Sample records for simple size effect

  1. The Effect of Family Size on Spanish Simple and Complex Words

    ERIC Educational Resources Information Center

    Lazaro, Miguel; Sainz, Javier S.

    2012-01-01

    This study presents the results of three experiments in which the Family Size (FS) effect is explored. The first experiment is carried out with no prime on simple words. The second and third experiments are carried out with morphological priming on complex words. In the first experiment a facilitatory effect of FS is observed: high FS targets…

  2. A Simple Effect Size Estimator for Single Case Designs Using WinBUGS

    ERIC Educational Resources Information Center

    Rindskopf, David; Shadish, William; Hedges, Larry

    2012-01-01

    Data from single case designs (SCDs) have traditionally been analyzed by visual inspection rather than statistical models. As a consequence, effect sizes have been of little interest. Lately, some effect-size estimators have been proposed, but most are either (i) nonparametric, and/or (ii) based on an analogy incompatible with effect sizes from…

  3. Sample Size Estimation: The Easy Way

    ERIC Educational Resources Information Center

    Weller, Susan C.

    2015-01-01

    This article presents a simple approach to making quick sample size estimates for basic hypothesis tests. Although there are many sources available for estimating sample sizes, methods are not often integrated across statistical tests, levels of measurement of variables, or effect sizes. A few parameters are required to estimate sample sizes and…

  4. On the Problem-Size Effect in Small Additions: Can We Really Discard Any Counting-Based Account?

    ERIC Educational Resources Information Center

    Barrouillet, Pierre; Thevenot, Catherine

    2013-01-01

    The problem-size effect in simple additions, that is the increase in response times (RTs) and error rates with the size of the operands, is one of the most robust effects in cognitive arithmetic. Current accounts focus on factors that could affect speed of retrieval of the answers from long-term memory such as the occurrence of interference in a…

  5. Predictive power of food web models based on body size decreases with trophic complexity.

    PubMed

    Jonsson, Tomas; Kaartinen, Riikka; Jonsson, Mattias; Bommarco, Riccardo

    2018-05-01

    Food web models parameterised using body size show promise to predict trophic interaction strengths (IS) and abundance dynamics. However, this remains to be rigorously tested in food webs beyond simple trophic modules, where indirect and intraguild interactions could be important and driven by traits other than body size. We systematically varied predator body size, guild composition and richness in microcosm insect webs and compared experimental outcomes with predictions of IS from models with allometrically scaled parameters. Body size was a strong predictor of IS in simple modules (r 2  = 0.92), but with increasing complexity the predictive power decreased, with model IS being consistently overestimated. We quantify the strength of observed trophic interaction modifications, partition this into density-mediated vs. behaviour-mediated indirect effects and show that model shortcomings in predicting IS is related to the size of behaviour-mediated effects. Our findings encourage development of dynamical food web models explicitly including and exploring indirect mechanisms. © 2018 John Wiley & Sons Ltd/CNRS.

  6. Psychophysical and perceptual performance in a simulated-scotoma model of human eye injury

    NASA Astrophysics Data System (ADS)

    Brandeis, R.; Egoz, I.; Peri, D.; Sapiens, N.; Turetz, J.

    2008-02-01

    Macular scotomas, affecting visual functioning, characterize many eye and neurological diseases like AMD, diabetes mellitus, multiple sclerosis, and macular hole. In this work, foveal visual field defects were modeled, and their effects were evaluated on spatial contrast sensitivity and a task of stimulus detection and aiming. The modeled occluding scotomas, of different size, were superimposed on the stimuli presented on the computer display, and were stabilized on the retina using a mono Purkinje Eye-Tracker. Spatial contrast sensitivity was evaluated using square-wave grating stimuli, whose contrast thresholds were measured using the method of constant stimuli with "catch trials". The detection task consisted of a triple conjunctive visual search display of: size (in visual angle), contrast and background (simple, low-level features vs. complex, high-level features). Search/aiming accuracy as well as R.T. measures used for performance evaluation. Artificially generated scotomas suppressed spatial contrast sensitivity in a size dependent manner, similar to previous studies. Deprivation effect was dependent on spatial frequency, consistent with retinal inhomogeneity models. Stimulus detection time was slowed in complex background search situation more than in simple background. Detection speed was dependent on scotoma size and size of stimulus. In contrast, visually guided aiming was more sensitive to scotoma effect in simple background search situation than in complex background. Both stimulus aiming R.T. and accuracy (precision targeting) were impaired, as a function of scotoma size and size of stimulus. The data can be explained by models distinguishing between saliency-based, parallel and serial search processes, guiding visual attention, which are supported by underlying retinal as well as neural mechanisms.

  7. Using e-mail recruitment and an online questionnaire to establish effect size: A worked example.

    PubMed

    Kirkby, Helen M; Wilson, Sue; Calvert, Melanie; Draper, Heather

    2011-06-09

    Sample size calculations require effect size estimations. Sometimes, effect size estimations and standard deviation may not be readily available, particularly if efficacy is unknown because the intervention is new or developing, or the trial targets a new population. In such cases, one way to estimate the effect size is to gather expert opinion. This paper reports the use of a simple strategy to gather expert opinion to estimate a suitable effect size to use in a sample size calculation. Researchers involved in the design and analysis of clinical trials were identified at the University of Birmingham and via the MRC Hubs for Trials Methodology Research. An email invited them to participate.An online questionnaire was developed using the free online tool 'Survey Monkey©'. The questionnaire described an intervention, an electronic participant information sheet (e-PIS), which may increase recruitment rates to a trial. Respondents were asked how much they would need to see recruitment rates increased by, based on 90%. 70%, 50% and 30% baseline rates, (in a hypothetical study) before they would consider using an e-PIS in their research.Analyses comprised simple descriptive statistics. The invitation to participate was sent to 122 people; 7 responded to say they were not involved in trial design and could not complete the questionnaire, 64 attempted it, 26 failed to complete it. Thirty-eight people completed the questionnaire and were included in the analysis (response rate 33%; 38/115). Of those who completed the questionnaire 44.7% (17/38) were at the academic grade of research fellow 26.3% (10/38) senior research fellow, and 28.9% (11/38) professor. Dependent upon the baseline recruitment rates presented in the questionnaire, participants wanted recruitment rate to increase from 6.9% to 28.9% before they would consider using the intervention. This paper has shown that in situations where effect size estimations cannot be collected from previous research, opinions from researchers and trialists can be quickly and easily collected by conducting a simple study using email recruitment and an online questionnaire. The results collected from the survey were successfully used in sample size calculations for a PhD research study protocol.

  8. Predicting the cover-up of dead branches using a simple single regressor equation

    Treesearch

    Christopher M. Oswalt; Wayne K. Clatterbuck; E.C. Burkhardt

    2007-01-01

    Information on the effects of branch diameter on branch occlusion is necessary for building models capable of forecasting the effect of management decisions on tree or log grade. We investigated the relationship between branch size and subsequent branch occlusion through diameter growth with special attention toward the development of a simple single regressor equation...

  9. A simple method for estimating the size of nuclei on fractal surfaces

    NASA Astrophysics Data System (ADS)

    Zeng, Qiang

    2017-10-01

    Determining the size of nuclei on complex surfaces remains a big challenge in aspects of biological, material and chemical engineering. Here the author reported a simple method to estimate the size of the nuclei in contact with complex (fractal) surfaces. The established approach was based on the assumptions of contact area proportionality for determining nucleation density and the scaling congruence between nuclei and surfaces for identifying contact regimes. It showed three different regimes governing the equations for estimating the nucleation site density. Nuclei in the size large enough could eliminate the effect of fractal structure. Nuclei in the size small enough could lead to the independence of nucleation site density on fractal parameters. Only when nuclei match the fractal scales, the nucleation site density is associated with the fractal parameters and the size of the nuclei in a coupling pattern. The method was validated by the experimental data reported in the literature. The method may provide an effective way to estimate the size of nuclei on fractal surfaces, through which a number of promising applications in relative fields can be envisioned.

  10. X-ray peak profile analysis of zinc oxide nanoparticles formed by simple precipitation method

    NASA Astrophysics Data System (ADS)

    Pelicano, Christian Mark; Rapadas, Nick Joaquin; Magdaluyo, Eduardo

    2017-12-01

    Zinc oxide (ZnO) nanoparticles were successfully synthesized by a simple precipitation method using zinc acetate and tetramethylammonium hydroxide. The synthesized ZnO nanoparticles were characterized by X-ray Diffraction analysis (XRD) and Transmission Electron Microscopy (TEM). The XRD result revealed a hexagonal wurtzite structure for the ZnO nanoparticles. The TEM image showed spherical nanoparticles with an average crystallite size of 6.70 nm. For x-ray peak analysis, Williamson-Hall (W-H) and Size-Strain Plot (SSP) methods were applied to examine the effects of crystallite size and lattice strain on the peak broadening of the ZnO nanoparticles. Based on the calculations, the estimated crystallite sizes and lattice strains obtained are in good agreement with each other.

  11. The effects of facilitation and competition on group foraging in patches

    PubMed Central

    Laguë, Marysa; Tania, Nessy; Heath, Joel; Edelstein-Keshet, Leah

    2012-01-01

    Significant progress has been made towards understanding the social behaviour of animal groups, but the patch model, a foundation of foraging theory, has received little attention in a social context. The effect of competition on the optimal time to leave a foraging patch was considered as early as the original formulation of the marginal value theorem, but surprisingly, the role of facilitation (where foraging in groups decreases the time to find food in patches), has not been incorporated. Here we adapt the classic patch model to consider how the trade-off between facilitation and competition influence optimal group size. Using simple assumptions about the effect of group size on the food-finding time and the sharing of resources, we find conditions for existence of optima in patch residence time and in group size. When patches are close together (low travel times), larger group sizes are optimal. Groups are predicted to exploit patches differently than individual foragers and the degree of patch depletion at departure depends on the details of the trade-off between competition and facilitation. A variety of currencies and group-size effects are also considered and compared. Using our simple formulation, we also study the effects of social foraging on patch exploitation which to date have received little empirical study. PMID:22743132

  12. The effects of facilitation and competition on group foraging in patches.

    PubMed

    Laguë, Marysa; Tania, Nessy; Heath, Joel; Edelstein-Keshet, Leah

    2012-10-07

    Significant progress has been made towards understanding the social behaviour of animal groups, but the patch model, a foundation of foraging theory, has received little attention in a social context. The effect of competition on the optimal time to leave a foraging patch was considered as early as the original formulation of the marginal value theorem, but surprisingly, the role of facilitation (where foraging in groups decreases the time to find food in patches), has not been incorporated. Here we adapt the classic patch model to consider how the trade-off between facilitation and competition influences optimal group size. Using simple assumptions about the effect of group size on the food-finding time and the sharing of resources, we find conditions for existence of optima in patch residence time and in group size. When patches are close together (low travel times), larger group sizes are optimal. Groups are predicted to exploit patches differently than individual foragers and the degree of patch depletion at departure depends on the details of the trade-off between competition and facilitation. A variety of currencies and group-size effects are also considered and compared. Using our simple formulation, we also study the effects of social foraging on patch exploitation which to date have received little empirical study. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Modeling the Effects of Beam Size and Flaw Morphology on Ultrasonic Pulse/Echo Sizing of Delaminations in Carbon Composites

    NASA Technical Reports Server (NTRS)

    Margetan, Frank J.; Leckey, Cara A.; Barnard, Dan

    2012-01-01

    The size and shape of a delamination in a multi-layered structure can be estimated in various ways from an ultrasonic pulse/echo image. For example the -6dB contours of measured response provide one simple estimate of the boundary. More sophisticated approaches can be imagined where one adjusts the proposed boundary to bring measured and predicted UT images into optimal agreement. Such approaches require suitable models of the inspection process. In this paper we explore issues pertaining to model-based size estimation for delaminations in carbon fiber reinforced laminates. In particular we consider the influence on sizing when the delamination is non-planar or partially transmitting in certain regions. Two models for predicting broadband sonic time-domain responses are considered: (1) a fast "simple" model using paraxial beam expansions and Kirchhoff and phase-screen approximations; and (2) the more exact (but computationally intensive) 3D elastodynamic finite integration technique (EFIT). Model-to-model and model-to experiment comparisons are made for delaminations in uniaxial composite plates, and the simple model is then used to critique the -6dB rule for delamination sizing.

  14. Controlling and prevention of surface wrinkling via size-dependent critical wrinkling strain.

    PubMed

    Han, Xue; Zhao, Yan; Cao, Yanping; Lu, Conghua

    2015-06-14

    Surface wrinkling may occur in a film-substrate system when the applied strain exceeds the critical value. However, the practically required strain for the onset of surface wrinkling can be different from the theoretically predicted value. Here we investigate the film size effect-dependent critical strain for the mechanical strain-induced surface wrinkling via a combination of experiments and theoretical analysis. In the poly(dimethylsiloxane)-based system fabricated by the smart combination of mechanical straining and selective O2 plasma (OP) exposure through Cu grids, the film size effect on the critical wrinkling strain is systematically studied by considering OP exposure duration, the mesh number and geometry of Cu grids. Meanwhile, a simple analytical solution revealing the film size effect is well established, which shows good consistency with the experimental results. This study provides an experimental and theoretical basis for finely tuning the critical wrinkling strain in a simple and quantitative manner, which can find a wide range of applications in such fields as microelectronic circuits and optical devices, where controlling and/or prevention of surface wrinkling are of great importance.

  15. Effect of limb regeneration on size increase at molt of the shore crabs Hemigrapsus oregonensis and Pachygrapsus crassipes.

    PubMed

    Kuris, A M; Mager, M

    1975-09-01

    Size increase at molt is reduced following multiple limb regeneration in the shore crabs, Hemigrapsus oregonensis and Pachygrapsus crassipes. Limb loss per se does not influence postmolt size. Effect of increasing number of regenerating limbs is additive. Postmolt size is programmed early in the premolt period of the preceding instar and is probably not readily influenced by water uptake mechanics at ecdysis. A simple model for growth, molting, and regeneration in heavily calcified Crustacea is developed from the viewpoint of adaptive strategies and energetic considerations.

  16. The effect of tick size on trading volume share in three competing stock markets

    NASA Astrophysics Data System (ADS)

    Nagumo, Shota; Shimada, Takashi; Ito, Nobuyasu

    2016-09-01

    The relationship between tick sizes and trading volume share in two and three competing markets is studied theoretically. By introducing a simple model which is equipped with multiple markets and non-strategic traders, we analytically calculate the share. It is shown that share is shifted from a market with a larger tick size to a market with a smaller tick size, and the size of share-shift is determined by difference between tick sizes not by ratio between tick sizes in both cases of two markets and three markets.

  17. Educational Production and Teacher Preferences

    ERIC Educational Resources Information Center

    Bosworth, Ryan; Caliendo, Frank

    2007-01-01

    We develop a simple model of teacher behavior that offers a solution to the ''class size puzzle'' and is useful for analyzing the potential effects of the No Child Left Behind Act. When teachers must allocate limited classroom time between multiple instructional methods, rational teachers may respond to reductions in class size by reallocating…

  18. A modified approach to estimating sample size for simple logistic regression with one continuous covariate.

    PubMed

    Novikov, I; Fund, N; Freedman, L S

    2010-01-15

    Different methods for the calculation of sample size for simple logistic regression (LR) with one normally distributed continuous covariate give different results. Sometimes the difference can be large. Furthermore, some methods require the user to specify the prevalence of cases when the covariate equals its population mean, rather than the more natural population prevalence. We focus on two commonly used methods and show through simulations that the power for a given sample size may differ substantially from the nominal value for one method, especially when the covariate effect is large, while the other method performs poorly if the user provides the population prevalence instead of the required parameter. We propose a modification of the method of Hsieh et al. that requires specification of the population prevalence and that employs Schouten's sample size formula for a t-test with unequal variances and group sizes. This approach appears to increase the accuracy of the sample size estimates for LR with one continuous covariate.

  19. Using known map category marginal frequencies to improve estimates of thematic map accuracy

    NASA Technical Reports Server (NTRS)

    Card, D. H.

    1982-01-01

    By means of two simple sampling plans suggested in the accuracy-assessment literature, it is shown how one can use knowledge of map-category relative sizes to improve estimates of various probabilities. The fact that maximum likelihood estimates of cell probabilities for the simple random sampling and map category-stratified sampling were identical has permitted a unified treatment of the contingency-table analysis. A rigorous analysis of the effect of sampling independently within map categories is made possible by results for the stratified case. It is noted that such matters as optimal sample size selection for the achievement of a desired level of precision in various estimators are irrelevant, since the estimators derived are valid irrespective of how sample sizes are chosen.

  20. Simple and effective preparation of nano-pulverized curcumin by femtosecond laser ablation and the cytotoxic effect on C6 rat glioma cells in vitro.

    PubMed

    Tagami, Tatsuaki; Imao, Yukino; Ito, Shunsuke; Nakada, Akiko; Ozeki, Tetsuya

    2014-07-01

    The pulverization of poorly water-soluble drugs and drug candidates into nanoscale particles is a simple and effective means of increasing their pharmacological effect. Consequently, efficient methods for pulverizing compounds are being developed. Femtosecond lasers, which emit ultrashort laser pulses, can be used to generate nanoscale particles without heating and are finding in various fields, including pharmaceutical science. Laser ablation holds promise as a novel top-down pulverization method for obtaining drug nanoparticles. We used a poorly water-soluble compound, curcumin (diferuloyl methane), to understand the characteristics of femtosecond laser pulverization. Various factors such as laser strength, laser scan speed, and the buffer solution affected the size of the curcumin particles. The minimum curcumin particle size was approximately 500 nm; the particle size was stable after 30 days. In vitro studies suggested that curcumin nanoparticles exhibited a cytotoxic effect on C6 rat glioma cells, and remarkable intracellular uptake of the curcumin nanoparticles was observed. The results suggest that femtosecond laser ablation is a useful approach for preparing curcumin nanoparticles that exhibit remarkable therapeutic effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Determination of refractive index, size, and concentration of nonabsorbing colloidal nanoparticles from measurements of the complex effective refractive index.

    PubMed

    Márquez-Islas, Roberto; Sánchez-Pérez, Celia; García-Valenzuela, Augusto

    2014-02-01

    We describe a method for obtaining the refractive index (RI), size, and concentration of nonabsorbing nanoparticles in suspension from relatively simple optical measurements. The method requires measuring the complex effective RI of two dilute suspensions of the particles in liquids of different refractive indices. We describe the theoretical basis of the proposed method and provide experimental results validating the procedure.

  2. Small-size controlled vacuum spark-gap in an external magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asyunin, V. I., E-mail: asvi@mail.ru; Davydov, S. G.; Dolgov, A. N., E-mail: alnikdolgov@mail.ru

    2015-02-15

    It is demonstrated that the operation of a small-size controlled spark-gap can be controlled by applying a uniform external magnetic field. It is shown that the magnetic field of such a simple configuration efficiently suppresses the effect of localization of the discharge current after multiple actuations of the spark-gap.

  3. Finite-size corrections to the excitation energy transfer in a massless scalar interaction model

    NASA Astrophysics Data System (ADS)

    Maeda, Nobuki; Yabuki, Tetsuo; Tobita, Yutaka; Ishikawa, Kenzo

    2017-05-01

    We study the excitation energy transfer (EET) for a simple model in which a massless scalar particle is exchanged between two molecules. We show that a finite-size effect appears in EET by the interaction energy due to overlapping of the quantum waves in a short time interval. The effect generates finite-size corrections to Fermi's golden rule and modifies EET probability from the standard formula in the Förster mechanism. The correction terms come from transition modes outside the resonance energy region and enhance EET probability substantially.

  4. Differences in the effective population sizes of males and females do not require differences in their distribution of offspring number.

    PubMed

    Mendez, Fernando L

    2017-04-01

    Difference in male and female effective population sizes has, at times, been attributed to both sexes having unequal variance in their number of offspring. Such difference is paralleled by the relative effective sizes of autosomes, sex chromosomes, and mitochondrial DNA. I develop a simple framework to calculate the inbreeding effective population sizes for loci with different modes of inheritance. In this framework, I separate the effects due to mating strategy and those due to genetic transmission. I then show that, in addition to differences in the variance in offspring number, skew in the male/female effective sizes can also be caused by family composition. This approach can be used to illustrate the effect of induced behaviors on the relative male and female effective population sizes. In particular, I show the impact of the one-child policy formerly implemented in the People's Republic of China on the relative male and female effective population sizes. Furthermore, I argue that, under some strong constraints on family structure, the concepts of male and female effective population sizes are invalid. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  5. Core and shell size dependences on strain in core@shell Prussian blue analogue (PBA) nanoparticles and the effect on photomagnetism.

    NASA Astrophysics Data System (ADS)

    Cain, J. M.; Ferreira, C. F.; Felts, A. C.; Locicero, S. A.; Liang, J.; Talham, D. R.; Meisel, M. W.

    RbxCo[Fe(CN)6]y@Ka Ni[Cr(CN)6]b core@shell heterostructures have been shown to exhibit a photoinduced decrease in magnetization that persists up to the Tc = 70 K of the KNiCr-PBA component, which is not photoactive as a single-phase material. A magnetomechanical effect can explain how the strain in the shell evolves from thermal and photoinduced changes in the volume of the core. Moreover, a simple model has been used to estimate the depth of the strained region of the shell, but only one size of core (347 +/- 35 nm) has been studied. Since the strain depth in the shell is expected to be dependent on the size of the core, three distinct RbCoFe-PBA core sizes were synthesized, and on each, three different KNiCr-PBA shell thicknesses were grown. The magnetization of each core-shell combination was measured before and after irradiation with white light. Our results suggest the strain depth, as expected, increases from 56 nm in heterostructures with a core size of 328 +/- 29 nm to more than 90 nm in heterostructures with a core size of 575 +/- 113 nm. The data from the smallest core size also shows features indicating the model may be too simple. Supported by NSF DMR-1405439 (DRT) and DMR-1202033 (MWM).

  6. Thermal Infrared Hot Spot and Dependence on Canopy Geometry

    NASA Technical Reports Server (NTRS)

    Smith, James A.; Ballard, Jerrell R., Jr.; Smith, David E. (Technical Monitor)

    2001-01-01

    We perform theoretical calculations of the canopy thermal infrared (TIR) hot spot using a first principles 3-D model described earlier. Various theoretical canopies of varying leaf size and for differing canopy height are used to illustrate the magnitude of the TIR effect. Our results are similar to predicted behavior in the reflective hot spot as a function of canopy geometry and comparable to TIR measurements from the literature and our own simple ground experiments. We apply the MODTRAN atmospheric code to estimate the at-sensor variation in brightness temperature with view direction in the solar principal plane. For simple homogeneous canopies, we predict canopy thermal infrared hot spot variations of 2 degrees C at the surface with respect to nadir viewing. Dependence on leaf size is weak as long as the ratio of leaf size to canopy height is maintained. However, the angular width of the hot spot increases as the ratio of leaf diameter to canopy height increases. Atmospheric effects minimize but do not eliminate the TIR hot spot at satellite altitudes.

  7. Measuring the effect of attention on simple visual search.

    PubMed

    Palmer, J; Ames, C T; Lindsey, D T

    1993-02-01

    Set-size in visual search may be due to 1 or more of 3 factors: sensory processes such as lateral masking between stimuli, attentional processes limiting the perception of individual stimuli, or attentional processes affecting the decision rules for combining information from multiple stimuli. These possibilities were evaluated in tasks such as searching for a longer line among shorter lines. To evaluate sensory contributions, display set-size effects were compared with cuing conditions that held sensory phenomena constant. Similar effects for the display and cue manipulations suggested that sensory processes contributed little under the conditions of this experiment. To evaluate the contribution of decision processes, the set-size effects were modeled with signal detection theory. In these models, a decision effect alone was sufficient to predict the set-size effects without any attentional limitation due to perception.

  8. A comparison of the genetic basis of wing size divergence in three parallel body size clines of Drosophila melanogaster.

    PubMed Central

    Gilchrist, A S; Partridge, L

    1999-01-01

    Body size clines in Drosophila melanogaster have been documented in both Australia and South America, and may exist in Southern Africa. We crossed flies from the northern and southern ends of each of these clines to produce F(1), F(2), and first backcross generations. Our analysis of generation means for wing area and wing length produced estimates of the additive, dominance, epistatic, and maternal effects underlying divergence within each cline. For both females and males of all three clines, the generation means were adequately described by these parameters, indicating that linkage and higher order interactions did not contribute significantly to wing size divergence. Marked differences were apparent between the clines in the occurrence and magnitude of the significant genetic parameters. No cline was adequately described by a simple additive-dominance model, and significant epistatic and maternal effects occurred in most, but not all, of the clines. Generation variances were also analyzed. Only one cline was described sufficiently by a simple additive variance model, indicating significant epistatic, maternal, or linkage effects in the remaining two clines. The diversity in genetic architecture of the clines suggests that natural selection has produced similar phenotypic divergence by different combinations of gene action and interaction. PMID:10581284

  9. Importance of the Correlation between Width and Length in the Shape Analysis of Nanorods: Use of a 2D Size Plot To Probe Such a Correlation.

    PubMed

    Zhao, Zhihua; Zheng, Zhiqin; Roux, Clément; Delmas, Céline; Marty, Jean-Daniel; Kahn, Myrtil L; Mingotaud, Christophe

    2016-08-22

    Analysis of nanoparticle size through a simple 2D plot is proposed in order to extract the correlation between length and width in a collection or a mixture of anisotropic particles. Compared to the usual statistics on the length associated with a second and independent statistical analysis of the width, this simple plot easily points out the various types of nanoparticles and their (an)isotropy. For each class of nano-objects, the relationship between width and length (i.e., the strong or weak correlations between these two parameters) may suggest information concerning the nucleation/growth processes. It allows one to follow the effect on the shape and size distribution of physical or chemical processes such as simple ripening. Various electron microscopy pictures from the literature or from the authors' own syntheses are used as examples to demonstrate the efficiency and simplicity of the proposed 2D plot combined with a multivariate analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. On the Da Vinci size effect in tensile strengths of nanowires: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Zhao, Ziyu; Liu, Jinxing; Soh, Ai Kah

    2018-01-01

    In recent decades, size effects caused by grain size, strain gradient, typical defects etc., have been widely investigated. Nevertheless, the dependence of tensile strength on the specimen length, addressed by Da Vinci around 500 hundred years ago, has received rather limited attention, even though it is one unavoidable question to answer if people attempt to bring materials' amazing nano-scale strengths up to macro-level. Therefore, we make efforts to study tensile behaviors of copper nanowires with a common cross-section and various lengths by employing the molecular dynamics simulations. Surprisingly, a strong size effect of Da Vinci type indeed arises. We have shown the influences of lattice orientation, temperature and prescribed notch on such a Da Vinci size effect. Two different theoretical explanations are briefly proposed for a qualitative understanding. Finally, a simple scaling rule is summarized to cover the tendencies observed.

  11. The Effect of Size and Size Distribution on the Oxidation Kinetics and Plasmonics of Nanoscale Ag Particles

    DTIC Science & Technology

    2010-01-01

    examine the stability to oxidation of the silver nanoparticles , SERS measurements were carried out on a single dielectric ZnO nanowire core/silver...employed a simple and effective electroless (EL) plating approach to produce silver nanoparticles (NPs) on bare silicon, on dielectric ZnO nanowires (NWs...nature of silver, the Ag surface is easily oxidized in the air. Hence, it is important to understand the silver nanoparticle oxidation processes in

  12. Researchers' choice of the number and range of levels in experiments affects the resultant variance-accounted-for effect size.

    PubMed

    Okada, Kensuke; Hoshino, Takahiro

    2017-04-01

    In psychology, the reporting of variance-accounted-for effect size indices has been recommended and widely accepted through the movement away from null hypothesis significance testing. However, most researchers have paid insufficient attention to the fact that effect sizes depend on the choice of the number of levels and their ranges in experiments. Moreover, the functional form of how and how much this choice affects the resultant effect size has not thus far been studied. We show that the relationship between the population effect size and number and range of levels is given as an explicit function under reasonable assumptions. Counterintuitively, it is found that researchers may affect the resultant effect size to be either double or half simply by suitably choosing the number of levels and their ranges. Through a simulation study, we confirm that this relation also applies to sample effect size indices in much the same way. Therefore, the variance-accounted-for effect size would be substantially affected by the basic research design such as the number of levels. Simple cross-study comparisons and a meta-analysis of variance-accounted-for effect sizes would generally be irrational unless differences in research designs are explicitly considered.

  13. Modeling ultrasound propagation through material of increasing geometrical complexity.

    PubMed

    Odabaee, Maryam; Odabaee, Mostafa; Pelekanos, Matthew; Leinenga, Gerhard; Götz, Jürgen

    2018-06-01

    Ultrasound is increasingly being recognized as a neuromodulatory and therapeutic tool, inducing a broad range of bio-effects in the tissue of experimental animals and humans. To achieve these effects in a predictable manner in the human brain, the thick cancellous skull presents a problem, causing attenuation. In order to overcome this challenge, as a first step, the acoustic properties of a set of simple bone-modeling resin samples that displayed an increasing geometrical complexity (increasing step sizes) were analyzed. Using two Non-Destructive Testing (NDT) transducers, we found that Wiener deconvolution predicted the Ultrasound Acoustic Response (UAR) and attenuation caused by the samples. However, whereas the UAR of samples with step sizes larger than the wavelength could be accurately estimated, the prediction was not accurate when the sample had a smaller step size. Furthermore, a Finite Element Analysis (FEA) performed in ANSYS determined that the scattering and refraction of sound waves was significantly higher in complex samples with smaller step sizes compared to simple samples with a larger step size. Together, this reveals an interaction of frequency and geometrical complexity in predicting the UAR and attenuation. These findings could in future be applied to poro-visco-elastic materials that better model the human skull. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Mental chronometry with simple linear regression.

    PubMed

    Chen, J Y

    1997-10-01

    Typically, mental chronometry is performed by means of introducing an independent variable postulated to affect selectively some stage of a presumed multistage process. However, the effect could be a global one that spreads proportionally over all stages of the process. Currently, there is no method to test this possibility although simple linear regression might serve the purpose. In the present study, the regression approach was tested with tasks (memory scanning and mental rotation) that involved a selective effect and with a task (word superiority effect) that involved a global effect, by the dominant theories. The results indicate (1) the manipulation of the size of a memory set or of angular disparity affects the intercept of the regression function that relates the times for memory scanning with different set sizes or for mental rotation with different angular disparities and (2) the manipulation of context affects the slope of the regression function that relates the times for detecting a target character under word and nonword conditions. These ratify the regression approach as a useful method for doing mental chronometry.

  15. High-Temperature-Short-Time Annealing Process for High-Performance Large-Area Perovskite Solar Cells.

    PubMed

    Kim, Minjin; Kim, Gi-Hwan; Oh, Kyoung Suk; Jo, Yimhyun; Yoon, Hyun; Kim, Ka-Hyun; Lee, Heon; Kim, Jin Young; Kim, Dong Suk

    2017-06-27

    Organic-inorganic hybrid metal halide perovskite solar cells (PSCs) are attracting tremendous research interest due to their high solar-to-electric power conversion efficiency with a high possibility of cost-effective fabrication and certified power conversion efficiency now exceeding 22%. Although many effective methods for their application have been developed over the past decade, their practical transition to large-size devices has been restricted by difficulties in achieving high performance. Here we report on the development of a simple and cost-effective production method with high-temperature and short-time annealing processing to obtain uniform, smooth, and large-size grain domains of perovskite films over large areas. With high-temperature short-time annealing at 400 °C for 4 s, the perovskite film with an average domain size of 1 μm was obtained, which resulted in fast solvent evaporation. Solar cells fabricated using this processing technique had a maximum power conversion efficiency exceeding 20% over a 0.1 cm 2 active area and 18% over a 1 cm 2 active area. We believe our approach will enable the realization of highly efficient large-area PCSs for practical development with a very simple and short-time procedure. This simple method should lead the field toward the fabrication of uniform large-scale perovskite films, which are necessary for the production of high-efficiency solar cells that may also be applicable to several other material systems for more widespread practical deployment.

  16. When are genetic methods useful for estimating contemporary abundance and detecting population trends?

    Treesearch

    David A. Tallmon; Dave Gregovich; Robin S. Waples; C. Scott Baker; Jennifer Jackson; Barbara L. Taylor; Eric Archer; Karen K. Martien; Fred W. Allendorf; Michael K. Schwartz

    2010-01-01

    The utility of microsatellite markers for inferring population size and trend has not been rigorously examined, even though these markers are commonly used to monitor the demography of natural populations. We assessed the ability of a linkage disequilibrium estimator of effective population size (Ne) and a simple capture-recapture estimator of abundance (N) to quantify...

  17. Simple, Fast and Effective Correction for Irradiance Spatial Nonuniformity in Measurement of IVs of Large Area Cells at NREL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moriarty, Tom

    The NREL cell measurement lab measures the IV parameters of cells of multiple sizes and configurations. A large contributing factor to errors and uncertainty in Jsc, Imax, Pmax and efficiency can be the irradiance spatial nonuniformity. Correcting for this nonuniformity through its precise and frequent measurement can be very time consuming. This paper explains a simple, fast and effective method based on bicubic interpolation for determining and correcting for spatial nonuniformity and verification of the method's efficacy.

  18. Lesion size affects diagnostic performance of IOTA logistic regression models, IOTA simple rules and risk of malignancy index in discriminating between benign and malignant adnexal masses.

    PubMed

    Di Legge, A; Testa, A C; Ameye, L; Van Calster, B; Lissoni, A A; Leone, F P G; Savelli, L; Franchi, D; Czekierdowski, A; Trio, D; Van Holsbeke, C; Ferrazzi, E; Scambia, G; Timmerman, D; Valentin, L

    2012-09-01

    To estimate the ability to discriminate between benign and malignant adnexal masses of different size using: subjective assessment, two International Ovarian Tumor Analysis (IOTA) logistic regression models (LR1 and LR2), the IOTA simple rules and the risk of malignancy index (RMI). We used a multicenter IOTA database of 2445 patients with at least one adnexal mass, i.e. the database previously used to prospectively validate the diagnostic performance of LR1 and LR2. The masses were categorized into three subgroups according to their largest diameter: small tumors (diameter < 4 cm; n = 396), medium-sized tumors (diameter, 4-9.9 cm; n = 1457) and large tumors (diameter ≥ 10 cm, n = 592). Subjective assessment, LR1 and LR2, IOTA simple rules and the RMI were applied to each of the three groups. Sensitivity, specificity, positive and negative likelihood ratio (LR+, LR-), diagnostic odds ratio (DOR) and area under the receiver-operating characteristics curve (AUC) were used to describe diagnostic performance. A moving window technique was applied to estimate the effect of tumor size as a continuous variable on the AUC. The reference standard was the histological diagnosis of the surgically removed adnexal mass. The frequency of invasive malignancy was 10% in small tumors, 19% in medium-sized tumors and 40% in large tumors; 11% of the large tumors were borderline tumors vs 3% and 4%, respectively, of the small and medium-sized tumors. The type of benign histology also differed among the three subgroups. For all methods, sensitivity with regard to malignancy was lowest in small tumors (56-84% vs 67-93% in medium-sized tumors and 74-95% in large tumors) while specificity was lowest in large tumors (60-87%vs 83-95% in medium-sized tumors and 83-96% in small tumors ). The DOR and the AUC value were highest in medium-sized tumors and the AUC was largest in tumors with a largest diameter of 7-11 cm. Tumor size affects the performance of subjective assessment, LR1 and LR2, the IOTA simple rules and the RMI in discriminating correctly between benign and malignant adnexal masses. The likely explanation, at least in part, is the difference in histology among tumors of different size. Copyright © 2012 ISUOG. Published by John Wiley & Sons, Ltd.

  19. Effects of set-size and lateral masking in visual search.

    PubMed

    Põder, Endel

    2004-01-01

    In the present research, the roles of lateral masking and central processing limitations in visual search were studied. Two search conditions were used: (1) target differed from distractors by presence/absence of a simple feature; (2) target differed by relative position of the same components only. The number of displayed stimuli (set-size) and the distance between neighbouring stimuli were varied as independently as possible in order to measure the effect of both. The effect of distance between stimuli (lateral masking) was found to be similar in both conditions. The effect of set-size was much larger for relative position stimuli. The results support the view that perception of relative position of stimulus components is limited mainly by the capacity of central processing.

  20. Larger Stimuli Require Longer Processing Time for Perception.

    PubMed

    Kanai, Ryota; Dalmaijer, Edwin S; Sherman, Maxine T; Kawakita, Genji; Paffen, Chris L E

    2017-05-01

    The time it takes for a stimulus to reach awareness is often assessed by measuring reaction times (RTs) or by a temporal order judgement (TOJ) task in which perceived timing is compared against a reference stimulus. Dissociations of RT and TOJ have been reported earlier in which increases in stimulus intensity such as luminance intensity results in a decrease of RT, whereas perceived perceptual latency in a TOJ task is affected to a lesser degree. Here, we report that a simple manipulation of stimulus size has stronger effects on perceptual latency measured by TOJ than on motor latency measured by RT tasks. When participants were asked to respond to the appearance of a simple stimulus such as a luminance blob, the perceptual latency measured against a standard reference stimulus was up to 40 ms longer for a larger stimulus. In other words, the smaller stimulus was perceived to occur earlier than the larger one. RT on the other hand was hardly affected by size. The TOJ results were further replicated in a simultaneity judgement task, suggesting that the effects of size are not due to TOJ-specific response biases but more likely reflect an effect on perceived timing.

  1. Nomogram for sample size calculation on a straightforward basis for the kappa statistic.

    PubMed

    Hong, Hyunsook; Choi, Yunhee; Hahn, Seokyung; Park, Sue Kyung; Park, Byung-Joo

    2014-09-01

    Kappa is a widely used measure of agreement. However, it may not be straightforward in some situation such as sample size calculation due to the kappa paradox: high agreement but low kappa. Hence, it seems reasonable in sample size calculation that the level of agreement under a certain marginal prevalence is considered in terms of a simple proportion of agreement rather than a kappa value. Therefore, sample size formulae and nomograms using a simple proportion of agreement rather than a kappa under certain marginal prevalences are proposed. A sample size formula was derived using the kappa statistic under the common correlation model and goodness-of-fit statistic. The nomogram for the sample size formula was developed using SAS 9.3. The sample size formulae using a simple proportion of agreement instead of a kappa statistic and nomograms to eliminate the inconvenience of using a mathematical formula were produced. A nomogram for sample size calculation with a simple proportion of agreement should be useful in the planning stages when the focus of interest is on testing the hypothesis of interobserver agreement involving two raters and nominal outcome measures. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Analysis of hardening behavior of sheet metals by a new simple shear test method taking into account the Bauschinger effect

    NASA Astrophysics Data System (ADS)

    Bang, Sungsik; Rickhey, Felix; Kim, Minsoo; Lee, Hyungyil; Kim, Naksoo

    2013-12-01

    In this study we establish a process to predict hardening behavior considering the Bauschinger effect for zircaloy-4 sheets. When a metal is compressed after tension in forming, the yield strength decreases. For this reason, the Bauschinger effect should be considered in FE simulations of spring-back. We suggested a suitable specimen size and a method for determining the optimum tightening torque for simple shear tests. Shear stress-strain curves are obtained for five materials. We developed a method to convert the shear load-displacement curve to the effective stress-strain curve with FEA. We simulated the simple shear forward/reverse test using the combined isotropic/kinematic hardening model. We also investigated the change of the load-displacement curve by varying the hardening coefficients. We determined the hardening coefficients so that they follow the hardening behavior of zircaloy-4 in experiments.

  3. The Hebb repetition effect in simple and complex memory span.

    PubMed

    Oberauer, Klaus; Jones, Timothy; Lewandowsky, Stephan

    2015-08-01

    The Hebb repetition effect refers to the finding that immediate serial recall is improved over trials for memory lists that are surreptitiously repeated across trials, relative to new lists. We show in four experiments that the Hebb repetition effect is also observed with a complex-span task, in which encoding or retrieval of list items alternates with an unrelated processing task. The interruption of encoding or retrieval by the processing task did not reduce the size of the Hebb effect, demonstrating that incidental long-term learning forms integrated representations of lists, excluding the interleaved processing events. Contrary to the assumption that complex-span performance relies more on long-term memory than standard immediate serial recall (simple span), the Hebb effect was not larger in complex-span than in simple-span performance. The Hebb effect in complex span was also not modulated by the opportunity for refreshing list items, questioning a role of refreshing for the acquisition of the long-term memory representations underlying the effect.

  4. Size-assortative mating and sexual size dimorphism are predictable from simple mechanics of mate-grasping behavior

    PubMed Central

    2010-01-01

    Background A major challenge in evolutionary biology is to understand the typically complex interactions between diverse counter-balancing factors of Darwinian selection for size assortative mating and sexual size dimorphism. It appears that rarely a simple mechanism could provide a major explanation of these phenomena. Mechanics of behaviors can predict animal morphology, such like adaptations to locomotion in animals from various of taxa, but its potential to predict size-assortative mating and its evolutionary consequences has been less explored. Mate-grasping by males, using specialized adaptive morphologies of their forelegs, midlegs or even antennae wrapped around female body at specific locations, is a general mating strategy of many animals, but the contribution of the mechanics of this wide-spread behavior to the evolution of mating behavior and sexual size dimorphism has been largely ignored. Results Here, we explore the consequences of a simple, and previously ignored, fact that in a grasping posture the position of the male's grasping appendages relative to the female's body is often a function of body size difference between the sexes. Using an approach taken from robot mechanics we model coercive grasping of females by water strider Gerris gracilicornis males during mating initiation struggles. We determine that the male optimal size (relative to the female size), which gives the males the highest grasping force, properly predicts the experimentally measured highest mating success. Through field sampling and simulation modeling of a natural population we determine that the simple mechanical model, which ignores most of the other hypothetical counter-balancing selection pressures on body size, is sufficient to account for size-assortative mating pattern as well as species-specific sexual dimorphism in body size of G. gracilicornis. Conclusion The results indicate how a simple and previously overlooked physical mechanism common in many taxa is sufficient to account for, or importantly contribute to, size-assortative mating and its consequences for the evolution of sexual size dimorphism. PMID:21092131

  5. A simple shear limited, single size, time dependent flocculation model

    NASA Astrophysics Data System (ADS)

    Kuprenas, R.; Tran, D. A.; Strom, K.

    2017-12-01

    This research focuses on the modeling of flocculation of cohesive sediment due to turbulent shear, specifically, investigating the dependency of flocculation on the concentration of cohesive sediment. Flocculation is important in larger sediment transport models as cohesive particles can create aggregates which are orders of magnitude larger than their unflocculated state. As the settling velocity of each particle is determined by the sediment size, density, and shape, accounting for this aggregation is important in determining where the sediment is deposited. This study provides a new formulation for flocculation of cohesive sediment by modifying the Winterwerp (1998) flocculation model (W98) so that it limits floc size to that of the Kolmogorov micro length scale. The W98 model is a simple approach that calculates the average floc size as a function of time. Because of its simplicity, the W98 model is ideal for implementing into larger sediment transport models; however, the model tends to over predict the dependency of the floc size on concentration. It was found that the modification of the coefficients within the original model did not allow for the model to capture the dependency on concentration. Therefore, a new term within the breakup kernel of the W98 formulation was added. The new formulation results is a single size, shear limited, and time dependent flocculation model that is able to effectively capture the dependency of the equilibrium size of flocs on both suspended sediment concentration and the time to equilibrium. The overall behavior of the new model is explored and showed align well with other studies on flocculation. Winterwerp, J. C. (1998). A simple model for turbulence induced flocculation of cohesive sediment. .Journal of Hydraulic Research, 36(3):309-326.

  6. Parrotfish Size: A Simple yet Useful Alternative Indicator of Fishing Effects on Caribbean Reefs?

    PubMed Central

    Vallès, Henri; Oxenford, Hazel A.

    2014-01-01

    There is great need to identify simple yet reliable indicators of fishing effects within the multi-species, multi-gear, data-poor fisheries of the Caribbean. Here, we investigate links between fishing pressure and three simple fish metrics, i.e. average fish weight (an estimate of average individual fish size), fish density and fish biomass, derived from (1) the parrotfish family, a ubiquitous herbivore family across the Caribbean, and (2) three fish groups of “commercial” carnivores including snappers and groupers, which are widely-used as indicators of fishing effects. We hypothesize that, because most Caribbean reefs are being heavily fished, fish metrics derived from the less vulnerable parrotfish group would exhibit stronger relationships with fishing pressure on today’s Caribbean reefs than those derived from the highly vulnerable commercial fish groups. We used data from 348 Atlantic and Gulf Rapid Reef Assessment (AGRRA) reef-surveys across the Caribbean to assess relationships between two independent indices of fishing pressure (one derived from human population density data, the other from open to fishing versus protected status) and the three fish metrics derived from the four aforementioned fish groups. We found that, although two fish metrics, average parrotfish weight and combined biomass of selected commercial species, were consistently negatively linked to the indices of fishing pressure across the Caribbean, the parrotfish metric consistently outranked the latter in the strength of the relationship, thus supporting our hypothesis. Overall, our study highlights that (assemblage-level) average parrotfish size might be a useful alternative indicator of fishing effects over the typical conditions of most Caribbean shallow reefs: moderate-to-heavy levels of fishing and low abundance of highly valued commercial species. PMID:24466009

  7. Parrotfish size: a simple yet useful alternative indicator of fishing effects on Caribbean reefs?

    PubMed

    Vallès, Henri; Oxenford, Hazel A

    2014-01-01

    There is great need to identify simple yet reliable indicators of fishing effects within the multi-species, multi-gear, data-poor fisheries of the Caribbean. Here, we investigate links between fishing pressure and three simple fish metrics, i.e. average fish weight (an estimate of average individual fish size), fish density and fish biomass, derived from (1) the parrotfish family, a ubiquitous herbivore family across the Caribbean, and (2) three fish groups of "commercial" carnivores including snappers and groupers, which are widely-used as indicators of fishing effects. We hypothesize that, because most Caribbean reefs are being heavily fished, fish metrics derived from the less vulnerable parrotfish group would exhibit stronger relationships with fishing pressure on today's Caribbean reefs than those derived from the highly vulnerable commercial fish groups. We used data from 348 Atlantic and Gulf Rapid Reef Assessment (AGRRA) reef-surveys across the Caribbean to assess relationships between two independent indices of fishing pressure (one derived from human population density data, the other from open to fishing versus protected status) and the three fish metrics derived from the four aforementioned fish groups. We found that, although two fish metrics, average parrotfish weight and combined biomass of selected commercial species, were consistently negatively linked to the indices of fishing pressure across the Caribbean, the parrotfish metric consistently outranked the latter in the strength of the relationship, thus supporting our hypothesis. Overall, our study highlights that (assemblage-level) average parrotfish size might be a useful alternative indicator of fishing effects over the typical conditions of most Caribbean shallow reefs: moderate-to-heavy levels of fishing and low abundance of highly valued commercial species.

  8. Theoretical analysis of the effect of particle size and support on the kinetics of oxygen reduction reaction on platinum nanoparticles

    NASA Astrophysics Data System (ADS)

    Viswanathan, Venkatasubramanian; Wang, Frank Yi-Fei

    2012-07-01

    We perform a first-principles based computational analysis of the effect of particle size and support material on the electrocatalytic activity of platinum nanoparticles. Using a mechanism for oxygen reduction that accounts for electric field effects and stabilization from the water layer on the (111) and (100) facets, we show that the model used agrees well with linear sweep voltammetry and rotating ring disk electrode experiments. We find that the per-site activity of the nanoparticle saturates for particles larger than 5 nm and we show that the optimal particle size is in the range of 2.5-3.5 nm, which agrees well with recent experimental work. We examine the effect of support material and show that the perimeter sites on the metal-support interface are important in determining the overall activity of the nanoparticles. We also develop simple geometric estimates for the activity which can be used for determining the activity of other particle shapes and sizes.We perform a first-principles based computational analysis of the effect of particle size and support material on the electrocatalytic activity of platinum nanoparticles. Using a mechanism for oxygen reduction that accounts for electric field effects and stabilization from the water layer on the (111) and (100) facets, we show that the model used agrees well with linear sweep voltammetry and rotating ring disk electrode experiments. We find that the per-site activity of the nanoparticle saturates for particles larger than 5 nm and we show that the optimal particle size is in the range of 2.5-3.5 nm, which agrees well with recent experimental work. We examine the effect of support material and show that the perimeter sites on the metal-support interface are important in determining the overall activity of the nanoparticles. We also develop simple geometric estimates for the activity which can be used for determining the activity of other particle shapes and sizes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30572k

  9. Size effects of pore density and solute size on water osmosis through nanoporous membrane.

    PubMed

    Zhao, Kuiwen; Wu, Huiying

    2012-11-15

    Understanding the behavior of osmotic transport across nanoporous membranes at molecular level is critical to their design and applications, and it is also beneficial to the comprehension of the mechanism of biological transmembrane transport processes. Pore density is an important parameter for nanoporous membranes. To better understand the influence of pore density on osmotic transport, we have performed systematic molecular dynamics simulations on water osmosis across nanoporous membranes with different pore densities (i.e., number of pores per unit area of membrane). The simulation results reveal that significant size effects occur when the pore density is so high that the center-to-center distance between neighboring nanopores is comparable to the solute size. The size effects are independent of the pore diameter and solute concentration. A simple quantitative correlation between pore density, solute size, and osmotic flux has been established. The results are excellently consistent with the theoretical predictions. It is also shown that solute hydration plays an important role in real osmotic processes. Solute hydration strengthens the size effects of pore density on osmotic processes due to the enlarged effective solute size induced by hydration. The influence of pore density, solute size, and solute hydration on water osmosis through nanoporous membranes can be introduced to eliminate the deviations of real osmotic processes from ideal behavior.

  10. The effect of nanoparticle enhanced sizing on the structural health monitoring sensitivity and mechanical properties of carbon fiber composites

    NASA Astrophysics Data System (ADS)

    Bowland, Christopher C.; Nguyen, Ngoc A.; Naskar, Amit K.

    2018-03-01

    With current carbon composites being introduced into new commercial market sectors, there is an opportunity to develop multifunctional composites, which are poised to be the next generation of composites that will see future commercial applications. This multifunctional attribute can be achieved via integrated nanomaterials, which are currently under-utilized in real-world applications despite significant research efforts focused on their synthesis. This research utilizes a simple, scalable approach to integrate various nanomaterials into carbon fiber composites by embedding the nanomaterials in the epoxy fiber sizing. Illustrated in this work is the effect of silicon carbide nanoparticle concentrations and dimensions on the structural health monitoring sensitivity of unidirectional carbon fiber composites. Additionally, the nanoparticles contribute to the overall damping property of the composites thus enabling tunable damping through simple variations in nanoparticle concentration and size. Not only does this nanoparticle sizing offer enhanced sensitivity and tunable damping, but it also maintains the mechanical integrity and performance of the composites, which demonstrates a truly multifunctional composite. Therefore, this research establishes an efficient route for combining nanomaterials research with real-world multifunctional composite applications using a technique that is easily scalable to the commercial level and is compatible with a wide range of fibers and nanomaterials.

  11. Binary YORP Effect and Evolution of Binary Asteroids

    NASA Astrophysics Data System (ADS)

    Steinberg, Elad; Sari, Re'em

    2011-02-01

    The rotation states of kilometer-sized near-Earth asteroids are known to be affected by the Yarkevsky O'Keefe-Radzievskii-Paddack (YORP) effect. In a related effect, binary YORP (BYORP), the orbital properties of a binary asteroid evolve under a radiation effect mostly acting on a tidally locked secondary. The BYORP effect can alter the orbital elements over ~104-105 years for a Dp = 2 km primary with a Ds = 0.4 km secondary at 1 AU. It can either separate the binary components or cause them to collide. In this paper, we devise a simple approach to calculate the YORP effect on asteroids and the BYORP effect on binaries including J 2 effects due to primary oblateness and the Sun. We apply this to asteroids with known shapes as well as a set of randomly generated bodies with various degrees of smoothness. We find a strong correlation between the strengths of an asteroid's YORP and BYORP effects. Therefore, statistical knowledge of one could be used to estimate the effect of the other. We show that the action of BYORP preferentially shrinks rather than expands the binary orbit and that YORP preferentially slows down asteroids. This conclusion holds for the two extremes of thermal conductivities studied in this work and the assumption that the asteroid reaches a stable point, but may break down for moderate thermal conductivity. The YORP and BYORP effects are shown to be smaller than could be naively expected due to near cancellation of the effects at small scales. Taking this near cancellation into account, a simple order-of-magnitude estimate of the YORP and BYORP effects as a function of the sizes and smoothness of the bodies is calculated. Finally, we provide a simple proof showing that there is no secular effect due to absorption of radiation in BYORP.

  12. Cognitive effects of two nutraceuticals Ginseng and Bacopa benchmarked against modafinil: a review and comparison of effect sizes

    PubMed Central

    Neale, Chris; Camfield, David; Reay, Jonathon; Stough, Con; Scholey, Andrew

    2013-01-01

    Over recent years there has been increasing research into both pharmaceutical and nutraceutical cognition enhancers. Here we aimed to calculate the effect sizes of positive cognitive effect of the pharmaceutical modafinil in order to benchmark the effect of two widely used nutraceuticals Ginseng and Bacopa (which have consistent acute and chronic cognitive effects, respectively). A search strategy was implemented to capture clinical studies into the neurocognitive effects of modafinil, Ginseng and Bacopa. Studies undertaken on healthy human subjects using a double‐blind, placebo‐controlled design were included. For each study where appropriate data were included, effect sizes (Cohen's d) were calculated for measures showing significant positive and negative effects of treatment over placebo. The highest effect sizes for cognitive outcomes were 0.77 for modafinil (visuospatial memory accuracy), 0.86 for Ginseng (simple reaction time) and 0.95 for Bacopa (delayed word recall). These data confirm that neurocognitive enhancement from well characterized nutraceuticals can produce cognition enhancing effects of similar magnitude to those from pharmaceutical interventions. Future research should compare these effects directly in clinical trials. PMID:23043278

  13. Predator-prey Encounter Rates in Turbulent Environments: Consequences of Inertia Effects and Finite Sizes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pecseli, H. L.; Trulsen, J.

    2009-10-08

    Experimental as well as theoretical studies have demonstrated that turbulence can play an important role for the biosphere in marine environments, in particular also by affecting prey-predator encounter rates. Reference models for the encounter rates rely on simplifying assumptions of predators and prey being described as point particles moving passively with the local flow velocity. Based on simple arguments that can be tested experimentally we propose corrections for the standard expression for the encounter rates, where now finite sizes and Stokes drag effects are included.

  14. Direct laser writing of polymeric nanostructures via optically induced local thermal effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, Quang Cong; Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, 10000 Hanoi; Nguyen, Dam Thuy Trang

    We demonstrate the fabrication of desired structures with feature size below the diffraction limit by use of a positive photoresist. The direct laser writing technique employing a continuous-wave laser was used to optically induce a local thermal effect in a positive photoresist, which then allowed the formation of solid nanostructures. This technique enabled us to realize multi-dimensional sub-microstructures by use of a positive photoresist, with a feature size down to 57 nm. This mechanism acting on positive photoresists opens a simple and low-cost way for nanofabrication.

  15. Meta-analysis of mismatch negativity to simple versus complex deviants in schizophrenia.

    PubMed

    Avissar, Michael; Xie, Shanghong; Vail, Blair; Lopez-Calderon, Javier; Wang, Yuanjia; Javitt, Daniel C

    2018-01-01

    Mismatch negativity (MMN) deficits in schizophrenia (SCZ) have been studied extensively since the early 1990s, with the vast majority of studies using simple auditory oddball task deviants that vary in a single acoustic dimension such as pitch or duration. There has been a growing interest in using more complex deviants that violate more abstract rules to probe higher order cognitive deficits. It is still unclear how sensory processing deficits compare to and contribute to higher order cognitive dysfunction, which can be investigated with later attention-dependent auditory event-related potential (ERP) components such as a subcomponent of P300, P3b. In this meta-analysis, we compared MMN deficits in SCZ using simple deviants to more complex deviants. We also pooled studies that measured MMN and P3b in the same study sample and examined the relationship between MMN and P3b deficits within study samples. Our analysis reveals that, to date, studies using simple deviants demonstrate larger deficits than those using complex deviants, with effect sizes in the range of moderate to large. The difference in effect sizes between deviant types was reduced significantly when accounting for magnitude of MMN measured in healthy controls. P3b deficits, while large, were only modestly greater than MMN deficits (d=0.21). Taken together, our findings suggest that MMN to simple deviants may still be optimal as a biomarker for SCZ and that sensory processing dysfunction contributes significantly to MMN deficit and disease pathophysiology. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Pictorial depth probed through relative sizes

    PubMed Central

    Wagemans, Johan; van Doorn, Andrea J; Koenderink, Jan J

    2011-01-01

    In the physical environment familiar size is an effective depth cue because the distance from the eye to an object equals the ratio of its physical size to its angular extent in the visual field. Such simple geometrical relations do not apply to pictorial space, since the eye itself is not in pictorial space, and consequently the notion “distance from the eye” is meaningless. Nevertheless, relative size in the picture plane is often used by visual artists to suggest depth differences. The depth domain has no natural origin, nor a natural unit; thus only ratios of depth differences could have an invariant significance. We investigate whether the pictorial relative size cue yields coherent depth structures in pictorial spaces. Specifically, we measure the depth differences for all pairs of points in a 20-point configuration in pictorial space, and we account for these observations through 19 independent parameters (the depths of the points modulo an arbitrary offset), with no meaningful residuals. We discuss a simple formal framework that allows one to handle individual differences. We also compare the depth scale obtained by way of this method with depth scales obtained in totally different ways, finding generally good agreement. PMID:23145258

  17. Interference and problem size effect in multiplication fact solving: Individual differences in brain activations and arithmetic performance.

    PubMed

    De Visscher, Alice; Vogel, Stephan E; Reishofer, Gernot; Hassler, Eva; Koschutnig, Karl; De Smedt, Bert; Grabner, Roland H

    2018-05-15

    In the development of math ability, a large variability of performance in solving simple arithmetic problems is observed and has not found a compelling explanation yet. One robust effect in simple multiplication facts is the problem size effect, indicating better performance for small problems compared to large ones. Recently, behavioral studies brought to light another effect in multiplication facts, the interference effect. That is, high interfering problems (receiving more proactive interference from previously learned problems) are more difficult to retrieve than low interfering problems (in terms of physical feature overlap, namely the digits, De Visscher and Noël, 2014). At the behavioral level, the sensitivity to the interference effect is shown to explain individual differences in the performance of solving multiplications in children as well as in adults. The aim of the present study was to investigate the individual differences in multiplication ability in relation to the neural interference effect and the neural problem size effect. To that end, we used a paradigm developed by De Visscher, Berens, et al. (2015) that contrasts the interference effect and the problem size effect in a multiplication verification task, during functional magnetic resonance imaging (fMRI) acquisition. Forty-two healthy adults, who showed high variability in an arithmetic fluency test, participated in our fMRI study. In order to control for the general reasoning level, the IQ was taken into account in the individual differences analyses. Our findings revealed a neural interference effect linked to individual differences in multiplication in the left inferior frontal gyrus, while controlling for the IQ. This interference effect in the left inferior frontal gyrus showed a negative relation with individual differences in arithmetic fluency, indicating a higher interference effect for low performers compared to high performers. This region is suggested in the literature to be involved in resolution of proactive interference. Besides, no correlation between the neural problem size effect and multiplication performance was found. This study supports the idea that the interference due to similarities/overlap of physical traits (the digits) is crucial in memorizing arithmetic facts and in determining individual differences in arithmetic. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. [Practical aspects regarding sample size in clinical research].

    PubMed

    Vega Ramos, B; Peraza Yanes, O; Herrera Correa, G; Saldívar Toraya, S

    1996-01-01

    The knowledge of the right sample size let us to be sure if the published results in medical papers had a suitable design and a proper conclusion according to the statistics analysis. To estimate the sample size we must consider the type I error, type II error, variance, the size of the effect, significance and power of the test. To decide what kind of mathematics formula will be used, we must define what kind of study we have, it means if its a prevalence study, a means values one or a comparative one. In this paper we explain some basic topics of statistics and we describe four simple samples of estimation of sample size.

  19. Meta-analysis of multiple outcomes: a multilevel approach.

    PubMed

    Van den Noortgate, Wim; López-López, José Antonio; Marín-Martínez, Fulgencio; Sánchez-Meca, Julio

    2015-12-01

    In meta-analysis, dependent effect sizes are very common. An example is where in one or more studies the effect of an intervention is evaluated on multiple outcome variables for the same sample of participants. In this paper, we evaluate a three-level meta-analytic model to account for this kind of dependence, extending the simulation results of Van den Noortgate, López-López, Marín-Martínez, and Sánchez-Meca Behavior Research Methods, 45, 576-594 (2013) by allowing for a variation in the number of effect sizes per study, in the between-study variance, in the correlations between pairs of outcomes, and in the sample size of the studies. At the same time, we explore the performance of the approach if the outcomes used in a study can be regarded as a random sample from a population of outcomes. We conclude that although this approach is relatively simple and does not require prior estimates of the sampling covariances between effect sizes, it gives appropriate mean effect size estimates, standard error estimates, and confidence interval coverage proportions in a variety of realistic situations.

  20. Electrostatics effects in granular materials

    NASA Astrophysics Data System (ADS)

    Sarkar, Saurabh; Chaudhuri, Bodhisattwa

    2013-06-01

    This purpose of this study is to investigate the role of physiochemical properties and operational conditions in determining the electrostatic interactions between two species on a surface under typical industrial conditions. The variables considered for the study were particle type, particle size and shape, loading mass, surface type, angle of inclination of chute, nature and concentration of additive. Triboelectrification of simple and binary mixtures in a simple hopper and chute geometry was observed to be strongly linked to work function and moisture content of the powdered material.

  1. Effect of steam addition on cycle performance of simple and recuperated gas turbines

    NASA Technical Reports Server (NTRS)

    Boyle, R. J.

    1979-01-01

    Results are presented for the cycle efficiency and specific power of simple and recuperated gas turbine cycles in which steam is generated and used to increase turbine flow. Calculations showed significant improvements in cycle efficiency and specific power by adding steam. The calculations were made using component efficiencies and loss assumptions typical of stationary powerplants. These results are presented for a range of operating temperatures and pressures. Relative heat exchanger size and the water use rate are also examined.

  2. Language functions in preterm-born children: a systematic review and meta-analysis.

    PubMed

    van Noort-van der Spek, Inge L; Franken, Marie-Christine J P; Weisglas-Kuperus, Nynke

    2012-04-01

    Preterm-born children (<37 weeks' gestation) have higher rates of language function problems compared with term-born children. It is unknown whether these problems decrease, deteriorate, or remain stable over time. The goal of this research was to determine the developmental course of language functions in preterm-born children from 3 to 12 years of age. Computerized databases Embase, PubMed, Web of Knowledge, and PsycInfo were searched for studies published between January 1995 and March 2011 reporting language functions in preterm-born children. Outcome measures were simple language function assessed by using the Peabody Picture Vocabulary Test and complex language function assessed by using the Clinical Evaluation of Language Fundamentals. Pooled effect sizes (in terms of Cohen's d) and 95% confidence intervals (CI) for simple and complex language functions were calculated by using random-effects models. Meta-regression was conducted with mean difference of effect size as the outcome variable and assessment age as the explanatory variable. Preterm-born children scored significantly lower compared with term-born children on simple (d = -0.45 [95% CI: -0.59 to -0.30]; P < .001) and on complex (d = -0.62 [95% CI: -0.82 to -0.43]; P < .001) language function tests, even in the absence of major disabilities and independent of social economic status. For complex language function (but not for simple language function), group differences between preterm- and term-born children increased significantly from 3 to 12 years of age (slope = -0.05; P = .03). While growing up, preterm-born children have increasing difficulties with complex language function.

  3. How to Do It. Impact of Environmental Factors on Populations of Soil Microorganisms.

    ERIC Educational Resources Information Center

    Robert, Francoise M.

    1990-01-01

    Described are simple experiments designed to demonstrate the effect of some factors of the environment (dryness, temperature, and fungicide application) on the size of some populations of soil microorganisms. Materials, media, techniques, procedures, and results are discussed. (CW)

  4. A Heuristic Probabilistic Approach to Estimating Size-Dependent Mobility of Nonuniform Sediment

    NASA Astrophysics Data System (ADS)

    Woldegiorgis, B. T.; Wu, F. C.; van Griensven, A.; Bauwens, W.

    2017-12-01

    Simulating the mechanism of bed sediment mobility is essential for modelling sediment dynamics. Despite the fact that many studies are carried out on this subject, they use complex mathematical formulations that are computationally expensive, and are often not easy for implementation. In order to present a simple and computationally efficient complement to detailed sediment mobility models, we developed a heuristic probabilistic approach to estimating the size-dependent mobilities of nonuniform sediment based on the pre- and post-entrainment particle size distributions (PSDs), assuming that the PSDs are lognormally distributed. The approach fits a lognormal probability density function (PDF) to the pre-entrainment PSD of bed sediment and uses the threshold particle size of incipient motion and the concept of sediment mixture to estimate the PSDs of the entrained sediment and post-entrainment bed sediment. The new approach is simple in physical sense and significantly reduces the complexity and computation time and resource required by detailed sediment mobility models. It is calibrated and validated with laboratory and field data by comparing to the size-dependent mobilities predicted with the existing empirical lognormal cumulative distribution function (CDF) approach. The novel features of the current approach are: (1) separating the entrained and non-entrained sediments by a threshold particle size, which is a modified critical particle size of incipient motion by accounting for the mixed-size effects, and (2) using the mixture-based pre- and post-entrainment PSDs to provide a continuous estimate of the size-dependent sediment mobility.

  5. Facile synthesis of biocompatible gold nanoparticles with organosilicone-coated surface properties

    NASA Astrophysics Data System (ADS)

    Xia, Lijin; Yi, Sijia; Lenaghan, Scott C.; Zhang, Mingjun

    2012-07-01

    In this study, a simple method for one-step synthesis of gold nanoparticles has been developed using an organosilicone surfactant, Silwet L-77, as both a reducing and capping agent. Synthesis of gold nanoparticles using this method is rapid and can be conducted conveniently at ambient temperature. Further refinement of the method, through the addition of sodium hydroxide and/or silver nitrate, allowed fine control over the size of spherical nanoparticles produced. Coated on the surface with organosilicone, the as-prepared gold nanoparticles were biocompatible and stable over the pH range from 5 to 12, and have been proven effective at transportation into MC3T3 osteoblast cells. The proposed method is simple, fast, and can produce size-controlled gold nanoparticles with unique surface properties for biomedical applications.

  6. Versatile microrobotics using simple modular subunits

    NASA Astrophysics Data System (ADS)

    Cheang, U. Kei; Meshkati, Farshad; Kim, Hoyeon; Lee, Kyoungwoo; Fu, Henry Chien; Kim, Min Jun

    2016-07-01

    The realization of reconfigurable modular microrobots could aid drug delivery and microsurgery by allowing a single system to navigate diverse environments and perform multiple tasks. So far, microrobotic systems are limited by insufficient versatility; for instance, helical shapes commonly used for magnetic swimmers cannot effectively assemble and disassemble into different size and shapes. Here by using microswimmers with simple geometries constructed of spherical particles, we show how magnetohydrodynamics can be used to assemble and disassemble modular microrobots with different physical characteristics. We develop a mechanistic physical model that we use to improve assembly strategies. Furthermore, we experimentally demonstrate the feasibility of dynamically changing the physical properties of microswimmers through assembly and disassembly in a controlled fluidic environment. Finally, we show that different configurations have different swimming properties by examining swimming speed dependence on configuration size.

  7. Versatile microrobotics using simple modular subunits

    PubMed Central

    Cheang, U Kei; Meshkati, Farshad; Kim, Hoyeon; Lee, Kyoungwoo; Fu, Henry Chien; Kim, Min Jun

    2016-01-01

    The realization of reconfigurable modular microrobots could aid drug delivery and microsurgery by allowing a single system to navigate diverse environments and perform multiple tasks. So far, microrobotic systems are limited by insufficient versatility; for instance, helical shapes commonly used for magnetic swimmers cannot effectively assemble and disassemble into different size and shapes. Here by using microswimmers with simple geometries constructed of spherical particles, we show how magnetohydrodynamics can be used to assemble and disassemble modular microrobots with different physical characteristics. We develop a mechanistic physical model that we use to improve assembly strategies. Furthermore, we experimentally demonstrate the feasibility of dynamically changing the physical properties of microswimmers through assembly and disassembly in a controlled fluidic environment. Finally, we show that different configurations have different swimming properties by examining swimming speed dependence on configuration size. PMID:27464852

  8. Size effects on the thermal conductivity of amorphous silicon thin films

    DOE PAGES

    Thomas Edwin Beechem; Braun, Jeffrey L.; Baker, Christopher H.; ...

    2016-04-01

    In this study, we investigate thickness-limited size effects on the thermal conductivity of amorphous silicon thin films ranging from 3 to 1636 nm grown via sputter deposition. While exhibiting a constant value up to ~100 nm, the thermal conductivity increases with film thickness thereafter. The thickness dependence we demonstrate is ascribed to boundary scattering of long wavelength vibrations and an interplay between the energy transfer associated with propagating modes (propagons) and nonpropagating modes (diffusons). A crossover from propagon to diffuson modes is deduced to occur at a frequency of ~1.8 THz via simple analytical arguments. These results provide empirical evidencemore » of size effects on the thermal conductivity of amorphous silicon and systematic experimental insight into the nature of vibrational thermal transport in amorphous solids.« less

  9. Recognizing simple polyhedron from a perspective drawing

    NASA Astrophysics Data System (ADS)

    Zhang, Guimei; Chu, Jun; Miao, Jun

    2009-10-01

    Existed methods can't be used for recognizing simple polyhedron. In this paper, three problems are researched. First, a method for recognizing triangle and quadrilateral is introduced based on geometry and angle constraint. Then Attribute Relation Graph (ARG) is employed to describe simple polyhedron and line drawing. Last, a new method is presented to recognize simple polyhedron from a line drawing. The method filters the candidate database before matching line drawing and model, thus the recognition efficiency is improved greatly. We introduced the geometrical characteristics and topological characteristics to describe each node of ARG, so the algorithm can not only recognize polyhedrons with different shape but also distinguish between polyhedrons with the same shape but with different sizes and proportions. Computer simulations demonstrate the effectiveness of the method preliminarily.

  10. Methods for estimating 2D cloud size distributions from 1D observations

    DOE PAGES

    Romps, David M.; Vogelmann, Andrew M.

    2017-08-04

    The two-dimensional (2D) size distribution of clouds in the horizontal plane plays a central role in the calculation of cloud cover, cloud radiative forcing, convective entrainment rates, and the likelihood of precipitation. Here, a simple method is proposed for calculating the area-weighted mean cloud size and for approximating the 2D size distribution from the 1D cloud chord lengths measured by aircraft and vertically pointing lidar and radar. This simple method (which is exact for square clouds) compares favorably against the inverse Abel transform (which is exact for circular clouds) in the context of theoretical size distributions. Both methods also performmore » well when used to predict the size distribution of real clouds from a Landsat scene. When applied to a large number of Landsat scenes, the simple method is able to accurately estimate the mean cloud size. Finally, as a demonstration, the methods are applied to aircraft measurements of shallow cumuli during the RACORO campaign, which then allow for an estimate of the true area-weighted mean cloud size.« less

  11. Methods for estimating 2D cloud size distributions from 1D observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romps, David M.; Vogelmann, Andrew M.

    The two-dimensional (2D) size distribution of clouds in the horizontal plane plays a central role in the calculation of cloud cover, cloud radiative forcing, convective entrainment rates, and the likelihood of precipitation. Here, a simple method is proposed for calculating the area-weighted mean cloud size and for approximating the 2D size distribution from the 1D cloud chord lengths measured by aircraft and vertically pointing lidar and radar. This simple method (which is exact for square clouds) compares favorably against the inverse Abel transform (which is exact for circular clouds) in the context of theoretical size distributions. Both methods also performmore » well when used to predict the size distribution of real clouds from a Landsat scene. When applied to a large number of Landsat scenes, the simple method is able to accurately estimate the mean cloud size. Finally, as a demonstration, the methods are applied to aircraft measurements of shallow cumuli during the RACORO campaign, which then allow for an estimate of the true area-weighted mean cloud size.« less

  12. A robust measure of HIV-1 population turnover within chronically infected individuals.

    PubMed

    Achaz, G; Palmer, S; Kearney, M; Maldarelli, F; Mellors, J W; Coffin, J M; Wakeley, J

    2004-10-01

    A simple nonparameteric test for population structure was applied to temporally spaced samples of HIV-1 sequences from the gag-pol region within two chronically infected individuals. The results show that temporal structure can be detected for samples separated by about 22 months or more. The performance of the method, which was originally proposed to detect geographic structure, was tested for temporally spaced samples using neutral coalescent simulations. Simulations showed that the method is robust to variation in samples sizes and mutation rates, to the presence/absence of recombination, and that the power to detect temporal structure is high. By comparing levels of temporal structure in simulations to the levels observed in real data, we estimate the effective intra-individual population size of HIV-1 to be between 10(3) and 10(4) viruses, which is in agreement with some previous estimates. Using this estimate and a simple measure of sequence diversity, we estimate an effective neutral mutation rate of about 5 x 10(-6) per site per generation in the gag-pol region. The definition and interpretation of estimates of such "effective" population parameters are discussed.

  13. Hi-Plex for Simple, Accurate, and Cost-Effective Amplicon-based Targeted DNA Sequencing.

    PubMed

    Pope, Bernard J; Hammet, Fleur; Nguyen-Dumont, Tu; Park, Daniel J

    2018-01-01

    Hi-Plex is a suite of methods to enable simple, accurate, and cost-effective highly multiplex PCR-based targeted sequencing (Nguyen-Dumont et al., Biotechniques 58:33-36, 2015). At its core is the principle of using gene-specific primers (GSPs) to "seed" (or target) the reaction and universal primers to "drive" the majority of the reaction. In this manner, effects on amplification efficiencies across the target amplicons can, to a large extent, be restricted to early seeding cycles. Product sizes are defined within a relatively narrow range to enable high-specificity size selection, replication uniformity across target sites (including in the context of fragmented input DNA such as that derived from fixed tumor specimens (Nguyen-Dumont et al., Biotechniques 55:69-74, 2013; Nguyen-Dumont et al., Anal Biochem 470:48-51, 2015), and application of high-specificity genetic variant calling algorithms (Pope et al., Source Code Biol Med 9:3, 2014; Park et al., BMC Bioinformatics 17:165, 2016). Hi-Plex offers a streamlined workflow that is suitable for testing large numbers of specimens without the need for automation.

  14. 77 FR 66207 - Self-Regulatory Organizations; NYSE MKT LLC; Notice of Filing and Immediate Effectiveness of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-02

    ... provides a simple, objective, and efficient metric to take into account the relative size of issuers so... such an environment, the Exchange must continually review, and consider adjusting, its fees and... that the proposed [[Page 66209

  15. The optical and structural properties of graphene nanosheets and tin oxide nanocrystals composite

    NASA Astrophysics Data System (ADS)

    Farheen, Parveen, Azra; Azam, Ameer

    2018-05-01

    A nanocomposite material consisting of metal oxide and reduced graphene oxide was prepared via simple, economic, and effective chemical reduction method. The synthesis strategy was based on the reduction of GO with Sn2+ ion that combines tin oxidation and GO reduction in one step, which provides a simple, low-cost and effective way to prepare graphene nanosheets/SnO2 nanocrystals composites because no additional chemicals were needed. SEM and TEM images shows the uniform distribution of the SnO2 nanocrystals on the Graphene nanosheets (GNs) surface and transmission electron microscope shows an average particle size of 2-4 nm. The mean crystallite size was calculated by Debye Scherrer formula and was found to be about 4.0 nm. Optical analysis was done by using UV-Visible spectroscopy technique and the band gap energy of the GNs/SnO2 nanocomposite was calculated by Tauc relation and came out to be 3.43eV.

  16. The Response of Simple Polymer Structures Under Dynamic Loading

    NASA Astrophysics Data System (ADS)

    Proud, William; Ellison, Kay; Yapp, Su; Cole, Cloe; Galimberti, Stefano; Institute of Shock Physics Team

    2017-06-01

    The dynamic response of polymeric materials has been widely studied with the effects of degree of crystallinity, strain rate, temperature and sample size being commonly reported. This study uses a simple PMMA structure, a right cylindrical sample, with structural features such as holes. The features are added an varied in a systematic fashion. Samples were dynamically loaded using a Split Hopkinson Pressure Bar up to failure. The resulting stress-strain curves are presented showing the change in sample response. The strain to failure is shown to increase initially with the presence of holes, while failure stress is relatively unaffected. The fracture patterns seen in the failed samples change, with tensile cracks, Hertzian cones, shear effects being dominant for different holes sizes and geometries. The sample were prepared by laser cutting and checked for residual stress before experiment. The data is used to validate predictive model predictions where material, structure and damage are included.. The Institute of Shock Physics acknowledges the support of Imperial College London and the Atomic Weapons Establishment.

  17. Overlap between treatment and control distributions as an effect size measure in experiments.

    PubMed

    Hedges, Larry V; Olkin, Ingram

    2016-03-01

    The proportion π of treatment group observations that exceed the control group mean has been proposed as an effect size measure for experiments that randomly assign independent units into 2 groups. We give the exact distribution of a simple estimator of π based on the standardized mean difference and use it to study the small sample bias of this estimator. We also give the minimum variance unbiased estimator of π under 2 models, one in which the variance of the mean difference is known and one in which the variance is unknown. We show how to use the relation between the standardized mean difference and the overlap measure to compute confidence intervals for π and show that these results can be used to obtain unbiased estimators, large sample variances, and confidence intervals for 3 related effect size measures based on the overlap. Finally, we show how the effect size π can be used in a meta-analysis. (c) 2016 APA, all rights reserved).

  18. Progress on ultrasonic flaw sizing in turbine-engine rotor components: bore and web geometries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, J.H.; Gray, T.A.; Thompson, R.B.

    1983-01-01

    The application of generic flaw-sizing techniques to specific components generally involves difficulties associated with geometrical complexity and simplifications arising from a knowledge of the expected flaw distribution. This paper is concerned with the case of ultrasonic flaw sizing in turbine-engine rotor components. The sizing of flat penny-shaped cracks in the web geometry discussed and new crack-sizing algorithms based on the Born and Kirchhoff approximations are introduced. Additionally, we propose a simple method for finding the size of a flat, penny-shaped crack given only the magnitude of the scattering amplitude. The bore geometry is discussed with primary emphasis on the cylindricalmore » focusing of the incident beam. Important questions which are addressed include the effects of diffraction and the position of the flaw with respect to the focal line. The appropriate deconvolution procedures to account for these effects are introduced. Generic features of the theory are compared with experiment. Finally, the effects of focused transducers on the Born inversion algorithm are discussed.« less

  19. Theoretical and experimental analyses to determine the effects of crystal orientation and grain size on the thermoelectric properties of oblique deposited bismuth telluride thin films

    NASA Astrophysics Data System (ADS)

    Morikawa, Satoshi; Satake, Yuji; Takashiri, Masayuki

    2018-06-01

    The effects of crystal orientation and grain size on the thermoelectric properties of Bi2Te3 thin films were investigated by conducting experimental and theoretical analyses. To vary the crystal orientation and grain size, we performed oblique deposition, followed by thermal annealing treatment. The crystal orientation decreased as the oblique angle was increased, while the grain size was not changed significantly. The thermoelectric properties were measured at room temperature. A theoretical analysis was performed using a first principles method based on density functional theory. Then the semi-classical Boltzmann transport equation was used in the relaxation time approximation, with the effect of grain size included. Furthermore, the effect of crystal orientation was included in the calculation based on a simple semi-experimental model. A maximum power factor of 11.6 µW/(cm·K2) was obtained at an oblique angle of 40°. The calculated thermoelectric properties were in very good agreement with the experimentally measured values.

  20. Group size, individual role differentiation and effectiveness of cooperation in a homogeneous group of hunters

    PubMed Central

    Escobedo, R.; Muro, C.; Spector, L.; Coppinger, R. P.

    2014-01-01

    The emergence of cooperation in wolf-pack hunting is studied using a simple, homogeneous, particle-based computational model. Wolves and prey are modelled as particles that interact through attractive and repulsive forces. Realistic patterns of wolf aggregation readily emerge in numerical simulations, even though the model includes no explicit wolf–wolf attractive forces, showing that the form of cooperation needed for wolf-pack hunting can take place even among strangers. Simulations are used to obtain the stationary states and equilibria of the wolves and prey system and to characterize their stability. Different geometric configurations for different pack sizes arise. In small packs, the stable configuration is a regular polygon centred on the prey, while in large packs, individual behavioural differentiation occurs and induces the emergence of complex behavioural patterns between privileged positions. Stable configurations of large wolf-packs include travelling and rotating formations, periodic oscillatory behaviours and chaotic group behaviours. These findings suggest a possible mechanism by which larger pack sizes can trigger collective behaviours that lead to the reduction and loss of group hunting effectiveness, thus explaining the observed tendency of hunting success to peak at small pack sizes. They also explain how seemingly complex collective behaviours can emerge from simple rules, among agents that need not have significant cognitive skills or social organization. PMID:24694897

  1. Cognitive effects of two nutraceuticals Ginseng and Bacopa benchmarked against modafinil: a review and comparison of effect sizes.

    PubMed

    Neale, Chris; Camfield, David; Reay, Jonathon; Stough, Con; Scholey, Andrew

    2013-03-01

    Over recent years there has been increasing research into both pharmaceutical and nutraceutical cognition enhancers. Here we aimed to calculate the effect sizes of positive cognitive effect of the pharmaceutical modafinil in order to benchmark the effect of two widely used nutraceuticals Ginseng and Bacopa (which have consistent acute and chronic cognitive effects, respectively). A search strategy was implemented to capture clinical studies into the neurocognitive effects of modafinil, Ginseng and Bacopa. Studies undertaken on healthy human subjects using a double-blind, placebo-controlled design were included. For each study where appropriate data were included, effect sizes (Cohen's d) were calculated for measures showing significant positive and negative effects of treatment over placebo. The highest effect sizes for cognitive outcomes were 0.77 for modafinil (visuospatial memory accuracy), 0.86 for Ginseng (simple reaction time) and 0.95 for Bacopa (delayed word recall). These data confirm that neurocognitive enhancement from well characterized nutraceuticals can produce cognition enhancing effects of similar magnitude to those from pharmaceutical interventions. Future research should compare these effects directly in clinical trials. © 2012 The Authors. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.

  2. Low Temperature Synthesis of CdSe Quantum Dots with Amine Derivative and Their Chemical Kinetics

    NASA Astrophysics Data System (ADS)

    Seongmi Hwang,; Youngmin Choi,; Sunho Jeong,; Hakyun Jung,; Chang Gyoun Kim,; Teak-Mo Chung,; Beyong-Hwan Ryu,

    2010-05-01

    The chemical kinetics of growing CdSe nanocrystals was studied in order to investigate the effects of amine capping agents on the size of resulting quantum dots (QDs). CdSe QDs were prepared in phenyl ether, and the amine ligand dependence of QD size was determined. The results show that the size of CdSe nanocrystals can be regulated by controlling reaction rate, with smaller QDs being formed in slower processes. The results of photoluminescence (PL) studies show that the emission wavelengths of the QDs well correlate with particle size. This simple process for forming different-sized QDs, which uses a cheap solvent and various capping agents, has the potential for preparing CdSe nanocrystals more economically.

  3. Study on effective thermal conductivity of silicone/phosphor composite and its size effect by Lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Li, Lan; Zheng, Huai; Yuan, Chao; Hu, Run; Luo, Xiaobing

    2016-12-01

    The silicone/phosphor composite is widely used in light emitting diode (LED) packaging. The composite thermal properties, especially the effective thermal conductivity, strongly influence the LED performance. In this paper, a lattice Boltzmann model was presented to predict the silicone/phosphor composite effective thermal conductivity. Based on the present lattice Boltzmann model, a random generation method was established to describe the phosphor particle distribution in composite. Benchmarks were conducted by comparing the simulation results with theoretical solutions for simple cases. Then the model was applied to analyze the effective thermal conductivity of the silicone/phosphor composite and its size effect. The deviations between simulation and experimental results are <7 %, when the phosphor volume fraction varies from 0.038 to 0.45. The simulation results also indicate that effective thermal conductivity of the composite with larger particles is higher than that with small particles at the same volume fraction. While mixing these two sizes of phosphor particles provides an extra enhancement for the effective thermal conductivity.

  4. Offspring size effects mediate competitive interactions in a colonial marine invertebrate.

    PubMed

    Marshall, Dustin J; Cook, Carly N; Emlet, Richard B

    2006-01-01

    Over the past 30 years, numerous attempts to understand the relationship between offspring size and fitness have been made, and it has become clear that this critical relationship is strongly affected by environmental heterogeneity. For marine invertebrates, there has been a long-standing interest in the evolution of offspring size, but there have been very few empirical and theoretical examinations of post-metamorphic offspring size effects, and almost none have considered the effect of environmental heterogeneity on the offspring size/fitness relationship. We investigated the post-metamorphic effects of offspring size in the field for the colonial marine invertebrate Botrylloides violaceus. We also examined how the relationship between offspring size and performance was affected by three different types of intraspecific competition. We found strong and persistent effects of offspring size on survival and growth, but these effects depended on the level and type of intraspecific competition. Generally, competition strengthened the advantages of increasing maternal investment. Interestingly, we found that offspring size determined the outcome of competitive interaction: juveniles that had more maternal investment were more likely to encroach on another juvenile's territory. This suggests that mothers have the previously unrecognized potential to influence the outcome of competitive interactions in benthic marine invertebrates. We created a simple optimality model, which utilized the data generated from our field experiments, and found that increasing intraspecific competition resulted in an increase in predicted optimal size. Our results suggest that the relationship between offspring size and fitness is highly variable in the marine environment and strongly dependent on the density of conspecifics.

  5. On solar thermal electric power capacity sizing

    NASA Astrophysics Data System (ADS)

    Clark, J. S.

    1984-03-01

    The commercialization of parabolic dish/generator modules are investigated. Design analysis indicates that a 10 sq m/ three kilowatt generator configuration is simple and easy to maintain, manufacturing is easily adaptable, the demand is already established, the unit is cost effective and the hardware is readily available.

  6. FITPOP, a heuristic simulation model of population dynamics and genetics with special reference to fisheries

    USGS Publications Warehouse

    McKenna, James E.

    2000-01-01

    Although, perceiving genetic differences and their effects on fish population dynamics is difficult, simulation models offer a means to explore and illustrate these effects. I partitioned the intrinsic rate of increase parameter of a simple logistic-competition model into three components, allowing specification of effects of relative differences in fitness and mortality, as well as finite rate of increase. This model was placed into an interactive, stochastic environment to allow easy manipulation of model parameters (FITPOP). Simulation results illustrated the effects of subtle differences in genetic and population parameters on total population size, overall fitness, and sensitivity of the system to variability. Several consequences of mixing genetically distinct populations were illustrated. For example, behaviors such as depression of population size after initial introgression and extirpation of native stocks due to continuous stocking of genetically inferior fish were reproduced. It also was shown that carrying capacity relative to the amount of stocking had an important influence on population dynamics. Uncertainty associated with parameter estimates reduced confidence in model projections. The FITPOP model provided a simple tool to explore population dynamics, which may assist in formulating management strategies and identifying research needs.

  7. Methods to estimate effective population size using pedigree data: Examples in dog, sheep, cattle and horse

    PubMed Central

    2013-01-01

    Background Effective population sizes of 140 populations (including 60 dog breeds, 40 sheep breeds, 20 cattle breeds and 20 horse breeds) were computed using pedigree information and six different computation methods. Simple demographical information (number of breeding males and females), variance of progeny size, or evolution of identity by descent probabilities based on coancestry or inbreeding were used as well as identity by descent rate between two successive generations or individual identity by descent rate. Results Depending on breed and method, effective population sizes ranged from 15 to 133 056, computation method and interaction between computation method and species showing a significant effect on effective population size (P < 0.0001). On average, methods based on number of breeding males and females and variance of progeny size produced larger values (4425 and 356, respectively), than those based on identity by descent probabilities (average values between 93 and 203). Since breeding practices and genetic substructure within dog breeds increased inbreeding, methods taking into account the evolution of inbreeding produced lower effective population sizes than those taking into account evolution of coancestry. The correlation level between the simplest method (number of breeding males and females, requiring no genealogical information) and the most sophisticated one ranged from 0.44 to 0.60 according to species. Conclusions When choosing a method to compute effective population size, particular attention should be paid to the species and the specific genetic structure of the population studied. PMID:23281913

  8. The albatross plot: A novel graphical tool for presenting results of diversely reported studies in a systematic review

    PubMed Central

    Jones, Hayley E.; Martin, Richard M.; Lewis, Sarah J.; Higgins, Julian P.T.

    2017-01-01

    Abstract Meta‐analyses combine the results of multiple studies of a common question. Approaches based on effect size estimates from each study are generally regarded as the most informative. However, these methods can only be used if comparable effect sizes can be computed from each study, and this may not be the case due to variation in how the studies were done or limitations in how their results were reported. Other methods, such as vote counting, are then used to summarize the results of these studies, but most of these methods are limited in that they do not provide any indication of the magnitude of effect. We propose a novel plot, the albatross plot, which requires only a 1‐sided P value and a total sample size from each study (or equivalently a 2‐sided P value, direction of effect and total sample size). The plot allows an approximate examination of underlying effect sizes and the potential to identify sources of heterogeneity across studies. This is achieved by drawing contours showing the range of effect sizes that might lead to each P value for given sample sizes, under simple study designs. We provide examples of albatross plots using data from previous meta‐analyses, allowing for comparison of results, and an example from when a meta‐analysis was not possible. PMID:28453179

  9. Study on shear properties of coral sand under cyclic simple shear condition

    NASA Astrophysics Data System (ADS)

    Ji, Wendong; Zhang, Yuting; Jin, Yafei

    2018-05-01

    In recent years, the ocean development in our country urgently needs to be accelerated. The construction of artificial coral reefs has become an important development direction. In this paper, experimental studies of simple shear and cyclic simple shear of coral sand are carried out, and the shear properties and particle breakage of coral sand are analyzed. The results show that the coral sand samples show an overall shear failure in the simple shear test, which is more accurate and effective for studying the particle breakage. The shear displacement corresponding to the peak shear stress of the simple shear test is significantly larger than that corresponding to the peak shear stress of the direct shear test. The degree of particle breakage caused by the simple shear test is significantly related to the normal stress level. The particle breakage of coral sand after the cyclic simple shear test obviously increases compared with that of the simple shear test, and universal particle breakage occurs within the whole particle size range. The increasing of the cycle-index under cyclic simple shear test results in continuous compacting of the sample, so that the envelope curve of peak shearing force increases with the accumulated shear displacement.

  10. Effects of Nanoparticle Size on Cellular Uptake and Liver MRI with PVP-Coated Iron Oxide Nanoparticles

    PubMed Central

    Huang, Jing; Bu, Lihong; Xie, Jin; Chen, Kai; Cheng, Zhen; Li, Xingguo; Chen, Xiaoyuan

    2010-01-01

    The effect of nanoparticle size (30–120 nm) on magnetic resonance imaging (MRI) of hepatic lesions in vivo has been systematically examined using polyvinylpyrrolidone (PVP)-coated iron oxide nanoparticles (PVP-IOs). Such biocompatible PVP-IOs with different sizes were synthesized by a simple one-pot pyrolysis method. These PVP-IOs exhibited good crystallinity and high T2 relaxivities, and the relaxivity increased with the size of the magnetic nanoparticles. It was found that cellular uptake changed with both size and surface physiochemical properties, and that PVP-IO-37 with a core size of 37 nm and hydrodynamic particle size of 100 nm exhibited higher cellular uptake rate and greater distribution than other PVP-IOs and Feridex. We systematically investigated the effect of nanoparticle size on MRI of normal liver and hepatic lesions in vivo. The physical and chemical properties of the nanoparticles influenced their pharmacokinetic behavior, which ultimately determined their ability to accumulate in the liver. The contrast enhancement of PVP-IOs within the liver was highly dependent on the overall size of the nanoparticles, and the 100 nm PVP-IO-37 nanoparticles exhibited the greatest enhancement. These results will have implications in designing engineered nanoparticles that are optimized as MR contrast agents or for use in therapeutics. PMID:21043459

  11. Color from hierarchy: Diverse optical properties of micron-sized spherical colloidal assemblies.

    PubMed

    Vogel, Nicolas; Utech, Stefanie; England, Grant T; Shirman, Tanya; Phillips, Katherine R; Koay, Natalie; Burgess, Ian B; Kolle, Mathias; Weitz, David A; Aizenberg, Joanna

    2015-09-01

    Materials in nature are characterized by structural order over multiple length scales have evolved for maximum performance and multifunctionality, and are often produced by self-assembly processes. A striking example of this design principle is structural coloration, where interference, diffraction, and absorption effects result in vivid colors. Mimicking this emergence of complex effects from simple building blocks is a key challenge for man-made materials. Here, we show that a simple confined self-assembly process leads to a complex hierarchical geometry that displays a variety of optical effects. Colloidal crystallization in an emulsion droplet creates micron-sized superstructures, termed photonic balls. The curvature imposed by the emulsion droplet leads to frustrated crystallization. We observe spherical colloidal crystals with ordered, crystalline layers and a disordered core. This geometry produces multiple optical effects. The ordered layers give rise to structural color from Bragg diffraction with limited angular dependence and unusual transmission due to the curved nature of the individual crystals. The disordered core contributes nonresonant scattering that induces a macroscopically whitish appearance, which we mitigate by incorporating absorbing gold nanoparticles that suppress scattering and macroscopically purify the color. With increasing size of the constituent colloidal particles, grating diffraction effects dominate, which result from order along the crystal's curved surface and induce a vivid polychromatic appearance. The control of multiple optical effects induced by the hierarchical morphology in photonic balls paves the way to use them as building blocks for complex optical assemblies--potentially as more efficient mimics of structural color as it occurs in nature.

  12. Color from hierarchy: Diverse optical properties of micron-sized spherical colloidal assemblies

    PubMed Central

    Vogel, Nicolas; Utech, Stefanie; England, Grant T.; Shirman, Tanya; Phillips, Katherine R.; Koay, Natalie; Burgess, Ian B.; Kolle, Mathias; Weitz, David A.; Aizenberg, Joanna

    2015-01-01

    Materials in nature are characterized by structural order over multiple length scales have evolved for maximum performance and multifunctionality, and are often produced by self-assembly processes. A striking example of this design principle is structural coloration, where interference, diffraction, and absorption effects result in vivid colors. Mimicking this emergence of complex effects from simple building blocks is a key challenge for man-made materials. Here, we show that a simple confined self-assembly process leads to a complex hierarchical geometry that displays a variety of optical effects. Colloidal crystallization in an emulsion droplet creates micron-sized superstructures, termed photonic balls. The curvature imposed by the emulsion droplet leads to frustrated crystallization. We observe spherical colloidal crystals with ordered, crystalline layers and a disordered core. This geometry produces multiple optical effects. The ordered layers give rise to structural color from Bragg diffraction with limited angular dependence and unusual transmission due to the curved nature of the individual crystals. The disordered core contributes nonresonant scattering that induces a macroscopically whitish appearance, which we mitigate by incorporating absorbing gold nanoparticles that suppress scattering and macroscopically purify the color. With increasing size of the constituent colloidal particles, grating diffraction effects dominate, which result from order along the crystal’s curved surface and induce a vivid polychromatic appearance. The control of multiple optical effects induced by the hierarchical morphology in photonic balls paves the way to use them as building blocks for complex optical assemblies—potentially as more efficient mimics of structural color as it occurs in nature. PMID:26290583

  13. Power and sample size for multivariate logistic modeling of unmatched case-control studies.

    PubMed

    Gail, Mitchell H; Haneuse, Sebastien

    2017-01-01

    Sample size calculations are needed to design and assess the feasibility of case-control studies. Although such calculations are readily available for simple case-control designs and univariate analyses, there is limited theory and software for multivariate unconditional logistic analysis of case-control data. Here we outline the theory needed to detect scalar exposure effects or scalar interactions while controlling for other covariates in logistic regression. Both analytical and simulation methods are presented, together with links to the corresponding software.

  14. The Power of Teacher Expectations: How Racial Bias Hinders Student Attainment

    ERIC Educational Resources Information Center

    Gershenson, Seth; Papageorge, Nicholas

    2018-01-01

    Despite abundant anecdotes and theories suggesting a causal effect of teachers' expectations on student outcomes, documenting its presence and size has been challenging. The reason is simple: positive correlations between what teachers expect and what students ultimately accomplish might simply result from teachers being skilled observers. In…

  15. Preparation of CdS Nanoparticles by First-Year Undergraduates

    ERIC Educational Resources Information Center

    Winkelmann, Kurt; Noviello, Thomas; Brooks, Stephen

    2007-01-01

    The first year undergraduates use a simple method to synthesize 5-nm CdS nanoparticles in a water-in-oil microemulsion. The quantum size effect, the relationship between colors, optical absorbance, band-gap energy and the CdS particles affected by the formation of micelles are observed.

  16. Mathematical demography of spotted owls in the Pacific Northwest

    Treesearch

    B.R. Noon; C.M. Biles

    1990-01-01

    We examined the mathematical demography of northern spotted owls (Strix occidentalis caurina) using simple deterministic population models. Our goals were to gain insights into the life history strategy, to determine demographic attributes most affecting changes in population size, and to provide guidelines for effective management of spotted owl...

  17. The effects of delay duration on visual working memory for orientation.

    PubMed

    Shin, Hongsup; Zou, Qijia; Ma, Wei Ji

    2017-12-01

    We used a delayed-estimation paradigm to characterize the joint effects of set size (one, two, four, or six) and delay duration (1, 2, 3, or 6 s) on visual working memory for orientation. We conducted two experiments: one with delay durations blocked, another with delay durations interleaved. As dependent variables, we examined four model-free metrics of dispersion as well as precision estimates in four simple models. We tested for effects of delay time using analyses of variance, linear regressions, and nested model comparisons. We found significant effects of set size and delay duration on both model-free and model-based measures of dispersion. However, the effect of delay duration was much weaker than that of set size, dependent on the analysis method, and apparent in only a minority of subjects. The highest forgetting slope found in either experiment at any set size was a modest 1.14°/s. As secondary results, we found a low rate of nontarget reports, and significant estimation biases towards oblique orientations (but no dependence of their magnitude on either set size or delay duration). Relative stability of working memory even at higher set sizes is consistent with earlier results for motion direction and spatial frequency. We compare with a recent study that performed a very similar experiment.

  18. A numerical method for shock driven multiphase flow with evaporating particles

    NASA Astrophysics Data System (ADS)

    Dahal, Jeevan; McFarland, Jacob A.

    2017-09-01

    A numerical method for predicting the interaction of active, phase changing particles in a shock driven flow is presented in this paper. The Particle-in-Cell (PIC) technique was used to couple particles in a Lagrangian coordinate system with a fluid in an Eulerian coordinate system. The Piecewise Parabolic Method (PPM) hydrodynamics solver was used for solving the conservation equations and was modified with mass, momentum, and energy source terms from the particle phase. The method was implemented in the open source hydrodynamics software FLASH, developed at the University of Chicago. A simple validation of the methods is accomplished by comparing velocity and temperature histories from a single particle simulation with the analytical solution. Furthermore, simple single particle parcel simulations were run at two different sizes to study the effect of particle size on vorticity deposition in a shock-driven multiphase instability. Large particles were found to have lower enstrophy production at early times and higher enstrophy dissipation at late times due to the advection of the particle vorticity source term through the carrier gas. A 2D shock-driven instability of a circular perturbation is studied in simulations and compared to previous experimental data as further validation of the numerical methods. The effect of the particle size distribution and particle evaporation is examined further for this case. The results show that larger particles reduce the vorticity deposition, while particle evaporation increases it. It is also shown that for a distribution of particles sizes the vorticity deposition is decreased compared to single particle size case at the mean diameter.

  19. The effect of code expanding optimizations on instruction cache design

    NASA Technical Reports Server (NTRS)

    Chen, William Y.; Chang, Pohua P.; Conte, Thomas M.; Hwu, Wen-Mei W.

    1991-01-01

    It is shown that code expanding optimizations have strong and non-intuitive implications on instruction cache design. Three types of code expanding optimizations are studied: instruction placement, function inline expansion, and superscalar optimizations. Overall, instruction placement reduces the miss ratio of small caches. Function inline expansion improves the performance for small cache sizes, but degrades the performance of medium caches. Superscalar optimizations increases the cache size required for a given miss ratio. On the other hand, they also increase the sequentiality of instruction access so that a simple load-forward scheme effectively cancels the negative effects. Overall, it is shown that with load forwarding, the three types of code expanding optimizations jointly improve the performance of small caches and have little effect on large caches.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinberg, Elad; Sari, Re'em, E-mail: elad.steinberg@mail.huji.ac.il

    The rotation states of kilometer-sized near-Earth asteroids are known to be affected by the Yarkevsky O'Keefe-Radzievskii-Paddack (YORP) effect. In a related effect, binary YORP (BYORP), the orbital properties of a binary asteroid evolve under a radiation effect mostly acting on a tidally locked secondary. The BYORP effect can alter the orbital elements over {approx}10{sup 4}-10{sup 5} years for a D{sub p} = 2 km primary with a D{sub s} = 0.4 km secondary at 1 AU. It can either separate the binary components or cause them to collide. In this paper, we devise a simple approach to calculate the YORPmore » effect on asteroids and the BYORP effect on binaries including J{sub 2} effects due to primary oblateness and the Sun. We apply this to asteroids with known shapes as well as a set of randomly generated bodies with various degrees of smoothness. We find a strong correlation between the strengths of an asteroid's YORP and BYORP effects. Therefore, statistical knowledge of one could be used to estimate the effect of the other. We show that the action of BYORP preferentially shrinks rather than expands the binary orbit and that YORP preferentially slows down asteroids. This conclusion holds for the two extremes of thermal conductivities studied in this work and the assumption that the asteroid reaches a stable point, but may break down for moderate thermal conductivity. The YORP and BYORP effects are shown to be smaller than could be naively expected due to near cancellation of the effects at small scales. Taking this near cancellation into account, a simple order-of-magnitude estimate of the YORP and BYORP effects as a function of the sizes and smoothness of the bodies is calculated. Finally, we provide a simple proof showing that there is no secular effect due to absorption of radiation in BYORP.« less

  1. Spatial characterization of Bessel-like beams for strong-field physics.

    PubMed

    Summers, Adam M; Yu, Xiaoming; Wang, Xinya; Raoul, Maxime; Nelson, Josh; Todd, Daniel; Zigo, Stefan; Lei, Shuting; Trallero-Herrero, Carlos A

    2017-02-06

    We present a compact, simple design for the generation and tuning of both the spot size and effective focal length of Bessel-like beams. In particular, this setup provides an important tool for the use of Bessel-like beams with high-power, femtosecond laser systems. Using a shallow angle axicon in conjunction with a spherical lens, we show that it is possible to focus Bessel-like modes to comparable focal spot sizes to sharp axicons while maintaining a long effective focal length. The resulting focal profiles are characterized in detail using an accurate high dynamic range imaging technique. Quantitatively, we introduce a metric (R0.8) which defines the spot-size containing 80% of the total energy. Our setup overcomes the typical compromise between long working distances and small spot sizes. This is particularly relevant for strong-field physics where most experiments must operate in vacuum.

  2. Generation of nanobubbles by ceramic membrane filters: The dependence of bubble size and zeta potential on surface coating, pore size and injected gas pressure.

    PubMed

    Ahmed, Ahmed Khaled Abdella; Sun, Cuizhen; Hua, Likun; Zhang, Zhibin; Zhang, Yanhao; Zhang, Wen; Marhaba, Taha

    2018-07-01

    Generation of gaseous nanobubbles (NBs) by simple, efficient, and scalable methods is critical for industrialization and applications of nanobubbles. Traditional generation methods mainly rely on hydrodynamic, acoustic, particle, and optical cavitation. These generation processes render issues such as high energy consumption, non-flexibility, and complexity. This research investigated the use of tubular ceramic nanofiltration membranes to generate NBs in water with air, nitrogen and oxygen gases. This system injects pressurized gases through a tubular ceramic membrane with nanopores to create NBs. The effects of membrane pores size, surface energy, and the injected gas pressures on the bubble size and zeta potential were examined. The results show that the gas injection pressure had considerable effects on the bubble size, zeta potential, pH, and dissolved oxygen of the produced NBs. For example, increasing the injection air pressure from 69 kPa to 414 kPa, the air bubble size was reduced from 600 to 340 nm respectively. Membrane pores size and surface energy also had significant effects on sizes and zeta potentials of NBs. The results presented here aim to fill out the gaps of fundamental knowledge about NBs and development of efficient generation methods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. SEMICONDUCTOR TECHNOLOGY: An efficient dose-compensation method for proximity effect correction

    NASA Astrophysics Data System (ADS)

    Ying, Wang; Weihua, Han; Xiang, Yang; Renping, Zhang; Yang, Zhang; Fuhua, Yang

    2010-08-01

    A novel simple dose-compensation method is developed for proximity effect correction in electron-beam lithography. The sizes of exposed patterns depend on dose factors while other exposure parameters (including accelerate voltage, resist thickness, exposing step size, substrate material, and so on) remain constant. This method is based on two reasonable assumptions in the evaluation of the compensated dose factor: one is that the relation between dose factors and circle-diameters is linear in the range under consideration; the other is that the compensated dose factor is only affected by the nearest neighbors for simplicity. Four-layer-hexagon photonic crystal structures were fabricated as test patterns to demonstrate this method. Compared to the uncorrected structures, the homogeneity of the corrected hole-size in photonic crystal structures was clearly improved.

  4. Estimation of the simple correlation coefficient.

    PubMed

    Shieh, Gwowen

    2010-11-01

    This article investigates some unfamiliar properties of the Pearson product-moment correlation coefficient for the estimation of simple correlation coefficient. Although Pearson's r is biased, except for limited situations, and the minimum variance unbiased estimator has been proposed in the literature, researchers routinely employ the sample correlation coefficient in their practical applications, because of its simplicity and popularity. In order to support such practice, this study examines the mean squared errors of r and several prominent formulas. The results reveal specific situations in which the sample correlation coefficient performs better than the unbiased and nearly unbiased estimators, facilitating recommendation of r as an effect size index for the strength of linear association between two variables. In addition, related issues of estimating the squared simple correlation coefficient are also considered.

  5. Computational studies of photoluminescence from disordered nanocrystalline systems

    NASA Astrophysics Data System (ADS)

    John, George

    2000-03-01

    The size (d) dependence of emission energies from semiconductor nanocrystallites have been shown to follow an effective exponent ( d^-β) determined by the disorder in the system(V.Ranjan, V.A.Singh and G.C.John, Phys. Rev B 58), 1158 (1998). Our earlier calculation was based on a simple quantum confinement model assuming a normal distribution of crystallites. This model is now extended to study the effects of realistic systems with a lognormal distribution in particle size, accounting for carrier hopping and nonradiative transitions. Computer simulations of this model performed using the Microcal Origin software can explain several conflicting experimental results reported in literature.

  6. Optical technique to study the impact of heavy rain on aircraft performance

    NASA Technical Reports Server (NTRS)

    Hess, C. F.; Li, F.

    1985-01-01

    A laser based technique was investigated and shown to have the potential to obtain measurements of the size and velocity of water droplets used in a wind tunnel to simulate rain. A theoretical model was developed which included some simple effects due to droplet nonsphericity. Parametric studies included the variation of collection distance (up to 4 m), angle of collection, effect of beam interference by the spray, and droplet shape. Accurate measurements were obtained under extremely high liquid water content and spray interference. The technique finds applications in the characterization of two phase flows where the size and velocity of particles are needed.

  7. A computational approach to predicting ligand selectivity for the size-based separation of trivalent lanthanides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, Alexander S.; Bryantsev, Vyacheslav S.

    An accurate description of solvation effects for trivalent lanthanide ions is a main stumbling block to the qualitative prediction of selectivity trends along the lanthanide series. In this work, we propose a simple model to describe the differential effect of solvation in the competitive binding of a ligand by lanthanide ions by including weakly co-ordinated counterions in the complexes of more than a +1 charge. The success of the approach to quantitatively reproduce selectivities obtained from aqueous phase complexation studies demonstrates its potential for the design and screening of new ligands for efficient size-based separation.

  8. A computational approach to predicting ligand selectivity for the size-based separation of trivalent lanthanides

    DOE PAGES

    Ivanov, Alexander S.; Bryantsev, Vyacheslav S.

    2016-06-20

    An accurate description of solvation effects for trivalent lanthanide ions is a main stumbling block to the qualitative prediction of selectivity trends along the lanthanide series. In this work, we propose a simple model to describe the differential effect of solvation in the competitive binding of a ligand by lanthanide ions by including weakly co-ordinated counterions in the complexes of more than a +1 charge. The success of the approach to quantitatively reproduce selectivities obtained from aqueous phase complexation studies demonstrates its potential for the design and screening of new ligands for efficient size-based separation.

  9. Size-Based Separation of Particles and Cells Utilizing Viscoelastic Effects in Straight Microchannels.

    PubMed

    Liu, Chao; Xue, Chundong; Chen, Xiaodong; Shan, Lei; Tian, Yu; Hu, Guoqing

    2015-06-16

    Viscoelasticity-induced particle migration has recently received increasing attention due to its ability to obtain high-quality focusing over a wide range of flow rates. However, its application is limited to low throughput regime since the particles can defocus as flow rate increases. Using an engineered carrier medium with constant and low viscosity and strong elasticity, the sample flow rates are improved to be 1 order of magnitude higher than those in existing studies. Utilizing differential focusing of particles of different sizes, here, we present sheathless particle/cell separation in simple straight microchannels that possess excellent parallelizability for further throughput enhancement. The present method can be implemented over a wide range of particle/cell sizes and flow rates. We successfully separate small particles from larger particles, MCF-7 cells from red blood cells (RBCs), and Escherichia coli (E. coli) bacteria from RBCs in different straight microchannels. The proposed method could broaden the applications of viscoelastic microfluidic devices to particle/cell separation due to the enhanced sample throughput and simple channel design.

  10. Achieving optimal growth: lessons from simple metabolic modules

    NASA Astrophysics Data System (ADS)

    Goyal, Sidhartha; Chen, Thomas; Wingreen, Ned

    2009-03-01

    Metabolism is a universal property of living organisms. While the metabolic network itself has been well characterized, the logic of its regulation remains largely mysterious. Recent work has shown that growth rates of microorganisms, including the bacterium Escherichia coli, correlate well with optimal growth rates predicted by flux-balance analysis (FBA), a constraint-based computational method. How difficult is it for cells to achieve optimal growth? Our analysis of representative metabolic modules drawn from real metabolism shows that, in all cases, simple feedback inhibition allows nearly optimal growth. Indeed, product-feedback inhibition is found in every biosynthetic pathway and constitutes about 80% of metabolic regulation. However, we find that product-feedback systems designed to approach optimal growth necessarily produce large pool sizes of metabolites, with potentially detrimental effects on cells via toxicity and osmotic imbalance. Interestingly, the sizes of metabolite pools can be strongly restricted if the feedback inhibition is ultrasensitive (i.e. with high Hill coefficient). The need for ultrasensitive mechanisms to limit pool sizes may therefore explain some of the ubiquitous, puzzling complexity found in metabolic feedback regulation at both the transcriptional and post-transcriptional levels.

  11. Microplastic flow in SIC/AL composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, N.; Arsenault, R.J.

    Experimentally it has been determined that if a composite containing a reinforcement which has a different (in general lower) thermal coefficient of expansion as compared to the matrix, then upon cooling from the processing or annealing temperature, plastic relaxation of the misfit strain will occur. Also, experimentally it has been shown that as the size of the reinforcement is increased, i.e., from small spheres to large spheres, there is a decrease in the summation of the effective plastic strain in the matrix. In other words there is a decrease in the average dislocation density in the matrix. However, if themore » shape of the reinforcement is changed from spherical to short fiber to continuous filament, then the dislocation density increases. This experimental data is obtained at a constant volume fraction. A very simple model of plastic relaxation based on prismatic punching of dislocations from the interface can account for the decrease in the dislocation density with an increase reinforcement size, and the increase in dislocation density when changing the shape from a sphere to a continuous filament. A FEM analysis of the shape factor is also capable of predicting the correct trend. However, at present the continuum mechanics methods that have been investigated can not predict the size dependence. A simple model to explain the size effect in Al{sub 2}O{sub 3}/NiAl composites based on the deformation characteristics of NiAl will be discussed.« less

  12. Nonconservative dynamics in long atomic wires

    NASA Astrophysics Data System (ADS)

    Cunningham, Brian; Todorov, Tchavdar N.; Dundas, Daniel

    2014-09-01

    The effect of nonconservative current-induced forces on the ions in a defect-free metallic nanowire is investigated using both steady-state calculations and dynamical simulations. Nonconservative forces were found to have a major influence on the ion dynamics in these systems, but their role in increasing the kinetic energy of the ions decreases with increasing system length. The results illustrate the importance of nonconservative effects in short nanowires and the scaling of these effects with system size. The dependence on bias and ion mass can be understood with the help of a simple pen and paper model. This material highlights the benefit of simple preliminary steady-state calculations in anticipating aspects of brute-force dynamical simulations, and provides rule of thumb criteria for the design of stable quantum wires.

  13. Phrase frequency effects in language production.

    PubMed

    Janssen, Niels; Barber, Horacio A

    2012-01-01

    A classic debate in the psychology of language concerns the question of the grain-size of the linguistic information that is stored in memory. One view is that only morphologically simple forms are stored (e.g., 'car', 'red'), and that more complex forms of language such as multi-word phrases (e.g., 'red car') are generated on-line from the simple forms. In two experiments we tested this view. In Experiment 1, participants produced noun+adjective and noun+noun phrases that were elicited by experimental displays consisting of colored line drawings and two superimposed line drawings. In Experiment 2, participants produced noun+adjective and determiner+noun+adjective utterances elicited by colored line drawings. In both experiments, naming latencies decreased with increasing frequency of the multi-word phrase, and were unaffected by the frequency of the object name in the utterance. These results suggest that the language system is sensitive to the distribution of linguistic information at grain-sizes beyond individual words.

  14. The Effect of Tick Size on Trading Volume Share in Two Competing Stock Markets

    NASA Astrophysics Data System (ADS)

    Nagumo, Shota; Shimada, Takashi; Yoshioka, Naoki; Ito, Nobuyasu

    2017-01-01

    The relationship between tick sizes and trading volume shares in competing markets is studied theoretically. By introducing a simple model which is equipped with two markets and non-strategic traders, we analytically calculate the steady states. It is shown that a market with a larger tick size is generally deprived of its share by the competing market. However, if traders' preference for the present market because of its major share is strong enough, the market with a larger tick size has a chance to keep a major share in the steady state. These findings are consistent with the previous results obtained from a more complicated artificial market model and also provide a clear understanding of the basic mechanism of market competition.

  15. Characteristic Sizes of Life in the Oceans, from Bacteria to Whales.

    PubMed

    Andersen, K H; Berge, T; Gonçalves, R J; Hartvig, M; Heuschele, J; Hylander, S; Jacobsen, N S; Lindemann, C; Martens, E A; Neuheimer, A B; Olsson, K; Palacz, A; Prowe, A E F; Sainmont, J; Traving, S J; Visser, A W; Wadhwa, N; Kiørboe, T

    2016-01-01

    The size of an individual organism is a key trait to characterize its physiology and feeding ecology. Size-based scaling laws may have a limited size range of validity or undergo a transition from one scaling exponent to another at some characteristic size. We collate and review data on size-based scaling laws for resource acquisition, mobility, sensory range, and progeny size for all pelagic marine life, from bacteria to whales. Further, we review and develop simple theoretical arguments for observed scaling laws and the characteristic sizes of a change or breakdown of power laws. We divide life in the ocean into seven major realms based on trophic strategy, physiology, and life history strategy. Such a categorization represents a move away from a taxonomically oriented description toward a trait-based description of life in the oceans. Finally, we discuss life forms that transgress the simple size-based rules and identify unanswered questions.

  16. The albatross plot: A novel graphical tool for presenting results of diversely reported studies in a systematic review.

    PubMed

    Harrison, Sean; Jones, Hayley E; Martin, Richard M; Lewis, Sarah J; Higgins, Julian P T

    2017-09-01

    Meta-analyses combine the results of multiple studies of a common question. Approaches based on effect size estimates from each study are generally regarded as the most informative. However, these methods can only be used if comparable effect sizes can be computed from each study, and this may not be the case due to variation in how the studies were done or limitations in how their results were reported. Other methods, such as vote counting, are then used to summarize the results of these studies, but most of these methods are limited in that they do not provide any indication of the magnitude of effect. We propose a novel plot, the albatross plot, which requires only a 1-sided P value and a total sample size from each study (or equivalently a 2-sided P value, direction of effect and total sample size). The plot allows an approximate examination of underlying effect sizes and the potential to identify sources of heterogeneity across studies. This is achieved by drawing contours showing the range of effect sizes that might lead to each P value for given sample sizes, under simple study designs. We provide examples of albatross plots using data from previous meta-analyses, allowing for comparison of results, and an example from when a meta-analysis was not possible. Copyright © 2017 The Authors. Research Synthesis Methods Published by John Wiley & Sons Ltd.

  17. Triton X-114 based cloud point extraction: a thermoreversible approach for separation/concentration and dispersion of nanomaterials in the aqueous phase.

    PubMed

    Liu, Jing-fu; Liu, Rui; Yin, Yong-guang; Jiang, Gui-bin

    2009-03-28

    Capable of preserving the sizes and shapes of nanomaterials during the phase transferring, Triton X-114 based cloud point extraction provides a general, simple, and cost-effective route for reversible concentration/separation or dispersion of various nanomaterials in the aqueous phase.

  18. Space based lidar shot pattern targeting strategies for small targets such as streams

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.

    2001-01-01

    An analysis of the effectiveness of four different types of lidar shot distribution is conducted to determine which is best for concentrating shots in a given location. A simple preemptive targeting strategy is found to work as adequately as a more involved dynamic strategy for most target sizes considered.

  19. A simple apparatus for controlling nucleation and size in protein crystal growth

    NASA Technical Reports Server (NTRS)

    Gernert, Kim M.; Smith, Robert; Carter, Daniel C.

    1988-01-01

    A simple device is described for controlling vapor equilibrium in macromolecular crystallization as applied to the protein crystal growth technique commonly referred to as the 'hanging drop' method. Crystal growth experiments with hen egg white lysozyme have demonstrated control of the nucleation rate. Nucleation rate and final crystal size have been found to be highly dependent upon the rate at which critical supersaturation is approached. Slower approaches show a marked decrease in the nucleation rate and an increase in crystal size.

  20. Testing effects in visual short-term memory: The case of an object's size.

    PubMed

    Makovski, Tal

    2018-05-29

    In many daily activities, we need to form and retain temporary representations of an object's size. Typically, such visual short-term memory (VSTM) representations follow perception and are considered reliable. Here, participants were asked to hold in mind a single simple object for a short duration and to reproduce its size by adjusting the length and width of a test probe. Experiment 1 revealed two powerful findings: First, similar to a recently reported perceptual illusion, participants greatly overestimated the size of open objects - ones with missing boundaries - relative to the same-size fully closed objects. This finding confirms that object boundaries are critical for size perception and memory. Second, and in contrast to perception, even the size of the closed objects was largely overestimated. Both inflation effects were substantial and were replicated and extended in Experiments 2-5. Experiments 6-8 used a different testing procedure to examine whether the overestimation effects are due to inflation of size in VSTM representations or to biases introduced during the reproduction phase. These data showed that while the overestimation of the open objects was repeated, the overestimation of the closed objects was not. Taken together, these findings suggest that similar to perception, only the size representation of open objects is inflated in VSTM. Importantly, they demonstrate the considerable impact of the testing procedure on VSTM tasks and further question the use of reproduction procedures for measuring VSTM.

  1. Context-dependent interactive effects of non-lethal predation on larvae impact adult longevity and body composition.

    PubMed

    Chandrasegaran, Karthikeyan; Kandregula, Samyuktha Rao; Quader, Suhel; Juliano, Steven A

    2018-01-01

    Predation impacts development, behavior and morphology of prey species thereby shaping their abundances, distribution and community structure. Non-lethal threat of predation, specifically, can have a strong influence on prey lifehistory characteristics. While investigations often focus on the impact of predation threat on prey in isolation, tests of its interactive effects with food availability and resource competition on prey survival and fitness can improve understanding of costs, benefits and trade-offs of anti-predator strategies. This study, involving Aedes aegypti mosquitoes as a model organism, investigates both simple and interactive effects of predation threat during the larval stage on survival, size at and time to maturity, stored teneral reserves of glycogen, protein and lipid in adults, and adult longevity. Our results show that development times of mosquito larvae were increased (by 14.84% in males and by 97.63% in females), and size of eclosing adults decreased (by 62.30% in males and by 58.33% in females) when exposed to lowered nutrition and elevated intraspecific competition, but that predation had no detectable effect on these simple traits. Teneral reserves of glycogen, protein and lipid and adult longevity were positively correlated with adult body size. Non-lethal predation threat had significant interactive effects with nutrition and larval competition on teneral reserves in males and adult longevity in males and females. The sexes responded differently to conditions encountered as larvae, with the larval environment affecting development and adult characteristics more acutely for females than for males. The outcome of this study shows how threat of predation on juveniles can have long-lasting effects on adults that are likely to impact mosquito population dynamics and that may impact disease transmission.

  2. The application of the thermodynamic perturbation theory to study the hydrophobic hydration.

    PubMed

    Mohoric, Tomaz; Urbic, Tomaz; Hribar-Lee, Barbara

    2013-07-14

    The thermodynamic perturbation theory was tested against newly obtained Monte Carlo computer simulations to describe the major features of the hydrophobic effect in a simple 3D-Mercedes-Benz water model: the temperature and hydrophobe size dependence on entropy, enthalpy, and free energy of transfer of a simple hydrophobic solute into water. An excellent agreement was obtained between the theoretical and simulation results. Further, the thermodynamic perturbation theory qualitatively correctly (with respect to the experimental data) describes the solvation thermodynamics under conditions where the simulation results are difficult to obtain with good enough accuracy, e.g., at high pressures.

  3. The application of the thermodynamic perturbation theory to study the hydrophobic hydration

    NASA Astrophysics Data System (ADS)

    Mohorič, Tomaž; Urbic, Tomaz; Hribar-Lee, Barbara

    2013-07-01

    The thermodynamic perturbation theory was tested against newly obtained Monte Carlo computer simulations to describe the major features of the hydrophobic effect in a simple 3D-Mercedes-Benz water model: the temperature and hydrophobe size dependence on entropy, enthalpy, and free energy of transfer of a simple hydrophobic solute into water. An excellent agreement was obtained between the theoretical and simulation results. Further, the thermodynamic perturbation theory qualitatively correctly (with respect to the experimental data) describes the solvation thermodynamics under conditions where the simulation results are difficult to obtain with good enough accuracy, e.g., at high pressures.

  4. Egg incubation effects generate positive correlations between size, speed and learning ability in young lizards.

    PubMed

    Amiel, Joshua Johnstone; Lindström, Tom; Shine, Richard

    2014-03-01

    Previous studies have suggested that body size and locomotor performance are targets of Darwinian selection in reptiles. However, much of the variation in these traits may derive from phenotypically plastic responses to incubation temperature, rather than from underlying genetic variation. Intriguingly, incubation temperature may also influence cognitive traits such as learning ability. Therefore, we might expect correlations between a reptile's size, locomotor speed and learning ability either due to selection on all of these traits or due to environmental effects during egg incubation. In the present study, we incubated lizard eggs (Scincidae: Bassiana duperreyi) under 'hot' and 'cold' thermal regimes and then assessed differences in hatchling body size, running speed and learning ability. We measured learning ability using a Y-maze and a food reward. We found high correlations between size, speed and learning ability, using two different metrics to quantify learning (time to solution, and directness of route), and showed that environmental effects (incubation temperature) cause these correlations. If widespread, such correlations challenge any simple interpretation of fitness advantages due to body size or speed within a population; for example, survivors may be larger and faster than nonsurvivors because of differences in learning ability, not because of their size or speed.

  5. Effective electrostatic interactions among charged thermo-responsive microgels immersed in a simple electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    González-Mozuelos, P.

    This work explores the nature and thermodynamic behavior of the effective electrostatic interactions among charged microgels immersed in a simple electrolyte, taking special interest in the effects due to the thermally induced variation of the microgel size while the remaining parameters (microgel charge and concentration, plus the amount of added salt) are kept constant. To this end, the rigorous approach obtained from applying the precise methodology of the dressed ion theory to the proper definition of the effective direct correlation functions, which emerge from tracing-out the degrees of freedom of the microscopic ions, is employed to provide an exact descriptionmore » of the parameters characterizing such interactions: screening length, effective permittivity, and renormalized charges. A model solution with three components is assumed: large permeable anionic spheres for the microgels, plus small charged hard spheres of equal size for the monovalent cations and anions. The two-body correlations among the components of this model suspension, used as the input for the determination of the effective interaction parameters, are here calculated by using the hyper-netted chain approximation. It is then found that at finite microgel concentrations the values of these parameters change as the microgel size increases, even though the ionic strength of the supporting electrolyte and the bare charge of the microgels remain fixed during this process. The variation of the screening length, as well as that of the effective permittivity, is rather small, but still interesting in view of the fact that the corresponding Debye length stays constant. The renormalized charges, in contrast, increase markedly as the microgels swell. The ratio of the renormalized charge to the corresponding analytic result obtained in the context of an extended linear response theory allows us to introduce an effective charge that accounts for the non-linear effects induced by the short-ranged association of microions to the microgels. The behavior of these effective charges as a function of the amount of added salt and the macroion charge, size, and concentration reveals the interplay among all these system parameters.« less

  6. HD CAG-correlated gene expression changes support a simple dominant gain of function

    PubMed Central

    Jacobsen, Jessie C.; Gregory, Gillian C.; Woda, Juliana M.; Thompson, Morgan N.; Coser, Kathryn R.; Murthy, Vidya; Kohane, Isaac S.; Gusella, James F.; Seong, Ihn Sik; MacDonald, Marcy E.; Shioda, Toshi; Lee, Jong-Min

    2011-01-01

    Huntington's disease is initiated by the expression of a CAG repeat-encoded polyglutamine region in full-length huntingtin, with dominant effects that vary continuously with CAG size. The mechanism could involve a simple gain of function or a more complex gain of function coupled to a loss of function (e.g. dominant negative-graded loss of function). To distinguish these alternatives, we compared genome-wide gene expression changes correlated with CAG size across an allelic series of heterozygous CAG knock-in mouse embryonic stem (ES) cell lines (HdhQ20/7, HdhQ50/7, HdhQ91/7, HdhQ111/7), to genes differentially expressed between Hdhex4/5/ex4/5 huntingtin null and wild-type (HdhQ7/7) parental ES cells. The set of 73 genes whose expression varied continuously with CAG length had minimal overlap with the 754-member huntingtin-null gene set but the two were not completely unconnected. Rather, the 172 CAG length-correlated pathways and 238 huntingtin-null significant pathways clustered into 13 shared categories at the network level. A closer examination of the energy metabolism and the lipid/sterol/lipoprotein metabolism categories revealed that CAG length-correlated genes and huntingtin-null-altered genes either were different members of the same pathways or were in unique, but interconnected pathways. Thus, varying the polyglutamine size in full-length huntingtin produced gene expression changes that were distinct from, but related to, the effects of lack of huntingtin. These findings support a simple gain-of-function mechanism acting through a property of the full-length huntingtin protein and point to CAG-correlative approaches to discover its effects. Moreover, for therapeutic strategies based on huntingtin suppression, our data highlight processes that may be more sensitive to the disease trigger than to decreased huntingtin levels. PMID:21536587

  7. Influence of lateral target size on hot electron production and electromagnetic pulse emission from laser-irradiated metallic targets

    NASA Astrophysics Data System (ADS)

    Chen, Zi-Yu; Li, Jian-Feng; Yu, Yong; Wang, Jia-Xiang; Li, Xiao-Ya; Peng, Qi-Xian; Zhu, Wen-Jun

    2012-11-01

    The influences of lateral target size on hot electron production and electromagnetic pulse emission from laser interaction with metallic targets have been investigated. Particle-in-cell simulations at high laser intensities show that the yield of hot electrons tends to increase with lateral target size, because the larger surface area reduces the electrostatic field on the target, owing to its expansion along the target surface. At lower laser intensities and longer time scales, experimental data characterizing electromagnetic pulse emission as a function of lateral target size also show target-size effects. Charge separation and a larger target tending to have a lower target potential have both been observed. The increase in radiation strength and downshift in radiation frequency with increasing lateral target size can be interpreted using a simple model of the electrical capacity of the target.

  8. Size Effect on Specific Energy Distribution in Particle Comminution

    NASA Astrophysics Data System (ADS)

    Xu, Yongfu; Wang, Yidong

    A theoretical study is made to derive an energy distribution equation for the size reduction process from the fractal model for the particle comminution. Fractal model is employed as a valid measure of the self-similar size distribution of comminution daughter products. The tensile strength of particles varies with particle size in the manner of a power function law. The energy consumption for comminuting single particle is found to be proportional to the 5(D-3)/3rd order of the particle size, D being the fractal dimension of particle comminution daughter. The Weibull statistics is applied to describe the relationship between the breakage probability and specific energy of particle comminution. A simple equation is derived for the breakage probability of particles in view of the dependence of fracture energy on particle size. The calculated exponents and Weibull coefficients are generally in conformity with published data for fracture of particles.

  9. Local environments and transport properties of heavily doped strontium barium niobates Sr0.5Ba0.5Nb2O6

    NASA Astrophysics Data System (ADS)

    Ottini, Riccardo; Tealdi, Cristina; Tomasi, Corrado; Tredici, Ilenia G.; Soffientini, Alessandro; Burriel, Ramón; Palacios, Elías; Castro, Miguel; Anselmi-Tamburini, Umberto; Ghigna, Paolo; Spinolo, Giorgio

    2018-02-01

    Undoped as well as K-doped (40%), Y-doped (40%), Zr-doped (10%), and Mo-doped (12.5%) strontium barium niobate Sr0.5Ba0.5Nb2O6 (SBN50) materials have been investigated to explore the effect of heavy doping on the structural and functional properties (thermo-power, thermal and electrical conductivities) both in the as prepared (oxidized) and reduced states. For all materials, the EXAFS spectra at the Nb - K edge can be consistently analyzed with the same model of six shells around the Nb sites. Doping mostly gives a simple size effect on the structural parameters, but doping on the Nb sites weakens the Nb-O bond regardless of dopant size and charge. Shell sizes and Debye-Waller factors are almost unaffected by temperature and oxidation state, and the disorder is of static nature. The functional effects of heavy doping do not agree with a simple model of hole or electron injection by aliovalent substitutions on a large band gap semiconductor. With respect to the undoped samples, doping with Mo depresses the thermal conductivity by 30%, Y doping enhances the electrical conductivity by an order of magnitude, while Zr doping increases the Seebeck coefficient by a factor of 2-3. Globally, the ZT efficiency factor of the K-, Y-, and Zr-doped samples is enhanced at least by one order of magnitude with respect to the undoped or Mo-doped materials.

  10. [Effective Presentations in Medicine. The Art of Communication and Transmission: Ten Recommendations].

    PubMed

    Morales, Álvaro J Ruiz

    2012-01-01

    To communicate effectively during a lecture or presentation it is necessary to follow simple rules, including the preparation of the conference with the audience in mind and with the definition of a specific message to leave the audience. The public's attention should be quickly captured and all subsequent actions should aim to keep it. The text must be accurate and sizes easily visible, the slides should provide good contrast with solid and simple backgrounds and should avoid excessive animations. At the close of the conference, the conclusions and question session offers the invaluable opportunity to reinforce the desired message. Copyright © 2012 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  11. Endotoxins in cotton: washing effects and size distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olenchock, S.A.; Mull, J.C.; Jones, W.G.

    1983-01-01

    Endotoxin contamination was measured in washed and unwashed cottons from three distinct growing areas, California, Mississippi, and Texas. The data show differences in endotoxin contamination based upon the geographic source of the cotton. It is also shown that washing bulk cotton before the carding process results in lower endotoxin in the cotton dust. Washing conditions can affect the endotoxin levels, and all size fractions of the airborne dust contain quantifiable endotoxin contamination. Endotoxin analyses provide a simple and reliable method for monitoring the cleanliness of cotton or airborne cotton dusts.

  12. Cluster Free Energies from Simple Simulations of Small Numbers of Aggregants: Nucleation of Liquid MTBE from Vapor and Aqueous Phases.

    PubMed

    Patel, Lara A; Kindt, James T

    2017-03-14

    We introduce a global fitting analysis method to obtain free energies of association of noncovalent molecular clusters using equilibrated cluster size distributions from unbiased constant-temperature molecular dynamics (MD) simulations. Because the systems simulated are small enough that the law of mass action does not describe the aggregation statistics, the method relies on iteratively determining a set of cluster free energies that, using appropriately weighted sums over all possible partitions of N monomers into clusters, produces the best-fit size distribution. The quality of these fits can be used as an objective measure of self-consistency to optimize the cutoff distance that determines how clusters are defined. To showcase the method, we have simulated a united-atom model of methyl tert-butyl ether (MTBE) in the vapor phase and in explicit water solution over a range of system sizes (up to 95 MTBE in the vapor phase and 60 MTBE in the aqueous phase) and concentrations at 273 K. The resulting size-dependent cluster free energy functions follow a form derived from classical nucleation theory (CNT) quite well over the full range of cluster sizes, although deviations are more pronounced for small cluster sizes. The CNT fit to cluster free energies yielded surface tensions that were in both cases lower than those for the simulated planar interfaces. We use a simple model to derive a condition for minimizing non-ideal effects on cluster size distributions and show that the cutoff distance that yields the best global fit is consistent with this condition.

  13. Diagnosing hyperuniformity in two-dimensional, disordered, jammed packings of soft spheres.

    PubMed

    Dreyfus, Remi; Xu, Ye; Still, Tim; Hough, L A; Yodh, A G; Torquato, Salvatore

    2015-01-01

    Hyperuniformity characterizes a state of matter for which (scaled) density fluctuations diminish towards zero at the largest length scales. However, the task of determining whether or not an image of an experimental system is hyperuniform is experimentally challenging due to finite-resolution, noise, and sample-size effects that influence characterization measurements. Here we explore these issues, employing video optical microscopy to study hyperuniformity phenomena in disordered two-dimensional jammed packings of soft spheres. Using a combination of experiment and simulation we characterize the possible adverse effects of particle polydispersity, image noise, and finite-size effects on the assignment of hyperuniformity, and we develop a methodology that permits improved diagnosis of hyperuniformity from real-space measurements. The key to this improvement is a simple packing reconstruction algorithm that incorporates particle polydispersity to minimize the free volume. In addition, simulations show that hyperuniformity in finite-sized samples can be ascertained more accurately in direct space than in reciprocal space. Finally, our experimental colloidal packings of soft polymeric spheres are shown to be effectively hyperuniform.

  14. Diagnosing hyperuniformity in two-dimensional, disordered, jammed packings of soft spheres

    NASA Astrophysics Data System (ADS)

    Dreyfus, Remi; Xu, Ye; Still, Tim; Hough, L. A.; Yodh, A. G.; Torquato, Salvatore

    2015-01-01

    Hyperuniformity characterizes a state of matter for which (scaled) density fluctuations diminish towards zero at the largest length scales. However, the task of determining whether or not an image of an experimental system is hyperuniform is experimentally challenging due to finite-resolution, noise, and sample-size effects that influence characterization measurements. Here we explore these issues, employing video optical microscopy to study hyperuniformity phenomena in disordered two-dimensional jammed packings of soft spheres. Using a combination of experiment and simulation we characterize the possible adverse effects of particle polydispersity, image noise, and finite-size effects on the assignment of hyperuniformity, and we develop a methodology that permits improved diagnosis of hyperuniformity from real-space measurements. The key to this improvement is a simple packing reconstruction algorithm that incorporates particle polydispersity to minimize the free volume. In addition, simulations show that hyperuniformity in finite-sized samples can be ascertained more accurately in direct space than in reciprocal space. Finally, our experimental colloidal packings of soft polymeric spheres are shown to be effectively hyperuniform.

  15. Size-dependent surface phase change of lithium iron phosphate during carbon coating

    NASA Astrophysics Data System (ADS)

    Wang, Jiajun; Yang, Jinli; Tang, Yongji; Liu, Jian; Zhang, Yong; Liang, Guoxian; Gauthier, Michel; Karen Chen-Wiegart, Yu-Chen; Norouzi Banis, Mohammad; Li, Xifei; Li, Ruying; Wang, Jun; Sham, T. K.; Sun, Xueliang

    2014-03-01

    Carbon coating is a simple, effective and common technique for improving the conductivity of active materials in lithium ion batteries. However, carbon coating provides a strong reducing atmosphere and many factors remain unclear concerning the interface nature and underlying interaction mechanism that occurs between carbon and the active materials. Here, we present a size-dependent surface phase change occurring in lithium iron phosphate during the carbon coating process. Intriguingly, nanoscale particles exhibit an extremely high stability during the carbon coating process, whereas microscale particles display a direct visualization of surface phase changes occurring at the interface at elevated temperatures. Our findings provide a comprehensive understanding of the effect of particle size during carbon coating and the interface interaction that occurs on carbon-coated battery material—allowing for further improvement in materials synthesis and manufacturing processes for advanced battery materials.

  16. Heterogeneity effects in visual search predicted from the group scanning model.

    PubMed

    Macquistan, A D

    1994-12-01

    The group scanning model of feature integration theory (Treisman & Gormican, 1988) suggests that subjects search visual displays serially by groups, but process items within each group in parallel. The size of these groups is determined by the discriminability of the targets in the background of distractors. When the target is poorly discriminable, the size of the scanned group will be small, and search will be slow. The model predicts that group size will be smallest when targets of an intermediate value on a perceptual dimension are presented in a heterogeneous background of distractors that have higher and lower values on the same dimension. Experiment 1 demonstrates this effect. Experiment 2 controls for a possible confound of decision complexity in Experiment 1. For simple feature targets, the group scanning model provides a good account of the visual search process.

  17. The role of size polydispersity in magnetic fluid hyperthermia: average vs. local infra/over-heating effects.

    PubMed

    Munoz-Menendez, Cristina; Conde-Leboran, Ivan; Baldomir, Daniel; Chubykalo-Fesenko, Oksana; Serantes, David

    2015-11-07

    An efficient and safe hyperthermia cancer treatment requires the accurate control of the heating performance of magnetic nanoparticles, which is directly related to their size. However, in any particle system the existence of some size polydispersity is experimentally unavoidable, which results in a different local heating output and consequently a different hyperthermia performance depending on the size of each particle. With the aim to shed some light on this significant issue, we have used a Monte Carlo technique to study the role of size polydispersity in heat dissipation at both the local (single particle) and global (macroscopic average) levels. We have systematically varied size polydispersity, temperature and interparticle dipolar interaction conditions, and evaluated local heating as a function of these parameters. Our results provide a simple guide on how to choose, for a given polydispersity degree, the more adequate average particle size so that the local variation in the released heat is kept within some limits that correspond to safety boundaries for the average-system hyperthermia performance. All together we believe that our results may help in the design of more effective magnetic hyperthermia applications.

  18. Limits to Forecasting Precision for Outbreaks of Directly Transmitted Diseases

    PubMed Central

    Drake, John M

    2006-01-01

    Background Early warning systems for outbreaks of infectious diseases are an important application of the ecological theory of epidemics. A key variable predicted by early warning systems is the final outbreak size. However, for directly transmitted diseases, the stochastic contact process by which outbreaks develop entails fundamental limits to the precision with which the final size can be predicted. Methods and Findings I studied how the expected final outbreak size and the coefficient of variation in the final size of outbreaks scale with control effectiveness and the rate of infectious contacts in the simple stochastic epidemic. As examples, I parameterized this model with data on observed ranges for the basic reproductive ratio (R 0) of nine directly transmitted diseases. I also present results from a new model, the simple stochastic epidemic with delayed-onset intervention, in which an initially supercritical outbreak (R 0 > 1) is brought under control after a delay. Conclusion The coefficient of variation of final outbreak size in the subcritical case (R 0 < 1) will be greater than one for any outbreak in which the removal rate is less than approximately 2.41 times the rate of infectious contacts, implying that for many transmissible diseases precise forecasts of the final outbreak size will be unattainable. In the delayed-onset model, the coefficient of variation (CV) was generally large (CV > 1) and increased with the delay between the start of the epidemic and intervention, and with the average outbreak size. These results suggest that early warning systems for infectious diseases should not focus exclusively on predicting outbreak size but should consider other characteristics of outbreaks such as the timing of disease emergence. PMID:16435887

  19. Water's hydrogen bonds in the hydrophobic effect: a simple model.

    PubMed

    Xu, Huafeng; Dill, Ken A

    2005-12-15

    We propose a simple analytical model to account for water's hydrogen bonds in the hydrophobic effect. It is based on computing a mean-field partition function for a water molecule in the first solvation shell around a solute molecule. The model treats the orientational restrictions from hydrogen bonding, and utilizes quantities that can be obtained from bulk water simulations. We illustrate the principles in a 2-dimensional Mercedes-Benz-like model. Our model gives good predictions for the heat capacity of hydrophobic solvation, reproduces the solvation energies and entropies at different temperatures with only one fitting parameter, and accounts for the solute size dependence of the hydrophobic effect. Our model supports the view that water's hydrogen bonding propensity determines the temperature dependence of the hydrophobic effect. It explains the puzzling experimental observation that dissolving a nonpolar solute in hot water has positive entropy.

  20. Stand-alone flat-plate photovoltaic power systems: System sizing and life-cycle costing methodology for Federal agencies

    NASA Technical Reports Server (NTRS)

    Borden, C. S.; Volkmer, K.; Cochrane, E. H.; Lawson, A. C.

    1984-01-01

    A simple methodology to estimate photovoltaic system size and life-cycle costs in stand-alone applications is presented. It is designed to assist engineers at Government agencies in determining the feasibility of using small stand-alone photovoltaic systems to supply ac or dc power to the load. Photovoltaic system design considerations are presented as well as the equations for sizing the flat-plate array and the battery storage to meet the required load. Cost effectiveness of a candidate photovoltaic system is based on comparison with the life-cycle cost of alternative systems. Examples of alternative systems addressed are batteries, diesel generators, the utility grid, and other renewable energy systems.

  1. Line active hybrid lipids determine domain size in phase separation of saturated and unsaturated lipids.

    PubMed

    Brewster, Robert; Safran, Samuel A

    2010-03-17

    A simple model of the line activity of a hybrid lipid (e.g., POPC) with one fully saturated chain and one partially unsaturated chain demonstrates that these lipids preferentially pack at curved interfaces between phase-separated saturated and unsaturated domains. We predict that the domain sizes typically range from tens to hundreds of nm, depending on molecular interactions and parameters such as molecular volume and area per headgroup in the bulk fluid phase. The role of cholesterol is taken into account by an effective change in the headgroup areas and the domain sizes are predicted to increase with cholesterol concentration. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Optical characterization of high speed microscanners based on static slit profiling method

    NASA Astrophysics Data System (ADS)

    Alaa Elhady, A.; Sabry, Yasser M.; Khalil, Diaa

    2017-01-01

    Optical characterization of high-speed microscanners is a challenging task that usually requires special high speed, extremely expensive camera systems. This paper presents a novel simple method to characterize the scanned beam spot profile and size in high-speed optical scanners under operation. It allows measuring the beam profile and the spot sizes at different scanning angles. The method is analyzed theoretically and applied experimentally on the characterization of a Micro Electro Mechanical MEMS scanner operating at 2.6 kHz. The variation of the spot size versus the scanning angle, up to ±15°, is extracted and the dynamic bending curvature effect of the micromirror is predicted.

  3. An improved VSS NLMS algorithm for active noise cancellation

    NASA Astrophysics Data System (ADS)

    Sun, Yunzhuo; Wang, Mingjiang; Han, Yufei; Zhang, Congyan

    2017-08-01

    In this paper, an improved variable step size NLMS algorithm is proposed. NLMS has fast convergence rate and low steady state error compared to other traditional adaptive filtering algorithm. But there is a contradiction between the convergence speed and steady state error that affect the performance of the NLMS algorithm. Now, we propose a new variable step size NLMS algorithm. It dynamically changes the step size according to current error and iteration times. The proposed algorithm has simple formulation and easily setting parameters, and effectively solves the contradiction in NLMS. The simulation results show that the proposed algorithm has a good tracking ability, fast convergence rate and low steady state error simultaneously.

  4. STAR FORMATION LAWS: THE EFFECTS OF GAS CLOUD SAMPLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calzetti, D.; Liu, G.; Koda, J., E-mail: calzetti@astro.umass.edu

    Recent observational results indicate that the functional shape of the spatially resolved star formation-molecular gas density relation depends on the spatial scale considered. These results may indicate a fundamental role of sampling effects on scales that are typically only a few times larger than those of the largest molecular clouds. To investigate the impact of this effect, we construct simple models for the distribution of molecular clouds in a typical star-forming spiral galaxy and, assuming a power-law relation between star formation rate (SFR) and cloud mass, explore a range of input parameters. We confirm that the slope and the scattermore » of the simulated SFR-molecular gas surface density relation depend on the size of the sub-galactic region considered, due to stochastic sampling of the molecular cloud mass function, and the effect is larger for steeper relations between SFR and molecular gas. There is a general trend for all slope values to tend to {approx}unity for region sizes larger than 1-2 kpc, irrespective of the input SFR-cloud relation. The region size of 1-2 kpc corresponds to the area where the cloud mass function becomes fully sampled. We quantify the effects of selection biases in data tracing the SFR, either as thresholds (i.e., clouds smaller than a given mass value do not form stars) or as backgrounds (e.g., diffuse emission unrelated to current star formation is counted toward the SFR). Apparently discordant observational results are brought into agreement via this simple model, and the comparison of our simulations with data for a few galaxies supports a steep (>1) power-law index between SFR and molecular gas.« less

  5. Nature of solidification of nanoconfined organic liquid layers.

    PubMed

    Lang, X Y; Zhu, Y F; Jiang, Q

    2007-01-30

    A simple model is established for solidification of a nanoconfined liquid under nonequilibrium conditions. In terms of this model, the nature of solidification is the conjunct finite size and interface effects, which is directly related to the cooling rate or the relaxation time of the undercooled liquid. The model predictions are consistent with available experimental results.

  6. School Bullying: Why Quick Fixes Do Not Prevent School Failure

    ERIC Educational Resources Information Center

    Casebeer, Cindy M.

    2012-01-01

    School bullying is a serious problem. It is associated with negative effects for bullies, targets, and bystanders. Bullying is related to school shootings, student suicides, and poor academic outcomes. Yet, this issue cannot be solved by way of simple, one-size-fits-all solutions. Instead, school bullying is a complex, systemic issue that requires…

  7. A Simple Effect Size Estimator for Single Case Designs Using WinBUGS

    ERIC Educational Resources Information Center

    Rindskopf, David; Shadish, William; Hedges, Larry V.

    2012-01-01

    This conference presentation demonstrates a multilevel model for analyzing single case designs. The model is implemented in the Bayesian program WinBUGS. The authors show how it is possible to estimate a d-statistic like the one in Hedges, Pustejovsky and Shadish (2012) in this program. Results are demonstrated on an example.

  8. Evaluating Lexical Coverage in Simple English Wikipedia Articles: A Corpus-Driven Study

    ERIC Educational Resources Information Center

    Hendry, Clinton; Sheepy, Emily

    2017-01-01

    Simple English Wikipedia is a user-contributed online encyclopedia intended for young readers and readers whose first language is not English. We compiled a corpus of the entirety of Simple English Wikipedia as of June 20th, 2017. We used lexical frequency profiling tools to investigate the vocabulary size needed to comprehend Simple English…

  9. How accurate is the Pearson r-from-Z approximation? A Monte Carlo simulation study.

    PubMed

    Hittner, James B; May, Kim

    2012-01-01

    The Pearson r-from-Z approximation estimates the sample correlation (as an effect size measure) from the ratio of two quantities: the standard normal deviate equivalent (Z-score) corresponding to a one-tailed p-value divided by the square root of the total (pooled) sample size. The formula has utility in meta-analytic work when reports of research contain minimal statistical information. Although simple to implement, the accuracy of the Pearson r-from-Z approximation has not been empirically evaluated. To address this omission, we performed a series of Monte Carlo simulations. Results indicated that in some cases the formula did accurately estimate the sample correlation. However, when sample size was very small (N = 10) and effect sizes were small to small-moderate (ds of 0.1 and 0.3), the Pearson r-from-Z approximation was very inaccurate. Detailed figures that provide guidance as to when the Pearson r-from-Z formula will likely yield valid inferences are presented.

  10. Co-variation of metabolic rates and cell-size in coccolithophores

    NASA Astrophysics Data System (ADS)

    Aloisi, G.

    2015-04-01

    Coccolithophores are sensitive recorders of environmental change. The size of their coccosphere varies in the ocean along gradients of environmental conditions and provides a key for understanding the fate of this important phytoplankton group in the future ocean. But interpreting field changes in coccosphere size in terms of laboratory observations is hard, mainly because the marine signal reflects the response of multiple morphotypes to changes in a combination of environmental variables. In this paper I examine the large corpus of published laboratory experiments with coccolithophores looking for relations between environmental conditions, metabolic rates and cell size (a proxy for coccosphere size). I show that growth, photosynthesis, and to a lesser extent calcification, co-vary with cell size when pCO2, irradiance, temperature, nitrate, phosphate and iron conditions change. With the exception of phosphate and temperature, a change from limiting to non-limiting conditions always results in an increase in cell size. An increase in phosphate or temperature produces the opposite effect. The magnitude of the coccosphere size changes observed in the laboratory is comparable to that observed in the ocean. If the biological reasons behind the environment-metabolism-size link are understood, it will be possible to use coccosphere size changes in the modern ocean and in marine sediments to investigate the fate of coccolithophores in the future ocean. This reasoning can be extended to the size of coccoliths if, as recent experiments are starting to show, coccolith size reacts to environmental change proportionally to coccosphere size. I introduce a simple model that simulates the growth rate and the size of cells forced by nitrate and phosphate concentrations. By considering a simple rule that allocates the energy flow from nutrient acquisition to cell structure (biomass) and cell maturity (biological complexity, eventually leading to cell division), the model is able to reproduce the co-variation of growth rate and cell size observed in the laboratory when these nutrients become limiting. These results support ongoing efforts to interpret coccosphere and coccolith size measurements in the context of climate change.

  11. Simulation-based power calculation for designing interrupted time series analyses of health policy interventions.

    PubMed

    Zhang, Fang; Wagner, Anita K; Ross-Degnan, Dennis

    2011-11-01

    Interrupted time series is a strong quasi-experimental research design to evaluate the impacts of health policy interventions. Using simulation methods, we estimated the power requirements for interrupted time series studies under various scenarios. Simulations were conducted to estimate the power of segmented autoregressive (AR) error models when autocorrelation ranged from -0.9 to 0.9 and effect size was 0.5, 1.0, and 2.0, investigating balanced and unbalanced numbers of time periods before and after an intervention. Simple scenarios of autoregressive conditional heteroskedasticity (ARCH) models were also explored. For AR models, power increased when sample size or effect size increased, and tended to decrease when autocorrelation increased. Compared with a balanced number of study periods before and after an intervention, designs with unbalanced numbers of periods had less power, although that was not the case for ARCH models. The power to detect effect size 1.0 appeared to be reasonable for many practical applications with a moderate or large number of time points in the study equally divided around the intervention. Investigators should be cautious when the expected effect size is small or the number of time points is small. We recommend conducting various simulations before investigation. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Robustness of the far-field response of nonlocal plasmonic ensembles.

    PubMed

    Tserkezis, Christos; Maack, Johan R; Liu, Zhaowei; Wubs, Martijn; Mortensen, N Asger

    2016-06-22

    Contrary to classical predictions, the optical response of few-nm plasmonic particles depends on particle size due to effects such as nonlocality and electron spill-out. Ensembles of such nanoparticles are therefore expected to exhibit a nonclassical inhomogeneous spectral broadening due to size distribution. For a normal distribution of free-electron nanoparticles, and within the simple nonlocal hydrodynamic Drude model, both the nonlocal blueshift and the plasmon linewidth are shown to be considerably affected by ensemble averaging. Size-variance effects tend however to conceal nonlocality to a lesser extent when the homogeneous size-dependent broadening of individual nanoparticles is taken into account, either through a local size-dependent damping model or through the Generalized Nonlocal Optical Response theory. The role of ensemble averaging is further explored in realistic distributions of isolated or weakly-interacting noble-metal nanoparticles, as encountered in experiments, while an analytical expression to evaluate the importance of inhomogeneous broadening through measurable quantities is developed. Our findings are independent of the specific nonclassical theory used, thus providing important insight into a large range of experiments on nanoscale and quantum plasmonics.

  13. A unifying theory for top-heavy ecosystem structure in the ocean.

    PubMed

    Woodson, C Brock; Schramski, John R; Joye, Samantha B

    2018-01-02

    Size generally dictates metabolic requirements, trophic level, and consequently, ecosystem structure, where inefficient energy transfer leads to bottom-heavy ecosystem structure and biomass decreases as individual size (or trophic level) increases. However, many animals deviate from simple size-based predictions by either adopting generalist predatory behavior, or feeding lower in the trophic web than predicted from their size. Here we show that generalist predatory behavior and lower trophic feeding at large body size increase overall biomass and shift ecosystems from a bottom-heavy pyramid to a top-heavy hourglass shape, with the most biomass accounted for by the largest animals. These effects could be especially dramatic in the ocean, where primary producers are the smallest components of the ecosystem. This approach makes it possible to explore and predict, in the past and in the future, the structure of ocean ecosystems without biomass extraction and other impacts.

  14. Biology Inspired Approach for Communal Behavior in Sensor Networks

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H.; Lodding, Kenneth N.; Olariu, Stephan; Wilson, Larry; Xin, Chunsheng

    2006-01-01

    Research in wireless sensor network technology has exploded in the last decade. Promises of complex and ubiquitous control of the physical environment by these networks open avenues for new kinds of science and business. Due to the small size and low cost of sensor devices, visionaries promise systems enabled by deployment of massive numbers of sensors working in concert. Although the reduction in size has been phenomenal it results in severe limitations on the computing, communicating, and power capabilities of these devices. Under these constraints, research efforts have concentrated on developing techniques for performing relatively simple tasks with minimal energy expense assuming some form of centralized control. Unfortunately, centralized control does not scale to massive size networks and execution of simple tasks in sparsely populated networks will not lead to the sophisticated applications predicted. These must be enabled by new techniques dependent on local and autonomous cooperation between sensors to effect global functions. As a step in that direction, in this work we detail a technique whereby a large population of sensors can attain a global goal using only local information and by making only local decisions without any form of centralized control.

  15. Stroke-model-based character extraction from gray-level document images.

    PubMed

    Ye, X; Cheriet, M; Suen, C Y

    2001-01-01

    Global gray-level thresholding techniques such as Otsu's method, and local gray-level thresholding techniques such as edge-based segmentation or the adaptive thresholding method are powerful in extracting character objects from simple or slowly varying backgrounds. However, they are found to be insufficient when the backgrounds include sharply varying contours or fonts in different sizes. A stroke-model is proposed to depict the local features of character objects as double-edges in a predefined size. This model enables us to detect thin connected components selectively, while ignoring relatively large backgrounds that appear complex. Meanwhile, since the stroke width restriction is fully factored in, the proposed technique can be used to extract characters in predefined font sizes. To process large volumes of documents efficiently, a hybrid method is proposed for character extraction from various backgrounds. Using the measurement of class separability to differentiate images with simple backgrounds from those with complex backgrounds, the hybrid method can process documents with different backgrounds by applying the appropriate methods. Experiments on extracting handwriting from a check image, as well as machine-printed characters from scene images demonstrate the effectiveness of the proposed model.

  16. Size effects on magnetoelectric response of multiferroic composite with inhomogeneities

    NASA Astrophysics Data System (ADS)

    Yue, Y. M.; Xu, K. Y.; Chen, T.; Aifantis, E. C.

    2015-12-01

    This paper investigates the influence of size effects on the magnetoelectric performance of multiferroic composite with inhomogeneities. Based on a simple model of gradient elasticity for multiferroic materials, the governing equations and boundary conditions are obtained from an energy variational principle. The general formulation is applied to consider an anti-plane problem of multiferroic composites with inhomogeneities. This problem is solved analytically and the effective magnetoelectric coefficient is obtained. The influence of the internal length (grain size or particle size) on the effective magnetoelectric coefficients of piezoelectric/piezomagnetic nanoscale fibrous composite is numerically evaluated and analyzed. The results suggest that with the increase of the internal length of piezoelectric matrix (PZT and BaTiO3), the magnetoelectric coefficient increases, but the rate of increase is ratcheting downwards. If the internal length of piezoelectric matrix remains unchanged, the magnetoelectric coefficient will decrease with the increase of internal length scale of piezomagnetic nonfiber (CoFe2O3). In a composite consisiting of a piezomagnetic matrix (CoFe2O3) reinforced with piezoelectric nanofibers (BaTiO3), an increase of the internal length in the piezomagnetic matrix, results to a decrease of the magnetoelectric coefficient, with the rate of decrease diminishing.

  17. The application of the thermodynamic perturbation theory to study the hydrophobic hydration

    PubMed Central

    Mohorič, Tomaž; Urbic, Tomaz; Hribar-Lee, Barbara

    2013-01-01

    The thermodynamic perturbation theory was tested against newly obtained Monte Carlo computer simulations to describe the major features of the hydrophobic effect in a simple 3D-Mercedes-Benz water model: the temperature and hydrophobe size dependence on entropy, enthalpy, and free energy of transfer of a simple hydrophobic solute into water. An excellent agreement was obtained between the theoretical and simulation results. Further, the thermodynamic perturbation theory qualitatively correctly (with respect to the experimental data) describes the solvation thermodynamics under conditions where the simulation results are difficult to obtain with good enough accuracy, e.g., at high pressures. PMID:23862923

  18. [A New Simple Technique for Producing Labeled Monoclonal Antibodies for Antibody Pair Screening in Sandwich-ELISA].

    PubMed

    Zaripov, M M; Afanasieva, G V; Glukhova, X A; Trizna, Y A; Glukhov, A S; Beletsky, I P; Prusakova, O V

    2015-01-01

    A simple and fast method for obtaining biotin-labeled monoclonal antibodies was developed usingcontent of hybridoma culture supernatant sufficient to select antibody pairs in sandwich ELISA. The method consists in chemical biotinylation of antigen-bound antibodies in a well of ELISA plate. Using as an example target Vaccinia virus A27L protein it was shown that the yield of biotinylated reactant is enough to set comprehensive sandwich ELISA for a moderate size panel of up to 25 monoclonal antibodies with an aim to determine candidate pairs. The technique is a cheap and effective solution since it avoids obtaining preparative amounts of antibodies.

  19. Closed-form confidence intervals for functions of the normal mean and standard deviation.

    PubMed

    Donner, Allan; Zou, G Y

    2012-08-01

    Confidence interval methods for a normal mean and standard deviation are well known and simple to apply. However, the same cannot be said for important functions of these parameters. These functions include the normal distribution percentiles, the Bland-Altman limits of agreement, the coefficient of variation and Cohen's effect size. We present a simple approach to this problem by using variance estimates recovered from confidence limits computed for the mean and standard deviation separately. All resulting confidence intervals have closed forms. Simulation results demonstrate that this approach performs very well for limits of agreement, coefficients of variation and their differences.

  20. Object size determines the spatial spread of visual time

    PubMed Central

    McGraw, Paul V.; Roach, Neil W.; Whitaker, David

    2016-01-01

    A key question for temporal processing research is how the nervous system extracts event duration, despite a notable lack of neural structures dedicated to duration encoding. This is in stark contrast with the orderly arrangement of neurons tasked with spatial processing. In this study, we examine the linkage between the spatial and temporal domains. We use sensory adaptation techniques to generate after-effects where perceived duration is either compressed or expanded in the opposite direction to the adapting stimulus' duration. Our results indicate that these after-effects are broadly tuned, extending over an area approximately five times the size of the stimulus. This region is directly related to the size of the adapting stimulus—the larger the adapting stimulus the greater the spatial spread of the after-effect. We construct a simple model to test predictions based on overlapping adapted versus non-adapted neuronal populations and show that our effects cannot be explained by any single, fixed-scale neural filtering. Rather, our effects are best explained by a self-scaled mechanism underpinned by duration selective neurons that also pool spatial information across earlier stages of visual processing. PMID:27466452

  1. A Simple Model of Global Aerosol Indirect Effects

    NASA Technical Reports Server (NTRS)

    Ghan, Steven J.; Smith, Steven J.; Wang, Minghuai; Zhang, Kai; Pringle, Kirsty; Carslaw, Kenneth; Pierce, Jeffrey; Bauer, Susanne; Adams, Peter

    2013-01-01

    Most estimates of the global mean indirect effect of anthropogenic aerosol on the Earth's energy balance are from simulations by global models of the aerosol lifecycle coupled with global models of clouds and the hydrologic cycle. Extremely simple models have been developed for integrated assessment models, but lack the flexibility to distinguish between primary and secondary sources of aerosol. Here a simple but more physically based model expresses the aerosol indirect effect (AIE) using analytic representations of cloud and aerosol distributions and processes. Although the simple model is able to produce estimates of AIEs that are comparable to those from some global aerosol models using the same global mean aerosol properties, the estimates by the simple model are sensitive to preindustrial cloud condensation nuclei concentration, preindustrial accumulation mode radius, width of the accumulation mode, size of primary particles, cloud thickness, primary and secondary anthropogenic emissions, the fraction of the secondary anthropogenic emissions that accumulates on the coarse mode, the fraction of the secondary mass that forms new particles, and the sensitivity of liquid water path to droplet number concentration. Estimates of present-day AIEs as low as 5 W/sq m and as high as 0.3 W/sq m are obtained for plausible sets of parameter values. Estimates are surprisingly linear in emissions. The estimates depend on parameter values in ways that are consistent with results from detailed global aerosol-climate simulation models, which adds to understanding of the dependence on AIE uncertainty on uncertainty in parameter values.

  2. Automated sampling assessment for molecular simulations using the effective sample size

    PubMed Central

    Zhang, Xin; Bhatt, Divesh; Zuckerman, Daniel M.

    2010-01-01

    To quantify the progress in the development of algorithms and forcefields used in molecular simulations, a general method for the assessment of the sampling quality is needed. Statistical mechanics principles suggest the populations of physical states characterize equilibrium sampling in a fundamental way. We therefore develop an approach for analyzing the variances in state populations, which quantifies the degree of sampling in terms of the effective sample size (ESS). The ESS estimates the number of statistically independent configurations contained in a simulated ensemble. The method is applicable to both traditional dynamics simulations as well as more modern (e.g., multi–canonical) approaches. Our procedure is tested in a variety of systems from toy models to atomistic protein simulations. We also introduce a simple automated procedure to obtain approximate physical states from dynamic trajectories: this allows sample–size estimation in systems for which physical states are not known in advance. PMID:21221418

  3. Beyond size–number trade-offs: clutch size as a maternal effect

    PubMed Central

    Brown, Gregory P.; Shine, Richard

    2009-01-01

    Traditionally, research on life-history traits has viewed the link between clutch size and offspring size as a straightforward linear trade-off; the product of these two components is taken as a measure of maternal reproductive output. Investing more per egg results in fewer but larger eggs and, hence, offspring. This simple size–number trade-off has proved attractive to modellers, but our experimental studies on keelback snakes (Tropidonophis mairii, Colubridae) reveal a more complex relationship between clutch size and offspring size. At constant water availability, the amount of water taken up by a snake egg depends upon the number of adjacent eggs. In turn, water uptake affects hatchling size, and therefore an increase in clutch size directly increases offspring size (and thus fitness under field conditions). This allometric advantage may influence the evolution of reproductive traits such as growth versus reproductive effort, optimal age at female maturation, the body-reserve threshold required to initiate reproduction and nest-site selection (e.g. communal oviposition). The published literature suggests that similar kinds of complex effects of clutch size on offspring viability are widespread in both vertebrates and invertebrates. Our results also challenge conventional experimental methodologies such as split-clutch designs for laboratory incubation studies: by separating an egg from its siblings, we may directly affect offspring size and thus viability. PMID:19324614

  4. Arithmetic on Your Phone: A Large Scale Investigation of Simple Additions and Multiplications.

    PubMed

    Zimmerman, Federico; Shalom, Diego; Gonzalez, Pablo A; Garrido, Juan Manuel; Alvarez Heduan, Facundo; Dehaene, Stanislas; Sigman, Mariano; Rieznik, Andres

    2016-01-01

    We present the results of a gamified mobile device arithmetic application which allowed us to collect vast amount of data in simple arithmetic operations. Our results confirm and replicate, on a large sample, six of the main principles derived in a long tradition of investigation: size effect, tie effect, size-tie interaction effect, five-effect, RTs and error rates correlation effect, and most common error effect. Our dataset allowed us to perform a robust analysis of order effects for each individual problem, for which there is controversy both in experimental findings and in the predictions of theoretical models. For addition problems, the order effect was dominated by a max-then-min structure (i.e 7+4 is easier than 4+7). This result is predicted by models in which additions are performed as a translation starting from the first addend, with a distance given by the second addend. In multiplication, we observed a dominance of two effects: (1) a max-then-min pattern that can be accounted by the fact that it is easier to perform fewer additions of the largest number (i.e. 8x3 is easier to compute as 8+8+8 than as 3+3+…+3) and (2) a phonological effect by which problems for which there is a rhyme (i.e. "seis por cuatro es veinticuatro") are performed faster. Above and beyond these results, our study bares an important practical conclusion, as proof of concept, that participants can be motivated to perform substantial arithmetic training simply by presenting it in a gamified format.

  5. Arithmetic on Your Phone: A Large Scale Investigation of Simple Additions and Multiplications

    PubMed Central

    Zimmerman, Federico; Shalom, Diego; Gonzalez, Pablo A.; Garrido, Juan Manuel; Alvarez Heduan, Facundo; Dehaene, Stanislas; Sigman, Mariano; Rieznik, Andres

    2016-01-01

    We present the results of a gamified mobile device arithmetic application which allowed us to collect vast amount of data in simple arithmetic operations. Our results confirm and replicate, on a large sample, six of the main principles derived in a long tradition of investigation: size effect, tie effect, size-tie interaction effect, five-effect, RTs and error rates correlation effect, and most common error effect. Our dataset allowed us to perform a robust analysis of order effects for each individual problem, for which there is controversy both in experimental findings and in the predictions of theoretical models. For addition problems, the order effect was dominated by a max-then-min structure (i.e 7+4 is easier than 4+7). This result is predicted by models in which additions are performed as a translation starting from the first addend, with a distance given by the second addend. In multiplication, we observed a dominance of two effects: (1) a max-then-min pattern that can be accounted by the fact that it is easier to perform fewer additions of the largest number (i.e. 8x3 is easier to compute as 8+8+8 than as 3+3+…+3) and (2) a phonological effect by which problems for which there is a rhyme (i.e. "seis por cuatro es veinticuatro") are performed faster. Above and beyond these results, our study bares an important practical conclusion, as proof of concept, that participants can be motivated to perform substantial arithmetic training simply by presenting it in a gamified format. PMID:28033357

  6. Assessing grain-size correspondence between flow and deposits of controlled floods in the Colorado River, USA

    USGS Publications Warehouse

    Draut, Amy; Rubin, David M.

    2013-01-01

    Flood-deposited sediment has been used to decipher environmental parameters such as variability in watershed sediment supply, paleoflood hydrology, and channel morphology. It is not well known, however, how accurately the deposits reflect sedimentary processes within the flow, and hence what sampling intensity is needed to decipher records of recent or long-past conditions. We examine these problems using deposits from dam-regulated floods in the Colorado River corridor through Marble Canyon–Grand Canyon, Arizona, U.S.A., in which steady-peaked floods represent a simple end-member case. For these simple floods, most deposits show inverse grading that reflects coarsening suspended sediment (a result of fine-sediment-supply limitation), but there is enough eddy-scale variability that some profiles show normal grading that did not reflect grain-size evolution in the flow as a whole. To infer systemwide grain-size evolution in modern or ancient depositional systems requires sampling enough deposit profiles that the standard error of the mean of grain-size-change measurements becomes small relative to the magnitude of observed changes. For simple, steady-peaked floods, 5–10 profiles or fewer may suffice to characterize grain-size trends robustly, but many more samples may be needed from deposits with greater variability in their grain-size evolution.

  7. Large-size porous ZnO flakes with superior gas-sensing performance

    NASA Astrophysics Data System (ADS)

    Wen, Wei; Wu, Jin-Ming; Wang, Yu-De

    2012-06-01

    A simple top-down route is developed to fabricate large size porous ZnO flakes via solution combustion synthesis followed by a subsequent calcination in air, which is template-free and can be easily enlarged to an industrial scale. The achieved porous ZnO flakes, which are tens to hundreds of micrometers in flat and tens of nanometers in thickness, exhibit high response for detecting acetone and ethanol, because the unique two-dimensional architecture shortens effectively the gas diffusion distance and provides highly accessible open channels and active surfaces for the target gas.

  8. The Relationship between Visual Analysis and Five Statistical Analyses in a Simple AB Single-Case Research Design

    ERIC Educational Resources Information Center

    Brossart, Daniel F.; Parker, Richard I.; Olson, Elizabeth A.; Mahadevan, Lakshmi

    2006-01-01

    This study explored some practical issues for single-case researchers who rely on visual analysis of graphed data, but who also may consider supplemental use of promising statistical analysis techniques. The study sought to answer three major questions: (a) What is a typical range of effect sizes from these analytic techniques for data from…

  9. The forced sound transmission of finite single leaf walls using a variational technique.

    PubMed

    Brunskog, Jonas

    2012-09-01

    The single wall is the simplest element of concern in building acoustics, but there still remain some open questions regarding the sound insulation of this simple case. The two main reasons for this are the effects on the excitation and sound radiation of the wall when it has a finite size, and the fact that the wave field in the wall is consisting of two types of waves, namely forced waves due to the exciting acoustic field, and free bending waves due to reflections in the boundary. The aim of the present paper is to derive simple analytical formulas for the forced part of the airborne sound insulation of a single homogeneous wall of finite size, using a variational technique based on the integral-differential equation of the fluid loaded wall. The so derived formulas are valid in the entire audible frequency range. The results are compared with full numerical calculations, measurements and alternative theory, with reasonable agreement.

  10. Phrase Frequency Effects in Language Production

    PubMed Central

    Janssen, Niels; Barber, Horacio A.

    2012-01-01

    A classic debate in the psychology of language concerns the question of the grain-size of the linguistic information that is stored in memory. One view is that only morphologically simple forms are stored (e.g., ‘car’, ‘red’), and that more complex forms of language such as multi-word phrases (e.g., ‘red car’) are generated on-line from the simple forms. In two experiments we tested this view. In Experiment 1, participants produced noun+adjective and noun+noun phrases that were elicited by experimental displays consisting of colored line drawings and two superimposed line drawings. In Experiment 2, participants produced noun+adjective and determiner+noun+adjective utterances elicited by colored line drawings. In both experiments, naming latencies decreased with increasing frequency of the multi-word phrase, and were unaffected by the frequency of the object name in the utterance. These results suggest that the language system is sensitive to the distribution of linguistic information at grain-sizes beyond individual words. PMID:22479370

  11. Efficient removal of antibiotics in a fluidized bed reactor by facile fabricated magnetic powdered activated carbon.

    PubMed

    Ma, Jianqing; Yang, Qunfeng; Xu, Dongmei; Zeng, Xiaomei; Wen, Yuezhong; Liu, Weiping

    2017-02-01

    Powdered activated carbons (PACs) with micrometer size are showing great potential for enabling and improving technologies in water treatment. The critical problem in achieving practical application of PAC involves simple, effective fabrication of magnetic PAC and the design of a feasible reactor that can remove pollutants and recover the adsorbent efficiently. Herein, we show that such materials can be fabricated by the combination of PAC and magnetic Fe 3 O 4 with chitosan-Fe hydrogel through a simple co-precipitation method. According to the characterization results, CS-Fe/Fe 3 O 4 /PAC with different micrometers in size exhibited excellent magnetic properties. The adsorption of tetracycline was fast and efficient, and 99.9% removal was achieved in 30 min. It also possesses good usability and stability to co-existing ions, organics, and different pH values due to its dispersive interaction nature. Finally, the prepared CS-Fe/Fe 3 O 4 /PAC also performed well in the fluidized bed reactor with electromagnetic separation function. It could be easily separated by applying a magnetic field and was effectively in situ regenerated, indicating a potential of practical application for the removal of pollutants from water.

  12. Application of Hydrogel in Reconstruction Surgery: Hydrogel/Fat Graft Complex Filler for Volume Reconstruction in Critical Sized Muscle Defects.

    PubMed

    Lui, Y F; Ip, W Y

    2016-01-01

    Autogenic fat graft usually suffers from degeneration and volume shrinkage in volume reconstruction applications. How to maintain graft viability and graft volume is an essential consideration in reconstruction therapies. In this presented investigation, a new fat graft transplantation method was developed aiming to improve long term graft viability and volume reconstruction effect by incorporation of hydrogel. The harvested fat graft is dissociated into small fragments and incorporated into a collagen based hydrogel to form a hydrogel/fat graft complex for volume reconstruction purpose. In vitro results indicate that the collagen based hydrogel can significantly improve the survivability of cells inside isolated graft. In a 6-month investigation on artificial created defect model, this hydrogel/fat graft complex filler has demonstrated the ability of promoting fat pad formation inside the targeted defect area. The newly generated fat pad can cover the whole defect and restore its original dimension in 6-month time point. Compared to simple fat transplantation, this hydrogel/fat graft complex system provides much improvement on long term volume restoration effect against degeneration and volume shrinkage. One notable effect is that there is continuous proliferation of adipose tissue throughout the 6-month period. In summary, the hydrogel/fat graft system presented in this investigation demonstrated a better and more significant effect on volume reconstruction in large sized volume defect than simple fat transplantation.

  13. Risk factors associated with conversion of laparoscopic simple closure in perforated duodenal ulcer.

    PubMed

    Kim, Ji-Hyun; Chin, Hyung-Min; Bae, You-Jin; Jun, Kyong-Hwa

    2015-03-01

    Precise patient selection criteria are necessary to guide the surgeon in selecting laparoscopic repair for patients with perforated peptic ulcers. The aims of this study are to report surgical outcomes after surgery for perforated duodenal ulcers and identify risk factors for predicting failure of laparoscopic simple closure for perforated duodenal ulcer. In total, 77 patients who underwent laparoscopic simple closure for perforated duodenal ulcers from January 2007 to September 2013 were retrospectively analyzed. Patients were divided into totally laparoscopic and conversion groups. The characteristics of patients, intraoperative findings, postoperative complications, conversion rates and suture leakage rates of each group were investigated. Laparoscopic repair was completed in 69 (89.6%) of 77 patients, while 8 (10.4%) underwent conversion to open repair. Patients in the conversion group had longer perforation time, larger perforation size, more suture leakage, longer hospital stay, and higher 30-day mortality rate than those in the totally laparoscopic group. The size of perforation was the only risk factor for conversion in multivariable analysis. Patients with an ulcer perforation size of ≥9 mm or with perforation duration of ≥12.5 h had a significantly increased risk for conversion and suture leakage. Ulcer size of ≥9 mm is a significant risk factor for predicting conversion in laparoscopic simple closure. Suture leakage is associated with ulcer size (9 mm) and duration of perforation (12.5 h). Copyright © 2015 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  14. Understanding the Role of P Values and Hypothesis Tests in Clinical Research.

    PubMed

    Mark, Daniel B; Lee, Kerry L; Harrell, Frank E

    2016-12-01

    P values and hypothesis testing methods are frequently misused in clinical research. Much of this misuse appears to be owing to the widespread, mistaken belief that they provide simple, reliable, and objective triage tools for separating the true and important from the untrue or unimportant. The primary focus in interpreting therapeutic clinical research data should be on the treatment ("oomph") effect, a metaphorical force that moves patients given an effective treatment to a different clinical state relative to their control counterparts. This effect is assessed using 2 complementary types of statistical measures calculated from the data, namely, effect magnitude or size and precision of the effect size. In a randomized trial, effect size is often summarized using constructs, such as odds ratios, hazard ratios, relative risks, or adverse event rate differences. How large a treatment effect has to be to be consequential is a matter for clinical judgment. The precision of the effect size (conceptually related to the amount of spread in the data) is usually addressed with confidence intervals. P values (significance tests) were first proposed as an informal heuristic to help assess how "unexpected" the observed effect size was if the true state of nature was no effect or no difference. Hypothesis testing was a modification of the significance test approach that envisioned controlling the false-positive rate of study results over many (hypothetical) repetitions of the experiment of interest. Both can be helpful but, by themselves, provide only a tunnel vision perspective on study results that ignores the clinical effects the study was conducted to measure.

  15. Amelioration of ischemic brain damage by peritoneal dialysis

    PubMed Central

    Godino, María del Carmen; Romera, Victor G.; Sánchez-Tomero, José Antonio; Pacheco, Jesus; Canals, Santiago; Lerma, Juan; Vivancos, José; Moro, María Angeles; Torres, Magdalena; Lizasoain, Ignacio; Sánchez-Prieto, José

    2013-01-01

    Ischemic stroke is a devastating condition, for which there is still no effective therapy. Acute ischemic stroke is associated with high concentrations of glutamate in the blood and interstitial brain fluid. The inability of the tissue to retain glutamate within the cells of the brain ultimately provokes neuronal death. Increased concentrations of interstitial glutamate exert further excitotoxic effects on healthy tissue surrounding the infarct zone. We developed a strategy based on peritoneal dialysis to reduce blood glutamate levels, thereby accelerating brain-to-blood glutamate clearance. In a rat model of stroke, this simple procedure reduced the transient increase in glutamate, consequently decreasing the size of the infarct area. Functional magnetic resonance imaging demonstrated that the rescued brain tissue remained functional. Moreover, in patients with kidney failure, peritoneal dialysis significantly decreased glutamate concentrations. Our results suggest that peritoneal dialysis may represent a simple and effective intervention for human stroke patients. PMID:23999426

  16. Effects of the inner droplet of double emulsions on the film drainage during a head-on collision

    NASA Astrophysics Data System (ADS)

    Wang, Jingtao; Jing, Hefeng; Xu, Genmiao; Wang, Xiaoyong; Duan, Zhenya

    2015-07-01

    As a critical stage which severely affects the final coalescence of droplets, film drainage in the collision process of two simple droplets has been deeply studied for many years. However, the collision of multiple emulsions which contain other phases (like daughter droplets or particles) has never been studied although multiple emulsions are very important in emulsion industries nowadays. In this paper, the head-on collision of two core-shell double emulsions with equal sizes is investigated through a boundary integral method to disclose the effects of the inner droplet on the film drainage. When capillary number Ca is relatively high, due to the effect of the inner droplet on the inner circulation of mother droplets, the film drainage of double emulsions includes three stages: drainage, drainage halt, and second drainage, instead of two stages for that of simple droplets: drainage and drainage halt.

  17. Optimal spatial sampling techniques for ground truth data in microwave remote sensing of soil moisture

    NASA Technical Reports Server (NTRS)

    Rao, R. G. S.; Ulaby, F. T.

    1977-01-01

    The paper examines optimal sampling techniques for obtaining accurate spatial averages of soil moisture, at various depths and for cell sizes in the range 2.5-40 acres, with a minimum number of samples. Both simple random sampling and stratified sampling procedures are used to reach a set of recommended sample sizes for each depth and for each cell size. Major conclusions from statistical sampling test results are that (1) the number of samples required decreases with increasing depth; (2) when the total number of samples cannot be prespecified or the moisture in only one single layer is of interest, then a simple random sample procedure should be used which is based on the observed mean and SD for data from a single field; (3) when the total number of samples can be prespecified and the objective is to measure the soil moisture profile with depth, then stratified random sampling based on optimal allocation should be used; and (4) decreasing the sensor resolution cell size leads to fairly large decreases in samples sizes with stratified sampling procedures, whereas only a moderate decrease is obtained in simple random sampling procedures.

  18. Measurement of the index of refraction of μm crystals by a confocal laser microscope--potential application for the refractive index mapping of μm scale.

    PubMed

    Kimura, Keisaku; Sato, Seiichi

    2014-05-01

    A conventional laser microscope can be used to derive the index of refractivity by the ratio of geometrical height of the transparent platelet to the apparent height of the normal incident light for very small crystals in the wide size range. We demonstrate that the simple method is effective for the samples from 100 μm to 16 μm in size using alkali halide crystals as a model system. The method is also applied for the surface fractured micro-crystals and an inclined crystal with microscopic size regime. Furthermore, we present two-dimensional refractive index mapping as well as two-dimensional height profile for the mixture of three alkali halides, KCl, KI, and NaCl, all are μm in size.

  19. A simple shape-free model for pore-size estimation with positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Wada, Ken; Hyodo, Toshio

    2013-06-01

    Positron annihilation lifetime spectroscopy is one of the methods for estimating pore size in insulating materials. We present a shape-free model to be used conveniently for such analysis. A basic model in classical picture is modified by introducing a parameter corresponding to an effective size of the positronium (Ps). This parameter is adjusted so that its Ps-lifetime to pore-size relation merges smoothly with that of the well-established Tao-Eldrup model (with modification involving the intrinsic Ps annihilation rate) applicable to very small pores. The combined model, i.e., modified Tao-Eldrup model for smaller pores and the modified classical model for larger pores, agrees surprisingly well with the quantum-mechanics based extended Tao-Eldrup model, which deals with Ps trapped in and thermally equilibrium with a rectangular pore.

  20. In situ formed Si nanoparticle network with micron-sized Si particles for lithium-ion battery anodes.

    PubMed

    Wu, Mingyan; Sabisch, Julian E C; Song, Xiangyun; Minor, Andrew M; Battaglia, Vincent S; Liu, Gao

    2013-01-01

    To address the significant challenges associated with large volume change of micrometer-sized Si particles as high-capacity anode materials for lithium-ion batteries, we demonstrated a simple but effective strategy: using Si nanoparticles as a structural and conductive additive, with micrometer-sized Si as the main lithium-ion storage material. The Si nanoparticles connected into the network structure in situ during the charge process, to provide electronic connectivity and structure stability for the electrode. The resulting electrode showed a high specific capacity of 2500 mAh/g after 30 cycles with high initial Coulombic efficiency (73%) and good rate performance during electrochemical lithiation and delithiation: between 0.01 and 1 V vs Li/Li(+).

  1. Interfacial ion solvation: Obtaining the thermodynamic limit from molecular simulations

    NASA Astrophysics Data System (ADS)

    Cox, Stephen J.; Geissler, Phillip L.

    2018-06-01

    Inferring properties of macroscopic solutions from molecular simulations is complicated by the limited size of systems that can be feasibly examined with a computer. When long-ranged electrostatic interactions are involved, the resulting finite size effects can be substantial and may attenuate very slowly with increasing system size, as shown by previous work on dilute ions in bulk aqueous solution. Here we examine corrections for such effects, with an emphasis on solvation near interfaces. Our central assumption follows the perspective of Hünenberger and McCammon [J. Chem. Phys. 110, 1856 (1999)]: Long-wavelength solvent response underlying finite size effects should be well described by reduced models like dielectric continuum theory, whose size dependence can be calculated straightforwardly. Applied to an ion in a periodic slab of liquid coexisting with vapor, this approach yields a finite size correction for solvation free energies that differs in important ways from results previously derived for bulk solution. For a model polar solvent, we show that this new correction quantitatively accounts for the variation of solvation free energy with volume and aspect ratio of the simulation cell. Correcting periodic slab results for an aqueous system requires an additional accounting for the solvent's intrinsic charge asymmetry, which shifts electric potentials in a size-dependent manner. The accuracy of these finite size corrections establishes a simple method for a posteriori extrapolation to the thermodynamic limit and also underscores the realism of dielectric continuum theory down to the nanometer scale.

  2. The development of self-emulsifying oil-in-water emulsion adjuvant and an evaluation of the impact of droplet size on performance.

    PubMed

    Shah, Ruchi R; Dodd, Stephanie; Schaefer, Mary; Ugozzoli, Mildred; Singh, Manmohan; Otten, Gillis R; Amiji, Mansoor M; O'Hagan, Derek T; Brito, Luis A

    2015-04-01

    Microfluidization is an established technique for preparing emulsion adjuvant formulations for use in vaccines. Although this technique reproducibly yields high-quality stable emulsions, it is complex, expensive, and requires proprietary equipment. For this study, we developed a novel and simple low shear process to prepare stable reproducible emulsions without the use of any proprietary equipment. We found this process can produce a wide range of differently sized emulsions based on the modification of ratios of oil and surfactants. Using this process, we prepared a novel 20-nm-sized emulsion that was stable, reproducible, and showed adjuvant effects. During evaluation of this emulsion, we studied a range of emulsions with the same composition all sized below 200; 20, 90, and 160 nm in vivo and established a correlation between adjuvant size and immune responses. Our studies indicate that 160-nm-sized emulsions generate the strongest immune responses. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  3. Distribution of the two-sample t-test statistic following blinded sample size re-estimation.

    PubMed

    Lu, Kaifeng

    2016-05-01

    We consider the blinded sample size re-estimation based on the simple one-sample variance estimator at an interim analysis. We characterize the exact distribution of the standard two-sample t-test statistic at the final analysis. We describe a simulation algorithm for the evaluation of the probability of rejecting the null hypothesis at given treatment effect. We compare the blinded sample size re-estimation method with two unblinded methods with respect to the empirical type I error, the empirical power, and the empirical distribution of the standard deviation estimator and final sample size. We characterize the type I error inflation across the range of standardized non-inferiority margin for non-inferiority trials, and derive the adjusted significance level to ensure type I error control for given sample size of the internal pilot study. We show that the adjusted significance level increases as the sample size of the internal pilot study increases. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. A hierarchy of granular continuum models: Why flowing grains are both simple and complex

    NASA Astrophysics Data System (ADS)

    Kamrin, Ken

    2017-06-01

    Granular materials have a strange propensity to behave as either a complex media or a simple media depending on the precise question being asked. This review paper offers a summary of granular flow rheologies for well-developed or steady-state motion, and seeks to explain this dichotomy through the vast range of complexity intrinsic to these models. A key observation is that to achieve accuracy in predicting flow fields in general geometries, one requires a model that accounts for a number of subtleties, most notably a nonlocal effect to account for cooperativity in the flow as induced by the finite size of grains. On the other hand, forces and tractions that develop on macro-scale, submerged boundaries appear to be minimally affected by grain size and, barring very rapid motions, are well represented by simple rate-independent frictional plasticity models. A major simplification observed in experiments of granular intrusion, which we refer to as the `resistive force hypothesis' of granular Resistive Force Theory, can be shown to arise directly from rate-independent plasticity. Because such plasticity models have so few parameters, and the major rheological parameter is a dimensionless internal friction coefficient, some of these simplifications can be seen as consequences of scaling.

  5. Molnets: An Artificial Chemistry Based on Neural Networks

    NASA Technical Reports Server (NTRS)

    Colombano, Silvano; Luk, Johnny; Segovia-Juarez, Jose L.; Lohn, Jason; Clancy, Daniel (Technical Monitor)

    2002-01-01

    The fundamental problem in the evolution of matter is to understand how structure-function relationships are formed and increase in complexity from the molecular level all the way to a genetic system. We have created a system where structure-function relationships arise naturally and without the need of ad hoc function assignments to given structures. The idea was inspired by neural networks, where the structure of the net embodies specific computational properties. In this system networks interact with other networks to create connections between the inputs of one net and the outputs of another. The newly created net then recomputes its own synaptic weights, based on anti-hebbian rules. As a result some connections may be cut, and multiple nets can emerge as products of a 'reaction'. The idea is to study emergent reaction behaviors, based on simple rules that constitute a pseudophysics of the system. These simple rules are parameterized to produce behaviors that emulate chemical reactions. We find that these simple rules show a gradual increase in the size and complexity of molecules. We have been building a virtual artificial chemistry laboratory for discovering interesting reactions and for testing further ideas on the evolution of primitive molecules. Some of these ideas include the potential effect of membranes and selective diffusion according to molecular size.

  6. Size Effect of Ground Patterns on FM-Band Cross-Talks between Two Parallel Signal Traces of Printed Circuit Boards for Vehicles

    NASA Astrophysics Data System (ADS)

    Iida, Michihira; Maeno, Tsuyoshi; Wang, Jianqing; Fujiwara, Osamu

    Electromagnetic disturbances in vehicle-mounted radios are mainly caused by conducted noise currents flowing through wiring-harnesses from vehicle-mounted printed circuit boards (PCBs) with common slitting ground patterns. To suppress these kinds of noise currents, we previously measured them for simple two-layer PCBs with two parallel signal traces and slitting or non-slitting ground patterns, and then investigated by the FDTD simulation the reduction characteristics of the FM-band cross-talk noise levels between two parallel signal traces on six simple PCB models having different slitting ground or different divided ground patterns parallel to the traces. As a result, we found that the contributory factor for the FM-band cross-talk reduction is the reduction of mutual inductance between the two parallel traces, and also the noise currents from PCBs can rather be suppressed even if the size of the return ground becomes small. In this study, to investigate this finding, we further simulated the frequency characteristics of cross-talk reduction for additional six simple PCB models with different dividing dimensions ground patterns parallel to the traces, which revealed an interesting phenomenon that cross-talk reduction characteristics do not always decrease with increasing the width between the divided ground patterns.

  7. The accuracy of matrix population model projections for coniferous trees in the Sierra Nevada, California

    USGS Publications Warehouse

    van Mantgem, P.J.; Stephenson, N.L.

    2005-01-01

    1 We assess the use of simple, size-based matrix population models for projecting population trends for six coniferous tree species in the Sierra Nevada, California. We used demographic data from 16 673 trees in 15 permanent plots to create 17 separate time-invariant, density-independent population projection models, and determined differences between trends projected from initial surveys with a 5-year interval and observed data during two subsequent 5-year time steps. 2 We detected departures from the assumptions of the matrix modelling approach in terms of strong growth autocorrelations. We also found evidence of observation errors for measurements of tree growth and, to a more limited degree, recruitment. Loglinear analysis provided evidence of significant temporal variation in demographic rates for only two of the 17 populations. 3 Total population sizes were strongly predicted by model projections, although population dynamics were dominated by carryover from the previous 5-year time step (i.e. there were few cases of recruitment or death). Fractional changes to overall population sizes were less well predicted. Compared with a null model and a simple demographic model lacking size structure, matrix model projections were better able to predict total population sizes, although the differences were not statistically significant. Matrix model projections were also able to predict short-term rates of survival, growth and recruitment. Mortality frequencies were not well predicted. 4 Our results suggest that simple size-structured models can accurately project future short-term changes for some tree populations. However, not all populations were well predicted and these simple models would probably become more inaccurate over longer projection intervals. The predictive ability of these models would also be limited by disturbance or other events that destabilize demographic rates. ?? 2005 British Ecological Society.

  8. Effect of molecular exchange on water droplet size analysis as determined by diffusion NMR: The W/O/W double emulsion case.

    PubMed

    Vermeir, Lien; Sabatino, Paolo; Balcaen, Mathieu; Declerck, Arnout; Dewettinck, Koen; Martins, José C; Guthausen, Gisela; Van der Meeren, Paul

    2016-08-01

    The accuracy of the inner water droplet size determination of W/O/W emulsions upon water diffusion measurement by diffusion NMR was evaluated. The resulting droplet size data were compared to the results acquired from the diffusion measurement of a highly water soluble marker compound with low permeability in the oil layer of a W/O/W emulsion, which provide a closer representation of the actual droplet size. Differences in droplet size data obtained from water and the marker were ascribed to extra-droplet water diffusion. The diffusion data of the tetramethylammonium cation marker were measured using high-resolution pulsed field gradient NMR, whereas the water diffusion was measured using both low-resolution and high-resolution NMR. Different data analysis procedures were evaluated to correct for the effect of extra-droplet water diffusion on the accuracy of water droplet size analysis. Using the water diffusion data, the use of a low measurement temperature and diffusion delay Δ could reduce the droplet size overestimation resulting from extra-droplet water diffusion, but this undesirable effect was inevitable. Detailed analysis of the diffusion data revealed that the extra-droplet diffusion effect was due to an exchange between the inner water phase and the oil phase, rather than by exchange between the internal and external aqueous phase. A promising data analysis procedure for retrieving reliable size data consisted of the application of Einstein's diffusion law to the experimentally determined diffusion distances. This simple procedure allowed determining the inner water droplet size of W/O/W emulsions upon measurement of water diffusion by low-resolution NMR at or even above room temperature. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. A simple robust method for synthesis of metallic copper nanoparticles of high antibacterial potency against E. coli

    NASA Astrophysics Data System (ADS)

    Chatterjee, Arijit Kumar; Sarkar, Raj Kumar; Prasun Chattopadhyay, Asoke; Aich, Pulakesh; Chakraborty, Ruchira; Basu, Tarakdas

    2012-03-01

    A method for preparation of copper nanoparticles (Cu-NPs) was developed by simple reduction of CuCl2 in the presence of gelatin as a stabilizer and without applying stringent conditions like purging with nitrogen. The NPs were characterized by spectrophotometry, dynamic light scattering, x-ray diffraction, transmission electron microscopy, atomic force microscopy and x-ray photoelectron spectroscopy. The particles were about 50-60 nm in size and highly stable. The antibacterial activity of this Cu-NP on Gram-negative Escherichia coli was demonstrated by the methods of agar plating, flow cytometry and phase contrast microscopy. The minimum inhibitory concentration (3.0 µg ml-1), minimum bactericidal concentration (7.5 µg ml-1) and susceptibility constant (0.92) showed that this Cu-NP is highly effective against E. coli at a much lower concentration than that reported previously. Treatment with Cu-NPs made E. coli cells filamentous. The higher the concentration of Cu-NPs, the greater the population of filamentous cells; average filament size varied from 7 to 20 µm compared to the normal cell size of ˜2.5 µm. Both filamentation and killing of cells by Cu-NPs (7.5 µg ml-1) also occurred in an E. coli strain resistant to multiple antibiotics. Moreover, an antibacterial effect of Cu-NPs was also observed in Gram-positive Bacillus subtilis and Staphylococcus aureus, for which the values of minimum inhibitory concentration and minimum bactericidal concentration were close to that for E. coli.

  10. Exact special twist method for quantum Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Dagrada, Mario; Karakuzu, Seher; Vildosola, Verónica Laura; Casula, Michele; Sorella, Sandro

    2016-12-01

    We present a systematic investigation of the special twist method introduced by Rajagopal et al. [Phys. Rev. B 51, 10591 (1995), 10.1103/PhysRevB.51.10591] for reducing finite-size effects in correlated calculations of periodic extended systems with Coulomb interactions and Fermi statistics. We propose a procedure for finding special twist values which, at variance with previous applications of this method, reproduce the energy of the mean-field infinite-size limit solution within an adjustable (arbitrarily small) numerical error. This choice of the special twist is shown to be the most accurate single-twist solution for curing one-body finite-size effects in correlated calculations. For these reasons we dubbed our procedure "exact special twist" (EST). EST only needs a fully converged independent-particles or mean-field calculation within the primitive cell and a simple fit to find the special twist along a specific direction in the Brillouin zone. We first assess the performances of EST in a simple correlated model such as the three-dimensional electron gas. Afterwards, we test its efficiency within ab initio quantum Monte Carlo simulations of metallic elements of increasing complexity. We show that EST displays an overall good performance in reducing finite-size errors comparable to the widely used twist average technique but at a much lower computational cost since it involves the evaluation of just one wave function. We also demonstrate that the EST method shows similar performances in the calculation of correlation functions, such as the ionic forces for structural relaxation and the pair radial distribution function in liquid hydrogen. Our conclusions point to the usefulness of EST for correlated supercell calculations; our method will be particularly relevant when the physical problem under consideration requires large periodic cells.

  11. Simple Model for Detonation Energy and Rate

    NASA Astrophysics Data System (ADS)

    Lauderbach, Lisa M.; Souers, P. Clark

    2017-06-01

    A simple model is used to derive the Eyring equation for the size effect and detonation rate, which depends on a constant energy density. The rate derived from detonation velocities is then converted into a rate constant to be used in a reactive flow model. The rate might be constant if the size effect curve is straight, but the rate constant will change with the radius of the sample and cannot be a constant. This is based on many careful cylinder tests have been run recently on LX-17 with inner copper diameters ranging from 12.7 to 101.6 mm. Copper wall velocities at scaled displacements of 6, 12.5 and 19 mm equate to values at relative volumes of 2.4, 4.4 and 7.0. At each point, the velocities from 25.4 to 101.6 mm are constant within error whereas the 12.7 mm velocities are lower. Using the updated Gurney model, the energy densities at the three larger sizes are also constant. Similar behavior has been seen in LX-14, LX-04, and an 83% RDX mix. A rough saturation has also been in old ANFO data for diameters of 101.6 mm and larger. Although the energy densities saturate, the detonation velocities continue to increase with size. These observations suggest that maximum energy density is a constant for a given explosive of a given density. The correlation of energy density with detonation velocity is not good because the latter depends on the total energy of the sample. This work performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  12. Effects of diffusion on total biomass in simple metacommunities.

    PubMed

    Ruiz-Herrera, Alfonso; Torres, Pedro J

    2018-06-14

    This paper analyzes the effects of diffusion on the overall population size of the different species of a metacommunity. Depending on precise thresholds, we determine whether increasing the dispersal rate of a species has a positive or negative effect on population abundance. These thresholds depend on the interaction type of the species and the quality of the patches. The motivation for researching this issue is that spatial structure is a source of new biological insights with management interest. For instance, in a metacommunity of two competitors, the movement of a competitor could lead to a decrease of the overall population size of both species. On the other hand, we discuss when some classic results of metapopulation theory are preserved in metacommunities. Our results complement some recent experimental work by Zhang and collaborators. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. A Theoretical Lower Bound for Selection on the Expression Levels of Proteins

    DOE PAGES

    Price, Morgan N.; Arkin, Adam P.

    2016-06-11

    We use simple models of the costs and benefits of microbial gene expression to show that changing a protein's expression away from its optimum by 2-fold should reduce fitness by at least [Formula: see text], where P is the fraction the cell's protein that the gene accounts for. As microbial genes are usually expressed at above 5 parts per million, and effective population sizes are likely to be above 10(6), this implies that 2-fold changes to gene expression levels are under strong selection, as [Formula: see text], where Ne is the effective population size and s is the selection coefficient.more » Thus, most gene duplications should be selected against. On the other hand, we predict that for most genes, small changes in the expression will be effectively neutral.« less

  14. A Theoretical Lower Bound for Selection on the Expression Levels of Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Morgan N.; Arkin, Adam P.

    We use simple models of the costs and benefits of microbial gene expression to show that changing a protein's expression away from its optimum by 2-fold should reduce fitness by at least [Formula: see text], where P is the fraction the cell's protein that the gene accounts for. As microbial genes are usually expressed at above 5 parts per million, and effective population sizes are likely to be above 10(6), this implies that 2-fold changes to gene expression levels are under strong selection, as [Formula: see text], where Ne is the effective population size and s is the selection coefficient.more » Thus, most gene duplications should be selected against. On the other hand, we predict that for most genes, small changes in the expression will be effectively neutral.« less

  15. Microstructure as a function of the grain size distribution for packings of frictionless disks: Effects of the size span and the shape of the distribution.

    PubMed

    Estrada, Nicolas; Oquendo, W F

    2017-10-01

    This article presents a numerical study of the effects of grain size distribution (GSD) on the microstructure of two-dimensional packings of frictionless disks. The GSD is described by a power law with two parameters controlling the size span and the shape of the distribution. First, several samples are built for each combination of these parameters. Then, by means of contact dynamics simulations, the samples are densified in oedometric conditions and sheared in a simple shear configuration. The microstructure is analyzed in terms of packing fraction, local ordering, connectivity, and force transmission properties. It is shown that the microstructure is notoriously affected by both the size span and the shape of the GSD. These findings confirm recent observations regarding the size span of the GSD and extend previous works by describing the effects of the GSD shape. Specifically, we find that if the GSD shape is varied by increasing the proportion of small grains by a certain amount, it is possible to increase the packing fraction, increase coordination, and decrease the proportion of floating particles. Thus, by carefully controlling the GSD shape, it is possible to obtain systems that are denser and better connected, probably increasing the system's robustness and optimizing important strength properties such as stiffness, cohesion, and fragmentation susceptibility.

  16. Spatial Stroop interference occurs in the processing of radicals of ideogrammic compounds.

    PubMed

    Luo, Chunming; Proctor, Robert W; Weng, Xuchu; Li, Xinshan

    2014-06-01

    In this study, we investigated whether the meanings of radicals are involved in reading ideogrammic compounds in a spatial Stroop task. We found spatial Stroop effects of similar size for the simple characters [symbol: see text] ("up") and [symbol: see text] ("down") and for the complex characters [symbol: see text] ("nervous") and [symbol: see text] ("nervous"), which are ideogrammic compounds containing a radical [symbol: see text] or [symbol: see text], in Experiments 1 and 2. In Experiment 3, the spatial Stroop effects were also similar for the simple characters [symbol: see text] ("east") and [symbol: see text] ("west") and for the complex characters [symbol: see text] ("state") and [symbol: see text] ("spray"), which contain [symbol: see text] and [symbol: see text] as radicals. This outcome occurred regardless of whether the task was to identify the character (Exps. 1 and 3) or its location (Exp. 2). Thus, the spatial Stroop effect emerges in the processing of radicals just as it does for processing simple characters. This finding suggests that when reading ideogrammic compounds, (a) their radicals' meanings can be processed and (b) ideogrammic compounds have little or no influence on their radicals' semantic processing.

  17. A Note on the Fractal Behavior of Hydraulic Conductivity and Effective Porosity for Experimental Values in a Confined Aquifer

    PubMed Central

    De Bartolo, Samuele; Fallico, Carmine; Veltri, Massimo

    2013-01-01

    Hydraulic conductivity and effective porosity values for the confined sandy loam aquifer of the Montalto Uffugo (Italy) test field were obtained by laboratory and field measurements; the first ones were carried out on undisturbed soil samples and the others by slug and aquifer tests. A direct simple-scaling analysis was performed for the whole range of measurement and a comparison among the different types of fractal models describing the scale behavior was made. Some indications about the largest pore size to utilize in the fractal models were given. The results obtained for a sandy loam soil show that it is possible to obtain global indications on the behavior of the hydraulic conductivity versus the porosity utilizing a simple scaling relation and a fractal model in coupled manner. PMID:24385876

  18. A comment on towers for windmills. [structural and economic criteria

    NASA Technical Reports Server (NTRS)

    Budgen, H. P.

    1973-01-01

    Design considerations for windmill tower structures include the effects of normal wind forces on the rotor and on the tower. Circular tabular or masonry towers present a relatively simple aerodynamic solution. Economic factors establish the tubular tower as superior for small and medium sized windmills. Concrete and standard concrete block designs are cheaper than refabricated steel structures that have to be freighted.

  19. Factors Influencing Teachers' Competence in Developing Resilience in Vulnerable Children in Primary Schools in Uasin Gishu County, Kenya

    ERIC Educational Resources Information Center

    Silyvier, Tsindoli; Nyandusi, Charles

    2015-01-01

    The purpose of the study was to assess the effect of teacher characteristics on their competence in developing resilience in vulnerable primary school children. A descriptive survey research design was used. This study was based on resiliency theory as proposed by Krovetz (1998). Simple random sampling was used to select a sample size of 108…

  20. Solvent extraction employing a static micromixer: a simple, robust and versatile technology for the microencapsulation of proteins.

    PubMed

    Freitas, S; Walz, A; Merkle, H P; Gander, B

    2003-01-01

    The potential of a static micromixer for the production of protein-loaded biodegradable polymeric microspheres by a modified solvent extraction process was examined. The mixer consists of an array of microchannels and features a simple set-up, consumes only very small space, lacks moving parts and offers simple control of the microsphere size. Scale-up from lab bench to industrial production is easily feasible through parallel installation of a sufficient number of micromixers ('number-up'). Poly(lactic-co-glycolic acid) microspheres loaded with a model protein, bovine serum albumin (BSA), were prepared. The influence of various process and formulation parameters on the characteristics of the microspheres was examined with special focus on particle size distribution. Microspheres with monomodal size distributions having mean diameters of 5-30 micro m were produced with excellent reproducibility. Particle size distributions were largely unaffected by polymer solution concentration, polymer type and nominal BSA load, but depended on the polymer solvent. Moreover, particle mean diameters could be varied in a considerable range by modulating the flow rates of the mixed fluids. BSA encapsulation efficiencies were mostly in the region of 75-85% and product yields ranged from 90-100%. Because of its simple set-up and its suitability for continuous production, static micromixing is suggested for the automated and aseptic production of protein-loaded microspheres.

  1. PSYCHOLOGICAL TREATMENT OF DEPRESSION IN COLLEGE STUDENTS: A METAANALYSIS

    PubMed Central

    Cuijpers, Pim; Cristea, Ioana A.; Ebert, David D.; Koot, Hans M.; Auerbach, Randy P.; Bruffaerts, Ronny; Kessler, Ronald C.

    2015-01-01

    Background Expanded efforts to detect and treat depression among college students, a peak period of onset, have the potential to bear high human capital value from a societal perspective because depression increases college withdrawal rates. However, it is not clear whether evidence-based depression therapies are as effective in college students as in other adult populations. The higher levels of cognitive functioning and IQ and higher proportions of first-onset cases might lead to treatment effects being different among college students relative to the larger adult population. Methods We conducted a metaanalysis of randomized trials comparing psychological treatments of depressed college students relative to control groups and compared effect sizes in these studies to those in trials carried out in unselected populations of depressed adults. Results The 15 trials on college students satisfying study inclusion criteria included 997 participants. The pooled effect size of therapy versus control was g = 0.89 (95% CI: 0.66~1.11; NNT = 2.13) with moderate heterogeneity (I2 = 57; 95% CI: 23~72). None of these trials had low risk of bias. Effect sizes were significantly larger when students were not remunerated (e.g. money, credit), received individual versus group therapy, and were in trials that included a waiting list control group. No significant difference emerged in comparing effect sizes among college students versus adults either in simple mean comparisons or in multivariate metaregression analyses. Conclusions This metaanalysis of trials examining psychological treatments of depression in college students suggests that these therapies are effective and have effect sizes comparable to trials carried out among depressed adults. PMID:26682536

  2. Drying regimes in homogeneous porous media from macro- to nanoscale

    NASA Astrophysics Data System (ADS)

    Thiery, J.; Rodts, S.; Weitz, D. A.; Coussot, P.

    2017-07-01

    Magnetic resonance imaging visualization down to nanometric liquid films in model porous media with pore sizes from micro- to nanometers enables one to fully characterize the physical mechanisms of drying. For pore size larger than a few tens of nanometers, we identify an initial constant drying rate period, probing homogeneous desaturation, followed by a falling drying rate period. This second period is associated with the development of a gradient in saturation underneath the sample free surface that initiates the inward recession of the contact line. During this latter stage, the drying rate varies in accordance with vapor diffusion through the dry porous region, possibly affected by the Knudsen effect for small pore size. However, we show that for sufficiently small pore size and/or saturation the drying rate is increasingly reduced by the Kelvin effect. Subsequently, we demonstrate that this effect governs the kinetics of evaporation in nanopores as a homogeneous desaturation occurs. Eventually, under our experimental conditions, we show that the saturation unceasingly decreases in a homogeneous manner throughout the wet regions of the medium regardless of pore size or drying regime considered. This finding suggests the existence of continuous liquid flow towards the interface of higher evaporation, down to very low saturation or very small pore size. Paradoxically, even if this net flow is unidirectional and capillary driven, it corresponds to a series of diffused local capillary equilibrations over the full height of the sample, which might explain that a simple Darcy's law model does not predict the effect of scaling of the net flow rate on the pore size observed in our tests.

  3. FAST TRACK COMMUNICATION: Exact and simple results for the XYZ and strongly interacting fermion chains

    NASA Astrophysics Data System (ADS)

    Fendley, Paul; Hagendorf, Christian

    2010-10-01

    We conjecture exact and simple formulas for some physical quantities in two quantum chains. A classic result of this type is Onsager, Kaufman and Yang's formula for the spontaneous magnetization in the Ising model, subsequently generalized to the chiral Potts models. We conjecture that analogous results occur in the XYZ chain when the couplings obey JxJy + JyJz + JxJz = 0, and in a related fermion chain with strong interactions and supersymmetry. We find exact formulas for the magnetization and gap in the former, and the staggered density in the latter, by exploiting the fact that certain quantities are independent of finite-size effects.

  4. Prediction of Petermann I and II Spot Sizes for Single-mode Dispersion-shifted and Dispersion-flattened Fibers by a Simple Technique

    NASA Astrophysics Data System (ADS)

    Kamila, Kiranmay; Panda, Anup Kumar; Gangopadhyay, Sankar

    2013-09-01

    Employing the series expression for the fundamental modal field of dispersion-shifted trapezoidal and dispersion-flattened graded and step W fibers, we present simple but accurate analytical expressions for Petermann I and II spot sizes of such kind of fibers. Choosing some typical dispersion-shifted trapezoidal and dispersion-flattened graded and step W fibers as examples, we show that our estimations match excellently with the exact numerical results. The evaluation of the concerned propagation parameters by our formalism needs very little computations. This accurate but simple formalism will benefit the system engineers working in the field of all optical technology.

  5. Methods for sample size determination in cluster randomized trials

    PubMed Central

    Rutterford, Clare; Copas, Andrew; Eldridge, Sandra

    2015-01-01

    Background: The use of cluster randomized trials (CRTs) is increasing, along with the variety in their design and analysis. The simplest approach for their sample size calculation is to calculate the sample size assuming individual randomization and inflate this by a design effect to account for randomization by cluster. The assumptions of a simple design effect may not always be met; alternative or more complicated approaches are required. Methods: We summarise a wide range of sample size methods available for cluster randomized trials. For those familiar with sample size calculations for individually randomized trials but with less experience in the clustered case, this manuscript provides formulae for a wide range of scenarios with associated explanation and recommendations. For those with more experience, comprehensive summaries are provided that allow quick identification of methods for a given design, outcome and analysis method. Results: We present first those methods applicable to the simplest two-arm, parallel group, completely randomized design followed by methods that incorporate deviations from this design such as: variability in cluster sizes; attrition; non-compliance; or the inclusion of baseline covariates or repeated measures. The paper concludes with methods for alternative designs. Conclusions: There is a large amount of methodology available for sample size calculations in CRTs. This paper gives the most comprehensive description of published methodology for sample size calculation and provides an important resource for those designing these trials. PMID:26174515

  6. Extending cluster Lot Quality Assurance Sampling designs for surveillance programs

    PubMed Central

    Hund, Lauren; Pagano, Marcello

    2014-01-01

    Lot quality assurance sampling (LQAS) has a long history of applications in industrial quality control. LQAS is frequently used for rapid surveillance in global health settings, with areas classified as poor or acceptable performance based on the binary classification of an indicator. Historically, LQAS surveys have relied on simple random samples from the population; however, implementing two-stage cluster designs for surveillance sampling is often more cost-effective than simple random sampling. By applying survey sampling results to the binary classification procedure, we develop a simple and flexible non-parametric procedure to incorporate clustering effects into the LQAS sample design to appropriately inflate the sample size, accommodating finite numbers of clusters in the population when relevant. We use this framework to then discuss principled selection of survey design parameters in longitudinal surveillance programs. We apply this framework to design surveys to detect rises in malnutrition prevalence in nutrition surveillance programs in Kenya and South Sudan, accounting for clustering within villages. By combining historical information with data from previous surveys, we design surveys to detect spikes in the childhood malnutrition rate. PMID:24633656

  7. Extending cluster lot quality assurance sampling designs for surveillance programs.

    PubMed

    Hund, Lauren; Pagano, Marcello

    2014-07-20

    Lot quality assurance sampling (LQAS) has a long history of applications in industrial quality control. LQAS is frequently used for rapid surveillance in global health settings, with areas classified as poor or acceptable performance on the basis of the binary classification of an indicator. Historically, LQAS surveys have relied on simple random samples from the population; however, implementing two-stage cluster designs for surveillance sampling is often more cost-effective than simple random sampling. By applying survey sampling results to the binary classification procedure, we develop a simple and flexible nonparametric procedure to incorporate clustering effects into the LQAS sample design to appropriately inflate the sample size, accommodating finite numbers of clusters in the population when relevant. We use this framework to then discuss principled selection of survey design parameters in longitudinal surveillance programs. We apply this framework to design surveys to detect rises in malnutrition prevalence in nutrition surveillance programs in Kenya and South Sudan, accounting for clustering within villages. By combining historical information with data from previous surveys, we design surveys to detect spikes in the childhood malnutrition rate. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Using known populations of pronghorn to evaluate sampling plans and estimators

    USGS Publications Warehouse

    Kraft, K.M.; Johnson, D.H.; Samuelson, J.M.; Allen, S.H.

    1995-01-01

    Although sampling plans and estimators of abundance have good theoretical properties, their performance in real situations is rarely assessed because true population sizes are unknown. We evaluated widely used sampling plans and estimators of population size on 3 known clustered distributions of pronghorn (Antilocapra americana). Our criteria were accuracy of the estimate, coverage of 95% confidence intervals, and cost. Sampling plans were combinations of sampling intensities (16, 33, and 50%), sample selection (simple random sampling without replacement, systematic sampling, and probability proportional to size sampling with replacement), and stratification. We paired sampling plans with suitable estimators (simple, ratio, and probability proportional to size). We used area of the sampling unit as the auxiliary variable for the ratio and probability proportional to size estimators. All estimators were nearly unbiased, but precision was generally low (overall mean coefficient of variation [CV] = 29). Coverage of 95% confidence intervals was only 89% because of the highly skewed distribution of the pronghorn counts and small sample sizes, especially with stratification. Stratification combined with accurate estimates of optimal stratum sample sizes increased precision, reducing the mean CV from 33 without stratification to 25 with stratification; costs increased 23%. Precise results (mean CV = 13) but poor confidence interval coverage (83%) were obtained with simple and ratio estimators when the allocation scheme included all sampling units in the stratum containing most pronghorn. Although areas of the sampling units varied, ratio estimators and probability proportional to size sampling did not increase precision, possibly because of the clumped distribution of pronghorn. Managers should be cautious in using sampling plans and estimators to estimate abundance of aggregated populations.

  9. Raindrop intervalometer

    NASA Astrophysics Data System (ADS)

    van de Giesen, Nicolaas; Hut, Rolf; ten Veldhuis, Marie-claire

    2017-04-01

    If one can assume that drop size distributions can be effectively described by a generalized gamma function [1], one can estimate this function on the basis of the distribution of time intervals between drops hitting a certain area. The arrival of a single drop is relatively easy to measure with simple consumer devices such as cameras or piezoelectric elements. Here we present an open-hardware design for the electronics and statistical processing of an intervalometer that measures time intervals between drop arrivals. The specific hardware in this case is a piezoelectric element in an appropriate housing, combined with an instrumentation op-amp and an Arduino processor. Although it would not be too difficult to simply register the arrival times of all drops, it is more practical to only report the main statistics. For this purpose, all intervals below a certain threshold during a reporting interval are summed and counted. We also sum the scaled squares, cubes, and fourth powers of the intervals. On the basis of the first four moments, one can estimate the corresponding generalized gamma function and obtain some sense of the accuracy of the underlying assumptions. Special attention is needed to determine the lower threshold of the drop sizes that can be measured. This minimum size often varies over the area being monitored, such as is the case for piezoelectric elements. We describe a simple method to determine these (distributed) minimal drop sizes and present a bootstrap method to make the necessary corrections. Reference [1] Uijlenhoet, R., and J. N. M. Stricker. "A consistent rainfall parameterization based on the exponential raindrop size distribution." Journal of Hydrology 218, no. 3 (1999): 101-127.

  10. Display and device size effects on the usability of mini-notebooks (netbooks)/ultraportables as small form-factor Mobile PCs.

    PubMed

    Lai, Chih-Chun; Wu, Chih-Fu

    2014-07-01

    A balance between portability and usability made the 10.1″ diagonal screens popular in the Mobile PC market (e.g., 10.1″ mini-notebooks/netbooks, convertible/hybrid ultraportables); yet no academic research rationalizes this phenomenon. This study investigated the size effects of display and input devices of 4 mini-notebooks (netbooks) ranged in size on their performances in 2 simple and 3 complex applied tasks. It seemed that the closer the display and/or input devices (touchpad/touchscreen/keyboard) sizes to those sizes of a generic notebook, the shorter the operation times (there was no certain phenomenon for the error rates). With non-significant differences, the 10.1″ and 8.9″ mini-notebooks (netbooks) were as fast as the 11.6″ one in almost all the tasks, except for the 8.9″ one in the typing tasks. The 11.6″ mini-notebook (netbook) was most preferred; while the difference in the satisfactions was not significant between the 10.1″ and 11.6″ ones but between the 7″ and 11.6″ ones. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  11. Effect of wheat flour characteristics on sponge cake quality.

    PubMed

    Moiraghi, Malena; de la Hera, Esther; Pérez, Gabriela T; Gómez, Manuel

    2013-02-01

    To select the flour parameters that relate strongly to cake-making performance, in this study the relationship between sponge cake quality, solvent retention capacity (SRC) profile and flour physicochemical characteristics was investigated using 38 soft wheat samples of different origins. Particle size average, protein, damaged starch, water-soluble pentosans, total pentosans, SRC and pasting properties were analysed. Sponge cake volume and crumb texture were measured to evaluate cake quality. Cluster analysis was applied to assess differences in flour quality parameters among wheat lines based on the SRC profile. Cluster 1 showed significantly higher sponge cake volume and crumb softness, finer particle size and lower SRC sucrose, SRC carbonate, SRC water, damaged starch and protein content. Particle size, damaged starch, protein, thickening capacity and SRC parameters correlated negatively with sponge cake volume, while total pentosans and pasting temperature showed the opposite effect. The negative correlations between cake volume and SRC parameters along with the cluster analysis results indicated that flours with smaller particle size, lower absorption capacity and higher pasting temperature had better cake-making performance. Some simple analyses, such as SRC, particle size distribution and pasting properties, may help to choose flours suitable for cake making. Copyright © 2012 Society of Chemical Industry.

  12. Covariation of metabolic rates and cell size in coccolithophores

    NASA Astrophysics Data System (ADS)

    Aloisi, G.

    2015-08-01

    Coccolithophores are sensitive recorders of environmental change. The size of their coccosphere varies in the ocean along gradients of environmental conditions and provides a key for understanding the fate of this important phytoplankton group in the future ocean. But interpreting field changes in coccosphere size in terms of laboratory observations is hard, mainly because the marine signal reflects the response of multiple morphotypes to changes in a combination of environmental variables. In this paper I examine the large corpus of published laboratory experiments with coccolithophores looking for relations between environmental conditions, metabolic rates and cell size (a proxy for coccosphere size). I show that growth, photosynthesis and, to a lesser extent, calcification covary with cell size when pCO2, irradiance, temperature, nitrate, phosphate and iron conditions change. With the exception of phosphate and temperature, a change from limiting to non-limiting conditions always results in an increase in cell size. An increase in phosphate or temperature (below the optimum temperature for growth) produces the opposite effect. The magnitude of the coccosphere-size changes observed in the laboratory is comparable to that observed in the ocean. If the biological reasons behind the environment-metabolism-size link are understood, it will be possible to use coccosphere-size changes in the modern ocean and in marine sediments to investigate the fate of coccolithophores in the future ocean. This reasoning can be extended to the size of coccoliths if, as recent experiments are starting to show, coccolith size reacts to environmental change proportionally to coccosphere size. The coccolithophore database is strongly biased in favour of experiments with the coccolithophore Emiliania huxleyi (E. huxleyi; 82 % of database entries), and more experiments with other species are needed to understand whether these observations can be extended to coccolithophores in general. I introduce a simple model that simulates the growth rate and the size of cells forced by nitrate and phosphate concentrations. By considering a simple rule that allocates the energy flow from nutrient acquisition to cell structure (biomass) and cell maturity (biological complexity, eventually leading to cell division), the model is able to reproduce the covariation of growth rate and cell size observed in laboratory experiments with E. huxleyi when these nutrients become limiting. These results support ongoing efforts to interpret coccosphere and coccolith size measurements in the context of climate change.

  13. Digital templating for THA: a simple computer-assisted application for complex hip arthritis cases.

    PubMed

    Hafez, Mahmoud A; Ragheb, Gad; Hamed, Adel; Ali, Amr; Karim, Said

    2016-10-01

    Total hip arthroplasty (THA) is the standard procedure for end-stage arthritis of the hip. Its technical success relies on preoperative planning of the surgical procedure and virtual setup of the operative performance. Digital hip templating is one methodology of preoperative planning for THA which requires a digital preoperative radiograph and a computer with special software. This is a prospective study involving 23 patients (25 hips) who were candidates for complex THA surgery (unilateral or bilateral). Digital templating is done by radiographic assessment using radiographic magnification correction, leg length discrepancy and correction measurements, acetabular component and femoral component templating as well as neck resection measurement. The overall accuracy for templating the stem implant's exact size is 81%. This percentage increased to 94% when considering sizing within 1 size. Digital templating has proven effective, reliable and essential technique for preoperative planning and accurate prediction of THA sizing and alignment.

  14. Statistical Modeling of Robotic Random Walks on Different Terrain

    NASA Astrophysics Data System (ADS)

    Naylor, Austin; Kinnaman, Laura

    Issues of public safety, especially with crowd dynamics and pedestrian movement, have been modeled by physicists using methods from statistical mechanics over the last few years. Complex decision making of humans moving on different terrains can be modeled using random walks (RW) and correlated random walks (CRW). The effect of different terrains, such as a constant increasing slope, on RW and CRW was explored. LEGO robots were programmed to make RW and CRW with uniform step sizes. Level ground tests demonstrated that the robots had the expected step size distribution and correlation angles (for CRW). The mean square displacement was calculated for each RW and CRW on different terrains and matched expected trends. The step size distribution was determined to change based on the terrain; theoretical predictions for the step size distribution were made for various simple terrains. It's Dr. Laura Kinnaman, not sure where to put the Prefix.

  15. Effect of annealing on particle size, microstructure and gas sensing properties of Mn substituted CoFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Kumar, E. Ranjith; Kamzin, A. S.; Janani, K.

    2016-11-01

    Microstructure, morphological and gas sensor studies of Mn substituted cobalt ferrite nanoparticles synthesized by a simple evaporation method and auto- combustion method. The influence of heat treatment on phase and particle size of spinel ferrite nanoparticles were determined by X-ray diffraction and Mossbauer spectroscopy. The XRD study reveals that the lattice constant and crystallite size of the samples increases with the increase of annealing temperature. Last one was confirmed by Mossbauer data. The lowest size of particles of MnCoFe2O4 (~3 nm) is obtained by auto combustion method. The spherical shaped nanoparticles are recorded by TEM. Furthermore, conductance response of Mn-Co ferrite nanomaterial was measured by exposing the material to reducing gas like liquefied petroleum gas (LPG) which showed a sensor response of ~0.19 at an optimum operating temperature of 250 °C.

  16. Social network effects on post-traumatic stress disorder (PTSD) in female North Korean immigrants.

    PubMed

    Lee, Byungkyu; Youm, Yoosik

    2011-09-01

    The goal of this paper is to examine the social network effects on post-traumatic sdress disorder (PTSD) in female North Korean immigrants who entered South Korea in 2007. Specifically, it attempts to verify if the density and composition of networks make a difference after controlling for the network size. A multivariate logistic regression is used to probe the effects of social networks using the North Korean Immigrant Panel data set. Because the data set had only completed its initial survey when this paper was written, the analysis was cross-sectional. The size of the support networks was systematically related to PTSD. Female North Korean immigrants with more supporting ties were less likely to develop PTSD, even after controlling for other risk factors (odds-ratio for one more tie was 0.8). However, once we control for the size of the network, neither the density nor the composition of the networks remains statistically significant. The prevalence of the PTSD among female North Korean immigrants is alarmingly high, and regardless of the characteristics of supporting network members, the size of the supporting networks provides substantial protection. This implies that a simple strategy that focuses on increasing the number of supporting ties will be effective among North Korean immigrants who entered South Korea in recent years.

  17. Sample size determination for logistic regression on a logit-normal distribution.

    PubMed

    Kim, Seongho; Heath, Elisabeth; Heilbrun, Lance

    2017-06-01

    Although the sample size for simple logistic regression can be readily determined using currently available methods, the sample size calculation for multiple logistic regression requires some additional information, such as the coefficient of determination ([Formula: see text]) of a covariate of interest with other covariates, which is often unavailable in practice. The response variable of logistic regression follows a logit-normal distribution which can be generated from a logistic transformation of a normal distribution. Using this property of logistic regression, we propose new methods of determining the sample size for simple and multiple logistic regressions using a normal transformation of outcome measures. Simulation studies and a motivating example show several advantages of the proposed methods over the existing methods: (i) no need for [Formula: see text] for multiple logistic regression, (ii) available interim or group-sequential designs, and (iii) much smaller required sample size.

  18. Synthesis of SiV-diamond particulates via the microwave plasma chemical deposition of ultrananocrystalline diamond on soda-lime glass fibers

    NASA Astrophysics Data System (ADS)

    Kunuku, Srinivasu; Chen, Yen-Chun; Yeh, Chien-Jui; Chang, Wen-Hao; Manoharan, Divinah; Leou, Keh-Chyang; Lin, I.-Nan

    2016-10-01

    We report the synthesis of silicon-vacancy (SiV) incorporated spherical shaped ultrananocrystalline diamond (SiV-UNCD) particulates (size ∼1 μm) with bright luminescence at 738 nm. For this purpose, different granular structured polycrystalline diamond films and particulates were synthesized by using three different kinds of growth plasma conditions on the three types of substrate materials in the microwave plasma enhanced CVD process. The grain size dependent photoluminescence properties of nitrogen vacancy (NV) and SiV color centers have been investigated for different granular structured diamond samples. The luminescence of NV center and the associated phonon sidebands, which are usually observed in microcrystalline diamond and nanocrystalline diamond films, were effectively suppressed in UNCD films and UNCD particulates. Micron sized SiV-UNCD particulates with bright SiV emission has been attained by transfer of SiV-UNCD clusters on soda-lime glass fibers to inverted pyramidal cavities fabricated on Si substrates by the simple crushing of UNCD/soda-lime glass fibers in deionized water and ultrasonication. Such a plasma enhanced CVD process for synthesizing SiV-UNCD particulates with suppressed NV emission is simple and robust to attain the bright SiV-UNCD particulates to employ in practical applications.

  19. Controlling the anodizing conditions in preparation of an nanoporous anodic aluminium oxide template

    NASA Astrophysics Data System (ADS)

    Nazemi, Azadeh; Abolfazl, Seyed; Sadjadi, Seyed

    2014-12-01

    Porous anodic aluminium oxide (AAO) template is commonly used in the synthesis of one-dimensional nanostructures, such as nanowires and nanorods, due to its simple fabrication process. Controlling the anodizing conditions is important because of their direct influence on the size of AAO template pores; it affects the size of nanostructures that are fabricated in AAO template. In present study, several alumina templates were fabricated by a two-step electrochemical anodization in different conditions, such as the time of first process, its voltage, and electrolyte concentration. The effect of these factors on pore diameters of AAO templates was investigated using scanning electron microscopy (SEM).

  20. Fabrication of biodegradable PEG-PLA nanospheres for solubility, stabilization, and delivery of curcumin.

    PubMed

    Liang, Hongying; Friedman, Joel M; Nacharaju, Parimala

    2017-03-01

    Curcumin is an effective and safe anticancer agent, and also known to induce vasodilation, but its hydrophobicity limits its clinical application. In this study, a simple emulsion method was developed to prepare biodegradable poly (ethylene glycol)-poly (lactic acid) (PEG-PLA) nanospheres to encapsulate curcumin to improve its solubility and stability. The nanoparticle size was around 150 nm with a narrow size distribution. Fluorescence microscopy showed that curcumin encapsulated PEG-PLA nanospheres were taken up rapidly by Hela and MDA-MB-231 cancer cells. This novel nanoparticulate carrier may improve the bioavailability of curcumin without affecting its anticancer properties.

  1. Synthesis of ultrasmall, homogeneously alloyed, bimetallic nanoparticles on silica supports

    NASA Astrophysics Data System (ADS)

    Wong, A.; Liu, Q.; Griffin, S.; Nicholls, A.; Regalbuto, J. R.

    2017-12-01

    Supported nanoparticles containing more than one metal have a variety of applications in sensing, catalysis, and biomedicine. Common synthesis techniques for this type of material often result in large, unalloyed nanoparticles that lack the interactions between the two metals that give the particles their desired characteristics. We demonstrate a relatively simple, effective, generalizable method to produce highly dispersed, well-alloyed bimetallic nanoparticles. Ten permutations of noble and base metals (platinum, palladium, copper, nickel, and cobalt) were synthesized with average particle sizes from 0.9 to 1.4 nanometers, with tight size distributions. High-resolution imaging and x-ray analysis confirmed the homogeneity of alloying in these ultrasmall nanoparticles.

  2. Noise analysis of nucleate boiling

    NASA Technical Reports Server (NTRS)

    Mcknight, R. D.; Ram, K. S.

    1971-01-01

    The techniques of noise analysis have been utilized to investigate nucleate pool boiling. A simple experimental setup has been developed for obtaining the power spectrum of a nucleate boiling system. These techniques were first used to study single bubbles, and a method of relating the two-dimensional projected size and the local velocity of the bubbles to the auto-correlation functions is presented. This method is much less time consuming than conventional methods of measurement and has no probes to disturb the system. These techniques can be used to determine the contribution of evaporation to total heat flux in nucleate boiling. Also, these techniques can be used to investigate the effect of various parameters upon the frequency response of nucleate boiling. The predominant frequencies of the power spectrum correspond to the frequencies of bubble generation. The effects of heat input, degree of subcooling, and liquid surface tension upon the power spectra of a boiling system are presented. It was found that the degree of subcooling has a more pronounced effect upon bubble size than does heat flux. Also the effect of lowering surface tension can be sufficient to reduce the effect of the degree of subcooling upon the size of the bubbles.

  3. Investigation of the Klinkenberg effect in a micro/nanoporous medium by direct simulation Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Weigand, Bernhard

    2018-04-01

    The pressure-driven gas transport characteristics through a porous medium consisting of arrays of discrete elements is investigated by using the direct simulation Monte Carlo (DSMC) method. Different porous structures are considered, accounting for both two- and three-dimensional arrangements of basic microscale and nanoscale elements. The pore scale flow patterns in the porous medium are obtained, and the Knudsen diffusion in the pores is studied in detail for slip and transition flow regimes. A new effective pore size of the porous medium is defined, which is a function of the porosity, the tortuosity, the contraction factor, and the intrinsic permeability of the porous medium. It is found that the Klinkenberg effect in different porous structures can be fully described by the Knudsen number characterized by the effective pore size. The accuracies of some widely used Klinkenberg correlations are evaluated by the present DSMC results. It is also found that the available correlations for apparent permeability, most of which are derived from simple pipe or channel flows, can still be applicative for more complex porous media flows, by using the effective pore size defined in this study.

  4. A Simple and Reliable Method of Design for Standalone Photovoltaic Systems

    NASA Astrophysics Data System (ADS)

    Srinivasarao, Mantri; Sudha, K. Rama; Bhanu, C. V. K.

    2017-06-01

    Standalone photovoltaic (SAPV) systems are seen as a promoting method of electrifying areas of developing world that lack power grid infrastructure. Proliferations of these systems require a design procedure that is simple, reliable and exhibit good performance over its life time. The proposed methodology uses simple empirical formulae and easily available parameters to design SAPV systems, that is, array size with energy storage. After arriving at the different array size (area), performance curves are obtained for optimal design of SAPV system with high amount of reliability in terms of autonomy at a specified value of loss of load probability (LOLP). Based on the array to load ratio (ALR) and levelized energy cost (LEC) through life cycle cost (LCC) analysis, it is shown that the proposed methodology gives better performance, requires simple data and is more reliable when compared with conventional design using monthly average daily load and insolation.

  5. Benchmarking protein-protein interface predictions: why you should care about protein size.

    PubMed

    Martin, Juliette

    2014-07-01

    A number of predictive methods have been developed to predict protein-protein binding sites. Each new method is traditionally benchmarked using sets of protein structures of various sizes, and global statistics are used to assess the quality of the prediction. Little attention has been paid to the potential bias due to protein size on these statistics. Indeed, small proteins involve proportionally more residues at interfaces than large ones. If a predictive method is biased toward small proteins, this can lead to an over-estimation of its performance. Here, we investigate the bias due to the size effect when benchmarking protein-protein interface prediction on the widely used docking benchmark 4.0. First, we simulate random scores that favor small proteins over large ones. Instead of the 0.5 AUC (Area Under the Curve) value expected by chance, these biased scores result in an AUC equal to 0.6 using hypergeometric distributions, and up to 0.65 using constant scores. We then use real prediction results to illustrate how to detect the size bias by shuffling, and subsequently correct it using a simple conversion of the scores into normalized ranks. In addition, we investigate the scores produced by eight published methods and show that they are all affected by the size effect, which can change their relative ranking. The size effect also has an impact on linear combination scores by modifying the relative contributions of each method. In the future, systematic corrections should be applied when benchmarking predictive methods using data sets with mixed protein sizes. © 2014 Wiley Periodicals, Inc.

  6. Size effects in PbTiO3 nanocrystals: Effect of particle size on spontaneous polarization and strains

    NASA Astrophysics Data System (ADS)

    Akdogan, E. K.; Rawn, C. J.; Porter, W. D.; Payzant, E. A.; Safari, A.

    2005-04-01

    The spontaneous polarization (Ps) and spontaneous strains (xi) in mechanically unclamped and surface charge compensated PbTiO3 nanocrystals were determined as a function of particle size in the range <150nm by differential scanning calorimetry and x-ray powder diffraction, respectively. Significant deviations from bulk order parameters (P,xi) have been observed as the particle size decreased below ˜100nm. The critical size (rc) below which the ferroelectric tetragonal phase transforms to the paraelectric cubic phase was determined as ˜15nm. The depression in transition temperature with particle size is 14 °C at 28 nm. No change in the order of m3m →4mm ferrodistortive phase transition is observed. A simple analysis showed that ΔHtr/(kBT )˜103 at 25 °C for r =16nm, indicating that the stabilization of the cubic phase at rc cannot be linked to an instability in dipolar ordering due to thermal agitations. Comparison of the spontaneous volumetric strains with the strain induced by surface stress indicated that the effect of surface stress on ferroelectric phase stability was negligible. Anomalies in electrostrictive properties were determined for r →rc. The observed size dependence of PS is attributed to the reduced extent of long-range dipole-dipole interactions that arise due to the changes in bonding characteristics of ions with decreasing particle size in the perovskite lattice, in conformity with a recent study by Tsunekawa et al. [Phys. Rev. Lett. 85 (16), 4340 (2000)].

  7. Theory and applications of a deterministic approximation to the coalescent model

    PubMed Central

    Jewett, Ethan M.; Rosenberg, Noah A.

    2014-01-01

    Under the coalescent model, the random number nt of lineages ancestral to a sample is nearly deterministic as a function of time when nt is moderate to large in value, and it is well approximated by its expectation E[nt]. In turn, this expectation is well approximated by simple deterministic functions that are easy to compute. Such deterministic functions have been applied to estimate allele age, effective population size, and genetic diversity, and they have been used to study properties of models of infectious disease dynamics. Although a number of simple approximations of E[nt] have been derived and applied to problems of population-genetic inference, the theoretical accuracy of the formulas and the inferences obtained using these approximations is not known, and the range of problems to which they can be applied is not well understood. Here, we demonstrate general procedures by which the approximation nt ≈ E[nt] can be used to reduce the computational complexity of coalescent formulas, and we show that the resulting approximations converge to their true values under simple assumptions. Such approximations provide alternatives to exact formulas that are computationally intractable or numerically unstable when the number of sampled lineages is moderate or large. We also extend an existing class of approximations of E[nt] to the case of multiple populations of time-varying size with migration among them. Our results facilitate the use of the deterministic approximation nt ≈ E[nt] for deriving functionally simple, computationally efficient, and numerically stable approximations of coalescent formulas under complicated demographic scenarios. PMID:24412419

  8. Ranked set sampling: cost and optimal set size.

    PubMed

    Nahhas, Ramzi W; Wolfe, Douglas A; Chen, Haiying

    2002-12-01

    McIntyre (1952, Australian Journal of Agricultural Research 3, 385-390) introduced ranked set sampling (RSS) as a method for improving estimation of a population mean in settings where sampling and ranking of units from the population are inexpensive when compared with actual measurement of the units. Two of the major factors in the usefulness of RSS are the set size and the relative costs of the various operations of sampling, ranking, and measurement. In this article, we consider ranking error models and cost models that enable us to assess the effect of different cost structures on the optimal set size for RSS. For reasonable cost structures, we find that the optimal RSS set sizes are generally larger than had been anticipated previously. These results will provide a useful tool for determining whether RSS is likely to lead to an improvement over simple random sampling in a given setting and, if so, what RSS set size is best to use in this case.

  9. Effect of Microstructural Interfaces on the Mechanical Response of Crystalline Metallic Materials

    NASA Astrophysics Data System (ADS)

    Aitken, Zachary H.

    Advances in nano-scale mechanical testing have brought about progress in the understanding of physical phenomena in materials and a measure of control in the fabrication of novel materials. In contrast to bulk materials that display size-invariant mechanical properties, sub-micron metallic samples show a critical dependence on sample size. The strength of nano-scale single crystalline metals is well-described by a power-law function, sigma ∝ D-n, where D is a critical sample size and n is a experimentally-fit positive exponent. This relationship is attributed to source-driven plasticity and demonstrates a strengthening as the decreasing sample size begins to limit the size and number of dislocation sources. A full understanding of this size-dependence is complicated by the presence of microstructural features such as interfaces that can compete with the dominant dislocation-based deformation mechanisms. In this thesis, the effects of microstructural features such as grain boundaries and anisotropic crystallinity on nano-scale metals are investigated through uniaxial compression testing. We find that nano-sized Cu covered by a hard coating displays a Bauschinger effect and the emergence of this behavior can be explained through a simple dislocation-based analytic model. Al nano-pillars containing a single vertically-oriented coincident site lattice grain boundary are found to show similar deformation to single-crystalline nano-pillars with slip traces passing through the grain boundary. With increasing tilt angle of the grain boundary from the pillar axis, we observe a transition from dislocation-dominated deformation to grain boundary sliding. Crystallites are observed to shear along the grain boundary and molecular dynamics simulations reveal a mechanism of atomic migration that accommodates boundary sliding. We conclude with an analysis of the effects of inherent crystal anisotropy and alloying on the mechanical behavior of the Mg alloy, AZ31. Through comparison to pure Mg, we show that the size effect dominates the strength of samples below 10 microm, that differences in the size effect between hexagonal slip systems is due to the inherent crystal anisotropy, suggesting that the fundamental mechanism of the size effect in these slip systems is the same.

  10. Novel Simple Insulin Delivery Device Reduces Barriers to Insulin Therapy in Type 2 Diabetes

    PubMed Central

    Hermanns, Norbert; Lilly, Leslie C.; Mader, Julia K.; Aberer, Felix; Ribitsch, Anja; Kojzar, Harald; Warner, Jay; Pieber, Thomas R.

    2015-01-01

    Background: The PaQ® insulin delivery system is a simple-to-use patch-on device that provides preset basal rates and bolus insulin on demand. In addition to feasibility of use, safety, and efficacy (reported elsewhere), this study analyzed the impact of PaQ on patient-reported outcomes, including barriers to insulin treatment, diabetes-related distress, and attitudes toward insulin therapy in patients with type 2 diabetes on a stable multiple daily injection (MDI) regimen. Methods: This single-center, open-label, single-arm study comprised three 2-week periods: baseline (MDI), transition from MDI to PaQ, and PaQ treatment. Validated questionnaires were administered during the baseline and PaQ treatment periods: Barriers to Insulin Treatment questionnaire (BIT), Insulin Treatment Appraisal Scale (ITAS), and Problem Areas in Diabetes scale (PAID). Results: Eighteen patients (age 59 ± 5 years, diabetes duration 15 ± 7 years, 21% female, HbA1c 7.7 ± 0.7%) completed the questionnaires. There was a strong, significant effect of PaQ use in mean BIT total scores (difference [D] = −5.4 ± 0.7.7, P = .01, effect size [d] = 0.70). Patients perceived less stigmatization by insulin injection (D = −2.2 ± 6.2, P = .18, d = 0.35), increased positive outcome (D = 1.9 ± 6.6, P = .17, d = 0.29), and less fear of injections (1.3 ± 4.8, P = .55, d = 0.28). Mean change in ITAS scores after PaQ device use showed a nonsignificant improvement of 1.71 ± 5.63 but moderate effect size (d = 0.30, P = .14). No increase in PAID scores was seen. Conclusions: The results and moderate to large effects sizes suggest that PaQ device use has beneficial and clinically relevant effects to overcoming barriers to and negative appraisal of insulin treatment, without increasing other diabetes-related distress. PMID:25670847

  11. Novel simple insulin delivery device reduces barriers to insulin therapy in type 2 diabetes: results from a pilot study.

    PubMed

    Hermanns, Norbert; Lilly, Leslie C; Mader, Julia K; Aberer, Felix; Ribitsch, Anja; Kojzar, Harald; Warner, Jay; Pieber, Thomas R

    2015-05-01

    The PaQ® insulin delivery system is a simple-to-use patch-on device that provides preset basal rates and bolus insulin on demand. In addition to feasibility of use, safety, and efficacy (reported elsewhere), this study analyzed the impact of PaQ on patient-reported outcomes, including barriers to insulin treatment, diabetes-related distress, and attitudes toward insulin therapy in patients with type 2 diabetes on a stable multiple daily injection (MDI) regimen. This single-center, open-label, single-arm study comprised three 2-week periods: baseline (MDI), transition from MDI to PaQ, and PaQ treatment. Validated questionnaires were administered during the baseline and PaQ treatment periods: Barriers to Insulin Treatment questionnaire (BIT), Insulin Treatment Appraisal Scale (ITAS), and Problem Areas in Diabetes scale (PAID). Eighteen patients (age 59 ± 5 years, diabetes duration 15 ± 7 years, 21% female, HbA1c 7.7 ± 0.7%) completed the questionnaires. There was a strong, significant effect of PaQ use in mean BIT total scores (difference [D] = -5.4 ± 0.7.7, P = .01, effect size [d] = 0.70). Patients perceived less stigmatization by insulin injection (D = -2.2 ± 6.2, P = .18, d = 0.35), increased positive outcome (D = 1.9 ± 6.6, P = .17, d = 0.29), and less fear of injections (1.3 ± 4.8, P = .55, d = 0.28). Mean change in ITAS scores after PaQ device use showed a nonsignificant improvement of 1.71 ± 5.63 but moderate effect size (d = 0.30, P = .14). No increase in PAID scores was seen. The results and moderate to large effects sizes suggest that PaQ device use has beneficial and clinically relevant effects to overcoming barriers to and negative appraisal of insulin treatment, without increasing other diabetes-related distress. © 2015 Diabetes Technology Society.

  12. Polymer-induced phase separation and crystallization in immunoglobulin G solutions.

    PubMed

    Li, Jianguo; Rajagopalan, Raj; Jiang, Jianwen

    2008-05-28

    We study the effects of the size of polymer additives and ionic strength on the phase behavior of a nonglobular protein-immunoglobulin G (IgG)-by using a simple four-site model to mimic the shape of IgG. The interaction potential between the protein molecules consists of a Derjaguin-Landau-Verwey-Overbeek-type colloidal potential and an Asakura-Oosawa depletion potential arising from the addition of polymer. Liquid-liquid equilibria and fluid-solid equilibria are calculated by using the Gibbs ensemble Monte Carlo technique and the Gibbs-Duhem integration (GDI) method, respectively. Absolute Helmholtz energy is also calculated to get an initial coexisting point as required by GDI. The results reveal a nonmonotonic dependence of the critical polymer concentration rho(PEG) (*) (i.e., the minimum polymer concentration needed to induce liquid-liquid phase separation) on the polymer-to-protein size ratio q (equivalently, the range of the polymer-induced depletion interaction potential). We have developed a simple equation for estimating the minimum amount of polymer needed to induce the liquid-liquid phase separation and show that rho(PEG) (*) approximately [q(1+q)(3)]. The results also show that the liquid-liquid phase separation is metastable for low-molecular weight polymers (q=0.2) but stable at large molecular weights (q=1.0), thereby indicating that small sizes of polymer are required for protein crystallization. The simulation results provide practical guidelines for the selection of polymer size and ionic strength for protein phase separation and crystallization.

  13. How the Assumed Size Distribution of Dust Minerals Affects the Predicted Ice Forming Nuclei

    NASA Technical Reports Server (NTRS)

    Perlwitz, Jan P.; Fridlind, Ann M.; Garcia-Pando, Carlos Perez; Miller, Ron L.; Knopf, Daniel A.

    2015-01-01

    The formation of ice in clouds depends on the availability of ice forming nuclei (IFN). Dust aerosol particles are considered the most important source of IFN at a global scale. Recent laboratory studies have demonstrated that the mineral feldspar provides the most efficient dust IFN for immersion freezing and together with kaolinite for deposition ice nucleation, and that the phyllosilicates illite and montmorillonite (a member of the smectite group) are of secondary importance.A few studies have applied global models that simulate mineral specific dust to predict the number and geographical distribution of IFN. These studies have been based on the simple assumption that the mineral composition of soil as provided in data sets from the literature translates directly into the mineral composition of the dust aerosols. However, these tables are based on measurements of wet-sieved soil where dust aggregates are destroyed to a large degree. In consequence, the size distribution of dust is shifted to smaller sizes, and phyllosilicates like illite, kaolinite, and smectite are only found in the size range 2 m. In contrast, in measurements of the mineral composition of dust aerosols, the largest mass fraction of these phyllosilicates is found in the size range 2 m as part of dust aggregates. Conversely, the mass fraction of feldspar is smaller in this size range, varying with the geographical location. This may have a significant effect on the predicted IFN number and its geographical distribution.An improved mineral specific dust aerosol module has been recently implemented in the NASA GISS Earth System ModelE2. The dust module takes into consideration the disaggregated state of wet-sieved soil, on which the tables of soil mineral fractions are based. To simulate the atmospheric cycle of the minerals, the mass size distribution of each mineral in aggregates that are emitted from undispersed parent soil is reconstructed. In the current study, we test the null-hypothesis that simulating the presence of a large mass fraction of phyllosilicates in dust aerosols in the size range 2 m, in comparison to a simple model assumption where this is neglected, does not yield a significant effect on the magnitude and geographical distribution of the predicted IFN number. Results from sensitivity experiments are presented as well.

  14. Finite-size effects on bacterial population expansion under controlled flow conditions

    NASA Astrophysics Data System (ADS)

    Tesser, Francesca; Zeegers, Jos C. H.; Clercx, Herman J. H.; Brunsveld, Luc; Toschi, Federico

    2017-03-01

    The expansion of biological species in natural environments is usually described as the combined effect of individual spatial dispersal and growth. In the case of aquatic ecosystems flow transport can also be extremely relevant as an extra, advection induced, dispersal factor. We designed and assembled a dedicated microfluidic device to control and quantify the expansion of populations of E. coli bacteria under both co-flowing and counter-flowing conditions, measuring the front speed at varying intensity of the imposed flow. At variance with respect to the case of classic advective-reactive-diffusive chemical fronts, we measure that almost irrespective of the counter-flow velocity, the front speed remains finite at a constant positive value. A simple model incorporating growth, dispersion and drift on finite-size hard beads allows to explain this finding as due to a finite volume effect of the bacteria. This indicates that models based on the Fisher-Kolmogorov-Petrovsky-Piscounov equation (FKPP) that ignore the finite size of organisms may be inaccurate to describe the physics of spatial growth dynamics of bacteria.

  15. Bacterial finite-size effects for population expansion under flow

    NASA Astrophysics Data System (ADS)

    Toschi, Federico; Tesser, Francesca; Zeegers, Jos C. H.; Clercx, Herman J. H.; Brunsveld, Luc

    2016-11-01

    For organisms living in a liquid ecosystem, flow and flow gradients have a dual role as they transport nutrient while, at the same time, dispersing the individuals. In absence of flow and under homogeneous conditions, the growth of a population towards an empty region is usually described by a reaction-diffusion equation. The effect of fluid flow is not yet well understood and the interplay between transport of individuals and growth opens a wide scenario of possible behaviors. In this work, we study experimentally the dynamics of non-motile E. coli bacteria colonies spreading inside rectangular channels, in PDMS microfluidic devices. By use of a fluorescent microscope we analyze the dynamics of the population density subjected to different co- and counter-flow conditions and shear rates. A simple model incorporating growth, dispersion and drift of finite size beads is able to explain the experimental findings. This indicates that models based on the Fisher-Kolmogorov-Petrovsky-Piscounov equation (FKPP) may have to be supplemented with bacterial finite-size effects in order to be able to accurately reproduce experimental results for population spatial growth.

  16. Urban Land Cover Mapping Accuracy Assessment - A Cost-benefit Analysis Approach

    NASA Astrophysics Data System (ADS)

    Xiao, T.

    2012-12-01

    One of the most important components in urban land cover mapping is mapping accuracy assessment. Many statistical models have been developed to help design simple schemes based on both accuracy and confidence levels. It is intuitive that an increased number of samples increases the accuracy as well as the cost of an assessment. Understanding cost and sampling size is crucial in implementing efficient and effective of field data collection. Few studies have included a cost calculation component as part of the assessment. In this study, a cost-benefit sampling analysis model was created by combining sample size design and sampling cost calculation. The sampling cost included transportation cost, field data collection cost, and laboratory data analysis cost. Simple Random Sampling (SRS) and Modified Systematic Sampling (MSS) methods were used to design sample locations and to extract land cover data in ArcGIS. High resolution land cover data layers of Denver, CO and Sacramento, CA, street networks, and parcel GIS data layers were used in this study to test and verify the model. The relationship between the cost and accuracy was used to determine the effectiveness of each sample method. The results of this study can be applied to other environmental studies that require spatial sampling.

  17. Decoupling the effects of confinement and passivation on semiconductor quantum dots.

    PubMed

    Rudd, Roya; Hall, Colin; Murphy, Peter J; Reece, Peter J; Charrault, Eric; Evans, Drew

    2016-07-20

    Semiconductor (SC) quantum dots (QDs) have recently been fabricated by both chemical and plasma techniques for specific absorption and emission of light. Their optical properties are governed by the size of the QD and the chemistry of any passivation at their surface. Here, we decouple the effects of confinement and passivation by utilising DC magnetron sputtering to fabricate SC QDs in a perfluorinated polyether oil. Very high band gaps are observed for fluorinated QDs with increasing levels of quantum confinement (from 4.2 to 4.6 eV for Si, and 2.5 to 3 eV for Ge), with a shift down to 3.4 eV for Si when oxygen is introduced to the passivation layer. In contrast, the fluorinated Si QDs display a constant UV photoluminescence (3.8 eV) irrespective of size. This ability to tune the size and passivation independently opens a new opportunity to extending the use of simple semiconductor QDs.

  18. Modelling the Size Effects on the Mechanical Properties of Micro/Nano Structures.

    PubMed

    Abazari, Amir Musa; Safavi, Seyed Mohsen; Rezazadeh, Ghader; Villanueva, Luis Guillermo

    2015-11-11

    Experiments on micro- and nano-mechanical systems (M/NEMS) have shown that their behavior under bending loads departs in many cases from the classical predictions using Euler-Bernoulli theory and Hooke's law. This anomalous response has usually been seen as a dependence of the material properties on the size of the structure, in particular thickness. A theoretical model that allows for quantitative understanding and prediction of this size effect is important for the design of M/NEMS. In this paper, we summarize and analyze the five theories that can be found in the literature: Grain Boundary Theory (GBT), Surface Stress Theory (SST), Residual Stress Theory (RST), Couple Stress Theory (CST) and Surface Elasticity Theory (SET). By comparing these theories with experimental data we propose a simplified model combination of CST and SET that properly fits all considered cases, therefore delivering a simple (two parameters) model that can be used to predict the mechanical properties at the nanoscale.

  19. Modelling the Size Effects on the Mechanical Properties of Micro/Nano Structures

    PubMed Central

    Abazari, Amir Musa; Safavi, Seyed Mohsen; Rezazadeh, Ghader; Villanueva, Luis Guillermo

    2015-01-01

    Experiments on micro- and nano-mechanical systems (M/NEMS) have shown that their behavior under bending loads departs in many cases from the classical predictions using Euler-Bernoulli theory and Hooke’s law. This anomalous response has usually been seen as a dependence of the material properties on the size of the structure, in particular thickness. A theoretical model that allows for quantitative understanding and prediction of this size effect is important for the design of M/NEMS. In this paper, we summarize and analyze the five theories that can be found in the literature: Grain Boundary Theory (GBT), Surface Stress Theory (SST), Residual Stress Theory (RST), Couple Stress Theory (CST) and Surface Elasticity Theory (SET). By comparing these theories with experimental data we propose a simplified model combination of CST and SET that properly fits all considered cases, therefore delivering a simple (two parameters) model that can be used to predict the mechanical properties at the nanoscale. PMID:26569256

  20. Rules and more rules: the effects of multiple tasks, extensive training, and aging on task-switching performance.

    PubMed

    Buchler, Norbou G; Hoyer, William J; Cerella, John

    2008-06-01

    Task-switching performance was assessed in young and older adults as a function of the number of task sets to be actively maintained in memory (varied from 1 to 4) over the course of extended training (5 days). Each of the four tasks required the execution of a simple computational algorithm, which was instantaneously cued by the color of the two-digit stimulus. Tasks were presented in pure (task set size 1) and mixed blocks (task set sizes 2, 3, 4), and the task sequence was unpredictable. By considering task switching beyond two tasks, we found evidence for a cognitive control system that is not overwhelmed by task set size load manipulations. Extended training eliminated age effects in task-switching performance, even when the participants had to manage the execution of up to four tasks. The results are discussed in terms of current theories of cognitive control, including task set inertia and production system postulates.

  1. Noctilucent cloud particle size determination based on multi-wavelength all-sky analysis

    NASA Astrophysics Data System (ADS)

    Ugolnikov, Oleg S.; Galkin, Alexey A.; Pilgaev, Sergey V.; Roldugin, Alexey V.

    2017-10-01

    The article deals with the analysis of color distribution in noctilucent clouds (NLC) in the sky based on multi-wavelength (RGB) CCD-photometry provided with the all-sky camera in Lovozero in the north of Russia (68.0°N, 35.1°E) during the bright expanded NLC performance in the night of August 12, 2016. Small changes in the NLC color across the sky are interpreted as the atmospheric absorption and extinction effects combined with the difference in the Mie scattering functions of NLC particles for the three color channels of the camera. The method described in this paper is used to find the effective monodisperse radius of particles about 55 nm. The result of these simple and cost-effective measurements is in good agreement with previous estimations of comparable accuracy. Non-spherical particles, Gaussian and lognormal distribution of the particle size are also considered.

  2. Portion Size Versus Serving Size

    MedlinePlus

    ... Simple Cooking and Recipes Dining Out Choosing a Restaurant Deciphering the Menu Ordering Your Meal Eating Fast ... don’t know what a healthy portion is. Restaurants offer extras like breads, chips and other appetizers ...

  3. A simple, generalizable method for measuring individual research productivity and its use in the long-term analysis of departmental performance, including between-country comparisons

    PubMed Central

    2013-01-01

    Background A simple, generalizable method for measuring research output would be useful in attempts to build research capacity, and in other contexts. Methods A simple indicator of individual research output was developed, based on grant income, publications and numbers of PhD students supervised. The feasibility and utility of the indicator was examined by using it to calculate research output from two similarly-sized research groups in different countries. The same indicator can be used to assess the balance in the research “portfolio” of an individual researcher. Results Research output scores of 41 staff in Research Department A had a wide range, from zero to 8; the distribution of these scores was highly skewed. Only about 20% of the researchers had well-balanced research outputs, with approximately equal contributions from grants, papers and supervision. Over a five-year period, Department A's total research output rose, while the number of research staff decreased slightly, in other words research productivity (output per head) rose. Total research output from Research Department B, of approximately the same size as A, was similar, but slightly higher than Department A. Conclusions The proposed indicator is feasible. The output score is dimensionless and can be used for comparisons within and between countries. Modeling can be used to explore the effect on research output of changing the size and composition of a research department. A sensitivity analysis shows that small increases in individual productivity result in relatively greater increases in overall departmental research output. The indicator appears to be potentially useful for capacity building, once the initial step of research priority setting has been completed. PMID:23317431

  4. A simple, generalizable method for measuring individual research productivity and its use in the long-term analysis of departmental performance, including between-country comparisons.

    PubMed

    Wootton, Richard

    2013-01-14

    A simple, generalizable method for measuring research output would be useful in attempts to build research capacity, and in other contexts. A simple indicator of individual research output was developed, based on grant income, publications and numbers of PhD students supervised. The feasibility and utility of the indicator was examined by using it to calculate research output from two similarly-sized research groups in different countries. The same indicator can be used to assess the balance in the research "portfolio" of an individual researcher. Research output scores of 41 staff in Research Department A had a wide range, from zero to 8; the distribution of these scores was highly skewed. Only about 20% of the researchers had well-balanced research outputs, with approximately equal contributions from grants, papers and supervision. Over a five-year period, Department A's total research output rose, while the number of research staff decreased slightly, in other words research productivity (output per head) rose. Total research output from Research Department B, of approximately the same size as A, was similar, but slightly higher than Department A. The proposed indicator is feasible. The output score is dimensionless and can be used for comparisons within and between countries. Modeling can be used to explore the effect on research output of changing the size and composition of a research department. A sensitivity analysis shows that small increases in individual productivity result in relatively greater increases in overall departmental research output. The indicator appears to be potentially useful for capacity building, once the initial step of research priority setting has been completed.

  5. The effect of the runoff size on the pesticide concentration in runoff water and in FOCUS streams simulated by PRZM and TOXSWA.

    PubMed

    Adriaanse, Paulien I; Van Leerdam, Robert C; Boesten, Jos J T I

    2017-04-15

    Within the European Union the exposure of aquatic organisms to pesticides is assessed by simulations with the so-called FOCUS Surface Water Scenarios. Runoff plays an important role in these scenarios. As little is known about the effect of runoff size on the exposure, we investigated the effect of runoff size on the concentration in the runoff water and in streams simulated with the PRZM and TOXSWA models for two FOCUS runoff scenarios. For weakly sorbing pesticides (K F,oc <100Lkg -1 ) the pesticide concentration in the runoff water decreased exponentially with increasing daily runoff size. The runoff size hardly affected the pesticide concentration in the runoff water of strongly sorbing pesticides (K F,oc ≥1000Lkg -1 ). For weakly sorbing pesticides the concentration in the FOCUS stream reached a maximum at runoff sizes of about 0.3 to 1mm. The concentration increased rapidly when the runoff size increased from 0 to 0.1mm and gradually decreased when runoff exceeded 1mm. For strongly sorbing pesticides the occurrence of the maximum concentration in the stream is clearly less pronounced and lies approximately between 1 and 20mm runoff. So, this work indicates that preventing small runoff events (e.g. by vegetated buffer strips) reduces exposure concentrations strongly for weakly sorbing pesticides. A simple metamodel was developed for the ratio between the concentrations in the stream and in the runoff water. This model predicted the ratios simulated by TOXSWA very well and it demonstrated that (in addition to runoff size and concentration in runoff) the size of the pesticide-free base flow and pesticide treatment ratio of the catchment determine the stream concentration to a large extent. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Polymers at interfaces and in colloidal dispersions.

    PubMed

    Fleer, Gerard J

    2010-09-15

    This review is an extended version of the Overbeek lecture 2009, given at the occasion of the 23rd Conference of ECIS (European Colloid and Interface Society) in Antalya, where I received the fifth Overbeek Gold Medal awarded by ECIS. I first summarize the basics of numerical SF-SCF: the Scheutjens-Fleer version of Self-Consistent-Field theory for inhomogeneous systems, including polymer adsorption and depletion. The conformational statistics are taken from the (non-SCF) DiMarzio-Rubin lattice model for homopolymer adsorption, which enumerates the conformational details exactly by a discrete propagator for the endpoint distribution but does not account for polymer-solvent interaction and for the volume-filling constraint. SF-SCF corrects for this by adjusting the field such that it becomes self-consistent. The model can be generalized to more complex systems: polydispersity, brushes, random and block copolymers, polyelectrolytes, branching, surfactants, micelles, membranes, vesicles, wetting, etc. On a mean-field level the results are exact; the disadvantage is that only numerical data are obtained. Extensions to excluded-volume polymers are in progress. Analytical approximations for simple systems are based upon solving the Edwards diffusion equation. This equation is the continuum variant of the lattice propagator, but ignores the finite segment size (analogous to the Poisson-Boltzmann equation without a Stern layer). By using the discrete propagator for segments next to the surface as the boundary condition in the continuum model, the finite segment size can be introduced into the continuum description, like the ion size in the Stern-Poisson-Boltzmann model. In most cases a ground-state approximation is needed to find analytical solutions. In this way realistic analytical approximations for simple cases can be found, including depletion effects that occur in mixtures of colloids plus non-adsorbing polymers. In the final part of this review I discuss a generalization of the free-volume theory (FVT) for the phase behavior of colloids and non-adsorbing polymer. In FVT the polymer is considered to be ideal: the osmotic pressure Pi follows the Van 't Hoff law, the depletion thickness delta equals the radius of gyration. This restricts the validity of FVT to the so-called colloid limit (polymer much smaller than the colloids). We have been able to find simple analytical approximations for Pi and delta which account for non-ideality and include established results for the semidilute limit. So we could generalize FVT to GFVT, and can now also describe the so-called protein limit (polymer larger than the 'protein-like' colloids), where the binodal polymer concentrations scale in a simple way with the polymer/colloid size ratio. For an intermediate case (polymer size approximately colloid size) we could give a quantitative description of careful experimental data. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Effects of macromolecular crowding on biochemical reaction equilibria: a molecular thermodynamic perspective.

    PubMed

    Hu, Zhongqiao; Jiang, Jianwen; Rajagopalan, Raj

    2007-09-01

    A molecular thermodynamic model is developed to investigate the effects of macromolecular crowding on biochemical reactions. Three types of reactions, representing protein folding/conformational isomerization, coagulation/coalescence, and polymerization/association, are considered. The reactants, products, and crowders are modeled as coarse-grained spherical particles or as polymer chains, interacting through hard-sphere interactions with or without nonbonded square-well interactions, and the effects of crowder size and chain length as well as product size are examined. The results predicted by this model are consistent with experimentally observed crowding effects based on preferential binding or preferential exclusion of the crowders. Although simple hard-core excluded-volume arguments do in general predict the qualitative aspects of the crowding effects, the results show that other intermolecular interactions can substantially alter the extent of enhancement or reduction of the equilibrium and can even change the direction of the shift. An advantage of the approach presented here is that competing reactions can be incorporated within the model.

  8. Acoustic-tactile rendering of visual information

    NASA Astrophysics Data System (ADS)

    Silva, Pubudu Madhawa; Pappas, Thrasyvoulos N.; Atkins, Joshua; West, James E.; Hartmann, William M.

    2012-03-01

    In previous work, we have proposed a dynamic, interactive system for conveying visual information via hearing and touch. The system is implemented with a touch screen that allows the user to interrogate a two-dimensional (2-D) object layout by active finger scanning while listening to spatialized auditory feedback. Sound is used as the primary source of information for object localization and identification, while touch is used both for pointing and for kinesthetic feedback. Our previous work considered shape and size perception of simple objects via hearing and touch. The focus of this paper is on the perception of a 2-D layout of simple objects with identical size and shape. We consider the selection and rendition of sounds for object identification and localization. We rely on the head-related transfer function for rendering sound directionality, and consider variations of sound intensity and tempo as two alternative approaches for rendering proximity. Subjective experiments with visually-blocked subjects are used to evaluate the effectiveness of the proposed approaches. Our results indicate that intensity outperforms tempo as a proximity cue, and that the overall system for conveying a 2-D layout is quite promising.

  9. Simple Repeat-Primed PCR Analysis of the Myotonic Dystrophy Type 1 Gene in a Clinical Diagnostics Environment

    PubMed Central

    Dryland, Philippa A.; Doherty, Elaine; Love, Jennifer M.; Love, Donald R.

    2013-01-01

    Myotonic dystrophy type 1 is an autosomal dominant neuromuscular disorder that is caused by the expansion of a CTG trinucleotide repeat in the DMPK gene. The confirmation of a clinical diagnosis of DM-1 usually involves PCR amplification of the CTG repeat-containing region and subsequent sizing of the amplification products in order to deduce the number of CTG repeats. In the case of repeat hyperexpansions, Southern blotting is also used; however, the latter has largely been superseded by triplet repeat-primed PCR (TP-PCR), which does not yield a CTG repeat number but nevertheless provides a means of stratifying patients regarding their disease severity. We report here a combination of forward and reverse TP-PCR primers that allows for the simple and effective scoring of both the size of smaller alleles and the presence or absence of expanded repeat sequences. In addition, the CTG repeat-containing TP-PCR forward primer can target both the DM-1 and Huntington disease genes, thereby streamlining the work flow for confirmation of clinical diagnoses in a diagnostic laboratory. PMID:26317000

  10. Synthesis of silica aerogel monoliths with controlled specific surface areas and pore sizes

    NASA Astrophysics Data System (ADS)

    Gao, Bingying; Lu, Shaoxiang; Kalulu, Mulenga; Oderinde, Olayinka; Ren, Lili

    2017-07-01

    To replace traditional preparation methods of silica aerogels, a small-molecule 1,2-epoxypropane (PO) has been introduced into the preparation process instead of using ammonia as the cross-linking agent, thus generating a lightweight, high porosity, and large surface area silica aerogel monolithic. We put forward a simple solution route for the chemical synthesis of silica aerogels, which was characterized by scanning electron microscopy (SEM), TEM, XRD, FTIR, thermogravimetric analysis (TGA) and the Brunauer-Emmett-Teller (BET) method In this paper, the effect of the amount of PO on the microstructure of silica aerogels is discussed. The BET surface areas and pore sizes of the resulting silica aerogels can be freely adjusted by changing the amount of PO, which will be helpful in promoting the development of silica aerogels to fabricate other porous materials with similar requirements. We also adopted a new organic solvent sublimation drying (OSSD) method to replace traditional expensive and dangerous drying methods such as critical point drying and freeze drying. This simple approach is easy to operate and has good repeatability, which will further facilitate actual applications of silica aerogels.

  11. Novel concept for the preparation of gas selective nanocomposite membranes

    NASA Astrophysics Data System (ADS)

    Drobek, M.; Ayral, A.; Motuzas, J.; Charmette, C.; Loubat, C.; Louradour, E.; Dhaler, D.; Julbe, A.

    2015-07-01

    In this work we report on a novel concept for the preparation of gas selective composite membranes by a simple and robust synthesis protocol involving a controlled in-situpolycondensation of functional alkoxysilanes within the pores of a mesoporous ceramic matrix. This innovative approach targets the manufacture of thin nanocomposite membranes, allowing good compromise between permeability, selectivity and thermomechanical strength. Compared to simple infiltration, the synthesis protocol allows a controlled formation of gas separation membranes from size-adjusted functional alkoxysilanes by a chemical reaction within the mesopores of a ceramic support, without any formation of a thick and continuous layer on the support top-surface. Membrane permeability can thus be effectively controlled by the thickness and pore size of the mesoporous layer, and by the oligomers chain length. The as-prepared composite membranes are expected to possess a good mechanical and thermomechanical resistance and exhibit a thermally activated transport of He and H2 up to 150 °C, resulting in enhanced separation factors for specific gas mixtures e.g. FH2/CO ˜ 10; FH2/CO2 ˜ 3; FH2/CH4 ˜ 62.

  12. Simple glucose reduction route for one-step synthesis of copper nanofluids

    NASA Astrophysics Data System (ADS)

    Shenoy, U. Sandhya; Shetty, A. Nityananda

    2014-01-01

    One-step method has been employed in the synthesis of copper nanofluids. Copper nitrate is reduced by glucose in the presence of sodium lauryl sulfate. The synthesized particles are characterized by X-ray diffraction technique for the phase structure; electron diffraction X-ray analysis for chemical composition; transmission electron microscopy and field emission scanning electron microscopy for the morphology; Fourier-transform infrared spectroscopy and ultraviolet-visible spectroscopy for the analysis of ingredients of the solution. Thermal conductivity, sedimentation and rheological measurements have also been carried out. It is found that the reaction parameters have considerable effect on the size of the particle formed and rate of the reaction. The techniques confirm that the synthesized particles are copper. The reported method showed promising increase in the thermal conductivity of the base fluid and is found to be reliable, simple and cost-effective method for preparing heat transfer fluids with higher stability.

  13. Novel and simple alternative to create nanofibrillar matrices of interest for tissue engineering.

    PubMed

    Sohier, Jérôme; Corre, Pierre; Perret, Christophe; Pilet, Paul; Weiss, Pierre

    2014-04-01

    Synthetic analogs to natural extracellular matrix (ECM) at the nanometer level are of great potential for regenerative medicine. This study introduces a novel and simple method to produce polymer nanofibers and evaluates the properties of the resulting structures, as well as their suitability to support cells and their potential interest for bone and vascular applications. The devised approach diffracts a polymer solution by means of a spraying apparatus and of an airstream as sole driving force. The resulting nanofibers were produced in an effective fashion and a factorial design allowed isolating the processing parameters that control nanofiber size and distribution. The nanofibrillar matrices revealed to be of very high porosity and were effectively colonized by human bone marrow mesenchymal cells, while allowing ECM production and osteoblastic differentiation. In vivo, the matrices provided support for new bone formation and provided a good patency as small diameter vessel grafts.

  14. Geometry and Reynolds-Number Scaling on an Iced Business-Jet Wing

    NASA Technical Reports Server (NTRS)

    Lee, Sam; Ratvasky, Thomas P.; Thacker, Michael; Barnhart, Billy P.

    2005-01-01

    A study was conducted to develop a method to scale the effect of ice accretion on a full-scale business jet wing model to a 1/12-scale model at greatly reduced Reynolds number. Full-scale, 5/12-scale, and 1/12-scale models of identical airfoil section were used in this study. Three types of ice accretion were studied: 22.5-minute ice protection system failure shape, 2-minute initial ice roughness, and a runback shape that forms downstream of a thermal anti-ice system. The results showed that the 22.5-minute failure shape could be scaled from full-scale to 1/12-scale through simple geometric scaling. The 2-minute roughness shape could be scaled by choosing an appropriate grit size. The runback ice shape exhibited greater Reynolds number effects and could not be scaled by simple geometric scaling of the ice shape.

  15. Introduction, comparison, and validation of Meta‐Essentials: A free and simple tool for meta‐analysis

    PubMed Central

    van Rhee, Henk; Hak, Tony

    2017-01-01

    We present a new tool for meta‐analysis, Meta‐Essentials, which is free of charge and easy to use. In this paper, we introduce the tool and compare its features to other tools for meta‐analysis. We also provide detailed information on the validation of the tool. Although free of charge and simple, Meta‐Essentials automatically calculates effect sizes from a wide range of statistics and can be used for a wide range of meta‐analysis applications, including subgroup analysis, moderator analysis, and publication bias analyses. The confidence interval of the overall effect is automatically based on the Knapp‐Hartung adjustment of the DerSimonian‐Laird estimator. However, more advanced meta‐analysis methods such as meta‐analytical structural equation modelling and meta‐regression with multiple covariates are not available. In summary, Meta‐Essentials may prove a valuable resource for meta‐analysts, including researchers, teachers, and students. PMID:28801932

  16. Nipple Reduction With the Chullo-Hat Technique.

    PubMed

    Sim, Hyung-Bo; Sun, Sang-Hoon

    2015-08-01

    Although various techniques of nipple reduction have been described in the literature, many are difficult to design or have unreliable outcomes. For men, as well as women who do not plan to breastfeed, it is not necessary to apply a complicated technique that protects the lactiferous ducts. The authors introduce a simple technique for nipple reduction that has achieved consistent, reproducible results. The desired nipple length is marked, and a chullo-hat excision pattern is drawn. After infiltration of a local anesthetic solution around the nipple, excision of the excess nipple tissue is performed, comprising 2 triangular flaps. The remaining 2 pillars are approximated with 5-0 Nylon simple interrupted sutures. However, the wound is not completely closed in the central area of the nipple, which promotes the drainage of discharge. Fifty-three women (106 nipples) underwent this surgery between December 2009 and December 2013. The follow-up period ranged from 6 months to 2 years (mean, 10 months). No major complications occurred, and the scars were very inconspicuous. The postoperative appearance of nipples was consistently similar in size and shape. This simple technique was safe and effective in nipples of different sizes. The results were reliable and consistent with expectations. Although this study included only women, the authors believe that outcomes would be successful in men as well. 4 Therapeutic. © 2015 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.

  17. 77 FR 72766 - Small Business Size Standards: Support Activities for Mining

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-06

    ... its entirety for parties who have an interest in SBA's overall approach to establishing, evaluating....gov , Docket ID: SBA-2009- 0008. SBA continues to welcome comments on its methodology from interested.... Average firm size. SBA computes two measures of average firm size: simple average and weighted average...

  18. On Family Size and Intelligence.

    ERIC Educational Resources Information Center

    Armor, David J.

    2001-01-01

    Critiques research by Rodgers, et al. (June 2000) on the impact of family size on intelligence, explaining that it applied very simple analytic techniques to a very complex question, leading to unwarranted conclusions about family size and intelligence. Loss of cases, omission of an important ability test, and failure to apply multivariate…

  19. Design and evaluation of mPEG-PLA micelles functionalized with drug-interactive domains as improved drug carriers for docetaxel delivery.

    PubMed

    Qi, Dingqing; Gong, Feirong; Teng, Xin; Ma, Mingming; Wen, Huijing; Yuan, Weihao; Cheng, Yi; Lu, Chong

    2017-10-01

    Polymeric micelles are very attractive drug delivery systems for hydrophobic agents, owing to their readily tailorable chemical structure and ease for scale-up preparation. However, the intrinsic poor stability of drug-loaded micelles presents one of the major challenges for most micellar systems in the translation to clinical applications. In this study, a simple, well-defined, and easy-to-scale up 9-Fluorenylmethoxycarbonyl (Fmoc) and tert-butoxycarbonyl (Boc) containing lysine dendronized mPEG-PLA (mPEG-PLA-Lys(FB) 2 ) micellar formulation was designed and prepared for docetaxel (DTX) delivery, in an effort to improve the stability of the micelles, and its physicochemical properties, pharmacokinetics, and anti-tumor efficacy against SKOV-3 ovarian cancer were evaluated. MPEG-PLA-Lys(FB) 2 was synthesized via a three-step synthetic route, and it actively interacted with DTX in aqueous media to form stable micelles with small particle sizes (~17-19 nm) and narrow size distribution (PI < 0.1), which can be lyophilized and easily reconstituted in saline without significant change in particle size distribution. In vitro drug-release study demonstrated that mPEG-PLA-Lys(FB) 2 micelles achieved delayed and sustained release manner of DTX in comparison with mPEG-PLA micelles. Further in vivo xenograft tumor model in nude mice DTX/mPEG-PLA-Lys(FB) 2 micelles demonstrated significantly higher inhibitory effect on tumor growth than the marketed formulation Taxotere. Thus, our system may hold promise as a simple and effective delivery system for DTX with a potential for translation into clinical study.

  20. Photoionization cross section and binding energy of single dopant in hollow cylindrical core/shell quantum dot

    NASA Astrophysics Data System (ADS)

    Feddi, E.; El-Yadri, M.; Dujardin, F.; Restrepo, R. L.; Duque, C. A.

    2017-02-01

    In this study, we have investigated the confined donor impurity in a hollow cylindrical-shell quantum dot. The charges are assumed to be completely confined to the interior of the shell with rigid walls. Within the framework of the effective-mass approximation and by using a simple variational approach, we have computed the donor binding energy as a function of the shell sizes in order to study the behavior of the electron-impurity attraction for a very small thickness. Our results show that the binding energy of a donor impurity placed at the center of cylindrical core/shell dots depends strongly on the shell size. The binding energy increases when the shell-wideness becomes smaller and shows the same behavior as in a simple cylindrical quantum dot. A special case has been studied, which corresponds to the ratio between the inner and outer radii near to one (a/b → 1) for which our model gives a non-significant behavior of the impurity binding energy. This fact implies the existence of a critical value (a/b) for which the binding energy of the donor impurity tends to the limit value of 4 effective Rydbergs as in a 2D quantum well. We also analyse the photoionization cross section considering only the in-plane incident radiation polarization. We determine its behavior as a function of photon energy, shell size, and donor position. The measurement of photoionization in such systems would be of great interest to understand the optical properties of carriers in quantum dots.

  1. Simple and cost-effective fabrication of microvalve arrays in PDMS using laser cut molds with application to C. elegans manipulation in microfluidics

    NASA Astrophysics Data System (ADS)

    Samuel, R.; Thacker, C. M.; Maricq, A. V.; Gale, B. K.

    2014-09-01

    We present a new fabrication protocol for fabricating pneumatically controlled microvalve arrays (consisting of 100 s of microvalves) in PDMS substrates. The protocol utilizes rapid and cost-effective fabrication of molds using laser cutting of adhesive vinyl tapes and replica molding of PDMS. Hence the protocol is fast, simple and avoids cleanroom use. The results show that effective doormat-style microvalves can be easily fabricated in arrays by manipulating the stiffness of the actuating membrane through varying the valve-chamber area/shape. Three frequently used valve-chamber shapes (circle, square and capsule) were tested and all showed advantages in different situations. Circular valve chambers were best for small valves, square valves were best for medium-sized valves, and the capsule valves were best for larger valves. An application of this protocol has been demonstrated in the fabrication of a microfluidic 32-well plate for high-throughput manipulation of C. elegans for biomedical research.

  2. Effects of Subscale Size and Shape on Global Energy Dissipation in a Multiscale Model of a Fiber-Reinforced Composite Exhibiting Post-Peak Strain Softening Using Abaqus and FEAMAC

    NASA Technical Reports Server (NTRS)

    Pineda, Evan, J.; Bednarcyk, Brett, A.; Arnold, Steven, M.

    2012-01-01

    A mesh objective crack band model is implemented in the generalized method of cells (GMC) micromechanics model to predict failure of a composite repeating unit cell (RUC). The micromechanics calculations are achieved using the MAC/GMC core engine within the ImMAC suite of micromechanics codes, developed at the NASA Glenn Research Center. The microscale RUC is linked to a macroscale Abaqus/Standard finite element model using the FEAMAC multiscale framework (included in the ImMAC suite). The effects of the relationship between the characteristic length of the finite element and the size of the microscale RUC on the total energy dissipation of the multiscale model are investigated. A simple 2-D composite square subjected to uniaxial tension is used to demonstrate the effects of scaling the dimensions of the RUC such that the length of the sides of the RUC are equal to the characteristic length of the finite element. These results are compared to simulations where the size of the RUC is fixed, independent of the element size. Simulations are carried out for a variety of mesh densities and element shapes, including square and triangular. Results indicate that a consistent size and shape must be used to yield preserve energy dissipation across the scales.

  3. On the repeated measures designs and sample sizes for randomized controlled trials.

    PubMed

    Tango, Toshiro

    2016-04-01

    For the analysis of longitudinal or repeated measures data, generalized linear mixed-effects models provide a flexible and powerful tool to deal with heterogeneity among subject response profiles. However, the typical statistical design adopted in usual randomized controlled trials is an analysis of covariance type analysis using a pre-defined pair of "pre-post" data, in which pre-(baseline) data are used as a covariate for adjustment together with other covariates. Then, the major design issue is to calculate the sample size or the number of subjects allocated to each treatment group. In this paper, we propose a new repeated measures design and sample size calculations combined with generalized linear mixed-effects models that depend not only on the number of subjects but on the number of repeated measures before and after randomization per subject used for the analysis. The main advantages of the proposed design combined with the generalized linear mixed-effects models are (1) it can easily handle missing data by applying the likelihood-based ignorable analyses under the missing at random assumption and (2) it may lead to a reduction in sample size, compared with the simple pre-post design. The proposed designs and the sample size calculations are illustrated with real data arising from randomized controlled trials. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Self-organized criticality in sandpiles - Nature of the critical phenomenon. [dynamic models in phase transition

    NASA Technical Reports Server (NTRS)

    Carlson, J. M.; Chayes, J. T.; Swindle, G. H.; Grannan, E. R.

    1990-01-01

    The scaling behavior of sandpile models is investigated analytically. First, it is shown that sandpile models contain a set of domain walls, referred to as troughs, which bound regions that can experience avalanches. It is further shown that the dynamics of the troughs is governed by a simple set of rules involving birth, death, and coalescence events. A simple trough model is then introduced, and it is proved that the model has a phase transition with the density of the troughs as an order parameter and that, in the thermodynamic limit, the trough density goes to zero at the transition point. Finally, it is shown that the observed scaling behavior is a consequence of finite-size effects.

  5. Phytofabrication and characterization of monodisperse copper oxide nanoparticles using Albizia lebbeck leaf extract

    NASA Astrophysics Data System (ADS)

    Jayakumarai, G.; Gokulpriya, C.; Sudhapriya, R.; Sharmila, G.; Muthukumaran, C.

    2015-12-01

    Simple effective and rapid approach for the green synthesis of copper oxide nanoparticles (CONPs) using of Albizia lebbeck leaf extract was investigated in this study. Various instrumental techniques were adopted to characterize the synthesized CONPs, viz. UV-Vis spectroscopy, SEM, TEM, EDS and XRD. The synthesized CONPs were found to be spherical in shape and size less than 100 nm. It could be concluded that A. lebbeck leaf extract can be used as a cheap and effective reducing agent for CONPs production in large scale.

  6. Effect of wet grinding on structural properties of ball clay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purohit, A., E-mail: anuradha.purohit34@gmail.com; Chander, S.; Dhaka, M. S.

    2015-05-15

    In this paper, the effect of wet grinding on structural properties of ball clay is undertaken. The wet grinding treatment was performed employing ball and vibro mills for different time spells of 2, 4, 8 and 16 hours. The structural properties were carried out using X-ray diffraction (XRD). The structure of ground samples is found to be simple cubic. The crystallographic parameters are calculated and slight change in lattice constant, inter planner spacing and particle size is observed with grinding treatment. The results are in agreement with the available literature.

  7. An opportunity cost approach to sample size calculation in cost-effectiveness analysis.

    PubMed

    Gafni, A; Walter, S D; Birch, S; Sendi, P

    2008-01-01

    The inclusion of economic evaluations as part of clinical trials has led to concerns about the adequacy of trial sample size to support such analysis. The analytical tool of cost-effectiveness analysis is the incremental cost-effectiveness ratio (ICER), which is compared with a threshold value (lambda) as a method to determine the efficiency of a health-care intervention. Accordingly, many of the methods suggested to calculating the sample size requirements for the economic component of clinical trials are based on the properties of the ICER. However, use of the ICER and a threshold value as a basis for determining efficiency has been shown to be inconsistent with the economic concept of opportunity cost. As a result, the validity of the ICER-based approaches to sample size calculations can be challenged. Alternative methods for determining improvements in efficiency have been presented in the literature that does not depend upon ICER values. In this paper, we develop an opportunity cost approach to calculating sample size for economic evaluations alongside clinical trials, and illustrate the approach using a numerical example. We compare the sample size requirement of the opportunity cost method with the ICER threshold method. In general, either method may yield the larger required sample size. However, the opportunity cost approach, although simple to use, has additional data requirements. We believe that the additional data requirements represent a small price to pay for being able to perform an analysis consistent with both concept of opportunity cost and the problem faced by decision makers. Copyright (c) 2007 John Wiley & Sons, Ltd.

  8. Direct Synthesis of Medium-Bridged Twisted Amides via a Transannular Cyclization Strategy

    PubMed Central

    Szostak, Michal; Aubé, Jeffrey

    2009-01-01

    The sequential RCM to construct a challenging medium-sized ring followed by a transannular cyclization across a medium-sized ring delivers previously unattainable twisted amides from simple acyclic precursors. PMID:19708701

  9. Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Hachani, Roxanne; Lowdell, Mark; Birchall, Martin; Hervault, Aziliz; Mertz, Damien; Begin-Colin, Sylvie; Thanh, Nguy&Ecirtil; N. Thi&Cmb. B. Dot; Kim

    2016-02-01

    Iron oxide nanoparticles (IONPs) of low polydispersity were obtained through a simple polyol synthesis in high pressure and high temperature conditions. The control of the size and morphology of the nanoparticles was studied by varying the solvent used, the amount of iron precursor and the reaction time. Compared with conventional synthesis methods such as thermal decomposition or co-precipitation, this process yields nanoparticles with a narrow particle size distribution in a simple, reproducible and cost effective manner without the need for an inert atmosphere. For example, IONPs with a diameter of ca. 8 nm could be made in a reproducible manner and with good crystallinity as evidenced by X-ray diffraction analysis and high saturation magnetization value (84.5 emu g-1). The surface of the IONPs could be tailored post synthesis with two different ligands which provided functionality and stability in water and phosphate buffer saline (PBS). Their potential as a magnetic resonance imaging (MRI) contrast agent was confirmed as they exhibited high r1 and r2 relaxivities of 7.95 mM-1 s-1 and 185.58 mM-1 s-1 respectively at 1.4 T. Biocompatibility and viability of IONPs in primary human mesenchymal stem cells (hMSCs) was studied and confirmed.Iron oxide nanoparticles (IONPs) of low polydispersity were obtained through a simple polyol synthesis in high pressure and high temperature conditions. The control of the size and morphology of the nanoparticles was studied by varying the solvent used, the amount of iron precursor and the reaction time. Compared with conventional synthesis methods such as thermal decomposition or co-precipitation, this process yields nanoparticles with a narrow particle size distribution in a simple, reproducible and cost effective manner without the need for an inert atmosphere. For example, IONPs with a diameter of ca. 8 nm could be made in a reproducible manner and with good crystallinity as evidenced by X-ray diffraction analysis and high saturation magnetization value (84.5 emu g-1). The surface of the IONPs could be tailored post synthesis with two different ligands which provided functionality and stability in water and phosphate buffer saline (PBS). Their potential as a magnetic resonance imaging (MRI) contrast agent was confirmed as they exhibited high r1 and r2 relaxivities of 7.95 mM-1 s-1 and 185.58 mM-1 s-1 respectively at 1.4 T. Biocompatibility and viability of IONPs in primary human mesenchymal stem cells (hMSCs) was studied and confirmed. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03867g

  10. Fabrication of PDMS-Based Microfluidic Devices: Application for Synthesis of Magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Thu, Vu Thi; Mai, An Ngoc; Le The Tam; Van Trung, Hoang; Thu, Phung Thi; Tien, Bui Quang; Thuat, Nguyen Tran; Lam, Tran Dai

    2016-05-01

    In this work, we have developed a convenient approach to synthesize magnetic nanoparticles with relatively high magnetization and controllable sizes. This was realized by combining the traditional co-precipitation method and microfluidic techniques inside microfluidic devices. The device was first designed, and then fabricated using simplified soft-lithography techniques. The device was utilized to synthesize magnetite nanoparticles. The synthesized nanomaterials were thoroughly characterized using field emission scanning electron microscopy and a vibrating sample magnetometer. The results demonstrated that the as-prepared device can be utilized as a simple and effective tool to synthesize magnetic nanoparticles with the sizes less than 10 nm and magnetization more than 50 emu/g. The development of these devices opens new strategies to synthesize nanomaterials with more precise dimensions at narrow size-distribution and with controllable behaviors.

  11. A surfactant free preparation of ultradispersed surface-clean Pt catalyst with highly stable electrocatalytic performance

    NASA Astrophysics Data System (ADS)

    Tao, Lu; Zhao, Yueping; Zhao, Yufeng; Huang, Shifei; Yang, Yunxia; Tong, Qi; Gao, Faming

    2018-02-01

    High efficiency platinum-based catalyst demands the ultrafine size and well dispersion of Pt nanoparticles (NPs), with clean surface and strong interactions between the supports. In this work, we demonstrate a simple strategy for the preparation of ultra-dispersed surface-clean Pt catalyst with high stability, in which the Pt nanoparticles (NPs) with 1.8 ± 0.6 nm in size are anchored tightly on a 3D hierarchical porous graphitized carbon (3D-HPG) through galvanic replacement reaction. The as-obtained catalyst can undergo 2000 voltage cycles with negligible activity decay and no apparent structure and size changes for MOR during the durability test, and its mass activity for ORR only reduce 18.3% after 5000 cycles. The excellent performance is attributed to strong anchoring effect between carbon support and Pt nanoparticles.

  12. Preparation of Pickering emulsions stabilized by metal organic frameworks using oscillatory woven metal micro-screen.

    PubMed

    Sabouni, R; Gomaa, H G

    2015-06-14

    Uniform Pickering emulsions stabilized by metal organic frameworks (MOFs) MIL-101 and ZIF-8 nanoparticles (NPs) were successfully prepared using an oscillatory woven metal microscreen (WMMS) emulsification system in the presence and the absence of surfactants. The effects of operating and system parameters including the frequency and amplitude of oscillation, the type of nano-particle and/or surfactant on the droplet size and coefficient of variance of the prepared emulsions are investigated. The results showed that both the hydrodynamics of the system and the hydrophobic/hydrophilic nature of the NP influenced the interfacial properties of the oil-water interface during droplet formation and after detachment, which in turn affected the final droplet size and distribution. Comparison between the measured and predicted droplet size using a simple torque balance (TB) model is discussed.

  13. Novel micronisation β-carotene using rapid expansion supercritical solution with co-solvent

    NASA Astrophysics Data System (ADS)

    Kien, Le Anh

    2017-09-01

    Rapid expansion of supercritical solution (RESS) is the most common approach of pharmaceutical pacticle forming methods using supercritical fluids. The RESS method is a technology producing a small solid product with a very narrow particle size distribution, organic solvent-free particles. This process is also simple and easy to control the operating parameters in comparision with other ways based on supercritical techniques. In this study, β-carotene, a strongly colored red-orange pigment abundant in plants and fruits, has been forming by RESS. In addition, the size and morphology effect of four different RESS parameters including co-solvent, extraction temperature, and extraction pressure and expansion nozzle temperature has surveyed. The particle size distribution has been determined by using laser diffraction experiment. SEM has conducted to analyze the surface structure, DSC and FTIR for thermal and chemical structure analysis.

  14. Simple and cost-effective method of highly conductive and elastic carbon nanotube/polydimethylsiloxane composite for wearable electronics.

    PubMed

    Kim, Jeong Hun; Hwang, Ji-Young; Hwang, Ha Ryeon; Kim, Han Seop; Lee, Joong Hoon; Seo, Jae-Won; Shin, Ueon Sang; Lee, Sang-Hoon

    2018-01-22

    The development of various flexible and stretchable materials has attracted interest for promising applications in biomedical engineering and electronics industries. This interest in wearable electronics, stretchable circuits, and flexible displays has created a demand for stable, easily manufactured, and cheap materials. However, the construction of flexible and elastic electronics, on which commercial electronic components can be mounted through simple and cost-effective processing, remains challenging. We have developed a nanocomposite of carbon nanotubes (CNTs) and polydimethylsiloxane (PDMS) elastomer. To achieve uniform distributions of CNTs within the polymer, an optimized dispersion process was developed using isopropyl alcohol (IPA) and methyl-terminated PDMS in combination with ultrasonication. After vaporizing the IPA, various shapes and sizes can be easily created with the nanocomposite, depending on the mold. The material provides high flexibility, elasticity, and electrical conductivity without requiring a sandwich structure. It is also biocompatible and mechanically stable, as demonstrated by cytotoxicity assays and cyclic strain tests (over 10,000 times). We demonstrate the potential for the healthcare field through strain sensor, flexible electric circuits, and biopotential measurements such as EEG, ECG, and EMG. This simple and cost-effective fabrication method for CNT/PDMS composites provides a promising process and material for various applications of wearable electronics.

  15. Cubic Unit Cell Construction Kit.

    ERIC Educational Resources Information Center

    Mattson, Bruce

    2000-01-01

    Presents instructions for building a simple interactive unit-cell construction kit that allows for the construction of simple, body-centered, and face-centered cubic lattices. The lit is built from inexpensive and readily available materials and can be built in any number of sizes. (WRM)

  16. Flight Investigation of the Effects of Pressure-Belt Tubing Size on Measured Pressure Distributions

    NASA Technical Reports Server (NTRS)

    Rivers, Natale A.; vanDam, Cornielious P.; Brown, Phillip W.; Rivers, Robert A.

    2001-01-01

    The pressure-belt technique is commonly used to measure pressure distributions on lifting and nonlifting surfaces where flush, through-the-surface measurements are not possible. The belts, made from strips of small-bore, flexible plastic tubing, are surface-mounted by a simple, nondestructive method. Additionally, the belts require minimal installation time, thus making them much less costly to install than flush-mounted pressure ports. Although pressure belts have been used in flight research since the early 1950s, only recently have manufacturers begun to produce thinner, more flexible tubing, and thin, strong adhesive tapes that minimize the installation-induced errors on the measurement of surface pressures. The objective of this investigation was to determine the effects of pressure-belt tubing size on the measurement of pressure distributions. For that purpose, two pressure belts were mounted on the right wing of a single-engine, propeller-driven research airplane. The outboard pressure belt served as a baseline for the measurement and the comparison of effects. Each tube had an outer diameter (OD) of 0.0625 in. The inboard belt was used to evaluate three different tube sizes: 0.0625-, 0.1250-, and 0.1875-in. OD. A computational investigation of tube size on pressure distribution also was conducted using the two-dimensional Multielement Streamtube Euler Solver (MSES) code.

  17. Computer simulation of vasectomy for wolf control

    USGS Publications Warehouse

    Haight, R.G.; Mech, L.D.

    1997-01-01

    Recovering gray wolf (Canis lupus) populations in the Lake Superior region of the United States are prompting state management agencies to consider strategies to control population growth. In addition to wolf removal, vasectomy has been proposed. To predict the population effects of different sterilization and removal strategies, we developed a simulation model of wolf dynamics using simple rules for demography and dispersal. Simulations suggested that the effects of vasectomy and removal in a disjunct population depend largely on the degree of annual immigration. With low immigration, periodic sterilization reduced pup production and resulted in lower rates of territory recolonization. Consequently, average pack size, number of packs, and population size were significantly less than those for an untreated population. Periodically removing a proportion of the population produced roughly the same trends as did sterilization; however, more than twice as many wolves had to be removed than sterilized. With high immigration, periodic sterilization reduced pup production but not territory recolonization and produced only moderate reductions in population size relative to an untreated population. Similar reductions in population size were obtained by periodically removing large numbers of wolves. Our analysis does not address the possible effects of vasectomy on larger wolf populations, but it suggests that the subject should be considered through modeling or field testing.

  18. Measuring bacterial cells size with AFM

    PubMed Central

    Osiro, Denise; Filho, Rubens Bernardes; Assis, Odilio Benedito Garrido; Jorge, Lúcio André de Castro; Colnago, Luiz Alberto

    2012-01-01

    Atomic Force Microscopy (AFM) can be used to obtain high-resolution topographical images of bacteria revealing surface details and cell integrity. During scanning however, the interactions between the AFM probe and the membrane results in distortion of the images. Such distortions or artifacts are the result of geometrical effects related to bacterial cell height, specimen curvature and the AFM probe geometry. The most common artifact in imaging is surface broadening, what can lead to errors in bacterial sizing. Several methods of correction have been proposed to compensate for these artifacts and in this study we describe a simple geometric model for the interaction between the tip (a pyramidal shaped AFM probe) and the bacterium (Escherichia coli JM-109 strain) to minimize the enlarging effect. Approaches to bacteria immobilization and examples of AFM images analysis are also described. PMID:24031837

  19. Proposal to upgrade the MIPP data acquisition system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, W.; Carey, D.; Johnstone, C.

    2005-03-01

    The MIPP TPC is the largest contributor to the MIPP event size by far. Its readout system and electronics were designed in the 1990's and limit it to a readout rate of 60 Hz in simple events and {approx} 20 Hz in complicated events. With the readout chips designed for the ALICE collaboration at the LHC, we propose a low cost effective scheme of upgrading the MIPP data acquisition speed to 3000 Hz.

  20. A Micro Aerosol Sensor for the Measurement of Airborne Ultrafine Particles.

    PubMed

    Zhang, Chao; Zhu, Rong; Yang, Wenming

    2016-03-18

    Particle number concentration and particle size are the two key parameters used to characterize exposure to airborne nanoparticles or ultrafine particles that have attracted the most attention. This paper proposes a simple micro aerosol sensor for detecting the number concentration and particle size of ultrafine particles with diameters from 50 to 253 nm based on electrical diffusion charging. The sensor is composed of a micro channel and a couple of planar electrodes printed on two circuit boards assembled in parallel, which thus integrate charging, precipitating and measurement elements into one chip, the overall size of which is 98 × 38 × 25 mm³. The experiment results demonstrate that the sensor is useful for measuring monodisperse aerosol particles with number concentrations from 300 to 2.5 × 10⁴ /cm³ and particle sizes from 50 to 253 nm. The aerosol sensor has a simple structure and small size, which is favorable for use in handheld devices.

  1. A Micro Aerosol Sensor for the Measurement of Airborne Ultrafine Particles

    PubMed Central

    Zhang, Chao; Zhu, Rong; Yang, Wenming

    2016-01-01

    Particle number concentration and particle size are the two key parameters used to characterize exposure to airborne nanoparticles or ultrafine particles that have attracted the most attention. This paper proposes a simple micro aerosol sensor for detecting the number concentration and particle size of ultrafine particles with diameters from 50 to 253 nm based on electrical diffusion charging. The sensor is composed of a micro channel and a couple of planar electrodes printed on two circuit boards assembled in parallel, which thus integrate charging, precipitating and measurement elements into one chip, the overall size of which is 98 × 38 × 25 mm3. The experiment results demonstrate that the sensor is useful for measuring monodisperse aerosol particles with number concentrations from 300 to 2.5 × 104 /cm3 and particle sizes from 50 to 253 nm. The aerosol sensor has a simple structure and small size, which is favorable for use in handheld devices. PMID:26999156

  2. Lattice parameter evolution in Pt nanoparticles during photo-thermally induced sintering and grain growth

    DOE PAGES

    Kelly, B.G.; Loether, A.; DiChiara, A. D.; ...

    2017-04-20

    An in-situ optical pump/x-ray probe technique has been used to study the size dependent lattice parameter of Pt nanoparticles subjected to picosecond duration optical laser pulses. The as-prepared Pt nanoparticles exhibited a contracted lattice parameter consistent with the response of an isolated elastic sphere to a compressive surface stress. During photo-thermally induced sintering and grain growth, however, the Pt lattice parameter did not evolve with the inverse particle size dependence predicted by simple surface stress models. Lastly, the observed behavior could be attributed to the combined effects of a compressive surface/interface stress and a tensile stress arising from intergranular material.

  3. Lattice parameter evolution in Pt nanoparticles during photo-thermally induced sintering and grain growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, B.G.; Loether, A.; DiChiara, A. D.

    An in-situ optical pump/x-ray probe technique has been used to study the size dependent lattice parameter of Pt nanoparticles subjected to picosecond duration optical laser pulses. The as-prepared Pt nanoparticles exhibited a contracted lattice parameter consistent with the response of an isolated elastic sphere to a compressive surface stress. During photo-thermally induced sintering and grain growth, however, the Pt lattice parameter did not evolve with the inverse particle size dependence predicted by simple surface stress models. Lastly, the observed behavior could be attributed to the combined effects of a compressive surface/interface stress and a tensile stress arising from intergranular material.

  4. A Total Quality-Control Plan with Right-Sized Statistical Quality-Control.

    PubMed

    Westgard, James O

    2017-03-01

    A new Clinical Laboratory Improvement Amendments option for risk-based quality-control (QC) plans became effective in January, 2016. Called an Individualized QC Plan, this option requires the laboratory to perform a risk assessment, develop a QC plan, and implement a QC program to monitor ongoing performance of the QC plan. Difficulties in performing a risk assessment may limit validity of an Individualized QC Plan. A better alternative is to develop a Total QC Plan including a right-sized statistical QC procedure to detect medically important errors. Westgard Sigma Rules provides a simple way to select the right control rules and the right number of control measurements. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. pH-responsive and enzymatically-responsive hydrogel microparticles for the oral delivery of therapeutic proteins: Effects of protein size, crosslinking density, and hydrogel degradation on protein delivery.

    PubMed

    Koetting, Michael Clinton; Guido, Joseph Frank; Gupta, Malvika; Zhang, Annie; Peppas, Nicholas A

    2016-01-10

    Two potential platform technologies for the oral delivery of protein therapeutics were synthesized and tested. pH-responsive poly(itaconic acid-co-N-vinyl-2-pyrrolidone) (P(IA-co-NVP)) hydrogel microparticles were tested in vitro with model proteins salmon calcitonin, urokinase, and rituximab to determine the effects of particle size, protein size, and crosslinking density on oral delivery capability. Particle size showed no significant effect on overall delivery potential but did improve percent release of encapsulated protein over the micro-scale particle size range studied. Protein size was shown to have a significant impact on the delivery capability of the P(IA-co-NVP) hydrogel. We show that when using P(IA-co-NVP) hydrogel microparticles with 3 mol% tetra(ethylene glycol) dimethacrylate crosslinker, a small polypeptide (salmon calcitonin) loads and releases up to 45 μg/mg hydrogel while the mid-sized protein urokinase and large monoclonal antibody rituximab load and release only 19 and 24 μg/mg hydrogel, respectively. We further demonstrate that crosslinking density offers a simple method for tuning hydrogel properties to variously sized proteins. Using 5 mol% TEGDMA crosslinker offers optimal performance for the small peptide, salmon calcitonin, whereas lower crosslinking density of 1 mol% offers optimal performance for the much larger protein rituximab. Finally, an enzymatically-degradable hydrogels of P(MAA-co-NVP) crosslinked with the peptide sequence MMRRRKK were synthesized and tested in simulated gastric and intestinal conditions. These hydrogels offer ideal loading and release behavior, showing no degradative release of encapsulated salmon calcitonin in gastric conditions while yielding rapid and complete release of encapsulated protein within 1h in intestinal conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Social Network Effects on Post-Traumatic Stress Disorder (PTSD) in Female North Korean Immigrants

    PubMed Central

    Lee, Byungkyu

    2011-01-01

    Objectives The goal of this paper is to examine the social network effects on post-traumatic sdress disorder (PTSD) in female North Korean immigrants who entered South Korea in 2007. Specifically, it attempts to verify if the density and composition of networks make a difference after controlling for the network size. Methods A multivariate logistic regression is used to probe the effects of social networks using the North Korean Immigrant Panel data set. Because the data set had only completed its initial survey when this paper was written, the analysis was cross-sectional. Results The size of the support networks was systematically related to PTSD. Female North Korean immigrants with more supporting ties were less likely to develop PTSD, even after controlling for other risk factors (odds-ratio for one more tie was 0.8). However, once we control for the size of the network, neither the density nor the composition of the networks remains statistically significant. Conclusions The prevalence of the PTSD among female North Korean immigrants is alarmingly high, and regardless of the characteristics of supporting network members, the size of the supporting networks provides substantial protection. This implies that a simple strategy that focuses on increasing the number of supporting ties will be effective among North Korean immigrants who entered South Korea in recent years. PMID:22020184

  7. Dynamical stability of the one-dimensional rigid Brownian rotator: the role of the rotator’s spatial size and shape

    NASA Astrophysics Data System (ADS)

    Jeknić-Dugić, Jasmina; Petrović, Igor; Arsenijević, Momir; Dugić, Miroljub

    2018-05-01

    We investigate dynamical stability of a single propeller-like shaped molecular cogwheel modelled as the fixed-axis rigid rotator. In the realistic situations, rotation of the finite-size cogwheel is subject to the environmentally-induced Brownian-motion effect that we describe by utilizing the quantum Caldeira-Leggett master equation. Assuming the initially narrow (classical-like) standard deviations for the angle and the angular momentum of the rotator, we investigate the dynamics of the first and second moments depending on the size, i.e. on the number of blades of both the free rotator as well as of the rotator in the external harmonic field. The larger the standard deviations, the less stable (i.e. less predictable) rotation. We detect the absence of the simple and straightforward rules for utilizing the rotator’s stability. Instead, a number of the size-related criteria appear whose combinations may provide the optimal rules for the rotator dynamical stability and possibly control. In the realistic situations, the quantum-mechanical corrections, albeit individually small, may effectively prove non-negligible, and also revealing subtlety of the transition from the quantum to the classical dynamics of the rotator. As to the latter, we detect a strong size-dependence of the transition to the classical dynamics beyond the quantum decoherence process.

  8. Effect of particle size on droplet infiltration into hydrophobic porous media as a model of water repellent soil.

    PubMed

    Hamlett, Christopher A E; Shirtcliffe, Neil J; McHale, Glen; Ahn, Sujung; Bryant, Robert; Doerr, Stefan H; Newton, Michael I

    2011-11-15

    The wettability of soil is of great importance for plants and soil biota, and in determining the risk for preferential flow, surface runoff, flooding,and soil erosion. The molarity of ethanol droplet (MED) test is widely used for quantifying the severity of water repellency in soils that show reduced wettability and is assumed to be independent of soil particle size. The minimum ethanol concentration at which droplet penetration occurs within a short time (≤ 10 s) provides an estimate of the initial advancing contact angle at which spontaneous wetting is expected. In this study, we test the assumption of particle size independence using a simple model of soil, represented by layers of small (~0.2-2 mm) diameter beads that predict the effect of changing bead radius in the top layer on capillary driven imbibition. Experimental results using a three-layer bead system show broad agreement with the model and demonstrate a dependence of the MED test on particle size. The results show that the critical initial advancing contact angle for penetration can be considerably less than 90° and varies with particle size, demonstrating that a key assumption currently used in the MED testing of soil is not necessarily valid.

  9. Sample size calculations for stepped wedge and cluster randomised trials: a unified approach

    PubMed Central

    Hemming, Karla; Taljaard, Monica

    2016-01-01

    Objectives To clarify and illustrate sample size calculations for the cross-sectional stepped wedge cluster randomized trial (SW-CRT) and to present a simple approach for comparing the efficiencies of competing designs within a unified framework. Study Design and Setting We summarize design effects for the SW-CRT, the parallel cluster randomized trial (CRT), and the parallel cluster randomized trial with before and after observations (CRT-BA), assuming cross-sectional samples are selected over time. We present new formulas that enable trialists to determine the required cluster size for a given number of clusters. We illustrate by example how to implement the presented design effects and give practical guidance on the design of stepped wedge studies. Results For a fixed total cluster size, the choice of study design that provides the greatest power depends on the intracluster correlation coefficient (ICC) and the cluster size. When the ICC is small, the CRT tends to be more efficient; when the ICC is large, the SW-CRT tends to be more efficient and can serve as an alternative design when the CRT is an infeasible design. Conclusion Our unified approach allows trialists to easily compare the efficiencies of three competing designs to inform the decision about the most efficient design in a given scenario. PMID:26344808

  10. Theory of hydrophobicity: transient cavities in molecular liquids

    NASA Technical Reports Server (NTRS)

    Pratt, L. R.; Pohorille, A.

    1992-01-01

    Observation of the size distribution of transient cavities in computer simulations of water, n-hexane, and n-dodecane under benchtop conditions shows that the sizes of cavities are more sharply defined in liquid water but the most-probable-size cavities are about the same size in each of these liquids. The calculated solvent atomic density in contact with these cavities shows that water applies more force per unit area of cavity surface than do the hydrocarbon liquids. This contact density, or "squeezing" force, reaches a maximum near cavity diameters of 2.4 angstroms. The results for liquid water are compared to the predictions of simple theories and, in addition, to results for a reference simple liquid. The numerical data for water at a range of temperatures are analyzed to extract a surface free energy contribution to the work of formation of atomic-size cavities. Comparison with the liquid-vapor interfacial tensions of the model liquids studied here indicates that the surface free energies extracted for atomic-size cavities cannot be accurately identified with the macroscopic surface tensions of the systems.

  11. Theory of hydrophobicity: Transient cavities in molecular liquids

    PubMed Central

    Pratt, Lawrence R.; Pohorille, Andrew

    1992-01-01

    Observation of the size distribution of transient cavities in computer simulations of water, n-hexane, and n-dodecane under benchtop conditions shows that the sizes of cavities are more sharply defined in liquid water but the most-probable-size cavities are about the same size in each of these liquids. The calculated solvent atomic density in contact with these cavities shows that water applies more force per unit area of cavity surface than do the hydrocarbon liquids. This contact density, or “squeezing” force, reaches a maximum near cavity diameters of 2.4 Å. The results for liquid water are compared to the predictions of simple theories and, in addition, to results for a reference simple liquid. The numerical data for water at a range of temperatures are analyzed to extract a surface free energy contribution to the work of formation of atomic-size cavities. Comparison with the liquid-vapor interfacial tensions of the model liquids studies here indicates that the surface free energies extracted for atomic-size cavities cannot be accurately identified with the macroscopic surface tensions of the systems. PMID:11537863

  12. Size-tailored synthesis of silver quasi-nanospheres by kinetically controlled seeded growth.

    PubMed

    Liu, Xiaxia; Yin, Yadong; Gao, Chuanbo

    2013-08-20

    This paper describes a simple and convenient procedure to synthesize monodisperse silver (Ag) quasi-nanospheres with size tunable in a range of 19-140 nm through a one-step seeded growth strategy. Acetonitrile was employed as a coordinating ligand of a Ag(I) salt in order to achieve a low concentration of elemental Ag after reduction and thus suppression of new nucleation events. Since the addition of the seeds significantly accelerates the reduction reaction of Ag(I) by ascorbic acid, the reaction kinetics was further delicately balanced by tuning the reaction temperature, which proved to be critical in producing Ag quasi-nanospheres with uniform size and shape. This synthesis is highly scalable, so that it provides a simple yet very robust process for producing Ag quasi-nanospheres for many biological, analytical, and catalytic applications which often demand samples in large quantity and widely tunable particle sizes.

  13. No evidence that sex and transposable elements drive genome size variation in evening primroses.

    PubMed

    Ågren, J Arvid; Greiner, Stephan; Johnson, Marc T J; Wright, Stephen I

    2015-04-01

    Genome size varies dramatically across species, but despite an abundance of attention there is little agreement on the relative contributions of selective and neutral processes in governing this variation. The rate of sex can potentially play an important role in genome size evolution because of its effect on the efficacy of selection and transmission of transposable elements (TEs). Here, we used a phylogenetic comparative approach and whole genome sequencing to investigate the contribution of sex and TE content to genome size variation in the evening primrose (Oenothera) genus. We determined genome size using flow cytometry for 30 species that vary in genetic system and find that variation in sexual/asexual reproduction cannot explain the almost twofold variation in genome size. Moreover, using whole genome sequences of three species of varying genome sizes and reproductive system, we found that genome size was not associated with TE abundance; instead the larger genomes had a higher abundance of simple sequence repeats. Although it has long been clear that sexual reproduction may affect various aspects of genome evolution in general and TE evolution in particular, it does not appear to have played a major role in genome size evolution in the evening primroses. © 2015 The Author(s).

  14. A general model for the scaling of offspring size and adult size.

    PubMed

    Falster, Daniel S; Moles, Angela T; Westoby, Mark

    2008-09-01

    Understanding evolutionary coordination among different life-history traits is a key challenge for ecology and evolution. Here we develop a general quantitative model predicting how offspring size should scale with adult size by combining a simple model for life-history evolution with a frequency-dependent survivorship model. The key innovation is that larger offspring are afforded three different advantages during ontogeny: higher survivorship per time, a shortened juvenile phase, and advantage during size-competitive growth. In this model, it turns out that size-asymmetric advantage during competition is the factor driving evolution toward larger offspring sizes. For simplified and limiting cases, the model is shown to produce the same predictions as the previously existing theory on which it is founded. The explicit treatment of different survival advantages has biologically important new effects, mainly through an interaction between total maternal investment in reproduction and the duration of competitive growth. This goes on to explain alternative allometries between log offspring size and log adult size, as observed in mammals (slope = 0.95) and plants (slope = 0.54). Further, it suggests how these differences relate quantitatively to specific biological processes during recruitment. In these ways, the model generalizes across previous theory and provides explanations for some differences between major taxa.

  15. A simple and rapid method for preparing the whole section of starchy seed to investigate the morphology and distribution of starch in different regions of seed.

    PubMed

    Zhao, Lingxiao; Pan, Ting; Guo, Dongwei; Wei, Cunxu

    2018-01-01

    Storage starch in starchy seed influences the seed weight and texture, and determines its applications in food and nonfood industries. Starch granules from different plant sources have significantly different shapes and sizes, and even more the difference exists in the different regions of the same tissue. Therefore, it is very important to in situ investigate the morphology and distribution of starch in the whole seed. However, a simple and rapid method is deficient to prepare the whole section of starchy seed for investigating the morphology and distribution of starch in the whole seeds for a large number of samples. A simple and rapid method was established to prepare the whole section of starchy seed, especially for floury seed, in this study. The whole seeds of translucent and chalky rice, vitreous and floury maize, and normal barley and wheat were sectioned successfully using the newly established method. The iodine-stained section clearly exhibited the shapes and size of starch granules in different regions of seed. The starch granules with different morphologies and iodine-staining colors existed regionally in the seeds of high-amylose rice and maize. The sections of lotus and kidney bean seeds also showed the feasibility of this method for starchy non-cereal seeds. The simple and rapid method was proven effective for preparing the whole sections of starchy seeds. The whole section of seed could be used to investigate the morphology and distribution of starch granules in different regions of the whole seed. The method was especially suitable for large sample numbers to investigate the starch morphology in short time.

  16. Bottleneck Effect on Evolutionary Rate in the Nearly Neutral Mutation Model

    PubMed Central

    Araki, H.; Tachida, H.

    1997-01-01

    Variances of evolutionary rates among lineages in some proteins are larger than those expected from simple Poisson processes. This phenomenon is called overdispersion of the molecular clock. If population size N is constant, the overdispersion is observed only in a limited range of 2Nσ under the nearly neutral mutation model, where σ represents the standard deviation of selection coefficients of new mutants. In this paper, we investigated effects of changing population size on the evolutionary rate by computer simulations assuming the nearly neutral mutation model. The size was changed cyclically between two numbers, N(1) and N(2) (N(1) > N(2)), in the simulations. The overdispersion is observed if 2N(2)σ is less than two and the state of reduced size (bottleneck state) continues for more than ~0.1/u generations, where u is the mutation rate. The overdispersion results mainly because the average fitnesses of only a portion of populations go down when the population size is reduced and only in these populations subsequent advantageous substitutions occur after the population size becomes large. Since the fitness reduction after the bottleneck is stochastic, acceleration of the evolutionary rate does not necessarily occur uniformly among loci. From these results, we argue that the nearly neutral mutation model is a candidate mechanism to explain the overdispersed molecular clock. PMID:9335622

  17. On the use of tert-butanol/water cosolvent systems in production and freeze-drying of poly-ε-caprolactone nanoparticles.

    PubMed

    Zelenková, Tereza; Barresi, Antonello A; Fissore, Davide

    2015-01-01

    This work deals with the use of a water/tert-butyl alcohol (TBA) system in the manufacturing process of poly-ε-caprolactone (PCL) nanoparticles, namely in the synthesis stage, using the solvent displacement method in a confined impinging jet mixer (CIJM), and in the following freeze-drying stage. The experimental investigation evidenced that the nanoparticles size is significantly reduced with respect to the case where acetone is the solvent. Besides, the solvent evaporation step is not required before freeze-drying as TBA is fully compatible with the freeze-drying process. The effect of initial polymer concentration, flow rate, water to TBA flow rate ratio, and quench volumetric ratio on the mean nanoparticles size was investigated, and a simple equation was proposed to relate the mean nanoparticles size to these operating parameters. Then, freeze-drying of the nanoparticles suspensions was studied. Lyoprotectants (sucrose and mannitol) and steric stabilizers (Cremophor EL and Poloxamer 388) have to be used to avoid nanoparticles aggregation, thus preserving particle size distribution and mean nanoparticles size. Their effect, as well as that of the heating shelf temperature, has been investigated by means of statistical techniques, with the goal to identify which of these factors, or combination of factors, plays the key role in the nanoparticles size preservation at the end of the freeze-drying process. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  18. Unleashing the Power of Distributed CPU/GPU Architectures: Massive Astronomical Data Analysis and Visualization Case Study

    NASA Astrophysics Data System (ADS)

    Hassan, A. H.; Fluke, C. J.; Barnes, D. G.

    2012-09-01

    Upcoming and future astronomy research facilities will systematically generate terabyte-sized data sets moving astronomy into the Petascale data era. While such facilities will provide astronomers with unprecedented levels of accuracy and coverage, the increases in dataset size and dimensionality will pose serious computational challenges for many current astronomy data analysis and visualization tools. With such data sizes, even simple data analysis tasks (e.g. calculating a histogram or computing data minimum/maximum) may not be achievable without access to a supercomputing facility. To effectively handle such dataset sizes, which exceed today's single machine memory and processing limits, we present a framework that exploits the distributed power of GPUs and many-core CPUs, with a goal of providing data analysis and visualizing tasks as a service for astronomers. By mixing shared and distributed memory architectures, our framework effectively utilizes the underlying hardware infrastructure handling both batched and real-time data analysis and visualization tasks. Offering such functionality as a service in a “software as a service” manner will reduce the total cost of ownership, provide an easy to use tool to the wider astronomical community, and enable a more optimized utilization of the underlying hardware infrastructure.

  19. A Meta-Analysis of the Impact of Short-Term Sleep Deprivation on Cognitive Variables

    PubMed Central

    Lim, Julian; Dinges, David F.

    2012-01-01

    A substantial amount of research has been conducted in an effort to understand the impact of short-term (<48 hr) total sleep deprivation (SD) on outcomes in various cognitive domains. Despite this wealth of information, there has been disagreement on how these data should be interpreted, arising in part because the relative magnitude of effect sizes in these domains is not known. To address this question, we conducted a meta-analysis to discover the effects of short-term SD on both speed and accuracy measures in 6 cognitive categories: simple attention, complex attention, working memory, processing speed, short-term memory, and reasoning. Seventy articles containing 147 cognitive tests were found that met inclusion criteria for this study. Effect sizes ranged from small and nonsignificant (reasoning accuracy: ḡ = −0.125, 95% CI [−0.27, 0.02]) to large (lapses in simple attention: ḡ = −0.776, 95% CI [−0.96, −0.60], p < .001). Across cognitive domains, significant differences were observed for both speed and accuracy; however, there were no differences between speed and accuracy measures within each cognitive domain. Of several moderators tested, only time awake was a significant predictor of between-studies variability, and only for accuracy measures, suggesting that heterogeneity in test characteristics may account for a significant amount of the remaining between-studies variance. The theoretical implications of these findings for the study of SD and cognition are discussed. PMID:20438143

  20. Rock size-frequency distributions on Mars and implications for Mars Exploration Rover landing safety and operations

    NASA Astrophysics Data System (ADS)

    Golombek, M. P.; Haldemann, A. F. C.; Forsberg-Taylor, N. K.; DiMaggio, E. N.; Schroeder, R. D.; Jakosky, B. M.; Mellon, M. T.; Matijevic, J. R.

    2003-10-01

    The cumulative fractional area covered by rocks versus diameter measured at the Pathfinder site was predicted by a rock distribution model that follows simple exponential functions that approach the total measured rock abundance (19%), with a steep decrease in rocks with increasing diameter. The distribution of rocks >1.5 m diameter visible in rare boulder fields also follows this steep decrease with increasing diameter. The effective thermal inertia of rock populations calculated from a simple empirical model of the effective inertia of rocks versus diameter shows that most natural rock populations have cumulative effective thermal inertias of 1700-2100 J m-2 s-0.5 K-1 and are consistent with the model rock distributions applied to total rock abundance estimates. The Mars Exploration Rover (MER) airbags have been successfully tested against extreme rock distributions with a higher percentage of potentially hazardous triangular buried rocks than observed at the Pathfinder and Viking landing sites. The probability of the lander impacting a >1 m diameter rock in the first 2 bounces is <3% and <5% for the Meridiani and Gusev landing sites, respectively, and is <0.14% and <0.03% for rocks >1.5 m and >2 m diameter, respectively. Finally, the model rock size-frequency distributions indicate that rocks >0.1 m and >0.3 m in diameter, large enough to place contact sensor instruments against and abrade, respectively, should be plentiful within a single sol's drive at the Meridiani and Gusev landing sites.

  1. A meta-analysis of the impact of short-term sleep deprivation on cognitive variables.

    PubMed

    Lim, Julian; Dinges, David F

    2010-05-01

    A substantial amount of research has been conducted in an effort to understand the impact of short-term (<48 hr) total sleep deprivation (SD) on outcomes in various cognitive domains. Despite this wealth of information, there has been disagreement on how these data should be interpreted, arising in part because the relative magnitude of effect sizes in these domains is not known. To address this question, we conducted a meta-analysis to discover the effects of short-term SD on both speed and accuracy measures in 6 cognitive categories: simple attention, complex attention, working memory, processing speed, short-term memory, and reasoning. Seventy articles containing 147 cognitive tests were found that met inclusion criteria for this study. Effect sizes ranged from small and nonsignificant (reasoning accuracy: g = -0.125, 95% CI [-0.27, 0.02]) to large (lapses in simple attention: g = -0.776, 95% CI [-0.96, -0.60], p < .001). Across cognitive domains, significant differences were observed for both speed and accuracy; however, there were no differences between speed and accuracy measures within each cognitive domain. Of several moderators tested, only time awake was a significant predictor of between-studies variability, and only for accuracy measures, suggesting that heterogeneity in test characteristics may account for a significant amount of the remaining between-studies variance. The theoretical implications of these findings for the study of SD and cognition are discussed. (c) 2010 APA, all rights reserved.

  2. Practical implications of theoretical consideration of capsule filling by the dosator nozzle system.

    PubMed

    Jolliffe, I G; Newton, J M

    1982-05-01

    Eight lactose size fractions with mean particle sizes ranging from 15.6 to 155.2 micrometers were characterized by their failure properties using a Jenike shear cell. The effective angle of internal friction was found to be constant for all size fractions, with a mean value of 36.2 degrees. Jenike flow factors could only be obtained for the two most cohesive size fractions presumably due to limitations of the shear cell. Angles of wall friction, phi, were determined for all size fractions on face ground and turned stainless steel surfaces. These decreased with increasing particle size up to around 40 micrometers, above which they became effectively constant for both surfaces. The rougher turned plate gave consistently higher values of phi for each particle size. Simple retention experiments with a dosator nozzle and a range of powder bed bulk densities showed good retention was possible only up to a particle size of around 40 micrometers. Retention was difficult or impossible above this size. Values of phi were applied to equations derived in the theoretical approach described previously (Jolliffe et al 1980). This showed that the strength required within a powder to ensure arching increases with increasing particle size up to around 40 micrometers. Above this size, this strength requirement becomes constant. This is related to the powder retention observations. Finally, the failure data was used to calculate the minimum compressive stresses required to ensure powder retention within the dosator nozzle, by employing the equations described by Jolliffe et al (1980). This suggested that, as powders became more free flowing, a larger compressive stress is necessary and that the angle of wall friction should be lower to ensure stress is transmitted to the arching zone.

  3. What Should Researchers Expect When They Replicate Studies? A Statistical View of Replicability in Psychological Science.

    PubMed

    Patil, Prasad; Peng, Roger D; Leek, Jeffrey T

    2016-07-01

    A recent study of the replicability of key psychological findings is a major contribution toward understanding the human side of the scientific process. Despite the careful and nuanced analysis reported, the simple narrative disseminated by the mass, social, and scientific media was that in only 36% of the studies were the original results replicated. In the current study, however, we showed that 77% of the replication effect sizes reported were within a 95% prediction interval calculated using the original effect size. Our analysis suggests two critical issues in understanding replication of psychological studies. First, researchers' intuitive expectations for what a replication should show do not always match with statistical estimates of replication. Second, when the results of original studies are very imprecise, they create wide prediction intervals-and a broad range of replication effects that are consistent with the original estimates. This may lead to effects that replicate successfully, in that replication results are consistent with statistical expectations, but do not provide much information about the size (or existence) of the true effect. In this light, the results of the Reproducibility Project: Psychology can be viewed as statistically consistent with what one might expect when performing a large-scale replication experiment. © The Author(s) 2016.

  4. The evolution of biomass-burning aerosol size distributions due to coagulation: dependence on fire and meteorological details and parameterization

    NASA Astrophysics Data System (ADS)

    Sakamoto, Kimiko M.; Laing, James R.; Stevens, Robin G.; Jaffe, Daniel A.; Pierce, Jeffrey R.

    2016-06-01

    Biomass-burning aerosols have a significant effect on global and regional aerosol climate forcings. To model the magnitude of these effects accurately requires knowledge of the size distribution of the emitted and evolving aerosol particles. Current biomass-burning inventories do not include size distributions, and global and regional models generally assume a fixed size distribution from all biomass-burning emissions. However, biomass-burning size distributions evolve in the plume due to coagulation and net organic aerosol (OA) evaporation or formation, and the plume processes occur on spacial scales smaller than global/regional-model grid boxes. The extent of this size-distribution evolution is dependent on a variety of factors relating to the emission source and atmospheric conditions. Therefore, accurately accounting for biomass-burning aerosol size in global models requires an effective aerosol size distribution that accounts for this sub-grid evolution and can be derived from available emission-inventory and meteorological parameters. In this paper, we perform a detailed investigation of the effects of coagulation on the aerosol size distribution in biomass-burning plumes. We compare the effect of coagulation to that of OA evaporation and formation. We develop coagulation-only parameterizations for effective biomass-burning size distributions using the SAM-TOMAS large-eddy simulation plume model. For the most-sophisticated parameterization, we use the Gaussian Emulation Machine for Sensitivity Analysis (GEM-SA) to build a parameterization of the aged size distribution based on the SAM-TOMAS output and seven inputs: emission median dry diameter, emission distribution modal width, mass emissions flux, fire area, mean boundary-layer wind speed, plume mixing depth, and time/distance since emission. This parameterization was tested against an independent set of SAM-TOMAS simulations and yields R2 values of 0.83 and 0.89 for Dpm and modal width, respectively. The size distribution is particularly sensitive to the mass emissions flux, fire area, wind speed, and time, and we provide simplified fits of the aged size distribution to just these input variables. The simplified fits were tested against 11 aged biomass-burning size distributions observed at the Mt. Bachelor Observatory in August 2015. The simple fits captured over half of the variability in observed Dpm and modal width even though the freshly emitted Dpm and modal widths were unknown. These fits may be used in global and regional aerosol models. Finally, we show that coagulation generally leads to greater changes in the particle size distribution than OA evaporation/formation does, using estimates of OA production/loss from the literature.

  5. Maintenance of algal endosymbionts in Paramecium bursaria: a simple model based on population dynamics.

    PubMed

    Iwai, Sosuke; Fujiwara, Kenji; Tamura, Takuro

    2016-09-01

    Algal endosymbiosis is widely distributed in eukaryotes including many protists and metazoans, and plays important roles in aquatic ecosystems, combining phagotrophy and phototrophy. To maintain a stable symbiotic relationship, endosymbiont population size in the host must be properly regulated and maintained at a constant level; however, the mechanisms underlying the maintenance of algal endosymbionts are still largely unknown. Here we investigate the population dynamics of the unicellular ciliate Paramecium bursaria and its Chlorella-like algal endosymbiont under various experimental conditions in a simple culture system. Our results suggest that endosymbiont population size in P. bursaria was not regulated by active processes such as cell division coupling between the two organisms, or partitioning of the endosymbionts at host cell division. Regardless, endosymbiont population size was eventually adjusted to a nearly constant level once cells were grown with light and nutrients. To explain this apparent regulation of population size, we propose a simple mechanism based on the different growth properties (specifically the nutrient requirements) of the two organisms, and based from this develop a mathematical model to describe the population dynamics of host and endosymbiont. The proposed mechanism and model may provide a basis for understanding the maintenance of algal endosymbionts. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. The Origin of Universal Scaling in Biology from Molecules & Cells to Whales and Ecosystems

    NASA Astrophysics Data System (ADS)

    West, Geoffrey

    2002-03-01

    Life is the most complex physical system in the Universe manifesting an extraordinary diversity of form and function over an enormous scale ranging from the largest animals and plants to the smallest microbes. Yet, many of its most fundamental and complex phenomena scale with size in a surprisingly simple fashion. For example, metabolic rate (the power needed to sustain life) scales as the 3/4-power of mass over 27 orders of magnitude ranging from molecular and intra-cellular levels up through the smallest unicellular organisms to the largest animals and plants. Similarly, time-scales (such as lifespan and heart-rate) and sizes (such as the radius of a tree trunk or the density of mitochondria) change with size with exponents which are typically simple powers of 1/4. The phenomenology of these "laws" will be reviewed and a quantitative unified theory presented that explains their origin, including that of the universal 1/4-power. It is based on the fundamental observation that, regardless of size, almost all life is sustained, and ultimately constrained, by space-filling, fractal-like hierarchical branching networks which are optimised by the forces of natural selection. Integrated descriptions of the cardiovascular, respiratory and plant vascular systems will be presented as explicit examples. It will be shown how scaling universality can be related to an effective additional fourth spatial dimension of life. Extensions to growth, aging and mortality, ecosystems and the nature of evolution, including thermodynamic considerations and the concept of a universal molecular clock, will be discussed.

  7. Small-size pedestrian detection in large scene based on fast R-CNN

    NASA Astrophysics Data System (ADS)

    Wang, Shengke; Yang, Na; Duan, Lianghua; Liu, Lu; Dong, Junyu

    2018-04-01

    Pedestrian detection is a canonical sub-problem of object detection with high demand during recent years. Although recent deep learning object detectors such as Fast/Faster R-CNN have shown excellent performance for general object detection, they have limited success for small size pedestrian detection in large-view scene. We study that the insufficient resolution of feature maps lead to the unsatisfactory accuracy when handling small instances. In this paper, we investigate issues involving Fast R-CNN for pedestrian detection. Driven by the observations, we propose a very simple but effective baseline for pedestrian detection based on Fast R-CNN, employing the DPM detector to generate proposals for accuracy, and training a fast R-CNN style network to jointly optimize small size pedestrian detection with skip connection concatenating feature from different layers to solving coarseness of feature maps. And the accuracy is improved in our research for small size pedestrian detection in the real large scene.

  8. Membrane filtration method for enumeration and isolation of Alicyclobacillus spp. from apple juice.

    PubMed

    Lee, S-Y; Chang, S-S; Shin, J-H; Kang, D-H

    2007-11-01

    To evaluate the applicability of filtration membranes for detecting Alicyclobacillus spp. spores in apple juice. Ten types of nitrocellulose membrane filters from five manufacturers were used to collect and enumerate five Alicyclobacillus spore isolates and results were compared to conventional K agar plating. Spore recovery differed among filters with an average recovery rate of 126.2%. Recovery levels also differed among spore isolates. Although significant difference (P < 0.05) in spore sizes existed, no correlation could be determined between spore size and membrane filter recovery rate. Recovery of spores using membrane filtration is dependent on the manufacturer and filter pore size. Correlations between spore recovery rate and spore size could not be determined. Low numbers of Alicyclobacillus spores in juice can be effectively detected using membrane filtration although recovery rate differences exist among different manufacturers. Use of membrane filtration is a simple, fast alternative to the week-long enrichment procedures currently employed in most quality assurance tests.

  9. Variation in Age and Size in Fennoscandian Three-Spined Sticklebacks (Gasterosteus aculeatus)

    PubMed Central

    DeFaveri, Jacquelin; Merilä, Juha

    2013-01-01

    Average age and maximum life span of breeding adult three-spined sticklebacks (Gasterosteus aculeatus) were determined in eight Fennoscandian localities with the aid of skeletochronology. The average age varied from 1.8 to 3.6 years, and maximum life span from three to six years depending on the locality. On average, fish from marine populations were significantly older than those from freshwater populations, but variation within habitat types was large. We also found significant differences in mean body size among different habitat types and populations, but only the population differences remained significant after accounting for variation due to age effects. These results show that generation length and longevity in three-spined sticklebacks can vary significantly from one locality to another, and that population differences in mean body size cannot be explained as a simple consequence of differences in population age structure. We also describe a nanistic population from northern Finland exhibiting long life span and small body size. PMID:24260496

  10. Variation in age and size in Fennoscandian three-spined sticklebacks (Gasterosteus aculeatus).

    PubMed

    DeFaveri, Jacquelin; Merilä, Juha

    2013-01-01

    Average age and maximum life span of breeding adult three-spined sticklebacks (Gasterosteus aculeatus) were determined in eight Fennoscandian localities with the aid of skeletochronology. The average age varied from 1.8 to 3.6 years, and maximum life span from three to six years depending on the locality. On average, fish from marine populations were significantly older than those from freshwater populations, but variation within habitat types was large. We also found significant differences in mean body size among different habitat types and populations, but only the population differences remained significant after accounting for variation due to age effects. These results show that generation length and longevity in three-spined sticklebacks can vary significantly from one locality to another, and that population differences in mean body size cannot be explained as a simple consequence of differences in population age structure. We also describe a nanistic population from northern Finland exhibiting long life span and small body size.

  11. On the context-dependent scaling of consumer feeding rates.

    PubMed

    Barrios-O'Neill, Daniel; Kelly, Ruth; Dick, Jaimie T A; Ricciardi, Anthony; MacIsaac, Hugh J; Emmerson, Mark C

    2016-06-01

    The stability of consumer-resource systems can depend on the form of feeding interactions (i.e. functional responses). Size-based models predict interactions - and thus stability - based on consumer-resource size ratios. However, little is known about how interaction contexts (e.g. simple or complex habitats) might alter scaling relationships. Addressing this, we experimentally measured interactions between a large size range of aquatic predators (4-6400 mg over 1347 feeding trials) and an invasive prey that transitions among habitats: from the water column (3D interactions) to simple and complex benthic substrates (2D interactions). Simple and complex substrates mediated successive reductions in capture rates - particularly around the unimodal optimum - and promoted prey population stability in model simulations. Many real consumer-resource systems transition between 2D and 3D interactions, and along complexity gradients. Thus, Context-Dependent Scaling (CDS) of feeding interactions could represent an unrecognised aspect of food webs, and quantifying the extent of CDS might enhance predictive ecology. © The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  12. Analytical sizing methods for behind-the-meter battery storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Di; Kintner-Meyer, Michael; Yang, Tao

    In behind-the-meter application, battery storage system (BSS) is utilized to reduce a commercial or industrial customer’s payment for electricity use, including energy charge and demand charge. The potential value of BSS in payment reduction and the most economic size can be determined by formulating and solving standard mathematical programming problems. In this method, users input system information such as load profiles, energy/demand charge rates, and battery characteristics to construct a standard programming problem that typically involve a large number of constraints and decision variables. Such a large scale programming problem is then solved by optimization solvers to obtain numerical solutions.more » Such a method cannot directly link the obtained optimal battery sizes to input parameters and requires case-by-case analysis. In this paper, we present an objective quantitative analysis of costs and benefits of customer-side energy storage, and thereby identify key factors that affect battery sizing. Based on the analysis, we then develop simple but effective guidelines that can be used to determine the most cost-effective battery size or guide utility rate design for stimulating energy storage development. The proposed analytical sizing methods are innovative, and offer engineering insights on how the optimal battery size varies with system characteristics. We illustrate the proposed methods using practical building load profile and utility rate. The obtained results are compared with the ones using mathematical programming based methods for validation.« less

  13. Extinction risk and eco-evolutionary dynamics in a variable environment with increasing frequency of extreme events

    PubMed Central

    Vincenzi, Simone

    2014-01-01

    One of the most dramatic consequences of climate change will be the intensification and increased frequency of extreme events. I used numerical simulations to understand and predict the consequences of directional trend (i.e. mean state) and increased variability of a climate variable (e.g. temperature), increased probability of occurrence of point extreme events (e.g. floods), selection pressure and effect size of mutations on a quantitative trait determining individual fitness, as well as the their effects on the population and genetic dynamics of a population of moderate size. The interaction among climate trend, variability and probability of point extremes had a minor effect on risk of extinction, time to extinction and distribution of the trait after accounting for their independent effects. The survival chances of a population strongly and linearly decreased with increasing strength of selection, as well as with increasing climate trend and variability. Mutation amplitude had no effects on extinction risk, time to extinction or genetic adaptation to the new climate. Climate trend and strength of selection largely determined the shift of the mean phenotype in the population. The extinction or persistence of the populations in an ‘extinction window’ of 10 years was well predicted by a simple model including mean population size and mean genetic variance over a 10-year time frame preceding the ‘extinction window’, although genetic variance had a smaller role than population size in predicting contemporary risk of extinction. PMID:24920116

  14. Flutter and divergence instability of supported piezoelectric nanotubes conveying fluid

    NASA Astrophysics Data System (ADS)

    Bahaadini, Reza; Hosseini, Mohammad; Jamali, Behnam

    2018-01-01

    In this paper, divergence and flutter instabilities of supported piezoelectric nanotubes containing flowing fluid are investigated. To take the size effects into account, the nonlocal elasticity theory is implemented in conjunction with the Euler-Bernoulli beam theory incorporating surface stress effects. The Knudsen number is applied to investigate the slip boundary conditions between the flow and wall of nanotube. The nonlocal governing equations of nanotube are obtained using Newtonian method, including the influence of piezoelectric voltage, surface effects, Knudsen number and nonlocal parameter. Applying Galerkin approach to transform resulting equations into a set of eigenvalue equations under the simple-simple (S-S) and clamped-clamped (C-C) boundary conditions. The effects of the piezoelectric voltage, surface effects, Knudsen number, nonlocal parameter and boundary conditions on the divergence and flutter boundaries of nanotubes are discussed. It is observed that the fluid-conveying nanotubes with both ends supported lose their stability by divergence first and then by flutter with increase in fluid velocity. Results indicate the importance of using piezoelectric voltage, nonlocal parameter and Knudsen number in decrease of critical flow velocities of system. Moreover, the surface effects have a significant role on the eigenfrequencies and critical fluid velocity.

  15. An audit strategy for time-to-event outcomes measured with error: application to five randomized controlled trials in oncology.

    PubMed

    Dodd, Lori E; Korn, Edward L; Freidlin, Boris; Gu, Wenjuan; Abrams, Jeffrey S; Bushnell, William D; Canetta, Renzo; Doroshow, James H; Gray, Robert J; Sridhara, Rajeshwari

    2013-10-01

    Measurement error in time-to-event end points complicates interpretation of treatment effects in clinical trials. Non-differential measurement error is unlikely to produce large bias [1]. When error depends on treatment arm, bias is of greater concern. Blinded-independent central review (BICR) of all images from a trial is commonly undertaken to mitigate differential measurement-error bias that may be present in hazard ratios (HRs) based on local evaluations. Similar BICR and local evaluation HRs may provide reassurance about the treatment effect, but BICR adds considerable time and expense to trials. We describe a BICR audit strategy [2] and apply it to five randomized controlled trials to evaluate its use and to provide practical guidelines. The strategy requires BICR on a subset of study subjects, rather than a complete-case BICR, and makes use of an auxiliary-variable estimator. When the effect size is relatively large, the method provides a substantial reduction in the size of the BICRs. In a trial with 722 participants and a HR of 0.48, an average audit of 28% of the data was needed and always confirmed the treatment effect as assessed by local evaluations. More moderate effect sizes and/or smaller trial sizes required larger proportions of audited images, ranging from 57% to 100% for HRs ranging from 0.55 to 0.77 and sample sizes between 209 and 737. The method is developed for a simple random sample of study subjects. In studies with low event rates, more efficient estimation may result from sampling individuals with events at a higher rate. The proposed strategy can greatly decrease the costs and time associated with BICR, by reducing the number of images undergoing review. The savings will depend on the underlying treatment effect and trial size, with larger treatment effects and larger trials requiring smaller proportions of audited data.

  16. Multifunctional biodegradable polymer nanoparticles with uniform sizes: generation and in vitro anti-melanoma activity

    NASA Astrophysics Data System (ADS)

    Liang, Ruijing; Wang, Jing; Wu, Xian; Dong, Liyun; Deng, Renhua; Wang, Ke; Sullivan, Martin; Liu, Shanqin; Wu, Min; Tao, Juan; Yang, Xiangliang; Zhu, Jintao

    2013-11-01

    We present a simple, yet versatile strategy for the fabrication of uniform biodegradable polymer nanoparticles (NPs) with controllable sizes by a hand-driven membrane-extrusion emulsification approach. The size and size distribution of the NPs can be easily tuned by varying the experimental parameters, including initial polymer concentration, surfactant concentration, number of extrusion passes, membrane pore size, and polymer molecular weight. Moreover, hydrophobic drugs (e.g., paclitaxel (PTX)) and inorganic NPs (e.g., quantum dots (QDs) and magnetic NPs (MNPs)) can be effectively and simultaneously encapsulated into the polymer NPs to form the multifunctional hybrid NPs through this facile route. These PTX-loaded NPs exhibit high encapsulation efficiency and drug loading density as well as excellent drug sustained release performance. As a proof of concept, the A875 cell (melanoma cell line) experiment in vitro, including cellular uptake analysis by fluorescence microscope, cytotoxicity analysis of NPs, and magnetic resonance imaging (MRI) studies, indicates that the PTX-loaded hybrid NPs produced by this technique could be potentially applied as a multifunctional delivery system for drug delivery, bio-imaging, and tumor therapy, including malignant melanoma therapy.

  17. On wildfire complexity, simple models and environmental templates for fire size distributions

    NASA Astrophysics Data System (ADS)

    Boer, M. M.; Bradstock, R.; Gill, M.; Sadler, R.

    2012-12-01

    Vegetation fires affect some 370 Mha annually. At global and continental scales, fire activity follows predictable spatiotemporal patterns driven by gradients and seasonal fluctuations of primary productivity and evaporative demand that set constraints for fuel accumulation rates and fuel dryness, two key ingredients of fire. At regional scales, fires are also known to affect some landscapes more than others and within landscapes to occur preferentially in some sectors (e.g. wind-swept ridges) and rarely in others (e.g. wet gullies). Another common observation is that small fires occur relatively frequent yet collectively burn far less country than relatively infrequent large fires. These patterns of fire activity are well known to management agencies and consistent with their (informal) models of how the basic drivers and constraints of fire (i.e. fuels, ignitions, weather) vary in time and space across the landscape. The statistical behaviour of these landscape fire patterns has excited the (academic) research community by showing some consistency with that of complex dynamical systems poised at a phase transition. The common finding that the frequency-size distributions of actual fires follow power laws that resemble those produced by simple cellular models from statistical mechanics has been interpreted as evidence that flammable landscapes operate as self-organising systems with scale invariant fire size distributions emerging 'spontaneously' from simple rules of contagious fire spread and a strong feedback between fires and fuel patterns. In this paper we argue that the resemblance of simulated and actual fire size distributions is an example of equifinality, that is fires in model landscapes and actual landscapes may show similar statistical behaviour but this is reached by qualitatively different pathways or controlling mechanisms. We support this claim with two key findings regarding simulated fire spread mechanisms and fire-fuel feedbacks. Firstly, we demonstrate that the power law behaviour of fire size distributions in the widely used Drossel and Schwabl (1992) Forest Fire Model (FFM) is strictly conditional on simulating fire spread as a cell-to-cell contagion over a fixed distance; the invariant scaling of fire sizes breaks down under the slightest variation in that distance, suggesting that pattern formation in the FFM is irreconcilable with the reality of disparate rates and modes of fire spread observed in the field. Secondly, we review field evidence showing that fuel age effects on the probability of fire spread, a key assumption in simulation models like the FFM, do not generally apply across flammable environments. Finally, we explore alternative explanations for the formation of scale invariant fire sizes in real landscapes. Using observations from southern Australian forest regions we demonstrate that the spatiotemporal patterns of fuel dryness and magnitudes of fire driving weather events set strong environmental templates for regional fire size distributions.

  18. Estimation and applications of size-based distributions in forestry

    Treesearch

    Jeffrey H. Gove

    2003-01-01

    Size-based distributions arise in several contexts in forestry and ecology. Simple power relationships (e.g., basal area and diameter at breast height) between variables are one such area of interest arising from a modeling perspective. Another, probability proportional to size sampline (PPS), is found in the most widely used methods for sampling standing or dead and...

  19. Estimation and applications of size-biased distributions in forestry

    Treesearch

    Jeffrey H. Gove

    2003-01-01

    Size-biased distributions arise naturally in several contexts in forestry and ecology. Simple power relationships (e.g. basal area and diameter at breast height) between variables are one such area of interest arising from a modelling perspective. Another, probability proportional to size PPS) sampling, is found in the most widely used methods for sampling standing or...

  20. Quantifying alluvial fan sensitivity to climate in Death Valley, California, from field observations and numerical models

    NASA Astrophysics Data System (ADS)

    Brooke, Sam; Whittaker, Alexander; Armitage, John; D'Arcy, Mitch; Watkins, Stephen

    2017-04-01

    A quantitative understanding of landscape sensitivity to climate change remains a key challenge in the Earth Sciences. The stream-flow deposits of coupled catchment-fan systems offer one way to decode past changes in external boundary conditions as they comprise simple, closed systems that can be represented effectively by numerical models. Here we combine the collection and analysis of grain size data on well-dated alluvial fan surfaces in Death Valley, USA, with numerical modelling to address the extent to which sediment routing systems record high-frequency, high-magnitude climate change. We compile a new database of Holocene and Late-Pleistocene grain size trends from 11 alluvial fans in Death Valley, capturing high-resolution grain size data ranging from the Recent to 100 kyr in age. We hypothesise the observed changes in average surface grain size and fining rate over time are a record of landscape response to glacial-interglacial climatic forcing. With this data we are in a unique position to test the predictions of landscape evolution models and evaluate the extent to which climate change has influenced the volume and calibre of sediment deposited on alluvial fans. To gain insight into our field data and study area, we employ an appropriately-scaled catchment-fan model that calculates an eroded volumetric sediment budget to be deposited in a subsiding basin according to mass balance where grain size trends are predicted by a self-similarity fining model. We use the model to compare predicted trends in alluvial fan stratigraphy as a function of boundary condition change for a range of model parameters and input grain size distributions. Subsequently, we perturb our model with a plausible glacial-interglacial magnitude precipitation change to estimate the requisite sediment flux needed to generate observed field grain size trends in Death Valley. Modelled fluxes are then compared with independent measurements of sediment supply over time. Our results constitute one of the first attempts to combine the detailed collection of alluvial fan grain size data in time and space with coupled catchment-fan models, affording us the means to evaluate how well field and model data can be reconciled for simple sediment routing systems.

  1. On the impact of relatedness on SNP association analysis.

    PubMed

    Gross, Arnd; Tönjes, Anke; Scholz, Markus

    2017-12-06

    When testing for SNP (single nucleotide polymorphism) associations in related individuals, observations are not independent. Simple linear regression assuming independent normally distributed residuals results in an increased type I error and the power of the test is also affected in a more complicate manner. Inflation of type I error is often successfully corrected by genomic control. However, this reduces the power of the test when relatedness is of concern. In the present paper, we derive explicit formulae to investigate how heritability and strength of relatedness contribute to variance inflation of the effect estimate of the linear model. Further, we study the consequences of variance inflation on hypothesis testing and compare the results with those of genomic control correction. We apply the developed theory to the publicly available HapMap trio data (N=129), the Sorbs (a self-contained population with N=977 characterised by a cryptic relatedness structure) and synthetic family studies with different sample sizes (ranging from N=129 to N=999) and different degrees of relatedness. We derive explicit and easily to apply approximation formulae to estimate the impact of relatedness on the variance of the effect estimate of the linear regression model. Variance inflation increases with increasing heritability. Relatedness structure also impacts the degree of variance inflation as shown for example family structures. Variance inflation is smallest for HapMap trios, followed by a synthetic family study corresponding to the trio data but with larger sample size than HapMap. Next strongest inflation is observed for the Sorbs, and finally, for a synthetic family study with a more extreme relatedness structure but with similar sample size as the Sorbs. Type I error increases rapidly with increasing inflation. However, for smaller significance levels, power increases with increasing inflation while the opposite holds for larger significance levels. When genomic control is applied, type I error is preserved while power decreases rapidly with increasing variance inflation. Stronger relatedness as well as higher heritability result in increased variance of the effect estimate of simple linear regression analysis. While type I error rates are generally inflated, the behaviour of power is more complex since power can be increased or reduced in dependence on relatedness and the heritability of the phenotype. Genomic control cannot be recommended to deal with inflation due to relatedness. Although it preserves type I error, the loss in power can be considerable. We provide a simple formula for estimating variance inflation given the relatedness structure and the heritability of a trait of interest. As a rule of thumb, variance inflation below 1.05 does not require correction and simple linear regression analysis is still appropriate.

  2. Universal shocks in the Wishart random-matrix ensemble.

    PubMed

    Blaizot, Jean-Paul; Nowak, Maciej A; Warchoł, Piotr

    2013-05-01

    We show that the derivative of the logarithm of the average characteristic polynomial of a diffusing Wishart matrix obeys an exact partial differential equation valid for an arbitrary value of N, the size of the matrix. In the large N limit, this equation generalizes the simple inviscid Burgers equation that has been obtained earlier for Hermitian or unitary matrices. The solution, through the method of characteristics, presents singularities that we relate to the precursors of shock formation in the Burgers equation. The finite N effects appear as a viscosity term in the Burgers equation. Using a scaling analysis of the complete equation for the characteristic polynomial, in the vicinity of the shocks, we recover in a simple way the universal Bessel oscillations (so-called hard-edge singularities) familiar in random-matrix theory.

  3. Fluorescent carbon nanodots facilely extracted from Coca Cola for temperature sensing

    NASA Astrophysics Data System (ADS)

    Li, Feiming; Chen, Qiaoling; Cai, Zhixiong; Lin, Fangyuan; Xu, Wei; Wang, Yiru; Chen, Xi

    2017-12-01

    A novel method for the fabrication of carbon nanodots (CDs) is introduced: extracting CDs from the well-known soft drink Coca Cola via dialysis. The obtained CDs are of good monodispersity with a narrow size distribution (average diameter of 3.0 nm), good biocompatibility, high solubility (about 180 mg ml-1) and stable fluorescence even at a high salt concentration. Furthermore, they are sensitive to the temperature change with a linear relationship between the fluorescence intensity and temperature from 5 °C-95 °C. The CDs have been applied in high stable temperature sensing. This protocol is quite simple, green, cost-effective and technologically simple, which might be used for a range of applications including sensing, catalysts, drug and gene delivery, and so on.

  4. Fluorescent carbon nanodots facilely extracted from Coca Cola for temperature sensing.

    PubMed

    Li, Feiming; Chen, Qiaoling; Cai, Zhixiong; Lin, Fangyuan; Xu, Wei; Wang, Yiru; Chen, Xi

    2017-10-16

    A novel method for the fabrication of carbon nanodots (CDs) is introduced: extracting CDs from the well-known soft drink Coca Cola via dialysis. The obtained CDs are of good monodispersity with a narrow size distribution (average diameter of 3.0 nm), good biocompatibility, high solubility (about 180 mg ml -1 ) and stable fluorescence even at a high salt concentration. Furthermore, they are sensitive to the temperature change with a linear relationship between the fluorescence intensity and temperature from 5 °C-95 °C. The CDs have been applied in high stable temperature sensing. This protocol is quite simple, green, cost-effective and technologically simple, which might be used for a range of applications including sensing, catalysts, drug and gene delivery, and so on.

  5. A Rapid and Simple Integrated Extraction Amplification and Detection Device for Y. pestis

    DTIC Science & Technology

    2000-10-01

    Yersinia pestis is transmitted by fleas. Three virulence plasmids are characteristic in Y pestis. These vary in different strains by size and...WIP# 330440), dTTP(BD WIP# 330572) and dCsTP(BD WIP# 330546). Additional SDA reagents Additional components: Bovine serum albumin (BSA) (BD WIP# 360653...in a thermocycler, with addition of enzyme following the denaturation step. Efforts to block the effect by prior exposure of the plastic to bovine

  6. Aloe vera Induced Biomimetic Assemblage of Nucleobase into Nanosized Particles

    PubMed Central

    Chauhan, Arun; Zubair, Swaleha; Sherwani, Asif; Owais, Mohammad

    2012-01-01

    Aim Biomimetic nano-assembly formation offers a convenient and bio friendly approach to fabricate complex structures from simple components with sub-nanometer precision. Recently, biomimetic (employing microorganism/plants) synthesis of metal and inorganic materials nano-particles has emerged as a simple and viable strategy. In the present study, we have extended biological synthesis of nano-particles to organic molecules, namely the anticancer agent 5-fluorouracil (5-FU), using Aloe vera leaf extract. Methodology The 5-FU nano- particles synthesized by using Aloe vera leaf extract were characterized by UV, FT-IR and fluorescence spectroscopic techniques. The size and shape of the synthesized nanoparticles were determined by TEM, while crystalline nature of 5-FU particles was established by X-ray diffraction study. The cytotoxic effects of 5-FU nanoparticles were assessed against HT-29 and Caco-2 (human adenocarcinoma colorectal) cell lines. Results Transmission electron microscopy and atomic force microscopic techniques confirmed nano-size of the synthesized particles. Importantly, the nano-assembled 5-FU retained its anticancer action against various cancerous cell lines. Conclusion In the present study, we have explored the potential of biomimetic synthesis of nanoparticles employing organic molecules with the hope that such developments will be helpful to introduce novel nano-particle formulations that will not only be more effective but would also be devoid of nano-particle associated putative toxicity constraints. PMID:22403622

  7. Empirical Bayes Estimation of Semi-parametric Hierarchical Mixture Models for Unbiased Characterization of Polygenic Disease Architectures

    PubMed Central

    Nishino, Jo; Kochi, Yuta; Shigemizu, Daichi; Kato, Mamoru; Ikari, Katsunori; Ochi, Hidenori; Noma, Hisashi; Matsui, Kota; Morizono, Takashi; Boroevich, Keith A.; Tsunoda, Tatsuhiko; Matsui, Shigeyuki

    2018-01-01

    Genome-wide association studies (GWAS) suggest that the genetic architecture of complex diseases consists of unexpectedly numerous variants with small effect sizes. However, the polygenic architectures of many diseases have not been well characterized due to lack of simple and fast methods for unbiased estimation of the underlying proportion of disease-associated variants and their effect-size distribution. Applying empirical Bayes estimation of semi-parametric hierarchical mixture models to GWAS summary statistics, we confirmed that schizophrenia was extremely polygenic [~40% of independent genome-wide SNPs are risk variants, most within odds ratio (OR = 1.03)], whereas rheumatoid arthritis was less polygenic (~4 to 8% risk variants, significant portion reaching OR = 1.05 to 1.1). For rheumatoid arthritis, stratified estimations revealed that expression quantitative loci in blood explained large genetic variance, and low- and high-frequency derived alleles were prone to be risk and protective, respectively, suggesting a predominance of deleterious-risk and advantageous-protective mutations. Despite genetic correlation, effect-size distributions for schizophrenia and bipolar disorder differed across allele frequency. These analyses distinguished disease polygenic architectures and provided clues for etiological differences in complex diseases. PMID:29740473

  8. Controlled Synthesis, Characterization, and Photocatalytic Application of Co2TiO4 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ramezani, Majid; Hosseinpour-Mashkani, S. Mostafa

    2017-02-01

    In the current study, an attempt is made to synthesize Co2TiO4 nanoparticles through the simple two-step sol-gel method with the aid of titanium(IV) isopropoxide and cobalt(II) acetate tetrahydrate as starting reagents in the presence of ethanol as a solvent. Additionally, the effects of sodium hydroxide and oxalic acid as the pH controller agents on the morphology and particle size of the products were investigated. Furthermore, effects of several natural and chemical surfactants such as starch, lactose, glucose, oleyl amine, and sodium dodecyl sulfate (SDS) on the morphology and particle size of final products were investigated. Based on the scanning electron microscopy (SEM) results, the above-mentioned parameters have a direct effect on the morphology and particle size of Co2TiO4 nanoparticles. The x-ray diffraction (XRD) results showed that pure cubic cobalt titanium oxide nanoparticles were obtained by this method after heat treatment at 600 and 900°C. Moreover, in the presence of Co2TiO4 nanoparticles as photocatalyst, the percentage of methyl orange (MO) degradation was about 100% after 40 min of irradiation of ultraviolet (UV) light.

  9. 3D Photonic Crystals Build Up By Self-Organization Of Nanospheres

    DTIC Science & Technology

    2006-05-23

    variance for simple tetragonal Vst , of which general form is defined in Equation (5), could be an important parameter affecting band structure, and it is...plotted along with gap size both as a function of lattice parameter ratio c/a in Figure 2. Apparently, the inverse of variance, i.e. 1/ Vst , shows a...possible. 0.8 1.0 1.2 1.4 1.6 1.8 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 gap size (%) 1/ Vst c/a of simple tetragonal g ap s iz e (% ) 0.85 0.86

  10. A simple technique of laparoscopic port closure allowing wound extension.

    PubMed

    Christey, G R; Poole, G

    2002-04-01

    Reliable and safe access to the abdominal cavity and efficient removal of the resected gallbladder are essential to laparoscopic cholecystectomy. The unpredictable size of the cholecystectomy specimen can sometimes lead to frustration at the time of removal. A simple technique has been developed that allows for tissue extraction and easy fascial closure regardless of the size of the specimen. This is achieved by using a four bite "U-shaped" purse string at the time of Hasson insertion, with cephalad advancement of the proximal two bites. This allows for variable wound extension and secure closure, without the need for additional sutures.

  11. Percutaneous Treatment of Renal Cysts with OK-432 Sclerosis

    PubMed Central

    Cho, Soung Yong; Cho, Kang Su; Lee, Dong Hoon; Lee, Seung Hwan

    2007-01-01

    Purpose The aim of this study was to demonstrate OK-432 sclerotherapy efficacy for treatment of simple renal cysts. Materials and Methods Twenty patients with 25 symptomatic or large simple cysts were treated by ultrasonography (US)-guided percutaneous aspiration and injection of OK-432 (8 men and 12 women, mean age 63.6 years, SD 9.5). Six patients presented with flank pain, 14 presented with renal mass; renal cyst location was right, left, or bilateral sided in 9, 8, and 8 kidneys, respectively. Patients were evaluated by clinical assessment, US, or CT scan 3 months following the procedure. Complete and partial success was defined as symptom resolution with either total cyst ablation or greater than 70% reduction, respectively. Failure was defined as 30% of cyst size recurrence and/or persistent symptoms. Results Average reduction was 93.0%. Complete and partial resolution occurred in 11 (44.0%) and 13 (52.0%) cysts, respectively. One case was defined as failure, with a 64.2% size reduction from 10.9cm to 3.9cm (volume reduction rate 95.4%). Renal pain improved in all patients, regardless of complete or partial resolution. Minor complications occurred in 3 patients, 2 developed leukocytosis and 1 had mild fever (< 38.5℃) following aspiration and sclerotherapy. Successful treatment was achieved with conservative measures and NSAID therapy. Conclusion Percutaneous treatment of simple renal cysts with OK-432 sclerotherapy was found to be a safe, effective and minimally invasive procedure. PMID:17461526

  12. The Design and Construction of a Simple Transmission Electron Microscope for Educational Purposes.

    ERIC Educational Resources Information Center

    Hearsey, Paul K.

    This document presents a model for a simple transmission electron microscope for educational purposes. This microscope could demonstrate thermonic emission, particle acceleration, electron deflection, and flourescence. It is designed to be used in high school science courses, particularly physics, taking into account the size, weight, complexity…

  13. Investigating the Magneto Electric Coupling of [90 wt%Na0.5Bi0.5TiO3 (NBT)-10 wt% BaFe12O19 (BaM)] novel multiferroiccomposite system by increasing of BaM grain size

    NASA Astrophysics Data System (ADS)

    Pattanayak, Ranjit; Raut, Subhajit; Kuila, Sourav; Chandrasekhar, Mallam; Panigrahi, Simanchala

    2017-02-01

    Polycrystalline three novel [90 wt%Na0.5Bi0.5TiO3 (NBT)-10 wt% BaFe12O19 (BaM)] magnetoelctricmultiferroic composite systems were fabricated by considering the variation (increasing) of BaM grain size. The desired formation of composites was confirmed by X-ray diffraction study. The FESEM and SEM study were verified the variation of grain size and 0-3 type connectivity of composite systems. To predict the room temperature multiferroicbehaviour of theses composite systems we were taken PE and MH loop. For investigating the extrinsic and intrinsic magnetoelctric effect magneto impedance spectroscopy was considered for theses composite systems. The variation of intrinsic magnetoelctric coupling was predicted by proposing a simple mechanical model.

  14. Avalanche statistics from data with low time resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LeBlanc, Michael; Nawano, Aya; Wright, Wendelin J.

    Extracting avalanche distributions from experimental microplasticity data can be hampered by limited time resolution. We compute the effects of low time resolution on avalanche size distributions and give quantitative criteria for diagnosing and circumventing problems associated with low time resolution. We show that traditional analysis of data obtained at low acquisition rates can lead to avalanche size distributions with incorrect power-law exponents or no power-law scaling at all. Furthermore, we demonstrate that it can lead to apparent data collapses with incorrect power-law and cutoff exponents. We propose new methods to analyze low-resolution stress-time series that can recover the size distributionmore » of the underlying avalanches even when the resolution is so low that naive analysis methods give incorrect results. We test these methods on both downsampled simulation data from a simple model and downsampled bulk metallic glass compression data and find that the methods recover the correct critical exponents.« less

  15. Fabrication of polydimethylsiloxane (PDMS) nanofluidic chips with controllable channel size and spacing.

    PubMed

    Peng, Ran; Li, Dongqing

    2016-10-07

    The ability to create reproducible and inexpensive nanofluidic chips is essential to the fundamental research and applications of nanofluidics. This paper presents a novel and cost-effective method for fabricating a single nanochannel or multiple nanochannels in PDMS chips with controllable channel size and spacing. Single nanocracks or nanocrack arrays, positioned by artificial defects, are first generated on a polystyrene surface with controllable size and spacing by a solvent-induced method. Two sets of optimal working parameters are developed to replicate the nanocracks onto the polymer layers to form the nanochannel molds. The nanochannel molds are used to make the bi-layer PDMS microchannel-nanochannel chips by simple soft lithography. An alignment system is developed for bonding the nanofluidic chips under an optical microscope. Using this method, high quality PDMS nanofluidic chips with a single nanochannel or multiple nanochannels of sub-100 nm width and height and centimeter length can be obtained with high repeatability.

  16. Beauty, body size and wages: Evidence from a unique data set.

    PubMed

    Oreffice, Sonia; Quintana-Domeque, Climent

    2016-09-01

    We analyze how attractiveness rated at the start of the interview in the German General Social Survey is related to weight, height, and body mass index (BMI), separately by gender and accounting for interviewers' characteristics or fixed effects. We show that height, weight, and BMI all strongly contribute to male and female attractiveness when attractiveness is rated by opposite-sex interviewers, and that anthropometric characteristics are irrelevant to male interviewers when assessing male attractiveness. We also estimate whether, controlling for beauty, body size measures are related to hourly wages. We find that anthropometric attributes play a significant role in wage regressions in addition to attractiveness, showing that body size cannot be dismissed as a simple component of beauty. Our findings are robust to controlling for health status and accounting for selection into working. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Avalanche statistics from data with low time resolution

    DOE PAGES

    LeBlanc, Michael; Nawano, Aya; Wright, Wendelin J.; ...

    2016-11-22

    Extracting avalanche distributions from experimental microplasticity data can be hampered by limited time resolution. We compute the effects of low time resolution on avalanche size distributions and give quantitative criteria for diagnosing and circumventing problems associated with low time resolution. We show that traditional analysis of data obtained at low acquisition rates can lead to avalanche size distributions with incorrect power-law exponents or no power-law scaling at all. Furthermore, we demonstrate that it can lead to apparent data collapses with incorrect power-law and cutoff exponents. We propose new methods to analyze low-resolution stress-time series that can recover the size distributionmore » of the underlying avalanches even when the resolution is so low that naive analysis methods give incorrect results. We test these methods on both downsampled simulation data from a simple model and downsampled bulk metallic glass compression data and find that the methods recover the correct critical exponents.« less

  18. Sample size requirements for separating out the effects of combination treatments: randomised controlled trials of combination therapy vs. standard treatment compared to factorial designs for patients with tuberculous meningitis.

    PubMed

    Wolbers, Marcel; Heemskerk, Dorothee; Chau, Tran Thi Hong; Yen, Nguyen Thi Bich; Caws, Maxine; Farrar, Jeremy; Day, Jeremy

    2011-02-02

    In certain diseases clinical experts may judge that the intervention with the best prospects is the addition of two treatments to the standard of care. This can either be tested with a simple randomized trial of combination versus standard treatment or with a 2 x 2 factorial design. We compared the two approaches using the design of a new trial in tuberculous meningitis as an example. In that trial the combination of 2 drugs added to standard treatment is assumed to reduce the hazard of death by 30% and the sample size of the combination trial to achieve 80% power is 750 patients. We calculated the power of corresponding factorial designs with one- to sixteen-fold the sample size of the combination trial depending on the contribution of each individual drug to the combination treatment effect and the strength of an interaction between the two. In the absence of an interaction, an eight-fold increase in sample size for the factorial design as compared to the combination trial is required to get 80% power to jointly detect effects of both drugs if the contribution of the less potent treatment to the total effect is at least 35%. An eight-fold sample size increase also provides a power of 76% to detect a qualitative interaction at the one-sided 10% significance level if the individual effects of both drugs are equal. Factorial designs with a lower sample size have a high chance to be underpowered, to show significance of only one drug even if both are equally effective, and to miss important interactions. Pragmatic combination trials of multiple interventions versus standard therapy are valuable in diseases with a limited patient pool if all interventions test the same treatment concept, it is considered likely that either both or none of the individual interventions are effective, and only moderate drug interactions are suspected. An adequately powered 2 x 2 factorial design to detect effects of individual drugs would require at least 8-fold the sample size of the combination trial. Current Controlled Trials ISRCTN61649292.

  19. Equilibrium properties of simple metal thin films in the self-compressed stabilized jellium model.

    PubMed

    Mahmoodi, T; Payami, M

    2009-07-01

    In this work, we have applied the self-compressed stabilized jellium model to predict the equilibrium properties of isolated thin Al, Na and Cs slabs. To make a direct correspondence to atomic slabs, we have considered only those L values that correspond to n-layered atomic slabs with 2≤n≤20, for surface indices (100), (110), and (111). The calculations are based on the density functional theory and self-consistent solution of the Kohn-Sham equations in the local density approximation. Our results show that firstly, the quantum size effects are significant for slabs with sizes smaller than or near to the Fermi wavelength of the valence electrons λ(F), and secondly, some slabs expand while others contract with respect to the bulk spacings. Based on the results, we propose a criterion for realization of significant quantum size effects that lead to expansion of some thin slabs. For more justification of the criterion, we have tested it on Li slabs for 2≤n≤6. We have compared our Al results with those obtained from using all-electron or pseudo-potential first-principles calculations. This comparison shows excellent agreements for Al(100) work functions, and qualitatively good agreements for the other work functions and surface energies. These agreements justify the way we have used the self-compressed stabilized jellium model for the correct description of the properties of simple metal slab systems. On the other hand, our results for the work functions and surface energies of large- n slabs are in good agreement with those obtained from applying the stabilized jellium model for semi-infinite systems. In addition, we have performed the slab calculations in the presence of surface corrugation for selected Al slabs and have shown that the results are worsened.

  20. One-dimensional acoustic standing waves in rectangular channels for flow cytometry.

    PubMed

    Austin Suthanthiraraj, Pearlson P; Piyasena, Menake E; Woods, Travis A; Naivar, Mark A; Lόpez, Gabriel P; Graves, Steven W

    2012-07-01

    Flow cytometry has become a powerful analytical tool for applications ranging from blood diagnostics to high throughput screening of molecular assemblies on microsphere arrays. However, instrument size, expense, throughput, and consumable use limit its use in resource poor areas of the world, as a component in environmental monitoring, and for detection of very rare cell populations. For these reasons, new technologies to improve the size and cost-to-performance ratio of flow cytometry are required. One such technology is the use of acoustic standing waves that efficiently concentrate cells and particles to the center of flow channels for analysis. The simplest form of this method uses one-dimensional acoustic standing waves to focus particles in rectangular channels. We have developed one-dimensional acoustic focusing flow channels that can be fabricated in simple capillary devices or easily microfabricated using photolithography and deep reactive ion etching. Image and video analysis demonstrates that these channels precisely focus single flowing streams of particles and cells for traditional flow cytometry analysis. Additionally, use of standing waves with increasing harmonics and in parallel microfabricated channels is shown to effectively create many parallel focused streams. Furthermore, we present the fabrication of an inexpensive optical platform for flow cytometry in rectangular channels and use of the system to provide precise analysis. The simplicity and low-cost of the acoustic focusing devices developed here promise to be effective for flow cytometers that have reduced size, cost, and consumable use. Finally, the straightforward path to parallel flow streams using one-dimensional multinode acoustic focusing, indicates that simple acoustic focusing in rectangular channels may also have a prominent role in high-throughput flow cytometry. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Effect of Ground Patterns Size on FM-Band Cross-Talks between Two Parallel Signal Traces of Printed Circuit Boards for Vehicles

    NASA Astrophysics Data System (ADS)

    Iida, Michihira; Maeno, Tsuyoshi; Fujiwara, Osamu

    It is well known that electromagnetic disturbances in vehicle-mounted radios are mainly caused by conducted noise currents flowing through wiring-harnesses from vehicle-mounted printed circuit boards (PCBs) with common ground patterns containing slits. To suppress the noise currents outflow from PCBs of these kinds, we previously measured noise currents outflow from simple two-layer PCBs having two parallel signal traces and different ground patterns with/without slits to reveal that making slits with open ends on the ground patterns in parallel with the traces can reduce the conducted noise currents. In the present study, with FDTD simulation, we investigated reduction effects of ground patterns size on the FM-band cross-talk noise levels between two parallel signal traces, by using four types of simple PCB models having different ground patterns formed in different numbers but containing the same planar dimension slits parallel to the traces, in addition to two types of PCB models with different ground patterns divided into two parts parallel to the traces. As a result, we found that the cross-talk noise currents for the above six types of PCBs decrease by 6.9-8.5dB compared to the PCB which has a plain ground with no slits. From this study, we got the finding that the contributing factor for the above mentioned cross-talk reduction relies on the reduction of mutual inductance between the two parallel traces. In addition, in case of this study, it is interesting to note that the noise currents outflow from PCBs can rather be suppressed when the size of the return ground of each signal trace is small.

  2. Size- and speed-dependent mechanical behavior in living mammalian cytoplasm.

    PubMed

    Hu, Jiliang; Jafari, Somaye; Han, Yulong; Grodzinsky, Alan J; Cai, Shengqiang; Guo, Ming

    2017-09-05

    Active transport in the cytoplasm plays critical roles in living cell physiology. However, the mechanical resistance that intracellular compartments experience, which is governed by the cytoplasmic material property, remains elusive, especially its dependence on size and speed. Here we use optical tweezers to drag a bead in the cytoplasm and directly probe the mechanical resistance with varying size a and speed V We introduce a method, combining the direct measurement and a simple scaling analysis, to reveal different origins of the size- and speed-dependent resistance in living mammalian cytoplasm. We show that the cytoplasm exhibits size-independent viscoelasticity as long as the effective strain rate V / a is maintained in a relatively low range (0.1 s -1 < V / a < 2 s -1 ) and exhibits size-dependent poroelasticity at a high effective strain rate regime (5 s -1 < V / a < 80 s -1 ). Moreover, the cytoplasmic modulus is found to be positively correlated with only V / a in the viscoelastic regime but also increases with the bead size at a constant V / a in the poroelastic regime. Based on our measurements, we obtain a full-scale state diagram of the living mammalian cytoplasm, which shows that the cytoplasm changes from a viscous fluid to an elastic solid, as well as from compressible material to incompressible material, with increases in the values of two dimensionless parameters, respectively. This state diagram is useful to understand the underlying mechanical nature of the cytoplasm in a variety of cellular processes over a broad range of speed and size scales.

  3. Size- and speed-dependent mechanical behavior in living mammalian cytoplasm

    PubMed Central

    Hu, Jiliang; Jafari, Somaye; Han, Yulong; Grodzinsky, Alan J.; Cai, Shengqiang

    2017-01-01

    Active transport in the cytoplasm plays critical roles in living cell physiology. However, the mechanical resistance that intracellular compartments experience, which is governed by the cytoplasmic material property, remains elusive, especially its dependence on size and speed. Here we use optical tweezers to drag a bead in the cytoplasm and directly probe the mechanical resistance with varying size a and speed V. We introduce a method, combining the direct measurement and a simple scaling analysis, to reveal different origins of the size- and speed-dependent resistance in living mammalian cytoplasm. We show that the cytoplasm exhibits size-independent viscoelasticity as long as the effective strain rate V/a is maintained in a relatively low range (0.1 s−1 < V/a < 2 s−1) and exhibits size-dependent poroelasticity at a high effective strain rate regime (5 s−1 < V/a < 80 s−1). Moreover, the cytoplasmic modulus is found to be positively correlated with only V/a in the viscoelastic regime but also increases with the bead size at a constant V/a in the poroelastic regime. Based on our measurements, we obtain a full-scale state diagram of the living mammalian cytoplasm, which shows that the cytoplasm changes from a viscous fluid to an elastic solid, as well as from compressible material to incompressible material, with increases in the values of two dimensionless parameters, respectively. This state diagram is useful to understand the underlying mechanical nature of the cytoplasm in a variety of cellular processes over a broad range of speed and size scales. PMID:28827333

  4. 3D-HST + CANDELS: the Evolution of the Galaxy Size-mass Distribution Since Z=3

    NASA Technical Reports Server (NTRS)

    VanDerWel, A.; Franx, M.; vanDokkum, P. G.; Skelton, R. E.; Momcheva, I. G.; Whitaker, K. E.; Brammer, G. B.; Bell, E. F.; Rix, H.-W.; Wuyts, S.; hide

    2014-01-01

    Spectroscopic and photometric redshifts, stellar mass estimates, and rest-frame colors from the 3D-HST survey are combined with structural parameter measurements from CANDELS imaging to determine the galaxy size-mass distribution over the redshift (z) range 0 < z < 3. Separating early- and late-type galaxies on the basis of star-formation activity, we confirm that early-type galaxies are on average smaller than late-type galaxies at all redshifts, and find a significantly different rate of average size evolution at fixed galaxy mass, with fast evolution for the early-type population, effective radius is in proportion to (1 + z) (sup -1.48), and moderate evolution for the late-type population, effective radius is in proportion to (1 + z) (sup -0.75). The large sample size and dynamic range in both galaxy mass and redshift, in combination with the high fidelity of our measurements due to the extensive use of spectroscopic data, not only fortify previous results, but also enable us to probe beyond simple average galaxy size measurements. At all redshifts the slope of the size-mass relation is shallow, effective radius in proportion to mass of a black hole (sup 0.22), for late-type galaxies with stellar mass > 3 x 10 (sup 9) solar masses, and steep, effective radius in proportion to mass of a black hole (sup 0.75), for early-type galaxies with stellar mass > 2 x 10 (sup 10) solar masses. The intrinsic scatter is approximately or less than 0.2 decimal exponents for all galaxy types and redshifts. For late-type galaxies, the logarithmic size distribution is not symmetric, but skewed toward small sizes: at all redshifts and masses a tail of small late-type galaxies exists that overlaps in size with the early-type galaxy population. The number density of massive (approximately 10 (sup 11) solar masses), compact (effective radius less than 2 kiloparsecs) early-type galaxies increases from z = 3 to z = 1.5 - 2 and then strongly decreases at later cosmic times.

  5. Novel strategy for diameter-selective separation and functionalization of single-wall carbon nanotubes.

    PubMed

    Tromp, R M; Afzali, A; Freitag, M; Mitzi, D B; Chen, Zh

    2008-02-01

    The problem of separating single-wall carbon nanotubes (CNTs) by diameter and/or chirality is one of the greatest impediments toward the widespread application of these promising materials in nanoelectronics. In this paper, we describe a novel physical-chemical method for diameter-selective CNT separation that is both simple and effective and that allows up-scaling to large volumes at modest cost. Separation is based on size-selective noncovalent matching of an appropriate anchor molecule to the wall of the CNT, enabling suspension of the CNTs in solvents in which they would otherwise not be soluble. We demonstrate size-selective separation in the 1-2 nm diameter range using easily synthesized oligo-acene adducts as a diameter-selective molecular anchor. CNT field effect transistors fabricated from diameter-selected CNTs show markedly improved electrical properties as compared to nonselected CNTs.

  6. Ultra-High Throughput Synthesis of Nanoparticles with Homogeneous Size Distribution Using a Coaxial Turbulent Jet Mixer

    PubMed Central

    2015-01-01

    High-throughput production of nanoparticles (NPs) with controlled quality is critical for their clinical translation into effective nanomedicines for diagnostics and therapeutics. Here we report a simple and versatile coaxial turbulent jet mixer that can synthesize a variety of NPs at high throughput up to 3 kg/d, while maintaining the advantages of homogeneity, reproducibility, and tunability that are normally accessible only in specialized microscale mixing devices. The device fabrication does not require specialized machining and is easy to operate. As one example, we show reproducible, high-throughput formulation of siRNA-polyelectrolyte polyplex NPs that exhibit effective gene knockdown but exhibit significant dependence on batch size when formulated using conventional methods. The coaxial turbulent jet mixer can accelerate the development of nanomedicines by providing a robust and versatile platform for preparation of NPs at throughputs suitable for in vivo studies, clinical trials, and industrial-scale production. PMID:24824296

  7. Origin of Stability in Particle Sedimentation

    NASA Technical Reports Server (NTRS)

    Segre, Philip N.

    2003-01-01

    Particle Image Velocimetry (PIV) is used to study the slow settling motions of spheres in suspensions ranging from dilute to highly concentrated, 0.0001 less than phi less than 0.50. During sedimentation, particle velocity fluctuations are found to be organized into regions of characteristic size xi approximately 11 a phi (exp -1/3). A simple model, based upon buoyant mass fluctuations DELTAm given by random density fluctuations in a region of size xi, accurately predicts the magnitudes of the velocity fluctuations DELTAV. We also find a new universal relation for particle diffusion during sedimentation. It can be written in a Stokes-Einstein form as Dapproximately(DELTAmxi)/(6pietaxi), where the effective temperature DELTAmgxi is the gravitational potential energy of density fluctuations. In addition related experiments examining inertial effects and transient states, that are aimed at uncovering the origin of the new lengthscale xi, will also be given.

  8. Fano resonance assisting plasmonic circular dichroism from nanorice heterodimers for extrinsic chirality

    NASA Astrophysics Data System (ADS)

    Hu, Li; Huang, Yingzhou; Fang, Liang; Chen, Guo; Wei, Hua; Fang, Yurui

    2015-11-01

    In this work, the circular dichroisms (CD) of nanorice heterodimers consisting of two parallel arranged nanorices with the same size but different materials are investigated theoretically. Symmetry-breaking is introduced by using different materials and oblique incidence to achieve strong CD at the vicinity of Fano resonance peaks. We demonstrate that all Au-Ag heterodimers exhibit multipolar Fano resonances and strong CD effect. A simple quantitative analysis shows that the structure with larger Fano asymmetry factor has stronger CD. The intensity and peak positions of the CD effect can be flexibly tuned in a large range by changing particle size, shape, the inter-particle distance and surroundings. Furthermore, CD spectra exhibit high sensitivity to ambient medium in visible and near infrared regions. Our results here are beneficial for the design and application of high sensitive CD sensors and other related fields.

  9. Electrostatic wrapping of doxorubicin with curdlan to construct an efficient pH-responsive drug delivery system

    NASA Astrophysics Data System (ADS)

    Zhou, Jiang-Ling; Song, Fei; Tian, Jia-Feng; Nie, Wu-Cheng; Wang, Xiu-Li; Wang, Yu-Zhong

    2017-07-01

    The development of environmentally responsive drug delivery systems for the treatment of cancer has attracted particular interest in recent years. However, the enhancement of drug loading capacity and realization of pH-responsive drug delivery remain challenging. Herein, we employ carboxymethyl curdlan as a hydrophilic carrier to wrap doxorubicin (DOX) directly via electrostatic interaction. The sizes of the formed nanoparticles can be simply tuned by changing their feeding ratios. In particular, the nanoparticles are highly stable in aqueous solution without size variation. In vitro drug release and cytotoxicity assays illustrate that this delivery system can release DOX differentially under various environmental conditions and transport it into cell nuclei efficiently, with comparable therapeutic effect to the free drug. These results suggest that the carrying of antitumor drugs by polysaccharide via electrostatic interaction is a simple but effective way to construct a pH-dependent drug delivery platform.

  10. Quantum tunneling of magnetization and related phenomena in molecular materials.

    PubMed

    Gatteschi, Dante; Sessoli, Roberta

    2003-01-20

    Molecules comprising a large number of coupled paramagnetic centers are attracting much interest because they may show properties which are intermediate between those of simple paramagnets and classical bulk magnets and provide unambiguous evidence of quantum size effects in magnets. To date, two cluster families, usually referred to as Mn12 and Fe8, have been used to test theories. However, it is reasonable to predict that other classes of molecules will be discovered which have similar or superior properties. To do this it is necessary that synthetic chemists have a good understanding of the correlation between the structure and properties of the molecules, for this it is necessary that concepts such as quantum tunneling, quantum coherence, quantum oscillations are understood. The goal of this article is to review the fundamental concepts needed to understand quantum size effects in molecular magnets and to critically report what has been done in the field to date.

  11. Finite Size Corrections to the Parisi Overlap Function in the GREM

    NASA Astrophysics Data System (ADS)

    Derrida, Bernard; Mottishaw, Peter

    2018-01-01

    We investigate the effects of finite size corrections on the overlap probabilities in the Generalized Random Energy Model in two situations where replica symmetry is broken in the thermodynamic limit. Our calculations do not use replicas, but shed some light on what the replica method should give for finite size corrections. In the gradual freezing situation, which is known to exhibit full replica symmetry breaking, we show that the finite size corrections lead to a modification of the simple relations between the sample averages of the overlaps Y_k between k configurations predicted by replica theory. This can be interpreted as fluctuations in the replica block size with a negative variance. The mechanism is similar to the one we found recently in the random energy model in Derrida and Mottishaw (J Stat Mech 2015(1): P01021, 2015). We also consider a simultaneous freezing situation, which is known to exhibit one step replica symmetry breaking. We show that finite size corrections lead to full replica symmetry breaking and give a more complete derivation of the results presented in Derrida and Mottishaw (Europhys Lett 115(4): 40005, 2016) for the directed polymer on a tree.

  12. Solvent effect in sonochemical synthesis of metal-alloy nanoparticles for use as electrocatalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okoli, Celest U.; Kuttiyiel, Kurian A.; Cole, Jesse

    Nanomaterials are now widely used in the fabrication of electrodes and electrocatalysts. In this paper, we report a sonochemical study of the synthesis of molybdenum and palladium alloy nanomaterials supported on functionalized carbon material in various solvents: hexadecane, ethanol, ethylene glycol, polyethylene glycol (PEG 400) and Ionic liquids (ILs). The objective was to identify simple and more environmentally friendly design and fabrication methods for nanomaterial synthesis that are suitable as electrocatalysts in electrochemical applications. The particles size and distribution of nanomaterials were compared on two different carbons as supports: activated carbon and multiwall carbon nanotubes (MWCNTs). The results show thatmore » carbon materials functionalized with ILs in ethanol/deionized water mixture solvent produced smaller particles sizes (3.00 ± 0.05 nm) with uniform distribution while in PEG 400, functionalized materials produced 4.00 ± 1 nm sized particles with uneven distribution (range). In hexadecane solvents with Polyvinylpyrrolidone (PVP) as capping ligands, large particle sizes (14.00 ± 1 nm) were produced with wide particle size distribution. Finally, the metal alloy nanoparticles produced in ILs without any external reducing agent have potential to exhibit a higher catalytic activity due to smaller particle size and uniform distribution.« less

  13. Solvent effect in sonochemical synthesis of metal-alloy nanoparticles for use as electrocatalysts

    DOE PAGES

    Okoli, Celest U.; Kuttiyiel, Kurian A.; Cole, Jesse; ...

    2017-10-03

    Nanomaterials are now widely used in the fabrication of electrodes and electrocatalysts. In this paper, we report a sonochemical study of the synthesis of molybdenum and palladium alloy nanomaterials supported on functionalized carbon material in various solvents: hexadecane, ethanol, ethylene glycol, polyethylene glycol (PEG 400) and Ionic liquids (ILs). The objective was to identify simple and more environmentally friendly design and fabrication methods for nanomaterial synthesis that are suitable as electrocatalysts in electrochemical applications. The particles size and distribution of nanomaterials were compared on two different carbons as supports: activated carbon and multiwall carbon nanotubes (MWCNTs). The results show thatmore » carbon materials functionalized with ILs in ethanol/deionized water mixture solvent produced smaller particles sizes (3.00 ± 0.05 nm) with uniform distribution while in PEG 400, functionalized materials produced 4.00 ± 1 nm sized particles with uneven distribution (range). In hexadecane solvents with Polyvinylpyrrolidone (PVP) as capping ligands, large particle sizes (14.00 ± 1 nm) were produced with wide particle size distribution. Finally, the metal alloy nanoparticles produced in ILs without any external reducing agent have potential to exhibit a higher catalytic activity due to smaller particle size and uniform distribution.« less

  14. Facile fabrication of a silicon nanowire sensor by two size reduction steps for detection of alpha-fetoprotein biomarker of liver cancer

    NASA Astrophysics Data System (ADS)

    Binh Pham, Van; ThanhTung Pham, Xuan; Nhat Khoa Phan, Thanh; Thanh Tuyen Le, Thi; Chien Dang, Mau

    2015-12-01

    We present a facile technique that only uses conventional micro-techniques and two size-reduction steps to fabricate wafer-scale silicon nanowire (SiNW) with widths of 200 nm. Initially, conventional lithography was used to pattern SiNW with 2 μm width. Then the nanowire width was decreased to 200 nm by two size-reduction steps with isotropic wet etching. The fabricated SiNW was further investigated when used with nanowire field-effect sensors. The electrical characteristics of the fabricated SiNW devices were characterized and pH sensitivity was investigated. Then a simple and effective surface modification process was carried out to modify SiNW for subsequent binding of a desired receptor. The complete SiNW-based biosensor was then used to detect alpha-fetoprotein (AFP), one of the medically approved biomarkers for liver cancer diagnosis. Electrical measurements showed that the developed SiNW biosensor could detect AFP with concentrations of about 100 ng mL-1. This concentration is lower than the necessary AFP concentration for liver cancer diagnosis.

  15. Understanding the science of portion control and the art of downsizing.

    PubMed

    Hetherington, Marion M; Blundell-Birtill, Pam; Caton, Samantha J; Cecil, Joanne E; Evans, Charlotte E; Rolls, Barbara J; Tang, Tang

    2018-05-24

    Offering large portions of high-energy-dense (HED) foods increases overall intake in children and adults. This is known as the portion size effect (PSE). It is robust, reliable and enduring. Over time, the PSE may facilitate overeating and ultimately positive energy balance. Therefore, it is important to understand what drives the PSE and what might be done to counter the effects of an environment promoting large portions, especially in children. Explanations for the PSE are many and diverse, ranging from consumer error in estimating portion size to simple heuristics such as cleaning the plate or eating in accordance with consumption norms. However, individual characteristics and hedonic processes influence the PSE, suggesting a more complex explanation than error or heuristics. Here PSE studies are reviewed to identify interventions that can be used to downsize portions of HED foods, with a focus on children who are still learning about social norms for portion size. Although the scientific evidence for the PSE is robust, there is still a need for creative downsizing solutions to facilitate portion control as children and adolescents establish their eating habits.

  16. Thermocapillary flow contribution to dropwise condensation heat transfer

    NASA Astrophysics Data System (ADS)

    Phadnis, Akshay; Rykaczewski, Konrad

    2017-11-01

    With recent developments of durable hydrophobic materials potentially enabling industrial applications of dropwise condensation, accurate modeling of heat transfer during this phase change process is becoming increasingly important. Classical steady state models of dropwise condensation are based on the integration of heat transfer through individual droplets over the entire drop size distribution. These models consider only the conduction heat transfer inside the droplets. However, simple scaling arguments suggest that thermocapillary flows might exist in such droplets. In this work, we used Finite Element heat transfer model to quantify the effect of Marangoni flow on dropwise condensation heat transfer of liquids with a wide range of surface tensions ranging from water to pentane. We confirmed that the Marangoni flow is present for a wide range of droplet sizes, but only has quantifiable effects on heat transfer in drops larger than 10 µm. By integrating the single drop heat transfer simulation results with drop size distribution for the cases considered, we demonstrated that Marangoni flow contributes a 10-30% increase in the overall heat transfer coefficient over conduction only model.

  17. Neighbour effects on Erica multiflora (Ericaceae) reproductive performance after clipping

    NASA Astrophysics Data System (ADS)

    Vilà, Montserrat; Terradas, Jaume

    1998-04-01

    The effect of interspecific competition on resprouting and reproductive success and the relationship between above-ground vegetative biomass variability and reproductive biomass variability were analysed during resprouting after clipping. For this purpose, a field experiment was performed by removing neighbours around individuals of Erica multiflora in a Mediterranean shrub community. Removal of neighbours increased the number of sprouts and the above-ground vegetative biomass of target plants. However, it did not decrease plant size variability. Neighbours decreased the likelihood of fruiting and the biomass of fruits. In target plants that had set fruits a simple allometric relationship between above-ground vegetative biomass and the biomass of fruits explained 42% of the variation in fruit biomass. The probability to set fruits at a given plant size was smaller in plants with neighbours than without neighbours. Presence of neighbours also increased the variability of fruit biomass within the population, because 50% of target plants with neighbours did not set fruits. This failure to set fruits may be related to shading, the small size of plants with neighbours, as well as a delay in development.

  18. Variance Estimation, Design Effects, and Sample Size Calculations for Respondent-Driven Sampling

    PubMed Central

    2006-01-01

    Hidden populations, such as injection drug users and sex workers, are central to a number of public health problems. However, because of the nature of these groups, it is difficult to collect accurate information about them, and this difficulty complicates disease prevention efforts. A recently developed statistical approach called respondent-driven sampling improves our ability to study hidden populations by allowing researchers to make unbiased estimates of the prevalence of certain traits in these populations. Yet, not enough is known about the sample-to-sample variability of these prevalence estimates. In this paper, we present a bootstrap method for constructing confidence intervals around respondent-driven sampling estimates and demonstrate in simulations that it outperforms the naive method currently in use. We also use simulations and real data to estimate the design effects for respondent-driven sampling in a number of situations. We conclude with practical advice about the power calculations that are needed to determine the appropriate sample size for a study using respondent-driven sampling. In general, we recommend a sample size twice as large as would be needed under simple random sampling. PMID:16937083

  19. Simple, Defensible Sample Sizes Based on Cost Efficiency

    PubMed Central

    Bacchetti, Peter; McCulloch, Charles E.; Segal, Mark R.

    2009-01-01

    Summary The conventional approach of choosing sample size to provide 80% or greater power ignores the cost implications of different sample size choices. Costs, however, are often impossible for investigators and funders to ignore in actual practice. Here, we propose and justify a new approach for choosing sample size based on cost efficiency, the ratio of a study’s projected scientific and/or practical value to its total cost. By showing that a study’s projected value exhibits diminishing marginal returns as a function of increasing sample size for a wide variety of definitions of study value, we are able to develop two simple choices that can be defended as more cost efficient than any larger sample size. The first is to choose the sample size that minimizes the average cost per subject. The second is to choose sample size to minimize total cost divided by the square root of sample size. This latter method is theoretically more justifiable for innovative studies, but also performs reasonably well and has some justification in other cases. For example, if projected study value is assumed to be proportional to power at a specific alternative and total cost is a linear function of sample size, then this approach is guaranteed either to produce more than 90% power or to be more cost efficient than any sample size that does. These methods are easy to implement, based on reliable inputs, and well justified, so they should be regarded as acceptable alternatives to current conventional approaches. PMID:18482055

  20. Determination of grain-size characteristics from electromagnetic seabed mapping data: A NW Iberian shelf study

    NASA Astrophysics Data System (ADS)

    Baasch, Benjamin; Müller, Hendrik; von Dobeneck, Tilo; Oberle, Ferdinand K. J.

    2017-05-01

    The electric conductivity and magnetic susceptibility of sediments are fundamental parameters in environmental geophysics. Both can be derived from marine electromagnetic profiling, a novel, fast and non-invasive seafloor mapping technique. Here we present statistical evidence that electric conductivity and magnetic susceptibility can help to determine physical grain-size characteristics (size, sorting and mud content) of marine surficial sediments. Electromagnetic data acquired with the bottom-towed electromagnetic profiler MARUM NERIDIS III were analysed and compared with grain size data from 33 samples across the NW Iberian continental shelf. A negative correlation between mean grain size and conductivity (R=-0.79) as well as mean grain size and susceptibility (R=-0.78) was found. Simple and multiple linear regression analyses were carried out to predict mean grain size, mud content and the standard deviation of the grain-size distribution from conductivity and susceptibility. The comparison of both methods showed that multiple linear regression models predict the grain-size distribution characteristics better than the simple models. This exemplary study demonstrates that electromagnetic benthic profiling is capable to estimate mean grain size, sorting and mud content of marine surficial sediments at a very high significance level. Transfer functions can be calibrated using grains-size data from a few reference samples and extrapolated along shelf-wide survey lines. This study suggests that electromagnetic benthic profiling should play a larger role for coastal zone management, seafloor contamination and sediment provenance studies in worldwide continental shelf systems.

  1. A computational framework for automation of point defect calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goyal, Anuj; Gorai, Prashun; Peng, Haowei

    We have developed a complete and rigorously validated open-source Python framework to automate point defect calculations using density functional theory. Furthermore, the framework provides an effective and efficient method for defect structure generation, and creation of simple yet customizable workflows to analyze defect calculations. This package provides the capability to compute widely-accepted correction schemes to overcome finite-size effects, including (1) potential alignment, (2) image-charge correction, and (3) band filling correction to shallow defects. Using Si, ZnO and In2O3 as test examples, we demonstrate the package capabilities and validate the methodology.

  2. Sandwich Structure Risk Reduction in Support of the Payload Adapter Fitting

    NASA Technical Reports Server (NTRS)

    Nettles, A. T.; Jackson, J. R.; Guin, W. E.

    2018-01-01

    Reducing risk for utilizing honeycomb sandwich structure for the Space Launch System payload adapter fitting includes determining what parameters need to be tested for damage tolerance to ensure a safe structure. Specimen size and boundary conditions are the most practical parameters to use in damage tolerance inspection. The effect of impact over core splices and foreign object debris between the facesheet and core is assessed. Effects of enhanced damage tolerance by applying an outer layer of carbon fiber woven cloth is examined. A simple repair technique for barely visible impact damage that restores all compression strength is presented.

  3. A computational framework for automation of point defect calculations

    DOE PAGES

    Goyal, Anuj; Gorai, Prashun; Peng, Haowei; ...

    2017-01-13

    We have developed a complete and rigorously validated open-source Python framework to automate point defect calculations using density functional theory. Furthermore, the framework provides an effective and efficient method for defect structure generation, and creation of simple yet customizable workflows to analyze defect calculations. This package provides the capability to compute widely-accepted correction schemes to overcome finite-size effects, including (1) potential alignment, (2) image-charge correction, and (3) band filling correction to shallow defects. Using Si, ZnO and In2O3 as test examples, we demonstrate the package capabilities and validate the methodology.

  4. Oil-water separation property of polymer-contained wastewater from polymer-flooding oilfields in Bohai Bay, China.

    PubMed

    Chen, Hua-xing; Tang, Hong-ming; Duan, Ming; Liu, Yi-gang; Liu, Min; Zhao, Feng

    2015-01-01

    In this study, the effects of gravitational settling time, temperature, speed and time of centrifugation, flocculant type and dosage, bubble size and gas amount were investigated. The results show that the simple increase in settling time and temperature is of no use for oil-water separation of the three wastewater samples. As far as oil-water separation efficiency is concerned, increasing centrifugal speed and centrifugal time is highly effective for L sample, and has a certain effect on J sample, but is not valid for S sample. The flocculants are highly effective for S and L samples, and the oil-water separation efficiency increases with an increase in the concentration of inorganic cationic flocculants. There exist critical reagent concentrations for the organic cationic and the nonionic flocculants, wherein a higher or lower concentration of flocculant would cause a decrease in the treatment efficiency. Flotation is an effective approach for oil-water separation of polymer-contained wastewater from the three oilfields. The oil-water separation efficiency can be enhanced by increasing floatation agent concentration, flotation time and gas amount, and by decreasing bubble size.

  5. A Physical Model to Study the Effects of Nozzle Design on Dispersed Two-Phase Flows in a Slab Mold Casting Ultra-Low-Carbon Steels

    NASA Astrophysics Data System (ADS)

    Salazar-Campoy, María M.; Morales, R. D.; Nájera-Bastida, A.; Calderón-Ramos, Ismael; Cedillo-Hernández, Valentín; Delgado-Pureco, J. C.

    2018-04-01

    The effects of nozzle design on dispersed, two-phase flows of the steel-argon system in a slab mold are studied using a water-air model with particle image velocimetry and ultrasound probe velocimetry techniques. Three nozzle designs were tested with the same bore size and different port geometries, including square (S), special bottom design with square ports (U), and circular (C). The meniscus velocities of the liquid increase two- or threefold in two-phase flows regarding one-phase flows using low flow rates of the gas phase. This effect is due to the dragging effects on bubbles by the liquid jets forming two-way coupled flows. Liquid velocities (primary phase) along the narrow face of the mold also are higher for two-phase flows. Flows using nozzle U are less dependent on the effects of the secondary phase (air). The smallest bubble sizes are obtained using nozzle U, which confirms that bubble breakup is dependent on the strain rates of the fluid and dissipation of kinetic energy in the nozzle bottom and port edges. Through dimensionless analysis, it was found that the bubble sizes are inversely proportional to the dissipation rate of the turbulent kinetic energy, ɛ 0.4. A simple expression involving ɛ, surface tension, and density of metal is derived to scale up bubble sizes in water to bubble sizes in steel with different degrees of deoxidation. The validity of water-air models to study steel-argon flows is discussed. Prior works related with experiments to model argon bubbling in steel slab molds under nonwetting conditions are critically reviewed.

  6. MaNGA: Target selection and Optimization

    NASA Astrophysics Data System (ADS)

    Wake, David

    2015-01-01

    The 6-year SDSS-IV MaNGA survey will measure spatially resolved spectroscopy for 10,000 nearby galaxies using the Sloan 2.5m telescope and the BOSS spectrographs with a new fiber arrangement consisting of 17 individually deployable IFUs. We present the simultaneous design of the target selection and IFU size distribution to optimally meet our targeting requirements. The requirements for the main samples were to use simple cuts in redshift and magnitude to produce an approximately flat number density of targets as a function of stellar mass, ranging from 1x109 to 1x1011 M⊙, and radial coverage to either 1.5 (Primary sample) or 2.5 (Secondary sample) effective radii, while maximizing S/N and spatial resolution. In addition we constructed a 'Color-Enhanced' sample where we required 25% of the targets to have an approximately flat number density in the color and mass plane. We show how these requirements are met using simple absolute magnitude (and color) dependent redshift cuts applied to an extended version of the NASA Sloan Atlas (NSA), how this determines the distribution of IFU sizes and the resulting properties of the MaNGA sample.

  7. MaNGA: Target selection and Optimization

    NASA Astrophysics Data System (ADS)

    Wake, David

    2016-01-01

    The 6-year SDSS-IV MaNGA survey will measure spatially resolved spectroscopy for 10,000 nearby galaxies using the Sloan 2.5m telescope and the BOSS spectrographs with a new fiber arrangement consisting of 17 individually deployable IFUs. We present the simultaneous design of the target selection and IFU size distribution to optimally meet our targeting requirements. The requirements for the main samples were to use simple cuts in redshift and magnitude to produce an approximately flat number density of targets as a function of stellar mass, ranging from 1x109 to 1x1011 M⊙, and radial coverage to either 1.5 (Primary sample) or 2.5 (Secondary sample) effective radii, while maximizing S/N and spatial resolution. In addition we constructed a "Color-Enhanced" sample where we required 25% of the targets to have an approximately flat number density in the color and mass plane. We show how these requirements are met using simple absolute magnitude (and color) dependent redshift cuts applied to an extended version of the NASA Sloan Atlas (NSA), how this determines the distribution of IFU sizes and the resulting properties of the MaNGA sample.

  8. Process scale-up considerations for non-thermal atmospheric-pressure plasma synthesis of nanoparticles by homogenous nucleation

    NASA Astrophysics Data System (ADS)

    Cole, Jonathan; Zhang, Yao; Liu, Tianqi; Liu, Chang-jun; Mohan Sankaran, R.

    2017-08-01

    Scale-up of non-thermal atmospheric-pressure plasma reactors for the synthesis of nanoparticles by homogeneous nucleation is challenging because the active volume is typically reduced to facilitate gas breakdown, enhance discharge stability, and limit particle size and agglomeration, but thus limits throughput. Here, we introduce a dielectric barrier discharge reactor consisting of a coaxial electrode geometry for nanoparticle production that enables a simple scale-up strategy whereby increasing the outer and inner electrode diameters, the plasma volume is increased approximately linearly, while maintaining a sufficiently small electrode gap to maintain the electric field strength. We show with two test reactors that for a given residence time, the nanoparticle production rate increases linearly with volume over a range of precursor concentrations, while having minimal effect on the shape of the particle size distribution. However, our study also reveals that increasing the total gas flow rate in a smaller volume reactor leads to an enhancement of precursor conversion and a comparable production rate to a larger volume reactor. These results suggest that scale-up requires better understanding of the influence of reactor geometry on particle growth dynamics and may not always be a simple function of reactor volume.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Shengwei; Yu Jiaguo

    Bi{sub 2}WO{sub 6} hierarchical multilayered flower-like assemblies are fabricated on a large scale by a simple hydrothermal method in the presence of polymeric poly(sodium 4-styrenesulfonate). Such 3D Bi{sub 2}WO{sub 6} assemblies are constructed from orderly arranged 2D layers, which are further composed of a large number of interconnected nanoplates with a mean side length of ca. 50 nm. The bimodal mesopores associated with such hierarchical assembly exhibit peak mesopore size of ca. 4 nm for the voids within a layer, and peak mesopore size of ca. 40 nm corresponding to the interspaces between stacked layers, respectively. The formation process ismore » discussed on the basis of the results of time-dependent experiments, which support a novel 'coupled cooperative assembly and localized ripening' formation mechanism. More interestingly, we have noticed that the collective effect related to such hierarchical assembly induces a significantly enhanced optical absorbance in the UV-visible region. This work may shed some light on the design of complex architectures and exploitation of their potential applications. - Graphical abstract: Bi{sub 2}WO{sub 6} hierarchical multilayered flower-like assemblies are fabricated on a large scale by a simple hydrothermal method in the presence of polymeric poly(sodium 4-styrenesulfonate)« less

  10. Biomimetic Models for An Ecological Approach to Massively-Deployed Sensor Networks

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H.; Lodding, Kenneth N.; Olariu, Stephan; Wilson, Larry; Xin, Chunsheng

    2005-01-01

    Promises of ubiquitous control of the physical environment by massively-deployed wireless sensor networks open avenues for new applications that will redefine the way we live and work. Due to small size and low cost of sensor devices, visionaries promise systems enabled by deployment of massive numbers of sensors ubiquitous throughout our environment working in concert. Recent research has concentrated on developing techniques for performing relatively simple tasks with minimal energy expense, assuming some form of centralized control. Unfortunately, centralized control is not conducive to parallel activities and does not scale to massive size networks. Execution of simple tasks in sparse networks will not lead to the sophisticated applications predicted. We propose a new way of looking at massively-deployed sensor networks, motivated by lessons learned from the way biological ecosystems are organized. We demonstrate that in such a model, fully distributed data aggregation can be performed in a scalable fashion in massively deployed sensor networks, where motes operate on local information, making local decisions that are aggregated across the network to achieve globally-meaningful effects. We show that such architectures may be used to facilitate communication and synchronization in a fault-tolerant manner, while balancing workload and required energy expenditure throughout the network.

  11. Effect of structural changes of lignocelluloses material upon pre-treatment using green solvents

    NASA Astrophysics Data System (ADS)

    Gunny, Ahmad Anas Nagoor; Arbain, Dachyar; Jamal, Parveen

    2017-04-01

    The Malaysia Biomass strategy 2020 stated that the key step of biofuel production from biomass lies on the pretreatment process. Conventional `pre-treatment' methods are `non-green" and costly. The recent green and cost-effective biomass pretreatment is using new generation of Ionic Liquids also known as Deep Eutectic Solvents (DESs). DESs are made of renewable components are cheaper, greener and the process synthesis are easier. Thus, the present paper concerns with the preparation of various combination of DES and to study the effect of DESs pretreatment process on microcrystalline cellulose (MCC), a model substrate. The crystalline structural changes were studied using using X-ray Diffraction Methods, Fourier Transformed Infrared Spectroscopy (FTIR) and surface area and pore size analysis. Results showed reduction of crystalline structure of MCC treated with the DESs and increment of surface area and pore size of MCC after pre-treatment process. These results indicated the DES has successfully converted the lignocelluloses material in the form suitable for hydrolysis and conversion to simple sugar.

  12. Evaluation of a cognitive psychophysiological model for management of tic disorders: an open trial.

    PubMed

    O'Connor, Kieron; Lavoie, Marc; Blanchet, Pierre; St-Pierre-Delorme, Marie-Ève

    2016-07-01

    Tic disorders, in particular chronic tic disorder and Tourette syndrome, affect about 1% of the population. The current treatment of choice is pharmacological or behavioural, addressing tics or the premonitory urges preceding tic onset. The current study reports an open trial evaluating the effectiveness of a cognitive psychophysiological treatment addressing Tourette-specific sensorimotor activation processes rather than the tic. Forty-nine people with Tourette syndrome and 36 people with chronic tics completed 10 weeks of individual cognitive psychophysiological therapy. Outcome measures included two tic severity scales and psychosocial measures. Post-treatment both groups had significantly improved on the tic scales with strong effect sizes across tic locations and complex and simple tics, maintained at 6-month follow-up with further change in perfectionism and self-esteem. The cognitive psychophysiological approach targeting underlying sensorimotor processes rather than tics in Tourette's and chronic tic disorder reduced symptoms with a large effect size. © The Royal College of Psychiatrists 2016.

  13. Fastener load tests and retention systems tests for cryogenic wind-tunnel models

    NASA Technical Reports Server (NTRS)

    Wallace, J. W.

    1984-01-01

    A-286 stainless steel screws were tested to determine the tensile load capability and failure mode of various screw sizes and types at both cryogenic and room temperature. Additionally, five fastener retention systems were tested by using A-286 screws with specimens made from the primary metallic alloys that are currently used for cryogenic models. The locking system effectiveness was examined by simple no-load cycling to cryogenic temperatures (-275 F) as well as by dynamic and static loading at cryogenic temperatures. In general, most systems were found to be effective retention devices. There are some differences between the various devices with respect to ease of application, cleanup, and reuse. Results of tests at -275 F imply that the cold temperatures act to improve screw retention. The improved retention is probably the result of differential thermal contraction and/or increased friction (thread-binding effects). The data provided are useful in selecting screw sizes, types, and locking devices for model systems to be tested in cryogenic wind tunnels.

  14. Inertial particle manipulation in microscale oscillatory flows

    NASA Astrophysics Data System (ADS)

    Agarwal, Siddhansh; Rallabandi, Bhargav; Raju, David; Hilgenfeldt, Sascha

    2017-11-01

    Recent work has shown that inertial effects in oscillating flows can be exploited for simultaneous transport and differential displacement of microparticles, enabling size sorting of such particles on extraordinarily short time scales. Generalizing previous theory efforts, we here derive a two-dimensional time-averaged version of the Maxey-Riley equation that includes the effect of an oscillating interface to model particle dynamics in such flows. Separating the steady transport time scale from the oscillatory time scale results in a simple and computationally efficient reduced model that preserves all slow-time features of the full unsteady Maxey-Riley simulations, including inertial particle displacement. Comparison is made not only to full simulations, but also to experiments using oscillating bubbles as the driving interfaces. In this case, the theory predicts either an attraction to or a repulsion from the bubble interface due to inertial effects, so that versatile particle manipulation is possible using differences in particle size, particle/fluid density contrast and streaming strength. We also demonstrate that these predictions are in agreement with experiments.

  15. Size and habit evolution of PETN crystals - a lattice Monte Carlo study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zepeda-Ruiz, L A; Maiti, A; Gee, R

    2006-02-28

    Starting from an accurate inter-atomic potential we develop a simple scheme of generating an ''on-lattice'' molecular potential of short range, which is then incorporated into a lattice Monte Carlo code for simulating size and shape evolution of nanocrystallites. As a specific example, we test such a procedure on the morphological evolution of a molecular crystal of interest to us, e.g., Pentaerythritol Tetranitrate, or PETN, and obtain realistic facetted structures in excellent agreement with experimental morphologies. We investigate several interesting effects including, the evolution of the initial shape of a ''seed'' to an equilibrium configuration, and the variation of growth morphologymore » as a function of the rate of particle addition relative to diffusion.« less

  16. Correcting For Seed-Particle Lag In LV Measurements

    NASA Technical Reports Server (NTRS)

    Jones, Gregory S.; Gartrell, Luther R.; Kamemoto, Derek Y.

    1994-01-01

    Two experiments conducted to evaluate effects of sizes of seed particles on errors in LV measurements of mean flows. Both theoretical and conventional experimental methods used to evaluate errors. First experiment focused on measurement of decelerating stagnation streamline of low-speed flow around circular cylinder with two-dimensional afterbody. Second performed in transonic flow and involved measurement of decelerating stagnation streamline of hemisphere with cylindrical afterbody. Concluded, mean-quantity LV measurements subject to large errors directly attributable to sizes of particles. Predictions of particle-response theory showed good agreement with experimental results, indicating velocity-error-correction technique used in study viable for increasing accuracy of laser velocimetry measurements. Technique simple and useful in any research facility in which flow velocities measured.

  17. Noise-driven neuromorphic tuned amplifier.

    PubMed

    Fanelli, Duccio; Ginelli, Francesco; Livi, Roberto; Zagli, Niccoló; Zankoc, Clement

    2017-12-01

    We study a simple stochastic model of neuronal excitatory and inhibitory interactions. The model is defined on a directed lattice and internodes couplings are modulated by a nonlinear function that mimics the process of synaptic activation. We prove that such a system behaves as a fully tunable amplifier: the endogenous component of noise, stemming from finite size effects, seeds a coherent (exponential) amplification across the chain generating giant oscillations with tunable frequencies, a process that the brain could exploit to enhance, and eventually encode, different signals. On a wider perspective, the characterized amplification process could provide a reliable pacemaking mechanism for biological systems. The device extracts energy from the finite size bath and operates as an out of equilibrium thermal machine, under stationary conditions.

  18. Sample size considerations for clinical research studies in nuclear cardiology.

    PubMed

    Chiuzan, Cody; West, Erin A; Duong, Jimmy; Cheung, Ken Y K; Einstein, Andrew J

    2015-12-01

    Sample size calculation is an important element of research design that investigators need to consider in the planning stage of the study. Funding agencies and research review panels request a power analysis, for example, to determine the minimum number of subjects needed for an experiment to be informative. Calculating the right sample size is crucial to gaining accurate information and ensures that research resources are used efficiently and ethically. The simple question "How many subjects do I need?" does not always have a simple answer. Before calculating the sample size requirements, a researcher must address several aspects, such as purpose of the research (descriptive or comparative), type of samples (one or more groups), and data being collected (continuous or categorical). In this article, we describe some of the most frequent methods for calculating the sample size with examples from nuclear cardiology research, including for t tests, analysis of variance (ANOVA), non-parametric tests, correlation, Chi-squared tests, and survival analysis. For the ease of implementation, several examples are also illustrated via user-friendly free statistical software.

  19. Online submicron particle sizing by dynamic light scattering using autodilution

    NASA Technical Reports Server (NTRS)

    Nicoli, David F.; Elings, V. B.

    1989-01-01

    Efficient production of a wide range of commercial products based on submicron colloidal dispersions would benefit from instrumentation for online particle sizing, permitting real time monitoring and control of the particle size distribution. Recent advances in the technology of dynamic light scattering (DLS), especially improvements in algorithms for inversion of the intensity autocorrelation function, have made it ideally suited to the measurement of simple particle size distributions in the difficult submicron region. Crucial to the success of an online DSL based instrument is a simple mechanism for automatically sampling and diluting the starting concentrated sample suspension, yielding a final concentration which is optimal for the light scattering measurement. A proprietary method and apparatus was developed for performing this function, designed to be used with a DLS based particle sizing instrument. A PC/AT computer is used as a smart controller for the valves in the sampler diluter, as well as an input-output communicator, video display and data storage device. Quantitative results are presented for a latex suspension and an oil-in-water emulsion.

  20. Prey vulnerability to peacock cichlids and largemouth bass based on predator gape and prey body depth

    USGS Publications Warehouse

    Hill, Jeffrey E.; Nico, Leo G.; Cichra, Charles E.; Gilbert, Carter R.

    2005-01-01

    The interaction of prey fish body depth and predator gape size may produce prey assemblages dominated by invulnerable prey and excessive prey-to-predator biomass ratios. Peacock cichlids (Cichla ocellaris) were stocked into southeast Florida canals to consume excess prey fish biomass, particularly spotted tilapia (Tilapia mariae). The ecomorphologically similar largemouth bass (Micropterus salmoides) was already present in the canals. We present relations of length-specific gape size for peacock cichlids and largemouth bass. Both predators have broadly overlapping gape size, but largemouth bass ?126 mm total length have slightly larger gape sizes than peacock cichlids of the same length. Also, we experimentally tested the predictions of maximum prey size for peacock cichlids and determined that a simple method of measuring gape size used for largemouth bass also is appropriate for peacock cichlids. Lastly, we determined relations of body depth and length of prey species to investigate relative vulnerability. Using a simple predator-prey model and length frequencies of predators and bluegill (Lepomis macrochirus), redear sunfish (Lepomis microlophus), and spotted tilapia prey, we documented that much of the prey biomass in southeast Florida canals is unavailable for largemouth bass and peacock cichlid predation.

  1. Rapid population divergence in thermal reaction norms for an invading species: breaking the temperature-size rule.

    PubMed

    Kingsolver, J G; Massie, K R; Ragland, G J; Smith, M H

    2007-05-01

    The temperature-size rule is a common pattern of phenotypic plasticity in which higher temperature during development results in a smaller adult body size (i.e. a thermal reaction norm with negative slope). Examples and exceptions to the rule are known in multiple groups of organisms, but rapid population differentiation in the temperature-size rule has not been explored. Here we examine the genetic and parental contributions to population differentiation in thermal reaction norms for size, development time and survival in the Cabbage White Butterfly Pieris rapae, for two geographical populations that have likely diverged within the past 150 years. We used split-sibship experiments with two temperature treatments (warm and cool) for P. rapae from Chapel Hill, NC, and from Seattle, WA. Mixed-effect model analyses demonstrate significant genetic differences between NC and WA populations for adult size and for thermal reaction norms for size. Mean adult mass was 12-24% greater in NC than in WA populations for both temperature treatments; mean size was unaffected or decreased with temperature (the temperature-size rule) for the WA population, but size increased with temperature for the NC population. Our study shows that the temperature-size rule and related thermal reaction norms can evolve rapidly within species in natural field conditions. Rapid evolutionary divergence argues against the existence of a simple, general mechanistic constraint as the underlying cause of the temperature-size rule.

  2. Identification and detection of simple 3D objects with severely blurred vision.

    PubMed

    Kallie, Christopher S; Legge, Gordon E; Yu, Deyue

    2012-12-05

    Detecting and recognizing three-dimensional (3D) objects is an important component of the visual accessibility of public spaces for people with impaired vision. The present study investigated the impact of environmental factors and object properties on the recognition of objects by subjects who viewed physical objects with severely reduced acuity. The experiment was conducted in an indoor testing space. We examined detection and identification of simple convex objects by normally sighted subjects wearing diffusing goggles that reduced effective acuity to 20/900. We used psychophysical methods to examine the effect on performance of important environmental variables: viewing distance (from 10-24 feet, or 3.05-7.32 m) and illumination (overhead fluorescent and artificial window), and object variables: shape (boxes and cylinders), size (heights from 2-6 feet, or 0.61-1.83 m), and color (gray and white). Object identification was significantly affected by distance, color, height, and shape, as well as interactions between illumination, color, and shape. A stepwise regression analysis showed that 64% of the variability in identification could be explained by object contrast values (58%) and object visual angle (6%). When acuity is severely limited, illumination, distance, color, height, and shape influence the identification and detection of simple 3D objects. These effects can be explained in large part by the impact of these variables on object contrast and visual angle. Basic design principles for improving object visibility are discussed.

  3. Direct Monte Carlo simulation of chemical reaction systems: Simple bimolecular reactions

    NASA Astrophysics Data System (ADS)

    Piersall, Shannon D.; Anderson, James B.

    1991-07-01

    In applications to several simple reaction systems we have explored a ``direct simulation'' method for predicting and understanding the behavior of gas phase chemical reaction systems. This Monte Carlo method, originated by Bird, has been found remarkably successful in treating a number of difficult problems in rarefied dynamics. Extension to chemical reactions offers a powerful tool for treating reaction systems with nonthermal distributions, with coupled gas-dynamic and reaction effects, with emission and adsorption of radiation, and with many other effects difficult to treat in any other way. The usual differential equations of chemical kinetics are eliminated. For a bimolecular reaction of the type A+B→C+D with a rate sufficiently low to allow a continued thermal equilibrium of reactants we find that direct simulation reproduces the expected second order kinetics. Simulations for a range of temperatures yield the activation energies expected for the reaction models specified. For faster reactions under conditions leading to a depletion of energetic reactant species, the expected slowing of reaction rates and departures from equilibrium distributions are observed. The minimum sample sizes required for adequate simulations are as low as 1000 molecules for these cases. The calculations are found to be simple and straightforward for the homogeneous systems considered. Although computation requirements may be excessively high for very slow reactions, they are reasonably low for fast reactions, for which nonequilibrium effects are most important.

  4. A Self-consistent Cloud Model for Brown Dwarfs and Young Giant Exoplanets: Comparison with Photometric and Spectroscopic Observations

    NASA Astrophysics Data System (ADS)

    Charnay, B.; Bézard, B.; Baudino, J.-L.; Bonnefoy, M.; Boccaletti, A.; Galicher, R.

    2018-02-01

    We developed a simple, physical, and self-consistent cloud model for brown dwarfs and young giant exoplanets. We compared different parametrizations for the cloud particle size, by fixing either particle radii or the mixing efficiency (parameter f sed), or by estimating particle radii from simple microphysics. The cloud scheme with simple microphysics appears to be the best parametrization by successfully reproducing the observed photometry and spectra of brown dwarfs and young giant exoplanets. In particular, it reproduces the L–T transition, due to the condensation of silicate and iron clouds below the visible/near-IR photosphere. It also reproduces the reddening observed for low-gravity objects, due to an increase of cloud optical depth for low gravity. In addition, we found that the cloud greenhouse effect shifts chemical equilibrium, increasing the abundances of species stable at high temperature. This effect should significantly contribute to the strong variation of methane abundance at the L–T transition and to the methane depletion observed on young exoplanets. Finally, we predict the existence of a continuum of brown dwarfs and exoplanets for absolute J magnitude = 15–18 and J-K color = 0–3, due to the evolution of the L–T transition with gravity. This self-consistent model therefore provides a general framework to understand the effects of clouds and appears well-suited for atmospheric retrievals.

  5. BODY SIZE-SPECIFIC EFFECTIVE DOSE CONVERSION COEFFICIENTS FOR CT SCANS.

    PubMed

    Romanyukha, Anna; Folio, Les; Lamart, Stephanie; Simon, Steven L; Lee, Choonsik

    2016-12-01

    Effective dose from computed tomography (CT) examinations is usually estimated using the scanner-provided dose-length product and using conversion factors, also known as k-factors, which correspond to scan regions and differ by age according to five categories: 0, 1, 5, 10 y and adult. However, patients often deviate from the standard body size on which the conversion factor is based. In this study, a method for deriving body size-specific k-factors is presented, which can be determined from a simple regression curve based on patient diameter at the centre of the scan range. Using the International Commission on Radiological Protection reference paediatric and adult computational phantoms paired with Monte Carlo simulation of CT X-ray beams, the authors derived a regression-based k-factor model for the following CT scan types: head-neck, head, neck, chest, abdomen, pelvis, abdomen-pelvis (AP) and chest-abdomen-pelvis (CAP). The resulting regression functions were applied to a total of 105 paediatric and 279 adult CT scans randomly sampled from patients who underwent chest, AP and CAP scans at the National Institutes of Health Clinical Center. The authors have calculated and compared the effective doses derived from the conventional age-specific k-factors with the values computed using their body size-specific k-factor. They found that by using the age-specific k-factor, paediatric patients tend to have underestimates (up to 3-fold) of effective dose, while underweight and overweight adult patients tend to have underestimates (up to 2.6-fold) and overestimates (up to 4.6-fold) of effective dose, respectively, compared with the effective dose determined from their body size-dependent factors. The authors present these size-specific k-factors as an alternative to the existing age-specific factors. The body size-specific k-factor will assess effective dose more precisely and on a more individual level than the conventional age-specific k-factors and, hence, improve awareness of the true exposure, which is important for the clinical community to understand. Published by Oxford University Press 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  6. The Relative Impacts of Disease on Health Status and Capability Wellbeing: A Multi-Country Study

    PubMed Central

    Mitchell, Paul Mark; Al-Janabi, Hareth; Richardson, Jeff; Iezzi, Angelo; Coast, Joanna

    2015-01-01

    Background Evaluations of the impact of interventions for resource allocation purposes commonly focus on health status. There is, however, also concern about broader impacts on wellbeing and, increasingly, on a person's capability. This study aims to compare the impact on health status and capability of seven major health conditions, and highlight differences in treatment priorities when outcomes are measured by capability as opposed to health status. Methods The study was a cross-sectional four country survey (n = 6650) of eight population groups: seven disease groups with: arthritis, asthma, cancer, depression, diabetes, hearing loss, and heart disease and one health population ‘comparator’ group. Two simple self-complete questionnaires were used to measure health status (EQ-5D-5L) and capability (ICECAP-A). Individuals were classified by illness severity using condition-specific questionnaires. Effect sizes were used to estimate: (i) the difference in health status and capability for those with conditions, relative to a healthy population; and (ii) the impact of the severity of the condition on health status and capability within each disease group. Findings 5248 individuals were included in the analysis. Individuals with depression have the greatest mean reduction in both health (effect size, 1.26) and capability (1.22) compared to the healthy population. The effect sizes for capability for depression are much greater than for all other conditions, which is not the case for health. For example, the arthritis group effect size for health (1.24) is also high and similar to that of depression, whereas for the same arthritis group, the effect size for capability is much lower than that for depression (0.55). In terms of severity within disease groups, individuals categorised as 'mild' have similar capability levels to the healthy population (effect sizes <0.2, excluding depression) but lower health status than the healthy population (≥0.4). Conclusion Significant differences exist in the relative effect sizes across diseases when measured by health status and capability. In terms of treating morbidity, a shift in focus from health gain to capability gain would increase funding priorities for patients with depression specifically and severe illnesses more generally. PMID:26630131

  7. A green chemistry approach for synthesizing biocompatible gold nanoparticles.

    PubMed

    Gurunathan, Sangiliyandi; Han, JaeWoong; Park, Jung Hyun; Kim, Jin-Hoi

    2014-01-01

    Gold nanoparticles (AuNPs) are a fascinating class of nanomaterial that can be used for a wide range of biomedical applications, including bio-imaging, lateral flow assays, environmental detection and purification, data storage, drug delivery, biomarkers, catalysis, chemical sensors, and DNA detection. Biological synthesis of nanoparticles appears to be simple, cost-effective, non-toxic, and easy to use for controlling size, shape, and stability, which is unlike the chemically synthesized nanoparticles. The aim of this study was to synthesize homogeneous AuNPs using pharmaceutically important Ganoderma spp. We developed a simple, non-toxic, and green method for water-soluble AuNP synthesis by treating gold (III) chloride trihydrate (HAuCl4) with a hot aqueous extract of the Ganoderma spp. mycelia. The formation of biologically synthesized AuNPs (bio-AuNPs) was characterized by ultraviolet (UV)-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Furthermore, the biocompatibility of as-prepared AuNPs was evaluated using a series of assays, such as cell viability, lactate dehydrogenase leakage, and reactive oxygen species generation (ROS) in human breast cancer cells (MDA-MB-231). The color change of the solution from yellow to reddish pink and strong surface plasmon resonance were observed at 520 nm using UV-visible spectroscopy, and that indicated the formation of AuNPs. DLS analysis revealed the size distribution of AuNPs in liquid solution, and the average size of AuNPs was 20 nm. The size and morphology of AuNPs were investigated using TEM. The biocompatibility effect of as-prepared AuNPs was investigated in MDA-MB-231 breast cancer cells by using various concentrations of AuNPs (10 to 100 μM) for 24 h. Our findings suggest that AuNPs are non-cytotoxic and biocompatible. To the best of our knowledge, this is the first report to describe the synthesis of monodispersed, biocompatible, and soluble AuNPs with an average size of 20 nm using Ganoderma spp. This study opens up new possibilities of using an inexpensive and non-toxic mushroom extract as a reducing and stabilizing agent for the synthesis of size-controlled, large-scale, biocompatible, and monodispersed AuNPs, which may have future diagnostic and therapeutic applications.

  8. A green chemistry approach for synthesizing biocompatible gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Gurunathan, Sangiliyandi; Han, JaeWoong; Park, Jung Hyun; Kim, Jin-Hoi

    2014-05-01

    Gold nanoparticles (AuNPs) are a fascinating class of nanomaterial that can be used for a wide range of biomedical applications, including bio-imaging, lateral flow assays, environmental detection and purification, data storage, drug delivery, biomarkers, catalysis, chemical sensors, and DNA detection. Biological synthesis of nanoparticles appears to be simple, cost-effective, non-toxic, and easy to use for controlling size, shape, and stability, which is unlike the chemically synthesized nanoparticles. The aim of this study was to synthesize homogeneous AuNPs using pharmaceutically important Ganoderma spp . We developed a simple, non-toxic, and green method for water-soluble AuNP synthesis by treating gold (III) chloride trihydrate (HAuCl4) with a hot aqueous extract of the Ganoderma spp . mycelia. The formation of biologically synthesized AuNPs (bio-AuNPs) was characterized by ultraviolet (UV)-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Furthermore, the biocompatibility of as-prepared AuNPs was evaluated using a series of assays, such as cell viability, lactate dehydrogenase leakage, and reactive oxygen species generation (ROS) in human breast cancer cells (MDA-MB-231). The color change of the solution from yellow to reddish pink and strong surface plasmon resonance were observed at 520 nm using UV-visible spectroscopy, and that indicated the formation of AuNPs. DLS analysis revealed the size distribution of AuNPs in liquid solution, and the average size of AuNPs was 20 nm. The size and morphology of AuNPs were investigated using TEM. The biocompatibility effect of as-prepared AuNPs was investigated in MDA-MB-231 breast cancer cells by using various concentrations of AuNPs (10 to 100 μM) for 24 h. Our findings suggest that AuNPs are non-cytotoxic and biocompatible. To the best of our knowledge, this is the first report to describe the synthesis of monodispersed, biocompatible, and soluble AuNPs with an average size of 20 nm using Ganoderma spp. This study opens up new possibilities of using an inexpensive and non-toxic mushroom extract as a reducing and stabilizing agent for the synthesis of size-controlled, large-scale, biocompatible, and monodispersed AuNPs, which may have future diagnostic and therapeutic applications.

  9. The role of early stages of cortical visual processing in size and distance judgment: a transcranial direct current stimulation study.

    PubMed

    Costa, Thiago L; Costa, Marcelo F; Magalhães, Adsson; Rêgo, Gabriel G; Nagy, Balázs V; Boggio, Paulo S; Ventura, Dora F

    2015-02-19

    Recent research suggests that V1 plays an active role in the judgment of size and distance. Nevertheless, no research has been performed using direct brain stimulation to address this issue. We used transcranial direct-current stimulation (tDCS) to directly modulate the early stages of cortical visual processing while measuring size and distance perception with a psychophysical scaling method of magnitude estimation in a repeated-measures design. The subjects randomly received anodal, cathodal, and sham tDCS in separate sessions starting with size or distance judgment tasks. Power functions were fit to the size judgment data, whereas logarithmic functions were fit to distance judgment data. Slopes and R(2) were compared with separate repeated-measures analyses of variance with two factors: task (size vs. distance) and tDCS (anodal vs. cathodal vs. sham). Anodal tDCS significantly decreased slopes, apparently interfering with size perception. No effects were found for distance perception. Consistent with previous studies, the results of the size task appeared to reflect a prothetic continuum, whereas the results of the distance task seemed to reflect a metathetic continuum. The differential effects of tDCS on these tasks may support the hypothesis that different physiological mechanisms underlie judgments on these two continua. The results further suggest the complex involvement of the early visual cortex in size judgment tasks that go beyond the simple representation of low-level stimulus properties. This supports predictive coding models and experimental findings that suggest that higher-order visual areas may inhibit incoming information from the early visual cortex through feedback connections when complex tasks are performed. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Route to one-step microstructure mold fabrication for PDMS microfluidic chip

    NASA Astrophysics Data System (ADS)

    Lv, Xiaoqing; Geng, Zhaoxin; Fan, Zhiyuan; Wang, Shicai; Su, Yue; Fang, Weihao; Pei, Weihua; Chen, Hongda

    2018-04-01

    The microstructure mold fabrication for PDMS microfluidic chip remains complex and time-consuming process requiring special equipment and protocols: photolithography and etching. Thus, a rapid and cost-effective method is highly needed. Comparing with the traditional microfluidic chip fabricating process based on the micro-electromechanical system (MEMS), this method is simple and easy to implement, and the whole fabrication process only requires 1-2 h. Different size of microstructure from 100 to 1000 μm was fabricated, and used to culture four kinds of breast cancer cell lines. Cell viability and morphology was assessed when they were cultured in the micro straight channels, micro square holes and the bonding PDMS-glass microfluidic chip. The experimental results indicate that the microfluidic chip is good and meet the experimental requirements. This method can greatly reduce the process time and cost of the microfluidic chip, and provide a simple and effective way for the structure design and in the field of biological microfabrications and microfluidic chips.

  11. Evacuation of coal from hoppers/silos with low pressure pneumatic blasting systems

    NASA Technical Reports Server (NTRS)

    Fischer, J. S.

    1977-01-01

    The need for an efficient, economical, effective and quiet device for moving coal and other difficult bulk solids was recognized. Thus came the advent of the low pressure pneumatic blasting system - a very efficient means of using a small amount of plant air (up to 125 PSI) to eliminate the most troublesome material hang-ups in storage containers. This simple device has one moving part and uses approximately 3% of the air consumed by a pneumatic vibrator on the same job. The principle of operation is very simple: air stored in the unit's reservoir is expelled directly into the material via a patented quick release valve. The number, size, and placement of the blaster units on the storage vessel is determined by a series of tests to ascertain flowability of the problem material. These tests in conjunction with the hopper or silo configuration determine specification of a low pressure pneumatic blasting system. This concept has often proven effective in solving flow problems when all other means have failed.

  12. Modeling Spacecraft Fuel Slosh at Embry-Riddle Aeronautical University

    NASA Technical Reports Server (NTRS)

    Schlee, Keith L.

    2007-01-01

    As a NASA-sponsored GSRP Fellow, I worked with other researchers and analysts at Embry-Riddle Aeronautical University and NASA's ELV Division to investigate the effect of spacecraft fuel slosh. NASA's research into the effects of fuel slosh includes modeling the response in full-sized tanks using equipment such as the Spinning Slosh Test Rig (SSTR), located at Southwest Research Institute (SwRI). NASA and SwRI engineers analyze data taken from SSTR runs and hand-derive equations of motion to identify model parameters and characterize the sloshing motion. With guidance from my faculty advisor, Dr. Sathya Gangadharan, and NASA flight controls analysts James Sudermann and Charles Walker, I set out to automate this parameter identification process by building a simple physical experimental setup to model free surface slosh in a spherical tank with a simple pendulum analog. This setup was then modeled using Simulink and SimMechanics. The Simulink Parameter Estimation Tool was then used to identify the model parameters.

  13. Surface roughness effects on the solar reflectance of cool asphalt shingles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbari, Hashem; Berdahl, Paul; Akbari, Hashem

    2008-02-17

    We analyze the solar reflectance of asphalt roofing shingles that are covered with pigmented mineral roofing granules. The reflecting surface is rough, with a total area approximately twice the nominal area. We introduce a simple analytical model that relates the 'micro-reflectance' of a small surface region to the 'macro-reflectance' of the shingle. This model uses a mean field approximation to account for multiple scattering effects. The model is then used to compute the reflectance of shingles with a mixture of different colored granules, when the reflectances of the corresponding mono-color shingles are known. Simple linear averaging works well, with smallmore » corrections to linear averaging derived for highly reflective materials. Reflective base granules and reflective surface coatings aid achievement of high solar reflectance. Other factors that influence the solar reflectance are the size distribution of the granules, coverage of the asphalt substrate, and orientation of the granules as affected by rollers during fabrication.« less

  14. Finding a face in the crowd: testing the anger superiority effect in Asperger Syndrome.

    PubMed

    Ashwin, Chris; Wheelwright, Sally; Baron-Cohen, Simon

    2006-06-01

    Social threat captures attention and is processed rapidly and efficiently, with many lines of research showing involvement of the amygdala. Visual search paradigms looking at social threat have shown angry faces 'pop-out' in a crowd, compared to happy faces. Autism and Asperger Syndrome (AS) are neurodevelopmental conditions characterised by social deficits, abnormal face processing, and amygdala dysfunction. We tested adults with high-functioning autism (HFA) and AS using a facial visual search paradigm with schematic neutral and emotional faces. We found, contrary to predictions, that people with HFA/AS performed similarly to controls in many conditions. However, the effect was reduced in the HFA/AS group when using widely varying crowd sizes and when faces were inverted, suggesting a difference in face-processing style may be evident even with simple schematic faces. We conclude there are intact threat detection mechanisms in AS, under simple and predictable conditions, but that like other face-perception tasks, the visual search of threat faces task reveals atypical face-processing in HFA/AS.

  15. Introduction, comparison, and validation of Meta-Essentials: A free and simple tool for meta-analysis.

    PubMed

    Suurmond, Robert; van Rhee, Henk; Hak, Tony

    2017-12-01

    We present a new tool for meta-analysis, Meta-Essentials, which is free of charge and easy to use. In this paper, we introduce the tool and compare its features to other tools for meta-analysis. We also provide detailed information on the validation of the tool. Although free of charge and simple, Meta-Essentials automatically calculates effect sizes from a wide range of statistics and can be used for a wide range of meta-analysis applications, including subgroup analysis, moderator analysis, and publication bias analyses. The confidence interval of the overall effect is automatically based on the Knapp-Hartung adjustment of the DerSimonian-Laird estimator. However, more advanced meta-analysis methods such as meta-analytical structural equation modelling and meta-regression with multiple covariates are not available. In summary, Meta-Essentials may prove a valuable resource for meta-analysts, including researchers, teachers, and students. © 2017 The Authors. Research Synthesis Methods published by John Wiley & Sons Ltd.

  16. Effect of strain and deformation route on grain boundary characteristics and recrystallization behavior of aluminum

    NASA Astrophysics Data System (ADS)

    Sakai, Tetsuo; Utsunomiya, Hiroshi; Takahashi, Yasuo

    2014-08-01

    The effect of strain and deformation route on the recrystallization behavior of aluminum sheets has been investigated using well lubricated cold rolling and continuous equal channel angular extrusion. Three different deformation routes in plane strain corresponding to (1) simple shear, (2) compression, and (3) the combination of simple shear and compression were performed on 1100 aluminum sheet. Fixed amounts of the equivalent strain of 1.28 and 1.06 were accumulated in each route. In case of the combined deformation route, the ratio of shear strain to the total equivalent strain was varied. The recrystallized grain size was finer if the combined deformation route was employed instead of the monotonic route under the same amount of equivalent strain at either strain level. The density of high angle grain boundaries that act as nucleation sites for recrystallization was higher in materials deformed by the combined route. The orientation imaging micrographs revealed that the change in deformation route is effective for introducing a larger number of new high angle grain boundaries with relatively low misorientation angle.

  17. JMOSFET: A MOSFET parameter extractor with geometry-dependent terms

    NASA Technical Reports Server (NTRS)

    Buehler, M. G.; Moore, B. T.

    1985-01-01

    The parameters from metal-oxide-silicon field-effect transistors (MOSFETs) that are included on the Combined Release and Radiation Effects Satellite (CRRES) test chips need to be extracted to have a simple but comprehensive method that can be used in wafer acceptance, and to have a method that is sufficiently accurate that it can be used in integrated circuits. A set of MOSFET parameter extraction procedures that are directly linked to the MOSFET model equations and that facilitate the use of simple, direct curve-fitting techniques are developed. In addition, the major physical effects that affect MOSFET operation in the linear and saturation regions of operation for devices fabricated in 1.2 to 3.0 mm CMOS technology are included. The fitting procedures were designed to establish single values for such parameters as threshold voltage and transconductance and to provide for slope matching between the linear and saturation regions of the MOSFET output current-voltage curves. Four different sizes of transistors that cover a rectangular-shaped region of the channel length-width plane are analyzed.

  18. Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: An accurate correction scheme for electrostatic finite-size effects

    PubMed Central

    Rocklin, Gabriel J.; Mobley, David L.; Dill, Ken A.; Hünenberger, Philippe H.

    2013-01-01

    The calculation of a protein-ligand binding free energy based on molecular dynamics (MD) simulations generally relies on a thermodynamic cycle in which the ligand is alchemically inserted into the system, both in the solvated protein and free in solution. The corresponding ligand-insertion free energies are typically calculated in nanoscale computational boxes simulated under periodic boundary conditions and considering electrostatic interactions defined by a periodic lattice-sum. This is distinct from the ideal bulk situation of a system of macroscopic size simulated under non-periodic boundary conditions with Coulombic electrostatic interactions. This discrepancy results in finite-size effects, which affect primarily the charging component of the insertion free energy, are dependent on the box size, and can be large when the ligand bears a net charge, especially if the protein is charged as well. This article investigates finite-size effects on calculated charging free energies using as a test case the binding of the ligand 2-amino-5-methylthiazole (net charge +1 e) to a mutant form of yeast cytochrome c peroxidase in water. Considering different charge isoforms of the protein (net charges −5, 0, +3, or +9 e), either in the absence or the presence of neutralizing counter-ions, and sizes of the cubic computational box (edges ranging from 7.42 to 11.02 nm), the potentially large magnitude of finite-size effects on the raw charging free energies (up to 17.1 kJ mol−1) is demonstrated. Two correction schemes are then proposed to eliminate these effects, a numerical and an analytical one. Both schemes are based on a continuum-electrostatics analysis and require performing Poisson-Boltzmann (PB) calculations on the protein-ligand system. While the numerical scheme requires PB calculations under both non-periodic and periodic boundary conditions, the latter at the box size considered in the MD simulations, the analytical scheme only requires three non-periodic PB calculations for a given system, its dependence on the box size being analytical. The latter scheme also provides insight into the physical origin of the finite-size effects. These two schemes also encompass a correction for discrete solvent effects that persists even in the limit of infinite box sizes. Application of either scheme essentially eliminates the size dependence of the corrected charging free energies (maximal deviation of 1.5 kJ mol−1). Because it is simple to apply, the analytical correction scheme offers a general solution to the problem of finite-size effects in free-energy calculations involving charged solutes, as encountered in calculations concerning, e.g., protein-ligand binding, biomolecular association, residue mutation, pKa and redox potential estimation, substrate transformation, solvation, and solvent-solvent partitioning. PMID:24320250

  19. Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: an accurate correction scheme for electrostatic finite-size effects.

    PubMed

    Rocklin, Gabriel J; Mobley, David L; Dill, Ken A; Hünenberger, Philippe H

    2013-11-14

    The calculation of a protein-ligand binding free energy based on molecular dynamics (MD) simulations generally relies on a thermodynamic cycle in which the ligand is alchemically inserted into the system, both in the solvated protein and free in solution. The corresponding ligand-insertion free energies are typically calculated in nanoscale computational boxes simulated under periodic boundary conditions and considering electrostatic interactions defined by a periodic lattice-sum. This is distinct from the ideal bulk situation of a system of macroscopic size simulated under non-periodic boundary conditions with Coulombic electrostatic interactions. This discrepancy results in finite-size effects, which affect primarily the charging component of the insertion free energy, are dependent on the box size, and can be large when the ligand bears a net charge, especially if the protein is charged as well. This article investigates finite-size effects on calculated charging free energies using as a test case the binding of the ligand 2-amino-5-methylthiazole (net charge +1 e) to a mutant form of yeast cytochrome c peroxidase in water. Considering different charge isoforms of the protein (net charges -5, 0, +3, or +9 e), either in the absence or the presence of neutralizing counter-ions, and sizes of the cubic computational box (edges ranging from 7.42 to 11.02 nm), the potentially large magnitude of finite-size effects on the raw charging free energies (up to 17.1 kJ mol(-1)) is demonstrated. Two correction schemes are then proposed to eliminate these effects, a numerical and an analytical one. Both schemes are based on a continuum-electrostatics analysis and require performing Poisson-Boltzmann (PB) calculations on the protein-ligand system. While the numerical scheme requires PB calculations under both non-periodic and periodic boundary conditions, the latter at the box size considered in the MD simulations, the analytical scheme only requires three non-periodic PB calculations for a given system, its dependence on the box size being analytical. The latter scheme also provides insight into the physical origin of the finite-size effects. These two schemes also encompass a correction for discrete solvent effects that persists even in the limit of infinite box sizes. Application of either scheme essentially eliminates the size dependence of the corrected charging free energies (maximal deviation of 1.5 kJ mol(-1)). Because it is simple to apply, the analytical correction scheme offers a general solution to the problem of finite-size effects in free-energy calculations involving charged solutes, as encountered in calculations concerning, e.g., protein-ligand binding, biomolecular association, residue mutation, pKa and redox potential estimation, substrate transformation, solvation, and solvent-solvent partitioning.

  20. Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: An accurate correction scheme for electrostatic finite-size effects

    NASA Astrophysics Data System (ADS)

    Rocklin, Gabriel J.; Mobley, David L.; Dill, Ken A.; Hünenberger, Philippe H.

    2013-11-01

    The calculation of a protein-ligand binding free energy based on molecular dynamics (MD) simulations generally relies on a thermodynamic cycle in which the ligand is alchemically inserted into the system, both in the solvated protein and free in solution. The corresponding ligand-insertion free energies are typically calculated in nanoscale computational boxes simulated under periodic boundary conditions and considering electrostatic interactions defined by a periodic lattice-sum. This is distinct from the ideal bulk situation of a system of macroscopic size simulated under non-periodic boundary conditions with Coulombic electrostatic interactions. This discrepancy results in finite-size effects, which affect primarily the charging component of the insertion free energy, are dependent on the box size, and can be large when the ligand bears a net charge, especially if the protein is charged as well. This article investigates finite-size effects on calculated charging free energies using as a test case the binding of the ligand 2-amino-5-methylthiazole (net charge +1 e) to a mutant form of yeast cytochrome c peroxidase in water. Considering different charge isoforms of the protein (net charges -5, 0, +3, or +9 e), either in the absence or the presence of neutralizing counter-ions, and sizes of the cubic computational box (edges ranging from 7.42 to 11.02 nm), the potentially large magnitude of finite-size effects on the raw charging free energies (up to 17.1 kJ mol-1) is demonstrated. Two correction schemes are then proposed to eliminate these effects, a numerical and an analytical one. Both schemes are based on a continuum-electrostatics analysis and require performing Poisson-Boltzmann (PB) calculations on the protein-ligand system. While the numerical scheme requires PB calculations under both non-periodic and periodic boundary conditions, the latter at the box size considered in the MD simulations, the analytical scheme only requires three non-periodic PB calculations for a given system, its dependence on the box size being analytical. The latter scheme also provides insight into the physical origin of the finite-size effects. These two schemes also encompass a correction for discrete solvent effects that persists even in the limit of infinite box sizes. Application of either scheme essentially eliminates the size dependence of the corrected charging free energies (maximal deviation of 1.5 kJ mol-1). Because it is simple to apply, the analytical correction scheme offers a general solution to the problem of finite-size effects in free-energy calculations involving charged solutes, as encountered in calculations concerning, e.g., protein-ligand binding, biomolecular association, residue mutation, pKa and redox potential estimation, substrate transformation, solvation, and solvent-solvent partitioning.

  1. Rare ecomorphological convergence on a complex adaptive landscape: Body size and diet mediate evolution of jaw shape in squirrels (Sciuridae).

    PubMed

    Zelditch, Miriam Leah; Ye, Ji; Mitchell, Jonathan S; Swiderski, Donald L

    2017-03-01

    Convergence is widely regarded as compelling evidence for adaptation, often being portrayed as evidence that phenotypic outcomes are predictable from ecology, overriding contingencies of history. However, repeated outcomes may be very rare unless adaptive landscapes are simple, structured by strong ecological and functional constraints. One such constraint may be a limitation on body size because performance often scales with size, allowing species to adapt to challenging functions by modifying only size. When size is constrained, species might adapt by changing shape; convergent shapes may therefore be common when size is limiting and functions are challenging. We examine the roles of size and diet as determinants of jaw shape in Sciuridae. As expected, size and diet have significant interdependent effects on jaw shape and ecomorphological convergence is rare, typically involving demanding diets and limiting sizes. More surprising is morphological without ecological convergence, which is equally common between and within dietary classes. Those cases, like rare ecomorphological convergence, may be consequences of evolving on an adaptive landscape shaped by many-to-many relationships between ecology and function, many-to-one relationships between form and performance, and one-to-many relationships between functionally versatile morphologies and ecology. On complex adaptive landscapes, ecological selection can yield different outcomes. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  2. Adjusting data to body size: a comparison of methods as applied to quantitative trait loci analysis of musculoskeletal phenotypes.

    PubMed

    Lang, Dean H; Sharkey, Neil A; Lionikas, Arimantas; Mack, Holly A; Larsson, Lars; Vogler, George P; Vandenbergh, David J; Blizard, David A; Stout, Joseph T; Stitt, Joseph P; McClearn, Gerald E

    2005-05-01

    The aim of this study was to compare three methods of adjusting skeletal data for body size and examine their use in QTL analyses. It was found that dividing skeletal phenotypes by body mass index induced erroneous QTL results. The preferred method of body size adjustment was multiple regression. Many skeletal studies have reported strong correlations between phenotypes for muscle, bone, and body size, and these correlations add to the difficulty in identifying genetic influence on skeletal traits that are not mediated through overall body size. Quantitative trait loci (QTL) identified for skeletal phenotypes often map to the same chromosome regions as QTLs for body size. The actions of a QTL identified as influencing BMD could therefore be mediated through the generalized actions of growth on body size or muscle mass. Three methods of adjusting skeletal phenotypes to body size were performed on morphologic, structural, and compositional measurements of the femur and tibia in 200-day-old C57BL/6J x DBA/2 (BXD) second generation (F(2)) mice (n = 400). A common method of removing the size effect has been through the use of ratios. This technique and two alternative techniques using simple and multiple regression were performed on muscle and skeletal data before QTL analyses, and the differences in QTL results were examined. The use of ratios to remove the size effect was shown to increase the size effect by inducing spurious correlations, thereby leading to inaccurate QTL results. Adjustments for body size using multiple regression eliminated these problems. Multiple regression should be used to remove the variance of co-factors related to skeletal phenotypes to allow for the study of genetic influence independent of correlated phenotypes. However, to better understand the genetic influence, adjusted and unadjusted skeletal QTL results should be compared. Additional insight can be gained by observing the difference in LOD score between the adjusted and nonadjusted phenotypes. Identifying QTLs that exert their effects on skeletal phenotypes through body size-related pathways as well as those having a more direct and independent influence on bone are equally important in deciphering the complex physiologic pathways responsible for the maintenance of bone health.

  3. Costs of storing colour and complex shape in visual working memory: Insights from pupil size and slow waves.

    PubMed

    Kursawe, Michael A; Zimmer, Hubert D

    2015-06-01

    We investigated the impact of perceptual processing demands on visual working memory of coloured complex random polygons during change detection. Processing load was assessed by pupil size (Exp. 1) and additionally slow wave potentials (Exp. 2). Task difficulty was manipulated by presenting different set sizes (1, 2, 4 items) and by making different features (colour, shape, or both) task-relevant. Memory performance in the colour condition was better than in the shape and both condition which did not differ. Pupil dilation and the posterior N1 increased with set size independent of type of feature. In contrast, slow waves and a posterior P2 component showed set size effects but only if shape was task-relevant. In the colour condition slow waves did not vary with set size. We suggest that pupil size and N1 indicates different states of attentional effort corresponding to the number of presented items. In contrast, slow waves reflect processes related to encoding and maintenance strategies. The observation that their potentials vary with the type of feature (simple colour versus complex shape) indicates that perceptual complexity already influences encoding and storage and not only comparison of targets with memory entries at the moment of testing. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Effect of crowd size on patient volume at a large, multipurpose, indoor stadium.

    PubMed

    De Lorenzo, R A; Gray, B C; Bennett, P C; Lamparella, V J

    1989-01-01

    A prediction of patient volume expected at "mass gatherings" is desirable in order to provide optimal on-site emergency medical care. While several methods of predicting patient loads have been suggested, a reliable technique has not been established. This study examines the frequency of medical emergencies at the Syracuse University Carrier Dome, a 50,500-seat indoor stadium. Patient volume and level of care at collegiate basketball and football games as well as rock concerts, over a 7-year period were examined and tabulated. This information was analyzed using simple regression and nonparametric statistical methods to determine level of correlation between crowd size and patient volume. These analyses demonstrated no statistically significant increase in patient volume for increasing crowd size for basketball and football events. There was a small but statistically significant increase in patient volume for increasing crowd size for concerts. A comparison of similar crowd size for each of the three events showed that patient frequency is greatest for concerts and smallest for basketball. The study suggests that crowd size alone has only a minor influence on patient volume at any given event. Structuring medical services based solely on expected crowd size and not considering other influences such as event type and duration may give poor results.

  5. Generation of dense granular deposits for porosity analysis: assessment and application of large-scale non-smooth granular dynamics

    NASA Astrophysics Data System (ADS)

    Schruff, T.; Liang, R.; Rüde, U.; Schüttrumpf, H.; Frings, R. M.

    2018-01-01

    The knowledge of structural properties of granular materials such as porosity is highly important in many application-oriented and scientific fields. In this paper we present new results of computer-based packing simulations where we use the non-smooth granular dynamics (NSGD) method to simulate gravitational random dense packing of spherical particles with various particle size distributions and two types of depositional conditions. A bin packing scenario was used to compare simulation results to laboratory porosity measurements and to quantify the sensitivity of the NSGD regarding critical simulation parameters such as time step size. The results of the bin packing simulations agree well with laboratory measurements across all particle size distributions with all absolute errors below 1%. A large-scale packing scenario with periodic side walls was used to simulate the packing of up to 855,600 spherical particles with various particle size distributions (PSD). Simulation outcomes are used to quantify the effect of particle-domain-size ratio on the packing compaction. A simple correction model, based on the coordination number, is employed to compensate for this effect on the porosity and to determine the relationship between PSD and porosity. Promising accuracy and stability results paired with excellent computational performance recommend the application of NSGD for large-scale packing simulations, e.g. to further enhance the generation of representative granular deposits.

  6. Para-hydrogen and helium cluster size distributions in free jet expansions based on Smoluchowski theory with kernel scaling.

    PubMed

    Kornilov, Oleg; Toennies, J Peter

    2015-02-21

    The size distribution of para-H2 (pH2) clusters produced in free jet expansions at a source temperature of T0 = 29.5 K and pressures of P0 = 0.9-1.96 bars is reported and analyzed according to a cluster growth model based on the Smoluchowski theory with kernel scaling. Good overall agreement is found between the measured and predicted, Nk = A k(a) e(-bk), shape of the distribution. The fit yields values for A and b for values of a derived from simple collision models. The small remaining deviations between measured abundances and theory imply a (pH2)k magic number cluster of k = 13 as has been observed previously by Raman spectroscopy. The predicted linear dependence of b(-(a+1)) on source gas pressure was verified and used to determine the value of the basic effective agglomeration reaction rate constant. A comparison of the corresponding effective growth cross sections σ11 with results from a similar analysis of He cluster size distributions indicates that the latter are much larger by a factor 6-10. An analysis of the three body recombination rates, the geometric sizes and the fact that the He clusters are liquid independent of their size can explain the larger cross sections found for He.

  7. Power laws for the backscattering matrices in the case of lidar sensing of cirrus clouds

    NASA Astrophysics Data System (ADS)

    Kustova, Natalia V.; Konoshonkin, Alexander V.; Borovoi, Anatoli; Okamoto, Hajime; Sato, Kaori; Katagiri, Shuichiro

    2017-11-01

    The data bank for the backscattering matrixes of cirrus clouds that was calculated earlier by the authors and was available in the internet for free access has been replaced in the case of randomly oriented crystals by simple analytic equations. Four microphysical ratios conventionally measured by lidars have been calculated for different shapes and the effective size of the crystals. These values could be used for retrieving shapes of the crystals in cirrus clouds.

  8. Aeronautical Situational Awareness - Airport Surface

    NASA Technical Reports Server (NTRS)

    Linetsky, Vladimir M.; Ivancic, William D.; Vaden, Karl R.

    2017-01-01

    This paper advocates for a specific design approach, based on simple principals, yet addresses challenges faced by the system engineers when designing complex data and information infrastructure. The document provides guidance for breaking out various work elements in the overall network architecture design, so that communication systems are conceived and effectively realized regardless of their location, size and local specifics. Although targeted at the Global Airspace System (GAS) and National Airspace System (NAS), this framework can be applied to any network-centric architecture.

  9. Hetero-association for pattern translation

    NASA Astrophysics Data System (ADS)

    Yu, Francis T. S.; Lu, Thomas T.; Yang, Xiangyang

    1991-09-01

    A hetero-association neural network using an interpattern association algorithm is presented. By using simple logical rules, hetero-association memory can be constructed based on the association between the input-output reference patterns. For optical implementation, a compact size liquid crystal television neural network is used. Translations between the English letters and the Chinese characters as well as Arabic and Chinese numerics are demonstrated. The authors have shown that the hetero-association model can perform more effectively in comparison to the Hopfield model in retrieving large numbers of similar patterns.

  10. Multicolor 4D Fluorescence Microscopy using Ultrathin Bessel Light Sheets

    PubMed Central

    Zhao, Teng; Lau, Sze Cheung; Wang, Ying; Su, Yumian; Wang, Hao; Cheng, Aifang; Herrup, Karl; Ip, Nancy Y.; Du, Shengwang; Loy, M. M. T.

    2016-01-01

    We demonstrate a simple and efficient method for producing ultrathin Bessel (‘non-diffracting’) light sheets of any color using a line-shaped beam and an annulus filter. With this robust and cost-effective technology, we obtained two-color, 3D images of biological samples with lateral/axial resolution of 250 nm/400 nm, and high-speed, 4D volume imaging of 20 μm sized live sample at 1 Hz temporal resolution. PMID:27189786

  11. Remark on Majorana CP phases in neutrino mixing and leptogenesis

    NASA Astrophysics Data System (ADS)

    Kitabayashi, Teruyuki; Koizumi, Naoto

    2014-05-01

    We estimate Majorana CP phases for a simple flavor neutrino mixing matrix which has been reported by Qu and Ma. Sizes of Majorana CP phases are evaluated in the study of the neutrinoless double beta decay and a particular leptogenesis scenario. We find the dependence of the physically relevant Majorana CP phase on the mass of lightest right-handed neutrino in the minimal seesaw model and the effective Majorana neutrino mass which is related with the half-life of the neutrinoless double beta decay.

  12. The Packaging Technology Study on Smart Composite Structure Based on The Embedded FBG Sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Youhong; Chang, Xinlong; Zhang, Xiaojun; He, Xiangyong

    2018-03-01

    It is convenient to carry out the health monitoring of the solid rocket engine composite shell based on the embedded FBG sensor. In this paper, the packaging technology using one-way fiber layer of prepreg fiberglass/epoxy resin was proposed. The proposed packaging process is simple, and the packaged sensor structure size is flexible and convenient to use, at the mean time, the packaged structure has little effect on the pristine composite material structure.

  13. Particle size effect in porous film electrodes of ligand-modified graphene for enhanced supercapacitor performance

    DOE PAGES

    Jang, Gyoung Gug; Song, Bo; Moon, Kyoung-sik; ...

    2017-04-17

    Graphene-based electrodes for high performance supercapacitors are developed by taking advantage of particle size control, large mass loading, and surface functionalization of reduced graphene oxide (rGO) sheets. Two controlled sizes of graphene sheets (100 nm vs. 45 μm average lateral dimensions) were prepared to study two-electrode system performance. The nano-size graphenes led to the formation of mesoporous films, resulting in higher capacitance, better capacitance retension and lower equivalent series resistance (ESR), indicating better surface usability for diffusion and accessibility of electrolyte ions by shortening transport paths (compared with horizontally stacked films from micro-sized graphenes). For studies using an aqueous electrolyte,more » the maximum specific capacitance of nano-rGO film was 302 F/g (at 1 A/g with 4.3 mg/cm 2 of mass loading), which was ~2.4 times higher than micro-rGO film, and achieved a ~67% reduced ESR. With an organic electrolyte, the nano-rGO delivered ~4.2 times higher capacitance (115 F/g at 2 A/g with 4.3 mg/cm 2), 4.0 times lower IR drops, and an order-of-magnitude lower charge-transfer resistance with an energy density of 18.7 Wh/kg. Finally, the results of this work indicate that the size control of graphene sheet particles for film deposit electrodes can be a simple but effective approach to improve supercapacitor performance.« less

  14. Particle size effect in porous film electrodes of ligand-modified graphene for enhanced supercapacitor performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Gyoung Gug; Song, Bo; Moon, Kyoung-sik

    Graphene-based electrodes for high performance supercapacitors are developed by taking advantage of particle size control, large mass loading, and surface functionalization of reduced graphene oxide (rGO) sheets. Two controlled sizes of graphene sheets (100 nm vs. 45 μm average lateral dimensions) were prepared to study two-electrode system performance. The nano-size graphenes led to the formation of mesoporous films, resulting in higher capacitance, better capacitance retension and lower equivalent series resistance (ESR), indicating better surface usability for diffusion and accessibility of electrolyte ions by shortening transport paths (compared with horizontally stacked films from micro-sized graphenes). For studies using an aqueous electrolyte,more » the maximum specific capacitance of nano-rGO film was 302 F/g (at 1 A/g with 4.3 mg/cm 2 of mass loading), which was ~2.4 times higher than micro-rGO film, and achieved a ~67% reduced ESR. With an organic electrolyte, the nano-rGO delivered ~4.2 times higher capacitance (115 F/g at 2 A/g with 4.3 mg/cm 2), 4.0 times lower IR drops, and an order-of-magnitude lower charge-transfer resistance with an energy density of 18.7 Wh/kg. Finally, the results of this work indicate that the size control of graphene sheet particles for film deposit electrodes can be a simple but effective approach to improve supercapacitor performance.« less

  15. Self-organized criticality in asymmetric exclusion model with noise for freeway traffic

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi

    1995-02-01

    The one-dimensional asymmetric simple-exclusion model with open boundaries for parallel update is extended to take into account temporary stopping of particles. The model presents the traffic flow on a highway with temporary deceleration of cars. Introducing temporary stopping into the asymmetric simple-exclusion model drives the system asymptotically into a steady state exhibiting a self-organized criticality. In the self-organized critical state, start-stop waves (or traffic jams) appear with various sizes (or lifetimes). The typical interval < s>between consecutive jams scales as < s> ≃ Lv with v = 0.51 ± 0.05 where L is the system size. It is shown that the cumulative jam-interval distribution Ns( L) satisfies the finite-size scaling form ( Ns( L) ≃ L- vf( s/ Lv). Also, the typical lifetime ≃ Lv‧ with v‧ = 0.52 ± 0.05. The cumulative distribution Nm( L) of lifetimes satisfies the finite-size scaling form Nm( L)≃ L-1g( m/ Lv‧).

  16. The nest architecture of the ant Odontomachus brunneus.

    PubMed

    Cerquera, Lina M; Tschinkel, Walter R

    2010-01-01

    The architecture of the subterranean nests of the ant Odontomachus brunneus (Patton) (Hymenoptera: Formicidae) was studied by means of casts with dental plaster or molten metal. The entombed ants were later recovered by dissolution of plaster casts in hot running water. O. brunneus excavates simple nests, each consisting of a single, vertical shaft connecting more or less horizontal, simple chambers. Nests contained between 11 and 177 workers, from 2 to 17 chambers, and 28 to 340 cm(2) of chamber floor space and reached a maximum depth of 18 to 184 cm. All components of nest size increased simultaneously during nest enlargement, number of chambers, mean chamber size, and nest depth, making the nest shape (proportions) relatively size-independent. Regardless of nest size, all nests had approximately 2 cm(2) of chamber floor space per worker. Chambers were closer together near the top and the bottom of the nest than in the middle, and total chamber area was greater near the bottom. Colonies occasionally incorporated cavities made by other animals into their nests.

  17. Ultrafiltration of pegylated proteins

    NASA Astrophysics Data System (ADS)

    Molek, Jessica R.

    There is considerable clinical interest in the use of "second-generation" therapeutics produced by conjugation of a native protein with various polymers including polyethylene glycol (PEG). PEG--protein conjugates, so-called PEGylated proteins, can exhibit enhanced stability, half-life, and bioavailability. One of the challenges in the commercial production of PEGylated proteins is the purification required to remove unreacted polymer, native protein, and in many cases PEGylated proteins with nonoptimal degrees of conjugation. The overall objective of this thesis was to examine the use of ultrafiltration for the purification of PEGylated proteins. This included: (1) analysis of size-based separation of PEGylated proteins using conventional ultrafiltration membranes, (2) use of electrically-charged membranes to exploit differences in electrostatic interactions, and (3) examination of the effects of PEGylation on protein fouling. The experimental results were analyzed using appropriate theoretical models, with the underlying physical properties of the PEGylated proteins evaluated using size exclusion chromatography, capillary electrophoresis, dynamic light scattering, and reverse phase chromatography. PEGylated proteins were produced by covalent attachment of activated PEG to a protein via primary amines on the lysine residues. A simple model was developed for the reaction kinetics, which was used to explore the effect of reaction conditions and mode of operation on the distribution of PEGylated products. The effective size of the PEGylated proteins was evaluated using size exclusion chromatography, with appropriate correlations developed for the size in terms of the molecular weight of the native protein and attached PEG. The electrophoretic mobility of the PEGylated proteins were evaluated by capillary electrophoresis with the data in good agreement with a simple model accounting for the increase in protein size and the reduction in the number of protonated amine groups in the PEGylated proteins. Ultrafiltration experiments were performed using PEGylated alpha-lactalbumin, ovalbumin, and bovine serum albumin. In contrast to the size exclusion chromatography data, the sieving coefficient of the PEGylated proteins depended upon both the number and size of the attached PEG chains due to the elongation or deformation of the PEG associated with the filtrate flux. Sieving coefficients at low filtrate flux were in good agreement with predictions of available hydrodynamic models, with significant elongation occurring when the Deborah number for the PEG chain exceeded 0.001. The effects of electrostatic interactions on the ultrafiltration of PEGylated proteins were examined using electrically-charged membranes generated by covalent attachment of sulphonic acid groups to the base cellulosic membrane. Transmission of PEGylated proteins through charged membranes was dramatically reduced at low ionic strength due to strong electrostatic interactions, despite the presence of the neutral PEG. The experimental results were in good agreement with model calculations developed for the partitioning of charged spheres into charged cylindrical pores. The experimental and theoretical results provide the first quantitative analysis of the effects of PEGylation on transport through semipermeable ultrafiltration membranes. The results from small-scale ultrafiltration experiments were used to develop a two-stage diafiltration process to purify PEGylated alpha-lactalbumin. The first-stage used a neutral membrane to remove the unreacted protein by exploiting differences in size. The second stage used a negatively-charged membrane to remove hydrolyzed PEG, with the PEGylated product retained by strong electrostatic interactions. This process provided a purification factor greater than 1000 with respect to the unreacted protein and greater than 20-fold with respect to the PEG with an overall yield of PEGylated alpha-lactalbumin of 78%. These results provide the first demonstration of the potential of using ultrafiltration for the purification of protein-polymer conjugates.

  18. Predicting Consumer Biomass, Size-Structure, Production, Catch Potential, Responses to Fishing and Associated Uncertainties in the World's Marine Ecosystems.

    PubMed

    Jennings, Simon; Collingridge, Kate

    2015-01-01

    Existing estimates of fish and consumer biomass in the world's oceans are disparate. This creates uncertainty about the roles of fish and other consumers in biogeochemical cycles and ecosystem processes, the extent of human and environmental impacts and fishery potential. We develop and use a size-based macroecological model to assess the effects of parameter uncertainty on predicted consumer biomass, production and distribution. Resulting uncertainty is large (e.g. median global biomass 4.9 billion tonnes for consumers weighing 1 g to 1000 kg; 50% uncertainty intervals of 2 to 10.4 billion tonnes; 90% uncertainty intervals of 0.3 to 26.1 billion tonnes) and driven primarily by uncertainty in trophic transfer efficiency and its relationship with predator-prey body mass ratios. Even the upper uncertainty intervals for global predictions of consumer biomass demonstrate the remarkable scarcity of marine consumers, with less than one part in 30 million by volume of the global oceans comprising tissue of macroscopic animals. Thus the apparently high densities of marine life seen in surface and coastal waters and frequently visited abundance hotspots will likely give many in society a false impression of the abundance of marine animals. Unexploited baseline biomass predictions from the simple macroecological model were used to calibrate a more complex size- and trait-based model to estimate fisheries yield and impacts. Yields are highly dependent on baseline biomass and fisheries selectivity. Predicted global sustainable fisheries yield increases ≈4 fold when smaller individuals (< 20 cm from species of maximum mass < 1 kg) are targeted in all oceans, but the predicted yields would rarely be accessible in practice and this fishing strategy leads to the collapse of larger species if fishing mortality rates on different size classes cannot be decoupled. Our analyses show that models with minimal parameter demands that are based on a few established ecological principles can support equitable analysis and comparison of diverse ecosystems. The analyses provide insights into the effects of parameter uncertainty on global biomass and production estimates, which have yet to be achieved with complex models, and will therefore help to highlight priorities for future research and data collection. However, the focus on simple model structures and global processes means that non-phytoplankton primary production and several groups, structures and processes of ecological and conservation interest are not represented. Consequently, our simple models become increasingly less useful than more complex alternatives when addressing questions about food web structure and function, biodiversity, resilience and human impacts at smaller scales and for areas closer to coasts.

  19. A simple model for closure temperature of a trace element in cooling bi-mineralic systems

    NASA Astrophysics Data System (ADS)

    Liang, Yan

    2015-09-01

    Closure temperature is defined as the lower temperature limit at which the element of interest effectively ceases diffusive exchange with its surrounding medium during cooling. Here we generalize the classic equation of Dodson (1973) for cooling mono-mineralic systems to cooling bi-mineralic aggregates by considering diffusive exchange of a trace element between the two minerals in a closed system. We present a simple analytical model that includes key parameters affecting the closure temperature of a trace element in cooling bi-mineralic systems: cooling rate, temperature-dependent diffusion coefficients for the trace element in the two minerals, temperature-dependent partition coefficient of the trace element between the two minerals, effective grain sizes of the two minerals, and volume proportions of the minerals in the system. We show that closure temperatures of a trace element in cooling bi-mineralic systems are bounded by the closure temperatures of the trace element in the two mono-mineralic systems and that our generalized model reduces to Dodson's equation when one of the mineral serves as "an effective infinite" reservoir to the other mineral. Application to closure temperatures of REE in orthopyroxene and clinopyroxene bi-mineralic systems highlights the importance of REE diffusion and partitioning in the pyroxenes as well as clinopyroxene modal abundance and grain size in the systems. Closure temperatures for REE in two-pyroxene bearing equigranular rocks are controlled primarily by diffusion in orthopyroxene unless the modal abundance of clinopyroxene is very small. This has important bearings on the interpretation of temperatures derived from the REE-in-two-pyroxene thermometer.

  20. Synthesis of stable ZnO nanocolloids with enhanced optical limiting properties via simple solution method

    NASA Astrophysics Data System (ADS)

    Ramya, M.; Nideep, T. K.; Vijesh, K. R.; Nampoori, V. P. N.; Kailasnath, M.

    2018-07-01

    In present work, we report the synthesis of stable ZnO nanocolloids through a simple solution method which exhibit enhanced optical limiting threshold. The influences of reaction temperature on the crystal structure as well as linear and nonlinear optical properties of prepared ZnO nanoparticles were carried out. The XRD and Raman analysis reveal that the prepared ZnO nanoparticles retain the hexagonal wurtzite crystal structure. HRTEM analysis confirms the effect of reaction temperature, solvent effect on crystallinity as well as nanostructure of ZnO nanoparticles. It has been found that crystallinity and average diameter increase with reaction temperature where ethylene glycol act as both solvent and growth inhibiter. EDS spectra shows formation of pure ZnO nanoparticles. The direct energy band gap of the nanoparticles increases with decrease in particle size due to quantum confinement effect. The third order nonlinear optical properties of ZnO nanoparticles were investigated by z scan technique using a frequency doubled Nd-YAG nanosecond laser at 532 nm wavelength. The z-scan result reveals that the prepared ZnO nanoparticles exhibit self - defocusing nonlinearity. The two photon absorption coefficient and third - order nonlinear optical susceptibility increases with increasing particle size. The third-order susceptibility of the ZnO nanoparticles is found to be in the order of 10-10 esu, which is at least three order magnitude greater than the bulk ZnO. The optical limiting threshold of the nanoparticles varies in the range of 54 to 17 MW/cm2. The results suggest that ZnO nanoparticles considered as a promising candidates for the future photonic devices.

  1. Detecting single-trial EEG evoked potential using a wavelet domain linear mixed model: application to error potentials classification.

    PubMed

    Spinnato, J; Roubaud, M-C; Burle, B; Torrésani, B

    2015-06-01

    The main goal of this work is to develop a model for multisensor signals, such as magnetoencephalography or electroencephalography (EEG) signals that account for inter-trial variability, suitable for corresponding binary classification problems. An important constraint is that the model be simple enough to handle small size and unbalanced datasets, as often encountered in BCI-type experiments. The method involves the linear mixed effects statistical model, wavelet transform, and spatial filtering, and aims at the characterization of localized discriminant features in multisensor signals. After discrete wavelet transform and spatial filtering, a projection onto the relevant wavelet and spatial channels subspaces is used for dimension reduction. The projected signals are then decomposed as the sum of a signal of interest (i.e., discriminant) and background noise, using a very simple Gaussian linear mixed model. Thanks to the simplicity of the model, the corresponding parameter estimation problem is simplified. Robust estimates of class-covariance matrices are obtained from small sample sizes and an effective Bayes plug-in classifier is derived. The approach is applied to the detection of error potentials in multichannel EEG data in a very unbalanced situation (detection of rare events). Classification results prove the relevance of the proposed approach in such a context. The combination of the linear mixed model, wavelet transform and spatial filtering for EEG classification is, to the best of our knowledge, an original approach, which is proven to be effective. This paper improves upon earlier results on similar problems, and the three main ingredients all play an important role.

  2. Organ size control via hydraulically gated oscillations.

    PubMed

    Ruiz-Herrero, Teresa; Alessandri, Kévin; Gurchenkov, Basile V; Nassoy, Pierre; Mahadevan, L

    2017-12-01

    Hollow vesicular tissues of various sizes and shapes arise in biological organs such as ears, guts, hearts, brains and even entire organisms. Regulating their size and shape is crucial for their function. Although chemical signaling has been thought to play a role in the regulation of cellular processes that feed into larger scales, it is increasingly recognized that mechanical forces are involved in the modulation of size and shape at larger length scales. Motivated by a variety of examples of tissue cyst formation and size control that show simultaneous growth and size oscillations, we create a minimal theoretical framework for the growth and dynamics of a soft, fluid-permeable, spherical shell. We show that these shells can relieve internal pressure by bursting intermittently, shrinking and re-growing, providing a simple mechanism by which hydraulically gated oscillations can regulate size. To test our theory, we develop an in vitro experimental set-up to monitor the growth and oscillations of a hollow tissue spheroid growing freely or when confined. A simple generalization of our theory to account for irreversible deformations allows us to explain the time scales and the amplitudes of oscillations in terms of the geometry and mechanical properties of the tissue shells. Taken together, our theory and experimental observations show how soft hydraulics can regulate the size of growing tissue shells. © 2017. Published by The Company of Biologists Ltd.

  3. Evolutionary dynamics of fearfulness and boldness.

    PubMed

    Ji, Ting; Zhang, Boyu; Sun, Yuehua; Tao, Yi

    2009-02-21

    A negative relationship between reproductive effort and survival is consistent with life-history. Evolutionary dynamics and evolutionarily stable strategy (ESS) for the trade-off between survival and reproduction are investigated using a simple model with two phenotypes, fearfulness and boldness. The dynamical stability of the pure strategy model and analysis of ESS conditions reveal that: (i) the simple coexistence of fearfulness and boldness is impossible; (ii) a small population size is favorable to fearfulness, but a large population size is favorable to boldness, i.e., neither fearfulness, nor boldness is always favored by natural selection; and (iii) the dynamics of population density is crucial for a proper understanding of the strategy dynamics.

  4. Variations in interior morphology of 15-20 km lunar craters - Implications for a major subsurface discontinuity

    NASA Technical Reports Server (NTRS)

    De Hon, R. A.

    1980-01-01

    Craters vary in morphology as a function of crater diameter, age, and mode of origin. This study concentrates on the morphology of young lunar impact craters within a limited size range. Elimination of morphologic variations generally attributed to crater size or age leaves a small population which should nearly reflect the varying properties of the lunar substrate. The sample consists of 17 craters 15-20 km in diameter with both simple and complex morphologies. While depth/diameter ratios do not obviously differ between mare and highland subsets, apparent depth, rim height, and profile data do differ distinctly. Highland craters tend to be deep, simple, and bowl-shaped. Mare craters tend to be shallow and flat-floored. Rim heights of complex mare craters are typically greater than those of simple craters. Differences of highland and mare crater morphologies are attributed to variations in the thickness of the lunar megaregolith. Highland craters in this size range do not penetrate the megaregolith. The depth and morphology of complex craters are controlled by the discontinuity at the transition from highly brecciated megaregolith to more coherent crystalline material of the upper crust.

  5. Direct simulation of electroosmosis around a spherical particle with inhomogeneously acquired surface charge.

    PubMed

    Alizadeh, Amer; Wang, Moran

    2017-03-01

    Uncovering electroosmosis around an inhomogeneously acquired charge spherical particle in a confined space could provide detailed insights into its broad applications from biology to geology. In the present study, we developed a direct simulation method with the effects of inhomogeneously acquired charges on the particle surface considered, which has been validated by the available analytical and experimental data. Modeling results reveal that the surface charge and zeta potential, which are acquired through chemical interactions, strongly depend on the local solution properties and the particle size. The surface charge and zeta potential of the particle would significantly vary with the tangential positions on the particle surface by increasing the particle radius. Moreover, regarding the streaming potential for a particle-fluid tube system, our results uncover that the streaming potential has a reverse relation with the particle size in a micro or nanotube. To explain this phenomenon, we present a simple relation that bridges the streaming potential with the particle size and tube radius, zeta potential, bulk and surface conductivity. This relation could predict good results specifically for higher ion concentrations and provide deeper understanding of the particle size effects on the streaming potential measurements of the particle fluid tube system. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Annealing Effects on the Formation of Copper Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Marzuki, Marina; Zamzuri Mohamad Zain, Mohd; Zarul Hisham, Nurazhra; Zainon, Nooraizedfiza; Harun, Azmi; Nani Ahmad, Rozie

    2018-03-01

    This study approached the simple method of developing CuO thin films by thermal oxidation on pure Cu sheets. The effects of annealing temperature on the formation of CuO layers have been investigated. The oxide layers have been fabricated by annealing of Cu sheets for 5 hours at different temperatures of 980 ~ 1010 °C. The morphologies and optical properties of annealed Cu sheets were studied by using SEM and UV-Vis spectrophotometer respectively. It is revealed that the annealing temperature influence the grain growth and the grain size increases as the temperature increase. The highest grain size was observed on sample annealed at 1000 °C with average area per grain size of 0.023 mm2. Theoretically, larger grain size provides less barriers for electron mobility and increase the efficiency of solar devices. The optical absorption spectra of the oxide films was also measured. Interference pattern was noted at wavelength about 900 nm corresponding to the formation of CuO film. The interference noise observed could be due to the coarse surface and the presence of powdery oxide deposits that causes the scattering loses from the surface. CuO film obtained by this method may be further studied and exploited as low cost photovoltaic device.

  7. Extinction risk and eco-evolutionary dynamics in a variable environment with increasing frequency of extreme events.

    PubMed

    Vincenzi, Simone

    2014-08-06

    One of the most dramatic consequences of climate change will be the intensification and increased frequency of extreme events. I used numerical simulations to understand and predict the consequences of directional trend (i.e. mean state) and increased variability of a climate variable (e.g. temperature), increased probability of occurrence of point extreme events (e.g. floods), selection pressure and effect size of mutations on a quantitative trait determining individual fitness, as well as the their effects on the population and genetic dynamics of a population of moderate size. The interaction among climate trend, variability and probability of point extremes had a minor effect on risk of extinction, time to extinction and distribution of the trait after accounting for their independent effects. The survival chances of a population strongly and linearly decreased with increasing strength of selection, as well as with increasing climate trend and variability. Mutation amplitude had no effects on extinction risk, time to extinction or genetic adaptation to the new climate. Climate trend and strength of selection largely determined the shift of the mean phenotype in the population. The extinction or persistence of the populations in an 'extinction window' of 10 years was well predicted by a simple model including mean population size and mean genetic variance over a 10-year time frame preceding the 'extinction window', although genetic variance had a smaller role than population size in predicting contemporary risk of extinction. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  8. Synthesis of Silver Nanoprisms with Variable Size and Investigation of Their Optical Properties: A First-Year Undergraduate Experiment Exploring Plasmonic Nanoparticles

    ERIC Educational Resources Information Center

    Frank, Andrew J.; Cathcart, Nicole; Maly, Kenneth E.; Kitaev, Vladimir

    2010-01-01

    A robust and reasonably simple experiment is described that introduces students to the visualization of nanoscale properties and is intended for a first-year laboratory. Silver nanoprisms (NPs) that display different colors due to variation of their plasmonic absorption with respect to size are prepared. Control over the size of the silver…

  9. Evaluation of local anesthetic effects of Lidocaine-Ibuprofen ionic liquid stabilized silver nanoparticles in Male Swiss mice.

    PubMed

    Jiang, Qiliang; Yu, Shashuang; Li, Xingwang; Ma, Chuangen; Li, Aixiang

    2018-01-01

    A simple approach for the synthesis of Lidocaine-Ibuprofen ionic liquid stabilized silver nanoparticles (IL-AgNPs) was reported in this work. The shape, size and surface morphology of the Lidocaine-Ibuprofen ionic liquid stabilized AgNPs were characterized by using spectroscopic and microscopic techniques such as Ultraviolet-visible spectroscopy (UV-Visible), X-ray diffraction (XRD) analysis, Selected area electron diffraction (SAED), Transmission electron microscopy (TEM). TEM analysis showed the formation of 20-30nm size of IL-AgNPs with very clear lattice fringes. SAED pattern confirmed the highly crystalline nature of fabricated IL stabilized AgNPs. EDS results confirmed the formation of nanosilver. The fabricated IL-AgNPs were studied for their local anesthetic effect in rats. The results of local anesthetic effect showed that the time for onset of action by IL-AgNPs is 10min, which is significantly higher than that for EMLA. Further, tactile test results confirmed the stronger and faster local anesthetic effect of IL-AgNPs when compared to that of EMLA. Copyright © 2017. Published by Elsevier B.V.

  10. Modeling the light-travel-time effect on the far-infrared size of IRC +10216

    NASA Technical Reports Server (NTRS)

    Wright, Edward L.; Baganoff, Frederick K.

    1995-01-01

    Models of the far-infrared emission from the large circumstellar dust envelope surrounding the carbon star IRC +10216 are used to assess the importance of the light-travel-time effect (LTTE) on the observed size of the source. The central star is a long-period variable with an average period of 644 +/- 17 days and a peak-to-peak amplitude of two magnituds, so a large light-travel-time effect is seen at 1 min radius. An attempt is made to use the LTTE to reconcile the discrepancy between the observations of Fazio et al. and Lester et al. regarding the far-infrared source size. This discrepancy is reviewed in light of recent, high-spatial-resolution observations at 11 microns by Danchi et al. We conclude that IRC +10216 has been resolved on the arcminute scale by Fazio et al. Convolution of the model intensity profile at 61 microns with the 60 sec x 90 sec Gaussian beam of Fazio et al. yields an observed source size full width at half maximum (FWHM) that ranges from approximately 67 sec to 75 sec depending on the phase of the star and the assumed distance to the source. Using a simple r(exp -2) dust distribution and the 106 deg phase of the Fazio et al. observations, the LTTE model reaches a peak size of 74.3 sec at a distance of 300 pc. This agrees favorably with the 78 sec x 6 sec size measured by Fazio et al. Finally, a method is outlined for using the LTTE as a distance indicator to IRC +10216 and other stars with extended mass outflows.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Juan; Beltran, Chris J., E-mail: beltran.chris@mayo.edu; Herman, Michael G.

    Purpose: To quantitatively and systematically assess dosimetric effects induced by spot positioning error as a function of spot spacing (SS) on intensity-modulated proton therapy (IMPT) plan quality and to facilitate evaluation of safety tolerance limits on spot position. Methods: Spot position errors (PE) ranging from 1 to 2 mm were simulated. Simple plans were created on a water phantom, and IMPT plans were calculated on two pediatric patients with a brain tumor of 28 and 3 cc, respectively, using a commercial planning system. For the phantom, a uniform dose was delivered to targets located at different depths from 10 tomore » 20 cm with various field sizes from 2{sup 2} to 15{sup 2} cm{sup 2}. Two nominal spot sizes, 4.0 and 6.6 mm of 1 σ in water at isocenter, were used for treatment planning. The SS ranged from 0.5 σ to 1.5 σ, which is 2–6 mm for the small spot size and 3.3–9.9 mm for the large spot size. Various perturbation scenarios of a single spot error and systematic and random multiple spot errors were studied. To quantify the dosimetric effects, percent dose error (PDE) depth profiles and the value of percent dose error at the maximum dose difference (PDE [ΔDmax]) were used for evaluation. Results: A pair of hot and cold spots was created per spot shift. PDE[ΔDmax] is found to be a complex function of PE, SS, spot size, depth, and global spot distribution that can be well defined in simple models. For volumetric targets, the PDE [ΔDmax] is not noticeably affected by the change of field size or target volume within the studied ranges. In general, reducing SS decreased the dose error. For the facility studied, given a single spot error with a PE of 1.2 mm and for both spot sizes, a SS of 1σ resulted in a 2% maximum dose error; a SS larger than 1.25 σ substantially increased the dose error and its sensitivity to PE. A similar trend was observed in multiple spot errors (both systematic and random errors). Systematic PE can lead to noticeable hot spots along the field edges, which may be near critical structures. However, random PE showed minimal dose error. Conclusions: Dose error dependence for PE was quantitatively and systematically characterized and an analytic tool was built to simulate systematic and random errors for patient-specific IMPT. This information facilitates the determination of facility specific spot position error thresholds.« less

  12. Multipinhole SPECT helical scan parameters and imaging volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Rutao, E-mail: rutaoyao@buffalo.edu; Deng, Xiao; Wei, Qingyang

    Purpose: The authors developed SPECT imaging capability on an animal PET scanner using a multiple-pinhole collimator and step-and-shoot helical data acquisition protocols. The objective of this work was to determine the preferred helical scan parameters, i.e., the angular and axial step sizes, and the imaging volume, that provide optimal imaging performance. Methods: The authors studied nine helical scan protocols formed by permuting three rotational and three axial step sizes. These step sizes were chosen around the reference values analytically calculated from the estimated spatial resolution of the SPECT system and the Nyquist sampling theorem. The nine helical protocols were evaluatedmore » by two figures-of-merit: the sampling completeness percentage (SCP) and the root-mean-square (RMS) resolution. SCP was an analytically calculated numerical index based on projection sampling. RMS resolution was derived from the reconstructed images of a sphere-grid phantom. Results: The RMS resolution results show that (1) the start and end pinhole planes of the helical scheme determine the axial extent of the effective field of view (EFOV), and (2) the diameter of the transverse EFOV is adequately calculated from the geometry of the pinhole opening, since the peripheral region beyond EFOV would introduce projection multiplexing and consequent effects. The RMS resolution results of the nine helical scan schemes show optimal resolution is achieved when the axial step size is the half, and the angular step size is about twice the corresponding values derived from the Nyquist theorem. The SCP results agree in general with that of RMS resolution but are less critical in assessing the effects of helical parameters and EFOV. Conclusions: The authors quantitatively validated the effective FOV of multiple pinhole helical scan protocols and proposed a simple method to calculate optimal helical scan parameters.« less

  13. Genetic Allee effects and their interaction with ecological Allee effects.

    PubMed

    Wittmann, Meike J; Stuis, Hanna; Metzler, Dirk

    2018-01-01

    It is now widely accepted that genetic processes such as inbreeding depression and loss of genetic variation can increase the extinction risk of small populations. However, it is generally unclear whether extinction risk from genetic causes gradually increases with decreasing population size or whether there is a sharp transition around a specific threshold population size. In the ecological literature, such threshold phenomena are called 'strong Allee effects' and they can arise for example from mate limitation in small populations. In this study, we aim to (i) develop a meaningful notion of a 'strong genetic Allee effect', (ii) explore whether and under what conditions such an effect can arise from inbreeding depression due to recessive deleterious mutations, and (iii) quantify the interaction of potential genetic Allee effects with the well-known mate-finding Allee effect. We define a strong genetic Allee effect as a genetic process that causes a population's survival probability to be a sigmoid function of its initial size. The inflection point of this function defines the critical population size. To characterize survival-probability curves, we develop and analyse simple stochastic models for the ecology and genetics of small populations. Our results indicate that inbreeding depression can indeed cause a strong genetic Allee effect, but only if individuals carry sufficiently many deleterious mutations (lethal equivalents). Populations suffering from a genetic Allee effect often first grow, then decline as inbreeding depression sets in and then potentially recover as deleterious mutations are purged. Critical population sizes of ecological and genetic Allee effects appear to be often additive, but even superadditive interactions are possible. Many published estimates for the number of lethal equivalents in birds and mammals fall in the parameter range where strong genetic Allee effects are expected. Unfortunately, extinction risk due to genetic Allee effects can easily be underestimated as populations with genetic problems often grow initially, but then crash later. Also interactions between ecological and genetic Allee effects can be strong and should not be neglected when assessing the viability of endangered or introduced populations. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  14. A Simulation Study on the Performance of the Simple Difference and Covariance-Adjusted Scores in Randomized Experimental Designs.

    PubMed

    Petscher, Yaacov; Schatschneider, Christopher

    2011-01-01

    Research by Huck and McLean (1975) demonstrated that the covariance-adjusted score is more powerful than the simple difference score, yet recent reviews indicate researchers are equally likely to use either score type in two-wave randomized experimental designs. A Monte Carlo simulation was conducted to examine the conditions under which the simple difference and covariance-adjusted scores were more or less powerful to detect treatment effects when relaxing certain assumptions made by Huck and McLean (1975). Four factors were manipulated in the design including sample size, normality of the pretest and posttest distributions, the correlation between pretest and posttest, and posttest variance. A 5 × 5 × 4 × 3 mostly crossed design was run with 1,000 replications per condition, resulting in 226,000 unique samples. The gain score was nearly as powerful as the covariance-adjusted score when pretest and posttest variances were equal, and as powerful in fan-spread growth conditions; thus, under certain circumstances the gain score could be used in two-wave randomized experimental designs.

  15. A Simulation Study on the Performance of the Simple Difference and Covariance-Adjusted Scores in Randomized Experimental Designs

    PubMed Central

    Petscher, Yaacov; Schatschneider, Christopher

    2015-01-01

    Research by Huck and McLean (1975) demonstrated that the covariance-adjusted score is more powerful than the simple difference score, yet recent reviews indicate researchers are equally likely to use either score type in two-wave randomized experimental designs. A Monte Carlo simulation was conducted to examine the conditions under which the simple difference and covariance-adjusted scores were more or less powerful to detect treatment effects when relaxing certain assumptions made by Huck and McLean (1975). Four factors were manipulated in the design including sample size, normality of the pretest and posttest distributions, the correlation between pretest and posttest, and posttest variance. A 5 × 5 × 4 × 3 mostly crossed design was run with 1,000 replications per condition, resulting in 226,000 unique samples. The gain score was nearly as powerful as the covariance-adjusted score when pretest and posttest variances were equal, and as powerful in fan-spread growth conditions; thus, under certain circumstances the gain score could be used in two-wave randomized experimental designs. PMID:26379310

  16. Simple effective rule to estimate the jamming packing fraction of polydisperse hard spheres.

    PubMed

    Santos, Andrés; Yuste, Santos B; López de Haro, Mariano; Odriozola, Gerardo; Ogarko, Vitaliy

    2014-04-01

    A recent proposal in which the equation of state of a polydisperse hard-sphere mixture is mapped onto that of the one-component fluid is extrapolated beyond the freezing point to estimate the jamming packing fraction ϕJ of the polydisperse system as a simple function of M1M3/M22, where Mk is the kth moment of the size distribution. An analysis of experimental and simulation data of ϕJ for a large number of different mixtures shows a remarkable general agreement with the theoretical estimate. To give extra support to the procedure, simulation data for seventeen mixtures in the high-density region are used to infer the equation of state of the pure hard-sphere system in the metastable region. An excellent collapse of the inferred curves up to the glass transition and a significant narrowing of the different out-of-equilibrium glass branches all the way to jamming are observed. Thus, the present approach provides an extremely simple criterion to unify in a common framework and to give coherence to data coming from very different polydisperse hard-sphere mixtures.

  17. Equal channel angular extrusion for bulk processing of Fe–Co–2V soft magnetic alloys, part II: Texture analysis and magnetic properties

    DOE PAGES

    Kustas, Andrew B.; Michael, Joseph R.; Susan, Don F.; ...

    2018-06-04

    In Part I, equal channel angular extrusion (ECAE) was demonstrated as a novel, simple-shear deformation process for producing bulk forms of the low ductility Fe–Co–2V (Hiperco 50A®) soft ferromagnetic alloy with refined grain sizes. Microstructures and mechanical properties were discussed. In this Part II contribution, the crystallographic textures and quasi-static magnetic properties of ECAE-processed Hiperco were characterized. The textures were of a simple-shear character defined by partial {110} and <111> fibers inclined relative to the extrusion direction, in agreement with the expectations for simple-shear deformation textures of BCC metals. These textures were observed throughout all processing conditions and only slightlymore » reduced in intensity by subsequent recrystallization heat treatments. Characterization of the magnetic properties revealed a lower coercivity and higher permeability for ECAE-processed Hiperco specimens relative to the conventionally processed and annealed Hiperco bar. In conclusion, the effects of the resultant microstructure and texture on the coercivity and permeability magnetic properties are discussed.« less

  18. Equal channel angular extrusion for bulk processing of Fe–Co–2V soft magnetic alloys, part II: Texture analysis and magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kustas, Andrew B.; Michael, Joseph R.; Susan, Don F.

    In Part I, equal channel angular extrusion (ECAE) was demonstrated as a novel, simple-shear deformation process for producing bulk forms of the low ductility Fe–Co–2V (Hiperco 50A®) soft ferromagnetic alloy with refined grain sizes. Microstructures and mechanical properties were discussed. In this Part II contribution, the crystallographic textures and quasi-static magnetic properties of ECAE-processed Hiperco were characterized. The textures were of a simple-shear character defined by partial {110} and <111> fibers inclined relative to the extrusion direction, in agreement with the expectations for simple-shear deformation textures of BCC metals. These textures were observed throughout all processing conditions and only slightlymore » reduced in intensity by subsequent recrystallization heat treatments. Characterization of the magnetic properties revealed a lower coercivity and higher permeability for ECAE-processed Hiperco specimens relative to the conventionally processed and annealed Hiperco bar. In conclusion, the effects of the resultant microstructure and texture on the coercivity and permeability magnetic properties are discussed.« less

  19. Mobile elements reveal small population size in the ancient ancestors of Homo sapiens.

    PubMed

    Huff, Chad D; Xing, Jinchuan; Rogers, Alan R; Witherspoon, David; Jorde, Lynn B

    2010-02-02

    The genealogies of different genetic loci vary in depth. The deeper the genealogy, the greater the chance that it will include a rare event, such as the insertion of a mobile element. Therefore, the genealogy of a region that contains a mobile element is on average older than that of the rest of the genome. In a simple demographic model, the expected time to most recent common ancestor (TMRCA) is doubled if a rare insertion is present. We test this expectation by examining single nucleotide polymorphisms around polymorphic Alu insertions from two completely sequenced human genomes. The estimated TMRCA for regions containing a polymorphic insertion is two times larger than the genomic average (P < <10(-30)), as predicted. Because genealogies that contain polymorphic mobile elements are old, they are shaped largely by the forces of ancient population history and are insensitive to recent demographic events, such as bottlenecks and expansions. Remarkably, the information in just two human DNA sequences provides substantial information about ancient human population size. By comparing the likelihood of various demographic models, we estimate that the effective population size of human ancestors living before 1.2 million years ago was 18,500, and we can reject all models where the ancient effective population size was larger than 26,000. This result implies an unusually small population for a species spread across the entire Old World, particularly in light of the effective population sizes of chimpanzees (21,000) and gorillas (25,000), which each inhabit only one part of a single continent.

  20. Prediction of Cavitation Depth in an Al-Cu Alloy Melt with Bubble Characteristics Based on Synchrotron X-ray Radiography

    NASA Astrophysics Data System (ADS)

    Huang, Haijun; Shu, Da; Fu, Yanan; Zhu, Guoliang; Wang, Donghong; Dong, Anping; Sun, Baode

    2018-06-01

    The size of cavitation region is a key parameter to estimate the metallurgical effect of ultrasonic melt treatment (UST) on preferential structure refinement. We present a simple numerical model to predict the characteristic length of the cavitation region, termed cavitation depth, in a metal melt. The model is based on wave propagation with acoustic attenuation caused by cavitation bubbles which are dependent on bubble characteristics and ultrasonic intensity. In situ synchrotron X-ray imaging of cavitation bubbles has been made to quantitatively measure the size of cavitation region and volume fraction and size distribution of cavitation bubbles in an Al-Cu melt. The results show that cavitation bubbles maintain a log-normal size distribution, and the volume fraction of cavitation bubbles obeys a tanh function with the applied ultrasonic intensity. Using the experimental values of bubble characteristics as input, the predicted cavitation depth agrees well with observations except for a slight deviation at higher acoustic intensities. Further analysis shows that the increase of bubble volume and bubble size both leads to higher attenuation by cavitation bubbles, and hence, smaller cavitation depth. The current model offers a guideline to implement UST, especially for structural refinement.

  1. Prediction of Cavitation Depth in an Al-Cu Alloy Melt with Bubble Characteristics Based on Synchrotron X-ray Radiography

    NASA Astrophysics Data System (ADS)

    Huang, Haijun; Shu, Da; Fu, Yanan; Zhu, Guoliang; Wang, Donghong; Dong, Anping; Sun, Baode

    2018-04-01

    The size of cavitation region is a key parameter to estimate the metallurgical effect of ultrasonic melt treatment (UST) on preferential structure refinement. We present a simple numerical model to predict the characteristic length of the cavitation region, termed cavitation depth, in a metal melt. The model is based on wave propagation with acoustic attenuation caused by cavitation bubbles which are dependent on bubble characteristics and ultrasonic intensity. In situ synchrotron X-ray imaging of cavitation bubbles has been made to quantitatively measure the size of cavitation region and volume fraction and size distribution of cavitation bubbles in an Al-Cu melt. The results show that cavitation bubbles maintain a log-normal size distribution, and the volume fraction of cavitation bubbles obeys a tanh function with the applied ultrasonic intensity. Using the experimental values of bubble characteristics as input, the predicted cavitation depth agrees well with observations except for a slight deviation at higher acoustic intensities. Further analysis shows that the increase of bubble volume and bubble size both leads to higher attenuation by cavitation bubbles, and hence, smaller cavitation depth. The current model offers a guideline to implement UST, especially for structural refinement.

  2. Twin-domain size and bulk oxygen in-diffusion kinetics of YBa 2Cu 3O 6+x studied by neutron powder diffraction and gas volumetry

    NASA Astrophysics Data System (ADS)

    Poulsen, H. F.; Andersen, N. H.; Lebech, B.

    1991-02-01

    We report experimental results of twin-domain size and bulk oxygen in-diffusion kinetics of YBa 2Cu 3O 6+ x, which supplement a previous and simultaneous study of the structural phase diagram and oxygen equilibrium partial pressure. Analysis of neutron powder diffraction peak broadening show features which are identified to result from temperature independent twin-domain formation in to different orthorhombic phases with domain sizes and 250 and 350Å, respectively. The oxygen in-diffusion flow shows simple relaxation type behaviour J=J 0 exp( {-t}/{τ}) despite a rather broad particle size distribution. At higher temperatures, τ is activated with activation energies 0.55 and 0.25 eV in the tetragonal and orthorhombic phases, respectively. Comparison between twin-domain sizes and bulk oxygen in-diffusion time constants indicates that the twin-domain boundaries may contribute to the effective bulk oxygen in-diffusion. All our results may be interpreted in terms of the 2D ASYNNNI model description of the oxygen basal plane ordering, and they suggest that recent first principles interaction parameters should be modified.

  3. Size-dependent protein segregation at membrane interfaces

    PubMed Central

    Schmid, Eva M; Bakalar, Matthew H; Choudhuri, Kaushik; Weichsel, Julian; Ann, HyoungSook; Geissler, Phillip L; Dustin, Michael L; Fletcher, Daniel A

    2016-01-01

    Membrane interfaces formed at cell-cell junctions are associated with characteristic patterns of membrane protein organization, such as E-cadherin enrichment in epithelial junctional complexes and CD45 exclusion from the signaling foci of immunological synapses. To isolate the role of protein size in these processes, we reconstituted membrane interfaces in vitro using giant unilamellar vesicles decorated with synthetic binding and non-binding proteins. We show that size differences between binding and non-binding proteins can dramatically alter their organization at membrane interfaces in the absence of active contributions from the cytoskeleton, with as little as a ~5 nm increase in non-binding protein size driving its exclusion from the interface. Combining in vitro measurements with Monte Carlo simulations, we find that non-binding protein exclusion is also influenced by lateral crowding, binding protein affinity, and thermally-driven membrane height fluctuations that transiently limit access to the interface. This simple, sensitive, and highly effective means of passively segregating proteins has implications for signaling at cell-cell junctions and protein sorting at intracellular contact points between membrane-bound organelles. PMID:27980602

  4. Initial rupture of earthquakes in the 1995 Ridgecrest, California sequence

    USGS Publications Warehouse

    Mori, J.; Kanamori, H.

    1996-01-01

    Close examination of the P waves from earthquakes ranging in size across several orders of magnitude shows that the shape of the initiation of the velocity waveforms is independent of the magnitude of the earthquake. A model in which earthquakes of all sizes have similar rupture initiation can explain the data. This suggests that it is difficult to estimate the eventual size of an earthquake from the initial portion of the waveform. Previously reported curvature seen in the beginning of some velocity waveforms can be largely explained as the effect of anelastic attenuation; thus there is little evidence for a departure from models of simple rupture initiation that grow dynamically from a small region. The results of this study indicate that any "precursory" radiation at seismic frequencies must emanate from a source region no larger than the equivalent of a M0.5 event (i.e. a characteristic length of ???10 m). The size of the nucleation region for magnitude 0 to 5 earthquakes thus is not resolvable with the standard seismic instrumentation deployed in California. Copyright 1996 by the American Geophysical Union.

  5. How the Emitted Size Distribution and Mixing State of Feldspar Affect Ice Nucleating Particles in a Global Model

    NASA Technical Reports Server (NTRS)

    Perlwitz, Jan P.; Fridlind, Ann M.; Knopf, Daniel A.; Miller, Ron L.; García-Pando, Carlos Perez

    2017-01-01

    The effect of aerosol particles on ice nucleation and, in turn, the formation of ice and mixed phase clouds is recognized as one of the largest sources of uncertainty in climate prediction. We apply an improved dust mineral specific aerosol module in the NASA GISS Earth System ModelE, which takes into account soil aggregates and their fragmentation at emission as well as the emission of large particles. We calculate ice nucleating particle concentrations from K-feldspar abundance for an active site parameterization for a range of activation temperatures and external and internal mixing assumption. We find that the globally averaged INP concentration is reduced by a factor of two to three, compared to a simple assumption on the size distribution of emitted dust minerals. The decrease can amount to a factor of five in some geographical regions. The results vary little between external and internal mixing and different activation temperatures, except for the coldest temperatures. In the sectional size distribution, the size range 24 micrometer contributes the largest INP number.

  6. How the Emitted Size Distribution and Mixing State of Feldspar Affect Ice Nucleating Particles in a Global Model

    NASA Astrophysics Data System (ADS)

    Perlwitz, J. P.; Fridlind, A. M.; Knopf, D. A.; Miller, R. L.; Pérez García-Pando, C.

    2017-12-01

    The effect of aerosol particles on ice nucleation and, in turn, the formation of ice and mixed phase clouds is recognized as one of the largest sources of uncertainty in climate prediction. We apply an improved dust mineral specific aerosol module in the NASA GISS Earth System ModelE, which takes into account soil aggregates and their fragmentation at emission as well as the emission of large particles. We calculate ice nucleating particle concentrations from K-feldspar abundance for an active site parameterization for a range of activation temperatures and external and internal mixing assumption. We find that the globally averaged INP concentration is reduced by a factor of two to three, compared to a simple assumption on the size distribution of emitted dust minerals. The decrease can amount to a factor of five in some geographical regions. The results vary little between external and internal mixing and different activation temperatures, except for the coldest temperatures. In the sectional size distribution, the size range 2-4 μm contributes the largest INP number.

  7. Toward industrial scale synthesis of ultrapure singlet nanoparticles with controllable sizes in a continuous gas-phase process

    NASA Astrophysics Data System (ADS)

    Feng, Jicheng; Biskos, George; Schmidt-Ott, Andreas

    2015-10-01

    Continuous gas-phase synthesis of nanoparticles is associated with rapid agglomeration, which can be a limiting factor for numerous applications. In this report, we challenge this paradigm by providing experimental evidence to support that gas-phase methods can be used to produce ultrapure non-agglomerated “singlet” nanoparticles having tunable sizes at room temperature. By controlling the temperature in the particle growth zone to guarantee complete coalescence of colliding entities, the size of singlets in principle can be regulated from that of single atoms to any desired value. We assess our results in the context of a simple analytical model to explore the dependence of singlet size on the operating conditions. Agreement of the model with experimental measurements shows that these methods can be effectively used for producing singlets that can be processed further by many alternative approaches. Combined with the capabilities of up-scaling and unlimited mixing that spark ablation enables, this study provides an easy-to-use concept for producing the key building blocks for low-cost industrial-scale nanofabrication of advanced materials.

  8. The comparative performance of Roots type aircraft engine superchargers as affected by change in impeller speed and displacement

    NASA Technical Reports Server (NTRS)

    Ware, Marsden; Wilson, Ernest E

    1929-01-01

    This report presents the results of tests made on three sizes of roots type aircraft engine superchargers. The impeller contours and diameters of these machines were the same, but the length were 11, 8 1/4, and 4 inches, giving displacements of 0.509, 0.382, and 0.185 cubic foot per impeller revolution. The information obtained serves as a basis for the examination of the individual effects of impeller speed and displacement on performance and of the comparative performance when speed and displacement are altered simultaneously to meet definite service requirements. According to simple theory, when assuming no losses, the air weight handled and the power required for a given pressure difference are directly proportional to the speed and the displacement. These simple relations are altered considerably by the losses. When comparing the performance of different sizes of machines whose impeller speeds are so related that the same service requirements are met, it is found that the individual effects of speed and displacement are canceled to a large extent, and the only considerable difference is the difference in the power losses which decrease with increase in the displacement and the accompanying decrease in speed. This difference is small in relation to the net power of the engine supercharger unit, so that a supercharger with short impellers may be used in those applications where the space available is very limited with any considerable sacrifice in performance.

  9. Determination of the microenvironment-pH and charge and size characteristics of amino acids through their electrophoretic mobilities determined by CZE.

    PubMed

    Piaggio, Maria V; Peirotti, Marta B; Deiber, Julio A

    2007-10-01

    Effective electrophoretic mobility data of 20 amino acids reported in the literature are analyzed and interpreted through simple physicochemical models, which are able to provide estimates of coupled quantities like hydrodynamic shape factor, equivalent hydrodynamic radius (size), net charge, actual pK values of ionizing groups, partial charges of ionizing groups, hydration number, and pH near molecule (microenvironment-pH of the BGE). It is concluded that the modeling of the electrophoretic mobility of these analytes requires a careful consideration of hydrodynamic shape coupled to hydration. In the low range of pH studied here, distinctive hydrodynamic behaviors of amino acids are found. For instance, amino acids with basic polar and ionizing side chain remain with prolate shape for pH values varying from 1.99 to 3.2. It is evident that as the pH increases from low values, amino acids get higher hydrations as a consequence each analyte total charge also increases. This result is consistent with the monotonic increase of the hydrodynamic radius, which accounts for both the analyte and the quite immobilized water molecules defining the electrophoretic kinematical unit. It is also found that the actual or effective pK value of the alpha-carboxylic ionizing group of amino acids increases when the pH is changed from 1.99 to 3.2. Several limitations concerning the simple modeling of the electrophoretic mobility of amino acids are presented for further research.

  10. Effects of Moisture and Particle Size on Quantitative Determination of Total Organic Carbon (TOC) in Soils Using Near-Infrared Spectroscopy.

    PubMed

    Tamburini, Elena; Vincenzi, Fabio; Costa, Stefania; Mantovi, Paolo; Pedrini, Paola; Castaldelli, Giuseppe

    2017-10-17

    Near-Infrared Spectroscopy is a cost-effective and environmentally friendly technique that could represent an alternative to conventional soil analysis methods, including total organic carbon (TOC). Soil fertility and quality are usually measured by traditional methods that involve the use of hazardous and strong chemicals. The effects of physical soil characteristics, such as moisture content and particle size, on spectral signals could be of great interest in order to understand and optimize prediction capability and set up a robust and reliable calibration model, with the future perspective of being applied in the field. Spectra of 46 soil samples were collected. Soil samples were divided into three data sets: unprocessed, only dried and dried, ground and sieved, in order to evaluate the effects of moisture and particle size on spectral signals. Both separate and combined normalization methods including standard normal variate (SNV), multiplicative scatter correction (MSC) and normalization by closure (NCL), as well as smoothing using first and second derivatives (DV1 and DV2), were applied to a total of seven cases. Pretreatments for model optimization were designed and compared for each data set. The best combination of pretreatments was achieved by applying SNV and DV2 on partial least squares (PLS) modelling. There were no significant differences between the predictions using the three different data sets ( p < 0.05). Finally, a unique database including all three data sets was built to include all the sources of sample variability that were tested and used for final prediction. External validation of TOC was carried out on 16 unknown soil samples to evaluate the predictive ability of the final combined calibration model. Hence, we demonstrate that sample preprocessing has minor influence on the quality of near infrared spectroscopy (NIR) predictions, laying the ground for a direct and fast in situ application of the method. Data can be acquired outside the laboratory since the method is simple and does not need more than a simple band ratio of the spectra.

  11. Studies of ionic current rectification using polyethyleneimines coated glass nanopipettes.

    PubMed

    Liu, Shujuan; Dong, Yitong; Zhao, Wenbo; Xie, Xiang; Ji, Tianrong; Yin, Xiaohong; Liu, Yun; Liang, Zhongwei; Momotenko, Dmitry; Liang, Dehai; Girault, Hubert H; Shao, Yuanhua

    2012-07-03

    The modification of glass nanopipettes with polyethyleneimines (PEIs) has been successfully achieved by a relatively simple method, and the smallest tip opening is around 3 nm. Thus, in a much wider range of glass pipettes with radii from several nanometers to a few micrometers, the ion current rectification (ICR) phenomenon has been observed. The influences of different KCl concentrations, pH values, and tip radii on the ICR are investigated in detail. The sizes of PEIs have been determined by dynamic light scattering, and the effect of the sizes of PEIs for the modification, especially for a few nanometer-pipettes in radii, is also discussed. These findings systemically confirm and complement the theoretical model and provide a platform for possible selectively molecular detection and mimic biological ion channels.

  12. Damage Evaluation Based on a Wave Energy Flow Map Using Multiple PZT Sensors

    PubMed Central

    Liu, Yaolu; Hu, Ning; Xu, Hong; Yuan, Weifeng; Yan, Cheng; Li, Yuan; Goda, Riu; Alamusi; Qiu, Jinhao; Ning, Huiming; Wu, Liangke

    2014-01-01

    A new wave energy flow (WEF) map concept was proposed in this work. Based on it, an improved technique incorporating the laser scanning method and Betti's reciprocal theorem was developed to evaluate the shape and size of damage as well as to realize visualization of wave propagation. In this technique, a simple signal processing algorithm was proposed to construct the WEF map when waves propagate through an inspection region, and multiple lead zirconate titanate (PZT) sensors were employed to improve inspection reliability. Various damages in aluminum and carbon fiber reinforced plastic laminated plates were experimentally and numerically evaluated to validate this technique. The results show that it can effectively evaluate the shape and size of damage from wave field variations around the damage in the WEF map. PMID:24463430

  13. On the origin of Hawking mini black-holes and the cold early universe

    NASA Technical Reports Server (NTRS)

    Canuto, V.

    1978-01-01

    A simple argument is outlined leading to the result that the mass of mini black holes exploding today is 10 to the 15th power g. A mathematical model is discussed which indicates that the equation of state is greatly softened in the high-density regime and a phase transition may exist, such that any length (particularly very small sizes) will grow with time irrespective of its relation to the size of the particle horizon. It is shown that the effect of spin-2 mesons with respect to the equation of state is to soften the pressure and make it negative. An analytical expression is given for the probability that any particular region in a hot early universe will evolve into a black hole.

  14. Gauging the Nearness and Size of Cycle Maximum

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2003-01-01

    A simple method for monitoring the nearness and size of conventional cycle maximum for an ongoing sunspot cycle is examined. The method uses the observed maximum daily value and the maximum monthly mean value of international sunspot number and the maximum value of the 2-mo moving average of monthly mean sunspot number to effect the estimation. For cycle 23, a maximum daily value of 246, a maximum monthly mean of 170.1, and a maximum 2-mo moving average of 148.9 were each observed in July 2000. Taken together, these values strongly suggest that conventional maximum amplitude for cycle 23 would be approx. 124.5, occurring near July 2002 +/-5 mo, very close to the now well-established conventional maximum amplitude and occurrence date for cycle 23-120.8 in April 2000.

  15. Oxygen consumption measurements during continual centrifugation of mice.

    NASA Technical Reports Server (NTRS)

    Fethke, W.; Cook, K. M.; Porter, S. M.; Wunder, C. C.

    1973-01-01

    A simple method is described for measurement of metabolism of conscious, unrestrained animals, during chronic centrifugation or other conditions of isolation (23.75 hr/day) from the investigators in an essentially normal atmospheric environment for as long as seven days. This involves telemetry of pressure changes in a metabolic chamber. At 7 G's, increased O2 intake lasting two to seven days and a decreased excursion of the day-night difference were measured for male white mice with less effect or even an opposite effect at lower fields. Base-line measurements of metabolic rate per mouse are less affected by animal size than expected from the surface area law.

  16. Characteristics of nano-sized yttria powder synthesized by a polyvinyl alcohol solution route at low temperature.

    PubMed

    Lee, Sang-Jin; Jung, Choong-Hwan

    2012-01-01

    Nano-sized yttria (Y2O3) powders were successfully synthesized at a low temperature of 400 degrees C by a simple polymer solution route. PVA polymer, as an organic carrier, contributed to an atom-scale homogeneous precursor gel and it resulted in fully crystallized, nano-sized yttria powder with high specific surface area through the low temperature calcination. In this process, the content of PVA, calcination temperature and heating time affected the microstructure and crystallization behavior of the powders. The development of crystalline phase and the final particle size were strongly dependant on the oxidation reaction from the polymer burn-out step and the PVA content. In this paper, the PVA solution technique for the fabrication of nano-sized yttria powders is introduced. The effects of PVA content and holding time on the powder morphology and powder specific surface area are also studied. The characterization of the synthesized powders is examined by using XRD, DTA/TG, SEM, TEM and nitrogen gas adsorption. The yttria powder synthesized from the PVA content of 3:1 ratio and calcined at 400 degrees C had a crystallite size of about 20 nm or less with a high surface areas of 93.95-120.76 m2 g(-1).

  17. Is patient size important in dose determination and optimization in cardiology?

    NASA Astrophysics Data System (ADS)

    Reay, J.; Chapple, C. L.; Kotre, C. J.

    2003-12-01

    Patient dose determination and optimization have become more topical in recent years with the implementation of the Medical Exposures Directive into national legislation, the Ionising Radiation (Medical Exposure) Regulations. This legislation incorporates a requirement for new equipment to provide a means of displaying a measure of patient exposure and introduces the concept of diagnostic reference levels. It is normally assumed that patient dose is governed largely by patient size; however, in cardiology, where procedures are often very complex, the significance of patient size is less well understood. This study considers over 9000 cardiology procedures, undertaken throughout the north of England, and investigates the relationship between patient size and dose. It uses simple linear regression to calculate both correlation coefficients and significance levels for data sorted by both room and individual clinician for the four most common examinations, left ventrical and/or coronary angiography, single vessel stent insertion and single vessel angioplasty. This paper concludes that the correlation between patient size and dose is weak for the procedures considered. It also illustrates the use of an existing method for removing the effect of patient size from dose survey data. This allows typical doses and, therefore, reference levels to be defined for the purposes of dose optimization.

  18. Microwave absorption in powders of small conducting particles for heating applications.

    PubMed

    Porch, Adrian; Slocombe, Daniel; Edwards, Peter P

    2013-02-28

    In microwave chemistry there is a common misconception that small, highly conducting particles heat profusely when placed in a large microwave electric field. However, this is not the case; with the simple physical explanation that the electric field (which drives the heating) within a highly conducting particle is highly screened. Instead, it is the magnetic absorption associated with induction that accounts for the large experimental heating rates observed for small metal particles. We present simple principles for the effective heating of particles in microwave fields from calculations of electric and magnetic dipole absorptions for a range of practical values of particle size and conductivity. For highly conducting particles, magnetic absorption dominates electric absorption over a wide range of particle radii, with an optimum absorption set by the ratio of mean particle radius a to the skin depth δ (specifically, by the condition a = 2.41δ). This means that for particles of any conductivity, optimized magnetic absorption (and hence microwave heating by magnetic induction) can be achieved by simple selection of the mean particle size. For weakly conducting samples, electric dipole absorption dominates, and is maximized when the conductivity is approximately σ ≈ 3ωε(0) ≈ 0.4 S m(-1), independent of particle radius. Therefore, although electric dipole heating can be as effective as magnetic dipole heating for a powder sample of the same volume, it is harder to obtain optimized conditions at a fixed frequency of microwave field. The absorption of sub-micron particles is ineffective in both magnetic and electric fields. However, if the particles are magnetic, with a lossy part to their complex permeability, then magnetic dipole losses are dramatically enhanced compared to their values for non-magnetic particles. An interesting application of this is the use of very small magnetic particles for the selective microwave heating of biological samples.

  19. Effective particle size from molecular dynamics simulations in fluids

    NASA Astrophysics Data System (ADS)

    Ju, Jianwei; Welch, Paul M.; Rasmussen, Kim Ø.; Redondo, Antonio; Vorobieff, Peter; Kober, Edward M.

    2018-04-01

    We report molecular dynamics simulations designed to investigate the effective size of colloidal particles suspended in a fluid in the vicinity of a rigid wall where all interactions are defined by smooth atomic potential functions. These simulations are used to assess how the behavior of this system at the atomistic length scale compares to continuum mechanics models. In order to determine the effective size of the particles, we calculate the solvent forces on spherical particles of different radii as a function of different positions near and overlapping with the atomistically defined wall and compare them to continuum models. This procedure also then determines the effective position of the wall. Our analysis is based solely on forces that the particles sense, ensuring self-consistency of the method. The simulations were carried out using both Weeks-Chandler-Andersen and modified Lennard-Jones (LJ) potentials to identify the different contributions of simple repulsion and van der Waals attractive forces. Upon correction for behavior arising the discreteness of the atomic system, the underlying continuum physics analysis appeared to be correct down to much less than the particle radius. For both particle types, the effective radius was found to be ˜ 0.75σ , where σ defines the length scale of the force interaction (the LJ diameter). The effective "hydrodynamic" radii determined by this means are distinct from commonly assumed values of 0.5σ and 1.0σ , but agree with a value developed from the atomistic analysis of the viscosity of such systems.

  20. Effective particle size from molecular dynamics simulations in fluids

    NASA Astrophysics Data System (ADS)

    Ju, Jianwei; Welch, Paul M.; Rasmussen, Kim Ø.; Redondo, Antonio; Vorobieff, Peter; Kober, Edward M.

    2017-12-01

    We report molecular dynamics simulations designed to investigate the effective size of colloidal particles suspended in a fluid in the vicinity of a rigid wall where all interactions are defined by smooth atomic potential functions. These simulations are used to assess how the behavior of this system at the atomistic length scale compares to continuum mechanics models. In order to determine the effective size of the particles, we calculate the solvent forces on spherical particles of different radii as a function of different positions near and overlapping with the atomistically defined wall and compare them to continuum models. This procedure also then determines the effective position of the wall. Our analysis is based solely on forces that the particles sense, ensuring self-consistency of the method. The simulations were carried out using both Weeks-Chandler-Andersen and modified Lennard-Jones (LJ) potentials to identify the different contributions of simple repulsion and van der Waals attractive forces. Upon correction for behavior arising the discreteness of the atomic system, the underlying continuum physics analysis appeared to be correct down to much less than the particle radius. For both particle types, the effective radius was found to be ˜ 0.75σ , where σ defines the length scale of the force interaction (the LJ diameter). The effective "hydrodynamic" radii determined by this means are distinct from commonly assumed values of 0.5σ and 1.0σ , but agree with a value developed from the atomistic analysis of the viscosity of such systems.

  1. Aerosol Complexity and Implications for Predictability and Short-Term Forecasting

    NASA Technical Reports Server (NTRS)

    Colarco, Peter

    2016-01-01

    There are clear NWP and climate impacts from including aerosol radiative and cloud interactions. Changes in dynamics and cloud fields affect aerosol lifecycle, plume height, long-range transport, overall forcing of the climate system, etc. Inclusion of aerosols in NWP systems has benefit to surface field biases (e.g., T2m, U10m). Including aerosol affects has impact on analysis increments and can have statistically significant impacts on, e.g., tropical cyclogenesis. Above points are made especially with respect to aerosol radiative interactions, but aerosol-cloud interaction is a bigger signal on the global system. Many of these impacts are realized even in models with relatively simple (bulk) aerosol schemes (approx.10 -20 tracers). Simple schemes though imply simple representation of aerosol absorption and importantly for aerosol-cloud interaction particle-size distribution. Even so, more complex schemes exhibit a lot of diversity between different models, with issues such as size selection both for emitted particles and for modes. Prospects for complex sectional schemes to tune modal (and even bulk) schemes toward better selection of size representation. I think this is a ripe topic for more research -Systematic documentation of benefits of no vs. climatological vs. interactive (direct and then direct+indirect) aerosols. Document aerosol impact on analysis increments, inclusion in NWP data assimilation operator -Further refinement of baseline assumptions in model design (e.g., absorption, particle size distribution). Did not get into model resolution and interplay of other physical processes with aerosols (e.g., moist physics, obviously important), chemistry

  2. Sample size requirements for separating out the effects of combination treatments: Randomised controlled trials of combination therapy vs. standard treatment compared to factorial designs for patients with tuberculous meningitis

    PubMed Central

    2011-01-01

    Background In certain diseases clinical experts may judge that the intervention with the best prospects is the addition of two treatments to the standard of care. This can either be tested with a simple randomized trial of combination versus standard treatment or with a 2 × 2 factorial design. Methods We compared the two approaches using the design of a new trial in tuberculous meningitis as an example. In that trial the combination of 2 drugs added to standard treatment is assumed to reduce the hazard of death by 30% and the sample size of the combination trial to achieve 80% power is 750 patients. We calculated the power of corresponding factorial designs with one- to sixteen-fold the sample size of the combination trial depending on the contribution of each individual drug to the combination treatment effect and the strength of an interaction between the two. Results In the absence of an interaction, an eight-fold increase in sample size for the factorial design as compared to the combination trial is required to get 80% power to jointly detect effects of both drugs if the contribution of the less potent treatment to the total effect is at least 35%. An eight-fold sample size increase also provides a power of 76% to detect a qualitative interaction at the one-sided 10% significance level if the individual effects of both drugs are equal. Factorial designs with a lower sample size have a high chance to be underpowered, to show significance of only one drug even if both are equally effective, and to miss important interactions. Conclusions Pragmatic combination trials of multiple interventions versus standard therapy are valuable in diseases with a limited patient pool if all interventions test the same treatment concept, it is considered likely that either both or none of the individual interventions are effective, and only moderate drug interactions are suspected. An adequately powered 2 × 2 factorial design to detect effects of individual drugs would require at least 8-fold the sample size of the combination trial. Trial registration Current Controlled Trials ISRCTN61649292 PMID:21288326

  3. Copper phthalocyanine films deposited by liquid-liquid interface recrystallization technique (LLIRCT).

    PubMed

    Patil, K R; Sathaye, S D; Hawaldar, R; Sathe, B R; Mandale, A B; Mitra, A

    2007-11-15

    The simple recrystallization process is innovatively used to obtain the nanoparticles of copper phthalocyanine by a simple method. Liquid-liquid interface recrystallization technique (LLIRCT) has been employed successfully to produce small sized copper phthalocyanine nanoparticles with diameter between 3-5 nm. The TEM-SAED studies revealed the formation of 3-5 nm sized with beta-phase dominated mixture of alpha and beta copper phthalocyanine nanoparticles. The XRD, SEM, and the UV-vis studies were further carried out to confirm the formation of copper phthalocyanine thin films. The cyclic voltametry (CV) studies conclude that redox reaction is totally reversible one electron transfer process. The process is attributed to Cu(II)/Cu(I) redox reaction.

  4. Colloidal polymers with controlled sequence and branching constructed from magnetic field assembled nanoparticles.

    PubMed

    Bannwarth, Markus B; Utech, Stefanie; Ebert, Sandro; Weitz, David A; Crespy, Daniel; Landfester, Katharina

    2015-03-24

    The assembly of nanoparticles into polymer-like architectures is challenging and usually requires highly defined colloidal building blocks. Here, we show that the broad size-distribution of a simple dispersion of magnetic nanocolloids can be exploited to obtain various polymer-like architectures. The particles are assembled under an external magnetic field and permanently linked by thermal sintering. The remarkable variety of polymer-analogue architectures that arises from this simple process ranges from statistical and block copolymer-like sequencing to branched chains and networks. This library of architectures can be realized by controlling the sequencing of the particles and the junction points via a size-dependent self-assembly of the single building blocks.

  5. Sexual Dimorphism and Allometric Effects Associated With the Wing Shape of Seven Moth Species of Sphingidae (Lepidoptera: Bombycoidea)

    PubMed Central

    de Camargo, Nícholas Ferreira; Corrêa, Danilo do Carmo Vieira; de Camargo, Amabílio J. Aires; Diniz, Ivone Rezende

    2015-01-01

    Sexual dimorphism is a pronounced pattern of intraspecific variation in Lepidoptera. However, moths of the family Sphingidae (Lepidoptera: Bombycoidea) are considered exceptions to this rule. We used geometric morphometric techniques to detect shape and size sexual dimorphism in the fore and hindwings of seven hawkmoth species. The shape variables produced were then subjected to a discriminant analysis. The allometric effects were measured with a simple regression between the canonical variables and the centroid size. We also used the normalized residuals to assess the nonallometric component of shape variation with a t-test. The deformations in wing shape between sexes per species were assessed with a regression between the nonreduced shape variables and the residuals. We found sexual dimorphism in both wings in all analyzed species, and that the allometric effects were responsible for much of the wing shape variation between the sexes. However, when we removed the size effects, we observed shape sexual dimorphism. It is very common for females to be larger than males in Lepidoptera, so it is expected that the shape of structures such as wings suffers deformations in order to preserve their function. However, sources of variation other than allometry could be a reflection of different reproductive flight behavior (long flights in search for sexual mates in males, and flight in search for host plants in females). PMID:26206895

  6. Physically based model for extracting dual permeability parameters using non-Newtonian fluids

    NASA Astrophysics Data System (ADS)

    Abou Najm, M. R.; Basset, C.; Stewart, R. D.; Hauswirth, S.

    2017-12-01

    Dual permeability models are effective for the assessment of flow and transport in structured soils with two dominant structures. The major challenge to those models remains in the ability to determine appropriate and unique parameters through affordable, simple, and non-destructive methods. This study investigates the use of water and a non-Newtonian fluid in saturated flow experiments to derive physically-based parameters required for improved flow predictions using dual permeability models. We assess the ability of these two fluids to accurately estimate the representative pore sizes in dual-domain soils, by determining the effective pore sizes of macropores and micropores. We developed two sub-models that solve for the effective macropore size assuming either cylindrical (e.g., biological pores) or planar (e.g., shrinkage cracks and fissures) pore geometries, with the micropores assumed to be represented by a single effective radius. Furthermore, the model solves for the percent contribution to flow (wi) corresponding to the representative macro and micro pores. A user-friendly solver was developed to numerically solve the system of equations, given that relevant non-Newtonian viscosity models lack forms conducive to analytical integration. The proposed dual-permeability model is a unique attempt to derive physically based parameters capable of measuring dual hydraulic conductivities, and therefore may be useful in reducing parameter uncertainty and improving hydrologic model predictions.

  7. Online versus offline: The Web as a medium for response time data collection.

    PubMed

    Chetverikov, Andrey; Upravitelev, Philipp

    2016-09-01

    The Internet provides a convenient environment for data collection in psychology. Modern Web programming languages, such as JavaScript or Flash (ActionScript), facilitate complex experiments without the necessity of experimenter presence. Yet there is always a question of how much noise is added due to the differences between the setups used by participants and whether it is compensated for by increased ecological validity and larger sample sizes. This is especially a problem for experiments that measure response times (RTs), because they are more sensitive (and hence more susceptible to noise) than, for example, choices per se. We used a simple visual search task with different set sizes to compare laboratory performance with Web performance. The results suggest that although the locations (means) of RT distributions are different, other distribution parameters are not. Furthermore, the effect of experiment setting does not depend on set size, suggesting that task difficulty is not important in the choice of a data collection method. We also collected an additional online sample to investigate the effects of hardware and software diversity on the accuracy of RT data. We found that the high diversity of browsers, operating systems, and CPU performance may have a detrimental effect, though it can partly be compensated for by increased sample sizes and trial numbers. In sum, the findings show that Web-based experiments are an acceptable source of RT data, comparable to a common keyboard-based setup in the laboratory.

  8. Outbreak statistics and scaling laws for externally driven epidemics.

    PubMed

    Singh, Sarabjeet; Myers, Christopher R

    2014-04-01

    Power-law scalings are ubiquitous to physical phenomena undergoing a continuous phase transition. The classic susceptible-infectious-recovered (SIR) model of epidemics is one such example where the scaling behavior near a critical point has been studied extensively. In this system the distribution of outbreak sizes scales as P(n)∼n-3/2 at the critical point as the system size N becomes infinite. The finite-size scaling laws for the outbreak size and duration are also well understood and characterized. In this work, we report scaling laws for a model with SIR structure coupled with a constant force of infection per susceptible, akin to a "reservoir forcing". We find that the statistics of outbreaks in this system fundamentally differ from those in a simple SIR model. Instead of fixed exponents, all scaling laws exhibit tunable exponents parameterized by the dimensionless rate of external forcing. As the external driving rate approaches a critical value, the scale of the average outbreak size converges to that of the maximal size, and above the critical point, the scaling laws bifurcate into two regimes. Whereas a simple SIR process can only exhibit outbreaks of size O(N1/3) and O(N) depending on whether the system is at or above the epidemic threshold, a driven SIR process can exhibit a richer spectrum of outbreak sizes that scale as O(Nξ), where ξ∈(0,1]∖{2/3} and O((N/lnN)2/3) at the multicritical point.

  9. Loss of genetic connectivity and diversity in urban microreserves in a southern California endemic Jerusalem cricket (Orthoptera: Stenopelmatidae: Stenopelmatus n. sp. "santa monica")

    USGS Publications Warehouse

    Vandergast, A.G.; Lewallen, E.A.; Deas, J.; Bohonak, A.J.; Weissman, D.B.; Fisher, R.N.

    2009-01-01

    Microreserves may be useful in protecting native arthropod diversity in urbanized landscapes. However, species that do not disperse through the urban matrix may eventually be lost from these fragments. Population extinctions may be precipitated by an increase in genetic differentiation among fragments and loss of genetic diversity within fragments, and these effects should become stronger with time. We analyzed population genetic structure in the dispersal limited Jerusalem cricket Stenopelmatus n. sp. "santa monica" in the Santa Monica Mountains and Simi Hills north of Los Angeles, California (CA), to determine the impacts of fragmentation over the past 70 years. MtDNA divergence was greater among urban fragments than within contiguous habitat and was positively correlated with fragment age. MtDNA genetic diversity within fragments increased with fragment size and decreased with fragment age. Genetic divergence across 38 anonymous nuclear Inter-Simple Sequence Repeat (ISSR) loci was influenced by the presence of major highways and highway age, but there was no effect of additional urban fragmentation. ISSR diversity was not correlated with fragment size or age. Differing results between markers may be due to male-biased dispersal, or different effective population sizes, sorting rates, or mutation rates among sampled genes. Results suggest that genetic connectivity among populations has been disrupted by highways and urban development, prior to declines in local population sizes. We emphasize that genetic connectivity can rapidly erode in fragmented landscapes and that flightless arthropods can serve as sensitive indicators for these effects. ?? Springer Science+Business Media B.V. 2008.

  10. Application of a simple power law for transport ratio with bimodal distributions of spherical grains under oscillatory forcing

    NASA Astrophysics Data System (ADS)

    Holway, Kevin; Thaxton, Christopher S.; Calantoni, Joseph

    2012-11-01

    Morphodynamic models of coastal evolution require relatively simple parameterizations of sediment transport for application over larger scales. Calantoni and Thaxton (2008) [6] presented a transport parameterization for bimodal distributions of coarse quartz grains derived from detailed boundary layer simulations for sheet flow and near sheet flow conditions. The simulation results, valid over a range of wave forcing conditions and large- to small-grain diameter ratios, were successfully parameterized with a simple power law that allows for the prediction of the transport rates of each size fraction. Here, we have applied the simple power law to a two-dimensional cellular automaton to simulate sheet flow transport. Model results are validated with experiments performed in the small oscillating flow tunnel (S-OFT) at the Naval Research Laboratory at Stennis Space Center, MS, in which sheet flow transport was generated with a bed composed of a bimodal distribution of non-cohesive grains. The work presented suggests that, under the conditions specified, algorithms that incorporate the power law may correctly reproduce laboratory bed surface measurements of bimodal sheet flow transport while inherently incorporating vertical mixing by size.

  11. JPARSS: A Java Parallel Network Package for Grid Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jie; Akers, Walter; Chen, Ying

    2002-03-01

    The emergence of high speed wide area networks makes grid computinga reality. However grid applications that need reliable data transfer still have difficulties to achieve optimal TCP performance due to network tuning of TCP window size to improve bandwidth and to reduce latency on a high speed wide area network. This paper presents a Java package called JPARSS (Java Parallel Secure Stream (Socket)) that divides data into partitions that are sent over several parallel Java streams simultaneously and allows Java or Web applications to achieve optimal TCP performance in a grid environment without the necessity of tuning TCP window size.more » This package enables single sign-on, certificate delegation and secure or plain-text data transfer using several security components based on X.509 certificate and SSL. Several experiments will be presented to show that using Java parallelstreams is more effective than tuning TCP window size. In addition a simple architecture using Web services« less

  12. Extracellular biosynthesis of monodispersed gold nanoparticles by a SAM capping route

    NASA Astrophysics Data System (ADS)

    Wen, Li; Lin, Zhonghua; Gu, Pingying; Zhou, Jianzhang; Yao, Bingxing; Chen, Guoliang; Fu, Jinkun

    2009-02-01

    Monodispersed gold nanoparticles capped with a self-assembled monolayer of dodecanethiol were biosynthesized extracellularly by an efficient, simple, and environmental friendly procedure, which involved the use of Bacillus megatherium D01 as the reducing agent and the use of dodecanethiol as the capping ligand at 26 °C. The kinetics of gold nanoparticle formation was followed by transmission electron microscope (TEM) and UV-vis spectroscopy. It was shown that reaction time was an important parameter in controlling the morphology of gold nanoparticles. The effect of thiol on the shape, size, and dispersity of gold nanoparticles was also studied. The results showed that the presence of thiol during the biosynthesis could induce the formation of small size gold nanoparticles (<2.5 nm), hold the shape of spherical nanoparticles, and promote the monodispersity of nanoparticles. Through the modulation of reaction time and the use of thiol, monodispersed spherical gold nanoparticles capped with thiol of 1.9 ± 0.8 nm size were formed by using Bacillus megatherium D01.

  13. Nano-sized crystalline drug production by milling technology.

    PubMed

    Moribe, Kunikazu; Ueda, Keisuke; Limwikrant, Waree; Higashi, Kenjirou; Yamamoto, Keiji

    2013-01-01

    Nano-formulation of poorly water-soluble drugs has been developed to enhance drug dissolution. In this review, we introduce nano-milling technology described in recently published papers. Factors affecting the size of drug crystals are compared based on the preparation methods and drug and excipient types. A top-down approach using the comminution process is a method conventionally used to prepare crystalline drug nanoparticles. Wet milling using media is well studied and several wet-milled drug formulations are now on the market. Several trials on drug nanosuspension preparation using different apparatuses, materials, and conditions have been reported. Wet milling using a high-pressure homogenizer is another alternative to preparing production-scale drug nanosuspensions. Dry milling is a simple method of preparing a solid-state drug nano-formulation. The effect of size on the dissolution of a drug from nanoparticles is an area of fundamental research, but it is sometimes incorrectly evaluated. Here, we discuss evaluation procedures and the associated problems. Lastly, the importance of quality control, process optimization, and physicochemical characterization are briefly discussed.

  14. SUB 1-Millimeter Size Fresnel Micro Spectrometer

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon; Koch, Laura; Song, Kyo D.; Park, Sangloon; King, Glen; Choi, Sang

    2010-01-01

    An ultra-small micro spectrometer with less than 1mm diameter was constructed using Fresnel diffraction. The fabricated spectrometer has a diameter of 750 nmicrometers and a focal length of 2.4 mm at 533nm wavelength. The micro spectrometer was built with a simple negative zone plate that has an opaque center with an ecliptic shadow to remove the zero-order direct beam to the aperture slit. Unlike conventional approaches, the detailed optical calculation indicates that the ideal spectral resolution and resolving power do not depend on the miniaturized size but only on the total number of rings. We calculated 2D and 3D photon distribution around the aperture slit and confirmed that improved micro-spectrometers below 1mm size can be built with Fresnel diffraction. The comparison between mathematical simulation and measured data demonstrates the theoretical resolution, measured performance, misalignment effect, and improvement for the sub-1mm Fresnel micro-spectrometer. We suggest the utilization of an array of micro spectrometers for tunable multi-spectral imaging in the ultra violet range.

  15. Transient Characterization of Type B Particles in a Transport Riser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shadle, L.J.; Monazam, E.R.; Mei, J.S.

    2007-01-01

    Simple and rapid dynamic tests were used to evaluate fluid dynamic behavior of granular materials in the transport regime. Particles with densities ranging from 189 to 2,500 kg/m3 and Sauter mean size from 61 to 812 μm were tested in a 0.305 m diameter, 15.5 m height circulating fluidized bed (CFB) riser. The transient tests involved the abrupt stoppage of solids flow for each granular material over a wide range gas flow rates. The riser emptying time was linearly related to the Froude number in each of three different operating regimes. The flow structure along the height of the risermore » followed a distinct pattern as tracked through incremental pressures. These results are discussed to better understand the transformations that take place when operating over various regimes. During the transients the particle size distribution was measured. The effects of pressure, particle size, and density on test performance are also presented.« less

  16. Thermalization threshold in models of 1D fermions

    NASA Astrophysics Data System (ADS)

    Mukerjee, Subroto; Modak, Ranjan; Ramswamy, Sriram

    2013-03-01

    The question of how isolated quantum systems thermalize is an interesting and open one. In this study we equate thermalization with non-integrability to try to answer this question. In particular, we study the effect of system size on the integrability of 1D systems of interacting fermions on a lattice. We find that for a finite-sized system, a non-zero value of an integrability breaking parameter is required to make an integrable system appear non-integrable. Using exact diagonalization and diagnostics such as energy level statistics and the Drude weight, we find that the threshold value of the integrability breaking parameter scales to zero as a power law with system size. We find the exponent to be the same for different models with its value depending on the random matrix ensemble describing the non-integrable system. We also study a simple analytical model of a non-integrable system with an integrable limit to better understand how a power law emerges.

  17. Simple method for the characterization of intense Laguerre-Gauss vector vortex beams

    NASA Astrophysics Data System (ADS)

    Allahyari, E.; JJ Nivas, J.; Cardano, F.; Bruzzese, R.; Fittipaldi, R.; Marrucci, L.; Paparo, D.; Rubano, A.; Vecchione, A.; Amoruso, S.

    2018-05-01

    We report on a method for the characterization of intense, structured optical fields through the analysis of the size and surface structures formed inside the annular ablation crater created on the target surface. In particular, we apply the technique to laser ablation of crystalline silicon induced by femtosecond vector vortex beams. We show that a rapid direct estimate of the beam waist parameter is obtained through a measure of the crater radii. The variation of the internal and external radii of the annular crater as a function of the laser pulse energy, at fixed number of pulses, provides another way to evaluate the beam spot size through numerical fitting of the obtained experimental data points. A reliable estimate of the spot size is of paramount importance to investigate pulsed laser-induced effects on the target material. Our experimental findings offer a facile way to characterize focused, high intensity complex optical vector beams which are more and more applied in laser-matter interaction experiments.

  18. Computation of fluid flow and pore-space properties estimation on micro-CT images of rock samples

    NASA Astrophysics Data System (ADS)

    Starnoni, M.; Pokrajac, D.; Neilson, J. E.

    2017-09-01

    Accurate determination of the petrophysical properties of rocks, namely REV, mean pore and grain size and absolute permeability, is essential for a broad range of engineering applications. Here, the petrophysical properties of rocks are calculated using an integrated approach comprising image processing, statistical correlation and numerical simulations. The Stokes equations of creeping flow for incompressible fluids are solved using the Finite-Volume SIMPLE algorithm. Simulations are then carried out on three-dimensional digital images obtained from micro-CT scanning of two rock formations: one sandstone and one carbonate. Permeability is predicted from the computed flow field using Darcy's law. It is shown that REV, REA and mean pore and grain size are effectively estimated using the two-point spatial correlation function. Homogeneity and anisotropy are also evaluated using the same statistical tools. A comparison of different absolute permeability estimates is also presented, revealing a good agreement between the numerical value and the experimentally determined one for the carbonate sample, but a large discrepancy for the sandstone. Finally, a new convergence criterion for the SIMPLE algorithm, and more generally for the family of pressure-correction methods, is presented. This criterion is based on satisfaction of bulk momentum balance, which makes it particularly useful for pore-scale modelling of reservoir rocks.

  19. Rapid green synthesis of silver nanoparticles from Chrysanthemum indicum L and its antibacterial and cytotoxic effects: an in vitro study

    PubMed Central

    Arokiyaraj, Selvaraj; Arasu, Mariadhas Valan; Vincent, Savariar; Prakash, Nyayirukannaian Udaya; Choi, Seong Ho; Oh, Young-Kyoon; Choi, Ki Choon; Kim, Kyoung Hoon

    2014-01-01

    The present work reports a simple, cost-effective, and ecofriendly method for the synthesis of silver nanoparticles (AgNPs) using Chrysanthemum indicum and its antibacterial and cytotoxic effects. The formation of AgNPs was confirmed by color change, and it was further characterized by ultraviolet–visible spectroscopy (435 nm). The phytochemical screening of C. indicum revealed the presence of flavonoids, terpenoids, and glycosides, suggesting that these compounds act as reducing and stabilizing agents. The crystalline nature of the synthesized particles was confirmed by X-ray diffraction, as they exhibited face-centered cubic symmetry. The size and morphology of the particles were characterized by transmission electron microscopy, which showed spherical shapes and sizes that ranged between 37.71–71.99 nm. Energy-dispersive X-ray spectroscopy documented the presence of silver. The antimicrobial effect of the synthesized AgNPs revealed a significant effect against the bacteria Klebsiella pneumonia, Escherichia coli, and Pseudomonas aeruginosa. Additionally, cytotoxic assays showed no toxicity of AgNPs toward 3T3 mouse embryo fibroblast cells (25 μg/mL); hence, these particles were safe to use. PMID:24426782

  20. Gradient-type modeling of the effects of plastic recovery and surface passivation in thin films

    NASA Astrophysics Data System (ADS)

    Liu, Jinxing; Kah Soh, Ai

    2016-08-01

    The elasto-plastic responses of thin films subjected to cyclic tension-compression loading and bending are studied, with a focus on Bauschinger and size effects. For this purpose, a model is established by incorporating plastic recovery into the strain gradient plasticity theory we proposed recently. Elastic and plastic parts of strain and strain gradient, which are determined by the elasto-plastic decomposition according to the associative rule, are assumed to have a degree of material-dependent reversibility. Based on the above assumption, a dislocation reversibility-dependent rule is built to describe evolutions of different deformation components under cyclic loadings. Furthermore, a simple strategy is provided to implement the passivated boundary effects by introducing a gradual change to relevant material parameters in the yield function. Based on this theory, both bulge and bending tests under cyclic loading conditions are investigated. By comparing the present predictions with the existing experimental data, it is found that the yield function is able to exhibit the size effect, the Bauschinger effect, the influence of surface passivation and the hysteresis-loop phenomenon. Thus, the proposed model is deemed helpful in studying plastic deformations of micron-scale films.

  1. Effect of electric charge on the adhesion of human blood platelets.

    PubMed

    Lowkis, B; Szymonowicz, M

    1993-01-01

    The paper presents the results of research into the effect of the size and depth of the implanted electric charge on the adhesion of human blood platelets. The experiments were carried out on polyethylene terephthalate PET foil of 36 microns thickness. The electret formation process was carried out in an electron-beam device. The electrization conditions were such that electrets with the excess electric charge accumulated at various depths were obtained. The selection of conditions was verified by investigating the space charge distribution with the use of the virtual electrode method. The microscopic observation of non-electrified foils and electrets as well as the quantitative examination of the adhesion of human blood platelets has explicitly confirmed the positive influence of the electret effect on the thrombogenesis of PET foil. This made it possible to define the optimum electrization conditions. The research has additionally indicated that the relationship between the amount of adherent blood platelets and the size of the electric charge is not a simple relation of the kind: the larger negative charge, the more thrombogenic material. The decisive and positive effect of the space charge has been confirmed by analysing the effectiveness of the surface and space charge.

  2. A simple finite element method for non-divergence form elliptic equation

    DOE PAGES

    Mu, Lin; Ye, Xiu

    2017-03-01

    Here, we develop a simple finite element method for solving second order elliptic equations in non-divergence form by combining least squares concept with discontinuous approximations. This simple method has a symmetric and positive definite system and can be easily analyzed and implemented. We could have also used general meshes with polytopal element and hanging node in the method. We prove that our finite element solution approaches to the true solution when the mesh size approaches to zero. Numerical examples are tested that demonstrate the robustness and flexibility of the method.

  3. A simple finite element method for non-divergence form elliptic equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Lin; Ye, Xiu

    Here, we develop a simple finite element method for solving second order elliptic equations in non-divergence form by combining least squares concept with discontinuous approximations. This simple method has a symmetric and positive definite system and can be easily analyzed and implemented. We could have also used general meshes with polytopal element and hanging node in the method. We prove that our finite element solution approaches to the true solution when the mesh size approaches to zero. Numerical examples are tested that demonstrate the robustness and flexibility of the method.

  4. Variation in ejecta size with ejection velocity

    NASA Technical Reports Server (NTRS)

    Vickery, Ann M.

    1987-01-01

    The sizes and ranges of over 25,000 secondary craters around twelve large primaries on three different planets were measured and used to infer the size-velocity distribution of that portion of the primary crater ejecta that produced the secondaries. The ballistic equation for spherical bodies was used to convert the ranges to velocities, and the velocities and crater sizes were used in the appropriate Schmidt-Holsapple scaling relation of estimate ejecta sizes, and the velocity exponent was determined. The latter are generally between -1 and -13, with an average value of about -1.9. Problems with data collection made it impossible to determine a simple, unique relation between size and velocity.

  5. Sample Size Estimation in Cluster Randomized Educational Trials: An Empirical Bayes Approach

    ERIC Educational Resources Information Center

    Rotondi, Michael A.; Donner, Allan

    2009-01-01

    The educational field has now accumulated an extensive literature reporting on values of the intraclass correlation coefficient, a parameter essential to determining the required size of a planned cluster randomized trial. We propose here a simple simulation-based approach including all relevant information that can facilitate this task. An…

  6. Sizing up the Threat: The Envisioned Physical Formidability of Terrorists Tracks Their Leaders' Failures and Successes

    ERIC Educational Resources Information Center

    Holbrook, Colin; Fessler, Daniel M. T.

    2013-01-01

    Victory in modern intergroup conflict derives from complex factors, including weaponry, economic resources, tactical outcomes, and leadership. We hypothesize that the mind summarizes such factors into simple metaphorical representations of physical size and strength, concrete dimensions that have determined the outcome of combat throughout both…

  7. Modeling the X-Ray Process, and X-Ray Flaw Size Parameter for POD Studies

    NASA Technical Reports Server (NTRS)

    Khoshti, Ajay

    2014-01-01

    Nondestructive evaluation (NDE) method reliability can be determined by a statistical flaw detection study called probability of detection (POD) study. In many instances the NDE flaw detectability is given as a flaw size such as crack length. The flaw is either a crack or behaving like a crack in terms of affecting the structural integrity of the material. An alternate approach is to use a more complex flaw size parameter. The X-ray flaw size parameter, given here, takes into account many setup and geometric factors. The flaw size parameter relates to X-ray image contrast and is intended to have a monotonic correlation with the POD. Some factors such as set-up parameters including X-ray energy, exposure, detector sensitivity, and material type that are not accounted for in the flaw size parameter may be accounted for in the technique calibration and controlled to meet certain quality requirements. The proposed flaw size parameter and the computer application described here give an alternate approach to conduct the POD studies. Results of the POD study can be applied to reliably detect small flaws through better assessment of effect of interaction between various geometric parameters on the flaw detectability. Moreover, a contrast simulation algorithm for a simple part-source-detector geometry using calibration data is also provided for the POD estimation.

  8. Modeling the X-ray Process, and X-ray Flaw Size Parameter for POD Studies

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2014-01-01

    Nondestructive evaluation (NDE) method reliability can be determined by a statistical flaw detection study called probability of detection (POD) study. In many instances, the NDE flaw detectability is given as a flaw size such as crack length. The flaw is either a crack or behaving like a crack in terms of affecting the structural integrity of the material. An alternate approach is to use a more complex flaw size parameter. The X-ray flaw size parameter, given here, takes into account many setup and geometric factors. The flaw size parameter relates to X-ray image contrast and is intended to have a monotonic correlation with the POD. Some factors such as set-up parameters, including X-ray energy, exposure, detector sensitivity, and material type that are not accounted for in the flaw size parameter may be accounted for in the technique calibration and controlled to meet certain quality requirements. The proposed flaw size parameter and the computer application described here give an alternate approach to conduct the POD studies. Results of the POD study can be applied to reliably detect small flaws through better assessment of effect of interaction between various geometric parameters on the flaw detectability. Moreover, a contrast simulation algorithm for a simple part-source-detector geometry using calibration data is also provided for the POD estimation.

  9. Simple and multiple linear regression: sample size considerations.

    PubMed

    Hanley, James A

    2016-11-01

    The suggested "two subjects per variable" (2SPV) rule of thumb in the Austin and Steyerberg article is a chance to bring out some long-established and quite intuitive sample size considerations for both simple and multiple linear regression. This article distinguishes two of the major uses of regression models that imply very different sample size considerations, neither served well by the 2SPV rule. The first is etiological research, which contrasts mean Y levels at differing "exposure" (X) values and thus tends to focus on a single regression coefficient, possibly adjusted for confounders. The second research genre guides clinical practice. It addresses Y levels for individuals with different covariate patterns or "profiles." It focuses on the profile-specific (mean) Y levels themselves, estimating them via linear compounds of regression coefficients and covariates. By drawing on long-established closed-form variance formulae that lie beneath the standard errors in multiple regression, and by rearranging them for heuristic purposes, one arrives at quite intuitive sample size considerations for both research genres. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. A simple method for the analysis of particle sizes of forage and total mixed rations.

    PubMed

    Lammers, B P; Buckmaster, D R; Heinrichs, A J

    1996-05-01

    A simple separator was developed to determine the particle sizes of forage and TMR that allows for easy separation of wet forage into three fractions and also allows plotting of the particle size distribution. The device was designed to mimic the laboratory-scale separator for forage particle sizes that was specified by Standard S424 of the American Society of Agricultural Engineers. A comparison of results using the standard device and the newly developed separator indicated no difference in ability to predict fractions of particles with maximum length of less than 8 and 19 mm. The separator requires a small quantity of sample (1.4 L) and is manually operated. The materials on the screens and bottom pan were weighed to obtain the cumulative percentage of sample that was undersize for the two fractions. The results were then plotted using the Weibull distribution, which proved to be the best fit for the data. Convenience samples of haycrop silage, corn silage, and TMR from farms in the northeastern US were analyzed using the forage and TMR separator, and the range of observed values are given.

  11. Para-hydrogen and helium cluster size distributions in free jet expansions based on Smoluchowski theory with kernel scaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kornilov, Oleg; Toennies, J. Peter

    The size distribution of para-H{sub 2} (pH{sub 2}) clusters produced in free jet expansions at a source temperature of T{sub 0} = 29.5 K and pressures of P{sub 0} = 0.9–1.96 bars is reported and analyzed according to a cluster growth model based on the Smoluchowski theory with kernel scaling. Good overall agreement is found between the measured and predicted, N{sub k} = A k{sup a} e{sup −bk}, shape of the distribution. The fit yields values for A and b for values of a derived from simple collision models. The small remaining deviations between measured abundances and theory imply a (pH{submore » 2}){sub k} magic number cluster of k = 13 as has been observed previously by Raman spectroscopy. The predicted linear dependence of b{sup −(a+1)} on source gas pressure was verified and used to determine the value of the basic effective agglomeration reaction rate constant. A comparison of the corresponding effective growth cross sections σ{sub 11} with results from a similar analysis of He cluster size distributions indicates that the latter are much larger by a factor 6-10. An analysis of the three body recombination rates, the geometric sizes and the fact that the He clusters are liquid independent of their size can explain the larger cross sections found for He.« less

  12. Influence of the weighing bar position in vessel on measurement of cement’s particle size distribution by using the buoyancy weighing-bar method

    NASA Astrophysics Data System (ADS)

    Tambun, R.; Sihombing, R. O.; Simanjuntak, A.; Hanum, F.

    2018-02-01

    The buoyancy weighing-bar method is a new simple and cost-effective method to determine the particle size distribution both settling and floating particle. In this method, the density change in a suspension due to particle migration is measured by weighing buoyancy against a weighing-bar hung in the suspension, and then the particle size distribution is calculated using the length of the bar and the time-course change in the mass of the bar. The apparatus of this method consists of a weighing-bar and an analytical balance with a hook for under-floor weighing. The weighing bar is used to detect the density change in suspension. In this study we investigate the influences of position of weighing bar in vessel on settling particle size distribution measurements of cement by using the buoyancy weighing-bar method. The vessel used in this experiment is graduated cylinder with the diameter of 65 mm and the position of weighing bar is in center and off center of vessel. The diameter of weighing bar in this experiment is 10 mm, and the kerosene is used as a dispersion liquids. The results obtained show that the positions of weighing bar in vessel have no significant effect on determination the cement’s particle size distribution by using buoyancy weighing-bar method, and the results obtained are comparable to those measured by using settling balance method.

  13. Effects of sample size on KERNEL home range estimates

    USGS Publications Warehouse

    Seaman, D.E.; Millspaugh, J.J.; Kernohan, Brian J.; Brundige, Gary C.; Raedeke, Kenneth J.; Gitzen, Robert A.

    1999-01-01

    Kernel methods for estimating home range are being used increasingly in wildlife research, but the effect of sample size on their accuracy is not known. We used computer simulations of 10-200 points/home range and compared accuracy of home range estimates produced by fixed and adaptive kernels with the reference (REF) and least-squares cross-validation (LSCV) methods for determining the amount of smoothing. Simulated home ranges varied from simple to complex shapes created by mixing bivariate normal distributions. We used the size of the 95% home range area and the relative mean squared error of the surface fit to assess the accuracy of the kernel home range estimates. For both measures, the bias and variance approached an asymptote at about 50 observations/home range. The fixed kernel with smoothing selected by LSCV provided the least-biased estimates of the 95% home range area. All kernel methods produced similar surface fit for most simulations, but the fixed kernel with LSCV had the lowest frequency and magnitude of very poor estimates. We reviewed 101 papers published in The Journal of Wildlife Management (JWM) between 1980 and 1997 that estimated animal home ranges. A minority of these papers used nonparametric utilization distribution (UD) estimators, and most did not adequately report sample sizes. We recommend that home range studies using kernel estimates use LSCV to determine the amount of smoothing, obtain a minimum of 30 observations per animal (but preferably a?Y50), and report sample sizes in published results.

  14. Optimal performance of generalized heat engines with finite-size baths of arbitrary multiple conserved quantities beyond independent-and-identical-distribution scaling

    NASA Astrophysics Data System (ADS)

    Ito, Kosuke; Hayashi, Masahito

    2018-01-01

    In quantum thermodynamics, effects of finiteness of the baths have been less considered. In particular, there is no general theory which focuses on finiteness of the baths of multiple conserved quantities. Then, we investigate how the optimal performance of generalized heat engines with multiple conserved quantities alters in response to the size of the baths. In the context of general theories of quantum thermodynamics, the size of the baths has been given in terms of the number of identical copies of a system, which does not cover even such a natural scaling as the volume. In consideration of the asymptotic extensivity, we deal with a generic scaling of the baths to naturally include the volume scaling. Based on it, we derive a bound for the performance of generalized heat engines reflecting finite-size effects of the baths, which we call fine-grained generalized Carnot bound. We also construct a protocol to achieve the optimal performance of the engine given by this bound. Finally, applying the obtained general theory, we deal with simple examples of generalized heat engines. As for an example of non-independent-and-identical-distribution scaling and multiple conserved quantities, we investigate a heat engine with two baths composed of an ideal gas exchanging particles, where the volume scaling is applied. The result implies that the mass of the particle explicitly affects the performance of this engine with finite-size baths.

  15. In situ generation of highly dispersed metal nanoparticles on two-dimensional layered SiO2 by topotactic structure conversion and their superior catalytic activity

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Jia, Da-Shuang; Zhou, Yue; Hao, Jiang; Liang, Yu; Cui, Zhi-Min; Song, Wei-Guo

    2018-03-01

    Metal nanoparticles such as Ag, Cu and Fe are effective catalysts for many reactions, whereas a facile method to prepare metal nanoparticles with high uniformed dispersion is still desirable. Herein, the topotactic structure conversion of layered silicate, RUB-15, was utilized to support metal nanoparticles. Through simple ion-exchange and following calcination step, metal nanoparticles were generated in situ inside the interlayer space of layered silica, and the topotactic structure conversion process assured nano-sized and highly uniformed dispersion of metal nanoparticles. The obtained Ag/SiO2 composite showed superior catalytic activity for the reduction of 4-nitrophenol (4-NP) and methylene blue (MB), with a rate constant as high as 0.0607 s-1 and 0.0778 s-1. The simple and universal synthesis method as well as high activity of the product composite endow the strategy good application prospect.

  16. Green synthesis of highly concentrated aqueous colloidal solutions of large starch-stabilised silver nanoplatelets.

    PubMed

    Cheng, Fei; Betts, Jonathan W; Kelly, Stephen M; Hector, Andrew L

    2015-01-01

    A simple, environmentally friendly and cost-effective method has been developed to prepare a range of aqueous silver colloidal solutions, using ascorbic acid as a reducing agent, water-soluble starch as a combined crystallising, stabilising and solubilising agent, and water as the solvent. The diameter of silver nanoplatelets increases with higher concentrations of AgNO3 and starch. The silver nanoparticles are also more uniform in shape the greater the diameter of the nanoparticles. Colloidal solutions with a very high concentration of large, flat, hexagonal silver nanoplatelets (~230 nm in breadth) have been used to deposit and fix an antibacterial coating of these large starch-stabilised silver nanoplates on commercial cotton fibres, using a simple dip-coating process using water as the solvent, in order to study the dependence of the antibacterial properties of these nanoplatelets on their size. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Functional Two-Dimensional Coordination Polymeric Layer as a Charge Barrier in Li-S Batteries.

    PubMed

    Huang, Jing-Kai; Li, Mengliu; Wan, Yi; Dey, Sukumar; Ostwal, Mayur; Zhang, Daliang; Yang, Chih-Wen; Su, Chun-Jen; Jeng, U-Ser; Ming, Jun; Amassian, Aram; Lai, Zhiping; Han, Yu; Li, Sean; Li, Lain-Jong

    2018-01-23

    Ultrathin two-dimensional (2D) polymeric layers are capable of separating gases and molecules based on the reported size exclusion mechanism. What is equally important but missing today is an exploration of the 2D layers with charge functionality, which enables applications using the charge exclusion principle. This work demonstrates a simple and scalable method of synthesizing a free-standing 2D coordination polymer Zn 2 (benzimidazolate) 2 (OH) 2 at the air-water interface. The hydroxyl (-OH) groups are stoichiometrically coordinated and implement electrostatic charges in the 2D structures, providing powerful functionality as a charge barrier. Electrochemical performance of the Li-S battery shows that the Zn 2 (benzimidazolate) 2 (OH) 2 coordination polymer layers efficiently mitigate the polysulfide shuttling effects and largely enhance the battery capacity and cycle performance. The synthesis of the proposed coordination polymeric layers is simple, scalable, cost saving, and promising for practical use in batteries.

  18. The Importance of Proving the Null

    PubMed Central

    Gallistel, C. R.

    2010-01-01

    Null hypotheses are simple, precise, and theoretically important. Conventional statistical analysis cannot support them; Bayesian analysis can. The challenge in a Bayesian analysis is to formulate a suitably vague alternative, because the vaguer the alternative is (the more it spreads out the unit mass of prior probability), the more the null is favored. A general solution is a sensitivity analysis: Compute the odds for or against the null as a function of the limit(s) on the vagueness of the alternative. If the odds on the null approach 1 from above as the hypothesized maximum size of the possible effect approaches 0, then the data favor the null over any vaguer alternative to it. The simple computations and the intuitive graphic representation of the analysis are illustrated by the analysis of diverse examples from the current literature. They pose 3 common experimental questions: (a) Are 2 means the same? (b) Is performance at chance? (c) Are factors additive? PMID:19348549

  19. The genetic architecture of UV floral patterning in sunflower.

    PubMed

    Moyers, Brook T; Owens, Gregory L; Baute, Gregory J; Rieseberg, Loren H

    2017-07-01

    The patterning of floral ultraviolet (UV) pigmentation varies both intra- and interspecifically in sunflowers and many other plant species, impacts pollinator attraction, and can be critical to reproductive success and crop yields. However, the genetic basis for variation in UV patterning is largely unknown. This study examines the genetic architecture for proportional and absolute size of the UV bullseye in Helianthus argophyllus , a close relative of the domesticated sunflower. A camera modified to capture UV light (320-380 nm) was used to phenotype floral UV patterning in an F 2 mapping population, then quantitative trait loci (QTL) were identified using genotyping-by-sequencing and linkage mapping. The ability of these QTL to predict the UV patterning of natural population individuals was also assessed. Proportional UV pigmentation is additively controlled by six moderate effect QTL that are predictive of this phenotype in natural populations. In contrast, UV bullseye size is controlled by a single large effect QTL that also controls flowerhead size and co-localizes with a major flowering time QTL in Helianthus . The co-localization of the UV bullseye size QTL, flowerhead size QTL and a previously known flowering time QTL may indicate a single highly pleiotropic locus or several closely linked loci, which could inhibit UV bullseye size from responding to selection without change in correlated characters. The genetic architecture of proportional UV pigmentation is relatively simple and different from that of UV bullseye size, and so should be able to respond to natural or artificial selection independently. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  20. Control of silk microsphere formation using polyethylene glycol (PEG).

    PubMed

    Wu, Jianbing; Zheng, Zhaozhu; Li, Gang; Kaplan, David L; Wang, Xiaoqin

    2016-07-15

    A one step, rapid method to prepare silk microspheres was developed, with particle size controlled by the addition of polyethylene glycol (PEG). PEG molecular weight (4.0K-20.0KDa) and concentration (20-50wt%), as well as silk concentration (5-20wt%), were key factors that determined particle sizes varying in a range of 1-100μm. Addition of methanol to the PEG-silk combinations increased the content of crystalline β-sheet in the silk microspheres. To track the distribution and degradation of silk microspheres in vivo, 3-mercaptopropionic acid (MPA)-coated CdTe quantum dots (QDs) were physically entrapped in the silk microspheres. QDs tightly bound to the β-sheet domains of silk via hydrophobic interactions, with over 96% of the loaded QDs remaining in the silk microspheres after exhaustive extraction. The fluorescence of QDs-incorporated silk microspheres less stable in cell culture medium than in phosphate buffer solution (PBS) and water. After subcutaneous injection in mice, microspheres prepared from 20% silk (approx. 30μm diameter particles) still fluoresced at 24h, while those prepared from 8% silk (approx. 4μm diameter particles) and free QDs were not detectable, reflecting the QDs quenching and particle size effect on microsphere clearance in vivo. The larger microspheres were more resistant to cell internalization and degradation. Since PEG is an FDA-approved polymer, and silk is FDA approved for some medical devices, the methods developed in the present study will be useful in a variety of biomedical applications where simple, rapid and scalable preparation of silk microspheres is required. The work is of significance to the biomaterial and controlled release society because it provides a new option for fabricating silk microspheres in one simple step of mixing silk and polyethylene glycol (PEG), with the size and properties of microspheres controllable by PEG molecular weight as well as PEG and silk concentrations. Although fabrication of silk microspheres have been reported previously using spray-drying, liposome-templating, polyvinyl alcohol (PVA) emulsification, etc., applications were hindered due to harsh conditions (temperature, solvents, etc.) and complicated procedures used as well as low yield and less controllable particle size (usually <10μm). Since PEG is an FDA-approved polymer, and silk is FDA approved for some medical devices, the methods developed in the present study will be useful in a variety of biomedical applications where simple, rapid and scalable preparation of silk microspheres is required. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Top