The American Indians: Answers to 101 Questions.
ERIC Educational Resources Information Center
Bureau of Indian Affairs (Dept. of Interior), Washington, DC.
Presented in a simple and straightforward manner, this publication answers questions basic to an understanding of the American Indian and his socioeconomic position in the United States. The following identify major areas covered and representative questions: (1) The Indian People (Who is an Indian?); (2) The Legal Status of Indians (Are Indians…
Buried Messages, Hidden Meanings: Speech Mannerisms Revisited.
ERIC Educational Resources Information Center
Morgan, Lewis B.
1988-01-01
Introduces counselors to 10 commonly used mannerisms of speech and the part that each mannerism plays in the communication process, especially in the counseling context. Offers suggestions on how to respond to these speech mannerisms in a straightforward and effective manner. (Author)
A simple tagging system for protein encapsulation.
Seebeck, Florian P; Woycechowsky, Kenneth J; Zhuang, Wei; Rabe, Jürgen P; Hilvert, Donald
2006-04-12
Molecular containers that encapsulate specific cargo can be useful for many natural and non-natural processes. We report a simple system, based on charge complementarity, for the encapsulation of appropriately tagged proteins within an engineered, proteinaceous capsid. Four negative charges per monomer were added to the lumazine synthase from Aquifex aeolicus (AaLS). The capsids formed by the engineered AaLS associate with green fluorescent protein bearing a positively charged deca-arginine tag upon coproduction in Escherichia coli. Analytical ultracentrifugation and scanning force microscopy studies indicated that the engineered AaLS retains the ability to form capsids, but that their average size was substantially increased. The success of this strategy demonstrates that both the container and guest components of protein-based encapsulation systems can be convergently designed in a straightforward manner, which may help to extend their versatility.
QR Codes: Outlook for Food Science and Nutrition.
Sanz-Valero, Javier; Álvarez Sabucedo, Luis M; Wanden-Berghe, Carmina; Santos Gago, Juan M
2016-01-01
QR codes opens up the possibility to develop simple-to-use, cost-effective-cost, and functional systems based on the optical recognition of inexpensive tags attached to physical objects. These systems, combined with Web platforms, can provide us with advanced services that are already currently broadly used on many contexts of the common life. Due to its philosophy, based on the automatic recognition of messages embedded on simple graphics by means of common devices such as mobile phones, QR codes are very convenient for the average user. Regretfully, its potential has not yet been fully exploited in the domains of food science and nutrition. This paper points out some applications to make the most of this technology for these domains in a straightforward manner. For its characteristics, we are addressing systems with low barriers to entry and high scalability for its deployment. Therefore, its launching among professional and final users is quite simple. The paper also provides high-level indications for the evaluation of the technological frame required to implement the identified possibilities of use.
Ultrasonic monitoring of droplets' evaporation: Application to human whole blood.
Laux, D; Ferrandis, J Y; Brutin, D
2016-09-01
During a colloidal droplet evaporation, a sol-gel transition can be observed and is described by the desiccation time τD and the gelation time τG. These characteristic times, which can be linked to viscoelastic properties of the droplet and to its composition, are classically rated by analysis of mass droplet evolution during evaporation. Even if monitoring mass evolution versus time seems straightforward, this approach is very sensitive to environmental conditions (vibrations, air flow…) as mass has to be evaluated very accurately using ultra-sensitive weighing scales. In this study we investigated the potentialities of ultrasonic shear reflectometry to assess τD and τG in a simple and reliable manner. In order to validate this approach, our study has focused on blood droplets evaporation on which a great deal of work has recently been published. Desiccation and gelation times measured with shear ultrasonic reflectometry have been perfectly correlated to values obtained from mass versus time analysis. This ultrasonic method which is not very sensitive to environmental perturbations is therefore very interesting to monitor the drying of blood droplets in a simple manner and is more generally suitable for complex fluid droplets evaporation investigation. Copyright © 2016 Elsevier B.V. All rights reserved.
Zombie states for description of structure and dynamics of multi-electron systems
NASA Astrophysics Data System (ADS)
Shalashilin, Dmitrii V.
2018-05-01
Canonical Coherent States (CSs) of Harmonic Oscillator have been extensively used as a basis in a number of computational methods of quantum dynamics. However, generalising such techniques for fermionic systems is difficult because Fermionic Coherent States (FCSs) require complicated algebra of Grassmann numbers not well suited for numerical calculations. This paper introduces a coherent antisymmetrised superposition of "dead" and "alive" electronic states called here Zombie State (ZS), which can be used in a manner of FCSs but without Grassmann algebra. Instead, for Zombie States, a very simple sign-changing rule is used in the definition of creation and annihilation operators. Then, calculation of electronic structure Hamiltonian matrix elements between two ZSs becomes very simple and a straightforward technique for time propagation of fermionic wave functions can be developed. By analogy with the existing methods based on Canonical Coherent States of Harmonic Oscillator, fermionic wave functions can be propagated using a set of randomly selected Zombie States as a basis. As a proof of principles, the proposed Coupled Zombie States approach is tested on a simple example showing that the technique is exact.
Traveling wave solutions to a reaction-diffusion equation
NASA Astrophysics Data System (ADS)
Feng, Zhaosheng; Zheng, Shenzhou; Gao, David Y.
2009-07-01
In this paper, we restrict our attention to traveling wave solutions of a reaction-diffusion equation. Firstly we apply the Divisor Theorem for two variables in the complex domain, which is based on the ring theory of commutative algebra, to find a quasi-polynomial first integral of an explicit form to an equivalent autonomous system. Then through this first integral, we reduce the reaction-diffusion equation to a first-order integrable ordinary differential equation, and a class of traveling wave solutions is obtained accordingly. Comparisons with the existing results in the literature are also provided, which indicates that some analytical results in the literature contain errors. We clarify the errors and instead give a refined result in a simple and straightforward manner.
Shuttle avionics software development trials: Tribulations and successes, the backup flight system
NASA Technical Reports Server (NTRS)
Chevers, E. S.
1985-01-01
The development and verification of the Backup Flight System software (BFS) is discussed. The approach taken for the BFS was to develop a very simple and straightforward software program and then test it in every conceivable manner. The result was a program that contained approximately 12,000 full words including ground checkout and the built in test program for the computer. To perform verification, a series of tests was defined using the actual flight type hardware and simulated flight conditions. Then simulated flights were flown and detailed performance analysis was conducted. The intent of most BFS tests was to demonstrate that a stable flightpath could be obtained after engagement from an anomalous initial condition. The extention of the BFS to meet the requirements of the orbital flight test phase is also described.
The MiniCLEAN Dark Matter Experiment
NASA Astrophysics Data System (ADS)
Schnee, Richard; Deap/Clean Collaboration
2011-10-01
The MiniCLEAN dark matter experiment exploits a single-phase liquid argon (LAr) detector, instrumented with photomultiplier tubes submerged in the cryogen with nearly 4 π coverage of a 500 kg target (150 kg fiducial) mass. The high light yield and large difference in singlet/triplet scintillation time-profiles in LAr provide effective defense against radioactive backgrounds through pulse-shape discrimination and event position reconstruction. The detector is also designed for a liquid neon target which, in the event of a positive signal in LAr, will enable an independent verification of backgrounds and provide a unique test of the expected A2 dependence of the WIMP interaction rate. The conceptually simple design can be scaled to target masses in excess of 10 tons in a relatively straightforward and economic manner. The experimental technique and current status of MiniCLEAN will be summarized.
Inexpensive and fast pathogenic bacteria screening using field-effect transistors.
Formisano, Nello; Bhalla, Nikhil; Heeran, Mel; Reyes Martinez, Juana; Sarkar, Amrita; Laabei, Maisem; Jolly, Pawan; Bowen, Chris R; Taylor, John T; Flitsch, Sabine; Estrela, Pedro
2016-11-15
While pathogenic bacteria contribute to a large number of globally important diseases and infections, current clinical diagnosis is based on processes that often involve culturing which can be time-consuming. Therefore, innovative, simple, rapid and low-cost solutions to effectively reduce the burden of bacterial infections are urgently needed. Here we demonstrate a label-free sensor for fast bacterial detection based on metal-oxide-semiconductor field-effect transistors (MOSFETs). The electric charge of bacteria binding to the glycosylated gates of a MOSFET enables quantification in a straightforward manner. We show that the limit of quantitation is 1.9×10(5) CFU/mL with this simple device, which is more than 10,000-times lower than is achieved with electrochemical impedance spectroscopy (EIS) and matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-ToF) on the same modified surfaces. Moreover, the measurements are extremely fast and the sensor can be mass produced at trivial cost as a tool for initial screening of pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.
Handbook explaining the fundamentals of nuclear and atomic physics
NASA Technical Reports Server (NTRS)
Hanlen, D. F.; Morse, W. J.
1969-01-01
Indoctrination document presents nuclear, reactor, and atomic physics in an easy, straightforward manner. The entire subject of nuclear physics including atomic structure ionization, isotopes, radioactivity, and reactor dynamics is discussed.
fluff: exploratory analysis and visualization of high-throughput sequencing data
Georgiou, Georgios
2016-01-01
Summary. In this article we describe fluff, a software package that allows for simple exploration, clustering and visualization of high-throughput sequencing data mapped to a reference genome. The package contains three command-line tools to generate publication-quality figures in an uncomplicated manner using sensible defaults. Genome-wide data can be aggregated, clustered and visualized in a heatmap, according to different clustering methods. This includes a predefined setting to identify dynamic clusters between different conditions or developmental stages. Alternatively, clustered data can be visualized in a bandplot. Finally, fluff includes a tool to generate genomic profiles. As command-line tools, the fluff programs can easily be integrated into standard analysis pipelines. The installation is straightforward and documentation is available at http://fluff.readthedocs.org. Availability. fluff is implemented in Python and runs on Linux. The source code is freely available for download at https://github.com/simonvh/fluff. PMID:27547532
A weak Hamiltonian finite element method for optimal control problems
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Bless, Robert R.
1989-01-01
A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.
A weak Hamiltonian finite element method for optimal control problems
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Bless, Robert R.
1990-01-01
A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.
Weak Hamiltonian finite element method for optimal control problems
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Bless, Robert R.
1991-01-01
A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.
NASA Technical Reports Server (NTRS)
Scargle, Jeffrey D.; Way, M. J.; Gazis, P. G.
2017-01-01
We demonstrate the effectiveness of a relatively straightforward analysis of the complex 3D Fourier transform of galaxy coordinates derived from redshift surveys. Numerical demonstrations of this approach are carried out on a volume-limited sample of the Sloan Digital Sky Survey redshift survey. The direct unbinned transform yields a complex 3D data cube quite similar to that from the Fast Fourier Transform of finely binned galaxy positions. In both cases, deconvolution of the sampling window function yields estimates of the true transform. Simple power spectrum estimates from these transforms are roughly consistent with those using more elaborate methods. The complex Fourier transform characterizes spatial distributional properties beyond the power spectrum in a manner different from (and we argue is more easily interpreted than) the conventional multipoint hierarchy. We identify some threads of modern large-scale inference methodology that will presumably yield detections in new wider and deeper surveys.
An unstructured grid, three-dimensional model based on the shallow water equations
Casulli, V.; Walters, R.A.
2000-01-01
A semi-implicit finite difference model based on the three-dimensional shallow water equations is modified to use unstructured grids. There are obvious advantages in using unstructured grids in problems with a complicated geometry. In this development, the concept of unstructured orthogonal grids is introduced and applied to this model. The governing differential equations are discretized by means of a semi-implicit algorithm that is robust, stable and very efficient. The resulting model is relatively simple, conserves mass, can fit complicated boundaries and yet is sufficiently flexible to permit local mesh refinements in areas of interest. Moreover, the simulation of the flooding and drying is included in a natural and straightforward manner. These features are illustrated by a test case for studies of convergence rates and by examples of flooding on a river plain and flow in a shallow estuary. Copyright ?? 2000 John Wiley & Sons, Ltd.
Gauged Supergravities and Spontaneous Supersymmetry Breaking from the Double Copy Construction
NASA Astrophysics Data System (ADS)
Chiodaroli, M.; Günaydin, M.; Johansson, H.; Roiban, R.
2018-04-01
Supergravities with gauged R symmetry and Minkowski vacua allow for spontaneous supersymmetry breaking and, as such, provide a framework for building supergravity models of phenomenological relevance. In this Letter, we initiate the study of double copy constructions for these supergravities. We argue that, on general grounds, we expect their scattering amplitudes to be described by a double copy of the type (spontaneously broken gauge theory)⊗ (gauge theory with broken supersymmetry). We present a simple realization in which the resulting supergravity has U (1 )R gauge symmetry, spontaneously broken N =2 supersymmetry, and massive gravitini. This is the first instance of a double copy construction of a gauged supergravity and of a theory with spontaneously broken supersymmetry. The construction extends in a straightforward manner to a large family of gauged Yang-Mills-Einstein supergravity theories with or without spontaneous gauge-symmetry breaking.
Creating a Development Support Bubble for Children
NASA Astrophysics Data System (ADS)
Verhaegh, Janneke; Fontijn, Willem; Aarts, Emile; Boer, Laurens; van de Wouw, Doortje
In this paper we describe an opportunity Ambient Intelligence provides outside the domains typically associated with it. We present a concept for enhancing child development by introducing tangible computing in a way that fits the children and improves current education. We argue that the interfaces used should be simple and make sense to the children. The computer should be hidden and interaction should take place through familiar play objects to which the children already have a connection. Contrary to a straightforward application of personal computers, our solution addresses cognitive, social and fine motor skills in an integrated manner. We illustrate our vision with a concrete example of an application that supports the inevitable transition from free play throughout the classroom to focused play at the table. We also present the validation of the concept with children, parents and teachers, highlighting that they all recognize the benefits of tangible computing in this domain.
Simple Perturbation Example for Quantum Chemistry.
ERIC Educational Resources Information Center
Goodfriend, P. L.
1985-01-01
Presents a simple example that illustrates various aspects of the Rayleigh-Schrodinger perturbation theory. The example is a particularly good one because it is straightforward and can be compared with both the exact solution and with experimental data. (JN)
A not-so-funny thing happened on the way to relicensing the Edwards Dam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayer, F.J.; Isaacson, M.
1995-12-31
What started out as a seemingly straightforward and simple exercise, obtaining a new FERC license for the Edwards Dam in Augusta, Maine, turned out to be anything but straightforward and far from simple. This article tells the story of one of the more interesting and possibly precedent setting cases in the {open_quotes}class of 93{close_quotes} and is presented in three sections: (1) the history of the Edwards Dam and the FERC regulatory process through the spring of 1995; (2) Edwards` response to the dam removal campaign; and (3) recommendations for FERC licensees threatened by dam removal during relicensing.
Context-dependent decision-making: a simple Bayesian model
Lloyd, Kevin; Leslie, David S.
2013-01-01
Many phenomena in animal learning can be explained by a context-learning process whereby an animal learns about different patterns of relationship between environmental variables. Differentiating between such environmental regimes or ‘contexts’ allows an animal to rapidly adapt its behaviour when context changes occur. The current work views animals as making sequential inferences about current context identity in a world assumed to be relatively stable but also capable of rapid switches to previously observed or entirely new contexts. We describe a novel decision-making model in which contexts are assumed to follow a Chinese restaurant process with inertia and full Bayesian inference is approximated by a sequential-sampling scheme in which only a single hypothesis about current context is maintained. Actions are selected via Thompson sampling, allowing uncertainty in parameters to drive exploration in a straightforward manner. The model is tested on simple two-alternative choice problems with switching reinforcement schedules and the results compared with rat behavioural data from a number of T-maze studies. The model successfully replicates a number of important behavioural effects: spontaneous recovery, the effect of partial reinforcement on extinction and reversal, the overtraining reversal effect, and serial reversal-learning effects. PMID:23427101
Context-dependent decision-making: a simple Bayesian model.
Lloyd, Kevin; Leslie, David S
2013-05-06
Many phenomena in animal learning can be explained by a context-learning process whereby an animal learns about different patterns of relationship between environmental variables. Differentiating between such environmental regimes or 'contexts' allows an animal to rapidly adapt its behaviour when context changes occur. The current work views animals as making sequential inferences about current context identity in a world assumed to be relatively stable but also capable of rapid switches to previously observed or entirely new contexts. We describe a novel decision-making model in which contexts are assumed to follow a Chinese restaurant process with inertia and full Bayesian inference is approximated by a sequential-sampling scheme in which only a single hypothesis about current context is maintained. Actions are selected via Thompson sampling, allowing uncertainty in parameters to drive exploration in a straightforward manner. The model is tested on simple two-alternative choice problems with switching reinforcement schedules and the results compared with rat behavioural data from a number of T-maze studies. The model successfully replicates a number of important behavioural effects: spontaneous recovery, the effect of partial reinforcement on extinction and reversal, the overtraining reversal effect, and serial reversal-learning effects.
Cell based advanced therapeutic medicinal products for bone repair: Keep it simple?
Leijten, J; Chai, Y C; Papantoniou, I; Geris, L; Schrooten, J; Luyten, F P
2015-04-01
The development of cell based advanced therapeutic medicinal products (ATMPs) for bone repair has been expected to revolutionize the health care system for the clinical treatment of bone defects. Despite this great promise, the clinical outcomes of the few cell based ATMPs that have been translated into clinical treatments have been far from impressive. In part, the clinical outcomes have been hampered because of the simplicity of the first wave of products. In response the field has set-out and amassed a plethora of complexities to alleviate the simplicity induced limitations. Many of these potential second wave products have remained "stuck" in the development pipeline. This is due to a number of reasons including the lack of a regulatory framework that has been evolving in the last years and the shortage of enabling technologies for industrial manufacturing to deal with these novel complexities. In this review, we reflect on the current ATMPs and give special attention to novel approaches that are able to provide complexity to ATMPs in a straightforward manner. Moreover, we discuss the potential tools able to produce or predict 'goldilocks' ATMPs, which are neither too simple nor too complex. Copyright © 2014 Elsevier B.V. All rights reserved.
Hansen, Ulf-Peter; Rauh, Oliver; Schroeder, Indra
2016-01-01
The calculation of flux equations or current-voltage relationships in reaction kinetic models with a high number of states can be very cumbersome. Here, a recipe based on an arrow scheme is presented, which yields a straightforward access to the minimum form of the flux equations and the occupation probability of the involved states in cyclic and linear reaction schemes. This is extremely simple for cyclic schemes without branches. If branches are involved, the effort of setting up the equations is a little bit higher. However, also here a straightforward recipe making use of so-called reserve factors is provided for implementing the branches into the cyclic scheme, thus enabling also a simple treatment of such cases.
Hansen, Ulf-Peter; Rauh, Oliver; Schroeder, Indra
2016-01-01
abstract The calculation of flux equations or current-voltage relationships in reaction kinetic models with a high number of states can be very cumbersome. Here, a recipe based on an arrow scheme is presented, which yields a straightforward access to the minimum form of the flux equations and the occupation probability of the involved states in cyclic and linear reaction schemes. This is extremely simple for cyclic schemes without branches. If branches are involved, the effort of setting up the equations is a little bit higher. However, also here a straightforward recipe making use of so-called reserve factors is provided for implementing the branches into the cyclic scheme, thus enabling also a simple treatment of such cases. PMID:26646356
Emotions and Strategic Behaviour: The Case of the Ultimatum Game.
Tamarit, Ignacio; Sánchez, Angel
2016-01-01
Human behaviour in economic interactions has attracted an increasing amount of attention over the last decades. The economic assumption that people would behave focusing on their own material self-interest was proved incomplete, once the empirical evidence consistently showed that many other motives may influence such behaviour. Therefore, models that can incorporate rational decision process as well as other intervening factors are a key issue to both understand the observations from economic experiments and to apply the lessons learned from them. In this paper, we incorporate the influence of emotions to the utility function in an explicit manner, using the Ultimatum Game as a case study. Our model is amenable to analytical study, and is connected with the Circumplex model of emotions and with Kahneman's two-system theory. The simplicity of the model allows to obtain predictions for the offers and acceptance thresholds. We study two specific examples, when the model parameters are distributed uniformly or normally, and show that in the latter case the results are already qualitatively correct. Although this work can be considered as a first approach, it includes what we believe are the main stylized facts, is able to qualitatively reproduce experimental results in a very simple manner, and can be straightforwardly extended to other games.
Emotions and Strategic Behaviour: The Case of the Ultimatum Game
Sánchez, Angel
2016-01-01
Human behaviour in economic interactions has attracted an increasing amount of attention over the last decades. The economic assumption that people would behave focusing on their own material self-interest was proved incomplete, once the empirical evidence consistently showed that many other motives may influence such behaviour. Therefore, models that can incorporate rational decision process as well as other intervening factors are a key issue to both understand the observations from economic experiments and to apply the lessons learned from them. In this paper, we incorporate the influence of emotions to the utility function in an explicit manner, using the Ultimatum Game as a case study. Our model is amenable to analytical study, and is connected with the Circumplex model of emotions and with Kahneman’s two-system theory. The simplicity of the model allows to obtain predictions for the offers and acceptance thresholds. We study two specific examples, when the model parameters are distributed uniformly or normally, and show that in the latter case the results are already qualitatively correct. Although this work can be considered as a first approach, it includes what we believe are the main stylized facts, is able to qualitatively reproduce experimental results in a very simple manner, and can be straightforwardly extended to other games. PMID:27385254
Analysis of Algorithms: Coping with Hard Problems
ERIC Educational Resources Information Center
Kolata, Gina Bari
1974-01-01
Although today's computers can perform as many as one million operations per second, there are many problems that are still too large to be solved in a straightforward manner. Recent work indicates that many approximate solutions are useful and more efficient than exact solutions. (Author/RH)
Opportunity Cost: A Reexamination
ERIC Educational Resources Information Center
Parkin, Michael
2016-01-01
Is opportunity cost an ambiguous and arbitrary concept or a simple, straightforward, and fruitful one? This reexamination of opportunity cost addresses this question, and shows that opportunity cost is an ambiguous concept because "two" definitions are in widespread use. One of the definitions is indeed simple, fruitful, and one that…
ERIC Educational Resources Information Center
Gurnoe, Katherine J.; Skjervold, Christian, Ed.
Presenting American Indian legends, this material provides insight into the cultural background of the Dakota, Ojibwa, and Winnebago people. Written in a straightforward manner, each of the eight legends is associated with an Indian group. The legends included here are titled as follows: Minnesota is Minabozho's Land (Ojibwa); How We Got the…
Gómez-Vallejo, V; Lekuona, A; Baz, Z; Szczupak, B; Cossío, U; Llop, J
2016-09-29
A simple, straightforward and efficient method for the synthesis of [ 18 F]CF 4 and [ 18 F]SF 6 based on an ion beam-induced isotopic exchange reaction is presented. Positron emission tomography ventilation studies in rodents using [ 18 F]CF 4 showed a uniform distribution of the radiofluorinated gas within the lungs and rapid elimination after discontinuation of the administration.
A Simple Estimation Method for Aggregate Government Outsourcing
ERIC Educational Resources Information Center
Minicucci, Stephen; Donahue, John D.
2004-01-01
The scholarly and popular debate on the delegation to the private sector of governmental tasks rests on an inadequate empirical foundation, as no systematic data are collected on direct versus indirect service delivery. We offer a simple method for approximating levels of service outsourcing, based on relatively straightforward combinations of and…
Scargle, Jeffrey D; Way, M J; Gazis, P R
2017-04-10
We demonstrate the effectiveness of a relatively straightforward analysis of the complex 3D Fourier transform of galaxy coordinates derived from redshift surveys. Numerical demonstrations of this approach are carried out on a volume-limited sample of the Sloan Digital Sky Survey redshift survey. The direct unbinned transform yields a complex 3D data cube quite similar to that from the Fast Fourier Transform (FFT) of finely binned galaxy positions. In both cases deconvolution of the sampling window function yields estimates of the true transform. Simple power spectrum estimates from these transforms are roughly consistent with those using more elaborate methods. The complex Fourier transform characterizes spatial distributional properties beyond the power spectrum in a manner different from (and we argue is more easily interpreted than) the conventional multi-point hierarchy. We identify some threads of modern large scale inference methodology that will presumably yield detections in new wider and deeper surveys.
Scargle, Jeffrey D.; Way, M. J.; Gazis, P. R.
2017-01-01
We demonstrate the effectiveness of a relatively straightforward analysis of the complex 3D Fourier transform of galaxy coordinates derived from redshift surveys. Numerical demonstrations of this approach are carried out on a volume-limited sample of the Sloan Digital Sky Survey redshift survey. The direct unbinned transform yields a complex 3D data cube quite similar to that from the Fast Fourier Transform (FFT) of finely binned galaxy positions. In both cases deconvolution of the sampling window function yields estimates of the true transform. Simple power spectrum estimates from these transforms are roughly consistent with those using more elaborate methods. The complex Fourier transform characterizes spatial distributional properties beyond the power spectrum in a manner different from (and we argue is more easily interpreted than) the conventional multi-point hierarchy. We identify some threads of modern large scale inference methodology that will presumably yield detections in new wider and deeper surveys. PMID:29628519
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scargle, Jeffrey D.; Way, M. J.; Gazis, P. R., E-mail: Jeffrey.D.Scargle@nasa.gov, E-mail: Michael.J.Way@nasa.gov, E-mail: PGazis@sbcglobal.net
We demonstrate the effectiveness of a relatively straightforward analysis of the complex 3D Fourier transform of galaxy coordinates derived from redshift surveys. Numerical demonstrations of this approach are carried out on a volume-limited sample of the Sloan Digital Sky Survey redshift survey. The direct unbinned transform yields a complex 3D data cube quite similar to that from the Fast Fourier Transform of finely binned galaxy positions. In both cases, deconvolution of the sampling window function yields estimates of the true transform. Simple power spectrum estimates from these transforms are roughly consistent with those using more elaborate methods. The complex Fouriermore » transform characterizes spatial distributional properties beyond the power spectrum in a manner different from (and we argue is more easily interpreted than) the conventional multipoint hierarchy. We identify some threads of modern large-scale inference methodology that will presumably yield detections in new wider and deeper surveys.« less
Font, David; Heras, Montserrat; Villalgordo, José M
2003-01-01
A simple and straightforward methodology toward the synthesis of novel 2,6-disubstituted-4-alkoxypyrimidine derivatives of type 16 and 19 has been developed. This methodology, initially developed in solution, can be perfectly adapted to the solid support under analogous conditions, taking full advantage of automated parallel synthesis systems. This successful methodology benefits from the key role played by the thioether linkage placed at the 2-position in 3, 9, or 13 in a double manner: on one side, the steric effect exerted by the thioether linkage is likely to be responsible for the very high observed selectivity toward the formation of the O-alkylation products. On the other side, this sulfur linkage can serve not only as a robust point of attachment for the heterocycle, stable to a number of reaction conditions, but also as a means of introducing a new element of diversity through activation to the corresponding sulfone (safety-catch linker concept) and subsequent ipso-substitution reaction with a variety of different N-nucleophiles.
Methods for comparing 3D surface attributes
NASA Astrophysics Data System (ADS)
Pang, Alex; Freeman, Adam
1996-03-01
A common task in data analysis is to compare two or more sets of data, statistics, presentations, etc. A predominant method in use is side-by-side visual comparison of images. While straightforward, it burdens the user with the task of discerning the differences between the two images. The user if further taxed when the images are of 3D scenes. This paper presents several methods for analyzing the extent, magnitude, and manner in which surfaces in 3D differ in their attributes. The surface geometry are assumed to be identical and only the surface attributes (color, texture, etc.) are variable. As a case in point, we examine the differences obtained when a 3D scene is rendered progressively using radiosity with different form factor calculation methods. The comparison methods include extensions of simple methods such as mapping difference information to color or transparency, and more recent methods including the use of surface texture, perturbation, and adaptive placements of error glyphs.
NASA Technical Reports Server (NTRS)
Scargle, Jeffrey D.; Way, M. J.; Gazis, P. R.
2017-01-01
We demonstrate the effectiveness of a relatively straightforward analysis of the complex 3D Fourier transform of galaxy coordinates derived from redshift surveys. Numerical demonstrations of this approach are carried out on a volume-limited sample of the Sloan Digital Sky Survey redshift survey. The direct unbinned transform yields a complex 3D data cube quite similar to that from the Fast Fourier Transform (FFT) of finely binned galaxy positions. In both cases deconvolution of the sampling window function yields estimates of the true transform. Simple power spectrum estimates from these transforms are roughly consistent with those using more elaborate methods. The complex Fourier transform characterizes spatial distributional properties beyond the power spectrum in a manner different from (and we argue is more easily interpreted than) the conventional multi-point hierarchy. We identify some threads of modern large scale inference methodology that will presumably yield detections in new wider and deeper surveys.
A Tale of Two Crocoducks: Creationist Misuses of Molecular Evolution
ERIC Educational Resources Information Center
Hofmann, James R.
2014-01-01
Although some creationist objections to evolutionary biology are simplistic and thus are easily refuted, when more technical arguments become widespread it is important for science educators to explain the relevant science in a straightforward manner. An interesting case study is provided by misguided allegations about how cytochrome c data…
BAT - The Bayesian analysis toolkit
NASA Astrophysics Data System (ADS)
Caldwell, Allen; Kollár, Daniel; Kröninger, Kevin
2009-11-01
We describe the development of a new toolkit for data analysis. The analysis package is based on Bayes' Theorem, and is realized with the use of Markov Chain Monte Carlo. This gives access to the full posterior probability distribution. Parameter estimation, limit setting and uncertainty propagation are implemented in a straightforward manner.
Applying Rational Emotive Behavior Therapy to Multicultural Classrooms
ERIC Educational Resources Information Center
Gregas, Amanda J.
2006-01-01
The principles of psychology are an effective, yet underutilized resource within American schools. Teachers can take advantage of established interventions from the field of psychology and apply them to their classrooms in a realistic, straightforward manner, while still remaining in the role of the educator. A large part of cognitive-behavioral…
ERIC Educational Resources Information Center
Evanson, Nick
2004-01-01
Basic electronic devices have been used to great effect with console computer games. This paper looks at a range of devices from the very simple, such as microswitches and potentiometers, up to the more complex Hall effect probe. There is a great deal of relatively straightforward use of simple devices in computer games systems, and having read…
Investigating an Aerial Image First
ERIC Educational Resources Information Center
Wyrembeck, Edward P.; Elmer, Jeffrey S.
2006-01-01
Most introductory optics lab activities begin with students locating the real image formed by a converging lens. The method is simple and straightforward--students move a screen back and forth until the real image is in sharp focus on the screen. Students then draw a simple ray diagram to explain the observation using only two or three special…
50 Ways to Improve Student Behavior: Simple Solutions to Complex Challenges
ERIC Educational Resources Information Center
Breaux, Annette; Whitaker, Todd
2010-01-01
In a lively and engaging style, Annette Breaux and Todd Whitaker share 50 simple, straightforward techniques for improving student behavior and increasing student cooperation, participation, and achievement. Each practical, well-defined strategy can be applied in classrooms of all grade levels and subjects. Strategies include: (1) How to make…
Automated Ontology Alignment with Fuselets for Community of Interest (COI) Integration
2008-09-01
Search Example ............................................................................... 22 Figure 8 - Federated Search Example Revisited...integrating information from various sources through a single query. This is the traditional federated search problem, where the sources don’t...Figure 7 - Federated Search Example For the data sources in the graphic above, the ontologies align in a fairly straightforward manner
NASA Astrophysics Data System (ADS)
Kiefer, Johannes
2017-09-01
In the title paper, the DMSO sample obviously contains large amounts of water. This leads to a misinterpretation of the infrared spectra. Taking the presence of water into account, the observations can be explained in a straightforward manner.
A Simple Spreadsheet Program for the Calculation of Lattice-Site Distributions
ERIC Educational Resources Information Center
McCaffrey, John G.
2009-01-01
A simple spreadsheet program is presented that can be used by undergraduate students to calculate the lattice-site distributions in solids. A major strength of the method is the natural way in which the correct number of ions or atoms are present, or absent, at specific lattice distances. The expanding-cube method utilized is straightforward to…
The Crisis Prevention Analysis Model.
ERIC Educational Resources Information Center
Hoverland, Hal; And Others
1986-01-01
The Crisis Prevention Analysis model offers a framework for simple, straightforward self-appraisal by college administrators of problems in the following areas: fiscal, faculty and staff, support functions, and goals and attitudes areas. (MSE)
In-situ polymerization PLOT columns I: divinylbenzene
NASA Technical Reports Server (NTRS)
Shen, T. C.
1992-01-01
A novel method for preparation of porous-layer open-tubular (PLOT) columns is described. The method involves a simple and reproducible, straight-forward in-situ polymerization of monomer directly on the metal tube.
Auto-programmable impulse neural circuits
NASA Technical Reports Server (NTRS)
Watula, D.; Meador, J.
1990-01-01
Impulse neural networks use pulse trains to communicate neuron activation levels. Impulse neural circuits emulate natural neurons at a more detailed level than that typically employed by contemporary neural network implementation methods. An impulse neural circuit which realizes short term memory dynamics is presented. The operation of that circuit is then characterized in terms of pulse frequency modulated signals. Both fixed and programmable synapse circuits for realizing long term memory are also described. The implementation of a simple and useful unsupervised learning law is then presented. The implementation of a differential Hebbian learning rule for a specific mean-frequency signal interpretation is shown to have a straightforward implementation using digital combinational logic with a variation of a previously developed programmable synapse circuit. This circuit is expected to be exploited for simple and straightforward implementation of future auto-adaptive neural circuits.
Radiatively driven winds from magnetic, fast-rotating stars
NASA Technical Reports Server (NTRS)
Nerney, S.
1986-01-01
An analytical procedure is developed to solve the magnetohydrodynamic equations for the stellar wind problem in the strong-magnetic field, optically thick limit for hot stars. The slow-mode, Alfven, and fast-mode critical points are modified by the radiation terms in the force equation but in a manner that can be treated relatively easily. Once the velocities at the critical points and the distances to the points are known, the streamline constants are determined in a straight-forward manner. This allows the structure of the wind to be elucidated without recourse to complicated computational schemes.
Experimenting with woodwind instruments
NASA Astrophysics Data System (ADS)
Lo Presto, Michael C.
2007-05-01
Simple experiments involving musical instruments of the woodwind family can be used to demonstrate the basic physics of vibrating air columns in resonance tubes using nothing more than straightforward measurements and data collection hardware and software. More involved experimentation with the same equipment can provide insight into the effects of holes in the tubing and other factors that make simple tubes useful as musical instruments.
Nomogram for sample size calculation on a straightforward basis for the kappa statistic.
Hong, Hyunsook; Choi, Yunhee; Hahn, Seokyung; Park, Sue Kyung; Park, Byung-Joo
2014-09-01
Kappa is a widely used measure of agreement. However, it may not be straightforward in some situation such as sample size calculation due to the kappa paradox: high agreement but low kappa. Hence, it seems reasonable in sample size calculation that the level of agreement under a certain marginal prevalence is considered in terms of a simple proportion of agreement rather than a kappa value. Therefore, sample size formulae and nomograms using a simple proportion of agreement rather than a kappa under certain marginal prevalences are proposed. A sample size formula was derived using the kappa statistic under the common correlation model and goodness-of-fit statistic. The nomogram for the sample size formula was developed using SAS 9.3. The sample size formulae using a simple proportion of agreement instead of a kappa statistic and nomograms to eliminate the inconvenience of using a mathematical formula were produced. A nomogram for sample size calculation with a simple proportion of agreement should be useful in the planning stages when the focus of interest is on testing the hypothesis of interobserver agreement involving two raters and nominal outcome measures. Copyright © 2014 Elsevier Inc. All rights reserved.
Rutherford's Scattering Formula via the Runge-Lenz Vector.
ERIC Educational Resources Information Center
Basano, L.; Bianchi, A.
1980-01-01
Discusses how the Runge-Lenz vector provides a way to derive the relation between deflection angle and impact parameter for Coulomb- and Kepler-fields in a very simple and a straightforward way. (Author/HM)
On the resolution of plenoptic PIV
NASA Astrophysics Data System (ADS)
Deem, Eric A.; Zhang, Yang; Cattafesta, Louis N.; Fahringer, Timothy W.; Thurow, Brian S.
2016-08-01
Plenoptic PIV offers a simple, single camera solution for volumetric velocity measurements of fluid flow. However, due to the novel manner in which the particle images are acquired and processed, few references exist to aid in determining the resolution limits of the measurements. This manuscript provides a framework for determining the spatial resolution of plenoptic PIV based on camera design and experimental parameters. This information can then be used to determine the smallest length scales of flows that are observable by plenoptic PIV, the dynamic range of plenoptic PIV, and the corresponding uncertainty in plenoptic PIV measurements. A simplified plenoptic camera is illustrated to provide the reader with a working knowledge of the method in which the light field is recorded. Then, operational considerations are addressed. This includes a derivation of the depth resolution in terms of the design parameters of the camera. Simulated volume reconstructions are presented to validate the derived limits. It is found that, while determining the lateral resolution is relatively straightforward, many factors affect the resolution along the optical axis. These factors are addressed and suggestions are proposed for improving performance.
Våge, Selina; Thingstad, T Frede
2015-01-01
Trophic interactions are highly complex and modern sequencing techniques reveal enormous biodiversity across multiple scales in marine microbial communities. Within the chemically and physically relatively homogeneous pelagic environment, this calls for an explanation beyond spatial and temporal heterogeneity. Based on observations of simple parasite-host and predator-prey interactions occurring at different trophic levels and levels of phylogenetic resolution, we present a theoretical perspective on this enormous biodiversity, discussing in particular self-similar aspects of pelagic microbial food web organization. Fractal methods have been used to describe a variety of natural phenomena, with studies of habitat structures being an application in ecology. In contrast to mathematical fractals where pattern generating rules are readily known, however, identifying mechanisms that lead to natural fractals is not straight-forward. Here we put forward the hypothesis that trophic interactions between pelagic microbes may be organized in a fractal-like manner, with the emergent network resembling the structure of the Sierpinski triangle. We discuss a mechanism that could be underlying the formation of repeated patterns at different trophic levels and discuss how this may help understand characteristic biomass size-spectra that hint at scale-invariant properties of the pelagic environment. If the idea of simple underlying principles leading to a fractal-like organization of the pelagic food web could be formalized, this would extend an ecologists mindset on how biological complexity could be accounted for. It may furthermore benefit ecosystem modeling by facilitating adequate model resolution across multiple scales.
Våge, Selina; Thingstad, T. Frede
2015-01-01
Trophic interactions are highly complex and modern sequencing techniques reveal enormous biodiversity across multiple scales in marine microbial communities. Within the chemically and physically relatively homogeneous pelagic environment, this calls for an explanation beyond spatial and temporal heterogeneity. Based on observations of simple parasite-host and predator-prey interactions occurring at different trophic levels and levels of phylogenetic resolution, we present a theoretical perspective on this enormous biodiversity, discussing in particular self-similar aspects of pelagic microbial food web organization. Fractal methods have been used to describe a variety of natural phenomena, with studies of habitat structures being an application in ecology. In contrast to mathematical fractals where pattern generating rules are readily known, however, identifying mechanisms that lead to natural fractals is not straight-forward. Here we put forward the hypothesis that trophic interactions between pelagic microbes may be organized in a fractal-like manner, with the emergent network resembling the structure of the Sierpinski triangle. We discuss a mechanism that could be underlying the formation of repeated patterns at different trophic levels and discuss how this may help understand characteristic biomass size-spectra that hint at scale-invariant properties of the pelagic environment. If the idea of simple underlying principles leading to a fractal-like organization of the pelagic food web could be formalized, this would extend an ecologists mindset on how biological complexity could be accounted for. It may furthermore benefit ecosystem modeling by facilitating adequate model resolution across multiple scales. PMID:26648929
ERIC Educational Resources Information Center
Rossi, Sergio; Benaglia, Maurizio; Brenna, Davide; Porta, Riccardo; Orlandi, Manuel
2015-01-01
A simple procedure to convert protein data bank files (.pdb) into a stereolithography file (.stl) using VMD software (Virtual Molecular Dynamic) is reported. This tutorial allows generating, with a very simple protocol, three-dimensional customized structures that can be printed by a low-cost 3D-printer, and used for teaching chemical education…
The vascular toxicity of inhaled agents may be caused by soluble factors that are released into the systemic circulation. To confirm this in a straightforward manner, we obtained plasma from healthy human volunteers before and after exposure to diesel exhaust (DE) and nitrogen di...
An evidence-based concept of implant dentistry. Utilization of short and narrow platform implants.
Ruiz, Jose-Luis
2012-09-01
As a profession, we must remember that tooth replacement is not a luxury; it is often a necessity for health reasons. Although bone augmentation and CBCT and expensive surgical guides are often indicated for complex cases, they are being overused. Simple or straightforward implant cases, when there is sufficient natural bone for narrow or shorter implant, can be predictable performed by well-trained GPs and other trained specialists. Complex cases requiring bone augmentation and other complexities as described herein, should be referred to a surgical specialist. Implant courses and curricula have to be based on the level of complexity of implant surgery that each clinician wishes to provide to his or her patients. Using a "logical approach" to implant dentistry keeps cases simple or straightforward, and more accessible to patients by the correct use of narrow and shorter implants.
MUSTA fluxes for systems of conservation laws
NASA Astrophysics Data System (ADS)
Toro, E. F.; Titarev, V. A.
2006-08-01
This paper is about numerical fluxes for hyperbolic systems and we first present a numerical flux, called GFORCE, that is a weighted average of the Lax-Friedrichs and Lax-Wendroff fluxes. For the linear advection equation with constant coefficient, the new flux reduces identically to that of the Godunov first-order upwind method. Then we incorporate GFORCE in the framework of the MUSTA approach [E.F. Toro, Multi-Stage Predictor-Corrector Fluxes for Hyperbolic Equations. Technical Report NI03037-NPA, Isaac Newton Institute for Mathematical Sciences, University of Cambridge, UK, 17th June, 2003], resulting in a version that we call GMUSTA. For non-linear systems this gives results that are comparable to those of the Godunov method in conjunction with the exact Riemann solver or complete approximate Riemann solvers, noting however that in our approach, the solution of the Riemann problem in the conventional sense is avoided. Both the GFORCE and GMUSTA fluxes are extended to multi-dimensional non-linear systems in a straightforward unsplit manner, resulting in linearly stable schemes that have the same stability regions as the straightforward multi-dimensional extension of Godunov's method. The methods are applicable to general meshes. The schemes of this paper share with the family of centred methods the common properties of being simple and applicable to a large class of hyperbolic systems, but the schemes of this paper are distinctly more accurate. Finally, we proceed to the practical implementation of our numerical fluxes in the framework of high-order finite volume WENO methods for multi-dimensional non-linear hyperbolic systems. Numerical results are presented for the Euler equations and for the equations of magnetohydrodynamics.
The vascular toxicity of inhaled agents may be caused by soluble factors that are released into the systemic circulation. To confirm this in a straightforward manner, we obtained plasma from healthy human volunteers before and after exposure to diesel exhaust (DE) and nitrogen di...
Energy Expansion for the Period of Anharmonic Oscillators by the Method of Lindstedt-Poincare
ERIC Educational Resources Information Center
Fernandez, Francisco M.
2004-01-01
A simple, straightforward and efficient method is proposed for the calculation of the period of anharmonic oscillators as an energy series. The approach is based on perturbation theory and the method of Lindstedt-Poincare.
Emergence of a confined state in a weakly bent wire
NASA Astrophysics Data System (ADS)
Granot, Er'El
2002-06-01
In this paper we use a simple straightforward technique to investigate the emergence of a bound state in a weakly bent wire. We show that the bend behaves like an infinitely shallow potential well, and in the limit of small bending angle (φ<<1) and low energy the bend can be presented by a simple one-dimensional δ-function potential, V(x)=-(2(cb)φ2)δ(x) where cb≅2.1.
Straightforward Generation of Pillared, Microporous Graphene Frameworks for Use in Supercapacitors.
Yuan, Kai; Xu, Yazhou; Uihlein, Johannes; Brunklaus, Gunther; Shi, Lei; Heiderhoff, Ralf; Que, Mingming; Forster, Michael; Chassé, Thomas; Pichler, Thomas; Riedl, Thomas; Chen, Yiwang; Scherf, Ullrich
2015-11-01
Microporous, pillared graphene-based frameworks are generated in a simple functionalization/coupling procedure starting from reduced graphene oxide. They are used for the fabrication of high-performance supercapacitor devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ASSESSMENT OF SPATIAL AUTOCORRELATION IN EMPIRICAL MODELS IN ECOLOGY
Statistically assessing ecological models is inherently difficult because data are autocorrelated and this autocorrelation varies in an unknown fashion. At a simple level, the linking of a single species to a habitat type is a straightforward analysis. With some investigation int...
Asymptotic Normality of Poly-T Densities with Bayesian Applications.
1987-10-01
be extended to the case of many t-like factors in a straightforward manner. Obviously, the computational complexity will increase rapidly as the number...York: Marcel-Dekker. Broemeling, L.D. and Abdullah, M.Y. (1984). An approximation to the poly-t distribution. Communciations in Statistics A,11, 1407...Street Center Champaign, IL 61820 Austin, TX 78703 Dr. Steven Hunks Dr. James Krantz Department of Education Computer -based Education University of
The Use of the Puzzle Box as a Means of Assessing the Efficacy of Environmental Enrichment
O'Connor, Angela M.; Burton, Thomas J.; Leamey, Catherine A.; Sawatari, Atomu
2014-01-01
Environmental enrichment can dramatically influence the development and function of neural circuits. Further, enrichment has been shown to successfully delay the onset of symptoms in models of Huntington’s disease 1-4, suggesting environmental factors can evoke a neuroprotective effect against the progressive, cellular level damage observed in neurodegenerative disorders. The ways in which an animal can be environmentally enriched, however, can vary considerably. Further, there is no straightforward manner in which the effects of environmental enrichment can be assessed: most methods require either fairly complicated behavioral paradigms and/or postmortem anatomical/physiological analyses. This protocol describes the use of a simple and inexpensive behavioral assay, the Puzzle Box 5-7 as a robust means of determining the efficacy of increased social, sensory and motor stimulation on mice compared to cohorts raised in standard laboratory conditions. This simple problem solving task takes advantage of a rodent’s innate desire to avoid open enclosures by seeking shelter. Cognitive ability is assessed by adding increasingly complex impediments to the shelter’s entrance. The time a given subject takes to successfully remove the obstructions and enter the shelter serves as the primary metric for task performance. This method could provide a reliable means of rapidly assessing the efficacy of different enrichment protocols on cognitive function, thus paving the way for systematically determining the role specific environmental factors play in delaying the onset of neurodevelopmental and neurodegenerative disease. PMID:25590345
Second-Order Conditioning in "Drosophila"
ERIC Educational Resources Information Center
Tabone, Christopher J.; de Belle, J. Steven
2011-01-01
Associative conditioning in "Drosophila melanogaster" has been well documented for several decades. However, most studies report only simple associations of conditioned stimuli (CS, e.g., odor) with unconditioned stimuli (US, e.g., electric shock) to measure learning or establish memory. Here we describe a straightforward second-order conditioning…
Experimenting with Woodwind Instruments
ERIC Educational Resources Information Center
LoPresto, Michael C.
2007-01-01
Simple experiments involving musical instruments of the woodwind family can be used to demonstrate the basic physics of vibrating air columns in resonance tubes using nothing more than straightforward measurements and data collection hardware and software. More involved experimentation with the same equipment can provide insight into the effects…
A Simple Adsorption Experiment
ERIC Educational Resources Information Center
Guirado, Gonzalo; Ayllon, Jose A.
2011-01-01
The study of adsorption phenomenon is one of the most relevant and traditional physical chemistry experiments performed by chemistry undergraduate students in laboratory courses. In this article, we describe an easy, inexpensive, and straightforward way to experimentally determine adsorption isotherms using pieces of filter paper as the adsorbent…
Research on Leadership, Motivation and Quality of Life in the Air Force Missile and Tanker Units
1977-06-01
studying directly the results of applying different management principles in leading organizations. Enlight - ened management had demonstrated In... technologies for handling individual differences are fairly simple and straightforward. The demands placed upon analyses involving relationships and
Breeding for phytonutrient content; examples from watermelon
USDA-ARS?s Scientific Manuscript database
Breeding for high phytonutrient fruits and vegetables can be a fairly straightforward endeavor when the compounds of interest produce a visible effect or the methods for quantifying the compounds simple and inexpensive. Lycopene in tomatoes and watermelon is one such compound, since the amount of r...
SPHRINT - Printing Drug Delivery Microspheres from Polymeric Melts.
Shpigel, Tal; Uziel, Almog; Lewitus, Dan Y
2018-06-01
This paper describes a simple, straightforward, and rapid method for producing microspheres from molten polymers by merely printing them in an inkjet-like manner onto a superoleophobic surface (microsphere printing, hence SPHRINT). Similar to 3D printing, a polymer melt is deposited onto a surface; however, in contrast to 2D or 3D printing, the surface is not wetted (i.e. exhibiting high contact angles with liquids, above 150°, due to its low surface energy), resulting in the formation of discrete spherical microspheres. In this study, microspheres were printed using polycaprolactone and poly(lactic-co-glycolic acid) loaded with a model active pharmaceutical ingredient-ibuprofen (IBU). The formation of microspheres was captured by high-speed imaging and was found to involve several physical phenomena characterized by non-dimensional numbers, including the thinning and breakup of highly viscous, weakly elastic filaments, which are first to be described in pure polymer melts. The resulting IBU-loaded microspheres had higher sphericity, reproducible sizes and shapes, and superior drug encapsulation efficiencies with a distinctly high process yield (>95%) as compared to the conservative solvent-based methods used presently. Furthermore, the microspheres showed sustained release profiles. Copyright © 2018 Elsevier B.V. All rights reserved.
KungFQ: a simple and powerful approach to compress fastq files.
Grassi, Elena; Di Gregorio, Federico; Molineris, Ivan
2012-01-01
Nowadays storing data derived from deep sequencing experiments has become pivotal and standard compression algorithms do not exploit in a satisfying manner their structure. A number of reference-based compression algorithms have been developed but they are less adequate when approaching new species without fully sequenced genomes or nongenomic data. We developed a tool that takes advantages of fastq characteristics and encodes them in a binary format optimized in order to be further compressed with standard tools (such as gzip or lzma). The algorithm is straightforward and does not need any external reference file, it scans the fastq only once and has a constant memory requirement. Moreover, we added the possibility to perform lossy compression, losing some of the original information (IDs and/or qualities) but resulting in smaller files; it is also possible to define a quality cutoff under which corresponding base calls are converted to N. We achieve 2.82 to 7.77 compression ratios on various fastq files without losing information and 5.37 to 8.77 losing IDs, which are often not used in common analysis pipelines. In this paper, we compare the algorithm performance with known tools, usually obtaining higher compression levels.
IOL calculation using paraxial matrix optics.
Haigis, Wolfgang
2009-07-01
Matrix methods have a long tradition in paraxial physiological optics. They are especially suited to describe and handle optical systems in a simple and intuitive manner. While these methods are more and more applied to calculate the refractive power(s) of toric intraocular lenses (IOL), they are hardly used in routine IOL power calculations for cataract and refractive surgery, where analytical formulae are commonly utilized. Since these algorithms are also based on paraxial optics, matrix optics can offer rewarding approaches to standard IOL calculation tasks, as will be shown here. Some basic concepts of matrix optics are introduced and the system matrix for the eye is defined, and its application in typical IOL calculation problems is illustrated. Explicit expressions are derived to determine: predicted refraction for a given IOL power; necessary IOL power for a given target refraction; refractive power for a phakic IOL (PIOL); predicted refraction for a thick lens system. Numerical examples with typical clinical values are given for each of these expressions. It is shown that matrix optics can be applied in a straightforward and intuitive way to most problems of modern routine IOL calculation, in thick or thin lens approximation, for aphakic or phakic eyes.
Wronskian Method for Bound States
ERIC Educational Resources Information Center
Fernandez, Francisco M.
2011-01-01
We propose a simple and straightforward method based on Wronskians for the calculation of bound-state energies and wavefunctions of one-dimensional quantum-mechanical problems. We explicitly discuss the asymptotic behaviour of the wavefunction and show that the allowed energies make the divergent part vanish. As illustrative examples we consider…
Ethical Frameworks, Moral Practices and Outdoor Education.
ERIC Educational Resources Information Center
Fox, Karen M.; Lautt, Mick
Insights from quantum physics and chaos theory help create new metaphors about ethical frameworks and moral practices in outdoor education. The seemingly straightforward concept of values is analogous to the initial simple nonlinear equation of a fractal. The value claims of outdoor education--trust, cooperation, environmental awareness,…
ERIC Educational Resources Information Center
Antippa, Adel F.
2009-01-01
We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…
Common Magnets, Unexpected Polarities
ERIC Educational Resources Information Center
Olson, Mark
2013-01-01
In this paper, I discuss a "misconception" in magnetism so simple and pervasive as to be typically unnoticed. That magnets have poles might be considered one of the more straightforward notions in introductory physics. However, the magnets common to students' experiences are likely different from those presented in educational…
BVDV: Detection, Risk Management and Control
USDA-ARS?s Scientific Manuscript database
The terms bovine viral diarrhea (BVD) and bovine viral diarrhea viruses (BVDV) are difficult to define in simple straightforward statements because both are umbrella terms covering a wide range of observations and entities. While diarrhea is in the name, BVD, it is used in reference to a number of ...
NASA Technical Reports Server (NTRS)
Thornton, W. A.; Majumder, D. K.
1974-01-01
The investigation reported demonstrates that in the case considered perturbation methods can be used in a straightforward manner to obtain reanalysis information. A perturbation formula for the buckling loads of a general shell of revolution is derived. The accuracy of the obtained relations and their range of application is studied with the aid of a specific example involving a particular stiffened shell of revolution.
ADE-FDTD Scattered-Field Formulation for Dispersive Materials
Kong, Soon-Cheol; Simpson, Jamesina J.; Backman, Vadim
2009-01-01
This Letter presents a scattered-field formulation for modeling dispersive media using the finite-difference time-domain (FDTD) method. Specifically, the auxiliary differential equation method is applied to Drude and Lorentz media for a scattered field FDTD model. The present technique can also be applied in a straightforward manner to Debye media. Excellent agreement is achieved between the FDTD-calculated and exact theoretical results for the reflection coefficient in half-space problems. PMID:19844602
ADE-FDTD Scattered-Field Formulation for Dispersive Materials.
Kong, Soon-Cheol; Simpson, Jamesina J; Backman, Vadim
2008-01-01
This Letter presents a scattered-field formulation for modeling dispersive media using the finite-difference time-domain (FDTD) method. Specifically, the auxiliary differential equation method is applied to Drude and Lorentz media for a scattered field FDTD model. The present technique can also be applied in a straightforward manner to Debye media. Excellent agreement is achieved between the FDTD-calculated and exact theoretical results for the reflection coefficient in half-space problems.
Preparation and Luminescence Thermochromism of Tetranuclear Copper(I)-Pyridine-Iodide Clusters
ERIC Educational Resources Information Center
Parmeggiani, Fabio; Sacchetti, Alessandro
2012-01-01
A simple and straightforward synthesis of a tetranuclear copper(I)-pyridine-iodide cluster is described as a laboratory experiment for advanced inorganic chemistry undergraduate students. The product is used to demonstrate the fascinating and visually impressive phenomenon of luminescence thermochromism: exposed to long-wave UV light, the…
Simple method to detect triacylglycerol biosynthesis in a yeast-based recombinant system
USDA-ARS?s Scientific Manuscript database
Standard methods to quantify the activity of triacylglycerol (TAG) synthesizing enzymes DGAT and PDAT (TAG-SE) require a sensitive but rather arduous laboratory assay based on radio-labeled substrates. Here we describe two straightforward methods to detect TAG production in baker’s yeast Saccharomyc...
The Food-Safe Schools Action Guide
ERIC Educational Resources Information Center
Centers for Disease Control and Prevention, 2007
2007-01-01
"The Food-Safe School Needs Assessment and Planning Guide" is a tool that can help schools assess their food safety policies, procedures, and programs and develop plans for improvement. This tool includes a simple, straightforward questionnaire, score card, and planning guide that give administrators, school staff, families, and students a chance…
A Review of Scoring Algorithms for Ability and Aptitude Tests.
ERIC Educational Resources Information Center
Chevalier, Shirley A.
In conventional practice, most educators and educational researchers score cognitive tests using a dichotomous right-wrong scoring system. Although simple and straightforward, this method does not take into consideration other factors, such as partial knowledge or guessing tendencies and abilities. This paper discusses alternative scoring models:…
Children's Ability to Comprehend Main Ideas After Reading Expository Prose.
ERIC Educational Resources Information Center
Baumann, James F.
A study was conducted to evaluate children's ability to comprehend main ideas after reading connected discourse and to develop and validate a straightforward and intuitively simple system for identifying main ideas in prose. Three experimental passages were randomly selected from third and sixth grade social studies textbooks, and education…
Start Smart! Building Brain Power in the Early Years.
ERIC Educational Resources Information Center
Schiller, Pam
Noting current brain development research, this book offers simple, straightforward ways to boost children's brain power with active exploration, repetition, sensory exploration, laughter, and more. The chapters describe how and why the brain develops and explain how parents can give their children the best foundation for future learning.…
APPROACH TO EQUILIBRIUM OF A QUANTUM PLASMA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balescu, R.
1961-01-01
The treatment of irreversible processes in a classical plasma (R. Balescu, Phys. Fluids 3, 62(1960)) was extended to a gas of charged particles obeying quantum statistics. The various contributions to the equation of evolution for the reduced one-particle Wigner function were written in a form analogous to the classical formalism. The summation was then performed in a straightforward manner. The resulting equation describes collisions between particles "dressed" by their polarization clouds, exactly as in the classical situation. (auth)
Measurement of the traction force of biological cells by digital holography
Yu, Xiao; Cross, Michael; Liu, Changgeng; Clark, David C.; Haynie, Donald T.; Kim, Myung K.
2011-01-01
The traction force produced by biological cells has been visualized as distortions in flexible substrata. We have utilized quantitative phase microscopy by digital holography (DH-QPM) to study the wrinkling of a silicone rubber film by motile fibroblasts. Surface deformation and the cellular traction force have been measured from phase profiles in a direct and straightforward manner. DH-QPM is shown to provide highly efficient and versatile means for quantitatively analyzing cellular motility. PMID:22254175
Increasing the Drive of Your Physics Class
ERIC Educational Resources Information Center
Eisenstein, Stanley
2008-01-01
First-year physics students often have a difficult time grasping Newton's laws of motion and recognizing the forces that these laws depend on. The "Paper Car" project is an experiential activity that is rich in application of force principles. It is also simple enough that students are able to integrate straightforward but non-trivial physics…
ERIC Educational Resources Information Center
Tetlow, Linda
2009-01-01
Emergency shelters for disaster relief are an ever present necessity. Anyone who has ever camped in a tent will understand that finding the perfect design, that will be simple and quick to erect, be stable in a variety of weather conditions, and will accommodate a number of people sleeping, sitting or even standing is not straightforward and…
ACED IT: A Tool for Improved Ethical and Moral Decision-Making
ERIC Educational Resources Information Center
Kreitler, Crystal Mata; Stenmark, Cheryl K.; Rodarte, Allen M.; Piñón DuMond, Rebecca
2014-01-01
Numerous examples of unethical organizational decision-making highlighted in the media have led many to question the general moral perception and ethical judgments of individuals. The present study examined two forms of a straightforward ethical decision-making (EDM) tool (ACED IT cognitive map) that could be a relatively simple instrument for…
A pilot project was initiated to create an approach to measure, monitor, and maintain prosperity and environmental quality within a regional system. The goal was to produce a scientifically defensible but straightforward and inexpensive methodology that is simple to use and int...
Identities for Generalized Fibonacci Numbers: A Combinatorial Approach
ERIC Educational Resources Information Center
Plaza, A.; Falcon, S.
2008-01-01
This note shows a combinatorial approach to some identities for generalized Fibonacci numbers. While it is a straightforward task to prove these identities with induction, and also by arithmetical manipulations such as rearrangements, the approach used here is quite simple to follow and eventually reduces the proof to a counting problem. (Contains…
A simple, sensitive graphical method of treating thermogravimetric analysis data
Abraham Broido
1969-01-01
Thermogravimetric Analysis (TGA) is finding increasing utility in investigations of the pyrolysis and combustion behavior of materuals. Although a theoretical treatment of the TGA behavior of an idealized reaction is relatively straight-forward, major complications can be introduced when the reactions are complex, e.g., in the pyrolysis of cellulose, and when...
Meals without Squeals: Child Care Feeding Guide and Cookbook.
ERIC Educational Resources Information Center
Berman, Christine; Fromer, Jacki
Simple, straightforward information on child nutrition and growth is offered in this child care feeding guide and cookbook. The book contains clear, easy-to-read menus and recipes, provides solutions to common feeding problems, and shows ways to offer children positive learning experiences with food. Chapter 1 gives an overview to important issues…
Estimating p-n Diode Bulk Parameters, Bandgap Energy and Absolute Zero by a Simple Experiment
ERIC Educational Resources Information Center
Ocaya, R. O.; Dejene, F. B.
2007-01-01
This paper presents a straightforward but interesting experimental method for p-n diode characterization. The method differs substantially from many approaches in diode characterization by offering much tighter control over the temperature and current variables. The method allows the determination of important diode constants such as temperature…
Teaching Note: Intimacy Timelines as a Tool for Teaching Feminism
ERIC Educational Resources Information Center
Briggs, Lindsay
2017-01-01
This essay will describe one activity that the author uses in her human sexuality course to illustrate how patriarchal systems have affected the experiences of females and males across the sexual lifespan. Through this fairly simple and straightforward activity students are able to utilize common experiences and knowledge of real-world issues and…
Connect the Dots: A Dedicated System for Learning Links Teacher Teams to Student Outcomes
ERIC Educational Resources Information Center
Ermeling, Bradley A.
2012-01-01
Establishing school-based professional learning appears so simple and straightforward during inspiring presentations at summer workshops, but keeping collaborative work focused on teaching and learning in such a way that it produces consistent results is a highly underestimated task. Investigations and experience from a group of researchers at the…
Generalized recursive solutions to Ornstein-Zernike integral equations
NASA Astrophysics Data System (ADS)
Rossky, Peter J.; Dale, William D. T.
1980-09-01
Recursive procedures for the solution of a class of integral equations based on the Ornstein-Zernike equation are developed; the hypernetted chain and Percus-Yevick equations are two special cases of the class considered. It is shown that certain variants of the new procedures developed here are formally equivalent to those recently developed by Dale and Friedman, if the new recursive expressions are initialized in the same way as theirs. However, the computational solution of the new equations is significantly more efficient. Further, the present analysis leads to the identification of various graphical quantities arising in the earlier study with more familiar quantities related to pair correlation functions. The analysis is greatly facilitated by the use of several identities relating simple chain sums whose graphical elements can be written as a sum of two or more parts. In particular, the use of these identities permits renormalization of the equivalent series solution to the integral equation to be directly incorporated into the recursive solution in a straightforward manner. Formulas appropriate to renormalization with respect to long and short range parts of the pair potential, as well as more general components of the direct correlation function, are obtained. To further illustrate the utility of this approach, we show that a simple generalization of the hypernetted chain closure relation for the direct correlation function leads directly to the reference hypernetted chain (RHNC) equation due to Lado. The form of the correlation function used in the exponential approximation of Andersen and Chandler is then seen to be equivalent to the first estimate obtained from a renormalized RHNC equation.
NASA Astrophysics Data System (ADS)
Vilão, Rui C.; Melo, Santino L. S.
2014-12-01
We address the production of musical tones by a simple musical instrument of the Brazilian tradition: the berimbau-de-barriga. The vibration physics of the string and of the air mass inside the gourd are reviewed. Straightforward measurements of an actual berimbau, which illustrate the basic physical phenomena, are performed using a PC-based "soundcard oscilloscope." The inharmonicity of the string and the role of the gourd are discussed in the context of known results in the psychoacoustics of pitch definition.
Soliton and quasi-periodic wave solutions for b-type Kadomtsev-Petviashvili equation
NASA Astrophysics Data System (ADS)
Singh, Manjit; Gupta, R. K.
2017-11-01
In this paper, truncated Laurent expansion is used to obtain the bilinear equation of a nonlinear evolution equation. As an application of Hirota's method, multisoliton solutions are constructed from the bilinear equation. Extending the application of Hirota's method and employing multidimensional Riemann theta function, one and two-periodic wave solutions are also obtained in a straightforward manner. The asymptotic behavior of one and two-periodic wave solutions under small amplitude limits is presented, and their relations with soliton solutions are also demonstrated.
eCAF: A New Tool for the Conversational Analysis of Electronic Communication
ERIC Educational Resources Information Center
Duncan-Howell, Jennifer
2009-01-01
Electronic communication is characteristically concerned with "the message" (eM), those who send them (S), and those who receive and read them (R). This relationship could be simplified into the equation eM = S + R. When this simple equation is applied to electronic communication, several elements are added that make this straightforward act of…
Untangling the Licensing Web and Other Copyright Questions
ERIC Educational Resources Information Center
Sparkler, Andrew; Poliniak, Susan
2010-01-01
Copyright law is a daunting subject for most lawyers, so it's no surprise that many music educators feel uneasy dealing with it as well. But in truth, obtaining permissions for using copyrighted works can be a very simple and straightforward process. This article walks the readers through the steps of obtaining permission for a fictional piece of…
X-ray emission from reverse-shocked ejecta in supernova remnants
NASA Technical Reports Server (NTRS)
Cioffi, Denis F.; Mckee, Christopher F.
1990-01-01
A simple physical model of the dynamics of a young supernova remnant is used to derive a straightforward kinematical description of the reverse shock. With suitable approximations, formulae can then be developed to give the X-ray emission of the reverse-shocked ejecta. The results are found to agree favorably with observations of SN1006.
Reading Redefined for a Transmedia Universe
ERIC Educational Resources Information Center
Lamb, Annette
2011-01-01
Once upon a time, reading was as simple and straightforward as decoding words on a page. No more. Digital age technologies have made such an impact on the way people interact with content that the old definitions of "reading" and "books" no longer apply. Times, as they say, are changing. The digital age is transforming nearly every aspect of one's…
Is this truly an international journal? [Editorial
William M. Block
2007-01-01
Although the Journal includes papers on species and habitats occurring in different countries and on different continents, and authors are from various places, we question whether or not it is truly an international journal. Our reasoning here is simple and straightforward. We received a fair number of submissions from across the globe. We see the same proportion of...
Possibilities: A Financial Resource for Parents of Children with Disabilities
ERIC Educational Resources Information Center
PACER Center, 2010
2010-01-01
This publication was created for middle-income parents of children under the age of 18 who have disabilities. It is a simple, straightforward resource to help them manage their money, and plan for them and their children's financial future and overall well-being. The financial management techniques presented here can help parents, not just in…
Behind the Curtain: Assessing the Case for National Curriculum Standards. Policy Analysis. No. 661
ERIC Educational Resources Information Center
McCluskey, Neal
2010-01-01
The argument for national curriculum standards sounds simple: set high standards, make all schools meet them, and watch American students achieve at high levels. It is straightforward and compelling, and it is driving a sea change in American education policy. Unfortunately, setting high standards and getting American students to hit them is…
NASA Astrophysics Data System (ADS)
Şologan, Maria; Gentilini, Cristina; Bidoggia, Silvia; Boccalon, Mariangela; Pace, Alice; Pengo, Paolo; Pasquato, Lucia
2018-06-01
Harnessing the reciprocal phobicity of hydrogenated and fluorinated thiolates proved to be a valuable strategy in preparing gold nanoparticles displaying mixed monolayers with a well-defined and pre-determined morphology. Our studies display that the organisation of the fluorinated ligands in phase-separated domains takes place even when these represent a small fraction of the ligands grafted on the gold surface. Using simple model ligands and by combining 19F NMR or ESR spectroscopies, and multiscale molecular simulations, we could demonstrate how the monolayer morphology responds in a predictable manner to structural differences between the thiolates. This enables a straightforward preparation of gold nanoparticles with monolayers displaying stripe-like, Janus, patchy, and random morphologies. Additionally, solubility properties may be tuned as function of the nature of the ligands and of the monolayer morphology obtaining gold nanoparticles soluble in organic solvents or in aqueous solutions. Most importantly, this rich diversity can be achieved not by resorting to ad hoc developed fabrication techniques, but rather relying on the spontaneous self-sorting of the ligands upon assembly on the nanoparticle surface. Besides enabling control over the monolayer morphology, fluorinated ligands endow the nanoparticles with several properties that can be exploited in the development of novel materials with applications, for instance in drug delivery and diagnostic imaging.
NASA Astrophysics Data System (ADS)
Kuosheng, Jiang; Guanghua, Xu; Tangfei, Tao; Lin, Liang; Yi, Wang; Sicong, Zhang; Ailing, Luo
2014-01-01
This paper presents the theory and implementation of a novel sensor system for measuring the angular speed (AS) of a shaft rotating at a very low speed range, nearly zero speed. The sensor system consists mainly of an eccentric sleeve rotating with the shaft on which the angular speed to be measured, and an eddy current displacement sensor to obtain the profile of the sleeve for AS calculation. When the shaft rotates at constant speed the profile will be a pure sinusoidal trace. However, the profile will be a phase modulated signal when the shaft speed is varied. By applying a demodulating procedure, the AS can be obtained in a straightforward manner. The sensor system was validated experimentally based on a gearbox test rig and the result shows that the AS obtained are consistent with that obtained by a conventional encoder. However, the new sensor gives very smooth and stable traces of the AS, demonstrating its higher accuracy and reliability in obtaining the AS of the low speed operations with speed-up and down transients. In addition, the experiment also shows that it is easy and cost-effective to be realised in different applications such as condition monitoring and process control.
Optical Characterization of Light-Bending Mechanisms in Photonic Crystals with Simple Cubic Symmetry
NASA Astrophysics Data System (ADS)
Frey, Brian James
For much of Earth's history, light was reputed to be an intangible, intractable, and transient quantity, but our understanding of light has since been revolutionized. The flow of electromagnetic energy through space can today be manipulated with a degree of precision and control once only dreamed of; rapidly developing technologies can create, guide, bend, and detect light to produce useful energy and information. One field where these technologies are most relevant is the field of light trapping, which concerns the harvesting of incident photons within a limited space by scattering, slowing, or otherwise prolonging and enhancing their interaction with matter. Over the past few decades, a class of materials, called photonic crystals (PCs), has emerged that is ideally suited for this task. This is because their wavelength-scale periodicity in one, two, or three dimensions can be designed to alter the dispersion relation and photonic density-of-states in a controllable manner. In this work, a TiO2 simple cubic PC with high dielectric contrast ( > 4:1) is fabricated with a lattice constant of 450 nm, and a newly discovered light-trapping mechanism is demonstrated, which bends light by 90 degrees and enhances optical absorption by one to two orders-of-magnitude over that in a reference film of the same thickness. It is shown that, for wavelengths from 450-950 nm, the achievable enhancement factor for this structure surpasses the theoretical limit of 4n2 derived under the assumption of ergodic system by multiple times. These results derive directly from the symmetry of the simple cubic lattice and are fundamental in nature, not depending on the material used or on the method of fabrication. The light trapping capability of these PCs has straight-forward applications that would be useful in a variety of areas where increased light-matter interaction is desirable, such as white-light generation, thin-film solar cells, photocatalytic pollutant degradation and hydrogen fuel production, and chemical sensing.
ERIC Educational Resources Information Center
Moyer, Judith; Onosko, Joseph; Forcey, Charles; Cobb, Casey
2003-01-01
This article discusses the History in Perspective Project (HIP), a collaborative project between the University of New Hampshire (UNH), its Supervisory Administration Unit #56 (SAU #56), and 13 other school districts. The authors' three-pronged plan was simple, straightforward, and, in some ways, experimental. From observation and experience, they…
ERIC Educational Resources Information Center
Wriedt, Mario; Sculley, Julian P.; Aulakh, Darpandeep; Zhou, Hong-Cai
2016-01-01
A simple and straightforward synthesis of an ultrastable porous metal-organic framework (MOF) based on copper(II) and a mixed N donor ligand system is described as a laboratory experiment for chemistry undergraduate students. These experiments and the resulting analysis are designed to teach students basic research tools and procedures while…
Virtual Ray Tracing as a Conceptual Tool for Image Formation in Mirrors and Lenses
ERIC Educational Resources Information Center
Heikkinen, Lasse; Savinainen, Antti; Saarelainen, Markku
2016-01-01
The ray tracing method is widely used in teaching geometrical optics at the upper secondary and university levels. However, using simple and straightforward examples may lead to a situation in which students use the model of ray tracing too narrowly. Previous studies show that students seem to use the ray tracing method too concretely instead of…
Toward a formal definition of water scarcity in natural human systems
W.K. Jaeger; A.J. Plantinga; H. Chang; K. Dello; G. Grant; D. Hulse; J.J. McDonnell; S. Lancaster; H. Moradkhani; A.T. Morzillo; P. Mote; A. Nolin; M. Santlemann; J. Wu
2013-01-01
Water scarcity may appear to be a simple concept, but it can be difficult to apply to complex natural-human systems. While aggregate scarcity indices are straightforward to compute, they do not adequately represent the spatial and temporal variations in water scarcity that arise from complex systems interactions. The uncertain effects of future climate change on water...
Building a Phylogenetic Tree of the Human and Ape Superfamily Using DNA-DNA Hybridization Data
ERIC Educational Resources Information Center
Maier, Caroline Alexander
2004-01-01
The study describes the process of DNA-DNA hybridization and the history of its use by Sibley and Alquist in simple, straightforward, and interesting language that students easily understand to create their own phylogenetic tree of the hominoid superfamily. They calibrate the DNA clock and use it to estimate the divergence dates of the various…
PhyLIS: a simple GNU/Linux distribution for phylogenetics and phyloinformatics.
Thomson, Robert C
2009-07-30
PhyLIS is a free GNU/Linux distribution that is designed to provide a simple, standardized platform for phylogenetic and phyloinformatic analysis. The operating system incorporates most commonly used phylogenetic software, which has been pre-compiled and pre-configured, allowing for straightforward application of phylogenetic methods and development of phyloinformatic pipelines in a stable Linux environment. The software is distributed as a live CD and can be installed directly or run from the CD without making changes to the computer. PhyLIS is available for free at http://www.eve.ucdavis.edu/rcthomson/phylis/.
PhyLIS: A Simple GNU/Linux Distribution for Phylogenetics and Phyloinformatics
Thomson, Robert C.
2009-01-01
PhyLIS is a free GNU/Linux distribution that is designed to provide a simple, standardized platform for phylogenetic and phyloinformatic analysis. The operating system incorporates most commonly used phylogenetic software, which has been pre-compiled and pre-configured, allowing for straightforward application of phylogenetic methods and development of phyloinformatic pipelines in a stable Linux environment. The software is distributed as a live CD and can be installed directly or run from the CD without making changes to the computer. PhyLIS is available for free at http://www.eve.ucdavis.edu/rcthomson/phylis/. PMID:19812729
Ho, Christine A; Richards, B Stephens; Ezaki, Marybeth
2014-09-01
Although amniotic band syndrome is relatively rare, reports of pseudarthrosis in conjunction with amniotic band syndrome are even rarer, as are reports of impending vascular compromise in the neonatal period. Careful serial examinations and timely surgical intervention can successfully avoid the catastrophic event of limb loss. We report on a case of upper extremity amniotic band syndrome with pseudarthrosis of the radius and ulna that was complicated by vascular compromise in a neonate. Chart and radiographic data for this single case were reviewed and reported retrospectively. A 1-day-old neonate born at 28 3/7 weeks of gestational age was transferred to our institution for increased swelling to the forearm distal to a congenital band associated with an underlying radius and ulna pseudarthrosis. Although the forearm and hand were soft and viable initially, severe edema and swelling occurred after fluid resuscitation, and on the fourth day of life, the patient underwent simple band releases at bedside with 2 longitudinal incisions over the radius and ulna. Circulation was restored, and the pseudarthrosis healed with no further surgical intervention. Successful delayed reconstruction of the band with Z-plasties was performed when the baby was 7 months of age. In this case, a relatively simple, straightforward procedure that is familiar to most pediatric orthopaedists salvaged a compromised neonatal limb with amniotic band syndrome and allowed healing of a pseudarthrosis, allowing more complex reconstruction to be performed in a delayed, elective manner. Careful observation is necessary in the neonatal period of the baby with a severe band; a viable, well-perfused, compressible extremity may still be at risk.
Quantum acoustics with superconducting qubits
NASA Astrophysics Data System (ADS)
Chu, Yiwen
2017-04-01
The ability to engineer and manipulate different types of quantum mechanical objects allows us to take advantage of their unique properties and create useful hybrid technologies. Thus far, complex quantum states and exquisite quantum control have been demonstrated in systems ranging from trapped ions to superconducting resonators. Recently, there have been many efforts to extend these demonstrations to the motion of complex, macroscopic objects. These mechanical objects have important applications as quantum memories or transducers for measuring and connecting different types of quantum systems. In particular, there have been a few experiments that couple motion to nonlinear quantum objects such as superconducting qubits. This opens up the possibility of creating, storing, and manipulating non-Gaussian quantum states in mechanical degrees of freedom. However, before sophisticated quantum control of mechanical motion can be achieved, we must realize systems with long coherence times while maintaining a sufficient interaction strength. These systems should be implemented in a simple and robust manner that allows for increasing complexity and scalability in the future. In this talk, I will describe our recent experiments demonstrating a high frequency bulk acoustic wave resonator that is strongly coupled to a superconducting qubit using piezoelectric transduction. In contrast to previous experiments with qubit-mechanical systems, our device requires only simple fabrication methods, extends coherence times to many microseconds, and provides controllable access to a multitude of phonon modes. We use this system to demonstrate basic quantum operations on the coupled qubit-phonon system. Straightforward improvements to the current device will allow for advanced protocols analogous to what has been shown in optical and microwave resonators, resulting in a novel resource for implementing hybrid quantum technologies.
Model falsifiability and climate slow modes
NASA Astrophysics Data System (ADS)
Essex, Christopher; Tsonis, Anastasios A.
2018-07-01
The most advanced climate models are actually modified meteorological models attempting to capture climate in meteorological terms. This seems a straightforward matter of raw computing power applied to large enough sources of current data. Some believe that models have succeeded in capturing climate in this manner. But have they? This paper outlines difficulties with this picture that derive from the finite representation of our computers, and the fundamental unavailability of future data instead. It suggests that alternative windows onto the multi-decadal timescales are necessary in order to overcome the issues raised for practical problems of prediction.
Mass Determination of Entire Amyloid Fibrils by Using Mass Spectrometry.
Doussineau, Tristan; Mathevon, Carole; Altamura, Lucie; Vendrely, Charlotte; Dugourd, Philippe; Forge, Vincent; Antoine, Rodolphe
2016-02-12
Amyloid fibrils are self-assembled protein structures with important roles in biology (either pathogenic or physiological), and are attracting increasing interest in nanotechnology. However, because of their high aspect ratio and the presence of some polymorphism, that is, the possibility to adopt various structures, their characterization is challenging and basic information such as their mass is unknown. Here we show that charge-detection mass spectrometry, recently developed for large self-assembled systems such as viruses, provides such information in a straightforward manner. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
1992-01-14
modes. Nonlinearity 4, 697-726. Campbell, S. A . 1991. The Effects of Symmetry on Low Dimensional Modal Interactions. Ph. D. Thesis. (Theoretical and...et aL; they have a ready for submission entitled " Bifurcation from symmetric heteroclinic cycles with three interacting modes". The purpose of this...simple model for the effects of riblets on the growth and form of eigenstructures is under investigation. This model is a straight-forward extension of
ERIC Educational Resources Information Center
Taber, Keith S.; Bricheno, Pat
2009-01-01
The present paper discusses the conceptual demands of an apparently straightforward task set to secondary-level students--completing chemical word equations with a single omitted term. Chemical equations are of considerable importance in chemistry, and school students are expected to learn to be able to write and interpret them. However, it is…
Conditions Database for the Belle II Experiment
NASA Astrophysics Data System (ADS)
Wood, L.; Elsethagen, T.; Schram, M.; Stephan, E.
2017-10-01
The Belle II experiment at KEK is preparing for first collisions in 2017. Processing the large amounts of data that will be produced will require conditions data to be readily available to systems worldwide in a fast and efficient manner that is straightforward for both the user and maintainer. The Belle II conditions database was designed with a straightforward goal: make it as easily maintainable as possible. To this end, HEP-specific software tools were avoided as much as possible and industry standard tools used instead. HTTP REST services were selected as the application interface, which provide a high-level interface to users through the use of standard libraries such as curl. The application interface itself is written in Java and runs in an embedded Payara-Micro Java EE application server. Scalability at the application interface is provided by use of Hazelcast, an open source In-Memory Data Grid (IMDG) providing distributed in-memory computing and supporting the creation and clustering of new application interface instances as demand increases. The IMDG provides fast and efficient access to conditions data via in-memory caching.
Singular perturbation solutions of steady-state Poisson-Nernst-Planck systems.
Wang, Xiang-Sheng; He, Dongdong; Wylie, Jonathan J; Huang, Huaxiong
2014-02-01
We study the Poisson-Nernst-Planck (PNP) system with an arbitrary number of ion species with arbitrary valences in the absence of fixed charges. Assuming point charges and that the Debye length is small relative to the domain size, we derive an asymptotic formula for the steady-state solution by matching outer and boundary layer solutions. The case of two ionic species has been extensively studied, the uniqueness of the solution has been proved, and an explicit expression for the solution has been obtained. However, the case of three or more ions has received significantly less attention. Previous work has indicated that the solution may be nonunique and that even obtaining numerical solutions is a difficult task since one must solve complicated systems of nonlinear equations. By adopting a methodology that preserves the symmetries of the PNP system, we show that determining the outer solution effectively reduces to solving a single scalar transcendental equation. Due to the simple form of the transcendental equation, it can be solved numerically in a straightforward manner. Our methodology thus provides a standard procedure for solving the PNP system and we illustrate this by solving some practical examples. Despite the fact that for three ions, previous studies have indicated that multiple solutions may exist, we show that all except for one of these solutions are unphysical and thereby prove the existence and uniqueness for the three-ion case.
NASA Astrophysics Data System (ADS)
Stone, A.
2016-12-01
Reconstructions of past rainfall in dryland regions underpin our understanding the links between climatic forcing and palaeohydrological response. However, there are only few proxies in drylands that record palaeorainfall, or palaeomoisture, in a straightforward manner. The unsaturated zone (USZ) has very significant potential as a novel dryland palaeomoisture archive. The approach is simple, based on variations in the concentration of pore-moisture tracers with depth, representing a hydrostratigraphical record through time. The tracer input is meteoric, with the concentration of this tracer established in the near-surface zone as a function of the level of evapotranspiration before that pore-moisture is transmitted vertically down to the water table. This presentation will highlight key regions where hydrostratigraphies have been successfully applied in drylands. It will also set out challenges regarding the assumptions of the approach, with the intention to stimulate discussion regarding the future development of the unsaturated zone as a palaeoclimate archive over a range of timescales and resolutions. Depending on the rate of moisture flux and the depth of the unsaturated zone, dryland hydrostratigraphies may record (i) broad climatic shifts since the last interglacial at low temporal resolution or multi-millennial length palaeomoisture records with a decadal temporal resolution. USZ hydrostratigraphies may also contain a record of changes in the amount of infiltration (and groundwater recharge) caused by changes to land-use.
Just, Jeremy; Deans, Bianca J; Olivier, Wesley J; Paull, Brett; Bissember, Alex C; Smith, Jason A
2015-05-15
A new, practical, rapid, and high-yielding process for the pressurized hot water extraction (PHWE) of multigram quantities of shikimic acid from star anise (Illicium verum) using an unmodified household espresso machine has been developed. This operationally simple and inexpensive method enables the efficient and straightforward isolation of shikimic acid and the facile preparation of a range of its synthetic derivatives.
Practical Considerations in Pediatric Surgery
Louis, Matthew R.; Meaike, Jesse D.; Chamata, Edward; Hollier, Larry H.
2016-01-01
The care of pediatric patients requires special considerations that are often not addressed in the literature. Relatively straightforward tasks such as clinical evaluation, antibiotic use, splinting, wound closure, and care of simple burns become complicated in the pediatric population for several reasons. The authors seek to demystify some of these topics using the senior author's years of clinical experience treating pediatric patients by giving practical advice and general considerations when treating children. PMID:27895539
The physical basis for estimating wave energy spectra from SAR imagery
NASA Technical Reports Server (NTRS)
Lyzenga, David R.
1987-01-01
Ocean surface waves are imaged by synthetic aperture radar (SAR) through a combination of the effects of changes in the surface slope, surface roughness, and surface motion. Over a limited range of conditions, each of these effects can be described in terms of a linear modulation-transfer function. In such cases, the wave-height spectrum can be estimated in a straightforward manner from the SAR image-intensity spectrum. The range of conditions over which this assumption of linearity is valid is investigated using a numerical simulation model, and the implications of various departures from linearity are discussed.
A Discussion of Dempster-Shafer Theory and its Application to Identification Fusion
2015-08-01
by m1,2 = m1 ⊕m2, is given by the following direct sum: (m1 ⊕m2)(X) = 1 (1− κ) ∑ Y ∩Z=X m1( Y )m2(Z), (1) where the conflict mass κ is given by κ = ∑ Y ...and some possible directions for future work are discussed. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER...believe Bayesian probability cannot, or at the very least is unable to do in an obvious and straight-forward manner. As an example, suppose that p (α1
Sandia Corporation (Albuquerque, NM)
Diver, Richard B.
2010-02-23
A Theoretical Overlay Photographic (TOP) alignment method uses the overlay of a theoretical projected image of a perfectly aligned concentrator on a photographic image of the concentrator to align the mirror facets of a parabolic trough solar concentrator. The alignment method is practical and straightforward, and inherently aligns the mirror facets to the receiver. When integrated with clinometer measurements for which gravity and mechanical drag effects have been accounted for and which are made in a manner and location consistent with the alignment method, all of the mirrors on a common drive can be aligned and optimized for any concentrator orientation.
Alignment method for parabolic trough solar concentrators
Diver, Richard B [Albuquerque, NM
2010-02-23
A Theoretical Overlay Photographic (TOP) alignment method uses the overlay of a theoretical projected image of a perfectly aligned concentrator on a photographic image of the concentrator to align the mirror facets of a parabolic trough solar concentrator. The alignment method is practical and straightforward, and inherently aligns the mirror facets to the receiver. When integrated with clinometer measurements for which gravity and mechanical drag effects have been accounted for and which are made in a manner and location consistent with the alignment method, all of the mirrors on a common drive can be aligned and optimized for any concentrator orientation.
SMART: A Propositional Logic-Based Trade Analysis and Risk Assessment Tool for a Complex Mission
NASA Technical Reports Server (NTRS)
Ono, Masahiro; Nicholas, Austin; Alibay, Farah; Parrish, Joseph
2015-01-01
This paper introduces a new trade analysis software called the Space Mission Architecture and Risk Analysis Tool (SMART). This tool supports a high-level system trade study on a complex mission, such as a potential Mars Sample Return (MSR) mission, in an intuitive and quantitative manner. In a complex mission, a common approach to increase the probability of success is to have redundancy and prepare backups. Quantitatively evaluating the utility of adding redundancy to a system is important but not straightforward, particularly when the failure of parallel subsystems are correlated.
Robots In War: Issues Of Risk And Ethics
2009-01-01
unexpected, untested ways. (And even straightforward, simple rules such as Asimov’s Laws of Robotics ( Asimov , 1950) can create unexpected dilemmas...stories (e. g., Asimov , 1950). Likewise, we may understand each rule of engagement and believe them to be sensible, but are they truly consistent...Netherlands: lOS Press. Asimov , I. (1950).1, Robot (2004 edition), New York, NY: Bantam Dell. BBC (2005). SLA Confirm Spy Plane Crash. BBC.com. Retrieved
Mossetti, Riccardo; Saggiorato, Dèsirèe; Tron, Gian Cesare
2011-12-16
We describe a simple and novel protocol for the synthesis of tetrahydro-1,4-benzodiazepin-2-ones with three points of diversity, exploiting the acylating properties of the recently rediscovered Ugi-imide. The final compounds can be easily prepared in three synthetic steps using a multicomponent reaction, a Staudinger reduction, and an acylative protocol, with good to excellent yields for each synthetic step.
ERIC Educational Resources Information Center
G. Allan Roeher Inst., Toronto (Ontario).
This book, written in simple language, explains the Canadian Human Rights Act and how and when it can be used to assist individuals with mental handicaps. The book is designed to help people learn their rights as citizens of Canada and learn that if something wrong is done to them they can do something to change it. It explains what human rights…
Acoustic levitation and the Boltzmann-Ehrenfest principle
NASA Technical Reports Server (NTRS)
Putterman, S.; Rudnick, Joseph; Barmatz, M.
1989-01-01
The Boltzmann-Ehrenfest principle of adiabatic invariance relates the acoustic potential acting on a sample positioned in a single-mode cavity to the shift in resonant frequency caused by the presence of this sample. This general and simple relation applies to samples and cavities of arbitrary shape, dimension, and compressibility. Positioning forces and torques can, therefore, be determined from straightforward measurements of frequency shifts. Applications to the Rayleigh disk phenomenon and levitated cylinders are presented.
ERIC Educational Resources Information Center
Winkel, Annette; Schwarz, Stephan
By carefully considering the special characteristics of two small African scientific and technical (S&T) information systems for research and development (R&D), this report defines a simple and straightforward model which can be easily implemented in similar situations with a minimum of external support. The model is designed to build up a…
A simplified design of the staggered herringbone micromixer for practical applications
Du, Yan; Zhang, Zhiyi; Yim, ChaeHo; Lin, Min; Cao, Xudong
2010-01-01
We demonstrated a simple method for the device design of a staggered herringbone micromixer (SHM) using numerical simulation. By correlating the simulated concentrations with channel length, we obtained a series of concentration versus channel length profiles, and used mixing completion length Lm as the only parameter to evaluate the performance of device structure on mixing. Fluorescence quenching experiments were subsequently conducted to verify the optimized SHM structure for a specific application. Good agreement was found between the optimization and the experimental data. Since Lm is straightforward, easily defined and calculated parameter for characterization of mixing performance, this method for designing micromixers is simple and effective for practical applications. PMID:20697584
A simplified design of the staggered herringbone micromixer for practical applications.
Du, Yan; Zhang, Zhiyi; Yim, Chaeho; Lin, Min; Cao, Xudong
2010-05-07
We demonstrated a simple method for the device design of a staggered herringbone micromixer (SHM) using numerical simulation. By correlating the simulated concentrations with channel length, we obtained a series of concentration versus channel length profiles, and used mixing completion length L(m) as the only parameter to evaluate the performance of device structure on mixing. Fluorescence quenching experiments were subsequently conducted to verify the optimized SHM structure for a specific application. Good agreement was found between the optimization and the experimental data. Since L(m) is straightforward, easily defined and calculated parameter for characterization of mixing performance, this method for designing micromixers is simple and effective for practical applications.
Low-Level Graphics Cues For Solicit Image Interpretation
NASA Astrophysics Data System (ADS)
McAnulty, Michael A.; Gemmill, Jill P.; Kegley, Kathleen A.; Chiu, Haw-Tsang
1984-08-01
Several straightforward techniques for displaying arbitrary solids of the sort encountered in the life sciences are presented, all variations of simple three-dimensional scatter plots. They are all targeted for a medium cost raster display (an AED-5l2 has been used here). Practically any host computer may be used to implement them. All techniques are broadly applicable and were implemented as Master Degree projects. The major hardware constraint is data transmission speed, and this is met by minimizing the amount of graphical data, ignoring enhancement of the data, and using terminal scan-conversion and aspect firmware wherever possible. Three simple rendering techniques and the use of several graphics cues are described.
NASA Technical Reports Server (NTRS)
Campbell, John P; Mckinney, Marion O
1952-01-01
A summary of methods for making dynamic lateral stability and response calculations and for estimating the aerodynamic stability derivatives required for use in these calculations is presented. The processes of performing calculations of the time histories of lateral motions, of the period and damping of these motions, and of the lateral stability boundaries are presented as a series of simple straightforward steps. Existing methods for estimating the stability derivatives are summarized and, in some cases, simple new empirical formulas are presented. Detailed estimation methods are presented for low-subsonic-speed conditions but only a brief discussion and a list of references are given for transonic and supersonic speed conditions.
Code of Federal Regulations, 2010 CFR
2010-01-01
.... If an advertisement for credit secured by a dwelling states a simple annual rate of interest and more than one simple annual rate of interest will apply over the term of the advertised loan, the advertisement shall disclose in a clear and conspicuous manner: (A) Each simple annual rate of interest that...
Scalability problems of simple genetic algorithms.
Thierens, D
1999-01-01
Scalable evolutionary computation has become an intensively studied research topic in recent years. The issue of scalability is predominant in any field of algorithmic design, but it became particularly relevant for the design of competent genetic algorithms once the scalability problems of simple genetic algorithms were understood. Here we present some of the work that has aided in getting a clear insight in the scalability problems of simple genetic algorithms. Particularly, we discuss the important issue of building block mixing. We show how the need for mixing places a boundary in the GA parameter space that, together with the boundary from the schema theorem, delimits the region where the GA converges reliably to the optimum in problems of bounded difficulty. This region shrinks rapidly with increasing problem size unless the building blocks are tightly linked in the problem coding structure. In addition, we look at how straightforward extensions of the simple genetic algorithm-namely elitism, niching, and restricted mating are not significantly improving the scalability problems.
Elements of a next generation time-series ASCII data file format for Earth Sciences
NASA Astrophysics Data System (ADS)
Webster, C. J.
2015-12-01
Data in ASCII comma separated value (CSV) format are recognized as the most simple, straightforward and readable type of data present in the geosciences. Many scientific workflows developed over the years rely on data using this simple format. However, there is a need for a lightweight ASCII header format standard that is easy to create and easy to work with. Current OGC grade XML standards are complex and difficult to implement for researchers with few resources. Ideally, such a format should provide the data in CSV for easy consumption by generic applications such as spreadsheets. The format should use an existing time standard. The header should be easily human readable as well as machine parsable. The metadata format should be extendable to allow vocabularies to be adopted as they are created by external standards bodies. The creation of such a format will increase the productivity of software engineers and scientists because fewer translators and checkers would be required. Data in ASCII comma separated value (CSV) format are recognized as the most simple, straightforward and readable type of data present in the geosciences. Many scientific workflows developed over the years rely on data using this simple format. However, there is a need for a lightweight ASCII header format standard that is easy to create and easy to work with. Current OGC grade XML standards are complex and difficult to implement for researchers with few resources. Ideally, such a format would provide the data in CSV for easy consumption by generic applications such as spreadsheets. The format would use existing time standard. The header would be easily human readable as well as machine parsable. The metadata format would be extendable to allow vocabularies to be adopted as they are created by external standards bodies. The creation of such a format would increase the productivity of software engineers and scientists because fewer translators would be required.
Dynamic optimization of chemical processes using ant colony framework.
Rajesh, J; Gupta, K; Kusumakar, H S; Jayaraman, V K; Kulkarni, B D
2001-11-01
Ant colony framework is illustrated by considering dynamic optimization of six important bench marking examples. This new computational tool is simple to implement and can tackle problems with state as well as terminal constraints in a straightforward fashion. It requires fewer grid points to reach the global optimum at relatively very low computational effort. The examples with varying degree of complexities, analyzed here, illustrate its potential for solving a large class of process optimization problems in chemical engineering.
NASA Astrophysics Data System (ADS)
Formato, Megan
2018-01-01
With the title The Last Man Who Knew Everything and a first chapter entitled “Prodigy,” a reader could be forgiven for expecting David Schwartz’s new biography of Enrico Fermi to be a straightforward hagiography. Luckily, Schwartz’s ambitions are not as simple as providing yet another account of a great man of 20th-century physics. He has other, thornier questions in mind, some of which he credibly addresses and others that he handles less convincingly.
Mori, Toshifumi; Hamers, Robert J; Pedersen, Joel A; Cui, Qiang
2014-07-17
Motivated by specific applications and the recent work of Gao and co-workers on integrated tempering sampling (ITS), we have developed a novel sampling approach referred to as integrated Hamiltonian sampling (IHS). IHS is straightforward to implement and complementary to existing methods for free energy simulation and enhanced configurational sampling. The method carries out sampling using an effective Hamiltonian constructed by integrating the Boltzmann distributions of a series of Hamiltonians. By judiciously selecting the weights of the different Hamiltonians, one achieves rapid transitions among the energy landscapes that underlie different Hamiltonians and therefore an efficient sampling of important regions of the conformational space. Along this line, IHS shares similar motivations as the enveloping distribution sampling (EDS) approach of van Gunsteren and co-workers, although the ways that distributions of different Hamiltonians are integrated are rather different in IHS and EDS. Specifically, we report efficient ways for determining the weights using a combination of histogram flattening and weighted histogram analysis approaches, which make it straightforward to include many end-state and intermediate Hamiltonians in IHS so as to enhance its flexibility. Using several relatively simple condensed phase examples, we illustrate the implementation and application of IHS as well as potential developments for the near future. The relation of IHS to several related sampling methods such as Hamiltonian replica exchange molecular dynamics and λ-dynamics is also briefly discussed.
Effective Presentation of Metabolic Rate Information for Lunar Extravehicular Activity (EVA)
NASA Technical Reports Server (NTRS)
Mackin, Michael A.; Gonia, Philip; Lombay-Gonzalez, Jose
2010-01-01
During human exploration of the lunar surface, a suited crewmember needs effective and accurate information about consumable levels remaining in their life support system. The information must be presented in a manner that supports real-time consumable monitoring and route planning. Since consumable usage is closely tied to metabolic rate, the lunar suit must estimate metabolic rate from life support sensors, such as oxygen tank pressures, carbon dioxide partial pressure, and cooling water inlet and outlet temperatures. To provide adequate warnings that account for traverse time for a crewmember to return to a safe haven, accurate forecasts of consumable depletion rates are required. The forecasts must be presented to the crewmember in a straightforward, effective manner. In order to evaluate methods for displaying consumable forecasts, a desktop-based simulation of a lunar Extravehicular Activity (EVA) has been developed for the Constellation lunar suite s life-support system. The program was used to compare the effectiveness of several different data presentation methods.
Hierarchical self-assembly of actin in micro-confinements using microfluidics
Deshpande, Siddharth; Pfohl, Thomas
2012-01-01
We present a straightforward microfluidics system to achieve step-by-step reaction sequences in a diffusion-controlled manner in quasi two-dimensional micro-confinements. We demonstrate the hierarchical self-organization of actin (actin monomers—entangled networks of filaments—networks of bundles) in a reversible fashion by tuning the Mg2+ ion concentration in the system. We show that actin can form networks of bundles in the presence of Mg2+ without any cross-linking proteins. The properties of these networks are influenced by the confinement geometry. In square microchambers we predominantly find rectangular networks, whereas triangular meshes are predominantly found in circular chambers. PMID:24032070
Global changes: Impacts on habitability. A scientific basis for assessment
NASA Technical Reports Server (NTRS)
Goody, R.
1982-01-01
The feasibility of a major NASA research initiative to document, to understand, and if possible, to predict long-term (5 to 50 years) global changes that can affect the habitability of the Earth is addressed. The major factor contributing to change is human activity. The program discussed involves studies of the atmosphere, oceans, land, the cryosphere, and the biosphere. On decadal time scales, these regimes and the cycles of physical and chemical entities through them are coupled into a single interlocking system. Some part of this system can be studied in a straightforward manner (the atmosphere) and some with great difficulty (the biosphere).
Well-balanced Schemes for Gravitationally Stratified Media
NASA Astrophysics Data System (ADS)
Käppeli, R.; Mishra, S.
2015-10-01
We present a well-balanced scheme for the Euler equations with gravitation. The scheme is capable of maintaining exactly (up to machine precision) a discrete hydrostatic equilibrium without any assumption on a thermodynamic variable such as specific entropy or temperature. The well-balanced scheme is based on a local hydrostatic pressure reconstruction. Moreover, it is computationally efficient and can be incorporated into any existing algorithm in a straightforward manner. The presented scheme improves over standard ones especially when flows close to a hydrostatic equilibrium have to be simulated. The performance of the well-balanced scheme is demonstrated on an astrophysically relevant application: a toy model for core-collapse supernovae.
Simple citric acid-catalyzed surface esterification of cellulose nanocrystals.
Ávila Ramírez, Jhon Alejandro; Fortunati, Elena; Kenny, José María; Torre, Luigi; Foresti, María Laura
2017-02-10
A simple straightforward route for the surface esterification of cellulose nanocrystals (CNC) is herein proposed. CNC obtained from microcrystalline cellulose were acetylated using as catalyst citric acid, a α-hydroxy acid present in citrus fruits and industrially produced by certain molds in sucrose or glucose-containing medium. No additional solvent was added to the system; instead, the acylant (acetic anhydride) was used in sufficient excess to allow CNC dispersion and proper suspension agitation. By tuning the catalyst load, CNC with two different degree of substitution (i.e. DS=0.18 and 0.34) were obtained. Acetylated cellulose nanocrystals were characterized in terms of chemical structure, crystallinity, morphology, thermal decomposition and dispersion in a non-polar solvent. Results illustrated for the first time the suitability of the protocol proposed for the simple surface acetylation of cellulose nanocrystals. Copyright © 2016 Elsevier Ltd. All rights reserved.
Star-shaped Polymers through Simple Wavelength-Selective Free-Radical Photopolymerization.
Eibel, Anna; Fast, David E; Sattelkow, Jürgen; Zalibera, Michal; Wang, Jieping; Huber, Alex; Müller, Georgina; Neshchadin, Dmytro; Dietliker, Kurt; Plank, Harald; Grützmacher, Hansjörg; Gescheidt, Georg
2017-11-06
Star-shaped polymers represent highly desired materials in nanotechnology and life sciences, including biomedical applications (e.g., diagnostic imaging, tissue engineering, and targeted drug delivery). Herein, we report a straightforward synthesis of wavelength-selective multifunctional photoinitiators (PIs) that contain a bisacylphosphane oxide (BAPO) group and an α-hydroxy ketone moiety within one molecule. By using three different wavelengths, these photoactive groups can be selectively addressed and activated, thereby allowing the synthesis of ABC-type miktoarm star polymers through a simple, highly selective, and robust free-radical polymerization method. The photochemistry of these new initiators and the feasibility of this concept were investigated in unprecedented detail by using various spectroscopic techniques. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dehydration Polymerization for Poly(hetero)arene Conjugated Polymers.
Mirabal, Rafael A; Vanderzwet, Luke; Abuadas, Sara; Emmett, Michael R; Schipper, Derek
2018-02-18
The lack of scalable and sustainable methods to prepare conjugated polymers belies their importance in many enabling technologies. Accessing high-performance poly(hetero)arene conjugated polymers by dehydration has remained an unsolved problem in synthetic chemistry and has historically required transitional-metal coupling reactions. Herein, we report a dehydration method that allows access to conjugated heterocyclic materials. By using the technique, we have prepared a series of small molecules and polymers. The reaction avoids using transition metals, proceeds at room temperature, the only required reactant is a simple base and water is the sole by-product. The dehydration reaction is technically simple and provides a sustainable and straightforward method to prepare conjugated heteroarene motifs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Simple and effective graphene laser processing for neuron patterning application
NASA Astrophysics Data System (ADS)
Lorenzoni, Matteo; Brandi, Fernando; Dante, Silvia; Giugni, Andrea; Torre, Bruno
2013-06-01
A straightforward fabrication technique to obtain patterned substrates promoting ordered neuron growth is presented. Chemical vapor deposition (CVD) single layer graphene (SLG) was machined by means of single pulse UV laser ablation technique at the lowest effective laser fluence in order to minimize laser damage effects. Patterned substrates were then coated with poly-D-lysine by means of a simple immersion in solution. Primary embryonic hippocampal neurons were cultured on our substrate, demonstrating an ordered interconnected neuron pattern mimicking the pattern design. Surprisingly, the functionalization is more effective on the SLG, resulting in notably higher alignment for neuron adhesion and growth. Therefore the proposed technique should be considered a valuable candidate to realize a new generation of highly specialized biosensors.
Simple formalism for efficient derivatives and multi-determinant expansions in quantum Monte Carlo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filippi, Claudia, E-mail: c.filippi@utwente.nl; Assaraf, Roland, E-mail: assaraf@lct.jussieu.fr; Moroni, Saverio, E-mail: moroni@democritos.it
2016-05-21
We present a simple and general formalism to compute efficiently the derivatives of a multi-determinant Jastrow-Slater wave function, the local energy, the interatomic forces, and similar quantities needed in quantum Monte Carlo. Through a straightforward manipulation of matrices evaluated on the occupied and virtual orbitals, we obtain an efficiency equivalent to algorithmic differentiation in the computation of the interatomic forces and the optimization of the orbital parameters. Furthermore, for a large multi-determinant expansion, the significant computational gain afforded by a recently introduced table method is here extended to the local value of any one-body operator and to its derivatives, inmore » both all-electron and pseudopotential calculations.« less
Minimalist design of a robust real-time quantum random number generator
NASA Astrophysics Data System (ADS)
Kravtsov, K. S.; Radchenko, I. V.; Kulik, S. P.; Molotkov, S. N.
2015-08-01
We present a simple and robust construction of a real-time quantum random number generator (QRNG). Our minimalist approach ensures stable operation of the device as well as its simple and straightforward hardware implementation as a stand-alone module. As a source of randomness the device uses measurements of time intervals between clicks of a single-photon detector. The obtained raw sequence is then filtered and processed by a deterministic randomness extractor, which is realized as a look-up table. This enables high speed on-the-fly processing without the need of extensive computations. The overall performance of the device is around 1 random bit per detector click, resulting in 1.2 Mbit/s generation rate in our implementation.
Simple and effective graphene laser processing for neuron patterning application
Lorenzoni, Matteo; Brandi, Fernando; Dante, Silvia; Giugni, Andrea; Torre, Bruno
2013-01-01
A straightforward fabrication technique to obtain patterned substrates promoting ordered neuron growth is presented. Chemical vapor deposition (CVD) single layer graphene (SLG) was machined by means of single pulse UV laser ablation technique at the lowest effective laser fluence in order to minimize laser damage effects. Patterned substrates were then coated with poly-D-lysine by means of a simple immersion in solution. Primary embryonic hippocampal neurons were cultured on our substrate, demonstrating an ordered interconnected neuron pattern mimicking the pattern design. Surprisingly, the functionalization is more effective on the SLG, resulting in notably higher alignment for neuron adhesion and growth. Therefore the proposed technique should be considered a valuable candidate to realize a new generation of highly specialized biosensors. PMID:23739674
Interfacial ion solvation: Obtaining the thermodynamic limit from molecular simulations
NASA Astrophysics Data System (ADS)
Cox, Stephen J.; Geissler, Phillip L.
2018-06-01
Inferring properties of macroscopic solutions from molecular simulations is complicated by the limited size of systems that can be feasibly examined with a computer. When long-ranged electrostatic interactions are involved, the resulting finite size effects can be substantial and may attenuate very slowly with increasing system size, as shown by previous work on dilute ions in bulk aqueous solution. Here we examine corrections for such effects, with an emphasis on solvation near interfaces. Our central assumption follows the perspective of Hünenberger and McCammon [J. Chem. Phys. 110, 1856 (1999)]: Long-wavelength solvent response underlying finite size effects should be well described by reduced models like dielectric continuum theory, whose size dependence can be calculated straightforwardly. Applied to an ion in a periodic slab of liquid coexisting with vapor, this approach yields a finite size correction for solvation free energies that differs in important ways from results previously derived for bulk solution. For a model polar solvent, we show that this new correction quantitatively accounts for the variation of solvation free energy with volume and aspect ratio of the simulation cell. Correcting periodic slab results for an aqueous system requires an additional accounting for the solvent's intrinsic charge asymmetry, which shifts electric potentials in a size-dependent manner. The accuracy of these finite size corrections establishes a simple method for a posteriori extrapolation to the thermodynamic limit and also underscores the realism of dielectric continuum theory down to the nanometer scale.
Mikulecky, D C
1979-01-01
A two-port for coupled salt and current flow is created by using the network thermodynamic approach in the same manner as that for coupled solute and volume flow (Mikulecky et al., 1977b; Mikulecky, 1977). This electrochemical two-port has distinct advantages over the equivalent circuit representation and overcomes difficulties pointed out by Finkelstein and Mauro (1963). The electrochemical two-port is used to produce a schematic diagram of the coupled flows through a tissue. The network is superimposable on the tissue morphology and preserves the physical qualities of the flows and forces in each part of an organized structure (e.g., an epithelium). The topological properties are manipulated independently from the constitutive (flow-force) relations. The constitutive relations are chosen from a number of alternatives depending on the detail and rigor desired. With the topology and constitutive parameters specified, the steady-state behavior is simulated with a network simulation program. By using capacitance to represent the filling and depletion of compartments, as well as the traditional electrical capacitances, time-dependent behavior is also simulated. Nonlinear effects arising from the integration of equations describing local behavior (e.g., the Nernst-Planck equations) are dealt with explicitly. The network thermodynamic approach provides a simple, straightforward method for representing a system diagrammatically and then simulating the system's behavior from the diagram with a minimum of mathematical manipulation. PMID:262391
Endobronchial valves for bronchopleural fistula: pitfalls and principles.
Gaspard, Dany; Bartter, Thaddeus; Boujaoude, Ziad; Raja, Haroon; Arya, Rohan; Meena, Nikhil; Abouzgheib, Wissam
2017-01-01
Placement of endobronchial valves for bronchopleural fistula (BPF) is not always straightforward. A simple guide to the steps for an uncomplicated procedure does not encompass pitfalls that need to be understood and overcome to maximize the efficacy of this modality. The objective of this study was to discuss examples of difficult cases for which the placement of endobronchial valves was not straightforward and required alterations in the usual basic steps. Subsequently, we aimed to provide guiding principles for a successful procedure. Six illustrative cases were selected to demonstrate issues that can arise during endobronchial valve placement. In each case, a real or apparent lack of decrease in airflow through a BPF was diagnosed and addressed. We have used the selected problem cases to illustrate principles, with the goal of helping to increase the success rate for endobronchial valve placement in the treatment of BPF. This series demonstrates issues that complicate effective placement of endobronchial valves for BPF. These issues form the basis for troubleshooting steps that complement the basic procedural steps.
Games among relatives revisited.
Allen, Benjamin; Nowak, Martin A
2015-08-07
We present a simple model for the evolution of social behavior in family-structured, finite sized populations. Interactions are represented as evolutionary games describing frequency-dependent selection. Individuals interact more frequently with siblings than with members of the general population, as quantified by an assortment parameter r, which can be interpreted as "relatedness". Other models, mostly of spatially structured populations, have shown that assortment can promote the evolution of cooperation by facilitating interaction between cooperators, but this effect depends on the details of the evolutionary process. For our model, we find that sibling assortment promotes cooperation in stringent social dilemmas such as the Prisoner's Dilemma, but not necessarily in other situations. These results are obtained through straightforward calculations of changes in gene frequency. We also analyze our model using inclusive fitness. We find that the quantity of inclusive fitness does not exist for general games. For special games, where inclusive fitness exists, it provides less information than the straightforward analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Straightforward fabrication of black nano silica dusting powder for latent fingerprint imaging
NASA Astrophysics Data System (ADS)
Komalasari, Isna; Krismastuti, Fransiska Sri Herwahyu; Elishian, Christine; Handayani, Eka Mardika; Nugraha, Willy Cahya; Ketrin, Rosi
2017-11-01
Imaging of latent fingerprint pattern (aka fingermark) is one of the most important and accurate detection methods in forensic investigation because of the characteristic of individual fingerprint. This detection technique relies on the mechanical adherence of fingerprint powder to the moisture and oily component of the skin left on the surface. The particle size of fingerprint powder is one of the critical parameter to obtain excellent fingerprint image. This study develops a simple, cheap and straightforward method to fabricate Nano size black dusting fingerprint powder based on Nano silica and applies the powder to visualize latent fingerprint. The nanostructured silica was prepared from tetraethoxysilane (TEOS) and then modified with Nano carbon, methylene blue and sodium acetate to color the powder. Finally, as a proof-of-principle, the ability of this black Nano silica dusting powder to image latent fingerprint is successfully demonstrated and the results show that this fingerprint powder provides clearer fingerprint pattern compared to the commercial one highlighting the potential application of the nanostructured silica in forensic science.
Breakdown of the classical description of a local system.
Kot, Eran; Grønbech-Jensen, Niels; Nielsen, Bo M; Neergaard-Nielsen, Jonas S; Polzik, Eugene S; Sørensen, Anders S
2012-06-08
We provide a straightforward demonstration of a fundamental difference between classical and quantum mechanics for a single local system: namely, the absence of a joint probability distribution of the position x and momentum p. Elaborating on a recently reported criterion by Bednorz and Belzig [Phys. Rev. A 83, 052113 (2011)] we derive a simple criterion that must be fulfilled for any joint probability distribution in classical physics. We demonstrate the violation of this criterion using the homodyne measurement of a single photon state, thus proving a straightforward signature of the breakdown of a classical description of the underlying state. Most importantly, the criterion used does not rely on quantum mechanics and can thus be used to demonstrate nonclassicality of systems not immediately apparent to exhibit quantum behavior. The criterion is directly applicable to any system described by the continuous canonical variables x and p, such as a mechanical or an electrical oscillator and a collective spin of a large ensemble.
Chen, Hong; Yang, Jintao; Xiao, Shengwei; Hu, Rundong; Bhaway, Sarang M; Vogt, Bryan D; Zhang, Mingzhen; Chen, Qiang; Ma, Jie; Chang, Yung; Li, Lingyan; Zheng, Jie
2016-08-01
Development of smart regenerative surface is a highly challenging but important task for many scientific and industrial applications. Specifically, very limited research efforts were made for surface regeneration between bio-adhesion and antifouling properties, because bioadhesion and antifouling are the two highly desirable but completely opposite properties of materials. Herein, we developed salt-responsive polymer brushes of poly(3-(1-(4-vinylbenzyl)-1H-imidazol-3-ium-3-yl) propane-1-sulfonate) (polyVBIPS), which can be switched reversibly and repeatedly between protein capture/release and surface wettability in a controllable manner. PolyVBIPS brush has demonstrated its switching ability to resist both protein adsorption from 100% blood plasma/serum and bacterial attachment in multiple cycles. PolyVBIPS brush also exhibits reversible surface wettability from ∼40° to 25° between in PBS and in 1M NaCl solutions in multiple cycles. Overall, the salt-responsive behaviors of polyVBIPS brushes can be interpreted by the "anti-polyelectrolyte effect", i.e. polyVBIPS brushes adopt a collapsed chain conformation at low ionic strengths to achieve surface adhesive, but an extended chain conformation at high ionic strength to realize antifouling properties. We expect that polyVBIPS will provide a simple, robust, and promising system for the fabrication of smart surfaces with biocompatible, reliable, and regenerative properties. Unlike many materials with "one-time switching" capability for surface regeneration, we developed a new regenerative surface of zwitterionic polymer brush, which exhibits a reversible salt-induced switching property between a biomolecule-adhesive state and a biomolecule repellent state in complex media for multiple cycles. PolyVBIPS is easily synthesized and can be straightforward coated on the surface, which provides a simple, robust, and promising system for the fabrication of smart surfaces with biocompatible, reliable, regenerative properties. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Multiplicity-dependent and nonbinomial efficiency corrections for particle number cumulants
NASA Astrophysics Data System (ADS)
Bzdak, Adam; Holzmann, Romain; Koch, Volker
2016-12-01
In this article we extend previous work on efficiency corrections for cumulant measurements [Bzdak and Koch, Phys. Rev. C 86, 044904 (2012), 10.1103/PhysRevC.86.044904; Phys. Rev. C 91, 027901 (2015), 10.1103/PhysRevC.91.027901]. We will discuss the limitations of the methods presented in these papers. Specifically we will consider multiplicity dependent efficiencies as well as nonbinomial efficiency distributions. We will discuss the most simple and straightforward methods to implement those corrections.
Zhang, Fang; Zhang, Song; Duan, Xin-Fang
2012-11-02
The unprecedented substitution of a nitro group with aryl or alkenyl groups of Grignard reagents affords 2-aryl or alkenylpyridine N-oxides in modest to high yields with high chemoselectivity. This protocol allows a simple and clean synthesis of various 2-substituted pyridine N-oxides and the corresponding pyridine derivatives. Furthermore, straightforward one-pot iterative functionality of pyridine N-oxides could also be achieved simply by successive applications of two Grignard reagents.
Phase-space quantum mechanics study of two identical particles in an external oscillatory potential
NASA Technical Reports Server (NTRS)
Nieto, Luis M.; Gadella, Manuel
1993-01-01
This simple example is used to show how the formalism of Moyal works when it is applied to systems of identical particles. The symmetric and antisymmetric Moyal propagators are evaluated for this case; from them, the correct energy levels of energy are obtained, as well as the Wigner functions for the symmetric and antisymmetric states of the two identical particle system. Finally, the solution of the Bloch equation is straightforwardly obtained from the expressions of the Moyal propagators.
New QCD sum rules based on canonical commutation relations
NASA Astrophysics Data System (ADS)
Hayata, Tomoya
2012-04-01
New derivation of QCD sum rules by canonical commutators is developed. It is the simple and straightforward generalization of Thomas-Reiche-Kuhn sum rule on the basis of Kugo-Ojima operator formalism of a non-abelian gauge theory and a suitable subtraction of UV divergences. By applying the method to the vector and axial vector current in QCD, the exact Weinberg’s sum rules are examined. Vector current sum rules and new fractional power sum rules are also discussed.
On geodesics of the rotation group SO(3)
NASA Astrophysics Data System (ADS)
Novelia, Alyssa; O'Reilly, Oliver M.
2015-11-01
Geodesics on SO(3) are characterized by constant angular velocity motions and as great circles on a three-sphere. The former interpretation is widely used in optometry and the latter features in the interpolation of rotations in computer graphics. The simplicity of these two disparate interpretations belies the complexity of the corresponding rotations. Using a quaternion representation for a rotation, we present a simple proof of the equivalence of the aforementioned characterizations and a straightforward method to establish features of the corresponding rotations.
Multiplicity-dependent and nonbinomial efficiency corrections for particle number cumulants
Bzdak, Adam; Holzmann, Romain; Koch, Volker
2016-12-19
Here, we extend previous work on efficiency corrections for cumulant measurements [Bzdak and Koch, Phys. Rev. C 86, 044904 (2012)PRVCAN0556-281310.1103/PhysRevC.86.044904; Phys. Rev. C 91, 027901 (2015)PRVCAN0556-281310.1103/PhysRevC.91.027901]. We will then discuss the limitations of the methods presented in these papers. Specifically we will consider multiplicity dependent efficiencies as well as nonbinomial efficiency distributions. We will discuss the most simple and straightforward methods to implement those corrections.
General theories of linear gravitational perturbations to a Schwarzschild black hole
NASA Astrophysics Data System (ADS)
Tattersall, Oliver J.; Ferreira, Pedro G.; Lagos, Macarena
2018-02-01
We use the covariant formulation proposed by Tattersall, Lagos, and Ferreira [Phys. Rev. D 96, 064011 (2017), 10.1103/PhysRevD.96.064011] to analyze the structure of linear perturbations about a spherically symmetric background in different families of gravity theories, and hence study how quasinormal modes of perturbed black holes may be affected by modifications to general relativity. We restrict ourselves to single-tensor, scalar-tensor and vector-tensor diffeomorphism-invariant gravity models in a Schwarzschild black hole background. We show explicitly the full covariant form of the quadratic actions in such cases, which allow us to then analyze odd parity (axial) and even parity (polar) perturbations simultaneously in a straightforward manner.
Grid sensitivity capability for large scale structures
NASA Technical Reports Server (NTRS)
Nagendra, Gopal K.; Wallerstein, David V.
1989-01-01
The considerations and the resultant approach used to implement design sensitivity capability for grids into a large scale, general purpose finite element system (MSC/NASTRAN) are presented. The design variables are grid perturbations with a rather general linking capability. Moreover, shape and sizing variables may be linked together. The design is general enough to facilitate geometric modeling techniques for generating design variable linking schemes in an easy and straightforward manner. Test cases have been run and validated by comparison with the overall finite difference method. The linking of a design sensitivity capability for shape variables in MSC/NASTRAN with an optimizer would give designers a powerful, automated tool to carry out practical optimization design of real life, complicated structures.
An adaptive approach to the physical annealing strategy for simulated annealing
NASA Astrophysics Data System (ADS)
Hasegawa, M.
2013-02-01
A new and reasonable method for adaptive implementation of simulated annealing (SA) is studied on two types of random traveling salesman problems. The idea is based on the previous finding on the search characteristics of the threshold algorithms, that is, the primary role of the relaxation dynamics in their finite-time optimization process. It is shown that the effective temperature for optimization can be predicted from the system's behavior analogous to the stabilization phenomenon occurring in the heating process starting from a quenched solution. The subsequent slow cooling near the predicted point draws out the inherent optimizing ability of finite-time SA in more straightforward manner than the conventional adaptive approach.
Adaptive behaviour and multiple equilibrium states in a predator-prey model.
Pimenov, Alexander; Kelly, Thomas C; Korobeinikov, Andrei; O'Callaghan, Michael J A; Rachinskii, Dmitrii
2015-05-01
There is evidence that multiple stable equilibrium states are possible in real-life ecological systems. Phenomenological mathematical models which exhibit such properties can be constructed rather straightforwardly. For instance, for a predator-prey system this result can be achieved through the use of non-monotonic functional response for the predator. However, while formal formulation of such a model is not a problem, the biological justification for such functional responses and models is usually inconclusive. In this note, we explore a conjecture that a multitude of equilibrium states can be caused by an adaptation of animal behaviour to changes of environmental conditions. In order to verify this hypothesis, we consider a simple predator-prey model, which is a straightforward extension of the classic Lotka-Volterra predator-prey model. In this model, we made an intuitively transparent assumption that the prey can change a mode of behaviour in response to the pressure of predation, choosing either "safe" of "risky" (or "business as usual") behaviour. In order to avoid a situation where one of the modes gives an absolute advantage, we introduce the concept of the "cost of a policy" into the model. A simple conceptual two-dimensional predator-prey model, which is minimal with this property, and is not relying on odd functional responses, higher dimensionality or behaviour change for the predator, exhibits two stable co-existing equilibrium states with basins of attraction separated by a separatrix of a saddle point. Copyright © 2015 Elsevier Inc. All rights reserved.
Generation of multicellular tumor spheroids by the hanging-drop method.
Timmins, Nicholas E; Nielsen, Lars K
2007-01-01
Owing to their in vivo-like characteristics, three-dimensional (3D) multicellular tumor spheroid (MCTS) cultures are gaining increasing popularity as an in vitro model of tumors. A straightforward and simple approach to the cultivation of these MCTS is the hanging-drop method. Cells are suspended in droplets of medium, where they develop into coherent 3D aggregates and are readily accessed for analysis. In addition to being simple, the method eliminates surface interactions with an underlying substratum (e.g., polystyrene plastic or agarose), requires only a low number of starting cells, and is highly reproducible. This method has also been applied to the co-cultivation of mixed cell populations, including the co-cultivation of endothelial cells and tumor cells as a model of early tumor angiogenesis.
McLachlan, G J; Bean, R W; Jones, L Ben-Tovim
2006-07-01
An important problem in microarray experiments is the detection of genes that are differentially expressed in a given number of classes. We provide a straightforward and easily implemented method for estimating the posterior probability that an individual gene is null. The problem can be expressed in a two-component mixture framework, using an empirical Bayes approach. Current methods of implementing this approach either have some limitations due to the minimal assumptions made or with more specific assumptions are computationally intensive. By converting to a z-score the value of the test statistic used to test the significance of each gene, we propose a simple two-component normal mixture that models adequately the distribution of this score. The usefulness of our approach is demonstrated on three real datasets.
NASA Technical Reports Server (NTRS)
Cheyney, H., III; Arking, A.
1976-01-01
The equations of radiative transfer in anisotropically scattering media are reformulated as linear operator equations in a single independent variable. The resulting equations are suitable for solution by a variety of standard mathematical techniques. The operators appearing in the resulting equations are in general nonsymmetric; however, it is shown that every bounded linear operator equation can be embedded in a symmetric linear operator equation and a variational solution can be obtained in a straightforward way. For purposes of demonstration, a Rayleigh-Ritz variational method is applied to three problems involving simple phase functions. It is to be noted that the variational technique demonstrated is of general applicability and permits simple solutions for a wide range of otherwise difficult mathematical problems in physics.
Teaching Introductory Geology by a Paradigm, Process and Product Approach
NASA Astrophysics Data System (ADS)
Reams, M.
2008-12-01
Students in introductory geology courses can easily become lost in the minutiae of terms and seemingly random ideas and theories. One way to avoid this and provide a holistic picture of each major subject area in a beginning course is to introduce, at the start of each section, the ruling paradigm, the processes, and resultant products. By use of these three Ps: paradigm, processes, and products, students have a reasonably complete picture of the subject area. If they knew nothing more than this simple construct, they would have an excellent perspective of the subject area. This provides a jumping off point for the instructor to develop the details. The three Ps can make course construction much more straightforward and complete. Students benefit since they have a clearer idea of what the subject is about and its importance. Retention may be improved and carryover to advanced courses may be aided. For faculty, the use of these three P's makes organizing a course more straightforward. Additionally, the instructor benefits include: 1. The main points are clearly stated, thus avoiding the problem of not covering the essential concepts. 2. The course topics hold together, pedagogically. There is significant opportunity for continuity of thought. 3. An outline is developed that is easily analyzed for holes or omissions. 4. A course emerges with a balance of topics, permitting appropriate time to be devoted to significant subject matter. 5. If a course is shared between faculty or passes from one faculty to another by semester or quarter, there is greater assurance that topics and concepts everyone agrees on can be adequately covered. 6. There is less guesswork involved in planning a course. New faculty have an approach that will make sense and allow them to feel less awash and more focused. In summary, taking time to construct a course utilizing the important paradigms, processes, and products can provide significant benefits to the instructor and the student. Material can be presented in a more coherent manner and allow students the opportunity to grasp essential concepts from the very beginning. There are fewer potential surprises and greater likelihood that key ideas can be retained, as opposed to retaining isolated fragments of information. Illustrations from over a decade of use in an introductory Physical and Historical Geology course will be presented.
Kids and Manners - A Ticket to Success. Kindergarten-6th.
ERIC Educational Resources Information Center
Cunningham, Patricia; And Others
Arranged into six parts, the booklet offers practical and motivating techniques for teaching elementary school students the basic rules of etiquette. The areas of general etiquette, cleanliness, introductions, table manners, telephoning, and thank you notes are included. Each section contains simple guidelines on how to act and react in social…
Does linear separability really matter? Complex visual search is explained by simple search
Vighneshvel, T.; Arun, S. P.
2013-01-01
Visual search in real life involves complex displays with a target among multiple types of distracters, but in the laboratory, it is often tested using simple displays with identical distracters. Can complex search be understood in terms of simple searches? This link may not be straightforward if complex search has emergent properties. One such property is linear separability, whereby search is hard when a target cannot be separated from its distracters using a single linear boundary. However, evidence in favor of linear separability is based on testing stimulus configurations in an external parametric space that need not be related to their true perceptual representation. We therefore set out to assess whether linear separability influences complex search at all. Our null hypothesis was that complex search performance depends only on classical factors such as target-distracter similarity and distracter homogeneity, which we measured using simple searches. Across three experiments involving a variety of artificial and natural objects, differences between linearly separable and nonseparable searches were explained using target-distracter similarity and distracter heterogeneity. Further, simple searches accurately predicted complex search regardless of linear separability (r = 0.91). Our results show that complex search is explained by simple search, refuting the widely held belief that linear separability influences visual search. PMID:24029822
A straightforward approach for gated STED-FCS to investigate lipid membrane dynamics
Clausen, Mathias P.; Sezgin, Erdinc; Bernardino de la Serna, Jorge; Waithe, Dominic; Lagerholm, B. Christoffer; Eggeling, Christian
2015-01-01
Recent years have seen the development of multiple technologies to investigate, with great spatial and temporal resolution, the dynamics of lipids in cellular and model membranes. One of these approaches is the combination of far-field super-resolution stimulated-emission-depletion (STED) microscopy with fluorescence correlation spectroscopy (FCS). STED-FCS combines the diffraction-unlimited spatial resolution of STED microscopy with the statistical accuracy of FCS to determine sub-millisecond-fast molecular dynamics with single-molecule sensitivity. A unique advantage of STED-FCS is that the observation spot for the FCS data recordings can be tuned to sub-diffraction scales, i.e. <200 nm in diameter, in a gradual manner to investigate fast diffusion of membrane-incorporated labelled entities. Unfortunately, so far the STED-FCS technology has mostly been applied on a few custom-built setups optimised for far-red fluorescent emitters. Here, we summarise the basics of the STED-FCS technology and highlight how it can give novel details into molecular diffusion modes. Most importantly, we present a straightforward way for performing STED-FCS measurements on an unmodified turnkey commercial system using a time-gated detection scheme. Further, we have evaluated the STED-FCS performance of different commonly used green emitting fluorescent dyes applying freely available, custom-written analysis software. PMID:26123184
Power balance and loss mechanism analysis in RF transmit coil arrays.
Kuehne, Andre; Goluch, Sigrun; Waxmann, Patrick; Seifert, Frank; Ittermann, Bernd; Moser, Ewald; Laistler, Elmar
2015-10-01
To establish a framework for transmit array power balance calculations based on power correlation matrices to accurately quantify the loss contributions from different mechanisms such as coupling, lumped components, and radiation. Starting from Poynting's theorem, power correlation matrices are derived for all terms in the power balance, which is formulated as a matrix equation. Finite-difference time-domain simulations of two 7 T eight-channel head array coils at 297.2 MHz are used to verify the theoretical considerations and demonstrate their application. Care is taken to accurately incorporate all loss mechanisms. The power balance for static B1 phase shims as well as two-dimensional spatially selective transmit SENSE pulses is shown. The simulated power balance shows an excellent agreement with theory, with a maximum power imbalance of less than 0.11%. Power loss contributions from the different loss mechanisms vary significantly between the investigated setups, and depending on the excitation mode imposed on the coil. The presented approach enables a straightforward loss evaluation for an arbitrary excitation of transmit coil arrays. Worst-case power imbalance and losses are calculated in a straightforward manner. This allows for deeper insight into transmit array loss mechanisms, incorporation of radiated power components in specific absorption rate calculations and verification of electromagnetic simulations. © 2014 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Fridge, Ernest M., III; Hiott, Jim; Golej, Jim; Plumb, Allan
1993-01-01
Today's software systems generally use obsolete technology, are not integrated properly with other software systems, and are difficult and costly to maintain. The discipline of reverse engineering is becoming prominent as organizations try to move their systems up to more modern and maintainable technology in a cost effective manner. The Johnson Space Center (JSC) created a significant set of tools to develop and maintain FORTRAN and C code during development of the space shuttle. This tool set forms the basis for an integrated environment to reengineer existing code into modern software engineering structures which are then easier and less costly to maintain and which allow a fairly straightforward translation into other target languages. The environment will support these structures and practices even in areas where the language definition and compilers do not enforce good software engineering. The knowledge and data captured using the reverse engineering tools is passed to standard forward engineering tools to redesign or perform major upgrades to software systems in a much more cost effective manner than using older technologies. The latest release of the environment was in Feb. 1992.
NASA Astrophysics Data System (ADS)
Bhowmik, Dhrubajyoti; Saha, Apu Kr; Dutta, Paramartha; Nandi, Supratim
2017-08-01
Quantum-dot Cellular Automata (QCA) is one of the most substitutes developing nanotechnologies for electronic circuits, as a result of lower force utilization, higher speed and smaller size in correlation with CMOS innovation. The essential devices, a Quantum-dot cell can be utilized to logic gates and wires. As it is the key building block on nanotechnology circuits. By applying simple gates, the hardware requirements for a QCA circuit can be decreased and circuits can be less complex as far as level, delay and cell check. This article exhibits an unobtrusive methodology for actualizing novel upgraded simple and universal gates, which can be connected to outline numerous variations of complex QCA circuits. Proposed gates are straightforward in structure and capable as far as implementing any digital circuits. The main aim is to build all basic and universal gates in a simple circuit with and without crossbar-wire. Simulation results and physical relations affirm its handiness in actualizing each advanced circuit.
A smart sensor architecture based on emergent computation in an array of outer-totalistic cells
NASA Astrophysics Data System (ADS)
Dogaru, Radu; Dogaru, Ioana; Glesner, Manfred
2005-06-01
A novel smart-sensor architecture is proposed, capable to segment and recognize characters in a monochrome image. It is capable to provide a list of ASCII codes representing the recognized characters from the monochrome visual field. It can operate as a blind's aid or for industrial applications. A bio-inspired cellular model with simple linear neurons was found the best to perform the nontrivial task of cropping isolated compact objects such as handwritten digits or characters. By attaching a simple outer-totalistic cell to each pixel sensor, emergent computation in the resulting cellular automata lattice provides a straightforward and compact solution to the otherwise computationally intensive problem of character segmentation. A simple and robust recognition algorithm is built in a compact sequential controller accessing the array of cells so that the integrated device can provide directly a list of codes of the recognized characters. Preliminary simulation tests indicate good performance and robustness to various distortions of the visual field.
NASA Technical Reports Server (NTRS)
Ng, C. F.
1988-01-01
Static postbuckling and nonlinear dynamic analysis of plates are usually accomplished by multimode analyses, although the methods are complicated and do not give straightforward understanding of the nonlinear behavior. Assuming single-mode transverse displacement, a simple formula is derived for the transverse load displacement relationship of a plate under in-plane compression. The formula is used to derive a simple analytical expression for the static postbuckling displacement and nonlinear dynamic responses of postbuckled plates under sinusoidal or random excitation. Regions with softening and hardening spring behavior are identified. Also, the highly nonlinear motion of snap-through and its effects on the overall dynamic response can be easily interpreted using the single-mode formula. Theoretical results are compared with experimental results obtained using a buckled aluminum panel, using discrete frequency and broadband point excitation. Some important effects of the snap-through motion on the dynamic response of the postbuckled plates are found.
Software Models Impact Stresses
NASA Technical Reports Server (NTRS)
Hanshaw, Timothy C.; Roy, Dipankar; Toyooka, Mark
1991-01-01
Generalized Impact Stress Software designed to assist engineers in predicting stresses caused by variety of impacts. Program straightforward, simple to implement on personal computers, "user friendly", and handles variety of boundary conditions applied to struck body being analyzed. Applications include mathematical modeling of motions and transient stresses of spacecraft, analysis of slamming of piston, of fast valve shutoffs, and play of rotating bearing assembly. Provides fast and inexpensive analytical tool for analysis of stresses and reduces dependency on expensive impact tests. Written in FORTRAN 77. Requires use of commercial software package PLOT88.
Direct conversion of rheological compliance measurements into storage and loss moduli.
Evans, R M L; Tassieri, Manlio; Auhl, Dietmar; Waigh, Thomas A
2009-07-01
We remove the need for Laplace/inverse-Laplace transformations of experimental data, by presenting a direct and straightforward mathematical procedure for obtaining frequency-dependent storage and loss moduli [G'(omega) and G''(omega), respectively], from time-dependent experimental measurements. The procedure is applicable to ordinary rheological creep (stress-step) measurements, as well as all microrheological techniques, whether they access a Brownian mean-square displacement, or a forced compliance. Data can be substituted directly into our simple formula, thus eliminating traditional fitting and smoothing procedures that disguise relevant experimental noise.
Direct conversion of rheological compliance measurements into storage and loss moduli
NASA Astrophysics Data System (ADS)
Evans, R. M. L.; Tassieri, Manlio; Auhl, Dietmar; Waigh, Thomas A.
2009-07-01
We remove the need for Laplace/inverse-Laplace transformations of experimental data, by presenting a direct and straightforward mathematical procedure for obtaining frequency-dependent storage and loss moduli [ G'(ω) and G″(ω) , respectively], from time-dependent experimental measurements. The procedure is applicable to ordinary rheological creep (stress-step) measurements, as well as all microrheological techniques, whether they access a Brownian mean-square displacement, or a forced compliance. Data can be substituted directly into our simple formula, thus eliminating traditional fitting and smoothing procedures that disguise relevant experimental noise.
Confirmatory factor analysis using Microsoft Excel.
Miles, Jeremy N V
2005-11-01
This article presents a method for using Microsoft (MS) Excel for confirmatory factor analysis (CFA). CFA is often seen as an impenetrable technique, and thus, when it is taught, there is frequently little explanation of the mechanisms or underlying calculations. The aim of this article is to demonstrate that this is not the case; it is relatively straightforward to produce a spreadsheet in MS Excel that can carry out simple CFA. It is possible, with few or no programming skills, to effectively program a CFA analysis and, thus, to gain insight into the workings of the procedure.
Controlling Disulfide Bond Formation and Crystal Growth from 2-Mercaptobenzoic Acid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rowland, Clare E.; Cantos, P. M.; Toby, B. H.
2011-03-02
We report disulfide bond formation from 2-mercaptobenzoic acid (2-MBA) under hydrothermal conditions as a function of pH. Under acidic conditions, 2-MBA remains unchanged. Upon increasing pH, however, we observe 50% oxidation to 2,2'-disulfanediyldibenzoic acid (2,2'-DSBA), which is isolated as a cocrystal of both the thiol and disulfide molecules. At neutral pH, we observe complete oxidation and concurrent crystal growth. The pH sensitivity of this system allows targeting crystals of specific composition from simple building units through a straightforward pH manipulation.
Coghill, G; Grant, A; Orrell, J M; Jankowski, J; Evans, A T
1990-01-01
A new simple modification to the silver staining of nucleolar organiser regions (AgNORs) was devised which, by performing the incubation with the slide inverted, results in minimal undesirable background staining, a persistent problem. Inverted incubation is facilitated by the use of a commercially available plastic coverplate. This technique has several additional advantages over other published staining protocols. In particular, the method is straightforward, fast, and maintains a high degree of contrast between the background and the AgNORs. Images PMID:1702451
Endobronchial valves for bronchopleural fistula: pitfalls and principles
Gaspard, Dany; Bartter, Thaddeus; Boujaoude, Ziad; Raja, Haroon; Arya, Rohan; Meena, Nikhil; Abouzgheib, Wissam
2016-01-01
Background: Placement of endobronchial valves for bronchopleural fistula (BPF) is not always straightforward. A simple guide to the steps for an uncomplicated procedure does not encompass pitfalls that need to be understood and overcome to maximize the efficacy of this modality. Objectives: The objective of this study was to discuss examples of difficult cases for which the placement of endobronchial valves was not straightforward and required alterations in the usual basic steps. Subsequently, we aimed to provide guiding principles for a successful procedure. Methods: Six illustrative cases were selected to demonstrate issues that can arise during endobronchial valve placement. Results: In each case, a real or apparent lack of decrease in airflow through a BPF was diagnosed and addressed. We have used the selected problem cases to illustrate principles, with the goal of helping to increase the success rate for endobronchial valve placement in the treatment of BPF. Conclusions: This series demonstrates issues that complicate effective placement of endobronchial valves for BPF. These issues form the basis for troubleshooting steps that complement the basic procedural steps. PMID:27742781
Complex and open fractures: a straightforward approach to management in the cat.
Corr, Sandra
2012-01-01
Cats often present with traumatic injuries of the limbs, including complex and open fractures, frequently as a result of road traffic accidents. On initial assessment, complex and open fractures may appear to require expertise beyond the experience of the general practitioner and, in some cases, referral to a specialist may be indicated or amputation should be considered. Many cases, however, can be managed using straightforward principles. This review describes a logical and practical approach to treating such injuries. It discusses general principles of fracture management, highlights the treatment of open fractures, and describes the use of external skeletal fixation for stabilisation of both open and complex fractures. Most fractures can be stabilised using equipment and expertise available in general practice if the basic principles of fracture fixation are understood and rigorously applied. Many textbooks and journal articles have been published on the management of fractures in companion animals, presenting case studies, case series and original biomechanical research. The simple strategy for managing complex injuries that is provided in this review is based on the published literature and the author's clinical experience.
Straightforward and effective protein encapsulation in polypeptide-based artificial cells.
Zhi, Zheng-Liang; Haynie, Donald T
2006-01-01
A simple and straightforward approach to encapsulating an enzyme and preserving its function in polypeptide-based artificial cells is demonstrated. A model enzyme, glucose oxidase (GOx), was encapsulated by repeated stepwise adsorption of poly(L-lysine) and poly(L-glutamic acid) onto GOx-coated CaCO3 templates. These polypeptides are known from previous research to exhibit nanometer-scale organization in multilayer films. Templates were dissolved by ethylenediaminetetraacetic acid (EDTA) at neutral pH. Addition of polyethylene glycol (PEG) to the polypeptide assembly solutions greatly increased enzyme retention on the templates, resulting in high-capacity, high-activity loading of the enzyme into artificial cells. Assay of enzyme activity showed that over 80 mg-mL(-1) GOx was retained in artificial cells after polypeptide multilayer film formation and template dissolution in the presence of PEG, but only one-fifth as much was retained in the absence of PEG. Encapsulation is a means of improving the availability of therapeutic macromolecules in biomedicine. This work therefore represents a means of developing polypeptide-based artificial cells for use as therapeutic biomacromolecule delivery vehicles.
Morris, G J
2009-01-01
A simple assay to monitor the potential for contamination during different steps of cryopreservation is described. The assay is based on the contamination of liquid nitrogen using crystals of sucrose hemi-heptahydrate, these are stable in liquid nitrogen, nitrogen vapour and ambient air and can be monitored by a simple assay which allows contamination risks to be evaluated in a direct, rapid manner.
Sample Skewness as a Statistical Measurement of Neuronal Tuning Sharpness
Samonds, Jason M.; Potetz, Brian R.; Lee, Tai Sing
2014-01-01
We propose using the statistical measurement of the sample skewness of the distribution of mean firing rates of a tuning curve to quantify sharpness of tuning. For some features, like binocular disparity, tuning curves are best described by relatively complex and sometimes diverse functions, making it difficult to quantify sharpness with a single function and parameter. Skewness provides a robust nonparametric measure of tuning curve sharpness that is invariant with respect to the mean and variance of the tuning curve and is straightforward to apply to a wide range of tuning, including simple orientation tuning curves and complex object tuning curves that often cannot even be described parametrically. Because skewness does not depend on a specific model or function of tuning, it is especially appealing to cases of sharpening where recurrent interactions among neurons produce sharper tuning curves that deviate in a complex manner from the feedforward function of tuning. Since tuning curves for all neurons are not typically well described by a single parametric function, this model independence additionally allows skewness to be applied to all recorded neurons, maximizing the statistical power of a set of data. We also compare skewness with other nonparametric measures of tuning curve sharpness and selectivity. Compared to these other nonparametric measures tested, skewness is best used for capturing the sharpness of multimodal tuning curves defined by narrow peaks (maximum) and broad valleys (minima). Finally, we provide a more formal definition of sharpness using a shape-based information gain measure and derive and show that skewness is correlated with this definition. PMID:24555451
Zhu, Yanxia; Liang, Yuhong; Zhu, Hongxia; Lian, Cuihong; Wang, Liang; Wang, Yiwei; Gu, Hongsheng; Zhou, Guangqian; Yu, Xiaoping
2017-06-27
Disc degenerative disease (DDD) is believed to originate in the nucleus pulposus (NP) region therefore, it is important to obtain a greater number of active NP cells for the study and therapy of DDD. Human induced pluripotent stem cells (iPSCs) are a powerful tool for modeling the development of DDD in humans, and have the potential to be applied in regenerative medicine. NP cells were isolated from DDD patients following our improved method, and then the primary NP cells were reprogramed into iPSCs with Sendai virus vectors encoding 4 factors. Successful reprogramming of iPSCs was verified by the expression of surface markers and presence of teratoma. Differentiation of iPSCs into NP-like cells was performed in a culture plate or in hydrogel, whereby skin fibroblast derived-iPSCs were used as a control. Results demonstrated that iPSCs derived from NP cells displayed a normal karyotype, expressed pluripotency markers, and formed teratoma in nude mice. NP induction of iPSCs resulted in the expression of NP cell specific matrix proteins and related genes. Non-induced NP derived-iPSCs also showed some NP-like phenotype. Furthermore, NP-derived iPSCs differentiate much better in hydrogel than that in a culture plate. This is a novel method for the generation of iPSCs from NP cells of DDD patients, and we have successfully differentiated these iPSCs into NP-like cells in hydrogel. This method provides a novel treatment of DDD by using patient-specific NP cells in a relatively simple and straightforward manner.
van 't Hoff, Marcel; Reuter, Marcel; Dryden, David T F; Oheim, Martin
2009-09-21
Bacteriophage lambda-DNA molecules are frequently used as a scaffold to characterize the action of single proteins unwinding, translocating, digesting or repairing DNA. However, scaling up such single-DNA-molecule experiments under identical conditions to attain statistically relevant sample sizes remains challenging. Additionally the movies obtained are frequently noisy and difficult to analyse with any precision. We address these two problems here using, firstly, a novel variable-angle total internal reflection fluorescence (VA-TIRF) reflector composed of a minimal set of optical reflective elements, and secondly, using single value decomposition (SVD) to improve the signal-to-noise ratio prior to analysing time-lapse image stacks. As an example, we visualize under identical optical conditions hundreds of surface-tethered single lambda-DNA molecules, stained with the intercalating dye YOYO-1 iodide, and stretched out in a microcapillary flow. Another novelty of our approach is that we arrange on a mechanically driven stage several capillaries containing saline, calibration buffer and lambda-DNA, respectively, thus extending the approach to high-content, high-throughput screening of single molecules. Our length measurements of individual DNA molecules from noise-reduced kymograph images using SVD display a 6-fold enhanced precision compared to raw-data analysis, reaching approximately 1 kbp resolution. Combining these two methods, our approach provides a straightforward yet powerful way of collecting statistically relevant amounts of data in a semi-automated manner. We believe that our conceptually simple technique should be of interest for a broader range of single-molecule studies, well beyond the specific example of lambda-DNA shown here.
The MaPLE device of Saha Institute of Nuclear Physics: construction and its plasma aspects.
Pal, Rabindranath; Biswas, Subir; Basu, Subhasis; Chattopadhyay, Monobir; Basu, Debjyoti; Chaudhuri, Manis; Chowdhuri, Manis
2010-07-01
The Magnetized Plasma Linear Experimental (MaPLE) device is a low cost laboratory plasma device at Saha Institute of Nuclear Physics fabricated in-house with the primary aim of studying basic plasma physics phenomena such as plasma instabilities, wave propagation, and their nonlinear behavior in magnetized plasma regime in a controlled manner. The machine is specially designed to be a versatile laboratory device that can provide a number of magnetic and electric scenario to facilitate such studies. A total of 36 number of 20-turn magnet coils, designed such as to allow easy handling, is capable of producing a uniform, dc magnetic field of about 0.35 T inside the plasma chamber of diameter 0.30 m. Support structure of the coils is planned in an innovative way facilitating straightforward fabrication and easy positioning of the coils. Further special feature lies in the arrangement of the spacers between the coils that can be maneuvered rather easily to create different magnetic configurations. Various methods of plasma production can be suitably utilized according to the experimental needs at either end of the vacuum vessel. In the present paper, characteristics of a steady state plasma generated by electron cyclotron resonance method using 2.45 GHz microwave power are presented. Scans using simple probe drives revealed that a uniform and long plasma column having electron density approximately 3-5x10(10) cm(-3) and temperature approximately 7-10 eV, is formed in the center of the plasma chamber which is suitable for wave launching experiments.
Abbott, Rachel C.; Rocke, Tonie E.
2012-01-01
Plague offers readers an overview of this highly complex disease caused by the bacteria Yersinia pestis. The history of the disease, as well as information about Yersinia pestis and its transmission by fleas, is described. The section Geographic Distribution presents areas of the world and United States where plague occurs most commonly in rodents and humans. Species Susceptibility describes infection and disease rates in rodents, humans, and other animals. Disease Ecology considers the complex relationship among rodents, domestic and wild animals, and humans and explores possible routes of transmission and maintenance of the organism in the environment. The effects of climate change, the potential for Y. pestis to be used as a bioweapon, and the impact of plague on conservation of wildlife are considered in Points to Ponder. Disease Prevention and Control outlines methods of prevention and treatment including vaccination for prairie dogs and black-footed ferrets. A glossary of technical terms is included. Tonie E. Rocke, the senior author and an epizootiologist at the USGS National Wildlife Health Center (NWHC), is a prominent researcher on oral vaccination of prairie dogs to prevent plague. She is currently working to transfer her success in the laboratory to the field to control plague in prairie dogs. Rachel C. Abbott, a biologist at the NWHC, is assisting Dr. Rocke in this process and will coordinate field trials of the vaccine. Milt Friend, first director of the NWHC, wrote the foreword. Plague is intended for scholars and the general public. The material is presented in a simple, straightforward manner that serves both audiences. Numerous illustrations and tables provide easily understood summaries of key points and information.
Role of large scale energy systems models in R and D planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamontagne, J.
1980-11-01
Long-term energy policy deals with the problem of finite supplies of convenient energy sources becoming more costly as they are depleted. The development of alternative technologies to provide new sources of energy and extend the lives of current ones is an attractive option available to government. Thus, one aspect of long-term energy policy involves investment in R and D. The importance of the problems addressed by R and D to the future of society (especially with regard to energy) dictates adoption of a cogent approach to resource allocation and to the designation of priorities for R and D. It ismore » hoped that energy systems models when properly used can provide useful inputs to this process. The influence of model results on energy policy makers who are not knowledgable about flaws or uncertainties in the models, errors in assumptions in model inputs which can result in faulty forecasts, the overall usefulness of energy system models, and model limitations are discussed. It is suggested that the large scale energy systems models currently used for assessing a broad spectrum of policy issues need to be replaced with reasonably simple models capable of dealing with uncertainty in a straightforward manner, and their methodologies and the meaning of their results should be transparent, especially to those removed from the modeling process. Energy models should be clearly related to specific issues. Methodologies should be clearly related to specific decisions, and should allow adjustments to be easily made for alternative assumptions and for additional knowledge gained during the evolution of the energy system. (LCL)« less
Exploring Physics with Computer Animation and PhysGL
NASA Astrophysics Data System (ADS)
Bensky, T. J.
2016-10-01
This book shows how the web-based PhysGL programming environment (http://physgl.org) can be used to teach and learn elementary mechanics (physics) using simple coding exercises. The book's theme is that the lessons encountered in such a course can be used to generate physics-based animations, providing students with compelling and self-made visuals to aid their learning. Topics presented are parallel to those found in a traditional physics text, making for straightforward integration into a typical lecture-based physics course. Users will appreciate the ease at which compelling OpenGL-based graphics and animations can be produced using PhysGL, as well as its clean, simple language constructs. The author argues that coding should be a standard part of lower-division STEM courses, and provides many anecdotal experiences and observations, that include observed benefits of the coding work.
A constraint on antigravity of antimatter from precision spectroscopy of simple atoms
NASA Astrophysics Data System (ADS)
Karshenboim, S. G.
2009-10-01
Consideration of antigravity for antiparticles is an attractive target for various experimental projects. There are a number of theoretical arguments against it but it is not quite clear what kind of experimental data and theoretical suggestions are involved. In this paper we present straightforward arguments against a possibility of antigravity based on a few simple theoretical suggestions and some experimental data. The data are: astrophysical data on rotation of the Solar System in respect to the center of our galaxy and precision spectroscopy data on hydrogen and positronium. The theoretical suggestions for the case of absence of the gravitational field are: equality of electron and positron mass and equality of proton and positron charge. We also assume that QED is correct at the level of accuracy where it is clearly confirmed experimentally.
NASA Technical Reports Server (NTRS)
Johnson, David W.
1992-01-01
Virtual realities are a type of human-computer interface (HCI) and as such may be understood from a historical perspective. In the earliest era, the computer was a very simple, straightforward machine. Interaction was human manipulation of an inanimate object, little more than the provision of an explicit instruction set to be carried out without deviation. In short, control resided with the user. In the second era of HCI, some level of intelligence and control was imparted to the system to enable a dialogue with the user. Simple context sensitive help systems are early examples, while more sophisticated expert system designs typify this era. Control was shared more equally. In this, the third era of the HCI, the constructed system emulates a particular environment, constructed with rules and knowledge about 'reality'. Control is, in part, outside the realm of the human-computer dialogue. Virtual reality systems are discussed.
Applying Semantic Web Services and Wireless Sensor Networks for System Integration
NASA Astrophysics Data System (ADS)
Berkenbrock, Gian Ricardo; Hirata, Celso Massaki; de Oliveira Júnior, Frederico Guilherme Álvares; de Oliveira, José Maria Parente
In environments like factories, buildings, and homes automation services tend to often change during their lifetime. Changes are concerned to business rules, process optimization, cost reduction, and so on. It is important to provide a smooth and straightforward way to deal with these changes so that could be handled in a faster and low cost manner. Some prominent solutions use the flexibility of Wireless Sensor Networks and the meaningful description of Semantic Web Services to provide service integration. In this work, we give an overview of current solutions for machinery integration that combine both technologies as well as a discussion about some perspectives and open issues when applying Wireless Sensor Networks and Semantic Web Services for automation services integration.
Disorder and Urbach energy in hydrogenated amorphous carbon: A phenomenological model
NASA Astrophysics Data System (ADS)
Fanchini, G.; Tagliaferro, A.
2004-08-01
We develop a phenomenological model describing the structural and topological effects of the disorder in hydrogenated amorphous carbons (a-C :H), through the analysis of the Raman G-peak width and the optical absorption spectra, providing information on the densities of electronic π ad π* states (πDOS). We show that the Urbach energy is not related to topological disorder but to the Gaussian width (σπ) of the πDOS, peaked at ±Eπ energies above/below the Fermi level. σπ, on its turn, is not related in a straightforward manner to the disorder. The disorder is better represented by the σπ/Eπ ratio, expressing the disorder-induced narrowing of the Tauc optical gap.
Space and radiation protection: scientific requirements for space research
NASA Technical Reports Server (NTRS)
Schimmerling, W.
1995-01-01
Ionizing radiation poses a significant risk to humans living and working in space. The major sources of radiation are solar disturbances and galactic cosmic rays. The components of this radiation are energetic charged particles, protons, as well as fully ionized nuclei of all elements. The biological effects of these particles cannot be extrapolated in a straightforward manner from available data on x-rays and gamma-rays. A radiation protection program that meets the needs of spacefaring nations must have a solid scientific basis, capable not only of predicting biological effects, but also of making reliable estimates of the uncertainty in these predictions. A strategy leading to such predictions is proposed, and scientific requirements arising from this strategy are discussed.
Review of MEMS differential scanning calorimetry for biomolecular study
NASA Astrophysics Data System (ADS)
Yu, Shifeng; Wang, Shuyu; Lu, Ming; Zuo, Lei
2017-12-01
Differential scanning calorimetry (DSC) is one of the few techniques that allow direct determination of enthalpy values for binding reactions and conformational transitions in biomolecules. It provides the thermodynamics information of the biomolecules which consists of Gibbs free energy, enthalpy and entropy in a straightforward manner that enables deep understanding of the structure function relationship in biomolecules such as the folding/unfolding of protein and DNA, and ligand bindings. This review provides an up to date overview of the applications of DSC in biomolecular study such as the bovine serum albumin denaturation study, the relationship between the melting point of lysozyme and the scanning rate. We also introduce the recent advances of the development of micro-electro-mechanic-system (MEMS) based DSCs.
Limpanuparb, Taweetham; Milthorpe, Josh; Rendell, Alistair P
2014-10-30
Use of the modern parallel programming language X10 for computing long-range Coulomb and exchange interactions is presented. By using X10, a partitioned global address space language with support for task parallelism and the explicit representation of data locality, the resolution of the Ewald operator can be parallelized in a straightforward manner including use of both intranode and internode parallelism. We evaluate four different schemes for dynamic load balancing of integral calculation using X10's work stealing runtime, and report performance results for long-range HF energy calculation of large molecule/high quality basis running on up to 1024 cores of a high performance cluster machine. Copyright © 2014 Wiley Periodicals, Inc.
Elastic Electron Scattering from Tritium and Helium-3
DOE R&D Accomplishments Database
Collard, H.; Hofstadter, R.; Hughes, E. B.; Johansson, A.; Yearian, M. R.; Day, R. B.; Wagner, R. T.
1964-10-01
The mirror nuclei of tritium and helium-3 have been studied by the method of elastic electron scattering. Absolute cross sections have been measured for incident electron energies in the range 110 - 690 MeV at scattering angles lying between 40 degrees and 135 degrees in this energy range. The data have been interpreted in a straightforward manner and form factors are given for the distributions of charge and magnetic moment in the two nuclei over a range of four-momentum transfer squared 1.0 - 8.0 F{sup -2}. Model-independent radii of the charge and magnetic moment distributions are given and an attempt is made to deduce form factors describing the spatial distribution of the protons in tritium and helium-3.
Dose factor entry and display tool for BNCT radiotherapy
Wessol, Daniel E.; Wheeler, Floyd J.; Cook, Jeremy L.
1999-01-01
A system for use in Boron Neutron Capture Therapy (BNCT) radiotherapy planning where a biological distribution is calculated using a combination of conversion factors and a previously calculated physical distribution. Conversion factors are presented in a graphical spreadsheet so that a planner can easily view and modify the conversion factors. For radiotherapy in multi-component modalities, such as Fast-Neutron and BNCT, it is necessary to combine each conversion factor component to form an effective dose which is used in radiotherapy planning and evaluation. The Dose Factor Entry and Display System is designed to facilitate planner entry of appropriate conversion factors in a straightforward manner for each component. The effective isodose is then immediately computed and displayed over the appropriate background (e.g. digitized image).
Pereira, Rui; Phillips, Christopher; Pinto, Nádia; Santos, Carla; dos Santos, Sidney Emanuel Batista; Amorim, António; Carracedo, Ángel; Gusmão, Leonor
2012-01-01
Ancestry-informative markers (AIMs) show high allele frequency divergence between different ancestral or geographically distant populations. These genetic markers are especially useful in inferring the likely ancestral origin of an individual or estimating the apportionment of ancestry components in admixed individuals or populations. The study of AIMs is of great interest in clinical genetics research, particularly to detect and correct for population substructure effects in case-control association studies, but also in population and forensic genetics studies. This work presents a set of 46 ancestry-informative insertion deletion polymorphisms selected to efficiently measure population admixture proportions of four different origins (African, European, East Asian and Native American). All markers are analyzed in short fragments (under 230 basepairs) through a single PCR followed by capillary electrophoresis (CE) allowing a very simple one tube PCR-to-CE approach. HGDP-CEPH diversity panel samples from the four groups, together with Oceanians, were genotyped to evaluate the efficiency of the assay in clustering populations from different continental origins and to establish reference databases. In addition, other populations from diverse geographic origins were tested using the HGDP-CEPH samples as reference data. The results revealed that the AIM-INDEL set developed is highly efficient at inferring the ancestry of individuals and provides good estimates of ancestry proportions at the population level. In conclusion, we have optimized the multiplexed genotyping of 46 AIM-INDELs in a simple and informative assay, enabling a more straightforward alternative to the commonly available AIM-SNP typing methods dependent on complex, multi-step protocols or implementation of large-scale genotyping technologies. PMID:22272242
Pfuhler, Stefan; Albertini, Silvio; Fautz, Rolf; Herbold, Bernd; Madle, Stephan; Utesch, Dietmar; Poth, Albrecht
2007-06-01
Based on new scientific developments and experience of the regulation of chemical compounds, a working group of the Gesellschaft fuer Umweltmutationsforschung (GUM), a German-speaking section of the European Environmental Mutagen Society, proposes a simple and straightforward approach to genotoxicity testing. This strategy is divided into basic testing (stage I) and follow-up testing (stage II). Stage I consists of a bacterial gene mutation test plus an in vitro micronucleus test, therewith covering all mutagenicity endpoints. Stage II testing is in general required only if relevant positive results occur in stage I testing and will usually be in vivo. However, an isolated positive bacterial gene mutation test in stage I can be followed up with a gene mutation assay in mammalian cells. If this assay turns out negative and there are no compound-specific reasons for concern, in vivo follow-up testing may not be required. In those cases where in vivo testing is indicated, a single study combining the analysis of micronuclei in bone marrow with the comet assay in appropriately selected tissues is suggested. Negative results for both end points in relevant tissues will generally provide sufficient evidence to conclude that the test compound is nongenotoxic in vivo. Compounds which were recognized as in vivo somatic cell mutagens/genotoxicants in this hazard identification step will need further testing. In the absence of additional data, such compounds will have to be assumed to be potential genotoxic carcinogens and potential germ cell mutagens.
Immunodiagnosis of childhood malignancies.
Parham, D M; Holt, H
1999-09-01
Immunodiagnosis utilizing immunohistochemical techniques is currently the most commonly utilized and readily available method of ancillary diagnosis in pediatric oncopathology. The methodology comprises relatively simple steps, based on straightforward biologic concepts, and the reagents used are generally well characterized and widely used. The principle of cancer immunodiagnosis is based on the determination of neoplastic lineage using detection of proteins typical of cell differentiation pathways. Methodology sensitivity varies and has become greater with each new generation of tests, but technical draw-backs should be considered to avoid excessive background or nonspecific results. Automated instrumentation offers a degree of accuracy and reproducibility not easily attainable by manual methods.
Microrheology with optical tweezers: measuring the relative viscosity of solutions 'at a glance'.
Tassieri, Manlio; Del Giudice, Francesco; Robertson, Emma J; Jain, Neena; Fries, Bettina; Wilson, Rab; Glidle, Andrew; Greco, Francesco; Netti, Paolo Antonio; Maffettone, Pier Luca; Bicanic, Tihana; Cooper, Jonathan M
2015-03-06
We present a straightforward method for measuring the relative viscosity of fluids via a simple graphical analysis of the normalised position autocorrelation function of an optically trapped bead, without the need of embarking on laborious calculations. The advantages of the proposed microrheology method are evident when it is adopted for measurements of materials whose availability is limited, such as those involved in biological studies. The method has been validated by direct comparison with conventional bulk rheology methods, and has been applied both to characterise synthetic linear polyelectrolytes solutions and to study biomedical samples.
Microrheology with Optical Tweezers: Measuring the relative viscosity of solutions ‘at a glance'
Tassieri, Manlio; Giudice, Francesco Del; Robertson, Emma J.; Jain, Neena; Fries, Bettina; Wilson, Rab; Glidle, Andrew; Greco, Francesco; Netti, Paolo Antonio; Maffettone, Pier Luca; Bicanic, Tihana; Cooper, Jonathan M.
2015-01-01
We present a straightforward method for measuring the relative viscosity of fluids via a simple graphical analysis of the normalised position autocorrelation function of an optically trapped bead, without the need of embarking on laborious calculations. The advantages of the proposed microrheology method are evident when it is adopted for measurements of materials whose availability is limited, such as those involved in biological studies. The method has been validated by direct comparison with conventional bulk rheology methods, and has been applied both to characterise synthetic linear polyelectrolytes solutions and to study biomedical samples. PMID:25743468
Tachometer Derived From Brushless Shaft-Angle Resolver
NASA Technical Reports Server (NTRS)
Howard, David E.; Smith, Dennis A.
1995-01-01
Tachometer circuit operates in conjunction with brushless shaft-angle resolver. By performing sequence of straightforward mathematical operations on resolver signals and utilizing simple trigonometric identity, generates voltage proportional to rate of rotation of shaft. One advantage is use of brushless shaft-angle resolver as main source of rate signal: no brushes to wear out, no brush noise, and brushless resolvers have proven robustness. No switching of signals to generate noise. Another advantage, shaft-angle resolver used as shaft-angle sensor, tachometer input obtained without adding another sensor. Present circuit reduces overall size, weight, and cost of tachometer.
PLANT DERMATITIS: ASIAN PERSPECTIVE
Goon, Anthony Teik Jin; Goh, Chee Leok
2011-01-01
Occupational and recreational plant exposure on the skin is fairly common. Plant products and extracts are commonly used and found extensively in the environment. Adverse reactions to plants and their products are also fairly common. However, making the diagnosis of contact dermatitis from plants and plant extracts is not always simple and straightforward. Phytodermatitis refers to inflammation of the skin caused by a plant. The clinical patterns may be allergic phytodermatitis, photophytodermatitis, irritant contact dermatitis, pharmacological injury, and mechanical injury. In this article, we will focus mainly on allergy contact dermatitis from plants or allergic phytodermatitis occurring in Asia. PMID:22345775
Grammar of binding in the languages of the world: Unity versus diversity.
Reuland, Eric
2017-11-01
Cole, Hermon, and Yanti (2015) present a number of far-reaching conclusions about language universals on the basis of their study of the anaphoric systems of the Austronesian languages of Indonesia. The present contribution critically assesses these conclusions. It reports a further set of data, and shows that contra to what these authors argue, the systems they discuss can be straightforwardly accounted for by a simple set of universal principles plus properties of the vocabulary of the languages involved. I conclude this article with some remarks on acquisition. Copyright © 2016 Elsevier B.V. All rights reserved.
Warnock, G
1990-01-01
Berkeley held that the moral duty of mankind was to obey God's laws; that--since God was a benevolent Creator--the object of His laws must be to promote the welfare and flourishing of mankind; and that, accordingly, humans could identify their moral duties by asking what system of laws for conduct would in fact tend to promote that object. This position--which is akin to that of 'rule' Utilitarianism--is neither unfamiliar nor manifestly untenable. He was surely mistaken, however, in his further supposition that, if this theory were accepted, the resolution of all (or most) particular moral dilemmas would be simple and straightforward. PMID:2181141
Segmentation of remotely sensed data using parallel region growing
NASA Technical Reports Server (NTRS)
Tilton, J. C.; Cox, S. C.
1983-01-01
The improved spatial resolution of the new earth resources satellites will increase the need for effective utilization of spatial information in machine processing of remotely sensed data. One promising technique is scene segmentation by region growing. Region growing can use spatial information in two ways: only spatially adjacent regions merge together, and merging criteria can be based on region-wide spatial features. A simple region growing approach is described in which the similarity criterion is based on region mean and variance (a simple spatial feature). An effective way to implement region growing for remote sensing is as an iterative parallel process on a large parallel processor. A straightforward parallel pixel-based implementation of the algorithm is explored and its efficiency is compared with sequential pixel-based, sequential region-based, and parallel region-based implementations. Experimental results from on aircraft scanner data set are presented, as is a discussioon of proposed improvements to the segmentation algorithm.
Reflection of a polarized light cone
NASA Astrophysics Data System (ADS)
Brody, Jed; Weiss, Daniel; Berland, Keith
2013-01-01
We introduce a visually appealing experimental demonstration of Fresnel reflection. In this simple optical experiment, a polarized light beam travels through a high numerical-aperture microscope objective, reflects off a glass slide, and travels back through the same objective lens. The return beam is sampled with a polarizing beam splitter and produces a surprising geometric pattern on an observation screen. Understanding the origin of this pattern requires careful attention to geometry and an understanding of the Fresnel coefficients for S and P polarized light. We demonstrate that in addition to a relatively simple experimental implementation, the shape of the observed pattern can be computed both analytically and by using optical modeling software. The experience of working through complex mathematical computations and demonstrating their agreement with a surprising experimental observation makes this a highly educational experiment for undergraduate optics or advanced-lab courses. It also provides a straightforward yet non-trivial system for teaching students how to use optical modeling software.
Ultimate Longitudinal Strength of Composite Ship Hulls
NASA Astrophysics Data System (ADS)
Zhang, Xiangming; Huang, Lingkai; Zhu, Libao; Tang, Yuhang; Wang, Anwen
2017-01-01
A simple analytical model to estimate the longitudinal strength of ship hulls in composite materials under buckling, material failure and ultimate collapse is presented in this paper. Ship hulls are regarded as assemblies of stiffened panels which idealized as group of plate-stiffener combinations. Ultimate strain of the plate-stiffener combination is predicted under buckling or material failure with composite beam-column theory. The effects of initial imperfection of ship hull and eccentricity of load are included. Corresponding longitudinal strengths of ship hull are derived in a straightforward method. A longitudinally framed ship hull made of symmetrically stacked unidirectional plies under sagging is analyzed. The results indicate that present analytical results have a good agreement with FEM method. The initial deflection of ship hull and eccentricity of load can dramatically reduce the bending capacity of ship hull. The proposed formulations provide a simple but useful tool for the longitudinal strength estimation in practical design.
Quantitative Modeling of Earth Surface Processes
NASA Astrophysics Data System (ADS)
Pelletier, Jon D.
This textbook describes some of the most effective and straightforward quantitative techniques for modeling Earth surface processes. By emphasizing a core set of equations and solution techniques, the book presents state-of-the-art models currently employed in Earth surface process research, as well as a set of simple but practical research tools. Detailed case studies demonstrate application of the methods to a wide variety of processes including hillslope, fluvial, aeolian, glacial, tectonic, and climatic systems. Exercises at the end of each chapter begin with simple calculations and then progress to more sophisticated problems that require computer programming. All the necessary computer codes are available online at www.cambridge.org/9780521855976. Assuming some knowledge of calculus and basic programming experience, this quantitative textbook is designed for advanced geomorphology courses and as a reference book for professional researchers in Earth and planetary science looking for a quantitative approach to Earth surface processes.
Gao, Jinting; Liu, Yaqing; Lin, Xiaodong; Deng, Jiankang; Yin, Jinjin; Wang, Shuo
2017-10-25
Wiring a series of simple logic gates to process complex data is significantly important and a large challenge for untraditional molecular computing systems. The programmable property of DNA endows its powerful application in molecular computing. In our investigation, it was found that DNA exhibits excellent peroxidase-like activity in a colorimetric system of TMB/H 2 O 2 /Hemin (TMB, 3,3', 5,5'-Tetramethylbenzidine) in the presence of K + and Cu 2+ , which is significantly inhibited by the addition of an antioxidant. According to the modulated catalytic activity of this DNA-based catalyst, three cascade logic gates including AND-OR-INH (INHIBIT), AND-INH and OR-INH were successfully constructed. Interestingly, by only modulating the concentration of Cu 2+ , a majority logic gate with a single-vote veto function was realized following the same threshold value as that of the cascade logic gates. The strategy is quite straightforward and versatile and provides an instructive method for constructing multiple logic gates on a simple platform to implement complex molecular computing.
Contrast discrimination, non-uniform patterns and change blindness.
Scott-Brown, K C; Orbach, H S
1998-01-01
Change blindness--our inability to detect large changes in natural scenes when saccades, blinks and other transients interrupt visual input--seems to contradict psychophysical evidence for our exquisite sensitivity to contrast changes. Can the type of effects described as 'change blindness' be observed with simple, multi-element stimuli, amenable to psychophysical analysis? Such stimuli, composed of five mixed contrast elements, elicited a striking increase in contrast increment thresholds compared to those for an isolated element. Cue presentation prior to the stimulus substantially reduced thresholds, as for change blindness with natural scenes. On one hand, explanations for change blindness based on abstract and sketchy representations in short-term visual memory seem inappropriate for this low-level image property of contrast where there is ample evidence for exquisite performance on memory tasks. On the other hand, the highly increased thresholds for mixed contrast elements, and the decreased thresholds when a cue is present, argue against any simple early attentional or sensory explanation for change blindness. Thus, psychophysical results for very simple patterns cannot straightforwardly predict results even for the slightly more complicated patterns studied here. PMID:9872004
NASA Technical Reports Server (NTRS)
Chang, Sin-Chung; Himansu, Ananda; Loh, Ching-Yuen; Wang, Xiao-Yen; Yu, Shang-Tao
2003-01-01
This paper reports on a significant advance in the area of non-reflecting boundary conditions (NRBCs) for unsteady flow computations. As a part of the development of the space-time conservation element and solution element (CE/SE) method, sets of NRBCs for 1D Euler problems are developed without using any characteristics-based techniques. These conditions are much simpler than those commonly reported in the literature, yet so robust that they are applicable to subsonic, transonic and supersonic flows even in the presence of discontinuities. In addition, the straightforward multidimensional extensions of the present 1D NRBCs have been shown numerically to be equally simple and robust. The paper details the theoretical underpinning of these NRBCs, and explains their unique robustness and accuracy in terms of the conservation of space-time fluxes. Some numerical results for an extended Sod's shock-tube problem, illustrating the effectiveness of the present NRBCs are included, together with an associated simple Fortran computer program. As a preliminary to the present development, a review of the basic CE/SE schemes is also included.
Simple robust control laws for robot manipulators. Part 2: Adaptive case
NASA Technical Reports Server (NTRS)
Bayard, D. S.; Wen, J. T.
1987-01-01
A new class of asymptotically stable adaptive control laws is introduced for application to the robotic manipulator. Unlike most applications of adaptive control theory to robotic manipulators, this analysis addresses the nonlinear dynamics directly without approximation, linearization, or ad hoc assumptions, and utilizes a parameterization based on physical (time-invariant) quantities. This approach is made possible by using energy-like Lyapunov functions which retain the nonlinear character and structure of the dynamics, rather than simple quadratic forms which are ubiquitous to the adaptive control literature, and which have bound the theory tightly to linear systems with unknown parameters. It is a unique feature of these results that the adaptive forms arise by straightforward certainty equivalence adaptation of their nonadaptive counterparts found in the companion to this paper (i.e., by replacing unknown quantities by their estimates) and that this simple approach leads to asymptotically stable closed-loop adaptive systems. Furthermore, it is emphasized that this approach does not require convergence of the parameter estimates (i.e., via persistent excitation), invertibility of the mass matrix estimate, or measurement of the joint accelerations.
Shot-Noise Limited Single-Molecule FRET Histograms: Comparison between Theory and Experiments†
Nir, Eyal; Michalet, Xavier; Hamadani, Kambiz M.; Laurence, Ted A.; Neuhauser, Daniel; Kovchegov, Yevgeniy; Weiss, Shimon
2011-01-01
We describe a simple approach and present a straightforward numerical algorithm to compute the best fit shot-noise limited proximity ratio histogram (PRH) in single-molecule fluorescence resonant energy transfer diffusion experiments. The key ingredient is the use of the experimental burst size distribution, as obtained after burst search through the photon data streams. We show how the use of an alternated laser excitation scheme and a correspondingly optimized burst search algorithm eliminates several potential artifacts affecting the calculation of the best fit shot-noise limited PRH. This algorithm is tested extensively on simulations and simple experimental systems. We find that dsDNA data exhibit a wider PRH than expected from shot noise only and hypothetically account for it by assuming a small Gaussian distribution of distances with an average standard deviation of 1.6 Å. Finally, we briefly mention the results of a future publication and illustrate them with a simple two-state model system (DNA hairpin), for which the kinetic transition rates between the open and closed conformations are extracted. PMID:17078646
Graph-based layout analysis for PDF documents
NASA Astrophysics Data System (ADS)
Xu, Canhui; Tang, Zhi; Tao, Xin; Li, Yun; Shi, Cao
2013-03-01
To increase the flexibility and enrich the reading experience of e-book on small portable screens, a graph based method is proposed to perform layout analysis on Portable Document Format (PDF) documents. Digital born document has its inherent advantages like representing texts and fractional images in explicit form, which can be straightforwardly exploited. To integrate traditional image-based document analysis and the inherent meta-data provided by PDF parser, the page primitives including text, image and path elements are processed to produce text and non text layer for respective analysis. Graph-based method is developed in superpixel representation level, and page text elements corresponding to vertices are used to construct an undirected graph. Euclidean distance between adjacent vertices is applied in a top-down manner to cut the graph tree formed by Kruskal's algorithm. And edge orientation is then used in a bottom-up manner to extract text lines from each sub tree. On the other hand, non-textual objects are segmented by connected component analysis. For each segmented text and non-text composite, a 13-dimensional feature vector is extracted for labelling purpose. The experimental results on selected pages from PDF books are presented.
NASA Technical Reports Server (NTRS)
Fridge, Ernest M., III
1991-01-01
Today's software systems generally use obsolete technology, are not integrated properly with other software systems, and are difficult and costly to maintain. The discipline of reverse engineering is becoming prominent as organizations try to move their systems up to more modern and maintainable technology in a cost effective manner. JSC created a significant set of tools to develop and maintain FORTRAN and C code during development of the Space Shuttle. This tool set forms the basis for an integrated environment to re-engineer existing code into modern software engineering structures which are then easier and less costly to maintain and which allow a fairly straightforward translation into other target languages. The environment will support these structures and practices even in areas where the language definition and compilers do not enforce good software engineering. The knowledge and data captured using the reverse engineering tools is passed to standard forward engineering tools to redesign or perform major upgrades to software systems in a much more cost effective manner than using older technologies. A beta vision of the environment was released in Mar. 1991. The commercial potential for such re-engineering tools is very great. CASE TRENDS magazine reported it to be the primary concern of over four hundred of the top MIS executives.
Doubly tagged delayed-choice tunable quantum eraser: coherence, information and measurement
NASA Astrophysics Data System (ADS)
Imran, Muhammad; Tariq, Hinna; Rameez-ul-Islam; Ikram, Manzoor
2018-01-01
We present an idea for the doubly tagged delayed-choice tunable quantum eraser in a cavity QED setup, based on fully controlled resonant as well as dispersive atom-field interactions. Two cavity fields, bound initially in the Bell state, are coupled to a three-level atom. Such an atom is initially prepared in the coherent superposition of the lower two levels and is quite capable of exhibiting Ramsey fringes if taken independently. It is shown that the coherence lost due to tagging can not only be retrieved but that the fringe visibility/path distinguishability can also be conditionally tuned in a delayed manner through local manipulation of the entangled cavity fields. The stringent condition here is the retainment of the system’s coherence during successive manipulations of the individual cavity fields. Such a quantum eraser, therefore, prominently highlights the links among all the counterintuitive features of quantum theory including the conception of time, measurement, state vector reduction, coherence and information in an unambiguous manner. The schematics can be straightforwardly extended to a multipartite scenario and employed to explore multi-player quantum games with the payoff being strangely decided through delayed choice setups.
Mohanasubha, R.; Chandrasekar, V. K.; Senthilvelan, M.; Lakshmanan, M.
2015-01-01
We unearth the interconnection between various analytical methods which are widely used in the current literature to identify integrable nonlinear dynamical systems described by third-order nonlinear ODEs. We establish an important interconnection between the extended Prelle–Singer procedure and λ-symmetries approach applicable to third-order ODEs to bring out the various linkages associated with these different techniques. By establishing this interconnection we demonstrate that given any one of the quantities as a starting point in the family consisting of Jacobi last multipliers, Darboux polynomials, Lie point symmetries, adjoint-symmetries, λ-symmetries, integrating factors and null forms one can derive the rest of the quantities in this family in a straightforward and unambiguous manner. We also illustrate our findings with three specific examples. PMID:27547076
Mohanasubha, R; Chandrasekar, V K; Senthilvelan, M; Lakshmanan, M
2015-04-08
We unearth the interconnection between various analytical methods which are widely used in the current literature to identify integrable nonlinear dynamical systems described by third-order nonlinear ODEs. We establish an important interconnection between the extended Prelle-Singer procedure and λ-symmetries approach applicable to third-order ODEs to bring out the various linkages associated with these different techniques. By establishing this interconnection we demonstrate that given any one of the quantities as a starting point in the family consisting of Jacobi last multipliers, Darboux polynomials, Lie point symmetries, adjoint-symmetries, λ-symmetries, integrating factors and null forms one can derive the rest of the quantities in this family in a straightforward and unambiguous manner. We also illustrate our findings with three specific examples.
Interdisciplinary collaboration and the electronic medical record.
Green, Shayla D; Thomas, Joan D
2008-01-01
To examine interdisciplinary collaboration via electronic medical records (EMRs) with a focus on physicians' perception of nursing documentation. Quality improvement project using a survey instrument. Tertiary care pediatric hospital. Thirty-seven physicians. Physicians perceptions of nursing documentation after EMR implementation Physicians desire nursing documentation with greater clarity and additional information. Physicians indicate checklists alone for patient assessment and intervention data are insufficient for effective nurse/physician collaboration. Narrative nursing summaries are invaluable references that guide medical treatment decisions. Physicians see detailed assessments and well-described interventions of nurses' as critical to their ability to effectively practice medicine. Health care technology is called to develop EMRs that enable nurses to document detailed patient data in a swift and straightforward manner. Joint collaboration between nurses, physicians, and technology specialists is recommended to develop effective EMR systems.
Declarative Programming with Temporal Constraints, in the Language CG.
Negreanu, Lorina
2015-01-01
Specifying and interpreting temporal constraints are key elements of knowledge representation and reasoning, with applications in temporal databases, agent programming, and ambient intelligence. We present and formally characterize the language CG, which tackles this issue. In CG, users are able to develop time-dependent programs, in a flexible and straightforward manner. Such programs can, in turn, be coupled with evolving environments, thus empowering users to control the environment's evolution. CG relies on a structure for storing temporal information, together with a dedicated query mechanism. Hence, we explore the computational complexity of our query satisfaction problem. We discuss previous implementation attempts of CG and introduce a novel prototype which relies on logic programming. Finally, we address the issue of consistency and correctness of CG program execution, using the Event-B modeling approach.
Photopatterned materials in bioanalytical microfluidic technology
Tentori, Augusto M.; Herr, Amy E.
2011-01-01
Microfluidic technologies are playing an increasingly important role in biological inquiry. Sophisticated approaches to the microanalysis of biological specimens rely, in part, on the fine fluid and material control offered by microtechnology, as well as a sufficient capacity for systems integration. A suite of techniques that utilize photopatterning of polymers on fluidic surfaces, within fluidic volumes, and as primary device structures underpins recent technological innovation in bioanalysis. Well-characterized photopatterning approaches enable previously fabricated or commercially fabricated devices to be customized by the user in a straight-forward manner, making the tools accessible to laboratories that do not focus on microfabrication technology innovation. In this review of recent advances, we summarize reported microfluidic devices with photopatterned structures and regions as platforms for a diverse set of biological measurements and assays. PMID:21857772
Wet cocker spaniel therapy: an essay on technique in family therapy.
Pittman, F S
1984-03-01
Wet Cocker Spaniel Therapy is a metaphor for the therapist's use of spontaneous techniques arising from the specific therapeutic situation rather than planned techniques from the therapist's training or allegiances. The paper proposes a problem-oriented, rather than technique-oriented, approach to family therapy. Most therapy can be performed in a calm, polite, rational, straightforward manner without any tricks or therapeutic razzle-dazzle. From time to time, the therapist may have to startle or jerk the family past a snag point and into change. Ideally, the therapist's techniques should arise from the content of the hour and the symbolism of the family and should be applied sparingly. I hope this paper will make therapists feel more comfortable being sane, polite, and practical, and unashamed when not being brilliant.
Doitsidou, Maria; Jarriault, Sophie; Poole, Richard J.
2016-01-01
The use of next-generation sequencing (NGS) has revolutionized the way phenotypic traits are assigned to genes. In this review, we describe NGS-based methods for mapping a mutation and identifying its molecular identity, with an emphasis on applications in Caenorhabditis elegans. In addition to an overview of the general principles and concepts, we discuss the main methods, provide practical and conceptual pointers, and guide the reader in the types of bioinformatics analyses that are required. Owing to the speed and the plummeting costs of NGS-based methods, mapping and cloning a mutation of interest has become straightforward, quick, and relatively easy. Removing this bottleneck previously associated with forward genetic screens has significantly advanced the use of genetics to probe fundamental biological processes in an unbiased manner. PMID:27729495
Landsat TM memory effect characterization and correction
Helder, D.; Boncyk, W.; Morfitt, R.
1997-01-01
Before radiometric calibration of Landsat Thematic Mapper (TM) data can be done accurately, it is necessary to minimize the effects of artifacts present in the data that originate in the instrument's signal processing path. These artifacts have been observed in downlinked image data since shortly after launch of Landsat 4 and 5. However, no comprehensive work has been done to characterize all the artifacts and develop methods for their correction. In this paper, the most problematic artifact is discussed: memory effect (ME). Characterization of this artifact is presented, including the parameters necessary for its correction. In addition, a correction algorithm is described that removes the artifact from TM imagery. It will be shown that this artifact causes significant radiometry errors, but the effect can be removed in a straightforward manner.
Testing framework for embedded languages
NASA Astrophysics Data System (ADS)
Leskó, Dániel; Tejfel, Máté
2012-09-01
Embedding a new programming language into an existing one is a widely used technique, because it fastens the development process and gives a part of a language infrastructure for free (e.g. lexical, syntactical analyzers). In this paper we are presenting a new advantage of this development approach regarding to adding testing support for these new languages. Tool support for testing is a crucial point for a newly designed programming language. It could be done in the hard way by creating a testing tool from scratch, or we could try to reuse existing testing tools by extending them with an interface to our new language. The second approach requires less work, and also it fits very well for the embedded approach. The problem is that the creation of such interfaces is not straightforward at all, because the existing testing tools were mostly not designed to be extendable and to be able to deal with new languages. This paper presents an extendable and modular model of a testing framework, in which the most basic design decision was to keep the - previously mentioned - interface creation simple and straightforward. Other important aspects of our model are the test data generation, the oracle problem and the customizability of the whole testing phase.
Teach Deflection Concepts with Hacksaw Blades and Rubber Bands
ERIC Educational Resources Information Center
Roman, Harry T.
2013-01-01
Technology and engineering educators can use a simple hacksaw blade to help students learn about deflection, as that which occurs in a beam. Here the beam is fixed at one end and allowed to deflect in a manner that is easy to see and measure--the hacksaw blade represents a cantilever, an overhanging structure. This simple and very inexpensive…
Zubkov, Mikhail; Stait-Gardner, Timothy; Price, William S
2014-06-01
Precise NMR diffusion measurements require detailed knowledge of the cumulative dephasing effect caused by the numerous gradient pulses present in most NMR pulse sequences. This effect, which ultimately manifests itself as the diffusion-related NMR signal attenuation, is usually described by the b-value or the b-matrix in the case of multidirectional diffusion weighting, the latter being common in diffusion-weighted NMR imaging. Neglecting some of the gradient pulses introduces an error in the calculated diffusion coefficient reaching in some cases 100% of the expected value. Therefore, ensuring the b-matrix calculation includes all the known gradient pulses leads to significant error reduction. Calculation of the b-matrix for simple gradient waveforms is rather straightforward, yet it grows cumbersome when complexly shaped and/or numerous gradient pulses are introduced. Making three broad assumptions about the gradient pulse arrangement in a sequence results in an efficient framework for calculation of b-matrices as well providing some insight into optimal gradient pulse placement. The framework allows accounting for the diffusion-sensitising effect of complexly shaped gradient waveforms with modest computational time and power. This is achieved by using the b-matrix elements of the simple unmodified pulse sequence and minimising the integration of the complexly shaped gradient waveform in the modified sequence. Such re-evaluation of the b-matrix elements retains all the analytical relevance of the straightforward approach, yet at least halves the amount of symbolic integration required. The application of the framework is demonstrated with the evaluation of the expression describing the diffusion-sensitizing effect, caused by different bipolar gradient pulse modules. Copyright © 2014 Elsevier Inc. All rights reserved.
Statistical inference for noisy nonlinear ecological dynamic systems.
Wood, Simon N
2010-08-26
Chaotic ecological dynamic systems defy conventional statistical analysis. Systems with near-chaotic dynamics are little better. Such systems are almost invariably driven by endogenous dynamic processes plus demographic and environmental process noise, and are only observable with error. Their sensitivity to history means that minute changes in the driving noise realization, or the system parameters, will cause drastic changes in the system trajectory. This sensitivity is inherited and amplified by the joint probability density of the observable data and the process noise, rendering it useless as the basis for obtaining measures of statistical fit. Because the joint density is the basis for the fit measures used by all conventional statistical methods, this is a major theoretical shortcoming. The inability to make well-founded statistical inferences about biological dynamic models in the chaotic and near-chaotic regimes, other than on an ad hoc basis, leaves dynamic theory without the methods of quantitative validation that are essential tools in the rest of biological science. Here I show that this impasse can be resolved in a simple and general manner, using a method that requires only the ability to simulate the observed data on a system from the dynamic model about which inferences are required. The raw data series are reduced to phase-insensitive summary statistics, quantifying local dynamic structure and the distribution of observations. Simulation is used to obtain the mean and the covariance matrix of the statistics, given model parameters, allowing the construction of a 'synthetic likelihood' that assesses model fit. This likelihood can be explored using a straightforward Markov chain Monte Carlo sampler, but one further post-processing step returns pure likelihood-based inference. I apply the method to establish the dynamic nature of the fluctuations in Nicholson's classic blowfly experiments.
Paternò, Gianfranco; Cardarelli, Paolo; Contillo, Adriano; Gambaccini, Mauro; Taibi, Angelo
2018-01-01
Advanced applications of digital mammography such as dual-energy and tomosynthesis require multiple exposures and thus deliver higher dose compared to standard mammograms. A straightforward manner to reduce patient dose without affecting image quality would be removal of the anti-scatter grid, provided that the involved reconstruction algorithms are able to take the scatter figure into account [1]. Monte Carlo simulations are very well suited for the calculation of X-ray scatter distribution and can be used to integrate such information within the reconstruction software. Geant4 is an open source C++ particle tracking code widely used in several physical fields, including medical physics [2,3]. However, the coherent scattering cross section used by the standard Geant4 code does not take into account the influence of molecular interference. According to the independent atomic scattering approximation (the so-called free-atom model), coherent radiation is indistinguishable from primary radiation because its angular distribution is peaked in the forward direction. Since interference effects occur between x-rays scattered by neighbouring atoms in matter, it was shown experimentally that the scatter distribution is affected by the molecular structure of the target, even in amorphous materials. The most important consequence is that the coherent scatter distribution is not peaked in the forward direction, and the position of the maximum is strongly material-dependent [4]. In this contribution, we present the implementation of a method to take into account inter-atomic interference in small-angle coherent scattering in Geant4, including a dedicated data set of suitable molecular form factor values for several materials of clinical interest. Furthermore, we present scatter images of simple geometric phantoms in which the Rayleigh contribution is rigorously evaluated. Copyright © 2017.
Bat Rabies and Other Lyssavirus Infections
Constantine, Denny G.; Blehert, David S.
2009-01-01
Bat Rabies and Other Lyssavirus Infections offers readers an overview of the virus variants that cause bat rabies, and geographical patterns in occurrence of this disease. The section Species Susceptibility describes infection rates and trends among bats, humans, and other animals. Disease Ecology considers the biological and environmental dynamics of the disease in various species of bats. Points to Ponder: Interspecies Interactions in Potential Bat Rabies Transmission Settings discusses the narrowing interface of bat colonies and human society and how humans and domestic animals play a role in transmission of bat rabies. Disease Prevention and Control outlines how to limit exposure to rabid bats and other animals. Appendixes include extensive tables of reported infections in bat species and in humans, and a glossary of technical terms is included. The author, Denny G. Constantine, helped define rabies infection in insect-eating bats and has investigated bat rabies ecology for more than half a century. He has authored more than 90 papers during the course of his career and is widely considered to be the world's foremost authority on the disease. Currently, Dr. Constantine is a public health officer emeritus and veterinary epidemiologist for the California Department of Health Services Viral and Rickettsial Disease Laboratory. Milt Friend, first director of the USGS National Wildlife Health Center, wrote the foreword. David Blehert, a USGS microbiologist who is investigating the emergence and causes of bat white-nose syndrome, edited the volume. Bat Rabies is intended for scholars and the general public. Dr. Constantine presents the material in a simple, straightforward manner that serves both audiences. The goal of the author is to increase people's understanding of both bat and disease ecology and also provide a balanced perspective on human risks pertaining to bat rabies.
NASA Astrophysics Data System (ADS)
Liu, Bin; Harman, Michelle; Giattina, Susanne; Stamper, Debra L.; Demakis, Charles; Chilek, Mark; Raby, Stephanie; Brezinski, Mark E.
2006-06-01
Assessing tissue birefringence with imaging modality polarization-sensitive optical coherence tomography (PS-OCT) could improve the characterization of in vivo tissue pathology. Among the birefringent components, collagen may provide invaluable clinical information because of its alteration in disorders ranging from myocardial infarction to arthritis. But the features required of clinical imaging modality in these areas usually include the ability to assess the parameter of interest rapidly and without extensive data analysis, the characteristics that single-detector PS-OCT demonstrates. But beyond detecting organized collagen, which has been previously demonstrated and confirmed with the appropriate histological techniques, additional information can potentially be gained with PS-OCT, including collagen type, form versus intrinsic birefringence, the collagen angle, and the presence of multiple birefringence materials. In part I, we apply the simple but powerful fast-Fourier transform (FFT) to both PS-OCT mathematical modeling and in vitro bovine meniscus for improved PS-OCT data analysis. The FFT analysis yields, in a rapid, straightforward, and easily interpreted manner, information on the presence of multiple birefringent materials, distinguishing the true anatomical structure from patterns in image resulting from alterations in the polarization state and identifying the tissue/phantom optical axes. Therefore the use of the FFT analysis of PS-OCT data provides information on tissue composition beyond identifying the presence of organized collagen in real time and directly from the image without extensive mathematical manipulation or data analysis. In part II, Helistat phantoms (collagen type I) are analyzed with the ultimate goal of improved tissue characterization. This study, along with the data in part I, advance the insights gained from PS-OCT images beyond simply determining the presence or absence of birefringence.
NASA Astrophysics Data System (ADS)
Breen, S. J.; Lochbuehler, T.; Detwiler, R. L.; Linde, N.
2013-12-01
Electrical resistivity tomography (ERT) is a well-established method for geophysical characterization and has shown potential for monitoring geologic CO2 sequestration, due to its sensitivity to electrical resistivity contrasts generated by liquid/gas saturation variability. In contrast to deterministic ERT inversion approaches, probabilistic inversion provides not only a single saturation model but a full posterior probability density function for each model parameter. Furthermore, the uncertainty inherent in the underlying petrophysics (e.g., Archie's Law) can be incorporated in a straightforward manner. In this study, the data are from bench-scale ERT experiments conducted during gas injection into a quasi-2D (1 cm thick), translucent, brine-saturated sand chamber with a packing that mimics a simple anticlinal geological reservoir. We estimate saturation fields by Markov chain Monte Carlo sampling with the MT-DREAM(ZS) algorithm and compare them quantitatively to independent saturation measurements from a light transmission technique, as well as results from deterministic inversions. Different model parameterizations are evaluated in terms of the recovered saturation fields and petrophysical parameters. The saturation field is parameterized (1) in cartesian coordinates, (2) by means of its discrete cosine transform coefficients, and (3) by fixed saturation values and gradients in structural elements defined by a gaussian bell of arbitrary shape and location. Synthetic tests reveal that a priori knowledge about the expected geologic structures (as in parameterization (3)) markedly improves the parameter estimates. The number of degrees of freedom thus strongly affects the inversion results. In an additional step, we explore the effects of assuming that the total volume of injected gas is known a priori and that no gas has migrated away from the monitored region.
Atmospheric Tracer Inverse Modeling Using Markov Chain Monte Carlo (MCMC)
NASA Astrophysics Data System (ADS)
Kasibhatla, P.
2004-12-01
In recent years, there has been an increasing emphasis on the use of Bayesian statistical estimation techniques to characterize the temporal and spatial variability of atmospheric trace gas sources and sinks. The applications have been varied in terms of the particular species of interest, as well as in terms of the spatial and temporal resolution of the estimated fluxes. However, one common characteristic has been the use of relatively simple statistical models for describing the measurement and chemical transport model error statistics and prior source statistics. For example, multivariate normal probability distribution functions (pdfs) are commonly used to model these quantities and inverse source estimates are derived for fixed values of pdf paramaters. While the advantage of this approach is that closed form analytical solutions for the a posteriori pdfs of interest are available, it is worth exploring Bayesian analysis approaches which allow for a more general treatment of error and prior source statistics. Here, we present an application of the Markov Chain Monte Carlo (MCMC) methodology to an atmospheric tracer inversion problem to demonstrate how more gereral statistical models for errors can be incorporated into the analysis in a relatively straightforward manner. The MCMC approach to Bayesian analysis, which has found wide application in a variety of fields, is a statistical simulation approach that involves computing moments of interest of the a posteriori pdf by efficiently sampling this pdf. The specific inverse problem that we focus on is the annual mean CO2 source/sink estimation problem considered by the TransCom3 project. TransCom3 was a collaborative effort involving various modeling groups and followed a common modeling and analysis protocoal. As such, this problem provides a convenient case study to demonstrate the applicability of the MCMC methodology to atmospheric tracer source/sink estimation problems.
27 CFR 24.296 - Taxpaid wine operations.
Code of Federal Regulations, 2011 CFR
2011-04-01
.... Taxpaid wine may be treated with sulfur dioxide compounds, refrigeration or pasteurization and may also be... any manner (other than by simple filtration or the use of sulfur compounds, refrigeration or...
27 CFR 24.296 - Taxpaid wine operations.
Code of Federal Regulations, 2012 CFR
2012-04-01
.... Taxpaid wine may be treated with sulfur dioxide compounds, refrigeration or pasteurization and may also be... any manner (other than by simple filtration or the use of sulfur compounds, refrigeration or...
27 CFR 24.296 - Taxpaid wine operations.
Code of Federal Regulations, 2014 CFR
2014-04-01
.... Taxpaid wine may be treated with sulfur dioxide compounds, refrigeration or pasteurization and may also be... any manner (other than by simple filtration or the use of sulfur compounds, refrigeration or...
27 CFR 24.296 - Taxpaid wine operations.
Code of Federal Regulations, 2013 CFR
2013-04-01
.... Taxpaid wine may be treated with sulfur dioxide compounds, refrigeration or pasteurization and may also be... any manner (other than by simple filtration or the use of sulfur compounds, refrigeration or...
27 CFR 24.296 - Taxpaid wine operations.
Code of Federal Regulations, 2010 CFR
2010-04-01
.... Taxpaid wine may be treated with sulfur dioxide compounds, refrigeration or pasteurization and may also be... any manner (other than by simple filtration or the use of sulfur compounds, refrigeration or...
"Nailing" the management of the ingrown great toenail.
Block, Stan L
2014-11-01
"Nailing" the management of the severely ingrown great toenail, commonly encountered in the adolescent population, is an important tool in the pediatrician's armamentarium. I have found great toenail removal to be worthwhile, with straightforward indications; and quite rewarding for my patients in terms of time, convenience, and costs. The key to the procedure is to keep it simple. Four basic vital steps are involved: (1) operative permit and explanation; (2) performing a careful complete digital nerve block; (3) removing the entire toenail; and, importantly, (4) performing a partial chemical matricectomy--with readily available silver nitrate sticks--to prevent frequent recurrences. Copyright 2014, SLACK Incorporated.
Matcha, Kiran; Antonchick, Andrey P
2014-10-27
The development of multicomponent reactions for indole synthesis is demanding and has hardly been explored. The present study describes the development of a novel multicomponent, cascade approach for indole synthesis. Various substituted indole derivatives were obtained from simple reagents, such as unfunctionalized alkenes, diazonium salts, and sodium triflinate, by using an established straightforward and regioselective method. The method is based on the radical trifluoromethylation of alkenes as an entry into Fischer indole synthesis. Besides indole synthesis, the application of the multicomponent cascade reaction to the synthesis of pyrazoles and pyridazinones is described. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhou, Ning; Zhao, Chuntian
2013-01-01
L-amino acid oxidase (LAAO) is attracting increasing attention due to its important functions. Diverse detection methods with their own properties have been developed for characterization of LAAO. In the present study, a simple, rapid, sensitive, cost-effective and reproducible method for quantitative in-gel determination of LAAO activity based on the visualization of Prussian blue-forming reaction is described. Coupled with SDS-PAGE, this Prussian blue agar assay can be directly used to determine the numbers and approximate molecular weights of LAAO in one step, allowing straightforward application for purification and sequence identification of LAAO from diverse samples. PMID:23383337
Chou, Ching-Yu; Ferrage, Fabien; Aubert, Guy; Sakellariou, Dimitris
2015-07-17
Standard Magnetic Resonance magnets produce a single homogeneous field volume, where the analysis is performed. Nonetheless, several modern applications could benefit from the generation of multiple homogeneous field volumes along the axis and inside the bore of the magnet. In this communication, we propose a straightforward method using a combination of ring structures of permanent magnets in order to cancel the gradient of the stray field in a series of distinct volumes. These concepts were demonstrated numerically on an experimentally measured magnetic field profile. We discuss advantages and limitations of our method and present the key steps required for an experimental validation.
Passive athermalization of multimode interference devices for wavelength-locking applications.
Ruiz-Perez, Victor I; May-Arrioja, Daniel A; Guzman-Sepulveda, Jose R
2017-03-06
In this paper we demonstrate the passive, material-based athermalization of all-fiber architectures by cascading multimode interference (MMI) devices. In-line thermal compensation is achieved by including a liquid-core multimode section of variable length that allows ensuring temperature-independent operation while preserving the inherent filter-like spectral response of the MMI devices. The design of the temperature compensation unit is straightforward and its fabrication is simple. The applicability of our approach is experimentally verified by fabricating a wavelength-locked MMI laser with sensitivity of only -0.1 pm/°C, which is at least one order of magnitude lower than that achieved with other fiber optics devices.
Simple Backdoors on RSA Modulus by Using RSA Vulnerability
NASA Astrophysics Data System (ADS)
Sun, Hung-Min; Wu, Mu-En; Yang, Cheng-Ta
This investigation proposes two methods for embedding backdoors in the RSA modulus N=pq rather than in the public exponent e. This strategy not only permits manufacturers to embed backdoors in an RSA system, but also allows users to choose any desired public exponent, such as e=216+1, to ensure efficient encryption. This work utilizes lattice attack and exhaustive attack to embed backdoors in two proposed methods, called RSASBLT and RSASBES, respectively. Both approaches involve straightforward steps, making their running time roughly the same as that of normal RSA key-generation time, implying that no one can detect the backdoor by observing time imparity.
Convenient optical pressure gauge for multimegabar pressures calibrated to 300 GPa
NASA Astrophysics Data System (ADS)
Sun, Liling; Ruoff, Arthur L.; Stupian, Gary
2005-01-01
The accurate measurement of pressure by a straightforward and inexpensive optical procedure has been needed in the multimegabar region since static pressures over 216GPa, 361GPa, 420GPa and 560GPa were obtained in the diamond anvil cell. Here, a simple optical pressure gauge based on the Raman shift of the diamond at the center of a diamond tip at the diamond-sample interface is calibrated against a primary gauge (Pt isotherm at 300K from shock data) to 300GPa, thus enabling researchers who do not have a synchrotron to conveniently measure pressure with an optical scale from 50to300GPa.
Gravitational decoupled anisotropies in compact stars
NASA Astrophysics Data System (ADS)
Gabbanelli, Luciano; Rincón, Ángel; Rubio, Carlos
2018-05-01
Simple generic extensions of isotropic Durgapal-Fuloria stars to the anisotropic domain are presented. These anisotropic solutions are obtained by guided minimal deformations over the isotropic system. When the anisotropic sector interacts in a purely gravitational manner, the conditions to decouple both sectors by means of the minimal geometric deformation approach are satisfied. Hence the anisotropic field equations are isolated resulting a more treatable set. The simplicity of the equations allows one to manipulate the anisotropies that can be implemented in a systematic way to obtain different realistic models for anisotropic configurations. Later on, observational effects of such anisotropies when measuring the surface redshift are discussed. To conclude, the consistency of the application of the method over the obtained anisotropic configurations is shown. In this manner, different anisotropic sectors can be isolated of each other and modeled in a simple and systematic way.
NASA Technical Reports Server (NTRS)
Madavan, Nateri K.
1995-01-01
This report deals with the direct numerical simulation of transitional and turbulent flow at low Mach numbers using high-order-accurate finite-difference techniques. A computation of transition to turbulence of the spatially-evolving boundary layer on a heated flat plate in the presence of relatively high freestream turbulence was performed. The geometry and flow conditions were chosen to match earlier experiments. The development of the momentum and thermal boundary layers was documented. Velocity and temperature profiles, as well as distributions of skin friction, surface heat transfer rate, Reynolds shear stress, and turbulent heat flux, were shown to compare well with experiment. The results indicate that the essential features of the transition process have been captured. The numerical method used here can be applied to complex geometries in a straightforward manner.
Duncan, Niall W.; Northoff, Georg
2013-01-01
Studies of intrinsic brain activity in the resting state have become increasingly common. A productive discussion of what analysis methods are appropriate, of the importance of physiologic correction and of the potential interpretations of results has been ongoing. However, less attention has been paid to factors other than physiologic noise that may confound resting-state experiments. These range from straightforward factors, such as ensuring that participants are all instructed in the same manner, to more obscure participant-related factors, such as body weight. We provide an overview of such potentially confounding factors, along with some suggested approaches for minimizing their impact. A particular theme that emerges from the overview is the range of systematic differences between types of study groups (e.g., between patients and controls) that may influence resting-state study results. PMID:22964258
Patent cliff mitigation strategies: giving new life to blockbusters.
Kakkar, Ashish Kumar
2015-01-01
With several blockbuster drugs on the brink of another significant patent expiry cliff, innovator pharmaceutical firms are at risk of losing billions of dollars in sales to generic competition. With issues such as staggering R&D costs, reduced productivity and increasing governmental emphasis on pharmacoeconomics, timely planning and implementation of product lifecycle management strategies is becoming indispensable. A variety of strategies designed to mitigate the post-patent expiry revenue loss exist. These approaches range from fairly straightforward measures, such as strategic price cuts and launching own or authorized generics, to complex and lengthy ones, such as new formulations and indications that require companies to reinvent their pharmaceuticals. As patent expiries loom and product pipelines continue to remain thin, proactive planning for generic entry will be critical for pharma companies to drive growth and earnings in a sustainable manner.
A constitutive law for finite element contact problems with unclassical friction
NASA Technical Reports Server (NTRS)
Plesha, M. E.; Steinetz, B. M.
1986-01-01
Techniques for modeling complex, unclassical contact-friction problems arising in solid and structural mechanics are discussed. A constitutive modeling concept is employed whereby analytic relations between increments of contact surface stress (i.e., traction) and contact surface deformation (i.e., relative displacement) are developed. Because of the incremental form of these relations, they are valid for arbitrary load-deformation histories. The motivation for the development of such a constitutive law is that more realistic friction idealizations can be implemented in finite element analysis software in a consistent, straightforward manner. Of particular interest is modeling of two-body (i.e., unlubricated) metal-metal, ceramic-ceramic, and metal-ceramic contact. Interfaces involving ceramics are of engineering importance and are being considered for advanced turbine engines in which higher temperature materials offer potential for higher engine fuel efficiency.
Cybinska, Joanna; Lorbeer, Chantal; Mudring, Anja -Verena
2015-07-08
Ln 3+-doped (Ln=Sm, Eu, Tb, Dy) nanoparticles of BiPO 4 with a particle size below 10 nm were synthesized in a straightforward manner from the appropriate mixture of the respective metal acetates and the task-specific ionic liquids choline or butylammonium dihydrogen-phosphate by conversion in a laboratory microwave (120 °C, 10 min). The ionic liquid acts not only as a solvent and microwave susceptor, but also as the reaction partner and nanoparticle stabilizer. The materials were thoroughly characterized not only with respect to their optical properties but also by PXRD, FT-IR, TEM techniques. Furthermore, depending on the lanthanide, the nanomaterial showsmore » intense luminescence of different colors such as: orange (Sm 3+), red (Eu 3+), green (Tb 3+) or even white (Dy 3+).« less
Barcoded microchips for biomolecular assays.
Zhang, Yi; Sun, Jiashu; Zou, Yu; Chen, Wenwen; Zhang, Wei; Xi, Jianzhong Jeff; Jiang, Xingyu
2015-01-20
Multiplexed assay of analytes is of great importance for clinical diagnostics and other analytical applications. Barcode-based bioassays with the ability to encode and decode may realize this goal in a straightforward and consistent manner. We present here a microfluidic barcoded chip containing several sets of microchannels with different widths, imitating the commonly used barcode. A single barcoded microchip can carry out tens of individual protein/nucleic acid assays (encode) and immediately yield all assay results by a portable barcode reader or a smartphone (decode). The applicability of a barcoded microchip is demonstrated by human immunodeficiency virus (HIV) immunoassays for simultaneous detection of three targets (anti-gp41 antibody, anti-gp120 antibody, and anti-gp36 antibody) from six human serum samples. We can also determine seven pathogen-specific oligonucleotides by a single chip containing both positive and negative controls.
Defining Simple nD Operations Based on Prosmatic nD Objects
NASA Astrophysics Data System (ADS)
Arroyo Ohori, K.; Ledoux, H.; Stoter, J.
2016-10-01
An alternative to the traditional approaches to model separately 2D/3D space, time, scale and other parametrisable characteristics in GIS lies in the higher-dimensional modelling of geographic information, in which a chosen set of non-spatial characteristics, e.g. time and scale, are modelled as extra geometric dimensions perpendicular to the spatial ones, thus creating a higher-dimensional model. While higher-dimensional models are undoubtedly powerful, they are also hard to create and manipulate due to our lack of an intuitive understanding in dimensions higher than three. As a solution to this problem, this paper proposes a methodology that makes nD object generation easier by splitting the creation and manipulation process into three steps: (i) constructing simple nD objects based on nD prismatic polytopes - analogous to prisms in 3D -, (ii) defining simple modification operations at the vertex level, and (iii) simple postprocessing to fix errors introduced in the model. As a use case, we show how two sets of operations can be defined and implemented in a dimension-independent manner using this methodology: the most common transformations (i.e. translation, scaling and rotation) and the collapse of objects. The nD objects generated in this manner can then be used as a basis for an nD GIS.
NASA Technical Reports Server (NTRS)
Chang, S.-C.; Himansu, A.; Loh, C.-Y.; Wang, X.-Y.; Yu, S.-T.J.
2005-01-01
This paper reports on a significant advance in the area of nonreflecting boundary conditions (NRBCs) for unsteady flow computations. As a part of t he development of t he space-time conservation element and solution element (CE/SE) method, sets of NRBCs for 1D Euler problems are developed without using any characteristics- based techniques. These conditions are much simpler than those commonly reported in the literature, yet so robust that they are applicable to subsonic, transonic and supersonic flows even in the presence of discontinuities. In addition, the straightforward multidimensional extensions of the present 1D NRBCs have been shown numerically to be equally simple and robust. The paper details the theoretical underpinning of these NRBCs, and explains t heir unique robustness and accuracy in terms of t he conservation of space-time fluxes. Some numerical results for an extended Sod's shock-tube problem, illustrating the effectiveness of the present NRBCs are included, together with an associated simple Fortran computer program. As a preliminary to the present development, a review of the basic CE/SE schemes is also included.
NASA Astrophysics Data System (ADS)
Ren, Diandong; Karoly, David J.
2008-03-01
Observations from seven Central Asian glaciers (35-55°N; 70-95°E) are used, together with regional temperature data, to infer uncertain parameters for a simple linear model of the glacier length variations. The glacier model is based on first order glacier dynamics and requires the knowledge of reference states of forcing and glacier perturbation magnitude. An adjoint-based variational method is used to optimally determine the glacier reference states in 1900 and the uncertain glacier model parameters. The simple glacier model is then used to estimate the glacier length variations until 2060 using regional temperature projections from an ensemble of climate model simulations for a future climate change scenario (SRES A2). For the period 2000-2060, all glaciers are projected to experience substantial further shrinkage, especially those with gentle slopes (e.g., Glacier Chogo Lungma retreats ˜4 km). Although nearly one-third of the year 2000 length will be reduced for some small glaciers, the existence of the glaciers studied here is not threatened by year 2060. The differences between the individual glacier responses are large. No straightforward relationship is found between glacier size and the projected fractional change of its length.
Performance-based design factors for pile foundations.
DOT National Transportation Integrated Search
2014-10-01
The seismic design of pile foundations is currently performed in a relatively simple, deterministic manner. This : report describes the development of a performance-based framework to create seismic designs of pile group : foundations that consider a...
Batterham, Philip J; Bunce, David; Mackinnon, Andrew J; Christensen, Helen
2014-01-01
very few studies have examined the association between intra-individual reaction time variability and subsequent mortality. Furthermore, the ability of simple measures of variability to predict mortality has not been compared with more complex measures. a prospective cohort study of 896 community-based Australian adults aged 70+ were interviewed up to four times from 1990 to 2002, with vital status assessed until June 2007. From this cohort, 770-790 participants were included in Cox proportional hazards regression models of survival. Vital status and time in study were used to conduct survival analyses. The mean reaction time and three measures of intra-individual reaction time variability were calculated separately across 20 trials of simple and choice reaction time tasks. Models were adjusted for a range of demographic, physical health and mental health measures. greater intra-individual simple reaction time variability, as assessed by the raw standard deviation (raw SD), coefficient of variation (CV) or the intra-individual standard deviation (ISD), was strongly associated with an increased hazard of all-cause mortality in adjusted Cox regression models. The mean reaction time had no significant association with mortality. intra-individual variability in simple reaction time appears to have a robust association with mortality over 17 years. Health professionals such as neuropsychologists may benefit in their detection of neuropathology by supplementing neuropsychiatric testing with the straightforward process of testing simple reaction time and calculating raw SD or CV.
GAPTrap: A Simple Expression System for Pluripotent Stem Cells and Their Derivatives.
Kao, Tim; Labonne, Tanya; Niclis, Jonathan C; Chaurasia, Ritu; Lokmic, Zerina; Qian, Elizabeth; Bruveris, Freya F; Howden, Sara E; Motazedian, Ali; Schiesser, Jacqueline V; Costa, Magdaline; Sourris, Koula; Ng, Elizabeth; Anderson, David; Giudice, Antonietta; Farlie, Peter; Cheung, Michael; Lamande, Shireen R; Penington, Anthony J; Parish, Clare L; Thomson, Lachlan H; Rafii, Arash; Elliott, David A; Elefanty, Andrew G; Stanley, Edouard G
2016-09-13
The ability to reliably express fluorescent reporters or other genes of interest is important for using human pluripotent stem cells (hPSCs) as a platform for investigating cell fates and gene function. We describe a simple expression system, designated GAPTrap (GT), in which reporter genes, including GFP, mCherry, mTagBFP2, luc2, Gluc, and lacZ are inserted into the GAPDH locus in hPSCs. Independent clones harboring variations of the GT vectors expressed remarkably consistent levels of the reporter gene. Differentiation experiments showed that reporter expression was reliably maintained in hematopoietic cells, cardiac mesoderm, definitive endoderm, and ventral midbrain dopaminergic neurons. Similarly, analysis of teratomas derived from GT-lacZ hPSCs showed that β-galactosidase expression was maintained in a spectrum of cell types representing derivatives of the three germ layers. Thus, the GAPTrap vectors represent a robust and straightforward tagging system that enables indelible labeling of PSCs and their differentiated derivatives. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Brown, A M
2001-06-01
The objective of this present study was to introduce a simple, easily understood method for carrying out non-linear regression analysis based on user input functions. While it is relatively straightforward to fit data with simple functions such as linear or logarithmic functions, fitting data with more complicated non-linear functions is more difficult. Commercial specialist programmes are available that will carry out this analysis, but these programmes are expensive and are not intuitive to learn. An alternative method described here is to use the SOLVER function of the ubiquitous spreadsheet programme Microsoft Excel, which employs an iterative least squares fitting routine to produce the optimal goodness of fit between data and function. The intent of this paper is to lead the reader through an easily understood step-by-step guide to implementing this method, which can be applied to any function in the form y=f(x), and is well suited to fast, reliable analysis of data in all fields of biology.
A simple fabrication of CH3NH3PbI3 perovskite for solar cells using low-purity PbI2
NASA Astrophysics Data System (ADS)
Guo, Nanjie; Zhang, Taiyang; Li, Ge; Xu, Feng; Qian, Xufang; Zhao, Yixin
2017-01-01
The CH3NH3PbI3 (MAPbI3) perovskite was usually prepared by high-purity PbI2 with high cost. The low cost and low-purity PbI2 was seldom reported for fabrication of MAPbI3 because it cannot even dissolve well in widely adopted solvent of DMF. We developed an easy method to adapt low-purity PbI2 for fabrication of high quality MAPbI3 just by the simple addition of some hydrochloric acid into the mixture of low-purity PbI2, MAI and DMF. This straightforward method can not only help dissolve the low quality PbI2 by reacting with some impurities in DMF, but also lead to a successful fabrication of high-quality perovskite solar cells with up to 14.80% efficiency comparable to the high quality PbI2 precursors. Project supported by the National Natural Science Foundation of China (Nos. 51372151, 21303103) and Houyingdong Grant (No. 151046).
Gibbs, B F; Alli, I; Mulligan, C N
1996-02-23
A method for the determination of aspartame (N-L-alpha-aspartyl-L-phenylalanine methyl ester) and its metabolites, applicable on a routine quality assurance basis, is described. Liquid samples (diet Coke, 7-Up, Pepsi, etc.) were injected directly onto a mini-cartridge reversed-phase column on a high-performance liquid chromatographic system, whereas solid samples (Equal, hot chocolate powder, pudding, etc.) were extracted with water. Optimising chromatographic conditions resulted in resolved components of interest within 12 min. The by-products were confirmed by mass spectrometry. Although the method was developed on a two-pump HPLC system fitted with a diode-array detector, it is straightforward and can be transformed to the simplest HPLC configuration. Using a single-piston pump (with damper), a fixed-wavelength detector and a recorder/integrator, the degradation of products can be monitored as they decompose. The results obtained were in harmony with previously reported tedious methods. The method is simple, rapid, quantitative and does not involve complex, hazardous or toxic chemistry.
Tenax extraction as a simple approach to improve environmental risk assessments.
Harwood, Amanda D; Nutile, Samuel A; Landrum, Peter F; Lydy, Michael J
2015-07-01
It is well documented that using exhaustive chemical extractions is not an effective means of assessing exposure of hydrophobic organic compounds in sediments and that bioavailability-based techniques are an improvement over traditional methods. One technique that has shown special promise as a method for assessing the bioavailability of hydrophobic organic compounds in sediment is the use of Tenax-extractable concentrations. A 6-h or 24-h single-point Tenax-extractable concentration correlates to both bioaccumulation and toxicity. This method has demonstrated effectiveness for several hydrophobic organic compounds in various organisms under both field and laboratory conditions. In addition, a Tenax bioaccumulation model was developed for multiple compounds relating 24-h Tenax-extractable concentrations to oligochaete tissue concentrations exposed in both the laboratory and field. This model has demonstrated predictive capacity for additional compounds and species. Use of Tenax-extractable concentrations to estimate exposure is rapid, simple, straightforward, and relatively inexpensive, as well as accurate. Therefore, this method would be an invaluable tool if implemented in risk assessments. © 2015 SETAC.
An Alternative Derivation of the Energy Levels of the "Particle on a Ring" System
NASA Astrophysics Data System (ADS)
Vincent, Alan
1996-10-01
All acceptable wave functions must be continuous mathematical functions. This criterion limits the acceptable functions for a particle in a linear 1-dimensional box to sine functions. If, however, the linear box is bent round into a ring, acceptable wave functions are those which are continuous at the 'join'. On this model some acceptable linear functions become unacceptable for the ring and some unacceptable cosine functions become acceptable. This approach can be used to produce a straightforward derivation of the energy levels and wave functions of the particle on a ring. These simple wave mechanical systems can be used as models of linear and cyclic delocalised systems such as conjugated hydrocarbons or the benzene ring. The promotion energy of an electron can then be used to calculate the wavelength of absorption of uv light. The simple model gives results of the correct order of magnitude and shows that, as the chain length increases, the uv maximum moves to longer wavelengths, as found experimentally.
Flow derivatives and curvatures for a normal shock
NASA Astrophysics Data System (ADS)
Emanuel, G.
2018-03-01
A detached bow shock wave is strongest where it is normal to the upstream velocity. While the jump conditions across the shock are straightforward, many properties, such as the shock's curvatures and derivatives of the pressure, along and normal to a normal shock, are indeterminate. A novel procedure is introduced for resolving the indeterminacy when the unsteady flow is three-dimensional and the upstream velocity may be nonuniform. Utilizing this procedure, normal shock relations are provided for the nonunique orientation of the flow plane and the corresponding shock's curvatures and, e.g., the downstream normal derivatives of the pressure and the velocity components. These algebraic relations explicitly show the dependence of these parameters on the shock's shape and the upstream velocity gradient. A simple relation, valid only for a normal shock, is obtained for the average curvatures. Results are also obtained when the shock is an elliptic paraboloid shock. These derivatives are both simple and proportional to the average curvature.
NASA Astrophysics Data System (ADS)
Kitao, Akio; Harada, Ryuhei; Nishihara, Yasutaka; Tran, Duy Phuoc
2016-12-01
Parallel Cascade Selection Molecular Dynamics (PaCS-MD) was proposed as an efficient conformational sampling method to investigate conformational transition pathway of proteins. In PaCS-MD, cycles of (i) selection of initial structures for multiple independent MD simulations and (ii) conformational sampling by independent MD simulations are repeated until the convergence of the sampling. The selection is conducted so that protein conformation gradually approaches a target. The selection of snapshots is a key to enhance conformational changes by increasing the probability of rare event occurrence. Since the procedure of PaCS-MD is simple, no modification of MD programs is required; the selections of initial structures and the restart of the next cycle in the MD simulations can be handled with relatively simple scripts with straightforward implementation. Trajectories generated by PaCS-MD were further analyzed by the Markov state model (MSM), which enables calculation of free energy landscape. The combination of PaCS-MD and MSM is reported in this work.
Identifying Two-Dimensional Z 2 Antiferromagnetic Topological Insulators
NASA Astrophysics Data System (ADS)
Bègue, F.; Pujol, P.; Ramazashvili, R.
2018-01-01
We revisit the question of whether a two-dimensional topological insulator may arise in a commensurate Néel antiferromagnet, where staggered magnetization breaks the symmetry with respect to both elementary translation and time reversal, but retains their product as a symmetry. In contrast to the so-called Z 2 topological insulators, an exhaustive characterization of antiferromagnetic topological phases with the help of topological invariants has been missing. We analyze a simple model of an antiferromagnetic topological insulator and chart its phase diagram, using a recently proposed criterion for centrosymmetric systems [13]. We then adapt two methods, originally designed for paramagnetic systems, and make antiferromagnetic topological phases manifest. The proposed methods apply far beyond the particular examples treated in this work, and admit straightforward generalization. We illustrate this by two examples of non-centrosymmetric systems, where no simple criteria have been known to identify topological phases. We also present, for some cases, an explicit construction of edge states in an antiferromagnetic topological insulator.
Hippocampal Replay is Not a Simple Function of Experience
Gupta, Anoopum S.; van der Meer, Matthijs A. A.; Touretzky, David S.; Redish, A. David
2015-01-01
Summary Replay of behavioral sequences in the hippocampus during sharp-wave-ripple-complexes (SWRs) provides a potential mechanism for memory consolidation and the learning of knowledge structures. Current hypotheses imply that replay should straightforwardly reflect recent experience. However, we find these hypotheses to be incompatible with the content of replay on a task with two distinct behavioral sequences (A&B). We observed forward and backward replay of B even when rats had been performing A for >10 minutes. Furthermore, replay of non-local sequence B occurred more often when B was infrequently experienced. Neither forward nor backward sequences preferentially represented highly-experienced trajectories within a session. Additionally, we observed the construction of never-experienced novel-path sequences. These observations challenge the idea that sequence activation during SWRs is a simple replay of recent experience. Instead, replay reflected all physically available trajectories within the environment, suggesting a potential role in active learning and maintenance of the cognitive map. PMID:20223204
NASA Astrophysics Data System (ADS)
Guo, Si-yao; Zhao, Tie-jun; Jin, Zu-quan; Wan, Xiao-mei; Wang, Peng-gang; Shang, Jun; Han, Song
2015-10-01
A simple and straightforward solution growth routine is developed to prepare microporous 3D nano/micro ZnO microsphere with a large BET surface area of 288 m2 g-1 at room temperature. The formation mechanism of the hierarchical 3D nano/micro ZnO microsphere and its corresponding hydrogen evolution performance has been deeply discussed. In particular, this novel hierarchical 3D ZnO microspheres performs undiminished hydrogen evolution for at least 24 h under simulated solar light illumination, even under the condition of no precious metal as cocatalyst. Since the complex production process of photocatalysts and high cost of precious metal cocatalyst remains a major constraint that hinders the application of solar water splitting, this 3D nano/micro ZnO microspheres could be expected to be applicable in the precious-metal-free solar water splitting system due to its merits of low cost, simple procedure and high catalytic activity.
Lin, Xiaodong; Liu, Yaqing; Deng, Jiankang; Lyu, Yanlong; Qian, Pengcheng; Li, Yunfei; Wang, Shuo
2018-02-21
The integration of multiple DNA logic gates on a universal platform to implement advance logic functions is a critical challenge for DNA computing. Herein, a straightforward and powerful strategy in which a guanine-rich DNA sequence lighting up a silver nanocluster and fluorophore was developed to construct a library of logic gates on a simple DNA-templated silver nanoclusters (DNA-AgNCs) platform. This library included basic logic gates, YES, AND, OR, INHIBIT, and XOR, which were further integrated into complex logic circuits to implement diverse advanced arithmetic/non-arithmetic functions including half-adder, half-subtractor, multiplexer, and demultiplexer. Under UV irradiation, all the logic functions could be instantly visualized, confirming an excellent repeatability. The logic operations were entirely based on DNA hybridization in an enzyme-free and label-free condition, avoiding waste accumulation and reducing cost consumption. Interestingly, a DNA-AgNCs-based multiplexer was, for the first time, used as an intelligent biosensor to identify pathogenic genes, E. coli and S. aureus genes, with a high sensitivity. The investigation provides a prototype for the wireless integration of multiple devices on even the simplest single-strand DNA platform to perform diverse complex functions in a straightforward and cost-effective way.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fulvio, D., E-mail: daniele.fulvio@uni-jena.de, E-mail: dfu@oact.inaf.it; Brieva, A. C.; Jäger, C.
2014-07-07
Vacuum-Ultraviolet (VUV) radiation is responsible for the photo-processing of simple and complex molecules in several terrestrial and extraterrestrial environments. In the laboratory such radiation is commonly simulated by inexpensive and easy-to-use microwave-powered hydrogen discharge lamps. However, VUV flux measurements are not trivial and the methods/devices typically used for this purpose, mainly actinometry and calibrated VUV silicon photodiodes, are not very accurate or expensive and lack of general suitability to experimental setups. Here, we present a straightforward method for measuring the VUV photon flux based on the photoelectric effect and using a gold photodetector. This method is easily applicable to mostmore » experimental setups, bypasses the major problems of the other methods, and provides reliable flux measurements. As a case study, the method is applied to a microwave-powered hydrogen discharge lamp. In addition, the comparison of these flux measurements to those obtained by O{sub 2} actinometry experiments allow us to estimate the quantum yield (QY) values QY{sub 122} = 0.44 ± 0.16 and QY{sub 160} = 0.87 ± 0.30 for solid-phase O{sub 2} actinometry.« less
Kangaroo – A pattern-matching program for biological sequences
2002-01-01
Background Biologists are often interested in performing a simple database search to identify proteins or genes that contain a well-defined sequence pattern. Many databases do not provide straightforward or readily available query tools to perform simple searches, such as identifying transcription binding sites, protein motifs, or repetitive DNA sequences. However, in many cases simple pattern-matching searches can reveal a wealth of information. We present in this paper a regular expression pattern-matching tool that was used to identify short repetitive DNA sequences in human coding regions for the purpose of identifying potential mutation sites in mismatch repair deficient cells. Results Kangaroo is a web-based regular expression pattern-matching program that can search for patterns in DNA, protein, or coding region sequences in ten different organisms. The program is implemented to facilitate a wide range of queries with no restriction on the length or complexity of the query expression. The program is accessible on the web at http://bioinfo.mshri.on.ca/kangaroo/ and the source code is freely distributed at http://sourceforge.net/projects/slritools/. Conclusion A low-level simple pattern-matching application can prove to be a useful tool in many research settings. For example, Kangaroo was used to identify potential genetic targets in a human colorectal cancer variant that is characterized by a high frequency of mutations in coding regions containing mononucleotide repeats. PMID:12150718
Diketopyrrolopyrrole-based carbon dots for photodynamic therapy.
He, Haozhe; Zheng, Xiaohua; Liu, Shi; Zheng, Min; Xie, Zhigang; Wang, Yong; Yu, Meng; Shuai, Xintao
2018-06-01
The development of a simple and straightforward strategy to synthesize multifunctional carbon dots for photodynamic therapy (PDT) has been an emerging focus. In this work, diketopyrrolopyrrole-based fluorescent carbon dots (DPP CDs) were designed and synthesized through a facile one-pot hydrothermal method by using diketopyrrolopyrrole (DPP) and chitosan (CTS) as raw materials. DPP CDs not only maintained the ability of DPP to generate singlet oxygen (1O2) but also have excellent hydrophilic properties and outstanding biocompatibility. In vitro and in vivo experiments demonstrated that DPP CDs greatly inhibited the growth of tumor cells under laser irradiation (540 nm). This study highlights the potential of the rational design of CDs for efficient cancer therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Haixia; Zhang, Jing
We propose a scheme for continuous-variable quantum cloning of coherent states with phase-conjugate input modes using linear optics. The quantum cloning machine yields M identical optimal clones from N replicas of a coherent state and N replicas of its phase conjugate. This scheme can be straightforwardly implemented with the setups accessible at present since its optical implementation only employs simple linear optical elements and homodyne detection. Compared with the original scheme for continuous-variable quantum cloning with phase-conjugate input modes proposed by Cerf and Iblisdir [Phys. Rev. Lett. 87, 247903 (2001)], which utilized a nondegenerate optical parametric amplifier, our scheme losesmore » the output of phase-conjugate clones and is regarded as irreversible quantum cloning.« less
A simple method for processing data with least square method
NASA Astrophysics Data System (ADS)
Wang, Chunyan; Qi, Liqun; Chen, Yongxiang; Pang, Guangning
2017-08-01
The least square method is widely used in data processing and error estimation. The mathematical method has become an essential technique for parameter estimation, data processing, regression analysis and experimental data fitting, and has become a criterion tool for statistical inference. In measurement data analysis, the distribution of complex rules is usually based on the least square principle, i.e., the use of matrix to solve the final estimate and to improve its accuracy. In this paper, a new method is presented for the solution of the method which is based on algebraic computation and is relatively straightforward and easy to understand. The practicability of this method is described by a concrete example.
Food Addiction: An Evolving Nonlinear Science
Shriner, Richard; Gold, Mark
2014-01-01
The purpose of this review is to familiarize readers with the role that addiction plays in the formation and treatment of obesity, type 2 diabetes and disorders of eating. We will outline several useful models that integrate metabolism, addiction, and human relationship adaptations to eating. A special effort will be made to demonstrate how the use of simple and straightforward nonlinear models can and are being used to improve our knowledge and treatment of patients suffering from nutritional pathology. Moving forward, the reader should be able to incorporate some of the findings in this review into their own practice, research, teaching efforts or other interests in the fields of nutrition, diabetes, and/or bariatric (weight) management. PMID:25421535
Chou, Ching-Yu; Ferrage, Fabien; Aubert, Guy; Sakellariou, Dimitris
2015-01-01
Standard Magnetic Resonance magnets produce a single homogeneous field volume, where the analysis is performed. Nonetheless, several modern applications could benefit from the generation of multiple homogeneous field volumes along the axis and inside the bore of the magnet. In this communication, we propose a straightforward method using a combination of ring structures of permanent magnets in order to cancel the gradient of the stray field in a series of distinct volumes. These concepts were demonstrated numerically on an experimentally measured magnetic field profile. We discuss advantages and limitations of our method and present the key steps required for an experimental validation. PMID:26182891
Note: A three-dimensional calibration device for the confocal microscope.
Jensen, K E; Weitz, D A; Spaepen, F
2013-01-01
Modern confocal microscopes enable high-precision measurement in three dimensions by collecting stacks of 2D (x-y) images that can be assembled digitally into a 3D image. It is difficult, however, to ensure position accuracy, particularly along the optical (z) axis where scanning is performed by a different physical mechanism than in x-y. We describe a simple device to calibrate simultaneously the x, y, and z pixel-to-micrometer conversion factors for a confocal microscope. By taking a known 2D pattern and positioning it at a precise angle with respect to the microscope axes, we created a 3D reference standard. The device is straightforward to construct and easy to use.
NASA Astrophysics Data System (ADS)
von Korff Schmising, Clemens; Weder, David; Noll, Tino; Pfau, Bastian; Hennecke, Martin; Strüber, Christian; Radu, Ilie; Schneider, Michael; Staeck, Steffen; Günther, Christian M.; Lüning, Jan; Merhe, Alaa el dine; Buck, Jens; Hartmann, Gregor; Viefhaus, Jens; Treusch, Rolf; Eisebitt, Stefan
2017-05-01
A new device for polarization control at the free electron laser facility FLASH1 at DESY has been commissioned for user operation. The polarizer is based on phase retardation upon reflection off metallic mirrors. Its performance is characterized in three independent measurements and confirms the theoretical predictions of efficient and broadband generation of circularly polarized radiation in the extreme ultraviolet spectral range from 35 eV to 90 eV. The degree of circular polarization reaches up to 90% while maintaining high total transmission values exceeding 30%. The simple design of the device allows straightforward alignment for user operation and rapid switching between left and right circularly polarized radiation.
Implementing the DC Mode in Cosmological Simulations with Supercomoving Variables
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gnedin, Nickolay Y; Kravtsov, Andrey V; Rudd, Douglas H
2011-06-02
As emphasized by previous studies, proper treatment of the density fluctuation on the fundamental scale of a cosmological simulation volume - the 'DC mode' - is critical for accurate modeling of spatial correlations on scales ~> 10% of simulation box size. We provide further illustration of the effects of the DC mode on the abundance of halos in small boxes and show that it is straightforward to incorporate this mode in cosmological codes that use the 'supercomoving' variables. The equations governing evolution of dark matter and baryons recast with these variables are particularly simple and include the expansion factor, andmore » hence the effect of the DC mode, explicitly only in the Poisson equation.« less
Ohira, Suguru; Doi, Kiyoshi; Yaku, Hitoshi
2016-04-05
We describe a simple method to fix the great saphenous vein graft (SVG) to the right coronary artery along the atrioventricular groove using fibrin glue in off-pump coronary artery bypass grafting (OPCAB). After completion of the proximal anastomosis, the SVG was placed along the atrioventricular groove to the acute margin. Fibrin glue was sprayed using pressurized carbon dioxide gas. A distal anastomosis was subsequently performed after rotating the heart to expose the posterior descending artery. It is a straightforward and reproducible technique to determine the optimal length of the SVG and prevent kinking or stretching of the graft, especially in OPCAB.
Valuation of exotic options in the framework of Levy processes
NASA Astrophysics Data System (ADS)
Milev, Mariyan; Georgieva, Svetla; Markovska, Veneta
2013-12-01
In this paper we explore a straightforward procedure to price derivatives by using the Monte Carlo approach when the underlying process is a jump-diffusion. We have compared the Black-Scholes model with one of its extensions that is the Merton model. The latter model is better in capturing the market's phenomena and is comparative to stochastic volatility models in terms of pricing accuracy. We have presented simulations of asset paths and pricing of barrier options for both Geometric Brownian motion and exponential Levy processes as it is the concrete case of the Merton model. A desired level of accuracy is obtained with simple computer operations in MATLAB for efficient computational time.
Kawasoko, Cristiane Y; Foletto, Patricia; Rodrigues, Oscar E D; Dornelles, Luciano; Schwab, Ricardo S; Braga, Antonio L
2013-08-21
The synthesis of new chiral seleno-, telluro-, and thio-N-Boc-γ-amino acids is described herein. These new compounds were prepared through a simple and short synthetic route, from the inexpensive and commercially-available amino acid L-glutamic acid. The products, with a highly modular character, were obtained in good to excellent yields, via hydrolysis of chalcogen pyroglutamic derivatives with overall retention of the L-glutamic acid stereochemistry. Also, an L-diselenide-N-Boc-γ-amino acid was prepared in good yield. This new synthetic route represents an efficient method for preparing new L-chalcogen- and L-diselenide-γ-amino acids with biological potential.
Common Magnets, Unexpected Polarities
NASA Astrophysics Data System (ADS)
Olson, Mark
2013-11-01
In this paper, I discuss a "misconception" in magnetism so simple and pervasive as to be typically unnoticed. That magnets have poles might be considered one of the more straightforward notions in introductory physics. However, the magnets common to students' experiences are likely different from those presented in educational contexts. This leads students, in my experience, to frequently and erroneously attribute magnetic poles based on geometric associations rather than actual observed behavior. This polarity discrepancy can provide teachers the opportunity to engage students in authentic inquiry about objects in their daily experiences. I've found that investigation of the magnetic polarities of common magnets provides a productive context for students in which to develop valuable and authentic scientific inquiry practices.
Applications of multiple-constraint matrix updates to the optimal control of large structures
NASA Technical Reports Server (NTRS)
Smith, S. W.; Walcott, B. L.
1992-01-01
Low-authority control or vibration suppression in large, flexible space structures can be formulated as a linear feedback control problem requiring computation of displacement and velocity feedback gain matrices. To ensure stability in the uncontrolled modes, these gain matrices must be symmetric and positive definite. In this paper, efficient computation of symmetric, positive-definite feedback gain matrices is accomplished through the use of multiple-constraint matrix update techniques originally developed for structural identification applications. Two systems were used to illustrate the application: a simple spring-mass system and a planar truss. From these demonstrations, use of this multiple-constraint technique is seen to provide a straightforward approach for computing the low-authority gains.
Modeling of rail track substructure linear elastic coupling
DOT National Transportation Integrated Search
2015-09-30
Most analyses of rail dynamics neglect contribution of the soil, or treat it in a very simple manner such as using spring elements. This can cause accuracy issues in examining dynamics for passenger comfort, derailment, substructure analysis, or othe...
On Noether's Theorem for the Invariant of the Time-Dependent Harmonic Oscillator
ERIC Educational Resources Information Center
Abe, Sumiyoshi; Itto, Yuichi; Matsunaga, Mamoru
2009-01-01
The time-dependent oscillator describing parametric oscillation, the concept of invariant and Noether's theorem are important issues in physics education. Here, it is shown how they can be interconnected in a simple and unified manner.
Some Work and Some Play: Microscopic and Macroscopic Approaches to Labor and Leisure
Niyogi, Ritwik K.; Shizgal, Peter; Dayan, Peter
2014-01-01
Given the option, humans and other animals elect to distribute their time between work and leisure, rather than choosing all of one and none of the other. Traditional accounts of partial allocation have characterised behavior on a macroscopic timescale, reporting and studying the mean times spent in work or leisure. However, averaging over the more microscopic processes that govern choices is known to pose tricky theoretical problems, and also eschews any possibility of direct contact with the neural computations involved. We develop a microscopic framework, formalized as a semi-Markov decision process with possibly stochastic choices, in which subjects approximately maximise their expected returns by making momentary commitments to one or other activity. We show macroscopic utilities that arise from microscopic ones, and demonstrate how facets such as imperfect substitutability can arise in a more straightforward microscopic manner. PMID:25474151
Ion formation mechanisms in UV-MALDI.
Knochenmuss, Richard
2006-09-01
Matrix Assisted Laser Desorption/Ionization (MALDI) is a very widely used analytical method, but has been developed in a highly empirical manner. Deeper understanding of ionization mechanisms could help to design better methods and improve interpretation of mass spectra. This review summarizes current mechanistic thinking, with emphasis on the most common MALDI variant using ultraviolet laser excitation. A two-step framework is gaining acceptance as a useful model for many MALDI experiments. The steps are primary ionization during or shortly after the laser pulse, followed by secondary reactions in the expanding plume of desorbed material. Primary ionization in UV-MALDI remains somewhat controversial, the two main approaches are the cluster and pooling/photoionization models. Secondary events are less contentious, ion-molecule reaction thermodynamics and kinetics are often invoked, but details differ. To the extent that local thermal equilibrium is approached in the plume, the mass spectra may be straightforwardly interpreted in terms of charge transfer thermodynamics.
A microplate assay for measuring cell death in C2C12 cells.
Lima, Tanes; Silveira, Leonardo
2018-03-22
The main goal of this study was to develop a straightforward and rapid microplate assay for measuring propidium iodide (PI) in C2C12 cells. The PI method proves to be an efficient quantitative assay for analyzing cell viability through PI fluorescence analysis. Importantly, the protocol takes less than 30 minutes, and the results are reproducible. C2C12 cells were exposed to an increasing concentration of palmitate for a period of 24 hours to induce cell death, and the PI fluorescence increased in a concentration-dependent manner. Evaluation of mitochondrial function and reactive oxygen species production validated the deleterious effects of palmitate treatment. Also, the microplate PI assay demonstrated high sensitivity as indicated by the detection of modest fluctuations in cell viability in response to catalase overexpression in palmitate-treated cells. The microplate PI assay, therefore, offers an accurate method to be used for in vitro studies.
IntellWheels: modular development platform for intelligent wheelchairs.
Braga, Rodrigo Antonio Marques; Petry, Marcelo; Reis, Luis Paulo; Moreira, António Paulo
2011-01-01
Intelligent wheelchairs (IWs) can become an important solution to the challenge of assisting individuals who have disabilities and are thus unable to perform their daily activities using classic powered wheelchairs. This article describes the concept and design of IntellWheels, a modular platform to facilitate the development of IWs through a multiagent system paradigm. In fact, modularity is achieved not only in the software perspective, but also through a generic hardware framework that was designed to fit, in a straightforward manner, almost any commercial powered wheelchair. Experimental results demonstrate the successful integration of all modules in the platform, providing safe motion to the IW. Furthermore, the results achieved with a prototype running in autonomous mode in simulated and mixed-reality environments also demonstrate the potential of our approach. Although some future research is still necessary to fully accomplish our objectives, preliminary tests have shown that IntellWheels will effectively reduce users' limitations, offering them a much more independent life.
The Rocket Electric Field Sounding (REFS) program: Prototype design and successful first launch
NASA Astrophysics Data System (ADS)
Willett, J. C.; Curtis, D. C.; Driesman, A. R.; Longstreth, R. K.; Rison, W.; Winn, W. P.; Jones, J. J.
1992-01-01
The motivation, design, and successful first flight of a sounding rocket to measure profiles of vector electrostatic field in the lower troposphere are described. The design employs eight shutter field mills amd a corona-charging system in a manner similar to aircraft previously instrumented for the measurement of electric fields. A rocket offers significant advantages over an aircraft in simplicity and calibration. A single cylindrical rotor covering most of the payload acts as the shutter for all eight mills in this design. The cylindrical symmetry and circular cross sections of the vehicle facilitate straightforward calibration. Also included in the payload are a pressure sensor, a longitudinal accelerometer, a transverse magnometer, and a novel cloud-penetration detector. A fair-weather test flight at the NASA Wallops Flight Facility demonstrated the workability of the basic design and identified a few necessary modifications.
Brownian motion in inhomogeneous suspensions.
Yang, Mingcheng; Ripoll, Marisol
2013-06-01
The Langevin description of Brownian motion in inhomogeneous suspensions is here revisited. Inhomogeneous suspensions are characterized by a position-dependent friction coefficient, which can significantly influence the dynamics of the suspended particles. Outstanding examples are suspensions in confinement or in the presence of a temperature gradient. The Langevin approach in inhomogeneous systems encounters a fundamental difficulty related to the interpretation of the multiplicative noise induced by the position-dependent friction. We show that the so-called Ito-Stratonovich dilemma is originated by the violation of the macroscopic force balance condition in the traditional procedure of eliminating the fast variables. Repairing this deficit, we rederive the extended overdamped Langevin equation directly from the infradamped Langevin equation. This is without invoking the Fokker-Planck formalism, such that the self-completeness of the Langevin framework is restored. Furthermore, we derive the generalized forms of the drift-force relation and the Smoluchowski equation for inhomogeneous suspensions in a straightforward manner.
Flow diagnostics in unseeded air
NASA Technical Reports Server (NTRS)
Miles, R.; Lempert, W.
1990-01-01
Several approaches are presented for the quantitative measurement of flowfield parameters in high-speed flows. The techniques are developed for the study of air flows in the Mach 2 to Mach 3 regime and can be extended to the hypersonic and subsonic regimes in a straightforward manner. Instantaneous two-dimensional cross-sectional images of the density using UV Rayleigh scattering and the measurement of velocity profiles using the RELIEF technique are shown. The RELIEF technique employs two high-powered lasers separated in frequency by the vibrational frequency of oxygen molecules to write lines across the flowfield by stimulated Raman scattering. The preliminary results indicate that the UV Rayleigh scattering may also be extended to the measurement of velocity and temperature fields by using an atomic or molecular absorption filter window, and that the RELIEF technique can be extended to marking shaped volumetric points or arrays of points in the flowfield for velocity and vorticity measurements.
Conscientiousness, career success, and longevity: a lifespan analysis.
Kern, Margaret L; Friedman, Howard S; Martin, Leslie R; Reynolds, Chandra A; Luong, Gloria
2009-04-01
Markers of executive functioning, such as prudent planning for the future and impulse control, are related to conscientiousness and may be central to both occupational success and health outcomes. The aim of the study was to examine relations among conscientiousness, career success, and mortality risk across a 65-year period. Using data derived from 693 male participants in the Terman Life Cycle Study, we examined associations among childhood personality, midlife objective career success, and lifelong mortality risk through 2006. Conscientiousness and career success each predicted lower mortality risk (N = 693, relative hazard (rh) = 0.82 [95% confidence interval = 0.74, 0.91] and rh = 0.80 [0.71, 0.91], respectively), with both shared and unique variance. Importantly, childhood personality moderated the success-longevity link; conscientiousness was most relevant for least successful individuals. Conscientiousness and career success predicted longevity, but not in a straightforward manner. Findings highlight the importance of lifespan processes.
NASA Astrophysics Data System (ADS)
Noothalapati, Hemanth; Iwasaki, Keita; Yoshimoto, Chikako; Yoshikiyo, Keisuke; Nishikawa, Tomoe; Ando, Masahiro; Hamaguchi, Hiro-o.; Yamamoto, Tatsuyuki
2017-12-01
Liposomes are closed phospholipid bilayer systems that have profound applications in fundamental cell biology, pharmaceutics and medicine. Depending on the composition (pure or mixture of phospholipids, presence of cholesterol) and preparation protocol, intra- and inter-chain molecular interactions vary leading to changes in the quality (order and packing) of liposomes. So far it is not possible to image conformational disorders and packing densities within a liposome in a straightforward manner. In this study, we utilized confocal Raman microspectroscopy to visualize structural disorders and packing efficiency within a giant multilamellar liposome model by focusing mainly on three regions in the vibrational spectrum (Csbnd C stretching, Csbnd H deformation and Csbnd H stretching). We estimated properties such as trans/gauche isomers and lateral packing probability. Interestingly, our Raman imaging studies revealed gel phase rich domains and heterogeneous lateral packing within the giant multilamellar liposome.
Bittencourt, Carla; Bals, Sara; Van Tendeloo, Gustaaf
2013-01-01
Summary Focused-electron-beam-induced deposition (FEBID) is used as a direct-write approach to decorate ultrasmall Pt nanoclusters on carbon nanotubes at selected sites in a straightforward maskless manner. The as-deposited nanostructures are studied by transmission electron microscopy (TEM) in 2D and 3D, demonstrating that the Pt nanoclusters are well-dispersed, covering the selected areas of the CNT surface completely. The ability of FEBID to graft nanoclusters on multiple sides, through an electron-transparent target within one step, is unique as a physical deposition method. Using high-resolution TEM we have shown that the CNT structure can be well preserved thanks to the low dose used in FEBID. By tuning the electron-beam parameters, the density and distribution of the nanoclusters can be controlled. The purity of as-deposited nanoclusters can be improved by low-energy electron irradiation at room temperature. PMID:23399584
NASA Technical Reports Server (NTRS)
Smith, William L., Jr.; Minnis, Patrick; Alvarez, Joseph M.; Uttal, Taneil; Intrieri, Janet M.; Ackerman, Thomas P.; Clothiaux, Eugene
1993-01-01
Cloud-top height is a major factor determining the outgoing longwave flux at the top of the atmosphere. The downwelling radiation from the cloud strongly affects the cooling rate within the atmosphere and the longwave radiation incident at the surface. Thus, determination of cloud-base temperature is important for proper calculation of fluxes below the cloud. Cloud-base altitude is also an important factor in aircraft operations. Cloud-top height or temperature can be derived in a straightforward manner using satellite-based infrared data. Cloud-base temperature, however, is not observable from the satellite, but is related to the height, phase, and optical depth of the cloud in addition to other variables. This study uses surface and satellite data taken during the First ISCCP Regional Experiment (FIRE) Phase-2 Intensive Field Observation (IFO) period (13 Nov. - 7 Dec. 1991, to improve techniques for deriving cloud-base height from conventional satellite data.
1989”1990 AGU Congressional Fellow report
NASA Astrophysics Data System (ADS)
Frank, Barbara J.
Describing the last 3 months on the Subcommittee on International Scientific Cooperation of the U.S. House of Representatives Committee on Science, Space, and Technology is no easy task. I have learned a great deal about many issues and about the workings of Congress; yet this knowledge has not been gained in a necessarily straightforward or logical manner.Although my status on the Subcommittee is that of a Fellow, in effect I am expected to function as a regular staff member. I immediately became involved in the preparation of two hearings, the first on science and technology initiatives for Poland and Hungary, and the second on the Human Genome Project. At these hearings, I learned firsthand about important aspects of science-related issues that concern Congress, namely, intellectual property rights, U.S. competitiveness in the science and technology arena with other countries, Japan, in particular; and big science versus small science funding.
aMC fast: automation of fast NLO computations for PDF fits
NASA Astrophysics Data System (ADS)
Bertone, Valerio; Frederix, Rikkert; Frixione, Stefano; Rojo, Juan; Sutton, Mark
2014-08-01
We present the interface between M adG raph5_ aMC@NLO, a self-contained program that calculates cross sections up to next-to-leading order accuracy in an automated manner, and APPL grid, a code that parametrises such cross sections in the form of look-up tables which can be used for the fast computations needed in the context of PDF fits. The main characteristic of this interface, which we dub aMC fast, is its being fully automated as well, which removes the need to extract manually the process-specific information for additional physics processes, as is the case with other matrix-element calculators, and renders it straightforward to include any new process in the PDF fits. We demonstrate this by studying several cases which are easily measured at the LHC, have a good constraining power on PDFs, and some of which were previously unavailable in the form of a fast interface.
Gurevich, Svetlana V
2014-10-28
The dynamics of a single breathing localized structure in a three-component reaction-diffusion system subjected to time-delayed feedback is investigated. It is shown that variation of the delay time and the feedback strength can lead either to stabilization of the breathing or to delay-induced periodic or quasi-periodic oscillations of the localized structure. A bifurcation analysis of the system in question is provided and an order parameter equation is derived that describes the dynamics of the localized structure in the vicinity of the Andronov-Hopf bifurcation. With the aid of this equation, the boundaries of the stabilization domains as well as the dependence of the oscillation radius on delay parameters can be explicitly derived, providing a robust mechanism to control the behaviour of the breathing localized structure in a straightforward manner. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Magnetoencephalography in ellipsoidal geometry
NASA Astrophysics Data System (ADS)
Dassios, George; Kariotou, Fotini
2003-01-01
An exact analytic solution for the forward problem in the theory of biomagnetics of the human brain is known only for the (1D) case of a sphere and the (2D) case of a spheroid, where the excitation field is due to an electric dipole within the corresponding homogeneous conductor. In the present work the corresponding problem for the more realistic ellipsoidal brain model is solved and the leading quadrupole approximation for the exterior magnetic field is obtained in a form that exhibits the anisotropic character of the ellipsoidal geometry. The results are obtained in a straightforward manner through the evaluation of the interior electric potential and a subsequent calculation of the surface integral over the ellipsoid, using Lamé functions and ellipsoidal harmonics. The basic formulas are expressed in terms of the standard elliptic integrals that enter the expressions for the exterior Lamé functions. The laborious task of reducing the results to the spherical geometry is also included.
NASA Technical Reports Server (NTRS)
Twomey, S.; Herman, B.; Rabinoff, R.
1977-01-01
An extension of the Chahine relaxation method (1970) for inverting the radiative transfer equation is presented. This method is superior to the original method in that it takes into account in a realistic manner the shape of the kernel function, and its extension to nonlinear systems is much more straightforward. A comparison of the new method with a matrix method due to Twomey (1965), in a problem involving inference of vertical distribution of ozone from spectroscopic measurements in the near ultraviolet, indicates that in this situation this method is stable with errors in the input data up to 4%, whereas the matrix method breaks down at these levels. The problem of non-uniqueness of the solution, which is a property of the system of equations rather than of any particular algorithm for solving them, remains, although it takes on slightly different forms for the two algorithms.
NASA Technical Reports Server (NTRS)
Warren, Wayne H., Jr.
2001-01-01
An updated and improved NASA spacecraft attitude determination catalog, now called SKY2000, Version 3, has been prepared and quality assured. The highest priority goals were to replace the astrometric (positions and motions) and photometric (brightnesses and colors) data with the most recent and accurate data available. Quality assurance has been performed in a fairly straightforward manner, i.e., without extensive data checking and analysis, and many errors and Inconsistencies were corrected. Additional work should eventually be done on the variability and multiple-star data In the catalog, while certain other data can be significantly Improved. The current version of the catalog can be found at the GSFC Flight Dynamics website: http://cheli.gsfc.nasa.gov/dist/attitude/skymap.html. Supporting information and reference materials (published papers, format and data descriptions, etc.) can also be found at the website.
A High-Performance Cellular Automaton Model of Tumor Growth with Dynamically Growing Domains
Poleszczuk, Jan; Enderling, Heiko
2014-01-01
Tumor growth from a single transformed cancer cell up to a clinically apparent mass spans many spatial and temporal orders of magnitude. Implementation of cellular automata simulations of such tumor growth can be straightforward but computing performance often counterbalances simplicity. Computationally convenient simulation times can be achieved by choosing appropriate data structures, memory and cell handling as well as domain setup. We propose a cellular automaton model of tumor growth with a domain that expands dynamically as the tumor population increases. We discuss memory access, data structures and implementation techniques that yield high-performance multi-scale Monte Carlo simulations of tumor growth. We discuss tumor properties that favor the proposed high-performance design and present simulation results of the tumor growth model. We estimate to which parameters the model is the most sensitive, and show that tumor volume depends on a number of parameters in a non-monotonic manner. PMID:25346862
Electronic Spectra from Molecular Dynamics: A Simple Approach.
1983-10-01
82.30.Cr. 33.20K. S2.40.1s The authors provided phototypeset copy for this paper using REFER TlL EON, TOFF On UNIX I ELECTRONIC SPECTRA FROM MOLECULAR...Alamos National Laboratory Los Alamos, NM 87545 I. INTRODUCTION In this paper we show how molecular dynamics can be used in a simple manner to com...could equally use Monte Carlo or explicit integration over coordinates to compute equilibrium electronic absorption bands. How- ever, molecular
A Simple Exact Error Rate Analysis for DS-CDMA with Arbitrary Pulse Shape in Flat Nakagami Fading
NASA Astrophysics Data System (ADS)
Rahman, Mohammad Azizur; Sasaki, Shigenobu; Kikuchi, Hisakazu; Harada, Hiroshi; Kato, Shuzo
A simple exact error rate analysis is presented for random binary direct sequence code division multiple access (DS-CDMA) considering a general pulse shape and flat Nakagami fading channel. First of all, a simple model is developed for the multiple access interference (MAI). Based on this, a simple exact expression of the characteristic function (CF) of MAI is developed in a straight forward manner. Finally, an exact expression of error rate is obtained following the CF method of error rate analysis. The exact error rate so obtained can be much easily evaluated as compared to the only reliable approximate error rate expression currently available, which is based on the Improved Gaussian Approximation (IGA).
Catalytic ignitor for regenerative propellant gun
NASA Technical Reports Server (NTRS)
Voecks, Gerald E. (Inventor); Ferraro, Ned W. (Inventor)
1994-01-01
An ignitor initiates combustion of liquid propellant in a gun by utilizing a heated catalyst onto which the liquid propellant is sprayed in a manner which mitigates the occurrence of undesirable combustion chamber oscillations. The heater heats the catalyst sufficiently to provide the activation necessary to initiate combustion of the liquid propellant sprayed thereonto. Two embodiments of the ignitor and three alternative mountings thereof within the combustion chamber are disclosed. The ignitor may also be utilized to dispose of contaminated, excess, or waste liquid propellant in a safe, controlled, simple, and reliable manner.
Catalytic Ignitor for Regenerative Propellant Gun
NASA Technical Reports Server (NTRS)
Voecks, Gerald E. (Inventor); Ferraro, Ned W. (Inventor)
1997-01-01
An ignitor initiates combustion of liquid propellant in a gun by utilizing a heated catalyst onto which the liquid propellant is sprayed in a manner which mitigates the occurrence of undesirable combustion chamber oscillations. The heater heats the catalyst sufficiently to provide the activation necessary to initiate combustion of the liquid propellant sprayed thereonto. Two embodiments of the igniter and three alternative mountings thereof within the combustion chamber are disclosed. The ignitor may also be utilized to dispose of contaminated, excess, or waste liquid propellant in a safe, controlled, simple, and reliable manner.
Helical Spin Order from Topological Dirac and Weyl Semimetals
Sun, Xiao-Qi; Zhang, Shou-Cheng; Wang, Zhong
2015-08-14
In this paper, we study dynamical mass generation and the resultant helical spin orders in topological Dirac and Weyl semimetals, including the edge states of quantum spin Hall insulators, the surface states of weak topological insulators, and the bulk materials of Weyl semimetals. In particular, the helical spin textures of Weyl semimetals manifest the spin-momentum locking of Weyl fermions in a visible manner. Finally, the spin-wave fluctuations of the helical order carry electric charge density; therefore, the spin textures can be electrically controlled in a simple and predictable manner.
Zhu, K; Lou, Z; Zhou, J; Ballester, N; Kong, N; Parikh, P
2015-01-01
This article is part of the Focus Theme of Methods of Information in Medicine on "Big Data and Analytics in Healthcare". Hospital readmissions raise healthcare costs and cause significant distress to providers and patients. It is, therefore, of great interest to healthcare organizations to predict what patients are at risk to be readmitted to their hospitals. However, current logistic regression based risk prediction models have limited prediction power when applied to hospital administrative data. Meanwhile, although decision trees and random forests have been applied, they tend to be too complex to understand among the hospital practitioners. Explore the use of conditional logistic regression to increase the prediction accuracy. We analyzed an HCUP statewide inpatient discharge record dataset, which includes patient demographics, clinical and care utilization data from California. We extracted records of heart failure Medicare beneficiaries who had inpatient experience during an 11-month period. We corrected the data imbalance issue with under-sampling. In our study, we first applied standard logistic regression and decision tree to obtain influential variables and derive practically meaning decision rules. We then stratified the original data set accordingly and applied logistic regression on each data stratum. We further explored the effect of interacting variables in the logistic regression modeling. We conducted cross validation to assess the overall prediction performance of conditional logistic regression (CLR) and compared it with standard classification models. The developed CLR models outperformed several standard classification models (e.g., straightforward logistic regression, stepwise logistic regression, random forest, support vector machine). For example, the best CLR model improved the classification accuracy by nearly 20% over the straightforward logistic regression model. Furthermore, the developed CLR models tend to achieve better sensitivity of more than 10% over the standard classification models, which can be translated to correct labeling of additional 400 - 500 readmissions for heart failure patients in the state of California over a year. Lastly, several key predictor identified from the HCUP data include the disposition location from discharge, the number of chronic conditions, and the number of acute procedures. It would be beneficial to apply simple decision rules obtained from the decision tree in an ad-hoc manner to guide the cohort stratification. It could be potentially beneficial to explore the effect of pairwise interactions between influential predictors when building the logistic regression models for different data strata. Judicious use of the ad-hoc CLR models developed offers insights into future development of prediction models for hospital readmissions, which can lead to better intuition in identifying high-risk patients and developing effective post-discharge care strategies. Lastly, this paper is expected to raise the awareness of collecting data on additional markers and developing necessary database infrastructure for larger-scale exploratory studies on readmission risk prediction.
Carpeggiani, Clara; Paterni, Marco; Caramella, Davide; Vano, Eliseo; Semelka, Richard C; Picano, Eugenio
2012-11-01
Awareness of radiological risk is low among doctors and patients. An educational/decision tool that considers each patient' s cumulative lifetime radiation exposure would facilitate provider-patient communication. The purpose of this work was to develop user-friendly software for simple estimation and communication of radiological risk to patients and doctors as a part of the SUIT-Heart (Stop Useless Imaging Testing in Heart disease) Project of the Tuscany Region. We developed a novel software program (PC-platform, Windows OS fully downloadable at http://suit-heart.ifc.cnr.it) considering reference dose estimates from American Heart Association Radiological Imaging 2009 guidelines and UK Royal College of Radiology 2007 guidelines. Cancer age and gender-weighted risk were derived from Biological Effects of Ionising Radiation VII Committee, 2006. With simple input functions (demographics, age, gender) the user selects from a predetermined menu variables relating to natural (e.g., airplane flights and geo-tracked background exposure), professional (e.g., cath lab workers) and medical (e.g., CT, cardiac scintigraphy, coronary stenting) sources. The program provides a simple numeric (cumulative effective dose in milliSievert, mSv, and equivalent number of chest X-rays) and graphic (cumulative temporal trends of exposure, cancer cases out of 100 exposed persons) display. A simple software program allows straightforward estimation of cumulative dose (in multiples of chest X-rays) and risk (in extra % lifetime cancer risk), with simple numbers quantifying lifetime extra cancer risk. Pictorial display of radiation risk may be valuable for increasing radiological awareness in cardiologists. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Singh, Manpreet; Alabanza, Anginelle; Gonzalez, Lorelis E.; Wang, Weiwei; Reeves, W. Brian; Hahm, Jong-In
2016-02-01
Determining ultratrace amounts of protein biomarkers in patient samples in a straightforward and quantitative manner is extremely important for early disease diagnosis and treatment. Here, we successfully demonstrate the novel use of zinc oxide nanorods (ZnO NRs) in the ultrasensitive and quantitative detection of two acute kidney injury (AKI)-related protein biomarkers, tumor necrosis factor (TNF)-α and interleukin (IL)-8, directly from patient samples. We first validate the ZnO NRs-based IL-8 results via comparison with those obtained from using a conventional enzyme-linked immunosorbent method in samples from 38 individuals. We further assess the full detection capability of the ZnO NRs-based technique by quantifying TNF-α, whose levels in human urine are often below the detection limits of conventional methods. Using the ZnO NR platforms, we determine the TNF-α concentrations of all 46 patient samples tested, down to the fg per mL level. Subsequently, we screen for TNF-α levels in approximately 50 additional samples collected from different patient groups in order to demonstrate a potential use of the ZnO NRs-based assay in assessing cytokine levels useful for further clinical monitoring. Our research efforts demonstrate that ZnO NRs can be straightforwardly employed in the rapid, ultrasensitive, quantitative, and simultaneous detection of multiple AKI-related biomarkers directly in patient urine samples, providing an unparalleled detection capability beyond those of conventional analysis methods. Additional key advantages of the ZnO NRs-based approach include a fast detection speed, low-volume assay condition, multiplexing ability, and easy automation/integration capability to existing fluorescence instrumentation. Therefore, we anticipate that our ZnO NRs-based detection method will be highly beneficial for overcoming the frequent challenges in early biomarker development and treatment assessment, pertaining to the facile and ultrasensitive quantification of hard-to-trace biomolecules.Determining ultratrace amounts of protein biomarkers in patient samples in a straightforward and quantitative manner is extremely important for early disease diagnosis and treatment. Here, we successfully demonstrate the novel use of zinc oxide nanorods (ZnO NRs) in the ultrasensitive and quantitative detection of two acute kidney injury (AKI)-related protein biomarkers, tumor necrosis factor (TNF)-α and interleukin (IL)-8, directly from patient samples. We first validate the ZnO NRs-based IL-8 results via comparison with those obtained from using a conventional enzyme-linked immunosorbent method in samples from 38 individuals. We further assess the full detection capability of the ZnO NRs-based technique by quantifying TNF-α, whose levels in human urine are often below the detection limits of conventional methods. Using the ZnO NR platforms, we determine the TNF-α concentrations of all 46 patient samples tested, down to the fg per mL level. Subsequently, we screen for TNF-α levels in approximately 50 additional samples collected from different patient groups in order to demonstrate a potential use of the ZnO NRs-based assay in assessing cytokine levels useful for further clinical monitoring. Our research efforts demonstrate that ZnO NRs can be straightforwardly employed in the rapid, ultrasensitive, quantitative, and simultaneous detection of multiple AKI-related biomarkers directly in patient urine samples, providing an unparalleled detection capability beyond those of conventional analysis methods. Additional key advantages of the ZnO NRs-based approach include a fast detection speed, low-volume assay condition, multiplexing ability, and easy automation/integration capability to existing fluorescence instrumentation. Therefore, we anticipate that our ZnO NRs-based detection method will be highly beneficial for overcoming the frequent challenges in early biomarker development and treatment assessment, pertaining to the facile and ultrasensitive quantification of hard-to-trace biomolecules. Electronic supplementary information (ESI) available: Typical SEM images of the ZnO NRs used in the biomarker assays are provided in Fig. S1. See DOI: 10.1039/c5nr08706f
A microlagoon technique for the culture of mammalian cells
NASA Technical Reports Server (NTRS)
Cone, C. D., Jr.; Peddrew, K. H.
1968-01-01
Technique obtains micropartitioning in a simple and reproducible manner by forming a field of tiny ponds or lagoons on the surface of a suitable culturing vessel. The technique allows free access of the common culture to all parts of the field.
Computation of Sensitivity Derivatives of Navier-Stokes Equations using Complex Variables
NASA Technical Reports Server (NTRS)
Vatsa, Veer N.
2004-01-01
Accurate computation of sensitivity derivatives is becoming an important item in Computational Fluid Dynamics (CFD) because of recent emphasis on using nonlinear CFD methods in aerodynamic design, optimization, stability and control related problems. Several techniques are available to compute gradients or sensitivity derivatives of desired flow quantities or cost functions with respect to selected independent (design) variables. Perhaps the most common and oldest method is to use straightforward finite-differences for the evaluation of sensitivity derivatives. Although very simple, this method is prone to errors associated with choice of step sizes and can be cumbersome for geometric variables. The cost per design variable for computing sensitivity derivatives with central differencing is at least equal to the cost of three full analyses, but is usually much larger in practice due to difficulty in choosing step sizes. Another approach gaining popularity is the use of Automatic Differentiation software (such as ADIFOR) to process the source code, which in turn can be used to evaluate the sensitivity derivatives of preselected functions with respect to chosen design variables. In principle, this approach is also very straightforward and quite promising. The main drawback is the large memory requirement because memory use increases linearly with the number of design variables. ADIFOR software can also be cumber-some for large CFD codes and has not yet reached a full maturity level for production codes, especially in parallel computing environments.
Kim, Jung-Suk; Im, Byung Gee; Jin, Gyuhyung; Jang, Jae-Hyung
2016-08-31
Guiding newly generated tissues in a gradient pattern, thereby precisely mimicking inherent tissue morphology and subsequently arranging the intimate networks between adjacent tissues, is essential to raise the technical levels of tissue engineering and facilitate its transition into the clinic. In this study, a straightforward electrospinning method (the tubing-electrospinning technique) was developed to create fibrous matrices readily with diverse gradient patterns and to induce patterned cellular responses. Gradient fibrous matrices can be produced simply by installing a series of polymer-containing lengths of tubing into an electrospinning circuit and sequentially processing polymers without a time lag. The loading of polymer samples with different characteristics, including concentration, wettability, and mechanical properties, into the tubing system enabled unique features in fibrous matrices, such as longitudinal gradients in fiber density, surface properties, and mechanical stiffness. The resulting fibrous gradients were shown to arrange cellular migration and residence in a gradient manner, thereby offering efficient cues to mediate patterned tissue formation. The one-step process using tubing-electrospinning apparatus can be used without significant modifications regardless of the type of fibrous gradient. Hence, the tubing-electrospinning system can serve as a platform that can be readily used by a wide-range of users to induce patterned tissue formation in a gradient manner, which will ultimately improve the functionality of tissue engineering scaffolds.
Theory of the fundamental laser linewidth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldberg, P.; Milonni, P.W.; Sundaram, B.
1991-08-01
The theory of the laser linewidth is formulated to account for arbitrarily large output couplings and spatial hole burning. We show explicitly that the linewidth can be interpreted in terms of either spontaneous-emission noise or the amplification of vacuum field modes leaking into the cavity, depending on the ordering of operators in the correlation function determining the laser spectrum. This allows us to derive the Petermann {ital K} factor associated with excess spontaneous-emission noise'' in a physically transparent and mathematically simple way, without the need to introduce adjoint modes of the resonator. It also allows us to straightforwardly include spatial-hole-burningmore » effects, which are found to increase the {ital K} factor and the linewidth in high-gain systems appreciably.« less
Fourier-based classification of protein secondary structures.
Shu, Jian-Jun; Yong, Kian Yan
2017-04-15
The correct prediction of protein secondary structures is one of the key issues in predicting the correct protein folded shape, which is used for determining gene function. Existing methods make use of amino acids properties as indices to classify protein secondary structures, but are faced with a significant number of misclassifications. The paper presents a technique for the classification of protein secondary structures based on protein "signal-plotting" and the use of the Fourier technique for digital signal processing. New indices are proposed to classify protein secondary structures by analyzing hydrophobicity profiles. The approach is simple and straightforward. Results show that the more types of protein secondary structures can be classified by means of these newly-proposed indices. Copyright © 2017 Elsevier Inc. All rights reserved.
Direct Alkynylation of 3H-Imidazo[4,5-b]pyridines Using gem-Dibromoalkenes as Alkynes Source.
Aziz, Jessy; Baladi, Tom; Piguel, Sandrine
2016-05-20
C2 direct alkynylation of 3H-imidazo[4,5-b]pyridine derivatives is explored for the first time. Stable and readily available 1,1-dibromo-1-alkenes, electrophilic alkyne precursors, are used as coupling partners. The simple reaction conditions include an inexpensive copper catalyst (CuBr·SMe2 or Cu(OAc)2), a phosphine ligand (DPEphos) and a base (LiOtBu) in 1,4-dioxane at 120 °C. This C-H alkynylation method revealed to be compatible with a variety of substitutions on both coupling partners: heteroarenes and gem-dibromoalkenes. This protocol allows the straightforward synthesis of various 2-alkynyl-3H-imidazo[4,5-b]pyridines, a valuable scaffold in drug design.
NASA Technical Reports Server (NTRS)
Caulfield, John; Crosson, William L.; Inguva, Ramarao; Laymon, Charles A.; Schamschula, Marius
1998-01-01
This is a followup on the preceding presentation by Crosson and Schamschula. The grid size for remote microwave measurements is much coarser than the hydrological model computational grids. To validate the hydrological models with measurements we propose mechanisms to disaggregate the microwave measurements to allow comparison with outputs from the hydrological models. Weighted interpolation and Bayesian methods are proposed to facilitate the comparison. While remote measurements occur at a large scale, they reflect underlying small-scale features. We can give continuing estimates of the small scale features by correcting the simple 0th-order, starting with each small-scale model with each large-scale measurement using a straightforward method based on Kalman filtering.
Ultrasound diagnosis of penile fracture.
Nomura, Jason T; Sierzenski, Paul R
2010-04-01
Rupture of the corpus cavernosum, penile fracture, is an uncommon occurrence. Diagnosis is straightforward when classical historical and physical examination findings are present. However, atypical presentations can make the diagnosis difficult. Review the literature supporting use of ultrasound for the diagnosis of penile fracture. Review of the ultrasonographic findings in patients with penile fracture. A 32-year-old man presented with penile ecchymosis after sex but lacking several historical and physical examination elements for a diagnosis of penile fracture. Ultrasound performed by the treating physician revealed rupture of the tunica albuginea and presence of a hematoma, leading to a diagnosis of penile fracture. Ultrasound is a simple, efficient, and non-invasive imaging method to assist in the diagnosis of penile fracture. Copyright 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zam, Azhar; Stelzle, Florian; Tangermann-Gerk, Katja; Adler, Werner; Nkenke, Emeka; Schmidt, Michael; Douplik, Alexandre
2010-02-01
Remote laser surgery lacks of haptic feedback during the laser ablation of tissue. Hence, there is a risk of iatrogenic damage or destruction of anatomical structures like nerves or salivary glands. Diffuse reflectance spectroscopy provides a straightforward and simple approach for optical tissue differentiation. We measured diffuse reflectance from seven various tissue types ex vivo. We applied Linear Discriminant Analysis (LDA) to differentiate the seven tissue types and computed the area under the ROC curve (AUC). Special emphasis was taken on the identification of nerves and salivary glands as the most crucial tissue for maxillofacial surgery. The results show a promise for differentiating tissues as guidance for oral and maxillofacial laser surgery by means of diffuse reflectance.
The 57Fe Mössbauer parameters of pyrite and marcasite with different provenances
Evans, B.J.; Johnson, R.G.; Senftle, F.E.; Cecil, C.B.; Dulong, F.
1982-01-01
The Mössbauer parameters of pyrite and marcasite exhibit appreciable variations, which bear no simple relationship to the geological environment in which they occur but appear to be selectively influenced by impurities, especially arsenic, in the pyrite lattice. Quantitative and qualitative determinations of pyrite/marcasite mechanical mixtures are straightforward at 298 K and 77 K but do require least-squares computer fittings and are limited to accuracies ranging from ±5 to ±15 per cent by uncertainties in the parameter values of the pure phases. The methodology and results of this investigation are directly applicable to coals for which the presence and relative amounts of pyrite and marcasite could be of considerable genetic significance.
Action languages: Dimensions, effects
NASA Technical Reports Server (NTRS)
Hayes, Daniel G.; Streeter, Gordon
1989-01-01
Dimensions of action languages are discussed for communication between humans and machines, and the message handling capabilities of object oriented programming systems are examined. Design of action languages is seen to be very contextual. Economical and effective design will depend on features of situations, the tasks intended to be accomplished, and the nature of the devices themselves. Current object oriented systems turn out to have fairly simple and straightforward message handling facilities, which in themselves do little to buffer action or even in some cases to handle competing messages. Even so, it is possible to program a certain amount of discretion about how they react to messages. Such thoughtfulness and perhaps relative autonomy of program modules seems prerequisite to future systems to handle complex interactions in changing situations.
On the physical parameters for Centaurus X-3 and Hercules X-1.
NASA Technical Reports Server (NTRS)
Mccluskey, G. E., Jr.; Kondo, Y.
1972-01-01
It is shown how upper and lower limits on the physical parameters of X-ray sources in Centaurus X-3 and Hercules X-1 may be determined from a reasonably simple and straightforward consideration. The basic assumption is that component A (the non-X-ray emitting component) is not a star collapsing toward its Schwartzschild radius (i.e., a black hole). This assumption appears reasonable since component A (the radius of the central occulting star) appears to physically occult component X. If component A is a 'normal' star, both observation and theory indicate that its mass is not greater than about 60 solar masses. The possibility in which component X is either a neutron star or a white dwarf is considered.
The factor structure and screening utility of the Social Interaction Anxiety Scale.
Rodebaugh, Thomas L; Woods, Carol M; Heimberg, Richard G; Liebowitz, Michael R; Schneier, Franklin R
2006-06-01
The widely used Social Interaction Anxiety Scale (SIAS; R. P. Mattick & J. C. Clarke, 1998) possesses favorable psychometric properties, but questions remain concerning its factor structure and item properties. Analyses included 445 people with social anxiety disorder and 1,689 undergraduates. Simple unifactorial models fit poorly, and models that accounted for differences due to item wording (i.e., reverse scoring) provided superior fit. It was further found that clients and undergraduates approached some items differently, and the SIAS may be somewhat overly conservative in selecting analogue participants from an undergraduate sample. Overall, this study provides support for the excellent properties of the SIAS's straightforwardly worded items, although questions remain regarding its reverse-scored items. Copyright 2006 APA, all rights reserved.
PCTDSE: A parallel Cartesian-grid-based TDSE solver for modeling laser-atom interactions
NASA Astrophysics Data System (ADS)
Fu, Yongsheng; Zeng, Jiaolong; Yuan, Jianmin
2017-01-01
We present a parallel Cartesian-grid-based time-dependent Schrödinger equation (TDSE) solver for modeling laser-atom interactions. It can simulate the single-electron dynamics of atoms in arbitrary time-dependent vector potentials. We use a split-operator method combined with fast Fourier transforms (FFT), on a three-dimensional (3D) Cartesian grid. Parallelization is realized using a 2D decomposition strategy based on the Message Passing Interface (MPI) library, which results in a good parallel scaling on modern supercomputers. We give simple applications for the hydrogen atom using the benchmark problems coming from the references and obtain repeatable results. The extensions to other laser-atom systems are straightforward with minimal modifications of the source code.
A toy model for the yield of a tamped fission bomb
NASA Astrophysics Data System (ADS)
Reed, B. Cameron
2018-02-01
A simple expression is developed for estimating the yield of a tamped fission bomb, that is, a basic nuclear weapon comprising a fissile core jacketed by a surrounding neutron-reflecting tamper. This expression is based on modeling the nuclear chain reaction as a geometric progression in combination with a previously published expression for the threshold-criticality condition for such a core. The derivation is especially straightforward, as it requires no knowledge of diffusion theory and should be accessible to students of both physics and policy. The calculation can be set up as a single page spreadsheet. Application to the Little Boy and Fat Man bombs of World War II gives results in reasonable accord with published yield estimates for these weapons.
Measuring droplet size distributions from overlapping interferometric particle images.
Bocanegra Evans, Humberto; Dam, Nico; van der Voort, Dennis; Bertens, Guus; van de Water, Willem
2015-02-01
Interferometric particle imaging provides a simple way to measure the probability density function (PDF) of droplet sizes from out-focus images. The optical setup is straightforward, but the interpretation of the data is a problem when particle images overlap. We propose a new way to analyze the images. The emphasis is not on a precise identification of droplets, but on obtaining a good estimate of the PDF of droplet sizes in the case of overlapping particle images. The algorithm is tested using synthetic and experimental data. We next use these methods to measure the PDF of droplet sizes produced by spinning disk aerosol generators. The mean primary droplet diameter agrees with predictions from the literature, but we find a broad distribution of satellite droplet sizes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szlachetko, J.; Institute of Physics, Jan Kochanowski University, 25-406 Kielce; Nachtegaal, M.
2012-10-15
We report on the design and performance of a wavelength-dispersive type spectrometer based on the von Hamos geometry. The spectrometer is equipped with a segmented-type crystal for x-ray diffraction and provides an energy resolution in the order of 0.25 eV and 1 eV over an energy range of 8000 eV-9600 eV. The use of a segmented crystal results in a simple and straightforward crystal preparation that allows to preserve the spectrometer resolution and spectrometer efficiency. Application of the spectrometer for time-resolved resonant inelastic x-ray scattering and single-shot x-ray emission spectroscopy is demonstrated.
Cordier, Christopher J.; Lundgren, Rylan J.; Fu, Gregory C.
2013-01-01
Although enantioconvergent alkyl-alkyl couplings of racemic electrophiles have been developed, there have been no reports of the corresponding reactions of racemic nucleophiles. Herein, we describe Negishi cross-couplings of racemic α-zincated N-Boc-pyrrolidine with unactivated secondary halides, thus providing a one-pot, catalytic asymmetric method for the synthesis of a range of 2-alkylpyrrolidines (an important family of target molecules) from N-Boc-pyrrolidine, a commercially available precursor. Preliminary mechanistic studies indicate that two of the most straightforward mechanisms for enantioconvergence (a dynamic kinetic resolution of the organometallic coupling partner and a simple β-hydride elimination/β-migratory insertion pathway) are unlikely to be operative. PMID:23869442
A zero-equation turbulence model for two-dimensional hybrid Hall thruster simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cappelli, Mark A., E-mail: cap@stanford.edu; Young, Christopher V.; Cha, Eunsun
2015-11-15
We present a model for electron transport across the magnetic field of a Hall thruster and integrate this model into 2-D hybrid particle-in-cell simulations. The model is based on a simple scaling of the turbulent electron energy dissipation rate and the assumption that this dissipation results in Ohmic heating. Implementing the model into 2-D hybrid simulations is straightforward and leverages the existing framework for solving the electron fluid equations. The model recovers the axial variation in the mobility seen in experiments, predicting the generation of a transport barrier which anchors the region of plasma acceleration. The predicted xenon neutral andmore » ion velocities are found to be in good agreement with laser-induced fluorescence measurements.« less
SLIC superpixels compared to state-of-the-art superpixel methods.
Achanta, Radhakrishna; Shaji, Appu; Smith, Kevin; Lucchi, Aurelien; Fua, Pascal; Süsstrunk, Sabine
2012-11-01
Computer vision applications have come to rely increasingly on superpixels in recent years, but it is not always clear what constitutes a good superpixel algorithm. In an effort to understand the benefits and drawbacks of existing methods, we empirically compare five state-of-the-art superpixel algorithms for their ability to adhere to image boundaries, speed, memory efficiency, and their impact on segmentation performance. We then introduce a new superpixel algorithm, simple linear iterative clustering (SLIC), which adapts a k-means clustering approach to efficiently generate superpixels. Despite its simplicity, SLIC adheres to boundaries as well as or better than previous methods. At the same time, it is faster and more memory efficient, improves segmentation performance, and is straightforward to extend to supervoxel generation.
How do I write a scientific article?-A personal perspective.
Lippi, Giuseppe
2017-10-01
Scientific writing is not an easy task. Although there is no single and universally agreed strategy for assembling a successful scientific article, it is undeniable that some basic notions, gathered after decades of experience, may help increasing the chance of acceptance of a scientific manuscript. Therefore, the purpose of this article is to present a personal and arbitrary perspective on how to write a scientific article, entailing a tentative flowchart and a checklist describing the most important aspects characterizing each section of the manuscript. The final suggestion, which can be summarized in one simple and straightforward concept, is that you should always remember that a scientific article is meant to be read by others (i.e., referees and readers) and not by yourself.
Probing the type of anomalous diffusion with single-particle tracking.
Ernst, Dominique; Köhler, Jürgen; Weiss, Matthias
2014-05-07
Many reactions in complex fluids, e.g. signaling cascades in the cytoplasm of living cells, are governed by a diffusion-driven encounter of reactants. Yet, diffusion in complex fluids often exhibits an anomalous characteristic ('subdiffusion'). Since different types of subdiffusion have distinct effects on timing and equilibria of chemical reactions, a thorough determination of the reactants' type of random walk is key to a quantitative understanding of reactions in complex fluids. Here we introduce a straightforward and simple approach for determining the type of subdiffusion from single-particle tracking data. Unlike previous approaches, our method also is sensitive to transient subdiffusion phenomena, e.g. obstructed diffusion below the percolation threshold. We validate our strategy with data from experiment and simulation.
A statistical theory for sound radiation and reflection from a duct
NASA Technical Reports Server (NTRS)
Cho, Y. C.
1979-01-01
A new analytical method is introduced for the study of the sound radiation and reflection from the open end of a duct. The sound is thought of as an aggregation of the quasiparticles-phonons. The motion of the latter is described in terms of the statistical distribution, which is derived from the classical wave theory. The results are in good agreement with the solutions obtained using the Wiener-Hopf technique when the latter is applicable, but the new method is simple and provides straightforward physical interpretation of the problem. Furthermore, it is applicable to a problem involving a duct in which modes are difficult to determine or cannot be defined at all, whereas the Wiener-Hopf technique is not.
Adaptive infrared-reflecting systems inspired by cephalopods
NASA Astrophysics Data System (ADS)
Xu, Chengyi; Stiubianu, George T.; Gorodetsky, Alon A.
2018-03-01
Materials and systems that statically reflect radiation in the infrared region of the electromagnetic spectrum underpin the performance of many entrenched technologies, including building insulation, energy-conserving windows, spacecraft components, electronics shielding, container packaging, protective clothing, and camouflage platforms. The development of their adaptive variants, in which the infrared-reflecting properties dynamically change in response to external stimuli, has emerged as an important unmet scientific challenge. By drawing inspiration from cephalopod skin, we developed adaptive infrared-reflecting platforms that feature a simple actuation mechanism, low working temperature, tunable spectral range, weak angular dependence, fast response, stability to repeated cycling, amenability to patterning and multiplexing, autonomous operation, robust mechanical properties, and straightforward manufacturability. Our findings may open opportunities for infrared camouflage and other technologies that regulate infrared radiation.
Winnerless competition principle and prediction of the transient dynamics in a Lotka-Volterra model
NASA Astrophysics Data System (ADS)
Afraimovich, Valentin; Tristan, Irma; Huerta, Ramon; Rabinovich, Mikhail I.
2008-12-01
Predicting the evolution of multispecies ecological systems is an intriguing problem. A sufficiently complex model with the necessary predicting power requires solutions that are structurally stable. Small variations of the system parameters should not qualitatively perturb its solutions. When one is interested in just asymptotic results of evolution (as time goes to infinity), then the problem has a straightforward mathematical image involving simple attractors (fixed points or limit cycles) of a dynamical system. However, for an accurate prediction of evolution, the analysis of transient solutions is critical. In this paper, in the framework of the traditional Lotka-Volterra model (generalized in some sense), we show that the transient solution representing multispecies sequential competition can be reproducible and predictable with high probability.
Winnerless competition principle and prediction of the transient dynamics in a Lotka-Volterra model.
Afraimovich, Valentin; Tristan, Irma; Huerta, Ramon; Rabinovich, Mikhail I
2008-12-01
Predicting the evolution of multispecies ecological systems is an intriguing problem. A sufficiently complex model with the necessary predicting power requires solutions that are structurally stable. Small variations of the system parameters should not qualitatively perturb its solutions. When one is interested in just asymptotic results of evolution (as time goes to infinity), then the problem has a straightforward mathematical image involving simple attractors (fixed points or limit cycles) of a dynamical system. However, for an accurate prediction of evolution, the analysis of transient solutions is critical. In this paper, in the framework of the traditional Lotka-Volterra model (generalized in some sense), we show that the transient solution representing multispecies sequential competition can be reproducible and predictable with high probability.
Causality, Measurement, and Elementary Interactions
NASA Astrophysics Data System (ADS)
Gillis, Edward J.
2011-12-01
Signal causality, the prohibition of superluminal information transmission, is the fundamental property shared by quantum measurement theory and relativity, and it is the key to understanding the connection between nonlocal measurement effects and elementary interactions. To prevent those effects from transmitting information between the generating and observing process, they must be induced by the kinds of entangling interactions that constitute measurements, as implied in the Projection Postulate. They must also be nondeterministic as reflected in the Born Probability Rule. The nondeterminism of entanglement-generating processes explains why the relevant types of information cannot be instantiated in elementary systems, and why the sequencing of nonlocal effects is, in principle, unobservable. This perspective suggests a simple hypothesis about nonlocal transfers of amplitude during entangling interactions, which yields straightforward experimental consequences.
Parallel tempering for the traveling salesman problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Percus, Allon; Wang, Richard; Hyman, Jeffrey
We explore the potential of parallel tempering as a combinatorial optimization method, applying it to the traveling salesman problem. We compare simulation results of parallel tempering with a benchmark implementation of simulated annealing, and study how different choices of parameters affect the relative performance of the two methods. We find that a straightforward implementation of parallel tempering can outperform simulated annealing in several crucial respects. When parameters are chosen appropriately, both methods yield close approximation to the actual minimum distance for an instance with 200 nodes. However, parallel tempering yields more consistently accurate results when a series of independent simulationsmore » are performed. Our results suggest that parallel tempering might offer a simple but powerful alternative to simulated annealing for combinatorial optimization problems.« less
Straathof, Natan J W; Gemoets, Hannes P L; Wang, Xiao; Schouten, Jaap C; Hessel, Volker; Noël, Timothy
2014-06-01
Trifluoromethylated and perfluoroalkylated heterocycles are important building blocks for the synthesis of numerous pharmaceutical products, agrochemicals and are widely applied in material sciences. To date, trifluoromethylated and perfluoroalkylated hetero-aromatic systems can be prepared utilizing visible light photoredox catalysis methodologies in batch. While several limitations are associated with these batch protocols, the application of microflow technology could greatly enhance and intensify these reactions. A simple and straightforward photocatalytic trifluoromethylation and perfluoroalkylation method has been developed in continuous microflow, using commercially available photocatalysts and microflow components. A selection of five-membered hetero-aromatics were successfully trifluoromethylated (12 examples) and perfluoroalkylated (5 examples) within several minutes (8-20 min). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
HH-65A Dolphin digital integrated avionics
NASA Technical Reports Server (NTRS)
Huntoon, R. B.
1984-01-01
Communication, navigation, flight control, and search sensor management are avionics functions which constitute every Search and Rescue (SAR) operation. Routine cockpit duties monopolize crew attention during SAR operations and thus impair crew effectiveness. The United States Coast Guard challenged industry to build an avionics system that automates routine tasks and frees the crew to focus on the mission tasks. The HH-64A SAR avionics systems of communication, navigation, search sensors, and flight control have existed independently. On the SRR helicopter, the flight management system (FMS) was introduced. H coordinates or integrates these functions. The pilot interacts with the FMS rather than the individual subsystems, using simple, straightforward procedures to address distinct mission tasks and the flight management system, in turn, orchestrates integrated system response.
ERIC Educational Resources Information Center
Crumbie, Robyn L.
2006-01-01
The reactions use recyclable Magtrieve as the oxidant in a simple reaction sequence illustrating the reciprocity of oxidation and reduction processes. The reciprocity of oxidation and reduction reactions are explored while undertaking the reactions in an environmentally friendly manner.
Motivation through Routine Documentation
ERIC Educational Resources Information Center
Koth, Laurie J.
2016-01-01
This informed commentary article offers a simple, effective classroom management strategy in which the teacher uses routine documentation to motivate students both to perform academically and to behave in a manner consistent with established classroom rules and procedures. The pragmatic strategy is grounded in literature, free to implement,…
ERIC Educational Resources Information Center
Haans, Antal
2018-01-01
Contrast analysis is a relatively simple but effective statistical method for testing theoretical predictions about differences between group means against the empirical data. Despite its advantages, contrast analysis is hardly used to date, perhaps because it is not implemented in a convenient manner in many statistical software packages. This…
NASA Astrophysics Data System (ADS)
Ahrén, Maria; Selegård, Linnéa; Söderlind, Fredrik; Linares, Mathieu; Kauczor, Joanna; Norman, Patrick; Käll, Per-Olov; Uvdal, Kajsa
2012-08-01
Chelated gadolinium ions, e.g., Gd-DTPA, are today used clinically as contrast agents for magnetic resonance imaging (MRI). An attractive alternative contrast agent is composed of gadolinium oxide nanoparticles as they have shown to provide enhanced contrast and, in principle, more straightforward molecular capping possibilities. In this study, we report a new, simple, and polyol-free way of synthesizing 4-5-nm-sized Gd2O3 nanoparticles at room temperature, with high stability and water solubility. The nanoparticles induce high-proton relaxivity compared to Gd-DTPA showing r 1 and r 2 values almost as high as those for free Gd3+ ions in water. The Gd2O3 nanoparticles are capped with acetate and carbonate groups, as shown with infrared spectroscopy, near-edge X-ray absorption spectroscopy, X-ray photoelectron spectroscopy and combined thermogravimetric and mass spectroscopy analysis. Interpretation of infrared spectroscopy data is corroborated by extensive quantum chemical calculations. This nanomaterial is easily prepared and has promising properties to function as a core in a future contrast agent for MRI.
Extended estimator approach for 2×2 games and its mapping to the Ising Hamiltonian
NASA Astrophysics Data System (ADS)
Ariosa, D.; Fort, H.
2005-01-01
We consider a system of adaptive self-interested agents interacting by playing an iterated pairwise prisoner’s dilemma (PD) game. Each player has two options: either cooperate (C) or defect (D). Agents have no (long term) memory to reciprocate nor identifying tags to distinguish C from D. We show how their 16 possible elementary Markovian (one-step memory) strategies can be cast in a simple general formalism in terms of an estimator of expected utilities Δ* . This formalism is helpful to map a subset of these strategies into an Ising Hamiltonian in a straightforward way. This connection in turn serves to shed light on the evolution of the iterated games played by agents, which can represent a broad variety of individuals from firms of a market to species coexisting in an ecosystem. Additionally, this magnetic description may be useful to introduce noise in a natural and simple way. The equilibrium states reached by the system depend strongly on whether the dynamics are synchronous or asynchronous and also on the system connectivity.
Fukuda, Ikuo
2013-11-07
The zero-multipole summation method has been developed to efficiently evaluate the electrostatic Coulombic interactions of a point charge system. This summation prevents the electrically non-neutral multipole states that may artificially be generated by a simple cutoff truncation, which often causes large amounts of energetic noise and significant artifacts. The resulting energy function is represented by a constant term plus a simple pairwise summation, using a damped or undamped Coulombic pair potential function along with a polynomial of the distance between each particle pair. Thus, the implementation is straightforward and enables facile applications to high-performance computations. Any higher-order multipole moment can be taken into account in the neutrality principle, and it only affects the degree and coefficients of the polynomial and the constant term. The lowest and second moments correspond respectively to the Wolf zero-charge scheme and the zero-dipole summation scheme, which was previously proposed. Relationships with other non-Ewald methods are discussed, to validate the current method in their contexts. Good numerical efficiencies were easily obtained in the evaluation of Madelung constants of sodium chloride and cesium chloride crystals.
Devarajan, Nainamalai; Karthik, Murugan; Suresh, Palaniswamy
2017-11-07
A straightforward and efficient method has been demonstrated for the oxidative coupling of terminal alkynes using a simple Cu 3 (BTC) 2 -metal organic framework as a sustainable heterogeneous copper catalyst. A series of symmetrical 1,3-diynes bearing diverse functional groups have been synthesized in moderate to excellent yields via a Cu 3 (BTC) 2 catalyzed Glaser-Hay reaction. The presence of the coordinatively unsaturated open Cu II sites in Cu 3 (BTC) 2 catalyzes the homocoupling in the presence of air, as an environment friendly oxidant without the use of external oxidants, ligands or any additives. The present methodology avoids stoichiometric reagents and harsher or special reaction conditions, and shows good functional group tolerance. The as-prepared catalyst could be separated easily by simple filtration and reused several times without any notable loss in activity. The hot filtration test has investigated the true heterogeneity of the catalyst. Additionally, the powder X-ray diffraction pattern of the reused catalyst revealed the high stability of the catalyst.
Construction of mutually unbiased bases with cyclic symmetry for qubit systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seyfarth, Ulrich; Ranade, Kedar S.
2011-10-15
For the complete estimation of arbitrary unknown quantum states by measurements, the use of mutually unbiased bases has been well established in theory and experiment for the past 20 years. However, most constructions of these bases make heavy use of abstract algebra and the mathematical theory of finite rings and fields, and no simple and generally accessible construction is available. This is particularly true in the case of a system composed of several qubits, which is arguably the most important case in quantum information science and quantum computation. In this paper, we close this gap by providing a simple andmore » straightforward method for the construction of mutually unbiased bases in the case of a qubit register. We show that our construction is also accessible to experiments, since only Hadamard and controlled-phase gates are needed, which are available in most practical realizations of a quantum computer. Moreover, our scheme possesses the optimal scaling possible, i.e., the number of gates scales only linearly in the number of qubits.« less
A complete history of everything
NASA Astrophysics Data System (ADS)
Lanclos, Kyle; Deich, William T. S.
2012-09-01
This paper discusses Lick Observatory's local solution for retaining a complete history of everything. Leveraging our existing deployment of a publish/subscribe communications model that is used to broadcast the state of all systems at Lick Observatory, a monitoring daemon runs on a dedicated server that subscribes to and records all published messages. Our success with this system is a testament to the power of simple, straightforward approaches to complex problems. The solution itself is written in Python, and the initial version required about a week of development time; the data are stored in PostgreSQL database tables using a distinctly simple schema. Over time, we addressed scaling issues as the data set grew, which involved reworking the PostgreSQL database schema on the back-end. We also duplicate the data in flat files to enable recovery or migration of the data from one server to another. This paper will cover both the initial design as well as the solutions to the subsequent deployment issues, the trade-offs that motivated those choices, and the integration of this history database with existing client applications.
Dealing with office emergencies. Stepwise approach for family physicians.
Sempowski, Ian P.; Brison, Robert J.
2002-01-01
OBJECTIVE: To develop a simple stepwise approach to initial management of emergencies in family physicians' offices; to review how to prepare health care teams and equipment; and to illustrate a general approach to three of the most common office emergencies. QUALITY OF EVIDENCE: MEDLINE was searched from January 1980 to December 2001. Articles were selected based on their clinical relevance, quality of evidence, and date of publication. We reviewed American family medicine, pediatric, dental, and dermatologic articles, but found that the area has not been well studied from a Canadian family medicine perspective. Consensus statements by specialty professional groups were used to identify accepted emergency medical treatments. MAIN MESSAGE: Family medicine offices are frequently poorly equipped and inadequately prepared to deal with emergencies. Straightforward emergency response plans can be designed and tailored to an office's risk profile. A systematic team approach and effective use of skills, support staff, and equipment is important. The general approach can be modified for specific patients or conditions. CONCLUSION: Family physicians can plan ahead and use a team approach to develop a simple stepwise response to emergency situations in the office. PMID:12371305
Highly accurate symplectic element based on two variational principles
NASA Astrophysics Data System (ADS)
Qing, Guanghui; Tian, Jia
2018-02-01
For the stability requirement of numerical resultants, the mathematical theory of classical mixed methods are relatively complex. However, generalized mixed methods are automatically stable, and their building process is simple and straightforward. In this paper, based on the seminal idea of the generalized mixed methods, a simple, stable, and highly accurate 8-node noncompatible symplectic element (NCSE8) was developed by the combination of the modified Hellinger-Reissner mixed variational principle and the minimum energy principle. To ensure the accuracy of in-plane stress results, a simultaneous equation approach was also suggested. Numerical experimentation shows that the accuracy of stress results of NCSE8 are nearly the same as that of displacement methods, and they are in good agreement with the exact solutions when the mesh is relatively fine. NCSE8 has advantages of the clearing concept, easy calculation by a finite element computer program, higher accuracy and wide applicability for various linear elasticity compressible and nearly incompressible material problems. It is possible that NCSE8 becomes even more advantageous for the fracture problems due to its better accuracy of stresses.
Equilibria of perceptrons for simple contingency problems.
Dawson, Michael R W; Dupuis, Brian
2012-08-01
The contingency between cues and outcomes is fundamentally important to theories of causal reasoning and to theories of associative learning. Researchers have computed the equilibria of Rescorla-Wagner models for a variety of contingency problems, and have used these equilibria to identify situations in which the Rescorla-Wagner model is consistent, or inconsistent, with normative models of contingency. Mathematical analyses that directly compare artificial neural networks to contingency theory have not been performed, because of the assumed equivalence between the Rescorla-Wagner learning rule and the delta rule training of artificial neural networks. However, recent results indicate that this equivalence is not as straightforward as typically assumed, suggesting a strong need for mathematical accounts of how networks deal with contingency problems. One such analysis is presented here, where it is proven that the structure of the equilibrium for a simple network trained on a basic contingency problem is quite different from the structure of the equilibrium for a Rescorla-Wagner model faced with the same problem. However, these structural differences lead to functionally equivalent behavior. The implications of this result for the relationships between associative learning, contingency theory, and connectionism are discussed.
Shamim, Thorakkal
2013-09-01
Iatrogenic lesions can affect both hard and soft tissues in the oral cavity, induced by the dentist's activity, manner or therapy. There is no approved simple working classification for the iatrogenic lesions of teeth and associated structures in the oral cavity in the literature. A simple working classification is proposed here for iatrogenic lesions of teeth and associated structures in the oral cavity based on its relation with dental specialities. The dental specialities considered in this classification are conservative dentistry and endodontics, orthodontics, oral and maxillofacial surgery and prosthodontics. This classification will be useful for the dental clinician who is dealing with diseases of oral cavity.
2011-01-01
Background The complexity and inter-related nature of biological data poses a difficult challenge for data and tool integration. There has been a proliferation of interoperability standards and projects over the past decade, none of which has been widely adopted by the bioinformatics community. Recent attempts have focused on the use of semantics to assist integration, and Semantic Web technologies are being welcomed by this community. Description SADI - Semantic Automated Discovery and Integration - is a lightweight set of fully standards-compliant Semantic Web service design patterns that simplify the publication of services of the type commonly found in bioinformatics and other scientific domains. Using Semantic Web technologies at every level of the Web services "stack", SADI services consume and produce instances of OWL Classes following a small number of very straightforward best-practices. In addition, we provide codebases that support these best-practices, and plug-in tools to popular developer and client software that dramatically simplify deployment of services by providers, and the discovery and utilization of those services by their consumers. Conclusions SADI Services are fully compliant with, and utilize only foundational Web standards; are simple to create and maintain for service providers; and can be discovered and utilized in a very intuitive way by biologist end-users. In addition, the SADI design patterns significantly improve the ability of software to automatically discover appropriate services based on user-needs, and automatically chain these into complex analytical workflows. We show that, when resources are exposed through SADI, data compliant with a given ontological model can be automatically gathered, or generated, from these distributed, non-coordinating resources - a behaviour we have not observed in any other Semantic system. Finally, we show that, using SADI, data dynamically generated from Web services can be explored in a manner very similar to data housed in static triple-stores, thus facilitating the intersection of Web services and Semantic Web technologies. PMID:22024447
Wilkinson, Mark D; Vandervalk, Benjamin; McCarthy, Luke
2011-10-24
The complexity and inter-related nature of biological data poses a difficult challenge for data and tool integration. There has been a proliferation of interoperability standards and projects over the past decade, none of which has been widely adopted by the bioinformatics community. Recent attempts have focused on the use of semantics to assist integration, and Semantic Web technologies are being welcomed by this community. SADI - Semantic Automated Discovery and Integration - is a lightweight set of fully standards-compliant Semantic Web service design patterns that simplify the publication of services of the type commonly found in bioinformatics and other scientific domains. Using Semantic Web technologies at every level of the Web services "stack", SADI services consume and produce instances of OWL Classes following a small number of very straightforward best-practices. In addition, we provide codebases that support these best-practices, and plug-in tools to popular developer and client software that dramatically simplify deployment of services by providers, and the discovery and utilization of those services by their consumers. SADI Services are fully compliant with, and utilize only foundational Web standards; are simple to create and maintain for service providers; and can be discovered and utilized in a very intuitive way by biologist end-users. In addition, the SADI design patterns significantly improve the ability of software to automatically discover appropriate services based on user-needs, and automatically chain these into complex analytical workflows. We show that, when resources are exposed through SADI, data compliant with a given ontological model can be automatically gathered, or generated, from these distributed, non-coordinating resources - a behaviour we have not observed in any other Semantic system. Finally, we show that, using SADI, data dynamically generated from Web services can be explored in a manner very similar to data housed in static triple-stores, thus facilitating the intersection of Web services and Semantic Web technologies.
Multiloop Manual Control of Dynamic Systems
NASA Technical Reports Server (NTRS)
Hess, R. A.; Mcnally, B. D.
1984-01-01
Human interaction with a simple, multiloop dynamic system in which the human's activity was systematically varied by changing the levels of automation was studied. The control loop structure resulting from the task definition parallels that for any multiloop manual control system, is considered a sterotype. Simple models of the human in the task, and upon extending a technique for describing the manner in which the human subjectively quantifies his opinion of task difficulty were developed. A man in the loop simulation which provides data to support and direct the analytical effort is presented.
Carlson, Kristian J
2005-07-01
Investigations of cross-sectional geometry in nonhuman primate limb bones typically attribute shape ratios to qualitative behavioral characterizations, e.g., leaper, slow climber, brachiator, or terrestrial vs. arboreal quadruped. Quantitative positional behavioral data, however, have yet to be used in a rigorous evaluation of such shape-behavior connections. African apes represent an ideal population for such an investigation because their relatedness minimizes phylogenetic inertia, they exhibit diverse behavioral repertoires, and their locomotor behaviors are known from multiple studies. Cross-sectional data from femoral and humeral diaphyses were collected for 222 wild-shot specimens, encompassing Pan paniscus and all commonly recognized African ape subspecies. Digital representations of diaphyseal cross sections were acquired via computed tomography at three locations per diaphysis. Locomotor behaviors were pooled broadly into arboreal and terrestrial categories, then partitioned into quadrupedal walking, quadrumanous climbing, scrambling, and suspensory categories. Sex-specific taxonomic differences in ratios of principal moments of area (PMA) were statistically significant more often in the femoral diaphysis than the humeral diaphysis. While it appears difficult to relate a measure of shape (e.g., PMA ratio) to individual locomotor modes, general locomotor differences (e.g., percentage arboreal vs. terrestrial locomotion) are discerned more easily. As percentage of arboreal locomotion for a group increases, average cross sections appear more circular. Associations between PMA ratio and specific locomotor behaviors are less straightforward. Individual behaviors that integrate eccentric limb positions (e.g., arboreal scrambling) may not engender more circular cross sections than behaviors that incorporate repetitive sagittal movements (e.g., quadrupedal walking) in a straightforward manner. (c) 2004 Wiley-Liss, Inc
Technique for Calculating Solution Derivatives With Respect to Geometry Parameters in a CFD Code
NASA Technical Reports Server (NTRS)
Mathur, Sanjay
2011-01-01
A solution has been developed to the challenges of computation of derivatives with respect to geometry, which is not straightforward because these are not typically direct inputs to the computational fluid dynamics (CFD) solver. To overcome these issues, a procedure has been devised that can be used without having access to the mesh generator, while still being applicable to all types of meshes. The basic approach is inspired by the mesh motion algorithms used to deform the interior mesh nodes in a smooth manner when the surface nodes, for example, are in a fluid structure interaction problem. The general idea is to model the mesh edges and nodes as constituting a spring-mass system. Changes to boundary node locations are propagated to interior nodes by allowing them to assume their new equilibrium positions, for instance, one where the forces on each node are in balance. The main advantage of the technique is that it is independent of the volumetric mesh generator, and can be applied to structured, unstructured, single- and multi-block meshes. It essentially reduces the problem down to defining the surface mesh node derivatives with respect to the geometry parameters of interest. For analytical geometries, this is quite straightforward. In the more general case, one would need to be able to interrogate the underlying parametric CAD (computer aided design) model and to evaluate the derivatives either analytically, or by a finite difference technique. Because the technique is based on a partial differential equation (PDE), it is applicable not only to forward mode problems (where derivatives of all the output quantities are computed with respect to a single input), but it could also be extended to the adjoint problem, either by using an analytical adjoint of the PDE or a discrete analog.
Nanninga, Christa S; Postema, Klaas; Schönherr, Marleen C; van Twillert, Sacha; Lettinga, Ant T
2015-04-01
There is growing awareness that the poor uptake of evidence in health care is not a knowledge-transfer problem but rather one of knowledge production. This issue calls for re-examination of the evidence produced and assumptions that underpin existing knowledge-to-action (KTA) activities. Accordingly, it has been advocated that KTA studies should treat research knowledge and local practical knowledge with analytical impartiality. The purpose of this case report is to illustrate the complexities in an evidence-informed improvement process of organized stroke care in a local rehabilitation setting. A participatory action approach was used to co-create knowledge and engage local therapists in a 2-way knowledge translation and multidirectional learning process. Evidence regarding rehabilitation stroke units was applied in a straightforward manner, as the setting met the criteria articulated in stroke unit reviews. Evidence on early supported discharge (ESD) could not be directly applied because of differences in target group and implementation environment between the local and reviewed settings. Early supported discharge was tailored to the needs of patients severely affected by stroke admitted to the local rehabilitation stroke unit by combining clinical and home rehabilitation (CCHR). Local therapists welcomed CCHR because it helped them make their task-specific training truly context specific. Key barriers to implementation were travel time, logistical problems, partitioning walls between financing streams, and legislative procedures. Improving local settings with available evidence is not a straightforward application process but rather a matter of searching, logical reasoning, and creatively working with heterogeneous knowledge sources in partnership with different stakeholders. Multiple organizational levels need to be addressed rather than focusing on therapists as sole site of change. © 2015 American Physical Therapy Association.
Detection of anti-salmonella flgk antibodies in chickens by automated capillary immunoassay
USDA-ARS?s Scientific Manuscript database
Western blot is a very useful tool to identify specific protein, but is tedious, labor-intensive and time-consuming. An automated "Simple Western" assay has recently been developed that enables the protein separation, blotting and detection in an automatic manner. However, this technology has not ...
Waterless Condensers for the Teaching Laboratory: An Adaptation of Traditional Glassware
ERIC Educational Resources Information Center
Baum, Erich W.; Esteb, John J.; Wilson, Anne M.
2014-01-01
A simple adaptation of traditional "chemistry kit" condensers for the organic chemistry teaching laboratory is described. These waterless condensers have been employed safely with most solvents. They can be easily fabricated, stored, and used in the same manner as water-cooled condensers. These condensers were utilized in several…
Loglinear Approximate Solutions to Real-Business-Cycle Models: Some Observations
ERIC Educational Resources Information Center
Lau, Sau-Him Paul; Ng, Philip Hoi-Tak
2007-01-01
Following the analytical approach suggested in Campbell, the authors consider a baseline real-business-cycle (RBC) model with endogenous labor supply. They observe that the coefficients in the loglinear approximation of the dynamic equations characterizing the equilibrium are related to the fundamental parameters in a relatively simple manner.…
Using Emoticons to Encourage Students to Recycle
ERIC Educational Resources Information Center
Meng, Matthew D.; Trudel, Remi
2017-01-01
Uncovering inexpensive, simple techniques to encourage students to act in a pro-environmental manner is of critical importance. Through a four-week field study at a large, environmentally focused elementary school, it was found that placing negatively valenced emoticons (i.e., red frowny faces) on trash cans increased the proportion of recycled…
Success in Architecture: Handedness and/or Visual Thinking.
ERIC Educational Resources Information Center
Peterson, John M.; Lansky, Leonard M.
1980-01-01
Some data on sex and handedness in relation to academic predictors and success in architectural education were reexamined. The new variable was the notion of visual thinking, measured by the manner, "visually" or "cognitively," of executing a simple line drawing. As expected, significant differences appeared between persons using these modes.…
Zn2+ blocks annealing of complementary single-stranded DNA in a sequence-selective manner
USDA-ARS?s Scientific Manuscript database
A simple low-temperature EDTA-free agarose gel electrophoresis procedure (LTEAGE) coupled with UV-Vis spectrum and fluorescence quenching analyses was developed and the Zn2+-single-stranded (ss) DNA interaction was investigated under near-physiological conditions. It was found that Zn2+ blocked the...
Gallavardin, Thibault; Maurin, Mathieu; Marotte, Sophie; Simon, Timea; Gabudean, Ana-Maria; Bretonnière, Yann; Lindgren, Mikael; Lerouge, Frédéric; Baldeck, Patrick L; Stéphan, Olivier; Leverrier, Yann; Marvel, Jacqueline; Parola, Stéphane; Maury, Olivier; Andraud, Chantal
2011-07-01
The synthesis and photophysical properties of two lipophilic quadrupolar chromophores featuring anthracenyl (1) or dibromobenzene (2) were described. These two chromophores combined significant two-photon absorption cross-sections with high fluorescence quantum yield for 1 and improved singlet oxygen generation efficiency for 2, in organic solvents. The use of Pluronic nanoparticles allowed a simple and straightforward introduction of these lipophilic chromophores into biological cell media. Their internal distribution in various cell lines was studied using fluorescence microscopy and flow-cytometry following a successful staining that was achieved upon 2 h of incubation. Finally, multiphoton excitation microscopy and photodynamic therapy capability of the chromophores were demonstrated by cell exposure to a 820 nm fs laser and cell death upon one photon resonant irradiation at 436 ± 10 nm, respectively.
Universal fragment descriptors for predicting properties of inorganic crystals
NASA Astrophysics Data System (ADS)
Isayev, Olexandr; Oses, Corey; Toher, Cormac; Gossett, Eric; Curtarolo, Stefano; Tropsha, Alexander
2017-06-01
Although historically materials discovery has been driven by a laborious trial-and-error process, knowledge-driven materials design can now be enabled by the rational combination of Machine Learning methods and materials databases. Here, data from the AFLOW repository for ab initio calculations is combined with Quantitative Materials Structure-Property Relationship models to predict important properties: metal/insulator classification, band gap energy, bulk/shear moduli, Debye temperature and heat capacities. The prediction's accuracy compares well with the quality of the training data for virtually any stoichiometric inorganic crystalline material, reciprocating the available thermomechanical experimental data. The universality of the approach is attributed to the construction of the descriptors: Property-Labelled Materials Fragments. The representations require only minimal structural input allowing straightforward implementations of simple heuristic design rules.
Forecasting turning trends in knowledge networks
NASA Astrophysics Data System (ADS)
Szántó-Várnagy, Ádám; Farkas, Illés J.
2018-10-01
A large portion of our collective human knowledge is in electronic repositories. These repositories range from "hard fact" databases (e.g., scientific publications and patents) to "soft" knowledge such as news portals. The common denominator between them all is that they can be thought of in terms of topics/keywords. The interest in these topics is constantly changing over time. Their frequency occurrence diagrams can be used for effective prediction by the most straightforward simplification. In this paper, we use these diagrams to produce simple and human-readable rules that are able to predict the future trends of the most important keywords in 5 data sets of different types. A thorough analysis of the necessary input variables and parameters and their relation to the success rate is presented, as well.
Instrument for analysis of electric motors based on slip-poles component
Haynes, Howard D.; Ayers, Curtis W.; Casada, Donald A.
1996-01-01
A new instrument for monitoring the condition and speed of an operating electric motor from a remote location. The slip-poles component is derived from a motor current signal. The magnitude of the slip-poles component provides the basis for a motor condition monitor, while the frequency of the slip-poles component provides the basis for a motor speed monitor. The result is a simple-to-understand motor health monitor in an easy-to-use package. Straightforward indications of motor speed, motor running current, motor condition (e.g., rotor bar condition) and synthesized motor sound (audible indication of motor condition) are provided. With the device, a relatively untrained worker can diagnose electric motors in the field without requiring the presence of a trained engineer or technician.
Instrument for analysis of electric motors based on slip-poles component
Haynes, H.D.; Ayers, C.W.; Casada, D.A.
1996-11-26
A new instrument is described for monitoring the condition and speed of an operating electric motor from a remote location. The slip-poles component is derived from a motor current signal. The magnitude of the slip-poles component provides the basis for a motor condition monitor, while the frequency of the slip-poles component provides the basis for a motor speed monitor. The result is a simple-to-understand motor health monitor in an easy-to-use package. Straightforward indications of motor speed, motor running current, motor condition (e.g., rotor bar condition) and synthesized motor sound (audible indication of motor condition) are provided. With the device, a relatively untrained worker can diagnose electric motors in the field without requiring the presence of a trained engineer or technician. 4 figs.
Controlled surface-induced flows from the motion of self-assembled colloidal walkers.
Sing, Charles E; Schmid, Lothar; Schneider, Matthias F; Franke, Thomas; Alexander-Katz, Alfredo
2010-01-12
Biological flows at the microscopic scale are important for the transport of nutrients, locomotion, and differentiation. Here, we present a unique approach for creating controlled, surface-induced flows inspired by a ubiquitous biological system, cilia. Our design is based on a collection of self-assembled colloidal rotors that "walk" along surfaces in the presence of a rotating magnetic field. These rotors are held together solely by magnetic forces that allow for reversible assembly and disassembly of the chains. Furthermore, rotation of the magnetic field allows for straightforward manipulation of the shape and motion of these chains. This system offers a simple and versatile approach for designing microfluidic devices as well as for studying fundamental questions in cooperative-driven motion and transport at the microscopic level.
A Minimal Optical Trapping and Imaging Microscopy System
Hernández Candia, Carmen Noemí; Tafoya Martínez, Sara; Gutiérrez-Medina, Braulio
2013-01-01
We report the construction and testing of a simple and versatile optical trapping apparatus, suitable for visualizing individual microtubules (∼25 nm in diameter) and performing single-molecule studies, using a minimal set of components. This design is based on a conventional, inverted microscope, operating under plain bright field illumination. A single laser beam enables standard optical trapping and the measurement of molecular displacements and forces, whereas digital image processing affords real-time sample visualization with reduced noise and enhanced contrast. We have tested our trapping and imaging instrument by measuring the persistence length of individual double-stranded DNA molecules, and by following the stepping of single kinesin motor proteins along clearly imaged microtubules. The approach presented here provides a straightforward alternative for studies of biomaterials and individual biomolecules. PMID:23451216
Adinkra (in)equivalence from Coxeter group representations: A case study
NASA Astrophysics Data System (ADS)
Chappell, Isaac; Gates, S. James; Hübsch, T.
2014-02-01
Using a MathematicaTM code, we present a straightforward numerical analysis of the 384-dimensional solution space of signed permutation 4×4 matrices, which in sets of four, provide representations of the 𝒢ℛ(4, 4) algebra, closely related to the 𝒩 = 1 (simple) supersymmetry algebra in four-dimensional space-time. Following after ideas discussed in previous papers about automorphisms and classification of adinkras and corresponding supermultiplets, we make a new and alternative proposal to use equivalence classes of the (unsigned) permutation group S4 to define distinct representations of higher-dimensional spin bundles within the context of adinkras. For this purpose, the definition of a dual operator akin to the well-known Hodge star is found to partition the space of these 𝒢ℛ(4, 4) representations into three suggestive classes.
“Conjugate Channeling” Effect in Dislocation Core Diffusion: Carbon Transport in Dislocated BCC Iron
Ishii, Akio; Li, Ju; Ogata, Shigenobu
2013-01-01
Dislocation pipe diffusion seems to be a well-established phenomenon. Here we demonstrate an unexpected effect, that the migration of interstitials such as carbon in iron may be accelerated not in the dislocation line direction , but in a conjugate diffusion direction. This accelerated random walk arises from a simple crystallographic channeling effect. is a function of the Burgers vector b, but not , thus a dislocation loop possesses the same everywhere. Using molecular dynamics and accelerated dynamics simulations, we further show that such dislocation-core-coupled carbon diffusion in iron has temperature-dependent activation enthalpy like a fragile glass. The 71° mixed dislocation is the only case in which we see straightforward pipe diffusion that does not depend on dislocation mobility. PMID:23593255
A new potential for the numerical simulations of electrolyte solutions on a hypersphere
NASA Astrophysics Data System (ADS)
Caillol, Jean-Michel
1993-12-01
We propose a new way of performing numerical simulations of the restricted primitive model of electrolytes—and related models—on a hypersphere. In this new approach, the system is viewed as a single component fluid of charged bihard spheres constrained to move at the surface of a four dimensional sphere. A charged bihard sphere is defined as the rigid association of two antipodal charged hard spheres of opposite signs. These objects interact via a simple analytical potential obtained by solving the Poisson-Laplace equation on the hypersphere. This new technique of simulation enables a precise determination of the chemical potential of the charged species in the canonical ensemble by a straightforward application of Widom's insertion method. Comparisons with previous simulations demonstrate the efficiency and the reliability of the method.
An interative solution of an integral equation for radiative transfer by using variational technique
NASA Technical Reports Server (NTRS)
Yoshikawa, K. K.
1973-01-01
An effective iterative technique is introduced to solve a nonlinear integral equation frequently associated with radiative transfer problems. The problem is formulated in such a way that each step of an iterative sequence requires the solution of a linear integral equation. The advantage of a previously introduced variational technique which utilizes a stepwise constant trial function is exploited to cope with the nonlinear problem. The method is simple and straightforward. Rapid convergence is obtained by employing a linear interpolation of the iterative solutions. Using absorption coefficients of the Milne-Eddington type, which are applicable to some planetary atmospheric radiation problems. Solutions are found in terms of temperature and radiative flux. These solutions are presented numerically and show excellent agreement with other numerical solutions.
Chalcone Derivatives: Promising Starting Points for Drug Design.
Gomes, Marcelo N; Muratov, Eugene N; Pereira, Maristela; Peixoto, Josana C; Rosseto, Lucimar P; Cravo, Pedro V L; Andrade, Carolina H; Neves, Bruno J
2017-07-25
Medicinal chemists continue to be fascinated by chalcone derivatives because of their simple chemistry, ease of hydrogen atom manipulation, straightforward synthesis, and a variety of promising biological activities. However, chalcones have still not garnered deserved attention, especially considering their high potential as chemical sources for designing and developing new effective drugs. In this review, we summarize current methodological developments towards the design and synthesis of new chalcone derivatives and state-of-the-art medicinal chemistry strategies (bioisosterism, molecular hybridization, and pro-drug design). We also highlight the applicability of computer-assisted drug design approaches to chalcones and address how this may contribute to optimizing research outputs and lead to more successful and cost-effective drug discovery endeavors. Lastly, we present successful examples of the use of chalcones and suggest possible solutions to existing limitations.
Large-Scale Surfactant-Free Synthesis of p-Type SnTe Nanoparticles for Thermoelectric Applications
Han, Guang; Zhang, Ruizhi; Popuri, Srinivas R.; Greer, Heather F.; Reece, Michael J.; Bos, Jan-Willem G.; Zhou, Wuzong; Knox, Andrew R.; Gregory, Duncan H.
2017-01-01
A facile one-pot aqueous solution method has been developed for the fast and straightforward synthesis of SnTe nanoparticles in more than ten gram quantities per batch. The synthesis involves boiling an alkaline Na2SnO2 solution and a NaHTe solution for short time scales, in which the NaOH concentration and reaction duration play vital roles in controlling the phase purity and particle size, respectively. Spark plasma sintering of the SnTe nanoparticles produces nanostructured compacts that have a comparable thermoelectric performance to bulk counterparts synthesised by more time- and energy-intensive methods. This approach, combining an energy-efficient, surfactant-free solution synthesis with spark plasma sintering, provides a simple, rapid, and inexpensive route to p-type SnTe nanostructured materials. PMID:28772593
How do I write a scientific article?—A personal perspective
2017-01-01
Scientific writing is not an easy task. Although there is no single and universally agreed strategy for assembling a successful scientific article, it is undeniable that some basic notions, gathered after decades of experience, may help increasing the chance of acceptance of a scientific manuscript. Therefore, the purpose of this article is to present a personal and arbitrary perspective on how to write a scientific article, entailing a tentative flowchart and a checklist describing the most important aspects characterizing each section of the manuscript. The final suggestion, which can be summarized in one simple and straightforward concept, is that you should always remember that a scientific article is meant to be read by others (i.e., referees and readers) and not by yourself. PMID:29152516
Pippi — Painless parsing, post-processing and plotting of posterior and likelihood samples
NASA Astrophysics Data System (ADS)
Scott, Pat
2012-11-01
Interpreting samples from likelihood or posterior probability density functions is rarely as straightforward as it seems it should be. Producing publication-quality graphics of these distributions is often similarly painful. In this short note I describe pippi, a simple, publicly available package for parsing and post-processing such samples, as well as generating high-quality PDF graphics of the results. Pippi is easily and extensively configurable and customisable, both in its options for parsing and post-processing samples, and in the visual aspects of the figures it produces. I illustrate some of these using an existing supersymmetric global fit, performed in the context of a gamma-ray search for dark matter. Pippi can be downloaded and followed at http://github.com/patscott/pippi.
An efficient algorithm for automatic phase correction of NMR spectra based on entropy minimization
NASA Astrophysics Data System (ADS)
Chen, Li; Weng, Zhiqiang; Goh, LaiYoong; Garland, Marc
2002-09-01
A new algorithm for automatic phase correction of NMR spectra based on entropy minimization is proposed. The optimal zero-order and first-order phase corrections for a NMR spectrum are determined by minimizing entropy. The objective function is constructed using a Shannon-type information entropy measure. Entropy is defined as the normalized derivative of the NMR spectral data. The algorithm has been successfully applied to experimental 1H NMR spectra. The results of automatic phase correction are found to be comparable to, or perhaps better than, manual phase correction. The advantages of this automatic phase correction algorithm include its simple mathematical basis and the straightforward, reproducible, and efficient optimization procedure. The algorithm is implemented in the Matlab program ACME—Automated phase Correction based on Minimization of Entropy.
Ishii, Akio; Li, Ju; Ogata, Shigenobu
2013-01-01
Dislocation pipe diffusion seems to be a well-established phenomenon. Here we demonstrate an unexpected effect, that the migration of interstitials such as carbon in iron may be accelerated not in the dislocation line direction ξ, but in a conjugate diffusion direction. This accelerated random walk arises from a simple crystallographic channeling effect. c is a function of the Burgers vector b, but not ξ, thus a dislocation loop possesses the same everywhere. Using molecular dynamics and accelerated dynamics simulations, we further show that such dislocation-core-coupled carbon diffusion in iron has temperature-dependent activation enthalpy like a fragile glass. The 71° mixed dislocation is the only case in which we see straightforward pipe diffusion that does not depend on dislocation mobility.
Universal fragment descriptors for predicting properties of inorganic crystals.
Isayev, Olexandr; Oses, Corey; Toher, Cormac; Gossett, Eric; Curtarolo, Stefano; Tropsha, Alexander
2017-06-05
Although historically materials discovery has been driven by a laborious trial-and-error process, knowledge-driven materials design can now be enabled by the rational combination of Machine Learning methods and materials databases. Here, data from the AFLOW repository for ab initio calculations is combined with Quantitative Materials Structure-Property Relationship models to predict important properties: metal/insulator classification, band gap energy, bulk/shear moduli, Debye temperature and heat capacities. The prediction's accuracy compares well with the quality of the training data for virtually any stoichiometric inorganic crystalline material, reciprocating the available thermomechanical experimental data. The universality of the approach is attributed to the construction of the descriptors: Property-Labelled Materials Fragments. The representations require only minimal structural input allowing straightforward implementations of simple heuristic design rules.
Comparing a Coevolutionary Genetic Algorithm for Multiobjective Optimization
NASA Technical Reports Server (NTRS)
Lohn, Jason D.; Kraus, William F.; Haith, Gary L.; Clancy, Daniel (Technical Monitor)
2002-01-01
We present results from a study comparing a recently developed coevolutionary genetic algorithm (CGA) against a set of evolutionary algorithms using a suite of multiobjective optimization benchmarks. The CGA embodies competitive coevolution and employs a simple, straightforward target population representation and fitness calculation based on developmental theory of learning. Because of these properties, setting up the additional population is trivial making implementation no more difficult than using a standard GA. Empirical results using a suite of two-objective test functions indicate that this CGA performs well at finding solutions on convex, nonconvex, discrete, and deceptive Pareto-optimal fronts, while giving respectable results on a nonuniform optimization. On a multimodal Pareto front, the CGA finds a solution that dominates solutions produced by eight other algorithms, yet the CGA has poor coverage across the Pareto front.
Mosely, Jackie A; Stokes, Peter; Parker, David; Dyer, Philip W; Messinis, Antonis M
2018-02-01
A novel method has been developed that enables chemical compounds to be transferred from an inert atmosphere glove box and into the atmospheric pressure ion source of a mass spectrometer whilst retaining a controlled chemical environment. This innovative method is simple and cheap to implement on some commercially available mass spectrometers. We have termed this approach inert atmospheric pressure solids analysis probe ( iASAP) and demonstrate the benefit of this methodology for two air-/moisture-sensitive chemical compounds whose characterisation by mass spectrometry is now possible and easily achieved. The simplicity of the design means that moving between iASAP and standard ASAP is straightforward and quick, providing a highly flexible platform with rapid sample turnaround.
Direct Monte Carlo simulation of chemical reaction systems: Simple bimolecular reactions
NASA Astrophysics Data System (ADS)
Piersall, Shannon D.; Anderson, James B.
1991-07-01
In applications to several simple reaction systems we have explored a ``direct simulation'' method for predicting and understanding the behavior of gas phase chemical reaction systems. This Monte Carlo method, originated by Bird, has been found remarkably successful in treating a number of difficult problems in rarefied dynamics. Extension to chemical reactions offers a powerful tool for treating reaction systems with nonthermal distributions, with coupled gas-dynamic and reaction effects, with emission and adsorption of radiation, and with many other effects difficult to treat in any other way. The usual differential equations of chemical kinetics are eliminated. For a bimolecular reaction of the type A+B→C+D with a rate sufficiently low to allow a continued thermal equilibrium of reactants we find that direct simulation reproduces the expected second order kinetics. Simulations for a range of temperatures yield the activation energies expected for the reaction models specified. For faster reactions under conditions leading to a depletion of energetic reactant species, the expected slowing of reaction rates and departures from equilibrium distributions are observed. The minimum sample sizes required for adequate simulations are as low as 1000 molecules for these cases. The calculations are found to be simple and straightforward for the homogeneous systems considered. Although computation requirements may be excessively high for very slow reactions, they are reasonably low for fast reactions, for which nonequilibrium effects are most important.
Matsukuma, Shoichi; Yoshihara, Mitsuyo; Kasai, Fumio; Kato, Akinori; Yoshida, Akira; Akaike, Makoto; Kobayashi, Osamu; Nakayama, Haruhiko; Sakuma, Yuji; Yoshida, Tsutomu; Kameda, Yoichi; Tsuchiya, Eiju; Miyagi, Yohei
2006-01-01
A simple and rapid method to detect the epidermal growth factor receptor hot spot mutation L858R in lung adenocarcinoma was developed based on principles similar to the universal heteroduplex generator technology. A single-stranded oligonucleotide with an internal deletion was used to generate heteroduplexes (loop-hybrids) bearing a loop in the complementary strand derived from the polymerase chain reaction product of the normal or mutant allele. By placing deletion in the oligonucleotide adjacent to the mutational site, difference in electrophoretic mobility between loop-hybrids with normal and mutated DNA was distinguishable in a native polyacrylamide gel. The method was also modified to detect in-frame deletion mutations of epidermal growth factor receptor in lung adenocarcinomas. In addition, the method was adapted to detect hot spot mutations in the B-type Raf kinase (BRAF) at V600 and in a Ras-oncogene (NRAS) at Q61, the mutations commonly found in thyroid carcinomas. Our mutation detection system, designated the loop-hybrid mobility shift assay was sensitive enough to detect mutant DNA comprising 7.5% of the total DNA. As a simple and straightforward mutation detection technique, loop-hybrid mobility shift assay may be useful for the molecular diagnosis of certain types of clinical cancers. Other applications are also discussed. PMID:16931592
Kiefer, Patrick; Schmitt, Uwe; Vorholt, Julia A
2013-04-01
The Python-based, open-source eMZed framework was developed for mass spectrometry (MS) users to create tailored workflows for liquid chromatography (LC)/MS data analysis. The goal was to establish a unique framework with comprehensive basic functionalities that are easy to apply and allow for the extension and modification of the framework in a straightforward manner. eMZed supports the iterative development and prototyping of individual evaluation strategies by providing a computing environment and tools for inspecting and modifying underlying LC/MS data. The framework specifically addresses non-expert programmers, as it requires only basic knowledge of Python and relies largely on existing successful open-source software, e.g. OpenMS. The framework eMZed and its documentation are freely available at http://emzed.biol.ethz.ch/. eMZed is published under the GPL 3.0 license, and an online discussion group is available at https://groups.google.com/group/emzed-users. Supplementary data are available at Bioinformatics online.
Hansen, Margaret
2016-01-01
Medical surgical nurses may not have the time or resources to provide effective pre- and post-operative instructions for patients in today's healthcare system. And, making timely physical assessments following discharge from the hospital is not always straightforward. Therefore, the risk for readmission associated with post-surgical complications is a concern. At present, mobile healthcare technologies and patient care are precipitously evolving and may serve as a resource to enhance communication between the healthcare provider and patient. A mobile telephone text message (short message service [SMS]) intervention for abdominal surgical patients may foster effective education (communication) and timely self-reported physical assessment in the home environment hence preventing deleterious outcomes. The aim of this research proposal is to identify the feasibility of using a SMS intervention via smart phones to improve health outcomes via timely communication, reach large numbers of at-risk surgical patients and, establish and sustain uniform protocols in a cost-efficient manner.
ICAP - An Interactive Cluster Analysis Procedure for analyzing remotely sensed data
NASA Technical Reports Server (NTRS)
Wharton, S. W.; Turner, B. J.
1981-01-01
An Interactive Cluster Analysis Procedure (ICAP) was developed to derive classifier training statistics from remotely sensed data. ICAP differs from conventional clustering algorithms by allowing the analyst to optimize the cluster configuration by inspection, rather than by manipulating process parameters. Control of the clustering process alternates between the algorithm, which creates new centroids and forms clusters, and the analyst, who can evaluate and elect to modify the cluster structure. Clusters can be deleted, or lumped together pairwise, or new centroids can be added. A summary of the cluster statistics can be requested to facilitate cluster manipulation. The principal advantage of this approach is that it allows prior information (when available) to be used directly in the analysis, since the analyst interacts with ICAP in a straightforward manner, using basic terms with which he is more likely to be familiar. Results from testing ICAP showed that an informed use of ICAP can improve classification, as compared to an existing cluster analysis procedure.
Learning Physics by Experiment: I. Falling Objects
NASA Astrophysics Data System (ADS)
Shaibani, Saami J.
2014-03-01
As a rule, students enjoy conducting experiments in which the practical aspects are straightforward and well-defined. This also applies even when there is no anticipated result for students to ``prove.'' A laboratory exercise with such properties was created for students to undertake in a completely blind manner, and they happily proceeded without any knowledge at all of what they might expect to find. The philosophy developed for the research in this paper expands the pioneering approach formulated some half century ago and successfully employed more recently. In the present era of differentiated instruction (DI) being implemented in a diversity of educational settings, the design of the subject experiment is especially significant for its inclusive nature and for the positive outcomes it produces for less academically capable students. All students benefit from such an environment because it preempts the wasted effort of undue manipulation and it removes the need to contrive agreement with a textbook via irregular attempts at reverse engineering.
Low Reynolds number wind tunnel measurements - The importance of being earnest
NASA Technical Reports Server (NTRS)
Mueller, Thomas J.; Batill, Stephen M.; Brendel, Michael; Perry, Mark L.; Bloch, Diane R.
1986-01-01
A method for obtaining two-dimensional aerodynamic force coefficients at low Reynolds numbers using a three-component external platform balance is presented. Regardless of method, however, the importance of understanding the possible influence of the test facility and instrumentation on the final results cannot be overstated. There is an uncertainty in the ability of the facility to simulate a two-dimensional flow environment due to the confinement effect of the wind tunnel and the method used to mount the airfoil. Additionally, the ability of the instrumentation to accurately measure forces and pressures has an associated uncertainty. This paper focuses on efforts taken to understand the errors introduced by the techniques and apparatus used at the University of Notre Dame, and, the importance of making an earnest estimate of the uncertainty. Although quantitative estimates of facility induced errors are difficult to obtain, the uncertainty in measured results can be handled in a straightforward manner and provide the experimentalist, and others, with a basis to evaluate experimental results.
NASA Technical Reports Server (NTRS)
Filer, Elizabeth D.; Barnes, Norman P.; Morrison, Clyde A.
1991-01-01
The calculated energy levels, the branching ratios, and the estimated thresholds for thulium operating on the 3F4 to 3H6 transitions are reported. Garnet materials with the general formula A3B2C3O12 are evaluated. Calculations are performed for the A side under the assumption of D2 symmetry. X-ray data available in the literature are used to evaluate the crystal-field components, A sub nm. Even-n components are employed to calculate the crystal-field splittings within the manifold. Thermal occupation factors are determined in a straightforward manner using a Boltzmann distribution for the respective manifolds. Odd-n components are applied to calculate the transition probabilities for electric field transitions. It is determined that the magnetic dipole contributions to the transition probability are comparable to the electric dipole contributions in some cases. Thresholds as a function of the density of thulium atoms are calculated.
Toward a Network Model of MHC Class II-Restricted Antigen Processing
Miller, Michael A.; Ganesan, Asha Purnima V.; Eisenlohr, Laurence C.
2013-01-01
The standard model of Major Histocompatibility Complex class II (MHCII)-restricted antigen processing depicts a straightforward, linear pathway: internalized antigens are converted into peptides that load in a chaperone dependent manner onto nascent MHCII in the late endosome, the complexes subsequently trafficking to the cell surface for recognition by CD4+ T cells (TCD4+). Several variations on this theme, both moderate and radical, have come to light but these alternatives have remained peripheral, the conventional pathway generally presumed to be the primary driver of TCD4+ responses. Here we continue to press for the conceptual repositioning of these alternatives toward the center while proposing that MHCII processing be thought of less in terms of discrete pathways and more in terms of a network whose major and minor conduits are variable depending upon many factors, including the epitope, the nature of the antigen, the source of the antigen, and the identity of the antigen-presenting cell. PMID:24379819
Thermal control of low-pressure fractionation processes. [in basaltic magma solidification
NASA Technical Reports Server (NTRS)
Usselman, T. M.; Hodge, D. S.
1978-01-01
Thermal models detailing the solidification paths for shallow basaltic magma chambers (both open and closed systems) were calculated using finite-difference techniques. The total solidification time for closed chambers are comparable to previously published calculations; however, the temperature-time paths are not. These paths are dependent on the phase relations and the crystallinity of the system, because both affect the manner in which the latent heat of crystallization is distributed. In open systems, where a chamber would be periodically replenished with additional parental liquid, calculations indicate that the possibility is strong that a steady-state temperature interval is achieved near a major phase boundary. In these cases it is straightforward to analyze fractionation models of the basaltic liquid evolution and their corresponding cumulate sequences. This steady thermal fractionating state can be invoked to explain large amounts of erupted basalts of similar composition over long time periods from the same volcanic center and some rhythmically layered basic cumulate sequences.
Xpo7 is a broad-spectrum exportin and a nuclear import receptor.
Aksu, Metin; Pleiner, Tino; Karaca, Samir; Kappert, Christin; Dehne, Heinz-Jürgen; Seibel, Katharina; Urlaub, Henning; Bohnsack, Markus T; Görlich, Dirk
2018-05-10
Exportins bind cargo molecules in a RanGTP-dependent manner inside nuclei and transport them through nuclear pores to the cytoplasm. CRM1/Xpo1 is the best-characterized exportin because specific inhibitors such as leptomycin B allow straightforward cargo validations in vivo. The analysis of other exportins lagged far behind, foremost because no such inhibitors had been available for them. In this study, we explored the cargo spectrum of exportin 7/Xpo7 in depth and identified not only ∼200 potential export cargoes but also, surprisingly, ∼30 nuclear import substrates. Moreover, we developed anti-Xpo7 nanobodies that acutely block Xpo7 function when transfected into cultured cells. The inhibition is pathway specific, mislocalizes export cargoes of Xpo7 to the nucleus and import substrates to the cytoplasm, and allowed validation of numerous tested cargo candidates. This establishes Xpo7 as a broad-spectrum bidirectional transporter and paves the way for a much deeper analysis of exportin and importin function in the future. © 2018 Aksu et al.
Direct calculation of liquid-vapor phase equilibria from transition matrix Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Errington, Jeffrey R.
2003-06-01
An approach for directly determining the liquid-vapor phase equilibrium of a model system at any temperature along the coexistence line is described. The method relies on transition matrix Monte Carlo ideas developed by Fitzgerald, Picard, and Silver [Europhys. Lett. 46, 282 (1999)]. During a Monte Carlo simulation attempted transitions between states along the Markov chain are monitored as opposed to tracking the number of times the chain visits a given state as is done in conventional simulations. Data collection is highly efficient and very precise results are obtained. The method is implemented in both the grand canonical and isothermal-isobaric ensemble. The main result from a simulation conducted at a given temperature is a density probability distribution for a range of densities that includes both liquid and vapor states. Vapor pressures and coexisting densities are calculated in a straightforward manner from the probability distribution. The approach is demonstrated with the Lennard-Jones fluid. Coexistence properties are directly calculated at temperatures spanning from the triple point to the critical point.
Bacteriophage Tail-Tube Assembly Studied by Proton-Detected 4D Solid-State NMR
Zinke, Maximilian; Fricke, Pascal; Samson, Camille; ...
2017-07-07
Obtaining unambiguous resonance assignments remains a major bottleneck in solid-state NMR studies of protein structure and dynamics. Particularly for supramolecular assemblies with large subunits (>150 residues), the analysis of crowded spectral data presents a challenge, even if three-dimensional (3D) spectra are used. Here, we present a proton-detected 4D solid-state NMR assignment procedure that is tailored for large assemblies. The key to recording 4D spectra with three indirect carbon or nitrogen dimensions with their inherently large chemical shift dispersion lies in the use of sparse non-uniform sampling (as low as 2 %). As a proof of principle, we acquired 4D (H)COCANH,more » (H)CACONH, and (H)CBCANH spectra of the 20 kDa bacteriophage tail-tube protein gp17.1 in a total time of two and a half weeks. These spectra were sufficient to obtain complete resonance assignments in a straightforward manner without use of previous solution NMR data.« less
Bacteriophage Tail-Tube Assembly Studied by Proton-Detected 4D Solid-State NMR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zinke, Maximilian; Fricke, Pascal; Samson, Camille
Obtaining unambiguous resonance assignments remains a major bottleneck in solid-state NMR studies of protein structure and dynamics. Particularly for supramolecular assemblies with large subunits (>150 residues), the analysis of crowded spectral data presents a challenge, even if three-dimensional (3D) spectra are used. Here, we present a proton-detected 4D solid-state NMR assignment procedure that is tailored for large assemblies. The key to recording 4D spectra with three indirect carbon or nitrogen dimensions with their inherently large chemical shift dispersion lies in the use of sparse non-uniform sampling (as low as 2 %). As a proof of principle, we acquired 4D (H)COCANH,more » (H)CACONH, and (H)CBCANH spectra of the 20 kDa bacteriophage tail-tube protein gp17.1 in a total time of two and a half weeks. These spectra were sufficient to obtain complete resonance assignments in a straightforward manner without use of previous solution NMR data.« less
Improved confidence intervals when the sample is counted an integer times longer than the blank.
Potter, William Edward; Strzelczyk, Jadwiga Jodi
2011-05-01
Past computer solutions for confidence intervals in paired counting are extended to the case where the ratio of the sample count time to the blank count time is taken to be an integer, IRR. Previously, confidence intervals have been named Neyman-Pearson confidence intervals; more correctly they should have been named Neyman confidence intervals or simply confidence intervals. The technique utilized mimics a technique used by Pearson and Hartley to tabulate confidence intervals for the expected value of the discrete Poisson and Binomial distributions. The blank count and the contribution of the sample to the gross count are assumed to be Poisson distributed. The expected value of the blank count, in the sample count time, is assumed known. The net count, OC, is taken to be the gross count minus the product of IRR with the blank count. The probability density function (PDF) for the net count can be determined in a straightforward manner.
Creating Clinical Fuzzy Automata with Fuzzy Arden Syntax.
de Bruin, Jeroen S; Steltzer, Heinz; Rappelsberger, Andrea; Adlassnig, Klaus-Peter
2017-01-01
Formal constructs for fuzzy sets and fuzzy logic are incorporated into Arden Syntax version 2.9 (Fuzzy Arden Syntax). With fuzzy sets, the relationships between measured or observed data and linguistic terms are expressed as degrees of compatibility that model the unsharpness of the boundaries of linguistic terms. Propositional uncertainty due to incomplete knowledge of relationships between clinical linguistic concepts is modeled with fuzzy logic. Fuzzy Arden Syntax also supports the construction of fuzzy state monitors. The latter are defined as monitors that employ fuzzy automata to observe gradual transitions between different stages of disease. As a use case, we re-implemented FuzzyARDS, a previously published clinical monitoring system for patients suffering from acute respiratory distress syndrome (ARDS). Using the re-implementation as an example, we show how key concepts of fuzzy automata, i.e., fuzzy states and parallel fuzzy state transitions, can be implemented in Fuzzy Arden Syntax. The results showed that fuzzy state monitors can be implemented in a straightforward manner.
Multi-Agent Methods for the Configuration of Random Nanocomputers
NASA Technical Reports Server (NTRS)
Lawson, John W.
2004-01-01
As computational devices continue to shrink, the cost of manufacturing such devices is expected to grow exponentially. One alternative to the costly, detailed design and assembly of conventional computers is to place the nano-electronic components randomly on a chip. The price for such a trivial assembly process is that the resulting chip would not be programmable by conventional means. In this work, we show that such random nanocomputers can be adaptively programmed using multi-agent methods. This is accomplished through the optimization of an associated high dimensional error function. By representing each of the independent variables as a reinforcement learning agent, we are able to achieve convergence must faster than with other methods, including simulated annealing. Standard combinational logic circuits such as adders and multipliers are implemented in a straightforward manner. In addition, we show that the intrinsic flexibility of these adaptive methods allows the random computers to be reconfigured easily, making them reusable. Recovery from faults is also demonstrated.
NASA Astrophysics Data System (ADS)
Wang, Zhaopeng; Cuntz, Manfred
2017-10-01
We derive fitting formulae for the quick determination of the existence of S-type and P-type habitable zones (HZs) in binary systems. Based on previous work, we consider the limits of the climatological HZ in binary systems (which sensitively depend on the system parameters) based on a joint constraint encompassing planetary orbital stability and a habitable region for a possible system planet. Additionally, we employ updated results on planetary climate models obtained by Kopparapu and collaborators. Our results are applied to four P-type systems (Kepler-34, Kepler-35, Kepler-413, and Kepler-1647) and two S-type systems (TrES-2 and KOI-1257). Our method allows us to gauge the existence of climatological HZs for these systems in a straightforward manner with detailed consideration of the observational uncertainties. Further applications may include studies of other existing systems as well as systems to be identified through future observational campaigns.
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Shapiro, G. L.; Allario, F.; Alvarez, J. M.
1981-01-01
A combination of two different techniques for the inversion of infrared laser heterodyne measurements of tenuous gases in the stratosphere by solar occulation is presented which incorporates the advantages of each technique. An experimental approach and inversion technique are developed which optimize the retrieval of concentration profiles by incorporating the onion peel collection scheme into the spectral inversion technique. A description of an infrared heterodyne spectrometer and the mode of observations for solar occulation measurement is presented, and the results of inversions of some synthetic ClO spectral lines corresponding to solar occulation limb-scans of the stratosphere are examined. A comparison between the new techniques and one of the current techniques indicates that considerable improvement in the accuracy of the retrieved profiles can be achieved. It is found that noise affects the accuracy of both techniques but not in a straightforward manner since there is interaction between the noise level, noise propagation through inversion, and the number of scans leading to an optimum retrieval.
Windshield splatter analysis with the Galaxy metagenomic pipeline
Kosakovsky Pond, Sergei; Wadhawan, Samir; Chiaromonte, Francesca; Ananda, Guruprasad; Chung, Wen-Yu; Taylor, James; Nekrutenko, Anton
2009-01-01
How many species inhabit our immediate surroundings? A straightforward collection technique suitable for answering this question is known to anyone who has ever driven a car at highway speeds. The windshield of a moving vehicle is subjected to numerous insect strikes and can be used as a collection device for representative sampling. Unfortunately the analysis of biological material collected in that manner, as with most metagenomic studies, proves to be rather demanding due to the large number of required tools and considerable computational infrastructure. In this study, we use organic matter collected by a moving vehicle to design and test a comprehensive pipeline for phylogenetic profiling of metagenomic samples that includes all steps from processing and quality control of data generated by next-generation sequencing technologies to statistical analyses and data visualization. To the best of our knowledge, this is also the first publication that features a live online supplement providing access to exact analyses and workflows used in the article. PMID:19819906
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Zhaopeng; Cuntz, Manfred, E-mail: zhaopeng.wang@mavs.uta.edu, E-mail: cuntz@uta.edu
We derive fitting formulae for the quick determination of the existence of S-type and P-type habitable zones (HZs) in binary systems. Based on previous work, we consider the limits of the climatological HZ in binary systems (which sensitively depend on the system parameters) based on a joint constraint encompassing planetary orbital stability and a habitable region for a possible system planet. Additionally, we employ updated results on planetary climate models obtained by Kopparapu and collaborators. Our results are applied to four P-type systems (Kepler-34, Kepler-35, Kepler-413, and Kepler-1647) and two S-type systems (TrES-2 and KOI-1257). Our method allows us tomore » gauge the existence of climatological HZs for these systems in a straightforward manner with detailed consideration of the observational uncertainties. Further applications may include studies of other existing systems as well as systems to be identified through future observational campaigns.« less
Acoustic tweezers via sub-time-of-flight regime surface acoustic waves.
Collins, David J; Devendran, Citsabehsan; Ma, Zhichao; Ng, Jia Wei; Neild, Adrian; Ai, Ye
2016-07-01
Micrometer-scale acoustic waves are highly useful for refined optomechanical and acoustofluidic manipulation, where these fields are spatially localized along the transducer aperture but not along the acoustic propagation direction. In the case of acoustic tweezers, such a conventional acoustic standing wave results in particle and cell patterning across the entire width of a microfluidic channel, preventing selective trapping. We demonstrate the use of nanosecond-scale pulsed surface acoustic waves (SAWs) with a pulse period that is less than the time of flight between opposing transducers to generate localized time-averaged patterning regions while using conventional electrode structures. These nodal positions can be readily and arbitrarily positioned in two dimensions and within the patterning region itself through the imposition of pulse delays, frequency modulation, and phase shifts. This straightforward concept adds new spatial dimensions to which acoustic fields can be localized in SAW applications in a manner analogous to optical tweezers, including spatially selective acoustic tweezers and optical waveguides.
Lagrangian methods of cosmic web classification
NASA Astrophysics Data System (ADS)
Fisher, J. D.; Faltenbacher, A.; Johnson, M. S. T.
2016-05-01
The cosmic web defines the large-scale distribution of matter we see in the Universe today. Classifying the cosmic web into voids, sheets, filaments and nodes allows one to explore structure formation and the role environmental factors have on halo and galaxy properties. While existing studies of cosmic web classification concentrate on grid-based methods, this work explores a Lagrangian approach where the V-web algorithm proposed by Hoffman et al. is implemented with techniques borrowed from smoothed particle hydrodynamics. The Lagrangian approach allows one to classify individual objects (e.g. particles or haloes) based on properties of their nearest neighbours in an adaptive manner. It can be applied directly to a halo sample which dramatically reduces computational cost and potentially allows an application of this classification scheme to observed galaxy samples. Finally, the Lagrangian nature admits a straightforward inclusion of the Hubble flow negating the necessity of a visually defined threshold value which is commonly employed by grid-based classification methods.
CBERS-03 Satellite Power Supply Subsystem
NASA Astrophysics Data System (ADS)
Almeida, Mario C. P.; Bo, Han
2005-05-01
The second China Brazil Earth Resources Satellite, CBERS-2, was successfully launched on October 21st, 2003 from the Taiyuan Satellite Launch Center, China, through a Long March 4B launcher.The cooperation between China and Brazil for the construction of CBERS satellites is a continued mission and the governments of both countries are committed to building CBERS-3 for the continued and improved services started with the launch of CBERS-1 satellite [1]. Given to its success, the CBERS program is considered as a model for other joint scientific and technological projects between those two countries. CBERS-3 will have new instruments with higher resolution and higher power consumption requirements. The Power Supply Subsystem of CBERS-3 will be a scaled-up version of the one used in the previous missions, but will also present some innovations now possible due to improvements in components, technologies and materials. The modular concept used in the previous design, and repeated in this new mission, will allow the development of the new power subsystem equipments in a straightforward manner.
Brooks, Mark A; Gewartowski, Kamil; Mitsiki, Eirini; Létoquart, Juliette; Pache, Roland A; Billier, Ysaline; Bertero, Michela; Corréa, Margot; Czarnocki-Cieciura, Mariusz; Dadlez, Michal; Henriot, Véronique; Lazar, Noureddine; Delbos, Lila; Lebert, Dorothée; Piwowarski, Jan; Rochaix, Pascal; Böttcher, Bettina; Serrano, Luis; Séraphin, Bertrand; van Tilbeurgh, Herman; Aloy, Patrick; Perrakis, Anastassis; Dziembowski, Andrzej
2010-09-08
For high-throughput structural studies of protein complexes of composition inferred from proteomics data, it is crucial that candidate complexes are selected accurately. Herein, we exemplify a procedure that combines a bioinformatics tool for complex selection with in vivo validation, to deliver structural results in a medium-throughout manner. We have selected a set of 20 yeast complexes, which were predicted to be feasible by either an automated bioinformatics algorithm, by manual inspection of primary data, or by literature searches. These complexes were validated with two straightforward and efficient biochemical assays, and heterologous expression technologies of complex components were then used to produce the complexes to assess their feasibility experimentally. Approximately one-half of the selected complexes were useful for structural studies, and we detail one particular success story. Our results underscore the importance of accurate target selection and validation in avoiding transient, unstable, or simply nonexistent complexes from the outset. Copyright © 2010 Elsevier Ltd. All rights reserved.
Coherent Effects in Tiny Optics: Tunneling Through the Looking Glass
NASA Technical Reports Server (NTRS)
Smith, David D.
2003-01-01
I will discuss two types of one-dimensional photonic bandgap (PBG) effects that can arise in systems of coupled spherical resonators: (1) nearly-free-photon Fabry-Perot photonic bands that arise in quarter-wave concentrically stratified spheres and, (2) tight- binding photonic bands that arise in weakly-coupled mutually-resonant spheres as a result of whispering-gallery mode splitting. These effects can be derived directly from Mie theory, in a more straightforward manner, by exploiting an analogy with stratified planar systems. For odd numbers of mutually-resonant lossless coupled ring resonators, the circulating intensity can increase exponentially with the number of resonators, which can potentially be exploited for the development of advanced sensors. For even numbers of resonators, mode splitting and classical destructive interference lead to a cancellation of absorption and slow light on-resonance, reminiscent of electromagnetic induced transparency. The analogy between these coherent photon trapping effects and population trapping in an atomic system will be explored.
Generalized nucleation and looping model for epigenetic memory of histone modifications
Erdel, Fabian; Greene, Eric C.
2016-01-01
Histone modifications can redistribute along the genome in a sequence-independent manner, giving rise to chromatin position effects and epigenetic memory. The underlying mechanisms shape the endogenous chromatin landscape and determine its response to ectopically targeted histone modifiers. Here, we simulate linear and looping-driven spreading of histone modifications and compare both models to recent experiments on histone methylation in fission yeast. We find that a generalized nucleation-and-looping mechanism describes key observations on engineered and endogenous methylation domains including intrinsic spatial confinement, independent regulation of domain size and memory, variegation in the absence of antagonists, and coexistence of short- and long-term memory at loci with weak and strong constitutive nucleation. These findings support a straightforward relationship between the biochemical properties of chromatin modifiers and the spatiotemporal modification pattern. The proposed mechanism gives rise to a phase diagram for cellular memory that may be generally applicable to explain epigenetic phenomena across different species. PMID:27382173
Inducing circular RNA formation using the CRISPR endoribonuclease Csy4
Borchardt, Erin K.; Meganck, Rita M.; Vincent, Heather A.; Ball, Christopher B.; Ramos, Silvia B.V.; Moorman, Nathaniel J.; Marzluff, William F.; Asokan, Aravind
2017-01-01
Circular RNAs (circRNAs) are highly stable, covalently closed RNAs that are regulated in a spatiotemporal manner and whose functions are largely unknown. These molecules have the potential to be incorporated into engineered systems with broad technological implications. Here we describe a switch for inducing back-splicing of an engineered circRNA that relies on the CRISPR endoribonuclease, Csy4, as an activator of circularization. The endoribonuclease activity and 3′ end-stabilizing properties of Csy4 are particularly suited for this task. Coexpression of Csy4 and the circRNA switch allows for the removal of downstream competitive splice sites and stabilization of the 5′ cleavage product. This subsequently results in back-splicing of the 5′ cleavage product into a circRNA that can translate a reporter protein from an internal ribosomal entry site (IRES). Our platform outlines a straightforward approach toward regulating splicing and could find potential applications in synthetic biology as well as in studying the properties of different circRNAs. PMID:28223408
Song, Ji Eun; Cho, Eun Chul
2016-01-01
We present a straightforward approach with high moldability for producing dual-responsive and multi-functional plasmonic hydrogel valves and biomimetic architectures that reversibly change volumes and colors in response to temperature and ion variations. Heating of a mixture of hybrid colloids (gold nanoparticles assembled on a hydrogel colloid) and hydrogel colloids rapidly induces (within 30 min) the formation of hydrogel architectures resembling mold shapes (cylinder, fish, butterfly). The biomimetic fish and butterfly display reversible changes in volumes and colors with variations of temperature and ionic conditions in aqueous solutions. The cylindrical plasmonic valves installed in flow tubes rapidly control water flow rate in on-off manner by responding to these stimuli. They also report these changes in terms of their colors. Therefore, the approach presented here might be helpful in developing new class of biomimetic and flow control systems where liquid conditions should be visually notified (e.g., glucose or ion concentration changes). PMID:27703195
NASA Astrophysics Data System (ADS)
Luo, Xiaona; Ma, Kai; Jiao, Tifeng; Xing, Ruirui; Zhang, Lexin; Zhou, Jingxin; Li, Bingbing
2017-02-01
The effective synthesis and self-assembly of graphene oxide (GO) nanocomposites are of key importance for a broad range of nanomaterial applications. In this work, a one-step chemical strategy is presented to synthesize stable GO-polymer Langmuir composite films by interfacial thiol-ene photopolymerization at room temperature, without use of any crosslinking agents and stabilizing agents. It is discovered that photopolymerization reaction between thiol groups modified GO sheets and ene in polymer molecules is critically responsible for the formation of the composite Langmuir films. The film formed by Langmuir assembly of such GO-polymer composite films shows potential to improve the mechanical and chemical properties and promotes the design of various GO-based nanocomposites. Thus, the GO-polymer composite Langmuir films synthesized by interfacial thiol-ene photopolymerization with such a straightforward and clean manner, provide new alternatives for developing chemically modified GO-based hybrid self-assembled films and nanomaterials towards a range of soft matter and graphene applications.
Torres, Juan P.; Salazar-Serrano, Luis José
2016-01-01
Weak value amplification (WVA) is a concept that has been extensively used in a myriad of applications with the aim of rendering measurable tiny changes of a variable of interest. In spite of this, there is still an on-going debate about its true nature and whether is really needed for achieving high sensitivity. Here we aim at helping to clarify the puzzle, using a specific example and some basic concepts from quantum estimation theory, highlighting what the use of the WVA concept can offer and what it can not. While WVA cannot be used to go beyond some fundamental sensitivity limits that arise from considering the full nature of the quantum states, WVA can notwithstanding enhance the sensitivity of real and specific detection schemes that are limited by many other things apart from the quantum nature of the states involved, i.e. technical noise. Importantly, it can do that in a straightforward and easily accessible manner. PMID:26833327
Expertise transfer for expert system design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boose, J.H.
This book is about the Expertise Transfer System-a computer program which interviews experts and helps them build expert systems, i.e. computer programs that use knowledge from experts to make decisions and judgements under conditions of uncertainty. The techniques are useful to anyone who uses decision-making information based on the expertise of others. The methods can also be applied to personal decision-making. The interviewing methodology is borrowed from a branch of psychology called Personal Construct Theory. It is not necessary to use a computer to take advantage of the techniques from Personal Construction Theory; the fundamental procedures used by the Expertisemore » Transfer System can be performed using paper and pencil. It is not necessary that the reader understand very much about computers to understand the ideas in this book. The few relevant concepts from computer science and expert systems that are needed are explained in a straightforward manner. Ideas from Personal Construct Psychology are also introduced as needed.« less
The Need for Intelligent Control of Space Power Systems
NASA Technical Reports Server (NTRS)
May, Ryan David; Soeder, James F.; Beach, Raymond F.; McNelis, Nancy B.
2013-01-01
As manned spacecraft venture farther from Earth, the need for reliable, autonomous control of vehicle subsystems becomes critical. This is particularly true for the electrical power system which is critical to every other system. Autonomy can not be achieved by simple scripting techniques due to the communication latency times and the difficulty associated with failures (or combinations of failures) that need to be handled in as graceful a manner as possible to ensure system availability. Therefore an intelligent control system must be developed that can respond to disturbances and failures in a robust manner and ensure that critical system loads are served and all system constraints are respected.
Lin, Xiaodong; Deng, Jiankang; Lyu, Yanlong; Qian, Pengcheng; Li, Yunfei
2018-01-01
The integration of multiple DNA logic gates on a universal platform to implement advance logic functions is a critical challenge for DNA computing. Herein, a straightforward and powerful strategy in which a guanine-rich DNA sequence lighting up a silver nanocluster and fluorophore was developed to construct a library of logic gates on a simple DNA-templated silver nanoclusters (DNA-AgNCs) platform. This library included basic logic gates, YES, AND, OR, INHIBIT, and XOR, which were further integrated into complex logic circuits to implement diverse advanced arithmetic/non-arithmetic functions including half-adder, half-subtractor, multiplexer, and demultiplexer. Under UV irradiation, all the logic functions could be instantly visualized, confirming an excellent repeatability. The logic operations were entirely based on DNA hybridization in an enzyme-free and label-free condition, avoiding waste accumulation and reducing cost consumption. Interestingly, a DNA-AgNCs-based multiplexer was, for the first time, used as an intelligent biosensor to identify pathogenic genes, E. coli and S. aureus genes, with a high sensitivity. The investigation provides a prototype for the wireless integration of multiple devices on even the simplest single-strand DNA platform to perform diverse complex functions in a straightforward and cost-effective way. PMID:29675221
A critique of Rasch residual fit statistics.
Karabatsos, G
2000-01-01
In test analysis involving the Rasch model, a large degree of importance is placed on the "objective" measurement of individual abilities and item difficulties. The degree to which the objectivity properties are attained, of course, depends on the degree to which the data fit the Rasch model. It is therefore important to utilize fit statistics that accurately and reliably detect the person-item response inconsistencies that threaten the measurement objectivity of persons and items. Given this argument, it is somewhat surprising that there is far more emphasis placed in the objective measurement of person and items than there is in the measurement quality of Rasch fit statistics. This paper provides a critical analysis of the residual fit statistics of the Rasch model, arguably the most often used fit statistics, in an effort to illustrate that the task of Rasch fit analysis is not as simple and straightforward as it appears to be. The faulty statistical properties of the residual fit statistics do not allow either a convenient or a straightforward approach to Rasch fit analysis. For instance, given a residual fit statistic, the use of a single minimum critical value for misfit diagnosis across different testing situations, where the situations vary in sample and test properties, leads to both the overdetection and underdetection of misfit. To improve this situation, it is argued that psychometricians need to implement residual-free Rasch fit statistics that are based on the number of Guttman response errors, or use indices that are statistically optimal in detecting measurement disturbances.
Van Bockstaele, Femke; Janssens, Ann; Piette, Anne; Callewaert, Filip; Pede, Valerie; Offner, Fritz; Verhasselt, Bruno; Philippé, Jan
2006-07-15
ZAP-70 has been proposed as a surrogate marker for immunoglobulin heavy-chain variable region (IgV(H)) mutation status, which is known as a prognostic marker in B-cell chronic lymphocytic leukemia (CLL). The flow cytometric analysis of ZAP-70 suffers from difficulties in standardization and interpretation. We applied the Kolmogorov-Smirnov (KS) statistical test to make analysis more straightforward. We examined ZAP-70 expression by flow cytometry in 53 patients with CLL. Analysis was performed as initially described by Crespo et al. (New England J Med 2003; 348:1764-1775) and alternatively by application of the KS statistical test comparing T cells with B cells. Receiver-operating-characteristics (ROC)-curve analyses were performed to determine the optimal cut-off values for ZAP-70 measured by the two approaches. ZAP-70 protein expression was compared with ZAP-70 mRNA expression measured by a quantitative PCR (qPCR) and with the IgV(H) mutation status. Both flow cytometric analyses correlated well with the molecular technique and proved to be of equal value in predicting the IgV(H) mutation status. Applying the KS test is reproducible, simple, straightforward, and overcomes a number of difficulties encountered in the Crespo-method. The KS statistical test is an essential part of the software delivered with modern routine analytical flow cytometers and is well suited for analysis of ZAP-70 expression in CLL. (c) 2006 International Society for Analytical Cytology.
Three-dimensional modeling of the cochlea by use of an arc fitting approach.
Schurzig, Daniel; Lexow, G Jakob; Majdani, Omid; Lenarz, Thomas; Rau, Thomas S
2016-12-01
A cochlea modeling approach is presented allowing for a user defined degree of geometry simplification which automatically adjusts to the patient specific anatomy. Model generation can be performed in a straightforward manner due to error estimation prior to the actual generation, thus minimizing modeling time. Therefore, the presented technique is well suited for a wide range of applications including finite element analyses where geometrical simplifications are often inevitable. The method is presented for n=5 cochleae which were segmented using a custom software for increased accuracy. The linear basilar membrane cross sections are expanded to areas while the scalae contours are reconstructed by a predefined number of arc segments. Prior to model generation, geometrical errors are evaluated locally for each cross section as well as globally for the resulting models and their basal turn profiles. The final combination of all reconditioned features to a 3D volume is performed in Autodesk Inventor using the loft feature. Due to the volume generation based on cubic splines, low errors could be achieved even for low numbers of arc segments and provided cross sections, both of which correspond to a strong degree of model simplification. Model generation could be performed in a time efficient manner. The proposed simplification method was proven to be well suited for the helical cochlea geometry. The generated output data can be imported into commercial software tools for various analyses representing a time efficient way to create cochlea models optimally suited for the desired task.
González-García, Nadia; Rendón, Pablo L
2017-05-23
The neural correlates of consonance and dissonance perception have been widely studied, but not the neural correlates of consonance and dissonance production. The most straightforward manner of musical production is singing, but, from an imaging perspective, it still presents more challenges than listening because it involves motor activity. The accurate singing of musical intervals requires integration between auditory feedback processing and vocal motor control in order to correctly produce each note. This protocol presents a method that permits the monitoring of neural activations associated with the vocal production of consonant and dissonant intervals. Four musical intervals, two consonant and two dissonant, are used as stimuli, both for an auditory discrimination test and a task that involves first listening to and then reproducing given intervals. Participants, all female vocal students at the conservatory level, were studied using functional Magnetic Resonance Imaging (fMRI) during the performance of the singing task, with the listening task serving as a control condition. In this manner, the activity of both the motor and auditory systems was observed, and a measure of vocal accuracy during the singing task was also obtained. Thus, the protocol can also be used to track activations associated with singing different types of intervals or with singing the required notes more accurately. The results indicate that singing dissonant intervals requires greater participation of the neural mechanisms responsible for the integration of external feedback from the auditory and sensorimotor systems than does singing consonant intervals.
HDFITS: Porting the FITS data model to HDF5
NASA Astrophysics Data System (ADS)
Price, D. C.; Barsdell, B. R.; Greenhill, L. J.
2015-09-01
The FITS (Flexible Image Transport System) data format has been the de facto data format for astronomy-related data products since its inception in the late 1970s. While the FITS file format is widely supported, it lacks many of the features of more modern data serialization, such as the Hierarchical Data Format (HDF5). The HDF5 file format offers considerable advantages over FITS, such as improved I/O speed and compression, but has yet to gain widespread adoption within astronomy. One of the major holdbacks is that HDF5 is not well supported by data reduction software packages and image viewers. Here, we present a comparison of FITS and HDF5 as a format for storage of astronomy datasets. We show that the underlying data model of FITS can be ported to HDF5 in a straightforward manner, and that by doing so the advantages of the HDF5 file format can be leveraged immediately. In addition, we present a software tool, fits2hdf, for converting between FITS and a new 'HDFITS' format, where data are stored in HDF5 in a FITS-like manner. We show that HDFITS allows faster reading of data (up to 100x of FITS in some use cases), and improved compression (higher compression ratios and higher throughput). Finally, we show that by only changing the import lines in Python-based FITS utilities, HDFITS formatted data can be presented transparently as an in-memory FITS equivalent.
Influence in Action in "Catch Me if You Can"
ERIC Educational Resources Information Center
Meyer, Gary; Roberto, Anthony J.
2005-01-01
For decades, scholars have worked to understand the precise manner in which messages affect attitudes and ultimately behaviors. The dominant paradigm suggests that there are two methods or routes to attitude change, one based on careful consideration of the messages and the other based on simple decision rules, often referred to as heuristics…
Examining the Incentives in Educational Research
ERIC Educational Resources Information Center
Brewer, Dominic J.; Goldhaber, Dan D.
2008-01-01
In their best seller, "Freakonomics", University of Chicago economist Steven Levitt and "New York Times" writer Stephen Dubner show in an amusing and often provocative manner how an economic way of thinking can be useful in explaining all sorts of real-world phenomena. Their central insight is very simple: incentives are the cornerstone of modern…
Giftedness and Genetics: The Emergenic-Epigenetic Model and Its Implications
ERIC Educational Resources Information Center
Simonton, Dean Keith
2005-01-01
The genetic endowment underlying giftedness may operate in a far more complex manner than often expressed in most theoretical accounts of the phenomenon. First, an endowment may be emergenic. That is, a gift may consist of multiple traits (multidimensional) that are inherited in a multiplicative (configurational), rather than an additive (simple)…
A Simple Inexpensive Procedure for Illustrating Some Principles of Tomography
ERIC Educational Resources Information Center
Darvey, Ivan G.
2013-01-01
The experiment proposed here illustrates some concepts of tomography via a qualitative determination of the relative concentration of various dilutions of food dye without "a priori" knowledge of the concentration of each dye mixture. This is performed in a manner analogous to computed tomography (CT) scans. In order to determine the…
The art of writing scientific reports
NASA Technical Reports Server (NTRS)
Norton, F H
1921-01-01
As the purpose of the report is to transmit as smoothly and as easily as possible, certain facts and ideas, to the average person likely to read it, it should be written in a full and simple enough manner to be comprehended by the least tutored, and still not be boring to the more learned readers.
A Never-Get-Lost Reading Program
ERIC Educational Resources Information Center
Moore, William
2010-01-01
This paper proposes a reading support technique for Arabic students of English. These students must overcome the L1 interference "reversal of reading direction." PowerPoint presentations, utilizing a simple fade effect with adjustable delay between words such that the text appears nicely in a left-to-right manner, line by line with voice…
USDA-ARS?s Scientific Manuscript database
The fuzzy logic algorithm has the ability to describe knowledge in a descriptive human-like manner in the form of simple rules using linguistic variables, and provides a new way of modeling uncertain or naturally fuzzy hydrological processes like non-linear rainfall-runoff relationships. Fuzzy infe...
A simple magic cup to inject excitement and curiosity in physics
NASA Astrophysics Data System (ADS)
Amir, Nazir
2018-05-01
This article highlights a simple demonstration kit that can be easily fabricated in Design & Technology (D&T) workshops to inject excitement and curiosity into students’ learning of physics concepts such as density and optics. Using an ice cream cup from a fast food restaurant and a transparent circular acrylic piece, students can be guided to make a ‘magic’ cup, while at the same time get inquisitive about the physics behind the magic. The project highlights a way of linking physics to D&T in a feasible manner which can motivate and engage students.
Handspinning Enabled Highly Concentrated Carbon Nanotubes with Controlled Orientation in Nanofibers
Lee, Hoik; Watanabe, Kei; Kim, Myungwoong; Gopiraman, Mayakrishnan; Song, Kyung-Hun; Lee, Jung Soon; Kim, Ick Soo
2016-01-01
The novel method, handspinning (HS), was invented by mimicking commonly observed methods in our daily lives. The use of HS allows us to fabricate carbon nanotube-reinforced nanofibers (CNT-reinforced nanofibers) by addressing three significant challenges: (i) the difficulty of forming nanofibers at high concentrations of CNTs, (ii) aggregation of the CNTs, and (iii) control of the orientation of the CNTs. The handspun nanofibers showed better physical properties than fibers fabricated by conventional methods, such as electrospinning. Handspun nanofibers retain a larger amount of CNTs than electrospun nanofibers, and the CNTs are easily aligned uniaxially. We attributed these improvements provided by the HS process to simple mechanical stretching force, which allows for orienting the nanofillers along with the force direction without agglomeration, leading to increased contact area between the CNTs and the polymer matrix, thereby providing enhanced interactions. HS is a simple and straightforward method as it does not require an electric field, and, hence, any kinds of polymers and solvents can be applicable. Furthermore, it is feasible to retain a large amount of various nanofillers in the fibers to enhance their physical and chemical properties. Therefore, HS provides an effective pathway to create new types of reinforced nanofibers with outstanding properties. PMID:27876892
Evolving images of the proton: Hadron physics over the past 40 years
Pennington, Michael R.
2016-04-05
Once upon a time, the world was simple: the proton contained three quarks, two ups and a down. How these give the proton its mass and its spin seemed obvious. Over the past 40 years the proton has become more complicated, and how even these most obvious of its properties is explained in a universe of quarks, antiquarks and gluons remains a challenge. That this should be so should come as no surprise. Quantum chromodynamics, the theory of the strong interaction, is seemingly simple, and its consequences are straightforward in the domain of hard scattering where perturbation theory applies. However,more » the beauty of the hadron world is its diversity. The existence of hadrons, their properties, and their binding into nuclei do not appear in the Lagrangian of QCD. They all emerge as a result of its strong coupling. Strong coupling QCD creates complex phenomena, much richer than known 40 years ago: a richness that ensures colour confinement and accounts for more than 95% of the mass of the visible Universe. How strong coupling QCD really works requires a synergy between experiment and theory. Furthermore, a very personal view of these fascinating developments in cold QCD is presented.« less
Extending the range of real time density matrix renormalization group simulations
NASA Astrophysics Data System (ADS)
Kennes, D. M.; Karrasch, C.
2016-03-01
We discuss a few simple modifications to time-dependent density matrix renormalization group (DMRG) algorithms which allow to access larger time scales. We specifically aim at beginners and present practical aspects of how to implement these modifications within any standard matrix product state (MPS) based formulation of the method. Most importantly, we show how to 'combine' the Schrödinger and Heisenberg time evolutions of arbitrary pure states | ψ 〉 and operators A in the evaluation of 〈A〉ψ(t) = 〈 ψ | A(t) | ψ 〉 . This includes quantum quenches. The generalization to (non-)thermal mixed state dynamics 〈A〉ρ(t) =Tr [ ρA(t) ] induced by an initial density matrix ρ is straightforward. In the context of linear response (ground state or finite temperature T > 0) correlation functions, one can extend the simulation time by a factor of two by 'exploiting time translation invariance', which is efficiently implementable within MPS DMRG. We present a simple analytic argument for why a recently-introduced disentangler succeeds in reducing the effort of time-dependent simulations at T > 0. Finally, we advocate the python programming language as an elegant option for beginners to set up a DMRG code.
Matching factorization theorems with an inverse-error weighting
NASA Astrophysics Data System (ADS)
Echevarria, Miguel G.; Kasemets, Tomas; Lansberg, Jean-Philippe; Pisano, Cristian; Signori, Andrea
2018-06-01
We propose a new fast method to match factorization theorems applicable in different kinematical regions, such as the transverse-momentum-dependent and the collinear factorization theorems in Quantum Chromodynamics. At variance with well-known approaches relying on their simple addition and subsequent subtraction of double-counted contributions, ours simply builds on their weighting using the theory uncertainties deduced from the factorization theorems themselves. This allows us to estimate the unknown complete matched cross section from an inverse-error-weighted average. The method is simple and provides an evaluation of the theoretical uncertainty of the matched cross section associated with the uncertainties from the power corrections to the factorization theorems (additional uncertainties, such as the nonperturbative ones, should be added for a proper comparison with experimental data). Its usage is illustrated with several basic examples, such as Z boson, W boson, H0 boson and Drell-Yan lepton-pair production in hadronic collisions, and compared to the state-of-the-art Collins-Soper-Sterman subtraction scheme. It is also not limited to the transverse-momentum spectrum, and can straightforwardly be extended to match any (un)polarized cross section differential in other variables, including multi-differential measurements.
Evolving images of the proton: Hadron physics over the past 40 years
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pennington, Michael R.
Once upon a time, the world was simple: the proton contained three quarks, two ups and a down. How these give the proton its mass and its spin seemed obvious. Over the past 40 years the proton has become more complicated, and how even these most obvious of its properties is explained in a universe of quarks, antiquarks and gluons remains a challenge. That this should be so should come as no surprise. Quantum chromodynamics, the theory of the strong interaction, is seemingly simple, and its consequences are straightforward in the domain of hard scattering where perturbation theory applies. However,more » the beauty of the hadron world is its diversity. The existence of hadrons, their properties, and their binding into nuclei do not appear in the Lagrangian of QCD. They all emerge as a result of its strong coupling. Strong coupling QCD creates complex phenomena, much richer than known 40 years ago: a richness that ensures colour confinement and accounts for more than 95% of the mass of the visible Universe. How strong coupling QCD really works requires a synergy between experiment and theory. Furthermore, a very personal view of these fascinating developments in cold QCD is presented.« less
A user authentication scheme using physiological and behavioral biometrics for multitouch devices.
Koong, Chorng-Shiuh; Yang, Tzu-I; Tseng, Chien-Chao
2014-01-01
With the rapid growth of mobile network, tablets and smart phones have become sorts of keys to access personal secured services in our daily life. People use these devices to manage personal finances, shop on the Internet, and even pay at vending machines. Besides, it also helps us get connected with friends and business partners through social network applications, which were widely used as personal identifications in both real and virtual societies. However, these devices use inherently weak authentication mechanism, based upon passwords and PINs that is not changed all the time. Although forcing users to change password periodically can enhance the security level, it may also be considered annoyances for users. Biometric technologies are straightforward because of the simple authentication process. However, most of the traditional biometrics methodologies require diverse equipment to acquire biometric information, which may be expensive and not portable. This paper proposes a multibiometric user authentication scheme with both physiological and behavioral biometrics. Only simple rotations with fingers on multitouch devices are required to enhance the security level without annoyances for users. In addition, the user credential is replaceable to prevent from the privacy leakage.
Matching factorization theorems with an inverse-error weighting
Echevarria, Miguel G.; Kasemets, Tomas; Lansberg, Jean-Philippe; ...
2018-04-03
We propose a new fast method to match factorization theorems applicable in different kinematical regions, such as the transverse-momentum-dependent and the collinear factorization theorems in Quantum Chromodynamics. At variance with well-known approaches relying on their simple addition and subsequent subtraction of double-counted contributions, ours simply builds on their weighting using the theory uncertainties deduced from the factorization theorems themselves. This allows us to estimate the unknown complete matched cross section from an inverse-error-weighted average. The method is simple and provides an evaluation of the theoretical uncertainty of the matched cross section associated with the uncertainties from the power corrections tomore » the factorization theorems (additional uncertainties, such as the nonperturbative ones, should be added for a proper comparison with experimental data). Its usage is illustrated with several basic examples, such as Z boson, W boson, H 0 boson and Drell–Yan lepton-pair production in hadronic collisions, and compared to the state-of-the-art Collins–Soper–Sterman subtraction scheme. In conclusion, it is also not limited to the transverse-momentum spectrum, and can straightforwardly be extended to match any (un)polarized cross section differential in other variables, including multi-differential measurements.« less
Yurkin, Alexander; Tozzi, Arturo; Peters, James F; Marijuán, Pedro C
2017-12-01
The present Addendum complements the accompanying paper "Cellular Gauge Symmetry and the Li Organization Principle"; it illustrates a recently-developed geometrical physical model able to assess electronic movements and energetic paths in atomic shells. The model describes a multi-level system of circular, wavy and zigzag paths which can be projected onto a horizontal tape. This model ushers in a visual interpretation of the distribution of atomic electrons' energy levels and the corresponding quantum numbers through rather simple tools, such as compasses, rulers and straightforward calculations. Here we show how this geometrical model, with the due corrections, among them the use of geodetic curves, might be able to describe and quantify the structure and the temporal development of countless physical and biological systems, from Langevin equations for random paths, to symmetry breaks occurring ubiquitously in physical and biological phenomena, to the relationships among different frequencies of EEG electric spikes. Therefore, in our work we explore the possible association of binomial distribution and geodetic curves configuring a uniform approach for the research of natural phenomena, in biology, medicine or the neurosciences. Copyright © 2017 Elsevier Ltd. All rights reserved.
Three simple biomarkers useful in conducting water quality assessments with bivalve mollusks.
Blaise, Christian; Gagné, François; Burgeot, Thierry
2017-12-01
While biomarkers are undeniably key tools in aquatic ecotoxicology to measure adverse effects linked to contamination events, their application is often inhibited by monetary constraints negating the possibility of having access to dedicated equipment, special wares, and/or expensive reagents. To offset this bottleneck, we propose three simple physiological biomarkers, quantifiable in bivalves, that are free of cost considerations and that can provide basic knowledge on animal health and water quality. Indeed, condition index (CI), growth index (GI), and SOS response (air-time survival) comprise measurements straightforward enough to perform by any laboratory or science body on the planet. Long-term monitoring or screening studies can be carried out with these biomarkers and they are able to provide robust information notably after exposure of bivalves to either singular or multiple agents of contamination. By highlighting examples of data generated in aquatic studies conducted in Eastern Canada under both laboratory and field situations with different species of marine and freshwater mollusks, we establish the suitability of these biomarkers for assessing environmental contamination. Their relationships with other biomarkers are also shown which further corroborate their value as reliable indicators of ecosystem health.
Matching factorization theorems with an inverse-error weighting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Echevarria, Miguel G.; Kasemets, Tomas; Lansberg, Jean-Philippe
We propose a new fast method to match factorization theorems applicable in different kinematical regions, such as the transverse-momentum-dependent and the collinear factorization theorems in Quantum Chromodynamics. At variance with well-known approaches relying on their simple addition and subsequent subtraction of double-counted contributions, ours simply builds on their weighting using the theory uncertainties deduced from the factorization theorems themselves. This allows us to estimate the unknown complete matched cross section from an inverse-error-weighted average. The method is simple and provides an evaluation of the theoretical uncertainty of the matched cross section associated with the uncertainties from the power corrections tomore » the factorization theorems (additional uncertainties, such as the nonperturbative ones, should be added for a proper comparison with experimental data). Its usage is illustrated with several basic examples, such as Z boson, W boson, H 0 boson and Drell–Yan lepton-pair production in hadronic collisions, and compared to the state-of-the-art Collins–Soper–Sterman subtraction scheme. In conclusion, it is also not limited to the transverse-momentum spectrum, and can straightforwardly be extended to match any (un)polarized cross section differential in other variables, including multi-differential measurements.« less
A User Authentication Scheme Using Physiological and Behavioral Biometrics for Multitouch Devices
Koong, Chorng-Shiuh; Tseng, Chien-Chao
2014-01-01
With the rapid growth of mobile network, tablets and smart phones have become sorts of keys to access personal secured services in our daily life. People use these devices to manage personal finances, shop on the Internet, and even pay at vending machines. Besides, it also helps us get connected with friends and business partners through social network applications, which were widely used as personal identifications in both real and virtual societies. However, these devices use inherently weak authentication mechanism, based upon passwords and PINs that is not changed all the time. Although forcing users to change password periodically can enhance the security level, it may also be considered annoyances for users. Biometric technologies are straightforward because of the simple authentication process. However, most of the traditional biometrics methodologies require diverse equipment to acquire biometric information, which may be expensive and not portable. This paper proposes a multibiometric user authentication scheme with both physiological and behavioral biometrics. Only simple rotations with fingers on multitouch devices are required to enhance the security level without annoyances for users. In addition, the user credential is replaceable to prevent from the privacy leakage. PMID:25147864
NASA Astrophysics Data System (ADS)
Hachani, Roxanne; Lowdell, Mark; Birchall, Martin; Hervault, Aziliz; Mertz, Damien; Begin-Colin, Sylvie; Thanh, Nguy&Ecirtil; N. Thi&Cmb. B. Dot; Kim
2016-02-01
Iron oxide nanoparticles (IONPs) of low polydispersity were obtained through a simple polyol synthesis in high pressure and high temperature conditions. The control of the size and morphology of the nanoparticles was studied by varying the solvent used, the amount of iron precursor and the reaction time. Compared with conventional synthesis methods such as thermal decomposition or co-precipitation, this process yields nanoparticles with a narrow particle size distribution in a simple, reproducible and cost effective manner without the need for an inert atmosphere. For example, IONPs with a diameter of ca. 8 nm could be made in a reproducible manner and with good crystallinity as evidenced by X-ray diffraction analysis and high saturation magnetization value (84.5 emu g-1). The surface of the IONPs could be tailored post synthesis with two different ligands which provided functionality and stability in water and phosphate buffer saline (PBS). Their potential as a magnetic resonance imaging (MRI) contrast agent was confirmed as they exhibited high r1 and r2 relaxivities of 7.95 mM-1 s-1 and 185.58 mM-1 s-1 respectively at 1.4 T. Biocompatibility and viability of IONPs in primary human mesenchymal stem cells (hMSCs) was studied and confirmed.Iron oxide nanoparticles (IONPs) of low polydispersity were obtained through a simple polyol synthesis in high pressure and high temperature conditions. The control of the size and morphology of the nanoparticles was studied by varying the solvent used, the amount of iron precursor and the reaction time. Compared with conventional synthesis methods such as thermal decomposition or co-precipitation, this process yields nanoparticles with a narrow particle size distribution in a simple, reproducible and cost effective manner without the need for an inert atmosphere. For example, IONPs with a diameter of ca. 8 nm could be made in a reproducible manner and with good crystallinity as evidenced by X-ray diffraction analysis and high saturation magnetization value (84.5 emu g-1). The surface of the IONPs could be tailored post synthesis with two different ligands which provided functionality and stability in water and phosphate buffer saline (PBS). Their potential as a magnetic resonance imaging (MRI) contrast agent was confirmed as they exhibited high r1 and r2 relaxivities of 7.95 mM-1 s-1 and 185.58 mM-1 s-1 respectively at 1.4 T. Biocompatibility and viability of IONPs in primary human mesenchymal stem cells (hMSCs) was studied and confirmed. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03867g
NASA Astrophysics Data System (ADS)
Zárate, Francisco; Cornejo, Alejandro; Oñate, Eugenio
2018-07-01
This paper extends to three dimensions (3D), the computational technique developed by the authors in 2D for predicting the onset and evolution of fracture in a finite element mesh in a simple manner based on combining the finite element method and the discrete element method (DEM) approach (Zárate and Oñate in Comput Part Mech 2(3):301-314, 2015). Once a crack is detected at an element edge, discrete elements are generated at the adjacent element vertexes and a simple DEM mechanism is considered in order to follow the evolution of the crack. The combination of the DEM with simple four-noded linear tetrahedron elements correctly captures the onset of fracture and its evolution, as shown in several 3D examples of application.
A simple GPU-accelerated two-dimensional MUSCL-Hancock solver for ideal magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Bard, Christopher M.; Dorelli, John C.
2014-02-01
We describe our experience using NVIDIA's CUDA (Compute Unified Device Architecture) C programming environment to implement a two-dimensional second-order MUSCL-Hancock ideal magnetohydrodynamics (MHD) solver on a GTX 480 Graphics Processing Unit (GPU). Taking a simple approach in which the MHD variables are stored exclusively in the global memory of the GTX 480 and accessed in a cache-friendly manner (without further optimizing memory access by, for example, staging data in the GPU's faster shared memory), we achieved a maximum speed-up of ≈126 for a 10242 grid relative to the sequential C code running on a single Intel Nehalem (2.8 GHz) core. This speedup is consistent with simple estimates based on the known floating point performance, memory throughput and parallel processing capacity of the GTX 480.
NASA Astrophysics Data System (ADS)
Tejos, Nicolas; Rodríguez-Puebla, Aldo; Primack, Joel R.
2018-01-01
We present a simple, efficient and robust approach to improve cosmological redshift measurements. The method is based on the presence of a reference sample for which a precise redshift number distribution (dN/dz) can be obtained for different pencil-beam-like sub-volumes within the original survey. For each sub-volume we then impose that: (i) the redshift number distribution of the uncertain redshift measurements matches the reference dN/dz corrected by their selection functions and (ii) the rank order in redshift of the original ensemble of uncertain measurements is preserved. The latter step is motivated by the fact that random variables drawn from Gaussian probability density functions (PDFs) of different means and arbitrarily large standard deviations satisfy stochastic ordering. We then repeat this simple algorithm for multiple arbitrary pencil-beam-like overlapping sub-volumes; in this manner, each uncertain measurement has multiple (non-independent) 'recovered' redshifts which can be used to estimate a new redshift PDF. We refer to this method as the Stochastic Order Redshift Technique (SORT). We have used a state-of-the-art N-body simulation to test the performance of SORT under simple assumptions and found that it can improve the quality of cosmological redshifts in a robust and efficient manner. Particularly, SORT redshifts (zsort) are able to recover the distinctive features of the so-called 'cosmic web' and can provide unbiased measurement of the two-point correlation function on scales ≳4 h-1Mpc. Given its simplicity, we envision that a method like SORT can be incorporated into more sophisticated algorithms aimed to exploit the full potential of large extragalactic photometric surveys.
General shape optimization capability
NASA Technical Reports Server (NTRS)
Chargin, Mladen K.; Raasch, Ingo; Bruns, Rudolf; Deuermeyer, Dawson
1991-01-01
A method is described for calculating shape sensitivities, within MSC/NASTRAN, in a simple manner without resort to external programs. The method uses natural design variables to define the shape changes in a given structure. Once the shape sensitivities are obtained, the shape optimization process is carried out in a manner similar to property optimization processes. The capability of this method is illustrated by two examples: the shape optimization of a cantilever beam with holes, loaded by a point load at the free end (with the shape of the holes and the thickness of the beam selected as the design variables), and the shape optimization of a connecting rod subjected to several different loading and boundary conditions.
Energy. Stop Faking It! Finally Understanding Science So You Can Teach It.
ERIC Educational Resources Information Center
Robertson, William C.
This book explains science concepts in a manner in which non-science teachers and parents can understand and learn science through activities. The concepts covered in this book include energy, simple machines, temperature, and heat transfer. Each chapter is supported with internet resources available at SciLinks and ends with a summary and…
ERIC Educational Resources Information Center
Economou, A.; Tzanavaras, P. D.; Themelis, D. G.
2005-01-01
The sequential-injection analysis (SIA) is an approach to sample handling that enables the automation of manual wet-chemistry procedures in a rapid, precise and efficient manner. The experiments using SIA fits well in the course of Instrumental Chemical Analysis and especially in the section of Automatic Methods of analysis provided by chemistry…
ERIC Educational Resources Information Center
Jones, Sandra
2013-01-01
As knowledge for competitive advantage develops beyond the transfer of simple data and information to focus on knowledge that has meaning, values, purpose and a more integrated aspect, higher education is required to graduate students able to operate in a more worldly manner across disciplines. Government's response to this need has been to demand…
A Flush Toilet Model for the Transistor
ERIC Educational Resources Information Center
Organtini, Giovanni
2012-01-01
In introductory physics textbooks, diodes working principles are usually well described in a relatively simple manner. According to our experience, they are well understood by students. Even when no formal derivation of the physics laws governing the current flow through a diode is given, the use of this device as a check valve is easily accepted.…
NASA Astrophysics Data System (ADS)
Horinaka, Hiromichi; Hashimoto, Koji; Wada, Kenji; Cho, Yoshio; Osawa, Masahiko
1995-07-01
The utilization of light polarization is proposed to extract quasi-straightforward-propagating photons from diffused light transmitting through a scattering medium under continuously operating conditions. Removal of a floor level normally appearing on the dynamic range over which the extraction capability is maintained is demonstrated. By use of pulse-based observations this cw scheme of extraction of quasi-straightforward-propagating photons is directly shown to be equivalent to the use of a temporal gate in the pulse-based operation.
NASA Astrophysics Data System (ADS)
Armanetti, Paolo; Flori, Alessandra; Avigo, Cinzia; Conti, Luca; Valtancoli, Barbara; Petroni, Debora; Doumett, Saer; Cappiello, Laura; Ravagli, Costanza; Baldi, Giovanni; Bencini, Andrea; Menichetti, Luca
2018-06-01
Recently, a number of photoacoustic (PA) agents with increased tissue penetration and fine spatial resolution have been developed for molecular imaging and mapping of pathophysiological features at the molecular level. Here, we present bio-conjugated near-infrared light-absorbing magnetic nanoparticles as a new agent for PA imaging. These nanoparticles exhibit suitable absorption in the near-infrared region, with good photoacoustic signal generation efficiency and high photo-stability. Furthermore, these encapsulated iron oxide nanoparticles exhibit strong super-paramagnetic behavior and nuclear relaxivities that make them useful as magnetic resonance imaging (MRI) contrast media as well. Their simple bio-conjugation strategy, optical and chemical stability, and straightforward manipulation could enable the development of a PA probe with magnetic and spectroscopic properties suitable for in vitro and in vivo real-time imaging of relevant biological targets.
Soft tissue differentiation by diffuse reflectance spectroscopy
NASA Astrophysics Data System (ADS)
Zam, Azhar; Stelzle, Florian; Nkenke, Emeka; Tangermann-Gerk, Katja; Schmidt, Michael; Adler, Werner; Douplik, Alexandre
2009-07-01
Laser surgery gives the possibility to work remotely which leads to high precision, little trauma and high level sterility. However these advantages are coming with the lack of haptic feedback during the laser ablation of tissue. Therefore additional means are required to control tissue-specific ablation during laser surgery supporting the surgeon regardless of experience and skills. Diffuse Reflectance Spectroscopy provides a straightforward and simple approach for optical tissue differentiation. We measured diffuse reflectance from four various tissue types ex vivo. We applied Linear Discriminant Analysis (LDA) to differentiate the four tissue types and computed the area under the ROC curve (AUC). Special emphasis was taken on the identification of nerve as the most crucial tissue for maxillofacial surgery. The results show a promise for differentiating soft tissues as guidance for tissue-specific laser surgery by means of the diffuse reflectance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dou, Wenjie; Subotnik, Joseph E.; Nitzan, Abraham
2015-06-21
In a previous paper [Dou et al., J. Chem. Phys. 142, 084110 (2015)], we have introduced a surface hopping (SH) approach to deal with the Anderson-Holstein model. Here, we address some interesting aspects that have not been discussed previously, including transient phenomena and extensions to arbitrary impurity-bath couplings. In particular, in this paper we show that the SH approach captures phonon coherence beyond the secular approximation, and that SH rates agree with Marcus theory at steady state. Finally, we show that, in cases where the electronic tunneling rate depends on nuclear position, a straightforward use of Marcus theory rates yieldsmore » a useful starting point for capturing level broadening. For a simple such model, we find I-V curves that exhibit negative differential resistance.« less
Co-reductive fabrication of carbon nanodots with high quantum yield for bioimaging of bacteria
Wang, Jiajun; Liu, Xia; Milcovich, Gesmi; Chen, Tzu-Yu; Durack, Edel; Mallen, Sarah; Ruan, Yongming
2018-01-01
A simple and straightforward synthetic approach for carbon nanodots (C-dots) is proposed. The strategy is based on a one-step hydrothermal chemical reduction with thiourea and urea, leading to high quantum yield C-dots. The obtained C-dots are well-dispersed with a uniform size and a graphite-like structure. A synergistic reduction mechanism was investigated using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The findings show that using both thiourea and urea during the one-pot synthesis enhances the luminescence of the generated C-dots. Moreover, the prepared C-dots have a high distribution of functional groups on their surface. In this work, C-dots proved to be a suitable nanomaterial for imaging of bacteria and exhibit potential for application in bioimaging thanks to their low cytotoxicity. PMID:29441259
Neonatal Ear Molding: Timing and Technique.
Anstadt, Erin Elizabeth; Johns, Dana Nicole; Kwok, Alvin Chi-Ming; Siddiqi, Faizi; Gociman, Barbu
2016-03-01
The incidence of auricular deformities is believed to be ∼11.5 per 10,000 births, excluding children with microtia. Although not life-threatening, auricular deformities can cause undue distress for patients and their families. Although surgical procedures have traditionally been used to reconstruct congenital auricular deformities, ear molding has been gaining acceptance as an efficacious, noninvasive alternative for the treatment of newborns with ear deformations. We present the successful correction of bilateral Stahl's ear deformity in a newborn through a straightforward, nonsurgical method implemented on the first day of life. The aim of this report is to make pediatric practitioners aware of an effective and simple molding technique appropriate for correction of congenital auricular anomalies. In addition, it stresses the importance of very early initiation of ear cartilage molding for achieving the desired outcome. Copyright © 2016 by the American Academy of Pediatrics.
A symmetric multivariate leakage correction for MEG connectomes
Colclough, G.L.; Brookes, M.J.; Smith, S.M.; Woolrich, M.W.
2015-01-01
Ambiguities in the source reconstruction of magnetoencephalographic (MEG) measurements can cause spurious correlations between estimated source time-courses. In this paper, we propose a symmetric orthogonalisation method to correct for these artificial correlations between a set of multiple regions of interest (ROIs). This process enables the straightforward application of network modelling methods, including partial correlation or multivariate autoregressive modelling, to infer connectomes, or functional networks, from the corrected ROIs. Here, we apply the correction to simulated MEG recordings of simple networks and to a resting-state dataset collected from eight subjects, before computing the partial correlations between power envelopes of the corrected ROItime-courses. We show accurate reconstruction of our simulated networks, and in the analysis of real MEGresting-state connectivity, we find dense bilateral connections within the motor and visual networks, together with longer-range direct fronto-parietal connections. PMID:25862259
Separation of Lignin from Corn Stover Hydrolysate with Quantitative Recovery of Ionic Liquid
Underkofler, Kaylee A.; Teixeira, Rodrigo E.; Pietsch, Stephen A.; Knapp, Kurtis G.; Raines, Ronald T.
2015-01-01
Abundant lignocellulosic biomass could become a source of sugars and lignin, potential feedstocks for the now emergent bio-renewable economy. The production and conversion of sugars from biomass have been well-studied, but far less is known about the production of lignin that is amenable to valorization. Here we report the isolation of lignin generated from the hydrolysis of biomass dissolved in the ionic liquid 1-butyl-3-methylimidazolium chloride. We show that lignin can be isolated from the hydrolysate slurry by simple filtration or centrifugation, and that the ionic liquid can be recovered quantitatively by a straightforward wash with water. The isolated lignin is not only free from ionic liquid, but also lacks cellulosic residues and is substantially depolymerized, making it a promising feedstock for valorization by conversion into fuels and chemicals. PMID:25866701
Synthesis and Photocatalytic Activity of Anatase TiO2 Nanoparticles-coated Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Xie, Yi; Heo, Sung Hwan; Yoo, Seung Hwa; Ali, Ghafar; Cho, Sung Oh
2010-03-01
A simple and straightforward approach to prepare TiO2-coated carbon nanotubes (CNTs) is presented. Anatase TiO2 nanoparticles (NPs) with the average size ~8 nm were coated on CNTs from peroxo titanic acid (PTA) precursor even at low temperature of 100 °C. We demonstrate the effects of CNTs/TiO2 molar ratio on the adsorption capability and photocatalytic efficiency under UV-visible irradiation. The samples showed not only good optical absorption in visible range, but also great adsorption capacity for methyl orange (MO) dye molecules. These properties facilitated the great enhancement of photocatalytic activity of TiO2 NPs-coated CNTs photocatalysts. The TiO2 NPs-coated CNTs exhibited 2.45 times higher photocatalytic activity for MO degradation than that of pure TiO2.
Synthesis and Photocatalytic Activity of Anatase TiO2 Nanoparticles-coated Carbon Nanotubes
2010-01-01
A simple and straightforward approach to prepare TiO2-coated carbon nanotubes (CNTs) is presented. Anatase TiO2 nanoparticles (NPs) with the average size ~8 nm were coated on CNTs from peroxo titanic acid (PTA) precursor even at low temperature of 100 °C. We demonstrate the effects of CNTs/TiO2 molar ratio on the adsorption capability and photocatalytic efficiency under UV–visible irradiation. The samples showed not only good optical absorption in visible range, but also great adsorption capacity for methyl orange (MO) dye molecules. These properties facilitated the great enhancement of photocatalytic activity of TiO2 NPs-coated CNTs photocatalysts. The TiO2 NPs-coated CNTs exhibited 2.45 times higher photocatalytic activity for MO degradation than that of pure TiO2. PMID:20671780
Quantifying entanglement in two-mode Gaussian states
NASA Astrophysics Data System (ADS)
Tserkis, Spyros; Ralph, Timothy C.
2017-12-01
Entangled two-mode Gaussian states are a key resource for quantum information technologies such as teleportation, quantum cryptography, and quantum computation, so quantification of Gaussian entanglement is an important problem. Entanglement of formation is unanimously considered a proper measure of quantum correlations, but for arbitrary two-mode Gaussian states no analytical form is currently known. In contrast, logarithmic negativity is a measure that is straightforward to calculate and so has been adopted by most researchers, even though it is a less faithful quantifier. In this work, we derive an analytical lower bound for entanglement of formation of generic two-mode Gaussian states, which becomes tight for symmetric states and for states with balanced correlations. We define simple expressions for entanglement of formation in physically relevant situations and use these to illustrate the problematic behavior of logarithmic negativity, which can lead to spurious conclusions.
Conversion of the agent-oriented domain-specific language ALAS into JavaScript
NASA Astrophysics Data System (ADS)
Sredojević, Dejan; Vidaković, Milan; Okanović, Dušan; Mitrović, Dejan; Ivanović, Mirjana
2016-06-01
This paper shows generation of JavaScript code from code written in agent-oriented domain-specific language ALAS. ALAS is an agent-oriented domain-specific language for writing software agents that are executed within XJAF middleware. Since the agents can be executed on various platforms, they must be converted into a language of the target platform. We also try to utilize existing tools and technologies to make the whole conversion process as simple as possible, as well as faster and more efficient. We use the Xtext framework that is compatible with Java to implement ALAS infrastructure - editor and code generator. Since Xtext supports Java, generation of Java code from ALAS code is straightforward. To generate a JavaScript code that will be executed within the target JavaScript XJAF implementation, Google Web Toolkit (GWT) is used.
Adjoint affine fusion and tadpoles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urichuk, Andrew, E-mail: andrew.urichuk@uleth.ca; Walton, Mark A., E-mail: walton@uleth.ca; International School for Advanced Studies
2016-06-15
We study affine fusion with the adjoint representation. For simple Lie algebras, elementary and universal formulas determine the decomposition of a tensor product of an integrable highest-weight representation with the adjoint representation. Using the (refined) affine depth rule, we prove that equally striking results apply to adjoint affine fusion. For diagonal fusion, a coefficient equals the number of nonzero Dynkin labels of the relevant affine highest weight, minus 1. A nice lattice-polytope interpretation follows and allows the straightforward calculation of the genus-1 1-point adjoint Verlinde dimension, the adjoint affine fusion tadpole. Explicit formulas, (piecewise) polynomial in the level, are writtenmore » for the adjoint tadpoles of all classical Lie algebras. We show that off-diagonal adjoint affine fusion is obtained from the corresponding tensor product by simply dropping non-dominant representations.« less
Null but not void: considerations for hypothesis testing.
Shaw, Pamela A; Proschan, Michael A
2013-01-30
Standard statistical theory teaches us that once the null and alternative hypotheses have been defined for a parameter, the choice of the statistical test is clear. Standard theory does not teach us how to choose the null or alternative hypothesis appropriate to the scientific question of interest. Neither does it tell us that in some cases, depending on which alternatives are realistic, we may want to define our null hypothesis differently. Problems in statistical practice are frequently not as pristinely summarized as the classic theory in our textbooks. In this article, we present examples in statistical hypothesis testing in which seemingly simple choices are in fact rich with nuance that, when given full consideration, make the choice of the right hypothesis test much less straightforward. Published 2012. This article is a US Government work and is in the public domain in the USA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bloomquist, R.Gordon
1991-10-01
The actual geothermal exploration and development may appear to be a simple and straightforward process in comparison to the legal and institutional maze which the developer must navigate in order to obtain all of the federal, state, and local leases, permits, licenses, and approvals necessary at each step in the process. Finally, and often most difficult, is obtaining a contract for the sale of thermal energy, brine, steam, or electricity. This guide is designed to help developers interested in developing geothermal resource sites in the Bonneville Power Administration Service Territory in the state of Idaho, Montana, Oregon, and Washington bettermore » understand the federal, state, and local institutional process, the roles and responsibilities of each agency, and how and when to make contact in order to obtain the necessary documents.« less
Analysis of capture-recapture models with individual covariates using data augmentation
Royle, J. Andrew
2009-01-01
I consider the analysis of capture-recapture models with individual covariates that influence detection probability. Bayesian analysis of the joint likelihood is carried out using a flexible data augmentation scheme that facilitates analysis by Markov chain Monte Carlo methods, and a simple and straightforward implementation in freely available software. This approach is applied to a study of meadow voles (Microtus pennsylvanicus) in which auxiliary data on a continuous covariate (body mass) are recorded, and it is thought that detection probability is related to body mass. In a second example, the model is applied to an aerial waterfowl survey in which a double-observer protocol is used. The fundamental unit of observation is the cluster of individual birds, and the size of the cluster (a discrete covariate) is used as a covariate on detection probability.
Design Through Manufacturing: The Solid Model-Finite Element Analysis Interface
NASA Technical Reports Server (NTRS)
Rubin, Carol
2002-01-01
State-of-the-art computer aided design (CAD) presently affords engineers the opportunity to create solid models of machine parts reflecting every detail of the finished product. Ideally, in the aerospace industry, these models should fulfill two very important functions: (1) provide numerical. control information for automated manufacturing of precision parts, and (2) enable analysts to easily evaluate the stress levels (using finite element analysis - FEA) for all structurally significant parts used in aircraft and space vehicles. Today's state-of-the-art CAD programs perform function (1) very well, providing an excellent model for precision manufacturing. But they do not provide a straightforward and simple means of automating the translation from CAD to FEA models, especially for aircraft-type structures. Presently, the process of preparing CAD models for FEA consumes a great deal of the analyst's time.
Real-Time XRD Studies of Li-O2 Electrochemical Reaction in Nonaqueous Lithium-Oxygen Battery.
Lim, Hyunseob; Yilmaz, Eda; Byon, Hye Ryung
2012-11-01
Understanding of electrochemical process in rechargeable Li-O2 battery has suffered from lack of proper analytical tool, especially related to the identification of chemical species and number of electrons involved in the discharge/recharge process. Here we present a simple and straightforward analytical method for simultaneously attaining chemical and quantified information of Li2O2 (discharge product) and byproducts using in situ XRD measurement. By real-time monitoring of solid-state Li2O2 peak area, the accurate efficiency of Li2O2 formation and the number of electrons can be evaluated during full discharge. Furthermore, by observation of sequential area change of Li2O2 peak during recharge, we found nonlinearity of Li2O2 decomposition rate for the first time in ether-based electrolyte.
Generalized Weyl-Wigner map and Vey quantum mechanics
NASA Astrophysics Data System (ADS)
Dias, Nuno Costa; Prata, João Nuno
2001-12-01
The Weyl-Wigner map yields the entire structure of Moyal quantum mechanics directly from the standard operator formulation. The covariant generalization of Moyal theory, also known as Vey quantum mechanics, was presented in the literature many years ago. However, a derivation of the formalism directly from standard operator quantum mechanics, clarifying the relation between the two formulations, is still missing. In this article we present a covariant generalization of the Weyl order prescription and of the Weyl-Wigner map and use them to derive Vey quantum mechanics directly from the standard operator formulation. The procedure displays some interesting features: it yields all the key ingredients and provides a more straightforward interpretation of the Vey theory including a direct implementation of unitary operator transformations as phase space coordinate transformations in the Vey idiom. These features are illustrated through a simple example.
In vivo phosphorylation of a peptide tag for protein purification.
Goux, Marine; Fateh, Amina; Defontaine, Alain; Cinier, Mathieu; Tellier, Charles
2016-05-01
To design a new system for the in vivo phosphorylation of proteins in Escherichia coli using the co-expression of the α-subunit of casein kinase II (CKIIα) and a target protein, (Nanofitin) fused with a phosphorylatable tag. The level of the co-expressed CKIIα was controlled by the arabinose promoter and optimal phosphorylation was obtained with 2 % (w/v) arabinose as inductor. The effectiveness of the phosphorylation system was demonstrated by electrophoretic mobility shift assay (NUT-PAGE) and staining with a specific phosphoprotein-staining gel. The resulting phosphorylated tag was also used to purify the phosphoprotein by immobilized metal affinity chromatography, which relies on the specific interaction of phosphate moieties with Fe(III). The use of a single tag for both the purification and protein array anchoring provides a simple and straightforward system for protein analysis.
A Thermal Management Systems Model for the NASA GTX RBCC Concept
NASA Technical Reports Server (NTRS)
Traci, Richard M.; Farr, John L., Jr.; Laganelli, Tony; Walker, James (Technical Monitor)
2002-01-01
The Vehicle Integrated Thermal Management Analysis Code (VITMAC) was further developed to aid the analysis, design, and optimization of propellant and thermal management concepts for advanced propulsion systems. The computational tool is based on engineering level principles and models. A graphical user interface (GUI) provides a simple and straightforward method to assess and evaluate multiple concepts before undertaking more rigorous analysis of candidate systems. The tool incorporates the Chemical Equilibrium and Applications (CEA) program and the RJPA code to permit heat transfer analysis of both rocket and air breathing propulsion systems. Key parts of the code have been validated with experimental data. The tool was specifically tailored to analyze rocket-based combined-cycle (RBCC) propulsion systems being considered for space transportation applications. This report describes the computational tool and its development and verification for NASA GTX RBCC propulsion system applications.