Sample records for simple sequence repeat-based

  1. Identification of Simple Sequence Repeats in Chloroplast Genomes of Magnoliids Through Bioinformatics Approach.

    PubMed

    Srivastava, Deepika; Shanker, Asheesh

    2016-12-01

    Basal angiosperms or Magnoliids is an important clade of commercially important plants which mainly include spices and edible fruits. In this study, 17 chloroplast genome sequences belonging to clade Magnoliids were screened for the identification of chloroplast simple sequence repeats (cpSSRs). Simple sequence repeats or microsatellites are short stretches of DNA up to 1-6 base pair in length. These repeats are ubiquitous and play important role in the development of molecular markers and to study the mapping of traits of economic, medical or ecological interest. A total of 479 SSRs were detected, showing average density of 1 SSR/6.91 kb. Depending on the repeat units, the length of SSRs ranged from 12 to 24 bp for mono-, 12 to 18 bp for di-, 12 to 26 bp for tri-, 12 to 24 bp for tetra-, 15 bp for penta- and 18 bp for hexanucleotide repeats. Mononucleotide repeats were the most frequent (207, 43.21 %) followed by tetranucleotide repeats (130, 27.13 %). Penta- and hexanucleotide repeats were least frequent or absent in these chloroplast genomes.

  2. Cultivar identification, pedigree verification, and diversity analysis among Peach (Prunus persica L. Batsch) Cultivars based on Simple Sequence Repeat markers

    USDA-ARS?s Scientific Manuscript database

    The genetic relationships and pedigree inferences among peach (Prunus persica (L.) Batsch) accessions and breeding lines used in genetic improvement were evaluated using 15 simple sequence repeat (SSR) markers. A total of 80 alleles were detected among the 37 peach accessions with an average of 5.53...

  3. An integrated genetic linkage map of watermelon and genetic diversity based on single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers

    USDA-ARS?s Scientific Manuscript database

    Watermelon (Citrullus lanatus var. lanatus) is an important vegetable fruit throughout the world. A high number of single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers should provide large coverage of the watermelon genome and high phylogenetic resolution of germplasm acces...

  4. An annotated genetic map of loblolly pine based on microsatellite and cDNA markers

    USDA-ARS?s Scientific Manuscript database

    Previous loblolly pine (Pinus taeda L.) genetic linkage maps have been based on a variety of DNA polymorphisms, such as AFLPs, RAPDs, RFLPs, and ESTPs, but only a few SSRs (simple sequence repeats), also known as simple tandem repeats or microsatellites, have been mapped in P. taeda. The objective o...

  5. Characterization and Amplification of Gene-Based Simple Sequence Repeat (SSR) Markers in Date Palm.

    PubMed

    Zhao, Yongli; Keremane, Manjunath; Prakash, Channapatna S; He, Guohao

    2017-01-01

    The paucity of molecular markers limits the application of genetic and genomic research in date palm (Phoenix dactylifera L.). Availability of expressed sequence tag (EST) sequences in date palm may provide a good resource for developing gene-based markers. This study characterizes a substantial fraction of transcriptome sequences containing simple sequence repeats (SSRs) from the EST sequences in date palm. The EST sequences studied are mainly homologous to those of Elaeis guineensis and Musa acuminata. A total of 911 gene-based SSR markers, characterized with functional annotations, have provided a useful basis not only for discovering candidate genes and understanding genetic basis of traits of interest but also for developing genetic and genomic tools for molecular research in date palm, such as diversity study, quantitative trait locus (QTL) mapping, and molecular breeding. The procedures of DNA extraction, polymerase chain reaction (PCR) amplification of these gene-based SSR markers, and gel electrophoresis of PCR products are described in this chapter.

  6. Determining Phylogenetic Relationships Among Date Palm Cultivars Using Random Amplified Polymorphic DNA (RAPD) and Inter-Simple Sequence Repeat (ISSR) Markers.

    PubMed

    Haider, Nadia

    2017-01-01

    Investigation of genetic variation and phylogenetic relationships among date palm (Phoenix dactylifera L.) cultivars is useful for their conservation and genetic improvement. Various molecular markers such as restriction fragment length polymorphisms (RFLPs), simple sequence repeat (SSR), representational difference analysis (RDA), and amplified fragment length polymorphism (AFLP) have been developed to molecularly characterize date palm cultivars. PCR-based markers random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) are powerful tools to determine the relatedness of date palm cultivars that are difficult to distinguish morphologically. In this chapter, the principles, materials, and methods of RAPD and ISSR techniques are presented. Analysis of data generated from these two techniques and the use of these data to reveal phylogenetic relationships among date palm cultivars are also discussed.

  7. Diversity analysis in Cannabis sativa based on large-scale development of expressed sequence tag-derived simple sequence repeat markers.

    PubMed

    Gao, Chunsheng; Xin, Pengfei; Cheng, Chaohua; Tang, Qing; Chen, Ping; Wang, Changbiao; Zang, Gonggu; Zhao, Lining

    2014-01-01

    Cannabis sativa L. is an important economic plant for the production of food, fiber, oils, and intoxicants. However, lack of sufficient simple sequence repeat (SSR) markers has limited the development of cannabis genetic research. Here, large-scale development of expressed sequence tag simple sequence repeat (EST-SSR) markers was performed to obtain more informative genetic markers, and to assess genetic diversity in cannabis (Cannabis sativa L.). Based on the cannabis transcriptome, 4,577 SSRs were identified from 3,624 ESTs. From there, a total of 3,442 complementary primer pairs were designed as SSR markers. Among these markers, trinucleotide repeat motifs (50.99%) were the most abundant, followed by hexanucleotide (25.13%), dinucleotide (16.34%), tetranucloetide (3.8%), and pentanucleotide (3.74%) repeat motifs, respectively. The AAG/CTT trinucleotide repeat (17.96%) was the most abundant motif detected in the SSRs. One hundred and seventeen EST-SSR markers were randomly selected to evaluate primer quality in 24 cannabis varieties. Among these 117 markers, 108 (92.31%) were successfully amplified and 87 (74.36%) were polymorphic. Forty-five polymorphic primer pairs were selected to evaluate genetic diversity and relatedness among the 115 cannabis genotypes. The results showed that 115 varieties could be divided into 4 groups primarily based on geography: Northern China, Europe, Central China, and Southern China. Moreover, the coefficient of similarity when comparing cannabis from Northern China with the European group cannabis was higher than that when comparing with cannabis from the other two groups, owing to a similar climate. This study outlines the first large-scale development of SSR markers for cannabis. These data may serve as a foundation for the development of genetic linkage, quantitative trait loci mapping, and marker-assisted breeding of cannabis.

  8. Diversity Analysis in Cannabis sativa Based on Large-Scale Development of Expressed Sequence Tag-Derived Simple Sequence Repeat Markers

    PubMed Central

    Cheng, Chaohua; Tang, Qing; Chen, Ping; Wang, Changbiao; Zang, Gonggu; Zhao, Lining

    2014-01-01

    Cannabis sativa L. is an important economic plant for the production of food, fiber, oils, and intoxicants. However, lack of sufficient simple sequence repeat (SSR) markers has limited the development of cannabis genetic research. Here, large-scale development of expressed sequence tag simple sequence repeat (EST-SSR) markers was performed to obtain more informative genetic markers, and to assess genetic diversity in cannabis (Cannabis sativa L.). Based on the cannabis transcriptome, 4,577 SSRs were identified from 3,624 ESTs. From there, a total of 3,442 complementary primer pairs were designed as SSR markers. Among these markers, trinucleotide repeat motifs (50.99%) were the most abundant, followed by hexanucleotide (25.13%), dinucleotide (16.34%), tetranucloetide (3.8%), and pentanucleotide (3.74%) repeat motifs, respectively. The AAG/CTT trinucleotide repeat (17.96%) was the most abundant motif detected in the SSRs. One hundred and seventeen EST-SSR markers were randomly selected to evaluate primer quality in 24 cannabis varieties. Among these 117 markers, 108 (92.31%) were successfully amplified and 87 (74.36%) were polymorphic. Forty-five polymorphic primer pairs were selected to evaluate genetic diversity and relatedness among the 115 cannabis genotypes. The results showed that 115 varieties could be divided into 4 groups primarily based on geography: Northern China, Europe, Central China, and Southern China. Moreover, the coefficient of similarity when comparing cannabis from Northern China with the European group cannabis was higher than that when comparing with cannabis from the other two groups, owing to a similar climate. This study outlines the first large-scale development of SSR markers for cannabis. These data may serve as a foundation for the development of genetic linkage, quantitative trait loci mapping, and marker-assisted breeding of cannabis. PMID:25329551

  9. Simple sequence repeat marker loci discovery using SSR primer.

    PubMed

    Robinson, Andrew J; Love, Christopher G; Batley, Jacqueline; Barker, Gary; Edwards, David

    2004-06-12

    Simple sequence repeats (SSRs) have become important molecular markers for a broad range of applications, such as genome mapping and characterization, phenotype mapping, marker assisted selection of crop plants and a range of molecular ecology and diversity studies. With the increase in the availability of DNA sequence information, an automated process to identify and design PCR primers for amplification of SSR loci would be a useful tool in plant breeding programs. We report an application that integrates SPUTNIK, an SSR repeat finder, with Primer3, a PCR primer design program, into one pipeline tool, SSR Primer. On submission of multiple FASTA formatted sequences, the script screens each sequence for SSRs using SPUTNIK. The results are parsed to Primer3 for locus-specific primer design. The script makes use of a Web-based interface, enabling remote use. This program has been written in PERL and is freely available for non-commercial users by request from the authors. The Web-based version may be accessed at http://hornbill.cspp.latrobe.edu.au/

  10. Always look on both sides: Phylogenetic information conveyed by simple sequence repeat allele sequences

    USDA-ARS?s Scientific Manuscript database

    Simple sequence repeat (SSR) markers are widely used tools for inferences about genetic diversity, phylogeography and spatial genetic structure. Their applications assume that variation among alleles is essentially caused by an expansion or contraction of the number of repeats and that, accessorily,...

  11. Genome Wide Characterization of Simple Sequence Repeats in Cucumber

    USDA-ARS?s Scientific Manuscript database

    The whole genome sequence of the cucumber cultivar Gy14 was recently sequenced at 15× coverage with the Roche 454 Titanium technology. The microsatellite DNA sequences (simple sequence repeats, SSRs) in the assembled scaffolds were computationally explored and characterized. A total of 112,073 SSRs ...

  12. A Repeat Look at Repeating Patterns

    ERIC Educational Resources Information Center

    Markworth, Kimberly A.

    2016-01-01

    A "repeating pattern" is a cyclical repetition of an identifiable core. Children in the primary grades usually begin pattern work with fairly simple patterns, such as AB, ABC, or ABB patterns. The unique letters represent unique elements, whereas the sequence of letters represents the core that is repeated. Based on color, shape,…

  13. Analysis of simple sequence repeat (SSR) structure and sequence within Epichloë endophyte genomes reveals impacts on gene structure and insights into ancestral hybridization events.

    PubMed

    Clayton, William; Eaton, Carla Jane; Dupont, Pierre-Yves; Gillanders, Tim; Cameron, Nick; Saikia, Sanjay; Scott, Barry

    2017-01-01

    Epichloë grass endophytes comprise a group of filamentous fungi of both sexual and asexual species. Known for the beneficial characteristics they endow upon their grass hosts, the identification of these endophyte species has been of great interest agronomically and scientifically. The use of simple sequence repeat loci and the variation in repeat elements has been used to rapidly identify endophyte species and strains, however, little is known of how the structure of repeat elements changes between species and strains, and where these repeat elements are located in the fungal genome. We report on an in-depth analysis of the structure and genomic location of the simple sequence repeat locus B10, commonly used for Epichloë endophyte species identification. The B10 repeat was found to be located within an exon of a putative bZIP transcription factor, suggesting possible impacts on polypeptide sequence and thus protein function. Analysis of this repeat in the asexual endophyte hybrid Epichloë uncinata revealed that the structure of B10 alleles reflects the ancestral species that hybridized to give rise to this species. Understanding the structure and sequence of these simple sequence repeats provides a useful set of tools for readily distinguishing strains and for gaining insights into the ancestral species that have undergone hybridization events.

  14. An annotated genetic map of loblolly pine based on microsatellite and cDNA markers

    Treesearch

    Craig S. Echt; Surya Saha; Konstantin V. Krutovsky; Kokulapalan Wimalanathan; John E. Erpelding; Chun Liang; C Dana Nelson

    2011-01-01

    Previous loblolly pine (Pinus taeda L.) genetic linkage maps have been based on a variety of DNA polymorphisms, such as AFLPs, RAPDs, RFLPs, and ESTPs, but only a few SSRs (simple sequence repeats), also known as simple tandem repeats or microsatellites, have been mapped in P. taeda. The objective of this study was to integrate a large set of SSR markers from a variety...

  15. Optimization of sequence alignment for simple sequence repeat regions.

    PubMed

    Jighly, Abdulqader; Hamwieh, Aladdin; Ogbonnaya, Francis C

    2011-07-20

    Microsatellites, or simple sequence repeats (SSRs), are tandemly repeated DNA sequences, including tandem copies of specific sequences no longer than six bases, that are distributed in the genome. SSR has been used as a molecular marker because it is easy to detect and is used in a range of applications, including genetic diversity, genome mapping, and marker assisted selection. It is also very mutable because of slipping in the DNA polymerase during DNA replication. This unique mutation increases the insertion/deletion (INDELs) mutation frequency to a high ratio - more than other types of molecular markers such as single nucleotide polymorphism (SNPs).SNPs are more frequent than INDELs. Therefore, all designed algorithms for sequence alignment fit the vast majority of the genomic sequence without considering microsatellite regions, as unique sequences that require special consideration. The old algorithm is limited in its application because there are many overlaps between different repeat units which result in false evolutionary relationships. To overcome the limitation of the aligning algorithm when dealing with SSR loci, a new algorithm was developed using PERL script with a Tk graphical interface. This program is based on aligning sequences after determining the repeated units first, and the last SSR nucleotides positions. This results in a shifting process according to the inserted repeated unit type.When studying the phylogenic relations before and after applying the new algorithm, many differences in the trees were obtained by increasing the SSR length and complexity. However, less distance between different linage had been observed after applying the new algorithm. The new algorithm produces better estimates for aligning SSR loci because it reflects more reliable evolutionary relations between different linages. It reduces overlapping during SSR alignment, which results in a more realistic phylogenic relationship.

  16. Typing of artiodactyl MHC-DRB genes with the help of intronic simple repeated DNA sequences.

    PubMed

    Schwaiger, F W; Buitkamp, J; Weyers, E; Epplen, J T

    1993-02-01

    An efficient oligonucleotide typing method for the highly polymorphic MHC-DRB genes is described for artiodactyls like cattle, sheep and goat. By means of the polymerase chain reaction, the second exon of MHC-DRB is amplified as well as part of the adjacent intron containing a mixed simple repeat sequence. Using this primer combination we were able to amplify the MHC-DRB exons 2 and adjacent introns from all of the investigated 10 species of the family of Bovidae and giraffes. Therefore, the DRB genes of novel artiodactyl species can also be readily studied. Oligonucleotide probes specific for the polymorphisms of ungulate DRB genes are used with which sequences differing in at least one single base can be distinguished. Exonic polymorphism was found to be correlated with the allele lengths and the patterns of the repeat structures. Hence oligonucleotide probes specific for different simple repeats and polymorphic positions serve also for typing across species barriers. The strict correlation of sequence length and exonic polymorphism permits a preselection of specific oligonucleotides for hybridization. Thus more than 20 alleles can already be differentiated from each of the three species.

  17. A SSR-based genetic linkage map of cultivated peanut (Arachis hypogaea L.)

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to construct a molecular linkage map of cultivated tetraploid peanut using simple sequence repeat (SSR) markers derived primarily from peanut genomic sequences, expressed sequence tags (ESTs), and by "data mining" sequences released in GenBank. Three recombinant inbre...

  18. Genetic diversity studies and identification of SSR markers associated with Fusarium wilt (Fusarium udum) resistance in cultivated pigeonpea (Cajanus cajan).

    PubMed

    Singh, A K; Rai, V P; Chand, R; Singh, R P; Singh, M N

    2013-01-01

    Genetic diversity and identification of simple sequence repeat markers correlated with Fusarium wilt resistance was performed in a set of 36 elite cultivated pigeonpea genotypes differing in levels of resistance to Fusarium wilt. Twenty-four polymorphic sequence repeat markers were screened across these genotypes, and amplified a total of 59 alleles with an average high polymorphic information content value of 0.52. Cluster analysis, done by UPGMA and PCA, grouped the 36 pigeonpea genotypes into two main clusters according to their Fusarium wilt reaction. Based on the Kruskal-Wallis ANOVA and simple regression analysis, six simple sequence repeat markers were found to be significantly associated with Fusarium wilt resistance. The phenotypic variation explained by these markers ranged from 23.7 to 56.4%. The present study helps in finding out feasibility of prescreened SSR markers to be used in genetic diversity analysis and their potential association with disease resistance.

  19. A Simple and Efficient Method for Assembling TALE Protein Based on Plasmid Library

    PubMed Central

    Xu, Huarong; Xin, Ying; Zhang, Tingting; Ma, Lixia; Wang, Xin; Chen, Zhilong; Zhang, Zhiying

    2013-01-01

    DNA binding domain of the transcription activator-like effectors (TALEs) from Xanthomonas sp. consists of tandem repeats that can be rearranged according to a simple cipher to target new DNA sequences with high DNA-binding specificity. This technology has been successfully applied in varieties of species for genome engineering. However, assembling long TALE tandem repeats remains a big challenge precluding wide use of this technology. Although several new methodologies for efficiently assembling TALE repeats have been recently reported, all of them require either sophisticated facilities or skilled technicians to carry them out. Here, we described a simple and efficient method for generating customized TALE nucleases (TALENs) and TALE transcription factors (TALE-TFs) based on TALE repeat tetramer library. A tetramer library consisting of 256 tetramers covers all possible combinations of 4 base pairs. A set of unique primers was designed for amplification of these tetramers. PCR products were assembled by one step of digestion/ligation reaction. 12 TALE constructs including 4 TALEN pairs targeted to mouse Gt(ROSA)26Sor gene and mouse Mstn gene sequences as well as 4 TALE-TF constructs targeted to mouse Oct4, c-Myc, Klf4 and Sox2 gene promoter sequences were generated by using our method. The construction routines took 3 days and parallel constructions were available. The rate of positive clones during colony PCR verification was 64% on average. Sequencing results suggested that all TALE constructs were performed with high successful rate. This is a rapid and cost-efficient method using the most common enzymes and facilities with a high success rate. PMID:23840477

  20. A simple and efficient method for assembling TALE protein based on plasmid library.

    PubMed

    Zhang, Zhiqiang; Li, Duo; Xu, Huarong; Xin, Ying; Zhang, Tingting; Ma, Lixia; Wang, Xin; Chen, Zhilong; Zhang, Zhiying

    2013-01-01

    DNA binding domain of the transcription activator-like effectors (TALEs) from Xanthomonas sp. consists of tandem repeats that can be rearranged according to a simple cipher to target new DNA sequences with high DNA-binding specificity. This technology has been successfully applied in varieties of species for genome engineering. However, assembling long TALE tandem repeats remains a big challenge precluding wide use of this technology. Although several new methodologies for efficiently assembling TALE repeats have been recently reported, all of them require either sophisticated facilities or skilled technicians to carry them out. Here, we described a simple and efficient method for generating customized TALE nucleases (TALENs) and TALE transcription factors (TALE-TFs) based on TALE repeat tetramer library. A tetramer library consisting of 256 tetramers covers all possible combinations of 4 base pairs. A set of unique primers was designed for amplification of these tetramers. PCR products were assembled by one step of digestion/ligation reaction. 12 TALE constructs including 4 TALEN pairs targeted to mouse Gt(ROSA)26Sor gene and mouse Mstn gene sequences as well as 4 TALE-TF constructs targeted to mouse Oct4, c-Myc, Klf4 and Sox2 gene promoter sequences were generated by using our method. The construction routines took 3 days and parallel constructions were available. The rate of positive clones during colony PCR verification was 64% on average. Sequencing results suggested that all TALE constructs were performed with high successful rate. This is a rapid and cost-efficient method using the most common enzymes and facilities with a high success rate.

  1. Comparison of simple sequence repeats in 19 Archaea.

    PubMed

    Trivedi, S

    2006-12-05

    All organisms that have been studied until now have been found to have differential distribution of simple sequence repeats (SSRs), with more SSRs in intergenic than in coding sequences. SSR distribution was investigated in Archaea genomes where complete chromosome sequences of 19 Archaea were analyzed with the program SPUTNIK to find di- to penta-nucleotide repeats. The number of repeats was determined for the complete chromosome sequences and for the coding and non-coding sequences. Different from what has been found for other groups of organisms, there is an abundance of SSRs in coding regions of the genome of some Archaea. Dinucleotide repeats were rare and CG repeats were found in only two Archaea. In general, trinucleotide repeats are the most abundant SSR motifs; however, pentanucleotide repeats are abundant in some Archaea. Some of the tetranucleotide and pentanucleotide repeat motifs are organism specific. In general, repeats are short and CG-rich repeats are present in Archaea having a CG-rich genome. Among the 19 Archaea, SSR density was not correlated with genome size or with optimum growth temperature. Pentanucleotide density had an inverse correlation with the CG content of the genome.

  2. Genome-wide characterization and selection of expressed sequence tag simple sequence repeat primers for optimized marker distribution and reliability in peach

    USDA-ARS?s Scientific Manuscript database

    Expressed sequence tag (EST) simple sequence repeats (SSRs) in Prunus were mined, and flanking primers designed and used for genome-wide characterization and selection of primers to optimize marker distribution and reliability. A total of 12,618 contigs were assembled from 84,727 ESTs, along with 34...

  3. Developing expressed sequence tag libraries and the discovery of simple sequence repeat markers for two species of raspberry (Rubus L.)

    USDA-ARS?s Scientific Manuscript database

    Background: Due to a relatively high level of codominant inheritance and transferability within and among taxonomic groups, simple sequence repeat (SSR) markers are important elements in comparative mapping and delineation of genomic regions associated with traits of economic importance. Expressed S...

  4. Development and characterization of simple sequence repeats for Bipolaris sokiniana and cross transferability to related species

    USDA-ARS?s Scientific Manuscript database

    Simple sequence repeats (SSR) markers were developed from a small insert genomic library for Bipolaris sorokiniana, a mitosporic fungal pathogen that causes spot blotch and root rot in switchgrass. About 59% of sequenced clones (n=384) harbored various SSR motifs. After eliminating the redundant seq...

  5. Mapping Simple Repeated DNA Sequences in Heterochromatin of Drosophila Melanogaster

    PubMed Central

    Lohe, A. R.; Hilliker, A. J.; Roberts, P. A.

    1993-01-01

    Heterochromatin in Drosophila has unusual genetic, cytological and molecular properties. Highly repeated DNA sequences (satellites) are the principal component of heterochromatin. Using probes from cloned satellites, we have constructed a chromosome map of 10 highly repeated, simple DNA sequences in heterochromatin of mitotic chromosomes of Drosophila melanogaster. Despite extensive sequence homology among some satellites, chromosomal locations could be distinguished by stringent in situ hybridizations for each satellite. Only two of the localizations previously determined using gradient-purified bulk satellite probes are correct. Eight new satellite localizations are presented, providing a megabase-level chromosome map of one-quarter of the genome. Five major satellites each exhibit a multichromosome distribution, and five minor satellites hybridize to single sites on the Y chromosome. Satellites closely related in sequence are often located near one another on the same chromosome. About 80% of Y chromosome DNA is composed of nine simple repeated sequences, in particular (AAGAC)(n) (8 Mb), (AAGAG)(n) (7 Mb) and (AATAT)(n) (6 Mb). Similarly, more than 70% of the DNA in chromosome 2 heterochromatin is composed of five simple repeated sequences. We have also generated a high resolution map of satellites in chromosome 2 heterochromatin, using a series of translocation chromosomes whose breakpoints in heterochromatin were ordered by N-banding. Finally, staining and banding patterns of heterochromatic regions are correlated with the locations of specific repeated DNA sequences. The basis for the cytochemical heterogeneity in banding appears to depend exclusively on the different satellite DNAs present in heterochromatin. PMID:8375654

  6. Highly Informative Simple Sequence Repeat (SSR) Markers for Fingerprinting Hazelnut

    USDA-ARS?s Scientific Manuscript database

    Simple sequence repeat (SSR) or microsatellite markers have many applications in breeding and genetic studies of plants, including fingerprinting of cultivars and investigations of genetic diversity, and therefore provide information for better management of germplasm collections. They are repeatab...

  7. Molecular Analysis of Date Palm Genetic Diversity Using Random Amplified Polymorphic DNA (RAPD) and Inter-Simple Sequence Repeats (ISSRs).

    PubMed

    El Sharabasy, Sherif F; Soliman, Khaled A

    2017-01-01

    The date palm is an ancient domesticated plant with great diversity and has been cultivated in the Middle East and North Africa for at last 5000 years. Date palm cultivars are classified based on the fruit moisture content, as dry, semidry, and soft dates. There are a number of biochemical and molecular techniques available for characterization of the date palm variation. This chapter focuses on the DNA-based markers random amplified polymorphic DNA (RAPD) and inter-simple sequence repeats (ISSR) techniques, in addition to biochemical markers based on isozyme analysis. These techniques coupled with appropriate statistical tools proved useful for determining phylogenetic relationships among date palm cultivars and provide information resources for date palm gene banks.

  8. PSSRdb: a relational database of polymorphic simple sequence repeats extracted from prokaryotic genomes.

    PubMed

    Kumar, Pankaj; Chaitanya, Pasumarthy S; Nagarajaram, Hampapathalu A

    2011-01-01

    PSSRdb (Polymorphic Simple Sequence Repeats database) (http://www.cdfd.org.in/PSSRdb/) is a relational database of polymorphic simple sequence repeats (PSSRs) extracted from 85 different species of prokaryotes. Simple sequence repeats (SSRs) are the tandem repeats of nucleotide motifs of the sizes 1-6 bp and are highly polymorphic. SSR mutations in and around coding regions affect transcription and translation of genes. Such changes underpin phase variations and antigenic variations seen in some bacteria. Although SSR-mediated phase variation and antigenic variations have been well-studied in some bacteria there seems a lot of other species of prokaryotes yet to be investigated for SSR mediated adaptive and other evolutionary advantages. As a part of our on-going studies on SSR polymorphism in prokaryotes we compared the genome sequences of various strains and isolates available for 85 different species of prokaryotes and extracted a number of SSRs showing length variations and created a relational database called PSSRdb. This database gives useful information such as location of PSSRs in genomes, length variation across genomes, the regions harboring PSSRs, etc. The information provided in this database is very useful for further research and analysis of SSRs in prokaryotes.

  9. Plant genotyping using fluorescently tagged inter-simple sequence repeats (ISSRs): basic principles and methodology.

    PubMed

    Prince, Linda M

    2015-01-01

    Inter-simple sequence repeat PCR (ISSR-PCR) is a fast, inexpensive genotyping technique based on length variation in the regions between microsatellites. The method requires no species-specific prior knowledge of microsatellite location or composition. Very small amounts of DNA are required, making this method ideal for organisms of conservation concern, or where the quantity of DNA is extremely limited due to organism size. ISSR-PCR can be highly reproducible but requires careful attention to detail. Optimization of DNA extraction, fragment amplification, and normalization of fragment peak heights during fluorescent detection are critical steps to minimizing the downstream time spent verifying and scoring the data.

  10. Simple sequence repeat markers that identify Claviceps species and strains

    USDA-ARS?s Scientific Manuscript database

    Claviceps purpurea is a pathogen that infects most members of the Pooideae subfamily and causes ergot, a floral disease in which the ovary is replaced with a sclerotium. This study was initiated to develop Simple Sequence Repeat (SSRs) markers for rapid identification of C. purpurea. SSRs were desi...

  11. Development of Pineapple Microsatellite Markers and Germplasm Genetic Diversity Analysis

    PubMed Central

    Tong, Helin; Chen, You; Wang, Jingyi; Chen, Yeyuan; Sun, Guangming; He, Junhu; Wu, Yaoting

    2013-01-01

    Two methods were used to develop pineapple microsatellite markers. Genomic library-based SSR development: using selectively amplified microsatellite assay, 86 sequences were generated from pineapple genomic library. 91 (96.8%) of the 94 Simple Sequence Repeat (SSR) loci were dinucleotide repeats (39 AC/GT repeats and 52 GA/TC repeats, accounting for 42.9% and 57.1%, resp.), and the other three were mononucleotide repeats. Thirty-six pairs of SSR primers were designed; 24 of them generated clear bands of expected sizes, and 13 of them showed polymorphism. EST-based SSR development: 5659 pineapple EST sequences obtained from NCBI were analyzed; among 1397 nonredundant EST sequences, 843 were found containing 1110 SSR loci (217 of them contained more than one SSR locus). Frequency of SSRs in pineapple EST sequences is 1SSR/3.73 kb, and 44 types were found. Mononucleotide, dinucleotide, and trinucleotide repeats dominate, accounting for 95.6% in total. AG/CT and AGC/GCT were the dominant type of dinucleotide and trinucleotide repeats, accounting for 83.5% and 24.1%, respectively. Thirty pairs of primers were designed for each of randomly selected 30 sequences; 26 of them generated clear and reproducible bands, and 22 of them showed polymorphism. Eighteen pairs of primers obtained by the one or the other of the two methods above that showed polymorphism were selected to carry out germplasm genetic diversity analysis for 48 breeds of pineapple; similarity coefficients of these breeds were between 0.59 and 1.00, and they can be divided into four groups accordingly. Amplification products of five SSR markers were extracted and sequenced, corresponding repeat loci were found and locus mutations are mainly in copy number of repeats and base mutations in the flanking region. PMID:24024187

  12. The Contribution of Short Repeats of Low Sequence Complexity to Large Conifer Genomes

    Treesearch

    A. Schmidt; R.L. Doudrick; J.S. Heslop-Harrison; T. Schmidt

    2000-01-01

    Abstract: The abundance and genomic organization of six simple sequence repeats, consisting of di-, tri-, and tetranucleotide sequence motifs, and a minisatellite repeat have been analyzed in different gymnosperms by Southern hybridization. Within the gymnosperm genomes investigated, the abundance and genomic organization of micro- and...

  13. Differential transferability of EST-SSR primers developed from diploid species Pseudoroegneria spicata, Thinopyrum bessarabicum, and Th. elongatum

    USDA-ARS?s Scientific Manuscript database

    Simple sequence repeat technology based on expressed sequence tag (EST-SSR) is a useful genomic tool for genome mapping, characterizing plant species relationships, elucidating genome evolution, and tracing genes on alien chromosome segments. EST-SSR primers developed from three perennial diploid T...

  14. THE USE OF INTER SIMPLE SEQUENCE REPEATS (ISSR) IN DISTINGUISHING NEIGHBORING DOUGLAS-FIR TREES AS A MEANS TO IDENTIFYING TREE ROOTS WITH ABOVE-GROUND BIOMASS

    EPA Science Inventory

    We are attempting to identify specific root fragments from soil cores with individual trees. We successfully used Inter Simple Sequence Repeats (ISSR) to distinguish neighboring old-growth Douglas-fir trees from one another, while maintaining identity among each tree's parts. W...

  15. Loblolly pine SSR markers for shortleaf pine genetics

    Treesearch

    C. Dana Nelson; Sedley Josserand; Craig S. Echt; Jeff Koppelman

    2007-01-01

    Simple sequence repeats (SSR) are highly informative DNA-based markers widely used in population genetic and linkage mapping studies. We have been developing PCR primer pairs for amplifying SSR markers for loblolly pine (Pinus taeda L.) using loblolly pine DNA and EST sequence data as starting materials. Fifty primer pairs known to reliably amplify...

  16. SSRscanner: a program for reporting distribution and exact location of simple sequence repeats.

    PubMed

    Anwar, Tamanna; Khan, Asad U

    2006-02-20

    Simple sequence repeats (SSRs) have become important molecular markers for a broad range of applications, such as genome mapping and characterization, phenotype mapping, marker assisted selection of crop plants and a range of molecular ecology and diversity studies. These repeated DNA sequences are found in both prokaryotes and eukaryotes. They are distributed almost at random throughout the genome, ranging from mononucleotide to trinucleotide repeats. They are also found at longer lengths (> 6 repeating units) of tracts. Most of the computer programs that find SSRs do not report its exact position. A computer program SSRscanner was written to find out distribution, frequency and exact location of each SSR in the genome. SSRscanner is user friendly. It can search repeats of any length and produce outputs with their exact position on chromosome and their frequency of occurrence in the sequence. This program has been written in PERL and is freely available for non-commercial users by request from the authors. Please contact the authors by E-mail: huzzi99@hotmail.com.

  17. A Simple Sequence Repeat- and Single-Nucleotide Polymorphism-Based Genetic Linkage Map of the Brown Planthopper, Nilaparvata lugens

    PubMed Central

    Jairin, Jirapong; Kobayashi, Tetsuya; Yamagata, Yoshiyuki; Sanada-Morimura, Sachiyo; Mori, Kazuki; Tashiro, Kosuke; Kuhara, Satoru; Kuwazaki, Seigo; Urio, Masahiro; Suetsugu, Yoshitaka; Yamamoto, Kimiko; Matsumura, Masaya; Yasui, Hideshi

    2013-01-01

    In this study, we developed the first genetic linkage map for the major rice insect pest, the brown planthopper (BPH, Nilaparvata lugens). The linkage map was constructed by integrating linkage data from two backcross populations derived from three inbred BPH strains. The consensus map consists of 474 simple sequence repeats, 43 single-nucleotide polymorphisms, and 1 sequence-tagged site, for a total of 518 markers at 472 unique positions in 17 linkage groups. The linkage groups cover 1093.9 cM, with an average distance of 2.3 cM between loci. The average number of marker loci per linkage group was 27.8. The sex-linkage group was identified by exploiting X-linked and Y-specific markers. Our linkage map and the newly developed markers used to create it constitute an essential resource and a useful framework for future genetic analyses in BPH. PMID:23204257

  18. Identification of apple cultivars on the basis of simple sequence repeat markers.

    PubMed

    Liu, G S; Zhang, Y G; Tao, R; Fang, J G; Dai, H Y

    2014-09-12

    DNA markers are useful tools that play an important role in plant cultivar identification. They are usually based on polymerase chain reaction (PCR) and include simple sequence repeats (SSRs), inter-simple sequence repeats, and random amplified polymorphic DNA. However, DNA markers were not used effectively in the complete identification of plant cultivars because of the lack of known DNA fingerprints. Recently, a novel approach called the cultivar identification diagram (CID) strategy was developed to facilitate the use of DNA markers for separate plant individuals. The CID was designed whereby a polymorphic maker was generated from each PCR that directly allowed for cultivar sample separation at each step. Therefore, it could be used to identify cultivars and varieties easily with fewer primers. In this study, 60 apple cultivars, including a few main cultivars in fields and varieties from descendants (Fuji x Telamon) were examined. Of the 20 pairs of SSR primers screened, 8 pairs gave reproducible, polymorphic DNA amplification patterns. The banding patterns obtained from these 8 primers were used to construct a CID map. Each cultivar or variety in this study was distinguished from the others completely, indicating that this method can be used for efficient cultivar identification. The result contributed to studies on germplasm resources and the seedling industry in fruit trees.

  19. Microsatellite analysis in the genome of Acanthaceae: An in silico approach.

    PubMed

    Kaliswamy, Priyadharsini; Vellingiri, Srividhya; Nathan, Bharathi; Selvaraj, Saravanakumar

    2015-01-01

    Acanthaceae is one of the advanced and specialized families with conventionally used medicinal plants. Simple sequence repeats (SSRs) play a major role as molecular markers for genome analysis and plant breeding. The microsatellites existing in the complete genome sequences would help to attain a direct role in the genome organization, recombination, gene regulation, quantitative genetic variation, and evolution of genes. The current study reports the frequency of microsatellites and appropriate markers for the Acanthaceae family genome sequences. The whole nucleotide sequences of Acanthaceae species were obtained from National Center for Biotechnology Information database and screened for the presence of SSRs. SSR Locator tool was used to predict the microsatellites and inbuilt Primer3 module was used for primer designing. Totally 110 repeats from 108 sequences of Acanthaceae family plant genomes were identified, and the occurrence of dinucleotide repeats was found to be abundant in the genome sequences. The essential amino acid isoleucine was found rich in all the sequences. We also designed the SSR-based primers/markers for 59 sequences of this family that contains microsatellite repeats in their genome. The identified microsatellites and primers might be useful for breeding and genetic studies of plants that belong to Acanthaceae family in the future.

  20. The art of attrition: development of robust oat microsatellites

    USDA-ARS?s Scientific Manuscript database

    Microsatellite or simple sequence repeat (SSR) markers are important tools for genetic analyses, especially those targeting diversity, based on the fact that multiple alleles can occur at a given locus. Currently, only 160 genomic-based SSR markers are publicly available for oat, most of which have...

  1. Genetic fidelity and variability of micropropagated cassava plants (Manihot esculenta Crantz) evaluated using ISSR markers.

    PubMed

    Vidal, Á M; Vieira, L J; Ferreira, C F; Souza, F V D; Souza, A S; Ledo, C A S

    2015-07-14

    Molecular markers are efficient for assessing the genetic fidelity of various species of plants after in vitro culture. In this study, we evaluated the genetic fidelity and variability of micropropagated cassava plants (Manihot esculenta Crantz) using inter-simple sequence repeat markers. Twenty-two cassava accessions from the Embrapa Cassava & Fruits Germplasm Bank were used. For each accession, DNA was extracted from a plant maintained in the field and from 3 plants grown in vitro. For DNA amplification, 27 inter-simple sequence repeat primers were used, of which 24 generated 175 bands; 100 of those bands were polymorphic and were used to study genetic variability among accessions of cassava plants maintained in the field. Based on the genetic distance matrix calculated using the arithmetic complement of the Jaccard's index, genotypes were clustered using the unweighted pair group method using arithmetic averages. The number of bands per primer was 2-13, with an average of 7.3. For most micropropagated accessions, the fidelity study showed no genetic variation between plants of the same accessions maintained in the field and those maintained in vitro, confirming the high genetic fidelity of the micropropagated plants. However, genetic variability was observed among different accessions grown in the field, and clustering based on the dissimilarity matrix revealed 7 groups. Inter-simple sequence repeat markers were efficient for detecting the genetic homogeneity of cassava plants derived from meristem culture, demonstrating the reliability of this propagation system.

  2. Deep landscape update of dispersed and tandem repeats in the genome model of the red jungle fowl, Gallus gallus, using a series of de novo investigating tools.

    PubMed

    Guizard, Sébastien; Piégu, Benoît; Arensburger, Peter; Guillou, Florian; Bigot, Yves

    2016-08-19

    The program RepeatMasker and the database Repbase-ISB are part of the most widely used strategy for annotating repeats in animal genomes. They have been used to show that avian genomes have a lower repeat content (8-12 %) than the sequenced genomes of many vertebrate species (30-55 %). However, the efficiency of such a library-based strategies is dependent on the quality and completeness of the sequences in the database that is used. An alternative to these library based methods are methods that identify repeats de novo. These alternative methods have existed for a least a decade and may be more powerful than the library based methods. We have used an annotation strategy involving several complementary de novo tools to determine the repeat content of the model genome galGal4 (1.04 Gbp), including identifying simple sequence repeats (SSRs), tandem repeats and transposable elements (TEs). We annotated over one Gbp. of the galGal4 genome and showed that it is composed of approximately 19 % SSRs and TEs repeats. Furthermore, we estimate that the actual genome of the red jungle fowl contains about 31-35 % repeats. We find that library-based methods tend to overestimate TE diversity. These results have a major impact on the current understanding of repeats distributions throughout chromosomes in the red jungle fowl. Our results are a proof of concept of the reliability of using de novo tools to annotate repeats in large animal genomes. They have also revealed issues that will need to be resolved in order to develop gold-standard methodologies for annotating repeats in eukaryote genomes.

  3. Development of novel simple sequence repeat markers in bitter gourd (Momordica charantia L.) through enriched genomic libraries and their utilization in analysis of genetic diversity and cross-species transferability.

    PubMed

    Saxena, Swati; Singh, Archana; Archak, Sunil; Behera, Tushar K; John, Joseph K; Meshram, Sudhir U; Gaikwad, Ambika B

    2015-01-01

    Microsatellite or simple sequence repeat (SSR) markers are the preferred markers for genetic analyses of crop plants. The availability of a limited number of such markers in bitter gourd (Momordica charantia L.) necessitates the development and characterization of more SSR markers. These were developed from genomic libraries enriched for three dinucleotide, five trinucleotide, and two tetranucleotide core repeat motifs. Employing the strategy of polymerase chain reaction-based screening, the number of clones to be sequenced was reduced by 81 % and 93.7 % of the sequenced clones contained in microsatellite repeats. Unique primer-pairs were designed for 160 microsatellite loci, and amplicons of expected length were obtained for 151 loci (94.4 %). Evaluation of diversity in 54 bitter gourd accessions at 51 loci indicated that 20 % of the loci were polymorphic with the polymorphic information content values ranging from 0.13 to 0.77. Fifteen Indian varieties were clearly distinguished indicative of the usefulness of the developed markers. Markers at 40 loci (78.4 %) were transferable to six species, viz. Momordica cymbalaria, Momordica subangulata subsp. renigera, Momordica balsamina, Momordica dioca, Momordica cochinchinesis, and Momordica sahyadrica. The microsatellite markers reported will be useful in various genetic and molecular genetic studies in bitter gourd, a cucurbit of immense nutritive, medicinal, and economic importance.

  4. SSRscanner: a program for reporting distribution and exact location of simple sequence repeats

    PubMed Central

    Anwar, Tamanna; Khan, Asad U

    2006-01-01

    Simple sequence repeats (SSRs) have become important molecular markers for a broad range of applications, such as genome mapping and characterization, phenotype mapping, marker assisted selection of crop plants and a range of molecular ecology and diversity studies. These repeated DNA sequences are found in both prokaryotes and eukaryotes. They are distributed almost at random throughout the genome, ranging from mononucleotide to trinucleotide repeats. They are also found at longer lengths (> 6 repeating units) of tracts. Most of the computer programs that find SSRs do not report its exact position. A computer program SSRscanner was written to find out distribution, frequency and exact location of each SSR in the genome. SSRscanner is user friendly. It can search repeats of any length and produce outputs with their exact position on chromosome and their frequency of occurrence in the sequence. Availability This program has been written in PERL and is freely available for non-commercial users by request from the authors. Please contact the authors by E-mail: huzzi99@hotmail.com PMID:17597863

  5. Simple sequence repeats in Escherichia coli: abundance, distribution, composition, and polymorphism.

    PubMed

    Gur-Arie, R; Cohen, C J; Eitan, Y; Shelef, L; Hallerman, E M; Kashi, Y

    2000-01-01

    Computer-based genome-wide screening of the DNA sequence of Escherichia coli strain K12 revealed tens of thousands of tandem simple sequence repeat (SSR) tracts, with motifs ranging from 1 to 6 nucleotides. SSRs were well distributed throughout the genome. Mononucleotide SSRs were over-represented in noncoding regions and under-represented in open reading frames (ORFs). Nucleotide composition of mono- and dinucleotide SSRs, both in ORFs and in noncoding regions, differed from that of the genomic region in which they occurred, with 93% of all mononucleotide SSRs proving to be of A or T. Computer-based analysis of the fine position of every SSR locus in the noncoding portion of the genome relative to downstream ORFs showed SSRs located in areas that could affect gene regulation. DNA sequences at 14 arbitrarily chosen SSR tracts were compared among E. coli strains. Polymorphisms of SSR copy number were observed at four of seven mononucleotide SSR tracts screened, with all polymorphisms occurring in noncoding regions. SSR polymorphism could prove important as a genome-wide source of variation, both for practical applications (including rapid detection, strain identification, and detection of loci affecting key phenotypes) and for evolutionary adaptation of microbes.

  6. M13-Tailed Simple Sequence Repeat (SSR) Markers in Studies of Genetic Diversity and Population Structure of Common Oat Germplasm.

    PubMed

    Onyśk, Agnieszka; Boczkowska, Maja

    2017-01-01

    Simple Sequence Repeat (SSR) markers are one of the most frequently used molecular markers in studies of crop diversity and population structure. This is due to their uniform distribution in the genome, the high polymorphism, reproducibility, and codominant character. Additional advantages are the possibility of automatic analysis and simple interpretation of the results. The M13 tagged PCR reaction significantly reduces the costs of analysis by the automatic genetic analyzers. Here, we also disclose a short protocol of SSR data analysis.

  7. GATA simple sequence repeats function as enhancer blocker boundaries.

    PubMed

    Kumar, Ram P; Krishnan, Jaya; Pratap Singh, Narendra; Singh, Lalji; Mishra, Rakesh K

    2013-01-01

    Simple sequence repeats (SSRs) account for ~3% of the human genome, but their functional significance still remains unclear. One of the prominent SSRs the GATA tetranucleotide repeat has preferentially accumulated in complex organisms. GATA repeats are particularly enriched on the human Y chromosome, and their non-random distribution and exclusive association with genes expressed during early development indicate their role in coordinated gene regulation. Here we show that GATA repeats have enhancer blocker activity in Drosophila and human cells. This enhancer blocker activity is seen in transgenic as well as native context of the enhancers at various developmental stages. These findings ascribe functional significance to SSRs and offer an explanation as to why SSRs, especially GATA, may have accumulated in complex organisms.

  8. Microsatellite-Based Fingerprinting of Western Blackberries from Plants, IQF Berries and Puree

    USDA-ARS?s Scientific Manuscript database

    The blackberry industry needs a reliable method to ensure trueness-to-type of blackberry products. Microsatellite markers or simple sequence repeats (SSRs) are ideal for cultivar fingerprinting, paternity testing and identity certification. Fingerprinting is valuable for variety identification, qual...

  9. Development of Novel SSR Markers for Flax (Linum usitatissimum L.) Using Reduced-Representation Genome Sequencing.

    PubMed

    Wu, Jianzhong; Zhao, Qian; Wu, Guangwen; Zhang, Shuquan; Jiang, Tingbo

    2016-01-01

    Flax ( Linum usitatissimum L.) is a major fiber and oil yielding crop grown in northeastern China. Identification of flax molecular markers is a key step toward improving flax yield and quality via marker-assisted breeding. Simple sequence repeat (SSR) markers, which are based on genomic structural variation, are considered the most valuable type of genetic marker for this purpose. In this study, we screened 1574 microsatellites from Linum usitatissimum L. obtained using reduced representation genome sequencing (RRGS) to systematically identify SSR markers. The resulting set of microsatellites consisted mainly of trinucleotide (56.10%) and dinucleotide (35.23%) repeats, with each motif consisting of 5-8 repeats. We then evaluated marker sensitivity and specificity based on samples of 48 flax isolates obtained from northeastern China. Using the new SSR panel, the results demonstrated that fiber flax and oilseed flax varieties clustered into two well separated groups. The novel SSR markers developed in this study show potential value for selection of varieties for use in flax breeding programs.

  10. Highly sensitive MicroRNA 146a detection using a gold nanoparticle-based CTG repeat probing system and isothermal amplification.

    PubMed

    Le, Binh Huy; Seo, Young Jun

    2018-01-25

    We have developed a gold nanoparticle (AuNP)-based CTG repeat probing system displaying high quenching capability and combined it with isothermal amplification for the detection of miRNA 146a. This method of using a AuNP-based CTG repeat probing system with isothermal amplification allowed the highly sensitive (14 aM) and selective detection of miRNA 146a. A AuNP-based CTG repeat probing system having a hairpin structure and a dT F fluorophore exhibited highly efficient quenching because the CTG repeat-based stable hairpin structure imposed a close distance between the AuNP and the dT F residue. A small amount of miRNA 146a induced multiple copies of the CAG repeat sequence during rolling circle amplification; the AuNP-based CTG repeat probing system then bound to the complementary multiple-copy CAG repeat sequence, thereby inducing a structural change from a hairpin to a linear structure with amplified fluorescence. This AuNP-based CTG probing system combined with isothermal amplification could also discriminate target miRNA 146a from one- and two-base-mismatched miRNAs (ORN 1 and ORN 2, respectively). This simple AuNP-based CTG probing system, combined with isothermal amplification to induce a highly sensitive change in fluorescence, allows the detection of miRNA 146a with high sensitivity (14 aM) and selectivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Microsatellite analysis in the genome of Acanthaceae: An in silico approach

    PubMed Central

    Kaliswamy, Priyadharsini; Vellingiri, Srividhya; Nathan, Bharathi; Selvaraj, Saravanakumar

    2015-01-01

    Background: Acanthaceae is one of the advanced and specialized families with conventionally used medicinal plants. Simple sequence repeats (SSRs) play a major role as molecular markers for genome analysis and plant breeding. The microsatellites existing in the complete genome sequences would help to attain a direct role in the genome organization, recombination, gene regulation, quantitative genetic variation, and evolution of genes. Objective: The current study reports the frequency of microsatellites and appropriate markers for the Acanthaceae family genome sequences. Materials and Methods: The whole nucleotide sequences of Acanthaceae species were obtained from National Center for Biotechnology Information database and screened for the presence of SSRs. SSR Locator tool was used to predict the microsatellites and inbuilt Primer3 module was used for primer designing. Results: Totally 110 repeats from 108 sequences of Acanthaceae family plant genomes were identified, and the occurrence of dinucleotide repeats was found to be abundant in the genome sequences. The essential amino acid isoleucine was found rich in all the sequences. We also designed the SSR-based primers/markers for 59 sequences of this family that contains microsatellite repeats in their genome. Conclusion: The identified microsatellites and primers might be useful for breeding and genetic studies of plants that belong to Acanthaceae family in the future. PMID:25709226

  12. Variable Number Of Tandem Repeats (VNTR) and its application in bacterial epidemiology.

    PubMed

    Ramazanzadeh, Rashid; McNerney, Ruth

    2007-08-15

    Molecular epidemiology is the using of molecular techniques to study bacterial distribution in human populations. Recently molecular epidemiologist benefit from several techniques such as Variable Number Tandem Repeat (VNTR) typing method to typing bacterial strains. Variable Number Tandem Repeat (VNTR) typing is a tool for genotyping and provides data in a simple and numeric format based on the number of repetitive sequences. VNTR for first time identified in M. tuberculosis as Mycobacterial Interspersed Repeat Units (MIRUs). General terms of VNTR have now been reported in Bacillus anthracis, Legionella pneumophila, Pseudomonas aeruginosa, Salmonella enterica and Escherichia coli O157.

  13. The complete chloroplast genome sequences of Lychnis wilfordii and Silene capitata and comparative analyses with other Caryophyllaceae genomes.

    PubMed

    Kang, Jong-Soo; Lee, Byoung Yoon; Kwak, Myounghai

    2017-01-01

    The complete chloroplast genomes of Lychnis wilfordii and Silene capitata were determined and compared with ten previously reported Caryophyllaceae chloroplast genomes. The chloroplast genome sequences of L. wilfordii and S. capitata contain 152,320 bp and 150,224 bp, respectively. The gene contents and orders among 12 Caryophyllaceae species are consistent, but several microstructural changes have occurred. Expansion of the inverted repeat (IR) regions at the large single copy (LSC)/IRb and small single copy (SSC)/IR boundaries led to partial or entire gene duplications. Additionally, rearrangements of the LSC region were caused by gene inversions and/or transpositions. The 18 kb inversions, which occurred three times in different lineages of tribe Sileneae, were thought to be facilitated by the intermolecular duplicated sequences. Sequence analyses of the L. wilfordii and S. capitata genomes revealed 39 and 43 repeats, respectively, including forward, palindromic, and reverse repeats. In addition, a total of 67 and 56 simple sequence repeats were discovered in the L. wilfordii and S. capitata chloroplast genomes, respectively. Finally, we constructed phylogenetic trees of the 12 Caryophyllaceae species and two Amaranthaceae species based on 73 protein-coding genes using both maximum parsimony and likelihood methods.

  14. Independently segregating simple sequence repeats (SSR) alleles in polyploid sugarcane

    USDA-ARS?s Scientific Manuscript database

    The complex nuclear genomic and flower structures of sugarcane cultivars (Saccharum hybrids spp., 2n = 10x = 100 – 130) render sugarcane a difficult subject for genetics research. Using a capillary electrophoresis- and fluorescence-labeling-based SSR genotyping platform, the segregation of a multi-a...

  15. A framework linkage map of perennial ryegrass based on SSR markers

    Treesearch

    G.P. Gill; P.L. Wilcox; D.J. Whittaker; R.A. Winz; P. Bickerstaff; Craig E. Echt; J. Kent; M.O. Humphreys; K.M. Elborough; R.C. Gardner

    2006-01-01

    A moderate-density linkage map for Lolium perenne L. has been constructed based on 376 simple sequence repeat (SSR) markers. Approximately one third ( 124) of the SSR markers were developed from GeneThresher libraries that preferentially select genomic DNA clones from the gene-rich unmethylated portion of the genome. The remaining SSR marker loci...

  16. Genetic diversity analysis of sugarcane germplasm based on fluorescence-labeled simple sequence repeat markers and a capillary electrophoresis-based genotyping platform

    USDA-ARS?s Scientific Manuscript database

    Genetic diversity analysis, which refers to the elaboration of total extent of genetic characteristics in the genetic makeup of a certain species, constitutes a classical strategy for the study of diversity, population genetic structure, and breeding practices. In this study, fluorescence-labeled se...

  17. Genetic diversity studies in pea (Pisum sativum L.) using simple sequence repeat markers.

    PubMed

    Kumari, P; Basal, N; Singh, A K; Rai, V P; Srivastava, C P; Singh, P K

    2013-03-13

    The genetic diversity among 28 pea (Pisum sativum L.) genotypes was analyzed using 32 simple sequence repeat markers. A total of 44 polymorphic bands, with an average of 2.1 bands per primer, were obtained. The polymorphism information content ranged from 0.657 to 0.309 with an average of 0.493. The variation in genetic diversity among these cultivars ranged from 0.11 to 0.73. Cluster analysis based on Jaccard's similarity coefficient using the unweighted pair-group method with arithmetic mean (UPGMA) revealed 2 distinct clusters, I and II, comprising 6 and 22 genotypes, respectively. Cluster II was further differentiated into 2 subclusters, IIA and IIB, with 12 and 10 genotypes, respectively. Principal component (PC) analysis revealed results similar to those of UPGMA. The first, second, and third PCs contributed 21.6, 16.1, and 14.0% of the variation, respectively; cumulative variation of the first 3 PCs was 51.7%.

  18. Comparison and correlation of Simple Sequence Repeats distribution in genomes of Brucella species

    PubMed Central

    Kiran, Jangampalli Adi Pradeep; Chakravarthi, Veeraraghavulu Praveen; Kumar, Yellapu Nanda; Rekha, Somesula Swapna; Kruti, Srinivasan Shanthi; Bhaskar, Matcha

    2011-01-01

    Computational genomics is one of the important tools to understand the distribution of closely related genomes including simple sequence repeats (SSRs) in an organism, which gives valuable information regarding genetic variations. The central objective of the present study was to screen the SSRs distributed in coding and non-coding regions among different human Brucella species which are involved in a range of pathological disorders. Computational analysis of the SSRs in the Brucella indicates few deviations from expected random models. Statistical analysis also reveals that tri-nucleotide SSRs are overrepresented and tetranucleotide SSRs underrepresented in Brucella genomes. From the data, it can be suggested that over expressed tri-nucleotide SSRs in genomic and coding regions might be responsible in the generation of functional variation of proteins expressed which in turn may lead to different pathogenicity, virulence determinants, stress response genes, transcription regulators and host adaptation proteins of Brucella genomes. Abbreviations SSRs - Simple Sequence Repeats, ORFs - Open Reading Frames. PMID:21738309

  19. Simple Sequence Repeats in Escherichia coli: Abundance, Distribution, Composition, and Polymorphism

    PubMed Central

    Gur-Arie, Riva; Cohen, Cyril J.; Eitan, Yuval; Shelef, Leora; Hallerman, Eric M.; Kashi, Yechezkel

    2000-01-01

    Computer-based genome-wide screening of the DNA sequence of Escherichia coli strain K12 revealed tens of thousands of tandem simple sequence repeat (SSR) tracts, with motifs ranging from 1 to 6 nucleotides. SSRs were well distributed throughout the genome. Mononucleotide SSRs were over-represented in noncoding regions and under-represented in open reading frames (ORFs). Nucleotide composition of mono- and dinucleotide SSRs, both in ORFs and in noncoding regions, differed from that of the genomic region in which they occurred, with 93% of all mononucleotide SSRs proving to be of A or T. Computer-based analysis of the fine position of every SSR locus in the noncoding portion of the genome relative to downstream ORFs showed SSRs located in areas that could affect gene regulation. DNA sequences at 14 arbitrarily chosen SSR tracts were compared among E. coli strains. Polymorphisms of SSR copy number were observed at four of seven mononucleotide SSR tracts screened, with all polymorphisms occurring in noncoding regions. SSR polymorphism could prove important as a genome-wide source of variation, both for practical applications (including rapid detection, strain identification, and detection of loci affecting key phenotypes) and for evolutionary adaptation of microbes.[The sequence data described in this paper have been submitted to the GenBank data library under accession numbers AF209020–209030 and AF209508–209518.] PMID:10645951

  20. Analysis of genetic diversity and population structure of oil palm (Elaeis guineensis) from China and Malaysia based on species-specific simple sequence repeat markers.

    PubMed

    Zhou, L X; Xiao, Y; Xia, W; Yang, Y D

    2015-12-08

    Genetic diversity and patterns of population structure of the 94 oil palm lines were investigated using species-specific simple sequence repeat (SSR) markers. We designed primers for 63 SSR loci based on their flanking sequences and conducted amplification in 94 oil palm DNA samples. The amplification result showed that a relatively high level of genetic diversity was observed between oil palm individuals according a set of 21 polymorphic microsatellite loci. The observed heterozygosity (Ho) was 0.3683 and 0.4035, with an average of 0.3859. The Ho value was a reliable determinant of the discriminatory power of the SSR primer combinations. The principal component analysis and unweighted pair-group method with arithmetic averaging cluster analysis showed the 94 oil palm lines were grouped into one cluster. These results demonstrated that the oil palm in Hainan Province of China and the germplasm introduced from Malaysia may be from the same source. The SSR protocol was effective and reliable for assessing the genetic diversity of oil palm. Knowledge of the genetic diversity and population structure will be crucial for establishing appropriate management stocks for this species.

  1. Short intronic repeat sequences facilitate circular RNA production

    PubMed Central

    Liang, Dongming

    2014-01-01

    Recent deep sequencing studies have revealed thousands of circular noncoding RNAs generated from protein-coding genes. These RNAs are produced when the precursor messenger RNA (pre-mRNA) splicing machinery “backsplices” and covalently joins, for example, the two ends of a single exon. However, the mechanism by which the spliceosome selects only certain exons to circularize is largely unknown. Using extensive mutagenesis of expression plasmids, we show that miniature introns containing the splice sites along with short (∼30- to 40-nucleotide) inverted repeats, such as Alu elements, are sufficient to allow the intervening exons to circularize in cells. The intronic repeats must base-pair to one another, thereby bringing the splice sites into close proximity to each other. More than simple thermodynamics is clearly at play, however, as not all repeats support circularization, and increasing the stability of the hairpin between the repeats can sometimes inhibit circular RNA biogenesis. The intronic repeats and exonic sequences must collaborate with one another, and a functional 3′ end processing signal is required, suggesting that circularization may occur post-transcriptionally. These results suggest detailed and generalizable models that explain how the splicing machinery determines whether to produce a circular noncoding RNA or a linear mRNA. PMID:25281217

  2. Genetic relationships of boxwood (Buxus L.) accessions based on genic simple sequence repeat markers

    USDA-ARS?s Scientific Manuscript database

    Boxwood (Buxus L. spp., Buxaceae) are popular woody landscape shrubs grown for their diverse forms and broad-leaved evergreen foliage. Boxwood plants grown in temperate zones are now threatened by a destructive new blight disease caused by the ascomycete fungus Calonectria pseudonaviculata Henricot ...

  3. Characterization of 14 microsatellite markers for genetic analysis and cultivar identification of walnut

    USDA-ARS?s Scientific Manuscript database

    One hundred and forty-seven primer pairs originally designed to amplify microsatellites, also known as simple sequence repeats (SSR), in black walnut (Juglans nigra L.) were screened for utility in persian walnut (J. regia L.). Based on scorability and number of informative polymorphisms, the best 1...

  4. Molecular Characterization and Genetic Structure in Avocado (Persea americana Mill.) Using Simple Sequence Repeat (SSR) Markers

    USDA-ARS?s Scientific Manuscript database

    Avocado (Persea americana Mill.) is an economically important tropical fruit native to Mesoamerica. It belongs to the Lauraceae family and is subdivided in three horticultural races (Guatemalan, Mexican, and West Indian) based primarily on ecological adaptation, botanical and physiological traits. T...

  5. Development of simple sequence repeat markers and diversity analysis in alfalfa (Medicago sativa L.).

    PubMed

    Wang, Zan; Yan, Hongwei; Fu, Xinnian; Li, Xuehui; Gao, Hongwen

    2013-04-01

    Efficient and robust molecular markers are essential for molecular breeding in plant. Compared to dominant and bi-allelic markers, multiple alleles of simple sequence repeat (SSR) markers are particularly informative and superior in genetic linkage map and QTL mapping in autotetraploid species like alfalfa. The objective of this study was to enrich SSR markers directly from alfalfa expressed sequence tags (ESTs). A total of 12,371 alfalfa ESTs were retrieved from the National Center for Biotechnology Information. Total 774 SSR-containing ESTs were identified from 716 ESTs. On average, one SSR was found per 7.7 kb of EST sequences. Tri-nucleotide repeats (48.8 %) was the most abundant motif type, followed by di-(26.1 %), tetra-(11.5 %), penta-(9.7 %), and hexanucleotide (3.9 %). One hundred EST-SSR primer pairs were successfully designed and 29 exhibited polymorphism among 28 alfalfa accessions. The allele number per marker ranged from two to 21 with an average of 6.8. The PIC values ranged from 0.195 to 0.896 with an average of 0.608, indicating a high level of polymorphism of the EST-SSR markers. Based on the 29 EST-SSR markers, assessment of genetic diversity was conducted and found that Medicago sativa ssp. sativa was clearly different from the other subspecies. The high transferability of those EST-SSR markers was also found for relative species.

  6. Insights into mutagenesis using Escherichia coli chromosomal lacZ strains that enable detection of a wide spectrum of mutational events.

    PubMed

    Seier, Tracey; Padgett, Dana R; Zilberberg, Gal; Sutera, Vincent A; Toha, Noor; Lovett, Susan T

    2011-06-01

    Strand misalignments at DNA repeats during replication are implicated in mutational hotspots. To study these events, we have generated strains carrying mutations in the Escherichia coli chromosomal lacZ gene that revert via deletion of a short duplicated sequence or by template switching within imperfect inverted repeat (quasipalindrome, QP) sequences. Using these strains, we demonstrate that mutation of the distal repeat of a quasipalindrome, with respect to replication fork movement, is about 10-fold higher than the proximal repeat, consistent with more common template switching on the leading strand. The leading strand bias was lost in the absence of exonucleases I and VII, suggesting that it results from more efficient suppression of template switching by 3' exonucleases targeted to the lagging strand. The loss of 3' exonucleases has no effect on strand misalignment at direct repeats to produce deletion. To compare these events to other mutations, we have reengineered reporters (designed by Cupples and Miller 1989) that detect specific base substitutions or frameshifts in lacZ with the reverting lacZ locus on the chromosome rather than an F' element. This set allows rapid screening of potential mutagens, environmental conditions, or genetic loci for effects on a broad set of mutational events. We found that hydroxyurea (HU), which depletes dNTP pools, slightly elevated templated mutations at inverted repeats but had no effect on deletions, simple frameshifts, or base substitutions. Mutations in nucleotide diphosphate kinase, ndk, significantly elevated simple mutations but had little effect on the templated class. Zebularine, a cytosine analog, elevated all classes.

  7. CBrowse: a SAM/BAM-based contig browser for transcriptome assembly visualization and analysis.

    PubMed

    Li, Pei; Ji, Guoli; Dong, Min; Schmidt, Emily; Lenox, Douglas; Chen, Liangliang; Liu, Qi; Liu, Lin; Zhang, Jie; Liang, Chun

    2012-09-15

    To address the impending need for exploring rapidly increased transcriptomics data generated for non-model organisms, we developed CBrowse, an AJAX-based web browser for visualizing and analyzing transcriptome assemblies and contigs. Designed in a standard three-tier architecture with a data pre-processing pipeline, CBrowse is essentially a Rich Internet Application that offers many seamlessly integrated web interfaces and allows users to navigate, sort, filter, search and visualize data smoothly. The pre-processing pipeline takes the contig sequence file in FASTA format and its relevant SAM/BAM file as the input; detects putative polymorphisms, simple sequence repeats and sequencing errors in contigs and generates image, JSON and database-compatible CSV text files that are directly utilized by different web interfaces. CBowse is a generic visualization and analysis tool that facilitates close examination of assembly quality, genetic polymorphisms, sequence repeats and/or sequencing errors in transcriptome sequencing projects. CBrowse is distributed under the GNU General Public License, available at http://bioinfolab.muohio.edu/CBrowse/ liangc@muohio.edu or liangc.mu@gmail.com; glji@xmu.edu.cn Supplementary data are available at Bioinformatics online.

  8. Physical organisation of simple sequence repeats (SSRs) in Triticeae: structural, functional and evolutionary implications.

    PubMed

    Cuadrado, A; Cardoso, M; Jouve, N

    2008-01-01

    A significant fraction of the nuclear DNA of all eukaryotes is occupied by simple sequence repeats (SSRs) or microsatellites. This type of sequence has sparked great interest as a means of studying genetic variation, linkage mapping, gene tagging and evolution. Although SSRs at different positions in a gene help determine the regulation of expression and the function of the protein produced, little attention has been paid to the chromosomal organisation and distribution of these sequences, even in model species. This review discusses the main achievements in the characterisation of long-range SSR organisation in the chromosomes of Triticum aestivum L., Secale cereale L., and Hordeum vulgare L. (all members of Triticeae). We have detected SSRs using an improved FISH technique based on the random primer labelling of synthetic oligonucleotides (15-24 bases) in multi-colour experiments. Detailed information on the presence and distribution of AC, AG and all the possible classes of trinucleotide repeats has been acquired. These data have revealed the motif-dependent and non-random chromosome distributions of SSRs in the different genomes, and allowed the correlation of particular SSRs with chromosome areas characterised by specific features (e.g., heterochromatin, euchromatin and centromeres) in all three species. The present review provides a detailed comparative study of the distribution of these SSRs in each of the seven chromosomes of the genomes A, B and D of wheat, H of barley and R of rye. The importance of SSRs in plant breeding and their possible role in chromosome structure, function and evolution is discussed. 2008 S. Karger AG, Basel

  9. Length and repeat-sequence variation in 58 STRs and 94 SNPs in two Spanish populations.

    PubMed

    Casals, Ferran; Anglada, Roger; Bonet, Núria; Rasal, Raquel; van der Gaag, Kristiaan J; Hoogenboom, Jerry; Solé-Morata, Neus; Comas, David; Calafell, Francesc

    2017-09-01

    We have genotyped the 58 STRs (27 autosomal, 24 Y-STRs and 7 X-STRs) and 94 autosomal SNPs in Illumina ForenSeq™ Primer Mix A in 88 Spanish Roma (Gypsy) samples and 143 Catalans. Since this platform is based in massive parallel sequencing, we have used simple R scripts to uncover the sequence variation in the repeat region. Thus, we have found, across 58 STRs, 541 length-based alleles, which, after considering repeat-sequence variation, became 804 different alleles. All loci in both populations were in Hardy-Weinberg equilibrium. F ST between both populations was 0.0178 for autosomal SNPs, 0.0146 for autosomal STRs, 0.0101 for X-STRs and 0.1866 for Y-STRs. Combined a priori statistics showed quite large; for instance, pooling all the autosomal loci, the a priori probabilities of discriminating a suspect become 1-(2.3×10 -70 ) and 1-(5.9×10 -73 ), for Roma and Catalans respectively, and the chances of excluding a false father in a trio are 1-(2.6×10 -20 ) and 1-(2.0×10 -21 ). Copyright © 2017 Elsevier B.V. All rights reserved.

  10. SSRPrimer and SSR Taxonomy Tree: Biome SSR discovery

    PubMed Central

    Jewell, Erica; Robinson, Andrew; Savage, David; Erwin, Tim; Love, Christopher G.; Lim, Geraldine A. C.; Li, Xi; Batley, Jacqueline; Spangenberg, German C.; Edwards, David

    2006-01-01

    Simple sequence repeat (SSR) molecular genetic markers have become important tools for a broad range of applications such as genome mapping and genetic diversity studies. SSRs are readily identified within DNA sequence data and PCR primers can be designed for their amplification. These PCR primers frequently cross amplify within related species. We report a web-based tool, SSR Primer, that integrates SPUTNIK, an SSR repeat finder, with Primer3, a primer design program, within one pipeline. On submission of multiple FASTA formatted sequences, the script screens each sequence for SSRs using SPUTNIK. Results are then parsed to Primer3 for locus specific primer design. We have applied this tool for the discovery of SSRs within the complete GenBank database, and have designed PCR amplification primers for over 13 million SSRs. The SSR Taxonomy Tree server provides web-based searching and browsing of species and taxa for the visualisation and download of these SSR amplification primers. These tools are available at . PMID:16845092

  11. SSRPrimer and SSR Taxonomy Tree: Biome SSR discovery.

    PubMed

    Jewell, Erica; Robinson, Andrew; Savage, David; Erwin, Tim; Love, Christopher G; Lim, Geraldine A C; Li, Xi; Batley, Jacqueline; Spangenberg, German C; Edwards, David

    2006-07-01

    Simple sequence repeat (SSR) molecular genetic markers have become important tools for a broad range of applications such as genome mapping and genetic diversity studies. SSRs are readily identified within DNA sequence data and PCR primers can be designed for their amplification. These PCR primers frequently cross amplify within related species. We report a web-based tool, SSR Primer, that integrates SPUTNIK, an SSR repeat finder, with Primer3, a primer design program, within one pipeline. On submission of multiple FASTA formatted sequences, the script screens each sequence for SSRs using SPUTNIK. Results are then parsed to Primer3 for locus specific primer design. We have applied this tool for the discovery of SSRs within the complete GenBank database, and have designed PCR amplification primers for over 13 million SSRs. The SSR Taxonomy Tree server provides web-based searching and browsing of species and taxa for the visualisation and download of these SSR amplification primers. These tools are available at http://bioinformatics.pbcbasc.latrobe.edu.au/ssrdiscovery.html.

  12. Development of expressed sequence tag-simple sequence repeat markers for genetic characterization and population structure analysis of Praxelis clematidea (Asteraceae).

    PubMed

    Wang, Q Z; Huang, M; Downie, S R; Chen, Z X

    2016-05-23

    Invasive plants tend to spread aggressively in new habitats and an understanding of their genetic diversity and population structure is useful for their management. In this study, expressed sequence tag-simple sequence repeat (EST-SSR) markers were developed for the invasive plant species Praxelis clematidea (Asteraceae) from 5548 Stevia rebaudiana (Asteraceae) expressed sequence tags (ESTs). A total of 133 microsatellite-containing ESTs (2.4%) were identified, of which 56 (42.1%) were hexanucleotide repeat motifs and 50 (37.6%) were trinucleotide repeat motifs. Of the 24 primer pairs designed from these 133 ESTs, 7 (29.2%) resulted in significant polymorphisms. The number of alleles per locus ranged from 5 to 9. The relatively high genetic diversity (H = 0.2667, I = 0.4212, and P = 100%) of P. clematidea was related to high gene flow (Nm = 1.4996) among populations. The coefficient of population differentiation (GST = 0.2500) indicated that most genetic variation occurred within populations. A Mantel test suggested that there was significant correlation between genetic distance and geographical distribution (r = 0.3192, P = 0.012). These results further support the transferability of EST-SSR markers between closely related genera of the same family.

  13. Development of Novel SSR Markers for Flax (Linum usitatissimum L.) Using Reduced-Representation Genome Sequencing

    PubMed Central

    Wu, Jianzhong; Zhao, Qian; Wu, Guangwen; Zhang, Shuquan; Jiang, Tingbo

    2017-01-01

    Flax (Linum usitatissimum L.) is a major fiber and oil yielding crop grown in northeastern China. Identification of flax molecular markers is a key step toward improving flax yield and quality via marker-assisted breeding. Simple sequence repeat (SSR) markers, which are based on genomic structural variation, are considered the most valuable type of genetic marker for this purpose. In this study, we screened 1574 microsatellites from Linum usitatissimum L. obtained using reduced representation genome sequencing (RRGS) to systematically identify SSR markers. The resulting set of microsatellites consisted mainly of trinucleotide (56.10%) and dinucleotide (35.23%) repeats, with each motif consisting of 5–8 repeats. We then evaluated marker sensitivity and specificity based on samples of 48 flax isolates obtained from northeastern China. Using the new SSR panel, the results demonstrated that fiber flax and oilseed flax varieties clustered into two well separated groups. The novel SSR markers developed in this study show potential value for selection of varieties for use in flax breeding programs. PMID:28133461

  14. Fine-tuning gene networks using simple sequence repeats

    PubMed Central

    Egbert, Robert G.; Klavins, Eric

    2012-01-01

    The parameters in a complex synthetic gene network must be extensively tuned before the network functions as designed. Here, we introduce a simple and general approach to rapidly tune gene networks in Escherichia coli using hypermutable simple sequence repeats embedded in the spacer region of the ribosome binding site. By varying repeat length, we generated expression libraries that incrementally and predictably sample gene expression levels over a 1,000-fold range. We demonstrate the utility of the approach by creating a bistable switch library that programmatically samples the expression space to balance the two states of the switch, and we illustrate the need for tuning by showing that the switch’s behavior is sensitive to host context. Further, we show that mutation rates of the repeats are controllable in vivo for stability or for targeted mutagenesis—suggesting a new approach to optimizing gene networks via directed evolution. This tuning methodology should accelerate the process of engineering functionally complex gene networks. PMID:22927382

  15. Gene-based Microsatellites for Cassava (Manihot esculenta Crantz): Prevalence, Polymorphisms, and Cross-taxa Utility

    USDA-ARS?s Scientific Manuscript database

    Cassava (Manihot esculenta Crantz), a starchy root crop grown in tropical and subtropical climates, is the sixth most important crop in the world after wheat, rice, maize, potato and barley. The repertoire of simple sequence repeat (SSR) markers for cassava is limited and warrants a need for a large...

  16. Genetic diversity of Danthonia spicata (L.) Beauv. Based on genomic simple sequence repeat markers

    USDA-ARS?s Scientific Manuscript database

    Danthonia spicata, commonly known as poverty oatgrass, is a perennial bunch-type grass native to North America. D. spicata has dimorphic seed heads; the hypothesis is that terminal seed heads allow some level of outcrossing and axial seed heads are only self-fertilized. However, there is no genetic ...

  17. Use of the LUS in sequence allele designations to facilitate probabilistic genotyping of NGS-based STR typing results.

    PubMed

    Just, Rebecca S; Irwin, Jodi A

    2018-05-01

    Some of the expected advantages of next generation sequencing (NGS) for short tandem repeat (STR) typing include enhanced mixture detection and genotype resolution via sequence variation among non-homologous alleles of the same length. However, at the same time that NGS methods for forensic DNA typing have advanced in recent years, many caseworking laboratories have implemented or are transitioning to probabilistic genotyping to assist the interpretation of complex autosomal STR typing results. Current probabilistic software programs are designed for length-based data, and were not intended to accommodate sequence strings as the product input. Yet to leverage the benefits of NGS for enhanced genotyping and mixture deconvolution, the sequence variation among same-length products must be utilized in some form. Here, we propose use of the longest uninterrupted stretch (LUS) in allele designations as a simple method to represent sequence variation within the STR repeat regions and facilitate - in the nearterm - probabilistic interpretation of NGS-based typing results. An examination of published population data indicated that a reference LUS region is straightforward to define for most autosomal STR loci, and that using repeat unit plus LUS length as the allele designator can represent greater than 80% of the alleles detected by sequencing. A proof of concept study performed using a freely available probabilistic software demonstrated that the LUS length can be used in allele designations when a program does not require alleles to be integers, and that utilizing sequence information improves interpretation of both single-source and mixed contributor STR typing results as compared to using repeat unit information alone. The LUS concept for allele designation maintains the repeat-based allele nomenclature that will permit backward compatibility to extant STR databases, and the LUS lengths themselves will be concordant regardless of the NGS assay or analysis tools employed. Further, these biologically based, easy-to-derive designations uphold clear relationships between parent alleles and their stutter products, enabling analysis in fully continuous probabilistic programs that model stutter while avoiding the algorithmic complexities that come with string based searches. Though using repeat unit plus LUS length as the allele designator does not capture variation that occurs outside of the core repeat regions, this straightforward approach would permit the large majority of known STR sequence variation to be used for mixture deconvolution and, in turn, result in more informative mixture statistics in the near term. Ultimately, the method could bridge the gap from current length-based probabilistic systems to facilitate broader adoption of NGS by forensic DNA testing laboratories. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Effects of different preservation methods on inter simple sequence repeat (ISSR) and random amplified polymorphic DNA (RAPD) molecular markers in botanic samples.

    PubMed

    Wang, Xiaolong; Li, Lin; Zhao, Jiaxin; Li, Fangliang; Guo, Wei; Chen, Xia

    2017-04-01

    To evaluate the effects of different preservation methods (stored in a -20°C ice chest, preserved in liquid nitrogen and dried in silica gel) on inter simple sequence repeat (ISSR) or random amplified polymorphic DNA (RAPD) analyses in various botanical specimens (including broad-leaved plants, needle-leaved plants and succulent plants) for different times (three weeks and three years), we used a statistical analysis based on the number of bands, genetic index and cluster analysis. The results demonstrate that methods used to preserve samples can provide sufficient amounts of genomic DNA for ISSR and RAPD analyses; however, the effect of different preservation methods on these analyses vary significantly, and the preservation time has little effect on these analyses. Our results provide a reference for researchers to select the most suitable preservation method depending on their study subject for the analysis of molecular markers based on genomic DNA. Copyright © 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  19. Cross-species transferability and mapping of genomic and cDNA SSRs in pines

    Treesearch

    D. Chagne; P. Chaumeil; A. Ramboer; C. Collada; A. Guevara; M. T. Cervera; G. G. Vendramin; V. Garcia; J-M. Frigerio; Craig Echt; T. Richardson; Christophe Plomion

    2004-01-01

    Two unigene datasets of Pinus taeda and Pinus pinaster were screened to detect di-, tri and tetranucleotide repeated motifs using the SSRIT script. A total of 419 simple sequence repeats (SSRs) were identified, from which only 12.8% overlapped between the two sets. The position of the SSRs within the coding sequence were predicted...

  20. Mutation at a distance caused by homopolymeric guanine repeats in Saccharomyces cerevisiae

    PubMed Central

    McDonald, Michael J.; Yu, Yen-Hsin; Guo, Jheng-Fen; Chong, Shin Yen; Kao, Cheng-Fu; Leu, Jun-Yi

    2016-01-01

    Mutation provides the raw material from which natural selection shapes adaptations. The rate at which new mutations arise is therefore a key factor that determines the tempo and mode of evolution. However, an accurate assessment of the mutation rate of a given organism is difficult because mutation rate varies on a fine scale within a genome. A central challenge of evolutionary genetics is to determine the underlying causes of this variation. In earlier work, we had shown that repeat sequences not only are prone to a high rate of expansion and contraction but also can cause an increase in mutation rate (on the order of kilobases) of the sequence surrounding the repeat. We perform experiments that show that simple guanine repeats 13 bp (base pairs) in length or longer (G13+) increase the substitution rate 4- to 18-fold in the downstream DNA sequence, and this correlates with DNA replication timing (R = 0.89). We show that G13+ mutagenicity results from the interplay of both error-prone translesion synthesis and homologous recombination repair pathways. The mutagenic repeats that we study have the potential to be exploited for the artificial elevation of mutation rate in systems biology and synthetic biology applications. PMID:27386516

  1. Genotyping and Molecular Identification of Date Palm Cultivars Using Inter-Simple Sequence Repeat (ISSR) Markers.

    PubMed

    Ayesh, Basim M

    2017-01-01

    Molecular markers are credible for the discrimination of genotypes and estimation of the extent of genetic diversity and relatedness in a set of genotypes. Inter-simple sequence repeat (ISSR) markers rapidly reveal high polymorphic fingerprints and have been used frequently to determine the genetic diversity among date palm cultivars. This chapter describes the application of ISSR markers for genotyping of date palm cultivars. The application involves extraction of genomic DNA from the target cultivars with reliable quality and quantity. Subsequently the extracted DNA serves as a template for amplification of genomic regions flanked by inverted simple sequence repeats using a single primer. The similarity of each pair of samples is measured by calculating the number of mono- and polymorphic bands revealed by gel electrophoresis. Matrices constructed for similarity and genetic distance are used to build a phylogenetic tree and cluster analysis, to determine the molecular relatedness of cultivars. The protocol describes 3 out of 9 tested primers consistently amplified 31 loci in 6 date palm cultivars, with 28 polymorphic loci.

  2. Evolution Analysis of Simple Sequence Repeats in Plant Genome.

    PubMed

    Qin, Zhen; Wang, Yanping; Wang, Qingmei; Li, Aixian; Hou, Fuyun; Zhang, Liming

    2015-01-01

    Simple sequence repeats (SSRs) are widespread units on genome sequences, and play many important roles in plants. In order to reveal the evolution of plant genomes, we investigated the evolutionary regularities of SSRs during the evolution of plant species and the plant kingdom by analysis of twelve sequenced plant genome sequences. First, in the twelve studied plant genomes, the main SSRs were those which contain repeats of 1-3 nucleotides combination. Second, in mononucleotide SSRs, the A/T percentage gradually increased along with the evolution of plants (except for P. patens). With the increase of SSRs repeat number the percentage of A/T in C. reinhardtii had no significant change, while the percentage of A/T in terrestrial plants species gradually declined. Third, in dinucleotide SSRs, the percentage of AT/TA increased along with the evolution of plant kingdom and the repeat number increased in terrestrial plants species. This trend was more obvious in dicotyledon than monocotyledon. The percentage of CG/GC showed the opposite pattern to the AT/TA. Forth, in trinucleotide SSRs, the percentages of combinations including two or three A/T were in a rising trend along with the evolution of plant kingdom; meanwhile with the increase of SSRs repeat number in plants species, different species chose different combinations as dominant SSRs. SSRs in C. reinhardtii, P. patens, Z. mays and A. thaliana showed their specific patterns related to evolutionary position or specific changes of genome sequences. The results showed that, SSRs not only had the general pattern in the evolution of plant kingdom, but also were associated with the evolution of the specific genome sequence. The study of the evolutionary regularities of SSRs provided new insights for the analysis of the plant genome evolution.

  3. Differential effects of simple repeating DNA sequences on gene expression from the SV40 early promoter.

    PubMed

    Amirhaeri, S; Wohlrab, F; Wells, R D

    1995-02-17

    The influence of simple repeat sequences, cloned into different positions relative to the SV40 early promoter/enhancer, on the transient expression of the chloramphenicol acetyltransferase (CAT) gene was investigated. Insertion of (G)29.(C)29 in either orientation into the 5'-untranslated region of the CAT gene reduced expression in CV-1 cells 50-100 fold when compared with controls with random sequence inserts. Analysis of CAT-specific mRNA levels demonstrated that the effect was due to a reduction of CAT mRNA production rather than to posttranscriptional events. In contrast, insertion of the same insert in either orientation upstream of the promoter-enhancer or downstream of the gene stimulated gene expression 2-3-fold. These effects could be reversed by cotransfection of a competitor plasmid carrying (G)25.(C)25 sequences. The results suggest that a G.C-binding transcription factor modulates gene expression in this system and that promoter strength can be regulated by providing protein-binding sites in trans. Although constructs containing longer tracts of alternating (C-G), (T-G), or (A-T) sequences inhibited CAT expression when inserted in the 5'-untranslated region of the CAT gene, the amount of CAT mRNA was unaffected. Hence, these inhibitions must be due to posttranscriptional events, presumably at the level of translation. These effects of microsatellite sequences on gene expression are discussed with respect to recent data on related simple repeat sequences which cause several human genetic diseases.

  4. A Glance at Microsatellite Motifs from 454 Sequencing Reads of Watermelon Genomic DNA

    USDA-ARS?s Scientific Manuscript database

    A single 454 (Life Sciences Sequencing Technology) run of Charleston Gray watermelon (Citrullus lanatus var. lanatus) genomic DNA was performed and sequence data were assembled. A large scale identification of simple sequence repeat (SSR) was performed and SSR sequence data were used for the develo...

  5. Short intronic repeat sequences facilitate circular RNA production.

    PubMed

    Liang, Dongming; Wilusz, Jeremy E

    2014-10-15

    Recent deep sequencing studies have revealed thousands of circular noncoding RNAs generated from protein-coding genes. These RNAs are produced when the precursor messenger RNA (pre-mRNA) splicing machinery "backsplices" and covalently joins, for example, the two ends of a single exon. However, the mechanism by which the spliceosome selects only certain exons to circularize is largely unknown. Using extensive mutagenesis of expression plasmids, we show that miniature introns containing the splice sites along with short (∼ 30- to 40-nucleotide) inverted repeats, such as Alu elements, are sufficient to allow the intervening exons to circularize in cells. The intronic repeats must base-pair to one another, thereby bringing the splice sites into close proximity to each other. More than simple thermodynamics is clearly at play, however, as not all repeats support circularization, and increasing the stability of the hairpin between the repeats can sometimes inhibit circular RNA biogenesis. The intronic repeats and exonic sequences must collaborate with one another, and a functional 3' end processing signal is required, suggesting that circularization may occur post-transcriptionally. These results suggest detailed and generalizable models that explain how the splicing machinery determines whether to produce a circular noncoding RNA or a linear mRNA. © 2014 Liang and Wilusz; Published by Cold Spring Harbor Laboratory Press.

  6. Cytogenetic Diversity of Simple Sequences Repeats in Morphotypes of Brassica rapa ssp. chinensis

    PubMed Central

    Zheng, Jin-shuang; Sun, Cheng-zhen; Zhang, Shu-ning; Hou, Xi-lin; Bonnema, Guusje

    2016-01-01

    A significant fraction of the nuclear DNA of all eukaryotes is comprised of simple sequence repeats (SSRs). Although these sequences are widely used for studying genetic variation, linkage mapping and evolution, little attention had been paid to the chromosomal distribution and cytogenetic diversity of these sequences. In this paper, we report the distribution characterization of mono-, di-, and tri-nucleotide SSRs in Brassica rapa ssp. chinensis. Fluorescence in situ hybridization was used to characterize the cytogenetic diversity of SSRs among morphotypes of B. rapa ssp. chinensis. The proportion of different SSR motifs varied among morphotypes of B. rapa ssp. chinensis, with tri-nucleotide SSRs being more prevalent in the genome of B. rapa ssp. chinensis. We determined the chromosomal locations of mono-, di-, and tri-nucleotide repeat loci. The results showed that the chromosomal distribution of SSRs in the different morphotypes is non-random and motif-dependent, and allowed us to characterize the relative variability in terms of SSR numbers and similar chromosomal distributions in centromeric/peri-centromeric heterochromatin. The differences between SSR repeats with respect to abundance and distribution indicate that SSRs are a driving force in the genomic evolution of B. rapa species. Our results provide a comprehensive view of the SSR sequence distribution and evolution for comparison among morphotypes B. rapa ssp. chinensis. PMID:27507974

  7. Cytogenetic Diversity of Simple Sequences Repeats in Morphotypes of Brassica rapa ssp. chinensis.

    PubMed

    Zheng, Jin-Shuang; Sun, Cheng-Zhen; Zhang, Shu-Ning; Hou, Xi-Lin; Bonnema, Guusje

    2016-01-01

    A significant fraction of the nuclear DNA of all eukaryotes is comprised of simple sequence repeats (SSRs). Although these sequences are widely used for studying genetic variation, linkage mapping and evolution, little attention had been paid to the chromosomal distribution and cytogenetic diversity of these sequences. In this paper, we report the distribution characterization of mono-, di-, and tri-nucleotide SSRs in Brassica rapa ssp. chinensis. Fluorescence in situ hybridization was used to characterize the cytogenetic diversity of SSRs among morphotypes of B. rapa ssp. chinensis. The proportion of different SSR motifs varied among morphotypes of B. rapa ssp. chinensis, with tri-nucleotide SSRs being more prevalent in the genome of B. rapa ssp. chinensis. We determined the chromosomal locations of mono-, di-, and tri-nucleotide repeat loci. The results showed that the chromosomal distribution of SSRs in the different morphotypes is non-random and motif-dependent, and allowed us to characterize the relative variability in terms of SSR numbers and similar chromosomal distributions in centromeric/peri-centromeric heterochromatin. The differences between SSR repeats with respect to abundance and distribution indicate that SSRs are a driving force in the genomic evolution of B. rapa species. Our results provide a comprehensive view of the SSR sequence distribution and evolution for comparison among morphotypes B. rapa ssp. chinensis.

  8. Genetic Variation and Population Differentiation in a Medical Herb Houttuynia cordata in China Revealed by Inter-Simple Sequence Repeats (ISSRs)

    PubMed Central

    Wei, Lin; Wu, Xian-Jin

    2012-01-01

    Houttuynia cordata is an important traditional Chinese herb with unresolved genetics and taxonomy, which lead to potential problems in the conservation and utilization of the resource. Inter-simple sequence repeat (ISSR) markers were used to assess the level and distribution of genetic diversity in 226 individuals from 15 populations of H. cordata in China. ISSR analysis revealed low genetic variations within populations but high genetic differentiations among populations. This genetic structure probably mainly reflects the historical association among populations. Genetic cluster analysis showed that the basal clade is composed of populations from Southwest China, and the other populations have continuous and eastward distributions. The structure of genetic diversity in H. cordata demonstrated that this species might have survived in Southwest China during the glacial age, and subsequently experienced an eastern postglacial expansion. Based on the results of genetic analysis, it was proposed that as many as possible targeted populations for conservation be included. PMID:22942696

  9. Genetic variation and population differentiation in a medical herb Houttuynia cordata in China revealed by inter-simple sequence repeats (ISSRs).

    PubMed

    Wei, Lin; Wu, Xian-Jin

    2012-01-01

    Houttuynia cordata is an important traditional Chinese herb with unresolved genetics and taxonomy, which lead to potential problems in the conservation and utilization of the resource. Inter-simple sequence repeat (ISSR) markers were used to assess the level and distribution of genetic diversity in 226 individuals from 15 populations of H. cordata in China. ISSR analysis revealed low genetic variations within populations but high genetic differentiations among populations. This genetic structure probably mainly reflects the historical association among populations. Genetic cluster analysis showed that the basal clade is composed of populations from Southwest China, and the other populations have continuous and eastward distributions. The structure of genetic diversity in H. cordata demonstrated that this species might have survived in Southwest China during the glacial age, and subsequently experienced an eastern postglacial expansion. Based on the results of genetic analysis, it was proposed that as many as possible targeted populations for conservation be included.

  10. Microsatellites for Lindera species

    Treesearch

    Craig S. Echt; D. Deemer; T.L. Kubisiak; C.D. Nelson

    2006-01-01

    Microsatellite markers were developed for conservation genetic studies of Lindera melissifolia (pondberry), a federally endangered shrub of southern bottomland ecosystems. Microsatellite sequences were obtained from DNA libraries that were enriched for the (AC)n simple sequence repeat motif. From 35 clone sequences, 20 primer...

  11. Development of diagnostic markers from disease resistance QTLs for marker-assisted breeding in peanut

    USDA-ARS?s Scientific Manuscript database

    Breeding for disease resistance in peanut cultivars has been constrained due to both a narrow genetic base and a low degree of polymorphism. Earlier attempts have resulted in the development of a few hundreds of simple sequence repeat (SSR) markers in peanut that could define broad QTL on the physic...

  12. Development and Characterization of Novel SSR Markers in Carrot (Daucus Carota L.) and Their Application for Mapping and Diversity Analysis in Apiaceae

    USDA-ARS?s Scientific Manuscript database

    Genomic resources in carrot and other Apiaceae are relatively underdeveloped. The availability of a large set of pcr-based codominant markers, such as simple sequence repeats (SSR), would allow integration of the different carrot genetic maps constructed to date (mainly using anonymous dominant mark...

  13. Development of Genomic Simple Sequence Repeats (SSR) by Enrichment Libraries in Date Palm.

    PubMed

    Al-Faifi, Sulieman A; Migdadi, Hussein M; Algamdi, Salem S; Khan, Mohammad Altaf; Al-Obeed, Rashid S; Ammar, Megahed H; Jakse, Jerenj

    2017-01-01

    Development of highly informative markers such as simple sequence repeats (SSR) for cultivar identification and germplasm characterization and management is essential for date palms genetic studies. The present study documents the development of SSR markers and assesses genetic relationships of commonly grown date palm (Phoenix dactylifera L.) cultivars in different geographical regions of Saudi Arabia. A total of 93 novel simple sequence repeat (SSR) markers were screened for their ability to detect polymorphism in date palm. Around 71% of genomic SSRs are dinucleotide, 25% trinucleotide, 3% tetranucleotide, and 1% pentanucleotide motives and show 100% polymorphism. The Unweighted Pair Group Method with Arithmetic Mean (UPGMA) cluster analysis illustrates that cultivars trend to group according to their class of maturity, region of cultivation, and fruit color. Analysis of molecular variations (AMOVA) reveals genetic variation among and within cultivars of 27% and 73%, respectively, according to the geographical distribution of the cultivars. Developed microsatellite markers are of additional value to date palm characterization, tools which can be used by researchers in population genetics, cultivar identification, as well as genetic resource exploration and management. The cultivars tested exhibited a significant amount of genetic diversity and could be suitable for successful breeding programs. Genomic sequences generated from this study are available at the National Center for Biotechnology Information (NCBI), Sequence Read Archive (Accession numbers. LIBGSS_039019).

  14. Evaluation of anonymous and expressed sequence tag derived polymorphic microsatellite markers in the tobacco budworm Heliothis virescens (Lepidoptera: noctuidae)

    USDA-ARS?s Scientific Manuscript database

    Polymorphic genetic markers were identified and characterized using a partial genomic library of Heliothis virescens enriched for simple sequence repeats (SSR) and nucleotide sequences of expressed sequence tags (EST). Nucleotide sequences of 192 clones from the partial genomic library yielded 147 u...

  15. Development and transferability of black and red raspberry microsatellite markers from short-read sequences

    USDA-ARS?s Scientific Manuscript database

    The advent of next-generation sequencing technologies has been a boon to the cost-effective development of molecular markers, particularly in non-model species. Here, we demonstrate the efficiency of microsatellite or simple sequence repeat (SSR) marker development from short-read sequences using th...

  16. Sequence analysis reveals genomic factors affecting EST-SSR primer performance and polymorphism

    USDA-ARS?s Scientific Manuscript database

    Search for simple sequence repeat (SSR) motifs and design of flanking primers in expressed sequence tag (EST) sequences can be easily done at a large scale using bioinformatics programs. However, failed amplification and/or detection, along with lack of polymorphism, is often seen among randomly sel...

  17. Molecular Identification of Sex in Phoenix dactylifera Using Inter Simple Sequence Repeat Markers.

    PubMed

    Al-Ameri, Abdulhafed A; Al-Qurainy, Fahad; Gaafar, Abdel-Rhman Z; Khan, Salim; Nadeem, M

    2016-01-01

    Early sex identification of Date Palm (Phoenix dactylifera L.) at seedling stage is an economically desirable objective, which will significantly increase the profits of seed based cultivation. The utilization of molecular markers at this stage for early and rapid identification of sex is important due to the lack of morphological markers. In this study, a total of two hundred Inter Simple Sequence Repeat (ISSR) primers were screened among male and female Date palm plants to identify putative sex-specific marker, out of which only two primers (IS_A02 and IS_A71) were found to be associated with sex. The primer IS_A02 produced a unique band of size 390 bp and was found clearly in all female plants, while it was absent in all male plants. Contrary to this, the primer IS_A71 produced a unique band of size 380 bp and was clearly found in all male plants, whereas it was absent in all the female plants. Subsequently, these specific fragments were excised, purified, and sequenced for the development of sequence specific markers further in future for the implementation on dioecious Date Palm for sex determination. These markers are efficient, highly reliable, and reproducible for sex identification at the early stage of seedling.

  18. A base-modified PNA-graphene oxide platform as a turn-on fluorescence sensor for the detection of human telomeric repeats

    NASA Astrophysics Data System (ADS)

    Sabale, Pramod M.; George, Jerrin Thomas; Srivatsan, Seergazhi G.

    2014-08-01

    Given the biological and therapeutic significance of telomeres and other G-quadruplex forming sequences in human genome, it is highly desirable to develop simple methods to study these structures, which can also be implemented in screening formats for the discovery of G-quadruplex binders. The majority of telomere detection methods developed so far are laborious and use elaborate assay and instrumental setups, and hence, are not amenable to discovery platforms. Here, we describe the development of a simple homogeneous fluorescence turn-on method, which uses a unique combination of an environment-sensitive fluorescent nucleobase analogue, the superior base pairing property of PNA, and DNA-binding and fluorescence quenching properties of graphene oxide, to detect human telomeric DNA repeats of varying lengths. Our results demonstrate that this method, which does not involve a rigorous assay setup, would provide new opportunities to study G-quadruplex structures.Given the biological and therapeutic significance of telomeres and other G-quadruplex forming sequences in human genome, it is highly desirable to develop simple methods to study these structures, which can also be implemented in screening formats for the discovery of G-quadruplex binders. The majority of telomere detection methods developed so far are laborious and use elaborate assay and instrumental setups, and hence, are not amenable to discovery platforms. Here, we describe the development of a simple homogeneous fluorescence turn-on method, which uses a unique combination of an environment-sensitive fluorescent nucleobase analogue, the superior base pairing property of PNA, and DNA-binding and fluorescence quenching properties of graphene oxide, to detect human telomeric DNA repeats of varying lengths. Our results demonstrate that this method, which does not involve a rigorous assay setup, would provide new opportunities to study G-quadruplex structures. Electronic supplementary information (ESI) available. Figures, tables, experimental procedures and NMR spectra. See DOI: 10.1039/c4nr00878b

  19. Complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera, and comparative analyses with other grass genomes

    PubMed Central

    Saski, Christopher; Lee, Seung-Bum; Fjellheim, Siri; Guda, Chittibabu; Jansen, Robert K.; Luo, Hong; Tomkins, Jeffrey; Rognli, Odd Arne; Clarke, Jihong Liu

    2009-01-01

    Comparisons of complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera to six published grass chloroplast genomes reveal that gene content and order are similar but two microstructural changes have occurred. First, the expansion of the IR at the SSC/IRa boundary that duplicates a portion of the 5′ end of ndhH is restricted to the three genera of the subfamily Pooideae (Agrostis, Hordeum and Triticum). Second, a 6 bp deletion in ndhK is shared by Agrostis, Hordeum, Oryza and Triticum, and this event supports the sister relationship between the subfamilies Erhartoideae and Pooideae. Repeat analysis identified 19–37 direct and inverted repeats 30 bp or longer with a sequence identity of at least 90%. Seventeen of the 26 shared repeats are found in all the grass chloroplast genomes examined and are located in the same genes or intergenic spacer (IGS) regions. Examination of simple sequence repeats (SSRs) identified 16–21 potential polymorphic SSRs. Five IGS regions have 100% sequence identity among Zea mays, Saccharum officinarum and Sorghum bicolor, whereas no spacer regions were identical among Oryza sativa, Triticum aestivum, H. vulgare and A. stolonifera despite their close phylogenetic relationship. Alignment of EST sequences and DNA coding sequences identified six C–U conversions in both Sorghum bicolor and H. vulgare but only one in A. stolonifera. Phylogenetic trees based on DNA sequences of 61 protein-coding genes of 38 taxa using both maximum parsimony and likelihood methods provide moderate support for a sister relationship between the subfamilies Erhartoideae and Pooideae. PMID:17534593

  20. ChloroSSRdb: a repository of perfect and imperfect chloroplastic simple sequence repeats (cpSSRs) of green plants

    PubMed Central

    Kapil, Aditi; Rai, Piyush Kant; Shanker, Asheesh

    2014-01-01

    Simple sequence repeats (SSRs) are regions in DNA sequence that contain repeating motifs of length 1–6 nucleotides. These repeats are ubiquitously present and are found in both coding and non-coding regions of genome. A total of 534 complete chloroplast genome sequences (as on 18 September 2014) of Viridiplantae are available at NCBI organelle genome resource. It provides opportunity to mine these genomes for the detection of SSRs and store them in the form of a database. In an attempt to properly manage and retrieve chloroplastic SSRs, we designed ChloroSSRdb which is a relational database developed using SQL server 2008 and accessed through ASP.NET. It provides information of all the three types (perfect, imperfect and compound) of SSRs. At present, ChloroSSRdb contains 124 430 mined SSRs, with majority lying in non-coding region. Out of these, PCR primers were designed for 118 249 SSRs. Tetranucleotide repeats (47 079) were found to be the most frequent repeat type, whereas hexanucleotide repeats (6414) being the least abundant. Additionally, in each species statistical analyses were performed to calculate relative frequency, correlation coefficient and chi-square statistics of perfect and imperfect SSRs. In accordance with the growing interest in SSR studies, ChloroSSRdb will prove to be a useful resource in developing genetic markers, phylogenetic analysis, genetic mapping, etc. Moreover, it will serve as a ready reference for mined SSRs in available chloroplast genomes of green plants. Database URL: www.compubio.in/chlorossrdb/ PMID:25380781

  1. ChloroSSRdb: a repository of perfect and imperfect chloroplastic simple sequence repeats (cpSSRs) of green plants.

    PubMed

    Kapil, Aditi; Rai, Piyush Kant; Shanker, Asheesh

    2014-01-01

    Simple sequence repeats (SSRs) are regions in DNA sequence that contain repeating motifs of length 1-6 nucleotides. These repeats are ubiquitously present and are found in both coding and non-coding regions of genome. A total of 534 complete chloroplast genome sequences (as on 18 September 2014) of Viridiplantae are available at NCBI organelle genome resource. It provides opportunity to mine these genomes for the detection of SSRs and store them in the form of a database. In an attempt to properly manage and retrieve chloroplastic SSRs, we designed ChloroSSRdb which is a relational database developed using SQL server 2008 and accessed through ASP.NET. It provides information of all the three types (perfect, imperfect and compound) of SSRs. At present, ChloroSSRdb contains 124 430 mined SSRs, with majority lying in non-coding region. Out of these, PCR primers were designed for 118 249 SSRs. Tetranucleotide repeats (47 079) were found to be the most frequent repeat type, whereas hexanucleotide repeats (6414) being the least abundant. Additionally, in each species statistical analyses were performed to calculate relative frequency, correlation coefficient and chi-square statistics of perfect and imperfect SSRs. In accordance with the growing interest in SSR studies, ChloroSSRdb will prove to be a useful resource in developing genetic markers, phylogenetic analysis, genetic mapping, etc. Moreover, it will serve as a ready reference for mined SSRs in available chloroplast genomes of green plants. Database URL: www.compubio.in/chlorossrdb/ © The Author(s) 2014. Published by Oxford University Press.

  2. Microsatellite DNA in genomic survey sequences and UniGenes of loblolly pine

    Treesearch

    Craig S Echt; Surya Saha; Dennis L Deemer; C Dana Nelson

    2011-01-01

    Genomic DNA sequence databases are a potential and growing resource for simple sequence repeat (SSR) marker development in loblolly pine (Pinus taeda L.). Loblolly pine also has many expressed sequence tags (ESTs) available for microsatellite (SSR) marker development. We compared loblolly pine SSR densities in genome survey sequences (GSSs) to those in non-redundant...

  3. Mining and gene ontology based annotation of SSR markers from expressed sequence tags of Humulus lupulus

    PubMed Central

    Singh, Swati; Gupta, Sanchita; Mani, Ashutosh; Chaturvedi, Anoop

    2012-01-01

    Humulus lupulus is commonly known as hops, a member of the family moraceae. Currently many projects are underway leading to the accumulation of voluminous genomic and expressed sequence tag sequences in public databases. The genetically characterized domains in these databases are limited due to non-availability of reliable molecular markers. The large data of EST sequences are available in hops. The simple sequence repeat markers extracted from EST data are used as molecular markers for genetic characterization, in the present study. 25,495 EST sequences were examined and assembled to get full-length sequences. Maximum frequency distribution was shown by mononucleotide SSR motifs i.e. 60.44% in contig and 62.16% in singleton where as minimum frequency are observed for hexanucleotide SSR in contig (0.09%) and pentanucleotide SSR in singletons (0.12%). Maximum trinucleotide motifs code for Glutamic acid (GAA) while AT/TA were the most frequent repeat of dinucleotide SSRs. Flanking primer pairs were designed in-silico for the SSR containing sequences. Functional categorization of SSRs containing sequences was done through gene ontology terms like biological process, cellular component and molecular function. PMID:22368382

  4. Abundance and Characterization of Perfect Microsatellites on the Cattle Y Chromosome.

    PubMed

    Ma, Zhi-Jie

    2017-07-03

    Microsatellites or simple sequence repeats (SSRs) are found in most organisms and play an important role in genomic organization and function. To characterize the abundance of SSRs (1-6 base-pairs [bp]) on the cattle Y chromsome, the relative frequency and density of perfect or uninterrupted SSRs based on the published Y chromosome sequence were examined. A total of 17,273 perfect SSRs were found, with total length of 324.78 kb, indicating that approximately 0.75% of the cattle Y chromosome sequence (43.30 Mb) comprises perfect SSRs, with an average length of 18.80 bp. The relative frequency and density were 398.92 loci/Mb and 7500.62 bp/Mb, respectively. The proportions of the six classes of perfect SSRs were highly variable on the cattle Y chromosome. Mononucleotide repeats had a total number of 8073 (46.74%) and an average length of 15.45 bp, and were the most abundant SSRs class, while the percentages of di-, tetra-, tri-, penta-, and hexa-nucleotide repeats were 22.86%, 11.98%, 11.58%, 6.65%, and 0.19%, respectively. Different classes of SSRs varied in their repeat number, with the highest being 42 for dinucleotides. Results reveal that repeat categories A, AC, AT, AAC, AGC, GTTT, CTTT, ATTT, and AACTG predominate on the Y chromosome. This study provides insight into the organization of cattle Y chromosome repetitive DNA, as well as information useful for developing more polymorphic cattle Y-chromosome-specific SSRs.

  5. Use of Simple Sequence Repeat (SSR) markers for DNA fingerprinting and diversity analysis of sugarcane (Saccharum spp.) cultivars resistant and susceptible to red rot

    USDA-ARS?s Scientific Manuscript database

    In recent years SSR markers have been used widely for the genetic analysis. The objective of present research was to use SSR markers to develop DNA-based genetic identification and analyze genetic relationship of sugarcane cultivars grown in Pakistan either resistant or susceptible to red rot. Twent...

  6. Analysis on the DNA Fingerprinting of Aspergillus Oryzae Mutant Induced by High Hydrostatic Pressure

    NASA Astrophysics Data System (ADS)

    Wang, Hua; Zhang, Jian; Yang, Fan; Wang, Kai; Shen, Si-Le; Liu, Bing-Bing; Zou, Bo; Zou, Guang-Tian

    2011-01-01

    The mutant strains of aspergillus oryzae (HP300a) are screened under 300 MPa for 20 min. Compared with the control strains, the screened mutant strains have unique properties such as genetic stability, rapid growth, lots of spores, and high protease activity. Random amplified polymorphic DNA (RAPD) and inter simple sequence repeats (ISSR) are used to analyze the DNA fingerprinting of HP300a and the control strains. There are 67.9% and 51.3% polymorphic bands obtained by these two markers, respectively, indicating significant genetic variations between HP300a and the control strains. In addition, comparison of HP300a and the control strains, the genetic distances of random sequence and simple sequence repeat of DNA are 0.51 and 0.34, respectively.

  7. Analysis of SSR information in EST resources of sugarcane

    USDA-ARS?s Scientific Manuscript database

    Expressed sequence tags ( ESTs) offer the opportunity to exploit single, low -copy, conserved sequence motifs for the development of simple sequence repeats ( SSRs). The total of 262 113 ESTs of sugarcane (Saccharum officinarum) in the database of NCBI were downloaded and analyzed, which resulted in...

  8. Medium-sized tandem repeats represent an abundant component of the Drosophila virilis genome.

    PubMed

    Abdurashitov, Murat A; Gonchar, Danila A; Chernukhin, Valery A; Tomilov, Victor N; Tomilova, Julia E; Schostak, Natalia G; Zatsepina, Olga G; Zelentsova, Elena S; Evgen'ev, Michael B; Degtyarev, Sergey K H

    2013-11-09

    Previously, we developed a simple method for carrying out a restriction enzyme analysis of eukaryotic DNA in silico, based on the known DNA sequences of the genomes. This method allows the user to calculate lengths of all DNA fragments that are formed after a whole genome is digested at the theoretical recognition sites of a given restriction enzyme. A comparison of the observed peaks in distribution diagrams with the results from DNA cleavage using several restriction enzymes performed in vitro have shown good correspondence between the theoretical and experimental data in several cases. Here, we applied this approach to the annotated genome of Drosophila virilis which is extremely rich in various repeats. Here we explored the combined approach to perform the restriction analysis of D. virilis DNA. This approach enabled to reveal three abundant medium-sized tandem repeats within the D. virilis genome. While the 225 bp repeats were revealed previously in intergenic non-transcribed spacers between ribosomal genes of D. virilis, two other families comprised of 154 bp and 172 bp repeats were not described. Tandem Repeats Finder search demonstrated that 154 bp and 172 bp units are organized in multiple clusters in the genome of D. virilis. Characteristically, only 154 bp repeats derived from Helitron transposon are transcribed. Using in silico digestion in combination with conventional restriction analysis and sequencing of repeated DNA fragments enabled us to isolate and characterize three highly abundant families of medium-sized repeats present in the D. virilis genome. These repeats comprise a significant portion of the genome and may have important roles in genome function and structural integrity. Therefore, we demonstrated an approach which makes possible to investigate in detail the gross arrangement and expression of medium-sized repeats basing on sequencing data even in the case of incompletely assembled and/or annotated genomes.

  9. Population structure of rice varieties used in Turkish rice breeding programs determined using simple-sequence repeat and inter-primer binding site-retrotransposon data.

    PubMed

    Cömertpay, G; Baloch, F S; Derya, M; Andeden, E E; Alsaleh, A; Sürek, H; Özkan, H

    2016-02-19

    Effective breeding programs based on genetic diversity are needed to broaden the genetic basis of rice (Oryza sativa L.) in Turkey. In this study, 81 commercial varieties from seven countries were studied in order to estimate the genomic relationships among them using nine inter-primer binding site (iPBS)-retrotransposon and 17 simple-sequence repeat (SSR) markers. A total of 59 alleles for the SSR markers and 96 bands for the iPBS-retrotransposon markers were detected, with an average of 3.47 and 10.6 per locus, respectively. Each of the varieties could be unequivocally identified by the SSR and iPBS-retrotransposon profiles. The iPBS-retrotransposon- and SSR-based clustering were identical and closely mirrored each other, with a significantly high correlation (r = 0.73). A neighbor-joining cluster based on the combined SSR and iPBS-retrotransposon data divided the rice varieties into three clusters. The population structure was determined using the STRUCTURE software, and three populations (K = 3) were identified among the varieties studied, showing that the diversity harbored by Turkish rice varieties is low. The results indicate that iPBS-retrotransposon markers are a very powerful technique to determine the genetic diversity of rice varieties.

  10. The Complete Chloroplast Genome Sequence of a Relict Conifer Glyptostrobus pensilis: Comparative Analysis and Insights into Dynamics of Chloroplast Genome Rearrangement in Cupressophytes and Pinaceae

    PubMed Central

    Zheng, Renhua; Xu, Haibin; Zhou, Yanwei; Li, Meiping; Lu, Fengjuan; Dong, Yini; Liu, Xin; Chen, Jinhui; Shi, Jisen

    2016-01-01

    Glyptostrobus pensilis, belonging to the monotypic genus Glyptostrobus (Family: Cupressaceae), is an ancient conifer that is naturally distributed in low-lying wet areas. Here, we report the complete chloroplast (cp) genome sequence (132,239 bp) of G. pensilis. The G. pensilis cp genome is similar in gene content, organization and genome structure to the sequenced cp genomes from other cupressophytes, especially with respect to the loss of the inverted repeat region A (IRA). Through phylogenetic analysis, we demonstrated that the genus Glyptostrobus is closely related to the genus Cryptomeria, supporting previous findings based on physiological characteristics. Since IRs play an important role in stabilize cp genome and conifer cp genomes lost different IR regions after splitting in two clades (cupressophytes and Pinaceae), we performed cp genome rearrangement analysis and found more extensive cp genome rearrangements among the species of cupressophytes relative to Pinaceae. Additional repeat analysis indicated that cupressophytes cp genomes contained less potential functional repeats, especially in Cupressaceae, compared with Pinaceae. These results suggested that dynamics of cp genome rearrangement in conifers differed since the two clades, Pinaceae and cupressophytes, lost IR copies independently and developed different repeats to complement the residual IRs. In addition, we identified 170 perfect simple sequence repeats that will be useful in future research focusing on the evolution of genetic diversity and conservation of genetic variation for this endangered species in the wild. PMID:27560965

  11. Inter-Simple Sequence Repeat Data Reveals High Genetic Diversity in Wild Populations of the Narrowly Distributed Endemic Lilium regale in the Minjiang River Valley of China

    PubMed Central

    Wu, Zhu-hua; Shi, Jisen; Xi, Meng-li; Jiang, Fu-xing; Deng, Ming-wen; Dayanandan, Selvadurai

    2015-01-01

    Lilium regale E.H. Wilson is endemic to a narrow geographic area in the Minjiang River valley in southwestern China, and is considered an important germplasm for breeding commercially valuable lily varieties, due to its vigorous growth, resistance to diseases and tolerance for low moisture. We analyzed the genetic diversity of eight populations of L. regale sampled across the entire natural distribution range of the species using Inter-Simple Sequence Repeat markers. The genetic diversity (expected heterozygosity= 0.3356) was higher than those reported for other narrowly distributed endemic plants. The levels of inbreeding (F st = 0.1897) were low, and most of the genetic variability was found to be within (80.91%) than amongpopulations (19.09%). An indirect estimate of historical levels of gene flow (N m =1.0678) indicated high levels of gene flow among populations. The eight analyzed populations clustered into three genetically distinct groups. Based on these results, we recommend conservation of large populations representing these three genetically distinct groups. PMID:25799495

  12. Genome-Wide Characterization and Linkage Mapping of Simple Sequence Repeats in Mei (Prunus mume Sieb. et Zucc.)

    PubMed Central

    Sun, Lidan; Yang, Weiru; Zhang, Qixiang; Cheng, Tangren; Pan, Huitang; Xu, Zongda; Zhang, Jie; Chen, Chuguang

    2013-01-01

    Because of its popularity as an ornamental plant in East Asia, mei (Prunus mume Sieb. et Zucc.) has received increasing attention in genetic and genomic research with the recent shotgun sequencing of its genome. Here, we performed the genome-wide characterization of simple sequence repeats (SSRs) in the mei genome and detected a total of 188,149 SSRs occurring at a frequency of 794 SSR/Mb. Mononucleotide repeats were the most common type of SSR in genomic regions, followed by di- and tetranucleotide repeats. Most of the SSRs in coding sequences (CDS) were composed of tri- or hexanucleotide repeat motifs, but mononucleotide repeats were always the most common in intergenic regions. Genome-wide comparison of SSR patterns among the mei, strawberry (Fragaria vesca), and apple (Malus×domestica) genomes showed mei to have the highest density of SSRs, slightly higher than that of strawberry (608 SSR/Mb) and almost twice as high as that of apple (398 SSR/Mb). Mononucleotide repeats were the dominant SSR motifs in the three Rosaceae species. Using 144 SSR markers, we constructed a 670 cM-long linkage map of mei delimited into eight linkage groups (LGs), with an average marker distance of 5 cM. Seventy one scaffolds covering about 27.9% of the assembled mei genome were anchored to the genetic map, depending on which the macro-colinearity between the mei genome and Prunus T×E reference map was identified. The framework map of mei constructed provides a first step into subsequent high-resolution genetic mapping and marker-assisted selection for this ornamental species. PMID:23555708

  13. A genetic linkage map for hazelnut (Corylus avellana L.) based on RAPD and SSR markerswac

    Treesearch

    Shawn A. Mehlenbacher; Rebecca N. Brown; Eduardo R. Nouhra; Tufan Gokirmak; Nahla V. Bassil; Thomas L. Kubisiak

    2006-01-01

    A linkage map for European hazelnut (Corylus avellana L.) was constructed using random amplified polymorphic DNA (RAPD) and simple sequence repeat (SSR) markers and the 2-way pseudotestcross approach. A full-sib population of 144 seedlings from the cross OSU 252.146 x OSU 414.062 was used. RAPD markers in testcross configuration,segregating 1:I, were...

  14. Data of 10 SSR markers for genomes of homo sapiens and monkeys.

    PubMed

    Reddy, K K V V V S; Raju, S Viswanadha; Someswara Rao, Chinta

    2017-06-01

    In this data, we present 10 Simple Sequence Repeat(SSR) markers TAGA, TCAT, GAAT, AGAT, AGAA, GATA, TATC, CTTT, TCTG and TCTA which are extracted from the genomes of homo sapiens and monkeys using string matching mechanism [1]. All loci showed 4 Base Pair(bp) in allele size, indicating that there are some polymorphisms between individuals correlating to the number of SSR repeats that maybe useful for the detection of similarity among the genotypes. Collectively, these data show that the SSR extraction is a valuable method to illustrate genetic variation of genomes.

  15. The complete chloroplast genome of Gentiana straminea (Gentianaceae), an endemic species to the Sino-Himalayan subregion.

    PubMed

    Ni, Lianghong; Zhao, Zhili; Xu, Hongxi; Chen, Shilin; Dorje, Gaawe

    2016-02-15

    Endemic to the Sino-Himalayan subregion, the medicinal alpine plant Gentiana straminea is a threatened species. The genetic and molecular data about it is deficient. Here we report the complete chloroplast (cp) genome sequence of G. straminea, as the first sequenced member of the family Gentianaceae. The cp genome is 148,991bp in length, including a large single copy (LSC) region of 81,240bp, a small single copy (SSC) region of 17,085bp and a pair of inverted repeats (IRs) of 25,333bp. It contains 112 unique genes, including 78 protein-coding genes, 30 tRNAs and 4 rRNAs. The rps16 gene lacks exon2 between trnK-UUU and trnQ-UUG, which is the first rps16 pseudogene found in the nonparasitic plants of Asterids clade. Sequence analysis revealed the presence of 13 forward repeats, 13 palindrome repeats and 39 simple sequence repeats (SSRs). An entire cp genome comparison study of G. straminea and four other species in Gentianales was carried out. Phylogenetic analyses using maximum likelihood (ML) and maximum parsimony (MP) were performed based on 69 protein-coding genes from 36 species of Asterids. The results strongly supported the position of Gentianaceae as one member of the order Gentianales. The complete chloroplast genome sequence will provide intragenic information for its conservation and contribute to research on the genetic and phylogenetic analyses of Gentianales and Asterids. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. The complete chloroplast DNA sequence of Eleutherococcus senticosus (Araliaceae); comparative evolutionary analyses with other three asterids.

    PubMed

    Yi, Dong-Keun; Lee, Hae-Lim; Sun, Byung-Yun; Chung, Mi Yoon; Kim, Ki-Joong

    2012-05-01

    This study reports the complete chloroplast (cp) DNA sequence of Eleutherococcus senticosus (GenBank: JN 637765), an endangered endemic species. The genome is 156,768 bp in length, and contains a pair of inverted repeat (IR) regions of 25,930 bp each, a large single copy (LSC) region of 86,755 bp and a small single copy (SSC) region of 18,153 bp. The structural organization, gene and intron contents, gene order, AT content, codon usage, and transcription units of the E. senticosus chloroplast genome are similar to that of typical land plant cp DNA. We aligned and analyzed the sequences of 86 coding genes, 19 introns and 113 intergenic spacers (IGS) in three different taxonomic hierarchies; Eleutherococcus vs. Panax, Eleutherococcus vs. Daucus, and Eleutherococcus vs. Nicotiana. The distribution of indels, the number of polymorphic sites and nucleotide diversity indicate that positional constraint is more important than functional constraint for the evolution of cp genome sequences in Asterids. For example, the intron sequences in the LSC region exhibited base substitution rates 5-11-times higher than that of the IR regions, while the intron sequences in the SSC region evolved 7-14-times faster than those in the IR region. Furthermore, the Ka/Ks ratio of the gene coding sequences supports a stronger evolutionary constraint in the IR region than in the LSC or SSC regions. Therefore, our data suggest that selective sweeps by base collection mechanisms more frequently eliminate polymorphisms in the IR region than in other regions. Chloroplast genome regions that have high levels of base substitutions also show higher incidences of indels. Thirty-five simple sequence repeat (SSR) loci were identified in the Eleutherococcus chloroplast genome. Of these, 27 are homopolymers, while six are di-polymers and two are tri-polymers. In addition to the SSR loci, we also identified 18 medium size repeat units ranging from 22 to 79 bp, 11 of which are distributed in the IGS or intron regions. These medium size repeats may contribute to developing a cp genome-specific gene introduction vector because the region may use for specific recombination sites.

  17. The paradox of MHC-DRB exon/intron evolution: alpha-helix and beta-sheet encoding regions diverge while hypervariable intronic simple repeats coevolve with beta-sheet codons.

    PubMed

    Schwaiger, F W; Weyers, E; Epplen, C; Brün, J; Ruff, G; Crawford, A; Epplen, J T

    1993-09-01

    Twenty-one different caprine and 13 ovine MHC-DRB exon 2 sequences were determined including part of the adjacent introns containing simple repetitive (gt)n(ga)m elements. The positions for highly polymorphic DRB amino acids vary slightly among ungulates and other mammals. From man and mouse to ungulates the basic (gt)n(ga)m structure is fixed in evolution for 7 x 10(7) years whereas ample variations exist in the tandem (gt)n and (ga)m dinucleotides and especially their "degenerated" derivatives. Phylogenetic trees for the alpha-helices and beta-pleated sheets of the ungulate DRB sequences suggest different evolutionary histories. In hoofed animals as well as in humans DRB beta-sheet encoding sequences and adjacent intronic repeats can be assembled into virtually identical groups suggesting coevolution of noncoding as well as coding DNA. In contrast alpha-helices and C-terminal parts of the first DRB domain evolve distinctly. In the absence of a defined mechanism causing specific, site-directed mutations, double-recombination or gene-conversion-like events would readily explain this fact. The role of the intronic simple (gt)n(ga)m repeat is discussed with respect to these genetic exchange mechanisms during evolution.

  18. Accurate, high-throughput typing of copy number variation using paralogue ratios from dispersed repeats

    PubMed Central

    Armour, John A. L.; Palla, Raquel; Zeeuwen, Patrick L. J. M.; den Heijer, Martin; Schalkwijk, Joost; Hollox, Edward J.

    2007-01-01

    Recent work has demonstrated an unexpected prevalence of copy number variation in the human genome, and has highlighted the part this variation may play in predisposition to common phenotypes. Some important genes vary in number over a high range (e.g. DEFB4, which commonly varies between two and seven copies), and have posed formidable technical challenges for accurate copy number typing, so that there are no simple, cheap, high-throughput approaches suitable for large-scale screening. We have developed a simple comparative PCR method based on dispersed repeat sequences, using a single pair of precisely designed primers to amplify products simultaneously from both test and reference loci, which are subsequently distinguished and quantified via internal sequence differences. We have validated the method for the measurement of copy number at DEFB4 by comparison of results from >800 DNA samples with copy number measurements by MAPH/REDVR, MLPA and array-CGH. The new Paralogue Ratio Test (PRT) method can require as little as 10 ng genomic DNA, appears to be comparable in accuracy to the other methods, and for the first time provides a rapid, simple and inexpensive method for copy number analysis, suitable for application to typing thousands of samples in large case-control association studies. PMID:17175532

  19. Kangaroo – A pattern-matching program for biological sequences

    PubMed Central

    2002-01-01

    Background Biologists are often interested in performing a simple database search to identify proteins or genes that contain a well-defined sequence pattern. Many databases do not provide straightforward or readily available query tools to perform simple searches, such as identifying transcription binding sites, protein motifs, or repetitive DNA sequences. However, in many cases simple pattern-matching searches can reveal a wealth of information. We present in this paper a regular expression pattern-matching tool that was used to identify short repetitive DNA sequences in human coding regions for the purpose of identifying potential mutation sites in mismatch repair deficient cells. Results Kangaroo is a web-based regular expression pattern-matching program that can search for patterns in DNA, protein, or coding region sequences in ten different organisms. The program is implemented to facilitate a wide range of queries with no restriction on the length or complexity of the query expression. The program is accessible on the web at http://bioinfo.mshri.on.ca/kangaroo/ and the source code is freely distributed at http://sourceforge.net/projects/slritools/. Conclusion A low-level simple pattern-matching application can prove to be a useful tool in many research settings. For example, Kangaroo was used to identify potential genetic targets in a human colorectal cancer variant that is characterized by a high frequency of mutations in coding regions containing mononucleotide repeats. PMID:12150718

  20. MSDB: A Comprehensive Database of Simple Sequence Repeats

    PubMed Central

    Avvaru, Akshay Kumar; Saxena, Saketh; Mishra, Rakesh Kumar

    2017-01-01

    Abstract Microsatellites, also known as Simple Sequence Repeats (SSRs), are short tandem repeats of 1–6 nt motifs present in all genomes, particularly eukaryotes. Besides their usefulness as genome markers, SSRs have been shown to perform important regulatory functions, and variations in their length at coding regions are linked to several disorders in humans. Microsatellites show a taxon-specific enrichment in eukaryotic genomes, and some may be functional. MSDB (Microsatellite Database) is a collection of >650 million SSRs from 6,893 species including Bacteria, Archaea, Fungi, Plants, and Animals. This database is by far the most exhaustive resource to access and analyze SSR data of multiple species. In addition to exploring data in a customizable tabular format, users can view and compare the data of multiple species simultaneously using our interactive plotting system. MSDB is developed using the Django framework and MySQL. It is freely available at http://tdb.ccmb.res.in/msdb. PMID:28854643

  1. Development of Simple Sequence Repeats (SSR) markers in Setaria italica (Poaceae) and cross-amplification in related species.

    PubMed

    Lin, Heng-Sheng; Chiang, Chih-Yun; Chang, Song-Bin; Kuoh, Chang-Sheng

    2011-01-01

    Foxtail millet is one of the world's oldest cultivated crops. It has been adopted as a model organism for providing a deeper understanding of plant biology. In this study, 45 simple sequence repeats (SSR) markers of Setaria italica were developed. These markers showing polymorphism were screened in 223 samples from 12 foxtail millet populations around Taiwan. The most common dinucleotide and trinucleotide repeat motifs are AC/TG (84.21%) and CAT (46.15%). The average number of alleles (N(a)), the average heterozygosities observed (H(o)) and expected (H(e)) are 3.73, 0.714, 0.587, respectively. In addition, 24 SSR markers had shown transferability to six related Poaceae species. These new markers provide tools for examining genetic relatedness among foxtail millet populations and other related species. It is suitable for germplasm management and protection in Poaceae.

  2. Development of Simple Sequence Repeats (SSR) Markers in Setaria italica (Poaceae) and Cross-Amplification in Related Species

    PubMed Central

    Lin, Heng-Sheng; Chiang, Chih-Yun; Chang, Song-Bin; Kuoh, Chang-Sheng

    2011-01-01

    Foxtail millet is one of the world’s oldest cultivated crops. It has been adopted as a model organism for providing a deeper understanding of plant biology. In this study, 45 simple sequence repeats (SSR) markers of Setaria italica were developed. These markers showing polymorphism were screened in 223 samples from 12 foxtail millet populations around Taiwan. The most common dinucleotide and trinucleotide repeat motifs are AC/TG (84.21%) and CAT (46.15%). The average number of alleles (Na), the average heterozygosities observed (Ho) and expected (He) are 3.73, 0.714, 0.587, respectively. In addition, 24 SSR markers had shown transferability to six related Poaceae species. These new markers provide tools for examining genetic relatedness among foxtail millet populations and other related species. It is suitable for germplasm management and protection in Poaceae. PMID:22174636

  3. Investigation of a Quadruplex-Forming Repeat Sequence Highly Enriched in Xanthomonas and Nostoc sp.

    PubMed

    Rehm, Charlotte; Wurmthaler, Lena A; Li, Yuanhao; Frickey, Tancred; Hartig, Jörg S

    2015-01-01

    In prokaryotes simple sequence repeats (SSRs) with unit sizes of 1-5 nucleotides (nt) are causative for phase and antigenic variation. Although an increased abundance of heptameric repeats was noticed in bacteria, reports about SSRs of 6-9 nt are rare. In particular G-rich repeat sequences with the propensity to fold into G-quadruplex (G4) structures have received little attention. In silico analysis of prokaryotic genomes show putative G4 forming sequences to be abundant. This report focuses on a surprisingly enriched G-rich repeat of the type GGGNATC in Xanthomonas and cyanobacteria such as Nostoc. We studied in detail the genomes of Xanthomonas campestris pv. campestris ATCC 33913 (Xcc), Xanthomonas axonopodis pv. citri str. 306 (Xac), and Nostoc sp. strain PCC7120 (Ana). In all three organisms repeats are spread all over the genome with an over-representation in non-coding regions. Extensive variation of the number of repetitive units was observed with repeat numbers ranging from two up to 26 units. However a clear preference for four units was detected. The strong bias for four units coincides with the requirement of four consecutive G-tracts for G4 formation. Evidence for G4 formation of the consensus repeat sequences was found in biophysical studies utilizing CD spectroscopy. The G-rich repeats are preferably located between aligned open reading frames (ORFs) and are under-represented in coding regions or between divergent ORFs. The G-rich repeats are preferentially located within a distance of 50 bp upstream of an ORF on the anti-sense strand or within 50 bp from the stop codon on the sense strand. Analysis of whole transcriptome sequence data showed that the majority of repeat sequences are transcribed. The genetic loci in the vicinity of repeat regions show increased genomic stability. In conclusion, we introduce and characterize a special class of highly abundant and wide-spread quadruplex-forming repeat sequences in bacteria.

  4. Investigation of a Quadruplex-Forming Repeat Sequence Highly Enriched in Xanthomonas and Nostoc sp.

    PubMed Central

    Rehm, Charlotte; Wurmthaler, Lena A.; Li, Yuanhao; Frickey, Tancred; Hartig, Jörg S.

    2015-01-01

    In prokaryotes simple sequence repeats (SSRs) with unit sizes of 1–5 nucleotides (nt) are causative for phase and antigenic variation. Although an increased abundance of heptameric repeats was noticed in bacteria, reports about SSRs of 6–9 nt are rare. In particular G-rich repeat sequences with the propensity to fold into G-quadruplex (G4) structures have received little attention. In silico analysis of prokaryotic genomes show putative G4 forming sequences to be abundant. This report focuses on a surprisingly enriched G-rich repeat of the type GGGNATC in Xanthomonas and cyanobacteria such as Nostoc. We studied in detail the genomes of Xanthomonas campestris pv. campestris ATCC 33913 (Xcc), Xanthomonas axonopodis pv. citri str. 306 (Xac), and Nostoc sp. strain PCC7120 (Ana). In all three organisms repeats are spread all over the genome with an over-representation in non-coding regions. Extensive variation of the number of repetitive units was observed with repeat numbers ranging from two up to 26 units. However a clear preference for four units was detected. The strong bias for four units coincides with the requirement of four consecutive G-tracts for G4 formation. Evidence for G4 formation of the consensus repeat sequences was found in biophysical studies utilizing CD spectroscopy. The G-rich repeats are preferably located between aligned open reading frames (ORFs) and are under-represented in coding regions or between divergent ORFs. The G-rich repeats are preferentially located within a distance of 50 bp upstream of an ORF on the anti-sense strand or within 50 bp from the stop codon on the sense strand. Analysis of whole transcriptome sequence data showed that the majority of repeat sequences are transcribed. The genetic loci in the vicinity of repeat regions show increased genomic stability. In conclusion, we introduce and characterize a special class of highly abundant and wide-spread quadruplex-forming repeat sequences in bacteria. PMID:26695179

  5. Development of genome-wide SNP assays for rice

    USDA-ARS?s Scientific Manuscript database

    With the introduction of new sequencing technologies, single nucleotide polymorphisms (SNPs) are rapidly replacing simple sequence repeats (SSRs) as the DNA marker of choice for applications in plant breeding and genetics because they are more abundant, stable, amenable to automation, efficient, and...

  6. TALE-Like Effectors Are an Ancestral Feature of the Ralstonia solanacearum Species Complex and Converge in DNA Targeting Specificity.

    PubMed

    Schandry, Niklas; de Lange, Orlando; Prior, Philippe; Lahaye, Thomas

    2016-01-01

    Ralstonia solanacearum, a species complex of bacterial plant pathogens divided into four monophyletic phylotypes, causes plant diseases in tropical climates around the world. Some strains exhibit a broad host range on solanaceous hosts, while others are highly host-specific as for example some banana-pathogenic strains. Previous studies showed that transcription activator-like (TAL) effectors from Ralstonia, termed RipTALs, are capable of activating reporter genes in planta, if these are preceded by a matching effector binding element (EBE). RipTALs target DNA via their central repeat domain (CRD), where one repeat pairs with one DNA-base of the given EBE. The repeat variable diresidue dictates base repeat specificity in a predictable fashion, known as the TALE code. In this work, we analyze RipTALs across all phylotypes of the Ralstonia solanacearum species complex. We find that RipTALs are prevalent in phylotypes I and IV but absent from most phylotype III and II strains (10/12, 8/14, 1/24, and 1/5 strains contained a RipTAL, respectively). RipTALs originating from strains of the same phylotype show high levels of sequence similarity (>98%) in the N-terminal and C-terminal regions, while RipTALs isolated from different phylotypes show 47-91% sequence similarity in those regions, giving rise to four RipTAL classes. We show that, despite sequence divergence, the base preference for guanine, mediated by the N-terminal region, is conserved across RipTALs of all classes. Using the number and order of repeats found in the CRD, we functionally sub-classify RipTALs, introduce a new simple nomenclature, and predict matching EBEs for all seven distinct RipTALs identified. We experimentally study RipTAL EBEs and uncover that some RipTALs are able to target the EBEs of other RipTALs, referred to as cross-reactivity. In particular, RipTALs from strains with a broad host range on solanaceous hosts cross-react on each other's EBEs. Investigation of sequence divergence between RipTAL repeats allows for a reconstruction of repeat array biogenesis, for example through slipped strand mispairing or gene conversion. Using these studies we show how RipTALs of broad host range strains evolved convergently toward a shared target sequence. Finally, we discuss the differences between TALE-likes of plant pathogens in the context of disease ecology.

  7. Transcriptome de novo assembly sequencing and analysis of the toxic dinoflagellate Alexandrium catenella using the Illumina platform.

    PubMed

    Zhang, Shu; Sui, Zhenghong; Chang, Lianpeng; Kang, Kyoungho; Ma, Jinhua; Kong, Fanna; Zhou, Wei; Wang, Jinguo; Guo, Liliang; Geng, Huili; Zhong, Jie; Ma, Qingxia

    2014-03-10

    In this article, high-throughput de novo transcriptomic sequencing was performed in Alexandrium catenella, which provided the first view of the gene repertoire in this dinoflagellate based on next-generation sequencing (NGS) technologies. A total of 118,304 unigenes were identified with an average length of 673bp (base pair). Of these unigenes, 77,936 (65.9%) were annotated with known proteins based on sequence similarities, among which 24,149 and 22,956 unigenes were assigned to gene ontology categories (GO) and clusters of orthologous groups (COGs), respectively. Furthermore, 16,467 unigenes were mapped onto 322 pathways using the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG). We also detected 1143 simple sequence repeats (SSRs), in which the tri-nucleotide repeat motif (69.3%) was the most abundant. The genetic facts and significance derived from the transcriptome dataset were suggested and discussed. All four core nucleosomal histones and linker histones were detected, in addition to the unigenes involved in histone modifications.190 unigenes were identified as being involved in the endocytosis pathway, and clathrin-dependent endocytosis was suggested to play a role in the heterotrophy of A. catenella. A conserved 22-nt spliced leader (SL) was identified in 21 unigenes which suggested the existence of trans-splicing processing of mRNA in A. catenella. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  8. Identification and characterization of tandem repeats in exon III of dopamine receptor D4 (DRD4) genes from different mammalian species.

    PubMed

    Larsen, Svend Arild; Mogensen, Line; Dietz, Rune; Baagøe, Hans Jørgen; Andersen, Mogens; Werge, Thomas; Rasmussen, Henrik Berg

    2005-12-01

    In this study we have identified and characterized dopamine receptor D4 (DRD4) exon III tandem repeats in 33 public available nucleotide sequences from different mammalian species. We found that the tandem repeat in canids could be described in a novel and simple way, namely, as a structure composed of 15- and 12- bp modules. Tandem repeats composed of 18-bp modules were found in sequences from the horse, zebra, onager, and donkey, Asiatic bear, polar bear, common raccoon, dolphin, harbor porpoise, and domestic cat. Several of these sequences have been analyzed previously without a tandem repeat being found. In the domestic cow and gray seal we identified tandem repeats composed of 36-bp modules, each consisting of two closely related 18-bp basic units. A tandem repeat consisting of 9-bp modules was identified in sequences from mink and ferret. In the European otter we detected an 18-bp tandem repeat, while a tandem repeat consisting of 27-bp modules was identified in a sequence from European badger. Both these tandem repeats were composed of 9-bp basic units, which were closely related with the 9-bp repeat modules identified in the mink and ferret. Tandem repeats could not be identified in sequences from rodents. All tandem repeats possessed a high GC content with a strong bias for C. On phylogenetic analysis of the tandem repeats evolutionary related species were clustered into the same groups. The degree of conservation of the tandem repeats varied significantly between species. The deduced amino acid sequences of most of the tandem repeats exhibited a high propensity for disorder. This was also the case with an amino acid sequence of the human DRD4 exon III tandem repeat, which was included in the study for comparative purposes. We identified proline-containing motifs for SH3 and WW domain binding proteins, potential phosphorylation sites, PDZ domain binding motifs, and FHA domain binding motifs in the amino acid sequences of the tandem repeats. The numbers of potential functional sites varied pronouncedly between species. Our observations provide a platform for future studies of the architecture and evolution of the DRD4 exon III tandem repeat, and they suggest that differences in the structure of this tandem repeat contribute to specialization and generation of diversity in receptor function.

  9. Genotyping variability of computationally categorized peach microsatellite markers

    USDA-ARS?s Scientific Manuscript database

    Numerous expressed sequence tag (EST) simple sequence repeat (SSR) primers can be easily mined out. The obstacle to develop them into usable markers is how to optimally select downsized subsets of the primers for genotyping, which accordingly reduces amplification failure and monomorphism often occu...

  10. New chloroplast microsatellite markers suitable for assessing genetic diversity of Lolium perenne and other related grass species

    PubMed Central

    Diekmann, Kerstin; Hodkinson, Trevor R.; Barth, Susanne

    2012-01-01

    Background and Aims Lolium perenne (perennial ryegrass) is the most important forage grass species of temperate regions. We have previously released the chloroplast genome sequence of L. perenne ‘Cashel’. Here nine chloroplast microsatellite markers are published, which were designed based on knowledge about genetically variable regions within the L. perenne chloroplast genome. These markers were successfully used for characterizing the genetic diversity in Lolium and different grass species. Methods Chloroplast genomes of 14 Poaceae taxa were screened for mononucleotide microsatellite repeat regions and primers designed for their amplification from nine loci. The potential of these markers to assess genetic diversity was evaluated on a set of 16 Irish and 15 European L. perenne ecotypes, nine L. perenne cultivars, other Lolium taxa and other grass species. Key Results All analysed Poaceae chloroplast genomes contained more than 200 mononucleotide repeats (chloroplast simple sequence repeats, cpSSRs) of at least 7 bp in length, concentrated mainly in the large single copy region of the genome. Nucleotide composition varied considerably among subfamilies (with Pooideae biased towards poly A repeats). The nine new markers distinguish L. perenne from all non-Lolium taxa. TeaCpSSR28 was able to distinguish between all Lolium species and Lolium multiflorum due to an elongation of an A8 mononucleotide repeat in L. multiflorum. TeaCpSSR31 detected a considerable degree of microsatellite length variation and single nucleotide polymorphism. TeaCpSSR27 revealed variation within some L. perenne accessions due to a 44-bp indel and was hence readily detected by simple agarose gel electrophoresis. Smaller insertion/deletion events or single nucleotide polymorphisms detected by these new markers could be visualized by polyacrylamide gel electrophoresis or DNA sequencing, respectively. Conclusions The new markers are a valuable tool for plant breeding companies, seed testing agencies and the wider scientific community due to their ability to monitor genetic diversity within breeding pools, to trace maternal inheritance and to distinguish closely related species. PMID:22419761

  11. New chloroplast microsatellite markers suitable for assessing genetic diversity of Lolium perenne and other related grass species.

    PubMed

    Diekmann, Kerstin; Hodkinson, Trevor R; Barth, Susanne

    2012-11-01

    Lolium perenne (perennial ryegrass) is the most important forage grass species of temperate regions. We have previously released the chloroplast genome sequence of L. perenne 'Cashel'. Here nine chloroplast microsatellite markers are published, which were designed based on knowledge about genetically variable regions within the L. perenne chloroplast genome. These markers were successfully used for characterizing the genetic diversity in Lolium and different grass species. Chloroplast genomes of 14 Poaceae taxa were screened for mononucleotide microsatellite repeat regions and primers designed for their amplification from nine loci. The potential of these markers to assess genetic diversity was evaluated on a set of 16 Irish and 15 European L. perenne ecotypes, nine L. perenne cultivars, other Lolium taxa and other grass species. All analysed Poaceae chloroplast genomes contained more than 200 mononucleotide repeats (chloroplast simple sequence repeats, cpSSRs) of at least 7 bp in length, concentrated mainly in the large single copy region of the genome. Nucleotide composition varied considerably among subfamilies (with Pooideae biased towards poly A repeats). The nine new markers distinguish L. perenne from all non-Lolium taxa. TeaCpSSR28 was able to distinguish between all Lolium species and Lolium multiflorum due to an elongation of an A(8) mononucleotide repeat in L. multiflorum. TeaCpSSR31 detected a considerable degree of microsatellite length variation and single nucleotide polymorphism. TeaCpSSR27 revealed variation within some L. perenne accessions due to a 44-bp indel and was hence readily detected by simple agarose gel electrophoresis. Smaller insertion/deletion events or single nucleotide polymorphisms detected by these new markers could be visualized by polyacrylamide gel electrophoresis or DNA sequencing, respectively. The new markers are a valuable tool for plant breeding companies, seed testing agencies and the wider scientific community due to their ability to monitor genetic diversity within breeding pools, to trace maternal inheritance and to distinguish closely related species.

  12. Construction of a genetic linkage map and analysis of quantitative trait loci associated with the agronomically important traits of Pleurotus eryngii

    Treesearch

    Chak Han Im; Young-Hoon Park; Kenneth E. Hammel; Bokyung Park; Soon Wook Kwon; Hojin Ryu; Jae-San Ryu

    2016-01-01

    Breeding new strains with improved traits is a long-standing goal of mushroom breeders that can be expedited by marker-assisted selection (MAS). We constructed a genetic linkage map of Pleurotus eryngii based on segregation analysis of markers in postmeiotic monokaryons from KNR2312. In total, 256 loci comprising 226 simple sequence-repeat (SSR) markers, 2 mating-type...

  13. MIG-seq: an effective PCR-based method for genome-wide single-nucleotide polymorphism genotyping using the next-generation sequencing platform

    PubMed Central

    Suyama, Yoshihisa; Matsuki, Yu

    2015-01-01

    Restriction-enzyme (RE)-based next-generation sequencing methods have revolutionized marker-assisted genetic studies; however, the use of REs has limited their widespread adoption, especially in field samples with low-quality DNA and/or small quantities of DNA. Here, we developed a PCR-based procedure to construct reduced representation libraries without RE digestion steps, representing de novo single-nucleotide polymorphism discovery, and its genotyping using next-generation sequencing. Using multiplexed inter-simple sequence repeat (ISSR) primers, thousands of genome-wide regions were amplified effectively from a wide variety of genomes, without prior genetic information. We demonstrated: 1) Mendelian gametic segregation of the discovered variants; 2) reproducibility of genotyping by checking its applicability for individual identification; and 3) applicability in a wide variety of species by checking standard population genetic analysis. This approach, called multiplexed ISSR genotyping by sequencing, should be applicable to many marker-assisted genetic studies with a wide range of DNA qualities and quantities. PMID:26593239

  14. PeanutDB: an integrated bioinformatics web portal for Arachis hypogaea transcriptomics

    PubMed Central

    2012-01-01

    Background The peanut (Arachis hypogaea) is an important crop cultivated worldwide for oil production and food sources. Its complex genetic architecture (e.g., the large and tetraploid genome possibly due to unique cross of wild diploid relatives and subsequent chromosome duplication: 2n = 4x = 40, AABB, 2800 Mb) presents a major challenge for its genome sequencing and makes it a less-studied crop. Without a doubt, transcriptome sequencing is the most effective way to harness the genome structure and gene expression dynamics of this non-model species that has a limited genomic resource. Description With the development of next generation sequencing technologies such as 454 pyro-sequencing and Illumina sequencing by synthesis, the transcriptomics data of peanut is rapidly accumulated in both the public databases and private sectors. Integrating 187,636 Sanger reads (103,685,419 bases), 1,165,168 Roche 454 reads (333,862,593 bases) and 57,135,995 Illumina reads (4,073,740,115 bases), we generated the first release of our peanut transcriptome assembly that contains 32,619 contigs. We provided EC, KEGG and GO functional annotations to these contigs and detected SSRs, SNPs and other genetic polymorphisms for each contig. Based on both open-source and our in-house tools, PeanutDB presents many seamlessly integrated web interfaces that allow users to search, filter, navigate and visualize easily the whole transcript assembly, its annotations and detected polymorphisms and simple sequence repeats. For each contig, sequence alignment is presented in both bird’s-eye view and nucleotide level resolution, with colorfully highlighted regions of mismatches, indels and repeats that facilitate close examination of assembly quality, genetic polymorphisms, sequence repeats and/or sequencing errors. Conclusion As a public genomic database that integrates peanut transcriptome data from different sources, PeanutDB (http://bioinfolab.muohio.edu/txid3818v1) provides the Peanut research community with an easy-to-use web portal that will definitely facilitate genomics research and molecular breeding in this less-studied crop. PMID:22712730

  15. Multiplexed microsatellite recovery using massively parallel sequencing

    Treesearch

    T.N. Jennings; B.J. Knaus; T.D. Mullins; S.M. Haig; R.C. Cronn

    2011-01-01

    Conservation and management of natural populations requires accurate and inexpensive genotyping methods. Traditional microsatellite, or simple sequence repeat (SSR), marker analysis remains a popular genotyping method because of the comparatively low cost of marker development, ease of analysis and high power of genotype discrimination. With the availability of...

  16. The Complete Chloroplast Genome Sequences of Five Epimedium Species: Lights into Phylogenetic and Taxonomic Analyses

    PubMed Central

    Zhang, Yanjun; Du, Liuwen; Liu, Ao; Chen, Jianjun; Wu, Li; Hu, Weiming; Zhang, Wei; Kim, Kyunghee; Lee, Sang-Choon; Yang, Tae-Jin; Wang, Ying

    2016-01-01

    Epimedium L. is a phylogenetically and economically important genus in the family Berberidaceae. We here sequenced the complete chloroplast (cp) genomes of four Epimedium species using Illumina sequencing technology via a combination of de novo and reference-guided assembly, which was also the first comprehensive cp genome analysis on Epimedium combining the cp genome sequence of E. koreanum previously reported. The five Epimedium cp genomes exhibited typical quadripartite and circular structure that was rather conserved in genomic structure and the synteny of gene order. However, these cp genomes presented obvious variations at the boundaries of the four regions because of the expansion and contraction of the inverted repeat (IR) region and the single-copy (SC) boundary regions. The trnQ-UUG duplication occurred in the five Epimedium cp genomes, which was not found in the other basal eudicotyledons. The rapidly evolving cp genome regions were detected among the five cp genomes, as well as the difference of simple sequence repeats (SSR) and repeat sequence were identified. Phylogenetic relationships among the five Epimedium species based on their cp genomes showed accordance with the updated system of the genus on the whole, but reminded that the evolutionary relationships and the divisions of the genus need further investigation applying more evidences. The availability of these cp genomes provided valuable genetic information for accurately identifying species, taxonomy and phylogenetic resolution and evolution of Epimedium, and assist in exploration and utilization of Epimedium plants. PMID:27014326

  17. Detection of possible restriction sites for type II restriction enzymes in DNA sequences.

    PubMed

    Gagniuc, P; Cimponeriu, D; Ionescu-Tîrgovişte, C; Mihai, Andrada; Stavarachi, Monica; Mihai, T; Gavrilă, L

    2011-01-01

    In order to make a step forward in the knowledge of the mechanism operating in complex polygenic disorders such as diabetes and obesity, this paper proposes a new algorithm (PRSD -possible restriction site detection) and its implementation in Applied Genetics software. This software can be used for in silico detection of potential (hidden) recognition sites for endonucleases and for nucleotide repeats identification. The recognition sites for endonucleases may result from hidden sequences through deletion or insertion of a specific number of nucleotides. Tests were conducted on DNA sequences downloaded from NCBI servers using specific recognition sites for common type II restriction enzymes introduced in the software database (n = 126). Each possible recognition site indicated by the PRSD algorithm implemented in Applied Genetics was checked and confirmed by NEBcutter V2.0 and Webcutter 2.0 software. In the sequence NG_008724.1 (which includes 63632 nucleotides) we found a high number of potential restriction sites for ECO R1 that may be produced by deletion (n = 43 sites) or insertion (n = 591 sites) of one nucleotide. The second module of Applied Genetics has been designed to find simple repeats sizes with a real future in understanding the role of SNPs (Single Nucleotide Polymorphisms) in the pathogenesis of the complex metabolic disorders. We have tested the presence of simple repetitive sequences in five DNA sequence. The software indicated exact position of each repeats detected in the tested sequences. Future development of Applied Genetics can provide an alternative for powerful tools used to search for restriction sites or repetitive sequences or to improve genotyping methods.

  18. Development and application of microsatellites in candidate genes related to wood properties in the Chinese white poplar (Populus tomentosa Carr.).

    PubMed

    Du, Qingzhang; Gong, Chenrui; Pan, Wei; Zhang, Deqiang

    2013-02-01

    Gene-derived simple sequence repeats (genic SSRs), also known as functional markers, are often preferred over random genomic markers because they represent variation in gene coding and/or regulatory regions. We characterized 544 genic SSR loci derived from 138 candidate genes involved in wood formation, distributed throughout the genome of Populus tomentosa, a key ecological and cultivated wood production species. Of these SSRs, three-quarters were located in the promoter or intron regions, and dinucleotide (59.7%) and trinucleotide repeat motifs (26.5%) predominated. By screening 15 wild P. tomentosa ecotypes, we identified 188 polymorphic genic SSRs with 861 alleles, 2-7 alleles for each marker. Transferability analysis of 30 random genic SSRs, testing whether these SSRs work in 26 genotypes of five genus Populus sections (outgroup, Salix matsudana), showed that 72% of the SSRs could be amplified in Turanga and 100% could be amplified in Leuce. Based on genotyping of these 26 genotypes, a neighbour-joining analysis showed the expected six phylogenetic groupings. In silico analysis of SSR variation in 220 sequences that are homologous between P. tomentosa and Populus trichocarpa suggested that genic SSR variations between relatives were predominantly affected by repeat motif variations or flanking sequence mutations. Inheritance tests and single-marker associations demonstrated the power of genic SSRs in family-based linkage mapping and candidate gene-based association studies, as well as marker-assisted selection and comparative genomic studies of P. tomentosa and related species.

  19. Molecular genetic variation and structure of Southeast Asian crocodile (Tomistoma schlegelii): Comparative potentials of SSRs versus ISSRs.

    PubMed

    Shafiei-Astani, Behnam; Ong, Alan Han Kiat; Valdiani, Alireza; Tan, Soon Guan; Yien, Christina Yong Seok; Ahmady, Fatemeh; Alitheen, Noorjahan Banu; Ng, Wei Lun; Kuar, Taranjeet

    2015-10-15

    Tomistoma schlegelii, also referred to as the "false gharial", is one of the most exclusive and least known of the world's fresh water crocodilians, limited to Southeast Asia. Indeed, lack of economic value for its skin has led to neglect the biodiversity of the species. The current study aimed to investigate the mentioned case using 40 simple sequence repeat (SSR) primer pairs and 45 inter-simple sequence repeat (ISSR) primers. DNA analysis of 17 T. schlegelii samples using the SSR and ISSR markers resulted in producing a total of 49 and 108 polymorphic bands, respectively. Furthermore, the SSR- and ISSR-based cluster analyses both generated two main clusters. However, the SSR based results were found to be more in line with the geographical distributions of the crocodile samples collected across the country as compared with the ISSR-based results. The observed heterozygosity (HO) and expected heterozygosity (HE) of the polymorphic SSRs ranged between 0.588-1 and 0.470-0.891, respectively. The present results suggest that the Malaysian T. schlegelii populations had originated from a core population of crocodiles. In cooperation with the SSR markers, the ISSRs showed high potential for studying the genetic variation of T. schlegelii, and these markers are suitable to be employed in conservation genetic programs of this endangered species. Both SSR- and ISSR-based STRUCTURE analyses suggested that all the individuals of T. schlegelii are genetically similar with each other. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. A blackberry (Rubus L.) expressed sequence tag library for the development of simple sequence repeat markers

    PubMed Central

    Lewers, Kim S; Saski, Chris A; Cuthbertson, Brandon J; Henry, David C; Staton, Meg E; Main, Dorrie S; Dhanaraj, Anik L; Rowland, Lisa J; Tomkins, Jeff P

    2008-01-01

    Background The recent development of novel repeat-fruiting types of blackberry (Rubus L.) cultivars, combined with a long history of morphological marker-assisted selection for thornlessness by blackberry breeders, has given rise to increased interest in using molecular markers to facilitate blackberry breeding. Yet no genetic maps, molecular markers, or even sequences exist specifically for cultivated blackberry. The purpose of this study is to begin development of these tools by generating and annotating the first blackberry expressed sequence tag (EST) library, designing primers from the ESTs to amplify regions containing simple sequence repeats (SSR), and testing the usefulness of a subset of the EST-SSRs with two blackberry cultivars. Results A cDNA library of 18,432 clones was generated from expanding leaf tissue of the cultivar Merton Thornless, a progenitor of many thornless commercial cultivars. Among the most abundantly expressed of the 3,000 genes annotated were those involved with energy, cell structure, and defense. From individual sequences containing SSRs, 673 primer pairs were designed. Of a randomly chosen set of 33 primer pairs tested with two blackberry cultivars, 10 detected an average of 1.9 polymorphic PCR products. Conclusion This rate predicts that this library may yield as many as 940 SSR primer pairs detecting 1,786 polymorphisms. This may be sufficient to generate a genetic map that can be used to associate molecular markers with phenotypic traits, making possible molecular marker-assisted breeding to compliment existing morphological marker-assisted breeding in blackberry. PMID:18570660

  1. Assembly of a phased diploid Candida albicans genome facilitates allele-specific measurements and provides a simple model for repeat and indel structure

    PubMed Central

    2013-01-01

    Background Candida albicans is a ubiquitous opportunistic fungal pathogen that afflicts immunocompromised human hosts. With rare and transient exceptions the yeast is diploid, yet despite its clinical relevance the respective sequences of its two homologous chromosomes have not been completely resolved. Results We construct a phased diploid genome assembly by deep sequencing a standard laboratory wild-type strain and a panel of strains homozygous for particular chromosomes. The assembly has 700-fold coverage on average, allowing extensive revision and expansion of the number of known SNPs and indels. This phased genome significantly enhances the sensitivity and specificity of allele-specific expression measurements by enabling pooling and cross-validation of signal across multiple polymorphic sites. Additionally, the diploid assembly reveals pervasive and unexpected patterns in allelic differences between homologous chromosomes. Firstly, we see striking clustering of indels, concentrated primarily in the repeat sequences in promoters. Secondly, both indels and their repeat-sequence substrate are enriched near replication origins. Finally, we reveal an intimate link between repeat sequences and indels, which argues that repeat length is under selective pressure for most eukaryotes. This connection is described by a concise one-parameter model that explains repeat-sequence abundance in C. albicans as a function of the indel rate, and provides a general framework to interpret repeat abundance in species ranging from bacteria to humans. Conclusions The phased genome assembly and insights into repeat plasticity will be valuable for better understanding allele-specific phenomena and genome evolution. PMID:24025428

  2. Billions of basepairs of recently expanded, repetitive sequences are eliminated from the somatic genome during copepod development.

    PubMed

    Sun, Cheng; Wyngaard, Grace; Walton, D Brian; Wichman, Holly A; Mueller, Rachel Lockridge

    2014-03-11

    Chromatin diminution is the programmed deletion of DNA from presomatic cell or nuclear lineages during development, producing single organisms that contain two different nuclear genomes. Phylogenetically diverse taxa undergo chromatin diminution--some ciliates, nematodes, copepods, and vertebrates. In cyclopoid copepods, chromatin diminution occurs in taxa with massively expanded germline genomes; depending on species, germline genome sizes range from 15 - 75 Gb, 12-74 Gb of which are lost from pre-somatic cell lineages at germline--soma differentiation. This is more than an order of magnitude more sequence than is lost from other taxa. To date, the sequences excised from copepods have not been analyzed using large-scale genomic datasets, and the processes underlying germline genomic gigantism in this clade, as well as the functional significance of chromatin diminution, have remained unknown. Here, we used high-throughput genomic sequencing and qPCR to characterize the germline and somatic genomes of Mesocyclops edax, a freshwater cyclopoid copepod with a germline genome of ~15 Gb and a somatic genome of ~3 Gb. We show that most of the excised DNA consists of repetitive sequences that are either 1) verifiable transposable elements (TEs), or 2) non-simple repeats of likely TE origin. Repeat elements in both genomes are skewed towards younger (i.e. less divergent) elements. Excised DNA is a non-random sample of the germline repeat element landscape; younger elements, and high frequency DNA transposons and LINEs, are disproportionately eliminated from the somatic genome. Our results suggest that germline genome expansion in M. edax reflects explosive repeat element proliferation, and that billions of base pairs of such repeats are deleted from the somatic genome every generation. Thus, we hypothesize that chromatin diminution is a mechanism that controls repeat element load, and that this load can evolve to be divergent between tissue types within single organisms.

  3. Billions of basepairs of recently expanded, repetitive sequences are eliminated from the somatic genome during copepod development

    PubMed Central

    2014-01-01

    Background Chromatin diminution is the programmed deletion of DNA from presomatic cell or nuclear lineages during development, producing single organisms that contain two different nuclear genomes. Phylogenetically diverse taxa undergo chromatin diminution — some ciliates, nematodes, copepods, and vertebrates. In cyclopoid copepods, chromatin diminution occurs in taxa with massively expanded germline genomes; depending on species, germline genome sizes range from 15 – 75 Gb, 12–74 Gb of which are lost from pre-somatic cell lineages at germline – soma differentiation. This is more than an order of magnitude more sequence than is lost from other taxa. To date, the sequences excised from copepods have not been analyzed using large-scale genomic datasets, and the processes underlying germline genomic gigantism in this clade, as well as the functional significance of chromatin diminution, have remained unknown. Results Here, we used high-throughput genomic sequencing and qPCR to characterize the germline and somatic genomes of Mesocyclops edax, a freshwater cyclopoid copepod with a germline genome of ~15 Gb and a somatic genome of ~3 Gb. We show that most of the excised DNA consists of repetitive sequences that are either 1) verifiable transposable elements (TEs), or 2) non-simple repeats of likely TE origin. Repeat elements in both genomes are skewed towards younger (i.e. less divergent) elements. Excised DNA is a non-random sample of the germline repeat element landscape; younger elements, and high frequency DNA transposons and LINEs, are disproportionately eliminated from the somatic genome. Conclusions Our results suggest that germline genome expansion in M. edax reflects explosive repeat element proliferation, and that billions of base pairs of such repeats are deleted from the somatic genome every generation. Thus, we hypothesize that chromatin diminution is a mechanism that controls repeat element load, and that this load can evolve to be divergent between tissue types within single organisms. PMID:24618421

  4. Evaluation of genetic diversity amongst Descurainia sophia L. genotypes by inter-simple sequence repeat (ISSR) marker.

    PubMed

    Saki, Sahar; Bagheri, Hedayat; Deljou, Ali; Zeinalabedini, Mehrshad

    2016-01-01

    Descurainia sophia is a valuable medicinal plant in family of Brassicaceae. To determine the range of diversity amongst D. sophia in Iran, 32 naturally distributed plants belonging to six natural populations of the Iranian plateau were investigated by inter-simple sequence repeat (ISSR) markers. The average percentage of polymorphism produced by 12 ISSR primers was 86 %. The PIC values for primers ranged from 0.22 to 0.40 and Rp values ranged between 6.5 and 19.9. The relative genetic diversity of the populations was not high (Gst =0.32). However, the value of gene flow revealed by the ISSR marker was high (Nm = 1.03). UPGMA clustering method based on Jaccard similarity coefficient grouped the genotypes into two major clusters. Graph results from Neighbor-Net Network generated after a 1000 bootstrap test using Jaccard coefficient, and STRUCTURE analysis confirmed the UPGMA clustering. The first three PCAs represented 57.31 % of the total variation. The high levels of genetic diversity were observed within populations, which is useful in breeding and conservation programs. ISSR is found to be an eligible marker to study genetic diversity of D. sophia.

  5. The Energy Landscapes of Repeat-Containing Proteins: Topology, Cooperativity, and the Folding Funnels of One-Dimensional Architectures

    PubMed Central

    Komives, Elizabeth A.; Wolynes, Peter G.

    2008-01-01

    Repeat-proteins are made up of near repetitions of 20– to 40–amino acid stretches. These polypeptides usually fold up into non-globular, elongated architectures that are stabilized by the interactions within each repeat and those between adjacent repeats, but that lack contacts between residues distant in sequence. The inherent symmetries both in primary sequence and three-dimensional structure are reflected in a folding landscape that may be analyzed as a quasi–one-dimensional problem. We present a general description of repeat-protein energy landscapes based on a formal Ising-like treatment of the elementary interaction energetics in and between foldons, whose collective ensemble are treated as spin variables. The overall folding properties of a complete “domain” (the stability and cooperativity of the repeating array) can be derived from this microscopic description. The one-dimensional nature of the model implies there are simple relations for the experimental observables: folding free-energy (ΔGwater) and the cooperativity of denaturation (m-value), which do not ordinarily apply for globular proteins. We show how the parameters for the “coarse-grained” description in terms of foldon spin variables can be extracted from more detailed folding simulations on perfectly funneled landscapes. To illustrate the ideas, we present a case-study of a family of tetratricopeptide (TPR) repeat proteins and quantitatively relate the results to the experimentally observed folding transitions. Based on the dramatic effect that single point mutations exert on the experimentally observed folding behavior, we speculate that natural repeat proteins are “poised” at particular ratios of inter- and intra-element interaction energetics that allow them to readily undergo structural transitions in physiologically relevant conditions, which may be intrinsically related to their biological functions. PMID:18483553

  6. MSDB: A Comprehensive Database of Simple Sequence Repeats.

    PubMed

    Avvaru, Akshay Kumar; Saxena, Saketh; Sowpati, Divya Tej; Mishra, Rakesh Kumar

    2017-06-01

    Microsatellites, also known as Simple Sequence Repeats (SSRs), are short tandem repeats of 1-6 nt motifs present in all genomes, particularly eukaryotes. Besides their usefulness as genome markers, SSRs have been shown to perform important regulatory functions, and variations in their length at coding regions are linked to several disorders in humans. Microsatellites show a taxon-specific enrichment in eukaryotic genomes, and some may be functional. MSDB (Microsatellite Database) is a collection of >650 million SSRs from 6,893 species including Bacteria, Archaea, Fungi, Plants, and Animals. This database is by far the most exhaustive resource to access and analyze SSR data of multiple species. In addition to exploring data in a customizable tabular format, users can view and compare the data of multiple species simultaneously using our interactive plotting system. MSDB is developed using the Django framework and MySQL. It is freely available at http://tdb.ccmb.res.in/msdb. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. A Genome-Wide Survey of the Microsatellite Content of the Globe Artichoke Genome and the Development of a Web-Based Database

    PubMed Central

    Portis, Ezio; Portis, Flavio; Valente, Luisa; Moglia, Andrea; Barchi, Lorenzo; Lanteri, Sergio; Acquadro, Alberto

    2016-01-01

    The recently acquired genome sequence of globe artichoke (Cynara cardunculus var. scolymus) has been used to catalog the genome’s content of simple sequence repeat (SSR) markers. More than 177,000 perfect SSRs were revealed, equivalent to an overall density across the genome of 244.5 SSRs/Mbp, but some 224,000 imperfect SSRs were also identified. About 21% of these SSRs were complex (two stretches of repeats separated by <100 nt). Some 73% of the SSRs were composed of dinucleotide motifs. The SSRs were categorized for the numbers of repeats present, their overall length and were allocated to their linkage group. A total of 4,761 perfect and 6,583 imperfect SSRs were present in 3,781 genes (14.11% of the total), corresponding to an overall density across the gene space of 32,5 and 44,9 SSRs/Mbp for perfect and imperfect motifs, respectively. A putative function has been assigned, using the gene ontology approach, to the set of genes harboring at least one SSR. The same search parameters were applied to reveal the SSR content of 14 other plant species for which genome sequence is available. Certain species-specific SSR motifs were identified, along with a hexa-nucleotide motif shared only with the other two Compositae species (sunflower (Helianthus annuus) and horseweed (Conyza canadensis)) included in the study. Finally, a database, called “Cynara cardunculus MicroSatellite DataBase” (CyMSatDB) was developed to provide a searchable interface to the SSR data. CyMSatDB facilitates the retrieval of SSR markers, as well as suggested forward and reverse primers, on the basis of genomic location, genomic vs genic context, perfect vs imperfect repeat, motif type, motif sequence and repeat number. The SSR markers were validated via an in silico based PCR analysis adopting two available assembled transcriptomes, derived from contrasting globe artichoke accessions, as templates. PMID:27648830

  8. Whole transcriptome analysis using next-generation sequencing of model species Setaria viridis to support C4 photosynthesis research.

    PubMed

    Xu, Jiajia; Li, Yuanyuan; Ma, Xiuling; Ding, Jianfeng; Wang, Kai; Wang, Sisi; Tian, Ye; Zhang, Hui; Zhu, Xin-Guang

    2013-09-01

    Setaria viridis is an emerging model species for genetic studies of C4 photosynthesis. Many basic molecular resources need to be developed to support for this species. In this paper, we performed a comprehensive transcriptome analysis from multiple developmental stages and tissues of S. viridis using next-generation sequencing technologies. Sequencing of the transcriptome from multiple tissues across three developmental stages (seed germination, vegetative growth, and reproduction) yielded a total of 71 million single end 100 bp long reads. Reference-based assembly using Setaria italica genome as a reference generated 42,754 transcripts. De novo assembly generated 60,751 transcripts. In addition, 9,576 and 7,056 potential simple sequence repeats (SSRs) covering S. viridis genome were identified when using the reference based assembled transcripts and the de novo assembled transcripts, respectively. This identified transcripts and SSR provided by this study can be used for both reverse and forward genetic studies based on S. viridis.

  9. Development of chromosome-specific markers with high polymorphism for allotetraploid cotton based on genome-wide characterization of simple sequence repeats in diploid cottons (Gossypium arboreum L. and Gossypium raimondii Ulbrich).

    PubMed

    Lu, Cairui; Zou, Changsong; Zhang, Youping; Yu, Daoqian; Cheng, Hailiang; Jiang, Pengfei; Yang, Wencui; Wang, Qiaolian; Feng, Xiaoxu; Prosper, Mtawa Andrew; Guo, Xiaoping; Song, Guoli

    2015-02-06

    Tetraploid cotton contains two sets of homologous chromosomes, the At- and Dt-subgenomes. Consequently, many markers in cotton were mapped to multiple positions during linkage genetic map construction, posing a challenge to anchoring linkage groups and mapping economically-important genes to particular chromosomes. Chromosome-specific markers could solve this problem. Recently, the genomes of two diploid species were sequenced whose progenitors were putative contributors of the At- and Dt-subgenomes to tetraploid cotton. These sequences provide a powerful tool for developing chromosome-specific markers given the high level of synteny among tetraploid and diploid cotton genomes. In this study, simple sequence repeats (SSRs) on each chromosome in the two diploid genomes were characterized. Chromosome-specific SSRs were developed by comparative analysis and proved to distinguish chromosomes. A total of 200,744 and 142,409 SSRs were detected on the 13 chromosomes of Gossypium arboreum L. and Gossypium raimondii Ulbrich, respectively. Chromosome-specific SSRs were obtained by comparing SSR flanking sequences from each chromosome with those from the other 25 chromosomes. The average was 7,996 per chromosome. To confirm their chromosome specificity, these SSRs were used to distinguish two homologous chromosomes in tetraploid cotton through linkage group construction. The chromosome-specific SSRs and previously-reported chromosome markers were grouped together, and no marker mapped to another homologous chromosome, proving that the chromosome-specific SSRs were unique and could distinguish homologous chromosomes in tetraploid cotton. Because longer dinucleotide AT-rich repeats were the most polymorphic in previous reports, the SSRs on each chromosome were sorted by motif type and repeat length for convenient selection. The primer sequences of all chromosome-specific SSRs were also made publicly available. Chromosome-specific SSRs are efficient tools for chromosome identification by anchoring linkage groups to particular chromosomes during genetic mapping and are especially useful in mapping of qualitative-trait genes or quantitative trait loci with just a few markers. The SSRs reported here will facilitate a number of genetic and genomic studies in cotton, including construction of high-density genetic maps, positional gene cloning, fingerprinting, and genetic diversity and comparative evolutionary analyses among Gossypium species.

  10. A hybrid swarm population of Pinus densiflora x P. sylvestris hybrids inferred from sequence analysis of chloroplast DNA and morphological characters

    USDA-ARS?s Scientific Manuscript database

    To confirm a hybrid swarm population of Pinus densiflora × P. sylvestris in Jilin, China and to study whether shoot apex morphology of 4-year old seedlings can be correlated with the sequence of a chloroplast DNA simple sequence repeat marker (cpDNA SSR), needles and seeds from P. densiflora, P. syl...

  11. Development of polymorphic genic-SSR markers by cDNA library sequencing in boxwood, Buxus spp. (Buxaceae)

    USDA-ARS?s Scientific Manuscript database

    Genic microsatellites or simple sequence repeat (genic-SSR) markers were developed in boxwood (Buxus taxa) for genetic diversity analysis, identification of taxa, and to facilitate breeding. cDNA libraries were developed from mRNA extracted from leaves of Buxus sempervirens ‘Vardar Valley’ and seque...

  12. Discovery and mapping of a new expressed sequence tag-single nucleotide polymorphism and simple sequence repeat panel for large-scale genetic studies and breeding of Theobroma cacao L.

    PubMed Central

    Allegre, Mathilde; Argout, Xavier; Boccara, Michel; Fouet, Olivier; Roguet, Yolande; Bérard, Aurélie; Thévenin, Jean Marc; Chauveau, Aurélie; Rivallan, Ronan; Clement, Didier; Courtois, Brigitte; Gramacho, Karina; Boland-Augé, Anne; Tahi, Mathias; Umaharan, Pathmanathan; Brunel, Dominique; Lanaud, Claire

    2012-01-01

    Theobroma cacao is an economically important tree of several tropical countries. Its genetic improvement is essential to provide protection against major diseases and improve chocolate quality. We discovered and mapped new expressed sequence tag-single nucleotide polymorphism (EST-SNP) and simple sequence repeat (SSR) markers and constructed a high-density genetic map. By screening 149 650 ESTs, 5246 SNPs were detected in silico, of which 1536 corresponded to genes with a putative function, while 851 had a clear polymorphic pattern across a collection of genetic resources. In addition, 409 new SSR markers were detected on the Criollo genome. Lastly, 681 new EST-SNPs and 163 new SSRs were added to the pre-existing 418 co-dominant markers to construct a large consensus genetic map. This high-density map and the set of new genetic markers identified in this study are a milestone in cocoa genomics and for marker-assisted breeding. The data are available at http://tropgenedb.cirad.fr. PMID:22210604

  13. Analysis of sequence diversity through internal transcribed spacers and simple sequence repeats to identify Dendrobium species.

    PubMed

    Liu, Y T; Chen, R K; Lin, S J; Chen, Y C; Chin, S W; Chen, F C; Lee, C Y

    2014-04-08

    The Orchidaceae is one of the largest and most diverse families of flowering plants. The Dendrobium genus has high economic potential as ornamental plants and for medicinal purposes. In addition, the species of this genus are able to produce large crops. However, many Dendrobium varieties are very similar in outward appearance, making it difficult to distinguish one species from another. This study demonstrated that the 12 Dendrobium species used in this study may be divided into 2 groups by internal transcribed spacer (ITS) sequence analysis. Red and yellow flowers may also be used to separate these species into 2 main groups. In particular, the deciduous characteristic is associated with the ITS genetic diversity of the A group. Of 53 designed simple sequence repeat (SSR) primer pairs, 7 pairs were polymorphic for polymerase chain reaction products that were amplified from a specific band. The results of this study demonstrate that these 7 SSR primer pairs may potentially be used to identify Dendrobium species and their progeny in future studies.

  14. Complete Chloroplast Genome of Pinus massoniana (Pinaceae): Gene Rearrangements, Loss of ndh Genes, and Short Inverted Repeats Contraction, Expansion.

    PubMed

    Ni, ZhouXian; Ye, YouJu; Bai, Tiandao; Xu, Meng; Xu, Li-An

    2017-09-11

    The chloroplast genome (CPG) of Pinus massoniana belonging to the genus Pinus (Pinaceae), which is a primary source of turpentine, was sequenced and analyzed in terms of gene rearrangements, ndh genes loss, and the contraction and expansion of short inverted repeats (IRs). P. massoniana CPG has a typical quadripartite structure that includes large single copy (LSC) (65,563 bp), small single copy (SSC) (53,230 bp) and two IRs (IRa and IRb, 485 bp). The 108 unique genes were identified, including 73 protein-coding genes, 31 tRNAs, and 4 rRNAs. Most of the 81 simple sequence repeats (SSRs) identified in CPG were mononucleotides motifs of A/T types and located in non-coding regions. Comparisons with related species revealed an inversion (21,556 bp) in the LSC region; P. massoniana CPG lacks all 11 intact ndh genes (four ndh genes lost completely; the five remained truncated as pseudogenes; and the other two ndh genes remain as pseudogenes because of short insertions or deletions). A pair of short IRs was found instead of large IRs, and size variations among pine species were observed, which resulted from short insertions or deletions and non-synchronized variations between "IRa" and "IRb". The results of phylogenetic analyses based on whole CPG sequences of 16 conifers indicated that the whole CPG sequences could be used as a powerful tool in phylogenetic analyses.

  15. Programmable DNA-binding proteins from Burkholderia provide a fresh perspective on the TALE-like repeat domain

    PubMed Central

    de Lange, Orlando; Wolf, Christina; Dietze, Jörn; Elsaesser, Janett; Morbitzer, Robert; Lahaye, Thomas

    2014-01-01

    The tandem repeats of transcription activator like effectors (TALEs) mediate sequence-specific DNA binding using a simple code. Naturally, TALEs are injected by Xanthomonas bacteria into plant cells to manipulate the host transcriptome. In the laboratory TALE DNA binding domains are reprogrammed and used to target a fused functional domain to a genomic locus of choice. Research into the natural diversity of TALE-like proteins may provide resources for the further improvement of current TALE technology. Here we describe TALE-like proteins from the endosymbiotic bacterium Burkholderia rhizoxinica, termed Bat proteins. Bat repeat domains mediate sequence-specific DNA binding with the same code as TALEs, despite less than 40% sequence identity. We show that Bat proteins can be adapted for use as transcription factors and nucleases and that sequence preferences can be reprogrammed. Unlike TALEs, the core repeats of each Bat protein are highly polymorphic. This feature allowed us to explore alternative strategies for the design of custom Bat repeat arrays, providing novel insights into the functional relevance of non-RVD residues. The Bat proteins offer fertile grounds for research into the creation of improved programmable DNA-binding proteins and comparative insights into TALE-like evolution. PMID:24792163

  16. Molecular diversity analysis of Tetradium ruticarpum (WuZhuYu) in China based on inter-primer binding site (iPBS) markers and inter-simple sequence repeat (ISSR) markers.

    PubMed

    Xu, Jing-Yuan; Zhu, Yan; Yi, Ze; Wu, Gang; Xie, Guo-Yong; Qin, Min-Jian

    2018-01-01

    "Wu zhu yu", which is obtained from the dried unripe fruits of Tetradium ruticarpum (A. Jussieu) T. G. Hartley, has been used as a traditional Chinese medicine for treatment of headaches, abdominal colic, and hypertension for thousands of years. The present study was designed to assess the molecular genetic diversity among 25 collected accessions of T. ruticarpum (Wu zhu yu in Chinese) from different areas of China, based on inter-primer binding site (iPBS) markers and inter-simple sequence repeat (ISSR) markers. Thirteen ISSR primers generated 151 amplification bands, of which 130 were polymorphic. Out of 165 bands that were amplified using 10 iPBS primers, 152 were polymorphic. The iPBS markers displayed a higher proportion of polymorphic loci (PPL = 92.5%) than the ISSR markers (PPL = 84.9%). The results showed that T. ruticarpum possessed high loci polymorphism and genetic differentiation occurred in this plant. The combined data of iPBS and ISSR markers scored on 25 accessions produced five clusters that approximately matched the geographic distribution of the species. The results indicated that both iPBS and ISSR markers were reliable and effective tools for analyzing the genetic diversity in T. ruticarpum. Copyright © 2018 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  17. The first genetic map of a synthesized allohexaploid Brassica with A, B and C genomes based on simple sequence repeat markers.

    PubMed

    Yang, S; Chen, S; Geng, X X; Yan, G; Li, Z Y; Meng, J L; Cowling, W A; Zhou, W J

    2016-04-01

    We present the first genetic map of an allohexaploid Brassica species, based on segregating microsatellite markers in a doubled haploid mapping population generated from a hybrid between two hexaploid parents. This study reports the first genetic map of trigenomic Brassica. A doubled haploid mapping population consisting of 189 lines was obtained via microspore culture from a hybrid H16-1 derived from a cross between two allohexaploid Brassica lines (7H170-1 and Y54-2). Simple sequence repeat primer pairs specific to the A genome (107), B genome (44) and C genome (109) were used to construct a genetic linkage map of the population. Twenty-seven linkage groups were resolved from 274 polymorphic loci on the A genome (109), B genome (49) and C genome (116) covering a total genetic distance of 3178.8 cM with an average distance between markers of 11.60 cM. This is the first genetic framework map for the artificially synthesized Brassica allohexaploids. The linkage groups represent the expected complement of chromosomes in the A, B and C genomes from the original diploid and tetraploid parents. This framework linkage map will be valuable for QTL analysis and future genetic improvement of a new allohexaploid Brassica species, and in improving our understanding of the genetic control of meiosis in new polyploids.

  18. Genetic diversity and gene differentiation among ten species of Zingiberaceae from Eastern India.

    PubMed

    Mohanty, Sujata; Panda, Manoj Kumar; Acharya, Laxmikanta; Nayak, Sanghamitra

    2014-08-01

    In the present study, genetic fingerprints of ten species of Zingiberaceae from eastern India were developed using PCR-based markers. 19 RAPD (Rapid Amplified polymorphic DNA), 8 ISSR (Inter Simple Sequence Repeats) and 8 SSR (Simple Sequence Repeats) primers were used to elucidate genetic diversity important for utilization, management and conservation. These primers produced 789 loci, out of which 773 loci were polymorphic (including 220 unique loci) and 16 monomorphic loci. Highest number of bands amplified (263) in Curcuma caesia whereas lowest (209) in Zingiber cassumunar. Though all the markers discriminated the species effectively, analysis of combined data of all markers resulted in better distinction of individual species. Highest number of loci was amplified with SSR primers with resolving power in a range of 17.4-39. Dendrogram based on three molecular data using unweighted pair group method with arithmetic mean classified all the species into two clusters. Mantle matrix correspondence test revealed high matrix correlation in all the cases. Correlation values for RAPD, ISSR and SSR were 0.797, 0.84 and 0.8, respectively, with combined data. In both the genera wild and cultivated species were completely separated from each other at genomic level. It also revealed distinct genetic identity between species of Curcuma and Zingiber. High genetic diversity documented in the present study provides a baseline data for optimization of conservation and breeding programme of the studied zingiberacious species.

  19. Development of EST-SSR markers for Taxillus nigrans (Loranthaceae) in southwestern China using next-generation sequencing1

    PubMed Central

    Miao, Ning; Zhang, Lei; Li, Maoping; Fan, Liqiang; Mao, Kangshan

    2017-01-01

    Premise of the study: We developed transcriptome microsatellite markers (simple sequence repeats) for Taxillus nigrans (Loranthaceae) to survey the genetic diversity and population structure of this species. Methods and Results: We used Illumina HiSeq data to reconstruct the transcriptome of T. nigrans by de novo assembly and used the transcriptome to develop a set of simple sequence repeat markers. Overall, 40 primer pairs were designed and tested; 19 of them amplified successfully and demonstrated polymorphisms. Two loci that detected null alleles were eliminated, and the remaining 17, which were subjected to further analyses, yielded two to 21 alleles per locus. Conclusions: The markers will serve as a basis for studies to assess the extent and pattern of distribution of genetic variation in T. nigrans, and they may also be useful in conservation genetic, ecological, and evolutionary studies of the genus Taxillus, a group of plant species of importance in Chinese traditional medicine. PMID:28924510

  20. Investigation of microsatellite instability in Turkish breast cancer patients.

    PubMed

    Demokan, Semra; Muslumanoglu, Mahmut; Yazici, H; Igci, Abdullah; Dalay, Nejat

    2002-01-01

    Multiple somatic and inherited genetic changes that lead to loss of growth control may contribute to the development of breast cancer. Microsatellites are tandem repeats of simple sequences that occur abundantly and at random throughout most eucaryotic genomes. Microsatellite instability (MI), characterized by the presence of random contractions or expansions in the length of simple sequence repeats or microsatellites, is observed in a variety of tumors. The aim of this study was to compare tumor DNA fingerprints with constitutional DNA fingerprints to investigate changes specific to breast cancer and evaluate its correlation with clinical characteristics. Tumor and normal tissue samples of 38 patients with breast cancer were investigated by comparing PCR-amplified microsatellite sequences D2S443 and D21S1436. Microsatellite instability at D21S1436 and D2S443 was found in 5 (13%) and 7 (18%) patients, respectively. Two patients displayed instability at both marker loci. No association was found between MI and age, family history, lymph node involvement and other clinical parameters.

  1. De novo transcriptome sequencing reveals a considerable bias in the incidence of simple sequence repeats towards the downstream of 'Pre-miRNAs' of black pepper.

    PubMed

    Joy, Nisha; Asha, Srinivasan; Mallika, Vijayan; Soniya, Eppurathu Vasudevan

    2013-01-01

    Next generation sequencing has an advantageon transformational development of species with limited available sequence data as it helps to decode the genome and transcriptome. We carried out the de novo sequencing using illuminaHiSeq™ 2000 to generate the first leaf transcriptome of black pepper (Piper nigrum L.), an important spice variety native to South India and also grown in other tropical regions. Despite the economic and biochemical importance of pepper, a scientifically rigorous study at the molecular level is far from complete due to lack of sufficient sequence information and cytological complexity of its genome. The 55 million raw reads obtained, when assembled using Trinity program generated 2,23,386 contigs and 1,28,157 unigenes. Reports suggest that the repeat-rich genomic regions give rise to small non-coding functional RNAs. MicroRNAs (miRNAs) are the most abundant type of non-coding regulatory RNAs. In spite of the widespread research on miRNAs, little is known about the hair-pin precursors of miRNAs bearing Simple Sequence Repeats (SSRs). We used the array of transcripts generated, for the in silico prediction and detection of '43 pre-miRNA candidates bearing different types of SSR motifs'. The analysis identified 3913 different types of SSR motifs with an average of one SSR per 3.04 MB of thetranscriptome. About 0.033% of the transcriptome constituted 'pre-miRNA candidates bearing SSRs'. The abundance, type and distribution of SSR motifs studied across the hair-pin miRNA precursors, showed a significant bias in the position of SSRs towards the downstream of predicted 'pre-miRNA candidates'. The catalogue of transcripts identified, together with the demonstration of reliable existence of SSRs in the miRNA precursors, permits future opportunities for understanding the genetic mechanism of black pepper and likely functions of 'tandem repeats' in miRNAs.

  2. Exploring the genome of the salt-marsh Spartina maritima (Poaceae, Chloridoideae) through BAC end sequence analysis.

    PubMed

    Ferreira de Carvalho, J; Chelaifa, H; Boutte, J; Poulain, J; Couloux, A; Wincker, P; Bellec, A; Fourment, J; Bergès, H; Salmon, A; Ainouche, M

    2013-12-01

    Spartina species play an important ecological role on salt marshes. Spartina maritima is an Old-World species distributed along the European and North-African Atlantic coasts. This hexaploid species (2n = 6x = 60, 2C = 3,700 Mb) hybridized with different Spartina species introduced from the American coasts, which resulted in the formation of new invasive hybrids and allopolyploids. Thus, S. maritima raises evolutionary and ecological interests. However, genomic information is dramatically lacking in this genus. In an effort to develop genomic resources, we analysed 40,641 high-quality bacterial artificial chromosome-end sequences (BESs), representing 26.7 Mb of the S. maritima genome. BESs were searched for sequence homology against known databases. A fraction of 16.91% of the BESs represents known repeats including a majority of long terminal repeat (LTR) retrotransposons (13.67%). Non-LTR retrotransposons represent 0.75%, DNA transposons 0.99%, whereas small RNA, simple repeats and low-complexity sequences account for 1.38% of the analysed BESs. In addition, 4,285 simple sequence repeats were detected. Using the coding sequence database of Sorghum bicolor, 6,809 BESs found homology accounting for 17.1% of all BESs. Comparative genomics with related genera reveals that the microsynteny is better conserved with S. bicolor compared to other sequenced Poaceae, where 37.6% of the paired matching BESs are correctly orientated on the chromosomes. We did not observe large macrosyntenic rearrangements using the mapping strategy employed. However, some regions appeared to have experienced rearrangements when comparing Spartina to Sorghum and to Oryza. This work represents the first overview of S. maritima genome regarding the respective coding and repetitive components. The syntenic relationships with other grass genomes examined here help clarifying evolution in Poaceae, S. maritima being a part of the poorly-known Chloridoideae sub-family.

  3. Simple Repeat-Primed PCR Analysis of the Myotonic Dystrophy Type 1 Gene in a Clinical Diagnostics Environment

    PubMed Central

    Dryland, Philippa A.; Doherty, Elaine; Love, Jennifer M.; Love, Donald R.

    2013-01-01

    Myotonic dystrophy type 1 is an autosomal dominant neuromuscular disorder that is caused by the expansion of a CTG trinucleotide repeat in the DMPK gene. The confirmation of a clinical diagnosis of DM-1 usually involves PCR amplification of the CTG repeat-containing region and subsequent sizing of the amplification products in order to deduce the number of CTG repeats. In the case of repeat hyperexpansions, Southern blotting is also used; however, the latter has largely been superseded by triplet repeat-primed PCR (TP-PCR), which does not yield a CTG repeat number but nevertheless provides a means of stratifying patients regarding their disease severity. We report here a combination of forward and reverse TP-PCR primers that allows for the simple and effective scoring of both the size of smaller alleles and the presence or absence of expanded repeat sequences. In addition, the CTG repeat-containing TP-PCR forward primer can target both the DM-1 and Huntington disease genes, thereby streamlining the work flow for confirmation of clinical diagnoses in a diagnostic laboratory. PMID:26317000

  4. Assessing Diversity of DNA Structure-Related Sequence Features in Prokaryotic Genomes

    PubMed Central

    Huang, Yongjie; Mrázek, Jan

    2014-01-01

    Prokaryotic genomes are diverse in terms of their nucleotide and oligonucleotide composition as well as presence of various sequence features that can affect physical properties of the DNA molecule. We present a survey of local sequence patterns which have a potential to promote non-canonical DNA conformations (i.e. different from standard B-DNA double helix) and interpret the results in terms of relationships with organisms' habitats, phylogenetic classifications, and other characteristics. Our present work differs from earlier similar surveys not only by investigating a wider range of sequence patterns in a large number of genomes but also by using a more realistic null model to assess significant deviations. Our results show that simple sequence repeats and Z-DNA-promoting patterns are generally suppressed in prokaryotic genomes, whereas palindromes and inverted repeats are over-represented. Representation of patterns that promote Z-DNA and intrinsic DNA curvature increases with increasing optimal growth temperature (OGT), and decreases with increasing oxygen requirement. Additionally, representations of close direct repeats, palindromes and inverted repeats exhibit clear negative trends with increasing OGT. The observed relationships with environmental characteristics, particularly OGT, suggest possible evolutionary scenarios of structural adaptation of DNA to particular environmental niches. PMID:24408877

  5. The complete chloroplast genome sequence of Epipremnum aureum and its comparative analysis among eight Araceae species

    PubMed Central

    Han, Limin; Chen, Chen; Wang, Zhezhi

    2018-01-01

    Epipremnum aureum is an important foliage plant in the Araceae family. In this study, we have sequenced the complete chloroplast genome of E. aureum by using Illumina Hiseq sequencing platforms. This genome is a double-stranded circular DNA sequence of 164,831 bp that contains 35.8% GC. The two inverted repeats (IRa and IRb; 26,606 bp) are spaced by a small single-copy region (22,868 bp) and a large single-copy region (88,751 bp). The chloroplast genome has 131 (113 unique) functional genes, including 86 (79 unique) protein-coding genes, 37 (30 unique) tRNA genes, and eight (four unique) rRNA genes. Tandem repeats comprise the majority of the 43 long repetitive sequences. In addition, 111 simple sequence repeats are present, with mononucleotides being the most common type and di- and tetranucleotides being infrequent events. Positive selection pressure on rps12 in the E. aureum chloroplast has been demonstrated via synonymous and nonsynonymous substitution rates and selection pressure sites analyses. Ycf15 and infA are pseudogenes in this species. We constructed a Maximum Likelihood phylogenetic tree based on the complete chloroplast genomes of 38 species from 13 families. Those results strongly indicated that E. aureum is positioned as the sister of Colocasia esculenta within the Araceae family. This work may provide information for further study of the molecular phylogenetic relationships within Araceae, as well as molecular markers and breeding novel varieties by chloroplast genetic-transformation of E. aureum in particular. PMID:29529038

  6. Genetic variation assessment of acid lime accessions collected from south of Iran using SSR and ISSR molecular markers.

    PubMed

    Sharafi, Ata Allah; Abkenar, Asad Asadi; Sharafi, Ali; Masaeli, Mohammad

    2016-01-01

    Iran has a long history of acid lime cultivation and propagation. In this study, genetic variation in 28 acid lime accessions from five regions of south of Iran, and their relatedness with other 19 citrus cultivars were analyzed using Simple Sequence Repeat (SSR) and Inter-Simple Sequence Repeat (ISSR) molecular markers. Nine primers for SSR and nine ISSR primers were used for allele scoring. In total, 49 SSR and 131 ISSR polymorphic alleles were detected. Cluster analysis of SSR and ISSR data showed that most of the acid lime accessions (19 genotypes) have hybrid origin and genetically distance with nucellar of Mexican lime (9 genotypes). As nucellar of Mexican lime are susceptible to phytoplasma, these acid lime genotypes can be used to evaluate their tolerance against biotic constricts like lime "witches' broom disease".

  7. A set of tetra-nucleotide core motif SSR markers for efficient identification of potato (Solanum tuberosum) cultivars.

    PubMed

    Kishine, Masahiro; Tsutsumi, Katsuji; Kitta, Kazumi

    2017-12-01

    Simple sequence repeat (SSR) is a popular tool for individual fingerprinting. The long-core motif (e.g. tetra-, penta-, and hexa-nucleotide) simple sequence repeats (SSRs) are preferred because they make it easier to separate and distinguish neighbor alleles. In the present study, a new set of 8 tetra-nucleotide SSRs in potato ( Solanum tuberosum ) is reported. By using these 8 markers, 72 out of 76 cultivars obtained from Japan and the United States were clearly discriminated, while two pairs, both of which arose from natural variation, showed identical profiles. The combined probability of identity between two random cultivars for the set of 8 SSR markers was estimated to be 1.10 × 10 -8 , confirming the usefulness of the proposed SSR markers for fingerprinting analyses of potato.

  8. Short Communication: Genetic linkage map of Cucurbita maxima with molecular and morphological markers.

    PubMed

    Ge, Y; Li, X; Yang, X X; Cui, C S; Qu, S P

    2015-05-22

    Cucurbita maxima is one of the most widely cultivated vegetables in China and exhibits distinct morphological characteristics. In this study, genetic linkage analysis with 57 simple-sequence repeats, 21 amplified fragment length polymorphisms, 3 random-amplified polymorphic DNA, and one morphological marker revealed 20 genetic linkage groups of C. maxima covering a genetic distance of 991.5 cM with an average of 12.1 cM between adjacent markers. Genetic linkage analysis identified the simple-sequence repeat marker 'PU078072' 5.9 cM away from the locus 'Rc', which controls rind color. The genetic map in the present study will be useful for better mapping, tagging, and cloning of quantitative trait loci/gene(s) affecting economically important traits and for breeding new varieties of C. maxima through marker-assisted selection.

  9. Genetic diversity of Pinus nigra Arn. populations in Southern Spain and Northern Morocco revealed by inter-simple sequence repeat profiles.

    PubMed

    Rubio-Moraga, Angela; Candel-Perez, David; Lucas-Borja, Manuel E; Tiscar, Pedro A; Viñegla, Benjamin; Linares, Juan C; Gómez-Gómez, Lourdes; Ahrazem, Oussama

    2012-01-01

    Eight Pinus nigra Arn. populations from Southern Spain and Northern Morocco were examined using inter-simple sequence repeat markers to characterize the genetic variability amongst populations. Pair-wise population genetic distance ranged from 0.031 to 0.283, with a mean of 0.150 between populations. The highest inter-population average distance was between PaCU from Cuenca and YeCA from Cazorla, while the lowest distance was between TaMO from Morocco and MA Sierra Mágina populations. Analysis of molecular variance (AMOVA) and Nei's genetic diversity analyses revealed higher genetic variation within the same population than among different populations. Genetic differentiation (Gst) was 0.233. Cuenca showed the highest Nei's genetic diversity followed by the Moroccan region, Sierra Mágina, and Cazorla region. However, clustering of populations was not in accordance with their geographical locations. Principal component analysis showed the presence of two major groups-Group 1 contained all populations from Cuenca while Group 2 contained populations from Cazorla, Sierra Mágina and Morocco-while Bayesian analysis revealed the presence of three clusters. The low genetic diversity observed in PaCU and YeCA is probably a consequence of inappropriate management since no estimation of genetic variability was performed before the silvicultural treatments. Data indicates that the inter-simple sequence repeat (ISSR) method is sufficiently informative and powerful to assess genetic variability among populations of P. nigra.

  10. Genetic Diversity of Pinus nigra Arn. Populations in Southern Spain and Northern Morocco Revealed By Inter-Simple Sequence Repeat Profiles †

    PubMed Central

    Rubio-Moraga, Angela; Candel-Perez, David; Lucas-Borja, Manuel E.; Tiscar, Pedro A.; Viñegla, Benjamin; Linares, Juan C.; Gómez-Gómez, Lourdes; Ahrazem, Oussama

    2012-01-01

    Eight Pinus nigra Arn. populations from Southern Spain and Northern Morocco were examined using inter-simple sequence repeat markers to characterize the genetic variability amongst populations. Pair-wise population genetic distance ranged from 0.031 to 0.283, with a mean of 0.150 between populations. The highest inter-population average distance was between PaCU from Cuenca and YeCA from Cazorla, while the lowest distance was between TaMO from Morocco and MA Sierra Mágina populations. Analysis of molecular variance (AMOVA) and Nei’s genetic diversity analyses revealed higher genetic variation within the same population than among different populations. Genetic differentiation (Gst) was 0.233. Cuenca showed the highest Nei’s genetic diversity followed by the Moroccan region, Sierra Mágina, and Cazorla region. However, clustering of populations was not in accordance with their geographical locations. Principal component analysis showed the presence of two major groups—Group 1 contained all populations from Cuenca while Group 2 contained populations from Cazorla, Sierra Mágina and Morocco—while Bayesian analysis revealed the presence of three clusters. The low genetic diversity observed in PaCU and YeCA is probably a consequence of inappropriate management since no estimation of genetic variability was performed before the silvicultural treatments. Data indicates that the inter-simple sequence repeat (ISSR) method is sufficiently informative and powerful to assess genetic variability among populations of P. nigra. PMID:22754321

  11. Simple Sequence Repeats Provide a Substrate for Phenotypic Variation in the Neurospora crassa Circadian Clock

    PubMed Central

    Michael, Todd P.; Park, Sohyun; Kim, Tae-Sung; Booth, Jim; Byer, Amanda; Sun, Qi; Chory, Joanne; Lee, Kwangwon

    2007-01-01

    Background WHITE COLLAR-1 (WC-1) mediates interactions between the circadian clock and the environment by acting as both a core clock component and as a blue light photoreceptor in Neurospora crassa. Loss of the amino-terminal polyglutamine (NpolyQ) domain in WC-1 results in an arrhythmic circadian clock; this data is consistent with this simple sequence repeat (SSR) being essential for clock function. Methodology/Principal Findings Since SSRs are often polymorphic in length across natural populations, we reasoned that investigating natural variation of the WC-1 NpolyQ may provide insight into its role in the circadian clock. We observed significant phenotypic variation in the period, phase and temperature compensation of circadian regulated asexual conidiation across 143 N. crassa accessions. In addition to the NpolyQ, we identified two other simple sequence repeats in WC-1. The sizes of all three WC-1 SSRs correlated with polymorphisms in other clock genes, latitude and circadian period length. Furthermore, in a cross between two N. crassa accessions, the WC-1 NpolyQ co-segregated with period length. Conclusions/Significance Natural variation of the WC-1 NpolyQ suggests a mechanism by which period length can be varied and selected for by the local environment that does not deleteriously affect WC-1 activity. Understanding natural variation in the N. crassa circadian clock will facilitate an understanding of how fungi exploit their environments. PMID:17726525

  12. Typing Clostridium difficile strains based on tandem repeat sequences

    PubMed Central

    2009-01-01

    Background Genotyping of epidemic Clostridium difficile strains is necessary to track their emergence and spread. Portability of genotyping data is desirable to facilitate inter-laboratory comparisons and epidemiological studies. Results This report presents results from a systematic screen for variation in repetitive DNA in the genome of C. difficile. We describe two tandem repeat loci, designated 'TR6' and 'TR10', which display extensive sequence variation that may be useful for sequence-based strain typing. Based on an investigation of 154 C. difficile isolates comprising 75 ribotypes, tandem repeat sequencing demonstrated excellent concordance with widely used PCR ribotyping and equal discriminatory power. Moreover, tandem repeat sequences enabled the reconstruction of the isolates' largely clonal population structure and evolutionary history. Conclusion We conclude that sequence analysis of the two repetitive loci introduced here may be highly useful for routine typing of C. difficile. Tandem repeat sequence typing resolves phylogenetic diversity to a level equivalent to PCR ribotypes. DNA sequences may be stored in databases accessible over the internet, obviating the need for the exchange of reference strains. PMID:19133124

  13. Sequence-structure correlations in silk: Poly-Ala repeat of N. clavipes MaSp1 is naturally optimized at a critical length scale.

    PubMed

    Bratzel, Graham; Buehler, Markus J

    2012-03-01

    Spider silk is a self-assembling biopolymer that outperforms many known materials in terms of its mechanical performance despite being constructed from simple and inferior building blocks. While experimental studies have shown that the molecular structure of silk has a direct influence on the stiffness, toughness, and failure strength of silk, few molecular-level analyses of the nanostructure of silk assemblies in particular under variations of genetic sequences have been reported. Here we report atomistic-level structures of the MaSp1 protein from the Nephila Clavipes spider dragline silk sequence, obtained using an in silico approach based on replica exchange molecular dynamics (REMD) and explicit water molecular dynamics. We apply this method to study the effects of a systematic variation of the poly-alanine repeat lengths, a parameter controlled by the genetic makeup of silk, on the resulting molecular structure of silk at the nanoscale. Confirming earlier experimental and computational work, a structural analysis reveals that poly-alanine regions in silk predominantly form distinct and orderly β-sheet crystal domains while disorderly regions are formed by glycine-rich repeats that consist of 3(10)-helix type structures and β-turns. Our predictions are directly validated against experimental data based on dihedral angle pair calculations presented in Ramachandran plots combined with an analysis of the secondary structure content. The key result of our study is our finding of a strong dependence of the resulting silk nanostructure depending on the poly-alanine length. We observe that the wildtype poly-alanine repeat length of six residues defines a critical minimum length that consistently results in clearly defined β-sheet nanocrystals. For poly-alanine lengths below six, the β-sheet nanocrystals are not well-defined or not visible at all, while for poly-alanine lengths at and above six, the characteristic nanocomposite structure of silk emerges with no significant improvement of the quality of the β-sheet nanocrystal geometry. We present a simple biophysical model that explains these computational observations based on the mechanistic insight gained from the molecular simulations. Our findings set the stage for understanding how variations in the spidroin sequence can be used to engineer the structure and thereby functional properties of this biological superfiber, and present a design strategy for the genetic optimization of spidroins for enhanced mechanical properties. The approach used here may also find application in the design of other self-assembled molecular structures and fibers and in particular biologically inspired or completely synthetic systems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. The complete chloroplast genome sequence of Actinidia arguta using the PacBio RS II platform

    PubMed Central

    Lin, Miaomiao; Qi, Xiujuan; Chen, Jinyong; Sun, Leiming; Zhong, Yunpeng; Fang, Jinbao; Hu, Chungen

    2018-01-01

    Actinidia arguta is the most basal species in a phylogenetically and economically important genus in the family Actinidiaceae. To better understand the molecular basis of the Actinidia arguta chloroplast (cp), we sequenced the complete cp genome from A. arguta using Illumina and PacBio RS II sequencing technologies. The cp genome from A. arguta was 157,611 bp in length and composed of a pair of 24,232 bp inverted repeats (IRs) separated by a 20,463 bp small single copy region (SSC) and an 88,684 bp large single copy region (LSC). Overall, the cp genome contained 113 unique genes. The cp genomes from A. arguta and three other Actinidia species from GenBank were subjected to a comparative analysis. Indel mutation events and high frequencies of base substitution were identified, and the accD and ycf2 genes showed a high degree of variation within Actinidia. Forty-seven simple sequence repeats (SSRs) and 155 repetitive structures were identified, further demonstrating the rapid evolution in Actinidia. The cp genome analysis and the identification of variable loci provide vital information for understanding the evolution and function of the chloroplast and for characterizing Actinidia population genetics. PMID:29795601

  15. Identification and characterization of dinucleotide repeat (CA)[sub n] markers for genetic mapping in dog

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostrander, E.A.; Sprague, G.F. Jr.; Rine, J.

    1993-04-01

    A large block of simple sequence repeat (SSR) polymorphisms for the dog genome has been isolated and characterized. Screening of primary libraries by conventional hybridization methods as well as by screening of enriched marker-selected libraries led to the isolation of a large number of genomic clones that contained (CA)[sub n] repeats. The sequences of 101 clones showed that the size and complexity of (CA)[sub n] repeats in the dog genome were similar to those reported for these markers in the human genome. Detailed analysis of a representative subset of these markers revealed that most markers were moderately to highly polymorphic,more » with PIC values exceeding 0.70 for 33% of the markers tested. An association between higher PIC values and markers containing longer (CA)[sub n] repeats was observed in these studies, as previously noted for similar markers in the human genome. A list of primer sequences that tag each characterized marker is provided, and a comprehensive system of nomenclature for the dog genome is suggested. 28 refs., 4 figs., 2 tabs.« less

  16. Development of chloroplast simple sequence repeats (cpSSRs) for the intraspecific study of Gracilaria tenuistipitata (Gracilariales, Rhodophyta) from different populations

    PubMed Central

    2014-01-01

    Background Gracilaria tenuistipitata is an agarophyte with substantial economic potential because of its high growth rate and tolerance to a wide range of environment factors. This red seaweed is intensively cultured in China for the production of agar and fodder for abalone. Microsatellite markers were developed from the chloroplast genome of G. tenuistipitata var. liui to differentiate G. tenuistipitata obtained from six different localities: four from Peninsular Malaysia, one from Thailand and one from Vietnam. Eighty G. tenuistipitata specimens were analyzed using eight simple sequence repeat (SSR) primer-pairs that we developed for polymerase chain reaction (PCR) amplification. Findings Five mononucleotide primer-pairs and one trinucleotide primer-pair exhibited monomorphic alleles, whereas the other two primer-pairs separated the G. tenuistipitata specimens into two main clades. G. tenuistipitata from Thailand and Vietnam were grouped into one clade, and the populations from Batu Laut, Middle Banks and Kuah (Malaysia) were grouped into another clade. The combined dataset of these two primer-pairs separated G. tenuistipitata obtained from Kelantan, Malaysia from that obtained from other localities. Conclusions Based on the variations in repeated nucleotides of microsatellite markers, our results suggested that the populations of G. tenuistipitata were distributed into two main geographical regions: (i) populations in the west coast of Peninsular Malaysia and (ii) populations facing the South China Sea. The correct identification of G. tenuistipitata strains with traits of high economic potential will be advantageous for the mass cultivation of seaweeds. PMID:24490797

  17. Genetic variation patterns of American chestnut populations at EST-SSRs

    Treesearch

    Oliver Gailing; C. Dana Nelson

    2017-01-01

    The objective of this study is to analyze patterns of genetic variation at genic expressed sequence tag - simple sequence repeats (EST-SSRs) and at chloroplast DNA markers in populations of American chestnut (Castanea dentata Borkh.) to assist in conservation and breeding efforts. Allelic diversity at EST-SSRs decreased significantly from southwest to northeast along...

  18. Development of genic-SSR markers by deep transcriptome sequencing in pigeonpea [Cajanus cajan (L.) Millspaugh].

    PubMed

    Dutta, Sutapa; Kumawat, Giriraj; Singh, Bikram P; Gupta, Deepak K; Singh, Sangeeta; Dogra, Vivek; Gaikwad, Kishor; Sharma, Tilak R; Raje, Ranjeet S; Bandhopadhya, Tapas K; Datta, Subhojit; Singh, Mahendra N; Bashasab, Fakrudin; Kulwal, Pawan; Wanjari, K B; K Varshney, Rajeev; Cook, Douglas R; Singh, Nagendra K

    2011-01-20

    Pigeonpea [Cajanus cajan (L.) Millspaugh], one of the most important food legumes of semi-arid tropical and subtropical regions, has limited genomic resources, particularly expressed sequence based (genic) markers. We report a comprehensive set of validated genic simple sequence repeat (SSR) markers using deep transcriptome sequencing, and its application in genetic diversity analysis and mapping. In this study, 43,324 transcriptome shotgun assembly unigene contigs were assembled from 1.696 million 454 GS-FLX sequence reads of separate pooled cDNA libraries prepared from leaf, root, stem and immature seed of two pigeonpea varieties, Asha and UPAS 120. A total of 3,771 genic-SSR loci, excluding homopolymeric and compound repeats, were identified; of which 2,877 PCR primer pairs were designed for marker development. Dinucleotide was the most common repeat motif with a frequency of 60.41%, followed by tri- (34.52%), hexa- (2.62%), tetra- (1.67%) and pentanucleotide (0.76%) repeat motifs. Primers were synthesized and tested for 772 of these loci with repeat lengths of ≥ 18 bp. Of these, 550 markers were validated for consistent amplification in eight diverse pigeonpea varieties; 71 were found to be polymorphic on agarose gel electrophoresis. Genetic diversity analysis was done on 22 pigeonpea varieties and eight wild species using 20 highly polymorphic genic-SSR markers. The number of alleles at these loci ranged from 4-10 and the polymorphism information content values ranged from 0.46 to 0.72. Neighbor-joining dendrogram showed distinct separation of the different groups of pigeonpea cultivars and wild species. Deep transcriptome sequencing of the two parental lines helped in silico identification of polymorphic genic-SSR loci to facilitate the rapid development of an intra-species reference genetic map, a subset of which was validated for expected allelic segregation in the reference mapping population. We developed 550 validated genic-SSR markers in pigeonpea using deep transcriptome sequencing. From these, 20 highly polymorphic markers were used to evaluate the genetic relationship among species of the genus Cajanus. A comprehensive set of genic-SSR markers was developed as an important genomic resource for diversity analysis and genetic mapping in pigeonpea.

  19. Development of genic-SSR markers by deep transcriptome sequencing in pigeonpea [Cajanus cajan (L.) Millspaugh

    PubMed Central

    2011-01-01

    Background Pigeonpea [Cajanus cajan (L.) Millspaugh], one of the most important food legumes of semi-arid tropical and subtropical regions, has limited genomic resources, particularly expressed sequence based (genic) markers. We report a comprehensive set of validated genic simple sequence repeat (SSR) markers using deep transcriptome sequencing, and its application in genetic diversity analysis and mapping. Results In this study, 43,324 transcriptome shotgun assembly unigene contigs were assembled from 1.696 million 454 GS-FLX sequence reads of separate pooled cDNA libraries prepared from leaf, root, stem and immature seed of two pigeonpea varieties, Asha and UPAS 120. A total of 3,771 genic-SSR loci, excluding homopolymeric and compound repeats, were identified; of which 2,877 PCR primer pairs were designed for marker development. Dinucleotide was the most common repeat motif with a frequency of 60.41%, followed by tri- (34.52%), hexa- (2.62%), tetra- (1.67%) and pentanucleotide (0.76%) repeat motifs. Primers were synthesized and tested for 772 of these loci with repeat lengths of ≥18 bp. Of these, 550 markers were validated for consistent amplification in eight diverse pigeonpea varieties; 71 were found to be polymorphic on agarose gel electrophoresis. Genetic diversity analysis was done on 22 pigeonpea varieties and eight wild species using 20 highly polymorphic genic-SSR markers. The number of alleles at these loci ranged from 4-10 and the polymorphism information content values ranged from 0.46 to 0.72. Neighbor-joining dendrogram showed distinct separation of the different groups of pigeonpea cultivars and wild species. Deep transcriptome sequencing of the two parental lines helped in silico identification of polymorphic genic-SSR loci to facilitate the rapid development of an intra-species reference genetic map, a subset of which was validated for expected allelic segregation in the reference mapping population. Conclusion We developed 550 validated genic-SSR markers in pigeonpea using deep transcriptome sequencing. From these, 20 highly polymorphic markers were used to evaluate the genetic relationship among species of the genus Cajanus. A comprehensive set of genic-SSR markers was developed as an important genomic resource for diversity analysis and genetic mapping in pigeonpea. PMID:21251263

  20. Development, characterization and cross species amplification of polymorphic microsatellite markers from expressed sequence tags of turmeric (Curcuma longa L.).

    PubMed

    Siju, S; Dhanya, K; Syamkumar, S; Sasikumar, B; Sheeja, T E; Bhat, A I; Parthasarathy, V A

    2010-02-01

    Expressed sequence tags (ESTs) from turmeric (Curcuma longa L.) were used for the screening of type and frequency of Class I (hypervariable) simple sequence repeats (SSRs). A total of 231 microsatellite repeats were detected from 12,593 EST sequences of turmeric after redundancy elimination. The average density of Class I SSRs accounts to one SSR per 17.96 kb of EST. Mononucleotides were the most abundant class of microsatellite repeat in turmeric ESTs followed by trinucleotides. A robust set of 17 polymorphic EST-SSRs were developed and used for evaluating 20 turmeric accessions. The number of alleles detected ranged from 3 to 8 per loci. The developed markers were also evaluated in 13 related species of C. longa confirming high rate (100%) of cross species transferability. The polymorphic microsatellite markers generated from this study could be used for genetic diversity analysis and resolving the taxonomic confusion prevailing in the genus.

  1. Comparative chloroplast genomics: Analyses including new sequencesfrom the angiosperms Nuphar advena and Ranunculus macranthus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raubeso, Linda A.; Peery, Rhiannon; Chumley, Timothy W.

    2007-03-01

    The number of completely sequenced plastid genomes available is growing rapidly. This new array of sequences presents new opportunities to perform comparative analyses. In comparative studies, it is most useful to compare across wide phylogenetic spans and, within angiosperms, to include representatives from basally diverging lineages such as the new genomes reported here: Nuphar advena (from a basal-most lineage) and Ranunculus macranthus (from the basal group of eudicots). We report these two new plastid genome sequences and make comparisons (within angiosperms, seed plants, or all photosynthetic lineages) to evaluate features such as the status of ycf15 and ycf68 as proteinmore » coding genes, the distribution of simple sequence repeats (SSRs) and longer dispersed repeats (SDR), and patterns of nucleotide composition.« less

  2. Simple tools for assembling and searching high-density picolitre pyrophosphate sequence data.

    PubMed

    Parker, Nicolas J; Parker, Andrew G

    2008-04-18

    The advent of pyrophosphate sequencing makes large volumes of sequencing data available at a lower cost than previously possible. However, the short read lengths are difficult to assemble and the large dataset is difficult to handle. During the sequencing of a virus from the tsetse fly, Glossina pallidipes, we found the need for tools to search quickly a set of reads for near exact text matches. A set of tools is provided to search a large data set of pyrophosphate sequence reads under a "live" CD version of Linux on a standard PC that can be used by anyone without prior knowledge of Linux and without having to install a Linux setup on the computer. The tools permit short lengths of de novo assembly, checking of existing assembled sequences, selection and display of reads from the data set and gathering counts of sequences in the reads. Demonstrations are given of the use of the tools to help with checking an assembly against the fragment data set; investigating homopolymer lengths, repeat regions and polymorphisms; and resolving inserted bases caused by incomplete chain extension. The additional information contained in a pyrophosphate sequencing data set beyond a basic assembly is difficult to access due to a lack of tools. The set of simple tools presented here would allow anyone with basic computer skills and a standard PC to access this information.

  3. Phylogeny and strain typing of Escherichia coli, inferred from variation at mononucleotide repeat loci.

    PubMed

    Diamant, Eran; Palti, Yniv; Gur-Arie, Riva; Cohen, Helit; Hallerman, Eric M; Kashi, Yechezkel

    2004-04-01

    Multilocus sequencing of housekeeping genes has been used previously for bacterial strain typing and for inferring evolutionary relationships among strains of Escherichia coli. In this study, we used shorter intergenic sequences that contained simple sequence repeats (SSRs) of repeating mononucleotide motifs (mononucleotide repeats [MNRs]) to infer the phylogeny of pathogenic and commensal E. coli strains. Seven noncoding loci (four MNRs and three non-SSRs) were sequenced in 27 strains, including enterohemorrhagic (six isolates of O157:H7), enteropathogenic, enterotoxigenic, B, and K-12 strains. The four MNRs were also sequenced in 20 representative strains of the E. coli reference (ECOR) collection. Sequence polymorphism was significantly higher at the MNR loci, including the flanking sequences, indicating a higher mutation rate in the sequences flanking the MNR tracts. The four MNR loci were amplifiable by PCR in the standard ECOR A, B1, and D groups, but only one (yaiN) in the B2 group was amplified, which is consistent with previous studies that suggested that B2 is the most ancient group. High sequence compatibility was found between the four MNR loci, indicating that they are in the same clonal frame. The phylogenetic trees that were constructed from the sequence data were in good agreement with those of previous studies that used multilocus enzyme electrophoresis. The results demonstrate that MNR loci are useful for inferring phylogenetic relationships and provide much higher sequence variation than housekeeping genes. Therefore, the use of MNR loci for multilocus sequence typing should prove efficient for clinical diagnostics, epidemiology, and evolutionary study of bacteria.

  4. Phylogeny and Strain Typing of Escherichia coli, Inferred from Variation at Mononucleotide Repeat Loci

    PubMed Central

    Diamant, Eran; Palti, Yniv; Gur-Arie, Riva; Cohen, Helit; Hallerman, Eric M.; Kashi, Yechezkel

    2004-01-01

    Multilocus sequencing of housekeeping genes has been used previously for bacterial strain typing and for inferring evolutionary relationships among strains of Escherichia coli. In this study, we used shorter intergenic sequences that contained simple sequence repeats (SSRs) of repeating mononucleotide motifs (mononucleotide repeats [MNRs]) to infer the phylogeny of pathogenic and commensal E. coli strains. Seven noncoding loci (four MNRs and three non-SSRs) were sequenced in 27 strains, including enterohemorrhagic (six isolates of O157:H7), enteropathogenic, enterotoxigenic, B, and K-12 strains. The four MNRs were also sequenced in 20 representative strains of the E. coli reference (ECOR) collection. Sequence polymorphism was significantly higher at the MNR loci, including the flanking sequences, indicating a higher mutation rate in the sequences flanking the MNR tracts. The four MNR loci were amplifiable by PCR in the standard ECOR A, B1, and D groups, but only one (yaiN) in the B2 group was amplified, which is consistent with previous studies that suggested that B2 is the most ancient group. High sequence compatibility was found between the four MNR loci, indicating that they are in the same clonal frame. The phylogenetic trees that were constructed from the sequence data were in good agreement with those of previous studies that used multilocus enzyme electrophoresis. The results demonstrate that MNR loci are useful for inferring phylogenetic relationships and provide much higher sequence variation than housekeeping genes. Therefore, the use of MNR loci for multilocus sequence typing should prove efficient for clinical diagnostics, epidemiology, and evolutionary study of bacteria. PMID:15066845

  5. The complete chloroplast genome sequence of Mahonia bealei (Berberidaceae) reveals a significant expansion of the inverted repeat and phylogenetic relationship with other angiosperms.

    PubMed

    Ma, Ji; Yang, Bingxian; Zhu, Wei; Sun, Lianli; Tian, Jingkui; Wang, Xumin

    2013-10-10

    Mahonia bealei (Berberidaceae) is a frequently-used traditional Chinese medicinal plant with efficient anti-inflammatory ability. This plant is one of the sources of berberine, a new cholesterol-lowering drug with anti-diabetic activity. We have sequenced the complete nucleotide sequence of the chloroplast (cp) genome of M. bealei. The complete cp genome of M. bealei is 164,792 bp in length, and has a typical structure with large (LSC 73,052 bp) and small (SSC 18,591 bp) single-copy regions separated by a pair of inverted repeats (IRs 36,501 bp) of large size. The Mahonia cp genome contains 111 unique genes and 39 genes are duplicated in the IR regions. The gene order and content of M. bealei are almost unarranged which is consistent with the hypothesis that large IRs stabilize cp genome and reduce gene loss-and-gain probabilities during evolutionary process. A large IR expansion of over 12 kb has occurred in M. bealei, 15 genes (rps19, rpl22, rps3, rpl16, rpl14, rps8, infA, rpl36, rps11, petD, petB, psbH, psbN, psbT and psbB) have expanded to have an additional copy in the IRs. The IR expansion rearrangement occurred via a double-strand DNA break and subsequence repair, which is different from the ordinary gene conversion mechanism. Repeat analysis identified 39 direct/inverted repeats 30 bp or longer with a sequence identity ≥ 90%. Analysis also revealed 75 simple sequence repeat (SSR) loci and almost all are composed of A or T, contributing to a distinct bias in base composition. Comparison of protein-coding sequences with ESTs reveals 9 putative RNA edits and 5 of them resulted in non-synonymous modifications in rpoC1, rps2, rps19 and ycf1. Phylogenetic analysis using maximum parsimony (MP) and maximum likelihood (ML) was performed on a dataset composed of 65 protein-coding genes from 25 taxa, which yields an identical tree topology as previous plastid-based trees, and provides strong support for the sister relationship between Ranunculaceae and Berberidaceae. Molecular dating analyses suggest that Ranunculaceae and Berberidaceae diverged between 90 and 84 mya, which is congruent with the fossil records and with recent estimates of the divergence time of these two taxa. © 2013.

  6. Identification of Variable-Number Tandem-Repeat (VNTR) Sequences in Acinetobacter baumannii and Interlaboratory Validation of an Optimized Multiple-Locus VNTR Analysis Typing Scheme▿†

    PubMed Central

    Pourcel, Christine; Minandri, Fabrizia; Hauck, Yolande; D'Arezzo, Silvia; Imperi, Francesco; Vergnaud, Gilles; Visca, Paolo

    2011-01-01

    Acinetobacter baumannii is an important opportunistic pathogen responsible for nosocomial outbreaks, mostly occurring in intensive care units. Due to the multiplicity of infection sources, reliable molecular fingerprinting techniques are needed to establish epidemiological correlations among A. baumannii isolates. Multiple-locus variable-number tandem-repeat analysis (MLVA) has proven to be a fast, reliable, and cost-effective typing method for several bacterial species. In this study, an MLVA assay compatible with simple PCR- and agarose gel-based electrophoresis steps as well as with high-throughput automated methods was developed for A. baumannii typing. Preliminarily, 10 potential polymorphic variable-number tandem repeats (VNTRs) were identified upon bioinformatic screening of six annotated genome sequences of A. baumannii. A collection of 7 reference strains plus 18 well-characterized isolates, including unique types and representatives of the three international A. baumannii lineages, was then evaluated in a two-center study aimed at validating the MLVA assay and comparing it with other genotyping assays, namely, macrorestriction analysis with pulsed-field gel electrophoresis (PFGE) and PCR-based sequence group (SG) profiling. The results showed that MLVA can discriminate between isolates with identical PFGE types and SG profiles. A panel of eight VNTR markers was selected, all showing the ability to be amplified and good amounts of polymorphism in the majority of strains. Independently generated MLVA profiles, composed of an ordered string of allele numbers corresponding to the number of repeats at each VNTR locus, were concordant between centers. Typeability, reproducibility, stability, discriminatory power, and epidemiological concordance were excellent. A database containing information and MLVA profiles for several A. baumannii strains is available from http://mlva.u-psud.fr/. PMID:21147956

  7. A comprehensive characterization of simple sequence repeats in pepper genomes provides valuable resources for marker development in Capsicum.

    PubMed

    Cheng, Jiaowen; Zhao, Zicheng; Li, Bo; Qin, Cheng; Wu, Zhiming; Trejo-Saavedra, Diana L; Luo, Xirong; Cui, Junjie; Rivera-Bustamante, Rafael F; Li, Shuaicheng; Hu, Kailin

    2016-01-07

    The sequences of the full set of pepper genomes including nuclear, mitochondrial and chloroplast are now available for use. However, the overall of simple sequence repeats (SSR) distribution in these genomes and their practical implications for molecular marker development in Capsicum have not yet been described. Here, an average of 868,047.50, 45.50 and 30.00 SSR loci were identified in the nuclear, mitochondrial and chloroplast genomes of pepper, respectively. Subsequently, systematic comparisons of various species, genome types, motif lengths, repeat numbers and classified types were executed and discussed. In addition, a local database composed of 113,500 in silico unique SSR primer pairs was built using a homemade bioinformatics workflow. As a pilot study, 65 polymorphic markers were validated among a wide collection of 21 Capsicum genotypes with allele number and polymorphic information content value per marker raging from 2 to 6 and 0.05 to 0.64, respectively. Finally, a comparison of the clustering results with those of a previous study indicated the usability of the newly developed SSR markers. In summary, this first report on the comprehensive characterization of SSR motifs in pepper genomes and the very large set of SSR primer pairs will benefit various genetic studies in Capsicum.

  8. A comprehensive characterization of simple sequence repeats in pepper genomes provides valuable resources for marker development in Capsicum

    PubMed Central

    Cheng, Jiaowen; Zhao, Zicheng; Li, Bo; Qin, Cheng; Wu, Zhiming; Trejo-Saavedra, Diana L.; Luo, Xirong; Cui, Junjie; Rivera-Bustamante, Rafael F.; Li, Shuaicheng; Hu, Kailin

    2016-01-01

    The sequences of the full set of pepper genomes including nuclear, mitochondrial and chloroplast are now available for use. However, the overall of simple sequence repeats (SSR) distribution in these genomes and their practical implications for molecular marker development in Capsicum have not yet been described. Here, an average of 868,047.50, 45.50 and 30.00 SSR loci were identified in the nuclear, mitochondrial and chloroplast genomes of pepper, respectively. Subsequently, systematic comparisons of various species, genome types, motif lengths, repeat numbers and classified types were executed and discussed. In addition, a local database composed of 113,500 in silico unique SSR primer pairs was built using a homemade bioinformatics workflow. As a pilot study, 65 polymorphic markers were validated among a wide collection of 21 Capsicum genotypes with allele number and polymorphic information content value per marker raging from 2 to 6 and 0.05 to 0.64, respectively. Finally, a comparison of the clustering results with those of a previous study indicated the usability of the newly developed SSR markers. In summary, this first report on the comprehensive characterization of SSR motifs in pepper genomes and the very large set of SSR primer pairs will benefit various genetic studies in Capsicum. PMID:26739748

  9. Use of inter-simple sequence repeats and amplified fragment length polymorphisms to analyze genetic relationships among small grain-infecting species of ustilago.

    PubMed

    Menzies, J G; Bakkeren, G; Matheson, F; Procunier, J D; Woods, S

    2003-02-01

    ABSTRACT In the smut fungi, few features are available for use as taxonomic criteria (spore size, shape, morphology, germination type, and host range). DNA-based molecular techniques are useful in expanding the traits considered in determining relationships among these fungi. We examined the phylogenetic relationships among seven species of Ustilago (U. avenae, U. bullata, U. hordei, U. kolleri, U. nigra, U. nuda, and U. tritici) using inter-simple sequence repeats (ISSRs) and amplified fragment length polymorphisms (AFLPs) to compare their DNA profiles. Fifty-four isolates of different Ustilago spp. were analyzed using ISSR primers, and 16 isolates of Ustilago were studied using AFLP primers. The variability among isolates within species was low for all species except U. bullata. The isolates of U. bullata, U. nuda, and U. tritici were well separated and our data supports their speciation. U. avenae and U. kolleri isolates did not separate from each other and there was little variability between these species. U. hordei and U. nigra isolates also showed little variability between species, but the isolates from each species grouped together. Our data suggest that U. avenae and U. kolleri are monophyletic and should be considered one species, as should U. hordei and U. nigra.

  10. Analysis of genetic relationships and identification of lily cultivars based on inter-simple sequence repeat markers.

    PubMed

    Cui, G F; Wu, L F; Wang, X N; Jia, W J; Duan, Q; Ma, L L; Jiang, Y L; Wang, J H

    2014-07-29

    Inter-simple sequence repeat (ISSR) markers were used to discriminate 62 lily cultivars of 5 hybrid series. Eight ISSR primers generated 104 bands in total, which all showed 100% polymorphism, and an average of 13 bands were amplified by each primer. Two software packages, POPGENE 1.32 and NTSYSpc 2.1, were used to analyze the data matrix. Our results showed that the observed number of alleles (NA), effective number of alleles (NE), Nei's genetic diversity (H), and Shannon's information index (I) were 1.9630, 1.4179, 0.2606, and 0.4080, respectively. The highest genetic similarity (0.9601) was observed between the Oriental x Trumpet and Oriental lilies, which indicated that the two hybrids had a close genetic relationship. An unweighted pair-group method with arithmetic means dendrogram showed that the 62 lily cultivars clustered into two discrete groups. The first group included the Oriental and OT cultivars, while the Asiatic, LA, and Longiflorum lilies were placed in the second cluster. The distribution of individuals in the principal component analysis was consistent with the clustering of the dendrogram. Fingerprints of all lily cultivars built from 8 primers could be separated completely. This study confirmed the effect and efficiency of ISSR identification in lily cultivars.

  11. Multivariate Calibration Approach for Quantitative Determination of Cell-Line Cross Contamination by Intact Cell Mass Spectrometry and Artificial Neural Networks.

    PubMed

    Valletta, Elisa; Kučera, Lukáš; Prokeš, Lubomír; Amato, Filippo; Pivetta, Tiziana; Hampl, Aleš; Havel, Josef; Vaňhara, Petr

    2016-01-01

    Cross-contamination of eukaryotic cell lines used in biomedical research represents a highly relevant problem. Analysis of repetitive DNA sequences, such as Short Tandem Repeats (STR), or Simple Sequence Repeats (SSR), is a widely accepted, simple, and commercially available technique to authenticate cell lines. However, it provides only qualitative information that depends on the extent of reference databases for interpretation. In this work, we developed and validated a rapid and routinely applicable method for evaluation of cell culture cross-contamination levels based on mass spectrometric fingerprints of intact mammalian cells coupled with artificial neural networks (ANNs). We used human embryonic stem cells (hESCs) contaminated by either mouse embryonic stem cells (mESCs) or mouse embryonic fibroblasts (MEFs) as a model. We determined the contamination level using a mass spectra database of known calibration mixtures that served as training input for an ANN. The ANN was then capable of correct quantification of the level of contamination of hESCs by mESCs or MEFs. We demonstrate that MS analysis, when linked to proper mathematical instruments, is a tangible tool for unraveling and quantifying heterogeneity in cell cultures. The analysis is applicable in routine scenarios for cell authentication and/or cell phenotyping in general.

  12. Multivariate Calibration Approach for Quantitative Determination of Cell-Line Cross Contamination by Intact Cell Mass Spectrometry and Artificial Neural Networks

    PubMed Central

    Prokeš, Lubomír; Amato, Filippo; Pivetta, Tiziana; Hampl, Aleš; Havel, Josef; Vaňhara, Petr

    2016-01-01

    Cross-contamination of eukaryotic cell lines used in biomedical research represents a highly relevant problem. Analysis of repetitive DNA sequences, such as Short Tandem Repeats (STR), or Simple Sequence Repeats (SSR), is a widely accepted, simple, and commercially available technique to authenticate cell lines. However, it provides only qualitative information that depends on the extent of reference databases for interpretation. In this work, we developed and validated a rapid and routinely applicable method for evaluation of cell culture cross-contamination levels based on mass spectrometric fingerprints of intact mammalian cells coupled with artificial neural networks (ANNs). We used human embryonic stem cells (hESCs) contaminated by either mouse embryonic stem cells (mESCs) or mouse embryonic fibroblasts (MEFs) as a model. We determined the contamination level using a mass spectra database of known calibration mixtures that served as training input for an ANN. The ANN was then capable of correct quantification of the level of contamination of hESCs by mESCs or MEFs. We demonstrate that MS analysis, when linked to proper mathematical instruments, is a tangible tool for unraveling and quantifying heterogeneity in cell cultures. The analysis is applicable in routine scenarios for cell authentication and/or cell phenotyping in general. PMID:26821236

  13. Differentiation of “Candidatus Liberibacter asiaticus” Isolates by Variable-Number Tandem-Repeat Analysis ▿

    PubMed Central

    Katoh, Hiroshi; Subandiyah, Siti; Tomimura, Kenta; Okuda, Mitsuru; Su, Hong-Ji; Iwanami, Toru

    2011-01-01

    Four highly polymorphic simple sequence repeat (SSR) loci were selected and used to differentiate 84 Japanese isolates of “Candidatus Liberibacter asiaticus.” The Nei's measure of genetic diversity values for these four SSRs ranged from 0.60 to 0.86. The four SSR loci were also highly polymorphic in four isolates from Taiwan and 12 isolates from Indonesia. PMID:21239554

  14. Translocation and gross deletion breakpoints in human inherited disease and cancer II: Potential involvement of repetitive sequence elements in secondary structure formation between DNA ends.

    PubMed

    Chuzhanova, Nadia; Abeysinghe, Shaun S; Krawczak, Michael; Cooper, David N

    2003-09-01

    Translocations and gross deletions are responsible for a significant proportion of both cancer and inherited disease. Although such gene rearrangements are nonuniformly distributed in the human genome, the underlying mutational mechanisms remain unclear. We have studied the potential involvement of various types of repetitive sequence elements in the formation of secondary structure intermediates between the single-stranded DNA ends that recombine during rearrangements. Complexity analysis was used to assess the potential of these ends to form secondary structures, the maximum decrease in complexity consequent to a gross rearrangement being used as an indicator of the type of repeat and the specific DNA ends involved. A total of 175 pairs of deletion/translocation breakpoint junction sequences available from the Gross Rearrangement Breakpoint Database [GRaBD; www.uwcm.ac.uk/uwcm/mg/grabd/grabd.html] were analyzed. Potential secondary structure was noted between the 5' flanking sequence of the first breakpoint and the 3' flanking sequence of the second breakpoint in 49% of rearrangements and between the 5' flanking sequence of the second breakpoint and the 3' flanking sequence of the first breakpoint in 36% of rearrangements. Inverted repeats, inversions of inverted repeats, and symmetric elements were found in association with gross rearrangements at approximately the same frequency. However, inverted repeats and inversions of inverted repeats accounted for the vast majority (83%) of deletions plus small insertions, symmetric elements for one-half of all antigen receptor-mediated translocations, while direct repeats appear only to be involved in mediating simple deletions. These findings extend our understanding of illegitimate recombination by highlighting the importance of secondary structure formation between single-stranded DNA ends at breakpoint junctions. Copyright 2003 Wiley-Liss, Inc.

  15. SSR_pipeline: a bioinformatic infrastructure for identifying microsatellites from paired-end Illumina high-throughput DNA sequencing data

    USGS Publications Warehouse

    Miller, Mark P.; Knaus, Brian J.; Mullins, Thomas D.; Haig, Susan M.

    2013-01-01

    SSR_pipeline is a flexible set of programs designed to efficiently identify simple sequence repeats (e.g., microsatellites) from paired-end high-throughput Illumina DNA sequencing data. The program suite contains 3 analysis modules along with a fourth control module that can automate analyses of large volumes of data. The modules are used to 1) identify the subset of paired-end sequences that pass Illumina quality standards, 2) align paired-end reads into a single composite DNA sequence, and 3) identify sequences that possess microsatellites (both simple and compound) conforming to user-specified parameters. The microsatellite search algorithm is extremely efficient, and we have used it to identify repeats with motifs from 2 to 25bp in length. Each of the 3 analysis modules can also be used independently to provide greater flexibility or to work with FASTQ or FASTA files generated from other sequencing platforms (Roche 454, Ion Torrent, etc.). We demonstrate use of the program with data from the brine fly Ephydra packardi (Diptera: Ephydridae) and provide empirical timing benchmarks to illustrate program performance on a common desktop computer environment. We further show that the Illumina platform is capable of identifying large numbers of microsatellites, even when using unenriched sample libraries and a very small percentage of the sequencing capacity from a single DNA sequencing run. All modules from SSR_pipeline are implemented in the Python programming language and can therefore be used from nearly any computer operating system (Linux, Macintosh, and Windows).

  16. SSR_pipeline: a bioinformatic infrastructure for identifying microsatellites from paired-end Illumina high-throughput DNA sequencing data.

    PubMed

    Miller, Mark P; Knaus, Brian J; Mullins, Thomas D; Haig, Susan M

    2013-01-01

    SSR_pipeline is a flexible set of programs designed to efficiently identify simple sequence repeats (e.g., microsatellites) from paired-end high-throughput Illumina DNA sequencing data. The program suite contains 3 analysis modules along with a fourth control module that can automate analyses of large volumes of data. The modules are used to 1) identify the subset of paired-end sequences that pass Illumina quality standards, 2) align paired-end reads into a single composite DNA sequence, and 3) identify sequences that possess microsatellites (both simple and compound) conforming to user-specified parameters. The microsatellite search algorithm is extremely efficient, and we have used it to identify repeats with motifs from 2 to 25 bp in length. Each of the 3 analysis modules can also be used independently to provide greater flexibility or to work with FASTQ or FASTA files generated from other sequencing platforms (Roche 454, Ion Torrent, etc.). We demonstrate use of the program with data from the brine fly Ephydra packardi (Diptera: Ephydridae) and provide empirical timing benchmarks to illustrate program performance on a common desktop computer environment. We further show that the Illumina platform is capable of identifying large numbers of microsatellites, even when using unenriched sample libraries and a very small percentage of the sequencing capacity from a single DNA sequencing run. All modules from SSR_pipeline are implemented in the Python programming language and can therefore be used from nearly any computer operating system (Linux, Macintosh, and Windows).

  17. Programmable DNA-binding proteins from Burkholderia provide a fresh perspective on the TALE-like repeat domain.

    PubMed

    de Lange, Orlando; Wolf, Christina; Dietze, Jörn; Elsaesser, Janett; Morbitzer, Robert; Lahaye, Thomas

    2014-06-01

    The tandem repeats of transcription activator like effectors (TALEs) mediate sequence-specific DNA binding using a simple code. Naturally, TALEs are injected by Xanthomonas bacteria into plant cells to manipulate the host transcriptome. In the laboratory TALE DNA binding domains are reprogrammed and used to target a fused functional domain to a genomic locus of choice. Research into the natural diversity of TALE-like proteins may provide resources for the further improvement of current TALE technology. Here we describe TALE-like proteins from the endosymbiotic bacterium Burkholderia rhizoxinica, termed Bat proteins. Bat repeat domains mediate sequence-specific DNA binding with the same code as TALEs, despite less than 40% sequence identity. We show that Bat proteins can be adapted for use as transcription factors and nucleases and that sequence preferences can be reprogrammed. Unlike TALEs, the core repeats of each Bat protein are highly polymorphic. This feature allowed us to explore alternative strategies for the design of custom Bat repeat arrays, providing novel insights into the functional relevance of non-RVD residues. The Bat proteins offer fertile grounds for research into the creation of improved programmable DNA-binding proteins and comparative insights into TALE-like evolution. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Application of Inter-Simple Sequence Repeat Markers in the Analysis of Populations of the Chagas Disease Vector Triatoma infestans (Hemiptera, Reduviidae)

    PubMed Central

    Pérez de Rosas, Alicia R.; Restelli, María F.; Fernández, Cintia J.; Blariza, María J.; García, Beatriz A.

    2017-01-01

    Here we apply inter-simple sequence repeat (ISSR) markers to explore the fine-scale genetic structure and dispersal in populations of Triatoma infestans. Five selected primers from 30 primers were used to amplify ISSRs by polymerase chain reaction. A total of 90 polymorphic bands were detected across 134 individuals captured from 11 peridomestic sites from the locality of San Martín (Capayán Department, Catamarca Province, Argentina). Significant levels of genetic differentiation suggest limited gene flow among sampling sites. Spatial autocorrelation analysis confirms that dispersal occurs on the scale of ∼469 m, suggesting that insecticide spraying should be extended at least within a radius of ∼500 m around the infested area. Moreover, Bayesian clustering algorithms indicated genetic exchange among different sites analyzed, supporting the hypothesis of an important role of peridomestic structures in the process of reinfestation. PMID:28115670

  19. Molecular Identification of Date Palm Cultivars Using Random Amplified Polymorphic DNA (RAPD) Markers.

    PubMed

    Al-Khalifah, Nasser S; Shanavaskhan, A E

    2017-01-01

    Ambiguity in the total number of date palm cultivars across the world is pointing toward the necessity for an enumerative study using standard morphological and molecular markers. Among molecular markers, DNA markers are more suitable and ubiquitous to most applications. They are highly polymorphic in nature, frequently occurring in genomes, easy to access, and highly reproducible. Various molecular markers such as restriction fragment length polymorphism (RFLP), amplified fragment length polymorphism (AFLP), simple sequence repeats (SSR), inter-simple sequence repeats (ISSR), and random amplified polymorphic DNA (RAPD) markers have been successfully used as efficient tools for analysis of genetic variation in date palm. This chapter explains a stepwise protocol for extracting total genomic DNA from date palm leaves. A user-friendly protocol for RAPD analysis and a table showing the primers used in different molecular techniques that produce polymorphisms in date palm are also provided.

  20. Genetic and Chemical Profiling of Gymnema sylvestre Accessions from Central India: Its Implication for Quality Control and Therapeutic Potential of Plant

    PubMed Central

    Verma, Ashutosh Kumar; Dhawan, Sunita Singh; Singh, Seema; Bharati, Kumar Avinash; Jyotsana

    2016-01-01

    Background: Gymnema sylvestre, a vulnerable plant species, is mentioned in Indian Pharmacopeia as an antidiabetic drug Objective: Study of genetic and chemical diversity and its implications in accessions of G. sylvestre Materials and Methods: Fourteen accessions of G. sylvestre collected from Central India and assessment of their genetic and chemical diversity were carried out using ISSR (inter simple sequence repeat) and HPLC (high performance liquid chromatography) fingerprinting methods Results: Among the screened 40 ISSR primers, 15 were found polymorphic and collectively produced nine unique accession-specific bands. The maximum and minimum numbers of amplicones were noted for ISSR-15 and ISSR-11, respectively. The ISSR -11 and ISSR-13 revealed 100% polymorphism. HPLC chromatograms showed that accessions possess the secondary metabolites of mid-polarity with considerable variability. Unknown peaks with retention time 2.63, 3.41, 23.83, 24.50, and 44.67 were found universal type. Comparative hierarchical clustering analysis based on foresaid fingerprints indicates that both techniques have equal potential to discriminate accessions according to percentage gymnemic acid in their leaf tissue. Second approach was noted more efficiently for separation of accessions according to their agro-climatic/collection site Conclusion: Highly polymorphic ISSRs could be utilized as molecular probes for further selection of high gymnemic acid yielding accessions. Observed accession specific bands may be used as a descriptor for plant accessions protection and converted into sequence tagged sites markers. Identified five universal type peaks could be helpful in identification of G. sylvestre-based various herbal preparations. SUMMARY Nine accession specific unique bandsFive marker peaks for G. sylvestre.Suitability of genetic and chemical fingerprinting Abbreviations used: HPLC: High Performance Liquid Chromatography, ISSR: Inter Simple Sequence Repeats, CTAB: Cetyl Trimethylammonium Bromide, DNTP: Deoxynucleotide Triphosphates PMID:27761067

  1. Genetic and Chemical Profiling of Gymnema sylvestre Accessions from Central India: Its Implication for Quality Control and Therapeutic Potential of Plant.

    PubMed

    Verma, Ashutosh Kumar; Dhawan, Sunita Singh; Singh, Seema; Bharati, Kumar Avinash; Jyotsana

    2016-07-01

    Gymnema sylvestre , a vulnerable plant species, is mentioned in Indian Pharmacopeia as an antidiabetic drug. Study of genetic and chemical diversity and its implications in accessions of G. sylvestre . Fourteen accessions of G. sylvestre collected from Central India and assessment of their genetic and chemical diversity were carried out using ISSR (inter simple sequence repeat) and HPLC (high performance liquid chromatography) fingerprinting methods. Among the screened 40 ISSR primers, 15 were found polymorphic and collectively produced nine unique accession-specific bands. The maximum and minimum numbers of amplicones were noted for ISSR-15 and ISSR-11, respectively. The ISSR -11 and ISSR-13 revealed 100% polymorphism. HPLC chromatograms showed that accessions possess the secondary metabolites of mid-polarity with considerable variability. Unknown peaks with retention time 2.63, 3.41, 23.83, 24.50, and 44.67 were found universal type. Comparative hierarchical clustering analysis based on foresaid fingerprints indicates that both techniques have equal potential to discriminate accessions according to percentage gymnemic acid in their leaf tissue. Second approach was noted more efficiently for separation of accessions according to their agro-climatic/collection site. Highly polymorphic ISSRs could be utilized as molecular probes for further selection of high gymnemic acid yielding accessions. Observed accession specific bands may be used as a descriptor for plant accessions protection and converted into sequence tagged sites markers. Identified five universal type peaks could be helpful in identification of G. sylvestre -based various herbal preparations. Nine accession specific unique bandsFive marker peaks for G. sylvestre .Suitability of genetic and chemical fingerprinting Abbreviations used: HPLC: High Performance Liquid Chromatography, ISSR: Inter Simple Sequence Repeats, CTAB: Cetyl Trimethylammonium Bromide, DNTP: Deoxynucleotide Triphosphates.

  2. Methods for sequencing GC-rich and CCT repeat DNA templates

    DOEpatents

    Robinson, Donna L.

    2007-02-20

    The present invention is directed to a PCR-based method of cycle sequencing DNA and other polynucleotide sequences having high CG content and regions of high GC content, and includes for example DNA strands with a high Cytosine and/or Guanosine content and repeated motifs such as CCT repeats.

  3. Survey and analysis of simple sequence repeats in the Laccaria bicolor genome, with development of microsatellite markers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labbe, Jessy L; Murat, Claude; Morin, Emmanuelle

    It is becoming clear that simple sequence repeats (SSRs) play a significant role in fungal genome organization, and they are a large source of genetic markers for population genetics and meiotic maps. We identified SSRs in the Laccaria bicolor genome by in silico survey and analyzed their distribution in the different genomic regions. We also compared the abundance and distribution of SSRs in L. bicolor with those of the following fungal genomes: Phanerochaete chrysosporium, Coprinopsis cinerea, Ustilago maydis, Cryptococcus neoformans, Aspergillus nidulans, Magnaporthe grisea, Neurospora crassa and Saccharomyces cerevisiae. Using the MISA computer program, we detected 277,062 SSRs in themore » L. bicolor genome representing 8% of the assembled genomic sequence. Among the analyzed basidiomycetes, L. bicolor exhibited the highest SSR density although no correlation between relative abundance and the genome sizes was observed. In most genomes the short motifs (mono- to trinucleotides) were more abundant than the longer repeated SSRs. Generally, in each organism, the occurrence, relative abundance, and relative density of SSRs decreased as the repeat unit increased. Furthermore, each organism had its own common and longest SSRs. In the L. bicolor genome, most of the SSRs were located in intergenic regions (73.3%) and the highest SSR density was observed in transposable elements (TEs; 6,706 SSRs/Mb). However, 81% of the protein-coding genes contained SSRs in their exons, suggesting that SSR polymorphism may alter gene phenotypes. Within a L. bicolor offspring, sequence polymorphism of 78 SSRs was mainly detected in non-TE intergenic regions. Unlike previously developed microsatellite markers, these new ones are spread throughout the genome; these markers could have immediate applications in population genetics.« less

  4. RNA circularization reveals terminal sequence heterogeneity in a double-stranded RNA virus.

    PubMed

    Widmer, G

    1993-03-01

    Double-stranded RNA viruses (dsRNA), termed LRV1, have been found in several strains of the protozoan parasite Leishmania. With the aim of constructing a full-length cDNA copy of the viral genome, including its terminal sequences, a protocol based on PCR amplification across the 3'-5' junction of circularized RNA was developed. This method proved to be applicable to dsRNA. It provided a relatively simple alternative to one-sided PCR, without loss of specificity inherent in the use of generic primers. LRV1 terminal nucleotide sequences obtained by this method showed a considerable variation in length, particularly at the 5' end of the positive strand, as well as the potential for forming 3' overhangs. The opposite genomic end terminates in 0, 1, or 2 TCA trinucleotide repeats. These results are compared with terminal sequences derived from one-sided PCR experiments.

  5. Improved PCR-Based Detection of Soil Transmitted Helminth Infections Using a Next-Generation Sequencing Approach to Assay Design.

    PubMed

    Pilotte, Nils; Papaiakovou, Marina; Grant, Jessica R; Bierwert, Lou Ann; Llewellyn, Stacey; McCarthy, James S; Williams, Steven A

    2016-03-01

    The soil transmitted helminths are a group of parasitic worms responsible for extensive morbidity in many of the world's most economically depressed locations. With growing emphasis on disease mapping and eradication, the availability of accurate and cost-effective diagnostic measures is of paramount importance to global control and elimination efforts. While real-time PCR-based molecular detection assays have shown great promise, to date, these assays have utilized sub-optimal targets. By performing next-generation sequencing-based repeat analyses, we have identified high copy-number, non-coding DNA sequences from a series of soil transmitted pathogens. We have used these repetitive DNA elements as targets in the development of novel, multi-parallel, PCR-based diagnostic assays. Utilizing next-generation sequencing and the Galaxy-based RepeatExplorer web server, we performed repeat DNA analysis on five species of soil transmitted helminths (Necator americanus, Ancylostoma duodenale, Trichuris trichiura, Ascaris lumbricoides, and Strongyloides stercoralis). Employing high copy-number, non-coding repeat DNA sequences as targets, novel real-time PCR assays were designed, and assays were tested against established molecular detection methods. Each assay provided consistent detection of genomic DNA at quantities of 2 fg or less, demonstrated species-specificity, and showed an improved limit of detection over the existing, proven PCR-based assay. The utilization of next-generation sequencing-based repeat DNA analysis methodologies for the identification of molecular diagnostic targets has the ability to improve assay species-specificity and limits of detection. By exploiting such high copy-number repeat sequences, the assays described here will facilitate soil transmitted helminth diagnostic efforts. We recommend similar analyses when designing PCR-based diagnostic tests for the detection of other eukaryotic pathogens.

  6. Genetic and DNA sequence analysis of the kanamycin resistance transposon Tn903.

    PubMed Central

    Grindley, N D; Joyce, C M

    1980-01-01

    The kanamycin resistance transposon Tn903 consists of a unique region of about 1000 base pairs bounded by a pair of 1050-base-pair inverted repeat sequences. Each repeat contains two Pvu II endonuclease cleavage sites separated by 520 base pairs. We have constructed derivatives of Tn903 in which this 520-base-pair fragment is deleted from one or both repeats. Those derivatives that lack both 520-base-pair fragments cannot transpose, whereas those that lack just one remain transposition proficient. One such transposable derivative, Tn903 delta I, has been selected for further study. We have determined the sequence of the intact inverted repeat. The 18 base pairs at each end are identical and inverted relative to one another, a structure characteristic of insertion sequences. Additional experiments indicate that a single inverted repeat from Tn903 can, in fact, transpose; we propose that this element be called IS903. To correlate the DNA sequence with genetic activities, we have created mutations by inserting a 10-base-pair DNA fragment at several sites within the intact repeat of Tn903 delta 1, and we have examined the effect of such insertions on transposability. The results suggest that IS903 encodes a 307-amino-acid polypeptide (a "transposase") that is absolutely required for transposition of IS903 or Tn903. Images PMID:6261245

  7. UPIC + GO: Zeroing in on informative markers

    USDA-ARS?s Scientific Manuscript database

    Microsatellites/SSRs (simple sequence repeats) have become a powerful tool in genomic biology because of their broad range of applications and availability. An efficient method recently developed to generate microsatellite-enriched libraries used in combination with high throughput DNA pyrosequencin...

  8. Molecular characterizations of somatic hybrids developed between Pleurotus florida and Lentinus squarrosulus through inter-simple sequence repeat markers and sequencing of ribosomal RNA-ITS gene.

    PubMed

    Mallick, Pijush; Chattaraj, Shruti; Sikdar, Samir Ranjan

    2017-10-01

    The 12 pfls somatic hybrids and 2 parents of Pleurotus florida and Lentinus s quarrosulus were characterized by ISSR and sequencing of rRNA-ITS genes. Five ISSR primers were used and amplified a total of 54 reproducible fragments with 98.14% polymorphism among all the pfls hybrid populations and parental strains. UPGMA-based cluster exhibited a dendrogram with three major groups between the parents and pfls hybrids. Parent P . florida and L . squarrosulus showed different degrees of genetic distance with all the hybrid lines and they showed closeness to hybrid pfls 1m and pfls 1h , respectively. ITS1(F) and ITS4(R) amplified the rRNA-ITS gene with 611-867 bp sequence length. The nucleotide polymorphisms were found in the ITS1, ITS2 and 5.8S rRNA region with different number of bases. Based on rRNA-ITS sequence, UPGMA cluster exhibited three distinct groups between L. squarrosulus and pfls 1p , pfls 1m and pfls 1s , and pfls 1e and P. florida .

  9. Mining and validation of pyrosequenced simple sequence repeats (SSRs) from American cranberry (Vaccinium macrocarpon Ait.).

    PubMed

    Zhu, H; Senalik, D; McCown, B H; Zeldin, E L; Speers, J; Hyman, J; Bassil, N; Hummer, K; Simon, P W; Zalapa, J E

    2012-01-01

    The American cranberry (Vaccinium macrocarpon Ait.) is a major commercial fruit crop in North America, but limited genetic resources have been developed for the species. Furthermore, the paucity of codominant DNA markers has hampered the advance of genetic research in cranberry and the Ericaceae family in general. Therefore, we used Roche 454 sequencing technology to perform low-coverage whole genome shotgun sequencing of the cranberry cultivar 'HyRed'. After de novo assembly, the obtained sequence covered 266.3 Mb of the estimated 540-590 Mb in cranberry genome. A total of 107,244 SSR loci were detected with an overall density across the genome of 403 SSR/Mb. The AG repeat was the most frequent motif in cranberry accounting for 35% of all SSRs and together with AAG and AAAT accounted for 46% of all loci discovered. To validate the SSR loci, we designed 96 primer-pairs using contig sequence data containing perfect SSR repeats, and studied the genetic diversity of 25 cranberry genotypes. We identified 48 polymorphic SSR loci with 2-15 alleles per locus for a total of 323 alleles in the 25 cranberry genotypes. Genetic clustering by principal coordinates and genetic structure analyzes confirmed the heterogeneous nature of cranberries. The parentage composition of several hybrid cultivars was evident from the structure analyzes. Whole genome shotgun 454 sequencing was a cost-effective and efficient way to identify numerous SSR repeats in the cranberry sequence for marker development.

  10. Comparative Genomics of the Balsaminaceae Sister Genera Hydrocera triflora and Impatiens pinfanensis

    PubMed Central

    Li, Zhi-Zhong; Saina, Josphat K.; Gichira, Andrew W.; Kyalo, Cornelius M.; Wang, Qing-Feng

    2018-01-01

    The family Balsaminaceae, which consists of the economically important genus Impatiens and the monotypic genus Hydrocera, lacks a reported or published complete chloroplast genome sequence. Therefore, chloroplast genome sequences of the two sister genera are significant to give insight into the phylogenetic position and understanding the evolution of the Balsaminaceae family among the Ericales. In this study, complete chloroplast (cp) genomes of Impatiens pinfanensis and Hydrocera triflora were characterized and assembled using a high-throughput sequencing method. The complete cp genomes were found to possess the typical quadripartite structure of land plants chloroplast genomes with double-stranded molecules of 154,189 bp (Impatiens pinfanensis) and 152,238 bp (Hydrocera triflora) in length. A total of 115 unique genes were identified in both genomes, of which 80 are protein-coding genes, 31 are distinct transfer RNA (tRNA) and four distinct ribosomal RNA (rRNA). Thirty codons, of which 29 had A/T ending codons, revealed relative synonymous codon usage values of >1, whereas those with G/C ending codons displayed values of <1. The simple sequence repeats comprise mostly the mononucleotide repeats A/T in all examined cp genomes. Phylogenetic analysis based on 51 common protein-coding genes indicated that the Balsaminaceae family formed a lineage with Ebenaceae together with all the other Ericales. PMID:29360746

  11. Evolutionary conservation of sequence and secondary structures inCRISPR repeats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunin, Victor; Sorek, Rotem; Hugenholtz, Philip

    Clustered Regularly Interspaced Palindromic Repeats (CRISPRs) are a novel class of direct repeats, separated by unique spacer sequences of similar length, that are present in {approx}40% of bacterial and all archaeal genomes analyzed to date. More than 40 gene families, called CRISPR-associated sequences (CAS), appear in conjunction with these repeats and are thought to be involved in the propagation and functioning of CRISPRs. It has been proposed that the CRISPR/CAS system samples, maintains a record of, and inactivates invasive DNA that the cell has encountered, and therefore constitutes a prokaryotic analog of an immune system. Here we analyze CRISPR repeatsmore » identified in 195 microbial genomes and show that they can be organized into multiple clusters based on sequence similarity. All individual repeats in any given cluster were inferred to form characteristic RNA secondary structure, ranging from non-existent to pronounced. Stable secondary structures included G:U base pairs and exhibited multiple compensatory base changes in the stem region, indicating evolutionary conservation and functional importance. We also show that the repeat-based classification corresponds to, and expands upon, a previously reported CAS gene-based classification including specific relationships between CRISPR and CAS subtypes.« less

  12. Maternal lineages of peach genotypes

    USDA-ARS?s Scientific Manuscript database

    Simple sequence repeats (SSRs) in chloroplast genomes are useful markers to determine maternal lineages. The SSR mining results revealed that most chloroplast SSRs among three Prunus chloroplast genomes were conserved in locations and motif types, but polymorphic in motif and/or amplicon lengths. Fi...

  13. Geographic patterns of genetic variation in native pecans

    USDA-ARS?s Scientific Manuscript database

    A structured collection of eighty seedling pecan trees [Carya illinoinensis (Wangenh.) K. Koch] representing nineteen putatively native pecan populations across the species range were evaluated at three plastid and 14 nuclear microsatellite (simple sequence repeat, SSR) loci. Data were analyzed usi...

  14. BAC end sequencing of Pacific white shrimp Litopenaeus vannamei: a glimpse into the genome of Penaeid shrimp

    NASA Astrophysics Data System (ADS)

    Zhao, Cui; Zhang, Xiaojun; Liu, Chengzhang; Huan, Pin; Li, Fuhua; Xiang, Jianhai; Huang, Chao

    2012-05-01

    Little is known about the genome of Pacific white shrimp ( Litopenaeus vannamei). To address this, we conducted BAC (bacterial artificial chromosome) end sequencing of L. vannamei. We selected and sequenced 7 812 BAC clones from the BAC library LvHE from the two ends of the inserts by Sanger sequencing. After trimming and quality filtering, 11 279 BAC end sequences (BESs) including 4 609 pairedends BESs were obtained. The total length of the BESs was 4 340 753 bp, representing 0.18% of the L. vannamei haploid genome. The lengths of the BESs ranged from 100 bp to 660 bp with an average length of 385 bp. Analysis of the BESs indicated that the L. vannamei genome is AT-rich and that the primary repeats patterns were simple sequence repeats (SSRs) and low complexity sequences. Dinucleotide and hexanucleotide repeats were the most common SSR types in the BESs. The most abundant transposable element was gypsy, which may contribute to the generation of the large genome size of L. vannamei. We successfully annotated 4 519 BESs by BLAST searching, including genes involved in immunity and sex determination. Our results provide an important resource for functional gene studies, map construction and integration, and complete genome assembly for this species.

  15. Repeatless and repeat-based centromeres in potato: implications for centromere evolution.

    PubMed

    Gong, Zhiyun; Wu, Yufeng; Koblízková, Andrea; Torres, Giovana A; Wang, Kai; Iovene, Marina; Neumann, Pavel; Zhang, Wenli; Novák, Petr; Buell, C Robin; Macas, Jirí; Jiang, Jiming

    2012-09-01

    Centromeres in most higher eukaryotes are composed of long arrays of satellite repeats. By contrast, most newly formed centromeres (neocentromeres) do not contain satellite repeats and instead include DNA sequences representative of the genome. An unknown question in centromere evolution is how satellite repeat-based centromeres evolve from neocentromeres. We conducted a genome-wide characterization of sequences associated with CENH3 nucleosomes in potato (Solanum tuberosum). Five potato centromeres (Cen4, Cen6, Cen10, Cen11, and Cen12) consisted primarily of single- or low-copy DNA sequences. No satellite repeats were identified in these five centromeres. At least one transcribed gene was associated with CENH3 nucleosomes. Thus, these five centromeres structurally resemble neocentromeres. By contrast, six potato centromeres (Cen1, Cen2, Cen3, Cen5, Cen7, and Cen8) contained megabase-sized satellite repeat arrays that are unique to individual centromeres. The satellite repeat arrays likely span the entire functional cores of these six centromeres. At least four of the centromeric repeats were amplified from retrotransposon-related sequences and were not detected in Solanum species closely related to potato. The presence of two distinct types of centromeres, coupled with the boom-and-bust cycles of centromeric satellite repeats in Solanum species, suggests that repeat-based centromeres can rapidly evolve from neocentromeres by de novo amplification and insertion of satellite repeats in the CENH3 domains.

  16. Repeatless and Repeat-Based Centromeres in Potato: Implications for Centromere Evolution[C][W

    PubMed Central

    Gong, Zhiyun; Wu, Yufeng; Koblížková, Andrea; Torres, Giovana A.; Wang, Kai; Iovene, Marina; Neumann, Pavel; Zhang, Wenli; Novák, Petr; Buell, C. Robin; Macas, Jiří; Jiang, Jiming

    2012-01-01

    Centromeres in most higher eukaryotes are composed of long arrays of satellite repeats. By contrast, most newly formed centromeres (neocentromeres) do not contain satellite repeats and instead include DNA sequences representative of the genome. An unknown question in centromere evolution is how satellite repeat-based centromeres evolve from neocentromeres. We conducted a genome-wide characterization of sequences associated with CENH3 nucleosomes in potato (Solanum tuberosum). Five potato centromeres (Cen4, Cen6, Cen10, Cen11, and Cen12) consisted primarily of single- or low-copy DNA sequences. No satellite repeats were identified in these five centromeres. At least one transcribed gene was associated with CENH3 nucleosomes. Thus, these five centromeres structurally resemble neocentromeres. By contrast, six potato centromeres (Cen1, Cen2, Cen3, Cen5, Cen7, and Cen8) contained megabase-sized satellite repeat arrays that are unique to individual centromeres. The satellite repeat arrays likely span the entire functional cores of these six centromeres. At least four of the centromeric repeats were amplified from retrotransposon-related sequences and were not detected in Solanum species closely related to potato. The presence of two distinct types of centromeres, coupled with the boom-and-bust cycles of centromeric satellite repeats in Solanum species, suggests that repeat-based centromeres can rapidly evolve from neocentromeres by de novo amplification and insertion of satellite repeats in the CENH3 domains. PMID:22968715

  17. Transcriptome sequencing and marker development in winged bean (Psophocarpus tetragonolobus; Leguminosae).

    PubMed

    Vatanparast, Mohammad; Shetty, Prateek; Chopra, Ratan; Doyle, Jeff J; Sathyanarayana, N; Egan, Ashley N

    2016-06-30

    Winged bean, Psophocarpus tetragonolobus (L.) DC., is similar to soybean in yield and nutritional value but more viable in tropical conditions. Here, we strengthen genetic resources for this orphan crop by producing a de novo transcriptome assembly and annotation of two Sri Lankan accessions (denoted herein as CPP34 [PI 491423] and CPP37 [PI 639033]), developing simple sequence repeat (SSR) markers, and identifying single nucleotide polymorphisms (SNPs) between geographically separated genotypes. A combined assembly based on 804,757 reads from two accessions produced 16,115 contigs with an N50 of 889 bp, over 90% of which has significant sequence similarity to other legumes. Combining contigs with singletons produced 97,241 transcripts. We identified 12,956 SSRs, including 2,594 repeats for which primers were designed and 5,190 high-confidence SNPs between Sri Lankan and Nigerian genotypes. The transcriptomic data sets generated here provide new resources for gene discovery and marker development in this orphan crop, and will be vital for future plant breeding efforts. We also analyzed the soybean trypsin inhibitor (STI) gene family, important plant defense genes, in the context of related legumes and found evidence for radiation of the Kunitz trypsin inhibitor (KTI) gene family within winged bean.

  18. Characterization of genic microsatellite markers derived from expressed sequence tags in Pacific abalone ( Haliotis discus hannai)

    NASA Astrophysics Data System (ADS)

    Li, Qi; Shu, Jing; Zhao, Cui; Liu, Shikai; Kong, Lingfeng; Zheng, Xiaodong

    2010-01-01

    Simple sequence repeat (SSR) markers were developed from the expressed sequence tags (ESTs) of Pacific abalone ( Haliotis discus hannai). Repeat motifs were found in 4.95% of the ESTs at a frequency of one repeat every 10.04 kb of EST sequences, after redundancy elimination. Seventeen polymorphic EST-SSRs were developed. The number of alleles per locus varied from 2-17, with an average of 6.8 alleles per locus. The expected and observed heterozygosities ranged from 0.159 to 0.928 and from 0.132 to 0.922, respectively. Twelve of the 17 loci (70.6%) were successfully amplified in H. diversicolor. Seventeen loci segregated in three families, with three showing the presence of null alleles (17.6%). The adequate level of variability and low frequency of null alleles observed in H. discus hannai, together with the high rate of transportability across Haliotis species, make this set of EST-SSR markers an important tool for comparative mapping, marker-assisted selection, and evolutionary studies, not only in the Pacific abalone, but also in related species.

  19. Aircraft stress sequence development: A complex engineering process made simple

    NASA Technical Reports Server (NTRS)

    Schrader, K. H.; Butts, D. G.; Sparks, W. A.

    1994-01-01

    Development of stress sequences for critical aircraft structure requires flight measured usage data, known aircraft loads, and established relationships between aircraft flight loads and structural stresses. Resulting cycle-by-cycle stress sequences can be directly usable for crack growth analysis and coupon spectra tests. Often, an expert in loads and spectra development manipulates the usage data into a typical sequence of representative flight conditions for which loads and stresses are calculated. For a fighter/trainer type aircraft, this effort is repeated many times for each of the fatigue critical locations (FCL) resulting in expenditure of numerous engineering hours. The Aircraft Stress Sequence Computer Program (ACSTRSEQ), developed by Southwest Research Institute under contract to San Antonio Air Logistics Center, presents a unique approach for making complex technical computations in a simple, easy to use method. The program is written in Microsoft Visual Basic for the Microsoft Windows environment.

  20. A Simple Artificial Life Model Explains Irrational Behavior in Human Decision-Making

    PubMed Central

    Feher da Silva, Carolina; Baldo, Marcus Vinícius Chrysóstomo

    2012-01-01

    Although praised for their rationality, humans often make poor decisions, even in simple situations. In the repeated binary choice experiment, an individual has to choose repeatedly between the same two alternatives, where a reward is assigned to one of them with fixed probability. The optimal strategy is to perseverate with choosing the alternative with the best expected return. Whereas many species perseverate, humans tend to match the frequencies of their choices to the frequencies of the alternatives, a sub-optimal strategy known as probability matching. Our goal was to find the primary cognitive constraints under which a set of simple evolutionary rules can lead to such contrasting behaviors. We simulated the evolution of artificial populations, wherein the fitness of each animat (artificial animal) depended on its ability to predict the next element of a sequence made up of a repeating binary string of varying size. When the string was short relative to the animats’ neural capacity, they could learn it and correctly predict the next element of the sequence. When it was long, they could not learn it, turning to the next best option: to perseverate. Animats from the last generation then performed the task of predicting the next element of a non-periodical binary sequence. We found that, whereas animats with smaller neural capacity kept perseverating with the best alternative as before, animats with larger neural capacity, which had previously been able to learn the pattern of repeating strings, adopted probability matching, being outperformed by the perseverating animats. Our results demonstrate how the ability to make predictions in an environment endowed with regular patterns may lead to probability matching under less structured conditions. They point to probability matching as a likely by-product of adaptive cognitive strategies that were crucial in human evolution, but may lead to sub-optimal performances in other environments. PMID:22563454

  1. A simple artificial life model explains irrational behavior in human decision-making.

    PubMed

    Feher da Silva, Carolina; Baldo, Marcus Vinícius Chrysóstomo

    2012-01-01

    Although praised for their rationality, humans often make poor decisions, even in simple situations. In the repeated binary choice experiment, an individual has to choose repeatedly between the same two alternatives, where a reward is assigned to one of them with fixed probability. The optimal strategy is to perseverate with choosing the alternative with the best expected return. Whereas many species perseverate, humans tend to match the frequencies of their choices to the frequencies of the alternatives, a sub-optimal strategy known as probability matching. Our goal was to find the primary cognitive constraints under which a set of simple evolutionary rules can lead to such contrasting behaviors. We simulated the evolution of artificial populations, wherein the fitness of each animat (artificial animal) depended on its ability to predict the next element of a sequence made up of a repeating binary string of varying size. When the string was short relative to the animats' neural capacity, they could learn it and correctly predict the next element of the sequence. When it was long, they could not learn it, turning to the next best option: to perseverate. Animats from the last generation then performed the task of predicting the next element of a non-periodical binary sequence. We found that, whereas animats with smaller neural capacity kept perseverating with the best alternative as before, animats with larger neural capacity, which had previously been able to learn the pattern of repeating strings, adopted probability matching, being outperformed by the perseverating animats. Our results demonstrate how the ability to make predictions in an environment endowed with regular patterns may lead to probability matching under less structured conditions. They point to probability matching as a likely by-product of adaptive cognitive strategies that were crucial in human evolution, but may lead to sub-optimal performances in other environments.

  2. Improved specificity of TALE-based genome editing using an expanded RVD repertoire.

    PubMed

    Miller, Jeffrey C; Zhang, Lei; Xia, Danny F; Campo, John J; Ankoudinova, Irina V; Guschin, Dmitry Y; Babiarz, Joshua E; Meng, Xiangdong; Hinkley, Sarah J; Lam, Stephen C; Paschon, David E; Vincent, Anna I; Dulay, Gladys P; Barlow, Kyle A; Shivak, David A; Leung, Elo; Kim, Jinwon D; Amora, Rainier; Urnov, Fyodor D; Gregory, Philip D; Rebar, Edward J

    2015-05-01

    Transcription activator-like effector (TALE) proteins have gained broad appeal as a platform for targeted DNA recognition, largely owing to their simple rules for design. These rules relate the base specified by a single TALE repeat to the identity of two key residues (the repeat variable diresidue, or RVD) and enable design for new sequence targets via modular shuffling of these units. A key limitation of these rules is that their simplicity precludes options for improving designs that are insufficiently active or specific. Here we address this limitation by developing an expanded set of RVDs and applying them to improve the performance of previously described TALEs. As an extreme example, total conversion of a TALE nuclease to new RVDs substantially reduced off-target cleavage in cellular studies. By providing new RVDs and design strategies, these studies establish options for developing improved TALEs for broader application across medicine and biotechnology.

  3. Rational design of alpha-helical tandem repeat proteins with closed architectures

    PubMed Central

    Doyle, Lindsey; Hallinan, Jazmine; Bolduc, Jill; Parmeggiani, Fabio; Baker, David; Stoddard, Barry L.; Bradley, Philip

    2015-01-01

    Tandem repeat proteins, which are formed by repetition of modular units of protein sequence and structure, play important biological roles as macromolecular binding and scaffolding domains, enzymes, and building blocks for the assembly of fibrous materials1,2. The modular nature of repeat proteins enables the rapid construction and diversification of extended binding surfaces by duplication and recombination of simple building blocks3,4. The overall architecture of tandem repeat protein structures – which is dictated by the internal geometry and local packing of the repeat building blocks – is highly diverse, ranging from extended, super-helical folds that bind peptide, DNA, and RNA partners5–9, to closed and compact conformations with internal cavities suitable for small molecule binding and catalysis10. Here we report the development and validation of computational methods for de novo design of tandem repeat protein architectures driven purely by geometric criteria defining the inter-repeat geometry, without reference to the sequences and structures of existing repeat protein families. We have applied these methods to design a series of closed alpha-solenoid11 repeat structures (alpha-toroids) in which the inter-repeat packing geometry is constrained so as to juxtapose the N- and C-termini; several of these designed structures have been validated by X-ray crystallography. Unlike previous approaches to tandem repeat protein engineering12–20, our design procedure does not rely on template sequence or structural information taken from natural repeat proteins and hence can produce structures unlike those seen in nature. As an example, we have successfully designed and validated closed alpha-solenoid repeats with a left-handed helical architecture that – to our knowledge – is not yet present in the protein structure database21. PMID:26675735

  4. Sequences characterization of microsatellite DNA sequences in Pacific abalone ( Haliotis discus hannai)

    NASA Astrophysics Data System (ADS)

    Li, Qi; Akihiro, Kijima

    2007-01-01

    The microsatellite-enriched library was constructed using magnetic bead hybridization selection method, and the microsatellite DNA sequences were analyzed in Pacific abalone Haliotis discus hannai. Three hundred and fifty white colonies were screened using PCR-based technique, and 84 clones were identified to potentially contain microsatellite repeat motif. The 84 clones were sequenced, and 42 microsatellites and 4 minisatellites with a minimum of five repeats were found (13.1% of white colonies screened). Besides the motif of CA contained in the oligoprobe, we also found other 16 types of microsatellite repeats including a dinucleotide repeat, two tetranucleotide repeats, twelve pentanucleotide repeats and a hexanucleotide repeat. According to Weber (1990), the microsatellite sequences obtained could be categorized structurally into perfect repeats (73.3%), imperfect repeats (13.3%), and compound repeats (13.4%). Among the microsatellite repeats, relatively short arrays (<20 repeats) were most abundant, accounting for 75.0%. The largest length of microsatellites was 48 repeats, and the average number of repeats was 13.4. The data on the composition and length distribution of microsatellites obtained in the present study can be useful for choosing the repeat motifs for microsatellite isolation in other abalone species.

  5. Estimation of genetic diversity using SSR markers in sunflower

    USDA-ARS?s Scientific Manuscript database

    Sunflower is a major oilseed crop in central Asia, but little is known of the molecular diversity among collections of sunflower from Pakistan region. This paper described inherent genetic relationships among sunflower collections using Simple Sequence Repeat molecular markers. Results should help...

  6. Multiplexed microsatellite markers for seven Metarhizium species

    USDA-ARS?s Scientific Manuscript database

    Cross-species transferability of 41 previously published simple sequence repeat (SSR) markers was assessed for 11 species of the entomopathogenic fungus Metarhizium. A collection of 65 Metarhizium isolates including all 54 used in a recent phylogenetic revision of the genus were characterized. Betwe...

  7. Genetic variation and DNA fingerprinting of durian types in Malaysia using simple sequence repeat (SSR) markers.

    PubMed

    Siew, Ging Yang; Ng, Wei Lun; Tan, Sheau Wei; Alitheen, Noorjahan Banu; Tan, Soon Guan; Yeap, Swee Keong

    2018-01-01

    Durian ( Durio zibethinus ) is one of the most popular tropical fruits in Asia. To date, 126 durian types have been registered with the Department of Agriculture in Malaysia based on phenotypic characteristics. Classification based on morphology is convenient, easy, and fast but it suffers from phenotypic plasticity as a direct result of environmental factors and age. To overcome the limitation of morphological classification, there is a need to carry out genetic characterization of the various durian types. Such data is important for the evaluation and management of durian genetic resources in producing countries. In this study, simple sequence repeat (SSR) markers were used to study the genetic variation in 27 durian types from the germplasm collection of Universiti Putra Malaysia. Based on DNA sequences deposited in Genbank, seven pairs of primers were successfully designed to amplify SSR regions in the durian DNA samples. High levels of variation among the 27 durian types were observed (expected heterozygosity, H E  = 0.35). The DNA fingerprinting power of SSR markers revealed by the combined probability of identity (PI) of all loci was 2.3×10 -3 . Unique DNA fingerprints were generated for 21 out of 27 durian types using five polymorphic SSR markers (the other two SSR markers were monomorphic). We further tested the utility of these markers by evaluating the clonal status of shared durian types from different germplasm collection sites, and found that some were not clones. The findings in this preliminary study not only shows the feasibility of using SSR markers for DNA fingerprinting of durian types, but also challenges the current classification of durian types, e.g., on whether the different types should be called "clones", "varieties", or "cultivars". Such matters have a direct impact on the regulation and management of durian genetic resources in the region.

  8. Genetic variation and DNA fingerprinting of durian types in Malaysia using simple sequence repeat (SSR) markers

    PubMed Central

    Siew, Ging Yang; Tan, Sheau Wei; Tan, Soon Guan; Yeap, Swee Keong

    2018-01-01

    Durian (Durio zibethinus) is one of the most popular tropical fruits in Asia. To date, 126 durian types have been registered with the Department of Agriculture in Malaysia based on phenotypic characteristics. Classification based on morphology is convenient, easy, and fast but it suffers from phenotypic plasticity as a direct result of environmental factors and age. To overcome the limitation of morphological classification, there is a need to carry out genetic characterization of the various durian types. Such data is important for the evaluation and management of durian genetic resources in producing countries. In this study, simple sequence repeat (SSR) markers were used to study the genetic variation in 27 durian types from the germplasm collection of Universiti Putra Malaysia. Based on DNA sequences deposited in Genbank, seven pairs of primers were successfully designed to amplify SSR regions in the durian DNA samples. High levels of variation among the 27 durian types were observed (expected heterozygosity, HE = 0.35). The DNA fingerprinting power of SSR markers revealed by the combined probability of identity (PI) of all loci was 2.3×10−3. Unique DNA fingerprints were generated for 21 out of 27 durian types using five polymorphic SSR markers (the other two SSR markers were monomorphic). We further tested the utility of these markers by evaluating the clonal status of shared durian types from different germplasm collection sites, and found that some were not clones. The findings in this preliminary study not only shows the feasibility of using SSR markers for DNA fingerprinting of durian types, but also challenges the current classification of durian types, e.g., on whether the different types should be called “clones”, “varieties”, or “cultivars”. Such matters have a direct impact on the regulation and management of durian genetic resources in the region. PMID:29511604

  9. Sequence and Analysis of the Tomato JOINTLESS Locus1

    PubMed Central

    Mao, Long; Begum, Dilara; Goff, Stephen A.; Wing, Rod A.

    2001-01-01

    A 119-kb bacterial artificial chromosome from the JOINTLESS locus on the tomato (Lycopersicon esculentum) chromosome 11 contained 15 putative genes. Repetitive sequences in this region include one copia-like LTR retrotransposon, 13 simple sequence repeats, three copies of a novel type III foldback transposon, and four putative short DNA repeats. Database searches showed that the foldback transposon and the short DNA repeats seemed to be associated preferably with genes. The predicted tomato genes were compared with the complete Arabidopsis genome. Eleven out of 15 tomato open reading frames were found to be colinear with segments on five Arabidopsis bacterial artificial chromosome/P1-derived artificial chromosome clones. The synteny patterns, however, did not reveal duplicated segments in Arabidopsis, where over half of the genome is duplicated. Our analysis indicated that the microsynteny between the tomato and Arabidopsis genomes was still conserved at a very small scale but was complicated by the large number of gene families in the Arabidopsis genome. PMID:11457984

  10. Developing expressed sequence tag libraries and the discovery of simple sequence repeat markers for two species of raspberry (Rubus L.).

    PubMed

    Bushakra, Jill M; Lewers, Kim S; Staton, Margaret E; Zhebentyayeva, Tetyana; Saski, Christopher A

    2015-10-26

    Due to a relatively high level of codominant inheritance and transferability within and among taxonomic groups, simple sequence repeat (SSR) markers are important elements in comparative mapping and delineation of genomic regions associated with traits of economic importance. Expressed sequence tags (ESTs) are a source of SSRs that can be used to develop markers to facilitate plant breeding and for more basic research across genera and higher plant orders. Leaf and meristem tissue from 'Heritage' red raspberry (Rubus idaeus) and 'Bristol' black raspberry (R. occidentalis) were utilized for RNA extraction. After conversion to cDNA and library construction, ESTs were sequenced, quality verified, assembled and scanned for SSRs.  Primers flanking the SSRs were designed and a subset tested for amplification, polymorphism and transferability across species. ESTs containing SSRs were functionally annotated using the GenBank non-redundant (nr) database and further classified using the gene ontology database. To accelerate development of EST-SSRs in the genus Rubus (Rosaceae), 1149 and 2358 cDNA sequences were generated from red raspberry and black raspberry, respectively. The cDNA sequences were screened using rigorous filtering criteria which resulted in the identification of 121 and 257 SSR loci for red and black raspberry, respectively. Primers were designed from the surrounding sequences resulting in 131 and 288 primer pairs, respectively, as some sequences contained more than one SSR locus. Sequence analysis revealed that the SSR-containing genes span a diversity of functions and share more sequence identity with strawberry genes than with other Rosaceous species. This resource of Rubus-specific, gene-derived markers will facilitate the construction of linkage maps composed of transferable markers for studying and manipulating important traits in this economically important genus.

  11. Organelle Simple Sequence Repeat Markers Help to Distinguish Carpelloid Stamen and Normal Cytoplasmic Male Sterile Sources in Broccoli

    PubMed Central

    Shu, Jinshuai; Liu, Yumei; Li, Zhansheng; Zhang, Lili; Fang, Zhiyuan; Yang, Limei; Zhuang, Mu; Zhang, Yangyong; Lv, Honghao

    2015-01-01

    We previously discovered carpelloid stamens when breeding cytoplasmic male sterile lines in broccoli (Brassica oleracea var. italica). In this study, hybrids and multiple backcrosses were produced from different cytoplasmic male sterile carpelloid stamen sources and maintainer lines. Carpelloid stamens caused dysplasia of the flower structure and led to hooked or coiled siliques with poor seed setting, which were inherited in a maternal fashion. Using four distinct carpelloid stamens and twelve distinct normal stamens from cytoplasmic male sterile sources and one maintainer, we used 21 mitochondrial simple sequence repeat (mtSSR) primers and 32 chloroplast SSR primers to identify a mitochondrial marker, mtSSR2, that can differentiate between the cytoplasm of carpelloid and normal stamens. Thereafter, mtSSR2 was used to identify another 34 broccoli accessions, with an accuracy rate of 100%. Analysis of the polymorphic sequences revealed that the mtSSR2 open reading frame of carpelloid stamen sterile sources had a deletion of 51 bases (encoding 18 amino acids) compared with normal stamen materials. The open reading frame is located in the coding region of orf125 and orf108 of the mitochondrial genomes in Brassica crops and had the highest similarity with Raphanus sativus and Brassica carinata. The current study has not only identified a useful molecular marker to detect the cytoplasm of carpelloid stamens during broccoli breeding, but it also provides evidence that the mitochondrial genome is maternally inherited and provides a basis for studying the effect of the cytoplasm on flower organ development in plants. PMID:26407159

  12. A naturally occurring, noncanonical GTP aptamer made of simple tandem repeats

    PubMed Central

    Curtis, Edward A; Liu, David R

    2014-01-01

    Recently, we used in vitro selection to identify a new class of naturally occurring GTP aptamer called the G motif. Here we report the discovery and characterization of a second class of naturally occurring GTP aptamer, the “CA motif.” The primary sequence of this aptamer is unusual in that it consists entirely of tandem repeats of CA-rich motifs as short as three nucleotides. Several active variants of the CA motif aptamer lack the ability to form consecutive Watson-Crick base pairs in any register, while others consist of repeats containing only cytidine and adenosine residues, indicating that noncanonical interactions play important roles in its structure. The circular dichroism spectrum of the CA motif aptamer is distinct from that of A-form RNA and other major classes of nucleic acid structures. Bioinformatic searches indicate that the CA motif is absent from most archaeal and bacterial genomes, but occurs in at least 70 percent of approximately 400 eukaryotic genomes examined. These searches also uncovered several phylogenetically conserved examples of the CA motif in rodent (mouse and rat) genomes. Together, these results reveal the existence of a second class of naturally occurring GTP aptamer whose sequence requirements, like that of the G motif, are not consistent with those of a canonical secondary structure. They also indicate a new and unexpected potential biochemical activity of certain naturally occurring tandem repeats. PMID:24824832

  13. The complete chloroplast genome of Cinnamomum camphora and its comparison with related Lauraceae species.

    PubMed

    Chen, Caihui; Zheng, Yongjie; Liu, Sian; Zhong, Yongda; Wu, Yanfang; Li, Jiang; Xu, Li-An; Xu, Meng

    2017-01-01

    Cinnamomum camphora , a member of the Lauraceae family, is a valuable aromatic and timber tree that is indigenous to the south of China and Japan. All parts of Cinnamomum camphora have secretory cells containing different volatile chemical compounds that are utilized as herbal medicines and essential oils. Here, we reported the complete sequencing of the chloroplast genome of Cinnamomum camphora using illumina technology. The chloroplast genome of Cinnamomum camphora is 152,570 bp in length and characterized by a relatively conserved quadripartite structure containing a large single copy region of 93,705 bp, a small single copy region of 19,093 bp and two inverted repeat (IR) regions of 19,886 bp. Overall, the genome contained 123 coding regions, of which 15 were repeated in the IR regions. An analysis of chloroplast sequence divergence revealed that the small single copy region was highly variable among the different genera in the Lauraceae family. A total of 40 repeat structures and 83 simple sequence repeats were detected in both the coding and non-coding regions. A phylogenetic analysis indicated that Calycanthus is most closely related to Lauraceae , both being members of Laurales , which forms a sister group to Magnoliids . The complete sequence of the chloroplast of Cinnamomum camphora will aid in in-depth taxonomical studies of the Lauraceae family in the future. The genetic sequence information will also have valuable applications for chloroplast genetic engineering.

  14. Molecular characterization of three common olive (Olea europaea L.) cultivars in Palestine, using simple sequence repeat (SSR) markers.

    PubMed

    Obaid, Ramiz; Abu-Qaoud, Hassan; Arafeh, Rami

    2014-09-03

    Eight accessions of olive trees from three common varieties in Palestine, Nabali Baladi, Nabali Mohassan and Surri, were genetically evaluated using five simple sequence repeat (SSR) markers. A total of 17 alleles from 5 loci were observed in which 15 (88.2%) were polymorphic and 2 (11.8%) were monomorphic. An average of 3.4 alleles per locus was found ranging from 2.0 alleles with the primers GAPU-103 and DCA-9 to 5.0 alleles with U9932 and DCA-16. The smallest amplicon size observed was 50 bp with the primer DCA-16, whereas the largest one (450 bp) with the primer U9932. Cluster analysis with the unweighted pair group method with arithmetic average (UPGMA) showed three clusters: a cluster with four accessions from the 'Nabali Baladi' cultivar, another cluster with three accessions that represents the 'Nabali Mohassen' cultivar and finally the 'Surri' cultivar. The similarity coefficient for the eight olive tree samples ranged from a maximum of 100% between two accessions from Nabali Baladi and also in two other samples from Nabali Mohassan, to a minimum similarity coefficient (0.315) between the Surri and two Nabali Baladi accessions. The results in this investigation clearly highlight the genetic dissimilarity between the three main olive cultivars that have been misidentified and mixed up in the past, based on conventional morphological characters.

  15. Genetic diversity among Puccinia melanocephala isolates from Brazil assessed using simple sequence repeat markers.

    PubMed

    Peixoto-Junior, R F; Creste, S; Landell, M G A; Nunes, D S; Sanguino, A; Campos, M F; Vencovsky, R; Tambarussi, E V; Figueira, A

    2014-09-26

    Brown rust (causal agent Puccinia melanocephala) is an important sugarcane disease that is responsible for large losses in yield worldwide. Despite its importance, little is known regarding the genetic diversity of this pathogen in the main Brazilian sugarcane cultivation areas. In this study, we characterized the genetic diversity of 34 P. melanocephala isolates from 4 Brazilian states using loci identified from an enriched simple sequence repeat (SSR) library. The aggressiveness of 3 isolates from major sugarcane cultivation areas was evaluated by inoculating an intermediately resistant and a susceptible cultivar. From the enriched library, 16 SSR-specific primers were developed, which produced scorable alleles. Of these, 4 loci were polymorphic and 12 were monomorphic for all isolates evaluated. The molecular characterization of the 34 isolates of P. melanocephala conducted using 16 SSR loci revealed the existence of low genetic variability among the isolates. The average estimated genetic distance was 0.12. Phenetic analysis based on Nei's genetic distance clustered the isolates into 2 major groups. Groups I and II included 18 and 14 isolates, respectively, and both groups contained isolates from all 4 geographic regions studied. Two isolates did not cluster with these groups. It was not possible to obtain clusters according to location or state of origin. Analysis of disease severity data revealed that the isolates did not show significant differences in aggressiveness between regions.

  16. Direct repeat sequences in the Streptomyces chitinase-63 promoter direct both glucose repression and chitin induction

    PubMed Central

    Ni, Xiangyang; Westpheling, Janet

    1997-01-01

    The chi63 promoter directs glucose-sensitive, chitin-dependent transcription of a gene involved in the utilization of chitin as carbon source. Analysis of 5′ and 3′ deletions of the promoter region revealed that a 350-bp segment is sufficient for wild-type levels of expression and regulation. The analysis of single base changes throughout the promoter region, introduced by random and site-directed mutagenesis, identified several sequences to be important for activity and regulation. Single base changes at −10, −12, −32, −33, −35, and −37 upstream of the transcription start site resulted in loss of activity from the promoter, suggesting that bases in these positions are important for RNA polymerase interaction. The sequences centered around −10 (TATTCT) and −35 (TTGACC) in this promoter are, in fact, prototypical of eubacterial promoters. Overlapping the RNA polymerase binding site is a perfect 12-bp direct repeat sequence. Some base changes within this direct repeat resulted in constitutive expression, suggesting that this sequence is an operator for negative regulation. Other base changes resulted in loss of glucose repression while retaining the requirement for chitin induction, suggesting that this sequence is also involved in glucose repression. The fact that cis-acting mutations resulted in glucose resistance but not inducer independence rules out the possibility that glucose repression acts exclusively by inducer exclusion. The fact that mutations that affect glucose repression and chitin induction fall within the same direct repeat sequence module suggests that the direct repeat sequence facilitates both chitin induction and glucose repression. PMID:9371809

  17. De novo Transcriptome Sequencing Reveals a Considerable Bias in the Incidence of Simple Sequence Repeats towards the Downstream of ‘Pre-miRNAs’ of Black Pepper

    PubMed Central

    Joy, Nisha; Asha, Srinivasan; Mallika, Vijayan; Soniya, Eppurathu Vasudevan

    2013-01-01

    Next generation sequencing has an advantageon transformational development of species with limited available sequence data as it helps to decode the genome and transcriptome. We carried out the de novo sequencing using illuminaHiSeq™ 2000 to generate the first leaf transcriptome of black pepper (Piper nigrum L.), an important spice variety native to South India and also grown in other tropical regions. Despite the economic and biochemical importance of pepper, a scientifically rigorous study at the molecular level is far from complete due to lack of sufficient sequence information and cytological complexity of its genome. The 55 million raw reads obtained, when assembled using Trinity program generated 2,23,386 contigs and 1,28,157 unigenes. Reports suggest that the repeat-rich genomic regions give rise to small non-coding functional RNAs. MicroRNAs (miRNAs) are the most abundant type of non-coding regulatory RNAs. In spite of the widespread research on miRNAs, little is known about the hair-pin precursors of miRNAs bearing Simple Sequence Repeats (SSRs). We used the array of transcripts generated, for the in silico prediction and detection of ‘43 pre-miRNA candidates bearing different types of SSR motifs’. The analysis identified 3913 different types of SSR motifs with an average of one SSR per 3.04 MB of thetranscriptome. About 0.033% of the transcriptome constituted ‘pre-miRNA candidates bearing SSRs’. The abundance, type and distribution of SSR motifs studied across the hair-pin miRNA precursors, showed a significant bias in the position of SSRs towards the downstream of predicted ‘pre-miRNA candidates’. The catalogue of transcripts identified, together with the demonstration of reliable existence of SSRs in the miRNA precursors, permits future opportunities for understanding the genetic mechanism of black pepper and likely functions of ‘tandem repeats’ in miRNAs. PMID:23469176

  18. Blood transcriptomics of captive forest musk deer (Moschus berezovskii) and possible associations with the immune response to abscesses.

    PubMed

    Sun, Xiaoning; Cai, Ruibo; Jin, Xuelin; Shafer, Aaron B A; Hu, Xiaolong; Yang, Shuang; Li, Yimeng; Qi, Lei; Liu, Shuqiang; Hu, Defu

    2018-01-12

    Forest musk deer (Moschus berezovskii; FMD) are both economically valuable and highly endangered. A problem for FMD captive breeding programs has been the susceptibility of FMD to abscesses. To investigate the mechanisms of abscess development in FMD, the blood transcriptomes of three purulent and three healthy individuals were generated. A total of ~39.68 Gb bases were generated using Illumina HiSeq 4000 sequencing technology and 77,752 unigenes were identified after assembling. All the unigenes were annotated, with 63,531 (81.71%) mapping to at least one database. Based on these functional annotations, 45,798 coding sequences (CDS) were detected, along with 12,697 simple sequence repeats (SSRs) and 65,536 single nucleotide polymorphisms (SNPs). A total of 113 unigenes were found to be differentially expressed between healthy and purulent individuals. Functional annotation indicated that most of these differentially expressed genes were involved in the regulation of immune system processes, particularly those associated with parasitic and bacterial infection pathways.

  19. Construction of the first genetic linkage map of Japanese gentian (Gentianaceae)

    PubMed Central

    2012-01-01

    Background Japanese gentians (Gentiana triflora and Gentiana scabra) are amongst the most popular floricultural plants in Japan. However, genomic resources for Japanese gentians have not yet been developed, mainly because of the heterozygous genome structure conserved by outcrossing, the long juvenile period, and limited knowledge about the inheritance of important traits. In this study, we developed a genetic linkage map to improve breeding programs of Japanese gentians. Results Enriched simple sequence repeat (SSR) libraries from a G. triflora double haploid line yielded almost 20,000 clones using 454 pyrosequencing technology, 6.7% of which could be used to design SSR markers. To increase the number of molecular markers, we identified three putative long terminal repeat (LTR) sequences using the recently developed inter-primer binding site (iPBS) method. We also developed retrotransposon microsatellite amplified polymorphism (REMAP) markers combining retrotransposon and inter-simple sequence repeat (ISSR) markers. In addition to SSR and REMAP markers, modified amplified fragment length polymorphism (AFLP) and random amplification polymorphic DNA (RAPD) markers were developed. Using 93 BC1 progeny from G. scabra backcrossed with a G. triflora double haploid line, 19 linkage groups were constructed with a total of 263 markers (97 SSR, 97 AFLP, 39 RAPD, and 30 REMAP markers). One phenotypic trait (stem color) and 10 functional markers related to genes controlling flower color, flowering time and cold tolerance were assigned to the linkage map, confirming its utility. Conclusions This is the first reported genetic linkage map for Japanese gentians and for any species belonging to the family Gentianaceae. As demonstrated by mapping of functional markers and the stem color trait, our results will help to explain the genetic basis of agronomic important traits, and will be useful for marker-assisted selection in gentian breeding programs. Our map will also be an important resource for further genetic analyses such as mapping of quantitative trait loci and map-based cloning of genes in this species. PMID:23186361

  20. A deeper view into the significance of simple sequence repeats in pre-miRNAs provides clues for its possible roles in determining the function of microRNAs.

    PubMed

    Joy, Nisha; Maimoonath Beevi, Y P; Soniya, E V

    2018-05-09

    The central tenet of 'genome content' has been that the 'non-coding' parts are highly enriched with 'microsatellites' or 'Simple Sequence Repeats' (SSRs). We presume that the presence and change in number of repeat unit (n) of SSRs in different genomic locations may or may not become beneficial, depending on the position of SSRs in a gene. Very few studies have looked into the existence of SSRs in the hair-pin precursors of miRNAs (pre-miRNAs). The interplay between SSRs and miRNAs is not yet clearly understood. Considering the potential significance of SSRs in pre-miRNAs, we analysed the miRNA hair-pin precursors of 171 organisms, which revealed a noticeable (29.8%) existence of SSRs in their pre-miRNAs. The maintenance of SSRs in pre-miRNAs even in the complex, highly evolved phyla like Chordata and Magnoliophyta shed light upon its diverse functions. Putative effects of SSRs in either regulating the biogenesis or function of miRNAs were more underlined based on computational and experimental analysis. A preliminary computational analysis to explore the relevance of such SSRs maintained in pre-miRNA sequences led to the detection of splicing regulatory elements (SREs) either in or near to the SSRs. The absence of SSRs correspondingly decreased the detection of SREs. The present study is the first implication for the possible involvement of SSRs in shaping the SREs to undergo Alternative Splicing events to produce miRNA isoforms in accordance with different stress environments. This part of work well demonstrates the importance of studying such consistently maintained SSRs residing in pre-miRNAs and can enhance more and more research towards deciphering the exact function of SSRs in the near future.

  1. Microsatellite marker development by partial sequencing of the sour passion fruit genome (Passiflora edulis Sims).

    PubMed

    Araya, Susan; Martins, Alexandre M; Junqueira, Nilton T V; Costa, Ana Maria; Faleiro, Fábio G; Ferreira, Márcio E

    2017-07-21

    The Passiflora genus comprises hundreds of wild and cultivated species of passion fruit used for food, industrial, ornamental and medicinal purposes. Efforts to develop genomic tools for genetic analysis of P. edulis, the most important commercial Passiflora species, are still incipient. In spite of many recognized applications of microsatellite markers in genetics and breeding, their availability for passion fruit research remains restricted. Microsatellite markers in P. edulis are usually limited in number, show reduced polymorphism, and are mostly based on compound or imperfect repeats. Furthermore, they are confined to only a few Passiflora species. We describe the use of NGS technology to partially assemble the P. edulis genome in order to develop hundreds of new microsatellite markers. A total of 14.11 Gbp of Illumina paired-end sequence reads were analyzed to detect simple sequence repeat sites in the sour passion fruit genome. A sample of 1300 contigs containing perfect repeat microsatellite sequences was selected for PCR primer development. Panels of di- and tri-nucleotide repeat markers were then tested in P. edulis germplasm accessions for validation. DNA polymorphism was detected in 74% of the markers (PIC = 0.16 to 0.77; number of alleles/locus = 2 to 7). A core panel of highly polymorphic markers (PIC = 0.46 to 0.77) was used to cross-amplify PCR products in 79 species of Passiflora (including P. edulis), belonging to four subgenera (Astrophea, Decaloba, Distephana and Passiflora). Approximately 71% of the marker/species combinations resulted in positive amplicons in all species tested. DNA polymorphism was detected in germplasm accessions of six closely related Passiflora species (P. edulis, P. alata, P. maliformis, P. nitida, P. quadrangularis and P. setacea) and the data used for accession discrimination and species assignment. A database of P. edulis DNA sequences obtained by NGS technology was examined to identify microsatellite repeats in the sour passion fruit genome. Markers were submitted to evaluation using accessions of cultivated and wild Passiflora species. The new microsatellite markers detected high levels of DNA polymorphism in sour passion fruit and can potentially be used in genetic analysis of P. edulis and other Passiflora species.

  2. Hermes Transposon Distribution and Structure in Musca domestica

    PubMed Central

    Subramanian, Ramanand A.; Cathcart, Laura A.; Krafsur, Elliot S.; Atkinson, Peter W.

    2009-01-01

    Hermes are hAT transposons from Musca domestica that are very closely related to the hobo transposons from Drosophila melanogaster and are useful as gene vectors in a wide variety of organisms including insects, planaria, and yeast. hobo elements show distinct length variations in a rapidly evolving region of the transposase-coding region as a result of expansions and contractions of a simple repeat sequence encoding 3 amino acids threonine, proline, and glutamic acid (TPE). These variations in length may influence the function of the protein and the movement of hobo transposons in natural populations. Here, we determine the distribution of Hermes in populations of M. domestica as well as whether Hermes transposase has undergone similar sequence expansions and contractions during its evolution in this species. Hermes transposons were found in all M. domestica individuals sampled from 14 populations collected from 4 continents. All individuals with Hermes transposons had evidence for the presence of intact transposase open reading frames, and little sequence variation was observed among Hermes elements. A systematic analysis of the TPE-homologous region of the Hermes transposase-coding region revealed no evidence for length variation. The simple sequence repeat found in hobo elements is a feature of this transposon that evolved since the divergence of hobo and Hermes. PMID:19366812

  3. Molecular Cytogenetic Analysis of Deschampsia antarctica Desv. (Poaceae), Maritime Antarctic.

    PubMed

    Amosova, Alexandra V; Bolsheva, Nadezhda L; Samatadze, Tatiana E; Twardovska, Maryana O; Zoshchuk, Svyatoslav A; Andreev, Igor O; Badaeva, Ekaterina D; Kunakh, Viktor A; Muravenko, Olga V

    2015-01-01

    Deschampsia antarctica Desv. (Poaceae) (2n = 26) is one of the two vascular plants adapted to the harshest environment of the Antarctic. Although the species is a valuable model for study of environmental stress tolerance in plants, its karyotype is still poorly investigated. We firstly conducted a comprehensive molecular cytogenetic analysis of D. antarctica collected on four islands of the Maritime Antarctic. D. antarctica karyotypes were studied by Giemsa C- and DAPI/C-banding, Ag-NOR staining, multicolour fluorescence in situ hybridization with repeated DNA probes (pTa71, pTa794, telomere repeats, pSc119.2, pAs1) and the GAA simple sequence repeat probe. We also performed sequential rapid in situ hybridization with genomic DNA of D. caespitosa. Two chromosome pairs bearing transcriptionally active 45S rDNA loci and five pairs with 5S rDNA sites were detected. A weak intercalary site of telomere repeats was revealed on the largest chromosome in addition to telomere hybridization signals at terminal positions. This fact confirms indirectly the hypothesis that chromosome fusion might have been the cause of the unusual for cereals chromosome number in this species. Based on patterns of distribution of the examined molecular cytogenetic markers, all chromosomes in karyotypes were identified, and chromosome idiograms of D. antarctica were constructed. B chromosomes were found in most karyotypes of plants from Darboux Island. A mixoploid plant with mainly triploid cells bearing a Robertsonian rearrangement was detected among typical diploid specimens from Great Jalour Island. The karyotype variability found in D. antarctica is probably an expression of genome instability induced by environmental stress factors. The differences in C-banding patterns and in chromosome distribution of rDNA loci as well as homologous highly repeated DNA sequences detected between genomes of D. antarctica and its related species D. caespitosa indicate that genome reorganization involving coding and noncoding repeated DNA sequences had occurred during the divergence of these species.

  4. Molecular Cytogenetic Analysis of Deschampsia antarctica Desv. (Poaceae), Maritime Antarctic

    PubMed Central

    Amosova, Alexandra V.; Bolsheva, Nadezhda L.; Samatadze, Tatiana E.; Twardovska, Maryana O.; Zoshchuk, Svyatoslav A.; Andreev, Igor O.; Badaeva, Ekaterina D.; Kunakh, Viktor A.; Muravenko, Olga V.

    2015-01-01

    Deschampsia antarctica Desv. (Poaceae) (2n = 26) is one of the two vascular plants adapted to the harshest environment of the Antarctic. Although the species is a valuable model for study of environmental stress tolerance in plants, its karyotype is still poorly investigated. We firstly conducted a comprehensive molecular cytogenetic analysis of D. antarctica collected on four islands of the Maritime Antarctic. D. antarctica karyotypes were studied by Giemsa C- and DAPI/C-banding, Ag-NOR staining, multicolour fluorescence in situ hybridization with repeated DNA probes (pTa71, pTa794, telomere repeats, pSc119.2, pAs1) and the GAA simple sequence repeat probe. We also performed sequential rapid in situ hybridization with genomic DNA of D. caespitosa. Two chromosome pairs bearing transcriptionally active 45S rDNA loci and five pairs with 5S rDNA sites were detected. A weak intercalary site of telomere repeats was revealed on the largest chromosome in addition to telomere hybridization signals at terminal positions. This fact confirms indirectly the hypothesis that chromosome fusion might have been the cause of the unusual for cereals chromosome number in this species. Based on patterns of distribution of the examined molecular cytogenetic markers, all chromosomes in karyotypes were identified, and chromosome idiograms of D. antarctica were constructed. B chromosomes were found in most karyotypes of plants from Darboux Island. A mixoploid plant with mainly triploid cells bearing a Robertsonian rearrangement was detected among typical diploid specimens from Great Jalour Island. The karyotype variability found in D. antarctica is probably an expression of genome instability induced by environmental stress factors. The differences in C-banding patterns and in chromosome distribution of rDNA loci as well as homologous highly repeated DNA sequences detected between genomes of D. antarctica and its related species D. caespitosa indicate that genome reorganization involving coding and noncoding repeated DNA sequences had occurred during the divergence of these species. PMID:26394331

  5. Occurrence, distribution, and possible functional roles of simple sequence repeats in phytoplasma genomes

    USDA-ARS?s Scientific Manuscript database

    Phytoplasmas are unculturable, cell wall-less bacteria that parasitize plants and insects. This transkingdom life cycle requires rapid responses to vastly different environments including transitions from plant phloem sieve elements to various insect tissues and alterations of diverse plant hosts. ...

  6. High levels of heterozygosity found for 15 SSR loci in Solanum chacoense

    USDA-ARS?s Scientific Manuscript database

    Genetic variation is a necessary prerequisite for improving domesticated plants through breeding; without it, breeding progress would be impossible. Genetic variation can be readily ascertained with co-dominant DNA markers, such as simple sequence repeats (SSRs). Twenty-four SSR markers specifically...

  7. Genetic differentiation and geographical relationship of Asian barley landraces using SSRs

    USDA-ARS?s Scientific Manuscript database

    Genetic diversity in 403 morphologically distinctive landraces of barley (Hordeum vulgare L. subsp. vulgare) originating from seven geographical zones of Asia was studied using simple sequence repeat (SSR) markers. The seven polymorphic SSR markers representing each chromosome chosen for this study ...

  8. Mapping QTL for popping expansion volume in popcorn with simple sequence repeat markers.

    PubMed

    Lu, H-J; Bernardo, R; Ohm, H W

    2003-02-01

    Popping expansion volume is the most important quality trait in popcorn ( Zea mays L.), but its genetics is not well understood. The objectives of this study were to map quantitative trait loci (QTLs) responsible for popping expansion volume in a popcorn x dent corn cross, and to compare the predicted efficiencies of phenotypic selection, marker-based selection, and marker-assisted selection for popping expansion volume. Of 259 simple sequence repeat (SSR) primer pairs screened, 83 pairs were polymorphic between the H123 (dent corn) and AG19 (popcorn) parental inbreds. Popping test data were obtained for 160 S(1) families developed from the [AG19(H123 x AG19)] BC(1) population. The heritability ( h(2)) for popping expansion volume on an S(1) family mean basis was 0.73. The presence of the gametophyte factor Ga1(s) in popcorn complicates the analysis of popcorn x dent corn crosses. But, from a practical perspective, the linkage between a favorable QTL allele and Ga1(s) in popcorn will lead to selection for the favorable QTL allele. Four QTLs, on chromosomes 1S, 3S, 5S and 5L, jointly explained 45% of the phenotypic variation. Marker-based selection for popping expansion volume would require less time and work than phenotypic selection. But due to the high h(2) of popping expansion volume, marker-based selection was predicted to be only 92% as efficient as phenotypic selection. Marker-assisted selection, which comprises index selection on phenotypic and marker scores, was predicted to be 106% as efficient as phenotypic selection. Overall, our results suggest that phenotypic selection will remain the preferred method for selection in popcorn x dent corn crosses.

  9. Genetic diversity and population structure analysis in Perilla frutescens from Northern areas of China based on simple sequence repeats.

    PubMed

    Ma, S J; Sa, K J; Hong, T K; Lee, J K

    2017-09-21

    In this study, 21 simple sequence repeat (SSR) markers were used to evaluate the genetic diversity and population structure among 77 Perilla accessions from high-latitude and middle-latitude areas of China. Ninety-five alleles were identified with an average of 4.52 alleles per locus. The average polymorphic information content (PIC) and genetic diversity values were 0.346 and 0.372, respectively. The level of genetic diversity and PIC value for cultivated accessions of Perilla frutescens var. frutescens from middle-latitude areas were higher than accessions from high-latitude areas. Based on the dendrogram of unweighted pair group method with arithmetic mean (UPGMA), all accessions were classified into four major groups with a genetic similarity of 46%. All accessions of the cultivated var. frutescens were discriminated from the cultivated P. frutescens var. crispa. Furthermore, most accessions of the cultivated var. frutescens collected in high-latitude and middle-latitude areas were distinguished depending on their geographical location. However, the geographical locations of several accessions of the cultivated var. frutescens have no relation with their positions in the UPGMA dendrogram and population structure. This result implies that the diffusion of accessions of the cultivated Perilla crop in the northern areas of China might be through multiple routes. On the population structure analysis, 77 Perilla accessions were divided into Group I, Group II, and an admixed group based on a membership probability threshold of 0.8. Finally, the findings in this study can provide useful theoretical knowledge for further study on the population structure and genetic diversity of Perilla and benefit for Perilla crop breeding and germplasm conservation.

  10. Analysis of Salmonella enterica Serovar Typhimurium Variable-Number Tandem-Repeat Data for Public Health Investigation Based on Measured Mutation Rates and Whole-Genome Sequence Comparisons

    PubMed Central

    Dimovski, Karolina; Cao, Hanwei; Wijburg, Odilia L. C.; Strugnell, Richard A.; Mantena, Radha K.; Whipp, Margaret; Hogg, Geoff

    2014-01-01

    Variable-number tandem repeats (VNTRs) mutate rapidly and can be useful markers for genotyping. While multilocus VNTR analysis (MLVA) is increasingly used in the detection and investigation of food-borne outbreaks caused by Salmonella enterica serovar Typhimurium (S. Typhimurium) and other bacterial pathogens, MLVA data analysis usually relies on simple clustering approaches that may lead to incorrect interpretations. Here, we estimated the rates of copy number change at each of the five loci commonly used for S. Typhimurium MLVA, during in vitro and in vivo passage. We found that loci STTR5, STTR6, and STTR10 changed during passage but STTR3 and STTR9 did not. Relative rates of change were consistent across in vitro and in vivo growth and could be accurately estimated from diversity measures of natural variation observed during large outbreaks. Using a set of 203 isolates from a series of linked outbreaks and whole-genome sequencing of 12 representative isolates, we assessed the accuracy and utility of several alternative methods for analyzing and interpreting S. Typhimurium MLVA data. We show that eBURST analysis was accurate and informative. For construction of MLVA-based trees, a novel distance metric, based on the geometric model of VNTR evolution coupled with locus-specific weights, performed better than the commonly used simple or categorical distance metrics. The data suggest that, for the purpose of identifying potential transmission clusters for further investigation, isolates whose profiles differ at one of the rapidly changing STTR5, STTR6, and STTR10 loci should be collapsed into the same cluster. PMID:24957617

  11. The repeating nucleotide sequence in the repetitive mitochondrial DNA from a "low-density" petite mutant of yeast.

    PubMed Central

    Van Kreijl, C F; Bos, J L

    1977-01-01

    The repeating nucleotide sequence of 68 base pairs in the mtDNA from an ethidium-induced cytoplasmic petite mutant of yeast has been determined. For sequence analysis specifically primed and terminated RNA copies, obtained by in vitro transcription of the separated strands, were use. The sequence consists of 66 consecutive AT base pairs flanked by two GC pairs and comprises nearly all of the mutant mitochondrial genome. The sequence, moreover, also represents the first part of wild-type mtDNA sequence so far. Images PMID:198740

  12. Simple Sequence Repeat and S-locus Genotyping to Explore Genetic Variability in Polyploid Prunus spinosa and P. insititia.

    PubMed

    Halász, Júlia; Makovics-Zsohár, Noémi; Szőke, Ferenc; Ercisli, Sezai; Hegedűs, Attila

    2017-02-01

    Polyploid Prunus spinosa (2n = 4×) and P. insititia (2n = 6×) represent enormous genetic potential in Central Europe, which can be exploited in breeding programmes. In Hungary, 17 cultivar candidates were selected from wild-growing populations including 10 P. spinosa, 4 P. insititia and three P. spinosa × P. domestica hybrids (2n = 5×). Their taxonomic classification was based on their phenotypic characteristics. Six simple sequence repeats (SSRs) and the multiallelic S-locus genotyping were used to characterize genetic variability and reliable identification of the tested accessions. A total of 98 SSR alleles were identified, which presents 19.5 average allele number per locus, and each of the 17 genotypes could be discriminated based on unique SSR fingerprints. A total of 23 S-RNase alleles were identified. The complete and partial S-genotype was determined for 8 and 9 accessions, respectively. The identification of a cross-incompatible pair of cultivar candidates and several semi-compatible combinations help maximize fruit set in commercial orchards. Our results indicate that the S-allele pools of wild-growing P. spinosa and P. insititia are overlapping in Hungary. A phylogenetic and principal component analysis confirmed the high level of diversity and genetic differentiation present within the analysed genotypes and helped clarify doubtful taxonomic identities. Our data confirm that S-locus genotyping is suitable for diversity studies in polyploid Prunus species. The analysed accessions represent huge genetic potential that can be exploited in commercial cultivation.

  13. Genetic diversity analysis of cyanogenic potential (CNp) of root among improved genotypes of cassava using simple sequence repeat markers.

    PubMed

    Moyib, O K; Mkumbira, J; Odunola, O A; Dixon, A G

    2012-12-01

    Cyanogenic potential (CNp) of cassava constitutes a serious problem for over 500 million people who rely on the crop as their main source of calories. Genetic diversity is a key to successful crop improvement for breeding new improved variability for target traits. Forty-three improved genotypes of cassava developed by International Institute of Tropical Agriculture (ITA), Ibadan, were characterized for CNp trait using 35 Simple Sequence.Repeat (SSR) markers. Essential colorimetry picric test was used for evaluation of CNp on a color scale of 1 to 14. The CNp scores obtained ranged from 3 to 9, with a mean score of 5.48 (+/- 0.09) based on Statistical Analysis System (SAS) package. TMS M98/ 0068 (4.0 +/- 0.25) was identified as the best genotype with low CNp while TMS M98/0028 (7.75 +/- 0.25) was the worst. The 43 genotypes were assigned into 7 phenotypic groups based on rank-sum analysis in SAS. Dissimilarity analysis representatives for windows generated a phylogenetic tree with 5 clusters which represented hybridizing groups. Each of the clusters (except 4) contained low CNp genotypes that could be used for improving the high CNp genotypes in the same or near cluster. The scatter plot of the genotypes showed that there was little or no demarcation for phenotypic CNp groupings in the molecular groupings. The result of this study demonstrated that SSR markers are powerful tools for the assessment of genetic variability, and proper identification and selection of parents for genetic improvement of low CNp trait among the IITA cassava collection.

  14. Generating constrained randomized sequences: item frequency matters.

    PubMed

    French, Robert M; Perruchet, Pierre

    2009-11-01

    All experimental psychologists understand the importance of randomizing lists of items. However, randomization is generally constrained, and these constraints-in particular, not allowing immediately repeated items-which are designed to eliminate particular biases, frequently engender others. We describe a simple Monte Carlo randomization technique that solves a number of these problems. However, in many experimental settings, we are concerned not only with the number and distribution of items but also with the number and distribution of transitions between items. The algorithm mentioned above provides no control over this. We therefore introduce a simple technique that uses transition tables for generating correctly randomized sequences. We present an analytic method of producing item-pair frequency tables and item-pair transitional probability tables when immediate repetitions are not allowed. We illustrate these difficulties and how to overcome them, with reference to a classic article on word segmentation in infants. Finally, we provide free access to an Excel file that allows users to generate transition tables with up to 10 different item types, as well as to generate appropriately distributed randomized sequences of any length without immediately repeated elements. This file is freely available from http://leadserv.u-bourgogne.fr/IMG/xls/TransitionMatrix.xls.

  15. Design, production and molecular structure of a new family of artificial alpha-helicoidal repeat proteins (αRep) based on thermostable HEAT-like repeats.

    PubMed

    Urvoas, Agathe; Guellouz, Asma; Valerio-Lepiniec, Marie; Graille, Marc; Durand, Dominique; Desravines, Danielle C; van Tilbeurgh, Herman; Desmadril, Michel; Minard, Philippe

    2010-11-26

    Repeat proteins have a modular organization and a regular architecture that make them attractive models for design and directed evolution experiments. HEAT repeat proteins, although very common, have not been used as a scaffold for artificial proteins, probably because they are made of long and irregular repeats. Here, we present and validate a consensus sequence for artificial HEAT repeat proteins. The sequence was defined from the structure-based sequence analysis of a thermostable HEAT-like repeat protein. Appropriate sequences were identified for the N- and C-caps. A library of genes coding for artificial proteins based on this sequence design, named αRep, was assembled using new and versatile methodology based on circular amplification. Proteins picked randomly from this library are expressed as soluble proteins. The biophysical properties of proteins with different numbers of repeats and different combinations of side chains in hypervariable positions were characterized. Circular dichroism and differential scanning calorimetry experiments showed that all these proteins are folded cooperatively and are very stable (T(m) >70 °C). Stability of these proteins increases with the number of repeats. Detailed gel filtration and small-angle X-ray scattering studies showed that the purified proteins form either monomers or dimers. The X-ray structure of a stable dimeric variant structure was solved. The protein is folded with a highly regular topology and the repeat structure is organized, as expected, as pairs of alpha helices. In this protein variant, the dimerization interface results directly from the variable surface enriched in aromatic residues located in the randomized positions of the repeats. The dimer was crystallized both in an apo and in a PEG-bound form, revealing a very well defined binding crevice and some structure flexibility at the interface. This fortuitous binding site could later prove to be a useful binding site for other low molecular mass partners. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Simple sequence repeat markers that identify Claviceps species and strains.

    PubMed

    Gilmore, Barbara S; Alderman, Stephen C; Knaus, Brian J; Bassil, Nahla V; Martin, Ruth C; Dombrowski, James E; Dung, Jeremiah K S

    2016-01-01

    Claviceps purpurea is a pathogen that infects most members of Pooideae, a subfamily of Poaceae, and causes ergot, a floral disease in which the ovary is replaced with a sclerotium. When the ergot body is accidently consumed by either man or animal in high enough quantities, there is extreme pain, limb loss and sometimes death. This study was initiated to develop simple sequence repeat (SSRs) markers for rapid identification of  C. purpurea . SSRs were designed from sequence data stored at the National Center for Biotechnology Information database. The study consisted of 74 ergot isolates, from four different host species, Lolium perenne , Poa pratensis , Bromus inermis , and Secale cereale plus three additional Claviceps species, C. pusilla , C. paspali and C. fusiformis. Samples were collected from six different counties in Oregon and Washington over a 5-year period. Thirty-four SSR markers were selected, which enabled the differentiation of each isolate from one another based solely on their molecular fingerprints. Discriminant analysis of principle components was used to identify four isolate groups, CA Group 1, 2, 3, and 4, for subsequent cluster and molecular variance analyses. CA Group 1 consisting of eight isolates from the host species P. pratensis , was separated on the cluster analysis plot from the remaining three groups and this group was later identified as C. humidiphila . The other three groups were distinct from one another, but closely related. These three groups contained samples from all four of the host species. These SSRs are simple to use, reliable and allowed clear differentiation of C. humidiphila from C. purpurea . Isolates from the three separate species, C. pusilla , C. paspali and C. fusiformis , also amplified with these markers. The SSR markers developed in this study will be helpful in defining the population structure and genetics of Claviceps strains. They will also provide valuable tools for plant breeders needing to identify resistance in crops or for researchers examining fungal movements across environments.

  17. De Novo Transcriptome Sequencing Reveals Important Molecular Networks and Metabolic Pathways of the Plant, Chlorophytum borivilianum

    PubMed Central

    Kalra, Shikha; Puniya, Bhanwar Lal; Kulshreshtha, Deepika; Kumar, Sunil; Kaur, Jagdeep; Ramachandran, Srinivasan; Singh, Kashmir

    2013-01-01

    Chlorophytum borivilianum, an endangered medicinal plant species is highly recognized for its aphrodisiac properties provided by saponins present in the plant. The transcriptome information of this species is limited and only few hundred expressed sequence tags (ESTs) are available in the public databases. To gain molecular insight of this plant, high throughput transcriptome sequencing of leaf RNA was carried out using Illumina's HiSeq 2000 sequencing platform. A total of 22,161,444 single end reads were retrieved after quality filtering. Available (e.g., De-Bruijn/Eulerian graph) and in-house developed bioinformatics tools were used for assembly and annotation of transcriptome. A total of 101,141 assembled transcripts were obtained, with coverage size of 22.42 Mb and average length of 221 bp. Guanine-cytosine (GC) content was found to be 44%. Bioinformatics analysis, using non-redundant proteins, gene ontology (GO), enzyme commission (EC) and kyoto encyclopedia of genes and genomes (KEGG) databases, extracted all the known enzymes involved in saponin and flavonoid biosynthesis. Few genes of the alkaloid biosynthesis, along with anticancer and plant defense genes, were also discovered. Additionally, several cytochrome P450 (CYP450) and glycosyltransferase unique sequences were also found. We identified simple sequence repeat motifs in transcripts with an abundance of di-nucleotide simple sequence repeat (SSR; 43.1%) markers. Large scale expression profiling through Reads per Kilobase per Million mapped reads (RPKM) showed major genes involved in different metabolic pathways of the plant. Genes, expressed sequence tags (ESTs) and unique sequences from this study provide an important resource for the scientific community, interested in the molecular genetics and functional genomics of C. borivilianum. PMID:24376689

  18. De Novo transcriptome sequencing reveals important molecular networks and metabolic pathways of the plant, Chlorophytum borivilianum.

    PubMed

    Kalra, Shikha; Puniya, Bhanwar Lal; Kulshreshtha, Deepika; Kumar, Sunil; Kaur, Jagdeep; Ramachandran, Srinivasan; Singh, Kashmir

    2013-01-01

    Chlorophytum borivilianum, an endangered medicinal plant species is highly recognized for its aphrodisiac properties provided by saponins present in the plant. The transcriptome information of this species is limited and only few hundred expressed sequence tags (ESTs) are available in the public databases. To gain molecular insight of this plant, high throughput transcriptome sequencing of leaf RNA was carried out using Illumina's HiSeq 2000 sequencing platform. A total of 22,161,444 single end reads were retrieved after quality filtering. Available (e.g., De-Bruijn/Eulerian graph) and in-house developed bioinformatics tools were used for assembly and annotation of transcriptome. A total of 101,141 assembled transcripts were obtained, with coverage size of 22.42 Mb and average length of 221 bp. Guanine-cytosine (GC) content was found to be 44%. Bioinformatics analysis, using non-redundant proteins, gene ontology (GO), enzyme commission (EC) and kyoto encyclopedia of genes and genomes (KEGG) databases, extracted all the known enzymes involved in saponin and flavonoid biosynthesis. Few genes of the alkaloid biosynthesis, along with anticancer and plant defense genes, were also discovered. Additionally, several cytochrome P450 (CYP450) and glycosyltransferase unique sequences were also found. We identified simple sequence repeat motifs in transcripts with an abundance of di-nucleotide simple sequence repeat (SSR; 43.1%) markers. Large scale expression profiling through Reads per Kilobase per Million mapped reads (RPKM) showed major genes involved in different metabolic pathways of the plant. Genes, expressed sequence tags (ESTs) and unique sequences from this study provide an important resource for the scientific community, interested in the molecular genetics and functional genomics of C. borivilianum.

  19. Simple sequence repeat markers for interspecific hybrid detections in Agrostis

    USDA-ARS?s Scientific Manuscript database

    Agrostis stolonifera L. (creeping bentgrass) and Agrostis capillaris (colonial bentgrass) are turfgrass species that are well adapted for golf course use in regions of the world where cool-season grasses are grown. Interspecific hybrids between the species do form and have the potential to incorpora...

  20. UPIC: Perl scripts to determine the number of SSR markers to run

    USDA-ARS?s Scientific Manuscript database

    We have developed Perl Scripts for the cost-effective planning of fingerprinting and genotyping experiments. The UPIC scripts detect the best combination of polymorphic simple sequence repeat (SSR) markers and provide coefficients of the amount of information obtainable (number of alleles of patter...

  1. Linkage mapping in a watermelon population segregating for fusarium wilt resistance

    Treesearch

    Leigh K. Hawkins; Fenny Dane; Thomas L. Kubisiak; Billy B. Rhodes; Robert L. Jarret

    2001-01-01

    Isozyme, randomly amplified polymorphic DNA (RAPD), and simple sequence repeats (SSR) markers were used to generate a linkage map in an F2 and F3 watermelon (Citrullus lanatus (Thumb.) Matsum. & Nakai) population derived from a cross between the fusarium wilt (Fusarium oxysporum f....

  2. Genetic diversity and structure of Phakopsora pachyrhizi infecting soybean in Nigeria

    USDA-ARS?s Scientific Manuscript database

    The genetic structure of Nigerian field populations of the soybean rust pathogen Phakopsora pachyrhizi was determined using 18 simple sequence repeat markers. A total of 113 fungal isolates was collected by hierarchical sampling infected leaves from soybean fields in three agroecological zones in 2...

  3. "The devil's in the detail": Release of an expanded, enhanced and dynamically revised forensic STR Sequence Guide.

    PubMed

    Phillips, C; Gettings, K Butler; King, J L; Ballard, D; Bodner, M; Borsuk, L; Parson, W

    2018-05-01

    The STR sequence template file published in 2016 as part of the considerations from the DNA Commission of the International Society for Forensic Genetics on minimal STR sequence nomenclature requirements, has been comprehensively revised and audited using the latest GRCh38 genome assembly. The list of forensic STRs characterized was expanded by including supplementary autosomal, X- and Y-chromosome microsatellites in less common use for routine DNA profiling, but some likely to be adopted in future massively parallel sequencing (MPS) STR panels. We outline several aspects of sequence alignment and annotation that required care and attention to detail when comparing sequences to GRCh37 and GRCh38 assemblies, as well as the necessary matching of MPS-based allele descriptions to previously established repeat region structures described in initial sequencing studies of the less well known forensic STRs. The revised sequence guide is now available in a dynamically updated FTP format from the STRidER website with a date-stamped change log to allow users to explore their own MPS data with the most up-to-date forensic STR sequence information compiled in a simple guide. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Analytical and Clinical Validation of a Digital Sequencing Panel for Quantitative, Highly Accurate Evaluation of Cell-Free Circulating Tumor DNA

    PubMed Central

    Zill, Oliver A.; Sebisanovic, Dragan; Lopez, Rene; Blau, Sibel; Collisson, Eric A.; Divers, Stephen G.; Hoon, Dave S. B.; Kopetz, E. Scott; Lee, Jeeyun; Nikolinakos, Petros G.; Baca, Arthur M.; Kermani, Bahram G.; Eltoukhy, Helmy; Talasaz, AmirAli

    2015-01-01

    Next-generation sequencing of cell-free circulating solid tumor DNA addresses two challenges in contemporary cancer care. First this method of massively parallel and deep sequencing enables assessment of a comprehensive panel of genomic targets from a single sample, and second, it obviates the need for repeat invasive tissue biopsies. Digital SequencingTM is a novel method for high-quality sequencing of circulating tumor DNA simultaneously across a comprehensive panel of over 50 cancer-related genes with a simple blood test. Here we report the analytic and clinical validation of the gene panel. Analytic sensitivity down to 0.1% mutant allele fraction is demonstrated via serial dilution studies of known samples. Near-perfect analytic specificity (> 99.9999%) enables complete coverage of many genes without the false positives typically seen with traditional sequencing assays at mutant allele frequencies or fractions below 5%. We compared digital sequencing of plasma-derived cell-free DNA to tissue-based sequencing on 165 consecutive matched samples from five outside centers in patients with stage III-IV solid tumor cancers. Clinical sensitivity of plasma-derived NGS was 85.0%, comparable to 80.7% sensitivity for tissue. The assay success rate on 1,000 consecutive samples in clinical practice was 99.8%. Digital sequencing of plasma-derived DNA is indicated in advanced cancer patients to prevent repeated invasive biopsies when the initial biopsy is inadequate, unobtainable for genomic testing, or uninformative, or when the patient’s cancer has progressed despite treatment. Its clinical utility is derived from reduction in the costs, complications and delays associated with invasive tissue biopsies for genomic testing. PMID:26474073

  5. PUF Proteins: Cellular Functions and Potential Applications.

    PubMed

    Kiani, Seyed Jalal; Taheri, Tahereh; Rafati, Sima; Samimi-Rad, Katayoun

    2017-01-01

    RNA-binding proteins play critical roles in the regulation of gene expression. Among several families of RNA-binding proteins, PUF (Pumilio and FBF) proteins have been the subject of extensive investigations, as they can bind RNA in a sequence-specific manner and they are evolutionarily conserved among a wide range of organisms. The outstanding feature of these proteins is a highly conserved RNA-binding domain, which is known as the Pumilio-homology domain (PUM-HD) that mostly consists of eight tandem repeats. Each repeat recognizes an RNA base with a simple three-letter code that can be programmed in order to change the sequence-specificity of the protein. Using this tailored architecture, researchers have been able to change the specificity of the PUM-HD and target desired transcripts in the cell, even in subcellular compartments. The potential applications of this versatile tool in molecular cell biology seem unbounded and the use of these factors in pharmaceutics might be an interesting field of study in near future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Chicken microsatellite markers isolated from libraries enriched for simple tandem repeats.

    PubMed

    Gibbs, M; Dawson, D A; McCamley, C; Wardle, A F; Armour, J A; Burke, T

    1997-12-01

    The total number of microsatellite loci is considered to be at least 10-fold lower in avian species than in mammalian species. Therefore, efficient large-scale cloning of chicken microsatellites, as required for the construction of a high-resolution linkage map, is facilitated by the construction of libraries using an enrichment strategy. In this study, a plasmid library enriched for tandem repeats was constructed from chicken genomic DNA by hybridization selection. Using this technique the proportion of recombinant clones that cross-hybridized to probes containing simple tandem repeats was raised to 16%, compared with < 0.1% in a non-enriched library. Primers were designed from 121 different sequences. Polymerase chain reaction (PCR) analysis of two chicken reference pedigrees enabled 72 loci to be localized within the collaborative chicken genetic map, and at least 30 of the remaining loci have been shown to be informative in these or other crosses.

  7. Evolutionary force of AT-rich repeats to trap genomic and episomal DNAs into the rice genome: lessons from endogenous pararetrovirus.

    PubMed

    Liu, Ruifang; Koyanagi, Kanako O; Chen, Sunlu; Kishima, Yuji

    2012-12-01

    In plant genomes, the incorporation of DNA segments is not a common method of artificial gene transfer. Nevertheless, various segments of pararetroviruses have been found in plant genomes in recent decades. The rice genome contains a number of segments of endogenous rice tungro bacilliform virus-like sequences (ERTBVs), many of which are present between AT dinucleotide repeats (ATrs). Comparison of genomic sequences between two closely related rice subspecies, japonica and indica, allowed us to verify the preferential insertion of ERTBVs into ATrs. In addition to ERTBVs, the comparative analyses showed that ATrs occasionally incorporate repeat sequences including transposable elements, and a wide range of other sequences. Besides the known genomic sequences, the insertion sequences also represented DNAs of unclear origins together with ERTBVs, suggesting that ATrs have integrated episomal DNAs that would have been suspended in the nucleus. Such insertion DNAs might be trapped by ATrs in the genome in a host-dependent manner. Conversely, other simple mono- and dinucleotide sequence repeats (SSR) were less frequently involved in insertion events relative to ATrs. Therefore, ATrs could be regarded as hot spots of double-strand breaks that induce non-homologous end joining. The insertions within ATrs occasionally generated new gene-related sequences or involved structural modifications of existing genes. Likewise, in a comparison between Arabidopsis thaliana and Arabidopsis lyrata, the insertions preferred ATrs to other SSRs. Therefore ATrs in plant genomes could be considered as genomic dumping sites that have trapped various DNA molecules and may have exerted a powerful evolutionary force. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  8. Exploring the repeat protein universe through computational protein design

    DOE PAGES

    Brunette, TJ; Parmeggiani, Fabio; Huang, Po-Ssu; ...

    2015-12-16

    A central question in protein evolution is the extent to which naturally occurring proteins sample the space of folded structures accessible to the polypeptide chain. Repeat proteins composed of multiple tandem copies of a modular structure unit are widespread in nature and have critical roles in molecular recognition, signalling, and other essential biological processes. Naturally occurring repeat proteins have been re-engineered for molecular recognition and modular scaffolding applications. In this paper, we use computational protein design to investigate the space of folded structures that can be generated by tandem repeating a simple helix–loop–helix–loop structural motif. Eighty-three designs with sequences unrelatedmore » to known repeat proteins were experimentally characterized. Of these, 53 are monomeric and stable at 95 °C, and 43 have solution X-ray scattering spectra consistent with the design models. Crystal structures of 15 designs spanning a broad range of curvatures are in close agreement with the design models with root mean square deviations ranging from 0.7 to 2.5 Å. Finally, our results show that existing repeat proteins occupy only a small fraction of the possible repeat protein sequence and structure space and that it is possible to design novel repeat proteins with precisely specified geometries, opening up a wide array of new possibilities for biomolecular engineering.« less

  9. Evolution of short inverted repeat in cupressophytes, transfer of accD to nucleus in Sciadopitys verticillata and phylogenetic position of Sciadopityaceae.

    PubMed

    Li, Jia; Gao, Lei; Chen, Shanshan; Tao, Ke; Su, Yingjuan; Wang, Ting

    2016-02-11

    Sciadopitys verticillata is an evergreen conifer and an economically valuable tree used in construction, which is the only member of the family Sciadopityaceae. Acquisition of the S. verticillata chloroplast (cp) genome will be useful for understanding the evolutionary mechanism of conifers and phylogenetic relationships among gymnosperm. In this study, we have first reported the complete chloroplast genome of S. verticillata. The total genome is 138,284 bp in length, consisting of 118 unique genes. The S. verticillata cp genome has lost one copy of the canonical inverted repeats and shown distinctive genomic structure comparing with other cupressophytes. Fifty-three simple sequence repeat loci and 18 forward tandem repeats were identified in the S. verticillata cp genome. According to the rearrangement of cupressophyte cp genome, we proposed one mechanism for the formation of inverted repeat: tandem repeat occured first, then rearrangement divided the tandem repeat into inverted repeats located at different regions. Phylogenetic estimates inferred from 59-gene sequences and cpDNA organizations have both shown that S. verticillata was sister to the clade consisting of Cupressaceae, Taxaceae, and Cephalotaxaceae. Moreover, accD gene was found to be lost in the S. verticillata cp genome, and a nucleus copy was identified from two transcriptome data.

  10. Experimental definition of a clustered regularly interspaced short palindromic duplicon in Escherichia coli.

    PubMed

    Goren, Moran G; Yosef, Ido; Auster, Oren; Qimron, Udi

    2012-10-12

    We analyzed sequences of newly inserted repeats in an Escherichia coli CRISPR (clustered regularly interspaced short palindromic repeats) array in vivo and showed that a base previously thought to belong to the repeat is actually derived from a protospacer. Based on further experimental results, we propose to use the term "duplicon" for a repeated sequence in a CRISPR array that serves as a template for a new duplicon. Our findings suggest the possibility of redrawing the borders between repeats, spacers, and protospacer adjacent motifs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Survey and Analysis of Microsatellites in the Silkworm, Bombyx mori

    PubMed Central

    Prasad, M. Dharma; Muthulakshmi, M.; Madhu, M.; Archak, Sunil; Mita, K.; Nagaraju, J.

    2005-01-01

    We studied microsatellite frequency and distribution in 21.76-Mb random genomic sequences, 0.67-Mb BAC sequences from the Z chromosome, and 6.3-Mb EST sequences of Bombyx mori. We mined microsatellites of ≥15 bases of mononucleotide repeats and ≥5 repeat units of other classes of repeats. We estimated that microsatellites account for 0.31% of the genome of B. mori. Microsatellite tracts of A, AT, and ATT were the most abundant whereas their number drastically decreased as the length of the repeat motif increased. In general, tri- and hexanucleotide repeats were overrepresented in the transcribed sequences except TAA, GTA, and TGA, which were in excess in genomic sequences. The Z chromosome sequences contained shorter repeat types than the rest of the chromosomes in addition to a higher abundance of AT-rich repeats. Our results showed that base composition of the flanking sequence has an influence on the origin and evolution of microsatellites. Transitions/transversions were high in microsatellites of ESTs, whereas the genomic sequence had an equal number of substitutions and indels. The average heterozygosity value for 23 polymorphic microsatellite loci surveyed in 13 diverse silkmoth strains having 2–14 alleles was 0.54. Only 36 (18.2%) of 198 microsatellite loci were polymorphic between the two divergent silkworm populations and 10 (5%) loci revealed null alleles. The microsatellite map generated using these polymorphic markers resulted in 8 linkage groups. B. mori microsatellite loci were the most conserved in its immediate ancestor, B. mandarina, followed by the wild saturniid silkmoth, Antheraea assama. PMID:15371363

  12. PCR-based approach to SINE isolation: simple and complex SINEs.

    PubMed

    Borodulina, Olga R; Kramerov, Dmitri A

    2005-04-11

    Highly repeated copies of short interspersed elements (SINEs) occur in eukaryotic genomes. The distribution of each SINE family is usually restricted to some genera, families, or orders. SINEs have an RNA polymerase III internal promoter, which is composed of boxes A and B. Here we propose a method for isolation of novel SINE families based on genomic DNA PCR with oligonucleotide identical to box A as a primer. Cloning of the size-heterogeneous PCR-products and sequencing of their terminal regions allow determination of SINE structure. Using this approach, two novel SINE families, Rhin-1 and Das-1, from the genomes of great horseshoe bat (Rhinolophus ferrumequinum) and nine-banded armadillo (Dasypus novemcinctus), respectively, were isolated and studied. The distribution of Rhin-1 is restricted to two of six bat families tested. Copies of this SINE are characterized by frequent internal insertions and significant length (200-270 bp). Das-1 being only 90 bp in length is one of the shortest SINEs known. Most of Das-1 nucleotide sequences demonstrate significant similarity to alanine tRNA which appears to be an evolutionary progenitor of this SINE. Together with three other known SINEs (ID, Vic-1, and CYN), Das-1 constitutes a group of simple SINEs. Interestingly, three SINE families of this group are alanine tRNA-derived. Most probably, this tRNA gave rise to short and simple but successful SINEs several times during mammalian evolution.

  13. [Transcription activator-like effectors(TALEs)based genome engineering].

    PubMed

    Zhao, Mei-Wei; Duan, Cheng-Li; Liu, Jiang

    2013-10-01

    Systematic reverse-engineering of functional genome architecture requires precise modifications of gene sequences and transcription levels. The development and application of transcription activator-like effectors(TALEs) has created a wealth of genome engineering possibilities. TALEs are a class of naturally occurring DNA-binding proteins found in the plant pathogen Xanthomonas species. The DNA-binding domain of each TALE typically consists of tandem 34-amino acid repeat modules rearranged according to a simple cipher to target new DNA sequences. Customized TALEs can be used for a wide variety of genome engineering applications, including transcriptional modulation and genome editing. Such "genome engineering" has now been established in human cells and a number of model organisms, thus opening the door to better understanding gene function in model organisms, improving traits in crop plants and treating human genetic disorders.

  14. High-Throughput Sequencing and De Novo Assembly of the Isatis indigotica Transcriptome

    PubMed Central

    Tang, Xiaoqing; Xiao, Yunhua; Lv, Tingting; Wang, Fangquan; Zhu, QianHao; Zheng, Tianqing; Yang, Jie

    2014-01-01

    Background Isatis indigotica, the source of the traditional Chinese medicine Radix isatidis (Ban-Lan-Gen), is an extremely important economical crop in China. To facilitate biological, biochemical and molecular research on the medicinal chemicals in I. indigotica, here we report the first I. indigotica transcriptome generated by RNA sequencing (RNA-seq). Results RNA-seq library was created using RNA extracted from a mixed sample including leaf and root. A total of 33,238 unigenes were assembled from more than 28 million of high quality short reads. The quality of the assembly was experimentally examined by cDNA sequencing of seven randomly selected unigenes. Based on blast search 28,184 unigenes had a hit in at least one of the protein and nucleotide databases used in this study, and 8 unigenes were found to be associated with biosynthesis of indole and its derivatives. According to Gene Ontology classification, 22,365 unigenes were categorized into 48 functional groups. Furthermore, Clusters of Orthologous Group and Swiss-Port annotation were assigned for 7,707 and 18,679 unigenes, respectively. Analysis of repeat motifs identified 6,400 simple sequence repeat markers in 4,509 unigenes. Conclusion Our data provide a comprehensive sequence resource for molecular study of I. indigotica. Our results will facilitate studies on the functions of genes involved in the indole alkaloid biosynthesis pathway and on metabolism of nitrogen and indole alkaloids in I. indigotica and its related species. PMID:25259890

  15. Development and validation of new SSR markers from expressed regions in the garlic genome

    USDA-ARS?s Scientific Manuscript database

    Limited number of simple sequence repeat (SSR) markers is available for the genome of garlic (Allium sativum L.) although SSR markers have become one of the most preferred marker systems because they are typically co-dominant, reproducible, cross species transferable and highly polymorphic. In this ...

  16. Genetic characterization of guava (psidium guajava l.) Germplasm in the United States using microsatellite markers

    USDA-ARS?s Scientific Manuscript database

    Genetic diversity of thirty five Psidium guajava accessions maintained at the USDA, National Plants Germplasm System, Hilo, HI, was characterized using 20 simple sequence repeat (SSR) markers. Diversity analysis detected a total of 178 alleles ranging from four to 16. The observed mean heterozygosit...

  17. Discriminating power of microsatellites in cranberry organelles for taxonomic studies in Vaccinium and Ericaceae

    USDA-ARS?s Scientific Manuscript database

    Simple sequence repeats (SSRs) in chloroplast and mitochondrial DNA, which have not been previously developed or explored in the Ericaceae family or Vaccinium genus, can be powerful tools for determining evolutionary relationships between taxa. In this study, 30 chloroplast and 23 mitochondria, and ...

  18. Virulence Phenotypes and Molecular Genotypes of Puccinia triticina Isolates from Italy

    USDA-ARS?s Scientific Manuscript database

    Twenty-four isolates of Puccinia triticina from Italy were characterized for virulence to seedlings of 22 common wheat cv. Thatcher isolines each with a different leaf rust resistance gene, and for molecular genotypes at 15 simple sequence repeat (SSR) loci. The isolates were compared with a set of ...

  19. Fusarium head blight resistance loci in a stratified population of wheat landraces and varieties

    USDA-ARS?s Scientific Manuscript database

    To determine if Chinese and Japanese wheat landraces and varieties have unique sources of Fusarium head blight (FHB) resistance, an association mapping panel of 195 wheat accessions including both commercial varieties and landraces was genotyped with 364 genome-wide simple sequence repeat (SSR) and ...

  20. Analyzing clonal fidelity of micropropagated Psidium guajava L. plants using simple sequence repeat markers

    USDA-ARS?s Scientific Manuscript database

    Micropropagation of Psidium guajava L. (guava) is a viable alternative to currently adopted techniques for large-scale plant propagation of commercial cultivars. Assessment of clonal fidelity in micropropagated plants is the first step towards ensuring genetic uniformity in mass production of planti...

  1. Usefulness of fire ant genetics in insecticide efficacy trials

    USDA-ARS?s Scientific Manuscript database

    Mature fire ant colonies contain an average of 80,000 worker ants. For this study, eight fire ant workers were randomly sampled from each colony. DNA fingerprints for each individual ant were generated using 21 simple sequence repeats (SSR) markers that were developed from fire ant DNA by other lab...

  2. Molecular basis of length polymorphism in the human zeta-globin gene complex.

    PubMed Central

    Goodbourn, S E; Higgs, D R; Clegg, J B; Weatherall, D J

    1983-01-01

    The length polymorphism between the human zeta-globin gene and its pseudogene is caused by an allele-specific variation in the copy number of a tandemly repeating 36-base-pair sequence. This sequence is related to a tandemly repeated 14-base-pair sequence in the 5' flanking region of the human insulin gene, which is known to cause length polymorphism, and to a repetitive sequence in intervening sequence (IVS) 1 of the pseudo-zeta-globin gene. Evidence is presented that the latter is also of variable length, probably because of differences in the copy number of the tandem repeat. The homology between the three length polymorphisms may be an indication of the presence of a more widespread group of related sequences in the human genome, which might be useful for generalized linkage studies. PMID:6308667

  3. Characterization of a species-specific repetitive DNA from a highly endangered wild animal, Rhinoceros unicornis, and assessment of genetic polymorphism by microsatellite associated sequence amplification (MASA).

    PubMed

    Ali, S; Azfer, M A; Bashamboo, A; Mathur, P K; Malik, P K; Mathur, V B; Raha, A K; Ansari, S

    1999-03-04

    We have cloned and sequenced a 906bp EcoRI repeat DNA fraction from Rhinoceros unicornis genome. The contig pSS(R)2 is AT rich with 340 A (37.53%), 187 C (20.64%), 173 G (19.09%) and 206 T (22.74%). The sequence contains MALT box, NF-E1, Poly-A signal, lariat consensus sequences, TATA box, translational initiation sequences and several stop codons. Translation of the contig showed seven different types of protein motifs, among which, EGF-like domain cysteine pattern signatures and Bowman-Birk serine protease inhibitor family signatures were prominent. The presence of eukaryotic transcriptional elements, protein signatures and analysis of subset sequences in the 5' region from 1 to 165nt indicating coding potential (test code value=0.97) suggest possible regulatory and/or functional role(s) of these sequences in the rhino genome. Translation of the complementary strand from 906 to 706nt and 190 to 2nt showed proteins of more than 7kDa rich in non-polar residues. This suggests that pSS(R)2 is either a part of, or adjacent to, a functional gene. The contig contains mostly non-consecutive simple repeat units from 2 to 17nt with varying frequencies, of which four base motifs were found to be predominant. Zoo-blot hybridization revealed that pSS(R)2 sequences are unique to R. unicornis genome because they do not cross-hybridize, even with the genomic DNA of South African black rhino Diceros bicornis. Southern blot analysis of R. unicornis genomic DNA with pSS(R)2 and other synthetic oligo probes revealed a high level of genetic homogeneity, which was also substantiated by microsatellite associated sequence amplification (MASA). Owing to its uniqueness, the pSS(R)2 probe has a potential application in the area of conservation biology for unequivocal identification of horn or other body tissues of R. unicornis. The evolutionary aspect of this repeat fraction in the context of comparative genome analysis is discussed.

  4. Repeats of base oligomers as the primordial coding sequences of the primeval earth and their vestiges in modern genes.

    PubMed

    Ohno, S

    1984-01-01

    Three outstanding properties uniquely qualify repeats of base oligomers as the primordial coding sequences of all polypeptide chains. First, when compared with randomly generated base sequences in general, they are more likely to have long open reading frames. Second, periodical polypeptide chains specified by such repeats are more likely to assume either alpha-helical or beta-sheet secondary structures than are polypeptide chains of random sequence. Third, provided that the number of bases in the oligomeric unit is not a multiple of 3, these internally repetitious coding sequences are impervious to randomly sustained base substitutions, deletions, and insertions. This is because the recurring periodicity of their polypeptide chains is given by three consecutive copies of the oligomeric unit translated in three different reading frames. Accordingly, when one reading frame is open, the other two are automatically open as well, all three being capable of coding for polypeptide chains of identical periodicity. Under this circumstance, a frame shift due to the deletion or insertion of a number of bases that is not a multiple of 3 fails to alter the down-stream amino acid sequence, and even a base change causing premature chain-termination can silence only one of the three potential coding units. Newly arisen coding sequences in modern organisms are oligomeric repeats, and most of the older genes retain various vestiges of their original internal repetitions. Some of the genes (e.g., oncogenes) have even inherited the property of being impervious to randomly sustained base changes.

  5. Transcriptome sequencing and marker development in winged bean (Psophocarpus tetragonolobus; Leguminosae)

    PubMed Central

    Vatanparast, Mohammad; Shetty, Prateek; Chopra, Ratan; Doyle, Jeff J.; Sathyanarayana, N.; Egan, Ashley N.

    2016-01-01

    Winged bean, Psophocarpus tetragonolobus (L.) DC., is similar to soybean in yield and nutritional value but more viable in tropical conditions. Here, we strengthen genetic resources for this orphan crop by producing a de novo transcriptome assembly and annotation of two Sri Lankan accessions (denoted herein as CPP34 [PI 491423] and CPP37 [PI 639033]), developing simple sequence repeat (SSR) markers, and identifying single nucleotide polymorphisms (SNPs) between geographically separated genotypes. A combined assembly based on 804,757 reads from two accessions produced 16,115 contigs with an N50 of 889 bp, over 90% of which has significant sequence similarity to other legumes. Combining contigs with singletons produced 97,241 transcripts. We identified 12,956 SSRs, including 2,594 repeats for which primers were designed and 5,190 high-confidence SNPs between Sri Lankan and Nigerian genotypes. The transcriptomic data sets generated here provide new resources for gene discovery and marker development in this orphan crop, and will be vital for future plant breeding efforts. We also analyzed the soybean trypsin inhibitor (STI) gene family, important plant defense genes, in the context of related legumes and found evidence for radiation of the Kunitz trypsin inhibitor (KTI) gene family within winged bean. PMID:27356763

  6. Chromosome arm-specific BAC end sequences permit comparative analysis of homoeologous chromosomes and genomes of polyploid wheat

    PubMed Central

    2012-01-01

    Background Bread wheat, one of the world’s staple food crops, has the largest, highly repetitive and polyploid genome among the cereal crops. The wheat genome holds the key to crop genetic improvement against challenges such as climate change, environmental degradation, and water scarcity. To unravel the complex wheat genome, the International Wheat Genome Sequencing Consortium (IWGSC) is pursuing a chromosome- and chromosome arm-based approach to physical mapping and sequencing. Here we report on the use of a BAC library made from flow-sorted telosomic chromosome 3A short arm (t3AS) for marker development and analysis of sequence composition and comparative evolution of homoeologous genomes of hexaploid wheat. Results The end-sequencing of 9,984 random BACs from a chromosome arm 3AS-specific library (TaaCsp3AShA) generated 11,014,359 bp of high quality sequence from 17,591 BAC-ends with an average length of 626 bp. The sequence represents 3.2% of t3AS with an average DNA sequence read every 19 kb. Overall, 79% of the sequence consisted of repetitive elements, 1.38% as coding regions (estimated 2,850 genes) and another 19% of unknown origin. Comparative sequence analysis suggested that 70-77% of the genes present in both 3A and 3B were syntenic with model species. Among the transposable elements, gypsy/sabrina (12.4%) was the most abundant repeat and was significantly more frequent in 3A compared to homoeologous chromosome 3B. Twenty novel repetitive sequences were also identified using de novo repeat identification. BESs were screened to identify simple sequence repeats (SSR) and transposable element junctions. A total of 1,057 SSRs were identified with a density of one per 10.4 kb, and 7,928 junctions between transposable elements (TE) and other sequences were identified with a density of one per 1.39 kb. With the objective of enhancing the marker density of chromosome 3AS, oligonucleotide primers were successfully designed from 758 SSRs and 695 Insertion Site Based Polymorphisms (ISBPs). Of the 96 ISBP primer pairs tested, 28 (29%) were 3A-specific and compared to 17 (18%) for 96 SSRs. Conclusion This work reports on the use of wheat chromosome arm 3AS-specific BAC library for the targeted generation of sequence data from a particular region of the huge genome of wheat. A large quantity of sequences were generated from the A genome of hexaploid wheat for comparative genome analysis with homoeologous B and D genomes and other model grass genomes. Hundreds of molecular markers were developed from the 3AS arm-specific sequences; these and other sequences will be useful in gene discovery and physical mapping. PMID:22559868

  7. Development of an efficient genetic manipulation strategy for sequential gene disruption and expression of different heterologous GFP genes in Candida tropicalis.

    PubMed

    Zhang, Lihua; Chen, Xianzhong; Chen, Zhen; Wang, Zezheng; Jiang, Shan; Li, Li; Pötter, Markus; Shen, Wei; Fan, You

    2016-11-01

    The diploid yeast Candida tropicalis, which can utilize n-alkane as a carbon and energy source, is an attractive strain for both physiological studies and practical applications. However, it presents some characteristics, such as rare codon usage, difficulty in sequential gene disruption, and inefficiency in foreign gene expression, that hamper strain improvement through genetic engineering. In this work, we present a simple and effective method for sequential gene disruption in C. tropicalis based on the use of an auxotrophic mutant host defective in orotidine monophosphate decarboxylase (URA3). The disruption cassette, which consists of a functional yeast URA3 gene flanked by a 0.3 kb gene disruption auxiliary sequence (gda) direct repeat derived from downstream or upstream of the URA3 gene and of homologous arms of the target gene, was constructed and introduced into the yeast genome by integrative transformation. Stable integrants were isolated by selection for Ura + and identified by PCR and sequencing. The important feature of this construct, which makes it very attractive, is that recombination between the flanking direct gda repeats occurs at a high frequency (10 -8 ) during mitosis. After excision of the URA3 marker, only one copy of the gda sequence remains at the recombinant locus. Thus, the resulting ura3 strain can be used again to disrupt a second allelic gene in a similar manner. In addition to this effective sequential gene disruption method, a codon-optimized green fluorescent protein-encoding gene (GFP) was functionally expressed in C. tropicalis. Thus, we propose a simple and reliable method to improve C. tropicalis by genetic manipulation.

  8. The B chromosomes in Brachycome.

    PubMed

    Leach, C R; Houben, A; Timmis, J N

    2004-01-01

    This review presents a historical account of studies of B chromosomes in the genus Brachycome Cass. (synonym: Brachyscome) from the earliest cytological investigations carried out in the late 1960s though to the most recent molecular analyses. Molecular analyses provide insights into the origin and evolution of the B chromosomes (Bs) of Brachycome dichromosomatica, a species which has Bs of two different sizes. The larger Bs are somatically stable whereas the smaller, or micro, Bs are somatically unstable. Both B types contain clusters of ribosomal RNA genes that have been shown unequivocally to be inactive in the case of the larger Bs. The large Bs carry a family of tandem repeat sequences (Bd49) that are located mainly at the centromere. Multiple copies of sequences related to this repeat are present on the A chromosomes (As) of related species, whereas only a few copies exist in the A chromosomes of B. dichromosomatica. The micro Bs share DNA sequences with the As and the larger Bs, and they also have B-specific repeats (Bdm29 and Bdm54). In some cases repeat sequences on the micro Bs have been shown to occur as clusters on the A chromosomes in a proportion of individuals within a population. It is clear that none of these B types originated by simple excision of segments from the A chromosomes. Copyright 2004 S. Karger AG, Basel

  9. Estimation of pea (Pisum sativum L.) microsatellite mutation rate based on pedigree and single-seed descent analyses.

    PubMed

    Cieslarová, Jaroslava; Hanáček, Pavel; Fialová, Eva; Hýbl, Miroslav; Smýkal, Petr

    2011-11-01

    Microsatellites, or simple sequence repeats (SSRs) are widespread class of repetitive DNA sequences, used in population genetics, genetic diversity and mapping studies. In spite of the SSR utility, the genetic and evolutionary mechanisms are not fully understood. We have investigated three microsatellite loci with different position in the pea (Pisum sativum L.) genome, the A9 locus residing in LTR region of abundant retrotransposon, AD270 as intergenic and AF016458 located in 5'untranslated region of expressed gene. Comparative analysis of a 35 pair samples from seven pea varieties propagated by single-seed descent for ten generations, revealed single 4 bp mutation in 10th generation sample at AD270 locus corresponding to stepwise increase in one additional ATCT repeat unit. The estimated mutation rate was 4.76 × 10(-3) per locus per generation, with a 95% confidence interval of 1.2 × 10(-4) to 2.7 × 10(-2). The comparison of cv. Bohatýr accessions retrieved from different collections, showed intra-, inter-accession variation and differences in flanking and repeat sequences. Fragment size and sequence alternations were also found in long term in vitro organogenic culture, established at 1983, indicative of somatic mutation process. The evidence of homoplasy was detected across of unrelated pea genotypes, which adversaly affects the reliability of diversity estimates not only for diverse germplasm but also highly bred material. The findings of this study have important implications for Pisum phylogeny studies, variety identification and registration process in pea breeding where mutation rate influences the genetic diversity and the effective population size estimates.

  10. Development of simple sequence repeat (SSR) markers from a genome survey of Chinese bayberry (Myrica rubra)

    PubMed Central

    2012-01-01

    Background Chinese bayberry (Myrica rubra Sieb. and Zucc.) is a subtropical evergreen tree originating in China. It has been cultivated in southern China for several thousand years, and annual production has reached 1.1 million tons. The taste and high level of health promoting characters identified in the fruit in recent years has stimulated its extension in China and introduction to Australia. A limited number of co-dominant markers have been developed and applied in genetic diversity and identity studies. Here we report, for the first time, a survey of whole genome shotgun data to develop a large number of simple sequence repeat (SSR) markers to analyse the genetic diversity of the common cultivated Chinese bayberry and the relationship with three other Myrica species. Results The whole genome shotgun survey of Chinese bayberry produced 9.01Gb of sequence data, about 26x coverage of the estimated genome size of 323 Mb. The genome sequences were highly heterozygous, but with little duplication. From the initial assembled scaffold covering 255 Mb sequence data, 28,602 SSRs (≥5 repeats) were identified. Dinucleotide was the most common repeat motif with a frequency of 84.73%, followed by 13.78% trinucleotide, 1.34% tetranucleotide, 0.12% pentanucleotide and 0.04% hexanucleotide. From 600 primer pairs, 186 polymorphic SSRs were developed. Of these, 158 were used to screen 29 Chinese bayberry accessions and three other Myrica species: 91.14%, 89.87% and 46.84% SSRs could be used in Myrica adenophora, Myrica nana and Myrica cerifera, respectively. The UPGMA dendrogram tree showed that cultivated Myrica rubra is closely related to Myrica adenophora and Myrica nana, originating in southwest China, and very distantly related to Myrica cerifera, originating in America. These markers can be used in the construction of a linkage map and for genetic diversity studies in Myrica species. Conclusion Myrica rubra has a small genome of about 323 Mb with a high level of heterozygosity. A large number of SSRs were identified, and 158 polymorphic SSR markers developed, 91% of which can be transferred to other Myrica species. PMID:22621340

  11. DIFFERENTIATION OF SCHISTOSOMA HAEMATOBIUM FROM RELATED SCHISTOSOMES BY PCR AMPLIFYING AN INTER-REPEAT SEQUENCE

    PubMed Central

    ABBASI, IBRAHIM; KING, CHARLES H.; STURROCK, ROBERT F.; KARIUKI, CURTIS; MUCHIRI, ERIC; HAMBURGER, JOSEPH

    2008-01-01

    Schistosoma haematobium infects nearly 150 million people, primarily in Africa, and is transmitted by select species of local bulinid snails. These snails can host other related trematode species as well, so that effective detection and monitoring of snails infected with S. haematobium requires a successful differentiation between S. haematobium and any closely related schistosome species. To enable differential detection of S. haematobium DNA by simple polymerase chain reaction (PCR), we designed and tested primer pairs from numerous newly identified Schistosoma DNA repeat sequences. However, all pairs tested were found unsuitable for this purpose. Differentiation of S. haematobium from S. bovis, S. mattheei, S. curassoni, and S. intercalatum (but not from S. margrebowiei) was ultimately accomplished by PCR using one primer from a newly identified repeat, Sh110, and a second primer from a known schistosomal splice-leader sequence. For evaluation of residual S. haematobium transmission after control interventions, this differentiation tool will enable accurate monitoring of infected snails in areas where S. haematobium is sympatric with the most prevalent other schistosome species. PMID:17488921

  12. Bioinformatic mining of EST-SSR loci in the Pacific oyster, Crassostrea gigas.

    PubMed

    Wang, Y; Ren, R; Yu, Z

    2008-06-01

    A set of expressed sequence tag-simple sequence repeat (EST-SSR) markers of the Pacific oyster, Crassostrea gigas, was developed through bioinformatic mining of the GenBank public database. As of June 30, 2007, a total of 5132 EST sequences from GenBank were downloaded and screened for di-, tri- and tetra-nucleotide repeats, with criteria set at a minimum of 5, 4 and 4 repeats for the three categories of SSRs respectively. Seventeen polymorphic microsatellite markers were characterized. Allele numbers ranged from 3 to 10, and the observed and expected heterozygosity values varied from 0.125 to 0.770 and from 0.113 to 0.732 respectively. Eleven loci were at Hardy-Weinberg equilibrium (HWE); the other six loci showed significant departure from HWE (P < 0.01), suggesting possible presence of null alleles. Pairwise check of linkage disequilibrium (LD) indicated that 11 of 136 pairs of loci showed significant LD (P < 0.01), likely due to HWE present in single markers. Cross-species amplification was examined for five other Crassostrea species and reasonable results were obtained, promising usefulness of these markers in oyster genetics.

  13. Construction of an Integrated High Density Simple Sequence Repeat Linkage Map in Cultivated Strawberry (Fragaria × ananassa) and its Applicability

    PubMed Central

    Isobe, Sachiko N.; Hirakawa, Hideki; Sato, Shusei; Maeda, Fumi; Ishikawa, Masami; Mori, Toshiki; Yamamoto, Yuko; Shirasawa, Kenta; Kimura, Mitsuhiro; Fukami, Masanobu; Hashizume, Fujio; Tsuji, Tomoko; Sasamoto, Shigemi; Kato, Midori; Nanri, Keiko; Tsuruoka, Hisano; Minami, Chiharu; Takahashi, Chika; Wada, Tsuyuko; Ono, Akiko; Kawashima, Kumiko; Nakazaki, Naomi; Kishida, Yoshie; Kohara, Mitsuyo; Nakayama, Shinobu; Yamada, Manabu; Fujishiro, Tsunakazu; Watanabe, Akiko; Tabata, Satoshi

    2013-01-01

    The cultivated strawberry (Fragaria× ananassa) is an octoploid (2n = 8x = 56) of the Rosaceae family whose genomic architecture is still controversial. Several recent studies support the AAA′A′BBB′B′ model, but its complexity has hindered genetic and genomic analysis of this important crop. To overcome this difficulty and to assist genome-wide analysis of F. × ananassa, we constructed an integrated linkage map by organizing a total of 4474 of simple sequence repeat (SSR) markers collected from published Fragaria sequences, including 3746 SSR markers [Fragaria vesca expressed sequence tag (EST)-derived SSR markers] derived from F. vesca ESTs, 603 markers (F. × ananassa EST-derived SSR markers) from F. × ananassa ESTs, and 125 markers (F. × ananassa transcriptome-derived SSR markers) from F. × ananassa transcripts. Along with the previously published SSR markers, these markers were mapped onto five parent-specific linkage maps derived from three mapping populations, which were then assembled into an integrated linkage map. The constructed map consists of 1856 loci in 28 linkage groups (LGs) that total 2364.1 cM in length. Macrosynteny at the chromosome level was observed between the LGs of F. × ananassa and the genome of F. vesca. Variety distinction on 129 F. × ananassa lines was demonstrated using 45 selected SSR markers. PMID:23248204

  14. Viewing multiple sequence alignments with the JavaScript Sequence Alignment Viewer (JSAV)

    PubMed Central

    Martin, Andrew C. R.

    2014-01-01

    The JavaScript Sequence Alignment Viewer (JSAV) is designed as a simple-to-use JavaScript component for displaying sequence alignments on web pages. The display of sequences is highly configurable with options to allow alternative coloring schemes, sorting of sequences and ’dotifying’ repeated amino acids. An option is also available to submit selected sequences to another web site, or to other JavaScript code. JSAV is implemented purely in JavaScript making use of the JQuery and JQuery-UI libraries. It does not use any HTML5-specific options to help with browser compatibility. The code is documented using JSDOC and is available from http://www.bioinf.org.uk/software/jsav/. PMID:25653836

  15. Viewing multiple sequence alignments with the JavaScript Sequence Alignment Viewer (JSAV).

    PubMed

    Martin, Andrew C R

    2014-01-01

    The JavaScript Sequence Alignment Viewer (JSAV) is designed as a simple-to-use JavaScript component for displaying sequence alignments on web pages. The display of sequences is highly configurable with options to allow alternative coloring schemes, sorting of sequences and 'dotifying' repeated amino acids. An option is also available to submit selected sequences to another web site, or to other JavaScript code. JSAV is implemented purely in JavaScript making use of the JQuery and JQuery-UI libraries. It does not use any HTML5-specific options to help with browser compatibility. The code is documented using JSDOC and is available from http://www.bioinf.org.uk/software/jsav/.

  16. Brassica ASTRA: an integrated database for Brassica genomic research.

    PubMed

    Love, Christopher G; Robinson, Andrew J; Lim, Geraldine A C; Hopkins, Clare J; Batley, Jacqueline; Barker, Gary; Spangenberg, German C; Edwards, David

    2005-01-01

    Brassica ASTRA is a public database for genomic information on Brassica species. The database incorporates expressed sequences with Swiss-Prot and GenBank comparative sequence annotation as well as secondary Gene Ontology (GO) annotation derived from the comparison with Arabidopsis TAIR GO annotations. Simple sequence repeat molecular markers are identified within resident sequences and mapped onto the closely related Arabidopsis genome sequence. Bacterial artificial chromosome (BAC) end sequences derived from the Multinational Brassica Genome Project are also mapped onto the Arabidopsis genome sequence enabling users to identify candidate Brassica BACs corresponding to syntenic regions of Arabidopsis. This information is maintained in a MySQL database with a web interface providing the primary means of interrogation. The database is accessible at http://hornbill.cspp.latrobe.edu.au.

  17. DNA methylation polymorphism in a set of elite rice cultivars and its possible contribution to inter-cultivar differential gene expression.

    PubMed

    Wang, Yongming; Lin, Xiuyun; Dong, Bo; Wang, Yingdian; Liu, Bao

    2004-01-01

    RAPD (randomly amplified polymorphic DNA) and ISSR (inter-simple sequence repeat) fingerprinting on HpaII/MspI-digested genomic DNA of nine elite japonica rice cultivars implies inter-cultivar DNA methylation polymorphism. Using both DNA fragments isolated from RAPD or ISSR gels and selected low-copy sequences as probes, methylation-sensitive Southern blot analysis confirms the existence of extensive DNA methylation polymorphism in both genes and DNA repeats among the rice cultivars. The cultivar-specific methylation patterns are stably maintained, and can be used as reliable molecular markers. Transcriptional analysis of four selected sequences (RdRP, AC9, HSP90 and MMR) on leaves and roots from normal and 5-azacytidine-treated seedlings of three representative cultivars shows an association between the transcriptional activity of one of the genes, the mismatch repair (MMR) gene, and its CG methylation patterns.

  18. Molecular characterization of three common olive (Olea europaea L.) cultivars in Palestine, using simple sequence repeat (SSR) markers

    PubMed Central

    Obaid, Ramiz; Abu-Qaoud, Hassan; Arafeh, Rami

    2014-01-01

    Eight accessions of olive trees from three common varieties in Palestine, Nabali Baladi, Nabali Mohassan and Surri, were genetically evaluated using five simple sequence repeat (SSR) markers. A total of 17 alleles from 5 loci were observed in which 15 (88.2%) were polymorphic and 2 (11.8%) were monomorphic. An average of 3.4 alleles per locus was found ranging from 2.0 alleles with the primers GAPU-103 and DCA-9 to 5.0 alleles with U9932 and DCA-16. The smallest amplicon size observed was 50 bp with the primer DCA-16, whereas the largest one (450 bp) with the primer U9932. Cluster analysis with the unweighted pair group method with arithmetic average (UPGMA) showed three clusters: a cluster with four accessions from the ‘Nabali Baladi’ cultivar, another cluster with three accessions that represents the ‘Nabali Mohassen’ cultivar and finally the ‘Surri’ cultivar. The similarity coefficient for the eight olive tree samples ranged from a maximum of 100% between two accessions from Nabali Baladi and also in two other samples from Nabali Mohassan, to a minimum similarity coefficient (0.315) between the Surri and two Nabali Baladi accessions. The results in this investigation clearly highlight the genetic dissimilarity between the three main olive cultivars that have been misidentified and mixed up in the past, based on conventional morphological characters. PMID:26019564

  19. Genetic mapping of ascochyta blight resistance in chickpea (Cicer arietinum L.) using a simple sequence repeat linkage map.

    PubMed

    Tar'an, B; Warkentin, T D; Tullu, A; Vandenberg, A

    2007-01-01

    Ascochyta blight, caused by the fungus Ascochyta rabiei (Pass.) Lab., is one of the most devastating diseases of chickpea (Cicer arietinum L.) worldwide. Research was conducted to map genetic factors for resistance to ascochyta blight using a linkage map constructed with 144 simple sequence repeat markers and 1 morphological marker (fc, flower colour). Stem cutting was used to vegetatively propagate 186 F2 plants derived from a cross between Cicer arietinum L. 'ICCV96029' and 'CDC Frontier'. A total of 556 cutting-derived plants were evaluated for their reaction to ascochyta blight under controlled conditions. Disease reaction of the F1 and F2 plants demonstrated that the resistance was dominantly inherited. A Fain's test based on the means and variances of the ascochyta blight reaction of the F3 families showed that a few genes were segregating in the population. Composite interval mapping identified 3 genomic regions that were associated with the reaction to ascochyta blight. One quantitative trait locus (QTL) on each of LG3, LG4, and LG6 accounted for 13%, 29%, and 12%, respectively, of the total estimated phenotypic variation for the reaction to ascochyta blight. Together, these loci controlled 56% of the total estimated phenotypic variation. The QTL on LG4 and LG6 were in common with the previously reported QTL for ascochyta blight resistance, whereas the QTL on LG3 was unique to the current population.

  20. Genetic Diversity in Various Accessions of Pineapple [Ananas comosus (L.) Merr.] Using ISSR and SSR Markers.

    PubMed

    Wang, Jian-Sheng; He, Jun-Hu; Chen, Hua-Rui; Chen, Ye-Yuan; Qiao, Fei

    2017-12-01

    Inter simple sequence repeat (ISSR) and simple sequence repeat (SSR) markers were used to assess the genetic diversity of 36 pineapple accessions that were introduced from 10 countries/regions. Thirteen ISSR primers amplified 96 bands, of which 91 (93.65%) were polymorphic, whereas 20 SSR primers amplified 73 bands, of which 70 (96.50%) were polymorphic. Nei's gene diversity (h = 0.28), Shannon's information index (I = 0.43), and polymorphism information content (PIC = 0.29) generated using the SSR primers were higher than that with ISSR primers (h =  0.23, I = 0.37, PIC = 0.24), thereby suggesting that the SSR system is more efficient than the ISSR system in assessing genetic diversity in various pineapple accessions. Mean genetic similarities were 0.74, 0.61, and 0.69, as determined using ISSR, SSR, and combined ISSR/SSR, respectively. These results suggest that the genetic diversity among pineapple accessions is very high. We clustered the 36 pineapple accessions into three or five groups on the basis of the phylogenetic trees constructed based on the results of ISSR, SSR, and combined ISSR/SSR analyses using the unweighted pair-group with arithmetic averaging (UPGMA) method. The results of principal components analysis (PCA) also supported the UPGMA clustering. These results will be useful not only for the scientific conservation and management of pineapple germplasm but also for the improvement of the current pineapple breeding strategies.

  1. Isolation and characterization of microsatellite loci in the intertidal sponge Halichondria panicea

    USGS Publications Warehouse

    Knowlton, Anne L.; Pierson, Barbara J.; Talbot, S.L.; Highsmith, Ray C.

    2003-01-01

    GA- and CA-enriched genomic libraries were constructed for the intertidal sponge Halichondria panicea. Unique repeat motifs identified varied from the expected simple dinucleotide repeats to more complex repeat units. All sequences tended to be highly repetitive but did not necessarily contain the targeted motifs. Seven microsatellite loci were evaluated on sponges from the clone source population. All seven were polymorphic with 5.43 ± 0.92 mean number of alleles. Six of the seven loci that could be resolved had mean heterozygosities of 0.14–0.68. The loci identified here will be useful for population studies.

  2. Basis of altered RNA-binding specificity by PUF proteins revealed by crystal structures of yeast Puf4p

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Matthew T.; Higgin, Joshua J.; Hall, Traci M.Tanaka

    2008-06-06

    Pumilio/FBF (PUF) family proteins are found in eukaryotic organisms and regulate gene expression post-transcriptionally by binding to sequences in the 3' untranslated region of target transcripts. PUF proteins contain an RNA binding domain that typically comprises eight {alpha}-helical repeats, each of which recognizes one RNA base. Some PUF proteins, including yeast Puf4p, have altered RNA binding specificity and use their eight repeats to bind to RNA sequences with nine or ten bases. Here we report the crystal structures of Puf4p alone and in complex with a 9-nucleotide (nt) target RNA sequence, revealing that Puf4p accommodates an 'extra' nucleotide by modestmore » adaptations allowing one base to be turned away from the RNA binding surface. Using structural information and sequence comparisons, we created a mutant Puf4p protein that preferentially binds to an 8-nt target RNA sequence over a 9-nt sequence and restores binding of each protein repeat to one RNA base.« less

  3. Modeling repetitive motions using structured light.

    PubMed

    Xu, Yi; Aliaga, Daniel G

    2010-01-01

    Obtaining models of dynamic 3D objects is an important part of content generation for computer graphics. Numerous methods have been extended from static scenarios to model dynamic scenes. If the states or poses of the dynamic object repeat often during a sequence (but not necessarily periodically), we call such a repetitive motion. There are many objects, such as toys, machines, and humans, undergoing repetitive motions. Our key observation is that when a motion-state repeats, we can sample the scene under the same motion state again but using a different set of parameters; thus, providing more information of each motion state. This enables robustly acquiring dense 3D information difficult for objects with repetitive motions using only simple hardware. After the motion sequence, we group temporally disjoint observations of the same motion state together and produce a smooth space-time reconstruction of the scene. Effectively, the dynamic scene modeling problem is converted to a series of static scene reconstructions, which are easier to tackle. The varying sampling parameters can be, for example, structured-light patterns, illumination directions, and viewpoints resulting in different modeling techniques. Based on this observation, we present an image-based motion-state framework and demonstrate our paradigm using either a synchronized or an unsynchronized structured-light acquisition method.

  4. Population-scale whole genome sequencing identifies 271 highly polymorphic short tandem repeats from Japanese population.

    PubMed

    Hirata, Satoshi; Kojima, Kaname; Misawa, Kazuharu; Gervais, Olivier; Kawai, Yosuke; Nagasaki, Masao

    2018-05-01

    Forensic DNA typing is widely used to identify missing persons and plays a central role in forensic profiling. DNA typing usually uses capillary electrophoresis fragment analysis of PCR amplification products to detect the length of short tandem repeat (STR) markers. Here, we analyzed whole genome data from 1,070 Japanese individuals generated using massively parallel short-read sequencing of 162 paired-end bases. We have analyzed 843,473 STR loci with two to six basepair repeat units and cataloged highly polymorphic STR loci in the Japanese population. To evaluate the performance of the cataloged STR loci, we compared 23 STR loci, widely used in forensic DNA typing, with capillary electrophoresis based STR genotyping results in the Japanese population. Seventeen loci had high correlations and high call rates. The other six loci had low call rates or low correlations due to either the limitations of short-read sequencing technology, the bioinformatics tool used, or the complexity of repeat patterns. With these analyses, we have also purified the suitable 218 STR loci with four basepair repeat units and 53 loci with five basepair repeat units both for short read sequencing and PCR based technologies, which would be candidates to the actual forensic DNA typing in Japanese population.

  5. Microbe-ID: an open source toolbox for microbial genotyping and species identification.

    PubMed

    Tabima, Javier F; Everhart, Sydney E; Larsen, Meredith M; Weisberg, Alexandra J; Kamvar, Zhian N; Tancos, Matthew A; Smart, Christine D; Chang, Jeff H; Grünwald, Niklaus J

    2016-01-01

    Development of tools to identify species, genotypes, or novel strains of invasive organisms is critical for monitoring emergence and implementing rapid response measures. Molecular markers, although critical to identifying species or genotypes, require bioinformatic tools for analysis. However, user-friendly analytical tools for fast identification are not readily available. To address this need, we created a web-based set of applications called Microbe-ID that allow for customizing a toolbox for rapid species identification and strain genotyping using any genetic markers of choice. Two components of Microbe-ID, named Sequence-ID and Genotype-ID, implement species and genotype identification, respectively. Sequence-ID allows identification of species by using BLAST to query sequences for any locus of interest against a custom reference sequence database. Genotype-ID allows placement of an unknown multilocus marker in either a minimum spanning network or dendrogram with bootstrap support from a user-created reference database. Microbe-ID can be used for identification of any organism based on nucleotide sequences or any molecular marker type and several examples are provided. We created a public website for demonstration purposes called Microbe-ID (microbe-id.org) and provided a working implementation for the genus Phytophthora (phytophthora-id.org). In Phytophthora-ID, the Sequence-ID application allows identification based on ITS or cox spacer sequences. Genotype-ID groups individuals into clonal lineages based on simple sequence repeat (SSR) markers for the two invasive plant pathogen species P. infestans and P. ramorum. All code is open source and available on github and CRAN. Instructions for installation and use are provided at https://github.com/grunwaldlab/Microbe-ID.

  6. Using Next Generation RAD Sequencing to Isolate Multispecies Microsatellites for Pilosocereus (Cactaceae).

    PubMed

    Bonatelli, Isabel A S; Carstens, Bryan C; Moraes, Evandro M

    2015-01-01

    Microsatellite markers (also known as SSRs, Simple Sequence Repeats) are widely used in plant science and are among the most informative molecular markers for population genetic investigations, but the development of such markers presents substantial challenges. In this report, we discuss how next generation sequencing can replace the cloning, Sanger sequencing, identification of polymorphic loci, and testing cross-amplification that were previously required to develop microsatellites. We report the development of a large set of microsatellite markers for five species of the Neotropical cactus genus Pilosocereus using a restriction-site-associated DNA sequencing (RAD-seq) on a Roche 454 platform. We identified an average of 165 microsatellites per individual, with the absolute numbers across individuals proportional to the sequence reads obtained per individual. Frequency distribution of the repeat units was similar in the five species, with shorter motifs such as di- and trinucleotide being the most abundant repeats. In addition, we provide 72 microsatellites that could be potentially amplified in the sampled species and 22 polymorphic microsatellites validated in two populations of the species Pilosocereus machrisii. Although low coverage sequencing among individuals was observed for most of the loci, which we suggest to be more related to the nature of the microsatellite markers and the possible bias inserted by the restriction enzymes than to the genome size, our work demonstrates that an NGS approach is an efficient method to isolate multispecies microsatellites even in non-model organisms.

  7. Using Next Generation RAD Sequencing to Isolate Multispecies Microsatellites for Pilosocereus (Cactaceae)

    PubMed Central

    Bonatelli, Isabel A. S.; Carstens, Bryan C.; Moraes, Evandro M.

    2015-01-01

    Microsatellite markers (also known as SSRs, Simple Sequence Repeats) are widely used in plant science and are among the most informative molecular markers for population genetic investigations, but the development of such markers presents substantial challenges. In this report, we discuss how next generation sequencing can replace the cloning, Sanger sequencing, identification of polymorphic loci, and testing cross-amplification that were previously required to develop microsatellites. We report the development of a large set of microsatellite markers for five species of the Neotropical cactus genus Pilosocereus using a restriction-site-associated DNA sequencing (RAD-seq) on a Roche 454 platform. We identified an average of 165 microsatellites per individual, with the absolute numbers across individuals proportional to the sequence reads obtained per individual. Frequency distribution of the repeat units was similar in the five species, with shorter motifs such as di- and trinucleotide being the most abundant repeats. In addition, we provide 72 microsatellites that could be potentially amplified in the sampled species and 22 polymorphic microsatellites validated in two populations of the species Pilosocereus machrisii. Although low coverage sequencing among individuals was observed for most of the loci, which we suggest to be more related to the nature of the microsatellite markers and the possible bias inserted by the restriction enzymes than to the genome size, our work demonstrates that an NGS approach is an efficient method to isolate multispecies microsatellites even in non-model organisms. PMID:26561396

  8. Sequence of retrovirus provirus resembles that of bacterial transposable elements

    NASA Astrophysics Data System (ADS)

    Shimotohno, Kunitada; Mizutani, Satoshi; Temin, Howard M.

    1980-06-01

    The nucleotide sequences of the terminal regions of an infectious integrated retrovirus cloned in the modified λ phage cloning vector Charon 4A have been elucidated. There is a 569-base pair direct repeat at both ends of the viral DNA. The cell-virus junctions at each end consist of a 5-base pair direct repeat of cell DNA next to a 3-base pair inverted repeat of viral DNA. This structure resembles that of a transposable element and is consistent with the protovirus hypothesis that retroviruses evolved from the cell genome.

  9. CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats.

    PubMed

    Bland, Charles; Ramsey, Teresa L; Sabree, Fareedah; Lowe, Micheal; Brown, Kyndall; Kyrpides, Nikos C; Hugenholtz, Philip

    2007-06-18

    Clustered Regularly Interspaced Palindromic Repeats (CRISPRs) are a novel type of direct repeat found in a wide range of bacteria and archaea. CRISPRs are beginning to attract attention because of their proposed mechanism; that is, defending their hosts against invading extrachromosomal elements such as viruses. Existing repeat detection tools do a poor job of identifying CRISPRs due to the presence of unique spacer sequences separating the repeats. In this study, a new tool, CRT, is introduced that rapidly and accurately identifies CRISPRs in large DNA strings, such as genomes and metagenomes. CRT was compared to CRISPR detection tools, Patscan and Pilercr. In terms of correctness, CRT was shown to be very reliable, demonstrating significant improvements over Patscan for measures precision, recall and quality. When compared to Pilercr, CRT showed improved performance for recall and quality. In terms of speed, CRT proved to be a huge improvement over Patscan. Both CRT and Pilercr were comparable in speed, however CRT was faster for genomes containing large numbers of repeats. In this paper a new tool was introduced for the automatic detection of CRISPR elements. This tool, CRT, showed some important improvements over current techniques for CRISPR identification. CRT's approach to detecting repetitive sequences is straightforward. It uses a simple sequential scan of a DNA sequence and detects repeats directly without any major conversion or preprocessing of the input. This leads to a program that is easy to describe and understand; yet it is very accurate, fast and memory efficient, being O(n) in space and O(nm/l) in time.

  10. CRISPR Recognition Tool (CRT): a tool for automatic detection ofclustered regularly interspaced palindromic repeats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bland, Charles; Ramsey, Teresa L.; Sabree, Fareedah

    Clustered Regularly Interspaced Palindromic Repeats (CRISPRs) are a novel type of direct repeat found in a wide range of bacteria and archaea. CRISPRs are beginning to attract attention because of their proposed mechanism; that is, defending their hosts against invading extrachromosomal elements such as viruses. Existing repeat detection tools do a poor job of identifying CRISPRs due to the presence of unique spacer sequences separating the repeats. In this study, a new tool, CRT, is introduced that rapidly and accurately identifies CRISPRs in large DNA strings, such as genomes and metagenomes. CRT was compared to CRISPR detection tools, Patscan andmore » Pilercr. In terms of correctness, CRT was shown to be very reliable, demonstrating significant improvements over Patscan for measures precision, recall and quality. When compared to Pilercr, CRT showed improved performance for recall and quality. In terms of speed, CRT also demonstrated superior performance, especially for genomes containing large numbers of repeats. In this paper a new tool was introduced for the automatic detection of CRISPR elements. This tool, CRT, was shown to be a significant improvement over the current techniques for CRISPR identification. CRT's approach to detecting repetitive sequences is straightforward. It uses a simple sequential scan of a DNA sequence and detects repeats directly without any major conversion or preprocessing of the input. This leads to a program that is easy to describe and understand; yet it is very accurate, fast and memory efficient, being O(n) in space and O(nm/l) in time.« less

  11. [Comparative analysis of clustered regularly interspaced short palindromic repeats (CRISPRs) loci in the genomes of halophilic archaea].

    PubMed

    Zhang, Fan; Zhang, Bing; Xiang, Hua; Hu, Songnian

    2009-11-01

    Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is a widespread system that provides acquired resistance against phages in bacteria and archaea. Here we aim to genome-widely analyze the CRISPR in extreme halophilic archaea, of which the whole genome sequences are available at present time. We used bioinformatics methods including alignment, conservation analysis, GC content and RNA structure prediction to analyze the CRISPR structures of 7 haloarchaeal genomes. We identified the CRISPR structures in 5 halophilic archaea and revealed a conserved palindromic motif in the flanking regions of these CRISPR structures. In addition, we found that the repeat sequences of large CRISPR structures in halophilic archaea were greatly conserved, and two types of predicted RNA secondary structures derived from the repeat sequences were likely determined by the fourth base of the repeat sequence. Our results support the proposal that the leader sequence may function as recognition site by having palindromic structures in flanking regions, and the stem-loop secondary structure formed by repeat sequences may function in mediating the interaction between foreign genetic elements and CAS-encoded proteins.

  12. Molecular architecture of classical cytological landmarks: Centromeres and telomeres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyne, J.

    1994-11-01

    Both the human telomere repeat and the pericentromeric repeat sequence (GGAAT)n were isolated based on evolutionary conservation. Their isolation was based on the premise that chromosomal features as structurally and functionally important as telomeres and centromeres should be highly conserved. Both sequences were isolated by high stringency screening of a human repetitive DNA library with rodent repetitive DNA. The pHuR library (plasmid Human Repeat) used for this project was enriched for repetitive DNA by using a modification of the standard DNA library preparation method. Usually DNA for a library is cut with restriction enzymes, packaged, infected, and the library ismore » screened. A problem with this approach is that many tandem repeats don`t have any (or many) common restriction sites. Therefore, many of the repeat sequences will not be represented in the library because they are not restricted to a viable length for the vector used. To prepare the pHuR library, human DNA was mechanically sheared to a small size. These relatively short DNA fragments were denatured and then renatured to C{sub o}t 50. Theoretically only repetitive DNA sequences should renature under C{sub o}t 50 conditions. The single-stranded regions were digested using S1 nuclease, leaving the double-stranded, renatured repeat sequences.« less

  13. Markers and mapping revisited: finding your gene.

    PubMed

    Jones, Neil; Ougham, Helen; Thomas, Howard; Pasakinskiene, Izolda

    2009-01-01

    This paper is an update of our earlier review (Jones et al., 1997, Markers and mapping: we are all geneticists now. New Phytologist 137: 165-177), which dealt with the genetics of mapping, in terms of recombination as the basis of the procedure, and covered some of the first generation of markers, including restriction fragment length polymorphisms (RFLPs), random amplified polymorphic DNA (RAPDs), simple sequence repeats (SSRs) and quantitative trait loci (QTLs). In the intervening decade there have been numerous developments in marker science with many new systems becoming available, which are herein described: cleavage amplification polymorphism (CAP), sequence-specific amplification polymorphism (S-SAP), inter-simple sequence repeat (ISSR), sequence tagged site (STS), sequence characterized amplification region (SCAR), selective amplification of microsatellite polymorphic loci (SAMPL), single nucleotide polymorphism (SNP), expressed sequence tag (EST), sequence-related amplified polymorphism (SRAP), target region amplification polymorphism (TRAP), microarrays, diversity arrays technology (DArT), single-strand conformation polymorphism (SSCP), denaturing gradient gel electrophoresis (DGGE), temperature gradient gel electrophoresis (TGGE) and methylation-sensitive PCR. In addition there has been an explosion of knowledge and databases in the area of genomics and bioinformatics. The number of flowering plant ESTs is c. 19 million and counting, with all the opportunity that this provides for gene-hunting, while the survey of bioinformatics and computer resources points to a rapid growth point for future activities in unravelling and applying the burst of new information on plant genomes. A case study is presented on tracking down a specific gene (stay-green (SGR), a post-transcriptional senescence regulator) using the full suite of mapping tools and comparative mapping resources. We end with a brief speculation on how genome analysis may progress into the future of this highly dynamic arena of plant science.

  14. Simple sequence repeat marker development from bacterial artificial chromosome end sequences and expressed sequence tags of flax (Linum usitatissimum L.).

    PubMed

    Cloutier, Sylvie; Miranda, Evelyn; Ward, Kerry; Radovanovic, Natasa; Reimer, Elsa; Walichnowski, Andrzej; Datla, Raju; Rowland, Gordon; Duguid, Scott; Ragupathy, Raja

    2012-08-01

    Flax is an important oilseed crop in North America and is mostly grown as a fibre crop in Europe. As a self-pollinated diploid with a small estimated genome size of ~370 Mb, flax is well suited for fast progress in genomics. In the last few years, important genetic resources have been developed for this crop. Here, we describe the assessment and comparative analyses of 1,506 putative simple sequence repeats (SSRs) of which, 1,164 were derived from BAC-end sequences (BESs) and 342 from expressed sequence tags (ESTs). The SSRs were assessed on a panel of 16 flax accessions with 673 (58 %) and 145 (42 %) primer pairs being polymorphic in the BESs and ESTs, respectively. With 818 novel polymorphic SSR primer pairs reported in this study, the repertoire of available SSRs in flax has more than doubled from the combined total of 508 of all previous reports. Among nucleotide motifs, trinucleotides were the most abundant irrespective of the class, but dinucleotides were the most polymorphic. SSR length was also positively correlated with polymorphism. Two dinucleotide (AT/TA and AG/GA) and two trinucleotide (AAT/ATA/TAA and GAA/AGA/AAG) motifs and their iterations, different from those reported in many other crops, accounted for more than half of all the SSRs and were also more polymorphic (63.4 %) than the rest of the markers (42.7 %). This improved resource promises to be useful in genetic, quantitative trait loci (QTL) and association mapping as well as for anchoring the physical/genetic map with the whole genome shotgun reference sequence of flax.

  15. The First Molecular Identification of an Olive Collection Applying Standard Simple Sequence Repeats and Novel Expressed Sequence Tag Markers.

    PubMed

    Mousavi, Soraya; Mariotti, Roberto; Regni, Luca; Nasini, Luigi; Bufacchi, Marina; Pandolfi, Saverio; Baldoni, Luciana; Proietti, Primo

    2017-01-01

    Germplasm collections of tree crop species represent fundamental tools for conservation of diversity and key steps for its characterization and evaluation. For the olive tree, several collections were created all over the world, but only few of them have been fully characterized and molecularly identified. The olive collection of Perugia University (UNIPG), established in the years' 60, represents one of the first attempts to gather and safeguard olive diversity, keeping together cultivars from different countries. In the present study, a set of 370 olive trees previously uncharacterized was screened with 10 standard simple sequence repeats (SSRs) and nine new EST-SSR markers, to correctly and thoroughly identify all genotypes, verify their representativeness of the entire cultivated olive variation, and validate the effectiveness of new markers in comparison to standard genotyping tools. The SSR analysis revealed the presence of 59 genotypes, corresponding to 72 well known cultivars, 13 of them resulting exclusively present in this collection. The new EST-SSRs have shown values of diversity parameters quite similar to those of best standard SSRs. When compared to hundreds of Mediterranean cultivars, the UNIPG olive accessions were splitted into the three main populations (East, Center and West Mediterranean), confirming that the collection has a good representativeness of the entire olive variability. Furthermore, Bayesian analysis, performed on the 59 genotypes of the collection by the use of both sets of markers, have demonstrated their splitting into four clusters, with a well balanced membership obtained by EST respect to standard SSRs. The new OLEST ( Olea expressed sequence tags) SSR markers resulted as effective as the best standard markers. The information obtained from this study represents a high valuable tool for ex situ conservation and management of olive genetic resources, useful to build a common database from worldwide olive cultivar collections, also based on recently developed markers.

  16. Multiplexed microsatellite recovery using massively parallel sequencing

    USGS Publications Warehouse

    Jennings, T.N.; Knaus, B.J.; Mullins, T.D.; Haig, S.M.; Cronn, R.C.

    2011-01-01

    Conservation and management of natural populations requires accurate and inexpensive genotyping methods. Traditional microsatellite, or simple sequence repeat (SSR), marker analysis remains a popular genotyping method because of the comparatively low cost of marker development, ease of analysis and high power of genotype discrimination. With the availability of massively parallel sequencing (MPS), it is now possible to sequence microsatellite-enriched genomic libraries in multiplex pools. To test this approach, we prepared seven microsatellite-enriched, barcoded genomic libraries from diverse taxa (two conifer trees, five birds) and sequenced these on one lane of the Illumina Genome Analyzer using paired-end 80-bp reads. In this experiment, we screened 6.1 million sequences and identified 356958 unique microreads that contained di- or trinucleotide microsatellites. Examination of four species shows that our conversion rate from raw sequences to polymorphic markers compares favourably to Sanger- and 454-based methods. The advantage of multiplexed MPS is that the staggering capacity of modern microread sequencing is spread across many libraries; this reduces sample preparation and sequencing costs to less than $400 (USD) per species. This price is sufficiently low that microsatellite libraries could be prepared and sequenced for all 1373 organisms listed as 'threatened' and 'endangered' in the United States for under $0.5M (USD).

  17. Draft Sequences of the Radish (Raphanus sativus L.) Genome

    PubMed Central

    Kitashiba, Hiroyasu; Li, Feng; Hirakawa, Hideki; Kawanabe, Takahiro; Zou, Zhongwei; Hasegawa, Yoichi; Tonosaki, Kaoru; Shirasawa, Sachiko; Fukushima, Aki; Yokoi, Shuji; Takahata, Yoshihito; Kakizaki, Tomohiro; Ishida, Masahiko; Okamoto, Shunsuke; Sakamoto, Koji; Shirasawa, Kenta; Tabata, Satoshi; Nishio, Takeshi

    2014-01-01

    Radish (Raphanus sativus L., n = 9) is one of the major vegetables in Asia. Since the genomes of Brassica and related species including radish underwent genome rearrangement, it is quite difficult to perform functional analysis based on the reported genomic sequence of Brassica rapa. Therefore, we performed genome sequencing of radish. Short reads of genomic sequences of 191.1 Gb were obtained by next-generation sequencing (NGS) for a radish inbred line, and 76,592 scaffolds of ≥300 bp were constructed along with the bacterial artificial chromosome-end sequences. Finally, the whole draft genomic sequence of 402 Mb spanning 75.9% of the estimated genomic size and containing 61,572 predicted genes was obtained. Subsequently, 221 single nucleotide polymorphism markers and 768 PCR-RFLP markers were used together with the 746 markers produced in our previous study for the construction of a linkage map. The map was combined further with another radish linkage map constructed mainly with expressed sequence tag-simple sequence repeat markers into a high-density integrated map of 1,166 cM with 2,553 DNA markers. A total of 1,345 scaffolds were assigned to the linkage map, spanning 116.0 Mb. Bulked PCR products amplified by 2,880 primer pairs were sequenced by NGS, and SNPs in eight inbred lines were identified. PMID:24848699

  18. Massively parallel sequencing of forensic STRs: Considerations of the DNA commission of the International Society for Forensic Genetics (ISFG) on minimal nomenclature requirements.

    PubMed

    Parson, Walther; Ballard, David; Budowle, Bruce; Butler, John M; Gettings, Katherine B; Gill, Peter; Gusmão, Leonor; Hares, Douglas R; Irwin, Jodi A; King, Jonathan L; Knijff, Peter de; Morling, Niels; Prinz, Mechthild; Schneider, Peter M; Neste, Christophe Van; Willuweit, Sascha; Phillips, Christopher

    2016-05-01

    The DNA Commission of the International Society for Forensic Genetics (ISFG) is reviewing factors that need to be considered ahead of the adoption by the forensic community of short tandem repeat (STR) genotyping by massively parallel sequencing (MPS) technologies. MPS produces sequence data that provide a precise description of the repeat allele structure of a STR marker and variants that may reside in the flanking areas of the repeat region. When a STR contains a complex arrangement of repeat motifs, the level of genetic polymorphism revealed by the sequence data can increase substantially. As repeat structures can be complex and include substitutions, insertions, deletions, variable tandem repeat arrangements of multiple nucleotide motifs, and flanking region SNPs, established capillary electrophoresis (CE) allele descriptions must be supplemented by a new system of STR allele nomenclature, which retains backward compatibility with the CE data that currently populate national DNA databases and that will continue to be produced for the coming years. Thus, there is a pressing need to produce a standardized framework for describing complex sequences that enable comparison with currently used repeat allele nomenclature derived from conventional CE systems. It is important to discern three levels of information in hierarchical order (i) the sequence, (ii) the alignment, and (iii) the nomenclature of STR sequence data. We propose a sequence (text) string format the minimal requirement of data storage that laboratories should follow when adopting MPS of STRs. We further discuss the variant annotation and sequence comparison framework necessary to maintain compatibility among established and future data. This system must be easy to use and interpret by the DNA specialist, based on a universally accessible genome assembly, and in place before the uptake of MPS by the general forensic community starts to generate sequence data on a large scale. While the established nomenclature for CE-based STR analysis will remain unchanged in the future, the nomenclature of sequence-based STR genotypes will need to follow updated rules and be generated by expert systems that translate MPS sequences to match CE conventions in order to guarantee compatibility between the different generations of STR data. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Evaluation of fire recurrence effect on genetic diversity in maritime pine (Pinus pinaster Ait.) stands using Inter-Simple Sequence Repeat profiles.

    PubMed

    Lucas-Borja, M E; Ahrazem, O; Candel-Pérez, D; Moya, D; Fonseca, T; Hernández Tecles, E; De Las Heras, J; Gómez-Gómez, L

    2016-12-01

    The management of maritime pine in fire-prone habitats is a challenging task and fine-scale population genetic analyses are necessary to check if different fire recurrences affect genetic variability. The objective of this study was to assess the effect of fire recurrence on maritime pine genetic diversity using inter-simple sequence repeat markers (ISSR). Three maritime pine (Pinus pinaster Ait.) populations from Northern Portugal were chosen to characterize the genetic variability among populations. In relation to fire recurrence, Seirós population was affected by fire both in 1990 and 2005 whereas Vila Seca-2 population was affected by fire just in 2005. The Vila Seca-1 population has been never affected by fire. Our results showed the highest Nei's genetic diversity (He=0.320), Shannon information index (I=0.474) and polymorphic loci (PPL=87.79%) among samples from twice burned populations (Seirós site). Thus, fire regime plays an important role affecting genetic diversity in the short-term, although not generating maritime pine genetic erosion. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. A genetic linkage map of grape, utilizing Vitis rupestris and Vitis arizonica.

    PubMed

    Doucleff, M; Jin, Y; Gao, F; Riaz, S; Krivanek, A F; Walker, M A

    2004-10-01

    A genetic linkage map of grape was constructed, utilizing 116 progeny derived from a cross of two Vitis rupestris x V. arizonica interspecific hybrids, using the pseudo-testcross strategy. A total of 475 DNA markers-410 amplified fragment length polymorphism, 24 inter-simple sequence repeat, 32 random amplified polymorphic DNA, and nine simple sequence repeat markers-were used to construct the parental maps. Markers segregating 1:1 were used to construct parental framework maps with confidence levels >90% with the Plant Genome Research Initiative mapping program. In the maternal (D8909-15) map, 105 framework markers and 55 accessory markers were ordered in 17 linkage groups (756 cM). The paternal (F8909-17) map had 111 framework markers and 33 accessory markers ordered in 19 linkage groups (1,082 cM). One hundred eighty-one markers segregating 3:1 were used to connect the two parental maps' parents. This moderately dense map will be useful for the initial mapping of genes and/or QTL for resistance to the dagger nematode, Xiphinema index, and Xylella fastidiosa, the bacterial causal agent of Pierce's disease.

  1. Similarities in the chromosomal distribution of AG and AC repeats within and between Drosophila, human and barley chromosomes.

    PubMed

    Cuadrado, A; Jouve, N

    2007-01-01

    Two simple sequence repeats (SSRs), AG and AC, were mapped directly in the metaphase chromosomes of man and barley (Hordeum vulgare L.), and in the metaphase and polytene chromosomes of Drosophila melanogaster. To this end, synthetic oligonucleotides corresponding to (AG)(12) and (AC)(8) were labelled by the random primer technique and used as probes in fluorescent in situ hybridisation (FISH) under high stringency and strict washing conditions. The distribution and intensity of the signals for the repeat sequences were found to be characteristic of the chromosomes and genomes of the three species analysed. The AC repeat sites were uniformly dispersed along the euchromatic segments of all three genomes; in fact, they were largely excluded from the heterochromatin. The Drosophila genome showed a high density of AC sequences on the X chromosome in both mitotic and polytene nuclei. In contrast, the AG repeats were associated with the euchromatic regions of the polytene chromosomes (and in high density on the X chromosome), but were only seen in specific heterochromatic regions in the mitotic chromosomes of all three species. In Drosophila, the AG repeats were exclusively distributed on the tips of the Y chromosome and near the centromere on both arms of chromosome 2. In barley and man, AG repeats were associated with the centromeres (of all chromosomes) and nucleolar organizer regions, respectively. The conserved chromosome distribution of AC within and between these three phylogenetically distant species, and the association of AG in specific chromosome regions with structural or functional properties, suggests that long clusters of these repeats may have some, as yet unknown, role. Copyright (c) 2007 S. Karger AG, Basel.

  2. Integration of Lupinus angustifolius L. (narrow-leafed lupin) genome maps and comparative mapping within legumes.

    PubMed

    Wyrwa, Katarzyna; Książkiewicz, Michał; Szczepaniak, Anna; Susek, Karolina; Podkowiński, Jan; Naganowska, Barbara

    2016-09-01

    Narrow-leafed lupin (Lupinus angustifolius L.) has recently been considered a reference genome for the Lupinus genus. In the present work, genetic and cytogenetic maps of L. angustifolius were supplemented with 30 new molecular markers representing lupin genome regions, harboring genes involved in nitrogen fixation during the symbiotic interaction of legumes and soil bacteria (Rhizobiaceae). Our studies resulted in the precise localization of bacterial artificial chromosomes (BACs) carrying sequence variants for early nodulin 40, nodulin 26, nodulin 45, aspartate aminotransferase P2, asparagine synthetase, cytosolic glutamine synthetase, and phosphoenolpyruvate carboxylase. Together with previously mapped chromosomes, the integrated L. angustifolius map encompasses 73 chromosome markers, including 5S ribosomal DNA (rDNA) and 45S rDNA, and anchors 20 L. angustifolius linkage groups to corresponding chromosomes. Chromosomal identification using BAC fluorescence in situ hybridization identified two BAC clones as narrow-leafed lupin centromere-specific markers, which served as templates for preliminary studies of centromere composition within the genus. Bioinformatic analysis of these two BACs revealed that centromeric/pericentromeric regions of narrow-leafed lupin chromosomes consisted of simple sequence repeats ordered into tandem repeats containing the trinucleotide and pentanucleotide simple sequence repeats AGG and GATAC, structured into long arrays. Moreover, cross-genus microsynteny analysis revealed syntenic patterns of 31 single-locus BAC clones among several legume species. The gene and chromosome level findings provide evidence of ancient duplication events that must have occurred very early in the divergence of papilionoid lineages. This work provides a strong foundation for future comparative mapping among legumes and may facilitate understanding of mechanisms involved in shaping legume chromosomes.

  3. Sorting processes with energy-constrained comparisons*

    NASA Astrophysics Data System (ADS)

    Geissmann, Barbara; Penna, Paolo

    2018-05-01

    We study very simple sorting algorithms based on a probabilistic comparator model. In this model, errors in comparing two elements are due to (1) the energy or effort put in the comparison and (2) the difference between the compared elements. Such algorithms repeatedly compare and swap pairs of randomly chosen elements, and they correspond to natural Markovian processes. The study of these Markov chains reveals an interesting phenomenon. Namely, in several cases, the algorithm that repeatedly compares only adjacent elements is better than the one making arbitrary comparisons: in the long-run, the former algorithm produces sequences that are "better sorted". The analysis of the underlying Markov chain poses interesting questions as the latter algorithm yields a nonreversible chain, and therefore its stationary distribution seems difficult to calculate explicitly. We nevertheless provide bounds on the stationary distributions and on the mixing time of these processes in several restrictions.

  4. In silico mining of putative microsatellite markers from whole genome sequence of water buffalo (Bubalus bubalis) and development of first BuffSatDB

    PubMed Central

    2013-01-01

    Background Though India has sequenced water buffalo genome but its draft assembly is based on cattle genome BTau 4.0, thus de novo chromosome wise assembly is a major pending issue for global community. The existing radiation hybrid of buffalo and these reported STR can be used further in final gap plugging and “finishing” expected in de novo genome assembly. QTL and gene mapping needs mining of putative STR from buffalo genome at equal interval on each and every chromosome. Such markers have potential role in improvement of desirable characteristics, such as high milk yields, resistance to diseases, high growth rate. The STR mining from whole genome and development of user friendly database is yet to be done to reap the benefit of whole genome sequence. Description By in silico microsatellite mining of whole genome, we have developed first STR database of water buffalo, BuffSatDb (Buffalo MicroSatellite Database (http://cabindb.iasri.res.in/buffsatdb/) which is a web based relational database of 910529 microsatellite markers, developed using PHP and MySQL database. Microsatellite markers have been generated using MIcroSAtellite tool. It is simple and systematic web based search for customised retrieval of chromosome wise and genome-wide microsatellites. Search has been enabled based on chromosomes, motif type (mono-hexa), repeat motif and repeat kind (simple and composite). The search may be customised by limiting location of STR on chromosome as well as number of markers in that range. This is a novel approach and not been implemented in any of the existing marker database. This database has been further appended with Primer3 for primer designing of the selected markers enabling researcher to select markers of choice at desired interval over the chromosome. The unique add-on of degenerate bases further helps in resolving presence of degenerate bases in current buffalo assembly. Conclusion Being first buffalo STR database in the world , this would not only pave the way in resolving current assembly problem but shall be of immense use for global community in QTL/gene mapping critically required to increase knowledge in the endeavour to increase buffalo productivity, especially for third world country where rural economy is significantly dependent on buffalo productivity. PMID:23336431

  5. In silico mining of putative microsatellite markers from whole genome sequence of water buffalo (Bubalus bubalis) and development of first BuffSatDB.

    PubMed

    Sarika; Arora, Vasu; Iquebal, Mir Asif; Rai, Anil; Kumar, Dinesh

    2013-01-19

    Though India has sequenced water buffalo genome but its draft assembly is based on cattle genome BTau 4.0, thus de novo chromosome wise assembly is a major pending issue for global community. The existing radiation hybrid of buffalo and these reported STR can be used further in final gap plugging and "finishing" expected in de novo genome assembly. QTL and gene mapping needs mining of putative STR from buffalo genome at equal interval on each and every chromosome. Such markers have potential role in improvement of desirable characteristics, such as high milk yields, resistance to diseases, high growth rate. The STR mining from whole genome and development of user friendly database is yet to be done to reap the benefit of whole genome sequence. By in silico microsatellite mining of whole genome, we have developed first STR database of water buffalo, BuffSatDb (Buffalo MicroSatellite Database (http://cabindb.iasri.res.in/buffsatdb/) which is a web based relational database of 910529 microsatellite markers, developed using PHP and MySQL database. Microsatellite markers have been generated using MIcroSAtellite tool. It is simple and systematic web based search for customised retrieval of chromosome wise and genome-wide microsatellites. Search has been enabled based on chromosomes, motif type (mono-hexa), repeat motif and repeat kind (simple and composite). The search may be customised by limiting location of STR on chromosome as well as number of markers in that range. This is a novel approach and not been implemented in any of the existing marker database. This database has been further appended with Primer3 for primer designing of the selected markers enabling researcher to select markers of choice at desired interval over the chromosome. The unique add-on of degenerate bases further helps in resolving presence of degenerate bases in current buffalo assembly. Being first buffalo STR database in the world , this would not only pave the way in resolving current assembly problem but shall be of immense use for global community in QTL/gene mapping critically required to increase knowledge in the endeavour to increase buffalo productivity, especially for third world country where rural economy is significantly dependent on buffalo productivity.

  6. WebSat--a web software for microsatellite marker development.

    PubMed

    Martins, Wellington Santos; Lucas, Divino César Soares; Neves, Kelligton Fabricio de Souza; Bertioli, David John

    2009-01-01

    Simple sequence repeats (SSR), also known as microsatellites, have been extensively used as molecular markers due to their abundance and high degree of polymorphism. We have developed a simple to use web software, called WebSat, for microsatellite molecular marker prediction and development. WebSat is accessible through the Internet, requiring no program installation. Although a web solution, it makes use of Ajax techniques, providing a rich, responsive user interface. WebSat allows the submission of sequences, visualization of microsatellites and the design of primers suitable for their amplification. The program allows full control of parameters and the easy export of the resulting data, thus facilitating the development of microsatellite markers. The web tool may be accessed at http://purl.oclc.org/NET/websat/

  7. Recombination-dependent replication and gene conversion homogenize repeat sequences and diversify plastid genome structure.

    PubMed

    Ruhlman, Tracey A; Zhang, Jin; Blazier, John C; Sabir, Jamal S M; Jansen, Robert K

    2017-04-01

    There is a misinterpretation in the literature regarding the variable orientation of the small single copy region of plastid genomes (plastomes). The common phenomenon of small and large single copy inversion, hypothesized to occur through intramolecular recombination between inverted repeats (IR) in a circular, single unit-genome, in fact, more likely occurs through recombination-dependent replication (RDR) of linear plastome templates. If RDR can be primed through both intra- and intermolecular recombination, then this mechanism could not only create inversion isomers of so-called single copy regions, but also an array of alternative sequence arrangements. We used Illumina paired-end and PacBio single-molecule real-time (SMRT) sequences to characterize repeat structure in the plastome of Monsonia emarginata (Geraniaceae). We used OrgConv and inspected nucleotide alignments to infer ancestral nucleotides and identify gene conversion among repeats and mapped long (>1 kb) SMRT reads against the unit-genome assembly to identify alternative sequence arrangements. Although M. emarginata lacks the canonical IR, we found that large repeats (>1 kilobase; kb) represent ∼22% of the plastome nucleotide content. Among the largest repeats (>2 kb), we identified GC-biased gene conversion and mapping filtered, long SMRT reads to the M. emarginata unit-genome assembly revealed alternative, substoichiometric sequence arrangements. We offer a model based on RDR and gene conversion between long repeated sequences in the M. emarginata plastome and provide support that both intra-and intermolecular recombination between large repeats, particularly in repeat-rich plastomes, varies unit-genome structure while homogenizing the nucleotide sequence of repeats. © 2017 Botanical Society of America.

  8. Development and evaluation of a PCR-based assay kit for authentication of Zaocys dhumnades in traditional Chinese medicine.

    PubMed

    Zhang, Xiaomei; Zhou, Tingting; Yu, Wenjing; Ai, Jinxia; Wang, Xuesong; Gao, Lijun; Yuan, Guangxin; Li, Mingcheng

    2018-01-01

    We developed a kind of Zaocys dhumnades DNA test kit and it's indexes including specificity, sensitivity and stability were evaluated and compared with the method recorded in Chinese Pharmacopoeia (2010 edition). The bioinformatics technology was used to design primers, sequencing and blast, in conjunction with PCR technology based on the characteristics of Z. dhumnades cytochrome b (Cyt b) gene. The efficiency of nucleic acid extraction by the kit was done in accordance with Pharmacopoeia method. The kit stability results proved effective after repeated freezing and thawing 20 times. The sensitivity results indicated that the lowest amount detected by the kit was 0. 025 g of each specimen. The specificity test of the kit was 100% specific. All repeatability tests indicated the same results when conducted three times. Compared with the method recorded in Chinese Pharmacopoeia, the PCR-based assay kit by our team developed is accurate, effective in identification of Z. dhumnades, it is simple and fast, demonstrating a broad prospect in quality inspection of Z. dhumnades in the future.

  9. Development and characterization of novel EST-SSR markers and their application for genetic diversity analysis of Jerusalem artichoke (Helianthus tuberosus L.).

    PubMed

    Mornkham, T; Wangsomnuk, P P; Mo, X C; Francisco, F O; Gao, L Z; Kurzweil, H

    2016-10-24

    Jerusalem artichoke (Helianthus tuberosus L.) is a perennial tuberous plant and a traditional inulin-rich crop in Thailand. It has become the most important source of inulin and has great potential for use in chemical and food industries. In this study, expressed sequence tag (EST)-based simple sequence repeat (SSR) markers were developed from 40,362 Jerusalem artichoke ESTs retrieved from the NCBI database. Among 23,691 non-redundant identified ESTs, 1949 SSR motifs harboring 2 to 6 nucleotides with varied repeat motifs were discovered from 1676 assembled sequences. Seventy-nine primer pairs were generated from EST sequences harboring SSR motifs. Our results show that 43 primers are polymorphic for the six studied populations, while the remaining 36 were either monomorphic or failed to amplify. These 43 SSR loci exhibited a high level of genetic diversity among populations, with allele numbers varying from 2 to 7, with an average of 3.95 alleles per loci. Heterozygosity ranged from 0.096 to 0.774, with an average of 0.536; polymorphic index content ranged from 0.096 to 0.854, with an average of 0.568. Principal component analysis and neighbor-joining analysis revealed that the six populations could be divided into six clusters. Our results indicate that these newly characterized EST-SSR markers may be useful in the exploration of genetic diversity and range expansion of the Jerusalem artichoke, and in cross-species application for the genus Helianthus.

  10. Sequence analysis of the PIP5K locus in Eimeria maxima provides further evidence for eimerian genome plasticity and segmental organization.

    PubMed

    Song, B K; Pan, M Z; Lau, Y L; Wan, K L

    2014-07-29

    Commercial flocks infected by Eimeria species parasites, including Eimeria maxima, have an increased risk of developing clinical or subclinical coccidiosis; an intestinal enteritis associated with increased mortality rates in poultry. Currently, infection control is largely based on chemotherapy or live vaccines; however, drug resistance is common and vaccines are relatively expensive. The development of new cost-effective intervention measures will benefit from unraveling the complex genetic mechanisms that underlie host-parasite interactions, including the identification and characterization of genes encoding proteins such as phosphatidylinositol 4-phosphate 5-kinase (PIP5K). We previously identified a PIP5K coding sequence within the E. maxima genome. In this study, we analyzed two bacterial artificial chromosome clones presenting a ~145-kb E. maxima (Weybridge strain) genomic region spanning the PIP5K gene locus. Sequence analysis revealed that ~95% of the simple sequence repeats detected were located within regions comparable to the previously described feature-rich segments of the Eimeria tenella genome. Comparative sequence analysis with the orthologous E. maxima (Houghton strain) region revealed a moderate level of conserved synteny. Unique segmental organizations and telomere-like repeats were also observed in both genomes. A number of incomplete transposable elements were detected and further scrutiny of these elements in both orthologous segments revealed interesting nesting events, which may play a role in facilitating genome plasticity in E. maxima. The current analysis provides more detailed information about the genome organization of E. maxima and may help to reveal genotypic differences that are important for expression of traits related to pathogenicity and virulence.

  11. Dog leukocyte antigen class II-associated genetic risk testing for immune disorders of dogs: simplified approaches using Pug dog necrotizing meningoencephalitis as a model.

    PubMed

    Pedersen, Niels; Liu, Hongwei; Millon, Lee; Greer, Kimberly

    2011-01-01

    A significantly increased risk for a number of autoimmune and infectious diseases in purebred and mixed-breed dogs has been associated with certain alleles or allele combinations of the dog leukocyte antigen (DLA) class II complex containing the DRB1, DQA1, and DQB1 genes. The exact level of risk depends on the specific disease, the alleles in question, and whether alleles exist in a homozygous or heterozygous state. The gold standard for identifying high-risk alleles and their zygosity has involved direct sequencing of the exon 2 regions of each of the 3 genes. However, sequencing and identification of specific alleles at each of the 3 loci are relatively expensive and sequencing techniques are not ideal for additional parentage or identity determination. However, it is often possible to get the same information from sequencing only 1 gene given the small number of possible alleles at each locus in purebred dogs, extensive homozygosity, and tendency for disease-causing alleles at each of the 3 loci to be strongly linked to each other into haplotypes. Therefore, genetic testing in purebred dogs with immune diseases can be often simplified by sequencing alleles at 1 rather than 3 loci. Further simplification of genetic tests for canine immune diseases can be achieved by the use of alternative genetic markers in the DLA class II region that are also strongly linked with the disease genotype. These markers consist of either simple tandem repeats or single nucleotide polymorphisms that are also in strong linkage with specific DLA class II genotypes and/or haplotypes. The current study uses necrotizing meningoencephalitis of Pug dogs as a paradigm to assess simple alternative genetic tests for disease risk. It was possible to attain identical necrotizing meningoencephalitis risk assessments to 3-locus DLA class II sequencing by sequencing only the DQB1 gene, using 3 DLA class II-linked simple tandem repeat markers, or with a small single nucleotide polymorphism array designed to identify breed-specific DQB1 alleles.

  12. The complete chloroplast genome of Capsicum annuum var. glabriusculum using Illumina sequencing.

    PubMed

    Raveendar, Sebastin; Na, Young-Wang; Lee, Jung-Ro; Shim, Donghwan; Ma, Kyung-Ho; Lee, Sok-Young; Chung, Jong-Wook

    2015-07-20

    Chloroplast (cp) genome sequences provide a valuable source for DNA barcoding. Molecular phylogenetic studies have concentrated on DNA sequencing of conserved gene loci. However, this approach is time consuming and more difficult to implement when gene organization differs among species. Here we report the complete re-sequencing of the cp genome of Capsicum pepper (Capsicum annuum var. glabriusculum) using the Illumina platform. The total length of the cp genome is 156,817 bp with a 37.7% overall GC content. A pair of inverted repeats (IRs) of 50,284 bp were separated by a small single copy (SSC; 18,948 bp) and a large single copy (LSC; 87,446 bp). The number of cp genes in C. annuum var. glabriusculum is the same as that in other Capsicum species. Variations in the lengths of LSC; SSC and IR regions were the main contributors to the size variation in the cp genome of this species. A total of 125 simple sequence repeat (SSR) and 48 insertions or deletions variants were found by sequence alignment of Capsicum cp genome. These findings provide a foundation for further investigation of cp genome evolution in Capsicum and other higher plants.

  13. The primitive code and repeats of base oligomers as the primordial protein-encoding sequence.

    PubMed Central

    Ohno, S; Epplen, J T

    1983-01-01

    Even if the prebiotic self-replication of nucleic acids and the subsequent emergence of primitive, enzyme-independent tRNAs are accepted as plausible, the origin of life by spontaneous generation still appears improbable. This is because the just-emerged primitive translational machinery had to cope with base sequences that were not preselected for their coding potentials. Particularly if the primitive mitochondria-like code with four chain-terminating base triplets preceded the universal code, the translation of long, randomly generated, base sequences at this critical stage would have merely resulted in the production of short oligopeptides instead of long polypeptide chains. We present the base sequence of a mouse transcript containing tetranucleotide repeats conserved during evolution. Even if translated in accordance with the primitive mitochondria-like code, this transcript in its three reading frames can yield 245-, 246-, and 251-residue-long tetrapeptidic periodical polypeptides that are already acquiring longer periodicities. We contend that the first set of base sequences translated at the beginning of life were such oligonucleotide repeats. By quickly acquiring longer periodicities, their products must have soon gained characteristic secondary structures--alpha-helical or beta-sheet or both. PMID:6574491

  14. In silico search, characterization and validation of new EST-SSR markers in the genus Prunus.

    PubMed

    Sorkheh, Karim; Prudencio, Angela S; Ghebinejad, Azim; Dehkordi, Mehrana Kohei; Erogul, Deniz; Rubio, Manuel; Martínez-Gómez, Pedro

    2016-07-07

    Simple sequence repeats (SSRs) are defined as sequence repeat units between 1 and 6 bp that occur in both coding and non-coding regions abundant in eukaryotic genomes, which may affect the expression of genes. In this study, expressed sequence tags (ESTs) of eight Prunus species were analyzed for in silico mining of EST-SSRs, protein annotation, and open reading frames (ORFs), and the identification of codon repetitions. A total of 316 SSRs were identified using MISA software. Dinucleotide SSR motifs (26.31 %) were found to be the most abundant type of repeats, followed by tri- (14.58 %), tetra- (0.53 %), and penta- (0.27 %) nucleotide motifs. An attempt was made to design primer pairs for 316 identified SSRs but these were successful for only 175 SSR sequences. The positions of SSRs with respect to ORFs were detected, and annotation of sequences containing SSRs was performed to assign function to each sequence. SSRs were also characterized (in terms of position in the reference genome and associated gene) using the two available Prunus reference genomes (mei and peach). Finally, 38 SSR markers were validated across peach, almond, plum, and apricot genotypes. This validation showed a higher transferability level of EST-SSR developed in P. mume (mei) in comparison with the rest of species analyzed. Findings will aid analysis of functionally important molecular markers and facilitate the analysis of genetic diversity.

  15. Structural analysis of the rDNA intergenic spacer of Brassica nigra: evolutionary divergence of the spacers of the three diploid Brassica species.

    PubMed

    Bhatia, S; Singh Negi, M; Lakshmikumaran, M

    1996-11-01

    EcoRI restriction of the B. nigra rDNA recombinants, isolated from a lambda genomic library, showed that the 3.9-kb fragment corresponded to the Intergenic Spacer (IGS), which was sequenced and found to be 3,928 bp in size. Sequence and dot-matrix analyses showed that the organization of the B. nigra rDNA IGS was typical of most rDNA spacers, consisting of a central repetitive region and flanking unique sequences on either side. The repetitive region was composed of two repeat families-RF 'A' and RF 'B.' The B. nigra RF 'A' consisted of a tandem array of three full-length copies of a 106-bp sequence element. RF 'B' was composed of 66 tandemly repeated elements. Each 'B' element was only 21-bp in size and this is the smallest repeat unit identified in plant rDNA to date. The putative transcription initiation site (TIS) was identified as nucleotide position 3,110. Based on the sequence analysis it was suggested that the present organization of the repeat families was generated by successive cycles of deletions and amplifications and was being maintained by homogenization processes such as gene conversion and crossing-over.A detailed comparison of the rDNA IGS sequences of the three diploid Brassica species-namely, B. nigra, B. campestris, and B. oleracea-was carried out. First, comparisons revealed that B. campestris and B. oleracea were close to each other as the repeat families in both showed high sequence homology between each other. Second, the repeat elements in both the species were organized in an interspersed manner. Third, a 52-bp sequence, present just downstream of the repeats in B. campestris, was found to be identical to the B. oleracea repeats, thereby suggesting a common progenitor. On the other hand, in B. nigra no interspersion pattern of organization of repeats was observed. Further, the B. nigra RF 'A' was identified as distinct from the repeat families of B. campestris and B. oleracea. Based on this analysis, it was suggested that during speciation B. campestris and B. oleracea evolved in one lineage whereas B. nigra diverged into a separate lineage. The comparative analysis of the IGS helped in identifying not only conserved ancestral sequence motifs of possible functional significance such as promoters and enhancers, but also sequences which showed variation between the three diploid species and were therefore identified as species-specific sequences.

  16. Determination of the genetic diversity of vegetable soybean [Glycine max (L.) Merr.] using EST-SSR markers*

    PubMed Central

    Zhang, Gu-wen; Xu, Sheng-chun; Mao, Wei-hua; Hu, Qi-zan; Gong, Ya-ming

    2013-01-01

    The development of expressed sequence tag-derived simple sequence repeats (EST-SSRs) provided a useful tool for investigating plant genetic diversity. In the present study, 22 polymorphic EST-SSRs from grain soybean were identified and used to assess the genetic diversity in 48 vegetable soybean accessions. Among the 22 EST-SSR loci, tri-nucleotides were the most abundant repeats, accounting for 50.00% of the total motifs. GAA was the most common motif among tri-nucleotide repeats, with a frequency of 18.18%. Polymorphic analysis identified a total of 71 alleles, with an average of 3.23 per locus. The polymorphism information content (PIC) values ranged from 0.144 to 0.630, with a mean of 0.386. Observed heterozygosity (H o) values varied from 0.0196 to 1.0000, with an average of 0.6092, while the expected heterozygosity (H e) values ranged from 0.1502 to 0.6840, with a mean value of 0.4616. Principal coordinate analysis and phylogenetic tree analysis indicated that the accessions could be assigned to different groups based to a large extent on their geographic distribution, and most accessions from China were clustered into the same groups. These results suggest that Chinese vegetable soybean accessions have a narrow genetic base. The results of this study indicate that EST-SSRs from grain soybean have high transferability to vegetable soybean, and that these new markers would be helpful in taxonomy, molecular breeding, and comparative mapping studies of vegetable soybean in the future. PMID:23549845

  17. Characterization of expressed sequence tag-derived simple sequence repeat markers for Aspergillus flavus: emphasis on variability of isolates from the southern United States.

    PubMed

    Wang, Xinwang; Wadl, Phillip A; Wood-Jones, Alicia; Windham, Gary; Trigiano, Robert N; Scruggs, Mary; Pilgrim, Candace; Baird, Richard

    2012-12-01

    Simple sequence repeat (SSR) markers were developed from Aspergillus flavus expressed sequence tag (EST) database to conduct an analysis of genetic relationships of Aspergillus isolates from numerous host species and geographical regions, but primarily from the United States. Twenty-nine primers were designed from 362 tri-nucleotide EST-SSR sequences. Eighteen polymorphic loci were used to genotype 96 Aspergillus species isolates. The number of alleles detected per locus ranged from 2 to 24 with a mean of 8.2 alleles. Haploid diversity ranged from 0.28 to 0.91. Genetic distance matrix was used to perform principal coordinates analysis (PCA) and to generate dendrograms using unweighted pair group method with arithmetic mean (UPGMA). Two principal coordinates explained more than 75 % of the total variation among the isolates. One clade was identified for A. flavus isolates (n = 87) with the other Aspergillus species (n = 7) using PCA, but five distinct clusters were present when the others taxa were excluded from the analysis. Six groups were noted when the EST-SSR data were compared using UPGMA. However, the latter PCA or UPGMA comparison resulted in no direct associations with host species, geographical region or aflatoxin production. Furthermore, there was no direct correlation to visible morphological features such as sclerotial types. The isolates from Mississippi Delta region, which contained the largest percentage of isolates, did not show any unusual clustering except for isolates K32, K55, and 199. Further studies of these three isolates are warranted to evaluate their pathogenicity, aflatoxin production potential, additional gene sequences (e.g., RPB2), and morphological comparisons.

  18. Two tandemly repeated telomere-associated sequences in Nicotiana plumbaginifolia.

    PubMed

    Chen, C M; Wang, C T; Wang, C J; Ho, C H; Kao, Y Y; Chen, C C

    1997-12-01

    Two tandemly repeated telomere-associated sequences, NP3R and NP4R, have been isolated from Nicotiana plumbaginifolia. The length of a repeating unit for NP3R and NP4R is 165 and 180 nucleotides respectively. The abundance of NP3R, NP4R and telomeric repeats is, respectively, 8.4 x 10(4), 6 x 10(3) and 1.5 x 10(6) copies per haploid genome of N. plumbaginifolia. Fluorescence in situ hybridization revealed that NP3R is located at the ends and/or in interstitial regions of all 10 chromosomes and NP4R on the terminal regions of three chromosomes in the haploid genome of N. plumbaginifolia. Sequence homology search revealed that not only are NP3R and NP4R homologous to HRS60 and GRS, respectively, two tandem repeats isolated from N. tabacum, but that NP3R and NP4R are also related to each other, suggesting that they originated from a common ancestral sequence. The role of these repeated sequences in chromosome healing is discussed based on the observation that two to three copies of a telomere-similar sequence were present in each repeating unit of NP3R and NP4R.

  19. Gene-based SSR markers for common bean (Phaseolus vulgaris L.) derived from root and leaf tissue ESTs: an integration of the BMc series.

    PubMed

    Blair, Matthew W; Hurtado, Natalia; Chavarro, Carolina M; Muñoz-Torres, Monica C; Giraldo, Martha C; Pedraza, Fabio; Tomkins, Jeff; Wing, Rod

    2011-03-22

    Sequencing of cDNA libraries for the development of expressed sequence tags (ESTs) as well as for the discovery of simple sequence repeats (SSRs) has been a common method of developing microsatellites or SSR-based markers. In this research, our objective was to further sequence and develop common bean microsatellites from leaf and root cDNA libraries derived from the Andean gene pool accession G19833 and the Mesoamerican gene pool accession DOR364, mapping parents of a commonly used reference map. The root libraries were made from high and low phosphorus treated plants. A total of 3,123 EST sequences from leaf and root cDNA libraries were screened and used for direct simple sequence repeat discovery. From these EST sequences we found 184 microsatellites; the majority containing tri-nucleotide motifs, many of which were GC rich (ACC, AGC and AGG in particular). Di-nucleotide motif microsatellites were about half as common as the tri-nucleotide motif microsatellites but most of these were AGn microsatellites with a moderate number of ATn microsatellites in root ESTs followed by few ACn and no GCn microsatellites. Out of the 184 new SSR loci, 120 new microsatellite markers were developed in the BMc (Bean Microsatellites from cDNAs) series and these were evaluated for their capacity to distinguish bean diversity in a germplasm panel of 18 genotypes. We developed a database with images of the microsatellites and their polymorphism information content (PIC), which averaged 0.310 for polymorphic markers. The present study produced information about microsatellite frequency in root and leaf tissues of two important genotypes for common bean genomics: namely G19833, the Andean genotype selected for whole genome shotgun sequencing from race Peru, and DOR364 a race Mesoamerica subgroup 2 genotype that is a small-red seeded, released variety in Central America. Both race Peru and Mesoamerica subgroup 2 (small red beans) have been understudied in comparison to race Nueva Granada and Mesoamerica subgroup 1 (black beans) both with regards to gene expression and as sources of markers. However, we found few differences between SSR type and frequency between the G19833 leaf and DOR364 root tissue-derived ESTs. Overall, our work adds to the analysis of microsatellite frequency evaluation for common bean and provides a new set of 120 BMc markers which combined with the 248 previously developed BMc markers brings the total in this series to 368 markers. Once we include BMd markers, which are derived from GenBank sequences, the current total of gene-based markers from our laboratory surpasses 500 markers. These markers are basic for studies of the transcriptome of common bean and can form anchor points for genetic mapping studies in the future.

  20. Microsatellite DNA as shared genetic markers among conifer species

    Treesearch

    C.S. Echt; G.G. Vendramin; C. D. Nelson; Paula E. Marquardt

    1999-01-01

    Polymerase chain reaction (PCR) primer pairs for 21 simple sequence repeat (SSR) loci in Pinus strobus L, and 6 in Pinus radiata D. Don were evaluated to determine whether SSR marker amplification could be achieved in 1O other conifer species. Eighty percent of SSR primer pairs for (AC) loci that were polymorphic in P. ...

  1. Use of microsatellite markers in management of conifer forest species

    Treesearch

    Craig S. Echt

    1999-01-01

    Within the past ten years a new class of genetic marker1 has risen to prominence as the tool of choice for many geneticists. Microsatellite DNAs, or simple sequence repeats (SSRs), were first characterized as highly informative genetic markers in humans (Weber and May, 1990; Litt and Luty, 1990), and have since been found in practically all...

  2. A New SNP Haplotype associated with blue disease resistance gene in cotton (Gossypium hirsutum L.)

    USDA-ARS?s Scientific Manuscript database

    Resistance to cotton blue disease (CBD) was evaluated in 364 F2.3 families of 3 populations derived from resistant variety ‘Delta Opal’. The CBD resistance in ‘Delta Opal’ was controlled by one single dominant gene designated Cbd. Two simple sequence repeat (SSR) markers were identified as linked t...

  3. Microsatellite DNA as shared genetic markers among conifer species

    Treesearch

    Craig S. Echt; G.G. Vendramin; C.D. Nelson; P. Marquardt

    1999-01-01

    Polymerase chain reaction (PCR) primer pairs for 21 simple sequence repeat (SSR) loci in Pinus strobus L. and 6 in Pinus radiata D. Don. were evaluated to determine whether SSR marker amplification could be achieved in 10 other conifer species. Eighty percent of SSR primer pairs for (AC)n loci that were polymorphic in P. ...

  4. Genetic diversity and population structure analysis of accessions in the Chinese cowpea [Vigna unguiculata (L.) Walp.] germplasm collection

    USDA-ARS?s Scientific Manuscript database

    Cowpea (Vigna unguiculata) is an important legume crop with diverse uses. The species is presently a minor crop, and evaluation of its genetic diversity has been very limited. In this study, a total of 200 genic and 100 genomic simple sequence repeat (SSR) markers were developed from cowpea unigene ...

  5. Development of SSR markers for Chionanthus retusus (Oleaceae) and effective discrimination of closely related taxa

    USDA-ARS?s Scientific Manuscript database

    We have developed 384 simple sequence repeat (SSR) markers for the identification of accessions of Chionanthus retusus and four related species. The bark of C. retusus and C. virginicus is used in the industry of natural product to treat inflammation, fever and other illnesses, and with the use of ...

  6. The complete chloroplast genome sequence of the medicinal plant Salvia miltiorrhiza.

    PubMed

    Qian, Jun; Song, Jingyuan; Gao, Huanhuan; Zhu, Yingjie; Xu, Jiang; Pang, Xiaohui; Yao, Hui; Sun, Chao; Li, Xian'en; Li, Chuyuan; Liu, Juyan; Xu, Haibin; Chen, Shilin

    2013-01-01

    Salvia miltiorrhiza is an important medicinal plant with great economic and medicinal value. The complete chloroplast (cp) genome sequence of Salvia miltiorrhiza, the first sequenced member of the Lamiaceae family, is reported here. The genome is 151,328 bp in length and exhibits a typical quadripartite structure of the large (LSC, 82,695 bp) and small (SSC, 17,555 bp) single-copy regions, separated by a pair of inverted repeats (IRs, 25,539 bp). It contains 114 unique genes, including 80 protein-coding genes, 30 tRNAs and four rRNAs. The genome structure, gene order, GC content and codon usage are similar to the typical angiosperm cp genomes. Four forward, three inverted and seven tandem repeats were detected in the Salvia miltiorrhiza cp genome. Simple sequence repeat (SSR) analysis among the 30 asterid cp genomes revealed that most SSRs are AT-rich, which contribute to the overall AT richness of these cp genomes. Additionally, fewer SSRs are distributed in the protein-coding sequences compared to the non-coding regions, indicating an uneven distribution of SSRs within the cp genomes. Entire cp genome comparison of Salvia miltiorrhiza and three other Lamiales cp genomes showed a high degree of sequence similarity and a relatively high divergence of intergenic spacers. Sequence divergence analysis discovered the ten most divergent and ten most conserved genes as well as their length variation, which will be helpful for phylogenetic studies in asterids. Our analysis also supports that both regional and functional constraints affect gene sequence evolution. Further, phylogenetic analysis demonstrated a sister relationship between Salvia miltiorrhiza and Sesamum indicum. The complete cp genome sequence of Salvia miltiorrhiza reported in this paper will facilitate population, phylogenetic and cp genetic engineering studies of this medicinal plant.

  7. Comparative Genomic and Transcriptomic Characterization of the Toxigenic Marine Dinoflagellate Alexandrium ostenfeldii

    PubMed Central

    Jaeckisch, Nina; Yang, Ines; Wohlrab, Sylke; Glöckner, Gernot; Kroymann, Juergen; Vogel, Heiko; Cembella, Allan; John, Uwe

    2011-01-01

    Many dinoflagellate species are notorious for the toxins they produce and ecological and human health consequences associated with harmful algal blooms (HABs). Dinoflagellates are particularly refractory to genomic analysis due to the enormous genome size, lack of knowledge about their DNA composition and structure, and peculiarities of gene regulation, such as spliced leader (SL) trans-splicing and mRNA transposition mechanisms. Alexandrium ostenfeldii is known to produce macrocyclic imine toxins, described as spirolides. We characterized the genome of A. ostenfeldii using a combination of transcriptomic data and random genomic clones for comparison with other dinoflagellates, particularly Alexandrium species. Examination of SL sequences revealed similar features as in other dinoflagellates, including Alexandrium species. SL sequences in decay indicate frequent retro-transposition of mRNA species. This probably contributes to overall genome complexity by generating additional gene copies. Sequencing of several thousand fosmid and bacterial artificial chromosome (BAC) ends yielded a wealth of simple repeats and tandemly repeated longer sequence stretches which we estimated to comprise more than half of the whole genome. Surprisingly, the repeats comprise a very limited set of 79–97 bp sequences; in part the genome is thus a relatively uniform sequence space interrupted by coding sequences. Our genomic sequence survey (GSS) represents the largest genomic data set of a dinoflagellate to date. Alexandrium ostenfeldii is a typical dinoflagellate with respect to its transcriptome and mRNA transposition but demonstrates Alexandrium-like stop codon usage. The large portion of repetitive sequences and the organization within the genome is in agreement with several other studies on dinoflagellates using different approaches. It remains to be determined whether this unusual composition is directly correlated to the exceptionally genome organization of dinoflagellates with a low amount of histones and histone-like proteins. PMID:22164224

  8. The repeat organizer, a specialized insulator element within the intergenic spacer of the Xenopus rRNA genes.

    PubMed Central

    Robinett, C C; O'Connor, A; Dunaway, M

    1997-01-01

    We have identified a novel activity for the region of the intergenic spacer of the Xenopus laevis rRNA genes that contains the 35- and 100-bp repeats. We devised a new assay for this region by constructing DNA plasmids containing a tandem repeat of rRNA reporter genes that were separated by the 35- and 100-bp repeat region and a rRNA gene enhancer. When the 35- and 100-bp repeat region is present in its normal position and orientation at the 3' end of the rRNA reporter genes, the enhancer activates the adjacent downstream promoter but not the upstream rRNA promoter on the same plasmid. Because this element can restrict the range of an enhancer's activity in the context of tandem genes, we have named it the repeat organizer (RO). The ability to restrict enhancer action is a feature of insulator elements, but unlike previously described insulator elements the RO does not block enhancer action in a simple enhancer-blocking assay. Instead, the activity of the RO requires that it be in its normal position and orientation with respect to the other sequence elements of the rRNA genes. The enhancer-binding transcription factor xUBF also binds to the repetitive sequences of the RO in vitro, but these sequences do not activate transcription in vivo. We propose that the RO is a specialized insulator element that organizes the tandem array of rRNA genes into single-gene expression units by promoting activation of a promoter by its proximal enhancers. PMID:9111359

  9. Development of DArT-based PCR markers for selecting drought-tolerant spring barley.

    PubMed

    Fiust, Anna; Rapacz, Marcin; Wójcik-Jagła, Magdalena; Tyrka, Mirosław

    2015-08-01

    The tolerance of spring barley (Hordeum vulgare L.) cultivars to spring drought is an important agronomic trait affecting crop yield and quality in Poland. Therefore, breeders require new molecular markers to select plants with lower spring drought susceptibility. With the advent of genomic selection technology, simple molecular tools may still be applicable to screen material for markers of the most important traits and in-depth genome scanning. In previous studies, diversity arrays technology (DArT)-based genetic maps were constructed for F2 populations of Polish fodder and malt barley elite breeding lines, and 15 and 18 quantitative trait loci (QTLs) related to spring drought tolerance were identified, respectively. In this paper, we show the results of a conversion of 30 DArT markers corresponding to 11 QTLs into simple sequence repeat (SSR) and sequence tagged site (STS) markers. Twenty-two polymorphic markers were obtained, including 13 DArT-based SSRs. Additionally, 31 SSR markers, located in close proximity to the DArT markers, were selected from the GrainGenes database and tested. Further analyses of 24 advanced breeding lines with different drought tolerances confirmed that five out of the 30 converted markers, as well as three out of the 31 additional SSR markers, were effective in marker-assisted selection for drought tolerance. The possible function of clones related to these markers in drought tolerance is discussed.

  10. An integrated molecular cytogenetic map of Cucumis sativus L. chromosome 2.

    PubMed

    Han, Yonghua; Zhang, Zhonghua; Huang, Sanwen; Jin, Weiwei

    2011-01-27

    Integration of molecular, genetic and cytological maps is still a challenge for most plant species. Recent progress in molecular and cytogenetic studies created a basis for developing integrated maps in cucumber (Cucumis sativus L.). In this study, eleven fosmid clones and three plasmids containing 45S rDNA, the centromeric satellite repeat Type III and the pericentriomeric repeat CsRP1 sequences respectively were hybridized to cucumber metaphase chromosomes to assign their cytological location on chromosome 2. Moreover, an integrated molecular cytogenetic map of cucumber chromosomes 2 was constructed by fluorescence in situ hybridization (FISH) mapping of 11 fosmid clones together with the cucumber centromere-specific Type III sequence on meiotic pachytene chromosomes. The cytogenetic map was fully integrated with genetic linkage map since each fosmid clone was anchored by a genetically mapped simple sequence repeat marker (SSR). The relationship between the genetic and physical distances along chromosome was analyzed. Recombination was not evenly distributed along the physical length of chromosome 2. Suppression of recombination was found in centromeric and pericentromeric regions. Our results also indicated that the molecular markers composing the linkage map for chromosome 2 provided excellent coverage of the chromosome.

  11. Applications of molecular markers in the discrimination of Panax species and Korean ginseng cultivars (Panax ginseng).

    PubMed

    Jo, Ick Hyun; Kim, Young Chang; Kim, Dong Hwi; Kim, Kee Hong; Hyun, Tae Kyung; Ryu, Hojin; Bang, Kyong Hwan

    2017-10-01

    The development of molecular markers is one of the most useful methods for molecular breeding and marker-based molecular associated selections. Even though there is less information on the reference genome, molecular markers are indispensable tools for determination of genetic variation and identification of species with high levels of accuracy and reproducibility. The demand for molecular approaches for marker-based breeding and genetic discriminations in Panax species has greatly increased in recent times and has been successfully applied for various purposes. However, owing to the existence of diverse molecular techniques and differences in their principles and applications, there should be careful consideration while selecting appropriate marker types. In this review, we outline the recent status of different molecular marker applications in ginseng research and industrial fields. In addition, we discuss the basic principles, requirements, and advantages and disadvantages of the most widely used molecular markers, including restriction fragment length polymorphism, random amplified polymorphic DNA, sequence tag sites, simple sequence repeats, and single nucleotide polymorphisms.

  12. Microbe-ID: an open source toolbox for microbial genotyping and species identification

    PubMed Central

    Tabima, Javier F.; Everhart, Sydney E.; Larsen, Meredith M.; Weisberg, Alexandra J.; Kamvar, Zhian N.; Tancos, Matthew A.; Smart, Christine D.; Chang, Jeff H.

    2016-01-01

    Development of tools to identify species, genotypes, or novel strains of invasive organisms is critical for monitoring emergence and implementing rapid response measures. Molecular markers, although critical to identifying species or genotypes, require bioinformatic tools for analysis. However, user-friendly analytical tools for fast identification are not readily available. To address this need, we created a web-based set of applications called Microbe-ID that allow for customizing a toolbox for rapid species identification and strain genotyping using any genetic markers of choice. Two components of Microbe-ID, named Sequence-ID and Genotype-ID, implement species and genotype identification, respectively. Sequence-ID allows identification of species by using BLAST to query sequences for any locus of interest against a custom reference sequence database. Genotype-ID allows placement of an unknown multilocus marker in either a minimum spanning network or dendrogram with bootstrap support from a user-created reference database. Microbe-ID can be used for identification of any organism based on nucleotide sequences or any molecular marker type and several examples are provided. We created a public website for demonstration purposes called Microbe-ID (microbe-id.org) and provided a working implementation for the genus Phytophthora (phytophthora-id.org). In Phytophthora-ID, the Sequence-ID application allows identification based on ITS or cox spacer sequences. Genotype-ID groups individuals into clonal lineages based on simple sequence repeat (SSR) markers for the two invasive plant pathogen species P. infestans and P. ramorum. All code is open source and available on github and CRAN. Instructions for installation and use are provided at https://github.com/grunwaldlab/Microbe-ID. PMID:27602267

  13. The complete chloroplast genome sequence of the relict woody plant Metasequoia glyptostroboides Hu et Cheng.

    PubMed

    Chen, Jinhui; Hao, Zhaodong; Xu, Haibin; Yang, Liming; Liu, Guangxin; Sheng, Yu; Zheng, Chen; Zheng, Weiwei; Cheng, Tielong; Shi, Jisen

    2015-01-01

    Metasequoia glyptostroboides Hu et Cheng is the only species in the genus Metasequoia Miki ex Hu et Cheng, which belongs to the Cupressaceae family. There were around 10 species in the Metasequoia genus, which were widely spread across the Northern Hemisphere during the Cretaceous of the Mesozoic and in the Cenozoic. M. glyptostroboides is the only remaining representative of this genus. Here, we report the complete chloroplast (cp) genome sequence and the cp genomic features of M. glyptostroboides. The M. glyptostroboides cp genome is 131,887 bp in length, with a total of 117 genes comprised of 82 protein-coding genes, 31 tRNA genes and four rRNA genes. In this genome, 11 forward repeats, nine palindromic repeats, and 15 tandem repeats were detected. A total of 188 perfect microsatellites were detected through simple sequence repeat (SSR) analysis and these were distributed unevenly within the cp genome. Comparison of the cp genome structure and gene order to those of several other land plants indicated that a copy of the inverted repeat (IR) region, which was found to be IR region A (IRA), was lost in the M. glyptostroboides cp genome. The five most divergent and five most conserved genes were determined and further phylogenetic analysis was performed among plant species, especially for related species in conifers. Finally, phylogenetic analysis demonstrated that M. glyptostroboides is a sister species to Cryptomeria japonica (L. F.) D. Don and to Taiwania cryptomerioides Hayata. The complete cp genome sequence information of M. glyptostroboides will be great helpful for further investigations of this endemic relict woody plant and for in-depth understanding of the evolutionary history of the coniferous cp genomes, especially for the position of M. glyptostroboides in plant systematics and evolution.

  14. The complete chloroplast genome sequence of the relict woody plant Metasequoia glyptostroboides Hu et Cheng

    PubMed Central

    Chen, Jinhui; Hao, Zhaodong; Xu, Haibin; Yang, Liming; Liu, Guangxin; Sheng, Yu; Zheng, Chen; Zheng, Weiwei; Cheng, Tielong; Shi, Jisen

    2015-01-01

    Metasequoia glyptostroboides Hu et Cheng is the only species in the genus Metasequoia Miki ex Hu et Cheng, which belongs to the Cupressaceae family. There were around 10 species in the Metasequoia genus, which were widely spread across the Northern Hemisphere during the Cretaceous of the Mesozoic and in the Cenozoic. M. glyptostroboides is the only remaining representative of this genus. Here, we report the complete chloroplast (cp) genome sequence and the cp genomic features of M. glyptostroboides. The M. glyptostroboides cp genome is 131,887 bp in length, with a total of 117 genes comprised of 82 protein-coding genes, 31 tRNA genes and four rRNA genes. In this genome, 11 forward repeats, nine palindromic repeats, and 15 tandem repeats were detected. A total of 188 perfect microsatellites were detected through simple sequence repeat (SSR) analysis and these were distributed unevenly within the cp genome. Comparison of the cp genome structure and gene order to those of several other land plants indicated that a copy of the inverted repeat (IR) region, which was found to be IR region A (IRA), was lost in the M. glyptostroboides cp genome. The five most divergent and five most conserved genes were determined and further phylogenetic analysis was performed among plant species, especially for related species in conifers. Finally, phylogenetic analysis demonstrated that M. glyptostroboides is a sister species to Cryptomeria japonica (L. F.) D. Don and to Taiwania cryptomerioides Hayata. The complete cp genome sequence information of M. glyptostroboides will be great helpful for further investigations of this endemic relict woody plant and for in-depth understanding of the evolutionary history of the coniferous cp genomes, especially for the position of M. glyptostroboides in plant systematics and evolution. PMID:26136762

  15. Improving prokaryotic transposable elements identification using a combination of de novo and profile HMM methods.

    PubMed

    Kamoun, Choumouss; Payen, Thibaut; Hua-Van, Aurélie; Filée, Jonathan

    2013-10-11

    Insertion Sequences (ISs) and their non-autonomous derivatives (MITEs) are important components of prokaryotic genomes inducing duplication, deletion, rearrangement or lateral gene transfers. Although ISs and MITEs are relatively simple and basic genetic elements, their detection remains a difficult task due to their remarkable sequence diversity. With the advent of high-throughput genome and metagenome sequencing technologies, the development of fast, reliable and sensitive methods of ISs and MITEs detection become an important challenge. So far, almost all studies dealing with prokaryotic transposons have used classical BLAST-based detection methods against reference libraries. Here we introduce alternative methods of detection either taking advantages of the structural properties of the elements (de novo methods) or using an additional library-based method using profile HMM searches. In this study, we have developed three different work flows dedicated to ISs and MITEs detection: the first two use de novo methods detecting either repeated sequences or presence of Inverted Repeats; the third one use 28 in-house transposase alignment profiles with HMM search methods. We have compared the respective performances of each method using a reference dataset of 30 archaeal and 30 bacterial genomes in addition to simulated and real metagenomes. Compared to a BLAST-based method using ISFinder as library, de novo methods significantly improve ISs and MITEs detection. For example, in the 30 archaeal genomes, we discovered 30 new elements (+20%) in addition to the 141 multi-copies elements already detected by the BLAST approach. Many of the new elements correspond to ISs belonging to unknown or highly divergent families. The total number of MITEs has even doubled with the discovery of elements displaying very limited sequence similarities with their respective autonomous partners (mainly in the Inverted Repeats of the elements). Concerning metagenomes, with the exception of short reads data (<300 bp) for which both techniques seem equally limited, profile HMM searches considerably ameliorate the detection of transposase encoding genes (up to +50%) generating low level of false positives compare to BLAST-based methods. Compared to classical BLAST-based methods, the sensitivity of de novo and profile HMM methods developed in this study allow a better and more reliable detection of transposons in prokaryotic genomes and metagenomes. We believed that future studies implying ISs and MITEs identification in genomic data should combine at least one de novo and one library-based method, with optimal results obtained by running the two de novo methods in addition to a library-based search. For metagenomic data, profile HMM search should be favored, a BLAST-based step is only useful to the final annotation into groups and families.

  16. A 48 SNP set for grapevine cultivar identification

    PubMed Central

    2011-01-01

    Background Rapid and consistent genotyping is an important requirement for cultivar identification in many crop species. Among them grapevine cultivars have been the subject of multiple studies given the large number of synonyms and homonyms generated during many centuries of vegetative multiplication and exchange. Simple sequence repeat (SSR) markers have been preferred until now because of their high level of polymorphism, their codominant nature and their high profile repeatability. However, the rapid application of partial or complete genome sequencing approaches is identifying thousands of single nucleotide polymorphisms (SNP) that can be very useful for such purposes. Although SNP markers are bi-allelic, and therefore not as polymorphic as microsatellites, the high number of loci that can be multiplexed and the possibilities of automation as well as their highly repeatable results under any analytical procedure make them the future markers of choice for any type of genetic identification. Results We analyzed over 300 SNP in the genome of grapevine using a re-sequencing strategy in a selection of 11 genotypes. Among the identified polymorphisms, we selected 48 SNP spread across all grapevine chromosomes with allele frequencies balanced enough as to provide sufficient information content for genetic identification in grapevine allowing for good genotyping success rate. Marker stability was tested in repeated analyses of a selected group of cultivars obtained worldwide to demonstrate their usefulness in genetic identification. Conclusions We have selected a set of 48 stable SNP markers with a high discrimination power and a uniform genome distribution (2-3 markers/chromosome), which is proposed as a standard set for grapevine (Vitis vinifera L.) genotyping. Any previous problems derived from microsatellite allele confusion between labs or the need to run reference cultivars to identify allele sizes disappear using this type of marker. Furthermore, because SNP markers are bi-allelic, allele identification and genotype naming are extremely simple and genotypes obtained with different equipments and by different laboratories are always fully comparable. PMID:22060012

  17. Sunflower centromeres consist of a centromere-specific LINE and a chromosome-specific tandem repeat.

    PubMed

    Nagaki, Kiyotaka; Tanaka, Keisuke; Yamaji, Naoki; Kobayashi, Hisato; Murata, Minoru

    2015-01-01

    The kinetochore is a protein complex including kinetochore-specific proteins that plays a role in chromatid segregation during mitosis and meiosis. The complex associates with centromeric DNA sequences that are usually species-specific. In plant species, tandem repeats including satellite DNA sequences and retrotransposons have been reported as centromeric DNA sequences. In this study on sunflowers, a cDNA-encoding centromere-specific histone H3 (CENH3) was isolated from a cDNA pool from a seedling, and an antibody was raised against a peptide synthesized from the deduced cDNA. The antibody specifically recognized the sunflower CENH3 (HaCENH3) and showed centromeric signals by immunostaining and immunohistochemical staining analysis. The antibody was also applied in chromatin immunoprecipitation (ChIP)-Seq to isolate centromeric DNA sequences and two different types of repetitive DNA sequences were identified. One was a long interspersed nuclear element (LINE)-like sequence, which showed centromere-specific signals on almost all chromosomes in sunflowers. This is the first report of a centromeric LINE sequence, suggesting possible centromere targeting ability. Another type of identified repetitive DNA was a tandem repeat sequence with a 187-bp unit that was found only on a pair of chromosomes. The HaCENH3 content of the tandem repeats was estimated to be much higher than that of the LINE, which implies centromere evolution from LINE-based centromeres to more stable tandem-repeat-based centromeres. In addition, the epigenetic status of the sunflower centromeres was investigated by immunohistochemical staining and ChIP, and it was found that centromeres were heterochromatic.

  18. Vibrio vulnificus typing based on simple sequence repeats: insights into the biotype 3 group.

    PubMed

    Broza, Yoav Y; Danin-Poleg, Yael; Lerner, Larisa; Broza, Meir; Kashi, Yechezkel

    2007-09-01

    Vibrio vulnificus is an opportunistic, highly invasive human pathogen with worldwide distribution. V. vulnificus strains are commonly divided into three biochemical groups (biotypes), most members of which are pathogenic. Simple sequence repeats (SSR) provide a source of high-level genomic polymorphism used in bacterial typing. Here, we describe the use of variations in mutable SSR loci for accurate and rapid genotyping of V. vulnificus. An in silico screen of the genomes of two V. vulnificus strains revealed thousands of SSR tracts. Twelve SSR with core motifs longer than 5 bp in a panel of 32 characterized and 56 other V. vulnificus isolates, including both clinical and environmental isolates from all three biotypes, were tested for polymorphism. All tested SSR were polymorphic, and diversity indices ranged from 0.17 to 0.90, allowing a high degree of discrimination among isolates (27 of 32 characterized isolates). Genetic analysis of the SSR data resulted in the clear distinction of isolates that belong to the highly virulent biotype 3 group. Despite the clonal nature of this new group, SSR analysis demonstrated high-level discriminatory power within the biotype 3 group, as opposed to other molecular methods that failed to differentiate these isolates. Thus, SSR are suitable for rapid typing and classification of V. vulnificus strains by high-throughput capillary electrophoresis methods. SSR (>/=5 bp) by their nature enable the identification of variations occurring on a small scale and, therefore, may provide new insights into the newly emerged biotype 3 group of V. vulnificus and may be used as an efficient tool in epidemiological studies.

  19. Morphological and Inter Simple Sequence Repeat (ISSR) markers analyses of Corynespora cassiicola isolates from rubber plantations in Malaysia.

    PubMed

    Nghia, Nguyen Anh; Kadir, Jugah; Sunderasan, E; Puad Abdullah, Mohd; Malik, Adam; Napis, Suhaimi

    2008-10-01

    Morphological features and Inter Simple Sequence Repeat (ISSR) polymorphism were employed to analyse 21 Corynespora cassiicola isolates obtained from a number of Hevea clones grown in rubber plantations in Malaysia. The C. cassiicola isolates used in this study were collected from several states in Malaysia from 1998 to 2005. The morphology of the isolates was characteristic of that previously described for C. cassiicola. Variations in colony and conidial morphology were observed not only among isolates but also within a single isolate with no inclination to either clonal or geographical origin of the isolates. ISSR analysis delineated the isolates into two distinct clusters. The dendrogram created from UPGMA analysis based on Nei and Li's coefficient (calculated from the binary matrix data of 106 amplified DNA bands generated from 8 ISSR primers) showed that cluster 1 encompasses 12 isolates from the states of Johor and Selangor (this cluster was further split into 2 sub clusters (1A, 1B), sub cluster 1B consists of a unique isolate, CKT05D); while cluster 2 comprises of 9 isolates that were obtained from the other states. Detached leaf assay performed on selected Hevea clones showed that the pathogenicity of representative isolates from cluster 1 (with the exception of CKT05D) resembled that of race 1; and isolates in cluster 2 showed pathogenicity similar to race 2 of the fungus that was previously identified in Malaysia. The isolate CKT05D from sub cluster 1B showed pathogenicity dissimilar to either race 1 or race 2.

  20. Two Simple and Efficient Algorithms to Compute the SP-Score Objective Function of a Multiple Sequence Alignment.

    PubMed

    Ranwez, Vincent

    2016-01-01

    Multiple sequence alignment (MSA) is a crucial step in many molecular analyses and many MSA tools have been developed. Most of them use a greedy approach to construct a first alignment that is then refined by optimizing the sum of pair score (SP-score). The SP-score estimation is thus a bottleneck for most MSA tools since it is repeatedly required and is time consuming. Given an alignment of n sequences and L sites, I introduce here optimized solutions reaching O(nL) time complexity for affine gap cost, instead of O(n2L), which are easy to implement.

  1. Mining and Development of Novel SSR Markers Using Next Generation Sequencing (NGS) Data in Plants.

    PubMed

    Taheri, Sima; Lee Abdullah, Thohirah; Yusop, Mohd Rafii; Hanafi, Mohamed Musa; Sahebi, Mahbod; Azizi, Parisa; Shamshiri, Redmond Ramin

    2018-02-13

    Microsatellites, or simple sequence repeats (SSRs), are one of the most informative and multi-purpose genetic markers exploited in plant functional genomics. However, the discovery of SSRs and development using traditional methods are laborious, time-consuming, and costly. Recently, the availability of high-throughput sequencing technologies has enabled researchers to identify a substantial number of microsatellites at less cost and effort than traditional approaches. Illumina is a noteworthy transcriptome sequencing technology that is currently used in SSR marker development. Although 454 pyrosequencing datasets can be used for SSR development, this type of sequencing is no longer supported. This review aims to present an overview of the next generation sequencing, with a focus on the efficient use of de novo transcriptome sequencing (RNA-Seq) and related tools for mining and development of microsatellites in plants.

  2. The genome sequence of sweet cherry (Prunus avium) for use in genomics-assisted breeding.

    PubMed

    Shirasawa, Kenta; Isuzugawa, Kanji; Ikenaga, Mitsunobu; Saito, Yutaro; Yamamoto, Toshiya; Hirakawa, Hideki; Isobe, Sachiko

    2017-10-01

    We determined the genome sequence of sweet cherry (Prunus avium) using next-generation sequencing technology. The total length of the assembled sequences was 272.4 Mb, consisting of 10,148 scaffold sequences with an N50 length of 219.6 kb. The sequences covered 77.8% of the 352.9 Mb sweet cherry genome, as estimated by k-mer analysis, and included >96.0% of the core eukaryotic genes. We predicted 43,349 complete and partial protein-encoding genes. A high-density consensus map with 2,382 loci was constructed using double-digest restriction site-associated DNA sequencing. Comparing the genetic maps of sweet cherry and peach revealed high synteny between the two genomes; thus the scaffolds were integrated into pseudomolecules using map- and synteny-based strategies. Whole-genome resequencing of six modern cultivars found 1,016,866 SNPs and 162,402 insertions/deletions, out of which 0.7% were deleterious. The sequence variants, as well as simple sequence repeats, can be used as DNA markers. The genomic information helps us to identify agronomically important genes and will accelerate genetic studies and breeding programs for sweet cherries. Further information on the genomic sequences and DNA markers is available in DBcherry (http://cherry.kazusa.or.jp (8 May 2017, date last accessed)). © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  3. WebSat ‐ A web software for microsatellite marker development

    PubMed Central

    Martins, Wellington Santos; Soares Lucas, Divino César; de Souza Neves, Kelligton Fabricio; Bertioli, David John

    2009-01-01

    Simple sequence repeats (SSR), also known as microsatellites, have been extensively used as molecular markers due to their abundance and high degree of polymorphism. We have developed a simple to use web software, called WebSat, for microsatellite molecular marker prediction and development. WebSat is accessible through the Internet, requiring no program installation. Although a web solution, it makes use of Ajax techniques, providing a rich, responsive user interface. WebSat allows the submission of sequences, visualization of microsatellites and the design of primers suitable for their amplification. The program allows full control of parameters and the easy export of the resulting data, thus facilitating the development of microsatellite markers. Availability The web tool may be accessed at http://purl.oclc.org/NET/websat/ PMID:19255650

  4. Two low coverage bird genomes and a comparison of reference-guided versus de novo genome assemblies.

    PubMed

    Card, Daren C; Schield, Drew R; Reyes-Velasco, Jacobo; Fujita, Matthew K; Andrew, Audra L; Oyler-McCance, Sara J; Fike, Jennifer A; Tomback, Diana F; Ruggiero, Robert P; Castoe, Todd A

    2014-01-01

    As a greater number and diversity of high-quality vertebrate reference genomes become available, it is increasingly feasible to use these references to guide new draft assemblies for related species. Reference-guided assembly approaches may substantially increase the contiguity and completeness of a new genome using only low levels of genome coverage that might otherwise be insufficient for de novo genome assembly. We used low-coverage (∼3.5-5.5x) Illumina paired-end sequencing to assemble draft genomes of two bird species (the Gunnison Sage-Grouse, Centrocercus minimus, and the Clark's Nutcracker, Nucifraga columbiana). We used these data to estimate de novo genome assemblies and reference-guided assemblies, and compared the information content and completeness of these assemblies by comparing CEGMA gene set representation, repeat element content, simple sequence repeat content, and GC isochore structure among assemblies. Our results demonstrate that even lower-coverage genome sequencing projects are capable of producing informative and useful genomic resources, particularly through the use of reference-guided assemblies.

  5. Two low coverage bird genomes and a comparison of reference-guided versus de novo genome assemblies

    USGS Publications Warehouse

    Card, Daren C.; Schield, Drew R.; Reyes-Velasco, Jacobo; Fujita, Matthre K.; Andrew, Audra L.; Oyler-McCance, Sara J.; Fike, Jennifer A.; Tomback, Diana F.; Ruggiero, Robert P.; Castoe, Todd A.

    2014-01-01

    As a greater number and diversity of high-quality vertebrate reference genomes become available, it is increasingly feasible to use these references to guide new draft assemblies for related species. Reference-guided assembly approaches may substantially increase the contiguity and completeness of a new genome using only low levels of genome coverage that might otherwise be insufficient for de novo genome assembly. We used low-coverage (~3.5–5.5x) Illumina paired-end sequencing to assemble draft genomes of two bird species (the Gunnison Sage-Grouse, Centrocercus minimus, and the Clark's Nutcracker, Nucifraga columbiana). We used these data to estimate de novo genome assemblies and reference-guided assemblies, and compared the information content and completeness of these assemblies by comparing CEGMA gene set representation, repeat element content, simple sequence repeat content, and GC isochore structure among assemblies. Our results demonstrate that even lower-coverage genome sequencing projects are capable of producing informative and useful genomic resources, particularly through the use of reference-guided assemblies.

  6. Identification and characterization of 43 microsatellite markers derived from expressed sequence tags of the sea cucumber ( Apostichopus japonicus)

    NASA Astrophysics Data System (ADS)

    Jiang, Qun; Li, Qi; Yu, Hong; Kong, Lingfeng

    2011-06-01

    The sea cucumber Apostichopus japonicus is a commercially and ecologically important species in China. A total of 3056 potential unigenes were generated after assembling 7597 A. japonicus expressed sequence tags (ESTs) downloaded from Gen-Bank. Two hundred and fifty microsatellite-containing ESTs (8.18%) and 299 simple sequence repeats (SSRs) were detected. The average density of SSRs was 1 per 7.403 kb of EST after redundancy elimination. Di-nucleotide repeat motifs appeared to be the most abundant type with a percentage of 69.90%. Of the 126 primer pairs designed, 90 amplified the expected products and 43 showed polymorphism in 30 individuals tested. The number of alleles per locus ranged from 2 to 26 with an average of 7.0 alleles, and the observed and expected heterozygosities varied from 0.067 to 1.000 and from 0.066 to 0.959, respectively. These new EST-derived microsatellite markers would provide sufficient polymorphism for population genetic studies and genome mapping of this sea cucumber species.

  7. ATP hydrolysis provides functions that promote rejection of pairings between different copies of long repeated sequences

    PubMed Central

    Danilowicz, Claudia; Hermans, Laura; Coljee, Vincent; Prévost, Chantal

    2017-01-01

    Abstract During DNA recombination and repair, RecA family proteins must promote rapid joining of homologous DNA. Repeated sequences with >100 base pair lengths occupy more than 1% of bacterial genomes; however, commitment to strand exchange was believed to occur after testing ∼20–30 bp. If that were true, pairings between different copies of long repeated sequences would usually become irreversible. Our experiments reveal that in the presence of ATP hydrolysis even 75 bp sequence-matched strand exchange products remain quite reversible. Experiments also indicate that when ATP hydrolysis is present, flanking heterologous dsDNA regions increase the reversibility of sequence matched strand exchange products with lengths up to ∼75 bp. Results of molecular dynamics simulations provide insight into how ATP hydrolysis destabilizes strand exchange products. These results inspired a model that shows how pairings between long repeated sequences could be efficiently rejected even though most homologous pairings form irreversible products. PMID:28854739

  8. Development and Molecular Characterization of Novel Polymorphic Genomic DNA SSR Markers in Lentinula edodes.

    PubMed

    Moon, Suyun; Lee, Hwa-Yong; Shim, Donghwan; Kim, Myungkil; Ka, Kang-Hyeon; Ryoo, Rhim; Ko, Han-Gyu; Koo, Chang-Duck; Chung, Jong-Wook; Ryu, Hojin

    2017-06-01

    Sixteen genomic DNA simple sequence repeat (SSR) markers of Lentinula edodes were developed from 205 SSR motifs present in 46.1-Mb long L. edodes genome sequences. The number of alleles ranged from 3-14 and the major allele frequency was distributed from 0.17-0.96. The values of observed and expected heterozygosity ranged from 0.00-0.76 and 0.07-0.90, respectively. The polymorphic information content value ranged from 0.07-0.89. A dendrogram, based on 16 SSR markers clustered by the paired hierarchical clustering' method, showed that 33 shiitake cultivars could be divided into three major groups and successfully identified. These SSR markers will contribute to the efficient breeding of this species by providing diversity in shiitake varieties. Furthermore, the genomic information covered by the markers can provide a valuable resource for genetic linkage map construction, molecular mapping, and marker-assisted selection in the shiitake mushroom.

  9. Development and characterization of EST-SSR markers for Begonia luzhaiensis (Begoniaceae)1

    PubMed Central

    Tseng, Yu-Hsin; Huang, Han-Yau; Xu, Wei-Bin; Yang, Hsun-An; Liu, Yan; Peng, Ching-I; Chung, Kuo-Fang

    2017-01-01

    Premise of the study: Microsatellite primers were developed for Begonia luzhaiensis (Begoniaceae) to assess genetic diversity and population genetic structure. Methods and Results: Based on the transcriptome data of B. luzhaiensis, 60 primer pairs were selected for initial validation, of which 16 yielded polymorphic microsatellite loci in 57 individuals. The number of alleles observed for these 16 loci ranged from one to nine. The observed and expected heterozygosity ranged from 0.000 to 1.000 and from 0.000 to 0.804 with averages of 0.370 and 0.404, respectively. Five loci could be successfully amplified in B. leprosa. Conclusions: The expressed sequence tag–simple sequence repeat markers are the first specifically developed for B. luzhaiensis and the first developed in Begonia sect. Coelocentrum. These markers will be useful for future studies of the genetic structure and phylogeography of B. luzhaiensis. PMID:28529834

  10. Molecular characterization and distribution of a 145-bp tandem repeat family in the genus Populus.

    PubMed

    Rajagopal, J; Das, S; Khurana, D K; Srivastava, P S; Lakshmikumaran, M

    1999-10-01

    This report aims to describe the identification and molecular characterization of a 145-bp tandem repeat family that accounts for nearly 1.5% of the Populus genome. Three members of this repeat family were cloned and sequenced from Populus deltoides and P. ciliata. The dimers of the repeat were sequenced in order to confirm the head-to-tail organization of the repeat. Hybridization-based analysis using the 145-bp tandem repeat as a probe on genomic DNA gave rise to ladder patterns which were identified to be a result of methylation and (or) sequence heterogeneity. Analysis of the methylation pattern of the repeat family using methylation-sensitive isoschizomers revealed variable methylation of the C residues and lack of methylation of the A residues. Sequence comparisons between the monomers revealed a high degree of sequence divergence that ranged between 6% and 11% in P. deltoides and between 4.2% and 8.3% in P. ciliata. This indicated the presence of sub-families within the 145-bp tandem family of repeats. Divergence was mainly due to the accumulation of point mutations and was concentrated in the central region of the repeat. The 145-bp tandem repeat family did not show significant homology to known tandem repeats from plants. A short stretch of 36 bp was found to show homology of 66.7% to a centromeric repeat from Chironomus plumosus. Dot-blot analysis and Southern hybridization data revealed the presence of the repeat family in 13 of the 14 Populus species examined. The absence of the 145-bp repeat from P. euphratica suggested that this species is relatively distant from other members of the genus, which correlates with taxonomic classifications. The widespread occurrence of the tandem family in the genus indicated that this family may be of ancient origin.

  11. Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor.

    PubMed

    Kohany, Oleksiy; Gentles, Andrew J; Hankus, Lukasz; Jurka, Jerzy

    2006-10-25

    Repbase is a reference database of eukaryotic repetitive DNA, which includes prototypic sequences of repeats and basic information described in annotations. Updating and maintenance of the database requires specialized tools, which we have created and made available for use with Repbase, and which may be useful as a template for other curated databases. We describe the software tools RepbaseSubmitter and Censor, which are designed to facilitate updating and screening the content of Repbase. RepbaseSubmitter is a java-based interface for formatting and annotating Repbase entries. It eliminates many common formatting errors, and automates actions such as calculation of sequence lengths and composition, thus facilitating curation of Repbase sequences. In addition, it has several features for predicting protein coding regions in sequences; searching and including Pubmed references in Repbase entries; and searching the NCBI taxonomy database for correct inclusion of species information and taxonomic position. Censor is a tool to rapidly identify repetitive elements by comparison to known repeats. It uses WU-BLAST for speed and sensitivity, and can conduct DNA-DNA, DNA-protein, or translated DNA-translated DNA searches of genomic sequence. Defragmented output includes a map of repeats present in the query sequence, with the options to report masked query sequence(s), repeat sequences found in the query, and alignments. Censor and RepbaseSubmitter are available as both web-based services and downloadable versions. They can be found at http://www.girinst.org/repbase/submission.html (RepbaseSubmitter) and http://www.girinst.org/censor/index.php (Censor).

  12. Ecology, Behavior and Bionomics: First Genotyping of Spodoptera frugiperda (J. E. Smith)(Lepidoptera: Noctuidae) Progeny from Crosses between Bt-Resistant and Bt-Susceptible Populations, and 65-Locus Discrimination of Isofami

    USDA-ARS?s Scientific Manuscript database

    Simple sequence repeat (SSR) markers from Spodoptera frugiperda (J. E. Smith) were analyzed in crosses of this species between Bacillus thuringiensis (Berliner) (Bacillales: Bacillaceae) (Bt) resistant and susceptible populations to determine a possible association between markers and Bt resistance....

  13. Assessing genetic diversity in java fine-flavor cocoa (theobroma cacao l.) Germplasm by simple sequence repeat (ssr) markers

    USDA-ARS?s Scientific Manuscript database

    Indonesia is the 3rd largest cocoa producing countries in the world, with an annual cacao bean production of 572,000 tons. The currently cultivated cacao varieties in Indonesia were inter-hybrids of various clones introduced from the Americas since the 16th century. Among them, “Java cocoa” is a wel...

  14. Genetic diversity of an Azorean endemic and endangered plant species inferred from inter-simple sequence repeat markers.

    PubMed

    Lopes, Maria S; Mendonça, Duarte; Bettencourt, Sílvia X; Borba, Ana R; Melo, Catarina; Baptista, Cláudio; da Câmara Machado, Artur

    2014-06-26

    Knowledge of the levels and distribution of genetic diversity is important for designing conservation strategies for threatened and endangered species so as to guarantee sustainable survival of populations and to preserve their evolutionary potential. Picconia azorica is a valuable Azorean endemic species recently classified as endangered. To contribute with information useful for the establishment of conservation programmes, the genetic variability and differentiation among 230 samples from 11 populations collected in three Azorean islands was accessed with eight inter-simple sequence repeat markers. A total of 64 polymorphic loci were detected. The majority of genetic variability was found within populations and no genetic structure was detected between populations and between islands. Also the coefficient of genetic differentiation and the level of gene flow indicate that geographical distances do not act as barriers for gene flow. In order to ensure the survival of populations in situ and ex situ management practices should be considered, including artificial propagation through the use of plant tissue culture techniques, not only for the restoration of habitat but also for the sustainable use of its valuable wood. Published by Oxford University Press on behalf of the Annals of Botany Company.

  15. Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula

    PubMed Central

    Macas, Jiří; Neumann, Pavel; Navrátilová, Alice

    2007-01-01

    Background Extraordinary size variation of higher plant nuclear genomes is in large part caused by differences in accumulation of repetitive DNA. This makes repetitive DNA of great interest for studying the molecular mechanisms shaping architecture and function of complex plant genomes. However, due to methodological constraints of conventional cloning and sequencing, a global description of repeat composition is available for only a very limited number of higher plants. In order to provide further data required for investigating evolutionary patterns of repeated DNA within and between species, we used a novel approach based on massive parallel sequencing which allowed a comprehensive repeat characterization in our model species, garden pea (Pisum sativum). Results Analysis of 33.3 Mb sequence data resulted in quantification and partial sequence reconstruction of major repeat families occurring in the pea genome with at least thousands of copies. Our results showed that the pea genome is dominated by LTR-retrotransposons, estimated at 140,000 copies/1C. Ty3/gypsy elements are less diverse and accumulated to higher copy numbers than Ty1/copia. This is in part due to a large population of Ogre-like retrotransposons which alone make up over 20% of the genome. In addition to numerous types of mobile elements, we have discovered a set of novel satellite repeats and two additional variants of telomeric sequences. Comparative genome analysis revealed that there are only a few repeat sequences conserved between pea and soybean genomes. On the other hand, all major families of pea mobile elements are well represented in M. truncatula. Conclusion We have demonstrated that even in a species with a relatively large genome like pea, where a single 454-sequencing run provided only 0.77% coverage, the generated sequences were sufficient to reconstruct and analyze major repeat families corresponding to a total of 35–48% of the genome. These data provide a starting point for further investigations of legume plant genomes based on their global comparative analysis and for the development of more sophisticated approaches for data mining. PMID:18031571

  16. A Simple Method to Decode the Complete 18-5.8-28S rRNA Repeated Units of Green Algae by Genome Skimming.

    PubMed

    Lin, Geng-Ming; Lai, Yu-Heng; Audira, Gilbert; Hsiao, Chung-Der

    2017-11-06

    Green algae, Chlorella ellipsoidea , Haematococcus pluvialis and Aegagropila linnaei (Phylum Chlorophyta) were simultaneously decoded by a genomic skimming approach within 18-5.8-28S rRNA region. Whole genomic DNAs were isolated from green algae and directly subjected to low coverage genome skimming sequencing. After de novo assembly and mapping, the size of complete 18-5.8-28S rRNA repeated units for three green algae were ranged from 5785 to 6028 bp, which showed high nucleotide diversity (π is around 0.5-0.6) within ITS1 and ITS2 (Internal Transcribed Spacer) regions. Previously, the evolutional diversity of algae has been difficult to decode due to the inability design universal primers that amplify specific marker genes across diverse algal species. In this study, our method provided a rapid and universal approach to decode the 18-5.8-28S rRNA repeat unit in three green algal species. In addition, the completely sequenced 18-5.8-28S rRNA repeated units provided a solid nuclear marker for phylogenetic and evolutionary analysis for green algae for the first time.

  17. MitoSatPlant: mitochondrial microsatellites database of viridiplantae.

    PubMed

    Kumar, Manjeet; Kapil, Aditi; Shanker, Asheesh

    2014-11-01

    Microsatellites also known as simple sequence repeats (SSRs) consist of 1-6 nucleotide long repeating units. The importance of mitochondrial SSRs (mtSSRs) in fields like population genetics, plant phylogenetics and genome mapping motivated us to develop MitoSatPlant, a repository of plant mtSSRs. It contains information for perfect, imperfect and compound SSRs mined from 92 mitochondrial genomes of green plants, available at NCBI (as of 1 Feb 2014). A total of 72,798 SSRs were found, of which PCR primers were designed for 72,495 SSRs. Among all sequences, tetranucleotide repeats (26,802) were found to be most abundant whereas hexanucleotide repeats (2751) were detected with least frequency. MitoSatPlant was developed using SQL server 2008 and can be accessed through a front end designed in ASP.Net. It is an easy to use, user-friendly database and will prove to be a useful resource for plant scientists. To the best of our knowledge MitoSatPlant is the only database available for plant mtSSRs and can be freely accessed at http://compubio.in/mitosatplant/. Copyright © 2014 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  18. Development of highly polymorphic EST-SSR markers and segregation in F₁ hybrid population of Vitis vinifera L.

    PubMed

    Kayesh, E; Zhang, Y Y; Liu, G S; Bilkish, N; Sun, X; Leng, X P; Fang, J G

    2013-09-23

    The objectives of this investigation were to develop and validate the expressed sequence tag (EST)-simple sequence repeat (SSR) markers from large EST sequences, and to study the segregation and distribution of SSRs within two grapevine parental lines. In total, 94 F₁ lines crossed between "Early Rose" and "Red Globe" were studied. Approximately 2100 EST-SSR sequences of Vitis vinifera L. were searched for SSRs and analyzed for the design of polymerase chain reaction (PCR) primers amplifying the SSR-rich regions. Trinucleotide repeats were found to be the most abundant, followed by other nucleotide repeats. A total of 182 SSR primer pairs were first developed for the study on the parental polymorphism. Among the 182 SSR primers, 142 primer pairs (78%) could amplify the anticipated PCR products, among which only 52 primer pairs (36.62%) showed polymorphism between the two parents. These polymorphic bands were further surveyed among the 94 F₁ lines, and the results showed that a total of 162 bands were amplified, and 98 of them were polymorphic in both parents (60.86% polymorphism), with an average of 1.88 polymorphic DNA bands for each primer pair. After testing with the chi-square test, 33 of the clearly amplified polymorphic bands followed a 3:1 ratio, and 37 followed a 1:1 ratio. The rest showed distorted segregation ratios.

  19. Molecular Mapping of Restriction-Site Associated DNA Markers In Allotetraploid Upland Cotton.

    PubMed

    Wang, Yangkun; Ning, Zhiyuan; Hu, Yan; Chen, Jiedan; Zhao, Rui; Chen, Hong; Ai, Nijiang; Guo, Wangzhen; Zhang, Tianzhen

    2015-01-01

    Upland cotton (Gossypium hirsutum L., 2n = 52, AADD) is an allotetraploid, therefore the discovery of single nucleotide polymorphism (SNP) markers is difficult. The recent emergence of genome complexity reduction technologies based on the next-generation sequencing (NGS) platform has greatly expedited SNP discovery in crops with highly repetitive and complex genomes. Here we applied restriction-site associated DNA (RAD) sequencing technology for de novo SNP discovery in allotetraploid cotton. We identified 21,109 SNPs between the two parents and used these for genotyping of 161 recombinant inbred lines (RILs). Finally, a high dense linkage map comprising 4,153 loci over 3500-cM was developed based on the previous result. Using this map quantitative trait locus (QTLs) conferring fiber strength and Verticillium Wilt (VW) resistance were mapped to a more accurate region in comparison to the 1576-cM interval determined using the simple sequence repeat (SSR) genetic map. This suggests that the newly constructed map has more power and resolution than the previous SSR map. It will pave the way for the rapid identification of the marker-assisted selection in cotton breeding and cloning of QTL of interest traits.

  20. The Complete Chloroplast Genome of Banana (Musa acuminata, Zingiberales): Insight into Plastid Monocotyledon Evolution

    PubMed Central

    Martin, Guillaume; Baurens, Franc-Christophe; Cardi, Céline; Aury, Jean-Marc; D’Hont, Angélique

    2013-01-01

    Background Banana (genus Musa) is a crop of major economic importance worldwide. It is a monocotyledonous member of the Zingiberales, a sister group of the widely studied Poales. Most cultivated bananas are natural Musa inter-(sub-)specific triploid hybrids. A Musa acuminata reference nuclear genome sequence was recently produced based on sequencing of genomic DNA enriched in nucleus. Methodology/Principal Findings The Musa acuminata chloroplast genome was assembled with chloroplast reads extracted from whole-genome-shotgun sequence data. The Musa chloroplast genome is a circular molecule of 169,972 bp with a quadripartite structure containing two single copy regions, a Large Single Copy region (LSC, 88,338 bp) and a Small Single Copy region (SSC, 10,768 bp) separated by Inverted Repeat regions (IRs, 35,433 bp). Two forms of the chloroplast genome relative to the orientation of SSC versus LSC were found. The Musa chloroplast genome shows an extreme IR expansion at the IR/SSC boundary relative to the most common structures found in angiosperms. This expansion consists of the integration of three additional complete genes (rps15, ndhH and ycf1) and part of the ndhA gene. No such expansion has been observed in monocots so far. Simple Sequence Repeats were identified in the Musa chloroplast genome and a new set of Musa chloroplastic markers was designed. Conclusion The complete sequence of M. acuminata ssp malaccensis chloroplast we reported here is the first one for the Zingiberales order. As such it provides new insight in the evolution of the chloroplast of monocotyledons. In particular, it reinforces that IR/SSC expansion has occurred independently several times within monocotyledons. The discovery of new polymorphic markers within Musa chloroplast opens new perspectives to better understand the origin of cultivated triploid bananas. PMID:23840670

  1. The complete chloroplast genome of banana (Musa acuminata, Zingiberales): insight into plastid monocotyledon evolution.

    PubMed

    Martin, Guillaume; Baurens, Franc-Christophe; Cardi, Céline; Aury, Jean-Marc; D'Hont, Angélique

    2013-01-01

    Banana (genus Musa) is a crop of major economic importance worldwide. It is a monocotyledonous member of the Zingiberales, a sister group of the widely studied Poales. Most cultivated bananas are natural Musa inter-(sub-)specific triploid hybrids. A Musa acuminata reference nuclear genome sequence was recently produced based on sequencing of genomic DNA enriched in nucleus. The Musa acuminata chloroplast genome was assembled with chloroplast reads extracted from whole-genome-shotgun sequence data. The Musa chloroplast genome is a circular molecule of 169,972 bp with a quadripartite structure containing two single copy regions, a Large Single Copy region (LSC, 88,338 bp) and a Small Single Copy region (SSC, 10,768 bp) separated by Inverted Repeat regions (IRs, 35,433 bp). Two forms of the chloroplast genome relative to the orientation of SSC versus LSC were found. The Musa chloroplast genome shows an extreme IR expansion at the IR/SSC boundary relative to the most common structures found in angiosperms. This expansion consists of the integration of three additional complete genes (rps15, ndhH and ycf1) and part of the ndhA gene. No such expansion has been observed in monocots so far. Simple Sequence Repeats were identified in the Musa chloroplast genome and a new set of Musa chloroplastic markers was designed. The complete sequence of M. acuminata ssp malaccensis chloroplast we reported here is the first one for the Zingiberales order. As such it provides new insight in the evolution of the chloroplast of monocotyledons. In particular, it reinforces that IR/SSC expansion has occurred independently several times within monocotyledons. The discovery of new polymorphic markers within Musa chloroplast opens new perspectives to better understand the origin of cultivated triploid bananas.

  2. Complete chloroplast genome and 45S nrDNA sequences of the medicinal plant species Glycyrrhiza glabra and Glycyrrhiza uralensis.

    PubMed

    Kang, Sang-Ho; Lee, Jeong-Hoon; Lee, Hyun Oh; Ahn, Byoung Ohg; Won, So Youn; Sohn, Seong-Han; Kim, Jung Sun

    2017-10-06

    Glycyrrhiza uralensis and G. glabra, members of the Fabaceae, are medicinally important species that are native to Asia and Europe. Extracts from these plants are widely used as natural sweeteners because of their much greater sweetness than sucrose. In this study, the three complete chloroplast genomes and five 45S nuclear ribosomal (nr)DNA sequences of these two licorice species and an interspecific hybrid are presented. The chloroplast genomes of G. glabra, G. uralensis and G. glabra × G. uralensis were 127,895 bp, 127,716 bp and 127,939 bp, respectively. The three chloroplast genomes harbored 110 annotated genes, including 76 protein-coding genes, 30 tRNA genes and 4 rRNA genes. The 45S nrDNA sequences were either 5,947 or 5,948 bp in length. Glycyrrhiza glabra and G. glabra × G. uralensis showed two types of nrDNA, while G. uralensis contained a single type. The complete 45S nrDNA sequence unit contains 18S rRNA, ITS1, 5.8S rRNA, ITS2 and 26S rRNA. We identified simple sequence repeat and tandem repeat sequences. We also developed four reliable markers for analysis of Glycyrrhiza diversity authentication.

  3. De Novo Transcriptome Sequencing Analysis of cDNA Library and Large-Scale Unigene Assembly in Japanese Red Pine (Pinus densiflora)

    PubMed Central

    Liu, Le; Zhang, Shijie; Lian, Chunlan

    2015-01-01

    Japanese red pine (Pinus densiflora) is extensively cultivated in Japan, Korea, China, and Russia and is harvested for timber, pulpwood, garden, and paper markets. However, genetic information and molecular markers were very scarce for this species. In this study, over 51 million sequencing clean reads from P. densiflora mRNA were produced using Illumina paired-end sequencing technology. It yielded 83,913 unigenes with a mean length of 751 bp, of which 54,530 (64.98%) unigenes showed similarity to sequences in the NCBI database. Among which the best matches in the NCBI Nr database were Picea sitchensis (41.60%), Amborella trichopoda (9.83%), and Pinus taeda (4.15%). A total of 1953 putative microsatellites were identified in 1784 unigenes using MISA (MicroSAtellite) software, of which the tri-nucleotide repeats were most abundant (50.18%) and 629 EST-SSR (expressed sequence tag- simple sequence repeats) primer pairs were successfully designed. Among 20 EST-SSR primer pairs randomly chosen, 17 markers yielded amplification products of the expected size in P. densiflora. Our results will provide a valuable resource for gene-function analysis, germplasm identification, molecular marker-assisted breeding and resistance-related gene(s) mapping for pine for P. densiflora. PMID:26690126

  4. Analysis of sequence repeats of proteins in the PDB.

    PubMed

    Mary Rajathei, David; Selvaraj, Samuel

    2013-12-01

    Internal repeats in protein sequences play a significant role in the evolution of protein structure and function. Applications of different bioinformatics tools help in the identification and characterization of these repeats. In the present study, we analyzed sequence repeats in a non-redundant set of proteins available in the Protein Data Bank (PDB). We used RADAR for detecting internal repeats in a protein, PDBeFOLD for assessing structural similarity, PDBsum for finding functional involvement and Pfam for domain assignment of the repeats in a protein. Through the analysis of sequence repeats, we found that identity of the sequence repeats falls in the range of 20-40% and, the superimposed structures of the most of the sequence repeats maintain similar overall folding. Analysis sequence repeats at the functional level reveals that most of the sequence repeats are involved in the function of the protein through functionally involved residues in the repeat regions. We also found that sequence repeats in single and two domain proteins often contained conserved sequence motifs for the function of the domain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. All gene-sized DNA molecules in four species of hypotrichs have the same terminal sequence and an unusual 3' terminus.

    PubMed Central

    Klobutcher, L A; Swanton, M T; Donini, P; Prescott, D M

    1981-01-01

    In hypotrichous ciliates, all of the macronuclear DNA is in the form of low molecular weight molecules with an average size of approximately 2200 base pairs. Total macronuclear DNA from four hypotrichs has been shown to have inverted terminal repeats by direct sequence analysis. In Oxytricha nova, Oxytricha sp., and Stylonychia pustulata, this terminal sequence may be written as 5'-C4A4C4A4C4 ... 3'-G4T4G4T4G4T4G4T4G4 ... In Euplotes aediculatus, the sequences is similar but differs in the lengths of the duplex region (28 base pairs) and of the putative 3' extension (14 base pairs). Also in Euplotes, a second common sequence of 5 base pairs (A-A-C-T-T-T-T-G-A-A) occurs internal to the terminal repeat and a 17-base-pair heterogeneous region: 5'-C4A4C4A4C4A4C4(X)17T-T-G-A-A ... 3'-G2T4G4T4G4T4G4T4G4T4G4(X)17A-A-C-T-T ... The length of the terminal repeat sequence for O. nova was confirmed in cloned macronuclear DNA molecules. Images PMID:6265931

  6. TRedD—A database for tandem repeats over the edit distance

    PubMed Central

    Sokol, Dina; Atagun, Firat

    2010-01-01

    A ‘tandem repeat’ in DNA is a sequence of two or more contiguous, approximate copies of a pattern of nucleotides. Tandem repeats are common in the genomes of both eukaryotic and prokaryotic organisms. They are significant markers for human identity testing, disease diagnosis, sequence homology and population studies. In this article, we describe a new database, TRedD, which contains the tandem repeats found in the human genome. The database is publicly available online, and the software for locating the repeats is also freely available. The definition of tandem repeats used by TRedD is a new and innovative definition based upon the concept of ‘evolutive tandem repeats’. In addition, we have developed a tool, called TandemGraph, to graphically depict the repeats occurring in a sequence. This tool can be coupled with any repeat finding software, and it should greatly facilitate analysis of results. Database URL: http://tandem.sci.brooklyn.cuny.edu/ PMID:20624712

  7. Complete Chloroplast Genome Sequences of Important Oilseed Crop Sesamum indicum L

    PubMed Central

    Yi, Dong-Keun; Kim, Ki-Joong

    2012-01-01

    Sesamum indicum is an important crop plant species for yielding oil. The complete chloroplast (cp) genome of S. indicum (GenBank acc no. JN637766) is 153,324 bp in length, and has a pair of inverted repeat (IR) regions consisting of 25,141 bp each. The lengths of the large single copy (LSC) and the small single copy (SSC) regions are 85,170 bp and 17,872 bp, respectively. Comparative cp DNA sequence analyses of S. indicum with other cp genomes reveal that the genome structure, gene order, gene and intron contents, AT contents, codon usage, and transcription units are similar to the typical angiosperm cp genomes. Nucleotide diversity of the IR region between Sesamum and three other cp genomes is much lower than that of the LSC and SSC regions in both the coding region and noncoding region. As a summary, the regional constraints strongly affect the sequence evolution of the cp genomes, while the functional constraints weakly affect the sequence evolution of cp genomes. Five short inversions associated with short palindromic sequences that form step-loop structures were observed in the chloroplast genome of S. indicum. Twenty-eight different simple sequence repeat loci have been detected in the chloroplast genome of S. indicum. Almost all of the SSR loci were composed of A or T, so this may also contribute to the A-T richness of the cp genome of S. indicum. Seven large repeated loci in the chloroplast genome of S. indicum were also identified and these loci are useful to developing S. indicum-specific cp genome vectors. The complete cp DNA sequences of S. indicum reported in this paper are prerequisite to modifying this important oilseed crop by cp genetic engineering techniques. PMID:22606240

  8. Genome Survey Sequencing for the Characterization of the Genetic Background of Rosa roxburghii Tratt and Leaf Ascorbate Metabolism Genes.

    PubMed

    Lu, Min; An, Huaming; Li, Liangliang

    2016-01-01

    Rosa roxburghii Tratt is an important commercial horticultural crop in China that is recognized for its nutritional and medicinal values. In spite of the economic significance, genomic information on this rose species is currently unavailable. In the present research, a genome survey of R. roxburghii was carried out using next-generation sequencing (NGS) technologies. Total 30.29 Gb sequence data was obtained by HiSeq 2500 sequencing and an estimated genome size of R. roxburghii was 480.97 Mb, in which the guanine plus cytosine (GC) content was calculated to be 38.63%. All of these reads were technically assembled and a total of 627,554 contigs with a N50 length of 1.484 kb and furthermore 335,902 scaffolds with a total length of 409.36 Mb were obtained. Transposable elements (TE) sequence of 90.84 Mb which comprised 29.20% of the genome, and 167,859 simple sequence repeats (SSRs) were identified from the scaffolds. Among these, the mono-(66.30%), di-(25.67%), and tri-(6.64%) nucleotide repeats contributed to nearly 99% of the SSRs, and sequence motifs AG/CT (28.81%) and GAA/TTC (14.76%) were the most abundant among the dinucleotide and trinucleotide repeat motifs, respectively. Genome analysis predicted a total of 22,721 genes which have an average length of 2311.52 bp, an average exon length of 228.15 bp, and average intron length of 401.18 bp. Eleven genes putatively involved in ascorbate metabolism were identified and its expression in R. roxburghii leaves was validated by quantitative real-time PCR (qRT-PCR). This is the first report of genome-wide characterization of this rose species.

  9. Analysis of expressed sequence tags from Prunus mume flower and fruit and development of simple sequence repeat markers

    PubMed Central

    2010-01-01

    Background Expressed Sequence Tag (EST) has been a cost-effective tool in molecular biology and represents an abundant valuable resource for genome annotation, gene expression, and comparative genomics in plants. Results In this study, we constructed a cDNA library of Prunus mume flower and fruit, sequenced 10,123 clones of the library, and obtained 8,656 expressed sequence tag (EST) sequences with high quality. The ESTs were assembled into 4,473 unigenes composed of 1,492 contigs and 2,981 singletons and that have been deposited in NCBI (accession IDs: GW868575 - GW873047), among which 1,294 unique ESTs were with known or putative functions. Furthermore, we found 1,233 putative simple sequence repeats (SSRs) in the P. mume unigene dataset. We randomly tested 42 pairs of PCR primers flanking potential SSRs, and 14 pairs were identified as true-to-type SSR loci and could amplify polymorphic bands from 20 individual plants of P. mume. We further used the 14 EST-SSR primer pairs to test the transferability on peach and plum. The result showed that nearly 89% of the primer pairs produced target PCR bands in the two species. A high level of marker polymorphism was observed in the plum species (65%) and low in the peach (46%), and the clustering analysis of the three species indicated that these SSR markers were useful in the evaluation of genetic relationships and diversity between and within the Prunus species. Conclusions We have constructed the first cDNA library of P. mume flower and fruit, and our data provide sets of molecular biology resources for P. mume and other Prunus species. These resources will be useful for further study such as genome annotation, new gene discovery, gene functional analysis, molecular breeding, evolution and comparative genomics between Prunus species. PMID:20626882

  10. The Flushtration Count Illusion: Attribute substitution tricks our interpretation of a simple visual event sequence.

    PubMed

    Thomas, Cyril; Didierjean, André; Kuhn, Gustav

    2018-04-17

    When faced with a difficult question, people sometimes work out an answer to a related, easier question without realizing that a substitution has taken place (e.g., Kahneman, 2011, Thinking, fast and slow. New York, Farrar, Strauss, Giroux). In two experiments, we investigated whether this attribute substitution effect can also affect the interpretation of a simple visual event sequence. We used a magic trick called the 'Flushtration Count Illusion', which involves a technique used by magicians to give the illusion of having seen multiple cards with identical backs, when in fact only the back of one card (the bottom card) is repeatedly shown. In Experiment 1, we demonstrated that most participants are susceptible to the illusion, even if they have the visual and analytical reasoning capacity to correctly process the sequence. In Experiment 2, we demonstrated that participants construct a biased and simplified representation of the Flushtration Count by substituting some attributes of the event sequence. We discussed of the psychological processes underlying this attribute substitution effect. © 2018 The British Psychological Society.

  11. The design and implementation of EPL: An event pattern language for active databases

    NASA Technical Reports Server (NTRS)

    Giuffrida, G.; Zaniolo, C.

    1994-01-01

    The growing demand for intelligent information systems requires closer coupling of rule-based reasoning engines, such as CLIPS, with advanced data base management systems (DBMS). For instance, several commercial DBMS now support the notion of triggers that monitor events and transactions occurring in the database and fire induced actions, which perform a variety of critical functions, including safeguarding the integrity of data, monitoring access, and recording volatile information needed by administrators, analysts, and expert systems to perform assorted tasks; examples of these tasks include security enforcement, market studies, knowledge discovery, and link analysis. At UCLA, we designed and implemented the event pattern language (EPL) which is capable of detecting and acting upon complex patterns of events which are temporally related to each other. For instance, a plant manager should be notified when a certain pattern of overheating repeats itself over time in a chemical process; likewise, proper notification is required when a suspicious sequence of bank transactions is executed within a certain time limit. The EPL prototype is built in CLIPS to operate on top of Sybase, a commercial relational DBMS, where actions can be triggered by events such as simple database updates, insertions, and deletions. The rule-based syntax of EPL allows the sequences of goals in rules to be interpreted as sequences of temporal events; each goal can correspond to either (1) a simple event, or (2) a (possibly negated) event/condition predicate, or (3) a complex event defined as the disjunction and repetition of other events. Various extensions have been added to CLIPS in order to tailor the interface with Sybase and its open client/server architecture.

  12. A simple repeat polymorphism in the MITF-M promoter is a key regulator of white spotting in dogs.

    PubMed

    Baranowska Körberg, Izabella; Sundström, Elisabeth; Meadows, Jennifer R S; Rosengren Pielberg, Gerli; Gustafson, Ulla; Hedhammar, Åke; Karlsson, Elinor K; Seddon, Jennifer; Söderberg, Arne; Vilà, Carles; Zhang, Xiaolan; Åkesson, Mikael; Lindblad-Toh, Kerstin; Andersson, Göran; Andersson, Leif

    2014-01-01

    The white spotting locus (S) in dogs is colocalized with the MITF (microphtalmia-associated transcription factor) gene. The phenotypic effects of the four S alleles range from solid colour (S) to extreme white spotting (s(w)). We have investigated four candidate mutations associated with the s(w) allele, a SINE insertion, a SNP at a conserved site and a simple repeat polymorphism all associated with the MITF-M promoter as well as a 12 base pair deletion in exon 1B. The variants associated with white spotting at all four loci were also found among wolves and we conclude that none of these could be a sole causal mutation, at least not for extreme white spotting. We propose that the three canine white spotting alleles are not caused by three independent mutations but represent haplotype effects due to different combinations of causal polymorphisms. The simple repeat polymorphism showed extensive diversity both in dogs and wolves, and allele-sharing was common between wolves and white spotted dogs but was non-existent between solid and spotted dogs as well as between wolves and solid dogs. This finding was unexpected as Solid is assumed to be the wild-type allele. The data indicate that the simple repeat polymorphism has been a target for selection during dog domestication and breed formation. We also evaluated the significance of the three MITF-M associated polymorphisms with a Luciferase assay, and found conclusive evidence that the simple repeat polymorphism affects promoter activity. Three alleles associated with white spotting gave consistently lower promoter activity compared with the allele associated with solid colour. We propose that the simple repeat polymorphism affects cooperativity between transcription factors binding on either flanking sides of the repeat. Thus, both genetic and functional evidence show that the simple repeat polymorphism is a key regulator of white spotting in dogs.

  13. A Simple Repeat Polymorphism in the MITF-M Promoter Is a Key Regulator of White Spotting in Dogs

    PubMed Central

    Meadows, Jennifer R. S.; Rosengren Pielberg, Gerli; Gustafson, Ulla; Hedhammar, Åke; Karlsson, Elinor K.; Seddon, Jennifer; Söderberg, Arne; Vilà, Carles; Zhang, Xiaolan; Åkesson, Mikael; Lindblad-Toh, Kerstin; Andersson, Göran; Andersson, Leif

    2014-01-01

    The white spotting locus (S) in dogs is colocalized with the MITF (microphtalmia-associated transcription factor) gene. The phenotypic effects of the four S alleles range from solid colour (S) to extreme white spotting (sw). We have investigated four candidate mutations associated with the sw allele, a SINE insertion, a SNP at a conserved site and a simple repeat polymorphism all associated with the MITF-M promoter as well as a 12 base pair deletion in exon 1B. The variants associated with white spotting at all four loci were also found among wolves and we conclude that none of these could be a sole causal mutation, at least not for extreme white spotting. We propose that the three canine white spotting alleles are not caused by three independent mutations but represent haplotype effects due to different combinations of causal polymorphisms. The simple repeat polymorphism showed extensive diversity both in dogs and wolves, and allele-sharing was common between wolves and white spotted dogs but was non-existent between solid and spotted dogs as well as between wolves and solid dogs. This finding was unexpected as Solid is assumed to be the wild-type allele. The data indicate that the simple repeat polymorphism has been a target for selection during dog domestication and breed formation. We also evaluated the significance of the three MITF-M associated polymorphisms with a Luciferase assay, and found conclusive evidence that the simple repeat polymorphism affects promoter activity. Three alleles associated with white spotting gave consistently lower promoter activity compared with the allele associated with solid colour. We propose that the simple repeat polymorphism affects cooperativity between transcription factors binding on either flanking sides of the repeat. Thus, both genetic and functional evidence show that the simple repeat polymorphism is a key regulator of white spotting in dogs. PMID:25116146

  14. Comparative Genomics Analyses Reveal Extensive Chromosome Colinearity and Novel Quantitative Trait Loci in Eucalyptus.

    PubMed

    Li, Fagen; Zhou, Changpin; Weng, Qijie; Li, Mei; Yu, Xiaoli; Guo, Yong; Wang, Yu; Zhang, Xiaohong; Gan, Siming

    2015-01-01

    Dense genetic maps, along with quantitative trait loci (QTLs) detected on such maps, are powerful tools for genomics and molecular breeding studies. In the important woody genus Eucalyptus, the recent release of E. grandis genome sequence allows for sequence-based genomic comparison and searching for positional candidate genes within QTL regions. Here, dense genetic maps were constructed for E. urophylla and E. tereticornis using genomic simple sequence repeats (SSR), expressed sequence tag (EST) derived SSR, EST-derived cleaved amplified polymorphic sequence (EST-CAPS), and diversity arrays technology (DArT) markers. The E. urophylla and E. tereticornis maps comprised 700 and 585 markers across 11 linkage groups, totaling at 1,208.2 and 1,241.4 cM in length, respectively. Extensive synteny and colinearity were observed as compared to three earlier DArT-based eucalypt maps (two maps with E. grandis × E. urophylla and one map of E. globulus) and with the E. grandis genome sequence. Fifty-three QTLs for growth (10-56 months of age) and wood density (56 months) were identified in 22 discrete regions on both maps, in which only one colocalizaiton was found between growth and wood density. Novel QTLs were revealed as compared with those previously detected on DArT-based maps for similar ages in Eucalyptus. Eleven to 585 positional candidate genes were obained for a 56-month-old QTL through aligning QTL confidence interval with the E. grandis genome. These results will assist in comparative genomics studies, targeted gene characterization, and marker-assisted selection in Eucalyptus and the related taxa.

  15. Comparative Genomics Analyses Reveal Extensive Chromosome Colinearity and Novel Quantitative Trait Loci in Eucalyptus

    PubMed Central

    Weng, Qijie; Li, Mei; Yu, Xiaoli; Guo, Yong; Wang, Yu; Zhang, Xiaohong; Gan, Siming

    2015-01-01

    Dense genetic maps, along with quantitative trait loci (QTLs) detected on such maps, are powerful tools for genomics and molecular breeding studies. In the important woody genus Eucalyptus, the recent release of E. grandis genome sequence allows for sequence-based genomic comparison and searching for positional candidate genes within QTL regions. Here, dense genetic maps were constructed for E. urophylla and E. tereticornis using genomic simple sequence repeats (SSR), expressed sequence tag (EST) derived SSR, EST-derived cleaved amplified polymorphic sequence (EST-CAPS), and diversity arrays technology (DArT) markers. The E. urophylla and E. tereticornis maps comprised 700 and 585 markers across 11 linkage groups, totaling at 1,208.2 and 1,241.4 cM in length, respectively. Extensive synteny and colinearity were observed as compared to three earlier DArT-based eucalypt maps (two maps with E. grandis × E. urophylla and one map of E. globulus) and with the E. grandis genome sequence. Fifty-three QTLs for growth (10–56 months of age) and wood density (56 months) were identified in 22 discrete regions on both maps, in which only one colocalizaiton was found between growth and wood density. Novel QTLs were revealed as compared with those previously detected on DArT-based maps for similar ages in Eucalyptus. Eleven to 585 positional candidate genes were obained for a 56-month-old QTL through aligning QTL confidence interval with the E. grandis genome. These results will assist in comparative genomics studies, targeted gene characterization, and marker-assisted selection in Eucalyptus and the related taxa. PMID:26695430

  16. The repetitive landscape of the chicken genome.

    PubMed

    Wicker, Thomas; Robertson, Jon S; Schulze, Stefan R; Feltus, F Alex; Magrini, Vincent; Morrison, Jason A; Mardis, Elaine R; Wilson, Richard K; Peterson, Daniel G; Paterson, Andrew H; Ivarie, Robert

    2005-01-01

    Cot-based cloning and sequencing (CBCS) is a powerful tool for isolating and characterizing the various repetitive components of any genome, combining the established principles of DNA reassociation kinetics with high-throughput sequencing. CBCS was used to generate sequence libraries representing the high, middle, and low-copy fractions of the chicken genome. Sequencing high-copy DNA of chicken to about 2.7 x coverage of its estimated sequence complexity led to the initial identification of several new repeat families, which were then used for a survey of the newly released first draft of the complete chicken genome. The analysis provided insight into the diversity and biology of known repeat structures such as CR1 and CNM, for which only limited sequence data had previously been available. Cot sequence data also resulted in the identification of four novel repeats (Birddawg, Hitchcock, Kronos, and Soprano), two new subfamilies of CR1 repeats, and many elements absent from the chicken genome assembly. Multiple autonomous elements were found for a novel Mariner-like transposon, Galluhop, in addition to nonautonomous deletion derivatives. Phylogenetic analysis of the high-copy repeats CR1, Galluhop, and Birddawg provided insight into two distinct genome dispersion strategies. This study also exemplifies the power of the CBCS method to create representative databases for the repetitive fractions of genomes for which only limited sequence data is available.

  17. The repetitive landscape of the chicken genome

    PubMed Central

    Wicker, Thomas; Robertson, Jon S.; Schulze, Stefan R.; Feltus, F. Alex; Magrini, Vincent; Morrison, Jason A.; Mardis, Elaine R.; Wilson, Richard K.; Peterson, Daniel G.; Paterson, Andrew H.; Ivarie, Robert

    2005-01-01

    Cot-based cloning and sequencing (CBCS) is a powerful tool for isolating and characterizing the various repetitive components of any genome, combining the established principles of DNA reassociation kinetics with high-throughput sequencing. CBCS was used to generate sequence libraries representing the high, middle, and low-copy fractions of the chicken genome. Sequencing high-copy DNA of chicken to about 2.7× coverage of its estimated sequence complexity led to the initial identification of several new repeat families, which were then used for a survey of the newly released first draft of the complete chicken genome. The analysis provided insight into the diversity and biology of known repeat structures such as CR1 and CNM, for which only limited sequence data had previously been available. Cot sequence data also resulted in the identification of four novel repeats (Birddawg, Hitchcock, Kronos, and Soprano), two new subfamilies of CR1 repeats, and many elements absent from the chicken genome assembly. Multiple autonomous elements were found for a novel Mariner-like transposon, Galluhop, in addition to nonautonomous deletion derivatives. Phylogenetic analysis of the high-copy repeats CR1, Galluhop, and Birddawg provided insight into two distinct genome dispersion strategies. This study also exemplifies the power of the CBCS method to create representative databases for the repetitive fractions of genomes for which only limited sequence data is available. PMID:15256510

  18. “One code to find them all”: a perl tool to conveniently parse RepeatMasker output files

    PubMed Central

    2014-01-01

    Background Of the different bioinformatic methods used to recover transposable elements (TEs) in genome sequences, one of the most commonly used procedures is the homology-based method proposed by the RepeatMasker program. RepeatMasker generates several output files, including the .out file, which provides annotations for all detected repeats in a query sequence. However, a remaining challenge consists of identifying the different copies of TEs that correspond to the identified hits. This step is essential for any evolutionary/comparative analysis of the different copies within a family. Different possibilities can lead to multiple hits corresponding to a unique copy of an element, such as the presence of large deletions/insertions or undetermined bases, and distinct consensus corresponding to a single full-length sequence (like for long terminal repeat (LTR)-retrotransposons). These possibilities must be taken into account to determine the exact number of TE copies. Results We have developed a perl tool that parses the RepeatMasker .out file to better determine the number and positions of TE copies in the query sequence, in addition to computing quantitative information for the different families. To determine the accuracy of the program, we tested it on several RepeatMasker .out files corresponding to two organisms (Drosophila melanogaster and Homo sapiens) for which the TE content has already been largely described and which present great differences in genome size, TE content, and TE families. Conclusions Our tool provides access to detailed information concerning the TE content in a genome at the family level from the .out file of RepeatMasker. This information includes the exact position and orientation of each copy, its proportion in the query sequence, and its quality compared to the reference element. In addition, our tool allows a user to directly retrieve the sequence of each copy and obtain the same detailed information at the family level when a local library with incomplete TE class/subclass information was used with RepeatMasker. We hope that this tool will be helpful for people working on the distribution and evolution of TEs within genomes.

  19. Characterization of the Kenaf (Hibiscus cannabinus) Global Transcriptome Using Illumina Paired-End Sequencing and Development of EST-SSR Markers

    PubMed Central

    Li, Hui; Li, Defang; Chen, Anguo; Tang, Huijuan; Li, Jianjun; Huang, Siqi

    2016-01-01

    Kenaf (Hibiscus cannabinus L.) is an economically important natural fiber crop grown worldwide. However, only 20 expressed tag sequences (ESTs) for kenaf are available in public databases. The aim of this study was to develop large-scale simple sequence repeat (SSR) markers to lay a solid foundation for the construction of genetic linkage maps and marker-assisted breeding in kenaf. We used Illumina paired-end sequencing technology to generate new EST-simple sequences and MISA software to mine SSR markers. We identified 71,318 unigenes with an average length of 1143 nt and annotated these unigenes using four different protein databases. Overall, 9324 complementary pairs were designated as EST-SSR markers, and their quality was validated using 100 randomly selected SSR markers. In total, 72 primer pairs reproducibly amplified target amplicons, and 61 of these primer pairs detected significant polymorphism among 28 kenaf accessions. Thus, in this study, we have developed large-scale SSR markers for kenaf, and this new resource will facilitate construction of genetic linkage maps, investigation of fiber growth and development in kenaf, and also be of value to novel gene discovery and functional genomic studies. PMID:26960153

  20. Phylogenetic relationships of chrysanthemums in Korea based on novel SSR markers.

    PubMed

    Khaing, A A; Moe, K T; Hong, W J; Park, C S; Yeon, K H; Park, H S; Kim, D C; Choi, B J; Jung, J Y; Chae, S C; Lee, K M; Park, Y J

    2013-11-07

    Chrysanthemums are well known for their esthetic and medicinal values. Characterization of chrysanthemums is vital for their conservation and management as well as for understanding their genetic relationships. We found 12 simple sequence repeat markers (SSRs) of 100 designed primers to be polymorphic. These novel SSR markers were used to evaluate 95 accessions of chrysanthemums (3 indigenous and 92 cultivated accessions). Two hundred alleles were identified, with an average of 16.7 alleles per locus. KNUCRY-77 gave the highest polymorphic information content value (0.879), while KNUCRY-10 gave the lowest (0.218). Similar patterns of grouping were observed with a distance-based dendrogram developed using PowerMarker and model-based clustering with Structure. Three clusters with some admixtures were identified by model-based clustering. These newly developed SSR markers will be useful for further studies of chrysanthemums, such as taxonomy and marker-assisted selection breeding.

  1. Are the TTAGG and TTAGGG telomeric repeats phylogenetically conserved in aculeate Hymenoptera?

    NASA Astrophysics Data System (ADS)

    Menezes, Rodolpho S. T.; Bardella, Vanessa B.; Cabral-de-Mello, Diogo C.; Lucena, Daercio A. A.; Almeida, Eduardo A. B.

    2017-10-01

    Despite the (TTAGG)n telomeric repeat supposed being the ancestral DNA motif of telomeres in insects, it was repeatedly lost within some insect orders. Notably, parasitoid hymenopterans and the social wasp Metapolybia decorata (Gribodo) lack the (TTAGG)n sequence, but in other representatives of Hymenoptera, this motif was noticed, such as different ant species and the honeybee. These findings raise the question of whether the insect telomeric repeat is or not phylogenetically predominant in Hymenoptera. Thus, we evaluated the occurrence of both the (TTAGG)n sequence and the vertebrate telomere sequence (TTAGGG)n using dot-blotting hybridization in 25 aculeate species of Hymenoptera. Our results revealed the absence of (TTAGG)n sequence in all tested species, elevating the number of hymenopteran families lacking this telomeric sequence to 13 out of the 15 tested families so far. The (TTAGGG)n was not observed in any tested species. Based on our data and compiled information, we suggest that the (TTAGG)n sequence was putatively lost in the ancestor of Apocrita with at least two subsequent independent regains (in Formicidae and Apidae).

  2. Identification of common, unique and polymorphic microsatellites among 73 cyanobacterial genomes.

    PubMed

    Kabra, Ritika; Kapil, Aditi; Attarwala, Kherunnisa; Rai, Piyush Kant; Shanker, Asheesh

    2016-04-01

    Microsatellites also known as Simple Sequence Repeats are short tandem repeats of 1-6 nucleotides. These repeats are found in coding as well as non-coding regions of both prokaryotic and eukaryotic genomes and play a significant role in the study of gene regulation, genetic mapping, DNA fingerprinting and evolutionary studies. The availability of 73 complete genome sequences of cyanobacteria enabled us to mine and statistically analyze microsatellites in these genomes. The cyanobacterial microsatellites identified through bioinformatics analysis were stored in a user-friendly database named CyanoSat, which is an efficient data representation and query system designed using ASP.net. The information in CyanoSat comprises of perfect, imperfect and compound microsatellites found in coding, non-coding and coding-non-coding regions. Moreover, it contains PCR primers with 200 nucleotides long flanking region. The mined cyanobacterial microsatellites can be freely accessed at www.compubio.in/CyanoSat/home.aspx. In addition to this 82 polymorphic, 13,866 unique and 2390 common microsatellites were also detected. These microsatellites will be useful in strain identification and genetic diversity studies of cyanobacteria.

  3. Analysis of mitochondrial genetic diversity of Ustilago maydis in Mexico.

    PubMed

    Jiménez-Becerril, María F; Hernández-Delgado, Sanjuana; Solís-Oba, Myrna; González Prieto, Juan M

    2018-01-01

    The current understanding of the genetic diversity of the phytopathogenic fungus Ustilago maydis is limited. To determine the genetic diversity and structure of U. maydis, 48 fungal isolates were analyzed using mitochondrial simple sequence repeats (SSRs). Tumours (corn smut or 'huitlacoche') were collected from different Mexican states with diverse environmental conditions. Using bioinformatic tools, five microsatellites were identified within intergenic regions of the U. maydis mitochondrial genome. SSRMUM4 was the most polymorphic marker. The most common repeats were hexanucleotides. A total of 12 allelic variants were identified, with a mean of 2.4 alleles per locus. An estimate of the genetic diversity using analysis of molecular variance (AMOVA) revealed that the highest variance component is within states (84%), with moderate genetic differentiation between states (16%) (F ST  = 0.158). A dendrogram generated using the unweighted paired-grouping method with arithmetic averages (UPGMA) and the Bayesian analysis of population structure grouped the U. maydis isolates into two subgroups (K = 2) based on their shared SSRs.

  4. ACMES: fast multiple-genome searches for short repeat sequences with concurrent cross-species information retrieval

    PubMed Central

    Reneker, Jeff; Shyu, Chi-Ren; Zeng, Peiyu; Polacco, Joseph C.; Gassmann, Walter

    2004-01-01

    We have developed a web server for the life sciences community to use to search for short repeats of DNA sequence of length between 3 and 10 000 bases within multiple species. This search employs a unique and fast hash function approach. Our system also applies information retrieval algorithms to discover knowledge of cross-species conservation of repeat sequences. Furthermore, we have incorporated a part of the Gene Ontology database into our information retrieval algorithms to broaden the coverage of the search. Our web server and tutorial can be found at http://acmes.rnet.missouri.edu. PMID:15215469

  5. Iterative dictionary construction for compression of large DNA data sets.

    PubMed

    Kuruppu, Shanika; Beresford-Smith, Bryan; Conway, Thomas; Zobel, Justin

    2012-01-01

    Genomic repositories increasingly include individual as well as reference sequences, which tend to share long identical and near-identical strings of nucleotides. However, the sequential processing used by most compression algorithms, and the volumes of data involved, mean that these long-range repetitions are not detected. An order-insensitive, disk-based dictionary construction method can detect this repeated content and use it to compress collections of sequences. We explore a dictionary construction method that improves repeat identification in large DNA data sets. Our adaptation, COMRAD, of an existing disk-based method identifies exact repeated content in collections of sequences with similarities within and across the set of input sequences. COMRAD compresses the data over multiple passes, which is an expensive process, but allows COMRAD to compress large data sets within reasonable time and space. COMRAD allows for random access to individual sequences and subsequences without decompressing the whole data set. COMRAD has no competitor in terms of the size of data sets that it can compress (extending to many hundreds of gigabytes) and, even for smaller data sets, the results are competitive compared to alternatives; as an example, 39 S. cerevisiae genomes compressed to 0.25 bits per base.

  6. Sequences spanning the leader-repeat junction mediate CRISPR adaptation to phage in Streptococcus thermophilus

    PubMed Central

    Wei, Yunzhou; Chesne, Megan T.; Terns, Rebecca M.; Terns, Michael P.

    2015-01-01

    CRISPR-Cas systems are RNA-based immune systems that protect prokaryotes from invaders such as phages and plasmids. In adaptation, the initial phase of the immune response, short foreign DNA fragments are captured and integrated into host CRISPR loci to provide heritable defense against encountered foreign nucleic acids. Each CRISPR contains a ∼100–500 bp leader element that typically includes a transcription promoter, followed by an array of captured ∼35 bp sequences (spacers) sandwiched between copies of an identical ∼35 bp direct repeat sequence. New spacers are added immediately downstream of the leader. Here, we have analyzed adaptation to phage infection in Streptococcus thermophilus at the CRISPR1 locus to identify cis-acting elements essential for the process. We show that the leader and a single repeat of the CRISPR locus are sufficient for adaptation in this system. Moreover, we identified a leader sequence element capable of stimulating adaptation at a dormant repeat. We found that sequences within 10 bp of the site of integration, in both the leader and repeat of the CRISPR, are required for the process. Our results indicate that information at the CRISPR leader-repeat junction is critical for adaptation in this Type II-A system and likely other CRISPR-Cas systems. PMID:25589547

  7. Elaeis oleifera Genomic-SSR Markers: Exploitation in Oil Palm Germplasm Diversity and Cross-Amplification in Arecaceae

    PubMed Central

    Zaki, Noorhariza Mohd; Singh, Rajinder; Rosli, Rozana; Ismail, Ismanizan

    2012-01-01

    Species-specific simple sequence repeat (SSR) markers are favored for genetic studies and marker-assisted selection (MAS) breeding for oil palm genetic improvement. This report characterizes 20 SSR markers from an Elaeis oleifera genomic library (gSSR). Characterization of the repeat type in 2000 sequences revealed a high percentage of di-nucleotides (63.6%), followed by tri-nucleotides (24.2%). Primer pairs were successfully designed for 394 of the E. oleifera gSSRs. Subsequent analysis showed the ability of the 20 selected E. oleifera gSSR markers to reveal genetic diversity in the genus Elaeis. The average Polymorphism Information Content (PIC) value for the SSRs was 0.402, with the tri-repeats showing the highest average PIC (0.626). Low values of observed heterozygosity (Ho) (0.164) and highly positive fixation indices (Fis) in the E. oleifera germplasm collection, compared to the E. guineensis, indicated an excess of homozygosity in E. oleifera. The transferability of the markers to closely related palms, Elaeis guineensis, Cocos nucifera and ornamental palms is also reported. Sequencing the amplicons of three selected E. oleifera gSSRs across both species and palm taxa revealed variations in the repeat-units. The study showed the potential of E. oleifera gSSR markers to reveal genetic diversity in the genus Elaeis. The markers are also a valuable genetic resource for studying E. oleifera and other genus in the Arecaceae family. PMID:22605966

  8. Use of molecular markers to compare Fusarium verticillioides pathogenic strains isolated from plants and humans.

    PubMed

    Chang, S C; Macêdo, D P C; Souza-Motta, C M; Oliveira, N T

    2013-08-12

    Fusarium verticillioides is a pathogen of agriculturally important crops, especially maize. It is considered one of the most important pathogens responsible for fumonisin contamination of food products, which causes severe, chronic, and acute intoxication in humans and animals. Moreover, it is recognized as a cause of localized infections in immunocompetent patients and disseminated infections among severely immunosuppressed patients. Several molecular tools have been used to analyze the intraspecific variability of fungi. The objective of this study was to use molecular markers to compare pathogenic isolates of F. verticillioides and isolates of the same species obtained from clinical samples of patients with Fusarium mycoses. The molecular markers that we used were inter-simple sequence repeat markers (primers GTG5 and GACA4), intron splice site primer (primer EI1), random amplified polymorphic DNA marker (primer OPW-6), and restriction fragment length polymorphism-internal transcribed spacer (ITS) from rDNA. From the data obtained, clusters were generated based on the UPGMA clustering method. The amplification products obtained using primers ITS4 and ITS5 and loci ITS1-5.8-ITS2 of the rDNA yielded fragments of approximately 600 bp for all the isolates. Digestion of the ITS region fragment using restriction enzymes such as EcoRI, DraI, BshI, AluI, HaeIII, HinfI, MspI, and PstI did not permit differentiation among pathogenic and clinical isolates. The inter-simple sequence repeat, intron splice site primer, and random amplified polymorphic DNA markers presented high genetic homogeneity among clinical isolates in contrast to the high variability found among the phytopathogenic isolates of F. verticillioides.

  9. Gender Identification in Date Palm Using Molecular Markers.

    PubMed

    Awan, Faisal Saeed; Maryam; Jaskani, Muhammad J; Sadia, Bushra

    2017-01-01

    Breeding of date palm is complicated because of its long life cycle and heterozygous nature. Sexual propagation of date palm does not produce true-to-type plants. Sex of date palms cannot be identified until the first flowering stage. Molecular markers such as random amplified polymorphic DNA (RAPD), sequence-characterized amplified regions (SCAR), and simple sequence repeats (SSR) have successfully been used to identify the sex-linked loci in the plant genome and to isolate the corresponding genes. This chapter highlights the use of three molecular markers including RAPD, SCAR, and SSR to identify the gender of date palm seedlings.

  10. Relative profile analysis of molecular markers for identification and genetic discrimination of loaches (Pisces, Nemacheilidae).

    PubMed

    Patil, Tejas Suresh; Tamboli, Asif Shabodin; Patil, Swapnil Mahadeo; Bhosale, Amrut Ravindra; Govindwar, Sanjay Prabhu; Muley, Dipak Vishwanathrao

    2016-01-01

    Genus Nemacheilus, Nemachilichthys and Schistura belong to the family Nemacheilidae of the order Cypriniformes. The present investigation was undertaken to observe genetic diversity, phylogenetic relationship and to develop a molecular-based tool for taxonomic identification. For this purpose, four different types of molecular markers were utilized in which 29 random amplified polymorphic DNA (RAPD), 25 inter-simple sequence repeat (ISSR) markers, and 10 amplified fragment length polymorphism (AFLP) marker sets were screened and mitochondrial COI gene was sequenced. This study added COI barcodes for the identification of Nemacheilus anguilla, Nemachilichthys rueppelli and Schistura denisoni. RAPD showed higher polymorphism (100%) than the ISSR (93.75-100%) and AFLP (93.86-98.96%). The polymorphic information content (PIC), heterozygosity, multiplex ratio, and gene diversity was observed highest for AFLP primers, whereas the major allele frequency was observed higher for RAPD (0.5556) and lowest for AFLP (0.1667). The COI region of all individuals was successfully amplified and sequenced, which gave a 100% species resolution. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  11. Characterization of Chiton Ischnochiton hakodadensis Foot Based on Transcriptome Sequencing

    NASA Astrophysics Data System (ADS)

    Dou, Huaiqian; Miao, Yan; Li, Yuli; Li, Yangping; Dai, Xiaoting; Zhang, Xiaokang; Liang, Pengyu; Liu, Weizhi; Wang, Shi; Bao, Zhenmin

    2018-06-01

    Chiton ( Ischnochiton hakodadensis) is one of marine mollusks well known for its eight separate shell plates. I. hakodadensis is important, which plays a vital role in the ecosystems it inhabits. So far, the genetic studies on the chiton are scarce due in part to insufficient genomic resources available for this species. In this study, we investigated the transcriptome of the chiton foot using Illumina sequencing technology. The reads were assembled and clustered into 256461 unigenes, of which 42247 were divided into diverse functional categories by Gene Ontology (GO) annotation terms, and 17256 mapped onto 365 pathways by KEGG pathway mapping. Meanwhile, a set of differentially expressed genes (DEGs) between distal and proximal muscles were identified as the foot adhesive locomotion associated, thus were useful for our future studies. Moreover, up to 679384 high-quality single nucleotide polymorphisms (SNPs) and 19814 simple sequence repeats (SSRs) were identified in this study, which are valuable for subsequent studies on genetic diversity and variation. The transcriptomic resource obtained in this study should aid to future genetic and genomic studies of chiton.

  12. PlantFuncSSR: Integrating First and Next Generation Transcriptomics for Mining of SSR-Functional Domains Markers

    PubMed Central

    Sablok, Gaurav; Pérez-Pulido, Antonio J.; Do, Thac; Seong, Tan Y.; Casimiro-Soriguer, Carlos S.; La Porta, Nicola; Ralph, Peter J.; Squartini, Andrea; Muñoz-Merida, Antonio; Harikrishna, Jennifer A.

    2016-01-01

    Analysis of repetitive DNA sequence content and divergence among the repetitive functional classes is a well-accepted approach for estimation of inter- and intra-generic differences in plant genomes. Among these elements, microsatellites, or Simple Sequence Repeats (SSRs), have been widely demonstrated as powerful genetic markers for species and varieties discrimination. We present PlantFuncSSRs platform having more than 364 plant species with more than 2 million functional SSRs. They are provided with detailed annotations for easy functional browsing of SSRs and with information on primer pairs and associated functional domains. PlantFuncSSRs can be leveraged to identify functional-based genic variability among the species of interest, which might be of particular interest in developing functional markers in plants. This comprehensive on-line portal unifies mining of SSRs from first and next generation sequencing datasets, corresponding primer pairs and associated in-depth functional annotation such as gene ontology annotation, gene interactions and its identification from reference protein databases. PlantFuncSSRs is freely accessible at: http://www.bioinfocabd.upo.es/plantssr. PMID:27446111

  13. Human Y chromosome copy number variation in the next generation sequencing era and beyond.

    PubMed

    Massaia, Andrea; Xue, Yali

    2017-05-01

    The human Y chromosome provides a fertile ground for structural rearrangements owing to its haploidy and high content of repeated sequences. The methodologies used for copy number variation (CNV) studies have developed over the years. Low-throughput techniques based on direct observation of rearrangements were developed early on, and are still used, often to complement array-based or sequencing approaches which have limited power in regions with high repeat content and specifically in the presence of long, identical repeats, such as those found in human sex chromosomes. Some specific rearrangements have been investigated for decades; because of their effects on fertility, or their outstanding evolutionary features, the interest in these has not diminished. However, following the flourishing of large-scale genomics, several studies have investigated CNVs across the whole chromosome. These studies sometimes employ data generated within large genomic projects such as the DDD study or the 1000 Genomes Project, and often survey large samples of healthy individuals without any prior selection. Novel technologies based on sequencing long molecules and combinations of technologies, promise to stimulate the study of Y-CNVs in the immediate future.

  14. The First Complete Chloroplast Genome Sequences in Actinidiaceae: Genome Structure and Comparative Analysis.

    PubMed

    Yao, Xiaohong; Tang, Ping; Li, Zuozhou; Li, Dawei; Liu, Yifei; Huang, Hongwen

    2015-01-01

    Actinidia chinensis is an important economic plant belonging to the basal lineage of the asterids. Availability of a complete Actinidia chloroplast genome sequence is crucial to understanding phylogenetic relationships among major lineages of angiosperms and facilitates kiwifruit genetic improvement. We report here the complete nucleotide sequences of the chloroplast genomes for Actinidia chinensis and A. chinensis var deliciosa obtained through de novo assembly of Illumina paired-end reads produced by total DNA sequencing. The total genome size ranges from 155,446 to 157,557 bp, with an inverted repeat (IR) of 24,013 to 24,391 bp, a large single copy region (LSC) of 87,984 to 88,337 bp and a small single copy region (SSC) of 20,332 to 20,336 bp. The genome encodes 113 different genes, including 79 unique protein-coding genes, 30 tRNA genes and 4 ribosomal RNA genes, with 16 duplicated in the inverted repeats, and a tRNA gene (trnfM-CAU) duplicated once in the LSC region. Comparisons of IR boundaries among four asterid species showed that IR/LSC borders were extended into the 5' portion of the psbA gene and IR contraction occurred in Actinidia. The clap gene has been lost from the chloroplast genome in Actinidia, and may have been transferred to the nucleus during chloroplast evolution. Twenty-seven polymorphic simple sequence repeat (SSR) loci were identified in the Actinidia chloroplast genome. Maximum parsimony analyses of a 72-gene, 16 taxa angiosperm dataset strongly support the placement of Actinidiaceae in Ericales within the basal asterids.

  15. Generation of sequence signatures from DNA amplification fingerprints with mini-hairpin and microsatellite primers.

    PubMed

    Caetano-Anollés, G; Gresshoff, P M

    1996-06-01

    DNA amplification fingerprinting (DAF) with mini-hairpins harboring arbitrary "core" sequences at their 3' termini were used to fingerprint a variety of templates, including PCR products and whole genomes, to establish genetic relationships between plant tax at the interspecific and intraspecific level, and to identify closely related fungal isolates and plant accessions. No correlation was observed between the sequence of the arbitrary core, the stability of the mini-hairpin structure and DAF efficiency. Mini-hairpin primers with short arbitrary cores and primers complementary to simple sequence repeats present in microsatellites were also used to generate arbitrary signatures from amplification profiles (ASAP). The ASAP strategy is a dual-step amplification procedure that uses at least one primer in each fingerprinting stage. ASAP was able to reproducibly amplify DAF products (representing about 10-15 kb of sequence) following careful optimization of amplification parameters such as primer and template concentration. Avoidance of primer sequences partially complementary to DAF product termini was necessary in order to produce distinct fingerprints. This allowed the combinatorial use of oligomers in nucleic acid screening, with numerous ASAP fingerprinting reactions based on a limited number of primer sequences. Mini-hairpin primers and ASAP analysis significantly increased detection of polymorphic DNA, separating closely related bermudagrass (Cynodon) cultivars and detecting putatively linked markers in bulked segregant analysis of the soybean (Glycine max) supernodulation (nitrate-tolerant symbiosis) locus.

  16. Targeted isolation, sequence assembly and characterization of two white spruce (Picea glauca) BAC clones for terpenoid synthase and cytochrome P450 genes involved in conifer defence reveal insights into a conifer genome

    PubMed Central

    2009-01-01

    Background Conifers are a large group of gymnosperm trees which are separated from the angiosperms by more than 300 million years of independent evolution. Conifer genomes are extremely large and contain considerable amounts of repetitive DNA. Currently, conifer sequence resources exist predominantly as expressed sequence tags (ESTs) and full-length (FL)cDNAs. There is no genome sequence available for a conifer or any other gymnosperm. Conifer defence-related genes often group into large families with closely related members. The goals of this study are to assess the feasibility of targeted isolation and sequence assembly of conifer BAC clones containing specific genes from two large gene families, and to characterize large segments of genomic DNA sequence for the first time from a conifer. Results We used a PCR-based approach to identify BAC clones for two target genes, a terpene synthase (3-carene synthase; 3CAR) and a cytochrome P450 (CYP720B4) from a non-arrayed genomic BAC library of white spruce (Picea glauca). Shotgun genomic fragments isolated from the BAC clones were sequenced to a depth of 15.6- and 16.0-fold coverage, respectively. Assembly and manual curation yielded sequence scaffolds of 172 kbp (3CAR) and 94 kbp (CYP720B4) long. Inspection of the genomic sequences revealed the intron-exon structures, the putative promoter regions and putative cis-regulatory elements of these genes. Sequences related to transposable elements (TEs), high complexity repeats and simple repeats were prevalent and comprised approximately 40% of the sequenced genomic DNA. An in silico simulation of the effect of sequencing depth on the quality of the sequence assembly provides direction for future efforts of conifer genome sequencing. Conclusion We report the first targeted cloning, sequencing, assembly, and annotation of large segments of genomic DNA from a conifer. We demonstrate that genomic BAC clones for individual members of multi-member gene families can be isolated in a gene-specific fashion. The results of the present work provide important new information about the structure and content of conifer genomic DNA that will guide future efforts to sequence and assemble conifer genomes. PMID:19656416

  17. Targeted isolation, sequence assembly and characterization of two white spruce (Picea glauca) BAC clones for terpenoid synthase and cytochrome P450 genes involved in conifer defence reveal insights into a conifer genome.

    PubMed

    Hamberger, Björn; Hall, Dawn; Yuen, Mack; Oddy, Claire; Hamberger, Britta; Keeling, Christopher I; Ritland, Carol; Ritland, Kermit; Bohlmann, Jörg

    2009-08-06

    Conifers are a large group of gymnosperm trees which are separated from the angiosperms by more than 300 million years of independent evolution. Conifer genomes are extremely large and contain considerable amounts of repetitive DNA. Currently, conifer sequence resources exist predominantly as expressed sequence tags (ESTs) and full-length (FL)cDNAs. There is no genome sequence available for a conifer or any other gymnosperm. Conifer defence-related genes often group into large families with closely related members. The goals of this study are to assess the feasibility of targeted isolation and sequence assembly of conifer BAC clones containing specific genes from two large gene families, and to characterize large segments of genomic DNA sequence for the first time from a conifer. We used a PCR-based approach to identify BAC clones for two target genes, a terpene synthase (3-carene synthase; 3CAR) and a cytochrome P450 (CYP720B4) from a non-arrayed genomic BAC library of white spruce (Picea glauca). Shotgun genomic fragments isolated from the BAC clones were sequenced to a depth of 15.6- and 16.0-fold coverage, respectively. Assembly and manual curation yielded sequence scaffolds of 172 kbp (3CAR) and 94 kbp (CYP720B4) long. Inspection of the genomic sequences revealed the intron-exon structures, the putative promoter regions and putative cis-regulatory elements of these genes. Sequences related to transposable elements (TEs), high complexity repeats and simple repeats were prevalent and comprised approximately 40% of the sequenced genomic DNA. An in silico simulation of the effect of sequencing depth on the quality of the sequence assembly provides direction for future efforts of conifer genome sequencing. We report the first targeted cloning, sequencing, assembly, and annotation of large segments of genomic DNA from a conifer. We demonstrate that genomic BAC clones for individual members of multi-member gene families can be isolated in a gene-specific fashion. The results of the present work provide important new information about the structure and content of conifer genomic DNA that will guide future efforts to sequence and assemble conifer genomes.

  18. Integrated massively parallel sequencing of 15 autosomal STRs and Amelogenin using a simplified library preparation approach.

    PubMed

    Xue, Jian; Wu, Riga; Pan, Yajiao; Wang, Shunxia; Qu, Baowang; Qin, Ying; Shi, Yuequn; Zhang, Chuchu; Li, Ran; Zhang, Liyan; Zhou, Cheng; Sun, Hongyu

    2018-04-02

    Massively parallel sequencing (MPS) technologies, also termed as next-generation sequencing (NGS), are becoming increasingly popular in study of short tandem repeats (STR). However, current library preparation methods are usually based on ligation or two-round PCR that requires more steps, making it time-consuming (about 2 days), laborious and expensive. In this study, a 16-plex STR typing system was designed with fusion primer strategy based on the Ion Torrent S5 XL platform which could effectively resolve the above challenges for forensic DNA database-type samples (bloodstains, saliva stains, etc.). The efficiency of this system was tested in 253 Han Chinese participants. The libraries were prepared without DNA isolation and adapter ligation, and the whole process only required approximately 5 h. The proportion of thoroughly genotyped samples in which all the 16 loci were successfully genotyped was 86% (220/256). Of the samples, 99.7% showed 100% concordance between NGS-based STR typing and capillary electrophoresis (CE)-based STR typing. The inconsistency might have been caused by off-ladder alleles and mutations in primer binding sites. Overall, this panel enabled the large-scale genotyping of the DNA samples with controlled quality and quantity because it is a simple, operation-friendly process flow that saves labor, time and costs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. An Exploration into Fern Genome Space.

    PubMed

    Wolf, Paul G; Sessa, Emily B; Marchant, Daniel Blaine; Li, Fay-Wei; Rothfels, Carl J; Sigel, Erin M; Gitzendanner, Matthew A; Visger, Clayton J; Banks, Jo Ann; Soltis, Douglas E; Soltis, Pamela S; Pryer, Kathleen M; Der, Joshua P

    2015-08-26

    Ferns are one of the few remaining major clades of land plants for which a complete genome sequence is lacking. Knowledge of genome space in ferns will enable broad-scale comparative analyses of land plant genes and genomes, provide insights into genome evolution across green plants, and shed light on genetic and genomic features that characterize ferns, such as their high chromosome numbers and large genome sizes. As part of an initial exploration into fern genome space, we used a whole genome shotgun sequencing approach to obtain low-density coverage (∼0.4X to 2X) for six fern species from the Polypodiales (Ceratopteris, Pteridium, Polypodium, Cystopteris), Cyatheales (Plagiogyria), and Gleicheniales (Dipteris). We explore these data to characterize the proportion of the nuclear genome represented by repetitive sequences (including DNA transposons, retrotransposons, ribosomal DNA, and simple repeats) and protein-coding genes, and to extract chloroplast and mitochondrial genome sequences. Such initial sweeps of fern genomes can provide information useful for selecting a promising candidate fern species for whole genome sequencing. We also describe variation of genomic traits across our sample and highlight some differences and similarities in repeat structure between ferns and seed plants. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. Development and use of EST-SSR markers for assessing genetic diversity in the brown planthopper (Nilaparvata lugens Stål).

    PubMed

    Jing, S; Liu, B; Peng, L; Peng, X; Zhu, L; Fu, Q; He, G

    2012-02-01

    To assess genetic diversity in populations of the brown planthopper (Nilaparvata lugens Stål) (Homoptera: Delphacidae), we have developed and applied microsatellite, or simple sequence repeat (SSR), markers from expressed sequence tags (ESTs). We found that the brown planthopper clusters of ESTs were rich in SSRs with unique frequencies and distributions of SSR motifs. Three hundred and fifty-one EST-SSR markers were developed and yielded clear bands from samples of four brown planthopper populations. High cross-species transferability of these markers was detected in the closely related planthopper N. muiri. The newly developed EST-SSR markers provided sufficient resolution to distinguish within and among biotypes. Analyses based on SSR data revealed host resistance-based genetic differentiation among different brown planthopper populations; the genetic diversity of populations feeding on susceptible rice varieties was lower than that of populations feeding on resistant rice varieties. This is the first large-scale development of brown planthopper SSR markers, which will be useful for future molecular genetics and genomics studies of this serious agricultural pest.

  1. tropiTree: An NGS-Based EST-SSR Resource for 24 Tropical Tree Species

    PubMed Central

    Russell, Joanne R.; Hedley, Peter E.; Cardle, Linda; Dancey, Siobhan; Morris, Jenny; Booth, Allan; Odee, David; Mwaura, Lucy; Omondi, William; Angaine, Peter; Machua, Joseph; Muchugi, Alice; Milne, Iain; Kindt, Roeland; Jamnadass, Ramni; Dawson, Ian K.

    2014-01-01

    The development of genetic tools for non-model organisms has been hampered by cost, but advances in next-generation sequencing (NGS) have created new opportunities. In ecological research, this raises the prospect for developing molecular markers to simultaneously study important genetic processes such as gene flow in multiple non-model plant species within complex natural and anthropogenic landscapes. Here, we report the use of bar-coded multiplexed paired-end Illumina NGS for the de novo development of expressed sequence tag-derived simple sequence repeat (EST-SSR) markers at low cost for a range of 24 tree species. Each chosen tree species is important in complex tropical agroforestry systems where little is currently known about many genetic processes. An average of more than 5,000 EST-SSRs was identified for each of the 24 sequenced species, whereas prior to analysis 20 of the species had fewer than 100 nucleotide sequence citations. To make results available to potential users in a suitable format, we have developed an open-access, interactive online database, tropiTree (http://bioinf.hutton.ac.uk/tropiTree), which has a range of visualisation and search facilities, and which is a model for the efficient presentation and application of NGS data. PMID:25025376

  2. Horseradish peroxidase-labeled oligonucleotides and fluorescent tyramides for rapid detection of chromosome-specific repeat sequences.

    PubMed

    van Gijlswijk, R P; Wiegant, J; Vervenne, R; Lasan, R; Tanke, H J; Raap, A K

    1996-01-01

    We present a sensitive and rapid fluorescence in situ hybridization (FISH) strategy for detecting chromosome-specific repeat sequences. It uses horseradish peroxidase (HRP)-labeled oligonucleotide sequences in combination with fluorescent tyramide-based detection. After in situ hybridization, the HRP conjugated to the oligonucleotide probe is used to deposit fluorescently labeled tyramide molecules at the site of hybridization. The method features full chemical synthesis of probes, strong FISH signals, and short processing periods, as well as multicolor capabilities.

  3. Two Low Coverage Bird Genomes and a Comparison of Reference-Guided versus De Novo Genome Assemblies

    PubMed Central

    Card, Daren C.; Schield, Drew R.; Reyes-Velasco, Jacobo; Fujita, Matthew K.; Andrew, Audra L.; Oyler-McCance, Sara J.; Fike, Jennifer A.; Tomback, Diana F.; Ruggiero, Robert P.; Castoe, Todd A.

    2014-01-01

    As a greater number and diversity of high-quality vertebrate reference genomes become available, it is increasingly feasible to use these references to guide new draft assemblies for related species. Reference-guided assembly approaches may substantially increase the contiguity and completeness of a new genome using only low levels of genome coverage that might otherwise be insufficient for de novo genome assembly. We used low-coverage (∼3.5–5.5x) Illumina paired-end sequencing to assemble draft genomes of two bird species (the Gunnison Sage-Grouse, Centrocercus minimus, and the Clark's Nutcracker, Nucifraga columbiana). We used these data to estimate de novo genome assemblies and reference-guided assemblies, and compared the information content and completeness of these assemblies by comparing CEGMA gene set representation, repeat element content, simple sequence repeat content, and GC isochore structure among assemblies. Our results demonstrate that even lower-coverage genome sequencing projects are capable of producing informative and useful genomic resources, particularly through the use of reference-guided assemblies. PMID:25192061

  4. TALE: a tale of genome editing.

    PubMed

    Zhang, Mingjie; Wang, Feng; Li, Shifei; Wang, Yan; Bai, Yun; Xu, Xueqing

    2014-01-01

    Transcription activator-like effectors (TALEs), first identified in Xanthomonas bacteria, are naturally occurring or artificially designed proteins that modulate gene transcription. These proteins recognize and bind DNA sequences based on a variable numbers of tandem repeats. Each repeat is comprised of a set of ∼ 34 conserved amino acids; within this conserved domain, there are usually two amino acids that distinguish one TALE from another. Interestingly, TALEs have revealed a simple cipher for the one-to-one recognition of proteins for DNA bases. Synthetic TALEs have been used to successfully target genes in a variety of species, including humans. Depending on the type of functional domain that is fused to the TALE of interest, these proteins can have diverse biological effects. For example, after binding DNA, TALEs fused to transcriptional activation domains can function as robust transcription factors (TALE-TFs), while fused to restriction endonucleases (TALENs) can cut DNA. Targeted genome editing, in theory, is capable of modifying any endogenous gene sequence of interest; this can be performed in cells or organisms, and may be applied to clinical gene-based therapies in the future. With current technologies, highly accurate, specific, and reliable gene editing cannot be achieved. Thus, recognition and binding mechanisms governing TALE biology are currently hot research areas. In this review, we summarize the major advances in TALE technology over the past several years with a focus on the interaction between TALEs and DNA, TALE design and construction, potential applications for this technology, and unique characteristics that make TALEs superior to zinc finger endonucleases. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Analysis of genetic relationships between potato psyllid (Bactericera cockerelli) populations in the United States, Mexico and Guatemala using ITS2 and inter simple sequence repeat (ISSR) data

    USDA-ARS?s Scientific Manuscript database

    The potato psyllid, Bactericera cockerelli (Sulc), is an important factor in Zebra Complex (ZC), a disease that causes economic losses on potato crops. Although the exact cause of ZC is not yet known, it may be related to the toxicity of psyllid saliva, pathogens transmitted by this insect, or a com...

  6. Varietal Discrimination and Genetic Variability Analysis of Cymbopogon Using RAPD and ISSR Markers Analysis.

    PubMed

    Bishoyi, Ashok Kumar; Sharma, Anjali; Kavane, Aarti; Geetha, K A

    2016-06-01

    Cymbopogon is an important genus of family Poaceae, cultivated mainly for its essential oils which possess high medicinal and economical value. Several cultivars of Cymbopogon species are available for commercial cultivation in India and identification of these cultivars was conceded by means of morphological markers and essential oil constitution. Since these parameters are highly influenced by environmental factors, in most of the cases, it is difficult to identify Cymbopogon cultivars. In the present study, Random amplified polymorphic DNA (RAPD) and Inter-simple sequence repeat (ISSR) markers were employed to discriminate nine leading varieties of Cymbopogon since prior genomic information is lacking or very little in the genus. Ninety RAPD and 70 ISSR primers were used which generated 63 and 69 % polymorphic amplicons, respectively. Similarity in the pattern of UPGMA-derived dendrogram of RAPD and ISSR analysis revealed the reliability of the markers chosen for the study. Varietal/cultivar-specific markers generated from the study could be utilised for varietal/cultivar authentication, thus monitoring the quality of the essential oil production in Cymbopogon. These markers can also be utilised for the IPR protection of the cultivars. Moreover, the study provides molecular marker tool kit in both random and simple sequence repeats for diverse molecular research in the same or related genera.

  7. Genetic Diversity of Arabica Coffee (Coffea arabica L.) in Nicaragua as Estimated by Simple Sequence Repeat Markers

    PubMed Central

    Geleta, Mulatu; Herrera, Isabel; Monzón, Arnulfo; Bryngelsson, Tomas

    2012-01-01

    Coffea arabica L. (arabica coffee), the only tetraploid species in the genus Coffea, represents the majority of the world's coffee production and has a significant contribution to Nicaragua's economy. The present paper was conducted to determine the genetic diversity of arabica coffee in Nicaragua for its conservation and breeding values. Twenty-six populations that represent eight varieties in Nicaragua were investigated using simple sequence repeat (SSR) markers. A total of 24 alleles were obtained from the 12 loci investigated across 260 individual plants. The total Nei's gene diversity (H T) and the within-population gene diversity (H S) were 0.35 and 0.29, respectively, which is comparable with that previously reported from other countries and regions. Among the varieties, the highest diversity was recorded in the variety Catimor. Analysis of variance (AMOVA) revealed that about 87% of the total genetic variation was found within populations and the remaining 13% differentiate the populations (F ST = 0.13; P < 0.001). The variation among the varieties was also significant. The genetic variation in Nicaraguan coffee is significant enough to be used in the breeding programs, and most of this variation can be conserved through ex situ conservation of a low number of populations from each variety. PMID:22701376

  8. Genetic variation of Sargassum horneri populations detected by inter-simple sequence repeats.

    PubMed

    Ren, J R; Yang, R; He, Y Y; Sun, Q H

    2015-01-30

    The seaweed Sargassum horneri is an important brown alga in the marine environment, and it is an important raw material in the alginate industry. Unfortunately, the fixed resource that was originally reported is now reduced or disappeared, and increased floating populations have been reported in recent years. We sampled a floating population and 4 fixed cultivated populations of S. horneri along the coast of Zhejiang, China. Inter-simple sequence repeat (ISSR) markers were applied in this research to analyze the genetic variation between floating populations and fixed cultivated populations of S. horneri. In total, 220 loci were amplified with 23 ISSR primers. The percentage of polymorphic loci within each population ranged from 53.64 to 95.45%. The highest diversity was observed in population 3, which was the local species that was suspension cultured in the lab and then fixed cultivated in the Nanji Islands before sampling. The lowest diversity was obtained in the floating population 4. The genetic distances among the 5 S. horneri populations ranged from 0.0819 to 0.2889, and the distance tendency confirmed the genetic diversity. The results suggest that the floating population had the lowest genetic diversity and could not be joined into the cluster branch of the fixed cultivated populations.

  9. Genetic Diversity of Ascaris in China Assessed Using Simple Sequence Repeat Markers.

    PubMed

    Zhou, Chunhua; Jian, Shaoqing; Peng, Weidong; Li, Min

    2018-04-01

    The giant roundworm Ascaris infects pigs and people worldwide and causes serious diseases. The taxonomic relationship between Ascaris suum and Ascaris lumbricoides is still unclear. The purpose of the present study was to investigate the genetic diversity and population genetic structure of 258 Ascaris specimens from humans and pigs from 6 sympatric regions in Ascaris -endemic regions of China using existing simple sequence repeat data. The microsatellite markers showed a high level of allelic richness and genetic diversity in the samples. Each of the populations demonstrated excess homozygosity (Ho0). According to a genetic differentiation index (Fst=0.0593), there was a high-level of gene flow in the Ascaris populations. A hierarchical analysis on molecular variance revealed remarkably high levels of variation within the populations. Moreover, a population structure analysis indicated that Ascaris populations fell into 3 main genetic clusters, interpreted as A. suum , A. lumbricoides , and a hybrid of the species. We speculated that humans can be infected with A. lumbricoides , A. suum , and the hybrid, but pigs were mainly infected with A. suum . This study provided new information on the genetic diversity and population structure of Ascaris from human and pigs in China, which can be used for designing Ascaris control strategies. It can also be beneficial to understand the introgression of host affiliation.

  10. Simple sequence repeat markers useful for sorghum downy mildew (Peronosclerospora sorghi) and related species

    PubMed Central

    Perumal, Ramasamy; Nimmakayala, Padmavathi; Erattaimuthu, Saradha R; No, Eun-Gyu; Reddy, Umesh K; Prom, Louis K; Odvody, Gary N; Luster, Douglas G; Magill, Clint W

    2008-01-01

    Background A recent outbreak of sorghum downy mildew in Texas has led to the discovery of both metalaxyl resistance and a new pathotype in the causal organism, Peronosclerospora sorghi. These observations and the difficulty in resolving among phylogenetically related downy mildew pathogens dramatically point out the need for simply scored markers in order to differentiate among isolates and species, and to study the population structure within these obligate oomycetes. Here we present the initial results from the use of a biotin capture method to discover, clone and develop PCR primers that permit the use of simple sequence repeats (microsatellites) to detect differences at the DNA level. Results Among the 55 primers pairs designed from clones from pathotype 3 of P. sorghi, 36 flanked microsatellite loci containing simple repeats, including 28 (55%) with dinucleotide repeats and 6 (11%) with trinucleotide repeats. A total of 22 microsatellites with CA/AC or GT/TG repeats were the most abundant (40%) and GA/AG or CT/TC types contribute 15% in our collection. When used to amplify DNA from 19 isolates from P. sorghi, as well as from 5 related species that cause downy mildew on other hosts, the number of different bands detected for each SSR primer pair using a LI-COR- DNA Analyzer ranged from two to eight. Successful cross-amplification for 12 primer pairs studied in detail using DNA from downy mildews that attack maize (P. maydis & P. philippinensis), sugar cane (P. sacchari), pearl millet (Sclerospora graminicola) and rose (Peronospora sparsa) indicate that the flanking regions are conserved in all these species. A total of 15 SSR amplicons unique to P. philippinensis (one of the potential threats to US maize production) were detected, and these have potential for development of diagnostic tests. A total of 260 alleles were obtained using 54 microsatellites primer combinations, with an average of 4.8 polymorphic markers per SSR across 34 Peronosclerospora, Peronospora and Sclerospora spp isolates studied. Cluster analysis by UPGMA as well as principal coordinate analysis (PCA) grouped the 34 isolates into three distinct groups (all 19 isolates of Peronosclerospora sorghi in cluster I, five isolates of P. maydis and three isolates of P. sacchari in cluster II and five isolates of Sclerospora graminicola in cluster III). Conclusion To our knowledge, this is the first attempt to extensively develop SSR markers from Peronosclerospora genomic DNA. The newly developed SSR markers can be readily used to distinguish isolates within several species of the oomycetes that cause downy mildew diseases. Also, microsatellite fragments likely include retrotransposon regions of DNA and these sequences can serve as useful genetic markers for strain identification, due to their degree of variability and their widespread occurrence among sorghum, maize, sugarcane, pearl millet and rose downy mildew isolates. PMID:19040756

  11. The structure of TON1937 from archaeon Thermococcus onnurineus NA1 reveals a eukaryotic HEAT-like architecture.

    PubMed

    Jeong, Jae-Hee; Kim, Yi-Seul; Rojviriya, Catleya; Cha, Hyung Jin; Ha, Sung-Chul; Kim, Yeon-Gil

    2013-10-01

    The members of the ARM/HEAT repeat-containing protein superfamily in eukaryotes have been known to mediate protein-protein interactions by using their concave surface. However, little is known about the ARM/HEAT repeat proteins in prokaryotes. Here we report the crystal structure of TON1937, a hypothetical protein from the hyperthermophilic archaeon Thermococcus onnurineus NA1. The structure reveals a crescent-shaped molecule composed of a double layer of α-helices with seven anti-parallel α-helical repeats. A structure-based sequence alignment of the α-helical repeats identified a conserved pattern of hydrophobic or aliphatic residues reminiscent of the consensus sequence of eukaryotic HEAT repeats. The individual repeats of TON1937 also share high structural similarity with the canonical eukaryotic HEAT repeats. In addition, the concave surface of TON1937 is proposed to be its potential binding interface based on this structural comparison and its surface properties. These observations lead us to speculate that the archaeal HEAT-like repeats of TON1937 have evolved to engage in protein-protein interactions in the same manner as eukaryotic HEAT repeats. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Structure, organization, and sequence of alpha satellite DNA from human chromosome 17: evidence for evolution by unequal crossing-over and an ancestral pentamer repeat shared with the human X chromosome.

    PubMed

    Waye, J S; Willard, H F

    1986-09-01

    The centromeric regions of all human chromosomes are characterized by distinct subsets of a diverse tandemly repeated DNA family, alpha satellite. On human chromosome 17, the predominant form of alpha satellite is a 2.7-kilobase-pair higher-order repeat unit consisting of 16 alphoid monomers. We present the complete nucleotide sequence of the 16-monomer repeat, which is present in 500 to 1,000 copies per chromosome 17, as well as that of a less abundant 15-monomer repeat, also from chromosome 17. These repeat units were approximately 98% identical in sequence, differing by the exclusion of precisely 1 monomer from the 15-monomer repeat. Homologous unequal crossing-over is suggested as a probable mechanism by which the different repeat lengths on chromosome 17 were generated, and the putative site of such a recombination event is identified. The monomer organization of the chromosome 17 higher-order repeat unit is based, in part, on tandemly repeated pentamers. A similar pentameric suborganization has been previously demonstrated for alpha satellite of the human X chromosome. Despite the organizational similarities, substantial sequence divergence distinguishes these subsets. Hybridization experiments indicate that the chromosome 17 and X subsets are more similar to each other than to the subsets found on several other human chromosomes. We suggest that the chromosome 17 and X alpha satellite subsets may be related components of a larger alphoid subfamily which have evolved from a common ancestral repeat into the contemporary chromosome-specific subsets.

  13. Triplet repeat RNA structure and its role as pathogenic agent and therapeutic target

    PubMed Central

    Krzyzosiak, Wlodzimierz J.; Sobczak, Krzysztof; Wojciechowska, Marzena; Fiszer, Agnieszka; Mykowska, Agnieszka; Kozlowski, Piotr

    2012-01-01

    This review presents detailed information about the structure of triplet repeat RNA and addresses the simple sequence repeats of normal and expanded lengths in the context of the physiological and pathogenic roles played in human cells. First, we discuss the occurrence and frequency of various trinucleotide repeats in transcripts and classify them according to the propensity to form RNA structures of different architectures and stabilities. We show that repeats capable of forming hairpin structures are overrepresented in exons, which implies that they may have important functions. We further describe long triplet repeat RNA as a pathogenic agent by presenting human neurological diseases caused by triplet repeat expansions in which mutant RNA gains a toxic function. Prominent examples of these diseases include myotonic dystrophy type 1 and fragile X-associated tremor ataxia syndrome, which are triggered by mutant CUG and CGG repeats, respectively. In addition, we discuss RNA-mediated pathogenesis in polyglutamine disorders such as Huntington's disease and spinocerebellar ataxia type 3, in which expanded CAG repeats may act as an auxiliary toxic agent. Finally, triplet repeat RNA is presented as a therapeutic target. We describe various concepts and approaches aimed at the selective inhibition of mutant transcript activity in experimental therapies developed for repeat-associated diseases. PMID:21908410

  14. A theory that may explain the Hayflick limit--a means to delete one copy of a repeating sequence during each cell cycle in certain human cells such as fibroblasts.

    PubMed

    Naveilhan, P; Baudet, C; Jabbour, W; Wion, D

    1994-09-01

    A model that may explain the limited division potential of certain cells such as human fibroblasts in culture is presented. The central postulate of this theory is that there exists, prior to certain key exons that code for materials needed for cell division, a unique sequence of specific repeating segments of DNA. One copy of such repeating segments is deleted during each cell cycle in cells that are not protected from such deletion through methylation of their cytosine residues. According to this theory, the means through which such repeated sequences are removed, one per cycle, is through the sequential action of enzymes that act much as bacterial restriction enzymes do--namely to produce scissions in both strands of DNA in areas that correspond to the DNA base sequence recognition specificities of such enzymes. After the first scission early in a replicative cycle, that enzyme becomes inhibited, but the cleavage of the first site exposes the closest site in the repetitive element to the action of a second restriction enzyme after which that enzyme also becomes inhibited. Then repair occurs, regenerating the original first site. Through this sequential activation and inhibition of two different restriction enzymes, only one copy of the repeating sequence is deleted during each cell cycle. In effect, the repeating sequence operates as a precise counter of the numbers of cell doubling that have occurred since the cells involved differentiated during development.

  15. Novel Single Nucleotide Polymorphism-Based Assay for Genotyping Mycobacterium avium subsp. paratuberculosis

    PubMed Central

    Goldstone, Robert J.; McLuckie, Joyce; Smith, David G. E.

    2015-01-01

    Typing of Mycobacterium avium subspecies paratuberculosis strains presents a challenge, since they are genetically monomorphic and traditional molecular techniques have limited discriminatory power. The recent advances and availability of whole-genome sequencing have extended possibilities for the characterization of Mycobacterium avium subspecies paratuberculosis, and whole-genome sequencing can provide a phylogenetic context to facilitate global epidemiology studies. In this study, we developed a single nucleotide polymorphism (SNP) assay based on PCR and restriction enzyme digestion or sequencing of the amplified product. The SNP analysis was performed using genome sequence data from 133 Mycobacterium avium subspecies paratuberculosis isolates with different genotypes from 8 different host species and 17 distinct geographic regions around the world. A total of 28,402 SNPs were identified among all of the isolates. The minimum number of SNPs required to distinguish between all of the 133 genomes was 93 and between only the type C isolates was 41. To reduce the number of SNPs and PCRs required, we adopted an approach based on sequential detection of SNPs and a decision tree. By the analysis of 14 SNPs Mycobacterium avium subspecies paratuberculosis isolates can be characterized within 14 phylogenetic groups with a higher discriminatory power than mycobacterial interspersed repetitive unit–variable number tandem repeat assay and other typing methods. Continuous updating of genome sequences is needed in order to better characterize new phylogenetic groups and SNP profiles. The novel SNP assay is a discriminative, simple, reproducible method and requires only basic laboratory equipment for the large-scale global typing of Mycobacterium avium subspecies paratuberculosis isolates. PMID:26677250

  16. Characterization of EST-derived and non-EST simple sequence repeats in an F₁ hybrid population of Vitis vinifera L.

    PubMed

    Kayesh, E; Bilkish, N; Liu, G S; Chen, W; Leng, X P; Fang, J G

    2014-03-31

    Among different classes of molecular markers, expressed sequence tags (ESTs) are a new resource for developing simple sequence repeat (SSR) functional markers for genotyping and genetic mapping in F1 hybrid populations of Vitis vinifera L. Recently, because of the availability of an enormous amount of data for ESTs in the public domain, the emphasis has shifted from genomic SSRs to EST-SSRs, which belong to transcribed regions of the genome and may have a role in gene expression or function. The objective of this study was to assess the polymorphisms among 94 F1 hybrids from "Early Rose" and "Red Globe" using 25 EST-derived and 25 non-EST SSR markers. A total collection of 362,375 grape ESTs that were retrieved from the National Center for Biotechnology Information (NCBI) and 2522 EST-SSR sequences were identified. From them, 205 primer pairs were randomly selected, including 176 pairs that were EST-derived and 29 non-EST SSR primer pairs, for polymerase chain reaction amplification. A total of 131 alleles were amplified using 50 pairs of primers; 78 alleles were amplified using EST-derived SSR primers and 53 were from non-EST SSR primers. At most, 6 and 5 alleles were amplified by EST-derived and non-EST SSR primers, respectively. The EST-derived SSR markers showed a maximum polymorphic information content (PIC) value of 1 and a minimum of 0.33 while non-EST SSR markers had maximum and minimum PIC values of 1 and 0.25, respectively. The average PIC value was 0.56 for EST-derived SSR markers and 0.45 for non-EST SSR markers.

  17. Comparative Maps of Human 19p13.3 and Mouse Chromosome 10 Allow Identification of Sequences at Evolutionary Breakpoints

    PubMed Central

    Puttagunta, Radhika; Gordon, Laurie A.; Meyer, Gary E.; Kapfhamer, David; Lamerdin, Jane E.; Kantheti, Prameela; Portman, Kathleen M.; Chung, Wendy K.; Jenne, Dieter E.; Olsen, Anne S.; Burmeister, Margit

    2000-01-01

    A cosmid/bacterial artificial chromosome (BAC) contiguous (contig) map of human chromosome (HSA) 19p13.3 has been constructed, and over 50 genes have been localized to the contig. Genes and anonymous ESTs from ≈4000 kb of human 19p13.3 were placed on the central mouse chromosome 10 map by genetic mapping and pulsed-field gel electrophoresis (PFGE) analysis. A region of ∼2500 kb of HSA 19p13.3 is collinear to mouse chromosome (MMU) 10. In contrast, the adjacent ≈1200 kb are inverted. Two genes are located in a 50-kb region after the inversion on MMU 10, followed by a region of homology to mouse chromosome 17. The synteny breakpoint and one of the inversion breakpoints has been localized to sequenced regions in human <5 kb in size. Both breakpoints are rich in simple tandem repeats, including (TCTG)n, (CT)n, and (GTCTCT)n, suggesting that simple repeat sequences may be involved in chromosome breaks during evolution. The overall size of the region in mouse is smaller, although no large regions are missing. Comparing the physical maps to the genetic maps showed that in contrast to the higher-than-average rate of genetic recombination in gene-rich telomeric region on HSA 19p13.3, the average rate of recombination is lower than expected in the homologous mouse region. This might indicate that a hot spot of recombination may have been lost in mouse or gained in human during evolution, or that the position of sequences along the chromosome (telomeric compared to the middle of a chromosome) is important for recombination rates. PMID:10984455

  18. Drastic stability change of X-X mismatch in d(CXG) trinucleotide repeat disorders under molecular crowding condition.

    PubMed

    Teng, Ye; Pramanik, Smritimoy; Tateishi-Karimata, Hisae; Ohyama, Tatsuya; Sugimoto, Naoki

    2018-02-05

    The trinucleotide repeat d(CXG) (X = A, C, G or T) is the most common sequence causing repeat expansion disorders. The formation of non-canonical structures, such as hairpin structures with X-X mismatches, has been proposed to affect gene expression and regulation, which are important in pathological studies of these devastating neurological diseases. However, little information is available regarding the thermodynamics of the repeat sequence under crowded cellular conditions where many non-canonical structures such as G-quadruplexes are highly stabilized, while duplexes are destabilised. In this study, we investigated the different stabilities of X-X mismatches in the context of internal d(CXG) self-complementary sequences in an environment with a high concentration of cosolutes to mimic the crowding conditions in cells. The stabilities of full-matched duplexes and duplexes with A-A, G-G, and T-T mismatched base pairs under molecular crowding conditions were notably decreased compared to under dilute conditions. However, the stability of the DNA duplex with a C-C mismatch base pair was only slightly destabilised. Investigating different stabilities of X-X mismatches in d(CXG) sequences is important for improving our understanding of the formation and transition of multiple non-canonical structures in trinucleotide repeat diseases, and may provide insights for pathological studies and drug development. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. A complete mitochondrial genome sequence of Asian black bear Sichuan subspecies (Ursus thibetanus mupinensis)

    PubMed Central

    Hou, Wan-ru; Chen, Yu; Wu, Xia; Hu, Jin-chu; Peng, Zheng-song; Yang, Jung; Tang, Zong-xiang; Zhou, Cai-Quan; Li, Yu-ming; Yang, Shi-kui; Du, Yu-jie; Kong, Ling-lu; Ren, Zheng-long; Zhang, Huai-yu; Shuai, Su-rong

    2007-01-01

    We obtained the complete mitochondrial genome of U.thibetanus mupinensis by DNA sequencing based on the PCR fragments of 18 primers we designed. The results indicate that the mtDNA is 16 868 bp in size, encodes 13 protein genes, 22 tRNA genes, and 2 rRNA genes, with an overall H-strand base composition of 31.2% A, 25.4% C, 15.5% G and 27.9% T. The sequence of the control region (CR) located between tRNA-Pro and tRNA-Phe is 1422 bp in size, consists of 8.43% of the whole genome, GC content is 51.9% and has a 6bp tandem repeat and two 10bp tandem repeats identified by using the Tandem Repeats Finder. U. thibetanus mupinensis mitochondrial genome shares high similarity with those of three other Ursidae: U. americanus (91.46%), U. arctos (89.25%) and U. maritimus (87.66%). PMID:17205108

  20. A Dynamic Tandem Repeat in Monocotyledons Inferred from a Comparative Analysis of Chloroplast Genomes in Melanthiaceae.

    PubMed

    Do, Hoang Dang Khoa; Kim, Joo-Hwan

    2017-01-01

    Chloroplast genomes (cpDNA) are highly valuable resources for evolutionary studies of angiosperms, since they are highly conserved, are small in size, and play critical roles in plants. Slipped-strand mispairing (SSM) was assumed to be a mechanism for generating repeat units in cpDNA. However, research on the employment of different small repeated sequences through SSM events, which may induce the accumulation of distinct types of repeats within the same region in cpDNA, has not been documented. Here, we sequenced two chloroplast genomes from the endemic species Heloniopsis tubiflora (Korea) and Xerophyllum tenax (USA) to cover the gap between molecular data and explore "hot spots" for genomic events in Melanthiaceae. Comparative analysis of 23 complete cpDNA sequences revealed that there were different stages of deletion in the rps16 region across the Melanthiaceae. Based on the partial or complete loss of rps16 gene in cpDNA, we have firstly reported potential molecular markers for recognizing two sections ( Veratrum and Fuscoveratrum ) of Veratrum . Melathiaceae exhibits a significant change in the junction between large single copy and inverted repeat regions, ranging from trnH_GUG to a part of rps3 . Our results show an accumulation of tandem repeats in the rpl23-ycf2 regions of cpDNAs. Small conserved sequences exist and flank tandem repeats in further observation of this region across most of the examined taxa of Liliales. Therefore, we propose three scenarios in which different small repeated sequences were used during SSM events to generate newly distinct types of repeats. Occasionally, prior to the SSM process, point mutation event and double strand break repair occurred and induced the formation of initial repeat units which are indispensable in the SSM process. SSM may have likely occurred more frequently for short repeats than for long repeat sequences in tribe Parideae (Melanthiaceae, Liliales). Collectively, these findings add new evidence of dynamic results from SSM in chloroplast genomes which can be useful for further evolutionary studies in angiosperms. Additionally, genomics events in cpDNA are potential resources for mining molecular markers in Liliales.

  1. Sequence repeats and protein structure

    NASA Astrophysics Data System (ADS)

    Hoang, Trinh X.; Trovato, Antonio; Seno, Flavio; Banavar, Jayanth R.; Maritan, Amos

    2012-11-01

    Repeats are frequently found in known protein sequences. The level of sequence conservation in tandem repeats correlates with their propensities to be intrinsically disordered. We employ a coarse-grained model of a protein with a two-letter amino acid alphabet, hydrophobic (H) and polar (P), to examine the sequence-structure relationship in the realm of repeated sequences. A fraction of repeated sequences comprises a distinct class of bad folders, whose folding temperatures are much lower than those of random sequences. Imperfection in sequence repetition improves the folding properties of the bad folders while deteriorating those of the good folders. Our results may explain why nature has utilized repeated sequences for their versatility and especially to design functional proteins that are intrinsically unstructured at physiological temperatures.

  2. CRF: detection of CRISPR arrays using random forest.

    PubMed

    Wang, Kai; Liang, Chun

    2017-01-01

    CRISPRs (clustered regularly interspaced short palindromic repeats) are particular repeat sequences found in wide range of bacteria and archaea genomes. Several tools are available for detecting CRISPR arrays in the genomes of both domains. Here we developed a new web-based CRISPR detection tool named CRF (CRISPR Finder by Random Forest). Different from other CRISPR detection tools, a random forest classifier was used in CRF to filter out invalid CRISPR arrays from all putative candidates and accordingly enhanced detection accuracy. In CRF, particularly, triplet elements that combine both sequence content and structure information were extracted from CRISPR repeats for classifier training. The classifier achieved high accuracy and sensitivity. Moreover, CRF offers a highly interactive web interface for robust data visualization that is not available among other CRISPR detection tools. After detection, the query sequence, CRISPR array architecture, and the sequences and secondary structures of CRISPR repeats and spacers can be visualized for visual examination and validation. CRF is freely available at http://bioinfolab.miamioh.edu/crf/home.php.

  3. Exploiting rice-sorghum synteny for targeted development of EST-SSRs to enrich the sorghum genetic linkage map.

    PubMed

    Ramu, P; Kassahun, B; Senthilvel, S; Ashok Kumar, C; Jayashree, B; Folkertsma, R T; Reddy, L Ananda; Kuruvinashetti, M S; Haussmann, B I G; Hash, C T

    2009-11-01

    The sequencing and detailed comparative functional analysis of genomes of a number of select botanical models open new doors into comparative genomics among the angiosperms, with potential benefits for improvement of many orphan crops that feed large populations. In this study, a set of simple sequence repeat (SSR) markers was developed by mining the expressed sequence tag (EST) database of sorghum. Among the SSR-containing sequences, only those sharing considerable homology with rice genomic sequences across the lengths of the 12 rice chromosomes were selected. Thus, 600 SSR-containing sorghum EST sequences (50 homologous sequences on each of the 12 rice chromosomes) were selected, with the intention of providing coverage for corresponding homologous regions of the sorghum genome. Primer pairs were designed and polymorphism detection ability was assessed using parental pairs of two existing sorghum mapping populations. About 28% of these new markers detected polymorphism in this 4-entry panel. A subset of 55 polymorphic EST-derived SSR markers were mapped onto the existing skeleton map of a recombinant inbred population derived from cross N13 x E 36-1, which is segregating for Striga resistance and the stay-green component of terminal drought tolerance. These new EST-derived SSR markers mapped across all 10 sorghum linkage groups, mostly to regions expected based on prior knowledge of rice-sorghum synteny. The ESTs from which these markers were derived were then mapped in silico onto the aligned sorghum genome sequence, and 88% of the best hits corresponded to linkage-based positions. This study demonstrates the utility of comparative genomic information in targeted development of markers to fill gaps in linkage maps of related crop species for which sufficient genomic tools are not available.

  4. Human structural variation: mechanisms of chromosome rearrangements

    PubMed Central

    Weckselblatt, Brooke; Rudd, M. Katharine

    2015-01-01

    Chromosome structural variation (SV) is a normal part of variation in the human genome, but some classes of SV can cause neurodevelopmental disorders. Analysis of the DNA sequence at SV breakpoints can reveal mutational mechanisms and risk factors for chromosome rearrangement. Large-scale SV breakpoint studies have become possible recently owing to advances in next-generation sequencing (NGS) including whole-genome sequencing (WGS). These findings have shed light on complex forms of SV such as triplications, inverted duplications, insertional translocations, and chromothripsis. Sequence-level breakpoint data resolve SV structure and determine how genes are disrupted, fused, and/or misregulated by breakpoints. Recent improvements in breakpoint sequencing have also revealed non-allelic homologous recombination (NAHR) between paralogous long interspersed nuclear element (LINE) or human endogenous retrovirus (HERV) repeats as a cause of deletions, duplications, and translocations. This review covers the genomic organization of simple and complex constitutional SVs, as well as the molecular mechanisms of their formation. PMID:26209074

  5. Accurate typing of short tandem repeats from genome-wide sequencing data and its applications.

    PubMed

    Fungtammasan, Arkarachai; Ananda, Guruprasad; Hile, Suzanne E; Su, Marcia Shu-Wei; Sun, Chen; Harris, Robert; Medvedev, Paul; Eckert, Kristin; Makova, Kateryna D

    2015-05-01

    Short tandem repeats (STRs) are implicated in dozens of human genetic diseases and contribute significantly to genome variation and instability. Yet profiling STRs from short-read sequencing data is challenging because of their high sequencing error rates. Here, we developed STR-FM, short tandem repeat profiling using flank-based mapping, a computational pipeline that can detect the full spectrum of STR alleles from short-read data, can adapt to emerging read-mapping algorithms, and can be applied to heterogeneous genetic samples (e.g., tumors, viruses, and genomes of organelles). We used STR-FM to study STR error rates and patterns in publicly available human and in-house generated ultradeep plasmid sequencing data sets. We discovered that STRs sequenced with a PCR-free protocol have up to ninefold fewer errors than those sequenced with a PCR-containing protocol. We constructed an error correction model for genotyping STRs that can distinguish heterozygous alleles containing STRs with consecutive repeat numbers. Applying our model and pipeline to Illumina sequencing data with 100-bp reads, we could confidently genotype several disease-related long trinucleotide STRs. Utilizing this pipeline, for the first time we determined the genome-wide STR germline mutation rate from a deeply sequenced human pedigree. Additionally, we built a tool that recommends minimal sequencing depth for accurate STR genotyping, depending on repeat length and sequencing read length. The required read depth increases with STR length and is lower for a PCR-free protocol. This suite of tools addresses the pressing challenges surrounding STR genotyping, and thus is of wide interest to researchers investigating disease-related STRs and STR evolution. © 2015 Fungtammasan et al.; Published by Cold Spring Harbor Laboratory Press.

  6. Identification, characterization, and utilization of genome-wide simple sequence repeats to identify a QTL for acidity in apple

    PubMed Central

    2012-01-01

    Background Apple is an economically important fruit crop worldwide. Developing a genetic linkage map is a critical step towards mapping and cloning of genes responsible for important horticultural traits in apple. To facilitate linkage map construction, we surveyed and characterized the distribution and frequency of perfect microsatellites in assembled contig sequences of the apple genome. Results A total of 28,538 SSRs have been identified in the apple genome, with an overall density of 40.8 SSRs per Mb. Di-nucleotide repeats are the most frequent microsatellites in the apple genome, accounting for 71.9% of all microsatellites. AT/TA repeats are the most frequent in genomic regions, accounting for 38.3% of all the G-SSRs, while AG/GA dimers prevail in transcribed sequences, and account for 59.4% of all EST-SSRs. A total set of 310 SSRs is selected to amplify eight apple genotypes. Of these, 245 (79.0%) are found to be polymorphic among cultivars and wild species tested. AG/GA motifs in genomic regions have detected more alleles and higher PIC values than AT/TA or AC/CA motifs. Moreover, AG/GA repeats are more variable than any other dimers in apple, and should be preferentially selected for studies, such as genetic diversity and linkage map construction. A total of 54 newly developed apple SSRs have been genetically mapped. Interestingly, clustering of markers with distorted segregation is observed on linkage groups 1, 2, 10, 15, and 16. A QTL responsible for malic acid content of apple fruits is detected on linkage group 8, and accounts for ~13.5% of the observed phenotypic variation. Conclusions This study demonstrates that di-nucleotide repeats are prevalent in the apple genome and that AT/TA and AG/GA repeats are the most frequent in genomic and transcribed sequences of apple, respectively. All SSR motifs identified in this study as well as those newly mapped SSRs will serve as valuable resources for pursuing apple genetic studies, aiding the apple breeding community in marker-assisted breeding, and for performing comparative genomic studies in Rosaceae. PMID:23039990

  7. Annotation-based genome-wide SNP discovery in the large and complex Aegilops tauschii genome using next-generation sequencing without a reference genome sequence

    PubMed Central

    2011-01-01

    Background Many plants have large and complex genomes with an abundance of repeated sequences. Many plants are also polyploid. Both of these attributes typify the genome architecture in the tribe Triticeae, whose members include economically important wheat, rye and barley. Large genome sizes, an abundance of repeated sequences, and polyploidy present challenges to genome-wide SNP discovery using next-generation sequencing (NGS) of total genomic DNA by making alignment and clustering of short reads generated by the NGS platforms difficult, particularly in the absence of a reference genome sequence. Results An annotation-based, genome-wide SNP discovery pipeline is reported using NGS data for large and complex genomes without a reference genome sequence. Roche 454 shotgun reads with low genome coverage of one genotype are annotated in order to distinguish single-copy sequences and repeat junctions from repetitive sequences and sequences shared by paralogous genes. Multiple genome equivalents of shotgun reads of another genotype generated with SOLiD or Solexa are then mapped to the annotated Roche 454 reads to identify putative SNPs. A pipeline program package, AGSNP, was developed and used for genome-wide SNP discovery in Aegilops tauschii-the diploid source of the wheat D genome, and with a genome size of 4.02 Gb, of which 90% is repetitive sequences. Genomic DNA of Ae. tauschii accession AL8/78 was sequenced with the Roche 454 NGS platform. Genomic DNA and cDNA of Ae. tauschii accession AS75 was sequenced primarily with SOLiD, although some Solexa and Roche 454 genomic sequences were also generated. A total of 195,631 putative SNPs were discovered in gene sequences, 155,580 putative SNPs were discovered in uncharacterized single-copy regions, and another 145,907 putative SNPs were discovered in repeat junctions. These SNPs were dispersed across the entire Ae. tauschii genome. To assess the false positive SNP discovery rate, DNA containing putative SNPs was amplified by PCR from AL8/78 and AS75 and resequenced with the ABI 3730 xl. In a sample of 302 randomly selected putative SNPs, 84.0% in gene regions, 88.0% in repeat junctions, and 81.3% in uncharacterized regions were validated. Conclusion An annotation-based genome-wide SNP discovery pipeline for NGS platforms was developed. The pipeline is suitable for SNP discovery in genomic libraries of complex genomes and does not require a reference genome sequence. The pipeline is applicable to all current NGS platforms, provided that at least one such platform generates relatively long reads. The pipeline package, AGSNP, and the discovered 497,118 Ae. tauschii SNPs can be accessed at (http://avena.pw.usda.gov/wheatD/agsnp.shtml). PMID:21266061

  8. Repeated-Sprint Sequences During Female Soccer Matches Using Fixed and Individual Speed Thresholds.

    PubMed

    Nakamura, Fábio Y; Pereira, Lucas A; Loturco, Irineu; Rosseti, Marcelo; Moura, Felipe A; Bradley, Paul S

    2017-07-01

    Nakamura, FY, Pereira, LA, Loturco, I, Rosseti, M, Moura, FA, and Bradley, PS. Repeated-sprint sequences during female soccer matches using fixed and individual speed thresholds. J Strength Cond Res 31(7): 1802-1810, 2017-The main objective of this study was to characterize the occurrence of single sprint and repeated-sprint sequences (RSS) during elite female soccer matches, using fixed (20 km·h) and individually based speed thresholds (>90% of the mean speed from a 20-m sprint test). Eleven elite female soccer players from the same team participated in the study. All players performed a 20-m linear sprint test, and were assessed in up to 10 official matches using Global Positioning System technology. Magnitude-based inferences were used to test for meaningful differences. Results revealed that irrespective of adopting fixed or individual speed thresholds, female players produced only a few RSS during matches (2.3 ± 2.4 sequences using the fixed threshold and 3.3 ± 3.0 sequences using the individually based threshold), with most sequences composing of just 2 sprints. Additionally, central defenders performed fewer sprints (10.2 ± 4.1) than other positions (fullbacks: 28.1 ± 5.5; midfielders: 21.9 ± 10.5; forwards: 31.9 ± 11.1; with the differences being likely to almost certainly associated with effect sizes ranging from 1.65 to 2.72), and sprinting ability declined in the second half. The data do not support the notion that RSS occurs frequently during soccer matches in female players, irrespective of using fixed or individual speed thresholds to define sprint occurrence. However, repeated-sprint ability development cannot be ruled out from soccer training programs because of its association with match-related performance.

  9. Genetic instability associated with loop or stem–loop structures within transcription units can be independent of nucleotide excision repair

    PubMed Central

    Burns, John A; Chowdhury, Moinuddin A; Cartularo, Laura; Berens, Christian; Scicchitano, David A

    2018-01-01

    Abstract Simple sequence repeats (SSRs) are found throughout the genome, and under some conditions can change in length over time. Germline and somatic expansions of trinucleotide repeats are associated with a series of severely disabling illnesses, including Huntington's disease. The underlying mechanisms that effect SSR expansions and contractions have been experimentally elusive, but models suggesting a role for DNA repair have been proposed, in particular the involvement of transcription-coupled nucleotide excision repair (TCNER) that removes transcription-blocking DNA damage from the transcribed strand of actively expressed genes. If the formation of secondary DNA structures that are associated with SSRs were to block RNA polymerase progression, TCNER could be activated, resulting in the removal of the aberrant structure and a concomitant change in the region's length. To test this, TCNER activity in primary human fibroblasts was assessed on defined DNA substrates containing extrahelical DNA loops that lack discernible internal base pairs or DNA stem–loops that contain base pairs within the stem. The results show that both structures impede transcription elongation, but there is no corresponding evidence that nucleotide excision repair (NER) or TCNER operates to remove them. PMID:29474673

  10. EULER-PCR: finishing experiments for repeat resolution.

    PubMed

    Mulyukov, Zufar; Pevzner, Pavel A

    2002-01-01

    Genomic sequencing typically generates a large collection of unordered contigs or scaffolds. Contig ordering (also known as gap closure) is a non-trivial algorithmic and experimental problem since even relatively simple-to-assemble bacterial genomes typically result in large set of contigs. Neighboring contigs maybe separated either by gaps in read coverage or by repeats. In the later case we say that the contigs are separated by pseudogaps, and we emphasize the important difference between gap closure and pseudogap closure. The existing gap closure approaches do not distinguish between gaps and pseudogaps and treat them in the same way. We describe a new fast strategy for closing pseudogaps (repeat resolution). Since in highly repetitive genomes, the number of pseudogaps may exceed the number of gaps by an order of magnitude, this approach provides a significant advantage over the existing gap closure methods.

  11. Diatom centromeres suggest a mechanism for nuclear DNA acquisition

    DOE PAGES

    Diner, Rachel E.; Noddings, Chari M.; Lian, Nathan C.; ...

    2017-07-18

    Centromeres are essential for cell division and growth in all eukaryotes, and knowledge of their sequence and structure guides the development of artificial chromosomes for functional cellular biology studies. Centromeric proteins are conserved among eukaryotes; however, centromeric DNA sequences are highly variable. We combined forward and reverse genetic approaches with chromatin immunoprecipitation to identify centromeres of the model diatom Phaeodactylum tricornutum. We observed 25 unique centromere sequences typically occurring once per chromosome, a finding that helps to resolve nuclear genome organization and indicates monocentric regional centromeres. Diatom centromere sequences contain low-GC content regions but lack repeats or other conserved sequencemore » features. Native and foreign sequences with similar GC content to P. tricornutum centromeres can maintain episomes and recruit the diatom centromeric histone protein CENH3, suggesting nonnative sequences can also function as diatom centromeres. Thus, simple sequence requirements may enable DNA from foreign sources to persist in the nucleus as extrachromosomal episomes, revealing a potential mechanism for organellar and foreign DNA acquisition.« less

  12. Diatom centromeres suggest a mechanism for nuclear DNA acquisition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diner, Rachel E.; Noddings, Chari M.; Lian, Nathan C.

    Centromeres are essential for cell division and growth in all eukaryotes, and knowledge of their sequence and structure guides the development of artificial chromosomes for functional cellular biology studies. Centromeric proteins are conserved among eukaryotes; however, centromeric DNA sequences are highly variable. We combined forward and reverse genetic approaches with chromatin immunoprecipitation to identify centromeres of the model diatom Phaeodactylum tricornutum. We observed 25 unique centromere sequences typically occurring once per chromosome, a finding that helps to resolve nuclear genome organization and indicates monocentric regional centromeres. Diatom centromere sequences contain low-GC content regions but lack repeats or other conserved sequencemore » features. Native and foreign sequences with similar GC content to P. tricornutum centromeres can maintain episomes and recruit the diatom centromeric histone protein CENH3, suggesting nonnative sequences can also function as diatom centromeres. Thus, simple sequence requirements may enable DNA from foreign sources to persist in the nucleus as extrachromosomal episomes, revealing a potential mechanism for organellar and foreign DNA acquisition.« less

  13. Coherent Somatic Mutation in Autoimmune Disease

    PubMed Central

    Ross, Kenneth Andrew

    2014-01-01

    Background Many aspects of autoimmune disease are not well understood, including the specificities of autoimmune targets, and patterns of co-morbidity and cross-heritability across diseases. Prior work has provided evidence that somatic mutation caused by gene conversion and deletion at segmentally duplicated loci is relevant to several diseases. Simple tandem repeat (STR) sequence is highly mutable, both somatically and in the germ-line, and somatic STR mutations are observed under inflammation. Results Protein-coding genes spanning STRs having markers of mutability, including germ-line variability, high total length, repeat count and/or repeat similarity, are evaluated in the context of autoimmunity. For the initiation of autoimmune disease, antigens whose autoantibodies are the first observed in a disease, termed primary autoantigens, are informative. Three primary autoantigens, thyroid peroxidase (TPO), phogrin (PTPRN2) and filaggrin (FLG), include STRs that are among the eleven longest STRs spanned by protein-coding genes. This association of primary autoantigens with long STR sequence is highly significant (). Long STRs occur within twenty genes that are associated with sixteen common autoimmune diseases and atherosclerosis. The repeat within the TTC34 gene is an outlier in terms of length and a link with systemic lupus erythematosus is proposed. Conclusions The results support the hypothesis that many autoimmune diseases are triggered by immune responses to proteins whose DNA sequence mutates somatically in a coherent, consistent fashion. Other autoimmune diseases may be caused by coherent somatic mutations in immune cells. The coherent somatic mutation hypothesis has the potential to be a comprehensive explanation for the initiation of many autoimmune diseases. PMID:24988487

  14. Repeating aftershocks of the great 2004 Sumatra and 2005 Nias earthquakes

    NASA Astrophysics Data System (ADS)

    Yu, Wen-che; Song, Teh-Ru Alex; Silver, Paul G.

    2013-05-01

    We investigate repeating aftershocks associated with the great 2004 Sumatra-Andaman (Mw 9.2) and 2005 Nias-Simeulue (Mw 8.6) earthquakes by cross-correlating waveforms recorded by the regional seismographic station PSI and teleseismic stations. We identify 10 and 18 correlated aftershock sequences associated with the great 2004 Sumatra and 2005 Nias earthquakes, respectively. The majority of the correlated aftershock sequences are located near the down-dip end of a large afterslip patch. We determine the precise relative locations of event pairs among these sequences and estimate the source rupture areas. The correlated event pairs identified are appropriately referred to as repeating aftershocks, in that the source rupture areas are comparable and significantly overlap within a sequence. We use the repeating aftershocks to estimate afterslip based on the slip-seismic moment scaling relationship and to infer the temporal decay rate of the recurrence interval. The estimated afterslip resembles that measured from the near-field geodetic data to the first order. The decay rate of repeating aftershocks as a function of lapse time t follows a power-law decay 1/tp with the exponent p in the range 0.8-1.1. Both types of observations indicate that repeating aftershocks are governed by post-seismic afterslip.

  15. [Progress of genome engineering technology via clustered regularly interspaced short palindromic repeats--a review].

    PubMed

    Li, Hao; Qiu, Shaofu; Song, Hongbin

    2013-10-04

    In survival competition with phage, bacteria and archaea gradually evolved the acquired immune system--Clustered regularly interspaced short palindromic repeats (CRISPR), presenting the trait of transcribing the crRNA and the CRISPR-associated protein (Cas) to silence or cleaving the foreign double-stranded DNA specifically. In recent years, strong interest arises in prokaryotes primitive immune system and many in-depth researches are going on. Recently, researchers successfully repurposed CRISPR as an RNA-guided platform for sequence-specific gene expression, which provides a simple approach for selectively perturbing gene expression on a genome-wide scale. It will undoubtedly bring genome engineering into a more convenient and accurate new era.

  16. Analysis of Two Cosmid Clones from Chromosome 4 of Drosophila melanogaster Reveals Two New Genes Amid an Unusual Arrangement of Repeated Sequences

    PubMed Central

    Locke, John; Podemski, Lynn; Roy, Ken; Pilgrim, David; Hodgetts, Ross

    1999-01-01

    Chromosome 4 from Drosophila melanogaster has several unusual features that distinguish it from the other chromosomes. These include a diffuse appearance in salivary gland polytene chromosomes, an absence of recombination, and the variegated expression of P-element transgenes. As part of a larger project to understand these properties, we are assembling a physical map of this chromosome. Here we report the sequence of two cosmids representing ∼5% of the polytenized region. Both cosmid clones contain numerous repeated DNA sequences, as identified by cross hybridization with labeled genomic DNA, BLAST searches, and dot matrix analysis, which are positioned between and within the transcribed sequences. The repetitive sequences include three copies of the mobile element Hoppel, one copy of the mobile element HB, and 18 DINE repeats. DINE is a novel, short repeated sequence dispersed throughout both cosmid sequences. One cosmid includes the previously described cubitus interruptus (ci) gene and two new genes: that a gene with a predicted amino acid sequence similar to ribosomal protein S3a which is consistent with the Minute(4)101 locus thought to be in the region, and a novel member of the protein family that includes plexin and met–hepatocyte growth factor receptor. The other cosmid contains only the two short 5′-most exons from the zinc-finger-homolog-2 (zfh-2) gene. This is the first extensive sequence analysis of noncoding DNA from chromosome 4. The distribution of the various repeats suggests its organization is similar to the β-heterochromatic regions near the base of the major chromosome arms. Such a pattern may account for the diffuse banding of the polytene chromosome 4 and the variegation of many P-element transgenes on the chromosome. PMID:10022978

  17. β-hairpin-mediated nucleation of polyglutamine amyloid formation

    PubMed Central

    Kar, Karunakar; Hoop, Cody L.; Drombosky, Kenneth W.; Baker, Matthew A.; Kodali, Ravindra; Arduini, Irene; van der Wel, Patrick C. A.; Horne, W. Seth; Wetzel, Ronald

    2013-01-01

    The conformational preferences of polyglutamine (polyQ) sequences are of major interest because of their central importance in the expanded CAG repeat diseases that include Huntington’s disease (HD). Here we explore the response of various biophysical parameters to the introduction of β-hairpin motifs within polyQ sequences. These motifs (trpzip, disulfide, D-Pro-Gly, Coulombic attraction, L-Pro-Gly) enhance formation rates and stabilities of amyloid fibrils with degrees of effectiveness well-correlated with their known abilities to enhance β-hairpin formation in other peptides. These changes led to decreases in the critical nucleus for amyloid formation from a value of n* = 4 for a simple, unbroken Q23 sequence to approximate unitary n* values for similar length polyQs containing β-hairpin motifs. At the same time, the morphologies, secondary structures, and bioactivities of the resulting fibrils were essentially unchanged from simple polyQ aggregates. In particular, the signature pattern of SSNMR 13C Gln resonances that appears to be unique to polyQ amyloid is replicated exactly in fibrils from a β-hairpin polyQ. Importantly, while β-hairpin motifs do produce enhancements in the equilibrium constant for nucleation in aggregation reactions, these Kn* values remain quite low (~ 10−10) and there is no evidence for significant embellishment of β-structure within the monomer ensemble. The results indicate an important role for β-turns in the nucleation mechanism and structure of polyQ amyloid and have implications for the nature of the toxic species in expanded CAG repeat diseases. PMID:23353826

  18. Rapid and accurate synthesis of TALE genes from synthetic oligonucleotides.

    PubMed

    Wang, Fenghua; Zhang, Hefei; Gao, Jingxia; Chen, Fengjiao; Chen, Sijie; Zhang, Cuizhen; Peng, Gang

    2016-01-01

    Custom synthesis of transcription activator-like effector (TALE) genes has relied upon plasmid libraries of pre-fabricated TALE-repeat monomers or oligomers. Here we describe a novel synthesis method that directly incorporates annealed synthetic oligonucleotides into the TALE-repeat units. Our approach utilizes iterative sets of oligonucleotides and a translational frame check strategy to ensure the high efficiency and accuracy of TALE-gene synthesis. TALE arrays of more than 20 repeats can be constructed, and the majority of the synthesized constructs have perfect sequences. In addition, this novel oligonucleotide-based method can readily accommodate design changes to the TALE repeats. We demonstrated an increased gene targeting efficiency against a genomic site containing a potentially methylated cytosine by incorporating non-conventional repeat variable di-residue (RVD) sequences.

  19. DNABIT Compress - Genome compression algorithm.

    PubMed

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-22

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, "DNABIT Compress" for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that "DNABIT Compress" algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases.

  20. Sequence Effect on the Formation of DNA Minidumbbells.

    PubMed

    Liu, Yuan; Lam, Sik Lok

    2017-11-16

    The DNA minidumbbell (MDB) is a recently identified non-B structure. The reported MDBs contain two TTTA, CCTG, or CTTG type II loops. At present, the knowledge and understanding of the sequence criteria for MDB formation are still limited. In this study, we performed a systematic high-resolution nuclear magnetic resonance (NMR) and native gel study to investigate the effect of sequence variations in tandem repeats on the formation of MDBs. Our NMR results reveal the importance of hydrogen bonds, base-base stacking, and hydrophobic interactions from each of the participating residues. We conclude that in the MDBs formed by tandem repeats, C-G loop-closing base pairs are more stabilizing than T-A loop-closing base pairs, and thymine residues in both the second and third loop positions are more stabilizing than cytosine residues. The results from this study enrich our knowledge on the sequence criteria for the formation of MDBs, paving a path for better exploring their potential roles in biological systems and DNA nanotechnology.

  1. A novel typing method for Listeria monocytogenes using high-resolution melting analysis (HRMA) of tandem repeat regions.

    PubMed

    Ohshima, Chihiro; Takahashi, Hajime; Iwakawa, Ai; Kuda, Takashi; Kimura, Bon

    2017-07-17

    Listeria monocytogenes, which is responsible for causing food poisoning known as listeriosis, infects humans and animals. Widely distributed in the environment, this bacterium is known to contaminate food products after being transmitted to factories via raw materials. To minimize the contamination of products by food pathogens, it is critical to identify and eliminate factory entry routes and pathways for the causative bacteria. High resolution melting analysis (HRMA) is a method that takes advantage of differences in DNA sequences and PCR product lengths that are reflected by the disassociation temperature. Through our research, we have developed a multiple locus variable-number tandem repeat analysis (MLVA) using HRMA as a simple and rapid method to differentiate L. monocytogenes isolates. While evaluating our developed method, the ability of MLVA-HRMA, MLVA using capillary electrophoresis, and multilocus sequence typing (MLST) was compared for their ability to discriminate between strains. The MLVA-HRMA method displayed greater discriminatory ability than MLST and MLVA using capillary electrophoresis, suggesting that the variation in the number of repeat units, along with mutations within the DNA sequence, was accurately reflected by the melting curve of HRMA. Rather than relying on DNA sequence analysis or high-resolution electrophoresis, the MLVA-HRMA method employs the same process as PCR until the analysis step, suggesting a combination of speed and simplicity. The result of MLVA-HRMA method is able to be shared between different laboratories. There are high expectations that this method will be adopted for regular inspections at food processing facilities in the near future. Copyright © 2017. Published by Elsevier B.V.

  2. The first genetic map of the American cranberry: exploration of synteny conservation and quantitative trait loci.

    PubMed

    Georgi, Laura; Johnson-Cicalese, Jennifer; Honig, Josh; Das, Sushma Parankush; Rajah, Veeran D; Bhattacharya, Debashish; Bassil, Nahla; Rowland, Lisa J; Polashock, James; Vorsa, Nicholi

    2013-03-01

    The first genetic map of cranberry (Vaccinium macrocarpon) has been constructed, comprising 14 linkage groups totaling 879.9 cM with an estimated coverage of 82.2 %. This map, based on four mapping populations segregating for field fruit-rot resistance, contains 136 distinct loci. Mapped markers include blueberry-derived simple sequence repeat (SSR) and cranberry-derived sequence-characterized amplified region markers previously used for fingerprinting cranberry cultivars. In addition, SSR markers were developed near cranberry sequences resembling genes involved in flavonoid biosynthesis or defense against necrotrophic pathogens, or conserved orthologous set (COS) sequences. The cranberry SSRs were developed from next-generation cranberry genomic sequence assemblies; thus, the positions of these SSRs on the genomic map provide information about the genomic location of the sequence scaffold from which they were derived. The use of SSR markers near COS and other functional sequences, plus 33 SSR markers from blueberry, facilitates comparisons of this map with maps of other plant species. Regions of the cranberry map were identified that showed conservation of synteny with Vitis vinifera and Arabidopsis thaliana. Positioned on this map are quantitative trait loci (QTL) for field fruit-rot resistance (FFRR), fruit weight, titratable acidity, and sound fruit yield (SFY). The SFY QTL is adjacent to one of the fruit weight QTL and may reflect pleiotropy. Two of the FFRR QTL are in regions of conserved synteny with grape and span defense gene markers, and the third FFRR QTL spans a flavonoid biosynthetic gene.

  3. Selfish DNA in protein-coding genes of Rickettsia.

    PubMed

    Ogata, H; Audic, S; Barbe, V; Artiguenave, F; Fournier, P E; Raoult, D; Claverie, J M

    2000-10-13

    Rickettsia conorii, the aetiological agent of Mediterranean spotted fever, is an intracellular bacterium transmitted by ticks. Preliminary analyses of the nearly complete genome sequence of R. conorii have revealed 44 occurrences of a previously undescribed palindromic repeat (150 base pairs long) throughout the genome. Unexpectedly, this repeat was found inserted in-frame within 19 different R. conorii open reading frames likely to encode functional proteins. We found the same repeat in proteins of other Rickettsia species. The finding of a mobile element inserted in many unrelated genes suggests the potential role of selfish DNA in the creation of new protein sequences.

  4. Identification of presumed ancestral DNA sequences of phaseolin in Phaseolus vulgaris.

    PubMed Central

    Kami, J; Velásquez, V B; Debouck, D G; Gepts, P

    1995-01-01

    Common bean (Phaseolus vulgaris) consists of two major geographic gene pools, one distributed in Mexico, Central America, and Colombia and the other in the southern Andes (southern Peru, Bolivia, and Argentina). Amplification and sequencing of members of the multigene family coding for phaseolin, the major seed storage protein of the common bean, provide evidence for accumulation of tandem direct repeats in both introns and exons during evolution of the multigene family in this species. The presumed ancestral phaseolin sequences, without tandem repeats, were found in recently discovered but nearly extinct wild common bean populations of Ecuador and northern Peru that are intermediate between the two major gene pools of the species based on geographical and molecular arguments. Our results illustrate the usefulness of tandem direct repeats in establishing the polarity of DNA sequence divergence and therefore in proposing phylogenies. Images Fig. 1 Fig. 3 PMID:7862642

  5. Cytogenetic and molecular markers for detecting Aegilops uniaristata chromosomes in a wheat background.

    PubMed

    Gong, Wenping; Li, Guangrong; Zhou, Jianping; Li, Genying; Liu, Cheng; Huang, Chengyan; Zhao, Zhendong; Yang, Zujun

    2014-09-01

    Aegilops uniaristata has many agronomically useful traits that can be used for wheat breeding. So far, a Triticum turgidum - Ae. uniaristata amphiploid and one set of Chinese Spring (CS) - Ae. uniaristata addition lines have been produced. To guide Ae. uniaristata chromatin transformation from these lines into cultivated wheat through chromosome engineering, reliable cytogenetic and molecular markers specific for Ae. uniaristata chromosomes need to be developed. Standard C-banding shows that C-bands mainly exist in the centromeric regions of Ae. uniaristata but rarely at the distal ends. Fluorescence in situ hybridization (FISH) using (GAA)8 as a probe showed that the hybridization signal of chromosomes 1N-7N are different, thus (GAA)8 can be used to identify all Ae. uniaristata chromosomes in wheat background simultaneously. Moreover, a total of 42 molecular markers specific for Ae. uniaristata chromosomes were developed by screening expressed sequence tag - sequence tagged site (EST-STS), expressed sequence tag - simple sequence repeat (EST-SSR), and PCR-based landmark unique gene (PLUG) primers. The markers were subsequently localized using the CS - Ae. uniaristata addition lines and different wheat cultivars as controls. The cytogenetic and molecular markers developed herein will be helpful for screening and identifying wheat - Ae. uniaristata progeny.

  6. Characterization of Adelphocoris suturalis (Hemiptera: Miridae) Transcriptome from Different Developmental Stages

    NASA Astrophysics Data System (ADS)

    Tian, Caihong; Tek Tay, Wee; Feng, Hongqiang; Wang, Ying; Hu, Yongmin; Li, Guoping

    2015-06-01

    Adelphocoris suturalis is one of the most serious pest insects of Bt cotton in China, however its molecular genetics, biochemistry and physiology are poorly understood. We used high throughput sequencing platform to perform de novo transcriptome assembly and gene expression analyses across different developmental stages (eggs, 2nd and 5th instar nymphs, female and male adults). We obtained 20 GB of clean data and revealed 88,614 unigenes, including 23,830 clusters and 64,784 singletons. These unigene sequences were annotated and classified by Gene Ontology, Clusters of Orthologous Groups, and Kyoto Encyclopedia of Genes and Genomes databases. A large number of differentially expressed genes were discovered through pairwise comparisons between these developmental stages. Gene expression profiles were dramatically different between life stage transitions, with some of these most differentially expressed genes being associated with sex difference, metabolism and development. Quantitative real-time PCR results confirm deep-sequencing findings based on relative expression levels of nine randomly selected genes. Furthermore, over 791,390 single nucleotide polymorphisms and 2,682 potential simple sequence repeats were identified. Our study provided comprehensive transcriptional gene expression information for A. suturalis that will form the basis to better understanding of development pathways, hormone biosynthesis, sex differences and wing formation in mirid bugs.

  7. Characterization of Adelphocoris suturalis (Hemiptera: Miridae) Transcriptome from Different Developmental Stages

    PubMed Central

    Tian, Caihong; Tek Tay, Wee; Feng, Hongqiang; Wang, Ying; Hu, Yongmin; Li, Guoping

    2015-01-01

    Adelphocoris suturalis is one of the most serious pest insects of Bt cotton in China, however its molecular genetics, biochemistry and physiology are poorly understood. We used high throughput sequencing platform to perform de novo transcriptome assembly and gene expression analyses across different developmental stages (eggs, 2nd and 5th instar nymphs, female and male adults). We obtained 20 GB of clean data and revealed 88,614 unigenes, including 23,830 clusters and 64,784 singletons. These unigene sequences were annotated and classified by Gene Ontology, Clusters of Orthologous Groups, and Kyoto Encyclopedia of Genes and Genomes databases. A large number of differentially expressed genes were discovered through pairwise comparisons between these developmental stages. Gene expression profiles were dramatically different between life stage transitions, with some of these most differentially expressed genes being associated with sex difference, metabolism and development. Quantitative real-time PCR results confirm deep-sequencing findings based on relative expression levels of nine randomly selected genes. Furthermore, over 791,390 single nucleotide polymorphisms and 2,682 potential simple sequence repeats were identified. Our study provided comprehensive transcriptional gene expression information for A. suturalis that will form the basis to better understanding of development pathways, hormone biosynthesis, sex differences and wing formation in mirid bugs. PMID:26047353

  8. Multiplexed detection of DNA sequences using a competitive displacement assay in a microfluidic SERRS-based device.

    PubMed

    Yazdi, Soroush H; Giles, Kristen L; White, Ian M

    2013-11-05

    We demonstrate sensitive and multiplexed detection of DNA sequences through a surface enhanced resonance Raman spectroscopy (SERRS)-based competitive displacement assay in an integrated microsystem. The use of the competitive displacement scheme, in which the target DNA sequence displaces a Raman-labeled reporter sequence that has lower affinity for the immobilized probe, enables detection of unlabeled target DNA sequences with a simple single-step procedure. In our implementation, the displacement reaction occurs in a microporous packed column of silica beads prefunctionalized with probe-reporter pairs. The use of a functionalized packed-bead column in a microfluidic channel provides two major advantages: (i) immobilization surface chemistry can be performed as a batch process instead of on a chip-by-chip basis, and (ii) the microporous network eliminates the diffusion limitations of a typical biological assay, which increases the sensitivity. Packed silica beads are also leveraged to improve the SERRS detection of the Raman-labeled reporter. Following displacement, the reporter adsorbs onto aggregated silver nanoparticles in a microfluidic mixer; the nanoparticle-reporter conjugates are then trapped and concentrated in the silica bead matrix, which leads to a significant increase in plasmonic nanoparticles and adsorbed Raman reporters within the detection volume as compared to an open microfluidic channel. The experimental results reported here demonstrate detection down to 100 pM of the target DNA sequence, and the experiments are shown to be specific, repeatable, and quantitative. Furthermore, we illustrate the advantage of using SERRS by demonstrating multiplexed detection. The sensitivity of the assay, combined with the advantages of multiplexed detection and single-step operation with unlabeled target sequences makes this method attractive for practical applications. Importantly, while we illustrate DNA sequence detection, the SERRS-based competitive displacement assay is applicable to detection of a variety of biological macromolecules, including proteins and proteolytic enzymes.

  9. Structural features of the rice chromosome 4 centromere.

    PubMed

    Zhang, Yu; Huang, Yuchen; Zhang, Lei; Li, Ying; Lu, Tingting; Lu, Yiqi; Feng, Qi; Zhao, Qiang; Cheng, Zhukuan; Xue, Yongbiao; Wing, Rod A; Han, Bin

    2004-01-01

    A complete sequence of a chromosome centromere is necessary for fully understanding centromere function. We reported the sequence structures of the first complete rice chromosome centromere through sequencing a large insert bacterial artificial chromosome clone-based contig, which covered the rice chromosome 4 centromere. Complete sequencing of the 124-kb rice chromosome 4 centromere revealed that it consisted of 18 tracts of 379 tandemly arrayed repeats known as CentO and a total of 19 centromeric retroelements (CRs) but no unique sequences were detected. Four tracts, composed of 65 CentO repeats, were located in the opposite orientation, and 18 CentO tracts were flanked by 19 retroelements. The CRs were classified into four types, and the type I retroelements appeared to be more specific to rice centromeres. The preferential insert of the CRs among CentO repeats indicated that the centromere-specific retroelements may contribute to centromere expansion during evolution. The presence of three intact retrotransposons in the centromere suggests that they may be responsible for functional centromere initiation through a transcription-mediated mechanism.

  10. A Rapid Method for Optimizing Running Temperature of Electrophoresis through Repetitive On-Chip CE Operations

    PubMed Central

    Kaneda, Shohei; Ono, Koichi; Fukuba, Tatsuhiro; Nojima, Takahiko; Yamamoto, Takatoki; Fujii, Teruo

    2011-01-01

    In this paper, a rapid and simple method to determine the optimal temperature conditions for denaturant electrophoresis using a temperature-controlled on-chip capillary electrophoresis (CE) device is presented. Since on-chip CE operations including sample loading, injection and separation are carried out just by switching the electric field, we can repeat consecutive run-to-run CE operations on a single on-chip CE device by programming the voltage sequences. By utilizing the high-speed separation and the repeatability of the on-chip CE, a series of electrophoretic operations with different running temperatures can be implemented. Using separations of reaction products of single-stranded DNA (ssDNA) with a peptide nucleic acid (PNA) oligomer, the effectiveness of the presented method to determine the optimal temperature conditions required to discriminate a single-base substitution (SBS) between two different ssDNAs is demonstrated. It is shown that a single run for one temperature condition can be executed within 4 min, and the optimal temperature to discriminate the SBS could be successfully found using the present method. PMID:21845077

  11. Analysis of SINE and LINE repeat content of Y chromosomes in the platypus, Ornithorhynchus anatinus.

    PubMed

    Kortschak, R Daniel; Tsend-Ayush, Enkhjargal; Grützner, Frank

    2009-01-01

    Monotremes feature an extraordinary sex-chromosome system that consists of five X and five Y chromosomes in males. These sex chromosomes share homology with bird sex chromosomes but no homology with the therian X. The genome of a female platypus was recently completed, providing unique insights into sequence and gene content of autosomes and X chromosomes, but no Y-specific sequence has so far been analysed. Here we report the isolation, sequencing and analysis of approximately 700 kb of sequence of the non-recombining regions of Y2, Y3 and Y5, which revealed differences in base composition and repeat content between autosomes and sex chromosomes, and within the sex chromosomes themselves. This provides the first insights into repeat content of Y chromosomes in platypus, which overall show similar patterns of repeat composition to Y chromosomes in other species. Interestingly, we also observed differences between the various Y chromosomes, and in combination with timing and activity patterns we provide an approach that can be used to examine the evolutionary history of the platypus sex-chromosome chain.

  12. Past climate changes explain the phylogeography of Vitellaria paradoxa over Africa

    PubMed Central

    Allal, F; Sanou, H; Millet, L; Vaillant, A; Camus-Kulandaivelu, L; Logossa, Z A; Lefèvre, F; Bouvet, J-M

    2011-01-01

    The evolution of the savanna biome has been deeply marked by repeated contraction/expansion phases due to climate perturbations during the Quaternary period. In this study, we investigated the impact of the last glacial maximum (LGM) on the present genetic pattern of Vitellaria paradoxa (shea tree), a major African savanna tree. A range-wide sampling of the species enabled us to sample 374 individuals from 71 populations distributed throughout sub-Sahelian Africa. Trees were genotyped using 3 chloroplasts and 12 nuclear microsatellites, and were sequenced for 2 polymorphic chloroplast intergenic spacers. Analyses of genetic diversity and structure were based on frequency-based and Bayesian methods. Potential distributions of V. paradoxa at present, during the LGM and the last interglacial period, were examined using DIVA-GIS ecological niche modelling (ENM). Haplotypic and allelic richness varied significantly across the range according to chloroplast and nuclear microsatellites, which pointed to higher diversity in West Africa. A high but contrasted level of differentiation was revealed among populations with a clear phylogeographic signal, with both nuclear (FST=0.21; RST=0.28; RST>RST (permuted)) and chloroplast simple sequence repeats (SSRs) (GST=0.81; NST=0.90; NST>NST (permuted)). We identified a strong geographically related structure separating western and eastern populations, and a substructure in the eastern part of the area consistent with subspecies distinction. Using ENM, we deduced that perturbations during the LGM fragmented the potential eastern distribution of shea tree, but not its distribution in West Africa. Our main results suggest that climate variations are the major factor explaining the genetic pattern of V. paradoxa. PMID:21407253

  13. [Mutation Analysis of 19 STR Loci in 20 723 Cases of Paternity Testing].

    PubMed

    Bi, J; Chang, J J; Li, M X; Yu, C Y

    2017-06-01

    To observe and analyze the confirmed cases of paternity testing, and to explore the mutation rules of STR loci. The mutant STR loci were screened from 20 723 confirmed cases of paternity testing by Goldeneye 20A system.The mutation rates, and the sources, fragment length, steps and increased or decreased repeat sequences of mutant alleles were counted for the analysis of the characteristics of mutation-related factors. A total of 548 mutations were found on 19 STR loci, and 557 mutation events were observed. The loci mutation rate was 0.07‰-2.23‰. The ratio of paternal to maternal mutant events was 3.06:1. One step mutation was the main mutation, and the number of the increased repeat sequences was almost the same as the decreased repeat sequences. The repeat sequences were more likely to decrease in two steps mutation and above. Mutation mainly occurred in the medium allele, and the number of the increased repeat sequences was almost the same as the decreased repeat sequences. In long allele mutations, the decreased repeat sequences were significantly more than the increased repeat sequences. The number of the increased repeat sequences was almost the same as the decreased repeat sequences in paternal mutation, while the decreased repeat sequences were more than the increased in maternal mutation. There are significant differences in the mutation rate of each locus. When one or two loci do not conform to the genetic law, other detection system should be added, and PI value should be calculated combined with the information of the mutate STR loci in order to further clarify the identification opinions. Copyright© by the Editorial Department of Journal of Forensic Medicine

  14. Leaf margin phenotype-specific restriction-site-associated DNA-derived markers for pineapple (Ananas comosus L.)

    PubMed Central

    Urasaki, Naoya; Goeku, Satoko; Kaneshima, Risa; Takamine, Tomonori; Tarora, Kazuhiko; Takeuchi, Makoto; Moromizato, Chie; Yonamine, Kaname; Hosaka, Fumiko; Terakami, Shingo; Matsumura, Hideo; Yamamoto, Toshiya; Shoda, Moriyuki

    2015-01-01

    To explore genome-wide DNA polymorphisms and identify DNA markers for leaf margin phenotypes, a restriction-site-associated DNA sequencing analysis was employed to analyze three bulked DNAs of F1 progeny from a cross between a ‘piping-leaf-type’ cultivar, ‘Yugafu’, and a ‘spiny-tip-leaf-type’ variety, ‘Yonekura’. The parents were both Ananas comosus var. comosus. From the analysis, piping-leaf and spiny-tip-leaf gene-specific restriction-site-associated DNA sequencing tags were obtained and designated as PLSTs and STLSTs, respectively. The five PLSTs and two STSLTs were successfully converted to cleaved amplified polymorphic sequence (CAPS) or simple sequence repeat (SSR) markers using the sequence differences between alleles. Based on the genotyping of the F1 with two SSR and three CAPS markers, the five PLST markers were mapped in the vicinity of the P locus, with the closest marker, PLST1_SSR, being located 1.5 cM from the P locus. The two CAPS markers from STLST1 and STLST3 perfectly assessed the ‘spiny-leaf type’ as homozygotes of the recessive s allele of the S gene. The recombination value between the S locus and STLST loci was 2.4, and STLSTs were located 2.2 cM from the S locus. SSR and CAPS markers are applicable to marker-assisted selection of leaf margin phenotypes in pineapple breeding. PMID:26175625

  15. Leaf margin phenotype-specific restriction-site-associated DNA-derived markers for pineapple (Ananas comosus L.).

    PubMed

    Urasaki, Naoya; Goeku, Satoko; Kaneshima, Risa; Takamine, Tomonori; Tarora, Kazuhiko; Takeuchi, Makoto; Moromizato, Chie; Yonamine, Kaname; Hosaka, Fumiko; Terakami, Shingo; Matsumura, Hideo; Yamamoto, Toshiya; Shoda, Moriyuki

    2015-06-01

    To explore genome-wide DNA polymorphisms and identify DNA markers for leaf margin phenotypes, a restriction-site-associated DNA sequencing analysis was employed to analyze three bulked DNAs of F1 progeny from a cross between a 'piping-leaf-type' cultivar, 'Yugafu', and a 'spiny-tip-leaf-type' variety, 'Yonekura'. The parents were both Ananas comosus var. comosus. From the analysis, piping-leaf and spiny-tip-leaf gene-specific restriction-site-associated DNA sequencing tags were obtained and designated as PLSTs and STLSTs, respectively. The five PLSTs and two STSLTs were successfully converted to cleaved amplified polymorphic sequence (CAPS) or simple sequence repeat (SSR) markers using the sequence differences between alleles. Based on the genotyping of the F1 with two SSR and three CAPS markers, the five PLST markers were mapped in the vicinity of the P locus, with the closest marker, PLST1_SSR, being located 1.5 cM from the P locus. The two CAPS markers from STLST1 and STLST3 perfectly assessed the 'spiny-leaf type' as homozygotes of the recessive s allele of the S gene. The recombination value between the S locus and STLST loci was 2.4, and STLSTs were located 2.2 cM from the S locus. SSR and CAPS markers are applicable to marker-assisted selection of leaf margin phenotypes in pineapple breeding.

  16. Identification and characterization of gene-based SSR markers in date palm (Phoenix dactylifera L.).

    PubMed

    Zhao, Yongli; Williams, Roxanne; Prakash, C S; He, Guohao

    2012-12-15

    Date palm (Phoenix dactylifera L.) is an important tree in the Middle East and North Africa due to the nutritional value of its fruit. Molecular Breeding would accelerate genetic improvement of fruit tree through marker assisted selection. However, the lack of molecular markers in date palm restricts the application of molecular breeding. In this study, we analyzed 28,889 EST sequences from the date palm genome database to identify simple-sequence repeats (SSRs) and to develop gene-based markers, i.e. expressed sequence tag-SSRs (EST-SSRs). We identified 4,609 ESTs as containing SSRs, among which, trinucleotide motifs (69.7%) were the most common, followed by tetranucleotide (10.4%) and dinucleotide motifs (9.6%). The motif AG (85.7%) was most abundant in dinucleotides, while motifs AGG (26.8%), AAG (19.3%), and AGC (16.1%) were most common among trinucleotides. A total of 4,967 primer pairs were designed for EST-SSR markers from the computational data. In a follow up laboratory study, we tested a sample of 20 random selected primer pairs for amplification and polymorphism detection using genomic DNA from date palm cultivars. Nearly one-third of these primer pairs detected DNA polymorphism to differentiate the twelve date palm cultivars used. Functional categorization of EST sequences containing SSRs revealed that 3,108 (67.4%) of such ESTs had homology with known proteins. Date palm EST sequences exhibits a good resource for developing gene-based markers. These genic markers identified in our study may provide a valuable genetic and genomic tool for further genetic research and varietal development in date palm, such as diversity study, QTL mapping, and molecular breeding.

  17. SSR allelic variation in almond (Prunus dulcis Mill.).

    PubMed

    Xie, Hua; Sui, Yi; Chang, Feng-Qi; Xu, Yong; Ma, Rong-Cai

    2006-01-01

    Sixteen SSR markers including eight EST-SSR and eight genomic SSRs were used for genetic diversity analysis of 23 Chinese and 15 international almond cultivars. EST- and genomic SSR markers previously reported in species of Prunus, mainly peach, proved to be useful for almond genetic analysis. DNA sequences of 117 alleles of six of the 16 SSR loci were analysed to reveal sequence variation among the 38 almond accessions. For the four SSR loci with AG/CT repeats, no insertions or deletions were observed in the flanking regions of the 98 alleles sequenced. Allelic size variation of these loci resulted exclusively from differences in the structures of repeat motifs, which involved interruptions or occurrences of new motif repeats in addition to varying number of AG/CT repeats. Some alleles had a high number of uninterrupted repeat motifs, indicating that SSR mutational patterns differ among alleles at a given SSR locus within the almond species. Allelic homoplasy was observed in the SSR loci because of base substitutions, interruptions or compound repeat motifs. Substitutions in the repeat regions were found at two SSR loci, suggesting that point mutations operate on SSRs and hinder the further SSR expansion by introducing repeat interruptions to stabilize SSR loci. Furthermore, it was shown that some potential point mutations in the flanking regions are linked with new SSR repeat motif variation in almond and peach.

  18. Diversity and genetic stability in banana genotypes in a breeding program using inter simple sequence repeats (ISSR) markers.

    PubMed

    Silva, A V C; Nascimento, A L S; Vitória, M F; Rabbani, A R C; Soares, A N R; Lédo, A S

    2017-02-23

    Banana (Musa spp) is a fruit species frequently cultivated and consumed worldwide. Molecular markers are important for estimating genetic diversity in germplasm and between genotypes in breeding programs. The objective of this study was to analyze the genetic diversity of 21 banana genotypes (FHIA 23, PA42-44, Maçã, Pacovan Ken, Bucaneiro, YB42-47, Grand Naine, Tropical, FHIA 18, PA94-01, YB42-17, Enxerto, Japira, Pacovã, Prata-Anã, Maravilha, PV79-34, Caipira, Princesa, Garantida, and Thap Maeo), by using inter-simple sequence repeat (ISSR) markers. Material was generated from the banana breeding program of Embrapa Cassava & Fruits and evaluated at Embrapa Coastal Tablelands. The 12 primers used in this study generated 97.5% polymorphism. Four clusters were identified among the different genotypes studied, and the sum of the first two principal components was 48.91%. From the Unweighted Pair Group Method using Arithmetic averages (UPGMA) dendrogram, it was possible to identify two main clusters and subclusters. Two genotypes (Garantida and Thap Maeo) remained isolated from the others, both in the UPGMA clustering and in the principal cordinate analysis (PCoA). Using ISSR markers, we could analyze the genetic diversity of the studied material and state that these markers were efficient at detecting sufficient polymorphism to estimate the genetic variability in banana genotypes.

  19. Novel and highly informative Capsicum SSR markers and their cross-species transferability.

    PubMed

    Buso, G S C; Reis, A M M; Amaral, Z P S; Ferreira, M E

    2016-09-23

    This study was undertaken primarily to develop new simple sequence repeat (SSR) markers for Capsicum. As part of this project aimed at broadening the use of molecular tools in Capsicum breeding, two genomic libraries enriched for AG/TC repeat sequences were constructed for Capsicum annuum. A total of 475 DNA clones were sequenced from both libraries and 144 SSR markers were tested on cultivated and wild species of Capsicum. Forty-five SSR markers were randomly selected to genotype a panel of 48 accessions of the Capsicum germplasm bank. The number of alleles per locus ranged from 2 to 11, with an average of 6 alleles. The polymorphism information content was on average 0.60, ranging from 0.20 to 0.83. The cross-species transferability to seven cultivated and wild Capsicum species was tested with a set of 91 SSR markers. We found that a high proportion of the loci produced amplicons in all species tested. C. frutescens had the highest number of transferable markers, whereas the wild species had the lowest. Our results indicate that the new markers can be readily used in genetic analyses of Capsicum.

  20. Generation and analysis of expressed sequence tags in the extreme large genomes Lilium and Tulipa.

    PubMed

    Shahin, Arwa; van Kaauwen, Martijn; Esselink, Danny; Bargsten, Joachim W; van Tuyl, Jaap M; Visser, Richard G F; Arens, Paul

    2012-11-20

    Bulbous flowers such as lily and tulip (Liliaceae family) are monocot perennial herbs that are economically very important ornamental plants worldwide. However, there are hardly any genetic studies performed and genomic resources are lacking. To build genomic resources and develop tools to speed up the breeding in both crops, next generation sequencing was implemented. We sequenced and assembled transcriptomes of four lily and five tulip genotypes using 454 pyro-sequencing technology. Successfully, we developed the first set of 81,791 contigs with an average length of 514 bp for tulip, and enriched the very limited number of 3,329 available ESTs (Expressed Sequence Tags) for lily with 52,172 contigs with an average length of 555 bp. The contigs together with singletons covered on average 37% of lily and 39% of tulip estimated transcriptome. Mining lily and tulip sequence data for SSRs (Simple Sequence Repeats) showed that di-nucleotide repeats were twice more abundant in UTRs (UnTranslated Regions) compared to coding regions, while tri-nucleotide repeats were equally spread over coding and UTR regions. Two sets of single nucleotide polymorphism (SNP) markers suitable for high throughput genotyping were developed. In the first set, no SNPs flanking the target SNP (50 bp on either side) were allowed. In the second set, one SNP in the flanking regions was allowed, which resulted in a 2 to 3 fold increase in SNP marker numbers compared with the first set. Orthologous groups between the two flower bulbs: lily and tulip (12,017 groups) and among the three monocot species: lily, tulip, and rice (6,900 groups) were determined using OrthoMCL. Orthologous groups were screened for common SNP markers and EST-SSRs to study synteny between lily and tulip, which resulted in 113 common SNP markers and 292 common EST-SSR. Lily and tulip contigs generated were annotated and described according to Gene Ontology terminology. Two transcriptome sets were built that are valuable resources for marker development, comparative genomic studies and candidate gene approaches. Next generation sequencing of leaf transcriptome is very effective; however, deeper sequencing and using more tissues and stages is advisable for extended comparative studies.

  1. A Comparative Proteomic Analysis of the Simple Amino Acid Repeat Distributions in Plasmodia Reveals Lineage Specific Amino Acid Selection

    PubMed Central

    Dalby, Andrew R.

    2009-01-01

    Background Microsatellites have been used extensively in the field of comparative genomics. By studying microsatellites in coding regions we have a simple model of how genotypic changes undergo selection as they are directly expressed in the phenotype as altered proteins. The simplest of these tandem repeats in coding regions are the tri-nucleotide repeats which produce a repeat of a single amino acid when translated into proteins. Tri-nucleotide repeats are often disease associated, and are also known to be unstable to both expansion and contraction. This makes them sensitive markers for studying proteome evolution, in closely related species. Results The evolutionary history of the family of malarial causing parasites Plasmodia is complex because of the life-cycle of the organism, where it interacts with a number of different hosts and goes through a series of tissue specific stages. This study shows that the divergence between the primate and rodent malarial parasites has resulted in a lineage specific change in the simple amino acid repeat distribution that is correlated to A–T content. The paper also shows that this altered use of amino acids in SAARs is consistent with the repeat distributions being under selective pressure. Conclusions The study shows that simple amino acid repeat distributions can be used to group related species and to examine their phylogenetic relationships. This study also shows that an outgroup species with a similar A–T content can be distinguished based only on the amino acid usage in repeats, and suggest that this might be a useful feature for proteome clustering. The lineage specific use of amino acids in repeat regions suggests that comparative studies of SAAR distributions between proteomes gives an insight into the mechanisms of expansion and the selective pressures acting on the organism. PMID:19597555

  2. The 28S–18S rDNA intergenic spacer from Crithidia fasciculata: repeated sequences, length heterogeneity, putative processing sites and potential interactions between U3 small nucleolar RNA and the ribosomal RNA precursor

    PubMed Central

    Schnare, Murray N.; Collings, James C.; Spencer, David F.; Gray, Michael W.

    2000-01-01

    In Crithidia fasciculata, the ribosomal RNA (rRNA) gene repeats range in size from ∼11 to 12 kb. This length heterogeneity is localized to a region of the intergenic spacer (IGS) that contains tandemly repeated copies of a 19mer sequence. The IGS also contains four copies of an ∼55 nt repeat that has an internal inverted repeat and is also present in the IGS of Leishmania species. We have mapped the C.fasciculata transcription initiation site as well as two other reverse transcriptase stop sites that may be analogous to the A0 and A′ pre-rRNA processing sites within the 5′ external transcribed spacer (ETS) of other eukaryotes. Features that could influence processing at these sites include two stretches of conserved primary sequence and three secondary structure elements present in the 5′ ETS. We also characterized the C.fasciculata U3 snoRNA, which has the potential for base-pairing with pre-rRNA sequences. Finally, we demonstrate that biosynthesis of large subunit rRNA in both C.fasciculata and Trypanosoma brucei involves 3′-terminal addition of three A residues that are not present in the corresponding DNA sequences. PMID:10982863

  3. Molecular identification and characterization of clustered regularly interspaced short palindromic repeats (CRISPRs) in a urease-positive thermophilic Campylobacter sp. (UPTC).

    PubMed

    Tasaki, E; Hirayama, J; Tazumi, A; Hayashi, K; Hara, Y; Ueno, H; Moore, J E; Millar, B C; Matsuda, M

    2012-02-01

    Novel clustered regularly-interspaced short palindromic repeats (CRISPRs) locus [7,500 base pairs (bp) in length] occurred in the urease-positive thermophilic Campylobacter (UPTC) Japanese isolate, CF89-12. The 7,500 bp gene loci consisted of the 5'-methylaminomethyl-2-thiouridylate methyltransferase gene, putative (P) CRISPR associated (p-Cas), putative open reading frames, Cas1 and Cas2, leader sequence region (146 bp), 12 CRISPRs consensus sequence repeats (each 36 bp) separated by a non-repetitive unique spacer region of similar length (26-31 bp) and the phosphatidyl glycerophosphatase A gene. When the CRISPRs loci in the UPTC CF89-12 and five C. jejuni isolates were compared with one another, these six isolates contained p-Cas, Cas1 and Cas2 within the loci. Four to 12 CRISPRs consensus sequence repeats separated by a non-repetitive unique spacer region occurred in six isolates and the nucleotide sequences of those repeats gave approximately 92-100% similarity with each other. However, no sequence similarity occurred in the unique spacer regions among these isolates. The putative σ(70) transcriptional promoter and the hypothetical ρ-independent terminator structures for the CRISPRs and Cas were detected. No in vivo transcription of p-Cas, Cas1 and Cas2 was confirmed in the UPTC cells.

  4. Isolation and characterization of polymorphic microsatellite markers for blue fox (Alopex lagopus).

    PubMed

    Li, Y M; Guo, P C; Lu, J Y; Bai, C Y; Zhao, Z H; Yan, S Q

    2016-06-03

    The blue fox, belonging to the family Canidae, is a coat color variant of the native arctic fox (Alopex lagopus). To date, microsatellite loci in blue fox are typically amplified using canine simple sequence repeat primers. In the present study, we constructed an (AC)n enrichment library, and isolated and identified 17 polymorphic microsatellite markers for blue fox. The number of alleles per locus is from two to seven based on 24 examined individuals. The expected and observed heterozygosities were in the range of 0.3112 to 0.8236 and 0.2917 to 0.8750, respectively. The polymorphic information content per locus ranged from 0.2583 to 0.8022. These polymorphic markers can be useful for future population genetic studies of both farmed blue foxes and wild arctic foxes.

  5. Beyond Repeat after Me: Teaching Pronunciation to English Learners

    ERIC Educational Resources Information Center

    Yoshida, Marla Tritch

    2016-01-01

    This engaging text clearly presents essential concepts that teachers need to guide their students toward clearly intelligible pronunciation and more effective communication skills. Based on a sound theoretical background, the book presents practical, imaginative ways to teach and practice pronunciation that go beyond simple "Repeat after…

  6. Actin as the generator of tension during muscle contraction.

    PubMed Central

    Schutt, C E; Lindberg, U

    1992-01-01

    We propose that the key structural feature in the conversion of chemical free energy into mechanical work by actomyosin is a myosin-induced change in the length of the actin filament. As reported earlier, there is evidence that helical actin filaments can untwist into ribbons having an increased intersubunit repeat. Regular patterns of actomyosin interactions arise when ribbons are aligned with myosin thick filaments, because the repeat distance of the myosin lattice (429 A) is an integral multiple of the subunit repeat in the ribbon (35.7 A). This commensurability property of the actomyosin lattice leads to a simple mechanism for controlling the sequence of events in chemical-mechanical transduction. A role for tropomyosin in transmitting the forces developed by actomyosin is proposed. In this paper, we describe how these transduction principles provide the basis for a theory of muscle contraction. Images PMID:1530888

  7. New development and validation of 50 SSR markers in breadfruit (Artocarpus altilis, Moraceae) by next-generation sequencing.

    PubMed

    De Bellis, Fabien; Malapa, Roger; Kagy, Valérie; Lebegin, Stéphane; Billot, Claire; Labouisse, Jean-Pierre

    2016-08-01

    Using next-generation sequencing technology, new microsatellite loci were characterized in Artocarpus altilis (Moraceae) and two congeners to increase the number of available markers for genotyping breadfruit cultivars. A total of 47,607 simple sequence repeat loci were obtained by sequencing a library of breadfruit genomic DNA with an Illumina MiSeq system. Among them, 50 single-locus markers were selected and assessed using 41 samples (39 A. altilis, one A. camansi, and one A. heterophyllus). All loci were polymorphic in A. altilis, 44 in A. camansi, and 21 in A. heterophyllus. The number of alleles per locus ranged from two to 19. The new markers will be useful for assessing the identity and genetic diversity of breadfruit cultivars on a small geographical scale, gaining a better understanding of farmer management practices, and will help to optimize breadfruit genebank management.

  8. A simple and highly repeatable viral plaque assay for enterovirus 71.

    PubMed

    Yin, Yingxian; Xu, Yi; Ou, Zhiying; Su, Ling; Xia, Huimin

    2015-04-01

    The classic plaque assay is a method for counting infectious viral particles, however its complexity limits its use in a variety of virological experiments. To simplify the operation and to improve the repeatability, we employed an improved plaque assay procedure based on Avicel to make the whole experiment easier and optimize the results on a model of Vero cells infection with Enterovirus 71(EV71). Clear plaques visible to the naked eyes can be formed on a 24-well plate or a 96-well plate without immunostaining. Following further improvement, this plaque assay procedure could be applied to other viruses, being both simple and repeatable. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. DNA-binding proteins from marine bacteria expand the known sequence diversity of TALE-like repeats

    PubMed Central

    de Lange, Orlando; Wolf, Christina; Thiel, Philipp; Krüger, Jens; Kleusch, Christian; Kohlbacher, Oliver; Lahaye, Thomas

    2015-01-01

    Transcription Activator-Like Effectors (TALEs) of Xanthomonas bacteria are programmable DNA binding proteins with unprecedented target specificity. Comparative studies into TALE repeat structure and function are hindered by the limited sequence variation among TALE repeats. More sequence-diverse TALE-like proteins are known from Ralstonia solanacearum (RipTALs) and Burkholderia rhizoxinica (Bats), but RipTAL and Bat repeats are conserved with those of TALEs around the DNA-binding residue. We study two novel marine-organism TALE-like proteins (MOrTL1 and MOrTL2), the first to date of non-terrestrial origin. We have assessed their DNA-binding properties and modelled repeat structures. We found that repeats from these proteins mediate sequence specific DNA binding conforming to the TALE code, despite low sequence similarity to TALE repeats, and with novel residues around the BSR. However, MOrTL1 repeats show greater sequence discriminating power than MOrTL2 repeats. Sequence alignments show that there are only three residues conserved between repeats of all TALE-like proteins including the two new additions. This conserved motif could prove useful as an identifier for future TALE-likes. Additionally, comparing MOrTL repeats with those of other TALE-likes suggests a common evolutionary origin for the TALEs, RipTALs and Bats. PMID:26481363

  10. Genetic Variation and Association Mapping of Seed-Related Traits in Cultivated Peanut (Arachis hypogaea L.) Using Single-Locus Simple Sequence Repeat Markers.

    PubMed

    Zhao, Jiaojiao; Huang, Li; Ren, Xiaoping; Pandey, Manish K; Wu, Bei; Chen, Yuning; Zhou, Xiaojing; Chen, Weigang; Xia, Youlin; Li, Zeqing; Luo, Huaiyong; Lei, Yong; Varshney, Rajeev K; Liao, Boshou; Jiang, Huifang

    2017-01-01

    Cultivated peanut ( Arachis hypogaea L.) is an allotetraploid (AABB, 2 n = 4 x = 40), valued for its edible oil and digestible protein. Seed size and weight are important agronomical traits significantly influence the yield and nutritional composition of peanut. However, the genetic basis of seed-related traits remains ambiguous. Association mapping is a powerful approach for quickly and efficiently exploring the genetic basis of important traits in plants. In this study, a total of 104 peanut accessions were used to identify molecular markers associated with seed-related traits using 554 single-locus simple sequence repeat (SSR) markers. Most of the accessions had no or weak relationship in the peanut panel. The linkage disequilibrium (LD) decayed with the genetic distance of 1cM at the genome level and the LD of B subgenome decayed faster than that of the A subgenome. Large phenotypic variation was observed for four seed-related traits in the association panel. Using mixed linear model with population structure and kinship, a total of 30 significant SSR markers were detected to be associated with four seed-related traits ( P < 1.81 × 10 -3 ) in different environments, which explained 11.22-32.30% of the phenotypic variation for each trait. The marker AHGA44686 was simultaneously and repeatedly associated with seed length and hundred-seed weight in multiple environments with large phenotypic variance (26.23 ∼ 32.30%). The favorable alleles of associated markers for each seed-related trait and the optimal combination of favorable alleles of associated markers were identified to significantly enhance trait performance, revealing a potential of utilization of these associated markers in peanut breeding program.

  11. A SSR-based composite genetic linkage map for the cultivated peanut (Arachis hypogaea L.) genome

    PubMed Central

    2010-01-01

    Background The construction of genetic linkage maps for cultivated peanut (Arachis hypogaea L.) has and continues to be an important research goal to facilitate quantitative trait locus (QTL) analysis and gene tagging for use in a marker-assisted selection in breeding. Even though a few maps have been developed, they were constructed using diploid or interspecific tetraploid populations. The most recently published intra-specific map was constructed from the cross of cultivated peanuts, in which only 135 simple sequence repeat (SSR) markers were sparsely populated in 22 linkage groups. The more detailed linkage map with sufficient markers is necessary to be feasible for QTL identification and marker-assisted selection. The objective of this study was to construct a genetic linkage map of cultivated peanut using simple sequence repeat (SSR) markers derived primarily from peanut genomic sequences, expressed sequence tags (ESTs), and by "data mining" sequences released in GenBank. Results Three recombinant inbred lines (RILs) populations were constructed from three crosses with one common female parental line Yueyou 13, a high yielding Spanish market type. The four parents were screened with 1044 primer pairs designed to amplify SSRs and 901 primer pairs produced clear PCR products. Of the 901 primer pairs, 146, 124 and 64 primer pairs (markers) were polymorphic in these populations, respectively, and used in genotyping these RIL populations. Individual linkage maps were constructed from each of the three populations and a composite map based on 93 common loci were created using JoinMap. The composite linkage maps consist of 22 composite linkage groups (LG) with 175 SSR markers (including 47 SSRs on the published AA genome maps), representing the 20 chromosomes of A. hypogaea. The total composite map length is 885.4 cM, with an average marker density of 5.8 cM. Segregation distortion in the 3 populations was 23.0%, 13.5% and 7.8% of the markers, respectively. These distorted loci tended to cluster on LG1, LG3, LG4 and LG5. There were only 15 EST-SSR markers mapped due to low polymorphism. By comparison, there were potential synteny, collinear order of some markers and conservation of collinear linkage groups among the maps and with the AA genome but not fully conservative. Conclusion A composite linkage map was constructed from three individual mapping populations with 175 SSR markers in 22 composite linkage groups. This composite genetic linkage map is among the first "true" tetraploid peanut maps produced. This map also consists of 47 SSRs that have been used in the published AA genome maps, and could be used in comparative mapping studies. The primers described in this study are PCR-based markers, which are easy to share for genetic mapping in peanuts. All 1044 primer pairs are provided as additional files and the three RIL populations will be made available to public upon request for quantitative trait loci (QTL) analysis and linkage map improvement. PMID:20105299

  12. Genetic characterization of UCS region of Pneumocystis jirovecii and construction of allelic profiles of Indian isolates based on sequence typing at three regions.

    PubMed

    Gupta, Rashmi; Mirdha, Bijay Ranjan; Guleria, Randeep; Kumar, Lalit; Luthra, Kalpana; Agarwal, Sanjay Kumar; Sreenivas, Vishnubhatla

    2013-01-01

    Pneumocystis jirovecii is an opportunistic pathogen that causes severe pneumonia in immunocompromised patients. To study the genetic diversity of P. jirovecii in India the upstream conserved sequence (UCS) region of Pneumocystis genome was amplified, sequenced and genotyped from a set of respiratory specimens obtained from 50 patients with a positive result for nested mitochondrial large subunit ribosomal RNA (mtLSU rRNA) PCR during the years 2005-2008. Of these 50 cases, 45 showed a positive PCR for UCS region. Variations in the tandem repeats in UCS region were characterized by sequencing all the positive cases. Of the 45 cases, one case showed five repeats, 11 cases showed four repeats, 29 cases showed three repeats and four cases showed two repeats. By running amplified DNA from all these cases on a high-resolution gel, mixed infection was observed in 12 cases (26.7%, 12/45). Forty three of 45 cases included in this study had previously been typed at mtLSU rRNA and internal transcribed spacer (ITS) region by our group. In the present study, the genotypes at those two regions were combined with UCS repeat patterns to construct allelic profiles of 43 cases. A total of 36 allelic profiles were observed in 43 isolates indicating high genetic variability. A statistically significant association was observed between mtLSU rRNA genotype 1, ITS type Ea and UCS repeat pattern 4. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Comparative fine mapping of the Wax 1 (W1) locus in hexaploid wheat.

    PubMed

    Lu, Ping; Qin, Jinxia; Wang, Guoxin; Wang, Lili; Wang, Zhenzhong; Wu, Qiuhong; Xie, Jingzhong; Liang, Yong; Wang, Yong; Zhang, Deyun; Sun, Qixin; Liu, Zhiyong

    2015-08-01

    By applying comparative genomics analyses, a high-density genetic linkage map of the Wax 1 ( W1 ) locus was constructed as a framework for map-based cloning. Glaucousness is described as the scattering effect of visible light from wax deposited on the cuticle of plant aerial organs. In wheat, the wax on leaves and stems is mainly controlled by two sets of genes: glaucousness loci (W1 and W2) and non-glaucousness loci (Iw1 and Iw2). Bulked segregant analysis (BSA) and simple sequence repeat (SSR) mapping showed that Wax1 (W1) is located on chromosome arm 2BS between markers Xgwm210 and Xbarc35. By applying comparative genomics analyses, colinearity genomic regions of the W1 locus on wheat 2BS were identified in Brachypodium distachyon chromosome 5, rice chromosome 4 and sorghum chromosome 6, respectively. Four STS markers were developed using the Triticum aestivum cv. Chinese Spring 454 contig sequences and the International Wheat Genome Sequencing Consortium (IWGSC) survey sequences. W1 was mapped into a 0.93 cM genetic interval flanked by markers XWGGC3197 and XWGGC2484, which has synteny with genomic regions of 56.5 kb in Brachypodium, 390 kb in rice and 31.8 kb in sorghum. The fine genetic map can serve as a framework for chromosome landing, physical mapping and map-based cloning of the W1 in wheat.

  14. A High-Density Genetic Map with Array-Based Markers Facilitates Structural and Quantitative Trait Locus Analyses of the Common Wheat Genome

    PubMed Central

    Iehisa, Julio Cesar Masaru; Ohno, Ryoko; Kimura, Tatsuro; Enoki, Hiroyuki; Nishimura, Satoru; Okamoto, Yuki; Nasuda, Shuhei; Takumi, Shigeo

    2014-01-01

    The large genome and allohexaploidy of common wheat have complicated construction of a high-density genetic map. Although improvements in the throughput of next-generation sequencing (NGS) technologies have made it possible to obtain a large amount of genotyping data for an entire mapping population by direct sequencing, including hexaploid wheat, a significant number of missing data points are often apparent due to the low coverage of sequencing. In the present study, a microarray-based polymorphism detection system was developed using NGS data obtained from complexity-reduced genomic DNA of two common wheat cultivars, Chinese Spring (CS) and Mironovskaya 808. After design and selection of polymorphic probes, 13,056 new markers were added to the linkage map of a recombinant inbred mapping population between CS and Mironovskaya 808. On average, 2.49 missing data points per marker were observed in the 201 recombinant inbred lines, with a maximum of 42. Around 40% of the new markers were derived from genic regions and 11% from repetitive regions. The low number of retroelements indicated that the new polymorphic markers were mainly derived from the less repetitive region of the wheat genome. Around 25% of the mapped sequences were useful for alignment with the physical map of barley. Quantitative trait locus (QTL) analyses of 14 agronomically important traits related to flowering, spikes, and seeds demonstrated that the new high-density map showed improved QTL detection, resolution, and accuracy over the original simple sequence repeat map. PMID:24972598

  15. A high-density genetic map with array-based markers facilitates structural and quantitative trait locus analyses of the common wheat genome.

    PubMed

    Iehisa, Julio Cesar Masaru; Ohno, Ryoko; Kimura, Tatsuro; Enoki, Hiroyuki; Nishimura, Satoru; Okamoto, Yuki; Nasuda, Shuhei; Takumi, Shigeo

    2014-10-01

    The large genome and allohexaploidy of common wheat have complicated construction of a high-density genetic map. Although improvements in the throughput of next-generation sequencing (NGS) technologies have made it possible to obtain a large amount of genotyping data for an entire mapping population by direct sequencing, including hexaploid wheat, a significant number of missing data points are often apparent due to the low coverage of sequencing. In the present study, a microarray-based polymorphism detection system was developed using NGS data obtained from complexity-reduced genomic DNA of two common wheat cultivars, Chinese Spring (CS) and Mironovskaya 808. After design and selection of polymorphic probes, 13,056 new markers were added to the linkage map of a recombinant inbred mapping population between CS and Mironovskaya 808. On average, 2.49 missing data points per marker were observed in the 201 recombinant inbred lines, with a maximum of 42. Around 40% of the new markers were derived from genic regions and 11% from repetitive regions. The low number of retroelements indicated that the new polymorphic markers were mainly derived from the less repetitive region of the wheat genome. Around 25% of the mapped sequences were useful for alignment with the physical map of barley. Quantitative trait locus (QTL) analyses of 14 agronomically important traits related to flowering, spikes, and seeds demonstrated that the new high-density map showed improved QTL detection, resolution, and accuracy over the original simple sequence repeat map. © The Author 2014. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  16. PineElm_SSRdb: a microsatellite marker database identified from genomic, chloroplast, mitochondrial and EST sequences of pineapple (Ananas comosus (L.) Merrill).

    PubMed

    Chaudhary, Sakshi; Mishra, Bharat Kumar; Vivek, Thiruvettai; Magadum, Santoshkumar; Yasin, Jeshima Khan

    2016-01-01

    Simple Sequence Repeats or microsatellites are resourceful molecular genetic markers. There are only few reports of SSR identification and development in pineapple. Complete genome sequence of pineapple available in the public domain can be used to develop numerous novel SSRs. Therefore, an attempt was made to identify SSRs from genomic, chloroplast, mitochondrial and EST sequences of pineapple which will help in deciphering genetic makeup of its germplasm resources. A total of 359511 SSRs were identified in pineapple (356385 from genome sequence, 45 from chloroplast sequence, 249 in mitochondrial sequence and 2832 from EST sequences). The list of EST-SSR markers and their details are available in the database. PineElm_SSRdb is an open source database available for non-commercial academic purpose at http://app.bioelm.com/ with a mapping tool which can develop circular maps of selected marker set. This database will be of immense use to breeders, researchers and graduates working on Ananas spp. and to others working on cross-species transferability of markers, investigating diversity, mapping and DNA fingerprinting.

  17. Functional centromeres in Astragalus sinicus include a compact centromere-specific histone H3 and a 20-bp tandem repeat.

    PubMed

    Tek, Ahmet L; Kashihara, Kazunari; Murata, Minoru; Nagaki, Kiyotaka

    2011-11-01

    The centromere plays an essential role for proper chromosome segregation during cell division and usually harbors long arrays of tandem repeated satellite DNA sequences. Although this function is conserved among eukaryotes, the sequences of centromeric DNA repeats are variable. Most of our understanding of functional centromeres, which are defined by localization of a centromere-specific histone H3 (CENH3) protein, comes from model organisms. The components of the functional centromere in legumes are poorly known. The genus Astragalus is a member of the legumes and bears the largest numbers of species among angiosperms. Therefore, we studied the components of centromeres in Astragalus sinicus. We identified the CenH3 homolog of A. sinicus, AsCenH3 that is the most compact in size among higher eukaryotes. A CENH3-based assay revealed the functional centromeric DNA sequences from A. sinicus, called CentAs. The CentAs repeat is localized in A. sinicus centromeres, and comprises an AT-rich tandem repeat with a monomer size of 20 nucleotides.

  18. Comparative Analysis of the Complete Plastomes of Apostasia wallichii and Neuwiedia singapureana (Apostasioideae) Reveals Different Evolutionary Dynamics of IR/SSC Boundary among Photosynthetic Orchids.

    PubMed

    Niu, Zhitao; Pan, Jiajia; Zhu, Shuying; Li, Ludan; Xue, Qingyun; Liu, Wei; Ding, Xiaoyu

    2017-01-01

    Apostasioideae, consists of only two genera, Apostasia and Neuwiedia , which are mainly distributed in Southeast Asia and northern Australia. The floral structure, taxonomy, biogeography, and genome variation of Apostasioideae have been intensively studied. However, detailed analyses of plastome composition and structure and comparisons with those of other orchid subfamilies have not yet been conducted. Here, the complete plastome sequences of Apostasia wallichii and Neuwiedia singapureana were sequenced and compared with 43 previously published photosynthetic orchid plastomes to characterize the plastome structure and evolution in the orchids. Unlike many orchid plastomes (e.g., Paphiopedilum and Vanilla ), the plastomes of Apostasioideae contain a full set of 11 functional NADH dehydrogenase ( ndh ) genes. The distribution of repeat sequences and simple sequence repeat elements enhanced the view that the mutation rate of non-coding regions was higher than that of coding regions. The 10 loci- ndhA intron, matK-5'trnK , clpP-psbB , rps8-rpl14 , trnT-trnL , 3'trnK-matK , clpP intron , psbK-trnK , trnS-psbC , and ndhF-rpl32 -that had the highest degrees of sequence variability were identified as mutational hotspots for the Apostasia plastome. Furthermore, our results revealed that plastid genes exhibited a variable evolution rate within and among different orchid genus. Considering the diversified evolution of both coding and non-coding regions, we suggested that the plastome-wide evolution of orchid species was disproportional. Additionally, the sequences flanking the inverted repeat/small single copy (IR/SSC) junctions of photosynthetic orchid plastomes were categorized into three types according to the presence/absence of ndh genes. Different evolutionary dynamics for each of the three IR/SSC types of photosynthetic orchid plastomes were also proposed.

  19. Comparative Analysis of the Complete Plastomes of Apostasia wallichii and Neuwiedia singapureana (Apostasioideae) Reveals Different Evolutionary Dynamics of IR/SSC Boundary among Photosynthetic Orchids

    PubMed Central

    Niu, Zhitao; Pan, Jiajia; Zhu, Shuying; Li, Ludan; Xue, Qingyun; Liu, Wei; Ding, Xiaoyu

    2017-01-01

    Apostasioideae, consists of only two genera, Apostasia and Neuwiedia, which are mainly distributed in Southeast Asia and northern Australia. The floral structure, taxonomy, biogeography, and genome variation of Apostasioideae have been intensively studied. However, detailed analyses of plastome composition and structure and comparisons with those of other orchid subfamilies have not yet been conducted. Here, the complete plastome sequences of Apostasia wallichii and Neuwiedia singapureana were sequenced and compared with 43 previously published photosynthetic orchid plastomes to characterize the plastome structure and evolution in the orchids. Unlike many orchid plastomes (e.g., Paphiopedilum and Vanilla), the plastomes of Apostasioideae contain a full set of 11 functional NADH dehydrogenase (ndh) genes. The distribution of repeat sequences and simple sequence repeat elements enhanced the view that the mutation rate of non-coding regions was higher than that of coding regions. The 10 loci—ndhA intron, matK-5′trnK, clpP-psbB, rps8-rpl14, trnT-trnL, 3′trnK-matK, clpP intron, psbK-trnK, trnS-psbC, and ndhF-rpl32—that had the highest degrees of sequence variability were identified as mutational hotspots for the Apostasia plastome. Furthermore, our results revealed that plastid genes exhibited a variable evolution rate within and among different orchid genus. Considering the diversified evolution of both coding and non-coding regions, we suggested that the plastome-wide evolution of orchid species was disproportional. Additionally, the sequences flanking the inverted repeat/small single copy (IR/SSC) junctions of photosynthetic orchid plastomes were categorized into three types according to the presence/absence of ndh genes. Different evolutionary dynamics for each of the three IR/SSC types of photosynthetic orchid plastomes were also proposed. PMID:29046685

  20. CRISPR Detection From Short Reads Using Partial Overlap Graphs.

    PubMed

    Ben-Bassat, Ilan; Chor, Benny

    2016-06-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) are structured regions in bacterial and archaeal genomes, which are part of an adaptive immune system against phages. CRISPRs are important for many microbial studies and are playing an essential role in current gene editing techniques. As such, they attract substantial research interest. The exponential growth in the amount of bacterial sequence data in recent years enables the exploration of CRISPR loci in more and more species. Most of the automated tools that detect CRISPR loci rely on fully assembled genomes. However, many assemblers do not handle repetitive regions successfully. The first tool to work directly on raw sequence data is Crass, which requires reads that are long enough to contain two copies of the same repeat. We present a method to identify CRISPR repeats from raw sequence data of short reads. The algorithm is based on an observation differentiating CRISPR repeats from other types of repeats, and it involves a series of partial constructions of the overlap graph. This enables us to avoid many of the difficulties that assemblers face, as we merely aim to identify the repeats that belong to CRISPR loci. A preliminary implementation of the algorithm shows good results and detects CRISPR repeats in cases where other existing tools fail to do so.

Top