Cao, Ying; Maran, Selva K.; Dhamala, Mukesh; Jaeger, Dieter; Heck, Detlef H.
2012-01-01
Purkinje cells (PCs) in the mammalian cerebellum express high frequency spontaneous activity with average spike rates between 30 and 200 Hz. Cerebellar nuclear (CN) neurons receive converging input from many PCs resulting in a continuous barrage of inhibitory inputs. It has been hypothesized that pauses in PC activity trigger increases in CN spiking activity. A prediction derived from this hypothesis is that pauses in PC simple spike activity represent relevant behavioral or sensory events. Here we asked whether pauses in the simple spike activity of PCs related to either fluid licking or respiration, play a special role in representing information about behavior. Both behaviors are widely represented in cerebellar PC simple spike activity. We recorded PC activity in the vermis and lobus simplex of head fixed mice while monitoring licking and respiratory behavior. Using cross correlation and Granger causality analysis we examined whether short ISIs had a different temporal relation to behavior than long ISIs or pauses. Behavior related simple spike pauses occurred during low-rate simple spike activity in both licking and breathing related PCs. Granger causality analysis revealed causal relationships between simple spike pauses and behavior. However, the same results were obtained from an analysis of surrogate spike trains with gamma ISI distributions constructed to match rate modulations of behavior related Purkinje cells. Our results therefore suggest that the occurrence of pauses in simple spike activity does not represent additional information about behavioral or sensory events that goes beyond the simple spike rate modulations. PMID:22723707
Burroughs, Amelia; Wise, Andrew K.; Xiao, Jianqiang; Houghton, Conor; Tang, Tianyu; Suh, Colleen Y.; Lang, Eric J.
2016-01-01
Key points Purkinje cells are the sole output of the cerebellar cortex and fire two distinct types of action potential: simple spikes and complex spikes.Previous studies have mainly considered complex spikes as unitary events, even though the waveform is composed of varying numbers of spikelets.The extent to which differences in spikelet number affect simple spike activity (and vice versa) remains unclear.We found that complex spikes with greater numbers of spikelets are preceded by higher simple spike firing rates but, following the complex spike, simple spikes are reduced in a manner that is graded with spikelet number.This dynamic interaction has important implications for cerebellar information processing, and suggests that complex spike spikelet number may maintain Purkinje cells within their operational range. Abstract Purkinje cells are central to cerebellar function because they form the sole output of the cerebellar cortex. They exhibit two distinct types of action potential: simple spikes and complex spikes. It is widely accepted that interaction between these two types of impulse is central to cerebellar cortical information processing. Previous investigations of the interactions between simple spikes and complex spikes have mainly considered complex spikes as unitary events. However, complex spikes are composed of an initial large spike followed by a number of secondary components, termed spikelets. The number of spikelets within individual complex spikes is highly variable and the extent to which differences in complex spike spikelet number affects simple spike activity (and vice versa) remains poorly understood. In anaesthetized adult rats, we have found that Purkinje cells recorded from the posterior lobe vermis and hemisphere have high simple spike firing frequencies that precede complex spikes with greater numbers of spikelets. This finding was also evident in a small sample of Purkinje cells recorded from the posterior lobe hemisphere in awake cats. In addition, complex spikes with a greater number of spikelets were associated with a subsequent reduction in simple spike firing rate. We therefore suggest that one important function of spikelets is the modulation of Purkinje cell simple spike firing frequency, which has implications for controlling cerebellar cortical output and motor learning. PMID:27265808
Burroughs, Amelia; Wise, Andrew K; Xiao, Jianqiang; Houghton, Conor; Tang, Tianyu; Suh, Colleen Y; Lang, Eric J; Apps, Richard; Cerminara, Nadia L
2017-01-01
Purkinje cells are the sole output of the cerebellar cortex and fire two distinct types of action potential: simple spikes and complex spikes. Previous studies have mainly considered complex spikes as unitary events, even though the waveform is composed of varying numbers of spikelets. The extent to which differences in spikelet number affect simple spike activity (and vice versa) remains unclear. We found that complex spikes with greater numbers of spikelets are preceded by higher simple spike firing rates but, following the complex spike, simple spikes are reduced in a manner that is graded with spikelet number. This dynamic interaction has important implications for cerebellar information processing, and suggests that complex spike spikelet number may maintain Purkinje cells within their operational range. Purkinje cells are central to cerebellar function because they form the sole output of the cerebellar cortex. They exhibit two distinct types of action potential: simple spikes and complex spikes. It is widely accepted that interaction between these two types of impulse is central to cerebellar cortical information processing. Previous investigations of the interactions between simple spikes and complex spikes have mainly considered complex spikes as unitary events. However, complex spikes are composed of an initial large spike followed by a number of secondary components, termed spikelets. The number of spikelets within individual complex spikes is highly variable and the extent to which differences in complex spike spikelet number affects simple spike activity (and vice versa) remains poorly understood. In anaesthetized adult rats, we have found that Purkinje cells recorded from the posterior lobe vermis and hemisphere have high simple spike firing frequencies that precede complex spikes with greater numbers of spikelets. This finding was also evident in a small sample of Purkinje cells recorded from the posterior lobe hemisphere in awake cats. In addition, complex spikes with a greater number of spikelets were associated with a subsequent reduction in simple spike firing rate. We therefore suggest that one important function of spikelets is the modulation of Purkinje cell simple spike firing frequency, which has implications for controlling cerebellar cortical output and motor learning. © 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Egorova, P A; Karelina, T V; Vlasova, O L; Antonov, S M; Besprozvanny, I B
2014-01-01
The effect of CyPPA, a positive modulator of small conductance calcium-activated potassium channels of type 3 and 2 (SK3/SK2), and of NS309, an activator of intermediate and small conductance calcium-activated potassium channels (IK/SK), on the activity of cerebellar Purkinje cells was studied in 2-month-old male mice. The use of 1 mM of CyPPA has led to a decrease of simple spike firing frequency in the discharge of Purkinje cells by 25%, on average, during 1 h after application. At the same time, application of 100 μM of NS309 has promoted a decrease in simple spike firing frequency by 47 %, on average, during 1 h after the beginning of the action. The obtained results confirm the hypothesis that SK channels participate in regulation of simple spike firing frequency in the discharge of Purkinje cells and are responsible for restriction of signal frequency. The effect of NS309 on simple spike firing frequency was more pronounced; therefore, the IK/SK channels may be suggested to play the cardinal role in regulation of spike activity of Purkinje cells. Since increasing simple spike frequency in the discharge of Purkinje cells is observed at many disturbances of motor activity, in particular, at spinocerebellar ataxia, it can be suggested that the studied compounds or substances of similar action are of interest as potential medicinal agents.
Tang, Tianyu; Xiao, Jianqiang; Suh, Colleen Y; Burroughs, Amelia; Cerminara, Nadia L; Jia, Linjia; Marshall, Sarah P; Wise, Andrew K; Apps, Richard; Sugihara, Izumi; Lang, Eric J
2017-08-01
Cerebellar Purkinje cells (PCs) generate two types of action potentials, simple and complex spikes. Although they are generated by distinct mechanisms, interactions between the two spike types exist. Zebrin staining produces alternating positive and negative stripes of PCs across most of the cerebellar cortex. Thus, here we compared simple spike-complex spike interactions both within and across zebrin populations. Simple spike activity undergoes a complex modulation preceding and following a complex spike. The amplitudes of the pre- and post-complex spike modulation phases were correlated across PCs. On average, the modulation was larger for PCs in zebrin positive regions. Correlations between aspects of the complex spike waveform and simple spike activity were found, some of which varied between zebrin positive and negative PCs. The implications of the results are discussed with regard to hypotheses that complex spikes are triggered by rises in simple spike activity for either motor learning or homeostatic functions. Purkinje cells (PCs) generate two types of action potentials, called simple and complex spikes (SSs and CSs). We first investigated the CS-associated modulation of SS activity and its relationship to the zebrin status of the PC. The modulation pattern consisted of a pre-CS rise in SS activity, and then, following the CS, a pause, a rebound, and finally a late inhibition of SS activity for both zebrin positive (Z+) and negative (Z-) cells, though the amplitudes of the phases were larger in Z+ cells. Moreover, the amplitudes of the pre-CS rise with the late inhibitory phase of the modulation were correlated across PCs. In contrast, correlations between modulation phases across CSs of individual PCs were generally weak. Next, the relationship between CS spikelets and SS activity was investigated. The number of spikelets/CS correlated with the average SS firing rate only for Z+ cells. In contrast, correlations across CSs between spikelet numbers and the amplitudes of the SS modulation phases were generally weak. Division of spikelets into likely axonally propagated and non-propagated groups (based on their interspikelet interval) showed that the correlation of spikelet number with SS firing rate primarily reflected a relationship with non-propagated spikelets. In sum, the results show both zebrin-related and non-zebrin-related physiological heterogeneity in SS-CS interactions among PCs, which suggests that the cerebellar cortex is more functionally diverse than is assumed by standard theories of cerebellar function. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
In vivo analysis of Purkinje cell firing properties during postnatal mouse development
Arancillo, Marife; White, Joshua J.; Lin, Tao; Stay, Trace L.
2014-01-01
Purkinje cell activity is essential for controlling motor behavior. During motor behavior Purkinje cells fire two types of action potentials: simple spikes that are generated intrinsically and complex spikes that are induced by climbing fiber inputs. Although the functions of these spikes are becoming clear, how they are established is still poorly understood. Here, we used in vivo electrophysiology approaches conducted in anesthetized and awake mice to record Purkinje cell activity starting from the second postnatal week of development through to adulthood. We found that the rate of complex spike firing increases sharply at 3 wk of age whereas the rate of simple spike firing gradually increases until 4 wk of age. We also found that compared with adult, the pattern of simple spike firing during development is more irregular as the cells tend to fire in bursts that are interrupted by long pauses. The regularity in simple spike firing only reached maturity at 4 wk of age. In contrast, the adult complex spike pattern was already evident by the second week of life, remaining consistent across all ages. Analyses of Purkinje cells in alert behaving mice suggested that the adult patterns are attained more than a week after the completion of key morphogenetic processes such as migration, lamination, and foliation. Purkinje cell activity is therefore dynamically sculpted throughout postnatal development, traversing several critical events that are required for circuit formation. Overall, we show that simple spike and complex spike firing develop with unique developmental trajectories. PMID:25355961
Harmon, Thomas C; Magaram, Uri; McLean, David L; Raman, Indira M
2017-01-01
To study cerebellar activity during learning, we made whole-cell recordings from larval zebrafish Purkinje cells while monitoring fictive swimming during associative conditioning. Fish learned to swim in response to visual stimulation preceding tactile stimulation of the tail. Learning was abolished by cerebellar ablation. All Purkinje cells showed task-related activity. Based on how many complex spikes emerged during learned swimming, they were classified as multiple, single, or zero complex spike (MCS, SCS, ZCS) cells. With learning, MCS and ZCS cells developed increased climbing fiber (MCS) or parallel fiber (ZCS) input during visual stimulation; SCS cells fired complex spikes associated with learned swimming episodes. The categories correlated with location. Optogenetically suppressing simple spikes only during visual stimulation demonstrated that simple spikes are required for acquisition and early stages of expression of learned responses, but not their maintenance, consistent with a transient, instructive role for simple spikes during cerebellar learning in larval zebrafish. DOI: http://dx.doi.org/10.7554/eLife.22537.001 PMID:28541889
Changes in complex spike activity during classical conditioning
Rasmussen, Anders; Jirenhed, Dan-Anders; Wetmore, Daniel Z.; Hesslow, Germund
2014-01-01
The cerebellar cortex is necessary for adaptively timed conditioned responses (CRs) in eyeblink conditioning. During conditioning, Purkinje cells acquire pause responses or “Purkinje cell CRs” to the conditioned stimuli (CS), resulting in disinhibition of the cerebellar nuclei (CN), allowing them to activate motor nuclei that control eyeblinks. This disinhibition also causes inhibition of the inferior olive (IO), via the nucleo-olivary pathway (N-O). Activation of the IO, which relays the unconditional stimulus (US) to the cortex, elicits characteristic complex spikes in Purkinje cells. Although Purkinje cell activity, as well as stimulation of the CN, is known to influence IO activity, much remains to be learned about the way that learned changes in simple spike firing affects the IO. In the present study, we analyzed changes in simple and complex spike firing, in extracellular Purkinje cell records, from the C3 zone, in decerebrate ferrets undergoing training in a conditioning paradigm. In agreement with the N-O feedback hypothesis, acquisition resulted in a gradual decrease in complex spike activity during the conditioned stimulus, with a delay that is consistent with the long N-O latency. Also supporting the feedback hypothesis, training with a short interstimulus interval (ISI), which does not lead to acquisition of a Purkinje cell CR, did not cause a suppression of complex spike activity. In contrast, observations that extinction did not lead to a recovery in complex spike activity and the irregular patterns of simple and complex spike activity after the conditioned stimulus are less conclusive. PMID:25140129
Adaptive exponential integrate-and-fire model as an effective description of neuronal activity.
Brette, Romain; Gerstner, Wulfram
2005-11-01
We introduce a two-dimensional integrate-and-fire model that combines an exponential spike mechanism with an adaptation equation, based on recent theoretical findings. We describe a systematic method to estimate its parameters with simple electrophysiological protocols (current-clamp injection of pulses and ramps) and apply it to a detailed conductance-based model of a regular spiking neuron. Our simple model predicts correctly the timing of 96% of the spikes (+/-2 ms) of the detailed model in response to injection of noisy synaptic conductances. The model is especially reliable in high-conductance states, typical of cortical activity in vivo, in which intrinsic conductances were found to have a reduced role in shaping spike trains. These results are promising because this simple model has enough expressive power to reproduce qualitatively several electrophysiological classes described in vitro.
Learning of Precise Spike Times with Homeostatic Membrane Potential Dependent Synaptic Plasticity.
Albers, Christian; Westkott, Maren; Pawelzik, Klaus
2016-01-01
Precise spatio-temporal patterns of neuronal action potentials underly e.g. sensory representations and control of muscle activities. However, it is not known how the synaptic efficacies in the neuronal networks of the brain adapt such that they can reliably generate spikes at specific points in time. Existing activity-dependent plasticity rules like Spike-Timing-Dependent Plasticity are agnostic to the goal of learning spike times. On the other hand, the existing formal and supervised learning algorithms perform a temporally precise comparison of projected activity with the target, but there is no known biologically plausible implementation of this comparison. Here, we propose a simple and local unsupervised synaptic plasticity mechanism that is derived from the requirement of a balanced membrane potential. Since the relevant signal for synaptic change is the postsynaptic voltage rather than spike times, we call the plasticity rule Membrane Potential Dependent Plasticity (MPDP). Combining our plasticity mechanism with spike after-hyperpolarization causes a sensitivity of synaptic change to pre- and postsynaptic spike times which can reproduce Hebbian spike timing dependent plasticity for inhibitory synapses as was found in experiments. In addition, the sensitivity of MPDP to the time course of the voltage when generating a spike allows MPDP to distinguish between weak (spurious) and strong (teacher) spikes, which therefore provides a neuronal basis for the comparison of actual and target activity. For spatio-temporal input spike patterns our conceptually simple plasticity rule achieves a surprisingly high storage capacity for spike associations. The sensitivity of the MPDP to the subthreshold membrane potential during training allows robust memory retrieval after learning even in the presence of activity corrupted by noise. We propose that MPDP represents a biophysically plausible mechanism to learn temporal target activity patterns.
Learning of Precise Spike Times with Homeostatic Membrane Potential Dependent Synaptic Plasticity
Albers, Christian; Westkott, Maren; Pawelzik, Klaus
2016-01-01
Precise spatio-temporal patterns of neuronal action potentials underly e.g. sensory representations and control of muscle activities. However, it is not known how the synaptic efficacies in the neuronal networks of the brain adapt such that they can reliably generate spikes at specific points in time. Existing activity-dependent plasticity rules like Spike-Timing-Dependent Plasticity are agnostic to the goal of learning spike times. On the other hand, the existing formal and supervised learning algorithms perform a temporally precise comparison of projected activity with the target, but there is no known biologically plausible implementation of this comparison. Here, we propose a simple and local unsupervised synaptic plasticity mechanism that is derived from the requirement of a balanced membrane potential. Since the relevant signal for synaptic change is the postsynaptic voltage rather than spike times, we call the plasticity rule Membrane Potential Dependent Plasticity (MPDP). Combining our plasticity mechanism with spike after-hyperpolarization causes a sensitivity of synaptic change to pre- and postsynaptic spike times which can reproduce Hebbian spike timing dependent plasticity for inhibitory synapses as was found in experiments. In addition, the sensitivity of MPDP to the time course of the voltage when generating a spike allows MPDP to distinguish between weak (spurious) and strong (teacher) spikes, which therefore provides a neuronal basis for the comparison of actual and target activity. For spatio-temporal input spike patterns our conceptually simple plasticity rule achieves a surprisingly high storage capacity for spike associations. The sensitivity of the MPDP to the subthreshold membrane potential during training allows robust memory retrieval after learning even in the presence of activity corrupted by noise. We propose that MPDP represents a biophysically plausible mechanism to learn temporal target activity patterns. PMID:26900845
Popa, Laurentiu S.; Streng, Martha L.
2017-01-01
Abstract Most hypotheses of cerebellar function emphasize a role in real-time control of movements. However, the cerebellum’s use of current information to adjust future movements and its involvement in sequencing, working memory, and attention argues for predicting and maintaining information over extended time windows. The present study examines the time course of Purkinje cell discharge modulation in the monkey (Macaca mulatta) during manual, pseudo-random tracking. Analysis of the simple spike firing from 183 Purkinje cells during tracking reveals modulation up to 2 s before and after kinematics and position error. Modulation significance was assessed against trial shuffled firing, which decoupled simple spike activity from behavior and abolished long-range encoding while preserving data statistics. Position, velocity, and position errors have the most frequent and strongest long-range feedforward and feedback modulations, with less common, weaker long-term correlations for speed and radial error. Position, velocity, and position errors can be decoded from the population simple spike firing with considerable accuracy for even the longest predictive (-2000 to -1500 ms) and feedback (1500 to 2000 ms) epochs. Separate analysis of the simple spike firing in the initial hold period preceding tracking shows similar long-range feedforward encoding of the upcoming movement and in the final hold period feedback encoding of the just completed movement, respectively. Complex spike analysis reveals little long-term modulation with behavior. We conclude that Purkinje cell simple spike discharge includes short- and long-range representations of both upcoming and preceding behavior that could underlie cerebellar involvement in error correction, working memory, and sequencing. PMID:28413823
Modeled changes of cerebellar activity in mutant mice are predictive of their learning impairments
NASA Astrophysics Data System (ADS)
Badura, Aleksandra; Clopath, Claudia; Schonewille, Martijn; de Zeeuw, Chris I.
2016-11-01
Translating neuronal activity to measurable behavioral changes has been a long-standing goal of systems neuroscience. Recently, we have developed a model of phase-reversal learning of the vestibulo-ocular reflex, a well-established, cerebellar-dependent task. The model, comprising both the cerebellar cortex and vestibular nuclei, reproduces behavioral data and accounts for the changes in neural activity during learning in wild type mice. Here, we used our model to predict Purkinje cell spiking as well as behavior before and after learning of five different lines of mutant mice with distinct cell-specific alterations of the cerebellar cortical circuitry. We tested these predictions by obtaining electrophysiological data depicting changes in neuronal spiking. We show that our data is largely consistent with the model predictions for simple spike modulation of Purkinje cells and concomitant behavioral learning in four of the mutants. In addition, our model accurately predicts a shift in simple spike activity in a mutant mouse with a brainstem specific mutation. This combination of electrophysiological and computational techniques opens a possibility of predicting behavioral impairments from neural activity.
Modeled changes of cerebellar activity in mutant mice are predictive of their learning impairments
Badura, Aleksandra; Clopath, Claudia; Schonewille, Martijn; De Zeeuw, Chris I.
2016-01-01
Translating neuronal activity to measurable behavioral changes has been a long-standing goal of systems neuroscience. Recently, we have developed a model of phase-reversal learning of the vestibulo-ocular reflex, a well-established, cerebellar-dependent task. The model, comprising both the cerebellar cortex and vestibular nuclei, reproduces behavioral data and accounts for the changes in neural activity during learning in wild type mice. Here, we used our model to predict Purkinje cell spiking as well as behavior before and after learning of five different lines of mutant mice with distinct cell-specific alterations of the cerebellar cortical circuitry. We tested these predictions by obtaining electrophysiological data depicting changes in neuronal spiking. We show that our data is largely consistent with the model predictions for simple spike modulation of Purkinje cells and concomitant behavioral learning in four of the mutants. In addition, our model accurately predicts a shift in simple spike activity in a mutant mouse with a brainstem specific mutation. This combination of electrophysiological and computational techniques opens a possibility of predicting behavioral impairments from neural activity. PMID:27805050
Axonal propagation of simple and complex spikes in cerebellar Purkinje neurons.
Khaliq, Zayd M; Raman, Indira M
2005-01-12
In cerebellar Purkinje neurons, the reliability of propagation of high-frequency simple spikes and spikelets of complex spikes is likely to regulate inhibition of Purkinje target neurons. To test the extent to which a one-to-one correspondence exists between somatic and axonal spikes, we made dual somatic and axonal recordings from Purkinje neurons in mouse cerebellar slices. Somatic action potentials were recorded with a whole-cell pipette, and the corresponding axonal signals were recorded extracellularly with a loose-patch pipette. Propagation of spontaneous and evoked simple spikes was highly reliable. At somatic firing rates of approximately 200 spikes/sec, <10% of spikes failed to propagate, with failures becoming more frequent only at maximal somatic firing rates (approximately 260 spikes/sec). Complex spikes were elicited by climbing fiber stimulation, and their somatic waveforms were modulated by tonic current injection, as well as by paired stimulation to depress the underlying EPSCs. Across conditions, the mean number of propagating action potentials remained just above two spikes per climbing fiber stimulation, but the instantaneous frequency of the propagating spikes changed, from approximately 375 Hz during somatic hyperpolarizations that silenced spontaneous firing to approximately 150 Hz during spontaneous activity. The probability of propagation of individual spikelets could be described quantitatively as a saturating function of spikelet amplitude, rate of rise, or preceding interspike interval. The results suggest that ion channels of Purkinje axons are adapted to produce extremely short refractory periods and that brief bursts of forward-propagating action potentials generated by complex spikes may contribute transiently to inhibition of postsynaptic neurons.
Hewitt, Angela L; Popa, Laurentiu S; Ebner, Timothy J
2015-01-21
The cerebellum is essential in motor learning. At the cellular level, changes occur in both the simple spike and complex spike firing of Purkinje cells. Because simple spike discharge reflects the main output of the cerebellar cortex, changes in simple spike firing likely reflect the contribution of the cerebellum to the adapted behavior. Therefore, we investigated in Rhesus monkeys how the representation of arm kinematics in Purkinje cell simple spike discharge changed during adaptation to mechanical perturbations of reach movements. Monkeys rapidly adapted to a novel assistive or resistive perturbation along the direction of the reach. Adaptation consisted of matching the amplitude and timing of the perturbation to minimize its effect on the reach. In a majority of Purkinje cells, simple spike firing recorded before and during adaptation demonstrated significant changes in position, velocity, and acceleration sensitivity. The timing of the simple spike representations change within individual cells, including shifts in predictive versus feedback signals. At the population level, feedback-based encoding of position increases early in learning and velocity decreases. Both timing changes reverse later in learning. The complex spike discharge was only weakly modulated by the perturbations, demonstrating that the changes in simple spike firing can be independent of climbing fiber input. In summary, we observed extensive alterations in individual Purkinje cell encoding of reach kinematics, although the movements were nearly identical in the baseline and adapted states. Therefore, adaption to mechanical perturbation of a reaching movement is accompanied by widespread modifications in the simple spike encoding. Copyright © 2015 the authors 0270-6474/15/351106-19$15.00/0.
Hewitt, Angela L.; Popa, Laurentiu S.
2015-01-01
The cerebellum is essential in motor learning. At the cellular level, changes occur in both the simple spike and complex spike firing of Purkinje cells. Because simple spike discharge reflects the main output of the cerebellar cortex, changes in simple spike firing likely reflect the contribution of the cerebellum to the adapted behavior. Therefore, we investigated in Rhesus monkeys how the representation of arm kinematics in Purkinje cell simple spike discharge changed during adaptation to mechanical perturbations of reach movements. Monkeys rapidly adapted to a novel assistive or resistive perturbation along the direction of the reach. Adaptation consisted of matching the amplitude and timing of the perturbation to minimize its effect on the reach. In a majority of Purkinje cells, simple spike firing recorded before and during adaptation demonstrated significant changes in position, velocity, and acceleration sensitivity. The timing of the simple spike representations change within individual cells, including shifts in predictive versus feedback signals. At the population level, feedback-based encoding of position increases early in learning and velocity decreases. Both timing changes reverse later in learning. The complex spike discharge was only weakly modulated by the perturbations, demonstrating that the changes in simple spike firing can be independent of climbing fiber input. In summary, we observed extensive alterations in individual Purkinje cell encoding of reach kinematics, although the movements were nearly identical in the baseline and adapted states. Therefore, adaption to mechanical perturbation of a reaching movement is accompanied by widespread modifications in the simple spike encoding. PMID:25609626
A Simple Deep Learning Method for Neuronal Spike Sorting
NASA Astrophysics Data System (ADS)
Yang, Kai; Wu, Haifeng; Zeng, Yu
2017-10-01
Spike sorting is one of key technique to understand brain activity. With the development of modern electrophysiology technology, some recent multi-electrode technologies have been able to record the activity of thousands of neuronal spikes simultaneously. The spike sorting in this case will increase the computational complexity of conventional sorting algorithms. In this paper, we will focus spike sorting on how to reduce the complexity, and introduce a deep learning algorithm, principal component analysis network (PCANet) to spike sorting. The introduced method starts from a conventional model and establish a Toeplitz matrix. Through the column vectors in the matrix, we trains a PCANet, where some eigenvalue vectors of spikes could be extracted. Finally, support vector machine (SVM) is used to sort spikes. In experiments, we choose two groups of simulated data from public databases availably and compare this introduced method with conventional methods. The results indicate that the introduced method indeed has lower complexity with the same sorting errors as the conventional methods.
Edgley, S A; Lidierth, M
1988-01-01
1. Extracellular recordings were made of the simple spike discharges of Purkinje cells in the lateral part of the paravermal cortex of lobule V in the cerebellum of awake cats. The cells were located within the c2 and c3 zones of Oscarsson (1979). 2. The peripheral receptive fields in which light mechanical stimuli could evoke simple spikes were examined in 252 Purkinje cells. Ninety-two per cent were activated by stimulation of the ipsilateral forelimb and 52% of 113 tested cells also discharged simple spikes in response to stimulation of the contralateral forelimb. The receptive fields were concentrated on the distal parts of the limbs: 67% of the 139 cells which were examined in most detail responded to stimulation of the paw or wrist of the ipsilateral forelimb. 3. In 135 of the Purkinje cells, the discharges were recorded during locomotion. Simple spikes were discharged at a mean rate of 54.3 +/- 27.8 impulses/s (S.D., n = 135) during steady walking on a belt moving at 0.5-0.7 m/s. The discharges of each cell were rhythmically modulated in time with the movements of stepping and although the timings of the discharges were highly variable between cells, activity in the population was greatest at the times of transition between the stance and swing phases in the ipsilateral forelimb and least during mid-stance. 4. As a population Purkinje cells with simple spike receptive fields on the distal parts of the forelimb(s) exhibited two activity maxima. These occurred during early stance and during the transition from stance to swing in the ipsilateral forelimb. Cells with receptive fields on the proximal parts of the limb achieved an activity maximum during late swing, and their average discharge rate fell at the time of onset of the swing phase in the ipsilateral forelimb instead of rising as was the case for the distal group. 5. The present results are compared with those from cells located more medially in the paravermal cortex. It is shown that medially located cells tend to discharge earlier in stance (or in late flexion) than laterally located cells with similar receptive fields. PMID:3171993
Kv1 channels control spike threshold dynamics and spike timing in cortical pyramidal neurones
Higgs, Matthew H; Spain, William J
2011-01-01
Abstract Previous studies showed that cortical pyramidal neurones (PNs) have a dynamic spike threshold that functions as a high-pass filter, enhancing spike timing in response to high-frequency input. While it is commonly assumed that Na+ channel inactivation is the primary mechanism of threshold accommodation, the possible role of K+ channel activation in fast threshold changes has not been well characterized. The present study tested the hypothesis that low-voltage activated Kv1 channels affect threshold dynamics in layer 2–3 PNs, using α-dendrotoxin (DTX) or 4-aminopyridine (4-AP) to block these conductances. We found that Kv1 blockade reduced the dynamic changes of spike threshold in response to a variety of stimuli, including stimulus-evoked synaptic input, current steps and ramps of varied duration, and noise. Analysis of the responses to noise showed that Kv1 channels increased the coherence of spike output with high-frequency components of the stimulus. A simple model demonstrates that a dynamic spike threshold can account for this effect. Our results show that the Kv1 conductance is a major mechanism that contributes to the dynamic spike threshold and precise spike timing of cortical PNs. PMID:21911608
A Simple Method to Simultaneously Detect and Identify Spikes from Raw Extracellular Recordings.
Petrantonakis, Panagiotis C; Poirazi, Panayiota
2015-01-01
The ability to track when and which neurons fire in the vicinity of an electrode, in an efficient and reliable manner can revolutionize the neuroscience field. The current bottleneck lies in spike sorting algorithms; existing methods for detecting and discriminating the activity of multiple neurons rely on inefficient, multi-step processing of extracellular recordings. In this work, we show that a single-step processing of raw (unfiltered) extracellular signals is sufficient for both the detection and identification of active neurons, thus greatly simplifying and optimizing the spike sorting approach. The efficiency and reliability of our method is demonstrated in both real and simulated data.
Kros, Lieke; Lindeman, Sander; Eelkman Rooda, Oscar H. J.; Murugesan, Pavithra; Bina, Lorenzo; Bosman, Laurens W. J.; De Zeeuw, Chris I.; Hoebeek, Freek E.
2017-01-01
Absence epilepsy is characterized by the occurrence of generalized spike and wave discharges (GSWDs) in electrocorticographical (ECoG) recordings representing oscillatory activity in thalamocortical networks. The oscillatory nature of GSWDs has been shown to be reflected in the simple spike activity of cerebellar Purkinje cells and in the activity of their target neurons in the cerebellar nuclei, but it is unclear to what extent complex spike activity is implicated in generalized epilepsy. Purkinje cell complex spike firing is elicited by climbing fiber activation and reflects action potential firing in the inferior olive. Here, we investigated to what extent modulation of complex spike firing is reflected in the temporal patterns of seizures. Extracellular single-unit recordings in awake, head-restrained homozygous tottering mice, which suffer from a mutation in the voltage-gated CaV2.1 calcium channel, revealed that a substantial proportion of Purkinje cells (26%) showed increased complex spike activity and rhythmicity during GSWDs. Moreover, Purkinje cells, recorded either electrophysiologically or by using Ca2+-imaging, showed a significant increase in complex spike synchronicity for both adjacent and remote Purkinje cells during ictal events. These seizure-related changes in firing frequency, rhythmicity and synchronicity were most prominent in the lateral cerebellum, a region known to receive cerebral input via the inferior olive. These data indicate profound and widespread changes in olivary firing that are most likely induced by seizure-related activity changes in the thalamocortical network, thereby highlighting the possibility that olivary neurons can compensate for pathological brain-state changes by dampening oscillations. PMID:29163057
Current source density correlates of cerebellar Golgi and Purkinje cell responses to tactile input
Tahon, Koen; Wijnants, Mike; De Schutter, Erik
2011-01-01
The overall circuitry of the cerebellar cortex has been known for over a century, but the function of many synaptic connections remains poorly characterized in vivo. We used a one-dimensional multielectrode probe to estimate the current source density (CSD) of Crus IIa in response to perioral tactile stimuli in anesthetized rats and to correlate current sinks and sources to changes in the spike rate of corecorded Golgi and Purkinje cells. The punctate stimuli evoked two distinct early waves of excitation (at <10 and ∼20 ms) associated with current sinks in the granular layer. The second wave was putatively of corticopontine origin, and its associated sink was located higher in the granular layer than the first trigeminal sink. The distinctive patterns of granular-layer sinks correlated with the spike responses of corecorded Golgi cells. In general, Golgi cell spike responses could be linearly reconstructed from the CSD profile. A dip in simple-spike activity of coregistered Purkinje cells correlated with a current source deep in the molecular layer, probably generated by basket cell synapses, interspersed between sparse early sinks presumably generated by synapses from granule cells. The late (>30 ms) enhancement of simple-spike activity in Purkinje cells was characterized by the absence of simultaneous sinks in the granular layer and by the suppression of corecorded Golgi cell activity, pointing at inhibition of Golgi cells by Purkinje axon collaterals as a likely mechanism of late Purkinje cell excitation. PMID:21228303
NASA Technical Reports Server (NTRS)
Raymond, J. L.; Lisberger, S. G.
1997-01-01
The neural "learning rules" governing the induction of plasticity in the cerebellum were analyzed by recording the patterns of neural activity in awake, behaving animals during stimuli that induce a form of cerebellum-dependent learning. We recorded the simple- and complex-spike responses of a broad sample of Purkinje cells in the floccular complex during a number of stimulus conditions that induce motor learning in the vestibulo-ocular reflex (VOR). Each subclass of Purkinje cells carried essentially the same information about required changes in the gain of the VOR. The correlation of simple-spike activity in Purkinje cells with activity in vestibular pathways could guide learning during low-frequency but not high-frequency stimuli. Climbing fiber activity could guide learning during all stimuli tested but only if compared with the activity present approximately 100 msec earlier in either vestibular pathways or Purkinje cells.
Inter-cellular spike coincidences in visual detection tasks
NASA Astrophysics Data System (ADS)
Bauer, Roman; Heinze, Sabine
2002-06-01
Synchronized spike activity is discussed as a possible representational code for object integration and as a neuronal basis of attention, perception and awareness. As a byproduct of experiments in which monkeys were trained to detect simple figures composed of single Gabor patches in a noisy background of similar elements, we found in special cases increased spike synchrony above chance level specifically related to figure detection. The long latency of this effect is difficult to interpret. It may be a sign of the cognitive state of an animal when it perceives the figure.
Cerebellar Purkinje Cells Generate Highly Correlated Spontaneous Slow-Rate Fluctuations.
Cao, Ying; Liu, Yu; Jaeger, Dieter; Heck, Detlef H
2017-01-01
Cerebellar Purkinje cells (PC) fire action potentials at high, sustained rates. Changes in spike rate that last a few tens of milliseconds encode sensory and behavioral events. Here we investigated spontaneous fluctuations of PC simple spike rate at a slow time scale of the order of 1 s. Simultaneous recordings from pairs of PCs that were aligned either along the sagittal or transversal axis of the cerebellar cortex revealed that simple spike rate fluctuations at the 1 s time scale were highly correlated. Each pair of PCs had either a predominantly positive or negative slow-rate correlation, with negative correlations observed only in PC pairs aligned along the transversal axis. Slow-rate correlations were independent of faster rate changes that were correlated with fluid licking behavior. Simultaneous recordings from PCs and cerebellar nuclear (CN) neurons showed that slow-rate fluctuations in PC and CN activity were also highly correlated, but their correlations continually alternated between periods of positive and negative correlation. The functional significance of this new aspect of cerebellar spike activity remains to be determined. Correlated slow-rate fluctuations seem too slow to be involved in the real-time control of ongoing behavior. However, slow-rate fluctuations of PCs converging on the same CN neuron are likely to modulate the excitability of the CN neuron, thus introduce a possible slow modulation of cerebellar output activity.
A Novel and Simple Spike Sorting Implementation.
Petrantonakis, Panagiotis C; Poirazi, Panayiota
2017-04-01
Monitoring the activity of multiple, individual neurons that fire spikes in the vicinity of an electrode, namely perform a Spike Sorting (SS) procedure, comprises one of the most important tools for contemporary neuroscience in order to reverse-engineer the brain. As recording electrodes' technology rabidly evolves by integrating thousands of electrodes in a confined spatial setting, the algorithms that are used to monitor individual neurons from recorded signals have to become even more reliable and computationally efficient. In this work, we propose a novel framework of the SS approach in which a single-step processing of the raw (unfiltered) extracellular signal is sufficient for both the detection and sorting of the activity of individual neurons. Despite its simplicity, the proposed approach exhibits comparable performance with state-of-the-art approaches, especially for spike detection in noisy signals, and paves the way for a new family of SS algorithms with the potential for multi-recording, fast, on-chip implementations.
Naud, Richard; Gerstner, Wulfram
2012-01-01
The response of a neuron to a time-dependent stimulus, as measured in a Peri-Stimulus-Time-Histogram (PSTH), exhibits an intricate temporal structure that reflects potential temporal coding principles. Here we analyze the encoding and decoding of PSTHs for spiking neurons with arbitrary refractoriness and adaptation. As a modeling framework, we use the spike response model, also known as the generalized linear neuron model. Because of refractoriness, the effect of the most recent spike on the spiking probability a few milliseconds later is very strong. The influence of the last spike needs therefore to be described with high precision, while the rest of the neuronal spiking history merely introduces an average self-inhibition or adaptation that depends on the expected number of past spikes but not on the exact spike timings. Based on these insights, we derive a 'quasi-renewal equation' which is shown to yield an excellent description of the firing rate of adapting neurons. We explore the domain of validity of the quasi-renewal equation and compare it with other rate equations for populations of spiking neurons. The problem of decoding the stimulus from the population response (or PSTH) is addressed analogously. We find that for small levels of activity and weak adaptation, a simple accumulator of the past activity is sufficient to decode the original input, but when refractory effects become large decoding becomes a non-linear function of the past activity. The results presented here can be applied to the mean-field analysis of coupled neuron networks, but also to arbitrary point processes with negative self-interaction.
Comparison of spike-sorting algorithms for future hardware implementation.
Gibson, Sarah; Judy, Jack W; Markovic, Dejan
2008-01-01
Applications such as brain-machine interfaces require hardware spike sorting in order to (1) obtain single-unit activity and (2) perform data reduction for wireless transmission of data. Such systems must be low-power, low-area, high-accuracy, automatic, and able to operate in real time. Several detection and feature extraction algorithms for spike sorting are described briefly and evaluated in terms of accuracy versus computational complexity. The nonlinear energy operator method is chosen as the optimal spike detection algorithm, being most robust over noise and relatively simple. The discrete derivatives method [1] is chosen as the optimal feature extraction method, maintaining high accuracy across SNRs with a complexity orders of magnitude less than that of traditional methods such as PCA.
Does Spike-Timing-Dependent Synaptic Plasticity Couple or Decouple Neurons Firing in Synchrony?
Knoblauch, Andreas; Hauser, Florian; Gewaltig, Marc-Oliver; Körner, Edgar; Palm, Günther
2012-01-01
Spike synchronization is thought to have a constructive role for feature integration, attention, associative learning, and the formation of bidirectionally connected Hebbian cell assemblies. By contrast, theoretical studies on spike-timing-dependent plasticity (STDP) report an inherently decoupling influence of spike synchronization on synaptic connections of coactivated neurons. For example, bidirectional synaptic connections as found in cortical areas could be reproduced only by assuming realistic models of STDP and rate coding. We resolve this conflict by theoretical analysis and simulation of various simple and realistic STDP models that provide a more complete characterization of conditions when STDP leads to either coupling or decoupling of neurons firing in synchrony. In particular, we show that STDP consistently couples synchronized neurons if key model parameters are matched to physiological data: First, synaptic potentiation must be significantly stronger than synaptic depression for small (positive or negative) time lags between presynaptic and postsynaptic spikes. Second, spike synchronization must be sufficiently imprecise, for example, within a time window of 5–10 ms instead of 1 ms. Third, axonal propagation delays should not be much larger than dendritic delays. Under these assumptions synchronized neurons will be strongly coupled leading to a dominance of bidirectional synaptic connections even for simple STDP models and low mean firing rates at the level of spontaneous activity. PMID:22936909
Neural learning rules for the vestibulo-ocular reflex
NASA Technical Reports Server (NTRS)
Raymond, J. L.; Lisberger, S. G.
1998-01-01
Mechanisms for the induction of motor learning in the vestibulo-ocular reflex (VOR) were evaluated by recording the patterns of neural activity elicited in the cerebellum by a range of stimuli that induce learning. Patterns of climbing-fiber, vestibular, and Purkinje cell simple-spike signals were examined during sinusoidal head movement paired with visual image movement at stimulus frequencies from 0.5 to 10 Hz. A comparison of simple-spike and vestibular signals contained the information required to guide learning only at low stimulus frequencies, and a comparison of climbing-fiber and simple-spike signals contained the information required to guide learning only at high stimulus frequencies. Learning could be guided by comparison of climbing-fiber and vestibular signals at all stimulus frequencies tested, but only if climbing fiber responses were compared with the vestibular signals present 100 msec earlier. Computational analysis demonstrated that this conclusion is valid even if there is a broad range of vestibular signals at the site of plasticity. Simulations also indicated that the comparison of vestibular and climbing-fiber signals across the 100 msec delay must be implemented by a subcellular "eligibility" trace rather than by neural circuits that delay the vestibular inputs to the site of plasticity. The results suggest two alternative accounts of learning in the VOR. Either there are multiple mechanisms of learning that use different combinations of neural signals to drive plasticity, or there is a single mechanism tuned to climbing-fiber activity that follows activity in vestibular pathways by approximately 100 msec.
Wester, Jason C.
2013-01-01
Spike threshold filters incoming inputs and thus gates activity flow through neuronal networks. Threshold is variable, and in many types of neurons there is a relationship between the threshold voltage and the rate of rise of the membrane potential (dVm/dt) leading to the spike. In primary sensory cortex this relationship enhances the sensitivity of neurons to a particular stimulus feature. While Na+ channel inactivation may contribute to this relationship, recent evidence indicates that K+ currents located in the spike initiation zone are crucial. Here we used a simple Hodgkin-Huxley biophysical model to systematically investigate the role of K+ and Na+ current parameters (activation voltages and kinetics) in regulating spike threshold as a function of dVm/dt. Threshold was determined empirically and not estimated from the shape of the Vm prior to a spike. This allowed us to investigate intrinsic currents and values of gating variables at the precise voltage threshold. We found that Na+ inactivation is sufficient to produce the relationship provided it occurs at hyperpolarized voltages combined with slow kinetics. Alternatively, hyperpolarization of the K+ current activation voltage, even in the absence of Na+ inactivation, is also sufficient to produce the relationship. This hyperpolarized shift of K+ activation allows an outward current prior to spike initiation to antagonize the Na+ inward current such that it becomes self-sustaining at a more depolarized voltage. Our simulations demonstrate parameter constraints on Na+ inactivation and the biophysical mechanism by which an outward current regulates spike threshold as a function of dVm/dt. PMID:23344915
Coding and Decoding with Adapting Neurons: A Population Approach to the Peri-Stimulus Time Histogram
Naud, Richard; Gerstner, Wulfram
2012-01-01
The response of a neuron to a time-dependent stimulus, as measured in a Peri-Stimulus-Time-Histogram (PSTH), exhibits an intricate temporal structure that reflects potential temporal coding principles. Here we analyze the encoding and decoding of PSTHs for spiking neurons with arbitrary refractoriness and adaptation. As a modeling framework, we use the spike response model, also known as the generalized linear neuron model. Because of refractoriness, the effect of the most recent spike on the spiking probability a few milliseconds later is very strong. The influence of the last spike needs therefore to be described with high precision, while the rest of the neuronal spiking history merely introduces an average self-inhibition or adaptation that depends on the expected number of past spikes but not on the exact spike timings. Based on these insights, we derive a ‘quasi-renewal equation’ which is shown to yield an excellent description of the firing rate of adapting neurons. We explore the domain of validity of the quasi-renewal equation and compare it with other rate equations for populations of spiking neurons. The problem of decoding the stimulus from the population response (or PSTH) is addressed analogously. We find that for small levels of activity and weak adaptation, a simple accumulator of the past activity is sufficient to decode the original input, but when refractory effects become large decoding becomes a non-linear function of the past activity. The results presented here can be applied to the mean-field analysis of coupled neuron networks, but also to arbitrary point processes with negative self-interaction. PMID:23055914
Bichler, Olivier; Querlioz, Damien; Thorpe, Simon J; Bourgoin, Jean-Philippe; Gamrat, Christian
2012-08-01
A biologically inspired approach to learning temporally correlated patterns from a spiking silicon retina is presented. Spikes are generated from the retina in response to relative changes in illumination at the pixel level and transmitted to a feed-forward spiking neural network. Neurons become sensitive to patterns of pixels with correlated activation times, in a fully unsupervised scheme. This is achieved using a special form of Spike-Timing-Dependent Plasticity which depresses synapses that did not recently contribute to the post-synaptic spike activation, regardless of their activation time. Competitive learning is implemented with lateral inhibition. When tested with real-life data, the system is able to extract complex and overlapping temporally correlated features such as car trajectories on a freeway, after only 10 min of traffic learning. Complete trajectories can be learned with a 98% detection rate using a second layer, still with unsupervised learning, and the system may be used as a car counter. The proposed neural network is extremely robust to noise and it can tolerate a high degree of synaptic and neuronal variability with little impact on performance. Such results show that a simple biologically inspired unsupervised learning scheme is capable of generating selectivity to complex meaningful events on the basis of relatively little sensory experience. Copyright © 2012 Elsevier Ltd. All rights reserved.
Haider, Bilal; Krause, Matthew R.; Duque, Alvaro; Yu, Yuguo; Touryan, Jonathan; Mazer, James A.; McCormick, David A.
2011-01-01
SUMMARY During natural vision, the entire visual field is stimulated by images rich in spatiotemporal structure. Although many visual system studies restrict stimuli to the classical receptive field (CRF), it is known that costimulation of the CRF and the surrounding nonclassical receptive field (nCRF) increases neuronal response sparseness. The cellular and network mechanisms underlying increased response sparseness remain largely unexplored. Here we show that combined CRF + nCRF stimulation increases the sparseness, reliability, and precision of spiking and membrane potential responses in classical regular spiking (RSC) pyramidal neurons of cat primary visual cortex. Conversely, fast-spiking interneurons exhibit increased activity and decreased selectivity during CRF + nCRF stimulation. The increased sparseness and reliability of RSC neuron spiking is associated with increased inhibitory barrages and narrower visually evoked synaptic potentials. Our experimental observations were replicated with a simple computational model, suggesting that network interactions among neuronal subtypes ultimately sharpen recurrent excitation, producing specific and reliable visual responses. PMID:20152117
The effect of Strongylus vulgaris larvae on equine intestinal myoelectrical activity.
Lester, G D; Bolton, J R; Cambridge, H; Thurgate, S
1989-06-01
The myoelectrical activity of the ileum, caecum and large colon was monitored from Ag-AgCl bipolar recording electrodes in four conscious 'parasite-naive' weanling foals. All foals were inoculated with 1000 infective 3rd-stage Strongylus vulgaris larvae and alterations to the myoelectrical activity observed. The frequencies of caecal and colonic spike bursts increased significantly in all post infection periods coinciding with assumed larval penetration into the intestinal mucosa and migration through the vasculature. Peaks in caecal and colonic activity occurred at Days 1 to 5 post infection. In the caecum, peaks occurred again at Days 15 and 31 post infection, preceding similar rises in colonic spike burst frequency at Days 19 and 35. Longer term changes indicated a return towards pre-infection levels of activity suggesting smooth muscle adaptation to decreased blood flow. The analysis of caecal and colonic spike burst propagation indicated that the increases in burst frequency were not attributable to an increase in the propagation of spike bursts in any particular direction, but rather to proportional increases in all directions of activity. There was a slight decrease in the simple ileal spike burst frequency immediately post-infection. None of the experimental animals exhibited signs of abdominal pain during the trial, and there was no evidence of bowel infarction at post mortem examination despite the presence of severe parasite-induced arterial lesions. The results suggest that increased caecal and colonic motility is an important host response in susceptible foals exposed to S. vulgaris larvae.
Raghavan, Ramanujan T; Lisberger, Stephen G
2017-08-01
We recorded the responses of Purkinje cells in the oculomotor vermis during smooth pursuit and saccadic eye movements. Our goal was to characterize the responses in the vermis using approaches that would allow direct comparisons with responses of Purkinje cells in another cerebellar area for pursuit, the floccular complex. Simple-spike firing of vermis Purkinje cells is direction selective during both pursuit and saccades, but the preferred directions are sufficiently independent so that downstream circuits could decode signals to drive pursuit and saccades separately. Complex spikes also were direction selective during pursuit, and almost all Purkinje cells showed a peak in the probability of complex spikes during the initiation of pursuit in at least one direction. Unlike the floccular complex, the preferred directions for simple spikes and complex spikes were not opposite. The kinematics of smooth eye movement described the simple-spike responses of vermis Purkinje cells well. Sensitivities were similar to those in the floccular complex for eye position and considerably lower for eye velocity and acceleration. The kinematic relations were quite different for saccades vs. pursuit, supporting the idea that the contributions from the vermis to each kind of movement could contribute independently in downstream areas. Finally, neither the complex-spike nor the simple-spike responses of vermis Purkinje cells were appropriate to support direction learning in pursuit. Complex spikes were not triggered reliably by an instructive change in target direction; simple-spike responses showed very small amounts of learning. We conclude that the vermis plays a different role in pursuit eye movements compared with the floccular complex. NEW & NOTEWORTHY The midline oculomotor cerebellum plays a different role in smooth pursuit eye movements compared with the lateral, floccular complex and appears to be much less involved in direction learning in pursuit. The output from the oculomotor vermis during pursuit lies along a null-axis for saccades and vice versa. Thus the vermis can play independent roles in the two kinds of eye movement. Copyright © 2017 the American Physiological Society.
Regular Patterns in Cerebellar Purkinje Cell Simple Spike Trains
Shin, Soon-Lim; Hoebeek, Freek E.; Schonewille, Martijn; De Zeeuw, Chris I.; Aertsen, Ad; De Schutter, Erik
2007-01-01
Background Cerebellar Purkinje cells (PC) in vivo are commonly reported to generate irregular spike trains, documented by high coefficients of variation of interspike-intervals (ISI). In strong contrast, they fire very regularly in the in vitro slice preparation. We studied the nature of this difference in firing properties by focusing on short-term variability and its dependence on behavioral state. Methodology/Principal Findings Using an analysis based on CV2 values, we could isolate precise regular spiking patterns, lasting up to hundreds of milliseconds, in PC simple spike trains recorded in both anesthetized and awake rodents. Regular spike patterns, defined by low variability of successive ISIs, comprised over half of the spikes, showed a wide range of mean ISIs, and were affected by behavioral state and tactile stimulation. Interestingly, regular patterns often coincided in nearby Purkinje cells without precise synchronization of individual spikes. Regular patterns exclusively appeared during the up state of the PC membrane potential, while single ISIs occurred both during up and down states. Possible functional consequences of regular spike patterns were investigated by modeling the synaptic conductance in neurons of the deep cerebellar nuclei (DCN). Simulations showed that these regular patterns caused epochs of relatively constant synaptic conductance in DCN neurons. Conclusions/Significance Our findings indicate that the apparent irregularity in cerebellar PC simple spike trains in vivo is most likely caused by mixing of different regular spike patterns, separated by single long intervals, over time. We propose that PCs may signal information, at least in part, in regular spike patterns to downstream DCN neurons. PMID:17534435
Yang, Yan; Lisberger, Stephen G
2013-01-01
Motor learning occurs through interactions between the cerebellar circuit and cellular plasticity at different sites. Previous work has established plasticity in brain slices and suggested plausible sites of behavioral learning. We now reveal what actually happens in the cerebellum during short-term learning. We monitor the expression of plasticity in the simple-spike firing of cerebellar Purkinje cells during trial-over-trial learning in smooth pursuit eye movements of monkeys. Our findings imply that: 1) a single complex-spike response driven by one instruction for learning causes short-term plasticity in a Purkinje cell’s mossy fiber/parallel-fiber input pathways; 2) complex-spike responses and simple-spike firing rate are correlated across the Purkinje cell population; and 3) simple-spike firing rate at the time of an instruction for learning modulates the probability of a complex-spike response, possibly through a disynaptic feedback pathway to the inferior olive. These mechanisms may participate in long-term motor learning. DOI: http://dx.doi.org/10.7554/eLife.01574.001 PMID:24381248
A Neuromorphic Architecture for Object Recognition and Motion Anticipation Using Burst-STDP
Balduzzi, David; Tononi, Giulio
2012-01-01
In this work we investigate the possibilities offered by a minimal framework of artificial spiking neurons to be deployed in silico. Here we introduce a hierarchical network architecture of spiking neurons which learns to recognize moving objects in a visual environment and determine the correct motor output for each object. These tasks are learned through both supervised and unsupervised spike timing dependent plasticity (STDP). STDP is responsible for the strengthening (or weakening) of synapses in relation to pre- and post-synaptic spike times and has been described as a Hebbian paradigm taking place both in vitro and in vivo. We utilize a variation of STDP learning, called burst-STDP, which is based on the notion that, since spikes are expensive in terms of energy consumption, then strong bursting activity carries more information than single (sparse) spikes. Furthermore, this learning algorithm takes advantage of homeostatic renormalization, which has been hypothesized to promote memory consolidation during NREM sleep. Using this learning rule, we design a spiking neural network architecture capable of object recognition, motion detection, attention towards important objects, and motor control outputs. We demonstrate the abilities of our design in a simple environment with distractor objects, multiple objects moving concurrently, and in the presence of noise. Most importantly, we show how this neural network is capable of performing these tasks using a simple leaky-integrate-and-fire (LIF) neuron model with binary synapses, making it fully compatible with state-of-the-art digital neuromorphic hardware designs. As such, the building blocks and learning rules presented in this paper appear promising for scalable fully neuromorphic systems to be implemented in hardware chips. PMID:22615855
Pecevski, Dejan; Buesing, Lars; Maass, Wolfgang
2011-01-01
An important open problem of computational neuroscience is the generic organization of computations in networks of neurons in the brain. We show here through rigorous theoretical analysis that inherent stochastic features of spiking neurons, in combination with simple nonlinear computational operations in specific network motifs and dendritic arbors, enable networks of spiking neurons to carry out probabilistic inference through sampling in general graphical models. In particular, it enables them to carry out probabilistic inference in Bayesian networks with converging arrows (“explaining away”) and with undirected loops, that occur in many real-world tasks. Ubiquitous stochastic features of networks of spiking neurons, such as trial-to-trial variability and spontaneous activity, are necessary ingredients of the underlying computational organization. We demonstrate through computer simulations that this approach can be scaled up to neural emulations of probabilistic inference in fairly large graphical models, yielding some of the most complex computations that have been carried out so far in networks of spiking neurons. PMID:22219717
Hewitt, Angela L.; Popa, Laurentiu S.; Pasalar, Siavash; Hendrix, Claudia M.
2011-01-01
Encoding of movement kinematics in Purkinje cell simple spike discharge has important implications for hypotheses of cerebellar cortical function. Several outstanding questions remain regarding representation of these kinematic signals. It is uncertain whether kinematic encoding occurs in unpredictable, feedback-dependent tasks or kinematic signals are conserved across tasks. Additionally, there is a need to understand the signals encoded in the instantaneous discharge of single cells without averaging across trials or time. To address these questions, this study recorded Purkinje cell firing in monkeys trained to perform a manual random tracking task in addition to circular tracking and center-out reach. Random tracking provides for extensive coverage of kinematic workspaces. Direction and speed errors are significantly greater during random than circular tracking. Cross-correlation analyses comparing hand and target velocity profiles show that hand velocity lags target velocity during random tracking. Correlations between simple spike firing from 120 Purkinje cells and hand position, velocity, and speed were evaluated with linear regression models including a time constant, τ, as a measure of the firing lead/lag relative to the kinematic parameters. Across the population, velocity accounts for the majority of simple spike firing variability (63 ± 30% of Radj2), followed by position (28 ± 24% of Radj2) and speed (11 ± 19% of Radj2). Simple spike firing often leads hand kinematics. Comparison of regression models based on averaged vs. nonaveraged firing and kinematics reveals lower Radj2 values for nonaveraged data; however, regression coefficients and τ values are highly similar. Finally, for most cells, model coefficients generated from random tracking accurately estimate simple spike firing in either circular tracking or center-out reach. These findings imply that the cerebellum controls movement kinematics, consistent with a forward internal model that predicts upcoming limb kinematics. PMID:21795616
Tsutsumi, Shinichiro; Yamazaki, Maya; Miyazaki, Taisuke; Watanabe, Masahiko; Sakimura, Kenji; Kano, Masanobu; Kitamura, Kazuo
2015-01-14
Simple and regular anatomical structure is a hallmark of the cerebellar cortex. Parasagittally arrayed alternate expression of aldolase C/zebrin II in Purkinje cells (PCs) has been extensively studied, but surprisingly little is known about its functional significance. Here we found a precise structure-function relationship between aldolase C expression and synchrony of PC complex spike activities that reflect climbing fiber inputs to PCs. We performed two-photon calcium imaging in transgenic mice in which aldolase C compartments can be visualized in vivo, and identified highly synchronous complex spike activities among aldolase C-positive or aldolase C-negative PCs, but not across these populations. The boundary of aldolase C compartments corresponded to that of complex spike synchrony at single-cell resolution. Sensory stimulation evoked aldolase C compartment-specific complex spike responses and synchrony. This result further revealed the structure-function segregation. In awake animals, complex spike synchrony both within and between PC populations across the aldolase C boundary were enhanced in response to sensory stimuli, in a way that two functionally distinct PC ensembles are coactivated. These results suggest that PC populations characterized by aldolase C expression precisely represent distinct functional units of the cerebellar cortex, and these functional units can cooperate to process sensory information in awake animals. Copyright © 2015 the authors 0270-6474/15/350843-10$15.00/0.
Self-Organization of Microcircuits in Networks of Spiking Neurons with Plastic Synapses.
Ocker, Gabriel Koch; Litwin-Kumar, Ashok; Doiron, Brent
2015-08-01
The synaptic connectivity of cortical networks features an overrepresentation of certain wiring motifs compared to simple random-network models. This structure is shaped, in part, by synaptic plasticity that promotes or suppresses connections between neurons depending on their joint spiking activity. Frequently, theoretical studies focus on how feedforward inputs drive plasticity to create this network structure. We study the complementary scenario of self-organized structure in a recurrent network, with spike timing-dependent plasticity driven by spontaneous dynamics. We develop a self-consistent theory for the evolution of network structure by combining fast spiking covariance with a slow evolution of synaptic weights. Through a finite-size expansion of network dynamics we obtain a low-dimensional set of nonlinear differential equations for the evolution of two-synapse connectivity motifs. With this theory in hand, we explore how the form of the plasticity rule drives the evolution of microcircuits in cortical networks. When potentiation and depression are in approximate balance, synaptic dynamics depend on weighted divergent, convergent, and chain motifs. For additive, Hebbian STDP these motif interactions create instabilities in synaptic dynamics that either promote or suppress the initial network structure. Our work provides a consistent theoretical framework for studying how spiking activity in recurrent networks interacts with synaptic plasticity to determine network structure.
Self-Organization of Microcircuits in Networks of Spiking Neurons with Plastic Synapses
Ocker, Gabriel Koch; Litwin-Kumar, Ashok; Doiron, Brent
2015-01-01
The synaptic connectivity of cortical networks features an overrepresentation of certain wiring motifs compared to simple random-network models. This structure is shaped, in part, by synaptic plasticity that promotes or suppresses connections between neurons depending on their joint spiking activity. Frequently, theoretical studies focus on how feedforward inputs drive plasticity to create this network structure. We study the complementary scenario of self-organized structure in a recurrent network, with spike timing-dependent plasticity driven by spontaneous dynamics. We develop a self-consistent theory for the evolution of network structure by combining fast spiking covariance with a slow evolution of synaptic weights. Through a finite-size expansion of network dynamics we obtain a low-dimensional set of nonlinear differential equations for the evolution of two-synapse connectivity motifs. With this theory in hand, we explore how the form of the plasticity rule drives the evolution of microcircuits in cortical networks. When potentiation and depression are in approximate balance, synaptic dynamics depend on weighted divergent, convergent, and chain motifs. For additive, Hebbian STDP these motif interactions create instabilities in synaptic dynamics that either promote or suppress the initial network structure. Our work provides a consistent theoretical framework for studying how spiking activity in recurrent networks interacts with synaptic plasticity to determine network structure. PMID:26291697
2017-01-01
Abstract Activation of an inferior olivary neuron powerfully excites Purkinje cells via its climbing fiber input and triggers a characteristic high-frequency burst, known as the complex spike (CS). The theory of cerebellar learning postulates that the CS induces long-lasting depression of the strength of synapses from active parallel fibers onto Purkinje cells, and that synaptic depression leads to changes in behavior. Prior reports showed that a CS on one learning trial is linked to a properly timed depression of simple spikes on the subsequent trial, as well as a learned change in pursuit eye movement. Further, the duration of a CS is a graded instruction for single-trial plasticity and behavioral learning. We now show across multiple learning paradigms that both the probability and duration of CS responses are correlated with the magnitudes of neural and behavioral learning in awake behaving monkeys. When the direction of the instruction for learning repeatedly was in the same direction or alternated directions, the duration and probability of CS responses decreased over a learning block along with the magnitude of trial-over-trial neural learning. When the direction of the instruction was randomized, CS duration, CS probability, and neural and behavioral learning remained stable across time. In contrast to depression, potentiation of simple-spike firing rate for ON-direction learning instructions follows a longer time course and plays a larger role as depression wanes. Computational analysis provides a model that accounts fully for the detailed statistics of a complex set of data. PMID:28698888
The relevance of network micro-structure for neural dynamics.
Pernice, Volker; Deger, Moritz; Cardanobile, Stefano; Rotter, Stefan
2013-01-01
The activity of cortical neurons is determined by the input they receive from presynaptic neurons. Many previous studies have investigated how specific aspects of the statistics of the input affect the spike trains of single neurons and neurons in recurrent networks. However, typically very simple random network models are considered in such studies. Here we use a recently developed algorithm to construct networks based on a quasi-fractal probability measure which are much more variable than commonly used network models, and which therefore promise to sample the space of recurrent networks in a more exhaustive fashion than previously possible. We use the generated graphs as the underlying network topology in simulations of networks of integrate-and-fire neurons in an asynchronous and irregular state. Based on an extensive dataset of networks and neuronal simulations we assess statistical relations between features of the network structure and the spiking activity. Our results highlight the strong influence that some details of the network structure have on the activity dynamics of both single neurons and populations, even if some global network parameters are kept fixed. We observe specific and consistent relations between activity characteristics like spike-train irregularity or correlations and network properties, for example the distributions of the numbers of in- and outgoing connections or clustering. Exploiting these relations, we demonstrate that it is possible to estimate structural characteristics of the network from activity data. We also assess higher order correlations of spiking activity in the various networks considered here, and find that their occurrence strongly depends on the network structure. These results provide directions for further theoretical studies on recurrent networks, as well as new ways to interpret spike train recordings from neural circuits.
Noise-enhanced coding in phasic neuron spike trains.
Ly, Cheng; Doiron, Brent
2017-01-01
The stochastic nature of neuronal response has lead to conjectures about the impact of input fluctuations on the neural coding. For the most part, low pass membrane integration and spike threshold dynamics have been the primary features assumed in the transfer from synaptic input to output spiking. Phasic neurons are a common, but understudied, neuron class that are characterized by a subthreshold negative feedback that suppresses spike train responses to low frequency signals. Past work has shown that when a low frequency signal is accompanied by moderate intensity broadband noise, phasic neurons spike trains are well locked to the signal. We extend these results with a simple, reduced model of phasic activity that demonstrates that a non-Markovian spike train structure caused by the negative feedback produces a noise-enhanced coding. Further, this enhancement is sensitive to the timescales, as opposed to the intensity, of a driving signal. Reduced hazard function models show that noise-enhanced phasic codes are both novel and separate from classical stochastic resonance reported in non-phasic neurons. The general features of our theory suggest that noise-enhanced codes in excitable systems with subthreshold negative feedback are a particularly rich framework to study.
Kojima, Yoshiko; Soetedjo, Robijanto; Fuchs, Albert F.
2010-01-01
Adaptation of saccadic eye movements provides an excellent motor learning model to study theories of neuronal plasticity. When primates make saccades to a jumping target, a backward step of the target during the saccade can make it appear to overshoot. If this deception continues for many trials, saccades gradually decrease in amplitude to go directly to the back-stepped target location. We used this adaptation paradigm to evaluate the Marr-Albus hypothesis that such motor learning occurs at the Purkinje (P-) cell of the cerebellum. We recorded the activity of identified P-cells in the oculomotor vermis, lobules VIc and VII. After determining the on and off error directions of a P-cell’s complex spike activity, we determined whether its saccade-related simple spike (SS) activity changed during saccade adaptation in those two directions. Before adaptation, 57 of 61 P-cells exhibited a clear burst, pause or a combination of both for saccades in one or both directions. Sixty-two percent of all cells, including 2 of the 4 initially unresponsive ones, behaved differently for saccades whose size changed because of adaptation than for saccades of similar sizes gathered before adaptation. In at least 42% of these, the changes were appropriate to decrease saccade amplitude based on our current knowledge of cerebellum and brain stem saccade circuitry. Changes in activity during adaptation were not compensating for the potential fatigue associated with performing many saccades. Therefore, many P-cells in the oculomotor vermis exhibit changes in SS activity specific to adapted saccades and therefore appropriate to induce adaptation. PMID:20220005
Hewitt, Angela L; Popa, Laurentiu S; Pasalar, Siavash; Hendrix, Claudia M; Ebner, Timothy J
2011-11-01
Encoding of movement kinematics in Purkinje cell simple spike discharge has important implications for hypotheses of cerebellar cortical function. Several outstanding questions remain regarding representation of these kinematic signals. It is uncertain whether kinematic encoding occurs in unpredictable, feedback-dependent tasks or kinematic signals are conserved across tasks. Additionally, there is a need to understand the signals encoded in the instantaneous discharge of single cells without averaging across trials or time. To address these questions, this study recorded Purkinje cell firing in monkeys trained to perform a manual random tracking task in addition to circular tracking and center-out reach. Random tracking provides for extensive coverage of kinematic workspaces. Direction and speed errors are significantly greater during random than circular tracking. Cross-correlation analyses comparing hand and target velocity profiles show that hand velocity lags target velocity during random tracking. Correlations between simple spike firing from 120 Purkinje cells and hand position, velocity, and speed were evaluated with linear regression models including a time constant, τ, as a measure of the firing lead/lag relative to the kinematic parameters. Across the population, velocity accounts for the majority of simple spike firing variability (63 ± 30% of R(adj)(2)), followed by position (28 ± 24% of R(adj)(2)) and speed (11 ± 19% of R(adj)(2)). Simple spike firing often leads hand kinematics. Comparison of regression models based on averaged vs. nonaveraged firing and kinematics reveals lower R(adj)(2) values for nonaveraged data; however, regression coefficients and τ values are highly similar. Finally, for most cells, model coefficients generated from random tracking accurately estimate simple spike firing in either circular tracking or center-out reach. These findings imply that the cerebellum controls movement kinematics, consistent with a forward internal model that predicts upcoming limb kinematics.
Liu, Jie; Ying, Dongwen; Zhou, Ping
2014-01-01
Voluntary surface electromyogram (EMG) signals from neurological injury patients are often corrupted by involuntary background interference or spikes, imposing difficulties for myoelectric control. We present a novel framework to suppress involuntary background spikes during voluntary surface EMG recordings. The framework applies a Wiener filter to restore voluntary surface EMG signals based on tracking a priori signal to noise ratio (SNR) by using the decision-directed method. Semi-synthetic surface EMG signals contaminated by different levels of involuntary background spikes were constructed from a database of surface EMG recordings in a group of spinal cord injury subjects. After the processing, the onset detection of voluntary muscle activity was significantly improved against involuntary background spikes. The magnitude of voluntary surface EMG signals can also be reliably estimated for myoelectric control purpose. Compared with the previous sample entropy analysis for suppressing involuntary background spikes, the proposed framework is characterized by quick and simple implementation, making it more suitable for application in a myoelectric control system toward neurological injury rehabilitation. PMID:25443536
Erfanian Saeedi, Nafise; Blamey, Peter J; Burkitt, Anthony N; Grayden, David B
2016-04-01
Pitch perception is important for understanding speech prosody, music perception, recognizing tones in tonal languages, and perceiving speech in noisy environments. The two principal pitch perception theories consider the place of maximum neural excitation along the auditory nerve and the temporal pattern of the auditory neurons' action potentials (spikes) as pitch cues. This paper describes a biophysical mechanism by which fine-structure temporal information can be extracted from the spikes generated at the auditory periphery. Deriving meaningful pitch-related information from spike times requires neural structures specialized in capturing synchronous or correlated activity from amongst neural events. The emergence of such pitch-processing neural mechanisms is described through a computational model of auditory processing. Simulation results show that a correlation-based, unsupervised, spike-based form of Hebbian learning can explain the development of neural structures required for recognizing the pitch of simple and complex tones, with or without the fundamental frequency. The temporal code is robust to variations in the spectral shape of the signal and thus can explain the phenomenon of pitch constancy.
Erfanian Saeedi, Nafise; Blamey, Peter J.; Burkitt, Anthony N.; Grayden, David B.
2016-01-01
Pitch perception is important for understanding speech prosody, music perception, recognizing tones in tonal languages, and perceiving speech in noisy environments. The two principal pitch perception theories consider the place of maximum neural excitation along the auditory nerve and the temporal pattern of the auditory neurons’ action potentials (spikes) as pitch cues. This paper describes a biophysical mechanism by which fine-structure temporal information can be extracted from the spikes generated at the auditory periphery. Deriving meaningful pitch-related information from spike times requires neural structures specialized in capturing synchronous or correlated activity from amongst neural events. The emergence of such pitch-processing neural mechanisms is described through a computational model of auditory processing. Simulation results show that a correlation-based, unsupervised, spike-based form of Hebbian learning can explain the development of neural structures required for recognizing the pitch of simple and complex tones, with or without the fundamental frequency. The temporal code is robust to variations in the spectral shape of the signal and thus can explain the phenomenon of pitch constancy. PMID:27049657
Spike sorting based upon machine learning algorithms (SOMA).
Horton, P M; Nicol, A U; Kendrick, K M; Feng, J F
2007-02-15
We have developed a spike sorting method, using a combination of various machine learning algorithms, to analyse electrophysiological data and automatically determine the number of sampled neurons from an individual electrode, and discriminate their activities. We discuss extensions to a standard unsupervised learning algorithm (Kohonen), as using a simple application of this technique would only identify a known number of clusters. Our extra techniques automatically identify the number of clusters within the dataset, and their sizes, thereby reducing the chance of misclassification. We also discuss a new pre-processing technique, which transforms the data into a higher dimensional feature space revealing separable clusters. Using principal component analysis (PCA) alone may not achieve this. Our new approach appends the features acquired using PCA with features describing the geometric shapes that constitute a spike waveform. To validate our new spike sorting approach, we have applied it to multi-electrode array datasets acquired from the rat olfactory bulb, and from the sheep infero-temporal cortex, and using simulated data. The SOMA sofware is available at http://www.sussex.ac.uk/Users/pmh20/spikes.
Weinberg, Seth H.
2015-01-01
Excitable cells and cell membranes are often modeled by the simple yet elegant parallel resistor-capacitor circuit. However, studies have shown that the passive properties of membranes may be more appropriately modeled with a non-ideal capacitor, in which the current-voltage relationship is given by a fractional-order derivative. Fractional-order membrane potential dynamics introduce capacitive memory effects, i.e., dynamics are influenced by a weighted sum of the membrane potential prior history. However, it is not clear to what extent fractional-order dynamics may alter the properties of active excitable cells. In this study, we investigate the spiking properties of the neuronal membrane patch, nerve axon, and neural networks described by the fractional-order Hodgkin-Huxley neuron model. We find that in the membrane patch model, as fractional-order decreases, i.e., a greater influence of membrane potential memory, peak sodium and potassium currents are altered, and spike frequency and amplitude are generally reduced. In the nerve axon, the velocity of spike propagation increases as fractional-order decreases, while in a neural network, electrical activity is more likely to cease for smaller fractional-order. Importantly, we demonstrate that the modulation of the peak ionic currents that occurs for reduced fractional-order alone fails to reproduce many of the key alterations in spiking properties, suggesting that membrane capacitive memory and fractional-order membrane potential dynamics are important and necessary to reproduce neuronal electrical activity. PMID:25970534
Applying the multivariate time-rescaling theorem to neural population models
Gerhard, Felipe; Haslinger, Robert; Pipa, Gordon
2011-01-01
Statistical models of neural activity are integral to modern neuroscience. Recently, interest has grown in modeling the spiking activity of populations of simultaneously recorded neurons to study the effects of correlations and functional connectivity on neural information processing. However any statistical model must be validated by an appropriate goodness-of-fit test. Kolmogorov-Smirnov tests based upon the time-rescaling theorem have proven to be useful for evaluating point-process-based statistical models of single-neuron spike trains. Here we discuss the extension of the time-rescaling theorem to the multivariate (neural population) case. We show that even in the presence of strong correlations between spike trains, models which neglect couplings between neurons can be erroneously passed by the univariate time-rescaling test. We present the multivariate version of the time-rescaling theorem, and provide a practical step-by-step procedure for applying it towards testing the sufficiency of neural population models. Using several simple analytically tractable models and also more complex simulated and real data sets, we demonstrate that important features of the population activity can only be detected using the multivariate extension of the test. PMID:21395436
Cortical Plasticity Induced by Spike-Triggered Microstimulation in Primate Somatosensory Cortex
Song, Weiguo; Kerr, Cliff C.; Lytton, William W.; Francis, Joseph T.
2013-01-01
Electrical stimulation of the nervous system for therapeutic purposes, such as deep brain stimulation in the treatment of Parkinson’s disease, has been used for decades. Recently, increased attention has focused on using microstimulation to restore functions as diverse as somatosensation and memory. However, how microstimulation changes the neural substrate is still not fully understood. Microstimulation may cause cortical changes that could either compete with or complement natural neural processes, and could result in neuroplastic changes rendering the region dysfunctional or even epileptic. As part of our efforts to produce neuroprosthetic devices and to further study the effects of microstimulation on the cortex, we stimulated and recorded from microelectrode arrays in the hand area of the primary somatosensory cortex (area 1) in two awake macaque monkeys. We applied a simple neuroprosthetic microstimulation protocol to a pair of electrodes in the area 1 array, using either random pulses or pulses time-locked to the recorded spiking activity of a reference neuron. This setup was replicated using a computer model of the thalamocortical system, which consisted of 1980 spiking neurons distributed among six cortical layers and two thalamic nuclei. Experimentally, we found that spike-triggered microstimulation induced cortical plasticity, as shown by increased unit-pair mutual information, while random microstimulation did not. In addition, there was an increased response to touch following spike-triggered microstimulation, along with decreased neural variability. The computer model successfully reproduced both qualitative and quantitative aspects of the experimental findings. The physiological findings of this study suggest that even simple microstimulation protocols can be used to increase somatosensory information flow. PMID:23472086
Legenstein, Robert; Maass, Wolfgang
2014-01-01
It has recently been shown that networks of spiking neurons with noise can emulate simple forms of probabilistic inference through “neural sampling”, i.e., by treating spikes as samples from a probability distribution of network states that is encoded in the network. Deficiencies of the existing model are its reliance on single neurons for sampling from each random variable, and the resulting limitation in representing quickly varying probabilistic information. We show that both deficiencies can be overcome by moving to a biologically more realistic encoding of each salient random variable through the stochastic firing activity of an ensemble of neurons. The resulting model demonstrates that networks of spiking neurons with noise can easily track and carry out basic computational operations on rapidly varying probability distributions, such as the odds of getting rewarded for a specific behavior. We demonstrate the viability of this new approach towards neural coding and computation, which makes use of the inherent parallelism of generic neural circuits, by showing that this model can explain experimentally observed firing activity of cortical neurons for a variety of tasks that require rapid temporal integration of sensory information. PMID:25340749
Fitting neuron models to spike trains.
Rossant, Cyrille; Goodman, Dan F M; Fontaine, Bertrand; Platkiewicz, Jonathan; Magnusson, Anna K; Brette, Romain
2011-01-01
Computational modeling is increasingly used to understand the function of neural circuits in systems neuroscience. These studies require models of individual neurons with realistic input-output properties. Recently, it was found that spiking models can accurately predict the precisely timed spike trains produced by cortical neurons in response to somatically injected currents, if properly fitted. This requires fitting techniques that are efficient and flexible enough to easily test different candidate models. We present a generic solution, based on the Brian simulator (a neural network simulator in Python), which allows the user to define and fit arbitrary neuron models to electrophysiological recordings. It relies on vectorization and parallel computing techniques to achieve efficiency. We demonstrate its use on neural recordings in the barrel cortex and in the auditory brainstem, and confirm that simple adaptive spiking models can accurately predict the response of cortical neurons. Finally, we show how a complex multicompartmental model can be reduced to a simple effective spiking model.
Asymptotic Linear Spectral Statistics for Spiked Hermitian Random Matrices
NASA Astrophysics Data System (ADS)
Passemier, Damien; McKay, Matthew R.; Chen, Yang
2015-07-01
Using the Coulomb Fluid method, this paper derives central limit theorems (CLTs) for linear spectral statistics of three "spiked" Hermitian random matrix ensembles. These include Johnstone's spiked model (i.e., central Wishart with spiked correlation), non-central Wishart with rank-one non-centrality, and a related class of non-central matrices. For a generic linear statistic, we derive simple and explicit CLT expressions as the matrix dimensions grow large. For all three ensembles under consideration, we find that the primary effect of the spike is to introduce an correction term to the asymptotic mean of the linear spectral statistic, which we characterize with simple formulas. The utility of our proposed framework is demonstrated through application to three different linear statistics problems: the classical likelihood ratio test for a population covariance, the capacity analysis of multi-antenna wireless communication systems with a line-of-sight transmission path, and a classical multiple sample significance testing problem.
Firing patterns in the adaptive exponential integrate-and-fire model.
Naud, Richard; Marcille, Nicolas; Clopath, Claudia; Gerstner, Wulfram
2008-11-01
For simulations of large spiking neuron networks, an accurate, simple and versatile single-neuron modeling framework is required. Here we explore the versatility of a simple two-equation model: the adaptive exponential integrate-and-fire neuron. We show that this model generates multiple firing patterns depending on the choice of parameter values, and present a phase diagram describing the transition from one firing type to another. We give an analytical criterion to distinguish between continuous adaption, initial bursting, regular bursting and two types of tonic spiking. Also, we report that the deterministic model is capable of producing irregular spiking when stimulated with constant current, indicating low-dimensional chaos. Lastly, the simple model is fitted to real experiments of cortical neurons under step current stimulation. The results provide support for the suitability of simple models such as the adaptive exponential integrate-and-fire neuron for large network simulations.
NASA Astrophysics Data System (ADS)
Ulmer, Christopher J.; Motta, Arthur T.
2017-11-01
The development of TEM-visible damage in materials under irradiation at cryogenic temperatures cannot be explained using classical rate theory modeling with thermally activated reactions since at low temperatures thermal reaction rates are too low. Although point defect mobility approaches zero at low temperature, the thermal spikes induced by displacement cascades enable some atom mobility as it cools. In this work a model is developed to calculate "athermal" reaction rates from the atomic mobility within the irradiation-induced thermal spikes, including both displacement cascades and electronic stopping. The athermal reaction rates are added to a simple rate theory cluster dynamics model to allow for the simulation of microstructure evolution during irradiation at cryogenic temperatures. The rate theory model is applied to in-situ irradiation of ZrC and compares well at cryogenic temperatures. The results show that the addition of the thermal spike model makes it possible to rationalize microstructure evolution in the low temperature regime.
Purkinje cells signal hand shape and grasp force during reach-to-grasp in the monkey.
Mason, Carolyn R; Hendrix, Claudia M; Ebner, Timothy J
2006-01-01
The cerebellar cortex and nuclei play important roles in the learning, planning, and execution of reach-to-grasp and prehensile movements. However, few studies have investigated the signals carried by cerebellar neurons during reach-to-grasp, particularly signals relating to target object properties, hand shape, and grasp force. In this study, the simple spike discharge of 77 Purkinje cells was recorded as two rhesus monkeys reached and grasped 16 objects. The objects varied systematically in volume, shape, and orientation and each was grasped at five different force levels. Linear multiple regression analyses showed the simple spike discharge was significantly modulated in relation to objects and force levels. Object related modulation occurred preferentially during reach or early in the grasp and was linearly related to grasp aperture. The simple spike discharge was positively correlated with grasp force during both the reach and the grasp. There was no significant interaction between object and grasp force modulation, supporting previous kinematic findings that grasp kinematics and force are signaled independently. Singular value decomposition (SVD) was used to quantify the temporal patterns in the simple spike discharge. Most cells had a predominant discharge pattern that remained relatively constant across object grasp dimensions and force levels. A single predominant simple spike discharge pattern that spans reach and grasp and accounts for most of the variation (>60%) is consistent with the concept that the cerebellum is involved with synergies underlying prehension. Therefore Purkinje cells are involved with the signaling of prehension, providing independent signals for hand shaping and grasp force.
Impact of Fast Sodium Channel Inactivation on Spike Threshold Dynamics and Synaptic Integration
Platkiewicz, Jonathan; Brette, Romain
2011-01-01
Neurons spike when their membrane potential exceeds a threshold value. In central neurons, the spike threshold is not constant but depends on the stimulation. Thus, input-output properties of neurons depend both on the effect of presynaptic spikes on the membrane potential and on the dynamics of the spike threshold. Among the possible mechanisms that may modulate the threshold, one strong candidate is Na channel inactivation, because it specifically impacts spike initiation without affecting the membrane potential. We collected voltage-clamp data from the literature and we found, based on a theoretical criterion, that the properties of Na inactivation could indeed cause substantial threshold variability by itself. By analyzing simple neuron models with fast Na inactivation (one channel subtype), we found that the spike threshold is correlated with the mean membrane potential and negatively correlated with the preceding depolarization slope, consistent with experiments. We then analyzed the impact of threshold dynamics on synaptic integration. The difference between the postsynaptic potential (PSP) and the dynamic threshold in response to a presynaptic spike defines an effective PSP. When the neuron is sufficiently depolarized, this effective PSP is briefer than the PSP. This mechanism regulates the temporal window of synaptic integration in an adaptive way. Finally, we discuss the role of other potential mechanisms. Distal spike initiation, channel noise and Na activation dynamics cannot account for the observed negative slope-threshold relationship, while adaptive conductances (e.g. K+) and Na inactivation can. We conclude that Na inactivation is a metabolically efficient mechanism to control the temporal resolution of synaptic integration. PMID:21573200
To sort or not to sort: the impact of spike-sorting on neural decoding performance.
Todorova, Sonia; Sadtler, Patrick; Batista, Aaron; Chase, Steven; Ventura, Valérie
2014-10-01
Brain-computer interfaces (BCIs) are a promising technology for restoring motor ability to paralyzed patients. Spiking-based BCIs have successfully been used in clinical trials to control multi-degree-of-freedom robotic devices. Current implementations of these devices require a lengthy spike-sorting step, which is an obstacle to moving this technology from the lab to the clinic. A viable alternative is to avoid spike-sorting, treating all threshold crossings of the voltage waveform on an electrode as coming from one putative neuron. It is not known, however, how much decoding information might be lost by ignoring spike identity. We present a full analysis of the effects of spike-sorting schemes on decoding performance. Specifically, we compare how well two common decoders, the optimal linear estimator and the Kalman filter, reconstruct the arm movements of non-human primates performing reaching tasks, when receiving input from various sorting schemes. The schemes we tested included: using threshold crossings without spike-sorting; expert-sorting discarding the noise; expert-sorting, including the noise as if it were another neuron; and automatic spike-sorting using waveform features. We also decoded from a joint statistical model for the waveforms and tuning curves, which does not involve an explicit spike-sorting step. Discarding the threshold crossings that cannot be assigned to neurons degrades decoding: no spikes should be discarded. Decoding based on spike-sorted units outperforms decoding based on electrodes voltage crossings: spike-sorting is useful. The four waveform based spike-sorting methods tested here yield similar decoding efficiencies: a fast and simple method is competitive. Decoding using the joint waveform and tuning model shows promise but is not consistently superior. Our results indicate that simple automated spike-sorting performs as well as the more computationally or manually intensive methods used here. Even basic spike-sorting adds value to the low-threshold waveform-crossing methods often employed in BCI decoding.
To sort or not to sort: the impact of spike-sorting on neural decoding performance
NASA Astrophysics Data System (ADS)
Todorova, Sonia; Sadtler, Patrick; Batista, Aaron; Chase, Steven; Ventura, Valérie
2014-10-01
Objective. Brain-computer interfaces (BCIs) are a promising technology for restoring motor ability to paralyzed patients. Spiking-based BCIs have successfully been used in clinical trials to control multi-degree-of-freedom robotic devices. Current implementations of these devices require a lengthy spike-sorting step, which is an obstacle to moving this technology from the lab to the clinic. A viable alternative is to avoid spike-sorting, treating all threshold crossings of the voltage waveform on an electrode as coming from one putative neuron. It is not known, however, how much decoding information might be lost by ignoring spike identity. Approach. We present a full analysis of the effects of spike-sorting schemes on decoding performance. Specifically, we compare how well two common decoders, the optimal linear estimator and the Kalman filter, reconstruct the arm movements of non-human primates performing reaching tasks, when receiving input from various sorting schemes. The schemes we tested included: using threshold crossings without spike-sorting; expert-sorting discarding the noise; expert-sorting, including the noise as if it were another neuron; and automatic spike-sorting using waveform features. We also decoded from a joint statistical model for the waveforms and tuning curves, which does not involve an explicit spike-sorting step. Main results. Discarding the threshold crossings that cannot be assigned to neurons degrades decoding: no spikes should be discarded. Decoding based on spike-sorted units outperforms decoding based on electrodes voltage crossings: spike-sorting is useful. The four waveform based spike-sorting methods tested here yield similar decoding efficiencies: a fast and simple method is competitive. Decoding using the joint waveform and tuning model shows promise but is not consistently superior. Significance. Our results indicate that simple automated spike-sorting performs as well as the more computationally or manually intensive methods used here. Even basic spike-sorting adds value to the low-threshold waveform-crossing methods often employed in BCI decoding.
Fitting Neuron Models to Spike Trains
Rossant, Cyrille; Goodman, Dan F. M.; Fontaine, Bertrand; Platkiewicz, Jonathan; Magnusson, Anna K.; Brette, Romain
2011-01-01
Computational modeling is increasingly used to understand the function of neural circuits in systems neuroscience. These studies require models of individual neurons with realistic input–output properties. Recently, it was found that spiking models can accurately predict the precisely timed spike trains produced by cortical neurons in response to somatically injected currents, if properly fitted. This requires fitting techniques that are efficient and flexible enough to easily test different candidate models. We present a generic solution, based on the Brian simulator (a neural network simulator in Python), which allows the user to define and fit arbitrary neuron models to electrophysiological recordings. It relies on vectorization and parallel computing techniques to achieve efficiency. We demonstrate its use on neural recordings in the barrel cortex and in the auditory brainstem, and confirm that simple adaptive spiking models can accurately predict the response of cortical neurons. Finally, we show how a complex multicompartmental model can be reduced to a simple effective spiking model. PMID:21415925
Racing to learn: statistical inference and learning in a single spiking neuron with adaptive kernels
Afshar, Saeed; George, Libin; Tapson, Jonathan; van Schaik, André; Hamilton, Tara J.
2014-01-01
This paper describes the Synapto-dendritic Kernel Adapting Neuron (SKAN), a simple spiking neuron model that performs statistical inference and unsupervised learning of spatiotemporal spike patterns. SKAN is the first proposed neuron model to investigate the effects of dynamic synapto-dendritic kernels and demonstrate their computational power even at the single neuron scale. The rule-set defining the neuron is simple: there are no complex mathematical operations such as normalization, exponentiation or even multiplication. The functionalities of SKAN emerge from the real-time interaction of simple additive and binary processes. Like a biological neuron, SKAN is robust to signal and parameter noise, and can utilize both in its operations. At the network scale neurons are locked in a race with each other with the fastest neuron to spike effectively “hiding” its learnt pattern from its neighbors. The robustness to noise, high speed, and simple building blocks not only make SKAN an interesting neuron model in computational neuroscience, but also make it ideal for implementation in digital and analog neuromorphic systems which is demonstrated through an implementation in a Field Programmable Gate Array (FPGA). Matlab, Python, and Verilog implementations of SKAN are available at: http://www.uws.edu.au/bioelectronics_neuroscience/bens/reproducible_research. PMID:25505378
Afshar, Saeed; George, Libin; Tapson, Jonathan; van Schaik, André; Hamilton, Tara J
2014-01-01
This paper describes the Synapto-dendritic Kernel Adapting Neuron (SKAN), a simple spiking neuron model that performs statistical inference and unsupervised learning of spatiotemporal spike patterns. SKAN is the first proposed neuron model to investigate the effects of dynamic synapto-dendritic kernels and demonstrate their computational power even at the single neuron scale. The rule-set defining the neuron is simple: there are no complex mathematical operations such as normalization, exponentiation or even multiplication. The functionalities of SKAN emerge from the real-time interaction of simple additive and binary processes. Like a biological neuron, SKAN is robust to signal and parameter noise, and can utilize both in its operations. At the network scale neurons are locked in a race with each other with the fastest neuron to spike effectively "hiding" its learnt pattern from its neighbors. The robustness to noise, high speed, and simple building blocks not only make SKAN an interesting neuron model in computational neuroscience, but also make it ideal for implementation in digital and analog neuromorphic systems which is demonstrated through an implementation in a Field Programmable Gate Array (FPGA). Matlab, Python, and Verilog implementations of SKAN are available at: http://www.uws.edu.au/bioelectronics_neuroscience/bens/reproducible_research.
Foust, Amanda; Popovic, Marko; Zecevic, Dejan; McCormick, David A.
2010-01-01
Purkinje neurons are the output cells of the cerebellar cortex and generate spikes in two distinct modes, known as simple and complex spikes. Revealing the point of origin of these action potentials, and how they conduct into local axon collaterals, is important for understanding local and distal neuronal processing and communication. By utilizing a recent improvement in voltage sensitive dye imaging technique that provided exceptional spatial and temporal resolution, we were able to resolve the region of spike initiation as well as follow spike propagation into axon collaterals for each action potential initiated on single trials. All fast action potentials, for both simple and complex spikes, whether occurring spontaneously or in response to a somatic current pulse or synaptic input, initiated in the axon initial segment. At discharge frequencies of less than approximately 250 Hz, spikes propagated faithfully through the axon and axon collaterals, in a saltatory manner. Propagation failures were only observed for very high frequencies or for the spikelets associated with complex spikes. These results demonstrate that the axon initial segment is a critical decision point in Purkinje cell processing and that the properties of axon branch points are adjusted to maintain faithful transmission. PMID:20484631
Troyer, T W; Miller, K D
1997-07-01
To understand the interspike interval (ISI) variability displayed by visual cortical neurons (Softky & Koch, 1993), it is critical to examine the dynamics of their neuronal integration, as well as the variability in their synaptic input current. Most previous models have focused on the latter factor. We match a simple integrate-and-fire model to the experimentally measured integrative properties of cortical regular spiking cells (McCormick, Connors, Lighthall, & Prince, 1985). After setting RC parameters, the post-spike voltage reset is set to match experimental measurements of neuronal gain (obtained from in vitro plots of firing frequency versus injected current). Examination of the resulting model leads to an intuitive picture of neuronal integration that unifies the seemingly contradictory 1/square root of N and random walk pictures that have previously been proposed. When ISIs are dominated by postspike recovery, 1/square root of N arguments hold and spiking is regular; after the "memory" of the last spike becomes negligible, spike threshold crossing is caused by input variance around a steady state and spiking is Poisson. In integrate-and-fire neurons matched to cortical cell physiology, steady-state behavior is predominant, and ISIs are highly variable at all physiological firing rates and for a wide range of inhibitory and excitatory inputs.
A Low Cost VLSI Architecture for Spike Sorting Based on Feature Extraction with Peak Search.
Chang, Yuan-Jyun; Hwang, Wen-Jyi; Chen, Chih-Chang
2016-12-07
The goal of this paper is to present a novel VLSI architecture for spike sorting with high classification accuracy, low area costs and low power consumption. A novel feature extraction algorithm with low computational complexities is proposed for the design of the architecture. In the feature extraction algorithm, a spike is separated into two portions based on its peak value. The area of each portion is then used as a feature. The algorithm is simple to implement and less susceptible to noise interference. Based on the algorithm, a novel architecture capable of identifying peak values and computing spike areas concurrently is proposed. To further accelerate the computation, a spike can be divided into a number of segments for the local feature computation. The local features are subsequently merged with the global ones by a simple hardware circuit. The architecture can also be easily operated in conjunction with the circuits for commonly-used spike detection algorithms, such as the Non-linear Energy Operator (NEO). The architecture has been implemented by an Application-Specific Integrated Circuit (ASIC) with 90-nm technology. Comparisons to the existing works show that the proposed architecture is well suited for real-time multi-channel spike detection and feature extraction requiring low hardware area costs, low power consumption and high classification accuracy.
Operant Conditioning of Primate Prefrontal Neurons
Schultz, Wolfram; Sakagami, Masamichi
2010-01-01
An operant is a behavioral act that has an impact on the environment to produce an outcome, constituting an important component of voluntary behavior. Because the environment can be volatile, the same action may cause different consequences. Thus to obtain an optimal outcome, it is crucial to detect action–outcome relationships and adapt the behavior accordingly. Although prefrontal neurons are known to change activity depending on expected reward, it remains unknown whether prefrontal activity contributes to obtaining reward. We investigated this issue by setting variable relationships between levels of single-neuron activity and rewarding outcomes. Lateral prefrontal neurons changed their spiking activity according to the specific requirements for gaining reward, without the animals making a motor response. Thus spiking activity constituted an operant response. Data from a control task suggested that these changes were unlikely to reflect simple reward predictions. These data demonstrate a remarkable capacity of prefrontal neurons to adapt to specific operant requirements at the single-neuron level. PMID:20107129
Popa, Laurentiu S.; Hewitt, Angela L.; Ebner, Timothy J.
2012-01-01
The cerebellum has been implicated in processing motor errors required for online control of movement and motor learning. The dominant view is that Purkinje cell complex spike discharge signals motor errors. This study investigated whether errors are encoded in the simple spike discharge of Purkinje cells in monkeys trained to manually track a pseudo-randomly moving target. Four task error signals were evaluated based on cursor movement relative to target movement. Linear regression analyses based on firing residuals ensured that the modulation with a specific error parameter was independent of the other error parameters and kinematics. The results demonstrate that simple spike firing in lobules IV–VI is significantly correlated with position, distance and directional errors. Independent of the error signals, the same Purkinje cells encode kinematics. The strongest error modulation occurs at feedback timing. However, in 72% of cells at least one of the R2 temporal profiles resulting from regressing firing with individual errors exhibit two peak R2 values. For these bimodal profiles, the first peak is at a negative τ (lead) and a second peak at a positive τ (lag), implying that Purkinje cells encode both prediction and feedback about an error. For the majority of the bimodal profiles, the signs of the regression coefficients or preferred directions reverse at the times of the peaks. The sign reversal results in opposing simple spike modulation for the predictive and feedback components. Dual error representations may provide the signals needed to generate sensory prediction errors used to update a forward internal model. PMID:23115173
Role of Plasticity at Different Sites across the Time Course of Cerebellar Motor Learning
Lisberger, Stephen G.
2014-01-01
Learning comprises multiple components that probably involve cellular and synaptic plasticity at multiple sites. Different neural sites may play their largest roles at different times during behavioral learning. We have used motor learning in smooth pursuit eye movements of monkeys to determine how and when different components of learning occur in a known cerebellar circuit. The earliest learning occurs when one climbing-fiber response to a learning instruction causes simple-spike firing rate of Purkinje cells in the floccular complex of the cerebellum to be depressed transiently at the time of the instruction on the next trial. Trial-over-trial depression and the associated learning in eye movement are forgotten in <6 s, but facilitate long-term behavioral learning over a time scale of ∼5 min. During 100 repetitions of a learning instruction, simple-spike firing rate becomes progressively depressed in Purkinje cells that receive climbing-fiber inputs from the instruction. In Purkinje cells that prefer the opposite direction of pursuit and therefore do not receive climbing-fiber inputs related to the instruction, simple-spike responses undergo potentiation, but more weakly and more slowly. Analysis of the relationship between the learned changes in simple-spike firing and learning in eye velocity suggests an orderly progression of plasticity: first on Purkinje cells with complex-spike (CS) responses to the instruction, later on Purkinje cells with CS responses to the opposite direction of instruction, and last in sites outside the cerebellar cortex. Climbing-fiber inputs appear to play a fast and primary, but nonexclusive, role in pursuit learning. PMID:24849344
A Complex-Valued Firing-Rate Model That Approximates the Dynamics of Spiking Networks
Schaffer, Evan S.; Ostojic, Srdjan; Abbott, L. F.
2013-01-01
Firing-rate models provide an attractive approach for studying large neural networks because they can be simulated rapidly and are amenable to mathematical analysis. Traditional firing-rate models assume a simple form in which the dynamics are governed by a single time constant. These models fail to replicate certain dynamic features of populations of spiking neurons, especially those involving synchronization. We present a complex-valued firing-rate model derived from an eigenfunction expansion of the Fokker-Planck equation and apply it to the linear, quadratic and exponential integrate-and-fire models. Despite being almost as simple as a traditional firing-rate description, this model can reproduce firing-rate dynamics due to partial synchronization of the action potentials in a spiking model, and it successfully predicts the transition to spike synchronization in networks of coupled excitatory and inhibitory neurons. PMID:24204236
Single Canonical Model of Reflexive Memory and Spatial Attention
Patel, Saumil S.; Red, Stuart; Lin, Eric; Sereno, Anne B.
2015-01-01
Many neurons in the dorsal and ventral visual stream have the property that after a brief visual stimulus presentation in their receptive field, the spiking activity in these neurons persists above their baseline levels for several seconds. This maintained activity is not always correlated with the monkey’s task and its origin is unknown. We have previously proposed a simple neural network model, based on shape selective neurons in monkey lateral intraparietal cortex, which predicts the valence and time course of reflexive (bottom-up) spatial attention. In the same simple model, we demonstrate here that passive maintained activity or short-term memory of specific visual events can result without need for an external or top-down modulatory signal. Mutual inhibition and neuronal adaptation play distinct roles in reflexive attention and memory. This modest 4-cell model provides the first simple and unified physiologically plausible mechanism of reflexive spatial attention and passive short-term memory processes. PMID:26493949
Bennett, James E. M.; Bair, Wyeth
2015-01-01
Traveling waves in the developing brain are a prominent source of highly correlated spiking activity that may instruct the refinement of neural circuits. A candidate mechanism for mediating such refinement is spike-timing dependent plasticity (STDP), which translates correlated activity patterns into changes in synaptic strength. To assess the potential of these phenomena to build useful structure in developing neural circuits, we examined the interaction of wave activity with STDP rules in simple, biologically plausible models of spiking neurons. We derive an expression for the synaptic strength dynamics showing that, by mapping the time dependence of STDP into spatial interactions, traveling waves can build periodic synaptic connectivity patterns into feedforward circuits with a broad class of experimentally observed STDP rules. The spatial scale of the connectivity patterns increases with wave speed and STDP time constants. We verify these results with simulations and demonstrate their robustness to likely sources of noise. We show how this pattern formation ability, which is analogous to solutions of reaction-diffusion systems that have been widely applied to biological pattern formation, can be harnessed to instruct the refinement of postsynaptic receptive fields. Our results hold for rich, complex wave patterns in two dimensions and over several orders of magnitude in wave speeds and STDP time constants, and they provide predictions that can be tested under existing experimental paradigms. Our model generalizes across brain areas and STDP rules, allowing broad application to the ubiquitous occurrence of traveling waves and to wave-like activity patterns induced by moving stimuli. PMID:26308406
Bennett, James E M; Bair, Wyeth
2015-08-01
Traveling waves in the developing brain are a prominent source of highly correlated spiking activity that may instruct the refinement of neural circuits. A candidate mechanism for mediating such refinement is spike-timing dependent plasticity (STDP), which translates correlated activity patterns into changes in synaptic strength. To assess the potential of these phenomena to build useful structure in developing neural circuits, we examined the interaction of wave activity with STDP rules in simple, biologically plausible models of spiking neurons. We derive an expression for the synaptic strength dynamics showing that, by mapping the time dependence of STDP into spatial interactions, traveling waves can build periodic synaptic connectivity patterns into feedforward circuits with a broad class of experimentally observed STDP rules. The spatial scale of the connectivity patterns increases with wave speed and STDP time constants. We verify these results with simulations and demonstrate their robustness to likely sources of noise. We show how this pattern formation ability, which is analogous to solutions of reaction-diffusion systems that have been widely applied to biological pattern formation, can be harnessed to instruct the refinement of postsynaptic receptive fields. Our results hold for rich, complex wave patterns in two dimensions and over several orders of magnitude in wave speeds and STDP time constants, and they provide predictions that can be tested under existing experimental paradigms. Our model generalizes across brain areas and STDP rules, allowing broad application to the ubiquitous occurrence of traveling waves and to wave-like activity patterns induced by moving stimuli.
A spiking neural integrator model of the adaptive control of action by the medial prefrontal cortex.
Bekolay, Trevor; Laubach, Mark; Eliasmith, Chris
2014-01-29
Subjects performing simple reaction-time tasks can improve reaction times by learning the expected timing of action-imperative stimuli and preparing movements in advance. Success or failure on the previous trial is often an important factor for determining whether a subject will attempt to time the stimulus or wait for it to occur before initiating action. The medial prefrontal cortex (mPFC) has been implicated in enabling the top-down control of action depending on the outcome of the previous trial. Analysis of spike activity from the rat mPFC suggests that neural integration is a key mechanism for adaptive control in precisely timed tasks. We show through simulation that a spiking neural network consisting of coupled neural integrators captures the neural dynamics of the experimentally recorded mPFC. Errors lead to deviations in the normal dynamics of the system, a process that could enable learning from past mistakes. We expand on this coupled integrator network to construct a spiking neural network that performs a reaction-time task by following either a cue-response or timing strategy, and show that it performs the task with similar reaction times as experimental subjects while maintaining the same spiking dynamics as the experimentally recorded mPFC.
The cerebellum for jocks and nerds alike.
Popa, Laurentiu S; Hewitt, Angela L; Ebner, Timothy J
2014-01-01
Historically the cerebellum has been implicated in the control of movement. However, the cerebellum's role in non-motor functions, including cognitive and emotional processes, has also received increasing attention. Starting from the premise that the uniform architecture of the cerebellum underlies a common mode of information processing, this review examines recent electrophysiological findings on the motor signals encoded in the cerebellar cortex and then relates these signals to observations in the non-motor domain. Simple spike firing of individual Purkinje cells encodes performance errors, both predicting upcoming errors as well as providing feedback about those errors. Further, this dual temporal encoding of prediction and feedback involves a change in the sign of the simple spike modulation. Therefore, Purkinje cell simple spike firing both predicts and responds to feedback about a specific parameter, consistent with computing sensory prediction errors in which the predictions about the consequences of a motor command are compared with the feedback resulting from the motor command execution. These new findings are in contrast with the historical view that complex spikes encode errors. Evaluation of the kinematic coding in the simple spike discharge shows the same dual temporal encoding, suggesting this is a common mode of signal processing in the cerebellar cortex. Decoding analyses show the considerable accuracy of the predictions provided by Purkinje cells across a range of times. Further, individual Purkinje cells encode linearly and independently a multitude of signals, both kinematic and performance errors. Therefore, the cerebellar cortex's capacity to make associations across different sensory, motor and non-motor signals is large. The results from studying how Purkinje cells encode movement signals suggest that the cerebellar cortex circuitry can support associative learning, sequencing, working memory, and forward internal models in non-motor domains.
The cerebellum for jocks and nerds alike
Popa, Laurentiu S.; Hewitt, Angela L.; Ebner, Timothy J.
2014-01-01
Historically the cerebellum has been implicated in the control of movement. However, the cerebellum's role in non-motor functions, including cognitive and emotional processes, has also received increasing attention. Starting from the premise that the uniform architecture of the cerebellum underlies a common mode of information processing, this review examines recent electrophysiological findings on the motor signals encoded in the cerebellar cortex and then relates these signals to observations in the non-motor domain. Simple spike firing of individual Purkinje cells encodes performance errors, both predicting upcoming errors as well as providing feedback about those errors. Further, this dual temporal encoding of prediction and feedback involves a change in the sign of the simple spike modulation. Therefore, Purkinje cell simple spike firing both predicts and responds to feedback about a specific parameter, consistent with computing sensory prediction errors in which the predictions about the consequences of a motor command are compared with the feedback resulting from the motor command execution. These new findings are in contrast with the historical view that complex spikes encode errors. Evaluation of the kinematic coding in the simple spike discharge shows the same dual temporal encoding, suggesting this is a common mode of signal processing in the cerebellar cortex. Decoding analyses show the considerable accuracy of the predictions provided by Purkinje cells across a range of times. Further, individual Purkinje cells encode linearly and independently a multitude of signals, both kinematic and performance errors. Therefore, the cerebellar cortex's capacity to make associations across different sensory, motor and non-motor signals is large. The results from studying how Purkinje cells encode movement signals suggest that the cerebellar cortex circuitry can support associative learning, sequencing, working memory, and forward internal models in non-motor domains. PMID:24987338
Effects of Spike Anticipation on the Spiking Dynamics of Neural Networks
de Santos-Sierra, Daniel; Sanchez-Jimenez, Abel; Garcia-Vellisca, Mariano A.; Navas, Adrian; Villacorta-Atienza, Jose A.
2015-01-01
Synchronization is one of the central phenomena involved in information processing in living systems. It is known that the nervous system requires the coordinated activity of both local and distant neural populations. Such an interplay allows to merge different information modalities in a whole processing supporting high-level mental skills as understanding, memory, abstraction, etc. Though, the biological processes underlying synchronization in the brain are not fully understood there have been reported a variety of mechanisms supporting different types of synchronization both at theoretical and experimental level. One of the more intriguing of these phenomena is the anticipating synchronization, which has been recently reported in a pair of unidirectionally coupled artificial neurons under simple conditions (Pyragiene and Pyragas, 2013), where the slave neuron is able to anticipate in time the behavior of the master one. In this paper, we explore the effect of spike anticipation over the information processing performed by a neural network at functional and structural level. We show that the introduction of intermediary neurons in the network enhances spike anticipation and analyse how these variations in spike anticipation can significantly change the firing regime of the neural network according to its functional and structural properties. In addition we show that the interspike interval (ISI), one of the main features of the neural response associated with the information coding, can be closely related to spike anticipation by each spike, and how synaptic plasticity can be modulated through that relationship. This study has been performed through numerical simulation of a coupled system of Hindmarsh–Rose neurons. PMID:26648863
Effects of Spike Anticipation on the Spiking Dynamics of Neural Networks.
de Santos-Sierra, Daniel; Sanchez-Jimenez, Abel; Garcia-Vellisca, Mariano A; Navas, Adrian; Villacorta-Atienza, Jose A
2015-01-01
Synchronization is one of the central phenomena involved in information processing in living systems. It is known that the nervous system requires the coordinated activity of both local and distant neural populations. Such an interplay allows to merge different information modalities in a whole processing supporting high-level mental skills as understanding, memory, abstraction, etc. Though, the biological processes underlying synchronization in the brain are not fully understood there have been reported a variety of mechanisms supporting different types of synchronization both at theoretical and experimental level. One of the more intriguing of these phenomena is the anticipating synchronization, which has been recently reported in a pair of unidirectionally coupled artificial neurons under simple conditions (Pyragiene and Pyragas, 2013), where the slave neuron is able to anticipate in time the behavior of the master one. In this paper, we explore the effect of spike anticipation over the information processing performed by a neural network at functional and structural level. We show that the introduction of intermediary neurons in the network enhances spike anticipation and analyse how these variations in spike anticipation can significantly change the firing regime of the neural network according to its functional and structural properties. In addition we show that the interspike interval (ISI), one of the main features of the neural response associated with the information coding, can be closely related to spike anticipation by each spike, and how synaptic plasticity can be modulated through that relationship. This study has been performed through numerical simulation of a coupled system of Hindmarsh-Rose neurons.
Observation of the impulse phase of a simple flare
NASA Technical Reports Server (NTRS)
Tandberg-Hanssen, E.; Reichmann, E. J.; Teuber, D. L.; Moore, R. L.; Kaufmann, P.; Orwig, L. E.; Zirin, H.
1984-01-01
The paper presents a broad range of complementary observations (SMM and ground-based) of the onset and impulsive phase of the fairly large (1B, M1.2) but simple two-ribbon flare which occurred at 19:15 UT on November 1, 1980 in the northern part of the active region Boulder No. AR2776. It is found that the overall magnetic field configuration in which the flare occurred was a fairly simple, closed arch containing nonpotential substructure; the flare occurred spontaneously within the arch (it was not triggered by emerging magnetic flux). The two major spikes of the impulsive energy release are examined, and the three immediate products of this energy release are discussed.
Causal Inference and Explaining Away in a Spiking Network
Moreno-Bote, Rubén; Drugowitsch, Jan
2015-01-01
While the brain uses spiking neurons for communication, theoretical research on brain computations has mostly focused on non-spiking networks. The nature of spike-based algorithms that achieve complex computations, such as object probabilistic inference, is largely unknown. Here we demonstrate that a family of high-dimensional quadratic optimization problems with non-negativity constraints can be solved exactly and efficiently by a network of spiking neurons. The network naturally imposes the non-negativity of causal contributions that is fundamental to causal inference, and uses simple operations, such as linear synapses with realistic time constants, and neural spike generation and reset non-linearities. The network infers the set of most likely causes from an observation using explaining away, which is dynamically implemented by spike-based, tuned inhibition. The algorithm performs remarkably well even when the network intrinsically generates variable spike trains, the timing of spikes is scrambled by external sources of noise, or the network is mistuned. This type of network might underlie tasks such as odor identification and classification. PMID:26621426
Causal Inference and Explaining Away in a Spiking Network.
Moreno-Bote, Rubén; Drugowitsch, Jan
2015-12-01
While the brain uses spiking neurons for communication, theoretical research on brain computations has mostly focused on non-spiking networks. The nature of spike-based algorithms that achieve complex computations, such as object probabilistic inference, is largely unknown. Here we demonstrate that a family of high-dimensional quadratic optimization problems with non-negativity constraints can be solved exactly and efficiently by a network of spiking neurons. The network naturally imposes the non-negativity of causal contributions that is fundamental to causal inference, and uses simple operations, such as linear synapses with realistic time constants, and neural spike generation and reset non-linearities. The network infers the set of most likely causes from an observation using explaining away, which is dynamically implemented by spike-based, tuned inhibition. The algorithm performs remarkably well even when the network intrinsically generates variable spike trains, the timing of spikes is scrambled by external sources of noise, or the network is mistuned. This type of network might underlie tasks such as odor identification and classification.
Anisotropic connectivity implements motion-based prediction in a spiking neural network.
Kaplan, Bernhard A; Lansner, Anders; Masson, Guillaume S; Perrinet, Laurent U
2013-01-01
Predictive coding hypothesizes that the brain explicitly infers upcoming sensory input to establish a coherent representation of the world. Although it is becoming generally accepted, it is not clear on which level spiking neural networks may implement predictive coding and what function their connectivity may have. We present a network model of conductance-based integrate-and-fire neurons inspired by the architecture of retinotopic cortical areas that assumes predictive coding is implemented through network connectivity, namely in the connection delays and in selectiveness for the tuning properties of source and target cells. We show that the applied connection pattern leads to motion-based prediction in an experiment tracking a moving dot. In contrast to our proposed model, a network with random or isotropic connectivity fails to predict the path when the moving dot disappears. Furthermore, we show that a simple linear decoding approach is sufficient to transform neuronal spiking activity into a probabilistic estimate for reading out the target trajectory.
Multi-layer network utilizing rewarded spike time dependent plasticity to learn a foraging task
2017-01-01
Neural networks with a single plastic layer employing reward modulated spike time dependent plasticity (STDP) are capable of learning simple foraging tasks. Here we demonstrate advanced pattern discrimination and continuous learning in a network of spiking neurons with multiple plastic layers. The network utilized both reward modulated and non-reward modulated STDP and implemented multiple mechanisms for homeostatic regulation of synaptic efficacy, including heterosynaptic plasticity, gain control, output balancing, activity normalization of rewarded STDP and hard limits on synaptic strength. We found that addition of a hidden layer of neurons employing non-rewarded STDP created neurons that responded to the specific combinations of inputs and thus performed basic classification of the input patterns. When combined with a following layer of neurons implementing rewarded STDP, the network was able to learn, despite the absence of labeled training data, discrimination between rewarding patterns and the patterns designated as punishing. Synaptic noise allowed for trial-and-error learning that helped to identify the goal-oriented strategies which were effective in task solving. The study predicts a critical set of properties of the spiking neuronal network with STDP that was sufficient to solve a complex foraging task involving pattern classification and decision making. PMID:28961245
Lennon, William; Hecht-Nielsen, Robert; Yamazaki, Tadashi
2014-01-01
While the anatomy of the cerebellar microcircuit is well-studied, how it implements cerebellar function is not understood. A number of models have been proposed to describe this mechanism but few emphasize the role of the vast network Purkinje cells (PKJs) form with the molecular layer interneurons (MLIs)—the stellate and basket cells. We propose a model of the MLI-PKJ network composed of simple spiking neurons incorporating the major anatomical and physiological features. In computer simulations, the model reproduces the irregular firing patterns observed in PKJs and MLIs in vitro and a shift toward faster, more regular firing patterns when inhibitory synaptic currents are blocked. In the model, the time between PKJ spikes is shown to be proportional to the amount of feedforward inhibition from an MLI on average. The two key elements of the model are: (1) spontaneously active PKJs and MLIs due to an endogenous depolarizing current, and (2) adherence to known anatomical connectivity along a parasagittal strip of cerebellar cortex. We propose this model to extend previous spiking network models of the cerebellum and for further computational investigation into the role of irregular firing and MLIs in cerebellar learning and function. PMID:25520646
Thalamic neuron models encode stimulus information by burst-size modulation
Elijah, Daniel H.; Samengo, Inés; Montemurro, Marcelo A.
2015-01-01
Thalamic neurons have been long assumed to fire in tonic mode during perceptive states, and in burst mode during sleep and unconsciousness. However, recent evidence suggests that bursts may also be relevant in the encoding of sensory information. Here, we explore the neural code of such thalamic bursts. In order to assess whether the burst code is generic or whether it depends on the detailed properties of each bursting neuron, we analyzed two neuron models incorporating different levels of biological detail. One of the models contained no information of the biophysical processes entailed in spike generation, and described neuron activity at a phenomenological level. The second model represented the evolution of the individual ionic conductances involved in spiking and bursting, and required a large number of parameters. We analyzed the models' input selectivity using reverse correlation methods and information theory. We found that n-spike bursts from both models transmit information by modulating their spike count in response to changes to instantaneous input features, such as slope, phase, amplitude, etc. The stimulus feature that is most efficiently encoded by bursts, however, need not coincide with one of such classical features. We therefore searched for the optimal feature among all those that could be expressed as a linear transformation of the time-dependent input current. We found that bursting neurons transmitted 6 times more information about such more general features. The relevant events in the stimulus were located in a time window spanning ~100 ms before and ~20 ms after burst onset. Most importantly, the neural code employed by the simple and the biologically realistic models was largely the same, implying that the simple thalamic neuron model contains the essential ingredients that account for the computational properties of the thalamic burst code. Thus, our results suggest the n-spike burst code is a general property of thalamic neurons. PMID:26441623
Thalamic neuron models encode stimulus information by burst-size modulation.
Elijah, Daniel H; Samengo, Inés; Montemurro, Marcelo A
2015-01-01
Thalamic neurons have been long assumed to fire in tonic mode during perceptive states, and in burst mode during sleep and unconsciousness. However, recent evidence suggests that bursts may also be relevant in the encoding of sensory information. Here, we explore the neural code of such thalamic bursts. In order to assess whether the burst code is generic or whether it depends on the detailed properties of each bursting neuron, we analyzed two neuron models incorporating different levels of biological detail. One of the models contained no information of the biophysical processes entailed in spike generation, and described neuron activity at a phenomenological level. The second model represented the evolution of the individual ionic conductances involved in spiking and bursting, and required a large number of parameters. We analyzed the models' input selectivity using reverse correlation methods and information theory. We found that n-spike bursts from both models transmit information by modulating their spike count in response to changes to instantaneous input features, such as slope, phase, amplitude, etc. The stimulus feature that is most efficiently encoded by bursts, however, need not coincide with one of such classical features. We therefore searched for the optimal feature among all those that could be expressed as a linear transformation of the time-dependent input current. We found that bursting neurons transmitted 6 times more information about such more general features. The relevant events in the stimulus were located in a time window spanning ~100 ms before and ~20 ms after burst onset. Most importantly, the neural code employed by the simple and the biologically realistic models was largely the same, implying that the simple thalamic neuron model contains the essential ingredients that account for the computational properties of the thalamic burst code. Thus, our results suggest the n-spike burst code is a general property of thalamic neurons.
Event-Based Computation of Motion Flow on a Neuromorphic Analog Neural Platform
Giulioni, Massimiliano; Lagorce, Xavier; Galluppi, Francesco; Benosman, Ryad B.
2016-01-01
Estimating the speed and direction of moving objects is a crucial component of agents behaving in a dynamic world. Biological organisms perform this task by means of the neural connections originating from their retinal ganglion cells. In artificial systems the optic flow is usually extracted by comparing activity of two or more frames captured with a vision sensor. Designing artificial motion flow detectors which are as fast, robust, and efficient as the ones found in biological systems is however a challenging task. Inspired by the architecture proposed by Barlow and Levick in 1965 to explain the spiking activity of the direction-selective ganglion cells in the rabbit's retina, we introduce an architecture for robust optical flow extraction with an analog neuromorphic multi-chip system. The task is performed by a feed-forward network of analog integrate-and-fire neurons whose inputs are provided by contrast-sensitive photoreceptors. Computation is supported by the precise time of spike emission, and the extraction of the optical flow is based on time lag in the activation of nearby retinal neurons. Mimicking ganglion cells our neuromorphic detectors encode the amplitude and the direction of the apparent visual motion in their output spiking pattern. Hereby we describe the architectural aspects, discuss its latency, scalability, and robustness properties and demonstrate that a network of mismatched delicate analog elements can reliably extract the optical flow from a simple visual scene. This work shows how precise time of spike emission used as a computational basis, biological inspiration, and neuromorphic systems can be used together for solving specific tasks. PMID:26909015
Event-Based Computation of Motion Flow on a Neuromorphic Analog Neural Platform.
Giulioni, Massimiliano; Lagorce, Xavier; Galluppi, Francesco; Benosman, Ryad B
2016-01-01
Estimating the speed and direction of moving objects is a crucial component of agents behaving in a dynamic world. Biological organisms perform this task by means of the neural connections originating from their retinal ganglion cells. In artificial systems the optic flow is usually extracted by comparing activity of two or more frames captured with a vision sensor. Designing artificial motion flow detectors which are as fast, robust, and efficient as the ones found in biological systems is however a challenging task. Inspired by the architecture proposed by Barlow and Levick in 1965 to explain the spiking activity of the direction-selective ganglion cells in the rabbit's retina, we introduce an architecture for robust optical flow extraction with an analog neuromorphic multi-chip system. The task is performed by a feed-forward network of analog integrate-and-fire neurons whose inputs are provided by contrast-sensitive photoreceptors. Computation is supported by the precise time of spike emission, and the extraction of the optical flow is based on time lag in the activation of nearby retinal neurons. Mimicking ganglion cells our neuromorphic detectors encode the amplitude and the direction of the apparent visual motion in their output spiking pattern. Hereby we describe the architectural aspects, discuss its latency, scalability, and robustness properties and demonstrate that a network of mismatched delicate analog elements can reliably extract the optical flow from a simple visual scene. This work shows how precise time of spike emission used as a computational basis, biological inspiration, and neuromorphic systems can be used together for solving specific tasks.
Systematic Regional Variations in Purkinje Cell Spiking Patterns
Xiao, Jianqiang; Cerminara, Nadia L.; Kotsurovskyy, Yuriy; Aoki, Hanako; Burroughs, Amelia; Wise, Andrew K.; Luo, Yuanjun; Marshall, Sarah P.; Sugihara, Izumi; Apps, Richard; Lang, Eric J.
2014-01-01
In contrast to the uniform anatomy of the cerebellar cortex, molecular and physiological studies indicate that significant differences exist between cortical regions, suggesting that the spiking activity of Purkinje cells (PCs) in different regions could also show distinct characteristics. To investigate this possibility we obtained extracellular recordings from PCs in different zebrin bands in crus IIa and vermis lobules VIII and IX in anesthetized rats in order to compare PC firing characteristics between zebrin positive (Z+) and negative (Z−) bands. In addition, we analyzed recordings from PCs in the A2 and C1 zones of several lobules in the posterior lobe, which largely contain Z+ and Z− PCs, respectively. In both datasets significant differences in simple spike (SS) activity were observed between cortical regions. Specifically, Z− and C1 PCs had higher SS firing rates than Z+ and A2 PCs, respectively. The irregularity of SS firing (as assessed by measures of interspike interval distribution) was greater in Z+ bands in both absolute and relative terms. The results regarding systematic variations in complex spike (CS) activity were less consistent, suggesting that while real differences can exist, they may be sensitive to other factors than the cortical location of the PC. However, differences in the interactions between SSs and CSs, including the post-CS pause in SSs and post-pause modulation of SSs, were also consistently observed between bands. Similar, though less strong trends were observed in the zonal recordings. These systematic variations in spontaneous firing characteristics of PCs between zebrin bands in vivo, raises the possibility that fundamental differences in information encoding exist between cerebellar cortical regions. PMID:25144311
Correlations Decrease with Propagation of Spiking Activity in the Mouse Barrel Cortex
Ranganathan, Gayathri Nattar; Koester, Helmut Joachim
2011-01-01
Propagation of suprathreshold spiking activity through neuronal populations is important for the function of the central nervous system. Neural correlations have an impact on cortical function particularly on the signaling of information and propagation of spiking activity. Therefore we measured the change in correlations as suprathreshold spiking activity propagated between recurrent neuronal networks of the mammalian cerebral cortex. Using optical methods we recorded spiking activity from large samples of neurons from two neural populations simultaneously. The results indicate that correlations decreased as spiking activity propagated from layer 4 to layer 2/3 in the rodent barrel cortex. PMID:21629764
Heterogeneity induces spatiotemporal oscillations in reaction-diffusion systems
NASA Astrophysics Data System (ADS)
Krause, Andrew L.; Klika, Václav; Woolley, Thomas E.; Gaffney, Eamonn A.
2018-05-01
We report on an instability arising in activator-inhibitor reaction-diffusion (RD) systems with a simple spatial heterogeneity. This instability gives rise to periodic creation, translation, and destruction of spike solutions that are commonly formed due to Turing instabilities. While this behavior is oscillatory in nature, it occurs purely within the Turing space such that no region of the domain would give rise to a Hopf bifurcation for the homogeneous equilibrium. We use the shadow limit of the Gierer-Meinhardt system to show that the speed of spike movement can be predicted from well-known asymptotic theory, but that this theory is unable to explain the emergence of these spatiotemporal oscillations. Instead, we numerically explore this system and show that the oscillatory behavior is caused by the destabilization of a steady spike pattern due to the creation of a new spike arising from endogeneous activator production. We demonstrate that on the edge of this instability, the period of the oscillations goes to infinity, although it does not fit the profile of any well-known bifurcation of a limit cycle. We show that nearby stationary states are either Turing unstable or undergo saddle-node bifurcations near the onset of the oscillatory instability, suggesting that the periodic motion does not emerge from a local equilibrium. We demonstrate the robustness of this spatiotemporal oscillation by exploring small localized heterogeneity and showing that this behavior also occurs in the Schnakenberg RD model. Our results suggest that this phenomenon is ubiquitous in spatially heterogeneous RD systems, but that current tools, such as stability of spike solutions and shadow-limit asymptotics, do not elucidate understanding. This opens several avenues for further mathematical analysis and highlights difficulties in explaining how robust patterning emerges from Turing's mechanism in the presence of even small spatial heterogeneity.
Common and Distinctive Patterns of Cognitive Dysfunction in Children With Benign Epilepsy Syndromes.
Cheng, Dazhi; Yan, Xiuxian; Gao, Zhijie; Xu, Keming; Zhou, Xinlin; Chen, Qian
2017-07-01
Childhood absence epilepsy and benign childhood epilepsy with centrotemporal spikes are the most common forms of benign epilepsy syndromes. Although cognitive dysfunctions occur in children with both childhood absence epilepsy and benign childhood epilepsy with centrotemporal spikes, the similarity between their patterns of underlying cognitive impairments is not well understood. To describe these patterns, we examined multiple cognitive functions in children with childhood absence epilepsy and benign childhood epilepsy with centrotemporal spikes. In this study, 43 children with childhood absence epilepsy, 47 children with benign childhood epilepsy with centrotemporal spikes, and 64 control subjects were recruited; all received a standardized assessment (i.e., computerized test battery) assessing processing speed, spatial skills, calculation, language ability, intelligence, visual attention, and executive function. Groups were compared in these cognitive domains. Simple regression analysis was used to analyze the effects of epilepsy-related clinical variables on cognitive test scores. Compared with control subjects, children with childhood absence epilepsy and benign childhood epilepsy with centrotemporal spikes showed cognitive deficits in intelligence and executive function, but performed normally in language processing. Impairment in visual attention was specific to patients with childhood absence epilepsy, whereas impaired spatial ability was specific to the children with benign childhood epilepsy with centrotemporal spikes. Simple regression analysis showed syndrome-related clinical variables did not affect cognitive functions. This study provides evidence of both common and distinctive cognitive features underlying the relative cognitive difficulties in children with childhood absence epilepsy and benign childhood epilepsy with centrotemporal spikes. Our data suggest that clinicians should pay particular attention to the specific cognitive deficits in children with childhood absence epilepsy and benign childhood epilepsy with centrotemporal spikes, to allow for more discriminative and potentially more effective interventions. Copyright © 2017 Elsevier Inc. All rights reserved.
Tanaka, Naoaki; Papadelis, Christos; Tamilia, Eleonora; Madsen, Joseph R; Pearl, Phillip L; Stufflebeam, Steven M
2018-04-27
This study evaluates magnetoencephalographic (MEG) spike population as compared with intracranial electroencephalographic (IEEG) spikes using a quantitative method based on distributed source analysis. We retrospectively studied eight patients with medically intractable epilepsy who had an MEG and subsequent IEEG monitoring. Fifty MEG spikes were analyzed in each patient using minimum norm estimate. For individual spikes, each vertex in the source space was considered activated when its source amplitude at the peak latency was higher than a threshold, which was set at 50% of the maximum amplitude over all vertices. We mapped the total count of activation at each vertex. We also analyzed 50 IEEG spikes in the same manner over the intracranial electrodes and created the activation count map. The location of the electrodes was obtained in the MEG source space by coregistering postimplantation computed tomography to MRI. We estimated the MEG- and IEEG-active regions associated with the spike populations using the vertices/electrodes with a count over 25. The activation count maps of MEG spikes demonstrated the localization associated with the spike population by variable count values at each vertex. The MEG-active region overlapped with 65 to 85% of the IEEG-active region in our patient group. Mapping the MEG spike population is valid for demonstrating the trend of spikes clustering in patients with epilepsy. In addition, comparison of MEG and IEEG spikes quantitatively may be informative for understanding their relationship.
Wavelet analysis of epileptic spikes
NASA Astrophysics Data System (ADS)
Latka, Miroslaw; Was, Ziemowit; Kozik, Andrzej; West, Bruce J.
2003-05-01
Interictal spikes and sharp waves in human EEG are characteristic signatures of epilepsy. These potentials originate as a result of synchronous pathological discharge of many neurons. The reliable detection of such potentials has been the long standing problem in EEG analysis, especially after long-term monitoring became common in investigation of epileptic patients. The traditional definition of a spike is based on its amplitude, duration, sharpness, and emergence from its background. However, spike detection systems built solely around this definition are not reliable due to the presence of numerous transients and artifacts. We use wavelet transform to analyze the properties of EEG manifestations of epilepsy. We demonstrate that the behavior of wavelet transform of epileptic spikes across scales can constitute the foundation of a relatively simple yet effective detection algorithm.
NASA Astrophysics Data System (ADS)
Fallah, Haniyeh
Pancreatic beta-cells produce insulin to regularize the blood glucose level. Bursting is important in beta cells due to its relation to the release of insulin. Pernarowski model is a simple polynomial model of beta-cell activities indicating bursting oscillations in these cells. This paper presents bursting behaviors of symmetric type in this model. In addition, it is shown that the current system exhibits the phenomenon of period doubling cascades of canards which is a route to chaos. Canards are also observed symmetrically near folds of slow manifold which results in a chaotic transition between n and n + 1 spikes symmetric bursting. Furthermore, mixed-mode oscillations (MMOs) and combination of symmetric bursting together with MMOs are illustrated during the transition between symmetric bursting and continuous spiking.
A Phenomenological Synapse Model for Asynchronous Neurotransmitter Release
Wang, Tao; Yin, Luping; Zou, Xiaolong; Shu, Yousheng; Rasch, Malte J.; Wu, Si
2016-01-01
Neurons communicate with each other via synapses. Action potentials cause release of neurotransmitters at the axon terminal. Typically, this neurotransmitter release is tightly time-locked to the arrival of an action potential and is thus called synchronous release. However, neurotransmitter release is stochastic and the rate of release of small quanta of neurotransmitters can be considerably elevated even long after the ceasing of spiking activity, leading to asynchronous release of neurotransmitters. Such asynchronous release varies for tissue and neuron types and has been shown recently to be pronounced in fast-spiking neurons. Notably, it was found that asynchronous release is enhanced in human epileptic tissue implicating a possibly important role in generating abnormal neural activity. Current neural network models for simulating and studying neural activity virtually only consider synchronous release and ignore asynchronous transmitter release. Here, we develop a phenomenological model for asynchronous neurotransmitter release, which, on one hand, captures the fundamental features of the asynchronous release process, and, on the other hand, is simple enough to be incorporated in large-size network simulations. Our proposed model is based on the well-known equations for short-term dynamical synaptic interactions and includes an additional stochastic term for modeling asynchronous release. We use experimental data obtained from inhibitory fast-spiking synapses of human epileptic tissue to fit the model parameters, and demonstrate that our model reproduces the characteristics of realistic asynchronous transmitter release. PMID:26834617
Liquid computing on and off the edge of chaos with a striatal microcircuit
Toledo-Suárez, Carlos; Duarte, Renato; Morrison, Abigail
2014-01-01
In reinforcement learning theories of the basal ganglia, there is a need for the expected rewards corresponding to relevant environmental states to be maintained and modified during the learning process. However, the representation of these states that allows them to be associated with reward expectations remains unclear. Previous studies have tended to rely on pre-defined partitioning of states encoded by disjunct neuronal groups or sparse topological drives. A more likely scenario is that striatal neurons are involved in the encoding of multiple different states through their spike patterns, and that an appropriate partitioning of an environment is learned on the basis of task constraints, thus minimizing the number of states involved in solving a particular task. Here we show that striatal activity is sufficient to implement a liquid state, an important prerequisite for such a computation, whereby transient patterns of striatal activity are mapped onto the relevant states. We develop a simple small scale model of the striatum which can reproduce key features of the experimentally observed activity of the major cell types of the striatum. We then use the activity of this network as input for the supervised training of four simple linear readouts to learn three different functions on a plane, where the network is stimulated with the spike coded position of the agent. We discover that the network configuration that best reproduces striatal activity statistics lies on the edge of chaos and has good performance on all three tasks, but that in general, the edge of chaos is a poor predictor of network performance. PMID:25484864
Incorporating spike-rate adaptation into a rate code in mathematical and biological neurons
Ralston, Bridget N.; Flagg, Lucas Q.; Faggin, Eric
2016-01-01
For a slowly varying stimulus, the simplest relationship between a neuron's input and output is a rate code, in which the spike rate is a unique function of the stimulus at that instant. In the case of spike-rate adaptation, there is no unique relationship between input and output, because the spike rate at any time depends both on the instantaneous stimulus and on prior spiking (the “history”). To improve the decoding of spike trains produced by neurons that show spike-rate adaptation, we developed a simple scheme that incorporates “history” into a rate code. We utilized this rate-history code successfully to decode spike trains produced by 1) mathematical models of a neuron in which the mechanism for adaptation (IAHP) is specified, and 2) the gastropyloric receptor (GPR2), a stretch-sensitive neuron in the stomatogastric nervous system of the crab Cancer borealis, that exhibits long-lasting adaptation of unknown origin. Moreover, when we modified the spike rate either mathematically in a model system or by applying neuromodulatory agents to the experimental system, we found that changes in the rate-history code could be related to the biophysical mechanisms responsible for altering the spiking. PMID:26888106
Propagating synchrony in feed-forward networks
Jahnke, Sven; Memmesheimer, Raoul-Martin; Timme, Marc
2013-01-01
Coordinated patterns of precisely timed action potentials (spikes) emerge in a variety of neural circuits but their dynamical origin is still not well understood. One hypothesis states that synchronous activity propagating through feed-forward chains of groups of neurons (synfire chains) may dynamically generate such spike patterns. Additionally, synfire chains offer the possibility to enable reliable signal transmission. So far, mostly densely connected chains, often with all-to-all connectivity between groups, have been theoretically and computationally studied. Yet, such prominent feed-forward structures have not been observed experimentally. Here we analytically and numerically investigate under which conditions diluted feed-forward chains may exhibit synchrony propagation. In addition to conventional linear input summation, we study the impact of non-linear, non-additive summation accounting for the effect of fast dendritic spikes. The non-linearities promote synchronous inputs to generate precisely timed spikes. We identify how non-additive coupling relaxes the conditions on connectivity such that it enables synchrony propagation at connectivities substantially lower than required for linearly coupled chains. Although the analytical treatment is based on a simple leaky integrate-and-fire neuron model, we show how to generalize our methods to biologically more detailed neuron models and verify our results by numerical simulations with, e.g., Hodgkin Huxley type neurons. PMID:24298251
Rueckauer, Bodo; Lungu, Iulia-Alexandra; Hu, Yuhuang; Pfeiffer, Michael; Liu, Shih-Chii
2017-01-01
Spiking neural networks (SNNs) can potentially offer an efficient way of doing inference because the neurons in the networks are sparsely activated and computations are event-driven. Previous work showed that simple continuous-valued deep Convolutional Neural Networks (CNNs) can be converted into accurate spiking equivalents. These networks did not include certain common operations such as max-pooling, softmax, batch-normalization and Inception-modules. This paper presents spiking equivalents of these operations therefore allowing conversion of nearly arbitrary CNN architectures. We show conversion of popular CNN architectures, including VGG-16 and Inception-v3, into SNNs that produce the best results reported to date on MNIST, CIFAR-10 and the challenging ImageNet dataset. SNNs can trade off classification error rate against the number of available operations whereas deep continuous-valued neural networks require a fixed number of operations to achieve their classification error rate. From the examples of LeNet for MNIST and BinaryNet for CIFAR-10, we show that with an increase in error rate of a few percentage points, the SNNs can achieve more than 2x reductions in operations compared to the original CNNs. This highlights the potential of SNNs in particular when deployed on power-efficient neuromorphic spiking neuron chips, for use in embedded applications.
Rueckauer, Bodo; Lungu, Iulia-Alexandra; Hu, Yuhuang; Pfeiffer, Michael; Liu, Shih-Chii
2017-01-01
Spiking neural networks (SNNs) can potentially offer an efficient way of doing inference because the neurons in the networks are sparsely activated and computations are event-driven. Previous work showed that simple continuous-valued deep Convolutional Neural Networks (CNNs) can be converted into accurate spiking equivalents. These networks did not include certain common operations such as max-pooling, softmax, batch-normalization and Inception-modules. This paper presents spiking equivalents of these operations therefore allowing conversion of nearly arbitrary CNN architectures. We show conversion of popular CNN architectures, including VGG-16 and Inception-v3, into SNNs that produce the best results reported to date on MNIST, CIFAR-10 and the challenging ImageNet dataset. SNNs can trade off classification error rate against the number of available operations whereas deep continuous-valued neural networks require a fixed number of operations to achieve their classification error rate. From the examples of LeNet for MNIST and BinaryNet for CIFAR-10, we show that with an increase in error rate of a few percentage points, the SNNs can achieve more than 2x reductions in operations compared to the original CNNs. This highlights the potential of SNNs in particular when deployed on power-efficient neuromorphic spiking neuron chips, for use in embedded applications. PMID:29375284
NASA Technical Reports Server (NTRS)
Yu, Xiaolong; Lewis, Edwin R.
1989-01-01
It is shown that noise can be an important element in the translation of neuronal generator potentials (summed inputs) to neuronal spike trains (outputs), creating or expanding a range of amplitudes over which the spike rate is proportional to the generator potential amplitude. Noise converts the basically nonlinear operation of a spike initiator into a nearly linear modulation process. This linearization effect of noise is examined in a simple intuitive model of a static threshold and in a more realistic computer simulation of spike initiator based on the Hodgkin-Huxley (HH) model. The results are qualitatively similar; in each case larger noise amplitude results in a larger range of nearly linear modulation. The computer simulation of the HH model with noise shows linear and nonlinear features that were earlier observed in spike data obtained from the VIIIth nerve of the bullfrog. This suggests that these features can be explained in terms of spike initiator properties, and it also suggests that the HH model may be useful for representing basic spike initiator properties in vertebrates.
Nonlinear Transfer of Signal and Noise Correlations in Cortical Networks
Lyamzin, Dmitry R.; Barnes, Samuel J.; Donato, Roberta; Garcia-Lazaro, Jose A.; Keck, Tara
2015-01-01
Signal and noise correlations, a prominent feature of cortical activity, reflect the structure and function of networks during sensory processing. However, in addition to reflecting network properties, correlations are also shaped by intrinsic neuronal mechanisms. Here we show that spike threshold transforms correlations by creating nonlinear interactions between signal and noise inputs; even when input noise correlation is constant, spiking noise correlation varies with both the strength and correlation of signal inputs. We characterize these effects systematically in vitro in mice and demonstrate their impact on sensory processing in vivo in gerbils. We also find that the effects of nonlinear correlation transfer on cortical responses are stronger in the synchronized state than in the desynchronized state, and show that they can be reproduced and understood in a model with a simple threshold nonlinearity. Since these effects arise from an intrinsic neuronal property, they are likely to be present across sensory systems and, thus, our results are a critical step toward a general understanding of how correlated spiking relates to the structure and function of cortical networks. PMID:26019325
Event-driven processing for hardware-efficient neural spike sorting
NASA Astrophysics Data System (ADS)
Liu, Yan; Pereira, João L.; Constandinou, Timothy G.
2018-02-01
Objective. The prospect of real-time and on-node spike sorting provides a genuine opportunity to push the envelope of large-scale integrated neural recording systems. In such systems the hardware resources, power requirements and data bandwidth increase linearly with channel count. Event-based (or data-driven) processing can provide here a new efficient means for hardware implementation that is completely activity dependant. In this work, we investigate using continuous-time level-crossing sampling for efficient data representation and subsequent spike processing. Approach. (1) We first compare signals (synthetic neural datasets) encoded with this technique against conventional sampling. (2) We then show how such a representation can be directly exploited by extracting simple time domain features from the bitstream to perform neural spike sorting. (3) The proposed method is implemented in a low power FPGA platform to demonstrate its hardware viability. Main results. It is observed that considerably lower data rates are achievable when using 7 bits or less to represent the signals, whilst maintaining the signal fidelity. Results obtained using both MATLAB and reconfigurable logic hardware (FPGA) indicate that feature extraction and spike sorting accuracies can be achieved with comparable or better accuracy than reference methods whilst also requiring relatively low hardware resources. Significance. By effectively exploiting continuous-time data representation, neural signal processing can be achieved in a completely event-driven manner, reducing both the required resources (memory, complexity) and computations (operations). This will see future large-scale neural systems integrating on-node processing in real-time hardware.
Decoding spike timing: the differential reverse correlation method
Tkačik, Gašper; Magnasco, Marcelo O.
2009-01-01
It is widely acknowledged that detailed timing of action potentials is used to encode information, for example in auditory pathways; however the computational tools required to analyze encoding through timing are still in their infancy. We present a simple example of encoding, based on a recent model of time-frequency analysis, in which units fire action potentials when a certain condition is met, but the timing of the action potential depends also on other features of the stimulus. We show that, as a result, spike-triggered averages are smoothed so much they do not represent the true features of the encoding. Inspired by this example, we present a simple method, differential reverse correlations, that can separate an analysis of what causes a neuron to spike, and what controls its timing. We analyze with this method the leaky integrate-and-fire neuron and show the method accurately reconstructs the model's kernel. PMID:18597928
Staudacher, Erich M.; Huetteroth, Wolf; Schachtner, Joachim; Daly, Kevin C.
2009-01-01
A central problem facing studies of neural encoding in sensory systems is how to accurately quantify the extent of spatial and temporal responses. In this study, we take advantage of the relatively simple and stereotypic neural architecture found in invertebrates. We combine standard electrophysiological techniques, recently developed population analysis techniques, and novel anatomical methods to form an innovative 4-dimensional view of odor output representations in the antennal lobe of the moth Manduca sexta. This novel approach allows quantification of olfactory responses of characterized neurons with spike time resolution. Additionally, arbitrary integration windows can be used for comparisons with other methods such as imaging. By assigning statistical significance to changes in neuronal firing, this method can visualize activity across the entire antennal lobe. The resulting 4-dimensional representation of antennal lobe output complements imaging and multi-unit experiments yet provides a more comprehensive and accurate view of glomerular activation patterns in spike time resolution. PMID:19464513
The Second Spiking Threshold: Dynamics of Laminar Network Spiking in the Visual Cortex
Forsberg, Lars E.; Bonde, Lars H.; Harvey, Michael A.; Roland, Per E.
2016-01-01
Most neurons have a threshold separating the silent non-spiking state and the state of producing temporal sequences of spikes. But neurons in vivo also have a second threshold, found recently in granular layer neurons of the primary visual cortex, separating spontaneous ongoing spiking from visually evoked spiking driven by sharp transients. Here we examine whether this second threshold exists outside the granular layer and examine details of transitions between spiking states in ferrets exposed to moving objects. We found the second threshold, separating spiking states evoked by stationary and moving visual stimuli from the spontaneous ongoing spiking state, in all layers and zones of areas 17 and 18 indicating that the second threshold is a property of the network. Spontaneous and evoked spiking, thus can easily be distinguished. In addition, the trajectories of spontaneous ongoing states were slow, frequently changing direction. In single trials, sharp as well as smooth and slow transients transform the trajectories to be outward directed, fast and crossing the threshold to become evoked. Although the speeds of the evolution of the evoked states differ, the same domain of the state space is explored indicating uniformity of the evoked states. All evoked states return to the spontaneous evoked spiking state as in a typical mono-stable dynamical system. In single trials, neither the original spiking rates, nor the temporal evolution in state space could distinguish simple visual scenes. PMID:27582693
Solving Constraint Satisfaction Problems with Networks of Spiking Neurons
Jonke, Zeno; Habenschuss, Stefan; Maass, Wolfgang
2016-01-01
Network of neurons in the brain apply—unlike processors in our current generation of computer hardware—an event-based processing strategy, where short pulses (spikes) are emitted sparsely by neurons to signal the occurrence of an event at a particular point in time. Such spike-based computations promise to be substantially more power-efficient than traditional clocked processing schemes. However, it turns out to be surprisingly difficult to design networks of spiking neurons that can solve difficult computational problems on the level of single spikes, rather than rates of spikes. We present here a new method for designing networks of spiking neurons via an energy function. Furthermore, we show how the energy function of a network of stochastically firing neurons can be shaped in a transparent manner by composing the networks of simple stereotypical network motifs. We show that this design approach enables networks of spiking neurons to produce approximate solutions to difficult (NP-hard) constraint satisfaction problems from the domains of planning/optimization and verification/logical inference. The resulting networks employ noise as a computational resource. Nevertheless, the timing of spikes plays an essential role in their computations. Furthermore, networks of spiking neurons carry out for the Traveling Salesman Problem a more efficient stochastic search for good solutions compared with stochastic artificial neural networks (Boltzmann machines) and Gibbs sampling. PMID:27065785
Evolution of the cerebellum as a neuronal machine for Bayesian state estimation
NASA Astrophysics Data System (ADS)
Paulin, M. G.
2005-09-01
The cerebellum evolved in association with the electric sense and vestibular sense of the earliest vertebrates. Accurate information provided by these sensory systems would have been essential for precise control of orienting behavior in predation. A simple model shows that individual spikes in electrosensory primary afferent neurons can be interpreted as measurements of prey location. Using this result, I construct a computational neural model in which the spatial distribution of spikes in a secondary electrosensory map forms a Monte Carlo approximation to the Bayesian posterior distribution of prey locations given the sense data. The neural circuit that emerges naturally to perform this task resembles the cerebellar-like hindbrain electrosensory filtering circuitry of sharks and other electrosensory vertebrates. The optimal filtering mechanism can be extended to handle dynamical targets observed from a dynamical platform; that is, to construct an optimal dynamical state estimator using spiking neurons. This may provide a generic model of cerebellar computation. Vertebrate motion-sensing neurons have specific fractional-order dynamical characteristics that allow Bayesian state estimators to be implemented elegantly and efficiently, using simple operations with asynchronous pulses, i.e. spikes. The computational neural models described in this paper represent a novel kind of particle filter, using spikes as particles. The models are specific and make testable predictions about computational mechanisms in cerebellar circuitry, while providing a plausible explanation of cerebellar contributions to aspects of motor control, perception and cognition.
Destexhe, Alain
2009-12-01
Randomly-connected networks of integrate-and-fire (IF) neurons are known to display asynchronous irregular (AI) activity states, which resemble the discharge activity recorded in the cerebral cortex of awake animals. However, it is not clear whether such activity states are specific to simple IF models, or if they also exist in networks where neurons are endowed with complex intrinsic properties similar to electrophysiological measurements. Here, we investigate the occurrence of AI states in networks of nonlinear IF neurons, such as the adaptive exponential IF (Brette-Gerstner-Izhikevich) model. This model can display intrinsic properties such as low-threshold spike (LTS), regular spiking (RS) or fast-spiking (FS). We successively investigate the oscillatory and AI dynamics of thalamic, cortical and thalamocortical networks using such models. AI states can be found in each case, sometimes with surprisingly small network size of the order of a few tens of neurons. We show that the presence of LTS neurons in cortex or in thalamus, explains the robust emergence of AI states for relatively small network sizes. Finally, we investigate the role of spike-frequency adaptation (SFA). In cortical networks with strong SFA in RS cells, the AI state is transient, but when SFA is reduced, AI states can be self-sustained for long times. In thalamocortical networks, AI states are found when the cortex is itself in an AI state, but with strong SFA, the thalamocortical network displays Up and Down state transitions, similar to intracellular recordings during slow-wave sleep or anesthesia. Self-sustained Up and Down states could also be generated by two-layer cortical networks with LTS cells. These models suggest that intrinsic properties such as adaptation and low-threshold bursting activity are crucial for the genesis and control of AI states in thalamocortical networks.
Common inputs in subthreshold membrane potential: The role of quiescent states in neuronal activity
NASA Astrophysics Data System (ADS)
Montangie, Lisandro; Montani, Fernando
2018-06-01
Experiments in certain regions of the cerebral cortex suggest that the spiking activity of neuronal populations is regulated by common non-Gaussian inputs across neurons. We model these deviations from random-walk processes with q -Gaussian distributions into simple threshold neurons, and investigate the scaling properties in large neural populations. We show that deviations from the Gaussian statistics provide a natural framework to regulate population statistics such as sparsity, entropy, and specific heat. This type of description allows us to provide an adequate strategy to explain the information encoding in the case of low neuronal activity and its possible implications on information transmission.
Energetics and dynamics of simple impulsive solar flares
NASA Technical Reports Server (NTRS)
Starr, R.; Heindl, W. A.; Crannell, C. J.; Thomas, R. J.; Batchelor, D. A.; Magun, A.
1987-01-01
Flare energetics and dynamics were studied using observations of simple impulsive spike bursts. A large, homogeneous set of events was selected to enable the most definite tests possible of competing flare models, in the absence of spatially resolved observations. The emission mechanisms and specific flare models that were considered in this investigation are described, and the derivations of the parameters that were tested are presented. Results of the correlation analysis between soft and hard X-ray energetics are also presented. The ion conduction front model and tests of that model with the well-observed spike bursts are described. Finally, conclusions drawn from this investigation and suggestions for future studies are discussed.
Bayati, Mehdi; Valizadeh, Alireza; Abbassian, Abdolhossein; Cheng, Sen
2015-01-01
Many experimental and theoretical studies have suggested that the reliable propagation of synchronous neural activity is crucial for neural information processing. The propagation of synchronous firing activity in so-called synfire chains has been studied extensively in feed-forward networks of spiking neurons. However, it remains unclear how such neural activity could emerge in recurrent neuronal networks through synaptic plasticity. In this study, we investigate whether local excitation, i.e., neurons that fire at a higher frequency than the other, spontaneously active neurons in the network, can shape a network to allow for synchronous activity propagation. We use two-dimensional, locally connected and heterogeneous neuronal networks with spike-timing dependent plasticity (STDP). We find that, in our model, local excitation drives profound network changes within seconds. In the emergent network, neural activity propagates synchronously through the network. This activity originates from the site of the local excitation and propagates through the network. The synchronous activity propagation persists, even when the local excitation is removed, since it derives from the synaptic weight matrix. Importantly, once this connectivity is established it remains stable even in the presence of spontaneous activity. Our results suggest that synfire-chain-like activity can emerge in a relatively simple way in realistic neural networks by locally exciting the desired origin of the neuronal sequence. PMID:26089794
Dynamic Hebbian Cross-Correlation Learning Resolves the Spike Timing Dependent Plasticity Conundrum.
Olde Scheper, Tjeerd V; Meredith, Rhiannon M; Mansvelder, Huibert D; van Pelt, Jaap; van Ooyen, Arjen
2017-01-01
Spike Timing-Dependent Plasticity has been found to assume many different forms. The classic STDP curve, with one potentiating and one depressing window, is only one of many possible curves that describe synaptic learning using the STDP mechanism. It has been shown experimentally that STDP curves may contain multiple LTP and LTD windows of variable width, and even inverted windows. The underlying STDP mechanism that is capable of producing such an extensive, and apparently incompatible, range of learning curves is still under investigation. In this paper, it is shown that STDP originates from a combination of two dynamic Hebbian cross-correlations of local activity at the synapse. The correlation of the presynaptic activity with the local postsynaptic activity is a robust and reliable indicator of the discrepancy between the presynaptic neuron and the postsynaptic neuron's activity. The second correlation is between the local postsynaptic activity with dendritic activity which is a good indicator of matching local synaptic and dendritic activity. We show that this simple time-independent learning rule can give rise to many forms of the STDP learning curve. The rule regulates synaptic strength without the need for spike matching or other supervisory learning mechanisms. Local differences in dendritic activity at the synapse greatly affect the cross-correlation difference which determines the relative contributions of different neural activity sources. Dendritic activity due to nearby synapses, action potentials, both forward and back-propagating, as well as inhibitory synapses will dynamically modify the local activity at the synapse, and the resulting STDP learning rule. The dynamic Hebbian learning rule ensures furthermore, that the resulting synaptic strength is dynamically stable, and that interactions between synapses do not result in local instabilities. The rule clearly demonstrates that synapses function as independent localized computational entities, each contributing to the global activity, not in a simply linear fashion, but in a manner that is appropriate to achieve local and global stability of the neuron and the entire dendritic structure.
Barmack, N.H.; Yakhnitsa, V.
2011-01-01
Cerebellar Purkinje cells have two distinct action potentials: Complex spikes (CSs) are evoked by single climbing fibers that originate from the contralateral inferior olive. Simple spikes (SSs) are often ascribed to mossy fiber---granule cell---parallel fiber inputs to Purkinje cells. Although generally accepted, this view lacks experimental support. Vestibular stimulation independently activates primary afferent mossy fibers and tertiary afferent climbing fibers that project to theuvula-nodulus (folia 8-10). CSs and SSs normally discharge antiphasically during sinusoidal roll-tilt. When CSs increase, SSs decrease. We tested the relative independence of these pathways in mice by making electrolytic microlesions of the two inferior olivary nuclei from which vestibular climbing fibers originate; the β-nucleus and dorsomedial cell column (DMCC). This reduced vestibular climbing fiber signaling to the contralateral folia 8-10, while leaving intact vestibular primary and secondary afferent mossy fibers. We recorded from Purkinje cells and interneurons in folia 8-10, identified by juxtacellular labeling with neurobiotin. Microlesions of the inferior olive increased the spontaneous discharge of SSs in contralateral folia 8-10, but blocked their modulation during vestibular stimulation. The vestibularly-evoked discharge of excitatory cerebellar interneurons (granule cells and unipolar brush cells) was not modified by olivary microlesions. The modulated discharge of stellate cells, but not Golgi cells was reduced by olivary microlesions. We conclude that vestibular modulation of CSs and SSs depends on intact climbing fibers. The absence of vestibularly-modulated SSs following olivary microlesions reflects the loss of climbing fiber-evoked stellate cell discharge. PMID:21734274
Baudot, Pierre; Levy, Manuel; Marre, Olivier; Monier, Cyril; Pananceau, Marc; Frégnac, Yves
2013-01-01
Synaptic noise is thought to be a limiting factor for computational efficiency in the brain. In visual cortex (V1), ongoing activity is present in vivo, and spiking responses to simple stimuli are highly unreliable across trials. Stimulus statistics used to plot receptive fields, however, are quite different from those experienced during natural visuomotor exploration. We recorded V1 neurons intracellularly in the anaesthetized and paralyzed cat and compared their spiking and synaptic responses to full field natural images animated by simulated eye-movements to those evoked by simpler (grating) or higher dimensionality statistics (dense noise). In most cells, natural scene animation was the only condition where high temporal precision (in the 10–20 ms range) was maintained during sparse and reliable activity. At the subthreshold level, irregular but highly reproducible membrane potential dynamics were observed, even during long (several 100 ms) “spike-less” periods. We showed that both the spatial structure of natural scenes and the temporal dynamics of eye-movements increase the signal-to-noise ratio by a non-linear amplification of the signal combined with a reduction of the subthreshold contextual noise. These data support the view that the sparsening and the time precision of the neural code in V1 may depend primarily on three factors: (1) broadband input spectrum: the bandwidth must be rich enough for recruiting optimally the diversity of spatial and time constants during recurrent processing; (2) tight temporal interplay of excitation and inhibition: conductance measurements demonstrate that natural scene statistics narrow selectively the duration of the spiking opportunity window during which the balance between excitation and inhibition changes transiently and reversibly; (3) signal energy in the lower frequency band: a minimal level of power is needed below 10 Hz to reach consistently the spiking threshold, a situation rarely reached with visual dense noise. PMID:24409121
Baudot, Pierre; Levy, Manuel; Marre, Olivier; Monier, Cyril; Pananceau, Marc; Frégnac, Yves
2013-01-01
Synaptic noise is thought to be a limiting factor for computational efficiency in the brain. In visual cortex (V1), ongoing activity is present in vivo, and spiking responses to simple stimuli are highly unreliable across trials. Stimulus statistics used to plot receptive fields, however, are quite different from those experienced during natural visuomotor exploration. We recorded V1 neurons intracellularly in the anaesthetized and paralyzed cat and compared their spiking and synaptic responses to full field natural images animated by simulated eye-movements to those evoked by simpler (grating) or higher dimensionality statistics (dense noise). In most cells, natural scene animation was the only condition where high temporal precision (in the 10-20 ms range) was maintained during sparse and reliable activity. At the subthreshold level, irregular but highly reproducible membrane potential dynamics were observed, even during long (several 100 ms) "spike-less" periods. We showed that both the spatial structure of natural scenes and the temporal dynamics of eye-movements increase the signal-to-noise ratio by a non-linear amplification of the signal combined with a reduction of the subthreshold contextual noise. These data support the view that the sparsening and the time precision of the neural code in V1 may depend primarily on three factors: (1) broadband input spectrum: the bandwidth must be rich enough for recruiting optimally the diversity of spatial and time constants during recurrent processing; (2) tight temporal interplay of excitation and inhibition: conductance measurements demonstrate that natural scene statistics narrow selectively the duration of the spiking opportunity window during which the balance between excitation and inhibition changes transiently and reversibly; (3) signal energy in the lower frequency band: a minimal level of power is needed below 10 Hz to reach consistently the spiking threshold, a situation rarely reached with visual dense noise.
Controlling self-sustained spiking activity by adding or removing one network link
NASA Astrophysics Data System (ADS)
Xu, Kesheng; Huang, Wenwen; Li, Baowen; Dhamala, Mukesh; Liu, Zonghua
2013-06-01
Being able to control the neuronal spiking activity in specific brain regions is central to a treatment scheme in several brain disorders such as epileptic seizures, mental depression, and Parkinson's diseases. Here, we present an approach for controlling self-sustained oscillations by adding or removing one directed network link in coupled neuronal oscillators, in contrast to previous approaches of adding stimuli or noise. We find that such networks can exhibit a variety of activity patterns such as on-off switch, sustained spikes, and short-term spikes. We derive the condition for a specific link to be the controller of the on-off effect. A qualitative analysis is provided to facilitate the understanding of the mechanism for spiking activity by adding one link. Our findings represent the first report on generating spike activity with the addition of only one directed link to a network and provide a deeper understanding of the microscopic roots of self-sustained spiking.
Stimulus-dependent modulation of spike burst length in cat striate cortical cells.
DeBusk, B C; DeBruyn, E J; Snider, R K; Kabara, J F; Bonds, A B
1997-07-01
Burst activity, defined by groups of two or more spikes with intervals of < or = 8 ms, was analyzed in responses to drifting sinewave gratings elicited from striate cortical neurons in anesthetized cats. Bursting varied broadly across a population of 507 simple and complex cells. Half of this population had > or = 42% of their spikes contained in bursts. The fraction of spikes in bursts did not vary as a function of average firing rate and was stationary over time. Peaks in the interspike interval histograms were found at both 3-5 ms and 10-30 ms. In many cells the locations of these peaks were independent of firing rate, indicating a quantized control of firing behavior at two different time scales. The activity at the shorter time scale most likely results from intrinsic properties of the cell membrane, and that at the longer scale from recurrent network excitation. Burst frequency (bursts per s) and burst length (spikes per burst) both depended on firing rate. Burst frequency was essentially linear with firing rate, whereas burst length was a nonlinear function of firing rate and was also governed by stimulus orientation. At a given firing rate, burst length was greater for optimal orientations than for nonoptimal orientations. No organized orientation dependence was seen in bursts from lateral geniculate nucleus cells. Activation of cortical contrast gain control at low response amplitudes resulted in no burst length modulation, but burst shortening at optimal orientations was found in responses characterized by supersaturation. At a given firing rate, cortical burst length was shortened by microinjection of gamma-aminobutyric acid (GABA), and bursts became longer in the presence of N-methyl-bicuculline, a GABA(A) receptor blocker. These results are consistent with a model in which responses are reduced at nonoptimal orientations, at least in part, by burst shortening that is mediated by GABA. A similar mechanism contributes to response supersaturation at high contrasts via recruitment of inhibitory responses that are tuned to adjacent orientations. Burst length modulation can serve as a form of coding by supporting dynamic, stimulus-dependent reorganization of the effectiveness of individual network connections.
Adaptive coupling optimized spiking coherence and synchronization in Newman-Watts neuronal networks
NASA Astrophysics Data System (ADS)
Gong, Yubing; Xu, Bo; Wu, Ya'nan
2013-09-01
In this paper, we have numerically studied the effect of adaptive coupling on the temporal coherence and synchronization of spiking activity in Newman-Watts Hodgkin-Huxley neuronal networks. It is found that random shortcuts can enhance the spiking synchronization more rapidly when the increment speed of adaptive coupling is increased and can optimize the temporal coherence of spikes only when the increment speed of adaptive coupling is appropriate. It is also found that adaptive coupling strength can enhance the synchronization of spikes and can optimize the temporal coherence of spikes when random shortcuts are appropriate. These results show that adaptive coupling has a big influence on random shortcuts related spiking activity and can enhance and optimize the temporal coherence and synchronization of spiking activity of the network. These findings can help better understand the roles of adaptive coupling for improving the information processing and transmission in neural systems.
Generalized activity equations for spiking neural network dynamics.
Buice, Michael A; Chow, Carson C
2013-01-01
Much progress has been made in uncovering the computational capabilities of spiking neural networks. However, spiking neurons will always be more expensive to simulate compared to rate neurons because of the inherent disparity in time scales-the spike duration time is much shorter than the inter-spike time, which is much shorter than any learning time scale. In numerical analysis, this is a classic stiff problem. Spiking neurons are also much more difficult to study analytically. One possible approach to making spiking networks more tractable is to augment mean field activity models with some information about spiking correlations. For example, such a generalized activity model could carry information about spiking rates and correlations between spikes self-consistently. Here, we will show how this can be accomplished by constructing a complete formal probabilistic description of the network and then expanding around a small parameter such as the inverse of the number of neurons in the network. The mean field theory of the system gives a rate-like description. The first order terms in the perturbation expansion keep track of covariances.
Signal propagation along the axon.
Rama, Sylvain; Zbili, Mickaël; Debanne, Dominique
2018-03-08
Axons link distant brain regions and are usually considered as simple transmission cables in which reliable propagation occurs once an action potential has been generated. Safe propagation of action potentials relies on specific ion channel expression at strategic points of the axon such as nodes of Ranvier or axonal branch points. However, while action potentials are generally considered as the quantum of neuronal information, their signaling is not entirely digital. In fact, both their shape and their conduction speed have been shown to be modulated by activity, leading to regulations of synaptic latency and synaptic strength. We report here newly identified mechanisms of (1) safe spike propagation along the axon, (2) compartmentalization of action potential shape in the axon, (3) analog modulation of spike-evoked synaptic transmission and (4) alteration in conduction time after persistent regulation of axon morphology in central neurons. We discuss the contribution of these regulations in information processing. Copyright © 2018 Elsevier Ltd. All rights reserved.
The Emergence of Contrast-Invariant Orientation Tuning in Simple Cells of Cat Visual Cortex
Finn, Ian M.; Priebe, Nicholas J.; Ferster, David
2007-01-01
Simple cells in primary visual cortex exhibit contrast-invariant orientation tuning, in seeming contradiction to feed-forward models relying on lateral geniculate nucleus (LGN) input alone. Contrast invariance has therefore been thought to depend on the presence of intracortical lateral inhibition. In vivo intracellular recordings instead suggest that contrast invariance can be explained by three properties of the excitatory pathway. 1) Depolarizations evoked by orthogonal stimuli are determined by the amount of excitation a cell receives from the LGN, relative to the excitation it receives from other cortical cells. 2) Depolarizations evoked by preferred stimuli saturate at lower contrasts than the spike output of LGN relay cells. 3) Visual stimuli evoke contrast-dependent changes in trial-to-trial variability, which lead to contrast-dependent changes in the relationship between membrane potential and spike rate. Thus, high-contrast, orthogonally-oriented stimuli that evoke significant depolarizations evoke few spikes. Together these mechanisms, without lateral inhibition, can account for contrast-invariant stimulus selectivity. PMID:17408583
A simple method for the enrichment of bisphenols using boron nitride.
Fischnaller, Martin; Bakry, Rania; Bonn, Günther K
2016-03-01
A simple solid-phase extraction method for the enrichment of 5 bisphenol derivatives using hexagonal boron nitride (BN) was developed. BN was applied to concentrate bisphenol derivatives in spiked water samples and the compounds were analyzed using HPLC coupled to fluorescence detection. The effect of pH and organic solvents on the extraction efficiency was investigated. An enrichment factor up to 100 was achieved without evaporation and reconstitution. The developed method was applied for the determination of bisphenol A migrated from some polycarbonate plastic products. Furthermore, bisphenol derivatives were analyzed in spiked and non-spiked canned food and beverages. None of the analyzed samples exceeded the migration limit set by the European Union of 0.6mg/kg food. The method showed good recovery rates ranging from 80% to 110%. Validation of the method was performed in terms of accuracy and precision. The applied method is robust, fast, efficient and easily adaptable to different analytical problems. Copyright © 2015 Elsevier Ltd. All rights reserved.
Augustin, Moritz; Ladenbauer, Josef; Baumann, Fabian; Obermayer, Klaus
2017-06-01
The spiking activity of single neurons can be well described by a nonlinear integrate-and-fire model that includes somatic adaptation. When exposed to fluctuating inputs sparsely coupled populations of these model neurons exhibit stochastic collective dynamics that can be effectively characterized using the Fokker-Planck equation. This approach, however, leads to a model with an infinite-dimensional state space and non-standard boundary conditions. Here we derive from that description four simple models for the spike rate dynamics in terms of low-dimensional ordinary differential equations using two different reduction techniques: one uses the spectral decomposition of the Fokker-Planck operator, the other is based on a cascade of two linear filters and a nonlinearity, which are determined from the Fokker-Planck equation and semi-analytically approximated. We evaluate the reduced models for a wide range of biologically plausible input statistics and find that both approximation approaches lead to spike rate models that accurately reproduce the spiking behavior of the underlying adaptive integrate-and-fire population. Particularly the cascade-based models are overall most accurate and robust, especially in the sensitive region of rapidly changing input. For the mean-driven regime, when input fluctuations are not too strong and fast, however, the best performing model is based on the spectral decomposition. The low-dimensional models also well reproduce stable oscillatory spike rate dynamics that are generated either by recurrent synaptic excitation and neuronal adaptation or through delayed inhibitory synaptic feedback. The computational demands of the reduced models are very low but the implementation complexity differs between the different model variants. Therefore we have made available implementations that allow to numerically integrate the low-dimensional spike rate models as well as the Fokker-Planck partial differential equation in efficient ways for arbitrary model parametrizations as open source software. The derived spike rate descriptions retain a direct link to the properties of single neurons, allow for convenient mathematical analyses of network states, and are well suited for application in neural mass/mean-field based brain network models.
Baumann, Fabian; Obermayer, Klaus
2017-01-01
The spiking activity of single neurons can be well described by a nonlinear integrate-and-fire model that includes somatic adaptation. When exposed to fluctuating inputs sparsely coupled populations of these model neurons exhibit stochastic collective dynamics that can be effectively characterized using the Fokker-Planck equation. This approach, however, leads to a model with an infinite-dimensional state space and non-standard boundary conditions. Here we derive from that description four simple models for the spike rate dynamics in terms of low-dimensional ordinary differential equations using two different reduction techniques: one uses the spectral decomposition of the Fokker-Planck operator, the other is based on a cascade of two linear filters and a nonlinearity, which are determined from the Fokker-Planck equation and semi-analytically approximated. We evaluate the reduced models for a wide range of biologically plausible input statistics and find that both approximation approaches lead to spike rate models that accurately reproduce the spiking behavior of the underlying adaptive integrate-and-fire population. Particularly the cascade-based models are overall most accurate and robust, especially in the sensitive region of rapidly changing input. For the mean-driven regime, when input fluctuations are not too strong and fast, however, the best performing model is based on the spectral decomposition. The low-dimensional models also well reproduce stable oscillatory spike rate dynamics that are generated either by recurrent synaptic excitation and neuronal adaptation or through delayed inhibitory synaptic feedback. The computational demands of the reduced models are very low but the implementation complexity differs between the different model variants. Therefore we have made available implementations that allow to numerically integrate the low-dimensional spike rate models as well as the Fokker-Planck partial differential equation in efficient ways for arbitrary model parametrizations as open source software. The derived spike rate descriptions retain a direct link to the properties of single neurons, allow for convenient mathematical analyses of network states, and are well suited for application in neural mass/mean-field based brain network models. PMID:28644841
Heers, Marcel; Hirschmann, Jan; Jacobs, Julia; Dümpelmann, Matthias; Butz, Markus; von Lehe, Marec; Elger, Christian E; Schnitzler, Alfons; Wellmer, Jörg
2014-09-01
Spike-based magnetoencephalography (MEG) source localization is an established method in the presurgical evaluation of epilepsy patients. Focal cortical dysplasias (FCDs) are associated with focal epileptic discharges of variable morphologies in the beta frequency band in addition to single epileptic spikes. Therefore, we investigated the potential diagnostic value of MEG-based localization of spike-independent beta band (12-30Hz) activity generated by epileptogenic lesions. Five patients with FCD IIB underwent MEG. In one patient, invasive EEG (iEEG) was recorded simultaneously with MEG. In two patients, iEEG succeeded MEG, and two patients had MEG only. MEG and iEEG were evaluated for epileptic spikes. Two minutes of iEEG data and MEG epochs with no spikes as well as MEG epochs with epileptic spikes were analyzed in the frequency domain. MEG oscillatory beta band activity was localized using Dynamic Imaging of Coherent Sources. Intralesional beta band activity was coherent between simultaneous MEG and iEEG recordings. Continuous 14Hz beta band power correlated with the rate of interictal epileptic discharges detected in iEEG. In cases where visual MEG evaluation revealed epileptic spikes, the sources of beta band activity localized within <2cm of the epileptogenic lesion as shown on magnetic resonance imaging. This result held even when visually marked epileptic spikes were deselected. When epileptic spikes were detectable in iEEG but not MEG, MEG beta band activity source localization failed. Source localization of beta band activity has the potential to contribute to the identification of epileptic foci in addition to source localization of visually marked epileptic spikes. Thus, this technique may assist in the localization of epileptic foci in patients with suspected FCD. Copyright © 2014 Elsevier B.V. All rights reserved.
Decimetre Waves and Cerebellar Cortex Key Element - Purkinje Cells
NASA Astrophysics Data System (ADS)
Maharramov, Akif A.
2007-04-01
Acute experiments have been carried out on both decerebrated and anaesthetized adult cats exposed to Decimetre Range Microwaves (DRM) (λ=65 cm, duration of exposition -10 min., at least) by the help of a 2 cm radius contact applicator located on the temple part of the head with cerebellum in the centre of projection of irradiation conducted from portable physiotherapeutic apparatus ``Romashka''. Extracelullar registration of Purkinje Cells (PC) impulse activities have been led by glass microelectrodes. Statistical and computational analyses of PC activities have been realized by the help of histograms - the characteristic distribution of the number of interimpulse intervals (II) between electrical discharges of a neuron on the II durations, drawn up by the help of a computer. The results obtained revealed the reaction of PC to DRM as a succession of starting to react of PC electrophysiological parameters, beginning from decreasing of known ``Inhibitory Pause'' duration, and further, at first, ``Simple Spikes'' then ``Complex Spikes'' frequencies' increase, and furthermore, durations' increase in ``Big Interimpulse Intervals'', parameter, introduced for the first time by us, in this way, showing the ``evolutionary'' nature of Electromagnetic Fields and Living object interactions.
Generalized analog thresholding for spike acquisition at ultralow sampling rates
He, Bryan D.; Wein, Alex; Varshney, Lav R.; Kusuma, Julius; Richardson, Andrew G.
2015-01-01
Efficient spike acquisition techniques are needed to bridge the divide from creating large multielectrode arrays (MEA) to achieving whole-cortex electrophysiology. In this paper, we introduce generalized analog thresholding (gAT), which achieves millisecond temporal resolution with sampling rates as low as 10 Hz. Consider the torrent of data from a single 1,000-channel MEA, which would generate more than 3 GB/min using standard 30-kHz Nyquist sampling. Recent neural signal processing methods based on compressive sensing still require Nyquist sampling as a first step and use iterative methods to reconstruct spikes. Analog thresholding (AT) remains the best existing alternative, where spike waveforms are passed through an analog comparator and sampled at 1 kHz, with instant spike reconstruction. By generalizing AT, the new method reduces sampling rates another order of magnitude, detects more than one spike per interval, and reconstructs spike width. Unlike compressive sensing, the new method reveals a simple closed-form solution to achieve instant (noniterative) spike reconstruction. The base method is already robust to hardware nonidealities, including realistic quantization error and integration noise. Because it achieves these considerable specifications using hardware-friendly components like integrators and comparators, generalized AT could translate large-scale MEAs into implantable devices for scientific investigation and medical technology. PMID:25904712
The introduction of dengue vaccine may temporarily cause large spikes in prevalence.
Pandey, A; Medlock, J
2015-04-01
A dengue vaccine is expected to be available within a few years. Once vaccine is available, policy-makers will need to develop suitable policies to allocate the vaccine. Mathematical models of dengue transmission predict complex temporal patterns in prevalence, driven by seasonal oscillations in mosquito abundance. In particular, vaccine introduction may induce a transient period immediately after vaccine introduction where prevalence can spike higher than in the pre-vaccination period. These spikes in prevalence could lead to doubts about the vaccination programme among the public and even among decision-makers, possibly impeding the vaccination programme. Using simple dengue transmission models, we found that large transient spikes in prevalence are robust phenomena that occur when vaccine coverage and vaccine efficacy are not either both very high or both very low. Despite the presence of transient spikes in prevalence, the models predict that vaccination does always reduce the total number of infections in the 15 years after vaccine introduction. We conclude that policy-makers should prepare for spikes in prevalence after vaccine introduction to mitigate the burden of these spikes and to accurately measure the effectiveness of the vaccine programme.
Spiking and bursting patterns of fractional-order Izhikevich model
NASA Astrophysics Data System (ADS)
Teka, Wondimu W.; Upadhyay, Ranjit Kumar; Mondal, Argha
2018-03-01
Bursting and spiking oscillations play major roles in processing and transmitting information in the brain through cortical neurons that respond differently to the same signal. These oscillations display complex dynamics that might be produced by using neuronal models and varying many model parameters. Recent studies have shown that models with fractional order can produce several types of history-dependent neuronal activities without the adjustment of several parameters. We studied the fractional-order Izhikevich model and analyzed different kinds of oscillations that emerge from the fractional dynamics. The model produces a wide range of neuronal spike responses, including regular spiking, fast spiking, intrinsic bursting, mixed mode oscillations, regular bursting and chattering, by adjusting only the fractional order. Both the active and silent phase of the burst increase when the fractional-order model further deviates from the classical model. For smaller fractional order, the model produces memory dependent spiking activity after the pulse signal turned off. This special spiking activity and other properties of the fractional-order model are caused by the memory trace that emerges from the fractional-order dynamics and integrates all the past activities of the neuron. On the network level, the response of the neuronal network shifts from random to scale-free spiking. Our results suggest that the complex dynamics of spiking and bursting can be the result of the long-term dependence and interaction of intracellular and extracellular ionic currents.
A MAPK-Driven Feedback Loop Suppresses Rac Activity to Promote RhoA-Driven Cancer Cell Invasion
Hetmanski, Joseph H. R.; Zindy, Egor; Schwartz, Jean-Marc; Caswell, Patrick T.
2016-01-01
Cell migration in 3D microenvironments is fundamental to development, homeostasis and the pathobiology of diseases such as cancer. Rab-coupling protein (RCP) dependent co-trafficking of α5β1 and EGFR1 promotes cancer cell invasion into fibronectin (FN) containing extracellular matrix (ECM), by potentiating EGFR1 signalling at the front of invasive cells. This promotes a switch in RhoGTPase signalling to inhibit Rac1 and activate a RhoA-ROCK-Formin homology domain-containing 3 (FHOD3) pathway and generate filopodial actin-spike protrusions which drive invasion. To further understand the signalling network that drives RCP-driven invasive migration, we generated a Boolean logical model based on existing network pathways/models, where each node can be interrogated by computational simulation. The model predicted an unanticipated feedback loop, whereby Raf/MEK/ERK signalling maintains suppression of Rac1 by inhibiting the Rac-activating Sos1-Eps8-Abi1 complex, allowing RhoA activity to predominate in invasive protrusions. MEK inhibition was sufficient to promote lamellipodia formation and oppose filopodial actin-spike formation, and led to activation of Rac and inactivation of RhoA at the leading edge of cells moving in 3D matrix. Furthermore, MEK inhibition abrogated RCP/α5β1/EGFR1-driven invasive migration. However, upon knockdown of Eps8 (to suppress the Sos1-Abi1-Eps8 complex), MEK inhibition had no effect on RhoGTPase activity and did not oppose invasive migration, suggesting that MEK-ERK signalling suppresses the Rac-activating Sos1-Abi1-Eps8 complex to maintain RhoA activity and promote filopodial actin-spike formation and invasive migration. Our study highlights the predictive potential of mathematical modelling approaches, and demonstrates that a simple intervention (MEK-inhibition) could be of therapeutic benefit in preventing invasive migration and metastasis. PMID:27138333
Implementing Signature Neural Networks with Spiking Neurons
Carrillo-Medina, José Luis; Latorre, Roberto
2016-01-01
Spiking Neural Networks constitute the most promising approach to develop realistic Artificial Neural Networks (ANNs). Unlike traditional firing rate-based paradigms, information coding in spiking models is based on the precise timing of individual spikes. It has been demonstrated that spiking ANNs can be successfully and efficiently applied to multiple realistic problems solvable with traditional strategies (e.g., data classification or pattern recognition). In recent years, major breakthroughs in neuroscience research have discovered new relevant computational principles in different living neural systems. Could ANNs benefit from some of these recent findings providing novel elements of inspiration? This is an intriguing question for the research community and the development of spiking ANNs including novel bio-inspired information coding and processing strategies is gaining attention. From this perspective, in this work, we adapt the core concepts of the recently proposed Signature Neural Network paradigm—i.e., neural signatures to identify each unit in the network, local information contextualization during the processing, and multicoding strategies for information propagation regarding the origin and the content of the data—to be employed in a spiking neural network. To the best of our knowledge, none of these mechanisms have been used yet in the context of ANNs of spiking neurons. This paper provides a proof-of-concept for their applicability in such networks. Computer simulations show that a simple network model like the discussed here exhibits complex self-organizing properties. The combination of multiple simultaneous encoding schemes allows the network to generate coexisting spatio-temporal patterns of activity encoding information in different spatio-temporal spaces. As a function of the network and/or intra-unit parameters shaping the corresponding encoding modality, different forms of competition among the evoked patterns can emerge even in the absence of inhibitory connections. These parameters also modulate the memory capabilities of the network. The dynamical modes observed in the different informational dimensions in a given moment are independent and they only depend on the parameters shaping the information processing in this dimension. In view of these results, we argue that plasticity mechanisms inside individual cells and multicoding strategies can provide additional computational properties to spiking neural networks, which could enhance their capacity and performance in a wide variety of real-world tasks. PMID:28066221
Implementing Signature Neural Networks with Spiking Neurons.
Carrillo-Medina, José Luis; Latorre, Roberto
2016-01-01
Spiking Neural Networks constitute the most promising approach to develop realistic Artificial Neural Networks (ANNs). Unlike traditional firing rate-based paradigms, information coding in spiking models is based on the precise timing of individual spikes. It has been demonstrated that spiking ANNs can be successfully and efficiently applied to multiple realistic problems solvable with traditional strategies (e.g., data classification or pattern recognition). In recent years, major breakthroughs in neuroscience research have discovered new relevant computational principles in different living neural systems. Could ANNs benefit from some of these recent findings providing novel elements of inspiration? This is an intriguing question for the research community and the development of spiking ANNs including novel bio-inspired information coding and processing strategies is gaining attention. From this perspective, in this work, we adapt the core concepts of the recently proposed Signature Neural Network paradigm-i.e., neural signatures to identify each unit in the network, local information contextualization during the processing, and multicoding strategies for information propagation regarding the origin and the content of the data-to be employed in a spiking neural network. To the best of our knowledge, none of these mechanisms have been used yet in the context of ANNs of spiking neurons. This paper provides a proof-of-concept for their applicability in such networks. Computer simulations show that a simple network model like the discussed here exhibits complex self-organizing properties. The combination of multiple simultaneous encoding schemes allows the network to generate coexisting spatio-temporal patterns of activity encoding information in different spatio-temporal spaces. As a function of the network and/or intra-unit parameters shaping the corresponding encoding modality, different forms of competition among the evoked patterns can emerge even in the absence of inhibitory connections. These parameters also modulate the memory capabilities of the network. The dynamical modes observed in the different informational dimensions in a given moment are independent and they only depend on the parameters shaping the information processing in this dimension. In view of these results, we argue that plasticity mechanisms inside individual cells and multicoding strategies can provide additional computational properties to spiking neural networks, which could enhance their capacity and performance in a wide variety of real-world tasks.
Improved selenium recovery from tissue with modified sample decomposition
Brumbaugh, W. G.; Walther, M.J.
1991-01-01
The present paper describes a simple modification of a recently reported decomposition method for determination of selenium in biological tissue by hydride generation atomic absorption. The modified method yielded slightly higher selenium recoveries (3-4%) for selected reference tissues and fish tissue spiked with selenomethionine. Radiotracer experiments indicated that the addition of a small volume of hydrochloric acid to the wet digestate mixture reduced slight losses of selenium as the sample initially went to dryness before ashing. With the modified method, selenium spiked as selenomethionine behaved more like the selenium in reference tissues than did the inorganic spike forms when this digestion modification was used.
Miyashita, Y; Nagao, S
1984-01-01
Ionophoretic application of bicuculline, an antagonist of gamma-aminobutyric acid (GABA), was used to examine the contribution of intracortical inhibition to vestibular responses of Purkinje cells in the cerebellar flocculus of alert rabbits. Purkinje cells were sampled extracellularly (with triple-barrelled micropipettes) from the floccular area where electrical stimulation through the micro-electrode evoked abduction of the ipsilateral eye, indicating its close functional relationship to the horizontal vestibulo-ocular reflex. These cells exhibited frequency modulation of simple spike discharges in-phase or out-phase with sinusoidal head rotation (0.5 cycles/s, 5 degrees peak-to-peak) in the horizontal plane. Bicuculline was ejected ionophoretically through one barrel with a 20-60 nA current. The pharmacological effectiveness of the ejected bicuculline was confirmed for each Purkinje cell by its blocking action upon the depressant action of GABA applied ionophoretically through another barrel. Bicuculline usually shifted the simple spike modulation in the in-phase direction: it reduced the amplitude of out-phase modulation in three cells, converted out-phase modulation to the in-phase type in four cells, and increased in-phase modulation in five cells. In three other cells, however, bicuculline shifted the modulation in the out-phase direction. Because bicuculline application usually increased the resting discharge level of a Purkinje cell, ionophoretic application of DL-homocysteate was used in ten Purkinje cells to control for the effect of a generalized increase in excitability. In contrast to bicuculline, DL-homocysteate generally induced a slight increase of the simple spike modulation regardless of the phase relationship. Since frequency modulation of the simple spike discharges of flocculus Purkinje cells is presumed to contribute to the control of vestibulo-ocular reflexes, these results point to an important functional role of intracortical post-synaptic inhibition in the cerebellar cortex. PMID:6611408
Kobayashi, Katsuhiro; Jacobs, Julia; Gotman, Jean
2013-01-01
Objective A novel type of statistical time-frequency analysis was developed to elucidate changes of high-frequency EEG activity associated with epileptic spikes. Methods The method uses the Gabor Transform and detects changes of power in comparison to background activity using t-statistics that are controlled by the false discovery rate (FDR) to correct type I error of multiple testing. The analysis was applied to EEGs recorded at 2000 Hz from three patients with mesial temporal lobe epilepsy. Results Spike-related increase of high-frequency oscillations (HFOs) was clearly shown in the FDR-controlled t-spectra: it was most dramatic in spikes recorded from the hippocampus when the hippocampus was the seizure onset zone (SOZ). Depression of fast activity was observed immediately after the spikes, especially consistently in the discharges from the hippocampal SOZ. It corresponded to the slow wave part in case of spike-and-slow-wave complexes, but it was noted even in spikes without apparent slow waves. In one patient, a gradual increase of power above 200 Hz preceded spikes. Conclusions FDR-controlled t-spectra clearly detected the spike-related changes of HFOs that were unclear in standard power spectra. Significance We developed a promising tool to study the HFOs that may be closely linked to the pathophysiology of epileptogenesis. PMID:19394892
Field-theoretic approach to fluctuation effects in neural networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buice, Michael A.; Cowan, Jack D.; Mathematics Department, University of Chicago, Chicago, Illinois 60637
A well-defined stochastic theory for neural activity, which permits the calculation of arbitrary statistical moments and equations governing them, is a potentially valuable tool for theoretical neuroscience. We produce such a theory by analyzing the dynamics of neural activity using field theoretic methods for nonequilibrium statistical processes. Assuming that neural network activity is Markovian, we construct the effective spike model, which describes both neural fluctuations and response. This analysis leads to a systematic expansion of corrections to mean field theory, which for the effective spike model is a simple version of the Wilson-Cowan equation. We argue that neural activity governedmore » by this model exhibits a dynamical phase transition which is in the universality class of directed percolation. More general models (which may incorporate refractoriness) can exhibit other universality classes, such as dynamic isotropic percolation. Because of the extremely high connectivity in typical networks, it is expected that higher-order terms in the systematic expansion are small for experimentally accessible measurements, and thus, consistent with measurements in neocortical slice preparations, we expect mean field exponents for the transition. We provide a quantitative criterion for the relative magnitude of each term in the systematic expansion, analogous to the Ginsburg criterion. Experimental identification of dynamic universality classes in vivo is an outstanding and important question for neuroscience.« less
Non-causal spike filtering improves decoding of movement intention for intracortical BCIs
Masse, Nicolas Y.; Jarosiewicz, Beata; Simeral, John D.; Bacher, Daniel; Stavisky, Sergey D.; Cash, Sydney S.; Oakley, Erin M.; Berhanu, Etsub; Eskandar, Emad; Friehs, Gerhard; Hochberg, Leigh R.; Donoghue, John P.
2014-01-01
Background Multiple types of neural signals are available for controlling assistive devices through brain-computer interfaces (BCIs). Intracortically-recorded spiking neural signals are attractive for BCIs because they can in principle provide greater fidelity of encoded information compared to electrocorticographic (ECoG) signals and electroencephalograms (EEGs). Recent reports show that the information content of these spiking neural signals can be reliably extracted simply by causally band-pass filtering the recorded extracellular voltage signals and then applying a spike detection threshold, without relying on “sorting” action potentials. New method We show that replacing the causal filter with an equivalent non-causal filter increases the information content extracted from the extracellular spiking signal and improves decoding of intended movement direction. This method can be used for real-time BCI applications by using a 4 ms lag between recording and filtering neural signals. Results Across 18 sessions from two people with tetraplegia enrolled in the BrainGate2 pilot clinical trial, we found that threshold crossing events extracted using this non-causal filtering method were significantly more informative of each participant’s intended cursor kinematics compared to threshold crossing events derived from causally filtered signals. This new method decreased the mean angular error between the intended and decoded cursor direction by 9.7° for participant S3, who was implanted 5.4 years prior to this study, and by 3.5° for participant T2, who was implanted 3 months prior to this study. Conclusions Non-causally filtering neural signals prior to extracting threshold crossing events may be a simple yet effective way to condition intracortically recorded neural activity for direct control of external devices through BCIs. PMID:25128256
Transitions to Synchrony in Coupled Bursting Neurons
NASA Astrophysics Data System (ADS)
Dhamala, Mukeshwar; Jirsa, Viktor K.; Ding, Mingzhou
2004-01-01
Certain cells in the brain, for example, thalamic neurons during sleep, show spike-burst activity. We study such spike-burst neural activity and the transitions to a synchronized state using a model of coupled bursting neurons. In an electrically coupled network, we show that the increase of coupling strength increases incoherence first and then induces two different transitions to synchronized states, one associated with bursts and the other with spikes. These sequential transitions to synchronized states are determined by the zero crossings of the maximum transverse Lyapunov exponents. These results suggest that synchronization of spike-burst activity is a multi-time-scale phenomenon and burst synchrony is a precursor to spike synchrony.
Modulation of V1 Spike Response by Temporal Interval of Spatiotemporal Stimulus Sequence
Kim, Taekjun; Kim, HyungGoo R.; Kim, Kayeon; Lee, Choongkil
2012-01-01
The spike activity of single neurons of the primary visual cortex (V1) becomes more selective and reliable in response to wide-field natural scenes compared to smaller stimuli confined to the classical receptive field (RF). However, it is largely unknown what aspects of natural scenes increase the selectivity of V1 neurons. One hypothesis is that modulation by surround interaction is highly sensitive to small changes in spatiotemporal aspects of RF surround. Such a fine-tuned modulation would enable single neurons to hold information about spatiotemporal sequences of oriented stimuli, which extends the role of V1 neurons as a simple spatiotemporal filter confined to the RF. In the current study, we examined the hypothesis in the V1 of awake behaving monkeys, by testing whether the spike response of single V1 neurons is modulated by temporal interval of spatiotemporal stimulus sequence encompassing inside and outside the RF. We used two identical Gabor stimuli that were sequentially presented with a variable stimulus onset asynchrony (SOA): the preceding one (S1) outside the RF and the following one (S2) in the RF. This stimulus configuration enabled us to examine the spatiotemporal selectivity of response modulation from a focal surround region. Although S1 alone did not evoke spike responses, visual response to S2 was modulated for SOA in the range of tens of milliseconds. These results suggest that V1 neurons participate in processing spatiotemporal sequences of oriented stimuli extending outside the RF. PMID:23091631
Load alleviation maneuvers for a launch vehicle
NASA Technical Reports Server (NTRS)
Seywald, Hans; Bless, Robert
1993-01-01
This paper addresses the design of a forward-looking autopilot that is capable of employing a priori knowledge of wind gusts ahead of the flight path to reduce the bending loads experienced by a launch vehicle. The analysis presented in the present paper is only preliminary, employing a very simple vehicle dynamical model and restricting itself to wind gusts of the form of isolated spikes. The main result of the present study is that LQR based feedback laws are inappropriate to handle spike-type wind perturbations with large amplitude and narrow base. The best performance is achieved with an interior-point penalty optimal control formulation which can be well approximated by a simple feedback control law. Reduction of the maximum bending loads by nearly 50 percent is demonstrated.
Functional Neuroimaging of Spike-Wave Seizures
Motelow, Joshua E.; Blumenfeld, Hal
2013-01-01
Generalized spike-wave seizures are typically brief events associated with dynamic changes in brain physiology, metabolism, and behavior. Functional magnetic resonance imaging (fMRI) provides a relatively high spatio-temporal resolution method for imaging cortical-subcortical network activity during spike-wave seizures. Patients with spike-wave seizures often have episodes of staring and unresponsiveness which interfere with normal behavior. Results from human fMRI studies suggest that spike-wave seizures disrupt specific networks in the thalamus and fronto-parietal association cortex which are critical for normal attentive consciousness. However, the neuronal activity underlying imaging changes seen during fMRI is not well understood, particularly in abnormal conditions such as seizures. Animal models have begun to provide important fundamental insights into the neuronal basis for fMRI changes during spike-wave activity. Work from these models including both fMRI and direct neuronal recordings suggest that, like in humans, specific cortical-subcortical networks are involved in spike-wave, while other regions are spared. Regions showing fMRI increases demonstrate correlated increases in neuronal activity in animal models. The mechanisms of fMRI decreases in spike-wave will require further investigation. A better understanding of the specific brain regions involved in generating spike-wave seizures may help guide efforts to develop targeted therapies aimed at preventing or reversing abnormal excitability in these brain regions, ultimately leading to a cure for this disorder. PMID:18839093
Le Rouic, J F; Breger, D; Peronnet, P; Hermouet-Leclair, E; Alphandari, A; Pousset-Decré, C; Badat, I; Becquet, F
2016-05-01
To describe a technique for extemporaneously drawing up bevacizumab for intravitreal injection (IVT) and report the rate of post-injection endophthtalmitis. Retrospective monocentric analysis (January 2010-December 2014) of all IVT of bevacizumab drawn up with the following technique: in the operating room (class ISO 7) through a mini-spike with an integrated bacteria retentive air filter. The surgeon was wearing sterile gloves and a mask. The assisting nurse wore a mask. The bevacizumab vial was discarded at the end of each session. Six thousand two hundred and thirty-six bevacizumab injections were performed. One case of endophthalmitis was noted (0.016%). During the same period, 4 cases of endophthalmitis were found after IVT of other drugs (4/32,992; 0.012%. P=0.8). Intravitreal injection of bevacizumab after extemporaneous withdrawal through a mini-spike filter is a simple and safe technique. The risk of postoperative endophthalmitis is very low. This simple technique facilitates access to compounded bevacizumab. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Predicting Spike Occurrence and Neuronal Responsiveness from LFPs in Primary Somatosensory Cortex
Storchi, Riccardo; Zippo, Antonio G.; Caramenti, Gian Carlo; Valente, Maurizio; Biella, Gabriele E. M.
2012-01-01
Local Field Potentials (LFPs) integrate multiple neuronal events like synaptic inputs and intracellular potentials. LFP spatiotemporal features are particularly relevant in view of their applications both in research (e.g. for understanding brain rhythms, inter-areal neural communication and neronal coding) and in the clinics (e.g. for improving invasive Brain-Machine Interface devices). However the relation between LFPs and spikes is complex and not fully understood. As spikes represent the fundamental currency of neuronal communication this gap in knowledge strongly limits our comprehension of neuronal phenomena underlying LFPs. We investigated the LFP-spike relation during tactile stimulation in primary somatosensory (S-I) cortex in the rat. First we quantified how reliably LFPs and spikes code for a stimulus occurrence. Then we used the information obtained from our analyses to design a predictive model for spike occurrence based on LFP inputs. The model was endowed with a flexible meta-structure whose exact form, both in parameters and structure, was estimated by using a multi-objective optimization strategy. Our method provided a set of nonlinear simple equations that maximized the match between models and true neurons in terms of spike timings and Peri Stimulus Time Histograms. We found that both LFPs and spikes can code for stimulus occurrence with millisecond precision, showing, however, high variability. Spike patterns were predicted significantly above chance for 75% of the neurons analysed. Crucially, the level of prediction accuracy depended on the reliability in coding for the stimulus occurrence. The best predictions were obtained when both spikes and LFPs were highly responsive to the stimuli. Spike reliability is known to depend on neuron intrinsic properties (i.e. on channel noise) and on spontaneous local network fluctuations. Our results suggest that the latter, measured through the LFP response variability, play a dominant role. PMID:22586452
Predicting spike occurrence and neuronal responsiveness from LFPs in primary somatosensory cortex.
Storchi, Riccardo; Zippo, Antonio G; Caramenti, Gian Carlo; Valente, Maurizio; Biella, Gabriele E M
2012-01-01
Local Field Potentials (LFPs) integrate multiple neuronal events like synaptic inputs and intracellular potentials. LFP spatiotemporal features are particularly relevant in view of their applications both in research (e.g. for understanding brain rhythms, inter-areal neural communication and neuronal coding) and in the clinics (e.g. for improving invasive Brain-Machine Interface devices). However the relation between LFPs and spikes is complex and not fully understood. As spikes represent the fundamental currency of neuronal communication this gap in knowledge strongly limits our comprehension of neuronal phenomena underlying LFPs. We investigated the LFP-spike relation during tactile stimulation in primary somatosensory (S-I) cortex in the rat. First we quantified how reliably LFPs and spikes code for a stimulus occurrence. Then we used the information obtained from our analyses to design a predictive model for spike occurrence based on LFP inputs. The model was endowed with a flexible meta-structure whose exact form, both in parameters and structure, was estimated by using a multi-objective optimization strategy. Our method provided a set of nonlinear simple equations that maximized the match between models and true neurons in terms of spike timings and Peri Stimulus Time Histograms. We found that both LFPs and spikes can code for stimulus occurrence with millisecond precision, showing, however, high variability. Spike patterns were predicted significantly above chance for 75% of the neurons analysed. Crucially, the level of prediction accuracy depended on the reliability in coding for the stimulus occurrence. The best predictions were obtained when both spikes and LFPs were highly responsive to the stimuli. Spike reliability is known to depend on neuron intrinsic properties (i.e. on channel noise) and on spontaneous local network fluctuations. Our results suggest that the latter, measured through the LFP response variability, play a dominant role.
Statistical evaluation of synchronous spike patterns extracted by frequent item set mining
Torre, Emiliano; Picado-Muiño, David; Denker, Michael; Borgelt, Christian; Grün, Sonja
2013-01-01
We recently proposed frequent itemset mining (FIM) as a method to perform an optimized search for patterns of synchronous spikes (item sets) in massively parallel spike trains. This search outputs the occurrence count (support) of individual patterns that are not trivially explained by the counts of any superset (closed frequent item sets). The number of patterns found by FIM makes direct statistical tests infeasible due to severe multiple testing. To overcome this issue, we proposed to test the significance not of individual patterns, but instead of their signatures, defined as the pairs of pattern size z and support c. Here, we derive in detail a statistical test for the significance of the signatures under the null hypothesis of full independence (pattern spectrum filtering, PSF) by means of surrogate data. As a result, injected spike patterns that mimic assembly activity are well detected, yielding a low false negative rate. However, this approach is prone to additionally classify patterns resulting from chance overlap of real assembly activity and background spiking as significant. These patterns represent false positives with respect to the null hypothesis of having one assembly of given signature embedded in otherwise independent spiking activity. We propose the additional method of pattern set reduction (PSR) to remove these false positives by conditional filtering. By employing stochastic simulations of parallel spike trains with correlated activity in form of injected spike synchrony in subsets of the neurons, we demonstrate for a range of parameter settings that the analysis scheme composed of FIM, PSF and PSR allows to reliably detect active assemblies in massively parallel spike trains. PMID:24167487
Mapping cortical mesoscopic networks of single spiking cortical or sub-cortical neurons
Xiao, Dongsheng; Vanni, Matthieu P; Mitelut, Catalin C; Chan, Allen W; LeDue, Jeffrey M; Xie, Yicheng; Chen, Andrew CN; Swindale, Nicholas V; Murphy, Timothy H
2017-01-01
Understanding the basis of brain function requires knowledge of cortical operations over wide-spatial scales, but also within the context of single neurons. In vivo, wide-field GCaMP imaging and sub-cortical/cortical cellular electrophysiology were used in mice to investigate relationships between spontaneous single neuron spiking and mesoscopic cortical activity. We make use of a rich set of cortical activity motifs that are present in spontaneous activity in anesthetized and awake animals. A mesoscale spike-triggered averaging procedure allowed the identification of motifs that are preferentially linked to individual spiking neurons by employing genetically targeted indicators of neuronal activity. Thalamic neurons predicted and reported specific cycles of wide-scale cortical inhibition/excitation. In contrast, spike-triggered maps derived from single cortical neurons yielded spatio-temporal maps expected for regional cortical consensus function. This approach can define network relationships between any point source of neuronal spiking and mesoscale cortical maps. DOI: http://dx.doi.org/10.7554/eLife.19976.001 PMID:28160463
Liu, Bao-hua; Li, Pingyang; Li, Ya-tang; Sun, Yujiao J.; Yanagawa, Yuchio; Obata, Kunihiko; Zhang, Li I.; Tao, Huizhong W.
2009-01-01
Synaptic inhibition plays an important role in shaping receptive field (RF) properties in the visual cortex. However, the underlying mechanisms remain not well understood, partly due to difficulties in systematically studying functional properties of cortical inhibitory neurons in vivo. Here, we established two-photon imaging guided cell-attached recordings from genetically labelled inhibitory neurons and nearby “shadowed” excitatory neurons in the primary visual cortex of adult mice. Our results revealed that in layer 2/3, the majority of excitatory neurons exhibited both On and Off spike subfields, with their spatial arrangement varying from being completely segregated to overlapped. On the other hand, most layer 4 excitatory neurons exhibited only one discernable subfield. Interestingly, no RF structure with significantly segregated On and Off subfields was observed for layer 2/3 inhibitory neurons of either the fast-spike or regular-spike type. They predominantly possessed overlapped On and Off subfields with a significantly larger size than the excitatory neurons, and exhibited much weaker orientation tuning. These results from the mouse visual cortex suggest that different from the push-pull model proposed for simple cells, layer 2/3 simple-type neurons with segregated spike On and Off subfields likely receive spatially overlapped inhibitory On and Off inputs. We propose that the phase-insensitive inhibition can enhance the spatial distinctiveness of On and Off subfields through a gain control mechanism. PMID:19710305
Spontaneous Release Regulates Synaptic Scaling in the Embryonic Spinal Network In Vivo
Garcia-Bereguiain, Miguel Angel; Gonzalez-Islas, Carlos; Lindsly, Casie
2016-01-01
Homeostatic plasticity mechanisms maintain cellular or network spiking activity within a physiologically functional range through compensatory changes in synaptic strength or intrinsic cellular excitability. Synaptic scaling is one form of homeostatic plasticity that is triggered after blockade of spiking or neurotransmission in which the strengths of all synaptic inputs to a cell are multiplicatively scaled upward or downward in a compensatory fashion. We have shown previously that synaptic upscaling could be triggered in chick embryo spinal motoneurons by complete blockade of spiking or GABAA receptor (GABAAR) activation for 2 d in vivo. Here, we alter GABAAR activation in a more physiologically relevant manner by chronically adjusting presynaptic GABA release in vivo using nicotinic modulators or an mGluR2 agonist. Manipulating GABAAR activation in this way triggered scaling in a mechanistically similar manner to scaling induced by complete blockade of GABAARs. Remarkably, we find that altering action-potential (AP)-independent spontaneous release was able to fully account for the observed bidirectional scaling, whereas dramatic changes in spiking activity associated with spontaneous network activity had little effect on quantal amplitude. The reliance of scaling on an AP-independent process challenges the plasticity's relatedness to spiking in the living embryonic spinal network. Our findings have implications for the trigger and function of synaptic scaling and suggest that spontaneous release functions to regulate synaptic strength homeostatically in vivo. SIGNIFICANCE STATEMENT Homeostatic synaptic scaling is thought to prevent inappropriate levels of spiking activity through compensatory adjustments in the strength of synaptic inputs. Therefore, it is thought that perturbations in spike rate trigger scaling. Here, we find that dramatic changes in spiking activity in the embryonic spinal cord have little effect on synaptic scaling; conversely, alterations in GABAA receptor activation due to action-potential-independent GABA vesicle release can trigger scaling. The findings suggest that scaling in the living embryonic spinal cord functions to maintain synaptic strength and challenge the view that scaling acts to regulate spiking activity homeostatically. Finally, the results indicate that fetal exposure to drugs that influence GABA spontaneous release, such as nicotine, could profoundly affect synaptic maturation. PMID:27383600
Mahoney, J. Matthew; Titiz, Ali S.; Hernan, Amanda E.; Scott, Rod C.
2016-01-01
Hippocampal neural systems consolidate multiple complex behaviors into memory. However, the temporal structure of neural firing supporting complex memory consolidation is unknown. Replay of hippocampal place cells during sleep supports the view that a simple repetitive behavior modifies sleep firing dynamics, but does not explain how multiple episodes could be integrated into associative networks for recollection during future cognition. Here we decode sequential firing structure within spike avalanches of all pyramidal cells recorded in sleeping rats after running in a circular track. We find that short sequences that combine into multiple long sequences capture the majority of the sequential structure during sleep, including replay of hippocampal place cells. The ensemble, however, is not optimized for maximally producing the behavior-enriched episode. Thus behavioral programming of sequential correlations occurs at the level of short-range interactions, not whole behavioral sequences and these short sequences are assembled into a large and complex milieu that could support complex memory consolidation. PMID:26866597
Heikkinen, Hanna; Sharifian, Fariba; Vigario, Ricardo; Vanni, Simo
2015-07-01
The blood oxygenation level-dependent (BOLD) response has been strongly associated with neuronal activity in the brain. However, some neuronal tuning properties are consistently different from the BOLD response. We studied the spatial extent of neural and hemodynamic responses in the primary visual cortex, where the BOLD responses spread and interact over much longer distances than the small receptive fields of individual neurons would predict. Our model shows that a feedforward-feedback loop between V1 and a higher visual area can account for the observed spread of the BOLD response. In particular, anisotropic landing of inputs to compartmental neurons were necessary to account for the BOLD signal spread, while retaining realistic spiking responses. Our work shows that simple dendrites can separate tuning at the synapses and at the action potential output, thus bridging the BOLD signal to the neural receptive fields with high fidelity. Copyright © 2015 the American Physiological Society.
Load alleviation maneuvers for a launch vehicle
NASA Technical Reports Server (NTRS)
Seywald, Hans; Bless, Robert R.
1993-01-01
This paper addresses the design of a forward-looking autopilot that is capable of employing a priori knowledge of wind gusts ahead of the flight path to reduce the bending loads experienced by a launch vehicle. The analysis presented in the present paper is only preliminary, employing a very simple vehicle dynamical model and restricting itself to wind gusts of the form of isolated spikes. The main result of the present study is that linear quadratic regulator (LQR) based feedback laws are inappropriate to handle spike-type wind perturbations with large amplitude and narrow base. The best performance is achieved with an interior-point penalty optimal control formulation which can be well approximated by a simple feedback control law. Reduction of the maximum bending loads by nearly 50% is demonstrated.
Goal-Directed Decision Making with Spiking Neurons.
Friedrich, Johannes; Lengyel, Máté
2016-02-03
Behavioral and neuroscientific data on reward-based decision making point to a fundamental distinction between habitual and goal-directed action selection. The formation of habits, which requires simple updating of cached values, has been studied in great detail, and the reward prediction error theory of dopamine function has enjoyed prominent success in accounting for its neural bases. In contrast, the neural circuit mechanisms of goal-directed decision making, requiring extended iterative computations to estimate values online, are still unknown. Here we present a spiking neural network that provably solves the difficult online value estimation problem underlying goal-directed decision making in a near-optimal way and reproduces behavioral as well as neurophysiological experimental data on tasks ranging from simple binary choice to sequential decision making. Our model uses local plasticity rules to learn the synaptic weights of a simple neural network to achieve optimal performance and solves one-step decision-making tasks, commonly considered in neuroeconomics, as well as more challenging sequential decision-making tasks within 1 s. These decision times, and their parametric dependence on task parameters, as well as the final choice probabilities match behavioral data, whereas the evolution of neural activities in the network closely mimics neural responses recorded in frontal cortices during the execution of such tasks. Our theory provides a principled framework to understand the neural underpinning of goal-directed decision making and makes novel predictions for sequential decision-making tasks with multiple rewards. Goal-directed actions requiring prospective planning pervade decision making, but their circuit-level mechanisms remain elusive. We show how a model circuit of biologically realistic spiking neurons can solve this computationally challenging problem in a novel way. The synaptic weights of our network can be learned using local plasticity rules such that its dynamics devise a near-optimal plan of action. By systematically comparing our model results to experimental data, we show that it reproduces behavioral decision times and choice probabilities as well as neural responses in a rich set of tasks. Our results thus offer the first biologically realistic account for complex goal-directed decision making at a computational, algorithmic, and implementational level. Copyright © 2016 the authors 0270-6474/16/361529-18$15.00/0.
Goal-Directed Decision Making with Spiking Neurons
Lengyel, Máté
2016-01-01
Behavioral and neuroscientific data on reward-based decision making point to a fundamental distinction between habitual and goal-directed action selection. The formation of habits, which requires simple updating of cached values, has been studied in great detail, and the reward prediction error theory of dopamine function has enjoyed prominent success in accounting for its neural bases. In contrast, the neural circuit mechanisms of goal-directed decision making, requiring extended iterative computations to estimate values online, are still unknown. Here we present a spiking neural network that provably solves the difficult online value estimation problem underlying goal-directed decision making in a near-optimal way and reproduces behavioral as well as neurophysiological experimental data on tasks ranging from simple binary choice to sequential decision making. Our model uses local plasticity rules to learn the synaptic weights of a simple neural network to achieve optimal performance and solves one-step decision-making tasks, commonly considered in neuroeconomics, as well as more challenging sequential decision-making tasks within 1 s. These decision times, and their parametric dependence on task parameters, as well as the final choice probabilities match behavioral data, whereas the evolution of neural activities in the network closely mimics neural responses recorded in frontal cortices during the execution of such tasks. Our theory provides a principled framework to understand the neural underpinning of goal-directed decision making and makes novel predictions for sequential decision-making tasks with multiple rewards. SIGNIFICANCE STATEMENT Goal-directed actions requiring prospective planning pervade decision making, but their circuit-level mechanisms remain elusive. We show how a model circuit of biologically realistic spiking neurons can solve this computationally challenging problem in a novel way. The synaptic weights of our network can be learned using local plasticity rules such that its dynamics devise a near-optimal plan of action. By systematically comparing our model results to experimental data, we show that it reproduces behavioral decision times and choice probabilities as well as neural responses in a rich set of tasks. Our results thus offer the first biologically realistic account for complex goal-directed decision making at a computational, algorithmic, and implementational level. PMID:26843636
A neuronal model of predictive coding accounting for the mismatch negativity.
Wacongne, Catherine; Changeux, Jean-Pierre; Dehaene, Stanislas
2012-03-14
The mismatch negativity (MMN) is thought to index the activation of specialized neural networks for active prediction and deviance detection. However, a detailed neuronal model of the neurobiological mechanisms underlying the MMN is still lacking, and its computational foundations remain debated. We propose here a detailed neuronal model of auditory cortex, based on predictive coding, that accounts for the critical features of MMN. The model is entirely composed of spiking excitatory and inhibitory neurons interconnected in a layered cortical architecture with distinct input, predictive, and prediction error units. A spike-timing dependent learning rule, relying upon NMDA receptor synaptic transmission, allows the network to adjust its internal predictions and use a memory of the recent past inputs to anticipate on future stimuli based on transition statistics. We demonstrate that this simple architecture can account for the major empirical properties of the MMN. These include a frequency-dependent response to rare deviants, a response to unexpected repeats in alternating sequences (ABABAA…), a lack of consideration of the global sequence context, a response to sound omission, and a sensitivity of the MMN to NMDA receptor antagonists. Novel predictions are presented, and a new magnetoencephalography experiment in healthy human subjects is presented that validates our key hypothesis: the MMN results from active cortical prediction rather than passive synaptic habituation.
Pietersen, Alexander N.J.; Cheong, Soon Keen; Munn, Brandon; Gong, Pulin; Solomon, Samuel G.
2017-01-01
Key points How parallel are the primate visual pathways? In the present study, we demonstrate that parallel visual pathways in the dorsal lateral geniculate nucleus (LGN) show distinct patterns of interaction with rhythmic activity in the primary visual cortex (V1).In the V1 of anaesthetized marmosets, the EEG frequency spectrum undergoes transient changes that are characterized by fluctuations in delta‐band EEG power.We show that, on multisecond timescales, spiking activity in an evolutionary primitive (koniocellular) LGN pathway is specifically linked to these slow EEG spectrum changes. By contrast, on subsecond (delta frequency) timescales, cortical oscillations can entrain spiking activity throughout the entire LGN.Our results are consistent with the hypothesis that, in waking animals, the koniocellular pathway selectively participates in brain circuits controlling vigilance and attention. Abstract The major afferent cortical pathway in the visual system passes through the dorsal lateral geniculate nucleus (LGN), where nerve signals originating in the eye can first interact with brain circuits regulating visual processing, vigilance and attention. In the present study, we investigated how ongoing and visually driven activity in magnocellular (M), parvocellular (P) and koniocellular (K) layers of the LGN are related to cortical state. We recorded extracellular spiking activity in the LGN simultaneously with local field potentials (LFP) in primary visual cortex, in sufentanil‐anaesthetized marmoset monkeys. We found that asynchronous cortical states (marked by low power in delta‐band LFPs) are linked to high spike rates in K cells (but not P cells or M cells), on multisecond timescales. Cortical asynchrony precedes the increases in K cell spike rates by 1–3 s, implying causality. At subsecond timescales, the spiking activity in many cells of all (M, P and K) classes is phase‐locked to delta waves in the cortical LFP, and more cells are phase‐locked during synchronous cortical states than during asynchronous cortical states. The switch from low‐to‐high spike rates in K cells does not degrade their visual signalling capacity. By contrast, during asynchronous cortical states, the fidelity of visual signals transmitted by K cells is improved, probably because K cell responses become less rectified. Overall, the data show that slow fluctuations in cortical state are selectively linked to K pathway spiking activity, whereas delta‐frequency cortical oscillations entrain spiking activity throughout the entire LGN, in anaesthetized marmosets. PMID:28116750
The influence of single bursts vs. single spikes at excitatory dendrodendritic synapses
Masurkar, Arjun V.; Chen, Wei R.
2015-01-01
The synchronization of neuronal activity is thought to enhance information processing. There is much evidence supporting rhythmically bursting external tufted cells (ETCs) of the rodent olfactory bulb glomeruli coordinating the activation of glomerular interneurons and mitral cells via dendrodendritic excitation. However, as bursting has variable significance at axodendritic cortical synapses, it is not clear if ETC bursting imparts a specific functional advantage over the preliminary spike in dendrodendritic synaptic networks. To answer this question, we investigated the influence of single ETC bursts and spikes with the in-vitro rat olfactory bulb preparation at different levels of processing, via calcium imaging of presynaptic ETC dendrites, dual electrical recording of ETC–interneuron synaptic pairs, and multicellular calcium imaging of ETC-induced population activity. Our findings supported single ETC bursts, vs. single spikes, driving robust presynaptic calcium signaling, which in turn was associated with profound extension of the initial monosynaptic spike-driven dendrodendritic excitatory postsynaptic potential. This extension could be driven by either the spike-dependent or spike-independent components of the burst. At the population level, burst-induced excitation was more widespread and reliable compared with single spikes. This further supports the ETC network, in part due to a functional advantage of bursting at excitatory dendrodendritic synapses, coordinating synchronous activity at behaviorally relevant frequencies related to odor processing in vivo. PMID:22277089
Masoli, Stefano; Solinas, Sergio; D'Angelo, Egidio
2015-01-01
The Purkinje cell (PC) is among the most complex neurons in the brain and plays a critical role for cerebellar functioning. PCs operate as fast pacemakers modulated by synaptic inputs but can switch from simple spikes to complex bursts and, in some conditions, show bistability. In contrast to original works emphasizing dendritic Ca-dependent mechanisms, recent experiments have supported a primary role for axonal Na-dependent processing, which could effectively regulate spike generation and transmission to deep cerebellar nuclei (DCN). In order to account for the numerous ionic mechanisms involved (at present including Nav1.6, Cav2.1, Cav3.1, Cav3.2, Cav3.3, Kv1.1, Kv1.5, Kv3.3, Kv3.4, Kv4.3, KCa1.1, KCa2.2, KCa3.1, Kir2.x, HCN1), we have elaborated a multicompartmental model incorporating available knowledge on localization and gating of PC ionic channels. The axon, including initial segment (AIS) and Ranvier nodes (RNs), proved critical to obtain appropriate pacemaking and firing frequency modulation. Simple spikes initiated in the AIS and protracted discharges were stabilized in the soma through Na-dependent mechanisms, while somato-dendritic Ca channels contributed to sustain pacemaking and to generate complex bursting at high discharge regimes. Bistability occurred only following Na and Ca channel down-regulation. In addition, specific properties in RNs K currents were required to limit spike transmission frequency along the axon. The model showed how organized electroresponsive functions could emerge from the molecular complexity of PCs and showed that the axon is fundamental to complement ionic channel compartmentalization enabling action potential processing and transmission of specific spike patterns to DCN. PMID:25759640
Zhang, Mingming; Zhao, Zongya; He, Ping; Wang, Jue
2014-01-01
Gap junctions are the mechanism for striatal fast-spiking interneurons (FSIs) to interconnect with each other and play an important role in determining the physiological functioning of the FSIs. To investigate the effect of gap junctions on the firing activities and synchronization of the network for different external inputs, a simple network with least connections and a Newman-Watts small-world network were constructed. Our research shows that both properties of neural networks are related to the conductance of the gap junctions, as well as the frequency and correlation of the external inputs. The effect of gap junctions on the synchronization of network is different for inputs with different frequencies and correlations. The addition of gap junctions can promote the network synchrony in some conditions but suppress it in others, and they can inhibit the firing activities in most cases. Both the firing rate and synchronization of the network increase along with the increase of the electrical coupling strength for inputs with low frequency and high correlation. Thus, the network of coupled FSIs can act as a detector for synchronous synaptic input from cortex and thalamus.
Spike-Timing Dependent Plasticity in Unipolar Silicon Oxide RRAM Devices
Zarudnyi, Konstantin; Mehonic, Adnan; Montesi, Luca; Buckwell, Mark; Hudziak, Stephen; Kenyon, Anthony J.
2018-01-01
Resistance switching, or Resistive RAM (RRAM) devices show considerable potential for application in hardware spiking neural networks (neuro-inspired computing) by mimicking some of the behavior of biological synapses, and hence enabling non-von Neumann computer architectures. Spike-timing dependent plasticity (STDP) is one such behavior, and one example of several classes of plasticity that are being examined with the aim of finding suitable algorithms for application in many computing tasks such as coincidence detection, classification and image recognition. In previous work we have demonstrated that the neuromorphic capabilities of silicon-rich silicon oxide (SiOx) resistance switching devices extend beyond plasticity to include thresholding, spiking, and integration. We previously demonstrated such behaviors in devices operated in the unipolar mode, opening up the question of whether we could add plasticity to the list of features exhibited by our devices. Here we demonstrate clear STDP in unipolar devices. Significantly, we show that the response of our devices is broadly similar to that of biological synapses. This work further reinforces the potential of simple two-terminal RRAM devices to mimic neuronal functionality in hardware spiking neural networks. PMID:29472837
Barmack, N H; Yakhnitsa, V
2015-10-01
Climbing and mossy fibers comprise two distinct afferent paths to the cerebellum. Climbing fibers directly evoke a large multispiked action potential in Purkinje cells termed a "complex spike" (CS). By logical exclusion, the other class of Purkinje cell action potential, termed "simple spike" (SS), has often been attributed to activity conveyed by mossy fibers and relayed to Purkinje cells through granule cells. Here, we investigate the relative importance of climbing and mossy fiber pathways in modulating neuronal activity by recording extracellularly from Purkinje cells, as well as from mossy fiber terminals and interneurons in folia 8-10. Sinusoidal roll-tilt vestibular stimulation vigorously modulates the discharge of climbing and mossy fiber afferents, Purkinje cells, and interneurons in folia 9-10 in anesthetized mice. Roll-tilt onto the side ipsilateral to the recording site increases the discharge of both climbing fibers (CSs) and mossy fibers. However, the discharges of SSs decrease during ipsilateral roll-tilt. Unilateral microlesions of the beta nucleus (β-nucleus) of the inferior olive blocks vestibular modulation of both CSs and SSs in contralateral Purkinje cells. The blockage of SSs occurs even though primary and secondary vestibular mossy fibers remain intact. When mossy fiber afferents are damaged by a unilateral labyrinthectomy (UL), vestibular modulation of SSs in Purkinje cells ipsilateral to the UL remains intact. Two inhibitory interneurons, Golgi and stellate cells, could potentially contribute to climbing fiber-induced modulation of SSs. However, during sinusoidal roll-tilt, only stellate cells discharge appropriately out of phase with the discharge of SSs. Golgi cells discharge in phase with SSs. When the vestibularly modulated discharge is blocked by a microlesion of the inferior olive, the modulated discharge of CSs and SSs is also blocked. When the vestibular mossy fiber pathway is destroyed, vestibular modulation of ipsilateral CSs and SSs persists. We conclude that climbing fibers are primarily responsible for the vestibularly modulated discharge of both CSs and SSs. Modulation of the discharge of SSs is likely caused by climbing fiber-evoked stellate cell inhibition.
Multichannel interictal spike activity detection using time-frequency entropy measure.
Thanaraj, Palani; Parvathavarthini, B
2017-06-01
Localization of interictal spikes is an important clinical step in the pre-surgical assessment of pharmacoresistant epileptic patients. The manual selection of interictal spike periods is cumbersome and involves a considerable amount of analysis workload for the physician. The primary focus of this paper is to automate the detection of interictal spikes for clinical applications in epilepsy localization. The epilepsy localization procedure involves detection of spikes in a multichannel EEG epoch. Therefore, a multichannel Time-Frequency (T-F) entropy measure is proposed to extract features related to the interictal spike activity. Least squares support vector machine is used to train the proposed feature to classify the EEG epochs as either normal or interictal spike period. The proposed T-F entropy measure, when validated with epilepsy dataset of 15 patients, shows an interictal spike classification accuracy of 91.20%, sensitivity of 100% and specificity of 84.23%. Moreover, the area under the curve of Receiver Operating Characteristics plot of 0.9339 shows the superior classification performance of the proposed T-F entropy measure. The results of this paper show a good spike detection accuracy without any prior information about the spike morphology.
Generation of stable subfemtosecond hard x-ray pulses with optimized nonlinear bunch compression
Huang, Senlin; Ding, Yuantao; Huang, Zhirong; ...
2014-12-15
In this paper, we propose a simple scheme that leverages existing x-ray free-electron laser hardware to produce stable single-spike, subfemtosecond x-ray pulses. By optimizing a high-harmonic radio-frequency linearizer to achieve nonlinear compression of a low-charge (20 pC) electron beam, we obtain a sharp current profile possessing a few-femtosecond full width at half maximum temporal duration. A reverse undulator taper is applied to enable lasing only within the current spike, where longitudinal space charge forces induce an electron beam time-energy chirp. Simulations based on the Linac Coherent Light Source parameters show that stable single-spike x-ray pulses with a duration less thanmore » 200 attoseconds can be obtained.« less
Note on the coefficient of variations of neuronal spike trains.
Lengler, Johannes; Steger, Angelika
2017-08-01
It is known that many neurons in the brain show spike trains with a coefficient of variation (CV) of the interspike times of approximately 1, thus resembling the properties of Poisson spike trains. Computational studies have been able to reproduce this phenomenon. However, the underlying models were too complex to be examined analytically. In this paper, we offer a simple model that shows the same effect but is accessible to an analytic treatment. The model is a random walk model with a reflecting barrier; we give explicit formulas for the CV in the regime of excess inhibition. We also analyze the effect of probabilistic synapses in our model and show that it resembles previous findings that were obtained by simulation.
Transient sequences in a hypernetwork generated by an adaptive network of spiking neurons.
Maslennikov, Oleg V; Shchapin, Dmitry S; Nekorkin, Vladimir I
2017-06-28
We propose a model of an adaptive network of spiking neurons that gives rise to a hypernetwork of its dynamic states at the upper level of description. Left to itself, the network exhibits a sequence of transient clustering which relates to a traffic in the hypernetwork in the form of a random walk. Receiving inputs the system is able to generate reproducible sequences corresponding to stimulus-specific paths in the hypernetwork. We illustrate these basic notions by a simple network of discrete-time spiking neurons together with its FPGA realization and analyse their properties.This article is part of the themed issue 'Mathematical methods in medicine: neuroscience, cardiology and pathology'. © 2017 The Author(s).
Revealing degree distribution of bursting neuron networks.
Shen, Yu; Hou, Zhonghuai; Xin, Houwen
2010-03-01
We present a method to infer the degree distribution of a bursting neuron network from its dynamics. Burst synchronization (BS) of coupled Morris-Lecar neurons has been studied under the weak coupling condition. In the BS state, all the neurons start and end bursting almost simultaneously, while the spikes inside the burst are incoherent among the neurons. Interestingly, we find that the spike amplitude of a given neuron shows an excellent linear relationship with its degree, which makes it possible to estimate the degree distribution of the network by simple statistics of the spike amplitudes. We demonstrate the validity of this scheme on scale-free as well as small-world networks. The underlying mechanism of such a method is also briefly discussed.
Su, Chun-Kuei; Chiang, Chia-Hsun; Lee, Chia-Ming; Fan, Yu-Pei; Ho, Chiu-Ming; Shyu, Liang-Yu
2013-01-01
Sympathetic nerves conveying central commands to regulate visceral functions often display activities in synchronous bursts. To understand how individual fibers fire synchronously, we establish “oligofiber recording techniques” to record “several” nerve fiber activities simultaneously, using in vitro splanchnic sympathetic nerve–thoracic spinal cord preparations of neonatal rats as experimental models. While distinct spike potentials were easily recorded from collagenase-dissociated sympathetic fibers, a problem arising from synchronous nerve discharges is a higher incidence of complex waveforms resulted from spike overlapping. Because commercial softwares do not provide an explicit solution for spike overlapping, a series of custom-made LabVIEW programs incorporated with MATLAB scripts was therefore written for spike sorting. Spikes were represented as data points after waveform feature extraction and automatically grouped by k-means clustering followed by principal component analysis (PCA) to verify their waveform homogeneity. For dissimilar waveforms with exceeding Hotelling's T2 distances from the cluster centroids, a unique data-based subtraction algorithm (SA) was used to determine if they were the complex waveforms resulted from superimposing a spike pattern close to the cluster centroid with the other signals that could be observed in original recordings. In comparisons with commercial software, higher accuracy was achieved by analyses using our algorithms for the synthetic data that contained synchronous spiking and complex waveforms. Moreover, both T2-selected and SA-retrieved spikes were combined as unit activities. Quantitative analyses were performed to evaluate if unit activities truly originated from single fibers. We conclude that applications of our programs can help to resolve synchronous sympathetic nerve discharges (SND). PMID:24198782
Pasikova, N V; Mednikova, Iu S; Averina, I V
2010-03-01
In the sensorimotor cortical slices of guinea pigs, the rate of neurons' spike activity increased at 27-29 and 34-36 degrees C. The change of the firing rate was accompanied by a drop in the spike amplitude at the temperature below 27 and above 34 degrees C. Usually after cooling to 24 degrees C the spike amplitude fully restored when the temperature increased to 32-34 degrees C. The fall of spike amplitude at t >35 degrees C could not be stopped by temperatyre decrease. The data obtained indicate the important role of the neuron membrane K+ permeability.
Spiking irregularity and frequency modulate the behavioral report of single-neuron stimulation.
Doron, Guy; von Heimendahl, Moritz; Schlattmann, Peter; Houweling, Arthur R; Brecht, Michael
2014-02-05
The action potential activity of single cortical neurons can evoke measurable sensory effects, but it is not known how spiking parameters and neuronal subtypes affect the evoked sensations. Here, we examined the effects of spike train irregularity, spike frequency, and spike number on the detectability of single-neuron stimulation in rat somatosensory cortex. For regular-spiking, putative excitatory neurons, detectability increased with spike train irregularity and decreasing spike frequencies but was not affected by spike number. Stimulation of single, fast-spiking, putative inhibitory neurons led to a larger sensory effect compared to regular-spiking neurons, and the effect size depended only on spike irregularity. An ideal-observer analysis suggests that, under our experimental conditions, rats were using integration windows of a few hundred milliseconds or more. Our data imply that the behaving animal is sensitive to single neurons' spikes and even to their temporal patterning. Copyright © 2014 Elsevier Inc. All rights reserved.
Clusterless Decoding of Position From Multiunit Activity Using A Marked Point Process Filter
Deng, Xinyi; Liu, Daniel F.; Kay, Kenneth; Frank, Loren M.; Eden, Uri T.
2016-01-01
Point process filters have been applied successfully to decode neural signals and track neural dynamics. Traditionally, these methods assume that multiunit spiking activity has already been correctly spike-sorted. As a result, these methods are not appropriate for situations where sorting cannot be performed with high precision such as real-time decoding for brain-computer interfaces. As the unsupervised spike-sorting problem remains unsolved, we took an alternative approach that takes advantage of recent insights about clusterless decoding. Here we present a new point process decoding algorithm that does not require multiunit signals to be sorted into individual units. We use the theory of marked point processes to construct a function that characterizes the relationship between a covariate of interest (in this case, the location of a rat on a track) and features of the spike waveforms. In our example, we use tetrode recordings, and the marks represent a four-dimensional vector of the maximum amplitudes of the spike waveform on each of the four electrodes. In general, the marks may represent any features of the spike waveform. We then use Bayes’ rule to estimate spatial location from hippocampal neural activity. We validate our approach with a simulation study and with experimental data recorded in the hippocampus of a rat moving through a linear environment. Our decoding algorithm accurately reconstructs the rat’s position from unsorted multiunit spiking activity. We then compare the quality of our decoding algorithm to that of a traditional spike-sorting and decoding algorithm. Our analyses show that the proposed decoding algorithm performs equivalently or better than algorithms based on sorted single-unit activity. These results provide a path toward accurate real-time decoding of spiking patterns that could be used to carry out content-specific manipulations of population activity in hippocampus or elsewhere in the brain. PMID:25973549
Cell type- and activity-dependent extracellular correlates of intracellular spiking
Perin, Rodrigo; Buzsáki, György; Markram, Henry; Koch, Christof
2015-01-01
Despite decades of extracellular action potential (EAP) recordings monitoring brain activity, the biophysical origin and inherent variability of these signals remain enigmatic. We performed whole cell patch recordings of excitatory and inhibitory neurons in rat somatosensory cortex slice while positioning a silicon probe in their vicinity to concurrently record intra- and extracellular voltages for spike frequencies under 20 Hz. We characterize biophysical events and properties (intracellular spiking, extracellular resistivity, temporal jitter, etc.) related to EAP recordings at the single-neuron level in a layer-specific manner. Notably, EAP amplitude was found to decay as the inverse of distance between the soma and the recording electrode with similar (but not identical) resistivity across layers. Furthermore, we assessed a number of EAP features and their variability with spike activity: amplitude (but not temporal) features varied substantially (∼30–50% compared with mean) and nonmonotonically as a function of spike frequency and spike order. Such EAP variation only partly reflects intracellular somatic spike variability and points to the plethora of processes contributing to the EAP. Also, we show that the shape of the EAP waveform is qualitatively similar to the negative of the temporal derivative to the intracellular somatic voltage, as expected from theory. Finally, we tested to what extent EAPs can impact the lowpass-filtered part of extracellular recordings, the local field potential (LFP), typically associated with synaptic activity. We found that spiking of excitatory neurons can significantly impact the LFP at frequencies as low as 20 Hz. Our results question the common assertion that the LFP acts as proxy for synaptic activity. PMID:25995352
Goense, J B M; Ratnam, R
2003-10-01
An important problem in sensory processing is deciding whether fluctuating neural activity encodes a stimulus or is due to variability in baseline activity. Neurons that subserve detection must examine incoming spike trains continuously, and quickly and reliably differentiate signals from baseline activity. Here we demonstrate that a neural integrator can perform continuous signal detection, with performance exceeding that of trial-based procedures, where spike counts in signal- and baseline windows are compared. The procedure was applied to data from electrosensory afferents of weakly electric fish (Apteronotus leptorhynchus), where weak perturbations generated by small prey add approximately 1 spike to a baseline of approximately 300 spikes s(-1). The hypothetical postsynaptic neuron, modeling an electrosensory lateral line lobe cell, could detect an added spike within 10-15 ms, achieving near ideal detection performance (80-95%) at false alarm rates of 1-2 Hz, while trial-based testing resulted in only 30-35% correct detections at that false alarm rate. The performance improvement was due to anti-correlations in the afferent spike train, which reduced both the amplitude and duration of fluctuations in postsynaptic membrane activity, and so decreased the number of false alarms. Anti-correlations can be exploited to improve detection performance only if there is memory of prior decisions.
Multiscale decoding for reliable brain-machine interface performance over time.
Han-Lin Hsieh; Wong, Yan T; Pesaran, Bijan; Shanechi, Maryam M
2017-07-01
Recordings from invasive implants can degrade over time, resulting in a loss of spiking activity for some electrodes. For brain-machine interfaces (BMI), such a signal degradation lowers control performance. Achieving reliable performance over time is critical for BMI clinical viability. One approach to improve BMI longevity is to simultaneously use spikes and other recording modalities such as local field potentials (LFP), which are more robust to signal degradation over time. We have developed a multiscale decoder that can simultaneously model the different statistical profiles of multi-scale spike/LFP activity (discrete spikes vs. continuous LFP). This decoder can also run at multiple time-scales (millisecond for spikes vs. tens of milliseconds for LFP). Here, we validate the multiscale decoder for estimating the movement of 7 major upper-arm joint angles in a non-human primate (NHP) during a 3D reach-to-grasp task. The multiscale decoder uses motor cortical spike/LFP recordings as its input. We show that the multiscale decoder can improve decoding accuracy by adding information from LFP to spikes, while running at the fast millisecond time-scale of the spiking activity. Moreover, this improvement is achieved using relatively few LFP channels, demonstrating the robustness of the approach. These results suggest that using multiscale decoders has the potential to improve the reliability and longevity of BMIs.
Spike avalanches in vivo suggest a driven, slightly subcritical brain state
Priesemann, Viola; Wibral, Michael; Valderrama, Mario; Pröpper, Robert; Le Van Quyen, Michel; Geisel, Theo; Triesch, Jochen; Nikolić, Danko; Munk, Matthias H. J.
2014-01-01
In self-organized critical (SOC) systems avalanche size distributions follow power-laws. Power-laws have also been observed for neural activity, and so it has been proposed that SOC underlies brain organization as well. Surprisingly, for spiking activity in vivo, evidence for SOC is still lacking. Therefore, we analyzed highly parallel spike recordings from awake rats and monkeys, anesthetized cats, and also local field potentials from humans. We compared these to spiking activity from two established critical models: the Bak-Tang-Wiesenfeld model, and a stochastic branching model. We found fundamental differences between the neural and the model activity. These differences could be overcome for both models through a combination of three modifications: (1) subsampling, (2) increasing the input to the model (this way eliminating the separation of time scales, which is fundamental to SOC and its avalanche definition), and (3) making the model slightly sub-critical. The match between the neural activity and the modified models held not only for the classical avalanche size distributions and estimated branching parameters, but also for two novel measures (mean avalanche size, and frequency of single spikes), and for the dependence of all these measures on the temporal bin size. Our results suggest that neural activity in vivo shows a mélange of avalanches, and not temporally separated ones, and that their global activity propagation can be approximated by the principle that one spike on average triggers a little less than one spike in the next step. This implies that neural activity does not reflect a SOC state but a slightly sub-critical regime without a separation of time scales. Potential advantages of this regime may be faster information processing, and a safety margin from super-criticality, which has been linked to epilepsy. PMID:25009473
The influence of single bursts versus single spikes at excitatory dendrodendritic synapses.
Masurkar, Arjun V; Chen, Wei R
2012-02-01
The synchronization of neuronal activity is thought to enhance information processing. There is much evidence supporting rhythmically bursting external tufted cells (ETCs) of the rodent olfactory bulb glomeruli coordinating the activation of glomerular interneurons and mitral cells via dendrodendritic excitation. However, as bursting has variable significance at axodendritic cortical synapses, it is not clear if ETC bursting imparts a specific functional advantage over the preliminary spike in dendrodendritic synaptic networks. To answer this question, we investigated the influence of single ETC bursts and spikes with the in vitro rat olfactory bulb preparation at different levels of processing, via calcium imaging of presynaptic ETC dendrites, dual electrical recording of ETC -interneuron synaptic pairs, and multicellular calcium imaging of ETC-induced population activity. Our findings supported single ETC bursts, versus single spikes, driving robust presynaptic calcium signaling, which in turn was associated with profound extension of the initial monosynaptic spike-driven dendrodendritic excitatory postsynaptic potential. This extension could be driven by either the spike-dependent or spike-independent components of the burst. At the population level, burst-induced excitation was more widespread and reliable compared with single spikes. This further supports the ETC network, in part due to a functional advantage of bursting at excitatory dendrodendritic synapses, coordinating synchronous activity at behaviorally relevant frequencies related to odor processing in vivo. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Shao, Li-Rong; Halvorsrud, Ragnhild; Borg-Graham, Lyle; Storm, Johan F
1999-01-01
The role of large-conductance Ca2+-dependent K+ channels (BK-channels; also known as maxi-K- or slo-channels) in spike broadening during repetitive firing was studied in CA1 pyramidal cells, using sharp electrode intracellular recordings in rat hippocampal slices, and computer modelling. Trains of action potentials elicited by depolarizing current pulses showed a progressive, frequency-dependent spike broadening, reflecting a reduced rate of repolarization. During a 50 ms long 5 spike train, the spike duration increased by 63·6 ± 3·4% from the 1st to the 3rd spike. The amplitude of the fast after-hyperpolarization (fAHP) also rapidly declined during each train. Suppression of BK-channel activity with (a) the selective BK-channel blocker iberiotoxin (IbTX, 60 nM), (b) the non-peptidergic BK-channel blocker paxilline (2–10 μM), or (c) calcium-free medium, broadened the 1st spike to a similar degree (≈60%). BK-channel suppression also caused a similar change in spike waveform as observed during repetitive firing, and eliminated (occluded) most of the spike broadening during repetitive firing. Computer simulations using a reduced compartmental model with transient BK-channel current and 10 other active ionic currents, produced an activity-dependent spike broadening that was strongly reduced when the BK-channel inactivation mechanism was removed. These results, which are supported by recent voltage-clamp data, strongly suggest that in CA1 pyramidal cells, fast inactivation of a transient BK-channel current (ICT), substantially contributes to frequency-dependent spike broadening during repetitive firing. PMID:10562340
Competitive STDP Learning of Overlapping Spatial Patterns.
Krunglevicius, Dalius
2015-08-01
Spike-timing-dependent plasticity (STDP) is a set of Hebbian learning rules firmly based on biological evidence. It has been demonstrated that one of the STDP learning rules is suited for learning spatiotemporal patterns. When multiple neurons are organized in a simple competitive spiking neural network, this network is capable of learning multiple distinct patterns. If patterns overlap significantly (i.e., patterns are mutually inclusive), however, competition would not preclude trained neuron's responding to a new pattern and adjusting synaptic weights accordingly. This letter presents a simple neural network that combines vertical inhibition and Euclidean distance-dependent synaptic strength factor. This approach helps to solve the problem of pattern size-dependent parameter optimality and significantly reduces the probability of a neuron's forgetting an already learned pattern. For demonstration purposes, the network was trained for the first ten letters of the Braille alphabet.
Strobbe, Gregor; Carrette, Evelien; López, José David; Montes Restrepo, Victoria; Van Roost, Dirk; Meurs, Alfred; Vonck, Kristl; Boon, Paul; Vandenberghe, Stefaan; van Mierlo, Pieter
2016-01-01
Electrical source imaging of interictal spikes observed in EEG recordings of patients with refractory epilepsy provides useful information to localize the epileptogenic focus during the presurgical evaluation. However, the selection of the time points or time epochs of the spikes in order to estimate the origin of the activity remains a challenge. In this study, we consider a Bayesian EEG source imaging technique for distributed sources, i.e. the multiple volumetric sparse priors (MSVP) approach. The approach allows to estimate the time courses of the intensity of the sources corresponding with a specific time epoch of the spike. Based on presurgical averaged interictal spikes in six patients who were successfully treated with surgery, we estimated the time courses of the source intensities for three different time epochs: (i) an epoch starting 50 ms before the spike peak and ending at 50% of the spike peak during the rising phase of the spike, (ii) an epoch starting 50 ms before the spike peak and ending at the spike peak and (iii) an epoch containing the full spike time period starting 50 ms before the spike peak and ending 230 ms after the spike peak. To identify the primary source of the spike activity, the source with the maximum energy from 50 ms before the spike peak till 50% of the spike peak was subsequently selected for each of the time windows. For comparison, the activity at the spike peaks and at 50% of the peaks was localized using the LORETA inversion technique and an ECD approach. Both patient-specific spherical forward models and patient-specific 5-layered finite difference models were considered to evaluate the influence of the forward model. Based on the resected zones in each of the patients, extracted from post-operative MR images, we compared the distances to the resection border of the estimated activity. Using the spherical models, the distances to the resection border for the MSVP approach and each of the different time epochs were in the same range as the LORETA and ECD techniques. We found distances smaller than 23 mm, with robust results for all the patients. For the finite difference models, we found that the distances to the resection border for the MSVP inversions of the full spike time epochs were generally smaller compared to the MSVP inversions of the time epochs before the spike peak. The results also suggest that the inversions using the finite difference models resulted in slightly smaller distances to the resection border compared to the spherical models. The results we obtained are promising because the MSVP approach allows to study the network of the estimated source-intensities and allows to characterize the spatial extent of the underlying sources. PMID:26958464
Automatic online spike sorting with singular value decomposition and fuzzy C-mean clustering
2012-01-01
Background Understanding how neurons contribute to perception, motor functions and cognition requires the reliable detection of spiking activity of individual neurons during a number of different experimental conditions. An important problem in computational neuroscience is thus to develop algorithms to automatically detect and sort the spiking activity of individual neurons from extracellular recordings. While many algorithms for spike sorting exist, the problem of accurate and fast online sorting still remains a challenging issue. Results Here we present a novel software tool, called FSPS (Fuzzy SPike Sorting), which is designed to optimize: (i) fast and accurate detection, (ii) offline sorting and (iii) online classification of neuronal spikes with very limited or null human intervention. The method is based on a combination of Singular Value Decomposition for fast and highly accurate pre-processing of spike shapes, unsupervised Fuzzy C-mean, high-resolution alignment of extracted spike waveforms, optimal selection of the number of features to retain, automatic identification the number of clusters, and quantitative quality assessment of resulting clusters independent on their size. After being trained on a short testing data stream, the method can reliably perform supervised online classification and monitoring of single neuron activity. The generalized procedure has been implemented in our FSPS spike sorting software (available free for non-commercial academic applications at the address: http://www.spikesorting.com) using LabVIEW (National Instruments, USA). We evaluated the performance of our algorithm both on benchmark simulated datasets with different levels of background noise and on real extracellular recordings from premotor cortex of Macaque monkeys. The results of these tests showed an excellent accuracy in discriminating low-amplitude and overlapping spikes under strong background noise. The performance of our method is competitive with respect to other robust spike sorting algorithms. Conclusions This new software provides neuroscience laboratories with a new tool for fast and robust online classification of single neuron activity. This feature could become crucial in situations when online spike detection from multiple electrodes is paramount, such as in human clinical recordings or in brain-computer interfaces. PMID:22871125
Automatic online spike sorting with singular value decomposition and fuzzy C-mean clustering.
Oliynyk, Andriy; Bonifazzi, Claudio; Montani, Fernando; Fadiga, Luciano
2012-08-08
Understanding how neurons contribute to perception, motor functions and cognition requires the reliable detection of spiking activity of individual neurons during a number of different experimental conditions. An important problem in computational neuroscience is thus to develop algorithms to automatically detect and sort the spiking activity of individual neurons from extracellular recordings. While many algorithms for spike sorting exist, the problem of accurate and fast online sorting still remains a challenging issue. Here we present a novel software tool, called FSPS (Fuzzy SPike Sorting), which is designed to optimize: (i) fast and accurate detection, (ii) offline sorting and (iii) online classification of neuronal spikes with very limited or null human intervention. The method is based on a combination of Singular Value Decomposition for fast and highly accurate pre-processing of spike shapes, unsupervised Fuzzy C-mean, high-resolution alignment of extracted spike waveforms, optimal selection of the number of features to retain, automatic identification the number of clusters, and quantitative quality assessment of resulting clusters independent on their size. After being trained on a short testing data stream, the method can reliably perform supervised online classification and monitoring of single neuron activity. The generalized procedure has been implemented in our FSPS spike sorting software (available free for non-commercial academic applications at the address: http://www.spikesorting.com) using LabVIEW (National Instruments, USA). We evaluated the performance of our algorithm both on benchmark simulated datasets with different levels of background noise and on real extracellular recordings from premotor cortex of Macaque monkeys. The results of these tests showed an excellent accuracy in discriminating low-amplitude and overlapping spikes under strong background noise. The performance of our method is competitive with respect to other robust spike sorting algorithms. This new software provides neuroscience laboratories with a new tool for fast and robust online classification of single neuron activity. This feature could become crucial in situations when online spike detection from multiple electrodes is paramount, such as in human clinical recordings or in brain-computer interfaces.
Stimuli Reduce the Dimensionality of Cortical Activity
Mazzucato, Luca; Fontanini, Alfredo; La Camera, Giancarlo
2016-01-01
The activity of ensembles of simultaneously recorded neurons can be represented as a set of points in the space of firing rates. Even though the dimension of this space is equal to the ensemble size, neural activity can be effectively localized on smaller subspaces. The dimensionality of the neural space is an important determinant of the computational tasks supported by the neural activity. Here, we investigate the dimensionality of neural ensembles from the sensory cortex of alert rats during periods of ongoing (inter-trial) and stimulus-evoked activity. We find that dimensionality grows linearly with ensemble size, and grows significantly faster during ongoing activity compared to evoked activity. We explain these results using a spiking network model based on a clustered architecture. The model captures the difference in growth rate between ongoing and evoked activity and predicts a characteristic scaling with ensemble size that could be tested in high-density multi-electrode recordings. Moreover, we present a simple theory that predicts the existence of an upper bound on dimensionality. This upper bound is inversely proportional to the amount of pair-wise correlations and, compared to a homogeneous network without clusters, it is larger by a factor equal to the number of clusters. The empirical estimation of such bounds depends on the number and duration of trials and is well predicted by the theory. Together, these results provide a framework to analyze neural dimensionality in alert animals, its behavior under stimulus presentation, and its theoretical dependence on ensemble size, number of clusters, and correlations in spiking network models. PMID:26924968
Stimuli Reduce the Dimensionality of Cortical Activity.
Mazzucato, Luca; Fontanini, Alfredo; La Camera, Giancarlo
2016-01-01
The activity of ensembles of simultaneously recorded neurons can be represented as a set of points in the space of firing rates. Even though the dimension of this space is equal to the ensemble size, neural activity can be effectively localized on smaller subspaces. The dimensionality of the neural space is an important determinant of the computational tasks supported by the neural activity. Here, we investigate the dimensionality of neural ensembles from the sensory cortex of alert rats during periods of ongoing (inter-trial) and stimulus-evoked activity. We find that dimensionality grows linearly with ensemble size, and grows significantly faster during ongoing activity compared to evoked activity. We explain these results using a spiking network model based on a clustered architecture. The model captures the difference in growth rate between ongoing and evoked activity and predicts a characteristic scaling with ensemble size that could be tested in high-density multi-electrode recordings. Moreover, we present a simple theory that predicts the existence of an upper bound on dimensionality. This upper bound is inversely proportional to the amount of pair-wise correlations and, compared to a homogeneous network without clusters, it is larger by a factor equal to the number of clusters. The empirical estimation of such bounds depends on the number and duration of trials and is well predicted by the theory. Together, these results provide a framework to analyze neural dimensionality in alert animals, its behavior under stimulus presentation, and its theoretical dependence on ensemble size, number of clusters, and correlations in spiking network models.
Hagen, Espen; Ness, Torbjørn V; Khosrowshahi, Amir; Sørensen, Christina; Fyhn, Marianne; Hafting, Torkel; Franke, Felix; Einevoll, Gaute T
2015-04-30
New, silicon-based multielectrodes comprising hundreds or more electrode contacts offer the possibility to record spike trains from thousands of neurons simultaneously. This potential cannot be realized unless accurate, reliable automated methods for spike sorting are developed, in turn requiring benchmarking data sets with known ground-truth spike times. We here present a general simulation tool for computing benchmarking data for evaluation of spike-sorting algorithms entitled ViSAPy (Virtual Spiking Activity in Python). The tool is based on a well-established biophysical forward-modeling scheme and is implemented as a Python package built on top of the neuronal simulator NEURON and the Python tool LFPy. ViSAPy allows for arbitrary combinations of multicompartmental neuron models and geometries of recording multielectrodes. Three example benchmarking data sets are generated, i.e., tetrode and polytrode data mimicking in vivo cortical recordings and microelectrode array (MEA) recordings of in vitro activity in salamander retinas. The synthesized example benchmarking data mimics salient features of typical experimental recordings, for example, spike waveforms depending on interspike interval. ViSAPy goes beyond existing methods as it includes biologically realistic model noise, synaptic activation by recurrent spiking networks, finite-sized electrode contacts, and allows for inhomogeneous electrical conductivities. ViSAPy is optimized to allow for generation of long time series of benchmarking data, spanning minutes of biological time, by parallel execution on multi-core computers. ViSAPy is an open-ended tool as it can be generalized to produce benchmarking data or arbitrary recording-electrode geometries and with various levels of complexity. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Brewer, Gregory J; Boehler, Michael D; Jones, Torrie T; Wheeler, Bruce C
2008-05-30
The most interesting property of neurons is their long-distance propagation of signals as spiking action potentials. Since 1993, Neurobasal/B27 has been used as a serum-free medium optimized for hippocampal neuron survival. Neurons on microelectrode arrays (MEA) were used as an assay system to increase spontaneous spike rates in media of different compositions. We find spike rates of 0.5 s(-1) (Hz) for rat embryonic hippocampal neurons cultured in Neurobasal/B27, lower than cultures in serum-based media and offering an opportunity for improvement. NbActiv4 was formulated by addition of creatine, cholesterol and estrogen to Neurobasal/B27 that synergistically produced an eightfold increase in spontaneous spike activity. The increased activity with NbActiv4 correlated with a twofold increase in immunoreactive synaptophysin bright puncta and GluR1 total puncta. Characteristic of synaptic scaling, immunoreactive GABAAbeta puncta also increased 1.5-fold and NMDA-R1 puncta increased 1.8-fold. Neuron survival in NbActiv4 equaled that in Neurobasal/B27, but with slightly higher astroglia. Resting respiratory demand was decreased and demand capacity was increased in NbActiv4, indicating less stress and higher efficiency. These results show that NbActiv4 is an improvement to Neurobasal/B27 for cultured networks with an increased density of synapses and transmitter receptors which produces higher spontaneous spike rates in neuron networks.
Spike-train communities: finding groups of similar spike trains.
Humphries, Mark D
2011-02-09
Identifying similar spike-train patterns is a key element in understanding neural coding and computation. For single neurons, similar spike patterns evoked by stimuli are evidence of common coding. Across multiple neurons, similar spike trains indicate potential cell assemblies. As recording technology advances, so does the urgent need for grouping methods to make sense of large-scale datasets of spike trains. Existing methods require specifying the number of groups in advance, limiting their use in exploratory analyses. I derive a new method from network theory that solves this key difficulty: it self-determines the maximum number of groups in any set of spike trains, and groups them to maximize intragroup similarity. This method brings us revealing new insights into the encoding of aversive stimuli by dopaminergic neurons, and the organization of spontaneous neural activity in cortex. I show that the characteristic pause response of a rat's dopaminergic neuron depends on the state of the superior colliculus: when it is inactive, aversive stimuli invoke a single pattern of dopaminergic neuron spiking; when active, multiple patterns occur, yet the spike timing in each is reliable. In spontaneous multineuron activity from the cortex of anesthetized cat, I show the existence of neural ensembles that evolve in membership and characteristic timescale of organization during global slow oscillations. I validate these findings by showing that the method both is remarkably reliable at detecting known groups and can detect large-scale organization of dynamics in a model of the striatum.
Testing of information condensation in a model reverberating spiking neural network.
Vidybida, Alexander
2011-06-01
Information about external world is delivered to the brain in the form of structured in time spike trains. During further processing in higher areas, information is subjected to a certain condensation process, which results in formation of abstract conceptual images of external world, apparently, represented as certain uniform spiking activity partially independent on the input spike trains details. Possible physical mechanism of condensation at the level of individual neuron was discussed recently. In a reverberating spiking neural network, due to this mechanism the dynamics should settle down to the same uniform/ periodic activity in response to a set of various inputs. Since the same periodic activity may correspond to different input spike trains, we interpret this as possible candidate for information condensation mechanism in a network. Our purpose is to test this possibility in a network model consisting of five fully connected neurons, particularly, the influence of geometric size of the network, on its ability to condense information. Dynamics of 20 spiking neural networks of different geometric sizes are modelled by means of computer simulation. Each network was propelled into reverberating dynamics by applying various initial input spike trains. We run the dynamics until it becomes periodic. The Shannon's formula is used to calculate the amount of information in any input spike train and in any periodic state found. As a result, we obtain explicit estimate of the degree of information condensation in the networks, and conclude that it depends strongly on the net's geometric size.
Decoding intravesical pressure from local field potentials in rat lumbosacral spinal cord
NASA Astrophysics Data System (ADS)
Im, Changkyun; Park, Hae Yong; Koh, Chin Su; Ryu, Sang Baek; Seo, In Seok; Kim, Yong Jung; Kim, Kyung Hwan; Shin, Hyung-Cheul
2016-10-01
Chronic monitoring of intravesical pressure is required to detect the onset of intravesical hypertension and the progression of a more severe condition. Recent reports demonstrate the bladder state can be monitored from the spiking activity of the dorsal root ganglia or lumbosacral spinal cord. However, one of the most serious challenges for these methods is the difficulty of sustained spike signal acquisition due to the high-electrode-location-sensitivity of spikes or neuro-degeneration. Alternatively, it has been demonstrated that local field potential recordings are less affected by encapsulation reactions or electrode location changes. Here, we hypothesized that local field potential (LFP) from the lumbosacral dorsal horn may provide information concerning the intravesical pressure. LFP and spike activities were simultaneously recorded from the lumbosacral spinal cord of anesthetized rats during bladder filling. The results show that the LFP activities carry significant information about intravesical pressure along with spiking activities. Importantly, the intravesical pressure is decoded from the power in high-frequency bands (83.9-256 Hz) with a substantial performance similar to that of the spike train decoding. These findings demonstrate that high-frequency LFP activity can be an alternative intravesical pressure monitoring signal, which could lead to a proper closed loop system for urinary control.
Yoo, Yung J; Saliba, Anthony J; Prenzler, Paul D; Ryan, Danielle
2012-01-11
White and red wines spiked with catechin-rich green tea extract and grape seed extract were assessed for phenolic content, antioxidant activity, and cross-cultural consumer rejection thresholds in relation to wine as a functional food. Health functionality is an important factor in functional foods, and spiking pure compounds or plant extracts is an effective method to increase or control functionality. The total phenolic content and antioxidant activity were measured in wines spiked to different extract concentrations, namely, control and 50, 100, 200, 400, and 800 mg/L, to confirm the dose-response curves in both white and red wines. Consumer rejection thresholds (CRTs) were established for spiked wines in a Korean and in an Australian population. Our results showed that the green tea extract and grape seed extract increased the antioxidant activity dose dependently, and the CRTs varied considerably between the Korean and the Australian groups, with Koreans preferring wines spiked with green tea extract and Australians showing a preference for wines spiked with grape seed extract. These results have implications for producing wine products that are enhanced in phenolic compounds and targeted to different cultural groups.
Neuronal Ensemble Synchrony during Human Focal Seizures
Ahmed, Omar J.; Harrison, Matthew T.; Eskandar, Emad N.; Cosgrove, G. Rees; Madsen, Joseph R.; Blum, Andrew S.; Potter, N. Stevenson; Hochberg, Leigh R.; Cash, Sydney S.
2014-01-01
Seizures are classically characterized as the expression of hypersynchronous neural activity, yet the true degree of synchrony in neuronal spiking (action potentials) during human seizures remains a fundamental question. We quantified the temporal precision of spike synchrony in ensembles of neocortical neurons during seizures in people with pharmacologically intractable epilepsy. Two seizure types were analyzed: those characterized by sustained gamma (∼40–60 Hz) local field potential (LFP) oscillations or by spike-wave complexes (SWCs; ∼3 Hz). Fine (<10 ms) temporal synchrony was rarely present during gamma-band seizures, where neuronal spiking remained highly irregular and asynchronous. In SWC seizures, phase locking of neuronal spiking to the SWC spike phase induced synchrony at a coarse 50–100 ms level. In addition, transient fine synchrony occurred primarily during the initial ∼20 ms period of the SWC spike phase and varied across subjects and seizures. Sporadic coherence events between neuronal population spike counts and LFPs were observed during SWC seizures in high (∼80 Hz) gamma-band and during high-frequency oscillations (∼130 Hz). Maximum entropy models of the joint neuronal spiking probability, constrained only on single neurons' nonstationary coarse spiking rates and local network activation, explained most of the fine synchrony in both seizure types. Our findings indicate that fine neuronal ensemble synchrony occurs mostly during SWC, not gamma-band, seizures, and primarily during the initial phase of SWC spikes. Furthermore, these fine synchrony events result mostly from transient increases in overall neuronal network spiking rates, rather than changes in precise spiking correlations between specific pairs of neurons. PMID:25057195
Spike Train Auto-Structure Impacts Post-Synaptic Firing and Timing-Based Plasticity
Scheller, Bertram; Castellano, Marta; Vicente, Raul; Pipa, Gordon
2011-01-01
Cortical neurons are typically driven by several thousand synapses. The precise spatiotemporal pattern formed by these inputs can modulate the response of a post-synaptic cell. In this work, we explore how the temporal structure of pre-synaptic inhibitory and excitatory inputs impact the post-synaptic firing of a conductance-based integrate and fire neuron. Both the excitatory and inhibitory input was modeled by renewal gamma processes with varying shape factors for modeling regular and temporally random Poisson activity. We demonstrate that the temporal structure of mutually independent inputs affects the post-synaptic firing, while the strength of the effect depends on the firing rates of both the excitatory and inhibitory inputs. In a second step, we explore the effect of temporal structure of mutually independent inputs on a simple version of Hebbian learning, i.e., hard bound spike-timing-dependent plasticity. We explore both the equilibrium weight distribution and the speed of the transient weight dynamics for different mutually independent gamma processes. We find that both the equilibrium distribution of the synaptic weights and the speed of synaptic changes are modulated by the temporal structure of the input. Finally, we highlight that the sensitivity of both the post-synaptic firing as well as the spike-timing-dependent plasticity on the auto-structure of the input of a neuron could be used to modulate the learning rate of synaptic modification. PMID:22203800
Graupner, Michael; Reyes, Alex D
2013-09-18
Correlations in the spiking activity of neurons have been found in many regions of the cortex under multiple experimental conditions and are postulated to have important consequences for neural population coding. While there is a large body of extracellular data reporting correlations of various strengths, the subthreshold events underlying the origin and magnitude of signal-independent correlations (called noise or spike count correlations) are unknown. Here we investigate, using intracellular recordings, how synaptic input correlations from shared presynaptic neurons translate into membrane potential and spike-output correlations. Using a pharmacologically activated thalamocortical slice preparation, we perform simultaneous recordings from pairs of layer IV neurons in the auditory cortex of mice and measure synaptic potentials/currents, membrane potentials, and spiking outputs. We calculate cross-correlations between excitatory and inhibitory inputs to investigate correlations emerging from the network. We furthermore evaluate membrane potential correlations near resting potential to study how excitation and inhibition combine and affect spike-output correlations. We demonstrate directly that excitation is correlated with inhibition thereby partially canceling each other and resulting in weak membrane potential and spiking correlations between neurons. Our data suggest that cortical networks are set up to partially cancel correlations emerging from the connections between neurons. This active decorrelation is achieved because excitation and inhibition closely track each other. Our results suggest that the numerous shared presynaptic inputs do not automatically lead to increased spiking correlations.
Information Entropy Production of Maximum Entropy Markov Chains from Spike Trains
NASA Astrophysics Data System (ADS)
Cofré, Rodrigo; Maldonado, Cesar
2018-01-01
We consider the maximum entropy Markov chain inference approach to characterize the collective statistics of neuronal spike trains, focusing on the statistical properties of the inferred model. We review large deviations techniques useful in this context to describe properties of accuracy and convergence in terms of sampling size. We use these results to study the statistical fluctuation of correlations, distinguishability and irreversibility of maximum entropy Markov chains. We illustrate these applications using simple examples where the large deviation rate function is explicitly obtained for maximum entropy models of relevance in this field.
Noise influence on spike activation in a Hindmarsh-Rose small-world neural network
NASA Astrophysics Data System (ADS)
Zhe, Sun; Micheletto, Ruggero
2016-07-01
We studied the role of noise in neural networks, especially focusing on its relation to the propagation of spike activity in a small sized system. We set up a source of information using a single neuron that is constantly spiking. This element called initiator x o feeds spikes to the rest of the network that is initially quiescent and subsequently reacts with vigorous spiking after a transitional period of time. We found that noise quickly suppresses the initiator’s influence and favors spontaneous spike activity and, using a decibel representation of noise intensity, we established a linear relationship between noise amplitude and the interval from the initiator’s first spike and the rest of the network activation. We studied the same process with networks of different sizes (number of neurons) and found that the initiator x o has a measurable influence on small networks, but as the network grows in size, spontaneous spiking emerges disrupting its effects on networks of more than about N = 100 neurons. This suggests that the mechanism of internal noise generation allows information transmission within a small neural neighborhood, but decays for bigger network domains. We also analyzed the Fourier spectrum of the whole network membrane potential and verified that noise provokes the reduction of main θ and α peaks before transitioning into chaotic spiking. However, network size does not reproduce a similar phenomena; instead we recorded a reduction in peaks’ amplitude, a better sharpness and definition of Fourier peaks, but not the evident degeneration to chaos observed with increasing external noise. This work aims to contribute to the understanding of the fundamental mechanisms of propagation of spontaneous spiking in neural networks and gives a quantitative assessment of how noise can be used to control and modulate this phenomenon in Hindmarsh-Rose (H-R) neural networks.
Locally Contractive Dynamics in Generalized Integrate-and-Fire Neurons*
Jimenez, Nicolas D.; Mihalas, Stefan; Brown, Richard; Niebur, Ernst; Rubin, Jonathan
2013-01-01
Integrate-and-fire models of biological neurons combine differential equations with discrete spike events. In the simplest case, the reset of the neuronal voltage to its resting value is the only spike event. The response of such a model to constant input injection is limited to tonic spiking. We here study a generalized model in which two simple spike-induced currents are added. We show that this neuron exhibits not only tonic spiking at various frequencies but also the commonly observed neuronal bursting. Using analytical and numerical approaches, we show that this model can be reduced to a one-dimensional map of the adaptation variable and that this map is locally contractive over a broad set of parameter values. We derive a sufficient analytical condition on the parameters for the map to be globally contractive, in which case all orbits tend to a tonic spiking state determined by the fixed point of the return map. We then show that bursting is caused by a discontinuity in the return map, in which case the map is piecewise contractive. We perform a detailed analysis of a class of piecewise contractive maps that we call bursting maps and show that they robustly generate stable bursting behavior. To the best of our knowledge, this work is the first to point out the intimate connection between bursting dynamics and piecewise contractive maps. Finally, we discuss bifurcations in this return map, which cause transitions between spiking patterns. PMID:24489486
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vadasz, C.; Fleischer, A.; Carpi, D.
1995-02-27
Neocortical high-voltage spike-and-wave discharges (HVS) in the rat are an animal model of petit mal epilepsy. Genetic analysis of total duration of HVS (s/12 hr) in reciprocal F1 and F2 hybrids of F344 and BN rats indicated that the phenotypic variability of HVS cannot be explained by simple, monogenic Mendelian model. Biometrical analysis suggested the presence of additive, dominance, and sex-linked-epistatic effects, buffering maternal influence, and heterosis. High correlation was observed between average duration (s/episode) and frequency of occurrence of spike-and-wave episodes (n/12 hr) in parental and segregating generations, indicating that common genes affect both duration and frequency of themore » spike-and-wave pattern. We propose that both genetic and developmental - environmental factors control an underlying quantitative variable, which, above a certain threshold level, precipitates HVS discharges. These findings, together with the recent availability of rat DNA markers for total genome mapping, pave the way to the identification of genes that control the susceptibility of the brain to spike-and-wave discharges. 67 refs., 3 figs., 5 tabs.« less
Hebbian based learning with winner-take-all for spiking neural networks
NASA Astrophysics Data System (ADS)
Gupta, Ankur; Long, Lyle
2009-03-01
Learning methods for spiking neural networks are not as well developed as the traditional neural networks that widely use back-propagation training. We propose and implement a Hebbian based learning method with winner-take-all competition for spiking neural networks. This approach is spike time dependent which makes it naturally well suited for a network of spiking neurons. Homeostasis with Hebbian learning is implemented which ensures stability and quicker learning. Homeostasis implies that the net sum of incoming weights associated with a neuron remains the same. Winner-take-all is also implemented for competitive learning between output neurons. We implemented this learning rule on a biologically based vision processing system that we are developing, and use layers of leaky integrate and fire neurons. The network when presented with 4 bars (or Gabor filters) of different orientation learns to recognize the bar orientations (or Gabor filters). After training, each output neuron learns to recognize a bar at specific orientation and responds by firing more vigorously to that bar and less vigorously to others. These neurons are found to have bell shaped tuning curves and are similar to the simple cells experimentally observed by Hubel and Wiesel in the striate cortex of cat and monkey.
The effect of spiked boots on logger safety, productivity and workload.
Kirk, P; Parker, R
1994-04-01
Analysis of 1657 lost-time logging accidents in the New Zealand logging industry (1985-1991) indicates that 17.5% were as a result of slips, trips and falls and a total of 2870 days were lost. Most (56%) of these slipping, tripping and falling accidents occurred in the felling and delimbing phase of the logging operation, where 37% of the workforce are employed. In an attempt to reduce the number of slipping injuries to loggers employed in felling and delimbing, a study of the effectiveness of spike-soled (caulk) boots was undertaken. Four loggers were intensively observed at work, by continuous time-study methods, while wearing their conventional rubber-soled boots and then spike-soled boots. The number of slips, work methods used, physiological workload and productivity were compared for loggers wearing the two footwear types. Results indicated that spike-soled boots were associated with a significant reduction in the frequency of slips and had no adverse effect on work methods, physiological workload or productivity. Spike-soled boots are now being promoted for use by loggers in New Zealand as a simple method to reduce slipping, tripping and falling accidents.
Local flow measurements at the inlet spike tip of a Mach 3 supersonic cruise airplane
NASA Technical Reports Server (NTRS)
Johnson, H. J.; Montoya, E. J.
1973-01-01
The flow field at the left inlet spike tip of a YF-12A airplane was examined using at 26 deg included angle conical flow sensor to obtain measurements at free-stream Mach numbers from 1.6 to 3.0. Local flow angularity, Mach number, impact pressure, and mass flow were determined and compared with free-stream values. Local flow changes occurred at the same time as free-stream changes. The local flow usually approached the spike centerline from the upper outboard side because of spike cant and toe-in. Free-stream Mach number influenced the local flow angularity; as Mach number increased above 2.2, local angle of attack increased and local sideslip angle decreased. Local Mach number was generally 3 percent less than free-stream Mach number. Impact-pressure ratio and mass flow ratio increased as free-stream Mach number increased above 2.2, indicating a beneficial forebody compression effect. No degradation of the spike tip instrumentation was observed after more than 40 flights in the high-speed thermal environment encountered by the airplane. The sensor is rugged, simple, and sensitive to small flow changes. It can provide accurate imputs necessary to control an inlet.
Yi, Guo-Sheng; Wang, Jiang; Tsang, Kai-Ming; Wei, Xi-Le; Deng, Bin
2015-01-01
Dynamic spike threshold plays a critical role in neuronal input-output relations. In many neurons, the threshold potential depends on the rate of membrane potential depolarization (dV/dt) preceding a spike. There are two basic classes of neural excitability, i.e., Type I and Type II, according to input-output properties. Although the dynamical and biophysical basis of their spike initiation has been established, the spike threshold dynamic for each cell type has not been well described. Here, we use a biophysical model to investigate how spike threshold depends on dV/dt in two types of neuron. It is observed that Type II spike threshold is more depolarized and more sensitive to dV/dt than Type I. With phase plane analysis, we show that each threshold dynamic arises from the different separatrix and K+ current kinetics. By analyzing subthreshold properties of membrane currents, we find the activation of hyperpolarizing current prior to spike initiation is a major factor that regulates the threshold dynamics. The outward K+ current in Type I neuron does not activate at the perithresholds, which makes its spike threshold insensitive to dV/dt. The Type II K+ current activates prior to spike initiation and there is a large net hyperpolarizing current at the perithresholds, which results in a depolarized threshold as well as a pronounced threshold dynamic. These predictions are further attested in several other functionally equivalent cases of neural excitability. Our study provides a fundamental description about how intrinsic biophysical properties contribute to the threshold dynamics in Type I and Type II neurons, which could decipher their significant functions in neural coding. PMID:26083350
Chua, Yansong; Morrison, Abigail
2016-01-01
The role of dendritic spiking mechanisms in neural processing is so far poorly understood. To investigate the role of calcium spikes in the functional properties of the single neuron and recurrent networks, we investigated a three compartment neuron model of the layer 5 pyramidal neuron with calcium dynamics in the distal compartment. By performing single neuron simulations with noisy synaptic input and occasional large coincident input at either just the distal compartment or at both somatic and distal compartments, we show that the presence of calcium spikes confers a substantial advantage for coincidence detection in the former case and a lesser advantage in the latter. We further show that the experimentally observed critical frequency phenomenon, in which action potentials triggered by stimuli near the soma above a certain frequency trigger a calcium spike at distal dendrites, leading to further somatic depolarization, is not exhibited by a neuron receiving realistically noisy synaptic input, and so is unlikely to be a necessary component of coincidence detection. We next investigate the effect of calcium spikes in propagation of spiking activities in a feed-forward network (FFN) embedded in a balanced recurrent network. The excitatory neurons in the network are again connected to either just the distal, or both somatic and distal compartments. With purely distal connectivity, activity propagation is stable and distinguishable for a large range of recurrent synaptic strengths if the feed-forward connections are sufficiently strong, but propagation does not occur in the absence of calcium spikes. When connections are made to both the somatic and the distal compartments, activity propagation is achieved for neurons with active calcium dynamics at a much smaller number of neurons per pool, compared to a network of passive neurons, but quickly becomes unstable as the strength of recurrent synapses increases. Activity propagation at higher scaling factors can be stabilized by increasing network inhibition or introducing short term depression in the excitatory synapses, but the signal to noise ratio remains low. Our results demonstrate that the interaction of synchrony with dendritic spiking mechanisms can have profound consequences for the dynamics on the single neuron and network level. PMID:27499740
Chua, Yansong; Morrison, Abigail
2016-01-01
The role of dendritic spiking mechanisms in neural processing is so far poorly understood. To investigate the role of calcium spikes in the functional properties of the single neuron and recurrent networks, we investigated a three compartment neuron model of the layer 5 pyramidal neuron with calcium dynamics in the distal compartment. By performing single neuron simulations with noisy synaptic input and occasional large coincident input at either just the distal compartment or at both somatic and distal compartments, we show that the presence of calcium spikes confers a substantial advantage for coincidence detection in the former case and a lesser advantage in the latter. We further show that the experimentally observed critical frequency phenomenon, in which action potentials triggered by stimuli near the soma above a certain frequency trigger a calcium spike at distal dendrites, leading to further somatic depolarization, is not exhibited by a neuron receiving realistically noisy synaptic input, and so is unlikely to be a necessary component of coincidence detection. We next investigate the effect of calcium spikes in propagation of spiking activities in a feed-forward network (FFN) embedded in a balanced recurrent network. The excitatory neurons in the network are again connected to either just the distal, or both somatic and distal compartments. With purely distal connectivity, activity propagation is stable and distinguishable for a large range of recurrent synaptic strengths if the feed-forward connections are sufficiently strong, but propagation does not occur in the absence of calcium spikes. When connections are made to both the somatic and the distal compartments, activity propagation is achieved for neurons with active calcium dynamics at a much smaller number of neurons per pool, compared to a network of passive neurons, but quickly becomes unstable as the strength of recurrent synapses increases. Activity propagation at higher scaling factors can be stabilized by increasing network inhibition or introducing short term depression in the excitatory synapses, but the signal to noise ratio remains low. Our results demonstrate that the interaction of synchrony with dendritic spiking mechanisms can have profound consequences for the dynamics on the single neuron and network level.
Low-noise encoding of active touch by layer 4 in the somatosensory cortex.
Hires, Samuel Andrew; Gutnisky, Diego A; Yu, Jianing; O'Connor, Daniel H; Svoboda, Karel
2015-08-06
Cortical spike trains often appear noisy, with the timing and number of spikes varying across repetitions of stimuli. Spiking variability can arise from internal (behavioral state, unreliable neurons, or chaotic dynamics in neural circuits) and external (uncontrolled behavior or sensory stimuli) sources. The amount of irreducible internal noise in spike trains, an important constraint on models of cortical networks, has been difficult to estimate, since behavior and brain state must be precisely controlled or tracked. We recorded from excitatory barrel cortex neurons in layer 4 during active behavior, where mice control tactile input through learned whisker movements. Touch was the dominant sensorimotor feature, with >70% spikes occurring in millisecond timescale epochs after touch onset. The variance of touch responses was smaller than expected from Poisson processes, often reaching the theoretical minimum. Layer 4 spike trains thus reflect the millisecond-timescale structure of tactile input with little noise.
From Spiking Neuron Models to Linear-Nonlinear Models
Ostojic, Srdjan; Brunel, Nicolas
2011-01-01
Neurons transform time-varying inputs into action potentials emitted stochastically at a time dependent rate. The mapping from current input to output firing rate is often represented with the help of phenomenological models such as the linear-nonlinear (LN) cascade, in which the output firing rate is estimated by applying to the input successively a linear temporal filter and a static non-linear transformation. These simplified models leave out the biophysical details of action potential generation. It is not a priori clear to which extent the input-output mapping of biophysically more realistic, spiking neuron models can be reduced to a simple linear-nonlinear cascade. Here we investigate this question for the leaky integrate-and-fire (LIF), exponential integrate-and-fire (EIF) and conductance-based Wang-Buzsáki models in presence of background synaptic activity. We exploit available analytic results for these models to determine the corresponding linear filter and static non-linearity in a parameter-free form. We show that the obtained functions are identical to the linear filter and static non-linearity determined using standard reverse correlation analysis. We then quantitatively compare the output of the corresponding linear-nonlinear cascade with numerical simulations of spiking neurons, systematically varying the parameters of input signal and background noise. We find that the LN cascade provides accurate estimates of the firing rates of spiking neurons in most of parameter space. For the EIF and Wang-Buzsáki models, we show that the LN cascade can be reduced to a firing rate model, the timescale of which we determine analytically. Finally we introduce an adaptive timescale rate model in which the timescale of the linear filter depends on the instantaneous firing rate. This model leads to highly accurate estimates of instantaneous firing rates. PMID:21283777
From spiking neuron models to linear-nonlinear models.
Ostojic, Srdjan; Brunel, Nicolas
2011-01-20
Neurons transform time-varying inputs into action potentials emitted stochastically at a time dependent rate. The mapping from current input to output firing rate is often represented with the help of phenomenological models such as the linear-nonlinear (LN) cascade, in which the output firing rate is estimated by applying to the input successively a linear temporal filter and a static non-linear transformation. These simplified models leave out the biophysical details of action potential generation. It is not a priori clear to which extent the input-output mapping of biophysically more realistic, spiking neuron models can be reduced to a simple linear-nonlinear cascade. Here we investigate this question for the leaky integrate-and-fire (LIF), exponential integrate-and-fire (EIF) and conductance-based Wang-Buzsáki models in presence of background synaptic activity. We exploit available analytic results for these models to determine the corresponding linear filter and static non-linearity in a parameter-free form. We show that the obtained functions are identical to the linear filter and static non-linearity determined using standard reverse correlation analysis. We then quantitatively compare the output of the corresponding linear-nonlinear cascade with numerical simulations of spiking neurons, systematically varying the parameters of input signal and background noise. We find that the LN cascade provides accurate estimates of the firing rates of spiking neurons in most of parameter space. For the EIF and Wang-Buzsáki models, we show that the LN cascade can be reduced to a firing rate model, the timescale of which we determine analytically. Finally we introduce an adaptive timescale rate model in which the timescale of the linear filter depends on the instantaneous firing rate. This model leads to highly accurate estimates of instantaneous firing rates.
Chernichenko, Natalya; Woo, Jeong-Soo; Hundal, Jagdeep S; Sasaki, Clarence T
2011-02-01
The aim of this study was to identify the response of the cricopharyngeus muscle (CPM) to esophageal stimulation by intraluminal mechanical distension and intraluminal acid and bile perfusion. In 3 adult pigs, electromyographic (EMG) activity of the CPM was recorded at baseline and after esophageal stimulation at 3 levels: proximal, middle, and distal. The esophagus was stimulated with 20-mL balloon distension and intraluminal perfusion of 40 mL 0.1N hydrochloric acid, taurocholic acid (pH 1.5), and chenodeoxycholic acid (pH 7.4) at the rate of 40 mL/min. The EMG spike density was defined as peak-to-peak spikes greater than 10 microV averaged over 10-ms intervals. In all 3 animals, the spike density at baseline was 0. The spike densities increased after proximal and middle distensions to 15.2 +/- 1.5 and 5.1 +/- 1.2 spikes per 10 ms, respectively. No change in CPM EMG activity occurred after distal distension. The spike density following intraluminal perfusion with hydrochloric acid at the distal level was 10.1 +/- 1.1 spikes per 10 ms. No significant change in CPM EMG activity occurred after acid perfusion at the middle and proximal levels. No change in CPM EMG activity occurred after intraluminal esophageal perfusion with either taurocholic acid or chenodeoxycholic acid. Proximal esophageal distension, as well as distal intraluminal acid perfusion, appeared to be important mechanisms in generation of CPM activity. Bile acids, on the other hand, failed to evoke such CPM activity. The data suggest that transpyloric refluxate may not be significant enough to evoke the CPM protective sphincteric function, thereby placing supraesophageal structures at risk of bile injury.
Neuronal Spike Timing Adaptation Described with a Fractional Leaky Integrate-and-Fire Model
Teka, Wondimu; Marinov, Toma M.; Santamaria, Fidel
2014-01-01
The voltage trace of neuronal activities can follow multiple timescale dynamics that arise from correlated membrane conductances. Such processes can result in power-law behavior in which the membrane voltage cannot be characterized with a single time constant. The emergent effect of these membrane correlations is a non-Markovian process that can be modeled with a fractional derivative. A fractional derivative is a non-local process in which the value of the variable is determined by integrating a temporal weighted voltage trace, also called the memory trace. Here we developed and analyzed a fractional leaky integrate-and-fire model in which the exponent of the fractional derivative can vary from 0 to 1, with 1 representing the normal derivative. As the exponent of the fractional derivative decreases, the weights of the voltage trace increase. Thus, the value of the voltage is increasingly correlated with the trajectory of the voltage in the past. By varying only the fractional exponent, our model can reproduce upward and downward spike adaptations found experimentally in neocortical pyramidal cells and tectal neurons in vitro. The model also produces spikes with longer first-spike latency and high inter-spike variability with power-law distribution. We further analyze spike adaptation and the responses to noisy and oscillatory input. The fractional model generates reliable spike patterns in response to noisy input. Overall, the spiking activity of the fractional leaky integrate-and-fire model deviates from the spiking activity of the Markovian model and reflects the temporal accumulated intrinsic membrane dynamics that affect the response of the neuron to external stimulation. PMID:24675903
Agarwal, Rahul; Chen, Zhe; Kloosterman, Fabian; Wilson, Matthew A; Sarma, Sridevi V
2016-07-01
Pyramidal neurons recorded from the rat hippocampus and entorhinal cortex, such as place and grid cells, have diverse receptive fields, which are either unimodal or multimodal. Spiking activity from these cells encodes information about the spatial position of a freely foraging rat. At fine timescales, a neuron's spike activity also depends significantly on its own spike history. However, due to limitations of current parametric modeling approaches, it remains a challenge to estimate complex, multimodal neuronal receptive fields while incorporating spike history dependence. Furthermore, efforts to decode the rat's trajectory in one- or two-dimensional space from hippocampal ensemble spiking activity have mainly focused on spike history-independent neuronal encoding models. In this letter, we address these two important issues by extending a recently introduced nonparametric neural encoding framework that allows modeling both complex spatial receptive fields and spike history dependencies. Using this extended nonparametric approach, we develop novel algorithms for decoding a rat's trajectory based on recordings of hippocampal place cells and entorhinal grid cells. Results show that both encoding and decoding models derived from our new method performed significantly better than state-of-the-art encoding and decoding models on 6 minutes of test data. In addition, our model's performance remains invariant to the apparent modality of the neuron's receptive field.
Hoshino, Osamu
2006-12-01
Although details of cortical interneurons in anatomy and physiology have been well understood, little is known about how they contribute to ongoing spontaneous neuronal activity that could have a great impact on subsequent neuronal information processing. Simulating a cortical neural network model of an early sensory area, we investigated whether and how two distinct types of inhibitory interneurons, or fast-spiking interneurons with narrow axonal arbors and slow-spiking interneurons with wide axonal arbors, have a spatiotemporal influence on the ongoing activity of principal cells and subsequent cognitive information processing. In the model, dynamic cell assemblies, or population activation of principal cells, expressed information about specific sensory features. Within cell assemblies, fast-spiking interneurons give a feedback inhibitory effect on principal cells. Between cell assemblies, slow-spiking interneurons give a lateral inhibitory effect on principal cells. Here, we show that these interneurons keep the network at a subthreshold level for action potential generation under the ongoing state, by which the reaction time of principal cells to sensory stimulation could be accelerated. We suggest that the best timing of inhibition mediated by fast-spiking interneurons and slow-spiking interneurons allows the network to remain near threshold for rapid responses to input.
NASA Astrophysics Data System (ADS)
Zhou, Ping; Barkhaus, Paul E.; Zhang, Xu; Zev Rymer, William
2011-10-01
This paper presents a novel application of the approximate entropy (ApEn) measurement for characterizing spontaneous motor unit activity of amyotrophic lateral sclerosis (ALS) patients. High-density surface electromyography (EMG) was used to record spontaneous motor unit activity bilaterally from the thenar muscles of nine ALS subjects. Three distinct patterns of spontaneous motor unit activity (sporadic spikes, tonic spikes and high-frequency repetitive spikes) were observed. For each pattern, complexity was characterized by calculating the ApEn values of the representative signal segments. A sliding window over each segment was also introduced to quantify the dynamic changes in complexity for the different spontaneous motor unit patterns. We found that the ApEn values for the sporadic spikes were the highest, while those of the high-frequency repetitive spikes were the lowest. There is a significant difference in mean ApEn values between two arbitrary groups of the three spontaneous motor unit patterns (P < 0.001). The dynamic ApEn curve from the sliding window analysis is capable of tracking variations in EMG activity, thus providing a vivid, distinctive description for different patterns of spontaneous motor unit action potentials in terms of their complexity. These findings expand the existing knowledge of spontaneous motor unit activity in ALS beyond what was previously obtained using conventional linear methods such as firing rate or inter-spike interval statistics.
Linking structure and activity in nonlinear spiking networks
Josić, Krešimir; Shea-Brown, Eric
2017-01-01
Recent experimental advances are producing an avalanche of data on both neural connectivity and neural activity. To take full advantage of these two emerging datasets we need a framework that links them, revealing how collective neural activity arises from the structure of neural connectivity and intrinsic neural dynamics. This problem of structure-driven activity has drawn major interest in computational neuroscience. Existing methods for relating activity and architecture in spiking networks rely on linearizing activity around a central operating point and thus fail to capture the nonlinear responses of individual neurons that are the hallmark of neural information processing. Here, we overcome this limitation and present a new relationship between connectivity and activity in networks of nonlinear spiking neurons by developing a diagrammatic fluctuation expansion based on statistical field theory. We explicitly show how recurrent network structure produces pairwise and higher-order correlated activity, and how nonlinearities impact the networks’ spiking activity. Our findings open new avenues to investigating how single-neuron nonlinearities—including those of different cell types—combine with connectivity to shape population activity and function. PMID:28644840
Bhaumik, Basabi; Mathur, Mona
2003-01-01
We present a model for development of orientation selectivity in layer IV simple cells. Receptive field (RF) development in the model, is determined by diffusive cooperation and resource limited competition guided axonal growth and retraction in geniculocortical pathway. The simulated cortical RFs resemble experimental RFs. The receptive field model is incorporated in a three-layer visual pathway model consisting of retina, LGN and cortex. We have studied the effect of activity dependent synaptic scaling on orientation tuning of cortical cells. The mean value of hwhh (half width at half the height of maximum response) in simulated cortical cells is 58 degrees when we consider only the linear excitatory contribution from LGN. We observe a mean improvement of 22.8 degrees in tuning response due to the non-linear spiking mechanisms that include effects of threshold voltage and synaptic scaling factor.
Gamma Rhythm Simulations in Alzheimer's Disease
NASA Astrophysics Data System (ADS)
Montgomery, Samuel; Perez, Carlos; Ullah, Ghanim
The different neural rhythms that occur during the sleep-wake cycle regulate the brain's multiple functions. Memory acquisition occurs during fast gamma rhythms during consciousness, while slow oscillations mediate memory consolidation and erasure during sleep. At the neural network level, these rhythms are generated by the finely timed activity within excitatory and inhibitory neurons. In Alzheimer's Disease (AD) the function of inhibitory neurons is compromised due to an increase in amyloid beta (A β) leading to elevated sodium leakage from extracellular space in the hippocampus. Using a Hodgkin-Huxley formalism, heightened sodium leakage current into inhibitory neurons is observed to compromise functionality. Using a simple two neuron system it was observed that as the conductance of the sodium leakage current is increased in inhibitory neurons there is a significant decrease in spiking frequency regarding the membrane potential. This triggers a significant increase in excitatory spiking leading to aberrant network behavior similar to that seen in AD patients. The next step is to extend this model to a larger neuronal system with varying synaptic densities and conductance strengths as well as deterministic and stochastic drives.
Travelling waves in a model of quasi-active dendrites with active spines
NASA Astrophysics Data System (ADS)
Timofeeva, Y.
2010-05-01
Dendrites, the major components of neurons, have many different types of branching structures and are involved in receiving and integrating thousands of synaptic inputs from other neurons. Dendritic spines with excitable channels can be present in large densities on the dendrites of many cells. The recently proposed Spike-Diffuse-Spike (SDS) model that is described by a system of point hot-spots (with an integrate-and-fire process) embedded throughout a passive tree has been shown to provide a reasonable caricature of a dendritic tree with supra-threshold dynamics. Interestingly, real dendrites equipped with voltage-gated ion channels can exhibit not only supra-threshold responses, but also sub-threshold dynamics. This sub-threshold resonant-like oscillatory behaviour has already been shown to be adequately described by a quasi-active membrane. In this paper we introduce a mathematical model of a branched dendritic tree based upon a generalisation of the SDS model where the active spines are assumed to be distributed along a quasi-active dendritic structure. We demonstrate how solitary and periodic travelling wave solutions can be constructed for both continuous and discrete spine distributions. In both cases the speed of such waves is calculated as a function of system parameters. We also illustrate that the model can be naturally generalised to an arbitrary branched dendritic geometry whilst remaining computationally simple. The spatio-temporal patterns of neuronal activity are shown to be significantly influenced by the properties of the quasi-active membrane. Active (sub- and supra-threshold) properties of dendrites are known to vary considerably among cell types and animal species, and this theoretical framework can be used in studying the combined role of complex dendritic morphologies and active conductances in rich neuronal dynamics.
A modeling approach on why simple central pattern generators are built of irregular neurons.
Reyes, Marcelo Bussotti; Carelli, Pedro Valadão; Sartorelli, José Carlos; Pinto, Reynaldo Daniel
2015-01-01
The crustacean pyloric Central Pattern Generator (CPG) is a nervous circuit that endogenously provides periodic motor patterns. Even after about 40 years of intensive studies, the rhythm genesis is still not rigorously understood in this CPG, mainly because it is made of neurons with irregular intrinsic activity. Using mathematical models we addressed the question of using a network of irregularly behaving elements to generate periodic oscillations, and we show some advantages of using non-periodic neurons with intrinsic behavior in the transition from bursting to tonic spiking (as found in biological pyloric CPGs) as building components. We studied two- and three-neuron model CPGs built either with Hindmarsh-Rose or with conductance-based Hodgkin-Huxley-like model neurons. By changing a model's parameter we could span the neuron's intrinsic dynamical behavior from slow periodic bursting to fast tonic spiking, passing through a transition where irregular bursting was observed. Two-neuron CPG, half center oscillator (HCO), was obtained for each intrinsic behavior of the neurons by coupling them with mutual symmetric synaptic inhibition. Most of these HCOs presented regular antiphasic bursting activity and the changes of the bursting frequencies was studied as a function of the inhibitory synaptic strength. Among all HCOs, those made of intrinsic irregular neurons presented a wider burst frequency range while keeping a reliable regular oscillatory (bursting) behavior. HCOs of periodic neurons tended to be either hard to change their behavior with synaptic strength variations (slow periodic burster neurons) or unable to perform a physiologically meaningful rhythm (fast tonic spiking neurons). Moreover, 3-neuron CPGs with connectivity and output similar to those of the pyloric CPG presented the same results.
Statistical Tests Black swans or dragon-kings? A simple test for deviations from the power law★
NASA Astrophysics Data System (ADS)
Janczura, J.; Weron, R.
2012-05-01
We develop a simple test for deviations from power law tails. Actually, from the tails of any distribution. We use this test - which is based on the asymptotic properties of the empirical distribution function - to answer the question whether great natural disasters, financial crashes or electricity price spikes should be classified as dragon-kings or `only' as black swans.
Optimization Methods for Spiking Neurons and Networks
Russell, Alexander; Orchard, Garrick; Dong, Yi; Mihalaş, Ştefan; Niebur, Ernst; Tapson, Jonathan; Etienne-Cummings, Ralph
2011-01-01
Spiking neurons and spiking neural circuits are finding uses in a multitude of tasks such as robotic locomotion control, neuroprosthetics, visual sensory processing, and audition. The desired neural output is achieved through the use of complex neuron models, or by combining multiple simple neurons into a network. In either case, a means for configuring the neuron or neural circuit is required. Manual manipulation of parameters is both time consuming and non-intuitive due to the nonlinear relationship between parameters and the neuron’s output. The complexity rises even further as the neurons are networked and the systems often become mathematically intractable. In large circuits, the desired behavior and timing of action potential trains may be known but the timing of the individual action potentials is unknown and unimportant, whereas in single neuron systems the timing of individual action potentials is critical. In this paper, we automate the process of finding parameters. To configure a single neuron we derive a maximum likelihood method for configuring a neuron model, specifically the Mihalas–Niebur Neuron. Similarly, to configure neural circuits, we show how we use genetic algorithms (GAs) to configure parameters for a network of simple integrate and fire with adaptation neurons. The GA approach is demonstrated both in software simulation and hardware implementation on a reconfigurable custom very large scale integration chip. PMID:20959265
Solar microwave millisecond spike at 2.84 GHz
NASA Technical Reports Server (NTRS)
Fu, Qi-Jun; Jin, Sheng-Zhen; Zhao, Ren-Yang; Zheng, Le-Ping; Liu, Yu-Ying; Li, Xiao-Cong; Wang, Shu-Lan; Chen, Zhi-Jun; Hu, Chu-Min
1986-01-01
Using the high time resolution of 1 ms, the data of solar microwave millisecond spike (MMS) event was recorded more than two hundred times at the frequency of 2.84 GHz at Beijing (Peking) Observatory since May 1981. A preliminary analysis was made. It can be seen from the data that the MMS-events have a variety of the fast activities such as the dispersed and isolated spikes, the clusters of the crowded spikes, the weak spikes superimposed on the noise background, and the phenomena of absorption. The marked differences from that observed with lower time resolution are presented. Using the data, a valuable statistical analysis was made. There are close correlations between MMS-events and hard X-ray bursts, and fast drifting bursts. The MMS events are highly dependent on the type of active regions and the magnetic field configuration. It seems to be crucial to find out the accurate positions on the active region where the MMS-events happen and to make co-operative observations at different bands during the special period when specific active regions appear on the solar disk.
GRACE Accelerometer data transplant
NASA Astrophysics Data System (ADS)
Bandikova, T.; McCullough, C. M.; Kruizinga, G. L. H.
2017-12-01
The Gravity Recovery and Climate Experiment (GRACE) has recently celebrated its 15th anniversary. The aging of the satellites brings along new challenges for both mission operation and science data delivery. Since September 2016, the accelerometer (ACC) onboard GRACE-B has been permanently turned off in order to reduce the battery load. The absence of the information about the non-gravitational forces acting on the spacecraft dramatically decreases the accuracy of the monthly gravity field solutions. The missing GRACE-B accelerometer data, however, can be recovered from the GRACE-A accelerometer measurement with satisfactory accuracy. In the current GRACE data processing, simple ACC data transplant is used which includes only attitude and time correction. The full ACC data transplant, however, requires not only the attitude and time correction, but also modeling of the residual accelerations due to thruster firings, which is the most challenging part. The residual linear accelerations ("thruster spikes") are caused by thruster imperfections such as misalignment of thruster pair, force imbalance or differences in reaction time. The thruster spikes are one of the most dominant high-frequency signals in the ACC measurement. The shape and amplitude of the thruster spikes are unique for each thruster pair, for each firing duration (30 ms - 1000 ms), for each x,y,z component of the ACC linear acceleration, and for each spacecraft. In our approach, the thruster spike model is an analytical function obtained by inverse Laplace transform of the ACC transfer function. The model shape parameters (amplitude, width and time delay) are estimated using Least squares method. The ACC data transplant is validated for days when ACC data from both satellites were available. The fully transplanted data fits the original GRACE-B measurement very well. The full ACC data transplant results in significantly reduced high frequency noise compared to the simple ACC transplant (i.e. without thruster spike modeling). The full ACC data transplant is a promising solution, which will allow GRACE to deliver high quality science data despite the serious problems related to satellite aging.
Lajoie, Guillaume; Krouchev, Nedialko I; Kalaska, John F; Fairhall, Adrienne L; Fetz, Eberhard E
2017-02-01
Experiments show that spike-triggered stimulation performed with Bidirectional Brain-Computer-Interfaces (BBCI) can artificially strengthen connections between separate neural sites in motor cortex (MC). When spikes from a neuron recorded at one MC site trigger stimuli at a second target site after a fixed delay, the connections between sites eventually strengthen. It was also found that effective spike-stimulus delays are consistent with experimentally derived spike-timing-dependent plasticity (STDP) rules, suggesting that STDP is key to drive these changes. However, the impact of STDP at the level of circuits, and the mechanisms governing its modification with neural implants remain poorly understood. The present work describes a recurrent neural network model with probabilistic spiking mechanisms and plastic synapses capable of capturing both neural and synaptic activity statistics relevant to BBCI conditioning protocols. Our model successfully reproduces key experimental results, both established and new, and offers mechanistic insights into spike-triggered conditioning. Using analytical calculations and numerical simulations, we derive optimal operational regimes for BBCIs, and formulate predictions concerning the efficacy of spike-triggered conditioning in different regimes of cortical activity.
Lajoie, Guillaume; Kalaska, John F.; Fairhall, Adrienne L.; Fetz, Eberhard E.
2017-01-01
Experiments show that spike-triggered stimulation performed with Bidirectional Brain-Computer-Interfaces (BBCI) can artificially strengthen connections between separate neural sites in motor cortex (MC). When spikes from a neuron recorded at one MC site trigger stimuli at a second target site after a fixed delay, the connections between sites eventually strengthen. It was also found that effective spike-stimulus delays are consistent with experimentally derived spike-timing-dependent plasticity (STDP) rules, suggesting that STDP is key to drive these changes. However, the impact of STDP at the level of circuits, and the mechanisms governing its modification with neural implants remain poorly understood. The present work describes a recurrent neural network model with probabilistic spiking mechanisms and plastic synapses capable of capturing both neural and synaptic activity statistics relevant to BBCI conditioning protocols. Our model successfully reproduces key experimental results, both established and new, and offers mechanistic insights into spike-triggered conditioning. Using analytical calculations and numerical simulations, we derive optimal operational regimes for BBCIs, and formulate predictions concerning the efficacy of spike-triggered conditioning in different regimes of cortical activity. PMID:28151957
Motor control by precisely timed spike patterns
Srivastava, Kyle H.; Holmes, Caroline M.; Vellema, Michiel; Pack, Andrea R.; Elemans, Coen P. H.; Nemenman, Ilya; Sober, Samuel J.
2017-01-01
A fundamental problem in neuroscience is understanding how sequences of action potentials (“spikes”) encode information about sensory signals and motor outputs. Although traditional theories assume that this information is conveyed by the total number of spikes fired within a specified time interval (spike rate), recent studies have shown that additional information is carried by the millisecond-scale timing patterns of action potentials (spike timing). However, it is unknown whether or how subtle differences in spike timing drive differences in perception or behavior, leaving it unclear whether the information in spike timing actually plays a role in brain function. By examining the activity of individual motor units (the muscle fibers innervated by a single motor neuron) and manipulating patterns of activation of these neurons, we provide both correlative and causal evidence that the nervous system uses millisecond-scale variations in the timing of spikes within multispike patterns to control a vertebrate behavior—namely, respiration in the Bengalese finch, a songbird. These findings suggest that a fundamental assumption of current theories of motor coding requires revision. PMID:28100491
Nonlinear decoding of a complex movie from the mammalian retina
Deny, Stéphane; Martius, Georg
2018-01-01
Retina is a paradigmatic system for studying sensory encoding: the transformation of light into spiking activity of ganglion cells. The inverse problem, where stimulus is reconstructed from spikes, has received less attention, especially for complex stimuli that should be reconstructed “pixel-by-pixel”. We recorded around a hundred neurons from a dense patch in a rat retina and decoded movies of multiple small randomly-moving discs. We constructed nonlinear (kernelized and neural network) decoders that improved significantly over linear results. An important contribution to this was the ability of nonlinear decoders to reliably separate between neural responses driven by locally fluctuating light signals, and responses at locally constant light driven by spontaneous-like activity. This improvement crucially depended on the precise, non-Poisson temporal structure of individual spike trains, which originated in the spike-history dependence of neural responses. We propose a general principle by which downstream circuitry could discriminate between spontaneous and stimulus-driven activity based solely on higher-order statistical structure in the incoming spike trains. PMID:29746463
Parametric models to relate spike train and LFP dynamics with neural information processing.
Banerjee, Arpan; Dean, Heather L; Pesaran, Bijan
2012-01-01
Spike trains and local field potentials (LFPs) resulting from extracellular current flows provide a substrate for neural information processing. Understanding the neural code from simultaneous spike-field recordings and subsequent decoding of information processing events will have widespread applications. One way to demonstrate an understanding of the neural code, with particular advantages for the development of applications, is to formulate a parametric statistical model of neural activity and its covariates. Here, we propose a set of parametric spike-field models (unified models) that can be used with existing decoding algorithms to reveal the timing of task or stimulus specific processing. Our proposed unified modeling framework captures the effects of two important features of information processing: time-varying stimulus-driven inputs and ongoing background activity that occurs even in the absence of environmental inputs. We have applied this framework for decoding neural latencies in simulated and experimentally recorded spike-field sessions obtained from the lateral intraparietal area (LIP) of awake, behaving monkeys performing cued look-and-reach movements to spatial targets. Using both simulated and experimental data, we find that estimates of trial-by-trial parameters are not significantly affected by the presence of ongoing background activity. However, including background activity in the unified model improves goodness of fit for predicting individual spiking events. Uncovering the relationship between the model parameters and the timing of movements offers new ways to test hypotheses about the relationship between neural activity and behavior. We obtained significant spike-field onset time correlations from single trials using a previously published data set where significantly strong correlation was only obtained through trial averaging. We also found that unified models extracted a stronger relationship between neural response latency and trial-by-trial behavioral performance than existing models of neural information processing. Our results highlight the utility of the unified modeling framework for characterizing spike-LFP recordings obtained during behavioral performance.
Takahashi, Susumu; Anzai, Yuichiro; Sakurai, Yoshio
2003-07-01
Multi-neuronal recording with a tetrode is a powerful technique to reveal neuronal interactions in local circuits. However, it is difficult to detect precise spike timings among closely neighboring neurons because the spike waveforms of individual neurons overlap on the electrode when more than two neurons fire simultaneously. In addition, the spike waveforms of single neurons, especially in the presence of complex spikes, are often non-stationary. These problems limit the ability of ordinary spike sorting to sort multi-neuronal activities recorded using tetrodes into their single-neuron components. Though sorting with independent component analysis (ICA) can solve these problems, it has one serious limitation that the number of separated neurons must be less than the number of electrodes. Using a combination of ICA and the efficiency of ordinary spike sorting technique (k-means clustering), we developed an automatic procedure to solve the spike-overlapping and the non-stationarity problems with no limitation on the number of separated neurons. The results for the procedure applied to real multi-neuronal data demonstrated that some outliers which may be assigned to distinct clusters if ordinary spike-sorting methods were used can be identified as overlapping spikes, and that there are functional connections between a putative pyramidal neuron and its putative dendrite. These findings suggest that the combination of ICA and k-means clustering can provide insights into the precise nature of functional circuits among neurons, i.e. cell assemblies.
Millimeter-scale epileptiform spike propagation patterns and their relationship to seizures
Vanleer, Ann C; Blanco, Justin A; Wagenaar, Joost B; Viventi, Jonathan; Contreras, Diego; Litt, Brian
2016-01-01
Objective Current mapping of epileptic networks in patients prior to epilepsy surgery utilizes electrode arrays with sparse spatial sampling (∼1.0 cm inter-electrode spacing). Recent research demonstrates that sub-millimeter, cortical-column-scale domains have a role in seizure generation that may be clinically significant. We use high-resolution, active, flexible surface electrode arrays with 500 μm inter-electrode spacing to explore epileptiform local field potential spike propagation patterns in two dimensions recorded from subdural micro-electrocorticographic signals in vivo in cat. In this study, we aimed to develop methods to quantitatively characterize the spatiotemporal dynamics of epileptiform activity at high-resolution. Approach We topically administered a GABA-antagonist, picrotoxin, to induce acute neocortical epileptiform activity leading up to discrete electrographic seizures. We extracted features from local field potential spikes to characterize spatiotemporal patterns in these events. We then tested the hypothesis that two dimensional spike patterns during seizures were different from those between seizures. Main results We showed that spatially correlated events can be used to distinguish ictal versus interictal spikes. Significance We conclude that sub-millimeter-scale spatiotemporal spike patterns reveal network dynamics that are invisible to standard clinical recordings and contain information related to seizure-state. PMID:26859260
Millimeter-scale epileptiform spike propagation patterns and their relationship to seizures
NASA Astrophysics Data System (ADS)
Vanleer, Ann C.; Blanco, Justin A.; Wagenaar, Joost B.; Viventi, Jonathan; Contreras, Diego; Litt, Brian
2016-04-01
Objective. Current mapping of epileptic networks in patients prior to epilepsy surgery utilizes electrode arrays with sparse spatial sampling (∼1.0 cm inter-electrode spacing). Recent research demonstrates that sub-millimeter, cortical-column-scale domains have a role in seizure generation that may be clinically significant. We use high-resolution, active, flexible surface electrode arrays with 500 μm inter-electrode spacing to explore epileptiform local field potential (LFP) spike propagation patterns in two dimensions recorded from subdural micro-electrocorticographic signals in vivo in cat. In this study, we aimed to develop methods to quantitatively characterize the spatiotemporal dynamics of epileptiform activity at high-resolution. Approach. We topically administered a GABA-antagonist, picrotoxin, to induce acute neocortical epileptiform activity leading up to discrete electrographic seizures. We extracted features from LFP spikes to characterize spatiotemporal patterns in these events. We then tested the hypothesis that two-dimensional spike patterns during seizures were different from those between seizures. Main results. We showed that spatially correlated events can be used to distinguish ictal versus interictal spikes. Significance. We conclude that sub-millimeter-scale spatiotemporal spike patterns reveal network dynamics that are invisible to standard clinical recordings and contain information related to seizure-state.
EEG and MEG: sensitivity to epileptic spike activity as function of source orientation and depth.
Hunold, A; Funke, M E; Eichardt, R; Stenroos, M; Haueisen, J
2016-07-01
Simultaneous electroencephalography (EEG) and magnetoencephalography (MEG) recordings of neuronal activity from epileptic patients reveal situations in which either EEG or MEG or both modalities show visible interictal spikes. While different signal-to-noise ratios (SNRs) of the spikes in EEG and MEG have been reported, a quantitative relation of spike source orientation and depth as well as the background brain activity to the SNR has not been established. We investigated this quantitative relationship for both dipole and patch sources in an anatomically realistic cortex model. Altogether, 5600 dipole and 3300 patch sources were distributed on the segmented cortical surfaces of two volunteers. The sources were classified according to their quantified depths and orientations, ranging from 20 mm to 60 mm below the skin surface and radial and tangential, respectively. The source time-courses mimicked an interictal spike, and the simulated background activity emulated resting activity. Simulations were conducted with individual three-compartment boundary element models. The SNR was evaluated for 128 EEG, 102 MEG magnetometer, and 204 MEG gradiometer channels. For superficial dipole and superficial patch sources, EEG showed higher SNRs for dominantly radial orientations, and MEG showed higher values for dominantly tangential orientations. Gradiometers provided higher SNR than magnetometers for superficial sources, particularly for those with dominantly tangential orientations. The orientation dependent difference in SNR in EEG and MEG gradually changed as the sources were located deeper, where the interictal spikes generated higher SNRs in EEG compared to those in MEG for all source orientations. With deep sources, the SNRs in gradiometers and magnetometers were of the same order. To better detect spikes, both EEG and MEG should be used.
Temporal coding of reward-guided choice in the posterior parietal cortex
Hawellek, David J.; Wong, Yan T.; Pesaran, Bijan
2016-01-01
Making a decision involves computations across distributed cortical and subcortical networks. How such distributed processing is performed remains unclear. We test how the encoding of choice in a key decision-making node, the posterior parietal cortex (PPC), depends on the temporal structure of the surrounding population activity. We recorded spiking and local field potential (LFP) activity in the PPC while two rhesus macaques performed a decision-making task. We quantified the mutual information that neurons carried about an upcoming choice and its dependence on LFP activity. The spiking of PPC neurons was correlated with LFP phases at three distinct time scales in the theta, beta, and gamma frequency bands. Importantly, activity at these time scales encoded upcoming decisions differently. Choice information contained in neural firing varied with the phase of beta and gamma activity. For gamma activity, maximum choice information occurred at the same phase as the maximum spike count. However, for beta activity, choice information and spike count were greatest at different phases. In contrast, theta activity did not modulate the encoding properties of PPC units directly but was correlated with beta and gamma activity through cross-frequency coupling. We propose that the relative timing of local spiking and choice information reveals temporal reference frames for computations in either local or large-scale decision networks. Differences between the timing of task information and activity patterns may be a general signature of distributed processing across large-scale networks. PMID:27821752
Barnett, William H.; Cymbalyuk, Gennady S.
2014-01-01
The dynamics of individual neurons are crucial for producing functional activity in neuronal networks. An open question is how temporal characteristics can be controlled in bursting activity and in transient neuronal responses to synaptic input. Bifurcation theory provides a framework to discover generic mechanisms addressing this question. We present a family of mechanisms organized around a global codimension-2 bifurcation. The cornerstone bifurcation is located at the intersection of the border between bursting and spiking and the border between bursting and silence. These borders correspond to the blue sky catastrophe bifurcation and the saddle-node bifurcation on an invariant circle (SNIC) curves, respectively. The cornerstone bifurcation satisfies the conditions for both the blue sky catastrophe and SNIC. The burst duration and interburst interval increase as the inverse of the square root of the difference between the corresponding bifurcation parameter and its bifurcation value. For a given set of burst duration and interburst interval, one can find the parameter values supporting these temporal characteristics. The cornerstone bifurcation also determines the responses of silent and spiking neurons. In a silent neuron with parameters close to the SNIC, a pulse of current triggers a single burst. In a spiking neuron with parameters close to the blue sky catastrophe, a pulse of current temporarily silences the neuron. These responses are stereotypical: the durations of the transient intervals–the duration of the burst and the duration of latency to spiking–are governed by the inverse-square-root laws. The mechanisms described here could be used to coordinate neuromuscular control in central pattern generators. As proof of principle, we construct small networks that control metachronal-wave motor pattern exhibited in locomotion. This pattern is determined by the phase relations of bursting neurons in a simple central pattern generator modeled by a chain of oscillators. PMID:24497927
Bayesian decoding using unsorted spikes in the rat hippocampus
Layton, Stuart P.; Chen, Zhe; Wilson, Matthew A.
2013-01-01
A fundamental task in neuroscience is to understand how neural ensembles represent information. Population decoding is a useful tool to extract information from neuronal populations based on the ensemble spiking activity. We propose a novel Bayesian decoding paradigm to decode unsorted spikes in the rat hippocampus. Our approach uses a direct mapping between spike waveform features and covariates of interest and avoids accumulation of spike sorting errors. Our decoding paradigm is nonparametric, encoding model-free for representing stimuli, and extracts information from all available spikes and their waveform features. We apply the proposed Bayesian decoding algorithm to a position reconstruction task for freely behaving rats based on tetrode recordings of rat hippocampal neuronal activity. Our detailed decoding analyses demonstrate that our approach is efficient and better utilizes the available information in the nonsortable hash than the standard sorting-based decoding algorithm. Our approach can be adapted to an online encoding/decoding framework for applications that require real-time decoding, such as brain-machine interfaces. PMID:24089403
Phasic spike patterning in rat supraoptic neurones in vivo and in vitro
Sabatier, Nancy; Brown, Colin H; Ludwig, Mike; Leng, Gareth
2004-01-01
In vivo, most vasopressin cells of the hypothalamic supraoptic nucleus fire action potentials in a ‘phasic’ pattern when the systemic osmotic pressure is elevated, while most oxytocin cells fire continuously. The phasic firing pattern is believed to arise as a consequence of intrinsic activity-dependent changes in membrane potential, and these have been extensively studied in vitro. Here we analysed the discharge patterning of supraoptic nucleus neurones in vivo, to infer the characteristics of the post-spike sequence of hyperpolarization and depolarization from the observed spike patterning. We then compared patterning in phasic cells in vivo and in vitro, and we found systematic differences in the interspike interval distributions, and in other statistical parameters that characterized activity patterns within bursts. Analysis of hazard functions (probability of spike initiation as a function of time since the preceding spike) revealed that phasic firing in vitro appears consistent with a regenerative process arising from a relatively slow, late depolarizing afterpotential that approaches or exceeds spike threshold. By contrast, in vivo activity appears to be dominated by stochastic rather than deterministic mechanisms, and appears consistent with a relatively early and fast depolarizing afterpotential that modulates the probability that random synaptic input exceeds spike threshold. Despite superficial similarities in the phasic firing patterns observed in vivo and in vitro, there are thus fundamental differences in the underlying mechanisms. PMID:15146047
Bi, Zedong; Zhou, Changsong
2016-01-01
In neural systems, synaptic plasticity is usually driven by spike trains. Due to the inherent noises of neurons and synapses as well as the randomness of connection details, spike trains typically exhibit variability such as spatial randomness and temporal stochasticity, resulting in variability of synaptic changes under plasticity, which we call efficacy variability. How the variability of spike trains influences the efficacy variability of synapses remains unclear. In this paper, we try to understand this influence under pair-wise additive spike-timing dependent plasticity (STDP) when the mean strength of plastic synapses into a neuron is bounded (synaptic homeostasis). Specifically, we systematically study, analytically and numerically, how four aspects of statistical features, i.e., synchronous firing, burstiness/regularity, heterogeneity of rates and heterogeneity of cross-correlations, as well as their interactions influence the efficacy variability in converging motifs (simple networks in which one neuron receives from many other neurons). Neurons (including the post-synaptic neuron) in a converging motif generate spikes according to statistical models with tunable parameters. In this way, we can explicitly control the statistics of the spike patterns, and investigate their influence onto the efficacy variability, without worrying about the feedback from synaptic changes onto the dynamics of the post-synaptic neuron. We separate efficacy variability into two parts: the drift part (DriftV) induced by the heterogeneity of change rates of different synapses, and the diffusion part (DiffV) induced by weight diffusion caused by stochasticity of spike trains. Our main findings are: (1) synchronous firing and burstiness tend to increase DiffV, (2) heterogeneity of rates induces DriftV when potentiation and depression in STDP are not balanced, and (3) heterogeneity of cross-correlations induces DriftV together with heterogeneity of rates. We anticipate our work important for understanding functional processes of neuronal networks (such as memory) and neural development. PMID:26941634
NASA Astrophysics Data System (ADS)
O'Shea, Daniel J.; Shenoy, Krishna V.
2018-04-01
Objective. Electrical stimulation is a widely used and effective tool in systems neuroscience, neural prosthetics, and clinical neurostimulation. However, electrical artifacts evoked by stimulation prevent the detection of spiking activity on nearby recording electrodes, which obscures the neural population response evoked by stimulation. We sought to develop a method to clean artifact-corrupted electrode signals recorded on multielectrode arrays in order to recover the underlying neural spiking activity. Approach. We created an algorithm, which performs estimation and removal of array artifacts via sequential principal components regression (ERAASR). This approach leverages the similar structure of artifact transients, but not spiking activity, across simultaneously recorded channels on the array, across pulses within a train, and across trials. The ERAASR algorithm requires no special hardware, imposes no requirements on the shape of the artifact or the multielectrode array geometry, and comprises sequential application of straightforward linear methods with intuitive parameters. The approach should be readily applicable to most datasets where stimulation does not saturate the recording amplifier. Main results. The effectiveness of the algorithm is demonstrated in macaque dorsal premotor cortex using acute linear multielectrode array recordings and single electrode stimulation. Large electrical artifacts appeared on all channels during stimulation. After application of ERAASR, the cleaned signals were quiescent on channels with no spontaneous spiking activity, whereas spontaneously active channels exhibited evoked spikes which closely resembled spontaneously occurring spiking waveforms. Significance. We hope that enabling simultaneous electrical stimulation and multielectrode array recording will help elucidate the causal links between neural activity and cognition and facilitate naturalistic sensory protheses.
Buesing, Lars; Bill, Johannes; Nessler, Bernhard; Maass, Wolfgang
2011-01-01
The organization of computations in networks of spiking neurons in the brain is still largely unknown, in particular in view of the inherently stochastic features of their firing activity and the experimentally observed trial-to-trial variability of neural systems in the brain. In principle there exists a powerful computational framework for stochastic computations, probabilistic inference by sampling, which can explain a large number of macroscopic experimental data in neuroscience and cognitive science. But it has turned out to be surprisingly difficult to create a link between these abstract models for stochastic computations and more detailed models of the dynamics of networks of spiking neurons. Here we create such a link and show that under some conditions the stochastic firing activity of networks of spiking neurons can be interpreted as probabilistic inference via Markov chain Monte Carlo (MCMC) sampling. Since common methods for MCMC sampling in distributed systems, such as Gibbs sampling, are inconsistent with the dynamics of spiking neurons, we introduce a different approach based on non-reversible Markov chains that is able to reflect inherent temporal processes of spiking neuronal activity through a suitable choice of random variables. We propose a neural network model and show by a rigorous theoretical analysis that its neural activity implements MCMC sampling of a given distribution, both for the case of discrete and continuous time. This provides a step towards closing the gap between abstract functional models of cortical computation and more detailed models of networks of spiking neurons. PMID:22096452
Scott, Jonathan M.; Robinson, Stephen E.; Holroyd, Tom; Coppola, Richard; Sato, Susumu; Inati, Sara K.
2016-01-01
OBJECTIVE To describe and optimize an automated beamforming technique followed by identification of locations with excess kurtosis (g2) for efficient detection and localization of interictal spikes in medically refractory epilepsy patients. METHODS Synthetic Aperture Magnetometry with g2 averaged over a sliding time window (SAMepi) was performed in 7 focal epilepsy patients and 5 healthy volunteers. The effect of varied window lengths on detection of spiking activity was evaluated. RESULTS Sliding window lengths of 0.5–10 seconds performed similarly, with 0.5 and 1 second windows detecting spiking activity in one of the 3 virtual sensor locations with highest kurtosis. These locations were concordant with the region of eventual surgical resection in these 7 patients who remained seizure free at one year. Average g2 values increased with increasing sliding window length in all subjects. In healthy volunteers kurtosis values stabilized in datasets longer than two minutes. CONCLUSIONS SAMepi using g2 averaged over 1 second sliding time windows in datasets of at least 2 minutes duration reliably identified interictal spiking and the presumed seizure focus in these 7 patients. Screening the 5 locations with highest kurtosis values for spiking activity is an efficient and accurate technique for localizing interictal activity using MEG. SIGNIFICANCE SAMepi should be applied using the parameter values and procedure described for optimal detection and localization of interictal spikes. Use of this screening procedure could significantly improve the efficiency of MEG analysis if clinically validated. PMID:27760068
Neveu, Curtis L; Costa, Renan M; Homma, Ryota; Nagayama, Shin; Baxter, Douglas A; Byrne, John H
2017-01-01
A key issue in neuroscience is understanding the ways in which neuromodulators such as dopamine modify neuronal activity to mediate selection of distinct motor patterns. We addressed this issue by applying either low or high concentrations of l-DOPA (40 or 250 μM) and then monitoring activity of up to 130 neurons simultaneously in the feeding circuitry of Aplysia using a voltage-sensitive dye (RH-155). l-DOPA selected one of two distinct buccal motor patterns (BMPs): intermediate (low l-DOPA) or bite (high l-DOPA) patterns. The selection of intermediate BMPs was associated with shortening of the second phase of the BMP (retraction), whereas the selection of bite BMPs was associated with shortening of both phases of the BMP (protraction and retraction). Selection of intermediate BMPs was also associated with truncation of individual neuron spike activity (decreased burst duration but no change in spike frequency or burst latency) in neurons active during retraction. In contrast, selection of bite BMPs was associated with compression of spike activity (decreased burst latency and duration and increased spike frequency) in neurons projecting through specific nerves, as well as increased spike frequency of protraction neurons. Finally, large-scale voltage-sensitive dye recordings delineated the spatial distribution of neurons active during BMPs and the modification of that distribution by the two concentrations of l-DOPA.
Homma, Ryota; Nagayama, Shin; Baxter, Douglas A.
2017-01-01
A key issue in neuroscience is understanding the ways in which neuromodulators such as dopamine modify neuronal activity to mediate selection of distinct motor patterns. We addressed this issue by applying either low or high concentrations of l-DOPA (40 or 250 μM) and then monitoring activity of up to 130 neurons simultaneously in the feeding circuitry of Aplysia using a voltage-sensitive dye (RH-155). l-DOPA selected one of two distinct buccal motor patterns (BMPs): intermediate (low l-DOPA) or bite (high l-DOPA) patterns. The selection of intermediate BMPs was associated with shortening of the second phase of the BMP (retraction), whereas the selection of bite BMPs was associated with shortening of both phases of the BMP (protraction and retraction). Selection of intermediate BMPs was also associated with truncation of individual neuron spike activity (decreased burst duration but no change in spike frequency or burst latency) in neurons active during retraction. In contrast, selection of bite BMPs was associated with compression of spike activity (decreased burst latency and duration and increased spike frequency) in neurons projecting through specific nerves, as well as increased spike frequency of protraction neurons. Finally, large-scale voltage-sensitive dye recordings delineated the spatial distribution of neurons active during BMPs and the modification of that distribution by the two concentrations of l-DOPA. PMID:29071298
Drift in Neural Population Activity Causes Working Memory to Deteriorate Over Time.
Schneegans, Sebastian; Bays, Paul M
2018-05-23
Short-term memories are thought to be maintained in the form of sustained spiking activity in neural populations. Decreases in recall precision observed with increasing number of memorized items can be accounted for by a limit on total spiking activity, resulting in fewer spikes contributing to the representation of each individual item. Longer retention intervals likewise reduce recall precision, but it is unknown what changes in population activity produce this effect. One possibility is that spiking activity becomes attenuated over time, such that the same mechanism accounts for both effects of set size and retention duration. Alternatively, reduced performance may be caused by drift in the encoded value over time, without a decrease in overall spiking activity. Human participants of either sex performed a variable-delay cued recall task with a saccadic response, providing a precise measure of recall latency. Based on a spike integration model of decision making, if the effects of set size and retention duration are both caused by decreased spiking activity, we would predict a fixed relationship between recall precision and response latency across conditions. In contrast, the drift hypothesis predicts no systematic changes in latency with increasing delays. Our results show both an increase in latency with set size, and a decrease in response precision with longer delays within each set size, but no systematic increase in latency for increasing delay durations. These results were quantitatively reproduced by a model based on a limited neural resource in which working memories drift rather than decay with time. SIGNIFICANCE STATEMENT Rapid deterioration over seconds is a defining feature of short-term memory, but what mechanism drives this degradation of internal representations? Here, we extend a successful population coding model of working memory by introducing possible mechanisms of delay effects. We show that a decay in neural signal over time predicts that the time required for memory retrieval will increase with delay, whereas a random drift in the stored value predicts no effect of delay on retrieval time. Testing these predictions in a multi-item memory task with an eye movement response, we identified drift as a key mechanism of memory decline. These results provide evidence for a dynamic spiking basis for working memory, in contrast to recent proposals of activity-silent storage. Copyright © 2018 Schneegans and Bays.
Martínez Morcillo, S; Yela, J L; Capowiez, Y; Mazzia, C; Rault, M; Sanchez-Hernandez, Juan C
2013-05-01
The avoidance response of earthworms to polluted soils has been standardised using a simple and low-cost test, which facilitates soil toxicity screening. In this study, the avoidance response of Lumbricus terrestris was quantified in chlorpyrifos-spiked soils, depending on the pesticide concentration and exposure duration. The inhibition of acetylcholinesterase (AChE) and carboxylesterase (CbE) activities was also determined as indirect measures of pesticide bioavailability. The effects of different chlorpyrifos concentrations were examined in a standardised test (two-chamber system) with 0.6, 3 and 15 mg/kg chlorpyrifos. A modification of the test involved a pre-exposure step (24, 48 or 72 h) in soils spiked with 15 mg/kg. In both protocols, earthworms were unable to avoid the contaminated soils. However, the esterase activities showed that all earthworms were exposed to chlorpyrifos. Acetylcholinesterase activity did not change in earthworms in the standardised behavioural test (0.58 ± 0.20 U/mg protein, mean ± SD; n = 72), whereas the CbE activity was significantly inhibited (62-87 % inhibition) in earthworms exposed to 3 and 15 mg/kg. In the modified test, earthworms had greatly inhibited AChE activity (0.088 ± 0.034 U/mg protein, n = 72), which was supported by reactivation of the inhibited enzyme activity in the presence of pralidoxime (2-PAM). Similarly, the CbE activity was significantly inhibited in earthworms with all treatments. This study suggests that the avoidance behaviour test for organophosphorus-contaminated soils could be supported by specific biomarkers to facilitate a better understanding of pesticide exposure and toxicity during this test.
2014-01-01
Background The output of the neuronal digital spikes is fulfilled by axonal propagation and synaptic transmission to influence postsynaptic cells. Similar to synaptic transmission, spike propagation on the axon is not secure, especially in cerebellar Purkinje cells whose spiking rate is high. The characteristics, mechanisms and physiological impacts of propagation deceleration and infidelity remain elusive. The spike propagation is presumably initiated by local currents that raise membrane potential to the threshold of activating voltage-gated sodium channels (VGSC). Results We have investigated the natures of spike propagation and the role of VGSCs in this process by recording spikes simultaneously on the somata and axonal terminals of Purkinje cells in cerebellar slices. The velocity and fidelity of spike propagation decreased during long-lasting spikes, to which the velocity change was more sensitive than fidelity change. These time-dependent deceleration and infidelity of spike propagation were improved by facilitating axonal VGSC reactivation, and worsen by intensifying VGSC inactivation. Conclusion Our studies indicate that the functional status of axonal VGSCs is essential to influencing the velocity and fidelity of spike propagation. PMID:24382121
Fernandez, Fernando R.; Malerba, Paola; Bressloff, Paul C.; White, John A.
2013-01-01
In active networks, excitatory and inhibitory synaptic inputs generate membrane voltage fluctuations that drive spike activity in a probabilistic manner. Despite this, some cells in vivo show a strong propensity to precisely lock to the local field potential and maintain a specific spike-phase relationship relative to other cells. In recordings from rat medial entorhinal cortical stellate cells, we measured spike phase-locking in response to sinusoidal “test” inputs in the presence of different forms of background membrane voltage fluctuations, generated via dynamic clamp. We find that stellate cells show strong and robust spike phase-locking to theta (4–12 Hz) inputs. This response occurs under a wide variety of background membrane voltage fluctuation conditions that include a substantial increase in overall membrane conductance. Furthermore, the IH current present in stellate cells is critical to the enhanced spike phase-locking response at theta. Finally, we show that correlations between inhibitory and excitatory conductance fluctuations, which can arise through feed-back and feed-forward inhibition, can substantially enhance the spike phase-locking response. The enhancement in locking is a result of a selective reduction in the size of low frequency membrane voltage fluctuations due to cancelation of inhibitory and excitatory current fluctuations with correlations. Hence, our results demonstrate that stellate cells have a strong preference for spike phase-locking to theta band inputs and that the absolute magnitude of locking to theta can be modulated by the properties of background membrane voltage fluctuations. PMID:23554484
Action Potential Waveform Variability Limits Multi-Unit Separation in Freely Behaving Rats
Stratton, Peter; Cheung, Allen; Wiles, Janet; Kiyatkin, Eugene; Sah, Pankaj; Windels, François
2012-01-01
Extracellular multi-unit recording is a widely used technique to study spontaneous and evoked neuronal activity in awake behaving animals. These recordings are done using either single-wire or mulitwire electrodes such as tetrodes. In this study we have tested the ability of single-wire electrodes to discriminate activity from multiple neurons under conditions of varying noise and neuronal cell density. Using extracellular single-unit recording, coupled with iontophoresis to drive cell activity across a wide dynamic range, we studied spike waveform variability, and explored systematic differences in single-unit spike waveform within and between brain regions as well as the influence of signal-to-noise ratio (SNR) on the similarity of spike waveforms. We also modelled spike misclassification for a range of cell densities based on neuronal recordings obtained at different SNRs. Modelling predictions were confirmed by classifying spike waveforms from multiple cells with various SNRs using a leading commercial spike-sorting system. Our results show that for single-wire recordings, multiple units can only be reliably distinguished under conditions of high recording SNR (≥4) and low neuronal density (≈20,000/ mm3). Physiological and behavioural changes, as well as technical limitations typical of awake animal preparations, reduce the accuracy of single-channel spike classification, resulting in serious classification errors. For SNR <4, the probability of misclassifying spikes approaches 100% in many cases. Our results suggest that in studies where the SNR is low or neuronal density is high, separation of distinct units needs to be evaluated with great caution. PMID:22719894
Synaptic physiology of the flow of information in the cat's visual cortex in vivo
Hirsch, Judith A; Martinez, Luis M; Alonso, José-Manuel; Desai, Komal; Pillai, Cinthi; Pierre, Carhine
2002-01-01
Each stage of the striate cortical circuit extracts novel information about the visual environment. We asked if this analytic process reflected laminar variations in synaptic physiology by making whole-cell recording with dye-filled electrodes from the cat's visual cortex and thalamus; the stimuli were flashed spots. Thalamic afferents terminate in layer 4, which contains two types of cell, simple and complex, distinguished by the spatial structure of the receptive field. Previously, we had found that the postsynaptic and spike responses of simple cells reliably followed the time course of flash-evoked thalamic activity. Here we report that complex cells in layer 4 (or cells intermediate between simple and complex) similarly reprised thalamic activity (response/trial, 99 ± 1.9 %; response duration 159 ± 57 ms; latency 25 ± 4 ms; average ± standard deviation; n = 7). Thus, all cells in layer 4 share a common synaptic physiology that allows secure integration of thalamic input. By contrast, at the second cortical stage (layer 2+3), where layer 4 directs its output, postsynaptic responses did not track simple patterns of antecedent activity. Typical responses to the static stimulus were intermittent and brief (response/trial, 31 ± 40 %; response duration 72 ± 60 ms, latency 39 ± 7 ms; n = 11). Only richer stimuli like those including motion evoked reliable responses. All told, the second level of cortical processing differs markedly from the first. At that later stage, ascending information seems strongly gated by connections between cortical neurons. Inputs must be combined in newly specified patterns to influence intracortical stages of processing. PMID:11927691
Dense Array of Spikes on HIV-1 Virion Particles.
Stano, Armando; Leaman, Daniel P; Kim, Arthur S; Zhang, Lei; Autin, Ludovic; Ingale, Jidnyasa; Gift, Syna K; Truong, Jared; Wyatt, Richard T; Olson, Arthur J; Zwick, Michael B
2017-07-15
HIV-1 is rare among viruses for having a low number of envelope glycoprotein (Env) spikes per virion, i.e., ∼7 to 14. This exceptional feature has been associated with avoidance of humoral immunity, i.e., B cell activation and antibody neutralization. Virus-like particles (VLPs) with increased density of Env are being pursued for vaccine development; however, these typically require protein engineering that alters Env structure. Here, we used instead a strategy that targets the producer cell. We employed fluorescence-activated cell sorting (FACS) to sort for cells that are recognized by trimer cross-reactive broadly neutralizing antibody (bnAb) and not by nonneutralizing antibodies. Following multiple iterations of FACS, cells and progeny virions were shown to display higher levels of antigenically correct Env in a manner that correlated between cells and cognate virions ( P = 0.027). High-Env VLPs, or hVLPs, were shown to be monodisperse and to display more than a 10-fold increase in spikes per particle by electron microscopy (average, 127 spikes; range, 90 to 214 spikes). Sequencing revealed a partial truncation in the C-terminal tail of Env that had emerged in the sort; however, iterative rounds of "cell factory" selection were required for the high-Env phenotype. hVLPs showed greater infectivity than standard pseudovirions but largely similar neutralization sensitivity. Importantly, hVLPs also showed superior activation of Env-specific B cells. Hence, high-Env HIV-1 virions, obtained through selection of producer cells, represent an adaptable platform for vaccine design and should aid in the study of native Env. IMPORTANCE The paucity of spikes on HIV is a unique feature that has been associated with evasion of the immune system, while increasing spike density has been a goal of vaccine design. Increasing the density of Env by modifying it in various ways has met with limited success. Here, we focused instead on the producer cell. Cells that stably express HIV spikes were screened on the basis of high binding by bnAbs and low binding by nonneutralizing antibodies. Levels of spikes on cells correlated well with those on progeny virions. Importantly, high-Env virus-like particles (hVLPs) were produced with a manifest array of well-defined spikes, and these were shown to be superior in activating desirable B cells. Our study describes HIV particles that are densely coated with functional spikes, which should facilitate the study of HIV spikes and their development as immunogens. Copyright © 2017 American Society for Microbiology.
Temporal coding in a silicon network of integrate-and-fire neurons.
Liu, Shih-Chii; Douglas, Rodney
2004-09-01
Spatio-temporal processing of spike trains by neuronal networks depends on a variety of mechanisms distributed across synapses, dendrites, and somata. In natural systems, the spike trains and the processing mechanisms cohere though their common physical instantiation. This coherence is lost when the natural system is encoded for simulation on a general purpose computer. By contrast, analog VLSI circuits are, like neurons, inherently related by their real-time physics, and so, could provide a useful substrate for exploring neuronlike event-based processing. Here, we describe a hybrid analog-digital VLSI chip comprising a set of integrate-and-fire neurons and short-term dynamical synapses that can be configured into simple network architectures with some properties of neocortical neuronal circuits. We show that, despite considerable fabrication variance in the properties of individual neurons, the chip offers a viable substrate for exploring real-time spike-based processing in networks of neurons.
Negotiating Multicollinearity with Spike-and-Slab Priors.
Ročková, Veronika; George, Edward I
2014-08-01
In multiple regression under the normal linear model, the presence of multicollinearity is well known to lead to unreliable and unstable maximum likelihood estimates. This can be particularly troublesome for the problem of variable selection where it becomes more difficult to distinguish between subset models. Here we show how adding a spike-and-slab prior mitigates this difficulty by filtering the likelihood surface into a posterior distribution that allocates the relevant likelihood information to each of the subset model modes. For identification of promising high posterior models in this setting, we consider three EM algorithms, the fast closed form EMVS version of Rockova and George (2014) and two new versions designed for variants of the spike-and-slab formulation. For a multimodal posterior under multicollinearity, we compare the regions of convergence of these three algorithms. Deterministic annealing versions of the EMVS algorithm are seen to substantially mitigate this multimodality. A single simple running example is used for illustration throughout.
Uncovering representations of sleep-associated hippocampal ensemble spike activity
NASA Astrophysics Data System (ADS)
Chen, Zhe; Grosmark, Andres D.; Penagos, Hector; Wilson, Matthew A.
2016-08-01
Pyramidal neurons in the rodent hippocampus exhibit spatial tuning during spatial navigation, and they are reactivated in specific temporal order during sharp-wave ripples observed in quiet wakefulness or slow wave sleep. However, analyzing representations of sleep-associated hippocampal ensemble spike activity remains a great challenge. In contrast to wake, during sleep there is a complete absence of animal behavior, and the ensemble spike activity is sparse (low occurrence) and fragmental in time. To examine important issues encountered in sleep data analysis, we constructed synthetic sleep-like hippocampal spike data (short epochs, sparse and sporadic firing, compressed timescale) for detailed investigations. Based upon two Bayesian population-decoding methods (one receptive field-based, and the other not), we systematically investigated their representation power and detection reliability. Notably, the receptive-field-free decoding method was found to be well-tuned for hippocampal ensemble spike data in slow wave sleep (SWS), even in the absence of prior behavioral measure or ground truth. Our results showed that in addition to the sample length, bin size, and firing rate, number of active hippocampal pyramidal neurons are critical for reliable representation of the space as well as for detection of spatiotemporal reactivated patterns in SWS or quiet wakefulness.
Synchronous Spike Patterns in Macaque Motor Cortex during an Instructed-Delay Reach-to-Grasp Task
Torre, Emiliano; Quaglio, Pietro; Denker, Michael; Brochier, Thomas; Riehle, Alexa
2016-01-01
The computational role of spike time synchronization at millisecond precision among neurons in the cerebral cortex is hotly debated. Studies performed on data of limited size provided experimental evidence that low-order correlations occur in relation to behavior. Advances in electrophysiological technology to record from hundreds of neurons simultaneously provide the opportunity to observe coordinated spiking activity of larger populations of cells. We recently published a method that combines data mining and statistical evaluation to search for significant patterns of synchronous spikes in massively parallel spike trains (Torre et al., 2013). The method solves the computational and multiple testing problems raised by the high dimensionality of the data. In the current study, we used our method on simultaneous recordings from two macaque monkeys engaged in an instructed-delay reach-to-grasp task to determine the emergence of spike synchronization in relation to behavior. We found a multitude of synchronous spike patterns aligned in both monkeys along a preferential mediolateral orientation in brain space. The occurrence of the patterns is highly specific to behavior, indicating that different behaviors are associated with the synchronization of different groups of neurons (“cell assemblies”). However, pooled patterns that overlap in neuronal composition exhibit no specificity, suggesting that exclusive cell assemblies become active during different behaviors, but can recruit partly identical neurons. These findings are consistent across multiple recording sessions analyzed across the two monkeys. SIGNIFICANCE STATEMENT Neurons in the brain communicate via electrical impulses called spikes. How spikes are coordinated to process information is still largely unknown. Synchronous spikes are effective in triggering a spike emission in receiving neurons and have been shown to occur in relation to behavior in a number of studies on simultaneous recordings of few neurons. We recently published a method to extend this type of investigation to larger data. Here, we apply it to simultaneous recordings of hundreds of neurons from the motor cortex of macaque monkeys performing a motor task. Our analysis reveals groups of neurons selectively synchronizing their activity in relation to behavior, which sheds new light on the role of synchrony in information processing in the cerebral cortex. PMID:27511007
Synchronous Spike Patterns in Macaque Motor Cortex during an Instructed-Delay Reach-to-Grasp Task.
Torre, Emiliano; Quaglio, Pietro; Denker, Michael; Brochier, Thomas; Riehle, Alexa; Grün, Sonja
2016-08-10
The computational role of spike time synchronization at millisecond precision among neurons in the cerebral cortex is hotly debated. Studies performed on data of limited size provided experimental evidence that low-order correlations occur in relation to behavior. Advances in electrophysiological technology to record from hundreds of neurons simultaneously provide the opportunity to observe coordinated spiking activity of larger populations of cells. We recently published a method that combines data mining and statistical evaluation to search for significant patterns of synchronous spikes in massively parallel spike trains (Torre et al., 2013). The method solves the computational and multiple testing problems raised by the high dimensionality of the data. In the current study, we used our method on simultaneous recordings from two macaque monkeys engaged in an instructed-delay reach-to-grasp task to determine the emergence of spike synchronization in relation to behavior. We found a multitude of synchronous spike patterns aligned in both monkeys along a preferential mediolateral orientation in brain space. The occurrence of the patterns is highly specific to behavior, indicating that different behaviors are associated with the synchronization of different groups of neurons ("cell assemblies"). However, pooled patterns that overlap in neuronal composition exhibit no specificity, suggesting that exclusive cell assemblies become active during different behaviors, but can recruit partly identical neurons. These findings are consistent across multiple recording sessions analyzed across the two monkeys. Neurons in the brain communicate via electrical impulses called spikes. How spikes are coordinated to process information is still largely unknown. Synchronous spikes are effective in triggering a spike emission in receiving neurons and have been shown to occur in relation to behavior in a number of studies on simultaneous recordings of few neurons. We recently published a method to extend this type of investigation to larger data. Here, we apply it to simultaneous recordings of hundreds of neurons from the motor cortex of macaque monkeys performing a motor task. Our analysis reveals groups of neurons selectively synchronizing their activity in relation to behavior, which sheds new light on the role of synchrony in information processing in the cerebral cortex. Copyright © 2016 Torre, et al.
Spike sorting of synchronous spikes from local neuron ensembles
Pröpper, Robert; Alle, Henrik; Meier, Philipp; Geiger, Jörg R. P.; Obermayer, Klaus; Munk, Matthias H. J.
2015-01-01
Synchronous spike discharge of cortical neurons is thought to be a fingerprint of neuronal cooperativity. Because neighboring neurons are more densely connected to one another than neurons that are located further apart, near-synchronous spike discharge can be expected to be prevalent and it might provide an important basis for cortical computations. Using microelectrodes to record local groups of neurons does not allow for the reliable separation of synchronous spikes from different cells, because available spike sorting algorithms cannot correctly resolve the temporally overlapping waveforms. We show that high spike sorting performance of in vivo recordings, including overlapping spikes, can be achieved with a recently developed filter-based template matching procedure. Using tetrodes with a three-dimensional structure, we demonstrate with simulated data and ground truth in vitro data, obtained by dual intracellular recording of two neurons located next to a tetrode, that the spike sorting of synchronous spikes can be as successful as the spike sorting of nonoverlapping spikes and that the spatial information provided by multielectrodes greatly reduces the error rates. We apply the method to tetrode recordings from the prefrontal cortex of behaving primates, and we show that overlapping spikes can be identified and assigned to individual neurons to study synchronous activity in local groups of neurons. PMID:26289473
NASA Astrophysics Data System (ADS)
Shan, Bonan; Wang, Jiang; Deng, Bin; Wei, Xile; Yu, Haitao; Zhang, Zhen; Li, Huiyan
2016-07-01
This paper proposes an epilepsy detection and closed-loop control strategy based on Particle Swarm Optimization (PSO) algorithm. The proposed strategy can effectively suppress the epileptic spikes in neural mass models, where the epileptiform spikes are recognized as the biomarkers of transitions from the normal (interictal) activity to the seizure (ictal) activity. In addition, the PSO algorithm shows capabilities of accurate estimation for the time evolution of key model parameters and practical detection for all the epileptic spikes. The estimation effects of unmeasurable parameters are improved significantly compared with unscented Kalman filter. When the estimated excitatory-inhibitory ratio exceeds a threshold value, the epileptiform spikes can be inhibited immediately by adopting the proportion-integration controller. Besides, numerical simulations are carried out to illustrate the effectiveness of the proposed method as well as the potential value for the model-based early seizure detection and closed-loop control treatment design.
Balanced Synaptic Input Shapes the Correlation between Neural Spike Trains
Litwin-Kumar, Ashok; Oswald, Anne-Marie M.; Urban, Nathaniel N.; Doiron, Brent
2011-01-01
Stimulus properties, attention, and behavioral context influence correlations between the spike times produced by a pair of neurons. However, the biophysical mechanisms that modulate these correlations are poorly understood. With a combined theoretical and experimental approach, we show that the rate of balanced excitatory and inhibitory synaptic input modulates the magnitude and timescale of pairwise spike train correlation. High rate synaptic inputs promote spike time synchrony rather than long timescale spike rate correlations, while low rate synaptic inputs produce opposite results. This correlation shaping is due to a combination of enhanced high frequency input transfer and reduced firing rate gain in the high input rate state compared to the low state. Our study extends neural modulation from single neuron responses to population activity, a necessary step in understanding how the dynamics and processing of neural activity change across distinct brain states. PMID:22215995
Complex effusive events at Kilauea as documented by the GOES satellite and remote video cameras
Harris, A.J.L.; Thornber, C.R.
1999-01-01
GOES provides thermal data for all of the Hawaiian volcanoes once every 15 min. We show how volcanic radiance time series produced from this data stream can be used as a simple measure of effusive activity. Two types of radiance trends in these time series can be used to monitor effusive activity: (a) Gradual variations in radiance reveal steady flow-field extension and tube development. (b) Discrete spikes correlate with short bursts of activity, such as lava fountaining or lava-lake overflows. We are confident that any effusive event covering more than 10,000 m2 of ground in less than 60 min will be unambiguously detectable using this approach. We demonstrate this capability using GOES, video camera and ground-based observational data for the current eruption of Kilauea volcano (Hawai'i). A GOES radiance time series was constructed from 3987 images between 19 June and 12 August 1997. This time series displayed 24 radiance spikes elevated more than two standard deviations above the mean; 19 of these are correlated with video-recorded short-burst effusive events. Less ambiguous events are interpreted, assessed and related to specific volcanic events by simultaneous use of permanently recording video camera data and ground-observer reports. The GOES radiance time series are automatically processed on data reception and made available in near-real-time, so such time series can contribute to three main monitoring functions: (a) automatically alerting major effusive events; (b) event confirmation and assessment; and (c) establishing effusive event chronology.
Effect of levetiracetam on penicillin induced epileptic activity in rats.
Arık, Aliye Erguvan; Bağırıcı, Faruk; Sefil, Fatih; Marangoz, Cafer
2014-01-01
The aim of this study was to investigate the effects of levetiracetam (LEV) on penicillin-induced epileptiform activity in rats. Penicillin was applied intracerebroventricularly (icv) at a dose of 500 IU to induce epileptiform activity. LEV was given intraperitoneally (ip) at doses of 20, 40, 80 mg/kg before penicillin injection. This agent reduced epileptiform activity by decreasing spike frequencies. The mean spike frequencies decreased significantly in all the LEV treated groups. There was no significant change in the spike amplitudes of the LEV groups compared with the control group. 40 mg/kg of LEV was determined as the most effective dose on reducing epileptiform activity. The results of this study suggest that LEV is an effective antiepileptic agent in penicillin-induced epilepsy.
Pulvinar thalamic nucleus allows for asynchronous spike propagation through the cortex
Cortes, Nelson; van Vreeswijk, Carl
2015-01-01
We create two multilayered feedforward networks composed of excitatory and inhibitory integrate-and-fire neurons in the balanced state to investigate the role of cortico-pulvino-cortical connections. The first network consists of ten feedforward levels where a Poisson spike train with varying firing rate is applied as an input in layer one. Although the balanced state partially avoids spike synchronization during the transmission, the average firing-rate in the last layer either decays or saturates depending on the feedforward pathway gain. The last layer activity is almost independent of the input even for a carefully chosen intermediate gain. Adding connections to the feedforward pathway by a nine areas Pulvinar structure improves the firing-rate propagation to become almost linear among layers. Incoming strong pulvinar spikes balance the low feedforward gain to have a unit input-output relation in the last layer. Pulvinar neurons evoke a bimodal activity depending on the magnitude input: synchronized spike bursts between 20 and 80 Hz and an asynchronous activity for very both low and high frequency inputs. In the first regime, spikes of last feedforward layer neurons are asynchronous with weak, low frequency, oscillations in the rate. Here, the uncorrelated incoming feedforward pathway washes out the synchronized thalamic bursts. In the second regime, spikes in the whole network are asynchronous. As the number of cortical layers increases, long-range pulvinar connections can link directly two or more cortical stages avoiding their either saturation or gradual activity falling. The Pulvinar acts as a shortcut that supplies the input-output firing-rate relationship of two separated cortical areas without changing the strength of connections in the feedforward pathway. PMID:26042026
Mathematical neuroscience: from neurons to circuits to systems.
Gutkin, Boris; Pinto, David; Ermentrout, Bard
2003-01-01
Applications of mathematics and computational techniques to our understanding of neuronal systems are provided. Reduction of membrane models to simplified canonical models demonstrates how neuronal spike-time statistics follow from simple properties of neurons. Averaging over space allows one to derive a simple model for the whisker barrel circuit and use this to explain and suggest several experiments. Spatio-temporal pattern formation methods are applied to explain the patterns seen in the early stages of drug-induced visual hallucinations.
Elokely, Khaled M; Eldawy, Mohamed A; Elkersh, Mohamed A; El-Moselhy, Tarek F
2011-01-01
A simple spectrofluorometric method has been developed, adapted, and validated for the quantitative estimation of drugs containing α-methylene sulfone/sulfonamide functional groups using N(1)-methylnicotinamide chloride (NMNCl) as fluorogenic agent. The proposed method has been applied successfully to the determination of methyl sulfonyl methane (MSM) (1), tinidazole (2), rofecoxib (3), and nimesulide (4) in pure forms, laboratory-prepared mixtures, pharmaceutical dosage forms, spiked human plasma samples, and in volunteer's blood. The method showed linearity over concentration ranging from 1 to 150 μg/mL, 10 to 1000 ng/mL, 1 to 1800 ng/mL, and 30 to 2100 ng/mL for standard solutions of 1, 2, 3, and 4, respectively, and over concentration ranging from 5 to 150 μg/mL, 10 to 1000 ng/mL, 10 to 1700 ng/mL, and 30 to 2350 ng/mL in spiked human plasma samples of 1, 2, 3, and 4, respectively. The method showed good accuracy, specificity, and precision in both laboratory-prepared mixtures and in spiked human plasma samples. The proposed method is simple, does not need sophisticated instruments, and is suitable for quality control application, bioavailability, and bioequivalency studies. Besides, its detection limits are comparable to other sophisticated chromatographic methods.
Burst firing and modulation of functional connectivity in cat striate cortex.
Snider, R K; Kabara, J F; Roig, B R; Bonds, A B
1998-08-01
We studied the influences of the temporal firing patterns of presynaptic cat visual cortical cells on spike generation by postsynaptic cells. Multiunit recordings were dissected into the activity of individual neurons within the recorded group. Cross-correlation analysis was then used to identify directly coupled neuron pairs. The 22 multiunit groups recorded typically showed activity from two to six neurons, each containing between 1 and 15 neuron pairs. From a total of 241 neuron pairs, 91 (38%) had a shifted cross-correlation peak, which indicated a possible direct connection. Only two multiunit groups contained no shifted peaks. Burst activity, defined by groups of two or more spikes with intervals of =8 ms from any single neuron, was analyzed in terms of its effectiveness in eliciting a spike from a second, driven neuron. We defined effectiveness as the percentage of spikes from the driving neuron that are time related to spikes of the driven neuron. The effectiveness of bursts (of any length) in eliciting a time-related response spike averaged 18.53% across all measurements as compared with the effectiveness of single spikes, which averaged 9.53%. Longer bursts were more effective than shorter ones. Effectiveness was reduced with spatially nonoptimal, as opposed to optimal, stimuli. The effectiveness of both bursts and single spikes decreased by the same amount across measurements with nonoptimal orientations, spatial frequencies and contrasts. At similar firing rates and burst lengths, the decrease was more pronounced for nonoptimal orientations than for lower contrasts, suggesting the existence of a mechanism that reduces effectiveness at nonoptimal orientations. These results support the hypothesis that neural information can be emphasized via instantaneous rate coding that is not preserved over long intervals or over trials. This is consistent with the integrate and fire model, where bursts participate in temporal integration.
Independent component analysis separates spikes of different origin in the EEG.
Urrestarazu, Elena; Iriarte, Jorge; Artieda, Julio; Alegre, Manuel; Valencia, Miguel; Viteri, César
2006-02-01
Independent component analysis (ICA) is a novel system that finds independent sources in recorded signals. Its usefulness in separating epileptiform activity of different origin has not been determined. The goal of this study was to demonstrate that ICA is useful for separating different spikes using samples of EEG of patients with focal epilepsy. Digital EEG samples from four patients with focal epilepsy were included. The patients had temporal (n = 2), centrotemporal (n = 1) or frontal spikes (n = 1). Twenty-six samples with two (or more) spikes from two different patients were created. The selection of the two spikes for each mixed EEG was performed randomly, trying to have all the different combinations and rejecting the mixture of two spikes from the same patient. Two different examiners studied the EEGs using ICA with JADE paradigm in Matlab platform, trying to separate and to identify the spikes. They agreed in the correct separation of the spikes in 24 of the 26 samples, classifying the spikes as frontal, temporal or centrotemporal, left or right sided. The demonstration of the possibility of detecting different artificially mixed spikes confirms that ICA may be useful in separating spikes or other elements in real EEGs.
Head direction cells in the postsubiculum do not show replay of prior waking sequences during sleep
Brandon, Mark P.; Bogaard, Andrew; Andrews, Chris M.; Hasselmo, Michael E.
2011-01-01
During slow-wave sleep and REM sleep, hippocampal place cells in the rat show replay of sequences previously observed during waking. We tested the hypothesis from computational modelling that the temporal structure of REM sleep replay could arise from an interplay of place cells with head direction cells in the postsubiculum. Physiological single-unit recording was performed simultaneously from five or more head direction or place by head direction cells in the postsubiculum during running on a circular track allowing sampling of a full range of head directions, and during sleep periods before and after running on the circular track. Data analysis compared the spiking activity during individual REM periods with waking as in previous analysis procedures for REM sleep. We also used a new procedure comparing groups of similar runs during waking with REM sleep periods. There was no consistent evidence for a statistically significant correlation of the temporal structure of spiking during REM sleep with spiking during waking running periods. Thus, the spiking activity of head direction cells during REM sleep does not show replay of head direction cell activity occurring during a previous waking period of running on the task. In addition, we compared the spiking of postsubiculum neurons during hippocampal sharp wave ripple events. We show that head direction cells are not activated during sharp wave ripples, while neurons responsive to place in the postsubiculum show reliable spiking at ripple events. PMID:21509854
NASA Astrophysics Data System (ADS)
Browning, David
2000-04-01
When force is applied by an athlete to sports equipment resonances can occur. Just a few examples are: the ringing of a spiked volleyball, the strumming of a golf club shaft during a swing, and multiple modes induced in an aluminum baseball bat when striking a ball. Resonances produce acoustic waves which, if conditions are favorable, can be detected off the playing field. This can provide a means to evaluate athletic performance during game conditions. Results are given from the use of a simple hand-held acoustic detector - by a spectator sitting in the stands - to determine how hard volleyballs were spiked during college and high school games.
Macro- and micro-chaotic structures in the Hindmarsh-Rose model of bursting neurons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrio, Roberto, E-mail: rbarrio@unizar.es; Serrano, Sergio; Angeles Martínez, M.
2014-06-01
We study a plethora of chaotic phenomena in the Hindmarsh-Rose neuron model with the use of several computational techniques including the bifurcation parameter continuation, spike-quantification, and evaluation of Lyapunov exponents in bi-parameter diagrams. Such an aggregated approach allows for detecting regions of simple and chaotic dynamics, and demarcating borderlines—exact bifurcation curves. We demonstrate how the organizing centers—points corresponding to codimension-two homoclinic bifurcations—along with fold and period-doubling bifurcation curves structure the biparametric plane, thus forming macro-chaotic regions of onion bulb shapes and revealing spike-adding cascades that generate micro-chaotic structures due to the hysteresis.
Recent progress in multi-electrode spike sorting methods
Lefebvre, Baptiste; Yger, Pierre; Marre, Olivier
2017-01-01
In recent years, arrays of extracellular electrodes have been developed and manufactured to record simultaneously from hundreds of electrodes packed with a high density. These recordings should allow neuroscientists to reconstruct the individual activity of the neurons spiking in the vicinity of these electrodes, with the help of signal processing algorithms. Algorithms need to solve a source separation problem, also known as spike sorting. However, these new devices challenge the classical way to do spike sorting. Here we review different methods that have been developed to sort spikes from these large-scale recordings. We describe the common properties of these algorithms, as well as their main differences. Finally, we outline the issues that remain to be solved by future spike sorting algorithms. PMID:28263793
Sensing magnetic flux density of artificial neurons with a MEMS device.
Tapia, Jesus A; Herrera-May, Agustin L; García-Ramírez, Pedro J; Martinez-Castillo, Jaime; Figueras, Eduard; Flores, Amira; Manjarrez, Elías
2011-04-01
We describe a simple procedure to characterize a magnetic field sensor based on microelectromechanical systems (MEMS) technology, which exploits the Lorentz force principle. This sensor is designed to detect, in future applications, the spiking activity of neurons or muscle cells. This procedure is based on the well-known capability that a magnetic MEMS device can be used to sense a small magnetic flux density. In this work, an electronic neuron (FitzHugh-Nagumo) is used to generate controlled spike-like magnetic fields. We show that the magnetic flux density generated by the hardware of this neuron can be detected with a new MEMS magnetic field sensor. This microdevice has a compact resonant structure (700 × 600 × 5 μm) integrated by an array of silicon beams and p-type piezoresistive sensing elements, which need an easy fabrication process. The proposed microsensor has a resolution of 80 nT, a sensitivity of 1.2 V.T(-1), a resonant frequency of 13.87 kHz, low power consumption (2.05 mW), quality factor of 93 at atmospheric pressure, and requires a simple signal processing circuit. The importance of our study is twofold. First, because the artificial neuron can generate well-controlled magnetic flux density, we suggest it could be used to analyze the resolution and performance of different magnetic field sensors intended for neurobiological applications. Second, the introduced MEMS magnetic field sensor may be used as a prototype to develop new high-resolution biomedical microdevices to sense magnetic fields from cardiac tissue, nerves, spinal cord, or the brain.
Spiking in auditory cortex following thalamic stimulation is dominated by cortical network activity
Krause, Bryan M.; Raz, Aeyal; Uhlrich, Daniel J.; Smith, Philip H.; Banks, Matthew I.
2014-01-01
The state of the sensory cortical network can have a profound impact on neural responses and perception. In rodent auditory cortex, sensory responses are reported to occur in the context of network events, similar to brief UP states, that produce “packets” of spikes and are associated with synchronized synaptic input (Bathellier et al., 2012; Hromadka et al., 2013; Luczak et al., 2013). However, traditional models based on data from visual and somatosensory cortex predict that ascending sensory thalamocortical (TC) pathways sequentially activate cells in layers 4 (L4), L2/3, and L5. The relationship between these two spatio-temporal activity patterns is unclear. Here, we used calcium imaging and electrophysiological recordings in murine auditory TC brain slices to investigate the laminar response pattern to stimulation of TC afferents. We show that although monosynaptically driven spiking in response to TC afferents occurs, the vast majority of spikes fired following TC stimulation occurs during brief UP states and outside the context of the L4>L2/3>L5 activation sequence. Specifically, monosynaptic subthreshold TC responses with similar latencies were observed throughout layers 2–6, presumably via synapses onto dendritic processes located in L3 and L4. However, monosynaptic spiking was rare, and occurred primarily in L4 and L5 non-pyramidal cells. By contrast, during brief, TC-induced UP states, spiking was dense and occurred primarily in pyramidal cells. These network events always involved infragranular layers, whereas involvement of supragranular layers was variable. During UP states, spike latencies were comparable between infragranular and supragranular cells. These data are consistent with a model in which activation of auditory cortex, especially supragranular layers, depends on internally generated network events that represent a non-linear amplification process, are initiated by infragranular cells and tightly regulated by feed-forward inhibitory cells. PMID:25285071
Otsu, Yo; Marcaggi, Païkan; Feltz, Anne; Isope, Philippe; Kollo, Mihaly; Nusser, Zoltan; Mathieu, Benjamin; Kano, Masanobu; Tsujita, Mika; Sakimura, Kenji; Dieudonné, Stéphane
2014-01-01
Summary In cerebellar Purkinje cell dendrites, heterosynaptic calcium signaling induced by the proximal climbing fiber (CF) input controls plasticity at distal parallel fiber (PF) synapses. The substrate and regulation of this long-range dendritic calcium signaling are poorly understood. Using high-speed calcium imaging, we examine the role of active dendritic conductances. Under basal conditions, CF stimulation evokes T-type calcium signaling displaying sharp proximodistal decrement. Combined mGluR1 receptor activation and depolarization, two activity-dependent signals, unlock P/Q calcium spikes initiation and propagation, mediating efficient CF signaling at distal sites. These spikes are initiated in proximal smooth dendrites, independently from somatic sodium action potentials, and evoke high-frequency bursts of all-or-none fast-rising calcium transients in PF spines. Gradual calcium spike burst unlocking arises from increasing inactivation of mGluR1-modulated low-threshold A-type potassium channels located in distal dendrites. Evidence for graded activity-dependent CF calcium signaling at PF synapses refines current views on cerebellar supervised learning rules. PMID:25220810
Haegens, Saskia; Nácher, Verónica; Luna, Rogelio; Romo, Ranulfo; Jensen, Ole
2011-11-29
Extensive work in humans using magneto- and electroencephalography strongly suggests that decreased oscillatory α-activity (8-14 Hz) facilitates processing in a given region, whereas increased α-activity serves to actively suppress irrelevant or interfering processing. However, little work has been done to understand how α-activity is linked to neuronal firing. Here, we simultaneously recorded local field potentials and spikes from somatosensory, premotor, and motor regions while a trained monkey performed a vibrotactile discrimination task. In the local field potentials we observed strong activity in the α-band, which decreased in the sensorimotor regions during the discrimination task. This α-power decrease predicted better discrimination performance. Furthermore, the α-oscillations demonstrated a rhythmic relation with the spiking, such that firing was highest at the trough of the α-cycle. Firing rates increased with a decrease in α-power. These findings suggest that α-oscillations exercise a strong inhibitory influence on both spike timing and firing rate. Thus, the pulsed inhibition by α-oscillations plays an important functional role in the extended sensorimotor system.
Otsu, Yo; Marcaggi, Païkan; Feltz, Anne; Isope, Philippe; Kollo, Mihaly; Nusser, Zoltan; Mathieu, Benjamin; Kano, Masanobu; Tsujita, Mika; Sakimura, Kenji; Dieudonné, Stéphane
2014-10-01
In cerebellar Purkinje cell dendrites, heterosynaptic calcium signaling induced by the proximal climbing fiber (CF) input controls plasticity at distal parallel fiber (PF) synapses. The substrate and regulation of this long-range dendritic calcium signaling are poorly understood. Using high-speed calcium imaging, we examine the role of active dendritic conductances. Under basal conditions, CF stimulation evokes T-type calcium signaling displaying sharp proximodistal decrement. Combined mGluR1 receptor activation and depolarization, two activity-dependent signals, unlock P/Q calcium spikes initiation and propagation, mediating efficient CF signaling at distal sites. These spikes are initiated in proximal smooth dendrites, independently from somatic sodium action potentials, and evoke high-frequency bursts of all-or-none fast-rising calcium transients in PF spines. Gradual calcium spike burst unlocking arises from increasing inactivation of mGluR1-modulated low-threshold A-type potassium channels located in distal dendrites. Evidence for graded activity-dependent CF calcium signaling at PF synapses refines current views on cerebellar supervised learning rules. Copyright © 2014 Elsevier Inc. All rights reserved.
Computing with Neural Synchrony
Brette, Romain
2012-01-01
Neurons communicate primarily with spikes, but most theories of neural computation are based on firing rates. Yet, many experimental observations suggest that the temporal coordination of spikes plays a role in sensory processing. Among potential spike-based codes, synchrony appears as a good candidate because neural firing and plasticity are sensitive to fine input correlations. However, it is unclear what role synchrony may play in neural computation, and what functional advantage it may provide. With a theoretical approach, I show that the computational interest of neural synchrony appears when neurons have heterogeneous properties. In this context, the relationship between stimuli and neural synchrony is captured by the concept of synchrony receptive field, the set of stimuli which induce synchronous responses in a group of neurons. In a heterogeneous neural population, it appears that synchrony patterns represent structure or sensory invariants in stimuli, which can then be detected by postsynaptic neurons. The required neural circuitry can spontaneously emerge with spike-timing-dependent plasticity. Using examples in different sensory modalities, I show that this allows simple neural circuits to extract relevant information from realistic sensory stimuli, for example to identify a fluctuating odor in the presence of distractors. This theory of synchrony-based computation shows that relative spike timing may indeed have computational relevance, and suggests new types of neural network models for sensory processing with appealing computational properties. PMID:22719243
Fractional-order leaky integrate-and-fire model with long-term memory and power law dynamics.
Teka, Wondimu W; Upadhyay, Ranjit Kumar; Mondal, Argha
2017-09-01
Pyramidal neurons produce different spiking patterns to process information, communicate with each other and transform information. These spiking patterns have complex and multiple time scale dynamics that have been described with the fractional-order leaky integrate-and-Fire (FLIF) model. Models with fractional (non-integer) order differentiation that generalize power law dynamics can be used to describe complex temporal voltage dynamics. The main characteristic of FLIF model is that it depends on all past values of the voltage that causes long-term memory. The model produces spikes with high interspike interval variability and displays several spiking properties such as upward spike-frequency adaptation and long spike latency in response to a constant stimulus. We show that the subthreshold voltage and the firing rate of the fractional-order model make transitions from exponential to power law dynamics when the fractional order α decreases from 1 to smaller values. The firing rate displays different types of spike timing adaptation caused by changes on initial values. We also show that the voltage-memory trace and fractional coefficient are the causes of these different types of spiking properties. The voltage-memory trace that represents the long-term memory has a feedback regulatory mechanism and affects spiking activity. The results suggest that fractional-order models might be appropriate for understanding multiple time scale neuronal dynamics. Overall, a neuron with fractional dynamics displays history dependent activities that might be very useful and powerful for effective information processing. Copyright © 2017 Elsevier Ltd. All rights reserved.
The most likely voltage path and large deviations approximations for integrate-and-fire neurons.
Paninski, Liam
2006-08-01
We develop theory and numerical methods for computing the most likely subthreshold voltage path of a noisy integrate-and-fire (IF) neuron, given observations of the neuron's superthreshold spiking activity. This optimal voltage path satisfies a second-order ordinary differential (Euler-Lagrange) equation which may be solved analytically in a number of special cases, and which may be solved numerically in general via a simple "shooting" algorithm. Our results are applicable for both linear and nonlinear subthreshold dynamics, and in certain cases may be extended to correlated subthreshold noise sources. We also show how this optimal voltage may be used to obtain approximations to (1) the likelihood that an IF cell with a given set of parameters was responsible for the observed spike train; and (2) the instantaneous firing rate and interspike interval distribution of a given noisy IF cell. The latter probability approximations are based on the classical Freidlin-Wentzell theory of large deviations principles for stochastic differential equations. We close by comparing this most likely voltage path to the true observed subthreshold voltage trace in a case when intracellular voltage recordings are available in vitro.
Ensemble stacking mitigates biases in inference of synaptic connectivity.
Chambers, Brendan; Levy, Maayan; Dechery, Joseph B; MacLean, Jason N
2018-01-01
A promising alternative to directly measuring the anatomical connections in a neuronal population is inferring the connections from the activity. We employ simulated spiking neuronal networks to compare and contrast commonly used inference methods that identify likely excitatory synaptic connections using statistical regularities in spike timing. We find that simple adjustments to standard algorithms improve inference accuracy: A signing procedure improves the power of unsigned mutual-information-based approaches and a correction that accounts for differences in mean and variance of background timing relationships, such as those expected to be induced by heterogeneous firing rates, increases the sensitivity of frequency-based methods. We also find that different inference methods reveal distinct subsets of the synaptic network and each method exhibits different biases in the accurate detection of reciprocity and local clustering. To correct for errors and biases specific to single inference algorithms, we combine methods into an ensemble. Ensemble predictions, generated as a linear combination of multiple inference algorithms, are more sensitive than the best individual measures alone, and are more faithful to ground-truth statistics of connectivity, mitigating biases specific to single inference methods. These weightings generalize across simulated datasets, emphasizing the potential for the broad utility of ensemble-based approaches.
Lepora, Nathan F; Blomeley, Craig P; Hoyland, Darren; Bracci, Enrico; Overton, Paul G; Gurney, Kevin
2011-11-01
The study of active and passive neuronal dynamics usually relies on a sophisticated array of electrophysiological, staining and pharmacological techniques. We describe here a simple complementary method that recovers many findings of these more complex methods but relies only on a basic patch-clamp recording approach. Somatic short and long current pulses were applied in vitro to striatal medium spiny (MS) and fast spiking (FS) neurons from juvenile rats. The passive dynamics were quantified by fitting two-compartment models to the short current pulse data. Lumped conductances for the active dynamics were then found by compensating this fitted passive dynamics within the current-voltage relationship from the long current pulse data. These estimated passive and active properties were consistent with previous more complex estimations of the neuron properties, supporting the approach. Relationships within the MS and FS neuron types were also evident, including a graduation of MS neuron properties consistent with recent findings about D1 and D2 dopamine receptor expression. Application of the method to simulated neuron data supported the hypothesis that it gives reasonable estimates of membrane properties and gross morphology. Therefore detailed information about the biophysics can be gained from this simple approach, which is useful for both classification of neuron type and biophysical modelling. Furthermore, because these methods rely upon no manipulations to the cell other than patch clamping, they are ideally suited to in vivo electrophysiology. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Rodríguez, Ana R.; O'Neill, Kate M.; Swiatkowski, Przemyslaw; Patel, Mihir V.; Firestein, Bonnie L.
2018-02-01
Objective. This study investigates the effect that overexpression of cytosolic PSD-95 interactor (cypin), a regulator of synaptic PSD-95 protein localization and a core regulator of dendrite branching, exerts on the electrical activity of rat hippocampal neurons and networks. Approach. We cultured rat hippocampal neurons and used lipid-mediated transfection and lentiviral gene transfer to achieve high levels of cypin or cypin mutant (cypinΔPDZ PSD-95 non-binding) expression cellularly and network-wide, respectively. Main results. Our analysis revealed that although overexpression of cypin and cypinΔPDZ increase dendrite numbers and decrease spine density, cypin and cypinΔPDZ distinctly regulate neuronal activity. At the single cell level, cypin promotes decreases in bursting activity while cypinΔPDZ reduces sEPSC frequency and further decreases bursting compared to cypin. At the network level, by using the Fano factor as a measure of spike count variability, cypin overexpression results in an increase in variability of spike count, and this effect is abolished when cypin cannot bind PSD-95. This variability is also dependent on baseline activity levels and on mean spike rate over time. Finally, our spike sorting data show that overexpression of cypin results in a more complex distribution of spike waveforms and that binding to PSD-95 is essential for this complexity. Significance. Our data suggest that dendrite morphology does not play a major role in cypin action on electrical activity.
Kasap, Bahadir; van Opstal, A John
2017-08-01
Single-unit recordings suggest that the midbrain superior colliculus (SC) acts as an optimal controller for saccadic gaze shifts. The SC is proposed to be the site within the visuomotor system where the nonlinear spatial-to-temporal transformation is carried out: the population encodes the intended saccade vector by its location in the motor map (spatial), and its trajectory and velocity by the distribution of firing rates (temporal). The neurons' burst profiles vary systematically with their anatomical positions and intended saccade vectors, to account for the nonlinear main-sequence kinematics of saccades. Yet, the underlying collicular mechanisms that could result in these firing patterns are inaccessible to current neurobiological techniques. Here, we propose a simple spiking neural network model that reproduces the spike trains of saccade-related cells in the intermediate and deep SC layers during saccades. The model assumes that SC neurons have distinct biophysical properties for spike generation that depend on their anatomical position in combination with a center-surround lateral connectivity. Both factors are needed to account for the observed firing patterns. Our model offers a basis for neuronal algorithms for spatiotemporal transformations and bio-inspired optimal controllers.
Hanuschkin, Alexander; Kunkel, Susanne; Helias, Moritz; Morrison, Abigail; Diesmann, Markus
2010-01-01
Traditionally, event-driven simulations have been limited to the very restricted class of neuronal models for which the timing of future spikes can be expressed in closed form. Recently, the class of models that is amenable to event-driven simulation has been extended by the development of techniques to accurately calculate firing times for some integrate-and-fire neuron models that do not enable the prediction of future spikes in closed form. The motivation of this development is the general perception that time-driven simulations are imprecise. Here, we demonstrate that a globally time-driven scheme can calculate firing times that cannot be discriminated from those calculated by an event-driven implementation of the same model; moreover, the time-driven scheme incurs lower computational costs. The key insight is that time-driven methods are based on identifying a threshold crossing in the recent past, which can be implemented by a much simpler algorithm than the techniques for predicting future threshold crossings that are necessary for event-driven approaches. As run time is dominated by the cost of the operations performed at each incoming spike, which includes spike prediction in the case of event-driven simulation and retrospective detection in the case of time-driven simulation, the simple time-driven algorithm outperforms the event-driven approaches. Additionally, our method is generally applicable to all commonly used integrate-and-fire neuronal models; we show that a non-linear model employing a standard adaptive solver can reproduce a reference spike train with a high degree of precision. PMID:21031031
Polloni-Silva, Juliana; Valdehita, Ana; Fracácio, Renata; Navas, José M
2017-04-01
Chemical substances with potential to disrupt endocrine systems have been detected in aquatic environments worldwide, making necessary the investigation about water treatments able to inhibit such potential. The present work aimed to assess the efficiency for removing endocrine disruptors (with estrogenic and androgenic activity) of three simple and inexpensive substrates that could be potentially used in sectors or regions with limited resources: powdered activated carbon (PAC), powdered natural zeolite (ZEO) (both at a concentration of 500 mg L -1 ) and natural aquatic humic substances (AHS) (at 30 mg L -1 ). MilliQ-water and mature water from fish facilities (aquarium water, AW), were artificially spiked with 17β-estradiol (E2), 17α-ethinylestradiol and dihydrotestosterone. Moreover, effluent samples from waste water treatment plants (WWTP) were also submitted to the remediation treatments. Estrogenic and androgenic activities were assessed with two cell lines permanently transfected with luciferase as reporter gene under the control of hormone receptors: AR-EcoScreen containing the human androgen receptor and HER-LUC transfected with the sea bass estrogen receptor. PAC was efficiently removing the estrogenic and androgenic compounds added to milliQ and AW. However, androgenic activity detected in WWTP effluents was only reduced after treatment with ZEO. The higher surface area of PAC could have facilitated the removal of spiked hormones in clean waters. However, it is possible that the substances responsible of the hormonal activity in WWTP have adsorbed to micro and nanoparticles present in suspension that would have been retained with higher efficiency by ZEO that show pores of several microns in size. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lankheet, Martin J. M.; Klink, P. Christiaan; Borghuis, Bart G.; Noest, André J.
2012-01-01
Catfish detect and identify invisible prey by sensing their ultra-weak electric fields with electroreceptors. Any neuron that deals with small-amplitude input has to overcome sensitivity limitations arising from inherent threshold non-linearities in spike-generation mechanisms. Many sensory cells solve this issue with stochastic resonance, in which a moderate amount of intrinsic noise causes irregular spontaneous spiking activity with a probability that is modulated by the input signal. Here we show that catfish electroreceptors have adopted a fundamentally different strategy. Using a reverse correlation technique in which we take spike interval durations into account, we show that the electroreceptors generate a supra-threshold bias current that results in quasi-periodically produced spikes. In this regime stimuli modulate the interval between successive spikes rather than the instantaneous probability for a spike. This alternative for stochastic resonance combines threshold-free sensitivity for weak stimuli with similar sensitivity for excitations and inhibitions based on single interspike intervals. PMID:22403709
Correlation transfer from basal ganglia to thalamus in Parkinson's disease
Pamela, Reitsma; Brent, Doiron; Jonathan, Rubin
2011-01-01
Spike trains from neurons in the basal ganglia of parkinsonian primates show increased pairwise correlations, oscillatory activity, and burst rate compared to those from neurons recorded during normal brain activity. However, it is not known how these changes affect the behavior of downstream thalamic neurons. To understand how patterns of basal ganglia population activity may affect thalamic spike statistics, we study pairs of model thalamocortical (TC) relay neurons receiving correlated inhibitory input from the internal segment of the globus pallidus (GPi), a primary output nucleus of the basal ganglia. We observe that the strength of correlations of TC neuron spike trains increases with the GPi correlation level, and bursty firing patterns such as those seen in the parkinsonian GPi allow for stronger transfer of correlations than do firing patterns found under normal conditions. We also show that the T-current in the TC neurons does not significantly affect correlation transfer, despite its pronounced effects on spiking. Oscillatory firing patterns in GPi are shown to affect the timescale at which correlations are best transferred through the system. To explain this last result, we analytically compute the spike count correlation coefficient for oscillatory cases in a reduced point process model. Our analysis indicates that the dependence of the timescale of correlation transfer is robust to different levels of input spike and rate correlations and arises due to differences in instantaneous spike correlations, even when the long timescale rhythmic modulations of neurons are identical. Overall, these results show that parkinsonian firing patterns in GPi do affect the transfer of correlations to the thalamus. PMID:22355287
Bölsterli Heinzle, Bigna Katrin; Bast, Thomas; Critelli, Hanne; Huber, Reto; Schmitt, Bernhard
2017-02-01
Epileptic encephalopathy with continuous spike-and-waves during sleep (CSWS) occurs during childhood and is characterized by an activation of spike wave complexes during slow wave sleep. The location of epileptic foci is variable, as is etiology. A relationship between the epileptic focus and age has been shown in various focal epilepsies following a posterior-anterior trajectory, and a link to brain maturation has been proposed. We hypothesize that in CSWS, maximal spike wave activity, corresponding to the epileptic focus, is related to age and shows a posterior-anterior evolution. In a retrospective cross-sectional study on CSWS (22 EEGs of 22 patients aged 3.1–13.5 years), the location of the epileptic focus is related to age and follows a posterior-anterior course. Younger patients are more likely to have posterior foci than older ones. We propose that the posterior-anterior trajectory of maximal spike waves in CSWS might reflect maturational changes of maximal expression of sleep slow waves, which follow a comparable course. Epileptic spike waves, that is, “hyper-synchronized slow waves” may occur at the place where the highest and therefore most synchronized slow waves meet brain tissue with an increased susceptibility to synchronization. Georg Thieme Verlag KG Stuttgart · New York.
ASSET: Analysis of Sequences of Synchronous Events in Massively Parallel Spike Trains
Canova, Carlos; Denker, Michael; Gerstein, George; Helias, Moritz
2016-01-01
With the ability to observe the activity from large numbers of neurons simultaneously using modern recording technologies, the chance to identify sub-networks involved in coordinated processing increases. Sequences of synchronous spike events (SSEs) constitute one type of such coordinated spiking that propagates activity in a temporally precise manner. The synfire chain was proposed as one potential model for such network processing. Previous work introduced a method for visualization of SSEs in massively parallel spike trains, based on an intersection matrix that contains in each entry the degree of overlap of active neurons in two corresponding time bins. Repeated SSEs are reflected in the matrix as diagonal structures of high overlap values. The method as such, however, leaves the task of identifying these diagonal structures to visual inspection rather than to a quantitative analysis. Here we present ASSET (Analysis of Sequences of Synchronous EvenTs), an improved, fully automated method which determines diagonal structures in the intersection matrix by a robust mathematical procedure. The method consists of a sequence of steps that i) assess which entries in the matrix potentially belong to a diagonal structure, ii) cluster these entries into individual diagonal structures and iii) determine the neurons composing the associated SSEs. We employ parallel point processes generated by stochastic simulations as test data to demonstrate the performance of the method under a wide range of realistic scenarios, including different types of non-stationarity of the spiking activity and different correlation structures. Finally, the ability of the method to discover SSEs is demonstrated on complex data from large network simulations with embedded synfire chains. Thus, ASSET represents an effective and efficient tool to analyze massively parallel spike data for temporal sequences of synchronous activity. PMID:27420734
Using Matrix and Tensor Factorizations for the Single-Trial Analysis of Population Spike Trains.
Onken, Arno; Liu, Jian K; Karunasekara, P P Chamanthi R; Delis, Ioannis; Gollisch, Tim; Panzeri, Stefano
2016-11-01
Advances in neuronal recording techniques are leading to ever larger numbers of simultaneously monitored neurons. This poses the important analytical challenge of how to capture compactly all sensory information that neural population codes carry in their spatial dimension (differences in stimulus tuning across neurons at different locations), in their temporal dimension (temporal neural response variations), or in their combination (temporally coordinated neural population firing). Here we investigate the utility of tensor factorizations of population spike trains along space and time. These factorizations decompose a dataset of single-trial population spike trains into spatial firing patterns (combinations of neurons firing together), temporal firing patterns (temporal activation of these groups of neurons) and trial-dependent activation coefficients (strength of recruitment of such neural patterns on each trial). We validated various factorization methods on simulated data and on populations of ganglion cells simultaneously recorded in the salamander retina. We found that single-trial tensor space-by-time decompositions provided low-dimensional data-robust representations of spike trains that capture efficiently both their spatial and temporal information about sensory stimuli. Tensor decompositions with orthogonality constraints were the most efficient in extracting sensory information, whereas non-negative tensor decompositions worked well even on non-independent and overlapping spike patterns, and retrieved informative firing patterns expressed by the same population in response to novel stimuli. Our method showed that populations of retinal ganglion cells carried information in their spike timing on the ten-milliseconds-scale about spatial details of natural images. This information could not be recovered from the spike counts of these cells. First-spike latencies carried the majority of information provided by the whole spike train about fine-scale image features, and supplied almost as much information about coarse natural image features as firing rates. Together, these results highlight the importance of spike timing, and particularly of first-spike latencies, in retinal coding.
Using Matrix and Tensor Factorizations for the Single-Trial Analysis of Population Spike Trains
Onken, Arno; Liu, Jian K.; Karunasekara, P. P. Chamanthi R.; Delis, Ioannis; Gollisch, Tim; Panzeri, Stefano
2016-01-01
Advances in neuronal recording techniques are leading to ever larger numbers of simultaneously monitored neurons. This poses the important analytical challenge of how to capture compactly all sensory information that neural population codes carry in their spatial dimension (differences in stimulus tuning across neurons at different locations), in their temporal dimension (temporal neural response variations), or in their combination (temporally coordinated neural population firing). Here we investigate the utility of tensor factorizations of population spike trains along space and time. These factorizations decompose a dataset of single-trial population spike trains into spatial firing patterns (combinations of neurons firing together), temporal firing patterns (temporal activation of these groups of neurons) and trial-dependent activation coefficients (strength of recruitment of such neural patterns on each trial). We validated various factorization methods on simulated data and on populations of ganglion cells simultaneously recorded in the salamander retina. We found that single-trial tensor space-by-time decompositions provided low-dimensional data-robust representations of spike trains that capture efficiently both their spatial and temporal information about sensory stimuli. Tensor decompositions with orthogonality constraints were the most efficient in extracting sensory information, whereas non-negative tensor decompositions worked well even on non-independent and overlapping spike patterns, and retrieved informative firing patterns expressed by the same population in response to novel stimuli. Our method showed that populations of retinal ganglion cells carried information in their spike timing on the ten-milliseconds-scale about spatial details of natural images. This information could not be recovered from the spike counts of these cells. First-spike latencies carried the majority of information provided by the whole spike train about fine-scale image features, and supplied almost as much information about coarse natural image features as firing rates. Together, these results highlight the importance of spike timing, and particularly of first-spike latencies, in retinal coding. PMID:27814363
Hasselmo, Michael E.
2008-01-01
The spiking activity of hippocampal neurons during REM sleep exhibits temporally structured replay of spiking occurring during previously experienced trajectories (Louie and Wilson, 2001). Here, temporally structured replay of place cell activity during REM sleep is modeled in a large-scale network simulation of grid cells, place cells and head direction cells. During simulated waking behavior, the movement of the simulated rat drives activity of a population of head direction cells that updates the activity of a population of entorhinal grid cells. The population of grid cells drives the activity of place cells coding individual locations. Associations between location and movement direction are encoded by modification of excitatory synaptic connections from place cells to speed modulated head direction cells. During simulated REM sleep, the population of place cells coding an experienced location activates the head direction cells coding the associated movement direction. Spiking of head direction cells then causes frequency shifts within the population of entorhinal grid cells to update a phase representation of location. Spiking grid cells then activate new place cells that drive new head direction activity. In contrast to models that perform temporally compressed sequence retrieval similar to sharp wave activity, this model can simulate data on temporally structured replay of hippocampal place cell activity during REM sleep at time scales similar to those observed during waking. These mechanisms could be important for episodic memory of trajectories. PMID:18973557
Recent progress in multi-electrode spike sorting methods.
Lefebvre, Baptiste; Yger, Pierre; Marre, Olivier
2016-11-01
In recent years, arrays of extracellular electrodes have been developed and manufactured to record simultaneously from hundreds of electrodes packed with a high density. These recordings should allow neuroscientists to reconstruct the individual activity of the neurons spiking in the vicinity of these electrodes, with the help of signal processing algorithms. Algorithms need to solve a source separation problem, also known as spike sorting. However, these new devices challenge the classical way to do spike sorting. Here we review different methods that have been developed to sort spikes from these large-scale recordings. We describe the common properties of these algorithms, as well as their main differences. Finally, we outline the issues that remain to be solved by future spike sorting algorithms. Copyright © 2017 Elsevier Ltd. All rights reserved.
Comparing Realistic Subthalamic Nucleus Neuron Models
NASA Astrophysics Data System (ADS)
Njap, Felix; Claussen, Jens C.; Moser, Andreas; Hofmann, Ulrich G.
2011-06-01
The mechanism of action of clinically effective electrical high frequency stimulation is still under debate. However, recent evidence points at the specific activation of GABA-ergic ion channels. Using a computational approach, we analyze temporal properties of the spike trains emitted by biologically realistic neurons of the subthalamic nucleus (STN) as a function of GABA-ergic synaptic input conductances. Our contribution is based on a model proposed by Rubin and Terman and exhibits a wide variety of different firing patterns, silent, low spiking, moderate spiking and intense spiking activity. We observed that most of the cells in our network turn to silent mode when we increase the GABAA input conductance above the threshold of 3.75 mS/cm2. On the other hand, insignificant changes in firing activity are observed when the input conductance is low or close to zero. We thus reproduce Rubin's model with vanishing synaptic conductances. To quantitatively compare spike trains from the original model with the modified model at different conductance levels, we apply four different (dis)similarity measures between them. We observe that Mahalanobis distance, Victor-Purpura metric, and Interspike Interval distribution are sensitive to different firing regimes, whereas Mutual Information seems undiscriminative for these functional changes.
Serial Spike Time Correlations Affect Probability Distribution of Joint Spike Events.
Shahi, Mina; van Vreeswijk, Carl; Pipa, Gordon
2016-01-01
Detecting the existence of temporally coordinated spiking activity, and its role in information processing in the cortex, has remained a major challenge for neuroscience research. Different methods and approaches have been suggested to test whether the observed synchronized events are significantly different from those expected by chance. To analyze the simultaneous spike trains for precise spike correlation, these methods typically model the spike trains as a Poisson process implying that the generation of each spike is independent of all the other spikes. However, studies have shown that neural spike trains exhibit dependence among spike sequences, such as the absolute and relative refractory periods which govern the spike probability of the oncoming action potential based on the time of the last spike, or the bursting behavior, which is characterized by short epochs of rapid action potentials, followed by longer episodes of silence. Here we investigate non-renewal processes with the inter-spike interval distribution model that incorporates spike-history dependence of individual neurons. For that, we use the Monte Carlo method to estimate the full shape of the coincidence count distribution and to generate false positives for coincidence detection. The results show that compared to the distributions based on homogeneous Poisson processes, and also non-Poisson processes, the width of the distribution of joint spike events changes. Non-renewal processes can lead to both heavy tailed or narrow coincidence distribution. We conclude that small differences in the exact autostructure of the point process can cause large differences in the width of a coincidence distribution. Therefore, manipulations of the autostructure for the estimation of significance of joint spike events seem to be inadequate.
Serial Spike Time Correlations Affect Probability Distribution of Joint Spike Events
Shahi, Mina; van Vreeswijk, Carl; Pipa, Gordon
2016-01-01
Detecting the existence of temporally coordinated spiking activity, and its role in information processing in the cortex, has remained a major challenge for neuroscience research. Different methods and approaches have been suggested to test whether the observed synchronized events are significantly different from those expected by chance. To analyze the simultaneous spike trains for precise spike correlation, these methods typically model the spike trains as a Poisson process implying that the generation of each spike is independent of all the other spikes. However, studies have shown that neural spike trains exhibit dependence among spike sequences, such as the absolute and relative refractory periods which govern the spike probability of the oncoming action potential based on the time of the last spike, or the bursting behavior, which is characterized by short epochs of rapid action potentials, followed by longer episodes of silence. Here we investigate non-renewal processes with the inter-spike interval distribution model that incorporates spike-history dependence of individual neurons. For that, we use the Monte Carlo method to estimate the full shape of the coincidence count distribution and to generate false positives for coincidence detection. The results show that compared to the distributions based on homogeneous Poisson processes, and also non-Poisson processes, the width of the distribution of joint spike events changes. Non-renewal processes can lead to both heavy tailed or narrow coincidence distribution. We conclude that small differences in the exact autostructure of the point process can cause large differences in the width of a coincidence distribution. Therefore, manipulations of the autostructure for the estimation of significance of joint spike events seem to be inadequate. PMID:28066225
A single-cell spiking model for the origin of grid-cell patterns
Kempter, Richard
2017-01-01
Spatial cognition in mammals is thought to rely on the activity of grid cells in the entorhinal cortex, yet the fundamental principles underlying the origin of grid-cell firing are still debated. Grid-like patterns could emerge via Hebbian learning and neuronal adaptation, but current computational models remained too abstract to allow direct confrontation with experimental data. Here, we propose a single-cell spiking model that generates grid firing fields via spike-rate adaptation and spike-timing dependent plasticity. Through rigorous mathematical analysis applicable in the linear limit, we quantitatively predict the requirements for grid-pattern formation, and we establish a direct link to classical pattern-forming systems of the Turing type. Our study lays the groundwork for biophysically-realistic models of grid-cell activity. PMID:28968386
Bucher, Dirk; Goaillard, Jean-Marc
2011-01-01
Most spiking neurons are divided into functional compartments: a dendritic input region, a soma, a site of action potential initiation, an axon trunk and its collaterals for propagation of action potentials, and distal arborizations and terminals carrying the output synapses. The axon trunk and lower order branches are probably the most neglected and are often assumed to do nothing more than faithfully conducting action potentials. Nevertheless, there are numerous reports of complex membrane properties in non-synaptic axonal regions, owing to the presence of a multitude of different ion channels. Many different types of sodium and potassium channels have been described in axons, as well as calcium transients and hyperpolarization-activated inward currents. The complex time- and voltage-dependence resulting from the properties of ion channels can lead to activity-dependent changes in spike shape and resting potential, affecting the temporal fidelity of spike conduction. Neural coding can be altered by activity-dependent changes in conduction velocity, spike failures, and ectopic spike initiation. This is true under normal physiological conditions, and relevant for a number of neuropathies that lead to abnormal excitability. In addition, a growing number of studies show that the axon trunk can express receptors to glutamate, GABA, acetylcholine or biogenic amines, changing the relative contribution of some channels to axonal excitability and therefore rendering the contribution of this compartment to neural coding conditional on the presence of neuromodulators. Long-term regulatory processes, both during development and in the context of activity-dependent plasticity may also affect axonal properties to an underappreciated extent. PMID:21708220
Noisy Spiking in Visual Area V2 of Amblyopic Monkeys.
Wang, Ye; Zhang, Bin; Tao, Xiaofeng; Wensveen, Janice M; Smith, Earl L; Chino, Yuzo M
2017-01-25
Interocular decorrelation of input signals in developing visual cortex can cause impaired binocular vision and amblyopia. Although increased intrinsic noise is thought to be responsible for a range of perceptual deficits in amblyopic humans, the neural basis for the elevated perceptual noise in amblyopic primates is not known. Here, we tested the idea that perceptual noise is linked to the neuronal spiking noise (variability) resulting from developmental alterations in cortical circuitry. To assess spiking noise, we analyzed the contrast-dependent dynamics of spike counts and spiking irregularity by calculating the square of the coefficient of variation in interspike intervals (CV 2 ) and the trial-to-trial fluctuations in spiking, or mean matched Fano factor (m-FF) in visual area V2 of monkeys reared with chronic monocular defocus. In amblyopic neurons, the contrast versus response functions and the spike count dynamics exhibited significant deviations from comparable data for normal monkeys. The CV 2 was pronounced in amblyopic neurons for high-contrast stimuli and the m-FF was abnormally high in amblyopic neurons for low-contrast gratings. The spike count, CV 2 , and m-FF of spontaneous activity were also elevated in amblyopic neurons. These contrast-dependent spiking irregularities were correlated with the level of binocular suppression in these V2 neurons and with the severity of perceptual loss for individual monkeys. Our results suggest that the developmental alterations in normalization mechanisms resulting from early binocular suppression can explain much of these contrast-dependent spiking abnormalities in V2 neurons and the perceptual performance of our amblyopic monkeys. Amblyopia is a common developmental vision disorder in humans. Despite the extensive animal studies on how amblyopia emerges, we know surprisingly little about the neural basis of amblyopia in humans and nonhuman primates. Although the vision of amblyopic humans is often described as being noisy by perceptual and modeling studies, the exact nature or origin of this elevated perceptual noise is not known. We show that elevated and noisy spontaneous activity and contrast-dependent noisy spiking (spiking irregularity and trial-to-trial fluctuations in spiking) in neurons of visual area V2 could limit the visual performance of amblyopic primates. Moreover, we discovered that the noisy spiking is linked to a high level of binocular suppression in visual cortex during development. Copyright © 2017 the authors 0270-6474/17/370922-14$15.00/0.
Kriener, Birgit; Helias, Moritz; Rotter, Stefan; Diesmann, Markus; Einevoll, Gaute T
2013-01-01
Pattern formation, i.e., the generation of an inhomogeneous spatial activity distribution in a dynamical system with translation invariant structure, is a well-studied phenomenon in neuronal network dynamics, specifically in neural field models. These are population models to describe the spatio-temporal dynamics of large groups of neurons in terms of macroscopic variables such as population firing rates. Though neural field models are often deduced from and equipped with biophysically meaningful properties, a direct mapping to simulations of individual spiking neuron populations is rarely considered. Neurons have a distinct identity defined by their action on their postsynaptic targets. In its simplest form they act either excitatorily or inhibitorily. When the distribution of neuron identities is assumed to be periodic, pattern formation can be observed, given the coupling strength is supracritical, i.e., larger than a critical weight. We find that this critical weight is strongly dependent on the characteristics of the neuronal input, i.e., depends on whether neurons are mean- or fluctuation driven, and different limits in linearizing the full non-linear system apply in order to assess stability. In particular, if neurons are mean-driven, the linearization has a very simple form and becomes independent of both the fixed point firing rate and the variance of the input current, while in the very strongly fluctuation-driven regime the fixed point rate, as well as the input mean and variance are important parameters in the determination of the critical weight. We demonstrate that interestingly even in "intermediate" regimes, when the system is technically fluctuation-driven, the simple linearization neglecting the variance of the input can yield the better prediction of the critical coupling strength. We moreover analyze the effects of structural randomness by rewiring individual synapses or redistributing weights, as well as coarse-graining on the formation of inhomogeneous activity patterns.
Kriener, Birgit; Helias, Moritz; Rotter, Stefan; Diesmann, Markus; Einevoll, Gaute T.
2014-01-01
Pattern formation, i.e., the generation of an inhomogeneous spatial activity distribution in a dynamical system with translation invariant structure, is a well-studied phenomenon in neuronal network dynamics, specifically in neural field models. These are population models to describe the spatio-temporal dynamics of large groups of neurons in terms of macroscopic variables such as population firing rates. Though neural field models are often deduced from and equipped with biophysically meaningful properties, a direct mapping to simulations of individual spiking neuron populations is rarely considered. Neurons have a distinct identity defined by their action on their postsynaptic targets. In its simplest form they act either excitatorily or inhibitorily. When the distribution of neuron identities is assumed to be periodic, pattern formation can be observed, given the coupling strength is supracritical, i.e., larger than a critical weight. We find that this critical weight is strongly dependent on the characteristics of the neuronal input, i.e., depends on whether neurons are mean- or fluctuation driven, and different limits in linearizing the full non-linear system apply in order to assess stability. In particular, if neurons are mean-driven, the linearization has a very simple form and becomes independent of both the fixed point firing rate and the variance of the input current, while in the very strongly fluctuation-driven regime the fixed point rate, as well as the input mean and variance are important parameters in the determination of the critical weight. We demonstrate that interestingly even in “intermediate” regimes, when the system is technically fluctuation-driven, the simple linearization neglecting the variance of the input can yield the better prediction of the critical coupling strength. We moreover analyze the effects of structural randomness by rewiring individual synapses or redistributing weights, as well as coarse-graining on the formation of inhomogeneous activity patterns. PMID:24501591
Motoneuron membrane potentials follow a time inhomogeneous jump diffusion process.
Jahn, Patrick; Berg, Rune W; Hounsgaard, Jørn; Ditlevsen, Susanne
2011-11-01
Stochastic leaky integrate-and-fire models are popular due to their simplicity and statistical tractability. They have been widely applied to gain understanding of the underlying mechanisms for spike timing in neurons, and have served as building blocks for more elaborate models. Especially the Ornstein-Uhlenbeck process is popular to describe the stochastic fluctuations in the membrane potential of a neuron, but also other models like the square-root model or models with a non-linear drift are sometimes applied. Data that can be described by such models have to be stationary and thus, the simple models can only be applied over short time windows. However, experimental data show varying time constants, state dependent noise, a graded firing threshold and time-inhomogeneous input. In the present study we build a jump diffusion model that incorporates these features, and introduce a firing mechanism with a state dependent intensity. In addition, we suggest statistical methods to estimate all unknown quantities and apply these to analyze turtle motoneuron membrane potentials. Finally, simulated and real data are compared and discussed. We find that a square-root diffusion describes the data much better than an Ornstein-Uhlenbeck process with constant diffusion coefficient. Further, the membrane time constant decreases with increasing depolarization, as expected from the increase in synaptic conductance. The network activity, which the neuron is exposed to, can be reasonably estimated to be a threshold version of the nerve output from the network. Moreover, the spiking characteristics are well described by a Poisson spike train with an intensity depending exponentially on the membrane potential.
Equalization of Synaptic Efficacy by Synchronous Neural Activity
NASA Astrophysics Data System (ADS)
Cho, Myoung Won; Choi, M. Y.
2007-11-01
It is commonly believed that spike timings of a postsynaptic neuron tend to follow those of the presynaptic neuron. Such orthodromic firing may, however, cause a conflict with the functional integrity of complex neuronal networks due to asymmetric temporal Hebbian plasticity. We argue that reversed spike timing in a synapse is a typical phenomenon in the cortex, which has a stabilizing effect on the neuronal network structure. We further demonstrate how the firing causality in a synapse is perturbed by synchronous neural activity and how the equilibrium property of spike-timing dependent plasticity is determined principally by the degree of synchronization. Remarkably, even noise-induced activity and synchrony of neurons can result in equalization of synaptic efficacy.
Reduced Spiking in Entorhinal Cortex during the Delay Period of a Cued Spatial Response Task
ERIC Educational Resources Information Center
Gupta, Kishan; Keller, Lauren A.; Hasselmo, Michael E.
2012-01-01
Intrinsic persistent spiking mechanisms in medial entorhinal cortex (mEC) neurons may play a role in active maintenance of working memory. However, electrophysiological studies of rat mEC units have primarily focused on spatial modulation. We sought evidence of differential spike rates in the mEC in rats trained on a T-maze, cued spatial delayed…
Fiore, Lorenzo; Lorenzetti, Walter; Ratti, Giovannino
2005-11-30
A procedure is proposed to compare single-unit spiking activity elicited in repetitive cycles with an inhomogeneous Poisson process (IPP). Each spike sequence in a cycle is discretized and represented as a point process on a circle. The interspike interval probability density predicted for an IPP is computed on the basis of the experimental firing probability density; differences from the experimental interval distribution are assessed. This procedure was applied to spike trains which were repetitively induced by opening-closing movements of the distal article of a lobster leg. As expected, the density of short interspike intervals, less than 20-40 ms in length, was found to lie greatly below the level predicted for an IPP, reflecting the occurrence of the refractory period. Conversely, longer intervals, ranging from 20-40 to 100-120 ms, were markedly more abundant than expected; this provided evidence for a time window of increased tendency to fire again after a spike. Less consistently, a weak depression of spike generation was observed for longer intervals. A Monte Carlo procedure, implemented for comparison, produced quite similar results, but was slightly less precise and more demanding as concerns computation time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abo, Satoshi; Tanaka, Yuji; Nishikawa, Kazuhisa
2008-11-03
Local resistance profiles of ultra-shallow arsenic implanted into silicon with an energy of 3.5 keV and a dose of 1.2x10{sup 15} ions/cm{sup 2} activated by conventional spike lamp and laser annealing were measured by SSRM in a nitrogen atmosphere with a depth resolution of less than 10 nm for investigating the combination of the conventional spike lamp and laser annealing. Spike lamp annealing at 1050 deg. C followed by laser annealing at a power density of 0.42 kW/mm{sup 2} was found to give the lowest sheet resistance. The resistance profiles obtained by SSRM also indicated the lowest resistance for themore » sample after spike lamp annealing at 1050 deg. C followed by laser annealing with a power density of 0.42 kW/mm{sup 2}. Laser annealing alone with a power density of 0.42 kW/mm{sup 2} resulted in the higher sheet resistance, though the shallower resistance profile could be obtained. Spike lamp annealing followed by laser annealing procedures are effective in activating shallow arsenic profiles.« less
Wachowiak, Matt; Economo, Michael N.; Díaz-Quesada, Marta; Brunert, Daniela; Wesson, Daniel W.; White, John. A.; Rothermel, Markus
2013-01-01
Understanding central processing requires precise monitoring of neural activity across populations of identified neurons in the intact brain. Here we used recently-optimized variants of the genetically-encoded calcium sensor GCaMP (GCaMP3 and GCaMPG5G) to image activity among genetically- and anatomically-defined neuronal populations in the olfactory bulb (OB), including two types of GABA-ergic interneurons (periglomerular (PG) and short axon (SA) cells) and OB output neurons (mitral/tufted (MT) cells) projecting to piriform cortex. We first established that changes in neuronal spiking can be accurately related to GCaMP fluorescence changes via a simple quantitative relationship over a large dynamic range. We next used in vivo two-photon imaging from individual neurons and epifluorescence signals reflecting population-level activity to investigate the spatiotemporal representation of odorants across these neuron types in anesthetized and awake mice. Under anesthesia, individual PG and SA cells showed temporally simple responses and little spontaneous activity, while MT cells were spontaneously active and showed diverse temporal responses. At the population level, response patterns of PG, SA and MT cells were surprisingly similar to those imaged from sensory inputs, with shared odorant-specific topography across the dorsal OB and inhalation-coupled temporal dynamics. During wakefulness, PG and SA cell responses increased in magnitude but remained temporally simple while those of MT cells changed to complex spatiotemporal patterns reflecting restricted excitation and widespread inhibition. These results point to multiple circuit elements with distinct roles in transforming odor representations in the OB and provide a framework for further dissecting early olfactory processing using optical and genetic tools. PMID:23516293
Engelken, Rainer; Farkhooi, Farzad; Hansel, David; van Vreeswijk, Carl; Wolf, Fred
2016-01-01
Neuronal activity in the central nervous system varies strongly in time and across neuronal populations. It is a longstanding proposal that such fluctuations generically arise from chaotic network dynamics. Various theoretical studies predict that the rich dynamics of rate models operating in the chaotic regime can subserve circuit computation and learning. Neurons in the brain, however, communicate via spikes and it is a theoretical challenge to obtain similar rate fluctuations in networks of spiking neuron models. A recent study investigated spiking balanced networks of leaky integrate and fire (LIF) neurons and compared their dynamics to a matched rate network with identical topology, where single unit input-output functions were chosen from isolated LIF neurons receiving Gaussian white noise input. A mathematical analogy between the chaotic instability in networks of rate units and the spiking network dynamics was proposed. Here we revisit the behavior of the spiking LIF networks and these matched rate networks. We find expected hallmarks of a chaotic instability in the rate network: For supercritical coupling strength near the transition point, the autocorrelation time diverges. For subcritical coupling strengths, we observe critical slowing down in response to small external perturbations. In the spiking network, we found in contrast that the timescale of the autocorrelations is insensitive to the coupling strength and that rate deviations resulting from small input perturbations rapidly decay. The decay speed even accelerates for increasing coupling strength. In conclusion, our reanalysis demonstrates fundamental differences between the behavior of pulse-coupled spiking LIF networks and rate networks with matched topology and input-output function. In particular there is no indication of a corresponding chaotic instability in the spiking network.
Phase Locking of Multiple Single Neurons to the Local Field Potential in Cat V1.
Martin, Kevan A C; Schröder, Sylvia
2016-02-24
The local field potential (LFP) is thought to reflect a temporal reference for neuronal spiking, which may facilitate information coding and orchestrate the communication between neural populations. To explore this proposed role, we recorded the LFP and simultaneously the spike activity of one to three nearby neurons in V1 of anesthetized cats during the presentation of drifting sinusoidal gratings, binary dense noise stimuli, and natural movies. In all stimulus conditions and during spontaneous activity, the average LFP power at frequencies >20 Hz was higher when neurons were spiking versus not spiking. The spikes were weakly but significantly phase locked to all frequencies of the LFP. The average spike phase of the LFP was stable across high and low levels of LFP power, but the strength of phase locking at low frequencies (≤10 Hz) increased with increasing LFP power. In a next step, we studied how strong stimulus responses of single neurons are reflected in the LFP and the LFP-spike relationship. We found that LFP power was slightly increased and phase locking was slightly stronger during strong compared with weak stimulus-locked responses. In summary, the coupling strength between high frequencies of the LFP and spikes was not strongly modulated by LFP power, which is thought to reflect spiking synchrony, nor was it strongly influenced by how strongly the neuron was driven by the stimulus. Furthermore, a comparison between neighboring neurons showed no clustering of preferred LFP phase. We argue that hypotheses on the relevance of phase locking in their current form are inconsistent with our findings. Copyright © 2016 the authors 0270-6474/16/362494-09$15.00/0.
Wang, Zheng; Qi, Hui-Xin; Kaas, Jon H; Roe, Anna W; Chen, Li Min
2013-11-01
After disruption of dorsal column afferents at high cervical spinal levels in adult monkeys, somatosensory cortical neurons recover responsiveness to tactile stimulation of the hand; this reactivation correlates with a recovery of hand use. However, it is not known if all neuronal response properties recover, and whether different cortical areas recover in a similar manner. To address this, we recorded neuronal activity in cortical area 3b and S2 in adult squirrel monkeys weeks after unilateral lesion of the dorsal columns. We found that in response to vibrotactile stimulation, local field potentials remained robust at all frequency ranges. However, neuronal spiking activity failed to follow at high frequencies (≥15 Hz). We suggest that the failure to generate spiking activity at high stimulus frequency reflects a changed balance of inhibition and excitation in both area 3b and S2, and that this mismatch in spiking and local field potential is a signature of an early phase of recovering cortex (
Facilitation of epileptic activity during sleep is mediated by high amplitude slow waves
von Ellenrieder, Nicolás; Ferrari-Marinho, Taissa; Avoli, Massimo; Dubeau, François; Gotman, Jean
2015-01-01
Epileptic discharges in focal epilepsy are frequently activated during non-rapid eye movement sleep. Sleep slow waves are present during this stage and have been shown to include a deactivated (‘down’, hyperpolarized) and an activated state (‘up’, depolarized). The ‘up’ state enhances physiological rhythms, and we hypothesize that sleep slow waves and particularly the ‘up’ state are the specific components of non-rapid eye movement sleep that mediate the activation of epileptic activity. We investigated eight patients with pharmaco-resistant focal epilepsies who underwent combined scalp-intracerebral electroencephalography for diagnostic evaluation. We analysed 259 frontal electroencephalographic channels, and manually marked 442 epileptic spikes and 8487 high frequency oscillations during high amplitude widespread slow waves, and during matched control segments with low amplitude widespread slow waves, non-widespread slow waves or no slow waves selected during the same sleep stages (total duration of slow wave and control segments: 49 min each). During the slow waves, spikes and high frequency oscillations were more frequent than during control segments (79% of spikes during slow waves and 65% of high frequency oscillations, both P ∼ 0). The spike and high frequency oscillation density also increased for higher amplitude slow waves. We compared the density of spikes and high frequency oscillations between the ‘up’ and ‘down’ states. Spike and high frequency oscillation density was highest during the transition from the ‘up’ to the ‘down’ state. Interestingly, high frequency oscillations in channels with normal activity expressed a different peak at the transition from the ‘down’ to the ‘up’ state. These results show that the apparent activation of epileptic discharges by non-rapid eye movement sleep is not a state-dependent phenomenon but is predominantly associated with specific events, the high amplitude widespread slow waves that are frequent, but not continuous, during this state of sleep. Both epileptic spikes and high frequency oscillations do not predominate, like physiological activity, during the ‘up’ state but during the transition from the ‘up’ to the ‘down’ state of the slow wave, a period of high synchronization. Epileptic discharges appear therefore more associated with synchronization than with excitability. Furthermore, high frequency oscillations in channels devoid of epileptic activity peak differently during the slow wave cycle from those in channels with epileptic activity. This property may allow differentiating physiological from pathological high frequency oscillations, a problem that is unresolved until now. PMID:25792528
NASA Astrophysics Data System (ADS)
Coggan, Jay S.; Ocker, Gabriel K.; Sejnowski, Terrence J.; Prescott, Steven A.
2011-10-01
Neurons rely on action potentials, or spikes, to relay information. Pathological changes in spike generation likely contribute to certain enigmatic features of neurological disease, like paroxysmal attacks of pain and muscle spasm. Paroxysmal symptoms are characterized by abrupt onset and short duration, and are associated with abnormal spiking although the exact pathophysiology remains unclear. To help decipher the biophysical basis for 'paroxysmal' spiking, we replicated afterdischarge (i.e. continued spiking after a brief stimulus) in a minimal conductance-based axon model. We then applied nonlinear dynamical analysis to explain the dynamical basis for initiation and termination of afterdischarge. A perturbation could abruptly switch the system between two (quasi-)stable attractor states: rest and repetitive spiking. This bistability was a consequence of slow positive feedback mediated by persistent inward current. Initiation of afterdischarge was explained by activation of the persistent inward current forcing the system to cross a saddle point that separates the basins of attraction associated with each attractor. Termination of afterdischarge was explained by the attractor associated with repetitive spiking being destroyed. This occurred when ultra-slow negative feedback, such as intracellular sodium accumulation, caused the saddle point and stable limit cycle to collide; in that regard, the active attractor is not truly stable when the slowest dynamics are taken into account. The model also explains other features of paroxysmal symptoms, including temporal summation and refractoriness.
Neural spike sorting using iterative ICA and a deflation-based approach.
Tiganj, Z; Mboup, M
2012-12-01
We propose a spike sorting method for multi-channel recordings. When applied in neural recordings, the performance of the independent component analysis (ICA) algorithm is known to be limited, since the number of recording sites is much lower than the number of neurons. The proposed method uses an iterative application of ICA and a deflation technique in two nested loops. In each iteration of the external loop, the spiking activity of one neuron is singled out and then deflated from the recordings. The internal loop implements a sequence of ICA and sorting for removing the noise and all the spikes that are not fired by the targeted neuron. Then a final step is appended to the two nested loops in order to separate simultaneously fired spikes. We solve this problem by taking all possible pairs of the sorted neurons and apply ICA only on the segments of the signal during which at least one of the neurons in a given pair was active. We validate the performance of the proposed method on simulated recordings, but also on a specific type of real recordings: simultaneous extracellular-intracellular. We quantify the sorting results on the extracellular recordings for the spikes that come from the neurons recorded intracellularly. The results suggest that the proposed solution significantly improves the performance of ICA in spike sorting.
Simplicity and efficiency of integrate-and-fire neuron models.
Plesser, Hans E; Diesmann, Markus
2009-02-01
Lovelace and Cios (2008) recently proposed a very simple spiking neuron (VSSN) model for simulations of large neuronal networks as an efficient replacement for the integrate-and-fire neuron model. We argue that the VSSN model falls behind key advances in neuronal network modeling over the past 20 years, in particular, techniques that permit simulators to compute the state of the neuron without repeated summation over the history of input spikes and to integrate the subthreshold dynamics exactly. State-of-the-art solvers for networks of integrate-and-fire model neurons are substantially more efficient than the VSSN simulator and allow routine simulations of networks of some 10(5) neurons and 10(9) connections on moderate computer clusters.
Chang, Yao-Feng; Fowler, Burt; Chen, Ying-Chen; Zhou, Fei; Pan, Chih-Hung; Chang, Ting-Chang; Lee, Jack C.
2016-01-01
We realize a device with biological synaptic behaviors by integrating silicon oxide (SiOx) resistive switching memory with Si diodes. Minimal synaptic power consumption due to sneak-path current is achieved and the capability for spike-induced synaptic behaviors is demonstrated, representing critical milestones for the use of SiO2–based materials in future neuromorphic computing applications. Biological synaptic behaviors such as long-term potentiation (LTP), long-term depression (LTD) and spike-timing dependent plasticity (STDP) are demonstrated systematically using a comprehensive analysis of spike-induced waveforms, and represent interesting potential applications for SiOx-based resistive switching materials. The resistive switching SET transition is modeled as hydrogen (proton) release from (SiH)2 to generate the hydrogen bridge defect, and the RESET transition is modeled as an electrochemical reaction (proton capture) that re-forms (SiH)2. The experimental results suggest a simple, robust approach to realize programmable neuromorphic chips compatible with large-scale CMOS manufacturing technology. PMID:26880381
NASA Technical Reports Server (NTRS)
Ericsson, L. E.; Reding, J. P.
1976-01-01
An analysis of the unsteady aerodynamics of bodies with concave nose geometries was performed. The results show that the experimentally observed pulsating flow on spiked bodies and in forward facing cavities can be described by the developed simple mathematical model of the phenomenon. Static experimental data is used as a basis for determination of the oscillatory frequency of spike-induced flow pulsations. The agreement between predicted and measured reduced frequencies is generally very good. The spiked-body mathematical model is extended to describe the pulsations observed in forward facing cavities and it is shown that not only the frequency but also the pressure time history can be described with the accuracy needed to predict the experimentally observed time average effects. This implies that it should be possible to determine analytically the impact of the flow pulsation on the structural integrity of the nozzles for the jettisoned empty SRM-shells.
NASA Astrophysics Data System (ADS)
Chang, Yao-Feng; Fowler, Burt; Chen, Ying-Chen; Zhou, Fei; Pan, Chih-Hung; Chang, Ting-Chang; Lee, Jack C.
2016-02-01
We realize a device with biological synaptic behaviors by integrating silicon oxide (SiOx) resistive switching memory with Si diodes. Minimal synaptic power consumption due to sneak-path current is achieved and the capability for spike-induced synaptic behaviors is demonstrated, representing critical milestones for the use of SiO2-based materials in future neuromorphic computing applications. Biological synaptic behaviors such as long-term potentiation (LTP), long-term depression (LTD) and spike-timing dependent plasticity (STDP) are demonstrated systematically using a comprehensive analysis of spike-induced waveforms, and represent interesting potential applications for SiOx-based resistive switching materials. The resistive switching SET transition is modeled as hydrogen (proton) release from (SiH)2 to generate the hydrogen bridge defect, and the RESET transition is modeled as an electrochemical reaction (proton capture) that re-forms (SiH)2. The experimental results suggest a simple, robust approach to realize programmable neuromorphic chips compatible with large-scale CMOS manufacturing technology.
NASA Astrophysics Data System (ADS)
Chang, Yao-Feng; Fowler, Burt; Chen, Ying-Chen; Zhou, Fei; Pan, Chih-Hung; Chang, Kuan-Chang; Tsai, Tsung-Ming; Chang, Ting-Chang; Sze, Simon M.; Lee, Jack C.
2016-04-01
We realize a device with biological synaptic behaviors by integrating silicon oxide (SiOx) resistive switching memory with Si diodes to further minimize total synaptic power consumption due to sneak-path currents and demonstrate the capability for spike-induced synaptic behaviors, representing critical milestones for the use of SiO2-based materials in future neuromorphic computing applications. Biological synaptic behaviors such as long-term potentiation, long-term depression, and spike-timing dependent plasticity are demonstrated systemically with comprehensive investigation of spike waveform analyses and represent a potential application for SiOx-based resistive switching materials. The resistive switching SET transition is modeled as hydrogen (proton) release from the (SiH)2 defect to generate the hydrogenbridge defect, and the RESET transition is modeled as an electrochemical reaction (proton capture) that re-forms (SiH)2. The experimental results suggest a simple, robust approach to realize programmable neuromorphic chips compatible with largescale complementary metal-oxide semiconductor manufacturing technology.
Negotiating Multicollinearity with Spike-and-Slab Priors
Ročková, Veronika
2014-01-01
In multiple regression under the normal linear model, the presence of multicollinearity is well known to lead to unreliable and unstable maximum likelihood estimates. This can be particularly troublesome for the problem of variable selection where it becomes more difficult to distinguish between subset models. Here we show how adding a spike-and-slab prior mitigates this difficulty by filtering the likelihood surface into a posterior distribution that allocates the relevant likelihood information to each of the subset model modes. For identification of promising high posterior models in this setting, we consider three EM algorithms, the fast closed form EMVS version of Rockova and George (2014) and two new versions designed for variants of the spike-and-slab formulation. For a multimodal posterior under multicollinearity, we compare the regions of convergence of these three algorithms. Deterministic annealing versions of the EMVS algorithm are seen to substantially mitigate this multimodality. A single simple running example is used for illustration throughout. PMID:25419004
NeuroGrid: recording action potentials from the surface of the brain.
Khodagholy, Dion; Gelinas, Jennifer N; Thesen, Thomas; Doyle, Werner; Devinsky, Orrin; Malliaras, George G; Buzsáki, György
2015-02-01
Recording from neural networks at the resolution of action potentials is critical for understanding how information is processed in the brain. Here, we address this challenge by developing an organic material-based, ultraconformable, biocompatible and scalable neural interface array (the 'NeuroGrid') that can record both local field potentials(LFPs) and action potentials from superficial cortical neurons without penetrating the brain surface. Spikes with features of interneurons and pyramidal cells were simultaneously acquired by multiple neighboring electrodes of the NeuroGrid, allowing for the isolation of putative single neurons in rats. Spiking activity demonstrated consistent phase modulation by ongoing brain oscillations and was stable in recordings exceeding 1 week's duration. We also recorded LFP-modulated spiking activity intraoperatively in patients undergoing epilepsy surgery. The NeuroGrid constitutes an effective method for large-scale, stable recording of neuronal spikes in concert with local population synaptic activity, enhancing comprehension of neural processes across spatiotemporal scales and potentially facilitating diagnosis and therapy for brain disorders.
Thermodynamics and signatures of criticality in a network of neurons.
Tkačik, Gašper; Mora, Thierry; Marre, Olivier; Amodei, Dario; Palmer, Stephanie E; Berry, Michael J; Bialek, William
2015-09-15
The activity of a neural network is defined by patterns of spiking and silence from the individual neurons. Because spikes are (relatively) sparse, patterns of activity with increasing numbers of spikes are less probable, but, with more spikes, the number of possible patterns increases. This tradeoff between probability and numerosity is mathematically equivalent to the relationship between entropy and energy in statistical physics. We construct this relationship for populations of up to N = 160 neurons in a small patch of the vertebrate retina, using a combination of direct and model-based analyses of experiments on the response of this network to naturalistic movies. We see signs of a thermodynamic limit, where the entropy per neuron approaches a smooth function of the energy per neuron as N increases. The form of this function corresponds to the distribution of activity being poised near an unusual kind of critical point. We suggest further tests of criticality, and give a brief discussion of its functional significance.
SpikingLab: modelling agents controlled by Spiking Neural Networks in Netlogo.
Jimenez-Romero, Cristian; Johnson, Jeffrey
2017-01-01
The scientific interest attracted by Spiking Neural Networks (SNN) has lead to the development of tools for the simulation and study of neuronal dynamics ranging from phenomenological models to the more sophisticated and biologically accurate Hodgkin-and-Huxley-based and multi-compartmental models. However, despite the multiple features offered by neural modelling tools, their integration with environments for the simulation of robots and agents can be challenging and time consuming. The implementation of artificial neural circuits to control robots generally involves the following tasks: (1) understanding the simulation tools, (2) creating the neural circuit in the neural simulator, (3) linking the simulated neural circuit with the environment of the agent and (4) programming the appropriate interface in the robot or agent to use the neural controller. The accomplishment of the above-mentioned tasks can be challenging, especially for undergraduate students or novice researchers. This paper presents an alternative tool which facilitates the simulation of simple SNN circuits using the multi-agent simulation and the programming environment Netlogo (educational software that simplifies the study and experimentation of complex systems). The engine proposed and implemented in Netlogo for the simulation of a functional model of SNN is a simplification of integrate and fire (I&F) models. The characteristics of the engine (including neuronal dynamics, STDP learning and synaptic delay) are demonstrated through the implementation of an agent representing an artificial insect controlled by a simple neural circuit. The setup of the experiment and its outcomes are described in this work.
The Effects of Context and Attention on Spiking Activity in Human Early Visual Cortex.
Self, Matthew W; Peters, Judith C; Possel, Jessy K; Reithler, Joel; Goebel, Rainer; Ris, Peterjan; Jeurissen, Danique; Reddy, Leila; Claus, Steven; Baayen, Johannes C; Roelfsema, Pieter R
2016-03-01
Here we report the first quantitative analysis of spiking activity in human early visual cortex. We recorded multi-unit activity from two electrodes in area V2/V3 of a human patient implanted with depth electrodes as part of her treatment for epilepsy. We observed well-localized multi-unit receptive fields with tunings for contrast, orientation, spatial frequency, and size, similar to those reported in the macaque. We also observed pronounced gamma oscillations in the local-field potential that could be used to estimate the underlying spiking response properties. Spiking responses were modulated by visual context and attention. We observed orientation-tuned surround suppression: responses were suppressed by image regions with a uniform orientation and enhanced by orientation contrast. Additionally, responses were enhanced on regions that perceptually segregated from the background, indicating that neurons in the human visual cortex are sensitive to figure-ground structure. Spiking responses were also modulated by object-based attention. When the patient mentally traced a curve through the neurons' receptive fields, the accompanying shift of attention enhanced neuronal activity. These results demonstrate that the tuning properties of cells in the human early visual cortex are similar to those in the macaque and that responses can be modulated by both contextual factors and behavioral relevance. Our results, therefore, imply that the macaque visual system is an excellent model for the human visual cortex.
The Effects of Context and Attention on Spiking Activity in Human Early Visual Cortex
Reithler, Joel; Goebel, Rainer; Ris, Peterjan; Jeurissen, Danique; Reddy, Leila; Claus, Steven; Baayen, Johannes C.; Roelfsema, Pieter R.
2016-01-01
Here we report the first quantitative analysis of spiking activity in human early visual cortex. We recorded multi-unit activity from two electrodes in area V2/V3 of a human patient implanted with depth electrodes as part of her treatment for epilepsy. We observed well-localized multi-unit receptive fields with tunings for contrast, orientation, spatial frequency, and size, similar to those reported in the macaque. We also observed pronounced gamma oscillations in the local-field potential that could be used to estimate the underlying spiking response properties. Spiking responses were modulated by visual context and attention. We observed orientation-tuned surround suppression: responses were suppressed by image regions with a uniform orientation and enhanced by orientation contrast. Additionally, responses were enhanced on regions that perceptually segregated from the background, indicating that neurons in the human visual cortex are sensitive to figure-ground structure. Spiking responses were also modulated by object-based attention. When the patient mentally traced a curve through the neurons’ receptive fields, the accompanying shift of attention enhanced neuronal activity. These results demonstrate that the tuning properties of cells in the human early visual cortex are similar to those in the macaque and that responses can be modulated by both contextual factors and behavioral relevance. Our results, therefore, imply that the macaque visual system is an excellent model for the human visual cortex. PMID:27015604
Truccolo, Wilson
2017-01-01
Point process generalized linear models (PP-GLMs) provide an important statistical framework for modeling spiking activity in single-neurons and neuronal networks. Stochastic stability is essential when sampling from these models, as done in computational neuroscience to analyze statistical properties of neuronal dynamics and in neuro-engineering to implement closed-loop applications. Here we show, however, that despite passing common goodness-of-fit tests, PP-GLMs estimated from data are often unstable, leading to divergent firing rates. The inclusion of absolute refractory periods is not a satisfactory solution since the activity then typically settles into unphysiological rates. To address these issues, we derive a framework for determining the existence and stability of fixed points of the expected conditional intensity function (CIF) for general PP-GLMs. Specifically, in nonlinear Hawkes PP-GLMs, the CIF is expressed as a function of the previous spike history and exogenous inputs. We use a mean-field quasi-renewal (QR) approximation that decomposes spike history effects into the contribution of the last spike and an average of the CIF over all spike histories prior to the last spike. Fixed points for stationary rates are derived as self-consistent solutions of integral equations. Bifurcation analysis and the number of fixed points predict that the original models can show stable, divergent, and metastable (fragile) dynamics. For fragile models, fluctuations of the single-neuron dynamics predict expected divergence times after which rates approach unphysiologically high values. This metric can be used to estimate the probability of rates to remain physiological for given time periods, e.g., for simulation purposes. We demonstrate the use of the stability framework using simulated single-neuron examples and neurophysiological recordings. Finally, we show how to adapt PP-GLM estimation procedures to guarantee model stability. Overall, our results provide a stability framework for data-driven PP-GLMs and shed new light on the stochastic dynamics of state-of-the-art statistical models of neuronal spiking activity. PMID:28234899
Gerhard, Felipe; Deger, Moritz; Truccolo, Wilson
2017-02-01
Point process generalized linear models (PP-GLMs) provide an important statistical framework for modeling spiking activity in single-neurons and neuronal networks. Stochastic stability is essential when sampling from these models, as done in computational neuroscience to analyze statistical properties of neuronal dynamics and in neuro-engineering to implement closed-loop applications. Here we show, however, that despite passing common goodness-of-fit tests, PP-GLMs estimated from data are often unstable, leading to divergent firing rates. The inclusion of absolute refractory periods is not a satisfactory solution since the activity then typically settles into unphysiological rates. To address these issues, we derive a framework for determining the existence and stability of fixed points of the expected conditional intensity function (CIF) for general PP-GLMs. Specifically, in nonlinear Hawkes PP-GLMs, the CIF is expressed as a function of the previous spike history and exogenous inputs. We use a mean-field quasi-renewal (QR) approximation that decomposes spike history effects into the contribution of the last spike and an average of the CIF over all spike histories prior to the last spike. Fixed points for stationary rates are derived as self-consistent solutions of integral equations. Bifurcation analysis and the number of fixed points predict that the original models can show stable, divergent, and metastable (fragile) dynamics. For fragile models, fluctuations of the single-neuron dynamics predict expected divergence times after which rates approach unphysiologically high values. This metric can be used to estimate the probability of rates to remain physiological for given time periods, e.g., for simulation purposes. We demonstrate the use of the stability framework using simulated single-neuron examples and neurophysiological recordings. Finally, we show how to adapt PP-GLM estimation procedures to guarantee model stability. Overall, our results provide a stability framework for data-driven PP-GLMs and shed new light on the stochastic dynamics of state-of-the-art statistical models of neuronal spiking activity.
Mateos-Aparicio, Pedro; Murphy, Ricardo; Storm, Johan F
2014-01-01
The dentate granule cells (DGCs) form the most numerous neuron population of the hippocampal memory system, and its gateway for cortical input. Yet, we have only limited knowledge of the intrinsic membrane properties that shape their responses. Since SK and Kv7/M potassium channels are key mechanisms of neuronal spiking and excitability control, afterhyperpolarizations (AHPs) and synaptic integration, we studied their functions in DGCs. The specific SK channel blockers apamin or scyllatoxin increased spike frequency (excitability), reduced early spike frequency adaptation, fully blocked the medium-duration AHP (mAHP) after a single spike or spike train, and increased postsynaptic EPSP summation after spiking, but had no effect on input resistance (Rinput) or spike threshold. In contrast, blockade of Kv7/M channels by XE991 increased Rinput, lowered the spike threshold, and increased excitability, postsynaptic EPSP summation, and EPSP–spike coupling, but only slightly reduced mAHP after spike trains (and not after single spikes). The SK and Kv7/M channel openers 1-EBIO and retigabine, respectively, had effects opposite to the blockers. Computational modelling reproduced many of these effects. We conclude that SK and Kv7/M channels have complementary roles in DGCs. These mechanisms may be important for the dentate network function, as CA3 neurons can be activated or inhibition recruited depending on DGC firing rate. PMID:24366266
Differences in reward processing between putative cell types in primate prefrontal cortex
Fan, Hongwei; Wang, Rubin; Sakagami, Masamichi
2017-01-01
Single-unit studies in monkeys have demonstrated that neurons in the prefrontal cortex predict the reward type, reward amount or reward availability associated with a stimulus. To examine contributions of pyramidal cells and interneurons in reward processing, single-unit activity was extracellularly recorded in prefrontal cortices of four monkeys performing a reward prediction task. Based on their shapes of spike waveforms, prefrontal neurons were classified into broad-spike and narrow-spike units that represented putative pyramidal cells and interneurons, respectively. We mainly observed that narrow-spike neurons showed higher firing rates but less bursty discharges than did broad-spike neurons. Both narrow-spike and broad-spike cells selectively responded to the stimulus, reward and their interaction, and the proportions of each type of selective neurons were similar between the two cell classes. Moreover, the two types of cells displayed equal reliability of reward or stimulus discrimination. Furthermore, we found that broad-spike and narrow-spike cells showed distinct mechanisms for encoding reward or stimulus information. Broad-spike neurons raised their firing rate relative to the baseline rate to represent the preferred reward or stimulus information, whereas narrow-spike neurons inhibited their firing rate lower than the baseline rate to encode the non-preferred reward or stimulus information. Our results suggest that narrow-spike and broad-spike cells were equally involved in reward and stimulus processing in the prefrontal cortex. They utilized a binary strategy to complementarily represent reward or stimulus information, which was consistent with the task structure in which the monkeys were required to remember two reward conditions and two visual stimuli. PMID:29261734
Differences in reward processing between putative cell types in primate prefrontal cortex.
Fan, Hongwei; Pan, Xiaochuan; Wang, Rubin; Sakagami, Masamichi
2017-01-01
Single-unit studies in monkeys have demonstrated that neurons in the prefrontal cortex predict the reward type, reward amount or reward availability associated with a stimulus. To examine contributions of pyramidal cells and interneurons in reward processing, single-unit activity was extracellularly recorded in prefrontal cortices of four monkeys performing a reward prediction task. Based on their shapes of spike waveforms, prefrontal neurons were classified into broad-spike and narrow-spike units that represented putative pyramidal cells and interneurons, respectively. We mainly observed that narrow-spike neurons showed higher firing rates but less bursty discharges than did broad-spike neurons. Both narrow-spike and broad-spike cells selectively responded to the stimulus, reward and their interaction, and the proportions of each type of selective neurons were similar between the two cell classes. Moreover, the two types of cells displayed equal reliability of reward or stimulus discrimination. Furthermore, we found that broad-spike and narrow-spike cells showed distinct mechanisms for encoding reward or stimulus information. Broad-spike neurons raised their firing rate relative to the baseline rate to represent the preferred reward or stimulus information, whereas narrow-spike neurons inhibited their firing rate lower than the baseline rate to encode the non-preferred reward or stimulus information. Our results suggest that narrow-spike and broad-spike cells were equally involved in reward and stimulus processing in the prefrontal cortex. They utilized a binary strategy to complementarily represent reward or stimulus information, which was consistent with the task structure in which the monkeys were required to remember two reward conditions and two visual stimuli.
Decoding a wide range of hand configurations from macaque motor, premotor, and parietal cortices.
Schaffelhofer, Stefan; Agudelo-Toro, Andres; Scherberger, Hansjörg
2015-01-21
Despite recent advances in decoding cortical activity for motor control, the development of hand prosthetics remains a major challenge. To reduce the complexity of such applications, higher cortical areas that also represent motor plans rather than just the individual movements might be advantageous. We investigated the decoding of many grip types using spiking activity from the anterior intraparietal (AIP), ventral premotor (F5), and primary motor (M1) cortices. Two rhesus monkeys were trained to grasp 50 objects in a delayed task while hand kinematics and spiking activity from six implanted electrode arrays (total of 192 electrodes) were recorded. Offline, we determined 20 grip types from the kinematic data and decoded these hand configurations and the grasped objects with a simple Bayesian classifier. When decoding from AIP, F5, and M1 combined, the mean accuracy was 50% (using planning activity) and 62% (during motor execution) for predicting the 50 objects (chance level, 2%) and substantially larger when predicting the 20 grip types (planning, 74%; execution, 86%; chance level, 5%). When decoding from individual arrays, objects and grip types could be predicted well during movement planning from AIP (medial array) and F5 (lateral array), whereas M1 predictions were poor. In contrast, predictions during movement execution were best from M1, whereas F5 performed only slightly worse. These results demonstrate for the first time that a large number of grip types can be decoded from higher cortical areas during movement preparation and execution, which could be relevant for future neuroprosthetic devices that decode motor plans. Copyright © 2015 the authors 0270-6474/15/351068-14$15.00/0.
Spike threshold dynamics in spinal motoneurons during scratching and swimming.
Grigonis, Ramunas; Alaburda, Aidas
2017-09-01
Action potential threshold can vary depending on firing history and synaptic inputs. We used an ex vivo carapace-spinal cord preparation from adult turtles to study spike threshold dynamics in motoneurons during two distinct types of functional motor behaviour - fictive scratching and fictive swimming. The threshold potential depolarizes by about 10 mV within each burst of spikes generated during scratch and swim network activity and recovers between bursts to a slightly depolarized level. Slow synaptic integration resulting in a wave of membrane potential depolarization is the factor influencing the threshold potential within firing bursts during motor behaviours. Depolarization of the threshold potential decreases the excitability of motoneurons and may provide a mechanism for stabilization of the response of a motoneuron to intense synaptic inputs to maintain the motor commands within an optimal range for muscle activation. During functional spinal neural network activity motoneurons receive intense synaptic input, and this could modulate the threshold for action potential generation, providing the ability to dynamically adjust the excitability and recruitment order for functional needs. In the present study we investigated the dynamics of action potential threshold during motor network activity. Intracellular recordings from spinal motoneurons in an ex vivo carapace-spinal cord preparation from adult turtles were performed during two distinct types of motor behaviour - fictive scratching and fictive swimming. We found that the threshold of the first spike in episodes of scratching and swimming was the lowest. The threshold potential depolarizes by about 10 mV within each burst of spikes generated during scratch and swim network activity and recovers between bursts to a slightly depolarized level. Depolarization of the threshold potential results in decreased excitability of motoneurons. Synaptic inputs do not modulate the threshold of the first action potential during episodes of scratching or of swimming. There is no correlation between changes in spike threshold and interspike intervals within bursts. Slow synaptic integration that results in a wave of membrane potential depolarization rather than fast synaptic events preceding each spike is the factor influencing the threshold potential within firing bursts during motor behaviours. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, W. H.; He, X. T.; LCP, Institute of Applied Physics and Computational Mathematics, Beijing 100088
2012-07-15
When an incident shock collides with a corrugated interface separating two fluids of different densities, the interface is prone to Richtmyer-Meshkov instability (RMI). Based on the formal perturbation expansion method as well as the potential flow theory, we present a simple method to investigate the cylindrical effects in weakly nonlinear RMI with the transmitted and reflected cylindrical shocks by considering the nonlinear corrections up to fourth order. The cylindrical results associated with the material interface show that the interface expression consists of two parts: the result in the planar system and that from the cylindrical effects. In the limit ofmore » the cylindrical radius tending to infinity, the cylindrical results can be reduced to those in the planar system. Our explicit results show that the cylindrical effects exert an inward velocity on the whole perturbed interface, regardless of bubbles or spikes of the interface. On the one hand, outgoing bubbles are constrained and ingoing spikes are accelerated for different Atwood numbers (A) and mode numbers k'. On the other hand, for ingoing bubbles, when |A|k'{sup 3/2} Less-Than-Or-Equivalent-To 1, bubbles are considerably accelerated especially at the small |A| and k'; otherwise, bubbles are decelerated. For outgoing spikes, when |A|k' Greater-Than-Or-Equivalent-To 1, spikes are dramatically accelerated especially at large |A| and k'; otherwise, spikes are decelerated. Furthermore, the cylindrical effects have a significant influence on the amplitudes of the ingoing spike and bubble for large k'. Thus, it should be included in applications where the cylindrical effects play a role, such as inertial confinement fusion ignition target design.« less
London, Michael; Larkum, Matthew E; Häusser, Michael
2008-11-01
Synaptic information efficacy (SIE) is a statistical measure to quantify the efficacy of a synapse. It measures how much information is gained, on the average, about the output spike train of a postsynaptic neuron if the input spike train is known. It is a particularly appropriate measure for assessing the input-output relationship of neurons receiving dynamic stimuli. Here, we compare the SIE of simulated synaptic inputs measured experimentally in layer 5 cortical pyramidal neurons in vitro with the SIE computed from a minimal model constructed to fit the recorded data. We show that even with a simple model that is far from perfect in predicting the precise timing of the output spikes of the real neuron, the SIE can still be accurately predicted. This arises from the ability of the model to predict output spikes influenced by the input more accurately than those driven by the background current. This indicates that in this context, some spikes may be more important than others. Lastly we demonstrate another aspect where using mutual information could be beneficial in evaluating the quality of a model, by measuring the mutual information between the model's output and the neuron's output. The SIE, thus, could be a useful tool for assessing the quality of models of single neurons in preserving input-output relationship, a property that becomes crucial when we start connecting these reduced models to construct complex realistic neuronal networks.
Spacecraft capture and docking system
NASA Technical Reports Server (NTRS)
Kong, Kinyuen (Inventor); Rafeek, Shaheed (Inventor); Myrick, Thomas (Inventor)
2001-01-01
A system for capturing and docking an active craft to a passive craft has a first docking assembly on the active craft with a first contact member and a spike projecting outwardly, a second docking assembly on the passive craft having a second contact member and a flexible net deployed over a target area with an open mesh for capturing the end of the spike of the active craft, and a motorized net drive for reeling in the net and active craft to mate with the passive craft's docking assembly. The spike has extendable tabs to allow it to become engaged with the net. The net's center is coupled to a net spool for reeling in. An alignment funnel has inclined walls to guide the net and captured spike towards the net spool. The passive craft's docking assembly includes circumferentially spaced preload wedges which are driven to lock the wedges against the contact member of the active craft. The active craft's docking assembly includes a rotary table and drive for rotating it to a predetermined angular alignment position, and mating connectors are then engaged with each other. The system may be used for docking spacecraft in zero or low-gravity environments, as well as for docking underwater vehicles, docking of ancillary craft to a mother craft in subsonic flight, in-flight refueling systems, etc.
2012-01-01
Action potentials at the neurons and graded signals at the synapses are primary codes in the brain. In terms of their functional interaction, the studies were focused on the influence of presynaptic spike patterns on synaptic activities. How the synapse dynamics quantitatively regulates the encoding of postsynaptic digital spikes remains unclear. We investigated this question at unitary glutamatergic synapses on cortical GABAergic neurons, especially the quantitative influences of release probability on synapse dynamics and neuronal encoding. Glutamate release probability and synaptic strength are proportionally upregulated by presynaptic sequential spikes. The upregulation of release probability and the efficiency of probability-driven synaptic facilitation are strengthened by elevating presynaptic spike frequency and Ca2+. The upregulation of release probability improves spike capacity and timing precision at postsynaptic neuron. These results suggest that the upregulation of presynaptic glutamate release facilitates a conversion of synaptic analogue signals into digital spikes in postsynaptic neurons, i.e., a functional compatibility between presynaptic and postsynaptic partners. PMID:22852823
Hight, Ariel E; Kalluri, Radha
2016-08-01
The vestibular nerve is characterized by two broad groups of neurons that differ in the timing of their interspike intervals; some fire at highly regular intervals, whereas others fire at highly irregular intervals. Heterogeneity in ion channel properties has been proposed as shaping these firing patterns (Highstein SM, Politoff AL. Brain Res 150: 182-187, 1978; Smith CE, Goldberg JM. Biol Cybern 54: 41-51, 1986). Kalluri et al. (J Neurophysiol 104: 2034-2051, 2010) proposed that regularity is controlled by the density of low-voltage-activated potassium currents (IKL). To examine the impact of IKL on spike timing regularity, we implemented a single-compartment model with three conductances known to be present in the vestibular ganglion: transient sodium (gNa), low-voltage-activated potassium (gKL), and high-voltage-activated potassium (gKH). Consistent with in vitro observations, removing gKL depolarized resting potential, increased input resistance and membrane time constant, and converted current step-evoked firing patterns from transient (1 spike at current onset) to sustained (many spikes). Modeled neurons were driven with a time-varying synaptic conductance that captured the random arrival times and amplitudes of glutamate-driven synaptic events. In the presence of gKL, spiking occurred only in response to large events with fast onsets. Models without gKL exhibited greater integration by responding to the superposition of rapidly arriving events. Three synaptic conductance were modeled, each with different kinetics to represent a variety of different synaptic processes. In response to all three types of synaptic conductance, models containing gKL produced spike trains with irregular interspike intervals. Only models lacking gKL when driven by rapidly arriving small excitatory postsynaptic currents were capable of generating regular spiking. Copyright © 2016 the American Physiological Society.
Relaxation oscillator-realized artificial electronic neurons, their responses, and noise
NASA Astrophysics Data System (ADS)
Lim, Hyungkwang; Ahn, Hyung-Woo; Kornijcuk, Vladimir; Kim, Guhyun; Seok, Jun Yeong; Kim, Inho; Hwang, Cheol Seong; Jeong, Doo Seok
2016-05-01
A proof-of-concept relaxation oscillator-based leaky integrate-and-fire (ROLIF) neuron circuit is realized by using an amorphous chalcogenide-based threshold switch and non-ideal operational amplifier (op-amp). The proposed ROLIF neuron offers biologically plausible features such as analog-type encoding, signal amplification, unidirectional synaptic transmission, and Poisson noise. The synaptic transmission between pre- and postsynaptic neurons is achieved through a passive synapse (simple resistor). The synaptic resistor coupled to the non-ideal op-amp realizes excitatory postsynaptic potential (EPSP) evolution that evokes postsynaptic neuron spiking. In an attempt to generalize our proposed model, we theoretically examine ROLIF neuron circuits adopting different non-ideal op-amps having different gains and slew rates. The simulation results indicate the importance of gain in postsynaptic neuron spiking, irrespective of the slew rate (as long as the rate exceeds a particular value), providing the basis for the ROLIF neuron circuit design. Eventually, the behavior of a postsynaptic neuron in connection to multiple presynaptic neurons via synapses is highlighted in terms of EPSP evolution amid simultaneously incident asynchronous presynaptic spikes, which in fact reveals an important role of the random noise in spatial integration.A proof-of-concept relaxation oscillator-based leaky integrate-and-fire (ROLIF) neuron circuit is realized by using an amorphous chalcogenide-based threshold switch and non-ideal operational amplifier (op-amp). The proposed ROLIF neuron offers biologically plausible features such as analog-type encoding, signal amplification, unidirectional synaptic transmission, and Poisson noise. The synaptic transmission between pre- and postsynaptic neurons is achieved through a passive synapse (simple resistor). The synaptic resistor coupled to the non-ideal op-amp realizes excitatory postsynaptic potential (EPSP) evolution that evokes postsynaptic neuron spiking. In an attempt to generalize our proposed model, we theoretically examine ROLIF neuron circuits adopting different non-ideal op-amps having different gains and slew rates. The simulation results indicate the importance of gain in postsynaptic neuron spiking, irrespective of the slew rate (as long as the rate exceeds a particular value), providing the basis for the ROLIF neuron circuit design. Eventually, the behavior of a postsynaptic neuron in connection to multiple presynaptic neurons via synapses is highlighted in terms of EPSP evolution amid simultaneously incident asynchronous presynaptic spikes, which in fact reveals an important role of the random noise in spatial integration. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01278g
1990-02-01
and the staminate spike appeared dark green, 4 carbohydrate reserves were at their lowest level in the plant. The color of the pistillate and staminate ...Cytoplasml E GREEN TISSUES 0 (Leaves, Petioles) Simple Cell maintenance1 STORAGRE TISSUES (Se bases Rhalml) Figur 15.Simplfiedpathwy ofcarboydrae ovmntinwarhat
Murillo Pulgarín, José A; García Bermejo, Luisa F; Durán, Armando Carrasquero
2018-03-07
High-performance liquid chromatography (HPLC) was used to separate oxamyl from other pesticides in drinking water and tomato paste. The eluate emerging from the column tail was mixed with an alkaline solution of Co 2+ in EDTA and irradiated with UV light to induce photolysis of the carbamate in order to obtain free radicals and other reactive species that oxidize luminol and produce chemiluminescence (CL) as a result. The intensity of the CL signal was monitored in the form of chromatographic peaks. Under the optimum operating conditions for the HPLC-UV-CL system, the analyte concentration was linearly related to peak area. The limit of detection as determined in accordance with the IUPAC criterion was 0.17 mg L -1 . Oxamyl was successfully extracted with recoveries of 88.7-103.1% from spiked tomato paste by using a simple QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) sample preparation approach. Similar recoveries were obtained from drinking water samples spiked with oxamyl concentrations above the LOD. The proposed method is a simple, fast, accurate choice for quantifying this pesticide.
Hassan, Wafaa S; Elmasry, Manal S; Elsayed, Heba M; Zidan, Dalia W
2018-09-05
In accordance with International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) guidelines, six novel, simple and precise sequential spectrophotometric methods were developed and validated for the simultaneous analysis of Ribavirin (RIB), Sofosbuvir (SOF), and Daclatasvir (DAC) in their mixture without prior separation steps. These drugs are described as co-administered for treatment of Hepatitis C virus (HCV). HCV is the cause of hepatitis C and some cancers such as liver cancer (hepatocellular carcinoma) and lymphomas in humans. These techniques consisted of several sequential steps using zero, ratio and/or derivative spectra. DAC was first determined through direct spectrophotometry at 313.7 nm without any interference of the other two drugs while RIB and SOF can be determined after ratio subtraction through five methods; Ratio difference spectrophotometric method, successive derivative ratio method, constant center, isoabsorptive method at 238.8 nm, and mean centering of the ratio spectra (MCR) at 224 nm and 258 nm for RIB and SOF, respectively. The calibration curve is linear over the concentration ranges of (6-42), (10-70) and (4-16) μg/mL for RIB, SOF, and DAC, respectively. This method was successfully applied to commercial pharmaceutical preparation of the drugs, spiked human urine, and spiked human plasma. The above methods are very simple methods that were developed for the simultaneous determination of binary and ternary mixtures and so enhance signal-to-noise ratio. The method has been successfully applied to the simultaneous analysis of RIB, SOF, and DAC in laboratory prepared mixtures. The obtained results are statistically compared with those obtained by the official or reported methods, showing no significant difference with respect to accuracy and precision at p = 0.05. Copyright © 2018 Elsevier B.V. All rights reserved.
Paraskevov, A V; Zendrikov, D K
2017-03-23
We show that in model neuronal cultures, where the probability of interneuronal connection formation decreases exponentially with increasing distance between the neurons, there exists a small number of spatial nucleation centers of a network spike, from where the synchronous spiking activity starts propagating in the network typically in the form of circular traveling waves. The number of nucleation centers and their spatial locations are unique and unchanged for a given realization of neuronal network but are different for different networks. In contrast, if the probability of interneuronal connection formation is independent of the distance between neurons, then the nucleation centers do not arise and the synchronization of spiking activity during a network spike occurs spatially uniform throughout the network. Therefore one can conclude that spatial proximity of connections between neurons is important for the formation of nucleation centers. It is also shown that fluctuations of the spatial density of neurons at their random homogeneous distribution typical for the experiments in vitro do not determine the locations of the nucleation centers. The simulation results are qualitatively consistent with the experimental observations.
Monasson, Remi; Cocco, Simona
2011-10-01
We present two Bayesian procedures to infer the interactions and external currents in an assembly of stochastic integrate-and-fire neurons from the recording of their spiking activity. The first procedure is based on the exact calculation of the most likely time courses of the neuron membrane potentials conditioned by the recorded spikes, and is exact for a vanishing noise variance and for an instantaneous synaptic integration. The second procedure takes into account the presence of fluctuations around the most likely time courses of the potentials, and can deal with moderate noise levels. The running time of both procedures is proportional to the number S of spikes multiplied by the squared number N of neurons. The algorithms are validated on synthetic data generated by networks with known couplings and currents. We also reanalyze previously published recordings of the activity of the salamander retina (including from 32 to 40 neurons, and from 65,000 to 170,000 spikes). We study the dependence of the inferred interactions on the membrane leaking time; the differences and similarities with the classical cross-correlation analysis are discussed.
NASA Astrophysics Data System (ADS)
Paraskevov, A. V.; Zendrikov, D. K.
2017-04-01
We show that in model neuronal cultures, where the probability of interneuronal connection formation decreases exponentially with increasing distance between the neurons, there exists a small number of spatial nucleation centers of a network spike, from where the synchronous spiking activity starts propagating in the network typically in the form of circular traveling waves. The number of nucleation centers and their spatial locations are unique and unchanged for a given realization of neuronal network but are different for different networks. In contrast, if the probability of interneuronal connection formation is independent of the distance between neurons, then the nucleation centers do not arise and the synchronization of spiking activity during a network spike occurs spatially uniform throughout the network. Therefore one can conclude that spatial proximity of connections between neurons is important for the formation of nucleation centers. It is also shown that fluctuations of the spatial density of neurons at their random homogeneous distribution typical for the experiments in vitro do not determine the locations of the nucleation centers. The simulation results are qualitatively consistent with the experimental observations.
A role for the mevalonate pathway in early plant symbiotic signaling
Venkateshwaran, Muthusubramanian; Jayaraman, Dhileepkumar; Chabaud, Mireille; Genre, Andrea; Balloon, Allison J.; Maeda, Junko; Forshey, Kari; den Os, Désirée; Kwiecien, Nicholas W.; Coon, Joshua J.; Barker, David G.; Ané, Jean-Michel
2015-01-01
Rhizobia and arbuscular mycorrhizal fungi produce signals that are perceived by host legume receptors at the plasma membrane and trigger sustained oscillations of the nuclear and perinuclear Ca2+ concentration (Ca2+ spiking), which in turn leads to gene expression and downstream symbiotic responses. The activation of Ca2+ spiking requires the plasma membrane-localized receptor-like kinase Does not Make Infections 2 (DMI2) as well as the nuclear cation channel DMI1. A key enzyme regulating the mevalonate (MVA) pathway, 3-Hydroxy-3-Methylglutaryl CoA Reductase 1 (HMGR1), interacts with DMI2 and is required for the legume–rhizobium symbiosis. Here, we show that HMGR1 is required to initiate Ca2+ spiking and symbiotic gene expression in Medicago truncatula roots in response to rhizobial and arbuscular mycorrhizal fungal signals. Furthermore, MVA, the direct product of HMGR1 activity, is sufficient to induce nuclear-associated Ca2+ spiking and symbiotic gene expression in both wild-type plants and dmi2 mutants, but interestingly not in dmi1 mutants. Finally, MVA induced Ca2+ spiking in Human Embryonic Kidney 293 cells expressing DMI1. This demonstrates that the nuclear cation channel DMI1 is sufficient to support MVA-induced Ca2+ spiking in this heterologous system. PMID:26199419
A role for the mevalonate pathway in early plant symbiotic signaling.
Venkateshwaran, Muthusubramanian; Jayaraman, Dhileepkumar; Chabaud, Mireille; Genre, Andrea; Balloon, Allison J; Maeda, Junko; Forshey, Kari; den Os, Désirée; Kwiecien, Nicholas W; Coon, Joshua J; Barker, David G; Ané, Jean-Michel
2015-08-04
Rhizobia and arbuscular mycorrhizal fungi produce signals that are perceived by host legume receptors at the plasma membrane and trigger sustained oscillations of the nuclear and perinuclear Ca(2+) concentration (Ca(2+) spiking), which in turn leads to gene expression and downstream symbiotic responses. The activation of Ca(2+) spiking requires the plasma membrane-localized receptor-like kinase Does not Make Infections 2 (DMI2) as well as the nuclear cation channel DMI1. A key enzyme regulating the mevalonate (MVA) pathway, 3-Hydroxy-3-Methylglutaryl CoA Reductase 1 (HMGR1), interacts with DMI2 and is required for the legume-rhizobium symbiosis. Here, we show that HMGR1 is required to initiate Ca(2+) spiking and symbiotic gene expression in Medicago truncatula roots in response to rhizobial and arbuscular mycorrhizal fungal signals. Furthermore, MVA, the direct product of HMGR1 activity, is sufficient to induce nuclear-associated Ca(2+) spiking and symbiotic gene expression in both wild-type plants and dmi2 mutants, but interestingly not in dmi1 mutants. Finally, MVA induced Ca(2+) spiking in Human Embryonic Kidney 293 cells expressing DMI1. This demonstrates that the nuclear cation channel DMI1 is sufficient to support MVA-induced Ca(2+) spiking in this heterologous system.
Burst Firing in Bee Gustatory Neurons Prevents Adaptation.
Miriyala, Ashwin; Kessler, Sébastien; Rind, F Claire; Wright, Geraldine A
2018-05-01
Animals detect changes in the environment using modality-specific, peripheral sensory neurons. The insect gustatory system encodes tastant identity and concentration through the independent firing of gustatory receptor neurons (GRNs) that spike rapidly at stimulus onset and quickly adapt. Here, we show the first evidence that concentrated sugar evokes a temporally structured burst pattern of spiking involving two GRNs within the gustatory sensilla of bumblebees. Bursts of spikes resulted when a sucrose-activated GRN was inhibited by another GRN at a frequency of ∼22 Hz during the first 1 s of stimulation. Pharmacological blockade of gap junctions abolished bursting, indicating that bee GRNs have electrical synapses that produce a temporal pattern of spikes when one GRN is activated by a sugar ligand. Bursting permitted bee GRNs to maintain a high rate of spiking and to exhibit the slowest rate of adaptation of any insect species. Feeding bout duration correlated with coherent bursting; only sugar concentrations that produced bursting evoked the bumblebee's feeding reflex. Volume of solution imbibed was a direct function of time in contact with food. We propose that gap junctions among GRNs enable a sustained rate of GRN spiking that is necessary to drive continuous feeding by the bee proboscis. Copyright © 2018 Elsevier Ltd. All rights reserved.
Modulation of spike coding by subthreshold extracellular electric fields and neuronal morphology
NASA Astrophysics Data System (ADS)
Wei, Xile; Li, Bingjie; Lu, Meili; Yi, Guosheng; Wang, Jiang
2015-07-01
We use a two-compartment model, which includes soma and dendrite, to explore how extracellular subthreshold sinusoidal electric fields (EFs) influence the spike coding of an active neuron. By changing the intensity and the frequency of subthreshold EFs, we find that subthreshold EFs indeed affect neuronal coding remarkably within several stimulus frequency windows where the field effects on spike timing are stronger than that on spiking rate. The field effects are maximized at several harmonics of the intrinsic spiking frequency of an active neuron. Our findings implicate the potential resonance mechanism underlying subthreshold field effects. We also discuss how neuronal morphologic properties constrain subthreshold EF effects on spike timing. The morphologic properties are represented by two parameters, gc and p, where gc is the internal conductance between soma and dendrite and geometric factor p characterizes the proportion of area occupied by soma. We find that the contribution to field effects from the variation of p is stronger than that from gc, which suggests that neuronal geometric features play a crucial role in subthreshold field effects. Theoretically, these insights into how subthreshold sinusoidal EFs modulate ongoing neuron behaviors could contribute to uncovering the relevant mechanism of subthreshold sinusoidal EFs effects on neuronal coding. Furthermore, they are useful in rationally designing noninvasive brain stimulation strategies and developing electromagnetic stimulus techniques.
Gamma Oscillations of Spiking Neural Populations Enhance Signal Discrimination
Masuda, Naoki; Doiron, Brent
2007-01-01
Selective attention is an important filter for complex environments where distractions compete with signals. Attention increases both the gamma-band power of cortical local field potentials and the spike-field coherence within the receptive field of an attended object. However, the mechanisms by which gamma-band activity enhances, if at all, the encoding of input signals are not well understood. We propose that gamma oscillations induce binomial-like spike-count statistics across noisy neural populations. Using simplified models of spiking neurons, we show how the discrimination of static signals based on the population spike-count response is improved with gamma induced binomial statistics. These results give an important mechanistic link between the neural correlates of attention and the discrimination tasks where attention is known to enhance performance. Further, they show how a rhythmicity of spike responses can enhance coding schemes that are not temporally sensitive. PMID:18052541
Spike: AI scheduling for Hubble Space Telescope after 18 months of orbital operations
NASA Technical Reports Server (NTRS)
Johnston, Mark D.
1992-01-01
This paper is a progress report on the Spike scheduling system, developed by the Space Telescope Science Institute for long-term scheduling of Hubble Space Telescope (HST) observations. Spike is an activity-based scheduler which exploits artificial intelligence (AI) techniques for constraint representation and for scheduling search. The system has been in operational use since shortly after HST launch in April 1990. Spike was adopted for several other satellite scheduling problems; of particular interest was the demonstration that the Spike framework is sufficiently flexible to handle both long-term and short-term scheduling, on timescales of years down to minutes or less. We describe the recent progress made in scheduling search techniques, the lessons learned from early HST operations, and the application of Spike to other problem domains. We also describe plans for the future evolution of the system.
Emergent Oscillations in Networks of Stochastic Spiking Neurons
van Drongelen, Wim; Cowan, Jack D.
2011-01-01
Networks of neurons produce diverse patterns of oscillations, arising from the network's global properties, the propensity of individual neurons to oscillate, or a mixture of the two. Here we describe noisy limit cycles and quasi-cycles, two related mechanisms underlying emergent oscillations in neuronal networks whose individual components, stochastic spiking neurons, do not themselves oscillate. Both mechanisms are shown to produce gamma band oscillations at the population level while individual neurons fire at a rate much lower than the population frequency. Spike trains in a network undergoing noisy limit cycles display a preferred period which is not found in the case of quasi-cycles, due to the even faster decay of phase information in quasi-cycles. These oscillations persist in sparsely connected networks, and variation of the network's connectivity results in variation of the oscillation frequency. A network of such neurons behaves as a stochastic perturbation of the deterministic Wilson-Cowan equations, and the network undergoes noisy limit cycles or quasi-cycles depending on whether these have limit cycles or a weakly stable focus. These mechanisms provide a new perspective on the emergence of rhythmic firing in neural networks, showing the coexistence of population-level oscillations with very irregular individual spike trains in a simple and general framework. PMID:21573105
Weak annihilation cusp inside the dark matter spike about a black hole.
Shapiro, Stuart L; Shelton, Jessie
2016-06-15
We reinvestigate the effect of annihilations on the distribution of collisionless dark matter (DM) in a spherical density spike around a massive black hole. We first construct a very simple, pedagogic, analytic model for an isotropic phase space distribution function that accounts for annihilation and reproduces the "weak cusp" found by Vasiliev for DM deep within the spike and away from its boundaries. The DM density in the cusp varies as r -1/2 for s -wave annihilation, where r is the distance from the central black hole, and is not a flat "plateau" profile. We then extend this model by incorporating a loss cone that accounts for the capture of DM particles by the hole. The loss cone is implemented by a boundary condition that removes capture orbits, resulting in an anisotropic distribution function. Finally, we evolve an initial spike distribution function by integrating the Boltzmann equation to show how the weak cusp grows and its density decreases with time. We treat two cases, one for s -wave and the other for p -wave DM annihilation, adopting parameters characteristic of the Milky Way nuclear core and typical WIMP models for DM. The cusp density profile for p -wave annihilation is weaker, varying like ~ r -0.34 , but is still not a flat plateau.
Cerebellar Nuclear Neurons Use Time and Rate Coding to Transmit Purkinje Neuron Pauses.
Sudhakar, Shyam Kumar; Torben-Nielsen, Benjamin; De Schutter, Erik
2015-12-01
Neurons of the cerebellar nuclei convey the final output of the cerebellum to their targets in various parts of the brain. Within the cerebellum their direct upstream connections originate from inhibitory Purkinje neurons. Purkinje neurons have a complex firing pattern of regular spikes interrupted by intermittent pauses of variable length. How can the cerebellar nucleus process this complex input pattern? In this modeling study, we investigate different forms of Purkinje neuron simple spike pause synchrony and its influence on candidate coding strategies in the cerebellar nuclei. That is, we investigate how different alignments of synchronous pauses in synthetic Purkinje neuron spike trains affect either time-locking or rate-changes in the downstream nuclei. We find that Purkinje neuron synchrony is mainly represented by changes in the firing rate of cerebellar nuclei neurons. Pause beginning synchronization produced a unique effect on nuclei neuron firing, while the effect of pause ending and pause overlapping synchronization could not be distinguished from each other. Pause beginning synchronization produced better time-locking of nuclear neurons for short length pauses. We also characterize the effect of pause length and spike jitter on the nuclear neuron firing. Additionally, we find that the rate of rebound responses in nuclear neurons after a synchronous pause is controlled by the firing rate of Purkinje neurons preceding it.
Self-control with spiking and non-spiking neural networks playing games.
Christodoulou, Chris; Banfield, Gaye; Cleanthous, Aristodemos
2010-01-01
Self-control can be defined as choosing a large delayed reward over a small immediate reward, while precommitment is the making of a choice with the specific aim of denying oneself future choices. Humans recognise that they have self-control problems and attempt to overcome them by applying precommitment. Problems in exercising self-control, suggest a conflict between cognition and motivation, which has been linked to competition between higher and lower brain functions (representing the frontal lobes and the limbic system respectively). This premise of an internal process conflict, lead to a behavioural model being proposed, based on which, we implemented a computational model for studying and explaining self-control through precommitment behaviour. Our model consists of two neural networks, initially non-spiking and then spiking ones, representing the higher and lower brain systems viewed as cooperating for the benefit of the organism. The non-spiking neural networks are of simple feed forward multilayer type with reinforcement learning, one with selective bootstrap weight update rule, which is seen as myopic, representing the lower brain and the other with the temporal difference weight update rule, which is seen as far-sighted, representing the higher brain. The spiking neural networks are implemented with leaky integrate-and-fire neurons with learning based on stochastic synaptic transmission. The differentiating element between the two brain centres in this implementation is based on the memory of past actions determined by an eligibility trace time constant. As the structure of the self-control problem can be likened to the Iterated Prisoner's Dilemma (IPD) game in that cooperation is to defection what self-control is to impulsiveness or what compromising is to insisting, we implemented the neural networks as two players, learning simultaneously but independently, competing in the IPD game. With a technique resembling the precommitment effect, whereby the payoffs for the dilemma cases in the IPD payoff matrix are differentially biased (increased or decreased), it is shown that increasing the precommitment effect (through increasing the differential bias) increases the probability of cooperating with oneself in the future, irrespective of whether the implementation is with spiking or non-spiking neural networks. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Amplitude-aware permutation entropy: Illustration in spike detection and signal segmentation.
Azami, Hamed; Escudero, Javier
2016-05-01
Signal segmentation and spike detection are two important biomedical signal processing applications. Often, non-stationary signals must be segmented into piece-wise stationary epochs or spikes need to be found among a background of noise before being further analyzed. Permutation entropy (PE) has been proposed to evaluate the irregularity of a time series. PE is conceptually simple, structurally robust to artifacts, and computationally fast. It has been extensively used in many applications, but it has two key shortcomings. First, when a signal is symbolized using the Bandt-Pompe procedure, only the order of the amplitude values is considered and information regarding the amplitudes is discarded. Second, in the PE, the effect of equal amplitude values in each embedded vector is not addressed. To address these issues, we propose a new entropy measure based on PE: the amplitude-aware permutation entropy (AAPE). AAPE is sensitive to the changes in the amplitude, in addition to the frequency, of the signals thanks to it being more flexible than the classical PE in the quantification of the signal motifs. To demonstrate how the AAPE method can enhance the quality of the signal segmentation and spike detection, a set of synthetic and realistic synthetic neuronal signals, electroencephalograms and neuronal data are processed. We compare the performance of AAPE in these problems against state-of-the-art approaches and evaluate the significance of the differences with a repeated ANOVA with post hoc Tukey's test. In signal segmentation, the accuracy of AAPE-based method is higher than conventional segmentation methods. AAPE also leads to more robust results in the presence of noise. The spike detection results show that AAPE can detect spikes well, even when presented with single-sample spikes, unlike PE. For multi-sample spikes, the changes in AAPE are larger than in PE. We introduce a new entropy metric, AAPE, that enables us to consider amplitude information in the formulation of PE. The AAPE algorithm can be used in almost every irregularity-based application in various signal and image processing fields. We also made freely available the Matlab code of the AAPE. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Saiki, Akiko; Fujiwara‐Tsukamoto, Yoko; Sakai, Yutaka; Isomura, Yoshikazu
2016-01-01
Key points There have been few systematic population‐wide analyses of relationships between spike synchrony within a period of several milliseconds and behavioural functions.In this study, we obtained a large amount of spike data from > 23,000 neuron pairs by multiple single‐unit recording from deep layer neurons in motor cortical areas in rats performing a forelimb movement task.The temporal changes of spike synchrony in the whole neuron pairs were statistically independent of behavioural changes during the task performance, although some neuron pairs exhibited correlated changes in spike synchrony.Mutual information analyses revealed that spike synchrony made a smaller contribution than spike rate to behavioural functions.The strength of spike synchrony between two neurons was statistically independent of the spike rate‐based preferences of the pair for behavioural functions. Abstract Spike synchrony within a period of several milliseconds in presynaptic neurons enables effective integration of functional information in the postsynaptic neuron. However, few studies have systematically analysed the population‐wide relationships between spike synchrony and behavioural functions. Here we obtained a sufficiently large amount of spike data among regular‐spiking (putatively excitatory) and fast‐spiking (putatively inhibitory) neuron subtypes (> 23,000 pairs) by multiple single‐unit recording from deep layers in motor cortical areas (caudal forelimb area, rostral forelimb area) in rats performing a forelimb movement task. After holding a lever, rats pulled the lever either in response to a cue tone (external‐trigger trials) or spontaneously without any cue (internal‐trigger trials). Many neurons exhibited functional spike activity in association with forelimb movements, and the preference of regular‐spiking neurons in the rostral forelimb area was more biased toward externally triggered movement than that in the caudal forelimb area. We found that a population of neuron pairs with spike synchrony does exist, and that some neuron pairs exhibit a dependence on movement phase during task performance. However, the population‐wide analysis revealed that spike synchrony was statistically independent of the movement phase and the spike rate‐based preferences of the pair for behavioural functions, whereas spike rates were clearly dependent on the movement phase. In fact, mutual information analyses revealed that the contribution of spike synchrony to the behavioural functions was small relative to the contribution of spike rate. Our large‐scale analysis revealed that cortical spike rate, rather than spike synchrony, contributes to population coding for movement. PMID:27488936
Kimura, Rie; Saiki, Akiko; Fujiwara-Tsukamoto, Yoko; Sakai, Yutaka; Isomura, Yoshikazu
2017-01-01
There have been few systematic population-wide analyses of relationships between spike synchrony within a period of several milliseconds and behavioural functions. In this study, we obtained a large amount of spike data from > 23,000 neuron pairs by multiple single-unit recording from deep layer neurons in motor cortical areas in rats performing a forelimb movement task. The temporal changes of spike synchrony in the whole neuron pairs were statistically independent of behavioural changes during the task performance, although some neuron pairs exhibited correlated changes in spike synchrony. Mutual information analyses revealed that spike synchrony made a smaller contribution than spike rate to behavioural functions. The strength of spike synchrony between two neurons was statistically independent of the spike rate-based preferences of the pair for behavioural functions. Spike synchrony within a period of several milliseconds in presynaptic neurons enables effective integration of functional information in the postsynaptic neuron. However, few studies have systematically analysed the population-wide relationships between spike synchrony and behavioural functions. Here we obtained a sufficiently large amount of spike data among regular-spiking (putatively excitatory) and fast-spiking (putatively inhibitory) neuron subtypes (> 23,000 pairs) by multiple single-unit recording from deep layers in motor cortical areas (caudal forelimb area, rostral forelimb area) in rats performing a forelimb movement task. After holding a lever, rats pulled the lever either in response to a cue tone (external-trigger trials) or spontaneously without any cue (internal-trigger trials). Many neurons exhibited functional spike activity in association with forelimb movements, and the preference of regular-spiking neurons in the rostral forelimb area was more biased toward externally triggered movement than that in the caudal forelimb area. We found that a population of neuron pairs with spike synchrony does exist, and that some neuron pairs exhibit a dependence on movement phase during task performance. However, the population-wide analysis revealed that spike synchrony was statistically independent of the movement phase and the spike rate-based preferences of the pair for behavioural functions, whereas spike rates were clearly dependent on the movement phase. In fact, mutual information analyses revealed that the contribution of spike synchrony to the behavioural functions was small relative to the contribution of spike rate. Our large-scale analysis revealed that cortical spike rate, rather than spike synchrony, contributes to population coding for movement. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Habituation of LG-mediated tailflip in the crayfish.
Nagayama, Toshiki; Araki, Makoto
2015-06-01
Crayfish escape from threatening stimuli by tailflipping. If a stimulus is applied to the rear, crayfish escape up and forwards in a summersault maneuver that is mediated by the activation of lateral giant (LG) interneurons. The occurrence probability of LG-mediated tailflip, however, diminishes and habituates if a stimulus is repeatedly applied. Since crayfish have a relatively simple CNS with many identifiable neurons, crayfish represent a good animal to analyze the cellular basis of habituation. A reduction in the amplitude of the EPSP in the LGs, caused by direct chemical synaptic connection from sensory afferents by repetitive stimulations, is essential to bring about an inactivation of the LGs. The spike response of the LGs recovers within several minutes of habituation, but the LGs subsequently fail to spike when an additional stimulus is applied after specific periods following habituation. These results indicate that a decline in synaptic efficacy from the mechanosensory afferents recovers readily after a short delay, but then the excitability of the LGs themselves decreases. Furthermore, the processes underlying habituation are modulated depending on a social status. When two crayfish encounter each other, a winner-loser relationship is established. With a short interstimulus interval of 5 s, the rate of habituation of the LG in both socially dominant and subordinate crayfish becomes lower than in socially isolated animals. Serotonin and octopamine affect this social status-dependent modulation of habituation by means of activation of downstream second messenger system of cAMP and IP3 cascades, respectively.
Hass, Joachim; Hertäg, Loreen; Durstewitz, Daniel
2016-01-01
The prefrontal cortex is centrally involved in a wide range of cognitive functions and their impairment in psychiatric disorders. Yet, the computational principles that govern the dynamics of prefrontal neural networks, and link their physiological, biochemical and anatomical properties to cognitive functions, are not well understood. Computational models can help to bridge the gap between these different levels of description, provided they are sufficiently constrained by experimental data and capable of predicting key properties of the intact cortex. Here, we present a detailed network model of the prefrontal cortex, based on a simple computationally efficient single neuron model (simpAdEx), with all parameters derived from in vitro electrophysiological and anatomical data. Without additional tuning, this model could be shown to quantitatively reproduce a wide range of measures from in vivo electrophysiological recordings, to a degree where simulated and experimentally observed activities were statistically indistinguishable. These measures include spike train statistics, membrane potential fluctuations, local field potentials, and the transmission of transient stimulus information across layers. We further demonstrate that model predictions are robust against moderate changes in key parameters, and that synaptic heterogeneity is a crucial ingredient to the quantitative reproduction of in vivo-like electrophysiological behavior. Thus, we have produced a physiologically highly valid, in a quantitative sense, yet computationally efficient PFC network model, which helped to identify key properties underlying spike time dynamics as observed in vivo, and can be harvested for in-depth investigation of the links between physiology and cognition. PMID:27203563
MacGregor, Duncan J.; Leng, Gareth
2012-01-01
Vasopressin neurons, responding to input generated by osmotic pressure, use an intrinsic mechanism to shift from slow irregular firing to a distinct phasic pattern, consisting of long bursts and silences lasting tens of seconds. With increased input, bursts lengthen, eventually shifting to continuous firing. The phasic activity remains asynchronous across the cells and is not reflected in the population output signal. Here we have used a computational vasopressin neuron model to investigate the functional significance of the phasic firing pattern. We generated a concise model of the synaptic input driven spike firing mechanism that gives a close quantitative match to vasopressin neuron spike activity recorded in vivo, tested against endogenous activity and experimental interventions. The integrate-and-fire based model provides a simple physiological explanation of the phasic firing mechanism involving an activity-dependent slow depolarising afterpotential (DAP) generated by a calcium-inactivated potassium leak current. This is modulated by the slower, opposing, action of activity-dependent dendritic dynorphin release, which inactivates the DAP, the opposing effects generating successive periods of bursting and silence. Model cells are not spontaneously active, but fire when perturbed by random perturbations mimicking synaptic input. We constructed one population of such phasic neurons, and another population of similar cells but which lacked the ability to fire phasically. We then studied how these two populations differed in the way that they encoded changes in afferent inputs. By comparison with the non-phasic population, the phasic population responds linearly to increases in tonic synaptic input. Non-phasic cells respond to transient elevations in synaptic input in a way that strongly depends on background activity levels, phasic cells in a way that is independent of background levels, and show a similar strong linearization of the response. These findings show large differences in information coding between the populations, and apparent functional advantages of asynchronous phasic firing. PMID:23093929
High-frequency oscillations mirror disease activity in patients with epilepsy.
Zijlmans, M; Jacobs, J; Zelmann, R; Dubeau, F; Gotman, J
2009-03-17
High-frequency oscillations (HFOs) can be recorded in epileptic patients with clinical intracranial EEG. HFOs have been associated with seizure genesis because they occur in the seizure focus and during seizure onset. HFOs are also found interictally, partly co-occurring with epileptic spikes. We studied how HFOs are influenced by antiepileptic medication and seizure occurrence, to improve understanding of the pathophysiology and clinical meaning of HFOs. Intracerebral depth EEG was partly sampled at 2,000 Hz in 42 patients with intractable focal epilepsy. Patients with five or more usable nights of recording were selected. A sample of slow-wave sleep from each night was analyzed, and HFOs (ripples: 80-250 Hz, fast ripples: 250-500 Hz) and spikes were identified on all artifact-free channels. The HFOs and spikes were compared before and after seizures with stable medication dose and during medication reduction with no intervening seizures. Twelve patients with five to eight nights were included. After seizures, there was an increase in spikes, whereas HFO rates remained the same. Medication reduction was followed by an increase in HFO rates and mean duration. Contrary to spikes, high-frequency oscillations (HFOs) do not increase after seizures, but do so after medication reduction, similarly to seizures. This implies that spikes and HFOs have different pathophysiologic mechanisms and that HFOs are more tightly linked to seizures than spikes. HFOs seem to play an important role in seizure genesis and can be a useful clinical marker for disease activity.
Evidence for Long-Timescale Patterns of Synaptic Inputs in CA1 of Awake Behaving Mice.
Kolb, Ilya; Talei Franzesi, Giovanni; Wang, Michael; Kodandaramaiah, Suhasa B; Forest, Craig R; Boyden, Edward S; Singer, Annabelle C
2018-02-14
Repeated sequences of neural activity are a pervasive feature of neural networks in vivo and in vitro In the hippocampus, sequential firing of many neurons over periods of 100-300 ms reoccurs during behavior and during periods of quiescence. However, it is not known whether the hippocampus produces longer sequences of activity or whether such sequences are restricted to specific network states. Furthermore, whether long repeated patterns of activity are transmitted to single cells downstream is unclear. To answer these questions, we recorded intracellularly from hippocampal CA1 of awake, behaving male mice to examine both subthreshold activity and spiking output in single neurons. In eight of nine recordings, we discovered long (900 ms) reoccurring subthreshold fluctuations or "repeats." Repeats generally were high-amplitude, nonoscillatory events reoccurring with 10 ms precision. Using statistical controls, we determined that repeats occurred more often than would be expected from unstructured network activity (e.g., by chance). Most spikes occurred during a repeat, and when a repeat contained a spike, the spike reoccurred with precision on the order of ≤20 ms, showing that long repeated patterns of subthreshold activity are strongly connected to spike output. Unexpectedly, we found that repeats occurred independently of classic hippocampal network states like theta oscillations or sharp-wave ripples. Together, these results reveal surprisingly long patterns of repeated activity in the hippocampal network that occur nonstochastically, are transmitted to single downstream neurons, and strongly shape their output. This suggests that the timescale of information transmission in the hippocampal network is much longer than previously thought. SIGNIFICANCE STATEMENT We found long (≥900 ms), repeated, subthreshold patterns of activity in CA1 of awake, behaving mice. These repeated patterns ("repeats") occurred more often than expected by chance and with 10 ms precision. Most spikes occurred within repeats and reoccurred with a precision on the order of 20 ms. Surprisingly, there was no correlation between repeat occurrence and classical network states such as theta oscillations and sharp-wave ripples. These results provide strong evidence that long patterns of activity are repeated and transmitted to downstream neurons, suggesting that the hippocampus can generate longer sequences of repeated activity than previously thought. Copyright © 2018 the authors 0270-6474/18/381822-14$15.00/0.
From neurons to circuits: linear estimation of local field potentials.
Rasch, Malte; Logothetis, Nikos K; Kreiman, Gabriel
2009-11-04
Extracellular physiological recordings are typically separated into two frequency bands: local field potentials (LFPs) (a circuit property) and spiking multiunit activity (MUA). Recently, there has been increased interest in LFPs because of their correlation with functional magnetic resonance imaging blood oxygenation level-dependent measurements and the possibility of studying local processing and neuronal synchrony. To further understand the biophysical origin of LFPs, we asked whether it is possible to estimate their time course based on the spiking activity from the same electrode or nearby electrodes. We used "signal estimation theory" to show that a linear filter operation on the activity of one or a few neurons can explain a significant fraction of the LFP time course in the macaque monkey primary visual cortex. The linear filter used to estimate the LFPs had a stereotypical shape characterized by a sharp downstroke at negative time lags and a slower positive upstroke for positive time lags. The filter was similar across different neocortical regions and behavioral conditions, including spontaneous activity and visual stimulation. The estimations had a spatial resolution of approximately 1 mm and a temporal resolution of approximately 200 ms. By considering a causal filter, we observed a temporal asymmetry such that the positive time lags in the filter contributed more to the LFP estimation than the negative time lags. Additionally, we showed that spikes occurring within approximately 10 ms of spikes from nearby neurons yielded better estimation accuracies than nonsynchronous spikes. In summary, our results suggest that at least some circuit-level local properties of the field potentials can be predicted from the activity of one or a few neurons.
From neurons to circuits: linear estimation of local field potentials
Rasch, Malte; Logthetis, Nikos K.; Kreiman, Gabriel
2010-01-01
Extracellular physiological recordings are typically separated into two frequency bands: local field potentials (LFPs, a circuit property) and spiking multi-unit activity (MUA). There has been increased interest in LFPs due to their correlation with fMRI measurements and the possibility of studying local processing and neuronal synchrony. To further understand the biophysical origin of LFPs, we asked whether it is possible to estimate their time course based on the spiking activity from the same or nearby electrodes. We used Signal Estimation Theory to show that a linear filter operation on the activity of one/few neurons can explain a significant fraction of the LFP time course in the macaque primary visual cortex. The linear filter used to estimate the LFPs had a stereotypical shape characterized by a sharp downstroke at negative time lags and a slower positive upstroke for positve time lags. The filter was similar across neocortical regions and behavioral conditions including spontaneous activity and visual stimulation. The estimations had a spatial resolution of ~1 mm and a temporal resolution of ~200 ms. By considering a causal filter, we observed a temporal asymmetry such that the positive time lags in the filter contributed more to the LFP estimation than negative time lags. Additionally, we showed that spikes occurring within ~10 ms of spikes from nearby neurons yielded better estimation accuracies than nonsynchronous spikes. In sum, our results suggest that at least some circuit-level local properties of the field potentials can be predicted from the activity of one or a few neurons. PMID:19889990
Origins of correlated activity in an olfactory circuit.
Kazama, Hokto; Wilson, Rachel I
2009-09-01
Multineuronal recordings often reveal synchronized spikes in different neurons. The manner in which correlated spike timing affects neural codes depends on the statistics of correlations, which in turn reflects the connectivity that gives rise to correlations. However, determining the connectivity of neurons recorded in vivo can be difficult. We investigated the origins of correlated activity in genetically labeled neurons of the Drosophila antennal lobe. Dual recordings showed synchronized spontaneous spikes in projection neurons (PNs) postsynaptic to the same type of olfactory receptor neuron (ORN). Odors increased these correlations. The primary origin of correlations lies in the divergence of each ORN onto every PN in its glomerulus. Reciprocal PN-PN connections make a smaller contribution to correlations and PN spike trains in different glomeruli were only weakly correlated. PN axons from the same glomerulus reconverge in the lateral horn, where pooling redundant signals may allow lateral horn neurons to average out noise that arises independently in these PNs.
Multiscale analysis of neural spike trains.
Ramezan, Reza; Marriott, Paul; Chenouri, Shojaeddin
2014-01-30
This paper studies the multiscale analysis of neural spike trains, through both graphical and Poisson process approaches. We introduce the interspike interval plot, which simultaneously visualizes characteristics of neural spiking activity at different time scales. Using an inhomogeneous Poisson process framework, we discuss multiscale estimates of the intensity functions of spike trains. We also introduce the windowing effect for two multiscale methods. Using quasi-likelihood, we develop bootstrap confidence intervals for the multiscale intensity function. We provide a cross-validation scheme, to choose the tuning parameters, and study its unbiasedness. Studying the relationship between the spike rate and the stimulus signal, we observe that adjusting for the first spike latency is important in cross-validation. We show, through examples, that the correlation between spike trains and spike count variability can be multiscale phenomena. Furthermore, we address the modeling of the periodicity of the spike trains caused by a stimulus signal or by brain rhythms. Within the multiscale framework, we introduce intensity functions for spike trains with multiplicative and additive periodic components. Analyzing a dataset from the retinogeniculate synapse, we compare the fit of these models with the Bayesian adaptive regression splines method and discuss the limitations of the methodology. Computational efficiency, which is usually a challenge in the analysis of spike trains, is one of the highlights of these new models. In an example, we show that the reconstruction quality of a complex intensity function demonstrates the ability of the multiscale methodology to crack the neural code. Copyright © 2013 John Wiley & Sons, Ltd.
Unbiased and robust quantification of synchronization between spikes and local field potential.
Li, Zhaohui; Cui, Dong; Li, Xiaoli
2016-08-30
In neuroscience, relating the spiking activity of individual neurons to the local field potential (LFP) of neural ensembles is an increasingly useful approach for studying rhythmic neuronal synchronization. Many methods have been proposed to measure the strength of the association between spikes and rhythms in the LFP recordings, and most existing measures are dependent upon the total number of spikes. In the present work, we introduce a robust approach for quantifying spike-LFP synchronization which performs reliably for limited samples of data. The measure is termed as spike-triggered correlation matrix synchronization (SCMS), which takes LFP segments centered on each spike as multi-channel signals and calculates the index of spike-LFP synchronization by constructing a correlation matrix. The simulation based on artificial data shows that the SCMS output almost does not change with the sample size. This property is of crucial importance when making comparisons between different experimental conditions. When applied to actual neuronal data recorded from the monkey primary visual cortex, it is found that the spike-LFP synchronization strength shows orientation selectivity to drifting gratings. In comparison to another unbiased method, pairwise phase consistency (PPC), the proposed SCMS behaves better for noisy spike trains by means of numerical simulations. This study demonstrates the basic idea and calculating process of the SCMS method. Considering its unbiasedness and robustness, the measure is of great advantage to characterize the synchronization between spike trains and rhythms present in LFP. Copyright © 2016 Elsevier B.V. All rights reserved.
Ohura, Shunsuke
2018-01-01
Axonal spike is an important upstream process of transmitter release, which directly impacts on release probability from the presynaptic terminals. Despite the functional significance, possible activity-dependent modulation of axonal spikes has not been studied extensively, partly due to inaccessibility of the small structures of axons for electrophysiological recordings. In this study, we tested the possibility of use-dependent changes in axonal spikes at the hippocampal mossy fibers, where direct recordings from the axon terminals are readily feasible. Hippocampal slices were made from mice of either sex, and loose-patch clamp recordings were obtained from the visually identified giant mossy fiber boutons located in the stratum lucidum of the CA3 region. Stimulation of the granule cell layer of the dentate gyrus elicited axonal spikes at the single bouton which occurred in all or none fashion. Unexpected from the digital nature of spike signaling, the peak amplitude of the second spikes in response to paired stimuli at a 50-ms interval was slightly but reproducibly smaller than the first spikes. Repetitive stimuli at 20 or 100 Hz also caused progressive use-dependent depression during the train. Notably, veratridine, an inhibitor of inactivation of sodium channels, significantly accelerated the depression with minimal effect on the initial spikes. These results suggest that sodium channels contribute to use-dependent depression of axonal spikes at the hippocampal mossy fibers, possibly by shaping the afterdepolarization (ADP) following axonal spikes. Prolonged depolarization during ADP may inactivate a fraction of sodium channels and thereby suppresses the subsequent spikes at the hippocampal mossy fibers. PMID:29468192
Shay, Christopher F.; Ferrante, Michele; Chapman, G. William; Hasselmo, Michael E.
2015-01-01
Rebound spiking properties of medial entorhinal cortex (mEC) stellate cells induced by inhibition may underlie their functional properties in awake behaving rats, including the temporal phase separation of distinct grid cells and differences in grid cell firing properties. We investigated rebound spiking properties using whole cell patch recording in entorhinal slices, holding cells near spiking threshold and delivering sinusoidal inputs, superimposed with realistic inhibitory synaptic inputs to test the capacity of cells to selectively respond to specific phases of inhibitory input. Stellate cells showed a specific phase range of hyperpolarizing inputs that elicited spiking, but non-stellate cells did not show phase specificity. In both cell types, the phase range of spiking output occurred between the peak and subsequent descending zero crossing of the sinusoid. The phases of inhibitory inputs that induced spikes shifted earlier as the baseline sinusoid frequency increased, while spiking output shifted to later phases. Increases in magnitude of the inhibitory inputs shifted the spiking output to earlier phases. Pharmacological blockade of h-current abolished the phase selectivity of hyperpolarizing inputs eliciting spikes. A network computational model using cells possessing similar rebound properties as found in vitro produces spatially periodic firing properties resembling grid cell firing when a simulated animal moves along a linear track. These results suggest that the ability of mEC stellate cells to fire rebound spikes in response to a specific range of phases of inhibition could support complex attractor dynamics that provide completion and separation to maintain spiking activity of specific grid cell populations. PMID:26385258
D’Ascenzo, Marcello; Podda, Maria Vittoria; Fellin, Tommaso; Azzena, Gian Battista; Haydon, Philip; Grassi, Claudio
2009-01-01
The involvement of metabotropic glutamate receptors type 5 (mGluR5) in drug-induced behaviours is well-established but limited information is available on their functional roles in addiction-relevant brain areas like the nucleus accumbens (NAc). This study demonstrates that pharmacological and synaptic activation of mGluR5 increases the spike discharge of medium spiny neurons (MSNs) in the NAc. This effect was associated with the appearance of a slow afterdepolarization (ADP) which, in voltage-clamp experiments, was recorded as a slowly inactivating inward current. Pharmacological studies showed that ADP was elicited by mGluR5 stimulation via G-protein-dependent activation of phospholipase C and elevation of intracellular Ca2+ levels. Both ADP and spike aftercurrents were significantly inhibited by the Na+ channel-blocker, tetrodotoxin (TTX). Moreover, the selective blockade of persistent Na+ currents (INaP), achieved by NAc slice pre-incubation with 20 nm TTX or 10 μm riluzole, significantly reduced the ADP amplitude, indicating that this type of Na+ current is responsible for the mGluR5-dependent ADP. mGluR5 activation also produced significant increases in INaP, and the pharmacological blockade of this current prevented the mGluR5-induced enhancement of spike discharge. Collectively, these data suggest that mGluR5 activation upregulates INaP in MSNs of the NAc, thereby inducing an ADP that results in enhanced MSN excitability. Activation of mGluR5 will significantly alter spike firing in MSNs in vivo, and this effect could be an important mechanism by which these receptors mediate certain aspects of drug-induced behaviours. PMID:19433572
Jung, Hyunjun; Kang, Hongki; Nam, Yoonkey
2017-06-01
Light-mediated neuromodulation techniques provide great advantages to investigate neuroscience due to its high spatial and temporal resolution. To generate a spatial pattern of neural activity, it is necessary to develop a system for patterned-light illumination to a specific area. Digital micromirror device (DMD) based patterned illumination system have been used for neuromodulation due to its simple configuration and design flexibility. In this paper, we developed a patterned near-infrared (NIR) illumination system for region specific photothermal manipulation of neural activity using NIR-sensitive plasmonic gold nanorods (GNRs). The proposed system had high power transmission efficiency for delivering power density up to 19 W/mm 2 . We used a GNR-coated microelectrode array (MEA) to perform biological experiments using E18 rat hippocampal neurons and showed that it was possible to inhibit neural spiking activity of specific area in neural circuits with the patterned NIR illumination. This patterned NIR illumination system can serve as a promising neuromodulation tool to investigate neuroscience in a wide range of physiological and clinical applications.
Fast fMRI provides high statistical power in the analysis of epileptic networks.
Jacobs, Julia; Stich, Julia; Zahneisen, Benjamin; Assländer, Jakob; Ramantani, Georgia; Schulze-Bonhage, Andreas; Korinthenberg, Rudolph; Hennig, Jürgen; LeVan, Pierre
2014-03-01
EEG-fMRI is a unique method to combine the high temporal resolution of EEG with the high spatial resolution of MRI to study generators of intrinsic brain signals such as sleep grapho-elements or epileptic spikes. While the standard EPI sequence in fMRI experiments has a temporal resolution of around 2.5-3s a newly established fast fMRI sequence called MREG (Magnetic-Resonance-Encephalography) provides a temporal resolution of around 100ms. This technical novelty promises to improve statistics, facilitate correction of physiological artifacts and improve the understanding of epileptic networks in fMRI. The present study compares simultaneous EEG-EPI and EEG-MREG analyzing epileptic spikes to determine the yield of fast MRI in the analysis of intrinsic brain signals. Patients with frequent interictal spikes (>3/20min) underwent EEG-MREG and EEG-EPI (3T, 20min each, voxel size 3×3×3mm, EPI TR=2.61s, MREG TR=0.1s). Timings of the spikes were used in an event-related analysis to generate activation maps of t-statistics. (FMRISTAT, |t|>3.5, cluster size: 7 voxels, p<0.05 corrected). For both sequences, the amplitude and location of significant BOLD activations were compared with the spike topography. 13 patients were recorded and 33 different spike types could be analyzed. Peak T-values were significantly higher in MREG than in EPI (p<0.0001). Positive BOLD effects correlating with the spike topography were found in 8/29 spike types using the EPI and in 22/33 spikes types using the MREG sequence. Negative BOLD responses in the default mode network could be observed in 3/29 spike types with the EPI and in 19/33 with the MREG sequence. With the latter method, BOLD changes were observed even when few spikes occurred during the investigation. Simultaneous EEG-MREG thus is possible with good EEG quality and shows higher sensitivity in regard to the localization of spike-related BOLD responses than EEG-EPI. The development of new methods of analysis for this sequence such as modeling of physiological noise, temporal analysis of the BOLD signal and defining appropriate thresholds is required to fully profit from its high temporal resolution. © 2013.
Acute effects of aceclofenac, COX-2 inhibitor, on penicillin-induced epileptiform activity.
Taşkıran, Mehmet; Taşdemir, Abdulkadir; Ayyıldız, Nusret
2017-04-01
The effects of COX-2 inhibitors on seizure activity are controversial. The aim of the current study was to determine the post-treatment effect of aceclofenac on penicillin-induced experimental epilepsy. Male Wistar rats were used in all experiments (n=18). The seizure activity was triggered by penicillin (i.c.). Aceclofenac was injected intraperitoneally at doses of 10mg/kg and 20mg/kg. Intraperitoneal administration of 10 and 20mg/kg aceclofenac doses, exhibited proconvulsant properties on seizure activity on rats. The mean spike frequency and amplitude of aceclofenac 10mg/kg were 41.89±2.12 spike/min and 0.619±0.094mV, respectively. The mean spike frequency and amplitude of aceclofenac 20mg/kg were 35.26±2.72 spike/min and 0.843±0.089mV, respectively. The results indicated that not all of the COX-2 inhibitors may have anticonvulsant or proconvulsant features on patients with epilepsy susceptibility and must be used with great care. It was also suggested that not only cyclooxygenase metabolic pathway but also lipoxygenase pathway should be considered together in further detailed studies. Copyright © 2016 Elsevier Inc. All rights reserved.
Millet, Jean Kaoru; Goldstein, Monty E; Labitt, Rachael N; Hsu, Hung-Lun; Daniel, Susan; Whittaker, Gary R
2016-01-01
Middle East respiratory syndrome coronavirus (MERS-CoV) continues to circulate in both humans and camels, and the origin and evolution of the virus remain unclear. Here we characterize the spike protein of a camel-derived MERS-CoV (NRCE-HKU205) identified in 2013, early in the MERS outbreak. NRCE-HKU205 spike protein has a variant cleavage motif with regard to the S2′ fusion activation site—notably, a novel substitution of isoleucine for the otherwise invariant serine at the critical P1′ cleavage site position. The substitutions resulted in a loss of furin-mediated cleavage, as shown by fluorogenic peptide cleavage and western blot assays. Cell–cell fusion and pseudotyped virus infectivity assays demonstrated that the S2′ substitutions decreased spike-mediated fusion and viral entry. However, cathepsin and trypsin-like protease activation were retained, albeit with much reduced efficiency compared with the prototypical EMC/2012 human strain. We show that NRCE-HKU205 has more limited fusion activation properties possibly resulting in more restricted viral tropism and may represent an intermediate in the complex pattern of MERS-CoV ecology and evolution. PMID:27999426
The effect of Psilocybe cubensis extract on hippocampal neurons in vitro.
Moldavan, M G; Grodzinskaya, A A; Solomko, E F; Lomberh, M L; Wasser, S P; Storozhuk, V M
2001-01-01
The action of P. cubensis mushroom extract, containing psilocybin (PCB) and psilocin, on spike activity of hippocampal CA1 pyramidal neurons was studied in in vitro rat brain slices. In 38 (76%) out of 50 investigated neurons spike activity was decreased, in 2 (4%) cells it increased. There was no response 10 (20%) neurons. Application of the extract caused short burst firing in 12 (24%) neurons. All neurons showing inhibition during PCB-containing extract application, were also inhibited by serotonin (5-HT). Usually inhibitory reaction did not last over 4-5 min upon 3 min extract application and could be prolonged up to 10-43 min up on serotonin application. Part of neurons were inhibited by serotonin and did not react to extract application. Inhibitory reactions induced by extract application were blocked by ritanserin in half of the tested units and were induced due to activation of 5-HT2 serotonin receptors. The extract suppressed excitative spike reactions caused by application of L-glutamic acid. It is concluded, that application of PCB-containing extract in most cases reduced spike activity in hippocampal CA1 pyramidal neurons and suppressed glutamate transmission.
Characterizing neural activities evoked by manual acupuncture through spiking irregularity measures
NASA Astrophysics Data System (ADS)
Xue, Ming; Wang, Jiang; Deng, Bin; Wei, Xi-Le; Yu, Hai-Tao; Chen, Ying-Yuan
2013-09-01
The neural system characterizes information in external stimulations by different spiking patterns. In order to examine how neural spiking patterns are related to acupuncture manipulations, experiments are designed in such a way that different types of manual acupuncture (MA) manipulations are taken at the ‘Zusanli’ point of experimental rats, and the induced electrical signals in the spinal dorsal root ganglion are detected and recorded. The interspike interval (ISI) statistical histogram is fitted by the gamma distribution, which has two parameters: one is the time-dependent firing rate and the other is a shape parameter characterizing the spiking irregularities. The shape parameter is the measure of spiking irregularities and can be used to identify the type of MA manipulations. The coefficient of variation is mostly used to measure the spike time irregularity, but it overestimates the irregularity in the case of pronounced firing rate changes. However, experiments show that each acupuncture manipulation will lead to changes in the firing rate. So we combine four relatively rate-independent measures to study the irregularity of spike trains evoked by different types of MA manipulations. Results suggest that the MA manipulations possess unique spiking statistics and characteristics and can be distinguished according to the spiking irregularity measures. These studies have offered new insights into the coding processes and information transfer of acupuncture.
Briffaud, Virginie; Fourcaud-Trocmé, Nicolas; Messaoudi, Belkacem; Buonviso, Nathalie; Amat, Corine
2012-01-01
Background A slow respiration-related rhythm strongly shapes the activity of the olfactory bulb. This rhythm appears as a slow oscillation that is detectable in the membrane potential, the respiration-related spike discharge of the mitral/tufted cells and the bulbar local field potential. Here, we investigated the rules that govern the manifestation of membrane potential slow oscillations (MPSOs) and respiration-related discharge activities under various afferent input conditions and cellular excitability states. Methodology and Principal Findings We recorded the intracellular membrane potential signals in the mitral/tufted cells of freely breathing anesthetized rats. We first demonstrated the existence of multiple types of MPSOs, which were influenced by odor stimulation and discharge activity patterns. Complementary studies using changes in the intracellular excitability state and a computational model of the mitral cell demonstrated that slow oscillations in the mitral/tufted cell membrane potential were also modulated by the intracellular excitability state, whereas the respiration-related spike activity primarily reflected the afferent input. Based on our data regarding MPSOs and spike patterns, we found that cells exhibiting an unsynchronized discharge pattern never exhibited an MPSO. In contrast, cells with a respiration-synchronized discharge pattern always exhibited an MPSO. In addition, we demonstrated that the association between spike patterns and MPSO types appeared complex. Conclusion We propose that both the intracellular excitability state and input strength underlie specific MPSOs, which, in turn, constrain the types of spike patterns exhibited. PMID:22952828
Electrical activity of the cingulate cortex. II. Cholinergic modulation.
Borst, J G; Leung, L W; MacFabe, D F
1987-03-24
The role of the cholinergic innervation in the modulation of cingulate electrical activity was studied by means of pharmacological manipulations and brain lesions. In the normal rat, an irregular slow activity (ISA) accompanied with EEG-spikes was recorded in the cingulate cortex during immobility as compared to walking. Atropine sulfate, but not atropine methyl nitrate, increased ISA and the frequency of cingulate EEG-spikes. Pilocarpine suppressed ISA and EEG-spikes during immobility, and induced a slow (4-7 Hz) theta rhythm. Unilateral or bilateral lesions of the substantia innominata and ventral globus pallidus area using kainic acid did not significantly change the cingulate EEG or its relation to behavior. Large electrolytic lesions of the medial septal nuclei and vertical limbs of the diagonal band generally decreased or abolished all theta activity in the cingulate cortex and the hippocampus. However, in 5 rats the cingulate theta rhythm increased while the hippocampal theta disappeared after a medial septal lesion. The large, postlesion cingulate theta, accompanied by sharp EEG-spikes during its negative phase, is an unequivocal demonstration of the existence of a theta rhythm in the cingulate cortex, independent of the hippocampal rhythm. Cholinergic afferents from the medial septum and diagonal band nuclei are inferred to be responsible for the behavioral suppression of cingulate EEG-spikes and ISA, and partially for the generation of a local cingulate theta rhythm. However, an atropine-resistant pathway and a theta-suppressing pathway, possibly coming from the medial septum or the hippocampus, may also be important in cingulate theta generation.
Onizuka, Miho; Hoang, Huu; Kawato, Mitsuo; Tokuda, Isao T; Schweighofer, Nicolas; Katori, Yuichi; Aihara, Kazuyuki; Lang, Eric J; Toyama, Keisuke
2013-11-01
The inferior olive (IO) possesses synaptic glomeruli, which contain dendritic spines from neighboring neurons and presynaptic terminals, many of which are inhibitory and GABAergic. Gap junctions between the spines electrically couple neighboring neurons whereas the GABAergic synaptic terminals are thought to act to decrease the effectiveness of this coupling. Thus, the glomeruli are thought to be important for determining the oscillatory and synchronized activity displayed by IO neurons. Indeed, the tendency to display such activity patterns is enhanced or reduced by the local administration of the GABA-A receptor blocker picrotoxin (PIX) or the gap junction blocker carbenoxolone (CBX), respectively. We studied the functional roles of the glomeruli by solving the inverse problem of estimating the inhibitory (gi) and gap-junctional conductance (gc) using an IO network model. This model was built upon a prior IO network model, in which the individual neurons consisted of soma and dendritic compartments, by adding a glomerular compartment comprising electrically coupled spines that received inhibitory synapses. The model was used in the forward mode to simulate spike data under PIX and CBX conditions for comparison with experimental data consisting of multi-electrode recordings of complex spikes from arrays of Purkinje cells (complex spikes are generated in a one-to-one manner by IO spikes and thus can substitute for directly measuring IO spike activity). The spatiotemporal firing dynamics of the experimental and simulation spike data were evaluated as feature vectors, including firing rates, local variation, auto-correlogram, cross-correlogram, and minimal distance, and were contracted onto two-dimensional principal component analysis (PCA) space. gc and gi were determined as the solution to the inverse problem such that the simulation and experimental spike data were closely matched in the PCA space. The goodness of the match was confirmed by an analysis of variance (ANOVA) of the PCA scores between the experimental and simulation spike data. In the PIX condition, gi was found to decrease to approximately half its control value. CBX caused an approximately 30% decrease in gc from control levels. These results support the hypothesis that the glomeruli are control points for determining the spatiotemporal characteristics of olivocerebellar activity and thus may shape its ability to convey signals to the cerebellum that may be used for motor learning or motor control purposes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wahlstrom-Helgren, Sarah
2016-01-01
Feed-forward inhibitory (FFI) circuits are important for many information-processing functions. FFI circuit operations critically depend on the balance and timing between the excitatory and inhibitory components, which undergo rapid dynamic changes during neural activity due to short-term plasticity (STP) of both components. How dynamic changes in excitation/inhibition (E/I) balance during spike trains influence FFI circuit operations remains poorly understood. In the current study we examined the role of STP in the FFI circuit functions in the mouse hippocampus. Using a coincidence detection paradigm with simultaneous activation of two Schaffer collateral inputs, we found that the spiking probability in the target CA1 neuron was increased while spike precision concomitantly decreased during high-frequency bursts compared with a single spike. Blocking inhibitory synaptic transmission revealed that dynamics of inhibition predominately modulates the spike precision but not the changes in spiking probability, whereas the latter is modulated by the dynamics of excitation. Further analyses combining whole cell recordings and simulations of the FFI circuit suggested that dynamics of the inhibitory circuit component may influence spiking behavior during bursts by broadening the width of excitatory postsynaptic responses and that the strength of this modulation depends on the basal E/I ratio. We verified these predictions using a mouse model of fragile X syndrome, which has an elevated E/I ratio, and found a strongly reduced modulation of postsynaptic response width during bursts. Our results suggest that changes in the dynamics of excitatory and inhibitory circuit components due to STP play important yet distinct roles in modulating the properties of FFI circuits. PMID:27605532
Gu, Ning; Vervaeke, Koen; Storm, Johan F
2007-01-01
Neuronal potassium (K+) channels are usually regarded as largely inhibitory, i.e. reducing excitability. Here we show that BK-type calcium-activated K+ channels enhance high-frequency firing and cause early spike frequency adaptation in neurons. By combining slice electrophysiology and computational modelling, we investigated functions of BK channels in regulation of high-frequency firing in rat CA1 pyramidal cells. Blockade of BK channels by iberiotoxin (IbTX) selectively reduced the initial discharge frequency in response to strong depolarizing current injections, thus reducing the early spike frequency adaptation. IbTX also blocked the fast afterhyperpolarization (fAHP), slowed spike rise and decay, and elevated the spike threshold. Simulations with a computational model of a CA1 pyramidal cell confirmed that the BK channel-mediated rapid spike repolarization and fAHP limits activation of slower K+ channels (in particular the delayed rectifier potassium current (IDR)) and Na+ channel inactivation, whereas M-, sAHP- or SK-channels seem not to be important for the early facilitating effect. Since the BK current rapidly inactivates, its facilitating effect diminishes during the initial discharge, thus producing early spike frequency adaptation by an unconventional mechanism. This mechanism is highly frequency dependent. Thus, IbTX had virtually no effect at spike frequencies < 40 Hz. Furthermore, extracellular field recordings demonstrated (and model simulations supported) that BK channels contribute importantly to high-frequency burst firing in response to excitatory synaptic input to distal dendrites. These results strongly support the idea that BK channels play an important role for early high-frequency, rapidly adapting firing in hippocampal pyramidal neurons, thus promoting the type of bursting that is characteristic of these cells in vivo, during behaviour. PMID:17303637
Keshtkaran, Mohammad Reza; Yang, Zhi
2017-06-01
Spike sorting is a fundamental preprocessing step for many neuroscience studies which rely on the analysis of spike trains. Most of the feature extraction and dimensionality reduction techniques that have been used for spike sorting give a projection subspace which is not necessarily the most discriminative one. Therefore, the clusters which appear inherently separable in some discriminative subspace may overlap if projected using conventional feature extraction approaches leading to a poor sorting accuracy especially when the noise level is high. In this paper, we propose a noise-robust and unsupervised spike sorting algorithm based on learning discriminative spike features for clustering. The proposed algorithm uses discriminative subspace learning to extract low dimensional and most discriminative features from the spike waveforms and perform clustering with automatic detection of the number of the clusters. The core part of the algorithm involves iterative subspace selection using linear discriminant analysis and clustering using Gaussian mixture model with outlier detection. A statistical test in the discriminative subspace is proposed to automatically detect the number of the clusters. Comparative results on publicly available simulated and real in vivo datasets demonstrate that our algorithm achieves substantially improved cluster distinction leading to higher sorting accuracy and more reliable detection of clusters which are highly overlapping and not detectable using conventional feature extraction techniques such as principal component analysis or wavelets. By providing more accurate information about the activity of more number of individual neurons with high robustness to neural noise and outliers, the proposed unsupervised spike sorting algorithm facilitates more detailed and accurate analysis of single- and multi-unit activities in neuroscience and brain machine interface studies.
NASA Astrophysics Data System (ADS)
Keshtkaran, Mohammad Reza; Yang, Zhi
2017-06-01
Objective. Spike sorting is a fundamental preprocessing step for many neuroscience studies which rely on the analysis of spike trains. Most of the feature extraction and dimensionality reduction techniques that have been used for spike sorting give a projection subspace which is not necessarily the most discriminative one. Therefore, the clusters which appear inherently separable in some discriminative subspace may overlap if projected using conventional feature extraction approaches leading to a poor sorting accuracy especially when the noise level is high. In this paper, we propose a noise-robust and unsupervised spike sorting algorithm based on learning discriminative spike features for clustering. Approach. The proposed algorithm uses discriminative subspace learning to extract low dimensional and most discriminative features from the spike waveforms and perform clustering with automatic detection of the number of the clusters. The core part of the algorithm involves iterative subspace selection using linear discriminant analysis and clustering using Gaussian mixture model with outlier detection. A statistical test in the discriminative subspace is proposed to automatically detect the number of the clusters. Main results. Comparative results on publicly available simulated and real in vivo datasets demonstrate that our algorithm achieves substantially improved cluster distinction leading to higher sorting accuracy and more reliable detection of clusters which are highly overlapping and not detectable using conventional feature extraction techniques such as principal component analysis or wavelets. Significance. By providing more accurate information about the activity of more number of individual neurons with high robustness to neural noise and outliers, the proposed unsupervised spike sorting algorithm facilitates more detailed and accurate analysis of single- and multi-unit activities in neuroscience and brain machine interface studies.
A stimulus-dependent spike threshold is an optimal neural coder
Jones, Douglas L.; Johnson, Erik C.; Ratnam, Rama
2015-01-01
A neural code based on sequences of spikes can consume a significant portion of the brain's energy budget. Thus, energy considerations would dictate that spiking activity be kept as low as possible. However, a high spike-rate improves the coding and representation of signals in spike trains, particularly in sensory systems. These are competing demands, and selective pressure has presumably worked to optimize coding by apportioning a minimum number of spikes so as to maximize coding fidelity. The mechanisms by which a neuron generates spikes while maintaining a fidelity criterion are not known. Here, we show that a signal-dependent neural threshold, similar to a dynamic or adapting threshold, optimizes the trade-off between spike generation (encoding) and fidelity (decoding). The threshold mimics a post-synaptic membrane (a low-pass filter) and serves as an internal decoder. Further, it sets the average firing rate (the energy constraint). The decoding process provides an internal copy of the coding error to the spike-generator which emits a spike when the error equals or exceeds a spike threshold. When optimized, the trade-off leads to a deterministic spike firing-rule that generates optimally timed spikes so as to maximize fidelity. The optimal coder is derived in closed-form in the limit of high spike-rates, when the signal can be approximated as a piece-wise constant signal. The predicted spike-times are close to those obtained experimentally in the primary electrosensory afferent neurons of weakly electric fish (Apteronotus leptorhynchus) and pyramidal neurons from the somatosensory cortex of the rat. We suggest that KCNQ/Kv7 channels (underlying the M-current) are good candidates for the decoder. They are widely coupled to metabolic processes and do not inactivate. We conclude that the neural threshold is optimized to generate an energy-efficient and high-fidelity neural code. PMID:26082710
Spike Timing Matters in Novel Neuronal Code Involved in Vibrotactile Frequency Perception.
Birznieks, Ingvars; Vickery, Richard M
2017-05-22
Skin vibrations sensed by tactile receptors contribute significantly to the perception of object properties during tactile exploration [1-4] and to sensorimotor control during object manipulation [5]. Sustained low-frequency skin vibration (<60 Hz) evokes a distinct tactile sensation referred to as flutter whose frequency can be clearly perceived [6]. How afferent spiking activity translates into the perception of frequency is still unknown. Measures based on mean spike rates of neurons in the primary somatosensory cortex are sufficient to explain performance in some frequency discrimination tasks [7-11]; however, there is emerging evidence that stimuli can be distinguished based also on temporal features of neural activity [12, 13]. Our study's advance is to demonstrate that temporal features are fundamental for vibrotactile frequency perception. Pulsatile mechanical stimuli were used to elicit specified temporal spike train patterns in tactile afferents, and subsequently psychophysical methods were employed to characterize human frequency perception. Remarkably, the most salient temporal feature determining vibrotactile frequency was not the underlying periodicity but, rather, the duration of the silent gap between successive bursts of neural activity. This burst gap code for frequency represents a previously unknown form of neural coding in the tactile sensory system, which parallels auditory pitch perception mechanisms based on purely temporal information where longer inter-pulse intervals receive higher perceptual weights than short intervals [14]. Our study also demonstrates that human perception of stimuli can be determined exclusively by temporal features of spike trains independent of the mean spike rate and without contribution from population response factors. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreno-Bote, Ruben; Parga, Nestor; Center for Theoretical Neuroscience, Center for Neurobiology and Behavior, Columbia University, New York 10032-2695
2006-01-20
An analytical description of the response properties of simple but realistic neuron models in the presence of noise is still lacking. We determine completely up to the second order the firing statistics of a single and a pair of leaky integrate-and-fire neurons receiving some common slowly filtered white noise. In particular, the auto- and cross-correlation functions of the output spike trains of pairs of cells are obtained from an improvement of the adiabatic approximation introduced previously by Moreno-Bote and Parga [Phys. Rev. Lett. 92, 028102 (2004)]. These two functions define the firing variability and firing synchronization between neurons, and aremore » of much importance for understanding neuron communication.« less
A subthreshold aVLSI implementation of the Izhikevich simple neuron model.
Rangan, Venkat; Ghosh, Abhishek; Aparin, Vladimir; Cauwenberghs, Gert
2010-01-01
We present a circuit architecture for compact analog VLSI implementation of the Izhikevich neuron model, which efficiently describes a wide variety of neuron spiking and bursting dynamics using two state variables and four adjustable parameters. Log-domain circuit design utilizing MOS transistors in subthreshold results in high energy efficiency, with less than 1pJ of energy consumed per spike. We also discuss the effects of parameter variations on the dynamics of the equations, and present simulation results that replicate several types of neural dynamics. The low power operation and compact analog VLSI realization make the architecture suitable for human-machine interface applications in neural prostheses and implantable bioelectronics, as well as large-scale neural emulation tools for computational neuroscience.
Ogawa, Hiroto; Mitani, Ruriko
2015-11-13
The spatial dynamics of action potentials, including their propagation and the location of spike initiation zone (SIZ), are crucial for the computation of a single neuron. Compared with mammalian central neurons, the spike dynamics of invertebrate neurons remain relatively unknown. Thus, we examined the spike dynamics based on single spike-induced Ca(2+) signals in the dendrites of cricket mechanosensory projection neurons, known as giant interneurons (GIs). The Ca(2+) transients induced by a synaptically evoked single spike were larger than those induced by an antidromic spike, whereas subthreshold synaptic potentials caused no elevation of Ca(2+). These results indicate that synaptic activity enhances the dendritic Ca(2+) influx through voltage-gated Ca(2+) channels. Stimulation of the presynaptic sensory afferents ipsilateral to the recording site evoked a dendritic spike with higher amplitude than contralateral stimulation, thereby suggesting that alteration of the spike waveform resulted in synaptic enhancement of the dendritic Ca(2+) transients. The SIZ estimated from the spatial distribution of the difference in the Ca(2+) amplitude was distributed throughout the right and left dendritic branches across the primary neurite connecting them in GIs. Copyright © 2015 Elsevier Inc. All rights reserved.
Peculiarities of spike multimode generation of a superradiant distributed feedback laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocharovskaya, E R; Ginzburg, N S; Sergeev, A S
2011-08-31
Using one-dimensional semiclassical Maxwell - Bloch equations with account for the coherent polarisation dynamics, we have studied spike generation regimes of a superradiant distributed feedback laser in the case of inhomogeneous broadening of the spectral line of an active medium. By analysing the dynamic spectra of inversion of the active medium and laser radiation, we have revealed the relationship of individual spikes of radiation and their modulation with specific parts in the spectral line of the active medium and mode beatings. It has been shown that the broadening and shift of the lasing spectrum with respect to the initial electromagneticmore » Bragg-cavity modes is accompanied by a strong spectral gradient of inversion that is typical of the superradiant regimes. (control of radiation parameters)« less
Clemens, Béla; Piros, Pálma; Bessenyei, Mónika; Varga, Edit; Puskás, Szilvia; Fekete, István
2009-08-01
Collating the findings regarding the role of focal interictal epileptiform discharges (IEDs) on CNS functions raises the possibility that IEDs might have negative impact that outlasts the duration of the spike-and-wave complexes. The aim of this study was the electrophysiological demonstration of the "delayed effect" of the IEDs. 19-channel, linked-ears referenced, digital waking EEG records of 11 children (aged 6-14 years, eight with idiopathic, three with cryptogenic focal epilepsy, showing a single spike focus) were retrospectively selected from our database. A minimum of 20 (preferably, 30), 2-s epochs containing a single focal spike-and-wave complex were selected (Spike epochs). Thereafter, Postspike-1 (Ps1), Postspike-2 (Ps2) and Postspike-3 (Ps3) epochs were selected, representing the first and second seconds (Ps1), the third and fourth seconds (Ps2) and the fifth and sixth seconds (Ps3) after the Spike epoch, respectively. Interspike epochs (Is) were selected at a distance at least 10s after the Spike epoch. Individual analysis: the frequency of interest (FOI=the individual frequency of the wave component of the IEDs), and the region of interest (ROI=the site of the IEDs) were identified by reading the raw EEG waveform and the instant power spectrum. Very narrow band LORETA (low resolution electromagnetic tomography) analysis at the FOI and ROI was carried out. Age-adjusted, Z-transformed LORETA "activity" (=current source density, amperes/meters squared) was compared in the Spike, Ps1, Ps2, Ps3 and Is epochs. the greatest (uppermost pathological) Z-scores and the greatest spatial extension of the LORETA-abnormality were always found in the Spike epochs, followed by the gradual decrease of activity in terms of severity and spatial extension in the Ps1, Ps2, Ps3 epochs. The lowest (baseline) level and extension of the abnormality was found in the Is epochs. Group analysis: average values of activity across the patients were computed for the temporal decrease of the abnormality. a clear tendency for the decrease of abnormality was demonstrated. the "delayed effect" of the IEDs was demonstrated electrophysiologically and quantified. The method may be utilized in the individual assessment of the effect of IEDs on cortical activity, the degree and temporo-spatial extension of the abnormality.
Díez-García, Andrea; Barros-Zulaica, Natali; Núñez, Ángel; Buño, Washington; Fernández de Sevilla, David
2017-01-01
According to Hebb's original hypothesis (Hebb, 1949), synapses are reinforced when presynaptic activity triggers postsynaptic firing, resulting in long-term potentiation (LTP) of synaptic efficacy. Long-term depression (LTD) is a use-dependent decrease in synaptic strength that is thought to be due to synaptic input causing a weak postsynaptic effect. Although the mechanisms that mediate long-term synaptic plasticity have been investigated for at least three decades not all question have as yet been answered. Therefore, we aimed at determining the mechanisms that generate LTP or LTD with the simplest possible protocol. Low-frequency stimulation of basal dendrite inputs in Layer 5 pyramidal neurons of the rat barrel cortex induces LTP. This stimulation triggered an EPSP, an action potential (AP) burst, and a Ca 2+ spike. The same stimulation induced LTD following manipulations that reduced the Ca 2+ spike and Ca 2+ signal or the AP burst. Low-frequency whisker deflections induced similar bidirectional plasticity of action potential evoked responses in anesthetized rats. These results suggest that both in vitro and in vivo similar mechanisms regulate the balance between LTP and LTD. This simple induction form of bidirectional hebbian plasticity could be present in the natural conditions to regulate the detection, flow, and storage of sensorimotor information.
NASA Astrophysics Data System (ADS)
Mohamed, Marwa E.; Frag, Eman Y. Z.; Mohamed, Mona A.
2018-01-01
A simple, fast and accurate spectrophotometric method had been developed to determine lead (II), chromium (III) and barium (II) ions in pure forms and in spiked water samples using thoron (THO) as a reagent forming colored complexes. It was found that the formed complexes absorbed maximally at 539, 540 and 538 nm for Pb(II)-THO, Cr(III)-THO and Ba(II)-THO complexes, respectively. The optimum experimental conditions for these complexes had been studied carefully. Beer's law was obeyed in the range 1-35, 1-70, and 1-45 μg mL- 1 for Pb (II), Cr(III) and Ba(II) ions with THO reagent, respectively. Different parameters such as linearity, selectivity, recovery, limits of quantification and detection, precision and accuracy were also evaluated in order to validate the proposed method. The results showed that, THO was effective in simultaneous determination of Pb(II), Cr(III) and Ba(III) ions in pure forms and in spiked water samples. Also, the results of the proposed method were compared with that obtained from atomic absorption spectrometry. The isolated solid complexes had been characterized using elemental analysis, X-ray powder diffraction (XRD), IR, mass spectrometry and TD-DFT calculations. Their biological activities were investigated against different types of bacteria and fungi organisms.
Pesticide analysis using nanoceria-coated paper-based devices as a detection platform.
Nouanthavong, Souksanh; Nacapricha, Duangjai; Henry, Charles S; Sameenoi, Yupaporn
2016-03-07
We report the first use of a paper-based device coated with nanoceria as a simple, low-cost and rapid detection platform for the analysis of organophosphate (OP) pesticides using an enzyme inhibition assay with acetylcholinesterase (AChE) and choline oxidase (ChOX). In the presence of acetylcholine, AChE and ChOX catalyze the formation of H2O2, which is detected colorimetrically by a nanoceria-coated device resulting in the formation of a yellow color. After incubation with OP pesticides, the AChE activity was inhibited, producing less H2O2, and a reduction in the yellow intensity. The assay is able to analyze OP pesticides without the use of sophisticated instruments and gives detection limits of 18 ng mL(-1) and 5.3 ng mL(-1) for methyl-paraoxon and chlorpyrifos-oxon, respectively. The developed method was successfully applied to detect methyl-paraoxon in spiked vegetables (cabbage) and a dried seafood product (dried green mussel), obtaining ∼95% recovery values for both sample types. The spiked samples were also analyzed using LC-MS/MS as a comparison to the developed method and similar values were obtained, indicating that the developed method gives accurate results and is suitable for OP analysis in real samples.
Díez-García, Andrea; Barros-Zulaica, Natali; Núñez, Ángel; Buño, Washington; Fernández de Sevilla, David
2017-01-01
According to Hebb's original hypothesis (Hebb, 1949), synapses are reinforced when presynaptic activity triggers postsynaptic firing, resulting in long-term potentiation (LTP) of synaptic efficacy. Long-term depression (LTD) is a use-dependent decrease in synaptic strength that is thought to be due to synaptic input causing a weak postsynaptic effect. Although the mechanisms that mediate long-term synaptic plasticity have been investigated for at least three decades not all question have as yet been answered. Therefore, we aimed at determining the mechanisms that generate LTP or LTD with the simplest possible protocol. Low-frequency stimulation of basal dendrite inputs in Layer 5 pyramidal neurons of the rat barrel cortex induces LTP. This stimulation triggered an EPSP, an action potential (AP) burst, and a Ca2+ spike. The same stimulation induced LTD following manipulations that reduced the Ca2+ spike and Ca2+ signal or the AP burst. Low-frequency whisker deflections induced similar bidirectional plasticity of action potential evoked responses in anesthetized rats. These results suggest that both in vitro and in vivo similar mechanisms regulate the balance between LTP and LTD. This simple induction form of bidirectional hebbian plasticity could be present in the natural conditions to regulate the detection, flow, and storage of sensorimotor information. PMID:28203145
Nikolaev, Yury A; Dosen, Peter J; Laver, Derek R; van Helden, Dirk F; Hamill, Owen P
2015-05-22
The mammalian brain is a mechanosensitive organ that responds to different mechanical forces ranging from intrinsic forces implicated in brain morphogenesis to extrinsic forces that can cause concussion and traumatic brain injury. However, little is known of the mechanosensors that transduce these forces. In this study we use cell-attached patch recording to measure single mechanically-gated (MG) channel currents and their affects on spike activity in identified neurons in neonatal mouse brain slices. We demonstrate that both neocortical and hippocampal pyramidal neurons express stretch-activated MG cation channels that are activated by suctions of ~25mm Hg, have a single channel conductance for inward current of 50-70pS and show weak selectivity for alkali metal cations (i.e., Na(+)
Analysis of surface EMG spike shape across different levels of isometric force.
Gabriel, David A; Lester, Steven M; Lenhardt, Sean A; Cambridge, Edward D J
2007-01-15
This research evaluated changes in surface electromyographic (SEMG) spike shape across different levels of isometric force. Ninety-six subjects generated three 5-s isometric step contractions of the elbow flexors at 40, 60, 80, and 100% of maximal voluntary contraction (MVC). Force and bipolar SEMG activity were monitored concurrently. The mean spike amplitude (MSA) exhibited a linear increase across the four levels of force. The mean spike frequency (MSF) remained stable from 40 to 80% of MVC; it then decreased from 80 to 100% of MVC. There was a concomitant increase in mean spike slope (MSS) that indicates that the biceps brachii (BB) relied on the recruitment of higher threshold motor units (MUs) from 40 to 80% of MVC. However, there progressive decrease in the mean number of peaks per spike (MNPPS) that suggests that MU synchronization was additionally required to increase force from 80 to 100% of MVC. The spike shape measures, taken together, indicate that the decrease in frequency content of the signal was due to synchronization, not an increased probability of temporal overlap due an increase in rate-coding.
Surface mapping of spike potential fields: experienced EEGers vs. computerized analysis.
Koszer, S; Moshé, S L; Legatt, A D; Shinnar, S; Goldensohn, E S
1996-03-01
An EEG epileptiform spike focus recorded with scalp electrodes is clinically localized by visual estimation of the point of maximal voltage and the distribution of its surrounding voltages. We compared such estimated voltage maps, drawn by experienced electroencephalographers (EEGers), with a computerized spline interpolation technique employed in the commercially available software package FOCUS. Twenty-two spikes were recorded from 15 patients during long-term continuous EEG monitoring. Maps of voltage distribution from the 28 electrodes surrounding the points of maximum change in slope (the spike maximum) were constructed by the EEGer. The same points of maximum spike and voltage distributions at the 29 electrodes were mapped by computerized spline interpolation and a comparison between the two methods was made. The findings indicate that the computerized spline mapping techniques employed in FOCUS construct voltage maps with similar maxima and distributions as the maps created by experienced EEGers. The dynamics of spike activity, including correlations, are better visualized using the computerized technique than by manual interpretation alone. Its use as a technique for spike localization is accurate and adds information of potential clinical value.
Sensory Regulation of Network Components Underlying Ciliary Locomotion in Hermissenda
Crow, Terry; Tian, Lian-Ming
2008-01-01
Ciliary locomotion in the nudibranch mollusk Hermissenda is modulated by the visual and graviceptive systems. Components of the neural network mediating ciliary locomotion have been identified including aggregates of polysensory interneurons that receive monosynaptic input from identified photoreceptors and efferent neurons that activate cilia. Illumination produces an inhibition of type Ii (off-cell) spike activity, excitation of type Ie (on-cell) spike activity, decreased spike activity in type IIIi inhibitory interneurons, and increased spike activity of ciliary efferent neurons. Here we show that pairs of type Ii interneurons and pairs of type Ie interneurons are electrically coupled. Neither electrical coupling or synaptic connections were observed between Ie and Ii interneurons. Coupling is effective in synchronizing dark-adapted spontaneous firing between pairs of Ie and pairs of Ii interneurons. Out-of-phase burst activity, occasionally observed in dark-adapted and light-adapted pairs of Ie and Ii interneurons, suggests that they receive synaptic input from a common presynaptic source or sources. Rhythmic activity is typically not a characteristic of dark-adapted, light-adapted, or light-evoked firing of type I interneurons. However, burst activity in Ie and Ii interneurons may be elicited by electrical stimulation of pedal nerves or generated at the offset of light. Our results indicate that type I interneurons can support the generation of both rhythmic activity and changes in tonic firing depending on sensory input. This suggests that the neural network supporting ciliary locomotion may be multifunctional. However, consistent with the nonmuscular and nonrhythmic characteristics of visually modulated ciliary locomotion, type I interneurons exhibit changes in tonic activity evoked by illumination. PMID:18768639
Rusanen, Juha; Frolov, Roman; Weckström, Matti; Kinoshita, Michiyo; Arikawa, Kentaro
2018-04-30
Lamina monopolar cells (LMCs) are the first-order visual interneurons of insects and crustacea, primarily involved in achromatic vision. Here we investigated morphological and electrophysiological properties of LMCs in the butterfly Papilio xuthus Using intracellular recording coupled with dye injection, we found two types of LMCs. Cells with roundish terminals near the distal surface of the medulla demonstrating no or small depolarizing spikes were classified as L1/2. LMCs with elongated terminals deep in the medulla that showed prominent spiking were classified as L3/4. The majority of LMCs of both types had broad spectral sensitivities, peaking between 480 and 570 nm. Depending on the experimental conditions, spikes varied from small to action potential-like events, with their amplitudes and rates decreasing as stimulus brightness increased. When the eye was stimulated with naturalistic contrast-modulated time series, spikes were reliably triggered by high-contrast components of the stimulus. Spike-triggered average functions showed that spikes emphasize rapid membrane depolarizations. Our results suggest that spikes are mediated by voltage-activated Na + channels, which are mainly inactivated at rest. Strong local minima in the coherence functions of spiking LMCs indicate that the depolarizing conductance contributes to the amplification of graded responses even when detectable spikes are not evoked. We propose that the information transfer strategies of spiking LMCs change with light intensity. In dim light, both graded voltage signals and large spikes are used together without mutual interference, due to separate transmission bandwidths. In bright light, signals are non-linearly amplified by the depolarizing conductance in the absence of detectable spikes. © 2018. Published by The Company of Biologists Ltd.
The Role of Neuromodulators in Cortical Plasticity. A Computational Perspective
Pedrosa, Victor; Clopath, Claudia
2017-01-01
Neuromodulators play a ubiquitous role across the brain in regulating plasticity. With recent advances in experimental techniques, it is possible to study the effects of diverse neuromodulatory states in specific brain regions. Neuromodulators are thought to impact plasticity predominantly through two mechanisms: the gating of plasticity and the upregulation of neuronal activity. However, the consequences of these mechanisms are poorly understood and there is a need for both experimental and theoretical exploration. Here we illustrate how neuromodulatory state affects cortical plasticity through these two mechanisms. First, we explore the ability of neuromodulators to gate plasticity by reshaping the learning window for spike-timing-dependent plasticity. Using a simple computational model, we implement four different learning rules and demonstrate their effects on receptive field plasticity. We then compare the neuromodulatory effects of upregulating learning rate versus the effects of upregulating neuronal activity. We find that these seemingly similar mechanisms do not yield the same outcome: upregulating neuronal activity can lead to either a broadening or a sharpening of receptive field tuning, whereas upregulating learning rate only intensifies the sharpening of receptive field tuning. This simple model demonstrates the need for further exploration of the rich landscape of neuromodulator-mediated plasticity. Future experiments, coupled with biologically detailed computational models, will elucidate the diversity of mechanisms by which neuromodulatory state regulates cortical plasticity. PMID:28119596
Fast Coding of Orientation in Primary Visual Cortex
Shriki, Oren; Kohn, Adam; Shamir, Maoz
2012-01-01
Understanding how populations of neurons encode sensory information is a major goal of systems neuroscience. Attempts to answer this question have focused on responses measured over several hundred milliseconds, a duration much longer than that frequently used by animals to make decisions about the environment. How reliably sensory information is encoded on briefer time scales, and how best to extract this information, is unknown. Although it has been proposed that neuronal response latency provides a major cue for fast decisions in the visual system, this hypothesis has not been tested systematically and in a quantitative manner. Here we use a simple ‘race to threshold’ readout mechanism to quantify the information content of spike time latency of primary visual (V1) cortical cells to stimulus orientation. We find that many V1 cells show pronounced tuning of their spike latency to stimulus orientation and that almost as much information can be extracted from spike latencies as from firing rates measured over much longer durations. To extract this information, stimulus onset must be estimated accurately. We show that the responses of cells with weak tuning of spike latency can provide a reliable onset detector. We find that spike latency information can be pooled from a large neuronal population, provided that the decision threshold is scaled linearly with the population size, yielding a processing time of the order of a few tens of milliseconds. Our results provide a novel mechanism for extracting information from neuronal populations over the very brief time scales in which behavioral judgments must sometimes be made. PMID:22719237
Dragas, Jelena; Jäckel, David; Hierlemann, Andreas; Franke, Felix
2017-01-01
Reliable real-time low-latency spike sorting with large data throughput is essential for studies of neural network dynamics and for brain-machine interfaces (BMIs), in which the stimulation of neural networks is based on the networks' most recent activity. However, the majority of existing multi-electrode spike-sorting algorithms are unsuited for processing high quantities of simultaneously recorded data. Recording from large neuronal networks using large high-density electrode sets (thousands of electrodes) imposes high demands on the data-processing hardware regarding computational complexity and data transmission bandwidth; this, in turn, entails demanding requirements in terms of chip area, memory resources and processing latency. This paper presents computational complexity optimization techniques, which facilitate the use of spike-sorting algorithms in large multi-electrode-based recording systems. The techniques are then applied to a previously published algorithm, on its own, unsuited for large electrode set recordings. Further, a real-time low-latency high-performance VLSI hardware architecture of the modified algorithm is presented, featuring a folded structure capable of processing the activity of hundreds of neurons simultaneously. The hardware is reconfigurable “on-the-fly” and adaptable to the nonstationarities of neuronal recordings. By transmitting exclusively spike time stamps and/or spike waveforms, its real-time processing offers the possibility of data bandwidth and data storage reduction. PMID:25415989
Dragas, Jelena; Jackel, David; Hierlemann, Andreas; Franke, Felix
2015-03-01
Reliable real-time low-latency spike sorting with large data throughput is essential for studies of neural network dynamics and for brain-machine interfaces (BMIs), in which the stimulation of neural networks is based on the networks' most recent activity. However, the majority of existing multi-electrode spike-sorting algorithms are unsuited for processing high quantities of simultaneously recorded data. Recording from large neuronal networks using large high-density electrode sets (thousands of electrodes) imposes high demands on the data-processing hardware regarding computational complexity and data transmission bandwidth; this, in turn, entails demanding requirements in terms of chip area, memory resources and processing latency. This paper presents computational complexity optimization techniques, which facilitate the use of spike-sorting algorithms in large multi-electrode-based recording systems. The techniques are then applied to a previously published algorithm, on its own, unsuited for large electrode set recordings. Further, a real-time low-latency high-performance VLSI hardware architecture of the modified algorithm is presented, featuring a folded structure capable of processing the activity of hundreds of neurons simultaneously. The hardware is reconfigurable “on-the-fly” and adaptable to the nonstationarities of neuronal recordings. By transmitting exclusively spike time stamps and/or spike waveforms, its real-time processing offers the possibility of data bandwidth and data storage reduction.
Stromatias, Evangelos; Soto, Miguel; Serrano-Gotarredona, Teresa; Linares-Barranco, Bernabé
2017-01-01
This paper introduces a novel methodology for training an event-driven classifier within a Spiking Neural Network (SNN) System capable of yielding good classification results when using both synthetic input data and real data captured from Dynamic Vision Sensor (DVS) chips. The proposed supervised method uses the spiking activity provided by an arbitrary topology of prior SNN layers to build histograms and train the classifier in the frame domain using the stochastic gradient descent algorithm. In addition, this approach can cope with leaky integrate-and-fire neuron models within the SNN, a desirable feature for real-world SNN applications, where neural activation must fade away after some time in the absence of inputs. Consequently, this way of building histograms captures the dynamics of spikes immediately before the classifier. We tested our method on the MNIST data set using different synthetic encodings and real DVS sensory data sets such as N-MNIST, MNIST-DVS, and Poker-DVS using the same network topology and feature maps. We demonstrate the effectiveness of our approach by achieving the highest classification accuracy reported on the N-MNIST (97.77%) and Poker-DVS (100%) real DVS data sets to date with a spiking convolutional network. Moreover, by using the proposed method we were able to retrain the output layer of a previously reported spiking neural network and increase its performance by 2%, suggesting that the proposed classifier can be used as the output layer in works where features are extracted using unsupervised spike-based learning methods. In addition, we also analyze SNN performance figures such as total event activity and network latencies, which are relevant for eventual hardware implementations. In summary, the paper aggregates unsupervised-trained SNNs with a supervised-trained SNN classifier, combining and applying them to heterogeneous sets of benchmarks, both synthetic and from real DVS chips.
Single-unit muscle sympathetic nervous activity and its relation to cardiac noradrenaline spillover
Lambert, Elisabeth A; Schlaich, Markus P; Dawood, Tye; Sari, Carolina; Chopra, Reena; Barton, David A; Kaye, David M; Elam, Mikael; Esler, Murray D; Lambert, Gavin W
2011-01-01
Abstract Recent work using single-unit sympathetic nerve recording techniques has demonstrated aberrations in the firing pattern of sympathetic nerves in a variety of patient groups. We sought to examine whether nerve firing pattern is associated with increased noradrenaline release. Using single-unit muscle sympathetic nerve recording techniques coupled with direct cardiac catheterisation and noradrenaline isotope dilution methodology we examined the relationship between single-unit firing patterns and cardiac and whole body noradrenaline spillover to plasma. Participants comprised patients with hypertension (n = 6), depression (n = 7) and panic disorder (n = 9) who were drawn from our ongoing studies. The patient groups examined did not differ in their single-unit muscle sympathetic nerve firing characteristics nor in the rate of spillover of noradrenaline to plasma from the heart. The median incidence of multiple spikes per beat was 9%. Patients were stratified according to the firing pattern: low level of incidence (less than 9% incidence of multiple spikes per beat) and high level of incidence (greater than 9% incidence of multiple spikes per beat). High incidence of multiple spikes within a cardiac cycle was associated with higher firing rates (P < 0.0001) and increased probability of firing (P < 0.0001). Whole body noradrenaline spillover to plasma and (multi-unit) muscle sympathetic nerve activity in subjects with low incidence of multiple spikes was not different to that of those with high incidence of multiple spikes. In those with high incidence of multiple spikes there occurred a parallel activation of the sympathetic outflow to the heart, with cardiac noradrenaline spillover to plasma being two times that of subjects with low nerve firing rates (11.0 ± 1.5 vs. 22.0 ± 4.5 ng min−1, P < 0.05). This study indicates that multiple within-burst firing and increased single-unit firing rates of the sympathetic outflow to the skeletal muscle vasculature is associated with high cardiac noradrenaline spillover. PMID:21486790
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abo, Satoshi; Nishikawa, Kazuhisa; Ushigome, Naoya
2011-01-07
Local resistance profiles of ultra shallow boron and arsenic implanted into silicon with energies of 2.0 and 4.0 keV and doses of 2.0x10{sup 15} and 1.0x10{sup 15} ions/cm{sup 2} activated by a combination of conventional spike lamp and laser annealing processes were measured by scanning spreading resistance microscope (SSRM) with a depth resolution of less than 10 nm. The lowest local resistance at the low resistance region in 2.0 keV boron implanted silicon with 1050 deg. C spike lamp annealing followed by 0.35 kW/mm{sup 2} laser annealing was half of that without laser annealing. The lowest local resistance at themore » low resistance region in the arsenic implanted silicon activated by 1050 deg. C spike lamp annealing followed by 0.39 kW/mm{sup 2} laser annealing was 74% lower than that followed by 0.36 kW/mm{sup 2} laser annealing. The lowest local resistances at the low resistance regions in the arsenic implanted silicon with 0.36 and 0.39 kW/mm{sup 2} laser annealing followed by 1050 deg. C spike lamp annealing were 41 and 33% lower than those with spike lamp annealing followed by laser annealing. Laser annealing followed by spike lamp annealing could suppress the diffusion of the impurities and was suitable for making the ultra shallow and low resistance regions.« less
NASA Astrophysics Data System (ADS)
Kim, Suhwan; Jung, Unsang; Baek, Juyoung; Lee, Sangwon; Jung, Woonggyu; Kim, Jeehyun; Kang, Shinwon
2013-01-01
Recently, mouse neuroblastoma cells have been considered as an attractive model for the study of human neurological and prion diseases, and they have been intensively used as a model system in different areas. For example, the differentiation of neuro2a (N2A) cells, receptor-mediated ion current, and glutamate-induced physiological responses have been actively investigated with these cells. These mouse neuroblastoma N2A cells are of interest because they grow faster than other cells of neural origin and have a number of other advantages. The calcium oscillations and neural spikes of mouse neuroblastoma N2A cells in epileptic conditions are evaluated. Based on our observations of neural spikes in these cells with our proposed imaging modality, we reported that they can be an important model in epileptic activity studies. We concluded that mouse neuroblastoma N2A cells produce epileptic spikes in vitro in the same way as those produced by neurons or astrocytes. This evidence suggests that increased levels of neurotransmitter release due to the enhancement of free calcium from 4-aminopyridine causes the mouse neuroblastoma N2A cells to produce epileptic spikes and calcium oscillations.
Sahasranamam, Ajith; Vlachos, Ioannis; Aertsen, Ad; Kumar, Arvind
2016-01-01
Spike patterns are among the most common electrophysiological descriptors of neuron types. Surprisingly, it is not clear how the diversity in firing patterns of the neurons in a network affects its activity dynamics. Here, we introduce the state-dependent stochastic bursting neuron model allowing for a change in its firing patterns independent of changes in its input-output firing rate relationship. Using this model, we show that the effect of single neuron spiking on the network dynamics is contingent on the network activity state. While spike bursting can both generate and disrupt oscillations, these patterns are ineffective in large regions of the network state space in changing the network activity qualitatively. Finally, we show that when single-neuron properties are made dependent on the population activity, a hysteresis like dynamics emerges. This novel phenomenon has important implications for determining the network response to time-varying inputs and for the network sensitivity at different operating points. PMID:27212008
Sahasranamam, Ajith; Vlachos, Ioannis; Aertsen, Ad; Kumar, Arvind
2016-05-23
Spike patterns are among the most common electrophysiological descriptors of neuron types. Surprisingly, it is not clear how the diversity in firing patterns of the neurons in a network affects its activity dynamics. Here, we introduce the state-dependent stochastic bursting neuron model allowing for a change in its firing patterns independent of changes in its input-output firing rate relationship. Using this model, we show that the effect of single neuron spiking on the network dynamics is contingent on the network activity state. While spike bursting can both generate and disrupt oscillations, these patterns are ineffective in large regions of the network state space in changing the network activity qualitatively. Finally, we show that when single-neuron properties are made dependent on the population activity, a hysteresis like dynamics emerges. This novel phenomenon has important implications for determining the network response to time-varying inputs and for the network sensitivity at different operating points.
Statistical properties of superimposed stationary spike trains.
Deger, Moritz; Helias, Moritz; Boucsein, Clemens; Rotter, Stefan
2012-06-01
The Poisson process is an often employed model for the activity of neuronal populations. It is known, though, that superpositions of realistic, non- Poisson spike trains are not in general Poisson processes, not even for large numbers of superimposed processes. Here we construct superimposed spike trains from intracellular in vivo recordings from rat neocortex neurons and compare their statistics to specific point process models. The constructed superimposed spike trains reveal strong deviations from the Poisson model. We find that superpositions of model spike trains that take the effective refractoriness of the neurons into account yield a much better description. A minimal model of this kind is the Poisson process with dead-time (PPD). For this process, and for superpositions thereof, we obtain analytical expressions for some second-order statistical quantities-like the count variability, inter-spike interval (ISI) variability and ISI correlations-and demonstrate the match with the in vivo data. We conclude that effective refractoriness is the key property that shapes the statistical properties of the superposition spike trains. We present new, efficient algorithms to generate superpositions of PPDs and of gamma processes that can be used to provide more realistic background input in simulations of networks of spiking neurons. Using these generators, we show in simulations that neurons which receive superimposed spike trains as input are highly sensitive for the statistical effects induced by neuronal refractoriness.
A Markovian event-based framework for stochastic spiking neural networks.
Touboul, Jonathan D; Faugeras, Olivier D
2011-11-01
In spiking neural networks, the information is conveyed by the spike times, that depend on the intrinsic dynamics of each neuron, the input they receive and on the connections between neurons. In this article we study the Markovian nature of the sequence of spike times in stochastic neural networks, and in particular the ability to deduce from a spike train the next spike time, and therefore produce a description of the network activity only based on the spike times regardless of the membrane potential process. To study this question in a rigorous manner, we introduce and study an event-based description of networks of noisy integrate-and-fire neurons, i.e. that is based on the computation of the spike times. We show that the firing times of the neurons in the networks constitute a Markov chain, whose transition probability is related to the probability distribution of the interspike interval of the neurons in the network. In the cases where the Markovian model can be developed, the transition probability is explicitly derived in such classical cases of neural networks as the linear integrate-and-fire neuron models with excitatory and inhibitory interactions, for different types of synapses, possibly featuring noisy synaptic integration, transmission delays and absolute and relative refractory period. This covers most of the cases that have been investigated in the event-based description of spiking deterministic neural networks.
A generative spike train model with time-structured higher order correlations.
Trousdale, James; Hu, Yu; Shea-Brown, Eric; Josić, Krešimir
2013-01-01
Emerging technologies are revealing the spiking activity in ever larger neural ensembles. Frequently, this spiking is far from independent, with correlations in the spike times of different cells. Understanding how such correlations impact the dynamics and function of neural ensembles remains an important open problem. Here we describe a new, generative model for correlated spike trains that can exhibit many of the features observed in data. Extending prior work in mathematical finance, this generalized thinning and shift (GTaS) model creates marginally Poisson spike trains with diverse temporal correlation structures. We give several examples which highlight the model's flexibility and utility. For instance, we use it to examine how a neural network responds to highly structured patterns of inputs. We then show that the GTaS model is analytically tractable, and derive cumulant densities of all orders in terms of model parameters. The GTaS framework can therefore be an important tool in the experimental and theoretical exploration of neural dynamics.
Different Timescales for the Neural Coding of Consonant and Vowel Sounds
Perez, Claudia A.; Engineer, Crystal T.; Jakkamsetti, Vikram; Carraway, Ryan S.; Perry, Matthew S.
2013-01-01
Psychophysical, clinical, and imaging evidence suggests that consonant and vowel sounds have distinct neural representations. This study tests the hypothesis that consonant and vowel sounds are represented on different timescales within the same population of neurons by comparing behavioral discrimination with neural discrimination based on activity recorded in rat inferior colliculus and primary auditory cortex. Performance on 9 vowel discrimination tasks was highly correlated with neural discrimination based on spike count and was not correlated when spike timing was preserved. In contrast, performance on 11 consonant discrimination tasks was highly correlated with neural discrimination when spike timing was preserved and not when spike timing was eliminated. These results suggest that in the early stages of auditory processing, spike count encodes vowel sounds and spike timing encodes consonant sounds. These distinct coding strategies likely contribute to the robust nature of speech sound representations and may help explain some aspects of developmental and acquired speech processing disorders. PMID:22426334
Determination of aflatoxins B1, B2, G1 and G2 in spices using a multifunctional column clean-up.
Akiyama, H; Goda, Y; Tanaka, T; Toyoda, M
2001-10-12
A rapid and simple method using a multifunctional column, which contains lipophilic and charged active sites, was developed to analyse aflatoxins B1, B2, G1 and G2 in various spices, such as red pepper and nutmeg. After extraction by acetonitrile:water (9:1) and clean-up using MultiSep #228 column, the aflatoxins and aflatoxin-TFA derivatives are determined using LC with fluorescence detection. Recoveries of each aflatoxin B1, B2, G1 and G2 spiked to red pepper, white pepper, black pepper, nutmeg and tear grass at the level of 10 ng/g were over 80-85% in all instances. The minimum detectable concentration for aflatoxins in red pepper was 0.5 ng/g.
Classification of epileptiform and wicket spike of EEG pattern using backpropagation neural network
NASA Astrophysics Data System (ADS)
Puspita, Juni Wijayanti; Jaya, Agus Indra; Gunadharma, Suryani
2017-03-01
Epilepsy is characterized by recurrent seizures that is resulted by permanent brain abnormalities. One of tools to support the diagnosis of epilepsy is Electroencephalograph (EEG), which describes the recording of brain electrical activity. Abnormal EEG patterns in epilepsy patients consist of Spike and Sharp waves. While both waves, there is a normal pattern that sometimes misinterpreted as epileptiform by electroenchepalographer (EEGer), namely Wicket Spike. The main difference of the three waves are on the time duration that related to the frequency. In this study, we proposed a method to classify a EEG wave into Sharp wave, Spike wave or Wicket spike group using Backpropagation Neural Network based on the frequency and amplitude of each wave. The results show that the proposed method can classifies the three group of waves with good accuracy.
Neural Representation of Spatial Topology in the Rodent Hippocampus
Chen, Zhe; Gomperts, Stephen N.; Yamamoto, Jun; Wilson, Matthew A.
2014-01-01
Pyramidal cells in the rodent hippocampus often exhibit clear spatial tuning in navigation. Although it has been long suggested that pyramidal cell activity may underlie a topological code rather than a topographic code, it remains unclear whether an abstract spatial topology can be encoded in the ensemble spiking activity of hippocampal place cells. Using a statistical approach developed previously, we investigate this question and related issues in greater details. We recorded ensembles of hippocampal neurons as rodents freely foraged in one and two-dimensional spatial environments, and we used a “decode-to-uncover” strategy to examine the temporally structured patterns embedded in the ensemble spiking activity in the absence of observed spatial correlates during periods of rodent navigation or awake immobility. Specifically, the spatial environment was represented by a finite discrete state space. Trajectories across spatial locations (“states”) were associated with consistent hippocampal ensemble spiking patterns, which were characterized by a state transition matrix. From this state transition matrix, we inferred a topology graph that defined the connectivity in the state space. In both one and two-dimensional environments, the extracted behavior patterns from the rodent hippocampal population codes were compared against randomly shuffled spike data. In contrast to a topographic code, our results support the efficiency of topological coding in the presence of sparse sample size and fuzzy space mapping. This computational approach allows us to quantify the variability of ensemble spiking activity, to examine hippocampal population codes during off-line states, and to quantify the topological complexity of the environment. PMID:24102128
Gomez-Ramirez, Manuel; Trzcinski, Natalie K.; Mihalas, Stefan; Niebur, Ernst
2014-01-01
Studies in vision show that attention enhances the firing rates of cells when it is directed towards their preferred stimulus feature. However, it is unknown whether other sensory systems employ this mechanism to mediate feature selection within their modalities. Moreover, whether feature-based attention modulates the correlated activity of a population is unclear. Indeed, temporal correlation codes such as spike-synchrony and spike-count correlations (rsc) are believed to play a role in stimulus selection by increasing the signal and reducing the noise in a population, respectively. Here, we investigate (1) whether feature-based attention biases the correlated activity between neurons when attention is directed towards their common preferred feature, (2) the interplay between spike-synchrony and rsc during feature selection, and (3) whether feature attention effects are common across the visual and tactile systems. Single-unit recordings were made in secondary somatosensory cortex of three non-human primates while animals engaged in tactile feature (orientation and frequency) and visual discrimination tasks. We found that both firing rate and spike-synchrony between neurons with similar feature selectivity were enhanced when attention was directed towards their preferred feature. However, attention effects on spike-synchrony were twice as large as those on firing rate, and had a tighter relationship with behavioral performance. Further, we observed increased rsc when attention was directed towards the visual modality (i.e., away from touch). These data suggest that similar feature selection mechanisms are employed in vision and touch, and that temporal correlation codes such as spike-synchrony play a role in mediating feature selection. We posit that feature-based selection operates by implementing multiple mechanisms that reduce the overall noise levels in the neural population and synchronize activity across subpopulations that encode the relevant features of sensory stimuli. PMID:25423284
Ding, Shengyuan; Wei, Wei
2011-01-01
GABA projection neurons (GABA neurons) in the substantia nigra pars reticulata (SNr) and dopamine projection neurons (DA neurons) in substantia nigra pars compacta (SNc) have strikingly different firing properties. SNc DA neurons fire low-frequency, long-duration spikes, whereas SNr GABA neurons fire high-frequency, short-duration spikes. Since voltage-activated sodium (NaV) channels are critical to spike generation, the different firing properties raise the possibility that, compared with DA neurons, NaV channels in SNr GABA neurons have higher density, faster kinetics, and less cumulative inactivation. Our quantitative RT-PCR analysis on immunohistochemically identified nigral neurons indicated that mRNAs for pore-forming NaV1.1 and NaV1.6 subunits and regulatory NaVβ1 and Navβ4 subunits are more abundant in SNr GABA neurons than SNc DA neurons. These α-subunits and β-subunits are key subunits for forming NaV channels conducting the transient NaV current (INaT), persistent Na current (INaP), and resurgent Na current (INaR). Nucleated patch-clamp recordings showed that INaT had a higher density, a steeper voltage-dependent activation, and a faster deactivation in SNr GABA neurons than in SNc DA neurons. INaT also recovered more quickly from inactivation and had less cumulative inactivation in SNr GABA neurons than in SNc DA neurons. Furthermore, compared with nigral DA neurons, SNr GABA neurons had a larger INaR and INaP. Blockade of INaP induced a larger hyperpolarization in SNr GABA neurons than in SNc DA neurons. Taken together, these results indicate that NaV channels expressed in fast-spiking SNr GABA neurons and slow-spiking SNc DA neurons are tailored to support their different spiking capabilities. PMID:21880943
Daly, Kevin C.; Galán, Roberto F.; Peters, Oakland J.; Staudacher, Erich M.
2011-01-01
The transient oscillatory model of odor identity encoding seeks to explain how odorants with spatially overlapped patterns of input into primary olfactory networks can be discriminated. This model provides several testable predictions about the distributed nature of network oscillations and how they control spike timing. To test these predictions, 16 channel electrode arrays were placed within the antennal lobe (AL) of the moth Manduca sexta. Unitary spiking and multi site local field potential (LFP) recordings were made during spontaneous activity and in response to repeated presentations of an odor panel. We quantified oscillatory frequency, cross correlations between LFP recording sites, and spike–LFP phase relationships. We show that odor-driven AL oscillations in Manduca are frequency modulating (FM) from ∼100 to 30 Hz; this was odorant and stimulus duration dependent. FM oscillatory responses were localized to one or two recording sites suggesting a localized (perhaps glomerular) not distributed source. LFP cross correlations further demonstrated that only a small (r < 0.05) distributed and oscillatory component was present. Cross spectral density analysis demonstrated the frequency of these weakly distributed oscillations was state dependent (spontaneous activity = 25–55 Hz; odor-driven = 55–85 Hz). Surprisingly, vector strength analysis indicated that unitary phase locking of spikes to the LFP was strongest during spontaneous activity and dropped significantly during responses. Application of bicuculline, a GABAA receptor antagonist, significantly lowered the frequency content of odor-driven distributed oscillatory activity. Bicuculline significantly reduced spike phase locking generally, but the ubiquitous pattern of increased phase locking during spontaneous activity persisted. Collectively, these results indicate that oscillations perform poorly as a stimulus-mediated spike synchronizing mechanism for Manduca and hence are incongruent with the transient oscillatory model. PMID:22046161
STDP allows fast rate-modulated coding with Poisson-like spike trains.
Gilson, Matthieu; Masquelier, Timothée; Hugues, Etienne
2011-10-01
Spike timing-dependent plasticity (STDP) has been shown to enable single neurons to detect repeatedly presented spatiotemporal spike patterns. This holds even when such patterns are embedded in equally dense random spiking activity, that is, in the absence of external reference times such as a stimulus onset. Here we demonstrate, both analytically and numerically, that STDP can also learn repeating rate-modulated patterns, which have received more experimental evidence, for example, through post-stimulus time histograms (PSTHs). Each input spike train is generated from a rate function using a stochastic sampling mechanism, chosen to be an inhomogeneous Poisson process here. Learning is feasible provided significant covarying rate modulations occur within the typical timescale of STDP (~10-20 ms) for sufficiently many inputs (~100 among 1000 in our simulations), a condition that is met by many experimental PSTHs. Repeated pattern presentations induce spike-time correlations that are captured by STDP. Despite imprecise input spike times and even variable spike counts, a single trained neuron robustly detects the pattern just a few milliseconds after its presentation. Therefore, temporal imprecision and Poisson-like firing variability are not an obstacle to fast temporal coding. STDP provides an appealing mechanism to learn such rate patterns, which, beyond sensory processing, may also be involved in many cognitive tasks.
STDP Allows Fast Rate-Modulated Coding with Poisson-Like Spike Trains
Hugues, Etienne
2011-01-01
Spike timing-dependent plasticity (STDP) has been shown to enable single neurons to detect repeatedly presented spatiotemporal spike patterns. This holds even when such patterns are embedded in equally dense random spiking activity, that is, in the absence of external reference times such as a stimulus onset. Here we demonstrate, both analytically and numerically, that STDP can also learn repeating rate-modulated patterns, which have received more experimental evidence, for example, through post-stimulus time histograms (PSTHs). Each input spike train is generated from a rate function using a stochastic sampling mechanism, chosen to be an inhomogeneous Poisson process here. Learning is feasible provided significant covarying rate modulations occur within the typical timescale of STDP (∼10–20 ms) for sufficiently many inputs (∼100 among 1000 in our simulations), a condition that is met by many experimental PSTHs. Repeated pattern presentations induce spike-time correlations that are captured by STDP. Despite imprecise input spike times and even variable spike counts, a single trained neuron robustly detects the pattern just a few milliseconds after its presentation. Therefore, temporal imprecision and Poisson-like firing variability are not an obstacle to fast temporal coding. STDP provides an appealing mechanism to learn such rate patterns, which, beyond sensory processing, may also be involved in many cognitive tasks. PMID:22046113
Belisle, A.A.; Swineford, D.M.
1988-01-01
A simple, specific procedure was developed for the analysis of organophosphorus and carbamate pesticides in sediment. The wet soil was mixed with anhydrous sodium sulfate to bind water and the residues were column extracted in acetone:methylene chloride (1:l,v/v). Coextracted water was removed by additional sodium sulfate packed below the sample mixture. The eluate was concentrated and analyzed directly by capillary gas chromatography using phosphorus and nitrogen specific detectors. Recoveries averaged 93 % for sediments extracted shortly after spiking, but decreased significantly as the samples aged.
1987-01-01
due to interferences in the pollen. However, the identity of the interferents is presently unknown. A dried papaya leaf was treated with 10 ml of warm...Known amounts of DON, DAS, and T-2 were spiked on a blank (trichothecene-free) papaya leaf and left exposed in a bottle for 1 year. At the end of the year...Simple Trichothecenes from Leaf Sample after Prolonged Exposure ............... 35 12 Sample Analysis .............................. .... 37 6 MASS
Lévy noise improves the electrical activity in a neuron under electromagnetic radiation.
Wu, Juan; Xu, Yong; Ma, Jun
2017-01-01
As the fluctuations of the internal bioelectricity of nervous system is various and complex, the external electromagnetic radiation induced by magnet flux on membrane can be described by the non-Gaussian type distribution of Lévy noise. Thus, the electrical activities in an improved Hindmarsh-Rose model excited by the external electromagnetic radiation of Lévy noise are investigated and some interesting modes of the electrical activities are exhibited. The external electromagnetic radiation of Lévy noise leads to the mode transition of the electrical activities and spatial phase, such as from the rest state to the firing state, from the spiking state to the spiking state with more spikes, and from the spiking state to the bursting state. Then the time points of the firing state versus Lévy noise intensity are depicted. The increasing of Lévy noise intensity heightens the neuron firing. Also the stationary probability distribution functions of the membrane potential of the neuron induced by the external electromagnetic radiation of Lévy noise with different intensity, stability index and skewness papremeters are analyzed. Moreover, through the positive largest Lyapunov exponent, the parameter regions of chaotic electrical mode of the neuron induced by the external electromagnetic radiation of Lévy noise distribution are detected.
Magnetoencephalography with temporal spread imaging to visualize propagation of epileptic activity.
Shibata, Sumiya; Matsuhashi, Masao; Kunieda, Takeharu; Yamao, Yukihiro; Inano, Rika; Kikuchi, Takayuki; Imamura, Hisaji; Takaya, Shigetoshi; Matsumoto, Riki; Ikeda, Akio; Takahashi, Ryosuke; Mima, Tatsuya; Fukuyama, Hidenao; Mikuni, Nobuhiro; Miyamoto, Susumu
2017-05-01
We describe temporal spread imaging (TSI) that can identify the spatiotemporal pattern of epileptic activity using Magnetoencephalography (MEG). A three-dimensional grid of voxels covering the brain is created. The array-gain minimum-variance spatial filter is applied to an interictal spike to estimate the magnitude of the source and the time (Ta) when the magnitude exceeds a predefined threshold at each voxel. This calculation is performed through all spikes. Each voxel has the mean Ta (
Lévy noise improves the electrical activity in a neuron under electromagnetic radiation
Wu, Juan; Ma, Jun
2017-01-01
As the fluctuations of the internal bioelectricity of nervous system is various and complex, the external electromagnetic radiation induced by magnet flux on membrane can be described by the non-Gaussian type distribution of Lévy noise. Thus, the electrical activities in an improved Hindmarsh-Rose model excited by the external electromagnetic radiation of Lévy noise are investigated and some interesting modes of the electrical activities are exhibited. The external electromagnetic radiation of Lévy noise leads to the mode transition of the electrical activities and spatial phase, such as from the rest state to the firing state, from the spiking state to the spiking state with more spikes, and from the spiking state to the bursting state. Then the time points of the firing state versus Lévy noise intensity are depicted. The increasing of Lévy noise intensity heightens the neuron firing. Also the stationary probability distribution functions of the membrane potential of the neuron induced by the external electromagnetic radiation of Lévy noise with different intensity, stability index and skewness papremeters are analyzed. Moreover, through the positive largest Lyapunov exponent, the parameter regions of chaotic electrical mode of the neuron induced by the external electromagnetic radiation of Lévy noise distribution are detected. PMID:28358824
Kimm, Tilia; Khaliq, Zayd M.
2015-01-01
Little is known about the voltage-dependent potassium currents underlying spike repolarization in midbrain dopaminergic neurons. Studying mouse substantia nigra pars compacta dopaminergic neurons both in brain slice and after acute dissociation, we found that BK calcium-activated potassium channels and Kv2 channels both make major contributions to the depolarization-activated potassium current. Inhibiting Kv2 or BK channels had very different effects on spike shape and evoked firing. Inhibiting Kv2 channels increased spike width and decreased the afterhyperpolarization, as expected for loss of an action potential-activated potassium conductance. BK inhibition also increased spike width but paradoxically increased the afterhyperpolarization. Kv2 channel inhibition steeply increased the slope of the frequency–current (f–I) relationship, whereas BK channel inhibition had little effect on the f–I slope or decreased it, sometimes resulting in slowed firing. Action potential clamp experiments showed that both BK and Kv2 current flow during spike repolarization but with very different kinetics, with Kv2 current activating later and deactivating more slowly. Further experiments revealed that inhibiting either BK or Kv2 alone leads to recruitment of additional current through the other channel type during the action potential as a consequence of changes in spike shape. Enhancement of slowly deactivating Kv2 current can account for the increased afterhyperpolarization produced by BK inhibition and likely underlies the very different effects on the f–I relationship. The cross-regulation of BK and Kv2 activation illustrates that the functional role of a channel cannot be defined in isolation but depends critically on the context of the other conductances in the cell. SIGNIFICANCE STATEMENT This work shows that BK calcium-activated potassium channels and Kv2 voltage-activated potassium channels both regulate action potentials in dopamine neurons of the substantia nigra pars compacta. Although both channel types participate in action potential repolarization about equally, they have contrasting and partially opposite effects in regulating neuronal firing at frequencies typical of bursting. Our analysis shows that this results from their different kinetic properties, with fast-activating BK channels serving to short-circuit activation of Kv2 channels, which tend to slow firing by producing a deep afterhyperpolarization. The cross-regulation of BK and Kv2 activation illustrates that the functional role of a channel cannot be defined in isolation but depends critically on the context of the other conductances in the cell. PMID:26674866
Kimm, Tilia; Khaliq, Zayd M; Bean, Bruce P
2015-12-16
Little is known about the voltage-dependent potassium currents underlying spike repolarization in midbrain dopaminergic neurons. Studying mouse substantia nigra pars compacta dopaminergic neurons both in brain slice and after acute dissociation, we found that BK calcium-activated potassium channels and Kv2 channels both make major contributions to the depolarization-activated potassium current. Inhibiting Kv2 or BK channels had very different effects on spike shape and evoked firing. Inhibiting Kv2 channels increased spike width and decreased the afterhyperpolarization, as expected for loss of an action potential-activated potassium conductance. BK inhibition also increased spike width but paradoxically increased the afterhyperpolarization. Kv2 channel inhibition steeply increased the slope of the frequency-current (f-I) relationship, whereas BK channel inhibition had little effect on the f-I slope or decreased it, sometimes resulting in slowed firing. Action potential clamp experiments showed that both BK and Kv2 current flow during spike repolarization but with very different kinetics, with Kv2 current activating later and deactivating more slowly. Further experiments revealed that inhibiting either BK or Kv2 alone leads to recruitment of additional current through the other channel type during the action potential as a consequence of changes in spike shape. Enhancement of slowly deactivating Kv2 current can account for the increased afterhyperpolarization produced by BK inhibition and likely underlies the very different effects on the f-I relationship. The cross-regulation of BK and Kv2 activation illustrates that the functional role of a channel cannot be defined in isolation but depends critically on the context of the other conductances in the cell. This work shows that BK calcium-activated potassium channels and Kv2 voltage-activated potassium channels both regulate action potentials in dopamine neurons of the substantia nigra pars compacta. Although both channel types participate in action potential repolarization about equally, they have contrasting and partially opposite effects in regulating neuronal firing at frequencies typical of bursting. Our analysis shows that this results from their different kinetic properties, with fast-activating BK channels serving to short-circuit activation of Kv2 channels, which tend to slow firing by producing a deep afterhyperpolarization. The cross-regulation of BK and Kv2 activation illustrates that the functional role of a channel cannot be defined in isolation but depends critically on the context of the other conductances in the cell. Copyright © 2015 the authors 0270-6474/15/3516404-14$15.00/0.
Methamphetamine Regulation of Firing Activity of Dopamine Neurons
Lin, Min; Sambo, Danielle
2016-01-01
Methamphetamine (METH) is a substrate for the dopamine transporter that increases extracellular dopamine levels by competing with dopamine uptake and increasing reverse transport of dopamine via the transporter. METH has also been shown to alter the excitability of dopamine neurons. The mechanism of METH regulation of the intrinsic firing behaviors of dopamine neurons is less understood. Here we identified an unexpected and unique property of METH on the regulation of firing activity of mouse dopamine neurons. METH produced a transient augmentation of spontaneous spike activity of midbrain dopamine neurons that was followed by a progressive reduction of spontaneous spike activity. Inspection of action potential morphology revealed that METH increased the half-width and produced larger coefficients of variation of the interspike interval, suggesting that METH exposure affected the activity of voltage-dependent potassium channels in these neurons. Since METH has been shown to affect Ca2+ homeostasis, the unexpected findings that METH broadened the action potential and decreased the amplitude of afterhyperpolarization led us to ask whether METH alters the activity of Ca2+-activated potassium (BK) channels. First, we identified BK channels in dopamine neurons by their voltage dependence and their response to a BK channel blocker or opener. While METH suppressed the amplitude of BK channel-mediated unitary currents, the BK channel opener NS1619 attenuated the effects of METH on action potential broadening, afterhyperpolarization repression, and spontaneous spike activity reduction. Live-cell total internal reflection fluorescence microscopy, electrophysiology, and biochemical analysis suggest METH exposure decreased the activity of BK channels by decreasing BK-α subunit levels at the plasma membrane. SIGNIFICANCE STATEMENT Methamphetamine (METH) competes with dopamine uptake, increases dopamine efflux via the dopamine transporter, and affects the excitability of dopamine neurons. Here, we identified an unexpected property of METH on dopamine neuron firing activity. METH transiently increased the spontaneous spike activity of dopamine neurons followed by a progressive reduction of the spontaneous spike activity. METH broadened the action potentials, increased coefficients of variation of the interspike interval, and decreased the amplitude of afterhyperpolarization, which are consistent with changes in the activity of Ca2+-activated potassium (BK) channels. We found that METH decreased the activity of BK channels by stimulating BK-α subunit trafficking. Thus, METH modulation of dopamine neurotransmission and resulting behavioral responses is, in part, due to METH regulation of BK channel activity. PMID:27707972
2016-01-01
The central terminals of primary afferent fibers experience depolarization upon activation of GABAA receptors (GABAAR) because their intracellular chloride concentration is maintained above electrochemical equilibrium. Primary afferent depolarization (PAD) normally mediates inhibition via sodium channel inactivation and shunting but can evoke spikes under certain conditions. Antidromic (centrifugal) conduction of these spikes may contribute to neurogenic inflammation while orthodromic (centripetal) conduction could contribute to pain in the case of nociceptive fibers. PAD-induced spiking is assumed to override presynaptic inhibition. Using computer simulations and dynamic clamp experiments, we sought to identify which biophysical changes are required to enable PAD-induced spiking and whether those changes necessarily compromise PAD-mediated inhibition. According to computational modeling, a depolarizing shift in GABA reversal potential (EGABA) and increased intrinsic excitability (manifest as altered spike initiation properties) were necessary for PAD-induced spiking, whereas increased GABAAR conductance density (ḡGABA) had mixed effects. We tested our predictions experimentally by using dynamic clamp to insert virtual GABAAR conductances with different EGABA and kinetics into acutely dissociated dorsal root ganglion (DRG) neuron somata. Comparable experiments in central axon terminals are prohibitively difficult but the biophysical requirements for PAD-induced spiking are arguably similar in soma and axon. Neurons from naïve (i.e. uninjured) rats were compared before and after pharmacological manipulation of intrinsic excitability, and against neurons from nerve-injured rats. Experimental data confirmed that, in most neurons, both predicted changes were necessary to yield PAD-induced spiking. Importantly, such changes did not prevent PAD from inhibiting other spiking or from blocking spike propagation. In fact, since the high value of ḡGABA required for PAD-induced spiking still mediates strong inhibition, we conclude that PAD-induced spiking does not represent failure of presynaptic inhibition. Instead, diminished PAD caused by reduction of ḡGABA poses a greater risk to presynaptic inhibition and the sensory processing that relies upon it. PMID:27835641
Correlates of a single cortical action potential in the epidural EEG
Teleńczuk, Bartosz; Baker, Stuart N; Kempter, Richard; Curio, Gabriel
2015-01-01
To identify the correlates of a single cortical action potential in surface EEG, we recorded simultaneously epidural EEG and single-unit activity in the primary somatosensory cortex of awake macaque monkeys. By averaging over EEG segments coincident with more than hundred thousand single spikes, we found short-lived (≈ 0.5 ms) triphasic EEG deflections dominated by high-frequency components > 800 Hz. The peak-to-peak amplitude of the grand-averaged spike correlate was 80 nV, which matched theoretical predictions, while single-neuron amplitudes ranged from 12 to 966 nV. Combining these estimates with post-stimulus-time histograms of single-unit responses to median-nerve stimulation allowed us to predict the shape of the evoked epidural EEG response and to estimate the number of contributing neurons. These findings establish spiking activity of cortical neurons as a primary building block of high-frequency epidural EEG, which thus can serve as a quantitative macroscopic marker of neuronal spikes. PMID:25554430
Abbasi, Samira; Maran, Selva K.; Cao, Ying; Abbasi, Ataollah; Heck, Detlef H.
2017-01-01
Neural coding through inhibitory projection pathways remains poorly understood. We analyze the transmission properties of the Purkinje cell (PC) to cerebellar nucleus (CN) pathway in a modeling study using a data set recorded in awake mice containing respiratory rate modulation. We find that inhibitory transmission from tonically active PCs can transmit a behavioral rate code with high fidelity. We parameterized the required population code in PC activity and determined that 20% of PC inputs to a full compartmental CN neuron model need to be rate-comodulated for transmission of a rate code. Rate covariance in PC inputs also accounts for the high coefficient of variation in CN spike trains, while the balance between excitation and inhibition determines spike rate and local spike train variability. Overall, our modeling study can fully account for observed spike train properties of cerebellar output in awake mice, and strongly supports rate coding in the cerebellum. PMID:28617798
SPIKE-2: a Practical Stirling Engine for Kilowatt Level Solar Power
NASA Technical Reports Server (NTRS)
Beale, W. T.
1984-01-01
Recent advances in the art of free piston Stirling engine design make possible the production of 1-10kW free piston Stirling linear alternator engine, hermetically sealed, efficient, durable and simple in construction and operation. Power output is in the form of single or three phase 60 Hz. AC, or DC. The three phase capability is available from single machines without need of external conditioning. Engine voltage control regains set voltage within 5 cycles in response to any load change. The existing SPIKE-2 design has an engine alternator efficiency of 25% at 650 C heater wall temperature and a service life of over three years in solar service. The same system can be scaled over a range of at least 100 watts to 25kW.
Rodriguez-Molina, Victor M.; Aertsen, Ad; Heck, Detlef H.
2007-01-01
In vivo studies have shown that neurons in the neocortex can generate action potentials at high temporal precision. The mechanisms controlling timing and reliability of action potential generation in neocortical neurons, however, are still poorly understood. Here we investigated the temporal precision and reliability of spike firing in cortical layer V pyramidal cells at near-threshold membrane potentials. Timing and reliability of spike responses were a function of EPSC kinetics, temporal jitter of population excitatory inputs, and of background synaptic noise. We used somatic current injection to mimic population synaptic input events and measured spike probability and spike time precision (STP), the latter defined as the time window (Δt) holding 80% of response spikes. EPSC rise and decay times were varied over the known physiological spectrum. At spike threshold level, EPSC decay time had a stronger influence on STP than rise time. Generally, STP was highest (≤2.45 ms) in response to synchronous compounds of EPSCs with fast rise and decay kinetics. Compounds with slow EPSC kinetics (decay time constants>6 ms) triggered spikes at lower temporal precision (≥6.58 ms). We found an overall linear relationship between STP and spike delay. The difference in STP between fast and slow compound EPSCs could be reduced by incrementing the amplitude of slow compound EPSCs. The introduction of a temporal jitter to compound EPSCs had a comparatively small effect on STP, with a tenfold increase in jitter resulting in only a five fold decrease in STP. In the presence of simulated synaptic background activity, precisely timed spikes could still be induced by fast EPSCs, but not by slow EPSCs. PMID:17389910
Jeong, Woorim; Kim, June Sic; Chung, Chun Kee
2013-01-01
We aimed to evaluate the clinical value of gamma oscillations in MEG for intractable neocortical epilepsy patients with cortical dysplasia by comparing gamma and interictal spike events. A retrospective analysis of MEG recordings of 30 adult neocortical epilepsy patients was performed. Gamma (30–70 Hz) and interictal spike events were independently identified, their independent or concurrent presence determined, and their source localization rates compared. Of 30 patients, gamma activities were detected in 28 patients and interictal spikes in 24 patients. Gamma events alone appeared in 5 patients, interictal spikes alone in 1 patient, and no events in 1 patient. Gamma co-occurred with interictal spikes in 20.1 ± 22.1% and interictal spikes co-occurred with gamma in 15.0 ± 19.2%. Rates of event localization within the resection cavity were significantly different (p = 0.042) between gamma (63.3 ± 32.6%) and interictal spike (47.0 ± 41.3%) events. In 4 of the 5 gamma-only patients the mean localization rate was 42.5%. Compared with the interictal spike localization rate, 4 of 9 seizure-free patients had higher gamma localization rates, 4 had the same rate, and 1 had a lower rate. Individual gamma events can be detected independently from interictal spike presence. Gamma can be localized to the resection cavity at least comparably to or more frequently than that from interictal spikes. Even when interictal spikes were undetected, gamma sources were localized to the resection cavity. Gamma oscillations may be a useful indicator of epileptogenic focus. PMID:24273733
The Research Laboratory of Electronics Progress Report Number 132: January 1-December 31, 1989
1990-01-01
between Binaural Hearing and Brainstem Auditory Evoked Potentials in Humans...fem- tosecond excitation pulses. This gives rise to the characteristic " beating " pattern which contains sum and difference frequencies. The "spike...vibrational modes whose through a simple optical network consisting simultaneous oscillations yield the " beating " of only two lenses, two gratings
Precise Synaptic Efficacy Alignment Suggests Potentiation Dominated Learning.
Hartmann, Christoph; Miner, Daniel C; Triesch, Jochen
2015-01-01
Recent evidence suggests that parallel synapses from the same axonal branch onto the same dendritic branch have almost identical strength. It has been proposed that this alignment is only possible through learning rules that integrate activity over long time spans. However, learning mechanisms such as spike-timing-dependent plasticity (STDP) are commonly assumed to be temporally local. Here, we propose that the combination of temporally local STDP and a multiplicative synaptic normalization mechanism is sufficient to explain the alignment of parallel synapses. To address this issue, we introduce three increasingly complex models: First, we model the idealized interaction of STDP and synaptic normalization in a single neuron as a simple stochastic process and derive analytically that the alignment effect can be described by a so-called Kesten process. From this we can derive that synaptic efficacy alignment requires potentiation-dominated learning regimes. We verify these conditions in a single-neuron model with independent spiking activities but more realistic synapses. As expected, we only observe synaptic efficacy alignment for long-term potentiation-biased STDP. Finally, we explore how well the findings transfer to recurrent neural networks where the learning mechanisms interact with the correlated activity of the network. We find that due to the self-reinforcing correlations in recurrent circuits under STDP, alignment occurs for both long-term potentiation- and depression-biased STDP, because the learning will be potentiation dominated in both cases due to the potentiating events induced by correlated activity. This is in line with recent results demonstrating a dominance of potentiation over depression during waking and normalization during sleep. This leads us to predict that individual spine pairs will be more similar after sleep compared to after sleep deprivation. In conclusion, we show that synaptic normalization in conjunction with coordinated potentiation--in this case, from STDP in the presence of correlated pre- and post-synaptic activity--naturally leads to an alignment of parallel synapses.
Miller, Mark N.; Okaty, Benjamin W.; Kato, Saori; Nelson, Sacha B.
2010-01-01
The diverse cell types that comprise neocortical circuits each have characteristic integrative and firing properties that are specialized to perform specific functions within the network. Parvalbumin-positive fast-spiking (FS) interneurons are a particularly specialized cortical cell-type that controls the dynamics of ongoing activity and prevents runaway excitation by virtue of remarkably high firing rates, a feature that is permitted by narrow action potentials and the absence of spike-frequency adaptation. Although several neuronal intrinsic membrane properties undergo activity-dependent plasticity, the role of network activity in shaping and maintaining specialized, cell-type-specific firing properties is unknown. We tested whether the specialized firing properties of mature FS interneurons are sensitive to activity perturbations by inactivating a portion of motor cortex in vivo for 48 hours and measuring resulting plasticity of FS intrinsic and firing properties with whole-cell recording in acute slices. Many of the characteristic properties of FS interneurons, including non-adapting high-frequency spiking and narrow action potentials, were profoundly affected by activity deprivation both at an age just after maturation of FS firing properties and also a week after their maturation. Using microarray screening, we determined that although normal maturation of FS electrophysiological specializations is accompanied by large-scale transcriptional changes, the effects of deprivation on the same specializations involve more modest transcriptional changes, and may instead be primarily mediated by post-transcriptional mechanisms. PMID:21154910
Cardin, Jessica A
2012-01-01
Local cortical circuit activity in vivo comprises a complex and flexible series of interactions between excitatory and inhibitory neurons. Our understanding of the functional interactions between these different neural populations has been limited by the difficulty of identifying and selectively manipulating the diverse and sparsely represented inhibitory interneuron classes in the intact brain. The integration of recently developed optical tools with traditional electrophysiological techniques provides a powerful window into the role of inhibition in regulating the activity of excitatory neurons. In particular, optogenetic targeting of specific cell classes reveals the distinct impacts of local inhibitory populations on other neurons in the surrounding local network. In addition to providing the ability to activate or suppress spiking in target cells, optogenetic activation identifies extracellularly recorded neurons by class, even when naturally occurring spike rates are extremely low. However, there are several important limitations on the use of these tools and the interpretation of resulting data. The purpose of this article is to outline the uses and limitations of optogenetic tools, along with current methods for achieving cell type-specific expression, and to highlight the advantages of an experimental approach combining optogenetics and electrophysiology to explore the role of inhibition in active networks. To illustrate the efficacy of these combined approaches, I present data comparing targeted manipulations of cortical fast-spiking, parvalbumin-expressing and low threshold-spiking, somatostatin-expressing interneurons in vivo. Copyright © 2011 Elsevier Ltd. All rights reserved.
Synaptic Plasticity Enables Adaptive Self-Tuning Critical Networks
Stepp, Nigel; Plenz, Dietmar; Srinivasa, Narayan
2015-01-01
During rest, the mammalian cortex displays spontaneous neural activity. Spiking of single neurons during rest has been described as irregular and asynchronous. In contrast, recent in vivo and in vitro population measures of spontaneous activity, using the LFP, EEG, MEG or fMRI suggest that the default state of the cortex is critical, manifested by spontaneous, scale-invariant, cascades of activity known as neuronal avalanches. Criticality keeps a network poised for optimal information processing, but this view seems to be difficult to reconcile with apparently irregular single neuron spiking. Here, we simulate a 10,000 neuron, deterministic, plastic network of spiking neurons. We show that a combination of short- and long-term synaptic plasticity enables these networks to exhibit criticality in the face of intrinsic, i.e. self-sustained, asynchronous spiking. Brief external perturbations lead to adaptive, long-term modification of intrinsic network connectivity through long-term excitatory plasticity, whereas long-term inhibitory plasticity enables rapid self-tuning of the network back to a critical state. The critical state is characterized by a branching parameter oscillating around unity, a critical exponent close to -3/2 and a long tail distribution of a self-similarity parameter between 0.5 and 1. PMID:25590427
Deffains, Marc; Iskhakova, Liliya; Katabi, Shiran; Haber, Suzanne N; Israel, Zvi; Bergman, Hagai
2016-01-01
The striatum and the subthalamic nucleus (STN) constitute the input stage of the basal ganglia (BG) network and together innervate BG downstream structures using GABA and glutamate, respectively. Comparison of the neuronal activity in BG input and downstream structures reveals that subthalamic, not striatal, activity fluctuations correlate with modulations in the increase/decrease discharge balance of BG downstream neurons during temporal discounting classical condition task. After induction of parkinsonism with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), abnormal low beta (8-15 Hz) spiking and local field potential (LFP) oscillations resonate across the BG network. Nevertheless, LFP beta oscillations entrain spiking activity of STN, striatal cholinergic interneurons and BG downstream structures, but do not entrain spiking activity of striatal projection neurons. Our results highlight the pivotal role of STN divergent projections in BG physiology and pathophysiology and may explain why STN is such an effective site for invasive treatment of advanced Parkinson's disease and other BG-related disorders. DOI: http://dx.doi.org/10.7554/eLife.16443.001 PMID:27552049
Stimulus Size Dependence of Information Transfer from Retina to Thalamus
Uglesich, Robert; Casti, Alex; Hayot, Fernand; Kaplan, Ehud
2009-01-01
Relay cells in the mammalian lateral geniculate nucleus (LGN) are driven primarily by single retinal ganglion cells (RGCs). However, an LGN cell responds typically to less than half of the spikes it receives from the RGC that drives it, and without retinal drive the LGN is silent (Kaplan and Shapley, 1984). Recent studies, which used stimuli restricted to the receptive field (RF) center, show that despite the great loss of spikes, more than half of the information carried by the RGC discharge is typically preserved in the LGN discharge (Sincich et al., 2009), suggesting that the retinal spikes that are deleted by the LGN carry less information than those that are transmitted to the cortex. To determine how LGN relay neurons decide which retinal spikes to respond to, we recorded extracellularly from the cat LGN relay cell spikes together with the slow synaptic (‘S’) potentials that signal the firing of retinal spikes. We investigated the influence of the inhibitory surround of the LGN RF by stimulating the eyes with spots of various sizes, the largest of which covered the center and surround of the LGN relay cell's RF. We found that for stimuli that activated mostly the RF center, each LGN spike delivered more information than the retinal spike, but this difference was reduced as stimulus size increased to cover the RF surround. To evaluate the optimality of the LGN editing of retinal spikes, we created artificial spike trains from the retinal ones by various deletion schemes. We found that single LGN cells transmitted less information than an optimal detector could. PMID:19838326
Cortical activity patterns predict speech discrimination ability
Engineer, Crystal T; Perez, Claudia A; Chen, YeTing H; Carraway, Ryan S; Reed, Amanda C; Shetake, Jai A; Jakkamsetti, Vikram; Chang, Kevin Q; Kilgard, Michael P
2010-01-01
Neural activity in the cerebral cortex can explain many aspects of sensory perception. Extensive psychophysical and neurophysiological studies of visual motion and vibrotactile processing show that the firing rate of cortical neurons averaged across 50–500 ms is well correlated with discrimination ability. In this study, we tested the hypothesis that primary auditory cortex (A1) neurons use temporal precision on the order of 1–10 ms to represent speech sounds shifted into the rat hearing range. Neural discrimination was highly correlated with behavioral performance on 11 consonant-discrimination tasks when spike timing was preserved and was not correlated when spike timing was eliminated. This result suggests that spike timing contributes to the auditory cortex representation of consonant sounds. PMID:18425123
NASA Astrophysics Data System (ADS)
Choi, Myoung-Hwan; Ahn, Jungryul; Park, Dae Jin; Lee, Sang Min; Kim, Kwangsoo; Cho, Dong-il Dan; Senok, Solomon S.; Koo, Kyo-in; Goo, Yong Sook
2017-02-01
Objective. Direct stimulation of retinal ganglion cells in degenerate retinas by implanting epi-retinal prostheses is a recognized strategy for restoration of visual perception in patients with retinitis pigmentosa or age-related macular degeneration. Elucidating the best stimulus-response paradigms in the laboratory using multielectrode arrays (MEA) is complicated by the fact that the short-latency spikes (within 10 ms) elicited by direct retinal ganglion cell (RGC) stimulation are obscured by the stimulus artifact which is generated by the electrical stimulator. Approach. We developed an artifact subtraction algorithm based on topographic prominence discrimination, wherein the duration of prominences within the stimulus artifact is used as a strategy for identifying the artifact for subtraction and clarifying the obfuscated spikes which are then quantified using standard thresholding. Main results. We found that the prominence discrimination based filters perform creditably in simulation conditions by successfully isolating randomly inserted spikes in the presence of simple and even complex residual artifacts. We also show that the algorithm successfully isolated short-latency spikes in an MEA-based recording from degenerate mouse retinas, where the amplitude and frequency characteristics of the stimulus artifact vary according to the distance of the recording electrode from the stimulating electrode. By ROC analysis of false positive and false negative first spike detection rates in a dataset of one hundred and eight RGCs from four retinal patches, we found that the performance of our algorithm is comparable to that of a generally-used artifact subtraction filter algorithm which uses a strategy of local polynomial approximation (SALPA). Significance. We conclude that the application of topographic prominence discrimination is a valid and useful method for subtraction of stimulation artifacts with variable amplitudes and shapes. We propose that our algorithm may be used as stand-alone or supplementary to other artifact subtraction algorithms like SALPA.
Multivariate Autoregressive Modeling and Granger Causality Analysis of Multiple Spike Trains
Krumin, Michael; Shoham, Shy
2010-01-01
Recent years have seen the emergence of microelectrode arrays and optical methods allowing simultaneous recording of spiking activity from populations of neurons in various parts of the nervous system. The analysis of multiple neural spike train data could benefit significantly from existing methods for multivariate time-series analysis which have proven to be very powerful in the modeling and analysis of continuous neural signals like EEG signals. However, those methods have not generally been well adapted to point processes. Here, we use our recent results on correlation distortions in multivariate Linear-Nonlinear-Poisson spiking neuron models to derive generalized Yule-Walker-type equations for fitting ‘‘hidden” Multivariate Autoregressive models. We use this new framework to perform Granger causality analysis in order to extract the directed information flow pattern in networks of simulated spiking neurons. We discuss the relative merits and limitations of the new method. PMID:20454705
Xu, Jia-Min; Wang, Ce-Qun; Lin, Long-Nian
2014-06-25
Multi-channel in vivo recording techniques are used to record ensemble neuronal activity and local field potentials (LFP) simultaneously. One of the key points for the technique is how to process these two sets of recorded neural signals properly so that data accuracy can be assured. We intend to introduce data processing approaches for action potentials and LFP based on the original data collected through multi-channel recording system. Action potential signals are high-frequency signals, hence high sampling rate of 40 kHz is normally chosen for recording. Based on waveforms of extracellularly recorded action potentials, tetrode technology combining principal component analysis can be used to discriminate neuronal spiking signals from differently spatially distributed neurons, in order to obtain accurate single neuron spiking activity. LFPs are low-frequency signals (lower than 300 Hz), hence the sampling rate of 1 kHz is used for LFPs. Digital filtering is required for LFP analysis to isolate different frequency oscillations including theta oscillation (4-12 Hz), which is dominant in active exploration and rapid-eye-movement (REM) sleep, gamma oscillation (30-80 Hz), which is accompanied by theta oscillation during cognitive processing, and high frequency ripple oscillation (100-250 Hz) in awake immobility and slow wave sleep (SWS) state in rodent hippocampus. For the obtained signals, common data post-processing methods include inter-spike interval analysis, spike auto-correlation analysis, spike cross-correlation analysis, power spectral density analysis, and spectrogram analysis.
Eglen, Stephen J.
2014-01-01
Correlations in neuronal spike times are thought to be key to processing in many neural systems. Many measures have been proposed to summarize these correlations and of these the correlation index is widely used and is the standard in studies of spontaneous retinal activity. We show that this measure has two undesirable properties: it is unbounded above and confounded by firing rate. We list properties needed for a measure to fairly quantify and compare correlations and we propose a novel measure of correlation—the spike time tiling coefficient. This coefficient, the correlation index, and 33 other measures of correlation of spike times are blindly tested for the required properties on synthetic and experimental data. Based on this, we propose a measure (the spike time tiling coefficient) to replace the correlation index. To demonstrate the benefits of this measure, we reanalyze data from seven key studies, which previously used the correlation index to investigate the nature of spontaneous activity. We reanalyze data from β2(KO) and β2(TG) mutants, mutants lacking connexin isoforms, and also the age-dependent changes in wild-type and β2(KO) correlations. Reanalysis of the data using the proposed measure can significantly change the conclusions. It leads to better quantification of correlations and therefore better inference from the data. We hope that the proposed measure will have wide applications, and will help clarify the role of activity in retinotopic map formation. PMID:25339742
Wallisch, Pascal; Ostojic, Srdjan
2016-01-01
Synaptic plasticity is sensitive to the rate and the timing of presynaptic and postsynaptic action potentials. In experimental protocols inducing plasticity, the imposed spike trains are typically regular and the relative timing between every presynaptic and postsynaptic spike is fixed. This is at odds with firing patterns observed in the cortex of intact animals, where cells fire irregularly and the timing between presynaptic and postsynaptic spikes varies. To investigate synaptic changes elicited by in vivo-like firing, we used numerical simulations and mathematical analysis of synaptic plasticity models. We found that the influence of spike timing on plasticity is weaker than expected from regular stimulation protocols. Moreover, when neurons fire irregularly, synaptic changes induced by precise spike timing can be equivalently induced by a modest firing rate variation. Our findings bridge the gap between existing results on synaptic plasticity and plasticity occurring in vivo, and challenge the dominant role of spike timing in plasticity. SIGNIFICANCE STATEMENT Synaptic plasticity, the change in efficacy of connections between neurons, is thought to underlie learning and memory. The dominant paradigm posits that the precise timing of neural action potentials (APs) is central for plasticity induction. This concept is based on experiments using highly regular and stereotyped patterns of APs, in stark contrast with natural neuronal activity. Using synaptic plasticity models, we investigated how irregular, in vivo-like activity shapes synaptic plasticity. We found that synaptic changes induced by precise timing of APs are much weaker than suggested by regular stimulation protocols, and can be equivalently induced by modest variations of the AP rate alone. Our results call into question the dominant role of precise AP timing for plasticity in natural conditions. PMID:27807166
Kwag, Jeehyun; Jang, Hyun Jae; Kim, Mincheol; Lee, Sujeong
2014-01-01
Rate and phase codes are believed to be important in neural information processing. Hippocampal place cells provide a good example where both coding schemes coexist during spatial information processing. Spike rate increases in the place field, whereas spike phase precesses relative to the ongoing theta oscillation. However, what intrinsic mechanism allows for a single neuron to generate spike output patterns that contain both neural codes is unknown. Using dynamic clamp, we simulate an in vivo-like subthreshold dynamics of place cells to in vitro CA1 pyramidal neurons to establish an in vitro model of spike phase precession. Using this in vitro model, we show that membrane potential oscillation (MPO) dynamics is important in the emergence of spike phase codes: blocking the slowly activating, non-inactivating K+ current (IM), which is known to control subthreshold MPO, disrupts MPO and abolishes spike phase precession. We verify the importance of adaptive IM in the generation of phase codes using both an adaptive integrate-and-fire and a Hodgkin–Huxley (HH) neuron model. Especially, using the HH model, we further show that it is the perisomatically located IM with slow activation kinetics that is crucial for the generation of phase codes. These results suggest an important functional role of IM in single neuron computation, where IM serves as an intrinsic mechanism allowing for dual rate and phase coding in single neurons. PMID:25100320
Yoshida, Motoharu; Jochems, Arthur; Hasselmo, Michael E
2013-01-01
Mechanisms underlying grid cell firing in the medial entorhinal cortex (MEC) still remain unknown. Computational modeling studies have suggested that cellular properties such as spike frequency adaptation and persistent firing might underlie the grid cell firing. Recent in vivo studies also suggest that cholinergic activation influences grid cell firing. Here we investigated the anatomical distribution of firing frequency adaptation, the medium spike after hyperpolarization potential (mAHP), subthreshold membrane potential oscillations, sag potential, input resistance and persistent firing, in MEC layer II principal cells using in vitro whole-cell patch clamp recordings in rats. Anatomical distributions of these properties were compared along both the dorso-ventral and medio-lateral axes, both with and without the cholinergic receptor agonist carbachol. We found that spike frequency adaptation is significantly stronger in ventral than in dorsal neurons both with and without carbachol. Spike frequency adaptation was significantly correlated with the duration of the mAHP, which also showed a gradient along the dorso-ventral axis. In carbachol, we found that about 50% of MEC layer II neurons show persistent firing which lasted more than 30 seconds. Persistent firing of MEC layer II neurons might contribute to grid cell firing by providing the excitatory drive. Dorso-ventral differences in spike frequency adaptation we report here are opposite from previous predictions by a computational model. We discuss an alternative mechanism as to how dorso-ventral differences in spike frequency adaptation could contribute to different scales of grid spacing.
Low excitatory innervation balances high intrinsic excitability of immature dentate neurons
Dieni, Cristina V.; Panichi, Roberto; Aimone, James B.; Kuo, Chay T.; Wadiche, Jacques I.; Overstreet-Wadiche, Linda
2016-01-01
Persistent neurogenesis in the dentate gyrus produces immature neurons with high intrinsic excitability and low levels of inhibition that are predicted to be more broadly responsive to afferent activity than mature neurons. Mounting evidence suggests that these immature neurons are necessary for generating distinct neural representations of similar contexts, but it is unclear how broadly responsive neurons help distinguish between similar patterns of afferent activity. Here we show that stimulation of the entorhinal cortex in mouse brain slices paradoxically generates spiking of mature neurons in the absence of immature neuron spiking. Immature neurons with high intrinsic excitability fail to spike due to insufficient excitatory drive that results from low innervation rather than silent synapses or low release probability. Our results suggest that low synaptic connectivity prevents immature neurons from responding broadly to cortical activity, potentially enabling excitable immature neurons to contribute to sparse and orthogonal dentate representations. PMID:27095423
Deco, Gustavo; Mantini, Dante; Romani, Gian Luca; Hagmann, Patric; Corbetta, Maurizio
2013-01-01
Brain fluctuations at rest are not random but are structured in spatial patterns of correlated activity across different brain areas. The question of how resting-state functional connectivity (FC) emerges from the brain's anatomical connections has motivated several experimental and computational studies to understand structure–function relationships. However, the mechanistic origin of resting state is obscured by large-scale models' complexity, and a close structure–function relation is still an open problem. Thus, a realistic but simple enough description of relevant brain dynamics is needed. Here, we derived a dynamic mean field model that consistently summarizes the realistic dynamics of a detailed spiking and conductance-based synaptic large-scale network, in which connectivity is constrained by diffusion imaging data from human subjects. The dynamic mean field approximates the ensemble dynamics, whose temporal evolution is dominated by the longest time scale of the system. With this reduction, we demonstrated that FC emerges as structured linear fluctuations around a stable low firing activity state close to destabilization. Moreover, the model can be further and crucially simplified into a set of motion equations for statistical moments, providing a direct analytical link between anatomical structure, neural network dynamics, and FC. Our study suggests that FC arises from noise propagation and dynamical slowing down of fluctuations in an anatomically constrained dynamical system. Altogether, the reduction from spiking models to statistical moments presented here provides a new framework to explicitly understand the building up of FC through neuronal dynamics underpinned by anatomical connections and to drive hypotheses in task-evoked studies and for clinical applications. PMID:23825427
Deco, Gustavo; Ponce-Alvarez, Adrián; Mantini, Dante; Romani, Gian Luca; Hagmann, Patric; Corbetta, Maurizio
2013-07-03
Brain fluctuations at rest are not random but are structured in spatial patterns of correlated activity across different brain areas. The question of how resting-state functional connectivity (FC) emerges from the brain's anatomical connections has motivated several experimental and computational studies to understand structure-function relationships. However, the mechanistic origin of resting state is obscured by large-scale models' complexity, and a close structure-function relation is still an open problem. Thus, a realistic but simple enough description of relevant brain dynamics is needed. Here, we derived a dynamic mean field model that consistently summarizes the realistic dynamics of a detailed spiking and conductance-based synaptic large-scale network, in which connectivity is constrained by diffusion imaging data from human subjects. The dynamic mean field approximates the ensemble dynamics, whose temporal evolution is dominated by the longest time scale of the system. With this reduction, we demonstrated that FC emerges as structured linear fluctuations around a stable low firing activity state close to destabilization. Moreover, the model can be further and crucially simplified into a set of motion equations for statistical moments, providing a direct analytical link between anatomical structure, neural network dynamics, and FC. Our study suggests that FC arises from noise propagation and dynamical slowing down of fluctuations in an anatomically constrained dynamical system. Altogether, the reduction from spiking models to statistical moments presented here provides a new framework to explicitly understand the building up of FC through neuronal dynamics underpinned by anatomical connections and to drive hypotheses in task-evoked studies and for clinical applications.
Maunsell, John H.R.
2012-01-01
Characterizing the functional connectivity between neurons is key for understanding brain function. We recorded spikes and local field potentials (LFP) from multi-electrode arrays implanted in monkey visual cortex to test the hypotheses that spikes generated outward traveling LFP waves and the strength of functional connectivity depended on stimulus contrast, as described recently. These hypotheses were proposed based on the observation that the latency of the peak negativity of the spike-triggered LFP average (STA) increased with distance between the spike and LFP electrodes, and the magnitude of the STA negativity and the distance over which it was observed decreased with increasing stimulus contrast. Detailed analysis of the shape of the STA, however, revealed contributions from two distinct sources – a transient negativity in the LFP locked to the spike (∼0 ms) that attenuated rapidly with distance, and a low frequency rhythm with peak negativity ∼25 ms after the spike that attenuated slowly with distance. The overall negative peak of the LFP, which combined both these components, shifted from ∼0 to ∼25 ms going from electrodes near the spike to electrodes far from the spike, giving an impression of a traveling wave, although the shift was fully explained by changing contributions from the two fixed components. The low frequency rhythm was attenuated during stimulus presentations, decreasing the overall magnitude of the STA. These results highlight the importance of accounting for the network activity while using STAs to determine functional connectivity. PMID:21880928
Lieb, Florian; Stark, Hans-Georg; Thielemann, Christiane
2017-06-01
Spike detection from extracellular recordings is a crucial preprocessing step when analyzing neuronal activity. The decision whether a specific part of the signal is a spike or not is important for any kind of other subsequent preprocessing steps, like spike sorting or burst detection in order to reduce the classification of erroneously identified spikes. Many spike detection algorithms have already been suggested, all working reasonably well whenever the signal-to-noise ratio is large enough. When the noise level is high, however, these algorithms have a poor performance. In this paper we present two new spike detection algorithms. The first is based on a stationary wavelet energy operator and the second is based on the time-frequency representation of spikes. Both algorithms are more reliable than all of the most commonly used methods. The performance of the algorithms is confirmed by using simulated data, resembling original data recorded from cortical neurons with multielectrode arrays. In order to demonstrate that the performance of the algorithms is not restricted to only one specific set of data, we also verify the performance using a simulated publicly available data set. We show that both proposed algorithms have the best performance under all tested methods, regardless of the signal-to-noise ratio in both data sets. This contribution will redound to the benefit of electrophysiological investigations of human cells. Especially the spatial and temporal analysis of neural network communications is improved by using the proposed spike detection algorithms.
SPIKY: a graphical user interface for monitoring spike train synchrony
Mulansky, Mario; Bozanic, Nebojsa
2015-01-01
Techniques for recording large-scale neuronal spiking activity are developing very fast. This leads to an increasing demand for algorithms capable of analyzing large amounts of experimental spike train data. One of the most crucial and demanding tasks is the identification of similarity patterns with a very high temporal resolution and across different spatial scales. To address this task, in recent years three time-resolved measures of spike train synchrony have been proposed, the ISI-distance, the SPIKE-distance, and event synchronization. The Matlab source codes for calculating and visualizing these measures have been made publicly available. However, due to the many different possible representations of the results the use of these codes is rather complicated and their application requires some basic knowledge of Matlab. Thus it became desirable to provide a more user-friendly and interactive interface. Here we address this need and present SPIKY, a graphical user interface that facilitates the application of time-resolved measures of spike train synchrony to both simulated and real data. SPIKY includes implementations of the ISI-distance, the SPIKE-distance, and the SPIKE-synchronization (an improved and simplified extension of event synchronization) that have been optimized with respect to computation speed and memory demand. It also comprises a spike train generator and an event detector that makes it capable of analyzing continuous data. Finally, the SPIKY package includes additional complementary programs aimed at the analysis of large numbers of datasets and the estimation of significance levels. PMID:25744888
SPIKY: a graphical user interface for monitoring spike train synchrony.
Kreuz, Thomas; Mulansky, Mario; Bozanic, Nebojsa
2015-05-01
Techniques for recording large-scale neuronal spiking activity are developing very fast. This leads to an increasing demand for algorithms capable of analyzing large amounts of experimental spike train data. One of the most crucial and demanding tasks is the identification of similarity patterns with a very high temporal resolution and across different spatial scales. To address this task, in recent years three time-resolved measures of spike train synchrony have been proposed, the ISI-distance, the SPIKE-distance, and event synchronization. The Matlab source codes for calculating and visualizing these measures have been made publicly available. However, due to the many different possible representations of the results the use of these codes is rather complicated and their application requires some basic knowledge of Matlab. Thus it became desirable to provide a more user-friendly and interactive interface. Here we address this need and present SPIKY, a graphical user interface that facilitates the application of time-resolved measures of spike train synchrony to both simulated and real data. SPIKY includes implementations of the ISI-distance, the SPIKE-distance, and the SPIKE-synchronization (an improved and simplified extension of event synchronization) that have been optimized with respect to computation speed and memory demand. It also comprises a spike train generator and an event detector that makes it capable of analyzing continuous data. Finally, the SPIKY package includes additional complementary programs aimed at the analysis of large numbers of datasets and the estimation of significance levels. Copyright © 2015 the American Physiological Society.
Spatiotemporal Spike Coding of Behavioral Adaptation in the Dorsal Anterior Cingulate Cortex
Logiaco, Laureline; Quilodran, René; Procyk, Emmanuel; Arleo, Angelo
2015-01-01
The frontal cortex controls behavioral adaptation in environments governed by complex rules. Many studies have established the relevance of firing rate modulation after informative events signaling whether and how to update the behavioral policy. However, whether the spatiotemporal features of these neuronal activities contribute to encoding imminent behavioral updates remains unclear. We investigated this issue in the dorsal anterior cingulate cortex (dACC) of monkeys while they adapted their behavior based on their memory of feedback from past choices. We analyzed spike trains of both single units and pairs of simultaneously recorded neurons using an algorithm that emulates different biologically plausible decoding circuits. This method permits the assessment of the performance of both spike-count and spike-timing sensitive decoders. In response to the feedback, single neurons emitted stereotypical spike trains whose temporal structure identified informative events with higher accuracy than mere spike count. The optimal decoding time scale was in the range of 70–200 ms, which is significantly shorter than the memory time scale required by the behavioral task. Importantly, the temporal spiking patterns of single units were predictive of the monkeys’ behavioral response time. Furthermore, some features of these spiking patterns often varied between jointly recorded neurons. All together, our results suggest that dACC drives behavioral adaptation through complex spatiotemporal spike coding. They also indicate that downstream networks, which decode dACC feedback signals, are unlikely to act as mere neural integrators. PMID:26266537
Hussin, Ahmed T; Boychuk, Jeffery A; Brown, Andrew R; Pittman, Quentin J; Teskey, G Campbell
2015-01-01
Intracortical microstimulation (ICMS) is a technique used for a number of purposes including the derivation of cortical movement representations (motor maps). Its application can activate the output layer 5 of motor cortex and can result in the elicitation of body movements depending upon the stimulus parameters used. The extent to which pyramidal tract projection neurons of the motor cortex are activated transsynaptically or directly by ICMS remains an open question. Given this uncertainty in the mode of activation, we used a preparation that combined patch clamp whole-cell recordings from single layer 5 pyramidal neurons and extracellular ICMS in slices of motor cortex as well as a standard in vivo mapping technique to ask how ICMS activated motor cortex pyramidal neurons. We measured changes in synaptic spike threshold and spiking rate to ICMS in vitro and movement threshold in vivo in the presence or absence of specific pharmacological blockers of glutamatergic (AMPA, NMDA and Kainate) receptors and GABAA receptors. With major excitatory and inhibitory synaptic transmission blocked (with DNQX, APV and bicuculline methiodide), we observed a significant increase in the ICMS current intensity required to elicit a movement in vivo as well as to the first spike and an 85% reduction in spiking responses in vitro. Subsets of neurons were still responsive after the synaptic block, especially at higher current intensities, suggesting a modest direct activation. Taken together our data indicate a mainly synaptic mode of activation to ICMS in layer 5 of rat motor cortex. Copyright © 2015 Elsevier Inc. All rights reserved.
Brazhnik, Elena; Cruz, Ana V; Avila, Irene; Wahba, Marian I; Novikov, Nikolay; Ilieva, Neda M; McCoy, Alex J; Gerber, Colin; Walters, Judith R
2012-06-06
Excessive beta frequency oscillatory and synchronized activity has been reported in the basal ganglia of parkinsonian patients and animal models of the disease. To gain insight into processes underlying this activity, this study explores relationships between oscillatory activity in motor cortex and basal ganglia output in behaving rats after dopamine cell lesion. During inattentive rest, 7 d after lesion, increases in motor cortex-substantia nigra pars reticulata (SNpr) coherence emerged in the 8-25 Hz range, with significant increases in local field potential (LFP) power in SNpr but not motor cortex. In contrast, during treadmill walking, marked increases in both motor cortex and SNpr LFP power, as well as coherence, emerged in the 25-40 Hz band with a peak frequency at 30-35 Hz. Spike-triggered waveform averages showed that 77% of SNpr neurons, 77% of putative cortical interneurons, and 44% of putative pyramidal neurons were significantly phase-locked to the increased cortical LFP activity in the 25-40 Hz range. Although the mean lag between cortical and SNpr LFPs fluctuated around zero, SNpr neurons phase-locked to cortical LFP oscillations fired, on average, 17 ms after synchronized spiking in motor cortex. High coherence between LFP oscillations in cortex and SNpr supports the view that cortical activity facilitates entrainment and synchronization of activity in basal ganglia after loss of dopamine. However, the dramatic increases in cortical power and relative timing of phase-locked spiking in these areas suggest that additional processes help shape the frequency-specific tuning of the basal ganglia-thalamocortical network during ongoing motor activity.
Dehydration-induced modulation of κ-opioid inhibition of vasopressin neurone activity
Scott, Victoria; Bishop, Valerie R; Leng, Gareth; Brown, Colin H
2009-01-01
Dehydration increases vasopressin (antidiuretic hormone) secretion from the posterior pituitary gland to reduce water loss in the urine. Vasopressin secretion is determined by action potential firing in vasopressin neurones, which can exhibit continuous, phasic (alternating periods of activity and silence), or irregular activity. Autocrine κ-opioid inhibition contributes to the generation of activity patterning of vasopressin neurones under basal conditions and so we used in vivo extracellular single unit recording to test the hypothesis that changes in autocrine κ-opioid inhibition drive changes in activity patterning of vasopressin neurones during dehydration. Dehydration increased the firing rate of rat vasopressin neurones displaying continuous activity (from 7.1 ± 0.5 to 9.0 ± 0.6 spikes s−1) and phasic activity (from 4.2 ± 0.7 to 7.8 ± 0.9 spikes s−1), but not those displaying irregular activity. The dehydration-induced increase in phasic activity was via an increase in intraburst firing rate. The selective κ-opioid receptor antagonist nor-binaltorphimine increased the firing rate of phasic neurones in non-dehydrated rats (from 3.4 ± 0.8 to 5.3 ± 0.6 spikes s−1) and dehydrated rats (from 6.4 ± 0.5 to 9.1 ± 1.2 spikes s−1), indicating that κ-opioid feedback inhibition of phasic bursts is maintained during dehydration. In a separate series of experiments, prodynorphin mRNA expression was increased in vasopressin neurones of hyperosmotic rats, compared to hypo-osmotic rats. Hence, it appears that dynorphin expression in vasopressin neurones undergoes dynamic changes in proportion to the required secretion of vasopressin so that, even under stimulated conditions, autocrine feedback inhibition of vasopressin neurones prevents over-excitation. PMID:19822541
Kammermeier, Stefan; Pittard, Damien; Hamada, Ikuma
2016-01-01
Deep brain stimulation of the internal globus pallidus (GPi) is a major treatment for advanced Parkinson's disease. The effects of this intervention on electrical activity patterns in targets of GPi output, specifically in the thalamus, are poorly understood. The experiments described here examined these effects using electrophysiological recordings in two Rhesus monkeys rendered moderately parkinsonian through treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), after sampling control data in the same animals. Analysis of spontaneous spiking activity of neurons in the basal ganglia-receiving areas of the ventral thalamus showed that MPTP-induced parkinsonism is associated with a reduction of firing rates of segments of the data that contained neither bursts nor decelerations, and with increased burst firing. Spectral analyses revealed an increase of power in the 3- to 13-Hz band and a reduction in the γ-range in the spiking activity of these neurons. Electrical stimulation of the ventrolateral motor territory of GPi with macroelectrodes, mimicking deep brain stimulation in parkinsonian patients (bipolar electrodes, 0.5 mm intercontact distance, biphasic stimuli, 120 Hz, 100 μs/phase, 200 μA), had antiparkinsonian effects. The stimulation markedly reduced oscillations in thalamic firing in the 13- to 30-Hz range and uncoupled the spiking activity of recorded neurons from simultaneously recorded local field potential (LFP) activity. These results confirm that oscillatory and nonoscillatory characteristics of spontaneous activity in the basal ganglia receiving ventral thalamus are altered in MPTP-induced parkinsonism. Electrical stimulation of GPi did not entrain thalamic activity but changed oscillatory activity in the ventral thalamus and altered the relationship between spikes and simultaneously recorded LFPs. PMID:27683881
Dong, Yi; Mihalas, Stefan; Russell, Alexander; Etienne-Cummings, Ralph; Niebur, Ernst
2012-01-01
When a neuronal spike train is observed, what can we say about the properties of the neuron that generated it? A natural way to answer this question is to make an assumption about the type of neuron, select an appropriate model for this type, and then to choose the model parameters as those that are most likely to generate the observed spike train. This is the maximum likelihood method. If the neuron obeys simple integrate and fire dynamics, Paninski, Pillow, and Simoncelli (2004) showed that its negative log-likelihood function is convex and that its unique global minimum can thus be found by gradient descent techniques. The global minimum property requires independence of spike time intervals. Lack of history dependence is, however, an important constraint that is not fulfilled in many biological neurons which are known to generate a rich repertoire of spiking behaviors that are incompatible with history independence. Therefore, we expanded the integrate and fire model by including one additional variable, a variable threshold (Mihalas & Niebur, 2009) allowing for history-dependent firing patterns. This neuronal model produces a large number of spiking behaviors while still being linear. Linearity is important as it maintains the distribution of the random variables and still allows for maximum likelihood methods to be used. In this study we show that, although convexity of the negative log-likelihood is not guaranteed for this model, the minimum of the negative log-likelihood function yields a good estimate for the model parameters, in particular if the noise level is treated as a free parameter. Furthermore, we show that a nonlinear function minimization method (r-algorithm with space dilation) frequently reaches the global minimum. PMID:21851282
NASA Astrophysics Data System (ADS)
Kim, Suhwan; Baek, Juyeong; Jung, Unsang; Lee, Sangwon; Jung, Woonggyu; Kim, Jeehyun; Kang, Shinwon
2013-05-01
Recently, Mouse neuroblastoma cells are considered as an attractive model for the study of human neurological and prion diseases, and intensively used as a model system in different areas. Among those areas, differentiation of neuro2a (N2A) cells, receptor mediated ion current, and glutamate induced physiological response are actively investigated. The reason for the interest to mouse neuroblastoma N2A cells is that they have a fast growing rate than other cells in neural origin with a few another advantages. This study evaluated the calcium oscillations and neural spikes recording of mouse neuroblastoma N2A cells in an epileptic condition. Based on our observation of neural spikes in mouse N2A cell with our proposed imaging modality, we report that mouse neuroblastoma N2A cells can be an important model related to epileptic activity studies. It is concluded that the mouse neuroblastoma N2A cells produce the epileptic spikes in vitro in the same way as produced by the neurons or the astrocytes. This evidence advocates the increased and strong level of neurotransmitters release by enhancement in free calcium using the 4-aminopyridine which causes the mouse neuroblastoma N2A cells to produce the epileptic spikes and calcium oscillation.
A hyperactive transcriptional state marks genome reactivation at the mitosis–G1 transition
Hsiung, Chris C.-S.; Bartman, Caroline R.; Huang, Peng; Ginart, Paul; Stonestrom, Aaron J.; Keller, Cheryl A.; Face, Carolyne; Jahn, Kristen S.; Evans, Perry; Sankaranarayanan, Laavanya; Giardine, Belinda; Hardison, Ross C.; Raj, Arjun; Blobel, Gerd A.
2016-01-01
During mitosis, RNA polymerase II (Pol II) and many transcription factors dissociate from chromatin, and transcription ceases globally. Transcription is known to restart in bulk by telophase, but whether de novo transcription at the mitosis–G1 transition is in any way distinct from later in interphase remains unknown. We tracked Pol II occupancy genome-wide in mammalian cells progressing from mitosis through late G1. Unexpectedly, during the earliest rounds of transcription at the mitosis–G1 transition, ∼50% of active genes and distal enhancers exhibit a spike in transcription, exceeding levels observed later in G1 phase. Enhancer–promoter chromatin contacts are depleted during mitosis and restored rapidly upon G1 entry but do not spike. Of the chromatin-associated features examined, histone H3 Lys27 acetylation levels at individual loci in mitosis best predict the mitosis–G1 transcriptional spike. Single-molecule RNA imaging supports that the mitosis–G1 transcriptional spike can constitute the maximum transcriptional activity per DNA copy throughout the cell division cycle. The transcriptional spike occurs heterogeneously and propagates to cell-to-cell differences in mature mRNA expression. Our results raise the possibility that passage through the mitosis–G1 transition might predispose cells to diverge in gene expression states. PMID:27340175
Feedforward and feedback inhibition in neostriatal GABAergic spiny neurons.
Tepper, James M; Wilson, Charles J; Koós, Tibor
2008-08-01
There are two distinct inhibitory GABAergic circuits in the neostriatum. The feedforward circuit consists of a relatively small population of GABAergic interneurons that receives excitatory input from the neocortex and exerts monosynaptic inhibition onto striatal spiny projection neurons. The feedback circuit comprises the numerous spiny projection neurons and their interconnections via local axon collaterals. This network has long been assumed to provide the majority of striatal GABAergic inhibition and to sharpen and shape striatal output through lateral inhibition, producing increased activity in the most strongly excited spiny cells at the expense of their less strongly excited neighbors. Recent results, mostly from recording experiments of synaptically connected pairs of neurons, have revealed that the two GABAergic circuits differ markedly in terms of the total number of synapses made by each, the strength of the postsynaptic response detected at the soma, the extent of presynaptic convergence and divergence and the net effect of the activation of each circuit on the postsynaptic activity of the spiny neuron. These data have revealed that the feedforward inhibition is powerful and widespread, with spiking in a single interneuron being capable of significantly delaying or even blocking the generation of spikes in a large number of postsynaptic spiny neurons. In contrast, the postsynaptic effects of spiking in a single presynaptic spiny neuron on postsynaptic spiny neurons are weak when measured at the soma, and unable to significantly affect spike timing or generation. Further, reciprocity of synaptic connections between spiny neurons is only rarely observed. These results suggest that the bulk of the fast inhibition that has the strongest effects on spiny neuron spike timing comes from the feedforward interneuronal system whereas the axon collateral feedback system acts principally at the dendrites to control local excitability as well as the overall level of activity of the spiny neuron.
Aarabi, A; Grebe, R; Berquin, P; Bourel Ponchel, E; Jalin, C; Fohlen, M; Bulteau, C; Delalande, O; Gondry, C; Héberlé, C; Moullart, V; Wallois, F
2012-06-01
This case study aims to demonstrate that spatiotemporal spike discrimination and source analysis are effective to monitor the development of sources of epileptic activity in time and space. Therefore, they can provide clinically useful information allowing a better understanding of the pathophysiology of individual seizures with time- and space-resolved characteristics of successive epileptic states, including interictal, preictal, postictal, and ictal states. High spatial resolution scalp EEGs (HR-EEG) were acquired from a 2-year-old girl with refractory central epilepsy and single-focus seizures as confirmed by intracerebral EEG recordings and ictal single-photon emission computed tomography (SPECT). Evaluation of HR-EEG consists of the following three global steps: (1) creation of the initial head model, (2) automatic spike and seizure detection, and finally (3) source localization. During the source localization phase, epileptic states are determined to allow state-based spike detection and localization of underlying sources for each spike. In a final cluster analysis, localization results are integrated to determine the possible sources of epileptic activity. The results were compared with the cerebral locations identified by intracerebral EEG recordings and SPECT. The results obtained with this approach were concordant with those of MRI, SPECT and distribution of intracerebral potentials. Dipole cluster centres found for spikes in interictal, preictal, ictal and postictal states were situated an average of 6.3mm from the intracerebral contacts with the highest voltage. Both amplitude and shape of spikes change between states. Dispersion of the dipoles was higher in the preictal state than in the postictal state. Two clusters of spikes were identified. The centres of these clusters changed position periodically during the various epileptic states. High-resolution surface EEG evaluated by an advanced algorithmic approach can be used to investigate the spatiotemporal characteristics of sources located in the epileptic focus. The results were validated by standard methods, ensuring good spatial resolution by MRI and SPECT and optimal temporal resolution by intracerebral EEG. Surface EEG can be used to identify different spike clusters and sources of the successive epileptic states. The method that was used in this study will provide physicians with a better understanding of the pathophysiological characteristics of epileptic activities. In particular, this method may be useful for more effective positioning of implantable intracerebral electrodes. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Tuckwell, Henry C
2013-06-01
Serotonergic neurons of the dorsal raphe nuclei, with their extensive innervation of nearly the whole brain have important modulatory effects on many cognitive and physiological processes. They play important roles in clinical depression and other psychiatric disorders. In order to quantify the effects of serotonergic transmission on target cells it is desirable to construct computational models and to this end these it is necessary to have details of the biophysical and spike properties of the serotonergic neurons. Here several basic properties are reviewed with data from several studies since the 1960s to the present. The quantities included are input resistance, resting membrane potential, membrane time constant, firing rate, spike duration, spike and afterhyperpolarization (AHP) amplitude, spike threshold, cell capacitance, soma and somadendritic areas. The action potentials of these cells are normally triggered by a combination of sodium and calcium currents which may result in autonomous pacemaker activity. We here analyse the mechanisms of high-threshold calcium spikes which have been demonstrated in these cells the presence of TTX (tetrodotoxin). The parameters for calcium dynamics required to give calcium spikes are quite different from those for regular spiking which suggests the involvement of restricted parts of the soma-dendritic surface as has been found, for example, in hippocampal neurons. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
A case-control study of wicket spikes using video-EEG monitoring.
Vallabhaneni, Maya; Baldassari, Laura E; Scribner, James T; Cho, Yong Won; Motamedi, Gholam K
2013-01-01
To investigate clinical characteristics associated with wicket spikes in patients undergoing long-term video-EEG monitoring. A case-control study was performed in 479 patients undergoing video-EEG monitoring, with 3 age- (±3 years) and gender-matched controls per patient with wicket spikes. Logistic regression was utilized to investigate the association between wicket spikes and other factors, including conditions that have been previously associated with wicket spikes. Wicket spikes were recorded in 48 patients. There was a significantly higher prevalence of dizziness/vertigo (p=0.002), headaches (p=0.005), migraine (p=0.015), and seizures (p=0.016) in patients with wickets. The majority of patients with wicket spikes did not exhibit epileptiform activity on EEG; however, patients with history of seizures were more likely to have wickets (p=0.017). There was no significant difference in the prevalence of psychogenic non-epileptic seizures between the groups. Wickets were more common on the left, during sleep, and more likely to be first recorded on day 1-2 of monitoring. Patients with wicket spikes are more likely to have dizziness/vertigo, headaches, migraine, and seizures. Patients with history of seizures are more likely to have wickets. The prevalence of psychogenic non-epileptic seizures is not significantly higher in patients with wickets. Copyright © 2012 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
Kayama, Tasuku; Suzuki, Ikuro; Odawara, Aoi; Sasaki, Takuya; Ikegaya, Yuji
2018-01-01
In culture conditions, human induced-pluripotent stem cells (hiPSC)-derived neurons form synaptic connections with other cells and establish neuronal networks, which are expected to be an in vitro model system for drug discovery screening and toxicity testing. While early studies demonstrated effects of co-culture of hiPSC-derived neurons with astroglial cells on survival and maturation of hiPSC-derived neurons, the population spiking patterns of such hiPSC-derived neurons have not been fully characterized. In this study, we analyzed temporal spiking patterns of hiPSC-derived neurons recorded by a multi-electrode array system. We discovered that specific sets of hiPSC-derived neurons co-cultured with astrocytes showed more frequent and highly coherent non-random synchronized spike trains and more dynamic changes in overall spike patterns over time. These temporally coordinated spiking patterns are physiological signs of organized circuits of hiPSC-derived neurons and suggest benefits of co-culture of hiPSC-derived neurons with astrocytes. Copyright © 2017 Elsevier Inc. All rights reserved.
Biophysical Neural Spiking, Bursting, and Excitability Dynamics in Reconfigurable Analog VLSI.
Yu, T; Sejnowski, T J; Cauwenberghs, G
2011-10-01
We study a range of neural dynamics under variations in biophysical parameters underlying extended Morris-Lecar and Hodgkin-Huxley models in three gating variables. The extended models are implemented in NeuroDyn, a four neuron, twelve synapse continuous-time analog VLSI programmable neural emulation platform with generalized channel kinetics and biophysical membrane dynamics. The dynamics exhibit a wide range of time scales extending beyond 100 ms neglected in typical silicon models of tonic spiking neurons. Circuit simulations and measurements show transition from tonic spiking to tonic bursting dynamics through variation of a single conductance parameter governing calcium recovery. We similarly demonstrate transition from graded to all-or-none neural excitability in the onset of spiking dynamics through the variation of channel kinetic parameters governing the speed of potassium activation. Other combinations of variations in conductance and channel kinetic parameters give rise to phasic spiking and spike frequency adaptation dynamics. The NeuroDyn chip consumes 1.29 mW and occupies 3 mm × 3 mm in 0.5 μm CMOS, supporting emerging developments in neuromorphic silicon-neuron interfaces.
Narusuye, Kenji; Nagahama, Tatsumi
2002-11-01
The Japanese species Aplysia kurodai feeds well on Ulva but rejects Gelidium with distinctive rhythmic patterned movements of the jaws and radula. We have previously shown that the patterned jaw movements during the rejection of Gelidium might be caused by long-lasting suppression of the monosynaptic transmission from the multiaction MA neurons to the jaw-closing (JC) motor neurons in the buccal ganglia and that the modulation might be directly produced by some cerebral neurons. In the present paper, we have identified a pair of catecholaminergic neurons (CBM1) in bilateral cerebral M clusters. The CBM1, probably equivalent to CBI-1 in A. californica, simultaneously produced monosynaptic excitatory postsynaptic potentials (EPSPs) in the MA and JC neurons. Firing of the CBM1 reduced the size of the inhibitory postsynaptic currents (IPSCs) in the JC neuron, evoked by the MA spikes, for >100 s. Moreover, the application of dopamine mimicked the CBM1 modulatory effects and pretreatment with a D1 antagonist, SCH23390, blocked the modulatory effects induced by dopamine. It could also largely block the modulatory effects induced by the CBM1 firing. These results suggest that the CBM1 may directly modulate the synaptic transmission by releasing dopamine. Moreover, we explored the CBM1 spike activity induced by taste stimulation of the animal lips with seaweed extracts by the use of calcium imaging. The calcium-sensitive dye, Calcium Green-1, was iontophoretically loaded into a cell body of the CBM1 using a microelectrode. Application of either Ulva or Gelidium extract to the lips increased the fluorescence intensity, but the Gelidium extract always induced a larger change in fluorescence compared with the Ulva extract, although the solution used induced the maximum spike responses of the CBM1 for each of the seaweed extracts. When the firing frequency of the CBM1 activity after taste stimulation was estimated, the Gelidium extract induced a spike activity of ~30 spikes/s while the Ulva extract induced an activity of ~20 spikes/s, consistent with the effective firing frequency (>25 spikes/s) for the synaptic modulation. These results suggest that the CBM1 may be one of the cerebral neurons contributing to the modulation of the basic feeding circuits for rejection induced by the taste of seaweeds such as Gelidium.
Emergence of Slow Collective Oscillations in Neural Networks with Spike-Timing Dependent Plasticity
NASA Astrophysics Data System (ADS)
Mikkelsen, Kaare; Imparato, Alberto; Torcini, Alessandro
2013-05-01
The collective dynamics of excitatory pulse coupled neurons with spike-timing dependent plasticity is studied. The introduction of spike-timing dependent plasticity induces persistent irregular oscillations between strongly and weakly synchronized states, reminiscent of brain activity during slow-wave sleep. We explain the oscillations by a mechanism, the Sisyphus Effect, caused by a continuous feedback between the synaptic adjustments and the coherence in the neural firing. Due to this effect, the synaptic weights have oscillating equilibrium values, and this prevents the system from relaxing into a stationary macroscopic state.
Hippocampal Spike-Timing Correlations Lead to Hexagonal Grid Fields
NASA Astrophysics Data System (ADS)
Monsalve-Mercado, Mauro M.; Leibold, Christian
2017-07-01
Space is represented in the mammalian brain by the activity of hippocampal place cells, as well as in their spike-timing correlations. Here, we propose a theory for how this temporal code is transformed to spatial firing rate patterns via spike-timing-dependent synaptic plasticity. The resulting dynamics of synaptic weights resembles well-known pattern formation models in which a lateral inhibition mechanism gives rise to a Turing instability. We identify parameter regimes in which hexagonal firing patterns develop as they have been found in medial entorhinal cortex.
Characteristics of cholinoreceptors on identified TAN neurons of the ground snail Achatina fulica.
Stepanov, I I; Losev, N A
2000-01-01
The characteristics of cholinoreceptors located on neurons TAN1, TAN2, and TAN3 of the ground snail Achatina fulica were studied by incubation of the central ganglia in a bath with cholinotropic preparations during intracellular recording of background neuron spike activity. Acetylcholine, nicotine, the selective n-cholinoreceptor agonist suberyldicholine, and the selective n-cholinoreceptor agonist 5-methylfurmethide concentration-dependently inhibited background spike activity to the level of complete blockade at concentrations of 500 microM. The m-cholinoblocker metamizil (500 microM) completely prevented the inhibitory activity of concentrations of 5-methylfurmethide of up to 500 microM. The central n-cholinoblocker etherophen (500 microM) completely blocked the inhibitory activity of 500 microM suberyldicholine. However, metamizil and etherophen added separately only partially decreased the inhibitory effects of acetylcholine but could not completely block the effect of acetylcholine. At the same time, mixtures of metamizil and etherophen (500 microM each) completely blocked the inhibition of background spike activity induced by acetylcholine. These results show that both classes of cholinoreceptors act on TAN neurons in the same direction.
Neural Correlation Is Stimulus Modulated by Feedforward Inhibitory Circuitry
Middleton, Jason W.; Omar, Cyrus; Doiron, Brent; Simons, Daniel J.
2012-01-01
Correlated variability of neural spiking activity has important consequences for signal processing. How incoming sensory signals shape correlations of population responses remains unclear. Cross-correlations between spiking of different neurons may be particularly consequential in sparsely firing neural populations such as those found in layer 2/3 of sensory cortex. In rat whisker barrel cortex, we found that pairs of excitatory layer 2/3 neurons exhibit similarly low levels of spike count correlation during both spontaneous and sensory-evoked states. The spontaneous activity of excitatory–inhibitory neuron pairs is positively correlated, while sensory stimuli actively decorrelate joint responses. Computational modeling shows how threshold nonlinearities and local inhibition form the basis of a general decorrelating mechanism. We show that inhibitory population activity maintains low correlations in excitatory populations, especially during periods of sensory-evoked coactivation. The role of feedforward inhibition has been previously described in the context of trial-averaged phenomena. Our findings reveal a novel role for inhibition to shape correlations of neural variability and thereby prevent excessive correlations in the face of feedforward sensory-evoked activation. PMID:22238086
Wittig, John H; Jang, Anthony I; Cocjin, John B; Inati, Sara K; Zaghloul, Kareem A
2018-06-01
We identify a memory-specific attention mechanism in the human anterior temporal lobe, an area implicated in semantic processing and episodic memory formation. Spiking neuron activity is suppressed and becomes more reliable in preparation for verbal memory formation. Intracranial electroencephalography signals implicate this region as a source of executive control for attentional selection. Consistent with this interpretation, its surgical removal causes significant memory impairment for attended words relative to unattended words.
NASA Astrophysics Data System (ADS)
Stavisky, Sergey D.; Kao, Jonathan C.; Nuyujukian, Paul; Ryu, Stephen I.; Shenoy, Krishna V.
2015-06-01
Objective. Brain-machine interfaces (BMIs) seek to enable people with movement disabilities to directly control prosthetic systems with their neural activity. Current high performance BMIs are driven by action potentials (spikes), but access to this signal often diminishes as sensors degrade over time. Decoding local field potentials (LFPs) as an alternative or complementary BMI control signal may improve performance when there is a paucity of spike signals. To date only a small handful of LFP decoding methods have been tested online; there remains a need to test different LFP decoding approaches and improve LFP-driven performance. There has also not been a reported demonstration of a hybrid BMI that decodes kinematics from both LFP and spikes. Here we first evaluate a BMI driven by the local motor potential (LMP), a low-pass filtered time-domain LFP amplitude feature. We then combine decoding of both LMP and spikes to implement a hybrid BMI. Approach. Spikes and LFP were recorded from two macaques implanted with multielectrode arrays in primary and premotor cortex while they performed a reaching task. We then evaluated closed-loop BMI control using biomimetic decoders driven by LMP, spikes, or both signals together. Main results. LMP decoding enabled quick and accurate cursor control which surpassed previously reported LFP BMI performance. Hybrid decoding of both spikes and LMP improved performance when spikes signal quality was mediocre to poor. Significance. These findings show that LMP is an effective BMI control signal which requires minimal power to extract and can substitute for or augment impoverished spikes signals. Use of this signal may lengthen the useful lifespan of BMIs and is therefore an important step towards clinically viable BMIs.
Theta rhythm-like bidirectional cycling dynamics of living neuronal networks in vitro.
Gladkov, Arseniy; Grinchuk, Oleg; Pigareva, Yana; Mukhina, Irina; Kazantsev, Victor; Pimashkin, Alexey
2018-01-01
The phenomena of synchronization, rhythmogenesis and coherence observed in brain networks are believed to be a dynamic substrate for cognitive functions such as learning and memory. However, researchers are still debating whether the rhythmic activity emerges from the network morphology that developed during neurogenesis or as a result of neuronal dynamics achieved under certain conditions. In the present study, we observed self-organized spiking activity that converged to long, complex and rhythmically repeated superbursts in neural networks formed by mature hippocampal cultures with a high cellular density. The superburst lasted for tens of seconds and consisted of hundreds of short (50-100 ms) small bursts with a high spiking rate of 139.0 ± 78.6 Hz that is associated with high-frequency oscillations in the hippocampus. In turn, the bursting frequency represents a theta rhythm (11.2 ± 1.5 Hz). The distribution of spikes within the bursts was non-random, representing a set of well-defined spatio-temporal base patterns or motifs. The long superburst was classified into two types. Each type was associated with a unique direction of spike propagation and, hence, was encoded by a binary sequence with random switching between the two "functional" states. The precisely structured bidirectional rhythmic activity that developed in self-organizing cultured networks was quite similar to the activity observed in the in vivo experiments.
NASA Astrophysics Data System (ADS)
Yi, Guosheng; Wang, Jiang; Wei, Xile; Deng, Bin; Li, Huiyan; Che, Yanqiu
2017-06-01
Spike-frequency adaptation (SFA) mediated by various adaptation currents, such as voltage-gated K+ current (IM), Ca2+-gated K+ current (IAHP), or Na+-activated K+ current (IKNa), exists in many types of neurons, which has been shown to effectively shape their information transmission properties on slow timescales. Here we use conductance-based models to investigate how the activation of three adaptation currents regulates the threshold voltage for action potential (AP) initiation during the course of SFA. It is observed that the spike threshold gets depolarized and the rate of membrane depolarization (dV/dt) preceding AP is reduced as adaptation currents reduce firing rate. It is indicated that the presence of inhibitory adaptation currents enables the neuron to generate a dynamic threshold inversely correlated with preceding dV/dt on slower timescales than fast dynamics of AP generation. By analyzing the interactions of ionic currents at subthreshold potentials, we find that the activation of adaptation currents increase the outward level of net membrane current prior to AP initiation, which antagonizes inward Na+ to result in a depolarized threshold and lower dV/dt from one AP to the next. Our simulations demonstrate that the threshold dynamics on slow timescales is a secondary effect caused by the activation of adaptation currents. These findings have provided a biophysical interpretation of the relationship between adaptation currents and spike threshold.
Population decoding of motor cortical activity using a generalized linear model with hidden states.
Lawhern, Vernon; Wu, Wei; Hatsopoulos, Nicholas; Paninski, Liam
2010-06-15
Generalized linear models (GLMs) have been developed for modeling and decoding population neuronal spiking activity in the motor cortex. These models provide reasonable characterizations between neural activity and motor behavior. However, they lack a description of movement-related terms which are not observed directly in these experiments, such as muscular activation, the subject's level of attention, and other internal or external states. Here we propose to include a multi-dimensional hidden state to address these states in a GLM framework where the spike count at each time is described as a function of the hand state (position, velocity, and acceleration), truncated spike history, and the hidden state. The model can be identified by an Expectation-Maximization algorithm. We tested this new method in two datasets where spikes were simultaneously recorded using a multi-electrode array in the primary motor cortex of two monkeys. It was found that this method significantly improves the model-fitting over the classical GLM, for hidden dimensions varying from 1 to 4. This method also provides more accurate decoding of hand state (reducing the mean square error by up to 29% in some cases), while retaining real-time computational efficiency. These improvements on representation and decoding over the classical GLM model suggest that this new approach could contribute as a useful tool to motor cortical decoding and prosthetic applications. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Population Decoding of Motor Cortical Activity using a Generalized Linear Model with Hidden States
Lawhern, Vernon; Wu, Wei; Hatsopoulos, Nicholas G.; Paninski, Liam
2010-01-01
Generalized linear models (GLMs) have been developed for modeling and decoding population neuronal spiking activity in the motor cortex. These models provide reasonable characterizations between neural activity and motor behavior. However, they lack a description of movement-related terms which are not observed directly in these experiments, such as muscular activation, the subject's level of attention, and other internal or external states. Here we propose to include a multi-dimensional hidden state to address these states in a GLM framework where the spike count at each time is described as a function of the hand state (position, velocity, and acceleration), truncated spike history, and the hidden state. The model can be identified by an Expectation-Maximization algorithm. We tested this new method in two datasets where spikes were simultaneously recorded using a multi-electrode array in the primary motor cortex of two monkeys. It was found that this method significantly improves the model-fitting over the classical GLM, for hidden dimensions varying from 1 to 4. This method also provides more accurate decoding of hand state (lowering the Mean Square Error by up to 29% in some cases), while retaining real-time computational efficiency. These improvements on representation and decoding over the classical GLM model suggest that this new approach could contribute as a useful tool to motor cortical decoding and prosthetic applications. PMID:20359500
Bartolo, M J; Gieselmann, M A; Vuksanovic, V; Hunter, D; Sun, L; Chen, X; Delicato, L S; Thiele, A
2011-01-01
The functional magnetic resonance imaging (fMRI) blood oxygenation level-dependent (BOLD) signal is regularly used to assign neuronal activity to cognitive function. Recent analyses have shown that the local field potential (LFP) gamma power is a better predictor of the fMRI BOLD signal than spiking activity. However, LFP gamma power and spiking activity are usually correlated, clouding the analysis of the neural basis of the BOLD signal. We show that changes in LFP gamma power and spiking activity in the primary visual cortex (V1) of the awake primate can be dissociated by using grating and plaid pattern stimuli, which differentially engage surround suppression and cross-orientation inhibition/facilitation within and between cortical columns. Grating presentation yielded substantial V1 LFP gamma frequency oscillations and significant multi-unit activity. Plaid pattern presentation significantly reduced the LFP gamma power while increasing population multi-unit activity. The fMRI BOLD activity followed the LFP gamma power changes, not the multi-unit activity. Inference of neuronal activity from the fMRI BOLD signal thus requires detailed a priori knowledge of how different stimuli or tasks activate the cortical network. PMID:22081989
Different propagation speeds of recalled sequences in plastic spiking neural networks
NASA Astrophysics Data System (ADS)
Huang, Xuhui; Zheng, Zhigang; Hu, Gang; Wu, Si; Rasch, Malte J.
2015-03-01
Neural networks can generate spatiotemporal patterns of spike activity. Sequential activity learning and retrieval have been observed in many brain areas, and e.g. is crucial for coding of episodic memory in the hippocampus or generating temporal patterns during song production in birds. In a recent study, a sequential activity pattern was directly entrained onto the neural activity of the primary visual cortex (V1) of rats and subsequently successfully recalled by a local and transient trigger. It was observed that the speed of activity propagation in coordinates of the retinotopically organized neural tissue was constant during retrieval regardless how the speed of light stimulation sweeping across the visual field during training was varied. It is well known that spike-timing dependent plasticity (STDP) is a potential mechanism for embedding temporal sequences into neural network activity. How training and retrieval speeds relate to each other and how network and learning parameters influence retrieval speeds, however, is not well described. We here theoretically analyze sequential activity learning and retrieval in a recurrent neural network with realistic synaptic short-term dynamics and STDP. Testing multiple STDP rules, we confirm that sequence learning can be achieved by STDP. However, we found that a multiplicative nearest-neighbor (NN) weight update rule generated weight distributions and recall activities that best matched the experiments in V1. Using network simulations and mean-field analysis, we further investigated the learning mechanisms and the influence of network parameters on recall speeds. Our analysis suggests that a multiplicative STDP rule with dominant NN spike interaction might be implemented in V1 since recall speed was almost constant in an NMDA-dominant regime. Interestingly, in an AMPA-dominant regime, neural circuits might exhibit recall speeds that instead follow the change in stimulus speeds. This prediction could be tested in experiments.
Transistor analogs of emergent iono-neuronal dynamics.
Rachmuth, Guy; Poon, Chi-Sang
2008-06-01
Neuromorphic analog metal-oxide-silicon (MOS) transistor circuits promise compact, low-power, and high-speed emulations of iono-neuronal dynamics orders-of-magnitude faster than digital simulation. However, their inherently limited input voltage dynamic range vs power consumption and silicon die area tradeoffs makes them highly sensitive to transistor mismatch due to fabrication inaccuracy, device noise, and other nonidealities. This limitation precludes robust analog very-large-scale-integration (aVLSI) circuits implementation of emergent iono-neuronal dynamics computations beyond simple spiking with limited ion channel dynamics. Here we present versatile neuromorphic analog building-block circuits that afford near-maximum voltage dynamic range operating within the low-power MOS transistor weak-inversion regime which is ideal for aVLSI implementation or implantable biomimetic device applications. The fabricated microchip allowed robust realization of dynamic iono-neuronal computations such as coincidence detection of presynaptic spikes or pre- and postsynaptic activities. As a critical performance benchmark, the high-speed and highly interactive iono-neuronal simulation capability on-chip enabled our prompt discovery of a minimal model of chaotic pacemaker bursting, an emergent iono-neuronal behavior of fundamental biological significance which has hitherto defied experimental testing or computational exploration via conventional digital or analog simulations. These compact and power-efficient transistor analogs of emergent iono-neuronal dynamics open new avenues for next-generation neuromorphic, neuroprosthetic, and brain-machine interface applications.
A New Kinetic Spectrophotometric Method for the Quantitation of Amorolfine.
Soto, César; Poza, Cristian; Contreras, David; Yáñez, Jorge; Nacaratte, Fallon; Toral, M Inés
2017-01-01
Amorolfine (AOF) is a compound with fungicide activity based on the dual inhibition of growth of the fungal cell membrane, the biosynthesis and accumulation of sterols, and the reduction of ergosterol. In this work a sensitive kinetic and spectrophotometric method for the AOF quantitation based on the AOF oxidation by means of KMnO 4 at 30 min (fixed time), pH alkaline, and ionic strength controlled was developed. Measurements of changes in absorbance at 610 nm were used as criterion of the oxidation progress. In order to maximize the sensitivity, different experimental reaction parameters were carefully studied via factorial screening and optimized by multivariate method. The linearity, intraday, and interday assay precision and accuracy were determined. The absorbance-concentration plot corresponding to tap water spiked samples was rectilinear, over the range of 7.56 × 10 -6 -3.22 × 10 -5 mol L -1 , with detection and quantitation limits of 2.49 × 10 -6 mol L -1 and 7.56 × 10 -6 mol L -1 , respectively. The proposed method was successfully validated for the application of the determination of the drug in the spiked tap water samples and the percentage recoveries were 94.0-105.0%. The method is simple and does not require expensive instruments or complicated extraction steps of the reaction product.
Hu, Meng; Clark, Kelsey L.; Gong, Xiajing; Noudoost, Behrad; Li, Mingyao; Moore, Tirin
2015-01-01
Inferotemporal (IT) neurons are known to exhibit persistent, stimulus-selective activity during the delay period of object-based working memory tasks. Frontal eye field (FEF) neurons show robust, spatially selective delay period activity during memory-guided saccade tasks. We present a copula regression paradigm to examine neural interaction of these two types of signals between areas IT and FEF of the monkey during a working memory task. This paradigm is based on copula models that can account for both marginal distribution over spiking activity of individual neurons within each area and joint distribution over ensemble activity of neurons between areas. Considering the popular GLMs as marginal models, we developed a general and flexible likelihood framework that uses the copula to integrate separate GLMs into a joint regression analysis. Such joint analysis essentially leads to a multivariate analog of the marginal GLM theory and hence efficient model estimation. In addition, we show that Granger causality between spike trains can be readily assessed via the likelihood ratio statistic. The performance of this method is validated by extensive simulations, and compared favorably to the widely used GLMs. When applied to spiking activity of simultaneously recorded FEF and IT neurons during working memory task, we observed significant Granger causality influence from FEF to IT, but not in the opposite direction, suggesting the role of the FEF in the selection and retention of visual information during working memory. The copula model has the potential to provide unique neurophysiological insights about network properties of the brain. PMID:26063909
Seasonal Plasticity of Precise Spike Timing in the Avian Auditory System
Sen, Kamal; Rubel, Edwin W; Brenowitz, Eliot A.
2015-01-01
Vertebrate audition is a dynamic process, capable of exhibiting both short- and long-term adaptations to varying listening conditions. Precise spike timing has long been known to play an important role in auditory encoding, but its role in sensory plasticity remains largely unexplored. We addressed this issue in Gambel's white-crowned sparrow (Zonotrichia leucophrys gambelii), a songbird that shows pronounced seasonal fluctuations in circulating levels of sex-steroid hormones, which are known to be potent neuromodulators of auditory function. We recorded extracellular single-unit activity in the auditory forebrain of males and females under different breeding conditions and used a computational approach to explore two potential strategies for the neural discrimination of sound level: one based on spike counts and one based on spike timing reliability. We report that breeding condition has robust sex-specific effects on spike timing. Specifically, in females, breeding condition increases the proportion of cells that rely solely on spike timing information and increases the temporal resolution required for optimal intensity encoding. Furthermore, in a functionally distinct subset of cells that are particularly well suited for amplitude encoding, female breeding condition enhances spike timing-based discrimination accuracy. No effects of breeding condition were observed in males. Our results suggest that high-resolution temporal discharge patterns may provide a plastic neural substrate for sensory coding. PMID:25716843
Designing optimal stimuli to control neuronal spike timing
Packer, Adam M.; Yuste, Rafael; Paninski, Liam
2011-01-01
Recent advances in experimental stimulation methods have raised the following important computational question: how can we choose a stimulus that will drive a neuron to output a target spike train with optimal precision, given physiological constraints? Here we adopt an approach based on models that describe how a stimulating agent (such as an injected electrical current or a laser light interacting with caged neurotransmitters or photosensitive ion channels) affects the spiking activity of neurons. Based on these models, we solve the reverse problem of finding the best time-dependent modulation of the input, subject to hardware limitations as well as physiologically inspired safety measures, that causes the neuron to emit a spike train that with highest probability will be close to a target spike train. We adopt fast convex constrained optimization methods to solve this problem. Our methods can potentially be implemented in real time and may also be generalized to the case of many cells, suitable for neural prosthesis applications. With the use of biologically sensible parameters and constraints, our method finds stimulation patterns that generate very precise spike trains in simulated experiments. We also tested the intracellular current injection method on pyramidal cells in mouse cortical slices, quantifying the dependence of spiking reliability and timing precision on constraints imposed on the applied currents. PMID:21511704
Jung, Hyunjun; Kang, Hongki; Nam, Yoonkey
2017-01-01
Light-mediated neuromodulation techniques provide great advantages to investigate neuroscience due to its high spatial and temporal resolution. To generate a spatial pattern of neural activity, it is necessary to develop a system for patterned-light illumination to a specific area. Digital micromirror device (DMD) based patterned illumination system have been used for neuromodulation due to its simple configuration and design flexibility. In this paper, we developed a patterned near-infrared (NIR) illumination system for region specific photothermal manipulation of neural activity using NIR-sensitive plasmonic gold nanorods (GNRs). The proposed system had high power transmission efficiency for delivering power density up to 19 W/mm2. We used a GNR-coated microelectrode array (MEA) to perform biological experiments using E18 rat hippocampal neurons and showed that it was possible to inhibit neural spiking activity of specific area in neural circuits with the patterned NIR illumination. This patterned NIR illumination system can serve as a promising neuromodulation tool to investigate neuroscience in a wide range of physiological and clinical applications. PMID:28663912
NASA Astrophysics Data System (ADS)
Lieb, Florian; Stark, Hans-Georg; Thielemann, Christiane
2017-06-01
Objective. Spike detection from extracellular recordings is a crucial preprocessing step when analyzing neuronal activity. The decision whether a specific part of the signal is a spike or not is important for any kind of other subsequent preprocessing steps, like spike sorting or burst detection in order to reduce the classification of erroneously identified spikes. Many spike detection algorithms have already been suggested, all working reasonably well whenever the signal-to-noise ratio is large enough. When the noise level is high, however, these algorithms have a poor performance. Approach. In this paper we present two new spike detection algorithms. The first is based on a stationary wavelet energy operator and the second is based on the time-frequency representation of spikes. Both algorithms are more reliable than all of the most commonly used methods. Main results. The performance of the algorithms is confirmed by using simulated data, resembling original data recorded from cortical neurons with multielectrode arrays. In order to demonstrate that the performance of the algorithms is not restricted to only one specific set of data, we also verify the performance using a simulated publicly available data set. We show that both proposed algorithms have the best performance under all tested methods, regardless of the signal-to-noise ratio in both data sets. Significance. This contribution will redound to the benefit of electrophysiological investigations of human cells. Especially the spatial and temporal analysis of neural network communications is improved by using the proposed spike detection algorithms.
Kim, J H; Ohara, S; Lenz, F A
2009-04-01
Primate thalamic action potential bursts associated with low-threshold spikes (LTS) occur during waking sensory and motor activity. We now test the hypothesis that different firing and LTS burst characteristics occur during quiet wakefulness (spontaneous condition) versus mental arithmetic (counting condition). This hypothesis was tested by thalamic recordings during the surgical treatment of tremor. Across all neurons and epochs, preburst interspike intervals (ISIs) were bimodal at median values, consistent with the duration of type A and type B gamma-aminobutyric acid inhibitory postsynaptic potentials. Neuronal spike trains (117 neurons) were categorized by joint ISI distributions into those firing as LTS bursts (G, grouped), firing as single spikes (NG, nongrouped), or firing as single spikes with sporadic LTS bursting (I, intermediate). During the spontaneous condition (46 neurons) only I spike trains changed category. Overall, burst rates (BRs) were lower and firing rates (FRs) were higher during the counting versus the spontaneous condition. Spike trains in the G category sometimes changed to I and NG categories at the transition from the spontaneous to the counting condition, whereas those in the I category often changed to NG. Among spike trains that did not change category by condition, G spike trains had lower BRs during counting, whereas NG spike trains had higher FRs. BRs were significantly greater than zero for G and I categories during wakefulness (both conditions). The changes between the spontaneous and counting conditions are most pronounced for the I category, which may be a transitional firing pattern between the bursting (G) and relay modes of thalamic firing (NG).
Aresta, Antonella; Monaci, Linda; Zambonin, Carlo Giorgio
2002-06-01
An SPME-HPLC-UV method for the determination of delorazepam, a representative benzodiazepine, in spiked human urine samples was developed for the first time. The performances of two commercially available fibers, a carbowax/templated resin (Carbowax/TPR-100) and a polydimethylsiloxane/divinylbenzene (PDMS/DVB), were compared, indicating the latter as the most suitable for urine samples analysis. All the aspects influencing adsorption (extraction time, pH, temperature, salt addition) and desorption (desorption and injection time, desorption solvent mixture composition) of the analyte on the fiber have been investigated. In particular, short extraction times were necessary to reach the equilibrium and very short desorption times were employed. The procedure required simple sample pre-treatment and was able to detect 5 ng/ml in spiked urine, regardless of the complexity of the matrix.
Impact of predator dormancy on prey-predator dynamics
NASA Astrophysics Data System (ADS)
Freire, Joana G.; Gallas, Marcia R.; Gallas, Jason A. C.
2018-05-01
The impact of predator dormancy on the population dynamics of phytoplankton-zooplankton in freshwater ecosystems is investigated using a simple model including dormancy, a strategy to avoid extinction. In addition to recently reported chaos-mediated mixed-mode oscillations, as the carrying capacity grows, we find surprisingly wide phases of nonchaos-mediated mixed-mode oscillations to be present well before the onset of chaos in the system. Nonchaos-mediated cascades display spike-adding sequences, while chaos-mediated cascades show spike-doubling. A host of braided periodic phases with exotic shapes is found embedded in a region of control parameters dominated by chaotic oscillations. We describe the organization of these complicated phases and show how they are interconnected and how their complexity unfolds as control parameters change. The novel nonchaos-mediated phases are found to be large and stable, even for low carrying capacity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reichhardt, Charles; Olson Reichhardt, Cynthia Jane
2017-01-12
Using a simple numerical model of skyrmions in a two-dimensional system interacting with a quasi-one-dimensional periodic substrate under combined dc and ac drives where the dc drive is applied perpendicular to the substrate periodicity, we show that a rich variety of novel phase-locking dynamics can occur due to the influence of the Magnus term on the skyrmion dynamics. Instead of Shapiro steps, the velocity response in the direction of the dc drive exhibits a series of spikes, including extended dc drive intervals over which the skyrmions move in the direction opposite to the dc drive, producing negative mobility. Also, theremore » are specific dc drive values at which the skyrmions move exactly perpendicular to the dc drive direction, giving a condition of absolute transverse mobility.« less
Goychuk, I
2001-08-01
Stochastic resonance in a simple model of information transfer is studied for sensory neurons and ensembles of ion channels. An exact expression for the information gain is obtained for the Poisson process with the signal-modulated spiking rate. This result allows one to generalize the conventional stochastic resonance (SR) problem (with periodic input signal) to the arbitrary signals of finite duration (nonstationary SR). Moreover, in the case of a periodic signal, the rate of information gain is compared with the conventional signal-to-noise ratio. The paper establishes the general nonequivalence between both measures notwithstanding their apparent similarity in the limit of weak signals.
Ishii, A; Seno, H; Suzuki, O; Hattori, H; Kumazawa, T
1997-01-01
A simple and sensitive method for determination of N,N-dimethyltryptamine (DMT) by gas chromatography (GC) with surface ionization detection (SID) is presented. Whole blood or urine, containing DMT and gramine (internal standard), was subjected to solid-phase extraction with a Sep-Pak C18 cartridge before analysis by GC-SID. The calibration curve was linear in the DMT range of 1.25-20 ng/mL blood or urine. The detection limit of DMT was about 0.5 ng/mL (10 pg on-column). The recovery of both DMT and gramine spiked in biological fluids was above 86%.
Canolty, Ryan T.; Ganguly, Karunesh; Carmena, Jose M.
2012-01-01
Understanding the principles governing the dynamic coordination of functional brain networks remains an important unmet goal within neuroscience. How do distributed ensembles of neurons transiently coordinate their activity across a variety of spatial and temporal scales? While a complete mechanistic account of this process remains elusive, evidence suggests that neuronal oscillations may play a key role in this process, with different rhythms influencing both local computation and long-range communication. To investigate this question, we recorded multiple single unit and local field potential (LFP) activity from microelectrode arrays implanted bilaterally in macaque motor areas. Monkeys performed a delayed center-out reach task either manually using their natural arm (Manual Control, MC) or under direct neural control through a brain-machine interface (Brain Control, BC). In accord with prior work, we found that the spiking activity of individual neurons is coupled to multiple aspects of the ongoing motor beta rhythm (10–45 Hz) during both MC and BC, with neurons exhibiting a diversity of coupling preferences. However, here we show that for identified single neurons, this beta-to-rate mapping can change in a reversible and task-dependent way. For example, as beta power increases, a given neuron may increase spiking during MC but decrease spiking during BC, or exhibit a reversible shift in the preferred phase of firing. The within-task stability of coupling, combined with the reversible cross-task changes in coupling, suggest that task-dependent changes in the beta-to-rate mapping play a role in the transient functional reorganization of neural ensembles. We characterize the range of task-dependent changes in the mapping from beta amplitude, phase, and inter-hemispheric phase differences to the spike rates of an ensemble of simultaneously-recorded neurons, and discuss the potential implications that dynamic remapping from oscillatory activity to spike rate and timing may hold for models of computation and communication in distributed functional brain networks. PMID:23284276
Wu, Pinggu; Zhang, Liqun; Shen, Xianghong; Wang, Liyuan; Zou, Yan; Zhang, Jing; Tan, Ying; Tang, Jun; Ma, Bingjie; Pan, Xiaodong; Jiang, Wei
2015-01-01
A sensitive and rapid analytical method based on alkaline diatomaceous earth extraction followed by GC/MS was developed for the quantitative determination of the toxic contaminant ethyl carbamate (EC) in yellow rice wines. The optimal extraction conditions were investigated. With the application of diatomaceous earth extraction, the damage of organic acids to the capillary column was greatly reduced. By using d5-EC as an internal standard for quantitative analysis of EC, the linearity of the calibration curves was good between 10 and 1000 ng/mL. The LOD and LOQ were 1.7 and 5.0 μg/kg, respectively. The spiked level of EC was 5.0-300 μg/kg, and the average recovery of the spikes was between 78.4 and 98.2%, with an RSD between 4.3 and 8.3%. Upon validation by five laboratories when spiked with 50, 100, and 300 μg/kg, the average respective recoveries were 102.9, 102.2, and 98.7% with a RSD between 0.7 and 8.1%. The validation results demonstrated that the method is fast, simple, selective, and suitable for the determination of EC in yellow rice wines.
Schulze, H Georg; Turner, Robin F B
2013-04-01
Raman spectra often contain undesirable, randomly positioned, intense, narrow-bandwidth, positive, unidirectional spectral features generated when cosmic rays strike charge-coupled device cameras. These must be removed prior to analysis, but doing so manually is not feasible for large data sets. We developed a quick, simple, effective, semi-automated procedure to remove cosmic ray spikes from spectral data sets that contain large numbers of relatively homogenous spectra. Although some inhomogeneous spectral data sets can be accommodated--it requires replacing excessively modified spectra with the originals and removing their spikes with a median filter instead--caution is advised when processing such data sets. In addition, the technique is suitable for interpolating missing spectra or replacing aberrant spectra with good spectral estimates. The method is applied to baseline-flattened spectra and relies on fitting a third-order (or higher) polynomial through all the spectra at every wavenumber. Pixel intensities in excess of a threshold of 3× the noise standard deviation above the fit are reduced to the threshold level. Because only two parameters (with readily specified default values) might require further adjustment, the method is easily implemented for semi-automated processing of large spectral sets.
Cyr, André; Boukadoum, Mounir; Thériault, Frédéric
2014-01-01
In this paper, we investigate the operant conditioning (OC) learning process within a bio-inspired paradigm, using artificial spiking neural networks (ASNN) to act as robot brain controllers. In biological agents, OC results in behavioral changes learned from the consequences of previous actions, based on progressive prediction adjustment from rewarding or punishing signals. In a neurorobotics context, virtual and physical autonomous robots may benefit from a similar learning skill when facing unknown and unsupervised environments. In this work, we demonstrate that a simple invariant micro-circuit can sustain OC in multiple learning scenarios. The motivation for this new OC implementation model stems from the relatively complex alternatives that have been described in the computational literature and recent advances in neurobiology. Our elementary kernel includes only a few crucial neurons, synaptic links and originally from the integration of habituation and spike-timing dependent plasticity as learning rules. Using several tasks of incremental complexity, our results show that a minimal neural component set is sufficient to realize many OC procedures. Hence, with the proposed OC module, designing learning tasks with an ASNN and a bio-inspired robot context leads to simpler neural architectures for achieving complex behaviors. PMID:25120464
Cyr, André; Boukadoum, Mounir; Thériault, Frédéric
2014-01-01
In this paper, we investigate the operant conditioning (OC) learning process within a bio-inspired paradigm, using artificial spiking neural networks (ASNN) to act as robot brain controllers. In biological agents, OC results in behavioral changes learned from the consequences of previous actions, based on progressive prediction adjustment from rewarding or punishing signals. In a neurorobotics context, virtual and physical autonomous robots may benefit from a similar learning skill when facing unknown and unsupervised environments. In this work, we demonstrate that a simple invariant micro-circuit can sustain OC in multiple learning scenarios. The motivation for this new OC implementation model stems from the relatively complex alternatives that have been described in the computational literature and recent advances in neurobiology. Our elementary kernel includes only a few crucial neurons, synaptic links and originally from the integration of habituation and spike-timing dependent plasticity as learning rules. Using several tasks of incremental complexity, our results show that a minimal neural component set is sufficient to realize many OC procedures. Hence, with the proposed OC module, designing learning tasks with an ASNN and a bio-inspired robot context leads to simpler neural architectures for achieving complex behaviors.