine phonon conduction in GaN-diamond composite substrates fabricated using a GaN epilayer transfer process through transmission electron microscopy, measurements using time-domain thermoreflectance, and semiclassical transport theory for phonons interacting with interfaces and defects. Thermoreflectance amplitude and ratio signals are analyzed at multiple modulation frequencies to simultaneously extract the thermal conductivity of GaN layers and the thermal boundary resistance across GaN-diamond interfaces at room temperature. Uncertainties in the measurement of these two properties are estimated considering those of parameters, including the thickness of a topmost metal transducer layer, given as an input to a multilayer thermal model, as well as those associated with simultaneously fitting the two properties. The volume resistance of an intermediate, disordered SiN layer between the GaN and diamond, as well as a presence of near-interfacial defects in the GaN and diamond, dominates the measured GaN-diamond thermal boundary resistances as low as 17 m2 K GW-1. The GaN thermal conductivity data are consistent with the semiclassical phonon thermal conductivity integral model that accounts for the size effect as well as phonon scattering on point defects at concentrations near 3 × 1018 cm-3.

  20. An Innovative Sensing Approach Using Carbon Nanotube-Based Composites for Structural Health Monitoring of Concrete Structures

    NASA Astrophysics Data System (ADS)

    Dwivedi, Vatsal

    This thesis presents some work on two quite disparate kinds of dynamical systems described by Hamiltonian dynamics. The first part describes a computation of gauge anomalies and their macroscopic effects in a semiclassical picture. The geometric (symplectic) formulation of classical mechanics is used to describe the dynamics of Weyl fermions in even spacetime dimensions, the only quantum input to the symplectic form being the Berry curvature that encodes the spin-momentum locking. The (semi-)classical equations of motion are used in a kinetic theory setup to compute the gauge and singlet currents, whose conservation laws reproduce the nonabelian gauge and singlet anomalies. Anomalous contributions to the hydrodynamic currents for a gas of Weyl fermions at a finite temperature and chemical potential are also calculated, and are in agreement with similar results in literature which were obtained using thermodynamic and/or quantum field theoretical arguments. The second part describes a generalized transfer matrix formalism for noninteracting tight-binding models. The formalism is used to study the bulk and edge spectra, both of which are encoded in the spectrum of the transfer matrices, for some of the common tight-binding models for noninteracting electronic topological phases of matter. The topological invariants associated with the boundary states are interpreted as winding numbers for windings around noncontractible loops on a Riemann sheet constructed using the algebraic structure of the transfer matrices, as well as with a Maslov index on a symplectic group manifold, which is the space of transfer matrices.

  1. Fluorescence quenching near small metal nanoparticles.

    PubMed

    Pustovit, V N; Shahbazyan, T V

    2012-05-28

    We develop a microscopic model for fluorescence of a molecule (or semiconductor quantum dot) near a small metal nanoparticle. When a molecule is situated close to metal surface, its fluorescence is quenched due to energy transfer to the metal. We perform quantum-mechanical calculations of energy transfer rates for nanometer-sized Au nanoparticles and find that nonlocal and quantum-size effects significantly enhance dissipation in metal as compared to those predicted by semiclassical electromagnetic models. However, the dependence of transfer rates on molecule's distance to metal nanoparticle surface, d, is significantly weaker than the d(-4) behavior for flat metal surface with a sharp boundary predicted by previous calculations within random phase approximation.

  2. Diffracted field distributions from the HE11 mode in a hollow optical fibre for an atomic funnel

    NASA Astrophysics Data System (ADS)

    Ni, Yun; Liu, Nanchun; Yin, Jianping

    2003-06-01

    The diffracted near field distribution from an LP01 mode in a hollow optical fibre was recently calculated using a scalar model based on the weakly waveguiding approximation (Yoo et al 1999 J. Opt. B: Quantum Semiclass. Opt. 1 364). It showed a dominant Gaussian-like distribution with an increased axial intensity in the central region (not a doughnut-like distribution), so the diffracted output beam from the hollow fibre cannot be used to form an atomic funnel. Using exact solutions of the Maxwell equations based on a vector model, however, we calculate the electric field and intensity distributions of the HE11 mode in the same hollow fibre and study the diffracted near- and far-field distributions of the HE11-mode output beam under the Fresnel approximation. We analyse and compare the differences between the output beams from the HE11 and LP01 modes. Our study shows that both the near- and far-field intensity distributions of the HE11-mode output beam are doughnut-like and can be used to form a simple atomic funnel. However, it is not suitable to use the weakly waveguiding approximation to calculate the diffracted near-field distribution of the hollow fibre due to the greater refractive-index difference between the hollow region (n0 = 1) and the core (n1 = 1.45 or 1.5). Finally, the 3D intensity distribution of the HE11-mode output beam is modelled and the corresponding optical potentials for cold atoms are calculated. Some potential applications of the HE11-mode output beam in an atomic guide and funnel are briefly discussed.

  3. Revisiting special relativity: a natural algebraic alternative to Minkowski spacetime.

    PubMed

    Chappell, James M; Iqbal, Azhar; Iannella, Nicolangelo; Abbott, Derek

    2012-01-01

    Minkowski famously introduced the concept of a space-time continuum in 1908, merging the three dimensions of space with an imaginary time dimension [Formula: see text], with the unit imaginary producing the correct spacetime distance [Formula: see text], and the results of Einstein's then recently developed theory of special relativity, thus providing an explanation for Einstein's theory in terms of the structure of space and time. As an alternative to a planar Minkowski space-time of two space dimensions and one time dimension, we replace the unit imaginary [Formula: see text], with the Clifford bivector [Formula: see text] for the plane that also squares to minus one, but which can be included without the addition of an extra dimension, as it is an integral part of the real Cartesian plane with the orthonormal basis [Formula: see text] and [Formula: see text]. We find that with this model of planar spacetime, using a two-dimensional Clifford multivector, the spacetime metric and the Lorentz transformations follow immediately as properties of the algebra. This also leads to momentum and energy being represented as components of a multivector and we give a new efficient derivation of Compton's scattering formula, and a simple formulation of Dirac's and Maxwell's equations. Based on the mathematical structure of the multivector, we produce a semi-classical model of massive particles, which can then be viewed as the origin of the Minkowski spacetime structure and thus a deeper explanation for relativistic effects. We also find a new perspective on the nature of time, which is now given a precise mathematical definition as the bivector of the plane.

  4. Mesoscopic Physics of Electronic and Optical Systems

    NASA Astrophysics Data System (ADS)

    Hentschel, Martina

    2005-10-01

    The progress in fabricating and controlling mesoscopic samples opens the possibility to investigate many-body phenomena on the nanoscopic scale, for example in quantum dots or nanoparticles. We recently studied the many-body signatures in the photoabsorption cross-section of those systems. Two counteracting many-body effects (Anderson's orthogonality catastrophe and Mahan's exciton) lead to deviations from the naively expected cross-section and to Fermi-edge singularities in the form of a peaked or rounded edge. We found that mesoscopic-coherent systems can show a many-body response that differs considerably from macroscopic samples. The reason for this lies in the finite number of particles and the lack of rotational symmetry in generic mesoscopic systems. The properties of mesoscopic systems crucially depend on whether the corresponding classical systems possess chaotic or integrable dynamics. Signatures of the underlying classical dynamics in quantum-mechanical behavior are searched for in the field of quantum chaos. We study it in the context of optical microresonators-billiards where reflection at hard walls is replaced by confinement due to total internal reflection. The relation between the simple ray model and the wave description (that has to be used when the wavelength becomes comparable to the system size) is called ``ray-wave correspondence.'' It can be established in both real and phase space. For the latter we generalized the concept of Husimi functions to dielectric boundaries. Although the ray model provides a qualitative understanding of the system properties even into the wave limit, semiclassical corrections of the ray picture are necessary in order to establish quantitative correspondence.

  5. Revisiting Special Relativity: A Natural Algebraic Alternative to Minkowski Spacetime

    PubMed Central

    Chappell, James M.; Iqbal, Azhar; Iannella, Nicolangelo; Abbott, Derek

    2012-01-01

    Minkowski famously introduced the concept of a space-time continuum in 1908, merging the three dimensions of space with an imaginary time dimension , with the unit imaginary producing the correct spacetime distance , and the results of Einstein’s then recently developed theory of special relativity, thus providing an explanation for Einstein’s theory in terms of the structure of space and time. As an alternative to a planar Minkowski space-time of two space dimensions and one time dimension, we replace the unit imaginary , with the Clifford bivector for the plane that also squares to minus one, but which can be included without the addition of an extra dimension, as it is an integral part of the real Cartesian plane with the orthonormal basis and . We find that with this model of planar spacetime, using a two-dimensional Clifford multivector, the spacetime metric and the Lorentz transformations follow immediately as properties of the algebra. This also leads to momentum and energy being represented as components of a multivector and we give a new efficient derivation of Compton’s scattering formula, and a simple formulation of Dirac’s and Maxwell’s equations. Based on the mathematical structure of the multivector, we produce a semi-classical model of massive particles, which can then be viewed as the origin of the Minkowski spacetime structure and thus a deeper explanation for relativistic effects. We also find a new perspective on the nature of time, which is now given a precise mathematical definition as the bivector of the plane. PMID:23300566

  6. Problem of time: facets and Machian strategy.

    PubMed

    Anderson, Edward

    2014-10-01

    The problem of time is that "time" in each of ordinary quantum theory and general relativity are mutually incompatible notions. This causes difficulties in trying to put these two theories together to form a theory of quantum gravity. The problem of time has eight facets in canonical approaches. I clarify that all but one of these facets already occur at the classical level, and reconceptualize and re-name some of these facets as follows. The frozen formalism problem becomes temporal relationalism, the thin sandwich problem becomes configurational relationalism, via the notion of best matching. The problem of observables becomes the problem of beables, and the functional evolution problem becomes the constraint closure problem. I also outline how each of the global and multiple-choice problems of time have their own plurality of facets. This article additionally contains a local resolution to the problem of time at the conceptual level and which is actually realizable for the relational triangle and minisuperspace models. This resolution is, moreover, Machian, and has three levels: classical, semiclassical, and a combined semiclassical-histories-timeless records scheme. I end by delineating the current frontiers of this program toward resolution of the problem of time in the cases of full general relativity and of slightly inhomogeneous cosmology. © 2014 New York Academy of Sciences.

  7. Molecular collision processes in the presence of picosecond laser pulses

    NASA Technical Reports Server (NTRS)

    Lee, H. W.; George, T. F.

    1979-01-01

    Radiative transitions in molecular collision processes taking place in the presence of picosecond pulses are studied within a semiclassical formalism. An expression for adiabatic potential surfaces in the electronic-field representation is obtained, which directly leads to the evaluation of transition probabilities. Calculations with a Landau-Zener-type model indicate that picosecond pulses can be much more effective in inducing transitions than a single long pulse of the same intensity and the same total energy, if the intensity is sufficiently high that the perturbation treatment is not valid.

  8. (Super)symmetries of semiclassical models in theoretical and condensed matter physics

    NASA Astrophysics Data System (ADS)

    Ngome, J.-P.

    2011-03-01

    Van Holten's covariant algorithm for deriving conserved quantities is presented, with particular attention paid to Runge-Lenz-type vectors. The classical dynamics of isospin-carrying particles is reviewed. Physical applications including non-Abelian monopole-type systems in diatoms, introduced by Moody, Shapere and Wilczek, are considered. Applied to curved space, the formalism of van Holten allows us to describe the dynamical symmetries of generalized Kaluza-Klein monopoles. The framework is extended to supersymmetry and applied to the SUSY of the monopoles. Yet another application concerns the three-dimensional non-commutative oscillator.

  9. Two interacting Hofstadter butterflies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barelli, A.; Bellissard, J.; Jacquod, P.

    1997-04-01

    The problem of two interacting particles in a quasiperiodic potential is addressed. Using analytical and numerical methods, we explore the spectral properties and eigenstates structure from the weak to the strong interaction case. More precisely, a semiclassical approach based on noncommutative geometry techniques is used to understand the intricate structure of such a spectrum. An interaction induced localization effect is furthermore emphasized. We discuss the application of our results on a two-dimensional model of two particles in a uniform magnetic field with on-site interaction. {copyright} {ital 1997} {ital The American Physical Society}

  10. Equilibration in one-dimensional quantum hydrodynamic systems

    NASA Astrophysics Data System (ADS)

    Sotiriadis, Spyros

    2017-10-01

    We study quench dynamics and equilibration in one-dimensional quantum hydrodynamics, which provides effective descriptions of the density and velocity fields in gapless quantum gases. We show that the information content of the large time steady state is inherently connected to the presence of ballistically moving localised excitations. When such excitations are present, the system retains memory of initial correlations up to infinite times, thus evading decoherence. We demonstrate this connection in the context of the Luttinger model, the simplest quantum hydrodynamic model, and in the quantum KdV equation. In the standard Luttinger model, memory of all initial correlations is preserved throughout the time evolution up to infinitely large times, as a result of the purely ballistic dynamics. However nonlinear dispersion or interactions, when separately present, lead to spreading and delocalisation that suppress the above effect by eliminating the memory of non-Gaussian correlations. We show that, for any initial state that satisfies sufficient clustering of correlations, the steady state is Gaussian in terms of the bosonised or fermionised fields in the dispersive or interacting case respectively. On the other hand, when dispersion and interaction are simultaneously present, a semiclassical approximation suggests that localisation is restored as the two effects compensate each other and solitary waves are formed. Solitary waves, or simply solitons, are experimentally observed in quantum gases and theoretically predicted based on semiclassical approaches, but the question of their stability at the quantum level remains to a large extent an open problem. We give a general overview on the subject and discuss the relevance of our findings to general out of equilibrium problems. Dedicated to John Cardy on the occasion of his 70th birthday.

  11. Two-Dimensional Quantum Model of a Nanotransistor

    NASA Technical Reports Server (NTRS)

    Govindan, T. R.; Biegel, B.; Svizhenko, A.; Anantram, M. P.

    2009-01-01

    A mathematical model, and software to implement the model, have been devised to enable numerical simulation of the transport of electric charge in, and the resulting electrical performance characteristics of, a nanotransistor [in particular, a metal oxide/semiconductor field-effect transistor (MOSFET) having a channel length of the order of tens of nanometers] in which the overall device geometry, including the doping profiles and the injection of charge from the source, gate, and drain contacts, are approximated as being two-dimensional. The model and software constitute a computational framework for quantitatively exploring such device-physics issues as those of source-drain and gate leakage currents, drain-induced barrier lowering, and threshold voltage shift due to quantization. The model and software can also be used as means of studying the accuracy of quantum corrections to other semiclassical models.

  12. Semiclassical analysis of spectral singularities and their applications in optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mostafazadeh, Ali

    2011-08-15

    Motivated by possible applications of spectral singularities in optics, we develop a semiclassical method of computing spectral singularities. We use this method to examine the spectral singularities of a planar slab gain medium whose gain coefficient varies due to the exponential decay of the intensity of the pumping beam inside the medium. For both singly and doublypumped samples, we obtain universal upper bounds on the decay constant beyond which no lasing occurs. Furthermore, we show that the dependence of the wavelength of the spectral singularities on the value of the decay constant is extremely mild. This is an indication ofmore » the stability of optical spectral singularities.« less

  13. Statistics of time delay and scattering correlation functions in chaotic systems. I. Random matrix theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novaes, Marcel

    2015-06-15

    We consider the statistics of time delay in a chaotic cavity having M open channels, in the absence of time-reversal invariance. In the random matrix theory approach, we compute the average value of polynomial functions of the time delay matrix Q = − iħS{sup †}dS/dE, where S is the scattering matrix. Our results do not assume M to be large. In a companion paper, we develop a semiclassical approximation to S-matrix correlation functions, from which the statistics of Q can also be derived. Together, these papers contribute to establishing the conjectured equivalence between the random matrix and the semiclassical approaches.

  14. Comparison of local exchange potentials of electron-N2 scattering

    NASA Astrophysics Data System (ADS)

    Rumble, J. R., Jr.; Truhlar, D. G.

    1980-05-01

    Vibrationally and electronically elastic electron scattering by N2 at 2-30 eV impact energy is considered. Static, static-exchange, and static-exchange-plus-polarization potentials, Cade-Sales-Wahl and INDO/1s wave functions, and semiclassical exchange and Hara free-electron-gas exchange potentials are examined. It is shown that the semiclassical exchange approximation is too attractive at low energy for N2. It is also shown quantitatively by consideration of partial and total integral cross sections how the effects of approximations to exchange become smaller as the incident energy is increased until the differences are about 8% for the total integral cross section at 30 eV.

  15. Semiclassical approach to finite-temperature quantum annealing with trapped ions

    NASA Astrophysics Data System (ADS)

    Raventós, David; Graß, Tobias; Juliá-Díaz, Bruno; Lewenstein, Maciej

    2018-05-01

    Recently it has been demonstrated that an ensemble of trapped ions may serve as a quantum annealer for the number-partitioning problem [Nat. Commun. 7, 11524 (2016), 10.1038/ncomms11524]. This hard computational problem may be addressed by employing a tunable spin-glass architecture. Following the proposal of the trapped-ion annealer, we study here its robustness against thermal effects; that is, we investigate the role played by thermal phonons. For the efficient description of the system, we use a semiclassical approach, and benchmark it against the exact quantum evolution. The aim is to understand better and characterize how the quantum device approaches a solution of an otherwise difficult to solve NP-hard problem.

  16. Probing the Ultimate Limits of Plasmonic Enhancement

    PubMed Central

    Ciracì, C.; Hill, R. T.; Mock, J. J.; Urzhumov, Y.; Fernández-Domínguez, A. I.; Maier, S. A.; Pendry, J. B.; Chilkoti, A.; Smith, D. R.

    2013-01-01

    Metals support surface plasmons at optical wavelengths and have the ability to localize light to sub-wavelength regions. The field enhancements that occur in these regions set the ultimate limitations on a wide range of nonlinear and quantum optical phenomena. Here we show that the dominant limiting factor is not the resistive loss of the metal, but the intrinsic nonlocality of its dielectric response. A semi-classical model of the electronic response of a metal places strict bounds on the ultimate field enhancement. We demonstrate the accuracy of this model by studying the optical scattering from gold nanoparticles spaced a few angstroms from a gold film. The bounds derived from the models and experiments impose limitations on all nanophotonic systems. PMID:22936772

  17. Time dependent semiclassical tunneling through one dimensional barriers using only real valued trajectories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herman, Michael F.

    2015-10-28

    The time independent semiclassical treatment of barrier tunneling has been understood for a very long time. Several semiclassical approaches to time dependent tunneling through barriers have also been presented. These typically involve trajectories for which the position variable is a complex function of time. In this paper, a method is presented that uses only real valued trajectories, thus avoiding the complications that can arise when complex trajectories are employed. This is accomplished by expressing the time dependent wave packet as an integration over momentum. The action function in the exponent in this expression is expanded to second order in themore » momentum. The expansion is around the momentum, p{sub 0{sup *}}, at which the derivative of the real part of the action is zero. The resulting Gaussian integral is then taken. The stationary phase approximation requires that the derivative of the full action is zero at the expansion point, and this leads to a complex initial momentum and complex tunneling trajectories. The “pseudo-stationary phase” approximation employed in this work results in real values for the initial momentum and real valued trajectories. The transmission probabilities obtained are found to be in good agreement with exact quantum results.« less

  18. On the Anticipatory Aspects of the Four Interactions: what the Known Classical and Semi-Classical Solutions Teach us

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lusanna, Luca

    2004-08-19

    The four (electro-magnetic, weak, strong and gravitational) interactions are described by singular Lagrangians and by Dirac-Bergmann theory of Hamiltonian constraints. As a consequence a subset of the original configuration variables are gauge variables, not determined by the equations of motion. Only at the Hamiltonian level it is possible to separate the gauge variables from the deterministic physical degrees of freedom, the Dirac observables, and to formulate a well posed Cauchy problem for them both in special and general relativity. Then the requirement of causality dictates the choice of retarded solutions at the classical level. However both the problems of themore » classical theory of the electron, leading to the choice of (1/2) (retarded + advanced) solutions, and the regularization of quantum field theory, leading to the Feynman propagator, introduce anticipatory aspects. The determination of the relativistic Darwin potential as a semi-classical approximation to the Lienard-Wiechert solution for particles with Grassmann-valued electric charges, regularizing the Coulomb self-energies, shows that these anticipatory effects live beyond the semi-classical approximation (tree level) under the form of radiative corrections, at least for the electro-magnetic interaction.Talk and 'best contribution' at The Sixth International Conference on Computing Anticipatory Systems CASYS'03, Liege August 11-16, 2003.« less

  19. Linearized semiclassical initial value time correlation functions with maximum entropy analytic continuation.

    PubMed

    Liu, Jian; Miller, William H

    2008-09-28

    The maximum entropy analytic continuation (MEAC) method is used to extend the range of accuracy of the linearized semiclassical initial value representation (LSC-IVR)/classical Wigner approximation for real time correlation functions. LSC-IVR provides a very effective "prior" for the MEAC procedure since it is very good for short times, exact for all time and temperature for harmonic potentials (even for correlation functions of nonlinear operators), and becomes exact in the classical high temperature limit. This combined MEAC+LSC/IVR approach is applied here to two highly nonlinear dynamical systems, a pure quartic potential in one dimensional and liquid para-hydrogen at two thermal state points (25 and 14 K under nearly zero external pressure). The former example shows the MEAC procedure to be a very significant enhancement of the LSC-IVR for correlation functions of both linear and nonlinear operators, and especially at low temperature where semiclassical approximations are least accurate. For liquid para-hydrogen, the LSC-IVR is seen already to be excellent at T=25 K, but the MEAC procedure produces a significant correction at the lower temperature (T=14 K). Comparisons are also made as to how the MEAC procedure is able to provide corrections for other trajectory-based dynamical approximations when used as priors.

  20. Semiclassical black holes expose forbidden charges and censor divergent densities

    NASA Astrophysics Data System (ADS)

    Brustein, Ram; Medved, A. J. M.

    2013-09-01

    Classically, the horizon of a Schwarzschild black hole (BH) is a rigid surface of infinite redshift; whereas the uncertainty principle dictates that the semiclassical (would-be) horizon cannot be fixed in space nor can it exhibit any divergences. We propose that this distinction underlies the BH information-loss paradox, the apparent absence of BH hair, the so-called trans-Planckian problem and the recent "firewall" controversy. We argue that the correct prescription is to first integrate out the fluctuations of the background geometry and only then evaluate matter observables. The basic idea is illustrated using a system of two strongly coupled harmonic oscillators, with the heavier oscillator representing the background. We then apply our proposal to matter fields near a BH horizon, initially treating the matter fields as classical and the background as semiclassical. In this case, the average value of the associated current does not vanish; so that it is possible, in pr inciple, to measure the global charge of the BH. Then the matter is, in addition to the background, treated quantum mechanically. We show that the average energy density of matter as seen by an asymptotic observer is finite and proportional to the BH entropy, rather than divergent. We discuss the implications of our results for the various controversial issues concerning BH physics.

  1. Stochastic Gravity: Theory and Applications.

    PubMed

    Hu, Bei Lok; Verdaguer, Enric

    2004-01-01

    Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel. The noise kernel is the vacuum expectation value of the (operatorvalued) stress-energy bi-tensor which describes the fluctuations of quantum matter fields in curved spacetimes. In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. The axiomatic approach is useful to see the structure of the theory from the framework of semiclassical gravity, showing the link from the mean value of the stress-energy tensor to their correlation functions. The functional approach uses the Feynman-Vernon influence functional and the Schwinger-Keldysh closed-time-path effective action methods which are convenient for computations. It also brings out the open systems concepts and the statistical and stochastic contents of the theory such as dissipation, fluctuations, noise, and decoherence. We then focus on the properties of the stress-energy bi-tensor. We obtain a general expression for the noise kernel of a quantum field defined at two distinct points in an arbitrary curved spacetime as products of covariant derivatives of the quantum field's Green function. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime. We offer an analytical solution of the Einstein-Langevin equation and compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. Second, we discuss structure formation from the stochastic gravity viewpoint, which can go beyond the standard treatment by incorporating the full quantum effect of the inflaton fluctuations. Third, we discuss the backreaction of Hawking radiation in the gravitational background of a quasi-static black hole (enclosed in a box). We derive a fluctuation-dissipation relation between the fluctuations in the radiation and the dissipative dynamics of metric fluctuations.

  2. Ghirardi-Rimini-Weber model with massive flashes

    NASA Astrophysics Data System (ADS)

    Tilloy, Antoine

    2018-01-01

    I introduce a modification of the Ghirardi-Rimini-Weber (GRW) model in which the flashes (or space-time collapse events) source a classical gravitational field. The resulting semiclassical theory of Newtonian gravity preserves the statistical interpretation of quantum states of matter in contrast with mean field approaches. It can be seen as a discrete version of recent proposals of consistent hybrid quantum classical theories. The model is in agreement with known experimental data and introduces new falsifiable predictions: (1) single particles do not self-interact, (2) the 1 /r gravitational potential of Newtonian gravity is cut off at short (≲10-7 m ) distances, and (3) gravity makes spatial superpositions decohere at a rate inversely proportional to that coming from the vanilla GRW model. Together, the last two predictions make the model experimentally falsifiable for all values of its parameters.

  3. Vacuum polarization of the quantized massive fields in Friedman-Robertson-Walker spacetime

    NASA Astrophysics Data System (ADS)

    Matyjasek, Jerzy; Sadurski, Paweł; Telecka, Małgorzata

    2014-04-01

    The stress-energy tensor of the quantized massive fields in a spatially open, flat, and closed Friedman-Robertson-Walker universe is constructed using the adiabatic regularization (for the scalar field) and the Schwinger-DeWitt approach (for the scalar, spinor, and vector fields). It is shown that the stress-energy tensor calculated in the sixth adiabatic order coincides with the result obtained from the regularized effective action, constructed from the heat kernel coefficient a3. The behavior of the tensor is examined in the power-law cosmological models, and the semiclassical Einstein field equations are solved exactly in a few physically interesting cases, such as the generalized Starobinsky models.

  4. Study of optimum methods of optical communication

    NASA Technical Reports Server (NTRS)

    Harger, R. O.

    1972-01-01

    Optimum methods of optical communication accounting for the effects of the turbulent atmosphere and quantum mechanics, both by the semi-classical method and the full-fledged quantum theoretical model are described. A concerted effort to apply the techniques of communication theory to the novel problems of optical communication by a careful study of realistic models and their statistical descriptions, the finding of appropriate optimum structures and the calculation of their performance and, insofar as possible, comparing them to conventional and other suboptimal systems are discussed. In this unified way the bounds on performance and the structure of optimum communication systems for transmission of information, imaging, tracking, and estimation can be determined for optical channels.

  5. Modeling of Diamond Field-Emitter-Arrays for high brightness photocathode applications

    NASA Astrophysics Data System (ADS)

    Kwan, Thomas; Huang, Chengkun; Piryatinski, Andrei; Lewellen, John; Nichols, Kimberly; Choi, Bo; Pavlenko, Vitaly; Shchegolkov, Dmitry; Nguyen, Dinh; Andrews, Heather; Simakov, Evgenya

    2017-10-01

    We propose to employ Diamond Field-Emitter-Arrays (DFEAs) as high-current-density ultra-low-emittance photocathodes for compact laser-driven dielectric accelerators capable of generating ultra-high brightness electron beams for advanced applications. We develop a semi-classical Monte-Carlo photoemission model for DFEAs that includes carriers' transport to the emitter surface and tunneling through the surface under external fields. The model accounts for the electronic structure size quantization affecting the transport and tunneling process within the sharp diamond tips. We compare this first principle model with other field emission models, such as the Child-Langmuir and Murphy-Good models. By further including effects of carrier photoexcitation, we perform simulations of the DFEAs' photoemission quantum yield and the emitted electron beam. Details of the theoretical model and validation against preliminary experimental data will be presented. Work ssupported by LDRD program at LANL.

  6. Topics in quantum chaos

    NASA Astrophysics Data System (ADS)

    Jordan, Andrew Noble

    2002-09-01

    In this dissertation, we study the quantum mechanics of classically chaotic dynamical systems. We begin by considering the decoherence effects a quantum chaotic system has on a simple quantum few state system. Typical time evolution of a quantum system whose classical limit is chaotic generates structures in phase space whose size is much smaller than Planck's constant. A naive application of Heisenberg's uncertainty principle indicates that these structures are not physically relevant. However, if we take the quantum chaotic system in question to be an environment which interacts with a simple two state quantum system (qubit), we show that these small phase-space structures cause the qubit to generically lose quantum coherence if and only if the environment has many degrees of freedom, such as a dilute gas. This implies that many-body environments may be crucial for the phenomenon of quantum decoherence. Next, we turn to an analysis of statistical properties of time correlation functions and matrix elements of quantum chaotic systems. A semiclassical evaluation of matrix elements of an operator indicates that the dominant contribution will be related to a classical time correlation function over the energy surface. For a highly chaotic class of dynamics, these correlation functions may be decomposed into sums of Ruelle resonances, which control exponential decay to the ergodic distribution. The theory is illustrated both numerically and theoretically on the Baker map. For this system, we are able to isolate individual Ruelle modes. We further consider dynamical systems whose approach to ergodicity is given by a power law rather than an exponential in time. We propose a billiard with diffusive boundary conditions, whose classical solution may be calculated analytically. We go on to compare the exact solution with an approximation scheme, as well calculate asympotic corrections. Quantum spectral statistics are calculated assuming the validity of the Again, Altshuler and Andreev ansatz. We find singular behavior of the two point spectral correlator in the limit of small spacing. Finally, we analyse the effect that slow decay to ergodicity has on the structure of the quantum propagator, as well as wavefunction localization. We introduce a statistical quantum description of systems that are composed of both an orderly region and a random region. By averaging over the random region only, we find that measures of localization in momentum space semiclassically diverge with the dimension of the Hilbert space. We illustrate this numerically with quantum maps and suggest various other systems where this behavior should be important.

  7. Geometry of magnetic rotational (MR) band-crossing phenomenon in MR bands

    NASA Astrophysics Data System (ADS)

    Devi, K. Rojeeta; Kumar, Suresh; Palit, R.

    2018-07-01

    A semiclassical (SC) approach is proposed to calculate the B( M1) transition rates in the band-crossing region of two magnetic rotational (MR) bands. In the present work, a geometry is suggested for the shear blades to govern its behaviour during the band-crossing. In the crossing region, gradual alignment of two nucleons is responsible for the crossing behaviour and it must give a quantised resultant angular momentum. As an example, it is successfully implemented for the MR bands in the mass A=110 and A=200 regions. A good agreement of the present semiclassical calculations with the experimental values is presented and furthermore, it is seen that the present proposal is also helpful to see the core contribution in the MR phenomenon.

  8. Heisenberg limit for displacements with semiclassical states

    NASA Astrophysics Data System (ADS)

    Luis, Alfredo

    2004-04-01

    We analyze the quantum limit to the sensitivity of the detection of small displacements. We focus on the case of free particles and harmonic oscillators as the systems experiencing the displacement. We show that the minimum displacement detectable is proportional to the inverse of the square root of the mean value of the energy in the state experiencing the displacement (Heisenberg limit). We present a measuring scheme that reaches this limit using semiclassical states. We examine the performance of this strategy under realistic practical conditions by computing the effect of imperfections such as losses and nonunit detection efficiencies. This analysis confirms the robustness of this measuring strategy by showing that the experimental imperfections can be suitably compensated by increasing the mean energy of the input state.

  9. Hybrid Semiclassical Theory of Quantum Quenches in One-Dimensional Systems

    NASA Astrophysics Data System (ADS)

    Moca, Cǎtǎlin Paşcu; Kormos, Márton; Zaránd, Gergely

    2017-09-01

    We develop a hybrid semiclassical method to study the time evolution of one-dimensional quantum systems in and out of equilibrium. Our method handles internal degrees of freedom completely quantum mechanically by a modified time-evolving block decimation method while treating orbital quasiparticle motion classically. We can follow dynamics up to time scales well beyond the reach of standard numerical methods to observe the crossover between preequilibrated and locally phase equilibrated states. As an application, we investigate the quench dynamics and phase fluctuations of a pair of tunnel-coupled one-dimensional Bose condensates. We demonstrate the emergence of soliton-collision-induced phase propagation, soliton-entropy production, and multistep thermalization. Our method can be applied to a wide range of gapped one-dimensional systems.

  10. Nonclassical and semiclassical para-Bose states

    NASA Astrophysics Data System (ADS)

    Huerta Alderete, C.; Villanueva Vergara, Liliana; Rodríguez-Lara, B. M.

    2017-04-01

    Motivated by the proposal to simulate para-Bose oscillators in a trapped-ion setup [C. Huerta Alderete and B. M. Rodríguez-Lara, Phys. Rev. A 95, 013820 (2017), 10.1103/PhysRevA.95.013820], we introduce an overcomplete, nonorthogonal basis for para-Bose Hilbert spaces. The states spanning these bases can be experimentally realized in the trapped-ion simulation via time evolution. The para-Bose states show both nonclassical and semiclassical statistics on their Fock state distribution, asymmetric field quadrature variances, and do not minimize the uncertainty relation for the field quadratures. These properties are analytically controlled by the para-Bose order and the evolution time; both parameters might be feasible for fine tuning in the trapped-ion quantum simulation.

  11. Statistics of time delay and scattering correlation functions in chaotic systems. II. Semiclassical approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novaes, Marcel

    2015-06-15

    We consider S-matrix correlation functions for a chaotic cavity having M open channels, in the absence of time-reversal invariance. Relying on a semiclassical approximation, we compute the average over E of the quantities Tr[S{sup †}(E − ϵ) S(E + ϵ)]{sup n}, for general positive integer n. Our result is an infinite series in ϵ, whose coefficients are rational functions of M. From this, we extract moments of the time delay matrix Q = − iħS{sup †}dS/dE and check that the first 8 of them agree with the random matrix theory prediction from our previous paper [M. Novaes, J. Math. Phys.more » 56, 062110 (2015)].« less

  12. Semiclassical Planetology: a progress report

    NASA Astrophysics Data System (ADS)

    Celebonovic, V.

    1999-12-01

    Work on planetary internal structure has started in Yugoslavia in the early sixties.It was initiated by P.Savic and R.Kasanin,who have jointly developed a theory of the behaviour of materials under high pressure.By its physical basis,this theory is semiclassical,because it is based on classical physics combined with some quantum mechanical results.The calculations in the theory ( both laboratory and planetological) are baed on ths idea that high pressure leads to excitation and ionisation of atoms and/or molecules which make up the specimen. In this paper we shall briefly present the main ideas of this theory,and then discuss its planetological applications. References P.Savic and V.Celebonovic: 1994,AIP Conf.Proc.,vol.309,p.53. V.Celebonovic: 1999,preprint cond-mat/9906027

  13. Semiclassical IVR treatment of reactive collisions

    NASA Astrophysics Data System (ADS)

    Elran, Y.; Kay, K. G.

    2002-06-01

    We generalize a recently-developed semiclassical uniform initial value representation (IVR) treatment of the S-matrix [Y. Elran and K. G. Kay, J. Chem. Phys. 114, 4362 (2001)] to chaotic nonreactive and reactive collinear scattering. The present modifications allow one to determine the phase of the complex IVR integrand in a unique and practical manner even when the integrand is discontinuous or rapidly varying. The method is applied to the collinear H+H2 exchange reaction on the Porter-Karplus surface. A strategy is introduced for adapting the integration over the chaotic chattering zones to the fractal nature of the integrand. The results indicate that the technique is capable of good accuracy while requiring a relatively small number of trajectories per energy.

  14. Real-time Feynman path integral with Picard–Lefschetz theory and its applications to quantum tunneling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanizaki, Yuya, E-mail: yuya.tanizaki@riken.jp; Theoretical Research Division, Nishina Center, RIKEN, Wako 351-0198; Koike, Takayuki, E-mail: tkoike@ms.u-tokyo.ac.jp

    Picard–Lefschetz theory is applied to path integrals of quantum mechanics, in order to compute real-time dynamics directly. After discussing basic properties of real-time path integrals on Lefschetz thimbles, we demonstrate its computational method in a concrete way by solving three simple examples of quantum mechanics. It is applied to quantum mechanics of a double-well potential, and quantum tunneling is discussed. We identify all of the complex saddle points of the classical action, and their properties are discussed in detail. However a big theoretical difficulty turns out to appear in rewriting the original path integral into a sum of path integralsmore » on Lefschetz thimbles. We discuss generality of that problem and mention its importance. Real-time tunneling processes are shown to be described by those complex saddle points, and thus semi-classical description of real-time quantum tunneling becomes possible on solid ground if we could solve that problem. - Highlights: • Real-time path integral is studied based on Picard–Lefschetz theory. • Lucid demonstration is given through simple examples of quantum mechanics. • This technique is applied to quantum mechanics of the double-well potential. • Difficulty for practical applications is revealed, and we discuss its generality. • Quantum tunneling is shown to be closely related to complex classical solutions.« less

  15. Systematic study of 16O-induced fusion with the improved quantum molecular dynamics model

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Zhao, Kai; Li, Zhuxia

    2014-11-01

    The heavy-ion fusion reactions with 16O bombarding on 62Ni,65Cu,74Ge,148Nd,180Hf,186W,208Pb,238U are systematically investigated with the improved quantum molecular dynamics model. The fusion cross sections at energies near and above the Coulomb barriers can be reasonably well reproduced by using this semiclassical microscopic transport model with the parameter sets SkP* and IQ3a. The dynamical nucleus-nucleus potentials and the influence of Fermi constraint on the fusion process are also studied simultaneously. In addition to the mean field, the Fermi constraint also plays a key role for the reliable description of the fusion process and for improving the stability of fragments in heavy-ion collisions.

  16. A unified theoretical framework for mapping models for the multi-state Hamiltonian.

    PubMed

    Liu, Jian

    2016-11-28

    We propose a new unified theoretical framework to construct equivalent representations of the multi-state Hamiltonian operator and present several approaches for the mapping onto the Cartesian phase space. After mapping an F-dimensional Hamiltonian onto an F+1 dimensional space, creation and annihilation operators are defined such that the F+1 dimensional space is complete for any combined excitation. Commutation and anti-commutation relations are then naturally derived, which show that the underlying degrees of freedom are neither bosons nor fermions. This sets the scene for developing equivalent expressions of the Hamiltonian operator in quantum mechanics and their classical/semiclassical counterparts. Six mapping models are presented as examples. The framework also offers a novel way to derive such as the well-known Meyer-Miller model.

  17. Behavior of Tachyon in String Cosmology Based on Gauged WZW Model

    NASA Astrophysics Data System (ADS)

    Lee, Sunggeun; Nam, Soonkeon

    We investigate a string theoretic cosmological model in the context of the gauged Wess-Zumino-Witten model. Our model is based on a product of non-compact coset space and a spectator flat space; [SL(2, R)/U(1)]k × ℝ2. We extend the formerly studied semiclassical consideration with infinite Kac-Moody level k to a finite one. In this case, the tachyon field appears in the effective action, and we solve the Einstein equation to determine the behavior of tachyon as a function of time. We find that tachyon field dominates over dilaton field in early times. In particular, we consider the energy conditions of the matter fields consisting of the dilaton and the tachyon which affect the initial singularity. We find that not only the strong energy but also the null energy condition is violated.

  18. Stability of the Einstein static universe in open cosmological models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canonico, Rosangela; Parisi, Luca; INFN, Sezione di Napoli, GC di Salerno, Via Ponte Don Melillo, I-84081 Baronissi

    2010-09-15

    The stability properties of the Einstein static solution of general relativity are altered when corrective terms arising from modification of the underlying gravitational theory appear in the cosmological equations. In this paper the existence and stability of static solutions are considered in the framework of two recently proposed quantum gravity models. The previously known analysis of the Einstein static solutions in the semiclassical regime of loop quantum cosmology with modifications to the gravitational sector is extended to open cosmological models where a static neutrally stable solution is found. A similar analysis is also performed in the framework of Horava-Lifshitz gravitymore » under detailed balance and projectability conditions. In the case of open cosmological models the two solutions found can be either unstable or neutrally stable according to the admitted values of the parameters.« less

  19. Modeling of coherent ultrafast magneto-optical experiments: Light-induced molecular mean-field model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinschberger, Y.; Hervieux, P.-A.

    2015-12-28

    We present calculations which aim to describe coherent ultrafast magneto-optical effects observed in time-resolved pump-probe experiments. Our approach is based on a nonlinear semi-classical Drude-Voigt model and is used to interpret experiments performed on nickel ferromagnetic thin film. Within this framework, a phenomenological light-induced coherent molecular mean-field depending on the polarizations of the pump and probe pulses is proposed whose microscopic origin is related to a spin-orbit coupling involving the electron spins of the material sample and the electric field of the laser pulses. Theoretical predictions are compared to available experimental data. The model successfully reproduces the observed experimental trendsmore » and gives meaningful insight into the understanding of magneto-optical rotation behavior in the ultrafast regime. Theoretical predictions for further experimental studies are also proposed.« less

  20. Critical energy flux and mass in solvable theories of 2D dilaton gravity

    NASA Astrophysics Data System (ADS)

    Fabbri, A.; Navarro-Salas, J.

    1998-10-01

    In this paper we address the issue of determining the semiclassical threshold for black hole formation in the context of a one-parameter family of theories which continuously interpolates between the RST and BPP models. We find that the results depend significantly on the initial static configuration of the spacetime geometry before the influx of matter is turned on. In some cases there is a critical energy density, given by the Hawking rate of evaporation, as well as a critical mass mcr (eventually vanishing). In others there is neither mcr nor a critical flux.

  1. Analysis of corrections to the eikonal approximation

    NASA Astrophysics Data System (ADS)

    Hebborn, C.; Capel, P.

    2017-11-01

    Various corrections to the eikonal approximations are studied for two- and three-body nuclear collisions with the goal to extend the range of validity of this approximation to beam energies of 10 MeV/nucleon. Wallace's correction does not improve much the elastic-scattering cross sections obtained at the usual eikonal approximation. On the contrary, a semiclassical approximation that substitutes the impact parameter by a complex distance of closest approach computed with the projectile-target optical potential efficiently corrects the eikonal approximation. This opens the possibility to analyze data measured down to 10 MeV/nucleon within eikonal-like reaction models.

  2. Quantum calculus of classical vortex images, integrable models and quantum states

    NASA Astrophysics Data System (ADS)

    Pashaev, Oktay K.

    2016-10-01

    From two circle theorem described in terms of q-periodic functions, in the limit q→1 we have derived the strip theorem and the stream function for N vortex problem. For regular N-vortex polygon we find compact expression for the velocity of uniform rotation and show that it represents a nonlinear oscillator. We describe q-dispersive extensions of the linear and nonlinear Schrodinger equations, as well as the q-semiclassical expansions in terms of Bernoulli and Euler polynomials. Different kind of q-analytic functions are introduced, including the pq-analytic and the golden analytic functions.

  3. Semiclassical Origin of Superdeformed Shell Structure in the Spheroidal Cavity Model

    NASA Astrophysics Data System (ADS)

    Arita, K.; Sugita, A.; Matsuyanagi, K.

    1998-12-01

    Classical periodic orbits responsible for emergence of the superdeformed shell structures of single-particle motion in spheroidal cavities are identified and their relative contributions to the shell structures are evaluated. Both prolate and oblate superdeformations (axis ratio approximately 2:1) as well as prolate hyperdeformation (axis ratio approximately 3:1) are investigated. Fourier transforms of quantum spectra clearly show that three-dimensional periodic orbits born out of bifurcations of planar orbits in the equatorial plane become predominant at large prolate deformations, while butterfly-shaped planar orbits bifurcated from linear orbits along the minor axis are important at large oblate deformations.

  4. Ribbons around Mexican hats

    NASA Astrophysics Data System (ADS)

    Bachas, C.; Tomaras, T. N.

    1994-10-01

    We analyze quasi-topological solitons winding around a Mexican-hat potential in two space-time dimensions. They are prototypes for a large number of physical excitations, including skyrmions of the Higgs sector of the standard electroweak model, magnetic bubbles in thin ferromagnetic films, and strings in certain non-trivial backgrounds. We present explicit solutions, derive the conditions for classical stability, and show that contrary to the naive expectation these can be satisfied in the weak-coupling limit. In this limit we can calculate the soliton properties reliably, and estimate their lifetime semiclassically. We explain why gauge interactions destabilize these solitons, unless the scalar sector is extended.

  5. Double ionization of neon in elliptically polarized femtosecond laser fields

    NASA Astrophysics Data System (ADS)

    Kang, HuiPeng; Henrichs, Kevin; Wang, YanLan; Hao, XiaoLei; Eckart, Sebastian; Kunitski, Maksim; Schöffler, Markus; Jahnke, Till; Liu, XiaoJun; Dörner, Reinhard

    2018-06-01

    We present a joint experimental and theoretical investigation of the correlated electron momentum spectra from strong-field double ionization of neon induced by elliptically polarized laser pulses. A significant asymmetry of the electron momentum distributions along the major polarization axis is reported. This asymmetry depends sensitively on the laser ellipticity. Using a three-dimensional semiclassical model, we attribute this asymmetry pattern to the ellipticity-dependent probability distributions of recollision time. Our work demonstrates that, by simply varying the ellipticity, the correlated electron emission can be two-dimensionally controlled and the recolliding electron trajectories can be steered on a subcycle time scale.

  6. Statistical effects in large N supersymmetric gauge theories

    NASA Astrophysics Data System (ADS)

    Czech, Bartlomiej Stanislaw

    This thesis discusses statistical simplifications arising in supersymmetric gauge theories in the limit of large rank. Applications involve the physics of black holes and the problem of predicting the low energy effective theory from a landscape of string vacua. The first part of this work uses the AdS/CFT correspondence to explain properties of black holes. We establish that in the large charge sector of toric quiver gauge theories there exists a typical state whose structure is closely mimicked by almost all other states. Then, working in the settings of the half-BPS sector of N = 4 super-Yang-Mills theory, we show that in the dual gravity theory semiclassical observations cannot distinguish a pair of geometries corresponding to two generic heavy states. Finally, we argue on general grounds that these conclusions are exponentially enhanced in quantum cosmological settings. The results establish that one may consistently account for the entropy of a black hole with heavy states in the dual field theory and suggest that the usual properties of black holes arise as artifacts of imposing a semiclassical description on a quantum system. In the second half we develop new tools to determine the infrared behavior of quiver gauge theories in a certain class. We apply the dynamical results to a toy model of the landscape of effective field theories defined at some high energy scale, and derive firm statistical predictions for the low energy effective theory.

  7. Discrete sudden perturbation theory for inelastic scattering. I. Quantum and semiclassical treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cross, R.J.

    1985-12-01

    A double perturbation theory is constructed to treat rotationally and vibrationally inelastic scattering. It uses both the elastic scattering from the spherically averaged potential and the infinite-order sudden (IOS) approximation as the unperturbed solutions. First, a standard perturbation expansion is done to express the radial wave functions in terms of the elastic wave functions. The resulting coupled equations are transformed to the discrete-variable representation where the IOS equations are diagonal. Then, the IOS solutions are removed from the equations which are solved by an exponential perturbation approximation. The results for Ar+N/sub 2/ are very much more accurate than the IOSmore » and somewhat more accurate than a straight first-order exponential perturbation theory. The theory is then converted into a semiclassical, time-dependent form by using the WKB approximation. The result is an integral of the potential times a slowly oscillating factor over the classical trajectory. A method of interpolating the result is given so that the calculation is done at the average velocity for a given transition. With this procedure, the semiclassical version of the theory is more accurate than the quantum version and very much faster. Calculations on Ar+N/sub 2/ show the theory to be much more accurate than the infinite-order sudden (IOS) approximation and the exponential time-dependent perturbation theory.« less

  8. The curious incident of multi-instantons and the necessity of Lefschetz thimbles

    DOE PAGES

    Behtash, Alireza; Poppitz, Erich; Sulejmanpasic, Tin; ...

    2015-11-25

    Here, we smore » how that compatibility of supersymmetry with exact semi-classics demands that in calculating multi-instanton amplitudes, the “separation” quasi-zeromode must be complexified and the integration cycles must be found by using complex gradient flow (or Picard-Lefschetz equations.) As a non-trivial application, we study N = 2 extended supersymmetric quantum mechanics. Even though in this case supersymmetry is unbroken, the instanton-anti-instanton amplitude (naively calculated) seems to contribute to the ground state energy. We show, however, that the instanton-anti-instanton event consists of two parts: a fermion-correlated and a scalar-correlated event. Although both of these contributions are naively of the same sign and the latter is superficially higher order in the perturbative coupling, we show that the two contributions exactly cancel when they are evaluated on Lefschetz thimbles due to their relative Hidden Topological Angles (HTAs). This gives strong evidence that the semi-classical expansion using Lefschetz thimbles is not only a meaningful prescription for higher order semi-classics, but a necessary one. This deduction seems to be universal and applicable to both supersymmetric and non-supersymmetric theories. In conclusion we speculate that similar conspiracies are responsible for the non-formation of certain molecular contributions in theories where instantons have more than two fermionic zeromodes and do not contribute to the superpotential.« less

  9. Quantum-Classical Correspondence Principle for Work Distributions

    NASA Astrophysics Data System (ADS)

    Jarzynski, Christopher; Quan, H. T.; Rahav, Saar

    2015-07-01

    For closed quantum systems driven away from equilibrium, work is often defined in terms of projective measurements of initial and final energies. This definition leads to statistical distributions of work that satisfy nonequilibrium work and fluctuation relations. While this two-point measurement definition of quantum work can be justified heuristically by appeal to the first law of thermodynamics, its relationship to the classical definition of work has not been carefully examined. In this paper, we employ semiclassical methods, combined with numerical simulations of a driven quartic oscillator, to study the correspondence between classical and quantal definitions of work in systems with 1 degree of freedom. We find that a semiclassical work distribution, built from classical trajectories that connect the initial and final energies, provides an excellent approximation to the quantum work distribution when the trajectories are assigned suitable phases and are allowed to interfere. Neglecting the interferences between trajectories reduces the distribution to that of the corresponding classical process. Hence, in the semiclassical limit, the quantum work distribution converges to the classical distribution, decorated by a quantum interference pattern. We also derive the form of the quantum work distribution at the boundary between classically allowed and forbidden regions, where this distribution tunnels into the forbidden region. Our results clarify how the correspondence principle applies in the context of quantum and classical work distributions and contribute to the understanding of work and nonequilibrium work relations in the quantum regime.

  10. Semiclassical transport in nearly symmetric quantum dots. I. Symmetry breaking in the dot.

    PubMed

    Whitney, Robert S; Schomerus, Henning; Kopp, Marten

    2009-11-01

    We apply the semiclassical theory of transport to quantum dots with exact and approximate spatial symmetries; left-right mirror symmetry, up-down mirror symmetry, inversion symmetry, or fourfold symmetry. In this work-the first of a pair of articles-we consider (a) perfectly symmetric dots and (b) nearly symmetric dots in which the symmetry is broken by the dot's internal dynamics. The second article addresses symmetry-breaking by displacement of the leads. Using semiclassics, we identify the origin of the symmetry-induced interference effects that contribute to weak localization corrections and universal conductance fluctuations. For perfect spatial symmetry, we recover results previously found using the random-matrix theory conjecture. We then go on to show how the results are affected by asymmetries in the dot, magnetic fields, and decoherence. In particular, the symmetry-asymmetry crossover is found to be described by a universal dependence on an asymmetry parameter gamma_{asym} . However, the form of this parameter is very different depending on how the dot is deformed away from spatial symmetry. Symmetry-induced interference effects are completely destroyed when the dot's boundary is globally deformed by less than an electron wavelength. In contrast, these effects are only reduced by a finite amount when a part of the dot's boundary smaller than a lead-width is deformed an arbitrarily large distance.

  11. Electron transfer from a carbon nanotube into vacuum under high electric fields

    NASA Astrophysics Data System (ADS)

    Filip, L. D.; Smith, R. C.; Carey, J. D.; Silva, S. R. P.

    2009-05-01

    The transfer of an electron from a carbon nanotube (CNT) tip into vacuum under a high electric field is considered beyond the usual one-dimensional semi-classical approach. A model of the potential energy outside the CNT cap is proposed in order to show the importance of the intrinsic CNT parameters such as radius, length and vacuum barrier height. This model also takes into account set-up parameters such as the shape of the anode and the anode-to-cathode distance, which are generically portable to any modelling study of electron emission from a tip emitter. Results obtained within our model compare well to experimental data. Moreover, in contrast to the usual one-dimensional Wentzel-Kramers-Brillouin description, our model retains the ability to explain non-standard features of the process of electron field emission from CNTs that arise as a result of the quantum behaviour of electrons on the surface of the CNT.

  12. Computational study of energy filtering effects in one-dimensional composite nano-structures

    NASA Astrophysics Data System (ADS)

    Kim, Raseong; Lundstrom, Mark S.

    2012-01-01

    Possibilities to improve the Seebeck coefficient S versus electrical conductance G trade-off of diffusive composite nano-structures are explored using an electro-thermal simulation framework based on the non-equilibrium Green's function method for quantum electron transport and the lattice heat diffusion equation. We examine the role of the grain size d, potential barrier height ΦB, grain doping, and the lattice thermal conductivity κL using a one-dimensional model structure. For a uniform κL, simulation results show that the power factor of a composite structure may be improved over bulk with the optimum ΦB being about kBT, where kB and T are the Boltzmann constant and the temperature, respectively. An optimum ΦB occurs because the current flow near the Fermi level is not obstructed too much while S still improves due to barriers. The optimum grain size dopt is significantly longer than the momentum relaxation length λp so that G is not seriously degraded due to the barriers, and dopt is comparable to or somewhat larger than the energy relaxation length λE so that the carrier energy is not fully relaxed within the grain and |S| remains high. Simulation results also show that if κL in the barrier region is smaller than in the grain, S and power factor are further improved. In such cases, the optimum ΦB and dopt increase, and the power factor may improve even for ΦB (d) significantly higher (longer) than kBT (λE). We find that the results from this quantum mechanical approach are readily understood using a simple, semi-classical model.

  13. Semiclassical dynamics of spin density waves

    NASA Astrophysics Data System (ADS)

    Chern, Gia-Wei; Barros, Kipton; Wang, Zhentao; Suwa, Hidemaro; Batista, Cristian D.

    2018-01-01

    We present a theoretical framework for equilibrium and nonequilibrium dynamical simulation of quantum states with spin-density-wave (SDW) order. Within a semiclassical adiabatic approximation that retains electron degrees of freedom, we demonstrate that the SDW order parameter obeys a generalized Landau-Lifshitz equation. With the aid of an enhanced kernel polynomial method, our linear-scaling quantum Landau-Lifshitz dynamics (QLLD) method enables dynamical SDW simulations with N ≃105 lattice sites. Our real-space formulation can be used to compute dynamical responses, such as the dynamical structure factor, of complex and even inhomogeneous SDW configurations at zero or finite temperatures. Applying the QLLD to study the relaxation of a noncoplanar topological SDW under the excitation of a short pulse, we further demonstrate the crucial role of spatial correlations and fluctuations in the SDW dynamics.

  14. Semi-classical approach to transitionless quantum driving: Explicitness and Locality

    NASA Astrophysics Data System (ADS)

    Loewe, Benjamin; Hipolito, Rafael; Goldbart, Paul M.

    Berry has shown that, via a reverse engineering strategy, non-adiabatic transitions in time-dependent quantum systems can be stifled through the introduction of a specific auxiliary hamiltonian. This hamiltonian comes, however, expressed as a formal sum of outer products of the original instantaneous eigenstates and their time-derivatives. Generically, how to create such an operator in the laboratory is thus not evident. Furthermore, the operator may be non- local. By following a semi-classical approach, we obtain a recipe that yields the auxiliary hamiltonian explicitly in terms of the fundamental operators of the system (e.g., position and momentum). By using this formalism, we are able to ascertain criteria for the locality of the auxiliary hamiltonian, and also to determine its exact form in certain special cases.

  15. Quantum theory of the far-off-resonance continuous-wave Raman laser: Heisenberg-Langevin approach

    NASA Astrophysics Data System (ADS)

    Roos, P. A.; Murphy, S. K.; Meng, L. S.; Carlsten, J. L.; Ralph, T. C.; White, A. G.; Brasseur, J. K.

    2003-07-01

    We present the quantum theory of the far-off-resonance continuous-wave Raman laser using the Heisenberg-Langevin approach. We show that the simplified quantum Langevin equations for this system are mathematically identical to those of the nondegenerate optical parametric oscillator in the time domain with the following associations: pump ↔ pump, Stokes ↔ signal, and Raman coherence ↔ idler. We derive analytical results for both the steady-state behavior and the time-dependent noise spectra, using standard linearization procedures. In the semiclassical limit, these results match with previous purely semiclassical treatments, which yield excellent agreement with experimental observations. The analytical time-dependent results predict perfect photon statistics conversion from the pump to the Stokes and nonclassical behavior under certain operational conditions.

  16. On the total bandwidth for the rational Harper's equation

    NASA Astrophysics Data System (ADS)

    Helffer, Bernard; Kerdelhué, Phillippe

    1995-10-01

    In the last years several contributions have been done around the total bandwidth of the spectrum for the Harper's operator. In particular an interesting conjecture has been proposed by Thouless which gives also strong convincing arguments for the proof in special cases. On the other hand, in the study of the Cantor structure of the spectrum, B. Helffer and J. Sjöstrand have justified an heuristic semiclassical approach proposed by M. Wilkinson. The aim of this article is to explain how one can use the first step of this approach to give a rigorous semi-classical proof of the Thouless formula in some of the simplest cases. We shall also indicate how one can hope with more effort to prove rigorously recent results of Last and Wilkinson on the same conjecture.

  17. Semiclassical theory of Hall viscosity

    NASA Astrophysics Data System (ADS)

    Biswas, Rudro

    2014-03-01

    Hall viscosity is an intriguing stress response in quantum Hall systems and is predicted to be observable via the conductivity in an inhomogeneous electric field. This has been studied extensively using a range of techniques, such as adiabatic transport, effective field theories, and Kubo formulae. All of these are, however, agnostic as to the distinction between strongly correlated quantum Hall states and non-interacting ones, where the effect arises due to the fundamental non-commuting nature of velocities and orbit positions in a magnetic field. In this talk I shall develop the semiclassical theory of quantized cyclotron orbits drifting in an applied inhomogeneous electric field and use it to provide a clear physical picture of how single particle properties in a magnetic field contribute to the Hall viscosity-dependence of the conductivity.

  18. Evaporation of 2-dimensional black holes

    NASA Astrophysics Data System (ADS)

    Ramazanoglu, Fethi M.

    We present a detailed analysis of results from a new study of the quantum evaporation of Callan-Giddings-Harvey-Strominger (CGHS) black holes within the mean-field approximation. The CGHS model is a two dimensional model of quantum gravity which has been extensively investigated in the last two decades. Moreover, Ashtekar, Taveras and Varadarajan have recently proposed a solution to the information loss paradox within the context of this model, which has rekindled the interest in it. However, many aspects of black hole evaporation in this model has been overlooked because of lack of a solution for black holes with macroscopic mass. We show that this was due to, in part, limited numerical precision and, in part, misinterpretation of certain properties and symmetries of the model. By addressing these issues, we were, for the first time, able to numerically evolve macroscopic-mass black hole spacetimes of the CGHS model within the mean-field approximation, up to the vicinity of the singularity. Our calculations show that, while some of the assumptions underlying the standard evaporation paradigm are borne out, several are not. One of the anticipated properties we confirm is that the semi-classical space-time is asymptotically flat at right future null infinity, I+R , yet incomplete in the sense that null observers reach a future Cauchy horizon in finite affine time. Unexpected behavior includes that the Bondi mass traditionally used in the literature can become negative even when the area of the horizon is macroscopic; an improved Bondi mass remains positive until the end of semi-classical evaporation, yet the final value can be arbitrarily large relative to the Planck mass; and the flux of the quantum radiation at I+R is non-thermal even when the horizon area is large compared to the Planck scale. Furthermore, if the black hole is initially macroscopic, the evaporation process exhibits remarkable universal properties, which offer problems to attack to the mathematical relativity and geometric analysis communities. Our results also provide support for the full quantum scenario developed by Ashtekar et al.

  19. Optimal control of photoelectron emission by realistic waveforms

    NASA Astrophysics Data System (ADS)

    Solanpää, J.; Ciappina, M. F.; Räsänen, E.

    2017-09-01

    Recent experimental techniques in multicolor waveform synthesis allow the temporal shaping of strong femtosecond laser pulses with applications in the control of quantum mechanical processes in atoms, molecules, and nanostructures. Prediction of the shapes of the optimal waveforms can be done computationally using quantum optimal control theory. In this work we demonstrate the control of above-threshold photoemission of one-dimensional hydrogen model with pulses feasible for experimental waveform synthesis. By mixing different spectral channels and thus lowering the intensity requirements for individual channels, the resulting optimal pulses can extend the cutoff energies by at least up to 50% and bring up the electron yield by several orders of magnitude. Insights into the electron dynamics for optimized photoelectron emission are obtained with a semiclassical two-step model.

  20. Hierarchical relaxation dynamics in a tilted two-band Bose-Hubbard model

    NASA Astrophysics Data System (ADS)

    Cosme, Jayson G.

    2018-04-01

    We numerically examine slow and hierarchical relaxation dynamics of interacting bosons described by a tilted two-band Bose-Hubbard model. The system is found to exhibit signatures of quantum chaos within the spectrum and the validity of the eigenstate thermalization hypothesis for relevant physical observables is demonstrated for certain parameter regimes. Using the truncated Wigner representation in the semiclassical limit of the system, dynamics of relevant observables reveal hierarchical relaxation and the appearance of prethermalized states is studied from the perspective of statistics of the underlying mean-field trajectories. The observed prethermalization scenario can be attributed to different stages of glassy dynamics in the mode-time configuration space due to dynamical phase transition between ergodic and nonergodic trajectories.

  1. Kinetics of the chiral phase transition in a linear σ model

    NASA Astrophysics Data System (ADS)

    Wesp, Christian; van Hees, Hendrik; Meistrenko, Alex; Greiner, Carsten

    2018-02-01

    We study the dynamics of the chiral phase transition in a linear quark-meson σ model using a novel approach based on semiclassical wave-particle duality. The quarks are treated as test particles in a Monte Carlo simulation of elastic collisions and the coupling to the σ meson, which is treated as a classical field, via a kinetic approach motivated by wave-particle duality. The exchange of energy and momentum between particles and fields is described in terms of appropriate Gaussian wave packets. It has been demonstrated that energy-momentum conservation and the principle of detailed balance are fulfilled, and that the dynamics leads to the correct equilibrium limit. First schematic studies of the dynamics of matter produced in heavy-ion collisions are presented.

  2. Grassmann matrix quantum mechanics

    DOE PAGES

    Anninos, Dionysios; Denef, Frederik; Monten, Ruben

    2016-04-21

    We explore quantum mechanical theories whose fundamental degrees of freedom are rectangular matrices with Grassmann valued matrix elements. We study particular models where the low energy sector can be described in terms of a bosonic Hermitian matrix quantum mechanics. We describe the classical curved phase space that emerges in the low energy sector. The phase space lives on a compact Kähler manifold parameterized by a complex matrix, of the type discovered some time ago by Berezin. The emergence of a semiclassical bosonic matrix quantum mechanics at low energies requires that the original Grassmann matrices be in the long rectangular limit.more » In conclusion, we discuss possible holographic interpretations of such matrix models which, by construction, are endowed with a finite dimensional Hilbert space.« less

  3. One-Shot Decoupling and Page Curves from a Dynamical Model for Black Hole Evaporation.

    PubMed

    Brádler, Kamil; Adami, Christoph

    2016-03-11

    One-shot decoupling is a powerful primitive in quantum information theory and was hypothesized to play a role in the black hole information paradox. We study black hole dynamics modeled by a trilinear Hamiltonian whose semiclassical limit gives rise to Hawking radiation. An explicit numerical calculation of the discretized path integral of the S matrix shows that decoupling is exact in the continuous limit, implying that quantum information is perfectly transferred from the black hole to radiation. A striking consequence of decoupling is the emergence of an output radiation entropy profile that follows Page's prediction. We argue that information transfer and the emergence of Page curves is a robust feature of any multilinear interaction Hamiltonian with a bounded spectrum.

  4. Real time correlation function in a single phase space integral beyond the linearized semiclassical initial value representation.

    PubMed

    Liu, Jian; Miller, William H

    2007-06-21

    It is shown how quantum mechanical time correlation functions [defined, e.g., in Eq. (1.1)] can be expressed, without approximation, in the same form as the linearized approximation of the semiclassical initial value representation (LSC-IVR), or classical Wigner model, for the correlation function [cf. Eq. (2.1)], i.e., as a phase space average (over initial conditions for trajectories) of the Wigner functions corresponding to the two operators. The difference is that the trajectories involved in the LSC-IVR evolve classically, i.e., according to the classical equations of motion, while in the exact theory they evolve according to generalized equations of motion that are derived here. Approximations to the exact equations of motion are then introduced to achieve practical methods that are applicable to complex (i.e., large) molecular systems. Four such methods are proposed in the paper--the full Wigner dynamics (full WD) and the second order WD based on "Wigner trajectories" [H. W. Lee and M. D. Scully, J. Chem. Phys. 77, 4604 (1982)] and the full Donoso-Martens dynamics (full DMD) and the second order DMD based on "Donoso-Martens trajectories" [A. Donoso and C. C. Martens, Phys. Rev. Lett. 8722, 223202 (2001)]--all of which can be viewed as generalizations of the original LSC-IVR method. Numerical tests of the four versions of this new approach are made for two anharmonic model problems, and for each the momentum autocorrelation function (i.e., operators linear in coordinate or momentum operators) and the force autocorrelation function (nonlinear operators) have been calculated. These four new approximate treatments are indeed seen to be significant improvements to the original LSC-IVR approximation.

  5. Instanton rate constant calculations close to and above the crossover temperature.

    PubMed

    McConnell, Sean; Kästner, Johannes

    2017-11-15

    Canonical instanton theory is known to overestimate the rate constant close to a system-dependent crossover temperature and is inapplicable above that temperature. We compare the accuracy of the reaction rate constants calculated using recent semi-classical rate expressions to those from canonical instanton theory. We show that rate constants calculated purely from solving the stability matrix for the action in degrees of freedom orthogonal to the instanton path is not applicable at arbitrarily low temperatures and use two methods to overcome this. Furthermore, as a by-product of the developed methods, we derive a simple correction to canonical instanton theory that can alleviate this known overestimation of rate constants close to the crossover temperature. The combined methods accurately reproduce the rate constants of the canonical theory along the whole temperature range without the spurious overestimation near the crossover temperature. We calculate and compare rate constants on three different reactions: H in the Müller-Brown potential, methylhydroxycarbene → acetaldehyde and H 2  + OH → H + H 2 O. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. High temperature electronic excitation and ionization rates in gases

    NASA Technical Reports Server (NTRS)

    Hansen, Frederick

    1991-01-01

    The relaxation times for electronic excitation due to electron bombardment of atoms was found to be quite short, so that electron kinetic temperature (T sub e) and the electron excitation temperature (T asterisk) should equilibrate quickly whenever electrons are present. However, once equilibrium has been achieved, further energy to the excited electronic states and to the kinetic energy of free electrons must be fed in by collisions with heavy particles that cause vibrational and electronic state transitions. The rate coefficients for excitation of electronic states produced by heavy particle collision have not been well known. However, a relatively simple semi-classical theory has been developed here which is analytic up to the final integration over a Boltzmann distribution of collision energies; this integral can then be evaluated numerically by quadrature. Once the rate coefficients have been determined, the relaxation of electronic excitation energy can be evaluated and compared with the relaxation rates of vibrational excitation. Then the relative importance of these two factors, electronic excitation and vibrational excitation by heavy particle collision, on the transfer of energy to free electron motion, can be assessed.

  7. Tunnel determinants from spectral zeta functions. Instanton effects in quantum mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izquierdo, A. Alonso; Guilarte, J. Mateos

    2014-07-23

    In this paper we develop an spectral zeta function regularization procedure on the determinants of instanton fluctuation operators that describe the semi-classical order of tunnel effects between degenerate vacua.

  8. Quantum Theory of Conditional Phonon States in a Dual-Pumped Raman Optical Frequency Comb

    NASA Astrophysics Data System (ADS)

    Mondloch, Erin

    In this work, we theoretically and numerically investigate nonclassical phonon states created in the collective vibration of a Raman medium by the generation of a dual-pumped Raman optical frequency comb in an optical cavity. This frequency comb is generated by cascaded Raman scattering driven by two phase-locked pump lasers that are separated in frequency by three times the Raman phonon frequency. We characterize the variety of conditioned phonon states that are created when the number of photons in all optical frequency modes except the pump modes are measured. Almost all of these conditioned phonon states are extremely well approximated as three-phonon-squeezed states or Schrodinger-cat states, depending on the outcomes of the photon number measurements. We show how the combinations of first-, second-, and third-order Raman scattering that correspond to each set of measured photon numbers determine the fidelity of the conditioned phonon state with model three-phonon-squeezed states and Schrodinger-cat states. All of the conditioned phonon states demonstrate preferential growth of the phonon mode along three directions in phase space. That is, there are three preferred phase values that the phonon state takes on as a result of Raman scattering. We show that the combination of Raman processes that produces a given set of measured photon numbers always produces phonons in multiples of three. In the quantum number-state representation, these multiples of three are responsible for the threefold phase-space symmetry seen in the conditioned phonon states. With a semiclassical model, we show how this three-phase preference can also be understood in light of phase correlations that are known to spontaneously arise in single-pumped Raman frequency combs. Additionally, our semiclassical model predicts that the optical modes also grow preferentially along three phases, suggesting that the dual-pumped Raman optical frequency comb is partially phase-stabilized.

  9. Quantum mean-field approximation for lattice quantum models: Truncating quantum correlations and retaining classical ones

    NASA Astrophysics Data System (ADS)

    Malpetti, Daniele; Roscilde, Tommaso

    2017-02-01

    The mean-field approximation is at the heart of our understanding of complex systems, despite its fundamental limitation of completely neglecting correlations between the elementary constituents. In a recent work [Phys. Rev. Lett. 117, 130401 (2016), 10.1103/PhysRevLett.117.130401], we have shown that in quantum many-body systems at finite temperature, two-point correlations can be formally separated into a thermal part and a quantum part and that quantum correlations are generically found to decay exponentially at finite temperature, with a characteristic, temperature-dependent quantum coherence length. The existence of these two different forms of correlation in quantum many-body systems suggests the possibility of formulating an approximation, which affects quantum correlations only, without preventing the correct description of classical fluctuations at all length scales. Focusing on lattice boson and quantum Ising models, we make use of the path-integral formulation of quantum statistical mechanics to introduce such an approximation, which we dub quantum mean-field (QMF) approach, and which can be readily generalized to a cluster form (cluster QMF or cQMF). The cQMF approximation reduces to cluster mean-field theory at T =0 , while at any finite temperature it produces a family of systematically improved, semi-classical approximations to the quantum statistical mechanics of the lattice theory at hand. Contrary to standard MF approximations, the correct nature of thermal critical phenomena is captured by any cluster size. In the two exemplary cases of the two-dimensional quantum Ising model and of two-dimensional quantum rotors, we study systematically the convergence of the cQMF approximation towards the exact result, and show that the convergence is typically linear or sublinear in the boundary-to-bulk ratio of the clusters as T →0 , while it becomes faster than linear as T grows. These results pave the way towards the development of semiclassical numerical approaches based on an approximate, yet systematically improved account of quantum correlations.

  10. Natural inflation from polymer quantization

    NASA Astrophysics Data System (ADS)

    Ali, Masooma; Seahra, Sanjeev S.

    2017-11-01

    We study the polymer quantization of a homogeneous massive scalar field in the early Universe using a prescription inequivalent to those previously appearing in the literature. Specifically, we assume a Hilbert space for which the scalar field momentum is well defined but its amplitude is not. This is closer in spirit to the quantization scheme of loop quantum gravity, in which no unique configuration operator exists. We show that in the semiclassical approximation, the main effect of this polymer quantization scheme is to compactify the phase space of chaotic inflation in the field amplitude direction. This gives rise to an effective scalar potential closely resembling that of hybrid natural inflation. Unlike polymer schemes in which the scalar field amplitude is well defined, the semiclassical dynamics involves a past cosmological singularity; i.e., this approach does not mitigate the big bang.

  11. On the derivation of the semiclassical approximation to the quantum propagator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Stefan G., E-mail: stefan.fischer@physik.uni-freiburg.de; Buchleitner, Andreas

    2015-07-15

    In order to rigorously derive the amplitude factor of the semiclassical approximation to the quantum propagator, we extend an existing method originally devised to evaluate Gaussian path-integral expressions. Using a result which relates the determinant of symmetric block-tridiagonal matrices to the determinants of their blocks, two difference equations are obtained. The first one allows to establish the connection of the amplitude factor to Jacobi’s accessory equations in the continuous-time limit, while the second one leads to an additional factor which, however, contributes to the final result only in exceptional cases. In order to demonstrate the wide applicability of these differencemore » equations, we treat explicitly the case where the time-sliced Lagrangian is written in generalized coordinates, for which a general derivation has so far been unavailable.« less

  12. Borel Summability of Perturbative Series in 4D N=2 and 5D N=1 Supersymmetric Theories.

    PubMed

    Honda, Masazumi

    2016-05-27

    We study weak coupling perturbative series in 4D N=2 and 5D N=1 supersymmetric gauge theories with Lagrangians. We prove that the perturbative series of these theories in the zero-instanton sector are Borel summable for various observables. Our result for the 4D N=2 case supports an expectation from a recent proposal on a semiclassical realization of infrared renormalons in QCD-like theories, where the semiclassical solution does not exist in N=2 theories and the perturbative series are unambiguous, namely, Borel summable. We also prove that the perturbative series in an arbitrary number of instanton sectors are Borel summable for a wide class of theories. It turns out that exact results can be obtained by summing over the Borel resummations with every instanton number.

  13. Coherent and Semiclassical States of a Charged Particle in Electromagnetic Fields

    NASA Astrophysics Data System (ADS)

    Pereira, A. S.

    2018-06-01

    In the present article, we extend our study (Bagrov et al., Braz. J. Phys. 45, 369, 2015) of generalized coherent states (GCS) of a one-dimensional particle considering such important physical system as a three-dimensional charged particle in electric and magnetic fields. Constructing GCS in a many-dimensional case, we meet technical complications that make the consideration nontrivial and instructive. The GCS of the system under consideration are constructed. We study the properties of this GCS such as completeness relations, minimization of uncertainty relations, and so on. We point out which family of the obtained GCS of a charged particle in a magnetic field is related to the CS constructed first by Malkin and Man'ko. We obtain conditions under which some of the GCS can be considered as semiclassical states (SS).

  14. Ring-polymer instanton theory of electron transfer in the nonadiabatic limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, Jeremy O., E-mail: jeremy.richardson@fau.de

    We take the golden-rule instanton method derived in the previous paper [J. O. Richardson, R. Bauer, and M. Thoss, J. Chem. Phys. 143, 134115 (2015)] and reformulate it using a ring-polymer instanton approach. This gives equations which can be used to compute the rates of electron-transfer reactions in the nonadiabatic (golden-rule) limit numerically within a semiclassical approximation. The multidimensional ring-polymer instanton trajectories are obtained efficiently by minimization of the action. In this form, comparison with Wolynes’ quantum instanton method [P. G. Wolynes, J. Chem. Phys. 87, 6559 (1987)] is possible and we show that our semiclassical approach is the steepest-descentmore » limit of this method. We discuss advantages and disadvantages of both methods and give examples of where the new approach is more accurate.« less

  15. Coherent and Semiclassical States of a Charged Particle in Electromagnetic Fields

    NASA Astrophysics Data System (ADS)

    Pereira, A. S.

    2018-03-01

    In the present article, we extend our study (Bagrov et al., Braz. J. Phys. 45, 369, 2015) of generalized coherent states (GCS) of a one-dimensional particle considering such important physical system as a three-dimensional charged particle in electric and magnetic fields. Constructing GCS in a many-dimensional case, we meet technical complications that make the consideration nontrivial and instructive. The GCS of the system under consideration are constructed. We study the properties of this GCS such as completeness relations, minimization of uncertainty relations, and so on. We point out which family of the obtained GCS of a charged particle in a magnetic field is related to the CS constructed first by Malkin and Man'ko. We obtain conditions under which some of the GCS can be considered as semiclassical states (SS).

  16. Development of a semiclassical method to compute mobility and diffusion coefficient of a Brownian particle in a nonequilibrium environment.

    PubMed

    Shit, Anindita; Ghosh, Pradipta; Chattopadhyay, Sudip; Chaudhuri, Jyotipratim Ray

    2011-03-01

    We explore the issue of a quantum-noise-induced directed transport of an overdamped Brownian particle that is allowed to move in a spatially periodic potential. The established system-reservoir model has been employed here to study the quantum-noise-induced transport of a Brownian particle in a periodic potential, where the reservoir is being modulated externally by a Gaussian-colored noise. The mobility of the Brownian particle in the linear response regime has been calculated. Then, using Einstein's relation, the analytical expression for the diffusion rate is evaluated for any arbitrary periodic potential for the high-temperature quantum regime.

  17. Formation of plasmon pulses in the cooperative decay of excitons of quantum dots near a metal surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shesterikov, A. B.; Gubin, M. Yu.; Gladush, M. G.

    The formation of pulses of surface electromagnetic waves at a metal–dielectric boundary is considered in the process of cooperative decay of excitons of quantum dots distributed near a metal surface in a dielectric layer. It is shown that the efficiency of exciton energy transfer to excited plasmons can, in principle, be increased by selecting the dielectric material with specified values of the complex permittivity. It is found that in the mean field approximation, the semiclassical model of formation of plasmon pulses in the system under study is reduced to the pendulum equation with the additional term of nonlinear losses.

  18. Loop quantum gravity simplicity constraint as surface defect in complex Chern-Simons theory

    NASA Astrophysics Data System (ADS)

    Han, Muxin; Huang, Zichang

    2017-05-01

    The simplicity constraint is studied in the context of four-dimensional spinfoam models with a cosmological constant. We find that the quantum simplicity constraint is realized as the two-dimensional surface defect in SL (2 ,C ) Chern-Simons theory in the construction of spinfoam amplitudes. By this realization of the simplicity constraint in Chern-Simons theory, we are able to construct the new spinfoam amplitude with a cosmological constant for an arbitrary simplicial complex (with many 4-simplices). The semiclassical asymptotics of the amplitude is shown to correctly reproduce the four-dimensional Einstein-Regge action with a cosmological constant term.

  19. Persistent stability of a chaotic system

    NASA Astrophysics Data System (ADS)

    Huber, Greg; Pradas, Marc; Pumir, Alain; Wilkinson, Michael

    2018-02-01

    We report that trajectories of a one-dimensional model for inertial particles in a random velocity field can remain stable for a surprisingly long time, despite the fact that the system is chaotic. We provide a detailed quantitative description of this effect by developing the large-deviation theory for fluctuations of the finite-time Lyapunov exponent of this system. Specifically, the determination of the entropy function for the distribution reduces to the analysis of a Schrödinger equation, which is tackled by semi-classical methods. The system has 'generic' instability properties, and we consider the broader implications of our observation of long-term stability in chaotic systems.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spathis, C., E-mail: cspathis@ece.upatras.gr; Birbas, A.; Georgakopoulou, K.

    Device white noise levels in short channel Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) dictate the performance and reliability of high-frequency circuits ranging from high-speed microprocessors to Low-Noise Amplifiers (LNAs) and microwave circuits. Recent experimental noise measurements with very short devices demonstrate the existence of suppressed shot noise, contrary to the predictions of classical channel thermal noise models. In this work we show that, as the dimensions continue to shrink, shot noise has to be considered when the channel resistance becomes comparable to the barrier resistance at the source-channel junction. By adopting a semi-classical approach and taking retrospectively into account transport, short-channel andmore » quantum effects, we investigate the partitioning between shot and thermal noise, and formulate a predictive model that describes the noise characteristics of modern devices.« less

  1. Polymeric quantum mechanics and the zeros of the Riemann zeta function

    NASA Astrophysics Data System (ADS)

    Berra-Montiel, Jasel; Molgado, Alberto

    We analyze the Berry-Keating model and the Sierra and Rodríguez-Laguna Hamiltonian within the polymeric quantization formalism. By using the polymer representation, we obtain for both models, the associated polymeric quantum Hamiltonians and the corresponding stationary wave functions. The self-adjointness condition provides a proper domain for the Hamiltonian operator and the energy spectrum, which turned out to be dependent on an introduced scale parameter. By performing a counting of semiclassical states, we prove that the polymer representation reproduces the smooth part of the Riemann-von Mangoldt formula, and also introduces a correction depending on the energy and the scale parameter. This may shed some light on the understanding of the fluctuation behavior of the zeros of the Riemann function from a purely quantum point of view.

  2. Stochastic dark energy from inflationary quantum fluctuations

    NASA Astrophysics Data System (ADS)

    Glavan, Dražen; Prokopec, Tomislav; Starobinsky, Alexei A.

    2018-05-01

    We study the quantum backreaction from inflationary fluctuations of a very light, non-minimally coupled spectator scalar and show that it is a viable candidate for dark energy. The problem is solved by suitably adapting the formalism of stochastic inflation. This allows us to self-consistently account for the backreaction on the background expansion rate of the Universe where its effects are large. This framework is equivalent to that of semiclassical gravity in which matter vacuum fluctuations are included at the one loop level, but purely quantum gravitational fluctuations are neglected. Our results show that dark energy in our model can be characterized by a distinct effective equation of state parameter (as a function of redshift) which allows for testing of the model at the level of the background.

  3. Particle on a torus knot: Constrained dynamics and semi-classical quantization in a magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Praloy, E-mail: praloydasdurgapur@gmail.com; Pramanik, Souvik, E-mail: souvick.in@gmail.com; Ghosh, Subir, E-mail: subirghosh20@gmail.com

    2016-11-15

    Kinematics and dynamics of a particle moving on a torus knot poses an interesting problem as a constrained system. In the first part of the paper we have derived the modified symplectic structure or Dirac brackets of the above model in Dirac’s Hamiltonian framework, both in toroidal and Cartesian coordinate systems. This algebra has been used to study the dynamics, in particular small fluctuations in motion around a specific torus. The spatial symmetries of the system have also been studied. In the second part of the paper we have considered the quantum theory of a charge moving in a torusmore » knot in the presence of a uniform magnetic field along the axis of the torus in a semiclassical quantization framework. We exploit the Einstein–Brillouin–Keller (EBK) scheme of quantization that is appropriate for multidimensional systems. Embedding of the knot on a specific torus is inherently two dimensional that gives rise to two quantization conditions. This shows that although the system, after imposing the knot condition reduces to a one dimensional system, even then it has manifested non-planar features which shows up again in the study of fractional angular momentum. Finally we compare the results obtained from EBK (multi-dimensional) and Bohr–Sommerfeld (single dimensional) schemes. The energy levels and fractional spin depend on the torus knot parameters that specifies its non-planar features. Interestingly, we show that there can be non-planar corrections to the planar anyon-like fractional spin.« less

  4. Path Integrals for Electronic Densities, Reactivity Indices, and Localization Functions in Quantum Systems

    PubMed Central

    Putz, Mihai V.

    2009-01-01

    The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI) development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr’s quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions – all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving) many-electronic systems. PMID:20087467

  5. Path integrals for electronic densities, reactivity indices, and localization functions in quantum systems.

    PubMed

    Putz, Mihai V

    2009-11-10

    The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI) development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr's quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions - all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving) many-electronic systems.

  6. HZE reactions and data-base development

    NASA Technical Reports Server (NTRS)

    Townsend, Lawrence W.; Cucinotta, Francis A.; Wilson, John W.

    1993-01-01

    The primary cosmic rays are dispersed over a large range of linear energy transfer (LET) values and their distribution over LET is a determinant of biological response. This LET distribution is modified by radiation shielding thickness and shield material composition. The current uncertainties in nuclear cross sections will not allow the composition of the shield material to be distinguished in order to minimize biological risk. An overview of the development of quantum mechanical models of heavy ion reactions will be given and computational results compared with experiments. A second approach is the development of phenomenological models from semi-classical considerations. These models provide the current data base in high charge and energy (HZE) shielding studies. They will be compared with available experimental data. The background material for this lecture will be available as a review document of over 30 years of research at Langley but will include new results obtained over the last year.

  7. Gravitational anti-screening as an alternative to dark matter

    NASA Astrophysics Data System (ADS)

    Penner, A. Raymond

    2016-04-01

    A semiclassical model of the screening of electric charge by virtual electric dipoles, as found in electrodynamic theory, will be presented. This model is then applied to the hypothetical case of an electric force where like charges attract. The resulting anti-screening of the electric charge is found to have the same functional dependence on the field source and observation distance that is found with the Baryonic Tully-Fisher Relationship. This leads to an anti-screening model for the gravitational force which is then used to determine the theoretical rotational curve of the Galaxy and the theoretical velocity dispersions and shear values for the Coma cluster. These theoretical results are found to be in good agreement with the corresponding astronomical observations. The screening of electric charge as found in QED and the larger apparent masses of galaxies and galactic clusters therefore appears to be two sides of the same coin.

  8. Piezo-Phototronic Effect in a Quantum Well Structure.

    PubMed

    Huang, Xin; Du, Chunhua; Zhou, Yongli; Jiang, Chunyan; Pu, Xiong; Liu, Wei; Hu, Weiguo; Chen, Hong; Wang, Zhong Lin

    2016-05-24

    With enhancements in the performance of optoelectronic devices, the field of piezo-phototronics has attracted much attention, and several theoretical works have been reported based on semiclassical models. At present, the feature size of optoelectronic devices are rapidly shrinking toward several tens of nanometers, which results in the quantum confinement effect. Starting from the basic piezoelectricity equation, Schrödinger equation, Poisson equation, and Fermi's golden rule, a self-consistent theoretical model is proposed to study the piezo-phototronic effect in the framework of perturbation theory in quantum mechanics. The validity and universality of this model are well-proven with photoluminescence measurements in a single GaN/InGaN quantum well and multiple GaN/InGaN quantum wells. This study provides important insight into the working principle of nanoscale piezo-phototronic devices as well as guidance for the future device design.

  9. Spin foam propagator: A new perspective to include the cosmological constant

    NASA Astrophysics Data System (ADS)

    Han, Muxin; Huang, Zichang; Zipfel, Antonia

    2018-04-01

    In recent years, the calculation of the first nonvanishing order of the metric 2-point function or graviton propagator in a semiclassical limit has evolved as a standard test for the credibility of a proposed spin foam model. The existing results of spin foam graviton propagators rely heavily on the so-called double scaling limit where spins j are large and the Barbero-Immirzi parameter γ is small such that the area A ∝j γ is approximately constant. However, it seems that this double scaling limit is bound to break down in models including a cosmological constant. We explore this in detail for the recently proposed model [7 H. M. Haggard, M. Han, W. Kaminski, and A. Riello, Nucl. Phys. B900, 1 (2015), 10.1016/j.nuclphysb.2015.08.023.] by Haggard, Han, Kaminski, and Riello and discuss alternative definitions of a graviton propagator, in which the double scaling limit can be avoided.

  10. Search for microscopic black holes in pp collisions at $$ \\sqrt{s}=8 $$ TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.

    2013-07-01

    A search for microscopic black holes and string balls is presented, based on a data sample of pp collisions at sqrt(s) = 8 TeV recorded by the CMS experiment at the Large Hadron Collider and corresponding to an integrated luminosity of 12 inverse femtobarns. No excess of events with energetic multiparticle final states, typical of black hole production or of similar new physics processes, is observed. Given the agreement of the observations with the expected standard model background, which is dominated by QCD multijet production, 95% confidence limits are set on the production of semiclassical or quantum black holes, ormore » of string balls, corresponding to the exclusions of masses below 4.3 to 6.2 TeV, depending on model assumptions. In addition, model-independent limits are set on new physics processes resulting in energetic multiparticle final states.« less

  11. Curvature and gravity actions for matrix models: II. The case of general Poisson structures

    NASA Astrophysics Data System (ADS)

    Blaschke, Daniel N.; Steinacker, Harold

    2010-12-01

    We study the geometrical meaning of higher order terms in matrix models of Yang-Mills type in the semi-classical limit, generalizing recent results (Blaschke and Steinacker 2010 Class. Quantum Grav. 27 165010 (arXiv:1003.4132)) to the case of four-dimensional spacetime geometries with general Poisson structure. Such terms are expected to arise e.g. upon quantization of the IKKT-type models. We identify terms which depend only on the intrinsic geometry and curvature, including modified versions of the Einstein-Hilbert action as well as terms which depend on the extrinsic curvature. Furthermore, a mechanism is found which implies that the effective metric G on the spacetime brane {\\cal M}\\subset \\mathds{R}^D 'almost' coincides with the induced metric g. Deviations from G = g are suppressed, and characterized by the would-be U(1) gauge field.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinitsyn, Nikolai A.

    In this paper, I identify a nontrivial four-state Landau-Zener model for which transition probabilities between any pair of diabatic states can be determined analytically and exactly. The model describes an experimentally accessible system of two interacting qubits, such as a localized state in a Dirac material with both valley and spin degrees of freedom or a singly charged quantum dot (QD) molecule with spin orbit coupling. Application of the linearly time-dependent magnetic field induces a sequence of quantum level crossings with possibility of interference of different trajectories in a semiclassical picture. I argue that this system satisfies the criteria ofmore » integrability in the multistate Landau-Zener theory, which allows one to derive explicit exact analytical expressions for the transition probability matrix. Finally, I also argue that this model is likely a special case of a larger class of solvable systems, and present a six-state generalization as an example.« less

  13. Dual-broadband rotational CARS modelling of nitrogen at pressures up to 9 MPa. II. Rotational Raman line widths

    NASA Astrophysics Data System (ADS)

    Afzelius, M.; Bengtsson, P.-E.; Bood, J.; Bonamy, J.; Chaussard, F.; Berger, H.; Dreier, T.

    Rotational coherent anti-Stokes Raman spectroscopy (CARS) is a well-established spectroscopic technique for thermometry at pre-combustion temperatures and atmospheric pressure. However, at pressures of several MPa, a previous investigation revealed large discrepancies between experimental data and the theoretical model. A re-evaluation has been made of these data (at room temperature and in the range 1.5-9 MPa) with two improvements to the spectral code. The first is the inclusion of an inter-branch interference effect, which is described in detail in Paper I. The second is the use of experimental S1-branch Raman line widths measured at 295 K, with a temperature dependence extracted from semi-classical calculations following the Robert-Bonamy formalism. It is shown that these two modifications significantly improve the theoretical model, since both the spectral fits and the accuracy of the evaluated temperatures are considerably improved.

  14. On the generalized geometry origin of noncommutative gauge theory

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav; Schupp, Peter; Vysoký, Jan

    2013-07-01

    We discuss noncommutative gauge theory from the generalized geometry point of view. We argue that the equivalence between the commutative and semiclassically noncommutative DBI actions is naturally encoded in the generalized geometry of D-branes.

  15. Dam break problem for the focusing nonlinear Schrödinger equation and the generation of rogue waves

    NASA Astrophysics Data System (ADS)

    El, G. A.; Khamis, E. G.; Tovbis, A.

    2016-09-01

    We propose a novel, analytically tractable, scenario of the rogue wave formation in the framework of the small-dispersion focusing nonlinear Schrödinger (NLS) equation with the initial condition in the form of a rectangular barrier (a ‘box’). We use the Whitham modulation theory combined with the nonlinear steepest descent for the semi-classical inverse scattering transform, to describe the evolution and interaction of two counter-propagating nonlinear wave trains—the dispersive dam break flows—generated in the NLS box problem. We show that the interaction dynamics results in the emergence of modulated large-amplitude quasi-periodic breather lattices whose amplitude profiles are closely approximated by the Akhmediev and Peregrine breathers within certain space-time domain. Our semi-classical analytical results are shown to be in excellent agreement with the results of direct numerical simulations of the small-dispersion focusing NLS equation.

  16. Cascading and local-field effects in non-linear optics revisited: a quantum-field picture based on exchange of photons.

    PubMed

    Bennett, Kochise; Mukamel, Shaul

    2014-01-28

    The semi-classical theory of radiation-matter coupling misses local-field effects that may alter the pulse time-ordering and cascading that leads to the generation of new signals. These are then introduced macroscopically by solving Maxwell's equations. This procedure is convenient and intuitive but ad hoc. We show that both effects emerge naturally by including coupling to quantum modes of the radiation field that are initially in the vacuum state to second order. This approach is systematic and suggests a more general class of corrections that only arise in a QED framework. In the semi-classical theory, which only includes classical field modes, the susceptibility of a collection of N non-interacting molecules is additive and scales as N. Second-order coupling to a vacuum mode generates an effective retarded interaction that leads to cascading and local field effects both of which scale as N(2).

  17. FAST TRACK COMMUNICATION: Semiclassical Klein Kramers and Smoluchowski equations for the Brownian motion of a particle in an external potential

    NASA Astrophysics Data System (ADS)

    Coffey, W. T.; Kalmykov, Yu P.; Titov, S. V.; Mulligan, B. P.

    2007-01-01

    The quantum Brownian motion of a particle in an external potential V(x) is treated using the master equation for the Wigner distribution function W(x, p, t) in phase space (x, p). A heuristic method of determination of diffusion coefficients in the master equation is proposed. The time evolution equation so obtained contains explicit quantum correction terms up to o(planck4) and in the classical limit, planck → 0, reduces to the Klein-Kramers equation. For a quantum oscillator, the method yields an evolution equation for W(x, p, t) coinciding with that of Agarwal (1971 Phys. Rev. A 4 739). In the non-inertial regime, by applying the Brinkman expansion of the momentum distribution in Weber functions (Brinkman 1956 Physica 22 29), the corresponding semiclassical Smoluchowski equation is derived.

  18. Diffractive paths for weak localization in quantum billiards

    NASA Astrophysics Data System (ADS)

    Březinová, Iva; Stampfer, Christoph; Wirtz, Ludger; Rotter, Stefan; Burgdörfer, Joachim

    2008-04-01

    We study the weak-localization effect in quantum transport through a clean ballistic cavity with regular classical dynamics. We address the question which paths account for the suppression of conductance through a system where disorder and chaos are absent. By exploiting both quantum and semiclassical methods, we unambiguously identify paths that are diffractively backscattered into the cavity (when approaching the lead mouths from the cavity interior) to play a key role. Diffractive scattering couples transmitted and reflected paths and is thus essential to reproduce the weak-localization peak in reflection and the corresponding antipeak in transmission. A comparison of semiclassical calculations featuring these diffractive paths yields good agreement with full quantum calculations and experimental data. Our theory provides system-specific predictions for the quantum regime of few open lead modes and can be expected to be relevant also for mixed as well as chaotic systems.

  19. On proton excitation of forbidden lines in positive ions

    NASA Astrophysics Data System (ADS)

    Burgess, Alan; Tully, John A.

    2005-08-01

    The semi-classical impact parameter approximations used by Bahcall and Wolf and by Bely and Faucher, for proton excitation of electric quadrupole transitions in positive ions, both fail at high energies, giving cross sections which do not fall off correctly as constant/E. This is in contrast with the pioneering example of Seaton for Fe+13 and of Reid and Schwarz for S+3, both of whom achieve the correct functional form, but do not ensure the correct constant of proportionality. By combining the Born and semi-classical approximations one can obtain cross sections which have the full correct behaviour as E → ∞, and hence, rate coefficients which have the correct high temperature behaviour (~C/T1/2 with the correct value of C). We provide a computer program for calculating these. An error in Faucher's derivation of the Born formula is also discussed.

  20. Hawking Radiation of the Charged Particle Via Tunneling from the Reissner-Nordström Black Hole

    NASA Astrophysics Data System (ADS)

    Pu, Jin; Han, Yan

    2017-08-01

    Since Parikh and Wilczek proposed a semiclassical tunneling method to investigate the Hawking radiation of static and spherically symmetric black holes, the method has been extensively developed to study various black holes. However, in almost all of the subsequent papers, there exists a important shortcoming that the geodesic equation of the massive particle is defined inconsistently with that of the massless particle. In this paper, we propose a new idea to reinvestigate the tunneling radiation from the event horizon of the Reissner-Nordström black hole. In our treatment, by starting from the Lagrangian analysis on the action, we redefine the geodesic equation of the massive and massless particle via tunneling from the event horizon of the Reissner-Nordström black hole, which overcomes the shortcoming mentioned above. The highlight of our work is a new and important development for the Parikh-Wilczek's semiclassical tunneling method.

  1. Collisional excitation of the highly excited hydrogen atoms in the dipole form of the semiclassical impact parameter and Born approximations

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1971-01-01

    Expressions for the excitation cross section of the highly excited states of the hydrogenlike atoms by fast charged particles have been derived in the dipole approximation of the semiclassical impact parameter and the Born approximations, making use of a formula for the asymptotic expansion of the oscillator strength of the hydrogenlike atoms given by Menzel. When only the leading term in the asymptotic expansion is retained, the expression for the cross section becomes identical to the expression obtained by the method of the classical collision and correspondence principle given by Percival and Richards. Comparisons are made between the Bethe coefficients obtained here and the Bethe coefficients of the Born approximation for transitions where the Born calculation is available. Satisfactory agreement is obtained only for n yields n + 1 transitions, with n the principal quantum number of the excited state.

  2. Theory of the stopping power of fast multicharged ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yudin, G.L.

    1991-12-01

    The processes of Coulomb excitation and ionization of atoms by a fast charged particle moving along a classical trajectory are studied. The target electrons are described by the Dirac equation, while the field of the incident particle is described by the Lienard-Wiechert potential. The theory is formulated in the form most convenient for investigation of various characteristics of semiclassical atomic collisions. The theory of sudden perturbations, which is valid at high enough velocities for a high projectile charge, is employed to obtain probabilities and cross sections of the Coulomb excitation and ionization of atomic hydrogen by fast multiply charged ions.more » Based on the semiclassical sudden Born approximation, the ionization cross section and the average electronic energy loss of a fast ion in a single collision with an atom are investigated over a wide specific energy range from 500 keV/amu to 50 MeV/amu.« less

  3. Semiclassical description of photoionization microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bordas, Ch.; Lepine, F.; Nicole, C.

    2003-07-01

    Recently, experiments have been reported where a geometrical interference pattern was observed when photoelectrons ejected in the threshold photoionization of xenon were detected in a velocity-map imaging apparatus [C. Nicole et al., Phys. Rev. Lett. 88, 133001 (2002)]. This technique, called photoionization microscopy, relies on the existence of interferences between various trajectories by which the electron moves from the atom to the plane of observation. Unlike previous predictions relevant to the hydrogenic case, the structure of the interference pattern evolves smoothly with the excess energy above the saddle point and is only weakly affected by the presence of continuum Starkmore » resonances. In this paper, we describe a semiclassical analysis of this process and present numerical simulations in excellent agreement with the experimental results. It is shown that the background contribution dominates in the observations, as opposed to the behavior expected for hydrogenic systems where the interference pattern is qualitatively different on quasidiscrete Stark resonances.« less

  4. Gauge Physics of Spin Hall Effect

    PubMed Central

    Tan, Seng Ghee; Jalil, Mansoor B. A.; Ho, Cong Son; Siu, Zhuobin; Murakami, Shuichi

    2015-01-01

    Spin Hall effect (SHE) has been discussed in the context of Kubo formulation, geometric physics, spin orbit force, and numerous semi-classical treatments. It can be confusing if the different pictures have partial or overlapping claims of contribution to the SHE. In this article, we present a gauge-theoretic, time-momentum elucidation, which provides a general SHE equation of motion, that unifies under one theoretical framework, all contributions of SHE conductivity due to the kinetic, the spin orbit force (Yang-Mills), and the geometric (Murakami-Fujita) effects. Our work puts right an ambiguity surrounding previously partial treatments involving the Kubo, semiclassical, Berry curvatures, or the spin orbit force. Our full treatment shows the Rashba 2DEG SHE conductivity to be instead of −, and Rashba heavy hole instead of −. This renewed treatment suggests a need to re-derive and re-calculate previously studied SHE conductivity. PMID:26689260

  5. Characteristics of Polarisation in the Ramsauer-Townsend Minima in Strongly Coupled Semiclassic Plasmas

    NASA Astrophysics Data System (ADS)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-10-01

    The influence of quantum shielding on the Ramsauer-Townsend phenomena for the total electron-atom polarisation collision cross-section is investigated in partially ionised strongly coupled semiclassic plasmas. The result shows that the quantum shielding effect changes the position of the Ramsauer energy in partially ionised strongly coupled plasmas. It is also found that the quantum shielding effect enhances the total electron-atom collision cross-section when the collision energy is greater than the Ramsauer energy; however, it suppresses the collision cross-section when the collision energy is smaller than the Ramsauer energy. In addition, it is shown that the plasma screening effect significantly changes the position of the Ramsauer energy and the influence of plasma screening on the magnitude of the collision cross-section is more significant near the Ramsauer energy domain. The variations of the Ramsauer energy and the collision cross-section due to the quantum shielding effect are also discussed.

  6. BOOK REVIEW: The Quantum Mechanics Solver: How to Apply Quantum Theory to Modern Physics, 2nd edition

    NASA Astrophysics Data System (ADS)

    Robbin, J. M.

    2007-07-01

    he hallmark of a good book of problems is that it allows you to become acquainted with an unfamiliar topic quickly and efficiently. The Quantum Mechanics Solver fits this description admirably. The book contains 27 problems based mainly on recent experimental developments, including neutrino oscillations, tests of Bell's inequality, Bose Einstein condensates, and laser cooling and trapping of atoms, to name a few. Unlike many collections, in which problems are designed around a particular mathematical method, here each problem is devoted to a small group of phenomena or experiments. Most problems contain experimental data from the literature, and readers are asked to estimate parameters from the data, or compare theory to experiment, or both. Standard techniques (e.g., degenerate perturbation theory, addition of angular momentum, asymptotics of special functions) are introduced only as they are needed. The style is closer to a non-specialist seminar rather than an undergraduate lecture. The physical models are kept simple; the emphasis is on cultivating conceptual and qualitative understanding (although in many of the problems, the simple models fit the data quite well). Some less familiar theoretical techniques are introduced, e.g. a variational method for lower (not upper) bounds on ground-state energies for many-body systems with two-body interactions, which is then used to derive a surprisingly accurate relation between baryon and meson masses. The exposition is succinct but clear; the solutions can be read as worked examples if you don't want to do the problems yourself. Many problems have additional discussion on limitations and extensions of the theory, or further applications outside physics (e.g., the accuracy of GPS positioning in connection with atomic clocks; proton and ion tumor therapies in connection with the Bethe Bloch formula for charged particles in solids). The problems use mainly non-relativistic quantum mechanics and are organised into three sections: Elementary Particles, Nuclei and Atoms; Quantum Entanglement and Measurement; and Complex Systems. The coverage is not comprehensive; there is little on scattering theory, for example, and some areas of recent interest, such as topological aspects of quantum mechanics and semiclassics, are not included. The problems are based on examination questions given at the École Polytechnique in the last 15 years. The book is accessible to undergraduates, but working physicists should find it a delight.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chęcińska, Agata; Heaney, Libby; Pollock, Felix A.

    Motivated by a proposed olfactory mechanism based on a vibrationally activated molecular switch, we study electron transport within a donor-acceptor pair that is coupled to a vibrational mode and embedded in a surrounding environment. We derive a polaron master equation with which we study the dynamics of both the electronic and vibrational degrees of freedom beyond previously employed semiclassical (Marcus-Jortner) rate analyses. We show (i) that in the absence of explicit dissipation of the vibrational mode, the semiclassical approach is generally unable to capture the dynamics predicted by our master equation due to both its assumption of one-way (exponential) electronmore » transfer from donor to acceptor and its neglect of the spectral details of the environment; (ii) that by additionally allowing strong dissipation to act on the odorant vibrational mode, we can recover exponential electron transfer, though typically at a rate that differs from that given by the Marcus-Jortner expression; (iii) that the ability of the molecular switch to discriminate between the presence and absence of the odorant, and its sensitivity to the odorant vibrational frequency, is enhanced significantly in this strong dissipation regime, when compared to the case without mode dissipation; and (iv) that details of the environment absent from previous Marcus-Jortner analyses can also dramatically alter the sensitivity of the molecular switch, in particular, allowing its frequency resolution to be improved. Our results thus demonstrate the constructive role dissipation can play in facilitating sensitive and selective operation in molecular switch devices, as well as the inadequacy of semiclassical rate equations in analysing such behaviour over a wide range of parameters.« less

  8. Role of electron-electron interference in ultrafast time-resolved imaging of electronic wavepackets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixit, Gopal; Santra, Robin; Department of Physics, University of Hamburg, D-20355 Hamburg

    2013-04-07

    Ultrafast time-resolved x-ray scattering is an emerging approach to image the dynamical evolution of the electronic charge distribution during complex chemical and biological processes in real-space and real-time. Recently, the differences between semiclassical and quantum-electrodynamical (QED) theory of light-matter interaction for scattering of ultrashort x-ray pulses from the electronic wavepacket were formally demonstrated and visually illustrated by scattering patterns calculated for an electronic wavepacket in atomic hydrogen [G. Dixit, O. Vendrell, and R. Santra, Proc. Natl. Acad. Sci. U.S.A. 109, 11636 (2012)]. In this work, we present a detailed analysis of time-resolved x-ray scattering from a sample containing a mixturemore » of non-stationary and stationary electrons within both the theories. In a many-electron system, the role of scattering interference between a non-stationary and several stationary electrons to the total scattering signal is investigated. In general, QED and semiclassical theory provide different results for the contribution from the scattering interference, which depends on the energy resolution of the detector and the x-ray pulse duration. The present findings are demonstrated by means of a numerical example of x-ray time-resolved imaging for an electronic wavepacket in helium. It is shown that the time-dependent scattering interference vanishes within semiclassical theory and the corresponding patterns are dominated by the scattering contribution from the time-independent interference, whereas the time-dependent scattering interference contribution do not vanish in the QED theory and the patterns are dominated by the scattering contribution from the non-stationary electron scattering.« less

  9. Role of electron-electron interference in ultrafast time-resolved imaging of electronic wavepackets

    NASA Astrophysics Data System (ADS)

    Dixit, Gopal; Santra, Robin

    2013-04-01

    Ultrafast time-resolved x-ray scattering is an emerging approach to image the dynamical evolution of the electronic charge distribution during complex chemical and biological processes in real-space and real-time. Recently, the differences between semiclassical and quantum-electrodynamical (QED) theory of light-matter interaction for scattering of ultrashort x-ray pulses from the electronic wavepacket were formally demonstrated and visually illustrated by scattering patterns calculated for an electronic wavepacket in atomic hydrogen [G. Dixit, O. Vendrell, and R. Santra, Proc. Natl. Acad. Sci. U.S.A. 109, 11636 (2012)], 10.1073/pnas.1202226109. In this work, we present a detailed analysis of time-resolved x-ray scattering from a sample containing a mixture of non-stationary and stationary electrons within both the theories. In a many-electron system, the role of scattering interference between a non-stationary and several stationary electrons to the total scattering signal is investigated. In general, QED and semiclassical theory provide different results for the contribution from the scattering interference, which depends on the energy resolution of the detector and the x-ray pulse duration. The present findings are demonstrated by means of a numerical example of x-ray time-resolved imaging for an electronic wavepacket in helium. It is shown that the time-dependent scattering interference vanishes within semiclassical theory and the corresponding patterns are dominated by the scattering contribution from the time-independent interference, whereas the time-dependent scattering interference contribution do not vanish in the QED theory and the patterns are dominated by the scattering contribution from the non-stationary electron scattering.

  10. Extended linear regime of cavity-QED enhanced optical circular birefringence induced by a charged quantum dot

    NASA Astrophysics Data System (ADS)

    Hu, C. Y.; Rarity, J. G.

    2015-02-01

    Giant optical Faraday rotation (GFR) and giant optical circular birefringence (GCB) induced by a single quantum-dot spin in an optical microcavity can be regarded as linear effects in the weak-excitation approximation if the input field lies in the low-power limit [Hu et al., Phys. Rev. B 78, 085307 (2008), 10.1103/PhysRevB.78.085307; Hu et al., Phys. Rev. B 80, 205326 (2009), 10.1103/PhysRevB.80.205326]. In this work, we investigate the transition from the weak-excitation approximation moving into the saturation regime comparing a semiclassical approximation with the numerical results from a quantum optics toolbox [Tan, J. Opt. B 1, 424 (1999), 10.1088/1464-4266/1/4/312]. We find that the GFR and GCB around the cavity resonance in the strong-coupling regime are input field independent at intermediate powers and can be well described by the semiclassical approximation. Those associated with the dressed state resonances in the strong-coupling regime or merging with the cavity resonance in the Purcell regime are sensitive to input field at intermediate powers, and cannot be well described by the semiclassical approximation due to the quantum-dot saturation. As the GFR and GCB around the cavity resonance are relatively immune to the saturation effects, the rapid readout of single-electron spins can be carried out with coherent state and other statistically fluctuating light fields. This also shows that high-speed quantum entangling gates, robust against input power variations, can be built exploiting these linear effects.

  11. Role of electron-electron interference in ultrafast time-resolved imaging of electronic wavepackets.

    PubMed

    Dixit, Gopal; Santra, Robin

    2013-04-07

    Ultrafast time-resolved x-ray scattering is an emerging approach to image the dynamical evolution of the electronic charge distribution during complex chemical and biological processes in real-space and real-time. Recently, the differences between semiclassical and quantum-electrodynamical (QED) theory of light-matter interaction for scattering of ultrashort x-ray pulses from the electronic wavepacket were formally demonstrated and visually illustrated by scattering patterns calculated for an electronic wavepacket in atomic hydrogen [G. Dixit, O. Vendrell, and R. Santra, Proc. Natl. Acad. Sci. U.S.A. 109, 11636 (2012)]. In this work, we present a detailed analysis of time-resolved x-ray scattering from a sample containing a mixture of non-stationary and stationary electrons within both the theories. In a many-electron system, the role of scattering interference between a non-stationary and several stationary electrons to the total scattering signal is investigated. In general, QED and semiclassical theory provide different results for the contribution from the scattering interference, which depends on the energy resolution of the detector and the x-ray pulse duration. The present findings are demonstrated by means of a numerical example of x-ray time-resolved imaging for an electronic wavepacket in helium. It is shown that the time-dependent scattering interference vanishes within semiclassical theory and the corresponding patterns are dominated by the scattering contribution from the time-independent interference, whereas the time-dependent scattering interference contribution do not vanish in the QED theory and the patterns are dominated by the scattering contribution from the non-stationary electron scattering.

  12. Quantum State Diffusion

    NASA Astrophysics Data System (ADS)

    Percival, Ian

    2005-10-01

    1. Introduction; 2. Brownian motion and Itô calculus; 3. Open quantum systems; 4. Quantum state diffusion; 5. Localisation; 6. Numerical methods and examples; 7. Quantum foundations; 8. Primary state diffusion; 9. Classical dynamics of quantum localisation; 10. Semiclassical theory and linear dynamics.

  13. Resonance-assisted decay of nondispersive wave packets.

    PubMed

    Wimberger, Sandro; Schlagheck, Peter; Eltschka, Christopher; Buchleitner, Andreas

    2006-07-28

    We present a quantitative semiclassical theory for the decay of nondispersive electronic wave packets in driven, ionizing Rydberg systems. Statistically robust quantities are extracted combining resonance-assisted tunneling with subsequent transport across chaotic phase space and a final ionization step.

  14. Highlights from the previous volumes

    NASA Astrophysics Data System (ADS)

    Vergini Eduardo, G.; Pan, Y.; al., Vardi R. et; al., Akkermans Eric et; et al.

    2014-01-01

    Semiclassical propagation up to the Heisenberg time Superconductivity and magnetic order in the half-Heusler compound ErPdBi An experimental evidence-based computational paradigm for new logic-gates in neuronal activity Universality in the symmetric exclusion process and diffusive systems

  15. Semiclassical approach to atomic decoherence by gravitational waves

    NASA Astrophysics Data System (ADS)

    Quiñones, D. A.; Varcoe, B. T. H.

    2018-01-01

    A new heuristic model of interaction of an atomic system with a gravitational wave (GW) is proposed. In it, the GW alters the local electromagnetic field of the atomic nucleus, as perceived by the electron, changing the state of the system. The spectral decomposition of the wave function is calculated, from which the energy is obtained. The results suggest a shift in the difference of the atomic energy levels, which will induce a small detuning to a resonant transition. The detuning increases with the quantum numbers of the levels, making the effect more prominent for Rydberg states. We performed calculations on the Rabi oscillations of atomic transitions, estimating how they would vary as a result of the proposed effect.

  16. Polarizability calculations on water, hydrogen, oxygen, and carbon dioxide

    NASA Technical Reports Server (NTRS)

    Nir, S.; Adams, S.; Rein, R.

    1973-01-01

    A semiclassical model of damped oscillators is used as a basis for the calculation of the dispersion of the refractive index, polarizability, and dielectric permeability in water, hydrogen, and oxygen in liquid and gaseous states, and in gaseous carbon dioxide. The absorption coefficient and the imaginary part of the refractive index are also calculated at corresponding wavelengths. A good agreement is obtained between the observed and calculated values of refractive indices, and between those of absorption coefficients in the region of absorption bands. The calculated values of oscillator strengths and damping factors are also discussed. The value of the polarizability of liquid water was about 2.8 times that of previous calculations.

  17. Communication: Charge-transfer rate constants in zinc-porphyrin-porphyrin-derived dyads: A Fermi golden rule first-principles-based study

    NASA Astrophysics Data System (ADS)

    Manna, Arun K.; Dunietz, Barry D.

    2014-09-01

    We investigate photoinduced charge transfer (CT) processes within dyads consisting of porphyrin derivatives in which one ring ligates a Zn metal center and where the rings vary by their degree of conjugation. Using a first-principles approach, we show that molecular-scale means can tune CT rates through stabilization affected by the polar environment. Such means of CT tuning are important for achieving high efficiency optoelectronic applications using organic semiconducting materials. Our fully quantum mechanical scheme is necessary for reliably modeling the CT process across different regimes, in contrast to the pervading semi-classical Marcus picture that grossly underestimates transfer in the far-inverted regime.

  18. Quantum resonances of Landau damping in the electromagnetic response of metallic nanoslabs.

    PubMed

    Castillo-López, S G; Makarov, N M; Pérez-Rodríguez, F

    2018-05-15

    The resonant quantization of Landau damping in far-infrared absorption spectra of metal nano-thin films is predicted within the Kubo formalism. Specifically, it is found that the discretization of the electromagnetic and electron wave numbers inside a metal nanoslab produces quantum nonlocal resonances well-resolved at slab thicknesses smaller than the electromagnetic skin depth. Landau damping manifests itself precisely as such resonances, tracing the spectral curve obtained within the semiclassical Boltzmann approach. For slab thicknesses much greater than the skin depth, the classical regime emerges. Here the results of the quantum model and the Boltzmann approach coincide. Our analytical study is in perfect agreement with corresponding numerical simulations.

  19. Wave instabilities in the presence of non vanishing background in nonlinear Schrödinger systems

    PubMed Central

    Trillo, S.; Gongora, J. S. Totero; Fratalocchi, A.

    2014-01-01

    We investigate wave collapse ruled by the generalized nonlinear Schrödinger (NLS) equation in 1+1 dimensions, for localized excitations with non-zero background, establishing through virial identities a new criterion for blow-up. When collapse is arrested, a semiclassical approach allows us to show that the system can favor the formation of dispersive shock waves. The general findings are illustrated with a model of interest to both classical and quantum physics (cubic-quintic NLS equation), demonstrating a radically novel scenario of instability, where solitons identify a marginal condition between blow-up and occurrence of shock waves, triggered by arbitrarily small mass perturbations of different sign. PMID:25468032

  20. The effect of dynamical Bloch oscillations on optical-field-induced current in a wide-gap dielectric

    NASA Astrophysics Data System (ADS)

    Földi, P.; Benedict, M. G.; Yakovlev, V. S.

    2013-06-01

    We consider the motion of charge carriers in a bulk wide-gap dielectric interacting with a few-cycle laser pulse. A semiclassical model based on Bloch equations is applied to describe the emerging time-dependent macroscopic currents for laser intensities close to the damage threshold. At such laser intensities, electrons can reach edges of the first Brillouin zone even for electron-phonon scattering rates as high as those known for SiO2. We find that, whenever this happens, Bragg-like reflections of electron waves, also known as Bloch oscillations, affect the dependence of the charge displaced by the laser pulse on its carrier-envelope phase.

  1. Evaluation of parameters for particles acceleration by the zero-point field of quantum electrodynamics

    NASA Technical Reports Server (NTRS)

    Rueda, A.

    1985-01-01

    That particles may be accelerated by vacuum effects in quantum field theory has been repeatedly proposed in the last few years. A natural upshot of this is a mechanism for cosmic rays (CR) primaries acceleration. A mechanism for acceleration by the zero-point field (ZPE) when the ZPE is taken in a realistic sense (in opposition to a virtual field) was considered. Originally the idea was developed within a semiclassical context. The classical Einstein-Hopf model (EHM) was used to show that free isolated electromagnrtically interacting particles performed a random walk in phase space and more importantly in momentum space when submitted to the perennial action of the so called classical electromagnrtic ZPE.

  2. Cosmology from group field theory formalism for quantum gravity.

    PubMed

    Gielen, Steffen; Oriti, Daniele; Sindoni, Lorenzo

    2013-07-19

    We identify a class of condensate states in the group field theory (GFT) formulation of quantum gravity that can be interpreted as macroscopic homogeneous spatial geometries. We then extract the dynamics of such condensate states directly from the fundamental quantum GFT dynamics, following the procedure used in ordinary quantum fluids. The effective dynamics is a nonlinear and nonlocal extension of quantum cosmology. We also show that any GFT model with a kinetic term of Laplacian type gives rise, in a semiclassical (WKB) approximation and in the isotropic case, to a modified Friedmann equation. This is the first concrete, general procedure for extracting an effective cosmological dynamics directly from a fundamental theory of quantum geometry.

  3. Light clusters and pasta phases in warm and dense nuclear matter

    NASA Astrophysics Data System (ADS)

    Avancini, Sidney S.; Ferreira, Márcio; Pais, Helena; Providência, Constança; Röpke, Gerd

    2017-04-01

    The pasta phases are calculated for warm stellar matter in a framework of relativistic mean-field models, including the possibility of light cluster formation. Results from three different semiclassical approaches are compared with a quantum statistical calculation. Light clusters are considered as point-like particles, and their abundances are determined from the minimization of the free energy. The couplings of the light clusters to mesons are determined from experimental chemical equilibrium constants and many-body quantum statistical calculations. The effect of these light clusters on the chemical potentials is also discussed. It is shown that, by including heavy clusters, light clusters are present up to larger nucleonic densities, although with smaller mass fractions.

  4. Quantum nature of the big bang.

    PubMed

    Ashtekar, Abhay; Pawlowski, Tomasz; Singh, Parampreet

    2006-04-14

    Some long-standing issues concerning the quantum nature of the big bang are resolved in the context of homogeneous isotropic models with a scalar field. Specifically, the known results on the resolution of the big-bang singularity in loop quantum cosmology are significantly extended as follows: (i) the scalar field is shown to serve as an internal clock, thereby providing a detailed realization of the "emergent time" idea; (ii) the physical Hilbert space, Dirac observables, and semiclassical states are constructed rigorously; (iii) the Hamiltonian constraint is solved numerically to show that the big bang is replaced by a big bounce. Thanks to the nonperturbative, background independent methods, unlike in other approaches the quantum evolution is deterministic across the deep Planck regime.

  5. Quantum gravitational corrections from the Wheeler–DeWitt equation for scalar–tensor theories

    NASA Astrophysics Data System (ADS)

    Steinwachs, Christian F.; van der Wild, Matthijs L.

    2018-07-01

    We perform the canonical quantization of a general scalar–tensor theory and derive the first quantum gravitational corrections following from a semiclassical expansion of the Wheeler–DeWitt equation. The non-minimal coupling of the scalar field to gravity induces a derivative coupling between the scalar field and the gravitational degrees of freedom, which prevents a direct application of the expansion scheme. We address this technical difficulty by transforming the theory from the Jordan frame to the Einstein frame. We find that a large non-minimal coupling can have strong effects on the quantum gravitational correction terms. We briefly discuss these effects in the context of the specific model of Higgs inflation.

  6. Effect of magnetic exchange, double exchange, vibronic coupling, and asymmetry on magnetic properties in d2-d3 mixed-valence dimers

    NASA Astrophysics Data System (ADS)

    Yang, Xiaohua; Hu, Haiquan; Chen, Zhida

    The effect of magnetic exchange, double exchange, vibronic coupling, and asymmetry on magnetic properties of d2-d3 systems is discussed. The temperature-dependent magnetic moment was calculated with the semiclassical adiabatic approach. The results show that the vibronic coupling from the out-of-phase breathing vibration on the metal sites (Piepho, Krausz, and Schatz [PKS] model) and the vibronic coupling from the stretching vibration between the metal sites (P model) favor the localization and delocalization of the "extra" electron in mixed-valence dimers, respectively. The magnetic properties are determined by the interplay among magnetic exchange, double exchange, and vibronic coupling. The results obtained by analyzing d2-d3 systems can be generalized to other full delocalized dinuclear mixed valence systems with a unique transferable electron.

  7. Black hole radiation and S-matrix.

    NASA Astrophysics Data System (ADS)

    Russo, J. G.

    1999-04-01

    The existence of an S-matrix below the threshold of black hole formation would be enough to exhibit, through its analytic structure, eventual thresholds for the creation of new objects and to describe, through analytic continuation, the physics above them in a unitary framework. In the context of a two-dimensional exactly soluble model, the semiclassical dynamics of quantum black holes is obtained by analytically continuing the description of the regime where no black hole is formed. The resulting spectrum of outgoing radiation departs from the one predicted by the Hawking model by the time the outgoing modes arise from the horizon with Planck-order frequencies. The theory predicts an unconventional scenario for the evolution: black holes only radiate out an energy of Planck mass order, stabilizing after a transitory period. A similar picture is obtained in 3+1 dimensions with spherical symmetry.

  8. The impact of symmetric modes on intramolecular electron transfer: A semi-classical approach

    NASA Astrophysics Data System (ADS)

    Coropceanu, Veaceslav; Boldyrev, Sergei I.; Risko, Chad; Brédas, Jean-Luc

    2006-07-01

    We have generalized the Hush equations developed for the analysis of intervalence charge-transfer bands by including into the model the interaction with symmetric vibrations. Our results indicate that in symmetric class-II systems the maximum of the intervalence charge-transfer band is equal to the reorganization energy λ related to the antisymmetric vibrations as is the case in the conventional Hush model. In contrast, the corresponding transition dipole moment and the activation barrier for thermal electron transfer, in addition to their dependence on λ, also depend on the reorganization energy L related to symmetric vibrational modes. We show that the interaction with symmetric vibrational modes reduces the activation barrier and that the thermal electron-transfer rates derived on the basis of a Hush-type analysis of the optical data are generally underestimated.

  9. Landau-Zener extension of the Tavis-Cummings model: structure of the solution

    NASA Astrophysics Data System (ADS)

    Sun, Chen; Sinitsyn, Nikolai

    We explore the recently discovered solution of the driven Tavis-Cummings model (DTCM). It describes interaction of arbitrary number of two-level systems with a bosonic mode that has linearly time-dependent frequency. We derive compact and tractable expressions for transition probabilities in terms of the well known special functions. In the new form, our formulas are suitable for fast numerical calculations and analytical approximations. As an application, we obtain the semiclassical limit of the exact solution and compare it to prior approximations. We also reveal connection between DTCM and q-deformed binomial statistics. Under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. Authors also thank the support from the LDRD program at LANL.

  10. Affine q-deformed symmetry and the classical Yang-Baxter σ-model

    NASA Astrophysics Data System (ADS)

    Delduc, F.; Kameyama, T.; Magro, M.; Vicedo, B.

    2017-03-01

    The Yang-Baxter σ-model is an integrable deformation of the principal chiral model on a Lie group G. The deformation breaks the G × G symmetry to U(1)rank( G) × G. It is known that there exist non-local conserved charges which, together with the unbroken U(1)rank( G) local charges, form a Poisson algebra [InlineMediaObject not available: see fulltext.], which is the semiclassical limit of the quantum group {U}_q(g) , with g the Lie algebra of G. For a general Lie group G with rank( G) > 1, we extend the previous result by constructing local and non-local conserved charges satisfying all the defining relations of the infinite-dimensional Poisson algebra [InlineMediaObject not available: see fulltext.], the classical analogue of the quantum loop algebra {U}_q(Lg) , where Lg is the loop algebra of g. Quite unexpectedly, these defining relations are proved without encountering any ambiguity related to the non-ultralocality of this integrable σ-model.

  11. Explaining electric conductivity using the particle-in-a-box model: quantum superposition is the key

    NASA Astrophysics Data System (ADS)

    Sivanesan, Umaseh; Tsang, Kin; Izmaylov, Artur F.

    2017-12-01

    Most of the textbooks explaining electric conductivity in the context of quantum mechanics provide either incomplete or semi-classical explanations that are not connected with the elementary concepts of quantum mechanics. We illustrate the conduction phenomena using the simplest model system in quantum dynamics, a particle in a box (PIB). To induce the particle dynamics, a linear potential tilting the bottom of the box is introduced, which is equivalent to imposing a constant electric field for a charged particle. Although the PIB model represents a closed system that cannot have a flow of electrons through the system, we consider the oscillatory dynamics of the particle probability density as the analogue of the electric current. Relating the amplitude and other parameters of the particle oscillatory dynamics with the gap between the ground and excited states of the PIB model allows us to demonstrate one of the most basic dependencies of electric conductivity on the valence-conduction band gap of the material.

  12. Solvable four-state Landau-Zener model of two interacting qubits with path interference

    DOE PAGES

    Sinitsyn, Nikolai A.

    2015-11-30

    In this paper, I identify a nontrivial four-state Landau-Zener model for which transition probabilities between any pair of diabatic states can be determined analytically and exactly. The model describes an experimentally accessible system of two interacting qubits, such as a localized state in a Dirac material with both valley and spin degrees of freedom or a singly charged quantum dot (QD) molecule with spin orbit coupling. Application of the linearly time-dependent magnetic field induces a sequence of quantum level crossings with possibility of interference of different trajectories in a semiclassical picture. I argue that this system satisfies the criteria ofmore » integrability in the multistate Landau-Zener theory, which allows one to derive explicit exact analytical expressions for the transition probability matrix. Finally, I also argue that this model is likely a special case of a larger class of solvable systems, and present a six-state generalization as an example.« less

  13. Semiclassical study of quantum coherence and isotope effects in ultrafast electron transfer reactions coupled to a proton and a phonon bath.

    PubMed

    Venkataraman, Charulatha

    2011-11-28

    The linearized semiclassical initial value representation is employed to describe ultrafast electron transfer processes coupled to a phonon bath and weakly coupled to a proton mode. The goal of our theoretical investigation is to understand the influence of the proton on the electronic dynamics in various bath relaxation regimes. More specifically, we study the impact of the proton on coherences and analyze if the coupling to the proton is revealed in the form of an isotope effect. This will be important in distinguishing reactions in which the proton does not undergo significant rearrangement from those in which the electron transfer is accompanied by proton transfer. Unlike other methodologies widely employed to describe nonadiabatic electron transfer, this approach treats the electronic and nuclear degrees of freedom consistently. However, due to the linearized approximation, quantum interference effects are not captured accurately. Our study shows that at small phonon bath reorganization energies, coherent oscillations and isotope effect are observed in both slow and fast bath regimes. The coherences are more substantially damped by deuterium in comparison to the proton. Further, in contrast to the dynamics of the spin-boson model, the coherences are not long-lived. At large bath reorganization energies, the decay is incoherent in the slow and fast bath regimes. In this case, the extent of the isotope effect depends on the relative relaxation timescales of the proton mode and the phonon bath. The isotope effect is magnified for baths that relax on picosecond timescales in contrast to baths that relax in femtoseconds.

  14. Variational mixed quantum/semiclassical simulation of dihalogen guest and rare-gas solid host dynamics

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaolu; Cina, Jeffrey A.

    2014-07-01

    A variational mixed quantum-semiclassical theory for the internal nuclear dynamics of a small molecule and the induced small-amplitude coherent motion of a low-temperature host medium is developed, tested, and used to simulate the temporal evolution of nonstationary states of the internal molecular and surrounding medium degrees of freedom. In this theory, termed the Fixed Vibrational Basis/Gaussian Bath (FVB/GB) method, the system is treated fully quantum mechanically while Gaussian wave packets are used for the bath degrees of freedom. An approximate time-dependent wave function of the entire model is obtained instead of just a reduced system density matrix, so the theory enables the analysis of the entangled system and bath dynamics that ensues following initial displacement of the internal-molecular (system) coordinate from its equilibrium position. The norm- and energy-conserving properties of the propagation of our trial wave function are natural consequences of the Dirac-Frenkel-McLachlan variational principle. The variational approach also stabilizes the time evolution in comparison to the same ansatz propagated under a previously employed locally quadratic approximation to the bath potential and system-bath interaction terms in the bath-parameter equations of motion. Dynamics calculations are carried out for molecular iodine in a 2D krypton lattice that reveal both the time-course of vibrational decoherence and the details of host-atom motion accompanying energy dissipation and dephasing. This work sets the stage for the comprehensive simulation of ultrafast time-resolved optical experiments on small molecules in low-temperature solids.

  15. Semiclassical anomalies of the quantum mechanical systems and their modifications for the asymptotic matching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deniz, Coskun, E-mail: coskun.deniz@ege.edu.tr

    JWKB solutions to the Initial Value Problems (IVPs) of the Time Independent Schrodinger's Equation (TISE) for the Simple Linear Potentials (SLPs) with a turning point parameter have been studied according to the turning points by graphical analysis to test the results of the JWKB solutions and suggested modifications. The anomalies happening in the classically inaccessible region where the SLP function is smaller than zero and the results of the suggested modifications, which are in consistent with the quantum mechanical theories, to remove these anomalies in this region have been presented. The origins of the anomalies and verifications of the suggestedmore » modifications showing a great success in the results have also been studied in terms of a suggested M{sub ij}=S{sup {approx}}{sub i-1,j} matrix elements made up of the JWKB expansion terms, S{sub i-1,j} (where i = 1, 2, 3 and j 1, 2). The results of the modifications for the IVPs and their application to the Bound State Problems (BSPs) with an example application of the Harmonic Oscillator (HO) have been presented and their generalization for any potential function have been discussed and classified accordingly.« less

  16. S-duality in SU(3) Yang-Mills theory with non-abelian unbroken gauge group

    NASA Astrophysics Data System (ADS)

    Schroers, B. J.; Bais, F. A.

    1998-12-01

    It is observed that the magnetic charges of classical monopole solutions in Yang-Mills-Higgs theory with non-abelian unbroken gauge group H are in one-to-one correspondence with coherent states of a dual or magnetic group H˜. In the spirit of the Goddard-Nuyts-Olive conjecture this observation is interpreted as evidence for a hidden magnetic symmetry of Yang-Mills theory. SU(3) Yang-Mills-Higgs theory with unbroken gauge group U(2) is studied in detail. The action of the magnetic group on semi-classical states is given explicitly. Investigations of dyonic excitations show that electric and magnetic symmetry are never manifest at the same time: Non-abelian magnetic charge obstructs the realisation of electric symmetry and vice-versa. On the basis of this fact the charge sectors in the theory are classified and their fusion rules are discussed. Non-abelian electric-magnetic duality is formulated as a map between charge sectors. Coherent states obey particularly simple fusion rules, and in the set of coherent states S-duality can be formulated as an SL(2, Z) mapping between sectors which leaves the fusion rules invariant.

  17. Spectral monodromy of non-self-adjoint operators

    NASA Astrophysics Data System (ADS)

    Phan, Quang Sang

    2014-01-01

    In the present paper, we build a combinatorial invariant, called the "spectral monodromy" from the spectrum of a single (non-self-adjoint) h-pseudodifferential operator with two degrees of freedom in the semi-classical limit. Our inspiration comes from the quantum monodromy defined for the joint spectrum of an integrable system of n commuting self-adjoint h-pseudodifferential operators, given by S. Vu Ngoc ["Quantum monodromy in integrable systems," Commun. Math. Phys. 203(2), 465-479 (1999)]. The first simple case that we treat in this work is a normal operator. In this case, the discrete spectrum can be identified with the joint spectrum of an integrable quantum system. The second more complex case we propose is a small perturbation of a self-adjoint operator with a classical integrability property. We show that the discrete spectrum (in a small band around the real axis) also has a combinatorial monodromy. The main difficulty in this case is that we do not know the description of the spectrum everywhere, but only in a Cantor type set. In addition, we also show that the corresponding monodromy can be identified with the classical monodromy, defined by J. Duistermaat ["On global action-angle coordinates," Commun. Pure Appl. Math. 33(6), 687-706 (1980)].

  18. A shape dynamical approach to holographic renormalization

    NASA Astrophysics Data System (ADS)

    Gomes, Henrique; Gryb, Sean; Koslowski, Tim; Mercati, Flavio; Smolin, Lee

    2015-01-01

    We provide a bottom-up argument to derive some known results from holographic renormalization using the classical bulk-bulk equivalence of General Relativity and Shape Dynamics, a theory with spatial conformal (Weyl) invariance. The purpose of this paper is twofold: (1) to advertise the simple classical mechanism, trading off gauge symmetries, that underlies the bulk-bulk equivalence of General Relativity and Shape Dynamics to readers interested in dualities of the type of AdS/conformal field theory (CFT); and (2) to highlight that this mechanism can be used to explain certain results of holographic renormalization, providing an alternative to the AdS/CFT conjecture for these cases. To make contact with the usual semiclassical AdS/CFT correspondence, we provide, in addition, a heuristic argument that makes it plausible that the classical equivalence between General Relativity and Shape Dynamics turns into a duality between radial evolution in gravity and the renormalization group flow of a CFT. We believe that Shape Dynamics provides a new perspective on gravity by giving conformal structure a primary role within the theory. It is hoped that this work provides the first steps toward understanding what this new perspective may be able to teach us about holographic dualities.

  19. De Sitter stability and coarse graining

    NASA Astrophysics Data System (ADS)

    Markkanen, T.

    2018-02-01

    We present a 4-dimensional back reaction analysis of de Sitter space for a conformally coupled scalar field in the presence of vacuum energy initialized in the Bunch-Davies vacuum. In contrast to the usual semi-classical prescription, as the source term in the Friedmann equations we use expectation values where the unobservable information hidden by the cosmological event horizon has been neglected i.e. coarse grained over. It is shown that in this approach the energy-momentum is precisely thermal with constant temperature despite the dilution from the expansion of space due to a flux of energy radiated from the horizon. This leads to a self-consistent solution for the Hubble rate, which is gradually evolving and at late times deviates significantly from de Sitter. Our results hence imply de Sitter space to be unstable in this prescription. The solution also suggests dynamical vacuum energy: the continuous flux of energy is balanced by the generation of negative vacuum energy, which accumulatively decreases the overall contribution. Finally, we show that our results admit a thermodynamic interpretation which provides a simple alternate derivation of the mechanism. For very long times the solutions coincide with flat space.

  20. An open-chain imaginary-time path-integral sampling approach to the calculation of approximate symmetrized quantum time correlation functions.

    PubMed

    Cendagorta, Joseph R; Bačić, Zlatko; Tuckerman, Mark E

    2018-03-14

    We introduce a scheme for approximating quantum time correlation functions numerically within the Feynman path integral formulation. Starting with the symmetrized version of the correlation function expressed as a discretized path integral, we introduce a change of integration variables often used in the derivation of trajectory-based semiclassical methods. In particular, we transform to sum and difference variables between forward and backward complex-time propagation paths. Once the transformation is performed, the potential energy is expanded in powers of the difference variables, which allows us to perform the integrals over these variables analytically. The manner in which this procedure is carried out results in an open-chain path integral (in the remaining sum variables) with a modified potential that is evaluated using imaginary-time path-integral sampling rather than requiring the generation of a large ensemble of trajectories. Consequently, any number of path integral sampling schemes can be employed to compute the remaining path integral, including Monte Carlo, path-integral molecular dynamics, or enhanced path-integral molecular dynamics. We believe that this approach constitutes a different perspective in semiclassical-type approximations to quantum time correlation functions. Importantly, we argue that our approximation can be systematically improved within a cumulant expansion formalism. We test this approximation on a set of one-dimensional problems that are commonly used to benchmark approximate quantum dynamical schemes. We show that the method is at least as accurate as the popular ring-polymer molecular dynamics technique and linearized semiclassical initial value representation for correlation functions of linear operators in most of these examples and improves the accuracy of correlation functions of nonlinear operators.

  1. An open-chain imaginary-time path-integral sampling approach to the calculation of approximate symmetrized quantum time correlation functions

    NASA Astrophysics Data System (ADS)

    Cendagorta, Joseph R.; Bačić, Zlatko; Tuckerman, Mark E.

    2018-03-01

    We introduce a scheme for approximating quantum time correlation functions numerically within the Feynman path integral formulation. Starting with the symmetrized version of the correlation function expressed as a discretized path integral, we introduce a change of integration variables often used in the derivation of trajectory-based semiclassical methods. In particular, we transform to sum and difference variables between forward and backward complex-time propagation paths. Once the transformation is performed, the potential energy is expanded in powers of the difference variables, which allows us to perform the integrals over these variables analytically. The manner in which this procedure is carried out results in an open-chain path integral (in the remaining sum variables) with a modified potential that is evaluated using imaginary-time path-integral sampling rather than requiring the generation of a large ensemble of trajectories. Consequently, any number of path integral sampling schemes can be employed to compute the remaining path integral, including Monte Carlo, path-integral molecular dynamics, or enhanced path-integral molecular dynamics. We believe that this approach constitutes a different perspective in semiclassical-type approximations to quantum time correlation functions. Importantly, we argue that our approximation can be systematically improved within a cumulant expansion formalism. We test this approximation on a set of one-dimensional problems that are commonly used to benchmark approximate quantum dynamical schemes. We show that the method is at least as accurate as the popular ring-polymer molecular dynamics technique and linearized semiclassical initial value representation for correlation functions of linear operators in most of these examples and improves the accuracy of correlation functions of nonlinear operators.

  2. CALL FOR PAPERS: Optical implementation of quantum computers

    NASA Astrophysics Data System (ADS)

    Rarity, John; Weinfurter, Harald

    2004-09-01

    A topical issue of Journal of Optics B: Quantum and Semiclassical Optics will be devoted to recent advances in optical implementation of quantum computers. The topics to be covered will include, but are not limited to: bullet Linear optics quantum gates bullet Progress towards nonlinear optics quantum gates bullet Interface between optical qubits and atomic/solid state qubits bullet Novel architectures bullet Single-photon sources and detectors bullet Photonic quantum networks bullet Few-qubit applications The DEADLINE for submission of contributions is 15 January 2005 to allow the topical issue to be published in about October 2005. All contributions will be peer-reviewed in accordance with the normal refereeing procedures and standards of Journal of Optics B: Quantum and Semiclassical Optics. Submissions should preferably be in either standard LaTeX form or Microsoft Word. Advice on publishing your work in the journal may be found at www.iop.org/journals/authors/jopb. There are no page charges for publication. The corresponding author of each paper published will receive a complimentary copy of the topical issue. Contributions to the topical issue should preferably be submitted electronically at www.iop.org/journals/authors/jopb or by e-mail to jopb@iop.org. Authors unable to submit online or by e-mail may send hard copy contributions (enclosing the electronic code) to: Dr Claire Bedrock (Publisher), Journal of Optics B: Quantum and Semiclassical Optics, Institute of Physics Publishing, Dirac House, Temple Back, Bristol BS1 6BE, UK. All contributions should be accompanied by a readme file or covering letter, quoting `JOPB Topical Issue - Optical implementation of quantum computers', giving the postal and e-mail addresses for correspondence. Any subsequent change of address should be notified to the publishing office. We look forward to receiving your contribution to this topical issue.

  3. Fusion reaction cross-sections using the Wong model within Skyrme energy density based semiclassical extended Thomas Fermi approach

    NASA Astrophysics Data System (ADS)

    Kumar, Raj; Sharma, Manoj K.; Gupta, Raj K.

    2011-11-01

    First, the nuclear proximity potential, obtained by using the semiclassical extended Thomas Fermi (ETF) approach in Skyrme energy density formalism (SEDF), is shown to give more realistic barriers in frozen density approximation, as compared to the sudden approximation. Then, taking advantage of the fact that, in ETF method, different Skyrme forces give different barriers (height, position and curvature), we use the ℓ-summed extended-Wong model of Gupta and collaborators (2009) [1] under frozen densities approximation for calculating the cross-sections, where the Skyrme force is chosen with proper barrier characteristics, not-requiring additional "barrier modification" effects (lowering or narrowing, etc.), for a best fit to data at sub-barrier energies. The method is applied to capture cross-section data from 48Ca + 238U, 244Pu, and 248Cm reactions and to fusion-evaporation cross-sections from 58Ni + 58Ni, 64Ni + 64Ni, and 64Ni + 100Mo reactions, with effects of deformations and orientations of nuclei included, wherever required. Interestingly, whereas the capture cross-sections in Ca-induced reactions could be fitted to any force, such as SIII, SV and GSkI, by allowing a small change of couple of units in deduced ℓ-values at below-barrier energies, the near-barrier data point of 48Ca + 248Cm reaction could not be fitted to ℓ-values deduced for below-barrier energies, calling for a check of data. On the other hand, the fusion-evaporation cross-sections in Ni-induced reactions at sub-barrier energies required different Skyrme forces, representing "modifications of the barrier", for the best fit to data at all incident center-of-mass energies E's, displaying a kind of fusion hindrance at sub-barrier energies. This barrier modification effect is taken into care here by using different Skyrme forces for reactions belonging to different regions of the periodic table. Note that more than one Skyrme force (with identical barrier characteristics) could equally well fit the same data.

  4. State-selective charge exchange in slow collisions of Si3+ ions with H atoms: A molecular state close coupling treatment*)

    NASA Astrophysics Data System (ADS)

    Joseph, Dwayne C.; Saha, Bidhan C.

    2012-11-01

    Charge transfer cross sections are calculated by employing both the quantal and semiclassical ɛ(R) molecular orbital close coupling (MOCC) approximations in the adiabatic representation and compared with other theoretical and experimental results

  5. Detailed numerical simulations of laser cooling processes

    NASA Technical Reports Server (NTRS)

    Ramirez-Serrano, J.; Kohel, J.; Thompson, R.; Yu, N.

    2001-01-01

    We developed a detailed semiclassical numerical code of the forces applied on atoms in optical and magnetic fields to increase the understanding of the different roles that light, atomic collisions, background pressure, and number of particles play in experiments with laser cooled and trapped atoms.

  6. Entropy, temperature and internal energy of trapped gravitons and corrections to the Black Hole entropy

    NASA Astrophysics Data System (ADS)

    Viaggiu, Stefano

    2017-12-01

    In this paper we study the proposal present in Viaggiu (2017) concerning the statistical description of trapped gravitons and applied to derive the semi-classical black hole (BH) entropy SBH. We study the possible configurations depending on physically reasonable expressions for the internal energy U. In particular, we show that expressions for U ∼Rk , k ≥ 1, with R the radius of the confining spherical box, can have a semi-classical description, while behaviors with k < 1 derive from thermodynamic or quantum fluctuations. There, by taking a suitable physically motivated expression for U(R) , we obtain the well known logarithmic corrections to the BH entropy, with the usual behaviors present in the literature of BH entropy. Moreover, a phase transition emerges with a positive specific heat C at Planckian lengths instead of the usual negative one at non-Planckian scales, in agreement with results present in the literature. Finally, we show that evaporation stops at a radius R of the order of the Planck length.

  7. Semiclassical theory of sub-Doppler forces in an asymmetric magneto-optical trap with unequal laser detunings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noh, Heung-Ryoul; Jhe, Wonho

    We present a semiclassical theory of the sub-Doppler forces in an asymmetric magneto-optical trap where the trap-laser frequencies are unequal to one another. To solve the optical Bloch equations, which contain explicit time dependence, unlike in the symmetric case of equal laser detunings, we have developed a convenient and efficient method to calculate the atomic forces at various oscillating frequencies for each atomic density matrix element. In particular, the theory provides a qualitative understanding of the array of sub-Doppler traps (SDTs) recently observed in such an asymmetric trap. We find that the distances between SDTs are proportional to the relativemore » detuning differences, in good agreement with experimental results. The theory presented here can be applied to a dynamic system with multiple laser frequencies involved; the number of coupled equations to solve is much reduced and the resulting numerical calculation can be performed rather simply and efficiently.« less

  8. An assessment of mean-field mixed semiclassical approaches: Equilibrium populations and algorithm stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellonzi, Nicole; Jain, Amber; Subotnik, Joseph E.

    2016-04-21

    We study several recent mean-field semiclassical dynamics methods, focusing on the ability to recover detailed balance for long time (equilibrium) populations. We focus especially on Miller and Cotton’s [J. Phys. Chem. A 117, 7190 (2013)] suggestion to include both zero point electronic energy and windowing on top of Ehrenfest dynamics. We investigate three regimes: harmonic surfaces with weak electronic coupling, harmonic surfaces with strong electronic coupling, and anharmonic surfaces with weak electronic coupling. In most cases, recent additions to Ehrenfest dynamics are a strong improvement upon mean-field theory. However, for methods that include zero point electronic energy, we show thatmore » anharmonic potential energy surfaces often lead to numerical instabilities, as caused by negative populations and forces. We also show that, though the effect of negative forces can appear hidden in harmonic systems, the resulting equilibrium limits do remain dependent on any windowing and zero point energy parameters.« less

  9. Functional Integration

    NASA Astrophysics Data System (ADS)

    Cartier, Pierre; DeWitt-Morette, Cecile

    2006-11-01

    Acknowledgements; List symbols, conventions, and formulary; Part I. The Physical and Mathematical Environment: 1. The physical and mathematical environment; Part II. Quantum Mechanics: 2. First lesson: gaussian integrals; 3. Selected examples; 4. Semiclassical expansion: WKB; 5. Semiclassical expansion: beyond WKB; 6. Quantum dynamics: path integrals and operator formalism; Part III. Methods from Differential Geometry: 7. Symmetries; 8. Homotopy; 9. Grassmann analysis: basics; 10. Grassmann analysis: applications; 11. Volume elements, divergences, gradients; Part IV. Non-Gaussian Applications: 12. Poisson processes in physics; 13. A mathematical theory of Poisson processes; 14. First exit time: energy problems; Part V. Problems in Quantum Field Theory: 15. Renormalization 1: an introduction; 16. Renormalization 2: scaling; 17. Renormalization 3: combinatorics; 18. Volume elements in quantum field theory Bryce DeWitt; Part VI. Projects: 19. Projects; Appendix A. Forward and backward integrals: spaces of pointed paths; Appendix B. Product integrals; Appendix C. A compendium of gaussian integrals; Appendix D. Wick calculus Alexander Wurm; Appendix E. The Jacobi operator; Appendix F. Change of variables of integration; Appendix G. Analytic properties of covariances; Appendix H. Feynman's checkerboard; Bibliography; Index.

  10. Functional Integration

    NASA Astrophysics Data System (ADS)

    Cartier, Pierre; DeWitt-Morette, Cecile

    2010-06-01

    Acknowledgements; List symbols, conventions, and formulary; Part I. The Physical and Mathematical Environment: 1. The physical and mathematical environment; Part II. Quantum Mechanics: 2. First lesson: gaussian integrals; 3. Selected examples; 4. Semiclassical expansion: WKB; 5. Semiclassical expansion: beyond WKB; 6. Quantum dynamics: path integrals and operator formalism; Part III. Methods from Differential Geometry: 7. Symmetries; 8. Homotopy; 9. Grassmann analysis: basics; 10. Grassmann analysis: applications; 11. Volume elements, divergences, gradients; Part IV. Non-Gaussian Applications: 12. Poisson processes in physics; 13. A mathematical theory of Poisson processes; 14. First exit time: energy problems; Part V. Problems in Quantum Field Theory: 15. Renormalization 1: an introduction; 16. Renormalization 2: scaling; 17. Renormalization 3: combinatorics; 18. Volume elements in quantum field theory Bryce DeWitt; Part VI. Projects: 19. Projects; Appendix A. Forward and backward integrals: spaces of pointed paths; Appendix B. Product integrals; Appendix C. A compendium of gaussian integrals; Appendix D. Wick calculus Alexander Wurm; Appendix E. The Jacobi operator; Appendix F. Change of variables of integration; Appendix G. Analytic properties of covariances; Appendix H. Feynman's checkerboard; Bibliography; Index.

  11. Quantum localization for a kicked rotor with accelerator mode islands.

    PubMed

    Iomin, A; Fishman, S; Zaslavsky, G M

    2002-03-01

    Dynamical localization of classical superdiffusion for the quantum kicked rotor is studied in the semiclassical limit. Both classical and quantum dynamics of the system become more complicated under the conditions of mixed phase space with accelerator mode islands. Recently, long time quantum flights due to the accelerator mode islands have been found. By exploration of their dynamics, it is shown here that the classical-quantum duality of the flights leads to their localization. The classical mechanism of superdiffusion is due to accelerator mode dynamics, while quantum tunneling suppresses the superdiffusion and leads to localization of the wave function. Coupling of the regular type dynamics inside the accelerator mode island structures to dynamics in the chaotic sea proves increasing the localization length. A numerical procedure and an analytical method are developed to obtain an estimate of the localization length which, as it is shown, has exponentially large scaling with the dimensionless Planck's constant (tilde)h<1 in the semiclassical limit. Conditions for the validity of the developed method are specified.

  12. Influence of quantum diffraction and shielding on electron-ion collision in two-component semiclassical plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Woo-Pyo; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 426-791

    2015-01-15

    The influence of quantum diffraction and shielding on the electron-ion collision process is investigated in two-component semiclassical plasmas. The eikonal method and micropotential taking into account the quantum diffraction and shielding are used to obtain the eikonal scattering phase shift and the eikonal collision cross section as functions of the collision energy, density parameter, Debye length, electron de Broglie wavelength, and the impact parameter. The result shows that the quantum diffraction and shielding effects suppress the eikonal scattering phase shift as well as the differential eikonal collision cross section, especially, in small-impact parameter regions. It is also shown that themore » quantum shielding effect on the eikonal collision cross section is more important in low-collision energies. In addition, it is found that the eikonal collision cross section increases with an increase in the density parameter. The variations of the eikonal cross section due to the quantum diffraction and shielding effects are also discussed.« less

  13. Applicability of Quantum Thermal Baths to Complex Many-Body Systems with Various Degrees of Anharmonicity.

    PubMed

    Hernández-Rojas, Javier; Calvo, Florent; Noya, Eva Gonzalez

    2015-03-10

    The semiclassical method of quantum thermal baths by colored noise thermostats has been used to simulate various atomic systems in the molecular and bulk limits, at finite temperature and in moderately to strongly anharmonic regimes. In all cases, the method performs relatively well against alternative approaches in predicting correct energetic properties, including in the presence of phase changes, provided that vibrational delocalization is not too strong-neon appearing already as an upper limiting case. In contrast, the dynamical behavior inferred from global indicators such as the root-mean-square bond length fluctuation index or the vibrational spectrum reveals more marked differences caused by zero-point energy leakage, except in the case of isolated molecules with well separated vibrational modes. To correct for such deficiencies and reduce the undesired transfer among modes, empirical modifications of the noise power spectral density were attempted to better describe thermal equilibrium but still failed when used as semiclassical preparation for microcanonical trajectories.

  14. Semiclassical spatial correlations in chaotic wave functions.

    PubMed

    Toscano, Fabricio; Lewenkopf, Caio H

    2002-03-01

    We study the spatial autocorrelation of energy eigenfunctions psi(n)(q) corresponding to classically chaotic systems in the semiclassical regime. Our analysis is based on the Weyl-Wigner formalism for the spectral average C(epsilon)(q(+),q(-),E) of psi(n)(q(+))psi(*)(n)(q(-)), defined as the average over eigenstates within an energy window epsilon centered at E. In this framework C(epsilon) is the Fourier transform in the momentum space of the spectral Wigner function W(x,E;epsilon). Our study reveals the chord structure that C(epsilon) inherits from the spectral Wigner function showing the interplay between the size of the spectral average window, and the spatial separation scale. We discuss under which conditions is it possible to define a local system independent regime for C(epsilon). In doing so, we derive an expression that bridges the existing formulas in the literature and find expressions for C(epsilon)(q(+),q(-),E) valid for any separation size /q(+)-q(-)/.

  15. An investigation of one- versus two-dimensional semiclassical transition state theory for H atom abstraction and exchange reactions.

    PubMed

    Greene, Samuel M; Shan, Xiao; Clary, David C

    2016-02-28

    We investigate which terms in Reduced-Dimensionality Semiclassical Transition State Theory (RD SCTST) contribute most significantly in rate constant calculations of hydrogen extraction and exchange reactions of hydrocarbons. We also investigate the importance of deep tunneling corrections to the theory. In addition, we introduce a novel formulation of the theory in Jacobi coordinates. For the reactions of H atoms with methane, ethane, and cyclopropane, we find that a one-dimensional (1-D) version of the theory without deep tunneling corrections compares well with 2-D SCTST results and accurate quantum scattering results. For the "heavy-light-heavy" H atom exchange reaction between CH3 and CH4, deep tunneling corrections are needed to yield 1-D results that compare well with 2-D results. The finding that accurate rate constants can be obtained from derivatives of the potential along only one dimension further validates RD SCTST as a computationally efficient yet accurate rate constant theory.

  16. Dissipation and decoherence in nanodevices: a generalized Fermi's golden rule

    NASA Astrophysics Data System (ADS)

    Taj, D.; Iotti, R. C.; Rossi, F.

    2009-06-01

    We shall revisit the conventional adiabatic or Markov approximation, which—in contrast to the semiclassical case—does not preserve the positive-definite character of the corresponding density matrix, thus leading to highly non-physical results. To overcome this serious limitation, originally pointed out and partially solved by Davies and co-workers almost three decades ago, we shall propose an alternative more general adiabatic procedure, which (i) is physically justified under the same validity restrictions of the conventional Markov approach, (ii) in the semiclassical limit reduces to the standard Fermi's golden rule and (iii) describes a genuine Lindblad evolution, thus providing a reliable/robust treatment of energy-dissipation and dephasing processes in electronic quantum devices. Unlike standard master-equation formulations, the dependence of our approximation on the specific choice of the subsystem (that includes the common partial trace reduction) does not threaten positivity, and quantum scattering rates are well defined even in the case the subsystem is infinitely extended/has a continuous spectrum.

  17. Higher curvature self-interaction corrections to Hawking radiation

    NASA Astrophysics Data System (ADS)

    Fairoos, C.; Sarkar, Sudipta; Yogendran, K. P.

    2017-07-01

    The purely thermal nature of Hawking radiation from evaporating black holes leads to the information loss paradox. A possible route to its resolution could be if (enough) correlations are shown to be present in the radiation emitted from evaporating black holes. A reanalysis of Hawking's derivation including the effects of self-interactions in general relativity shows that the emitted radiation does deviate from pure thermality; however no correlations exist between successively emitted Hawking quanta. We extend the calculations to Einstein-Gauss-Bonnet gravity and investigate if higher curvature corrections to the action lead to some new correlations in the Hawking spectra. The effective trajectory of a massless shell is determined by solving the constraint equations and the semiclassical tunneling probability is calculated. As in the case of general relativity, the radiation is no longer thermal and there is no correlation between successive emissions. The absence of any extra correlations in the emitted radiations even in Gauss-Bonnet gravity suggests that the resolution of the paradox is beyond the scope of semiclassical gravity.

  18. Entangled photons from single atoms and molecules

    NASA Astrophysics Data System (ADS)

    Nordén, Bengt

    2018-05-01

    The first two-photon entanglement experiment performed 50 years ago by Kocher and Commins (KC) provided isolated pairs of entangled photons from an atomic three-state fluorescence cascade. In view of questioning of Bell's theorem, data from these experiments are re-analyzed and shown sufficiently precise to confirm quantum mechanical and dismiss semi-classical theory without need for Bell's inequalities. Polarization photon correlation anisotropy (A) is useful: A is near unity as predicted quantum mechanically and well above the semi-classic range, 0 ⩽ A ⩽ 1 / 2 . Although yet to be found, one may envisage a three-state molecule emitting entangled photon pairs, in analogy with the KC atomic system. Antibunching in fluorescence from single molecules in matrix and entangled photons from quantum dots promise it be possible. Molecules can have advantages to parametric down-conversion as the latter photon distribution is Poissonian and unsuitable for producing isolated pairs of entangled photons. Analytical molecular applications of entangled light are also envisaged.

  19. Berry phase effect on electronic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Di; Chang, Ming-Che; Niu, Qian

    2010-01-01

    Ever since its discovery, the Berry phase has permeated through all branches of physics. Over the last three decades, it was gradually realized that the Berry phase of the electronic wave function can have a profound effect on material properties and is responsible for a spectrum of phenomena, such as ferroelectricity, orbital magnetism, various (quantum/anomalous/spin) Hall effects, and quantum charge pumping. This progress is summarized in a pedagogical manner in this review. We start with a brief summary of necessary background, followed by a detailed discussion of the Berry phase effect in a variety of solid state applications. A commonmore » thread of the review is the semiclassical formulation of electron dynamics, which is a versatile tool in the study of electron dynamics in the presence of electromagnetic fields and more general perturbations. Finally, we demonstrate a re-quantization method that converts a semiclassical theory to an effective quantum theory. It is clear that the Berry phase should be added as a basic ingredient to our understanding of basic material properties.« less

  20. Thermoelectric properties of AgSbTe₂ from first-principles calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rezaei, Nafiseh; Akbarzadeh, Hadi; Hashemifar, S. Javad, E-mail: hashemifar@cc.iut.ac.ir

    2014-09-14

    The structural, electronic, and transport properties of AgSbTe₂ are studied by using full-relativistic first-principles electronic structure calculation and semiclassical description of transport parameters. The results indicate that, within various exchange-correlation functionals, the cubic Fd3⁻m and trigonal R3⁻m structures of AgSbTe₂ are more stable than two other considered structures. The computed Seebeck coefficients at different values of the band gap and carrier concentration are accurately compared with the available experimental data to speculate a band gap of about 0.1–0.35 eV for AgSbTe₂ compound, in agreement with our calculated electronic structure within the hybrid HSE (Heyd-Scuseria-Ernzerhof) functional. By calculating the semiclassical Seebeckmore » coefficient, electrical conductivity, and electronic part of thermal conductivity, we present the theoretical upper limit of the thermoelectric figure of merit of AgSbTe₂ as a function of temperature and carrier concentration.« less

Top