Surface-electrode point Paul trap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Tony Hyun; Herskind, Peter F.; Chuang, Isaac L.
2010-10-15
We present a model as well as experimental results for a surface electrode radiofrequency Paul trap that has a circular electrode geometry well suited for trapping single ions and two-dimensional planar ion crystals. The trap design is compatible with microfabrication and offers a simple method by which the height of the trapped ions above the surface may be changed in situ. We demonstrate trapping of single {sup 88}Sr{sup +} ions over an ion height range of 200-1000 {mu}m for several hours under Doppler laser cooling and use these to characterize the trap, finding good agreement with our model.
Poverty trap formed by the ecology of infectious diseases
Bonds, Matthew H.; Keenan, Donald C.; Rohani, Pejman; Sachs, Jeffrey D.
2010-01-01
While most of the world has enjoyed exponential economic growth, more than one-sixth of the world is today roughly as poor as their ancestors were many generations ago. Widely accepted general explanations for the persistence of such poverty have been elusive and are needed by the international development community. Building on a well-established model of human infectious diseases, we show how formally integrating simple economic and disease ecology models can naturally give rise to poverty traps, where initial economic and epidemiological conditions determine the long-term trajectory of the health and economic development of a society. This poverty trap may therefore be broken by improving health conditions of the population. More generally, we demonstrate that simple human ecological models can help explain broad patterns of modern economic organization. PMID:20007179
NASA Astrophysics Data System (ADS)
Prathap Reddy, K.
2016-11-01
An ‘electrostatic bathtub potential’ is defined and analytical expressions for the time period and amplitude of charged particles in this potential are obtained and compared with simulations. These kinds of potentials are encountered in linear electrostatic ion traps, where the potential along the axis appears like a bathtub. Ion traps are used in basic physics research and mass spectrometry to store ions; these stored ions make oscillatory motion within the confined volume of the trap. Usually these traps are designed and studied using ion optical software, but in this work the bathtub potential is reproduced by making two simple modifications to the harmonic oscillator potential. The addition of a linear ‘k 1|x|’ potential makes the simple harmonic potential curve steeper with a sharper turn at the origin, while the introduction of a finite-length zero potential region at the centre reproduces the flat region of the bathtub curve. This whole exercise of modelling a practical experimental situation in terms of a well-known simple physics problem may generate interest among readers.
Applications of the trilinear Hamiltonian with three trapped ions
NASA Astrophysics Data System (ADS)
Hablutzel Marrero, Roland Esteban; Ding, Shiqian; Maslennikov, Gleb; Gan, Jaren; Nimmrichter, Stefan; Roulet, Alexandre; Dai, Jibo; Scarani, Valerio; Matsukevich, Dzmitry
2017-04-01
The trilinear Hamiltonian a† bc + ab†c† , which describes a nonlinear interaction between harmonic oscillators, can be implemented to study different phenomena ranging from simple quantum models to quantum thermodynamics. We engineer this coupling between three modes of motion of three trapped 171Yb+ ions, where the interaction arises naturally from their mutual (anharmonic) Coulomb repulsion. By tuning our trapping parameters we are able to turn on / off resonant exchange of energy between the modes on demand. We present applications of this Hamiltonian for simulations of the parametric down conversion process in the regime of depleted pump, a simple model of Hawking radiation, and the Tavis-Cummings model. We also discuss the implementation of the quantum absorption refrigerator in such system and experimentally study effects of quantum coherence on its performance. This research is supported by the National Research Foundation, Prime Minister's Office, Singapore and the Ministry of Education, Singapore under the Research Centres of Excellence programme.
A Simple Treatment of the Liquidity Trap for Intermediate Macroeconomics Courses
ERIC Educational Resources Information Center
Buttet, Sebastien; Roy, Udayan
2014-01-01
Several leading undergraduate intermediate macroeconomics textbooks now include a simple reduced-form New Keynesian model of short-run dynamics (alongside the IS-LM model). Unfortunately, there is no accompanying description of how the zero lower bound on nominal interest rates affects the model. In this article, the authors show how the…
Numerical evidences of universal trap-like aging dynamics
NASA Astrophysics Data System (ADS)
Cammarota, Chiara; Marinari, Enzo
2018-04-01
Trap models have been initially proposed as toy models for dynamical relaxation in extremely simplified rough potential energy landscapes. Their importance has recently grown considerably thanks to the discovery that the trap-like aging mechanism directly controls the out-of-equilibrium relaxation processes of more sophisticated spin models, that are considered as the solvable counterpart of real disordered systems. Further establishing the connection between these spin models, out-of-equilibrium behavior and the trap like aging mechanism could shed new light on the properties, which are still largely mysterious, for the activated out-of-equilibrium dynamics of disordered systems. In this work we discuss numerical evidence based on the computations of the permanence times of an emergent trap-like aging behavior in a variety of very simple disordered models—developed from the trap model paradigm. Our numerical results are backed by analytic derivations and heuristic discussions. Such exploration reveals some of the tricks needed to reveal the trap behavior in spite of the occurrence of secondary processes, of the existence of dynamical correlations and of strong finite system’s size effects.
Positron studies of metal-oxide-semiconductor structures
NASA Astrophysics Data System (ADS)
Au, H. L.; Asoka-Kumar, P.; Nielsen, B.; Lynn, K. G.
1993-03-01
Positron annihilation spectroscopy provides a new probe to study the properties of interface traps in metal-oxide semiconductors (MOS). Using positrons, we have examined the behavior of the interface traps as a function of gate bias. We propose a simple model to explain the positron annihilation spectra from the interface region of a MOS capacitor.
Microscopic motion of particles flowing through a porous medium
NASA Astrophysics Data System (ADS)
Lee, Jysoo; Koplik, Joel
1999-01-01
Stokesian dynamics simulations are used to study the microscopic motion of particles suspended in fluids passing through porous media. Model porous media with fixed spherical particles are constructed, and mobile ones move through this fixed bed under the action of an ambient velocity field. The pore scale motion of individual suspended particles at pore junctions are first considered. The relative particle flux into different possible directions exiting from a single pore, for two- and three-dimensional model porous media is found to approximately equal the corresponding fractional channel width or area. Next the waiting time distribution for particles which are delayed in a junction due to a stagnation point caused by a flow bifurcation is considered. The waiting times are found to be controlled by two-particle interactions, and the distributions take the same form in model porous media as in two-particle systems. A simple theoretical estimate of the waiting time is consistent with the simulations. It is found that perturbing such a slow-moving particle by another nearby one leads to rather complicated behavior. Finally, the stability of geometrically trapped particles is studied. For simple model traps, it is found that particles passing nearby can "relaunch" the trapped particle through its hydrodynamic interaction, although the conditions for relaunching depend sensitively on the details of the trap and its surroundings.
Solar Modulation of Inner Trapped Belt Radiation Flux as a Function of Atmospheric Density
NASA Technical Reports Server (NTRS)
Lodhi, M. A. K.
2005-01-01
No simple algorithm seems to exist for calculating proton fluxes and lifetimes in the Earth's inner, trapped radiation belt throughout the solar cycle. Most models of the inner trapped belt in use depend upon AP8 which only describes the radiation environment at solar maximum and solar minimum in Cycle 20. One exception is NOAAPRO which incorporates flight data from the TIROS/NOAA polar orbiting spacecraft. The present study discloses yet another, simple formulation for approximating proton fluxes at any time in a given solar cycle, in particular between solar maximum and solar minimum. It is derived from AP8 using a regression algorithm technique from nuclear physics. From flux and its time integral fluence, one can then approximate dose rate and its time integral dose.
NASA Astrophysics Data System (ADS)
Lu, Han-Han; Xu, Jing-Ping; Liu, Lu; Lai, Pui-To; Tang, Wing-Man
2016-11-01
An equivalent distributed capacitance model is established by considering only the gate oxide-trap capacitance to explain the frequency dispersion in the C-V curve of MOS capacitors measured for a frequency range from 1 kHz to 1 MHz. The proposed model is based on the Fermi-Dirac statistics and the charging/discharging effects of the oxide traps induced by a small ac signal. The validity of the proposed model is confirmed by the good agreement between the simulated results and experimental data. Simulations indicate that the capacitance dispersion of an MOS capacitor under accumulation and near flatband is mainly caused by traps adjacent to the oxide/semiconductor interface, with negligible effects from the traps far from the interface, and the relevant distance from the interface at which the traps can still contribute to the gate capacitance is also discussed. In addition, by excluding the negligible effect of oxide-trap conductance, the model avoids the use of imaginary numbers and complex calculations, and thus is simple and intuitive. Project supported by the National Natural Science Foundation of China (Grant Nos. 61176100 and 61274112), the University Development Fund of the University of Hong Kong, China (Grant No. 00600009), and the Hong Kong Polytechnic University, China (Grant No. 1-ZVB1).
Theory on the mechanism of site-specific DNA-protein interactions in the presence of traps
NASA Astrophysics Data System (ADS)
Niranjani, G.; Murugan, R.
2016-08-01
The speed of site-specific binding of transcription factor (TFs) proteins with genomic DNA seems to be strongly retarded by the randomly occurring sequence traps. Traps are those DNA sequences sharing significant similarity with the original specific binding sites (SBSs). It is an intriguing question how the naturally occurring TFs and their SBSs are designed to manage the retarding effects of such randomly occurring traps. We develop a simple random walk model on the site-specific binding of TFs with genomic DNA in the presence of sequence traps. Our dynamical model predicts that (a) the retarding effects of traps will be minimum when the traps are arranged around the SBS such that there is a negative correlation between the binding strength of TFs with traps and the distance of traps from the SBS and (b) the retarding effects of sequence traps can be appeased by the condensed conformational state of DNA. Our computational analysis results on the distribution of sequence traps around the putative binding sites of various TFs in mouse and human genome clearly agree well the theoretical predictions. We propose that the distribution of traps can be used as an additional metric to efficiently identify the SBSs of TFs on genomic DNA.
Fast modeling of flux trapping cascaded explosively driven magnetic flux compression generators.
Wang, Yuwei; Zhang, Jiande; Chen, Dongqun; Cao, Shengguang; Li, Da; Liu, Chebo
2013-01-01
To predict the performance of flux trapping cascaded flux compression generators, a calculation model based on an equivalent circuit is investigated. The system circuit is analyzed according to its operation characteristics in different steps. Flux conservation coefficients are added to the driving terms of circuit differential equations to account for intrinsic flux losses. To calculate the currents in the circuit by solving the circuit equations, a simple zero-dimensional model is used to calculate the time-varying inductance and dc resistance of the generator. Then a fast computer code is programmed based on this calculation model. As an example, a two-staged flux trapping generator is simulated by using this computer code. Good agreements are achieved by comparing the simulation results with the measurements. Furthermore, it is obvious that this fast calculation model can be easily applied to predict performances of other flux trapping cascaded flux compression generators with complex structures such as conical stator or conical armature sections and so on for design purpose.
Andreev bound states. Some quasiclassical reflections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Y., E-mail: yiriolin@illinois.edu; Leggett, A. J.
2014-12-15
We discuss a very simple and essentially exactly solvable model problem which illustrates some nice features of Andreev bound states, namely, the trapping of a single Bogoliubov quasiparticle in a neutral s-wave BCS superfluid by a wide and shallow Zeeman trap. In the quasiclassical limit, the ground state is a doublet with a splitting which is proportional to the exponentially small amplitude for “normal” reflection by the edges of the trap. We comment briefly on a prima facie paradox concerning the continuity equation and conjecture a resolution to it.
Andreev bound states. Some quasiclassical reflections
NASA Astrophysics Data System (ADS)
Lin, Y.; Leggett, A. J.
2014-12-01
We discuss a very simple and essentially exactly solvable model problem which illustrates some nice features of Andreev bound states, namely, the trapping of a single Bogoliubov quasiparticle in a neutral s-wave BCS superfluid by a wide and shallow Zeeman trap. In the quasiclassical limit, the ground state is a doublet with a splitting which is proportional to the exponentially small amplitude for "normal" reflection by the edges of the trap. We comment briefly on a prima facie paradox concerning the continuity equation and conjecture a resolution to it.
Ajitomi, Atsushi; Taba, Satoshi; Ajitomi, Yoshino; Kinjo, Misa; Sekine, Ken-taro
2018-01-01
We tested a formulation composed of a mixture of Bidens pilosa var. radiata extract (BPE) and nematode-trapping fungi for its effects on Meloidogyne incognita. In earlier evaluations of the effects of plant extracts on the hyphal growth of 5 species of nematode-trapping fungi with different capture organs (traps), the growth of all species was slightly inhibited. However, an investigation on the number of capture organs and nematode-trapping rates revealed that Arthrobotrys dactyloides formed significantly more rings and nematode traps than those of the control. An evaluation of simple mixed formulations prepared using sodium alginate showed that nematodes were captured with all formulations tested. The simple mixed formulation showed a particularly high capture rate. Furthermore, in a pot test, although the effects of a single formulation made from the fungus or plant extract were acceptable, the efficacy of the simple mixed formulation against M. incognita root-knot formation was particularly high. PMID:29311429
Rousset, Nassim; Monet, Frédéric; Gervais, Thomas
2017-03-21
This work focuses on modelling design and operation of "microfluidic sample traps" (MSTs). MSTs regroup a widely used class of microdevices that incorporate wells, recesses or chambers adjacent to a channel to individually trap, culture and/or release submicroliter 3D tissue samples ranging from simple cell aggregates and spheroids, to ex vivo tissue samples and other submillimetre-scale tissue models. Numerous MST designs employing various trapping mechanisms have been proposed in the literature, spurring the development of 3D tissue models for drug discovery and personalized medicine. Yet, there lacks a general framework to optimize trapping stability, trapping time, shear stress, and sample metabolism. Herein, the effects of hydrodynamics and diffusion-reaction on tissue viability and device operation are investigated using analytical and finite element methods with systematic parametric sweeps over independent design variables chosen to correspond to the four design degrees of freedom. Combining different results, we show that, for a spherical tissue of diameter d < 500 μm, the simplest, closest to optimal trap shape is a cube of dimensions w equal to twice the tissue diameter: w = 2d. Furthermore, to sustain tissues without perfusion, available medium volume per trap needs to be 100× the tissue volume to ensure optimal metabolism for at least 24 hours.
Nonlinear resonances in linear segmented Paul trap of short central segment.
Kłosowski, Łukasz; Piwiński, Mariusz; Pleskacz, Katarzyna; Wójtewicz, Szymon; Lisak, Daniel
2018-03-23
Linear segmented Paul trap system has been prepared for ion mass spectroscopy experiments. A non-standard approach to stability of trapped ions is applied to explain some effects observed with ensembles of calcium ions. Trap's stability diagram is extended to 3-dimensional one using additional ∆a besides standard q and a stability parameters. Nonlinear resonances in (q,∆a) diagrams are observed and described with a proposed model. The resonance lines have been identified using simple simulations and comparing the numerical and experimental results. The phenomenon can be applied in electron-impact ionization experiments for mass-identification of obtained ions or purification of their ensembles. This article is protected by copyright. All rights reserved.
Penketh, P. G.; Shyam, K.; Baumann, R. P; Zhu, Rui; Ishiguro, K.; Sartorelli, A. C.; Ratner, E. S.
2016-01-01
Alkylating agents are a significant class of environmental carcinogens as well as commonly used anticancer therapeutics. Traditional alkylating activity assays have utilized the colorimetric reagent 4-(4-nitrobenzyl)pyridine (4NBP). However, 4NBP based assays have a relatively low sensitivity towards harder, more oxophilic alkylating species and are not well suited for the identification of the trapped alkyl moiety due to adduct instability. Herein we describe a method using water as the trapping agent which permits the trapping of simple alkylating electrophiles with a comparatively wide range of softness/hardness and permits the identification of donated simple alkyl moieties. PMID:27188264
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, Arijit; Koch, Donald L., E-mail: dlk15@cornell.edu
2015-11-15
The soft glassy rheology (SGR) model has successfully described the time dependent simple shear rheology of a broad class of complex fluids including foams, concentrated emulsions, colloidal glasses, and solvent-free nanoparticle-organic hybrid materials (NOHMs). The model considers a distribution of mesoscopic fluid elements that hop from trap to trap at a rate which is enhanced by the work done to strain the fluid element. While an SGR fluid has a broad exponential distribution of trap energies, the rheology of NOHMs is better described by a narrower energy distribution and we consider both types of trap energy distributions in this study.more » We introduce a tensorial version of these models with a hopping rate that depends on the orientation of the element relative to the mean stress field, allowing a range of relative strengths of the extensional and simple shear responses of the fluid. As an application of these models we consider the flow of a soft glassy material through a dilute fixed bed of fibers. The dilute fixed bed exhibits a range of local linear flows which alternate in a chaotic manner with time in a Lagrangian reference frame. It is amenable to an analytical treatment and has been used to characterize the strong flow response of many complex fluids including fiber suspensions, dilute polymer solutions and emulsions. We show that the accumulated strain in the fluid elements has an abrupt nonlinear growth at a Deborah number of order one in a manner similar to that observed for polymer solutions. The exponential dependence of the hopping rate on strain leads to a fluid element deformation that grows logarithmically with Deborah number at high Deborah numbers. SGR fluids having a broad range of trap energies flowing through fixed beds can exhibit a range of rheological behaviors at small Deborah numbers ranging from a yield stress, to a power law response and finally to Newtonian behavior.« less
Penketh, Philip G; Shyam, Krishnamurthy; Baumann, Raymond P; Zhu, Rui; Ishiguro, Kimiko; Sartorelli, Alan C; Ratner, Elena S
2016-09-01
Alkylating agents are a significant class of environmental carcinogens as well as commonly used anticancer therapeutics. Traditional alkylating activity assays have utilized the colorimetric reagent 4-(4-nitrobenzyl)pyridine (4NBP). However, 4NBP based assays have a relatively low sensitivity towards harder, more oxophilic alkylating species and are not well suited for the identification of the trapped alkyl moiety due to adduct instability. Herein we describe a method using water as the trapping agent which permits the trapping of simple alkylating electrophiles with a comparatively wide range of softness/hardness and permits the identification of donated simple alkyl moieties. Copyright © 2016 Elsevier Inc. All rights reserved.
The diffusivity and solubility of deuterium in a high chromium martensitic steel
NASA Astrophysics Data System (ADS)
Forcey, K. S.; Iordanova, I.; Yaneva, M.
1997-01-01
The permeability, diffusivity and solubility of deuterium in the martensitic stainless steel MANET II have been studied in the temperature range 194-465°C by applying a time dependent gas-phase permeation technique. It was found that the temperature dependence of diffusivity and solubility could not be described by a simple Arrhenius expression over the entire temperature range investigated. At lower temperatures (below about 330°C) the diffusivity was found to be greatly reduced by the effects of trapping. Oriani's model has been applied to obtain the trapping energy and number density of the traps as well as the relative amounts of deuterium dissolved at lattice and trap sites. It is suggested that the most likely sites for trapping are at interfaces between the martensitic laths and between second phase particles and the surrounding metal matrix.
2012-11-29
of localized states extending into the gap. We also introduced a simple model allowing estimates of the upper limit of the intra-grain mobility in...well as to pentacene , and DATT. This research will be described below. In addition to our work on the electronic structure and charge mobility, we have...stacking distance gives rise to a tail of localized states which act as traps for electrons and holes. We introduced a simple effective Hamiltonian model
Steininger, M S; Hulcr, J; Šigut, M; Lucky, A
2015-06-01
Bark and ambrosia beetles (Coleoptera: Curculionidae: Scolytinae & Platypodinae) are among the most damaging forest pests worldwide, and monitoring is essential to damage prevention. Unfortunately, traps and attractants that are currently used are costly, and agencies rely on limited field personnel for deployment. The situation can be greatly aided by 1) the development of cost-effective trapping techniques, and 2) distribution of the effort through the Citizen Science approach. The goal of this study was to test a simple, effective trap that can be made and deployed by anyone interested in collecting bark and ambrosia beetles. Three trap types made from 2-liter soda bottles and, separately, four attractants were compared. Simple, one-window traps performed comparably at capturing species in traps painted or with multiple windows. A comparison of attractants in two-window traps found that 95% ethanol attracted the highest number of species but that Purell hand sanitizer (70% ethanol) and then Germ-X hand sanitizer (63% ethanol) were also effective. A perforated zip-top plastic bag containing Purell hanging over a trap filled with automobile antifreeze attracted the fewest species and individual specimens. Overall, >4,500 bark and ambrosia beetles, including 30 species were captured, representing a third of the regional species diversity. More than three quarters of the specimens were nonnative, representing nearly half of the known regional exotic species. These results suggest that simple one-window soda bottle traps baited with ethanol-based hand sanitizer will be effective and inexpensive tools for large-scale monitoring of bark and ambrosia beetles. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
An accurate behavioral model for single-photon avalanche diode statistical performance simulation
NASA Astrophysics Data System (ADS)
Xu, Yue; Zhao, Tingchen; Li, Ding
2018-01-01
An accurate behavioral model is presented to simulate important statistical performance of single-photon avalanche diodes (SPADs), such as dark count and after-pulsing noise. The derived simulation model takes into account all important generation mechanisms of the two kinds of noise. For the first time, thermal agitation, trap-assisted tunneling and band-to-band tunneling mechanisms are simultaneously incorporated in the simulation model to evaluate dark count behavior of SPADs fabricated in deep sub-micron CMOS technology. Meanwhile, a complete carrier trapping and de-trapping process is considered in afterpulsing model and a simple analytical expression is derived to estimate after-pulsing probability. In particular, the key model parameters of avalanche triggering probability and electric field dependence of excess bias voltage are extracted from Geiger-mode TCAD simulation and this behavioral simulation model doesn't include any empirical parameters. The developed SPAD model is implemented in Verilog-A behavioral hardware description language and successfully operated on commercial Cadence Spectre simulator, showing good universality and compatibility. The model simulation results are in a good accordance with the test data, validating high simulation accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abe, K.; Hasegawa, T.
2010-03-15
Quantum-mechanical analysis of ion motion in a rotating-radio-frequency (rrf) trap or in a Penning trap with a quadrupole rotating field is carried out. Rrf traps were introduced by Hasegawa and Bollinger [Phys. Rev. A 72, 043404 (2005)]. The classical motion of a single ion in this trap is described by only trigonometric functions, whereas in the conventional linear radio-frequency (rf) traps it is by the Mathieu functions. Because of the simple classical motion in the rrf trap, it is expected that the quantum-mechanical analysis of the rrf traps is also simple compared to that of the linear rf traps. Themore » analysis of Penning traps with a quadrupole rotating field is also possible in a way similar to the rrf traps. As a result, the Hamiltonian in these traps is the same as the two-dimensional harmonic oscillator, and energy levels and wave functions are derived as exact results. In these traps, it is found that one of the vibrational modes in the rotating frame can have negative energy levels, which means that the zero-quantum-number state (''ground'' state) is the highest energy state.« less
Bauer, Ulrike; Federle, Walter; Seidel, Hannes; Grafe, T Ulmar; Ioannou, Christos C
2015-02-22
Carnivorous Nepenthes pitcher plants capture arthropods with specialized slippery surfaces. The key trapping surface, the pitcher rim (peristome), is highly slippery when wetted by rain, nectar or condensation, but not when dry. As natural selection should favour adaptations that maximize prey intake, the evolution of temporarily inactive traps seems paradoxical. Here, we show that intermittent trap deactivation promotes 'batch captures' of ants. Prey surveys revealed that N. rafflesiana pitchers sporadically capture large numbers of ants from the same species. Continuous experimental wetting of the peristome increased the number of non-recruiting prey, but decreased the number of captured ants and shifted their trapping mode from batch to individual capture events. Ant recruitment was also lower to continuously wetted pitchers. Our experimental data fit a simple model that predicts that intermittent, wetness-based trap activation should allow safe access for 'scout' ants under dry conditions, thereby promoting recruitment and ultimately higher prey numbers. The peristome trapping mechanism may therefore represent an adaptation for capturing ants. The relatively rare batch capture events may particularly benefit larger plants with many pitchers. This explains why young plants of many Nepenthes species additionally employ wetness-independent, waxy trapping surfaces.
NASA Astrophysics Data System (ADS)
Nagornykh, Pavel; Coppock, Joyce E.; Murphy, Jacob P. J.; Kane, B. E.
2017-07-01
Using optical measurements, we demonstrate that the rotation of micron-scale graphene nanoplatelets levitated in a quadrupole ion trap in high vacuum can be frequency-locked to an applied radiofrequency electric field Erf. Over time, frequency-locking stabilizes the nanoplatelet so that its axis of rotation is normal to the nanoplatelet and perpendicular to Erf. We observe that residual slow dynamics of the direction of the axis of rotation in the plane normal to Erf is determined by an applied magnetic field. We present a simple model that accurately describes our observations. From our data and model, we can infer both a diamagnetic polarizability and a magnetic moment proportional to the frequency of rotation, which we compare to theoretical values. Our results establish that trapping technologies have applications for materials measurements at the nanoscale.
Magnetopause modeling - Flux transfer events and magnetosheath quasi-trapped distributions
NASA Technical Reports Server (NTRS)
Speiser, T. W.; Williams, D. J.
1982-01-01
Three-dimensional distribution functions for energetic ions are studied numerically in the magnetosphere, through the magnetopause, and in the magnetosheath using a simple one-dimensional quasi-static model and ISEE 1 magnetopause crossing data for November 10, 1977. Quasi-trapped populations in the magnetosheath observed near flux transfer events (FTEs) are investigated, and it is shown that the population in the sheath appears to sandwich the FTE distributions. These quasi-trapped distributions are due to slow, large pitch angle, outward moving particles left behind by the outward rush of the ions more field-aligned at the time the flux was opened. It is found that sheath convective flows can map along the connected flux tube without drastically changing the distribution function, and results suggest that localized tangential fields above the upper limit may exist.
On the spectrum and polarization of magnetar flare emission
NASA Astrophysics Data System (ADS)
Taverna, R.; Turolla, R.
2017-12-01
Bursts and flares are among the distinctive observational manifestations of magnetars, isolated neutron stars endowed with an ultra-strong magnetic field (B ≈ 1014-1015 G). It is believed that these events arise in a hot electron-positron plasma, injected in the magnetosphere, due to a magnetic field instability, which remains trapped within the closed magnetic field lines (the “trapped-fireball” model). We have developed a simple radiative transfer model to simulate magnetar flare emission in the case of a steady trapped fireball. We assume that magnetic Thomson scattering is the dominant source of opacity in the fireball medium, and neglect contributions from second-order radiative processes. The spectra we obtained in the 1-100 keV energy range are in broad agreement with those of available observations. The large degree of polarization (≳ 80%) predicted by our model should be easily measured by new-generation X-ray polarimeters, like IXPE, XIPE and eXTP, allowing one to confirm the model predictions.
Trap Model for Clogging and Unclogging in Granular Hopper Flows.
Nicolas, Alexandre; Garcimartín, Ángel; Zuriguel, Iker
2018-05-11
Granular flows through narrow outlets may be interrupted by the formation of arches or vaults that clog the exit. These clogs may be destroyed by vibrations. A feature which remains elusive is the broad distribution p(τ) of clog lifetimes τ measured under constant vibrations. Here, we propose a simple model for arch breaking, in which the vibrations are formally equivalent to thermal fluctuations in a Langevin equation; the rupture of an arch corresponds to the escape from an energy trap. We infer the distribution of trap depths from experiments made in two-dimensional hoppers. Using this distribution, we show that the model captures the empirically observed heavy tails in p(τ). These heavy tails flatten at large τ, consistently with experimental observations under weak vibrations. But, here, we find that this flattening is systematic, which casts doubt on the ability of gentle vibrations to restore a finite outflow forever. The trap model also replicates recent results on the effect of increasing gravity on the statistics of clog formation in a static silo. Therefore, the proposed framework points to a common physical underpinning to the processes of clogging and unclogging, despite their different statistics.
Trap Model for Clogging and Unclogging in Granular Hopper Flows
NASA Astrophysics Data System (ADS)
Nicolas, Alexandre; Garcimartín, Ángel; Zuriguel, Iker
2018-05-01
Granular flows through narrow outlets may be interrupted by the formation of arches or vaults that clog the exit. These clogs may be destroyed by vibrations. A feature which remains elusive is the broad distribution p (τ ) of clog lifetimes τ measured under constant vibrations. Here, we propose a simple model for arch breaking, in which the vibrations are formally equivalent to thermal fluctuations in a Langevin equation; the rupture of an arch corresponds to the escape from an energy trap. We infer the distribution of trap depths from experiments made in two-dimensional hoppers. Using this distribution, we show that the model captures the empirically observed heavy tails in p (τ ). These heavy tails flatten at large τ , consistently with experimental observations under weak vibrations. But, here, we find that this flattening is systematic, which casts doubt on the ability of gentle vibrations to restore a finite outflow forever. The trap model also replicates recent results on the effect of increasing gravity on the statistics of clog formation in a static silo. Therefore, the proposed framework points to a common physical underpinning to the processes of clogging and unclogging, despite their different statistics.
Ultra-fast underwater suction traps.
Vincent, Olivier; Weisskopf, Carmen; Poppinga, Simon; Masselter, Tom; Speck, Thomas; Joyeux, Marc; Quilliet, Catherine; Marmottant, Philippe
2011-10-07
Carnivorous aquatic Utricularia species catch small prey animals using millimetre-sized underwater suction traps, which have fascinated scientists since Darwin's early work on carnivorous plants. Suction takes place after mechanical triggering and is owing to a release of stored elastic energy in the trap body accompanied by a very fast opening and closing of a trapdoor, which otherwise closes the trap entrance watertight. The exceptional trapping speed--far above human visual perception--impeded profound investigations until now. Using high-speed video imaging and special microscopy techniques, we obtained fully time-resolved recordings of the door movement. We found that this unique trapping mechanism conducts suction in less than a millisecond and therefore ranks among the fastest plant movements known. Fluid acceleration reaches very high values, leaving little chance for prey animals to escape. We discovered that the door deformation is morphologically predetermined, and actually performs a buckling/unbuckling process, including a complete trapdoor curvature inversion. This process, which we predict using dynamical simulations and simple theoretical models, is highly reproducible: the traps are autonomously repetitive as they fire spontaneously after 5-20 h and reset actively to their ready-to-catch condition.
An innovative mosquito trap for testing attractants
USDA-ARS?s Scientific Manuscript database
We describe a simple trap modification for testing or using attractants to collect flying mosquitoes. The trap also can test the effectiveness of spatial repellents. The proposed design may facilitate standardized testing of mosquito attractants and repellents. The trap uses a standard Centers f...
Mechanical trapping of particles in granular media
NASA Astrophysics Data System (ADS)
Kerimov, Abdulla; Mavko, Gary; Mukerji, Tapan; Al Ibrahim, Mustafa A.
2018-02-01
Mechanical trapping of fine particles in the pores of granular materials is an essential mechanism in a wide variety of natural and industrial filtration processes. The progress of invading particles is primarily limited by the network of pore throats and connected pathways encountered by the particles during their motion through the porous medium. Trapping of invading particles is limited to a depth defined by the size, shape, and distribution of the invading particles with respect to the size, shape, and distribution of the host porous matrix. Therefore, the trapping process, in principle, can be used to obtain information about geometrical properties, such as pore throat and particle size, of the underlying host matrix. A numerical framework is developed to simulate the mechanical trapping of fine particles in porous granular media with prescribed host particle size, shape, and distribution. The trapping of invading particles is systematically modeled in host packings with different host particle distributions: monodisperse, bidisperse, and polydisperse distributions of host particle sizes. Our simulation results show quantitatively and qualitatively to what extent trapping behavior is different in the generated monodisperse, bidisperse, and polydisperse packings of spherical particles. Depending on host particle size and distribution, the information about extreme estimates of minimal pore throat sizes of the connected pathways in the underlying host matrix can be inferred from trapping features, such as the fraction of trapped particles as a function of invading particle size. The presence of connected pathways with minimum and maximum of minimal pore throat diameters can be directly obtained from trapping features. This limited information about the extreme estimates of pore throat sizes of the connected pathways in the host granular media inferred from our numerical simulations is consistent with simple geometrical estimates of extreme value of pore and throat sizes of the densest structural arrangements of spherical particles and geometrical Delaunay tessellation analysis of the pore space of host granular media. Our results suggest simple relations between the host particle size and trapping features. These relationships can be potentially used to describe both the dynamics of the mechanical trapping process and the geometrical properties of the host granular media.
Mechanical trapping of particles in granular media.
Kerimov, Abdulla; Mavko, Gary; Mukerji, Tapan; Al Ibrahim, Mustafa A
2018-02-01
Mechanical trapping of fine particles in the pores of granular materials is an essential mechanism in a wide variety of natural and industrial filtration processes. The progress of invading particles is primarily limited by the network of pore throats and connected pathways encountered by the particles during their motion through the porous medium. Trapping of invading particles is limited to a depth defined by the size, shape, and distribution of the invading particles with respect to the size, shape, and distribution of the host porous matrix. Therefore, the trapping process, in principle, can be used to obtain information about geometrical properties, such as pore throat and particle size, of the underlying host matrix. A numerical framework is developed to simulate the mechanical trapping of fine particles in porous granular media with prescribed host particle size, shape, and distribution. The trapping of invading particles is systematically modeled in host packings with different host particle distributions: monodisperse, bidisperse, and polydisperse distributions of host particle sizes. Our simulation results show quantitatively and qualitatively to what extent trapping behavior is different in the generated monodisperse, bidisperse, and polydisperse packings of spherical particles. Depending on host particle size and distribution, the information about extreme estimates of minimal pore throat sizes of the connected pathways in the underlying host matrix can be inferred from trapping features, such as the fraction of trapped particles as a function of invading particle size. The presence of connected pathways with minimum and maximum of minimal pore throat diameters can be directly obtained from trapping features. This limited information about the extreme estimates of pore throat sizes of the connected pathways in the host granular media inferred from our numerical simulations is consistent with simple geometrical estimates of extreme value of pore and throat sizes of the densest structural arrangements of spherical particles and geometrical Delaunay tessellation analysis of the pore space of host granular media. Our results suggest simple relations between the host particle size and trapping features. These relationships can be potentially used to describe both the dynamics of the mechanical trapping process and the geometrical properties of the host granular media.
Poverty, Disease, and the Ecology of Complex Systems
Pluciński, Mateusz M.; Murray, Megan B.; Farmer, Paul E.; Barrett, Christopher B.; Keenan, Donald C.
2014-01-01
Understanding why some human populations remain persistently poor remains a significant challenge for both the social and natural sciences. The extremely poor are generally reliant on their immediate natural resource base for subsistence and suffer high rates of mortality due to parasitic and infectious diseases. Economists have developed a range of models to explain persistent poverty, often characterized as poverty traps, but these rarely account for complex biophysical processes. In this Essay, we argue that by coupling insights from ecology and economics, we can begin to model and understand the complex dynamics that underlie the generation and maintenance of poverty traps, which can then be used to inform analyses and possible intervention policies. To illustrate the utility of this approach, we present a simple coupled model of infectious diseases and economic growth, where poverty traps emerge from nonlinear relationships determined by the number of pathogens in the system. These nonlinearities are comparable to those often incorporated into poverty trap models in the economics literature, but, importantly, here the mechanism is anchored in core ecological principles. Coupled models of this sort could be usefully developed in many economically important biophysical systems—such as agriculture, fisheries, nutrition, and land use change—to serve as foundations for deeper explorations of how fundamental ecological processes influence structural poverty and economic development. PMID:24690902
Poverty, disease, and the ecology of complex systems.
Ngonghala, Calistus N; Pluciński, Mateusz M; Murray, Megan B; Farmer, Paul E; Barrett, Christopher B; Keenan, Donald C; Bonds, Matthew H
2014-04-01
Understanding why some human populations remain persistently poor remains a significant challenge for both the social and natural sciences. The extremely poor are generally reliant on their immediate natural resource base for subsistence and suffer high rates of mortality due to parasitic and infectious diseases. Economists have developed a range of models to explain persistent poverty, often characterized as poverty traps, but these rarely account for complex biophysical processes. In this Essay, we argue that by coupling insights from ecology and economics, we can begin to model and understand the complex dynamics that underlie the generation and maintenance of poverty traps, which can then be used to inform analyses and possible intervention policies. To illustrate the utility of this approach, we present a simple coupled model of infectious diseases and economic growth, where poverty traps emerge from nonlinear relationships determined by the number of pathogens in the system. These nonlinearities are comparable to those often incorporated into poverty trap models in the economics literature, but, importantly, here the mechanism is anchored in core ecological principles. Coupled models of this sort could be usefully developed in many economically important biophysical systems--such as agriculture, fisheries, nutrition, and land use change--to serve as foundations for deeper explorations of how fundamental ecological processes influence structural poverty and economic development.
Orbital tori for non-axisymmetric galaxies
NASA Astrophysics Data System (ADS)
Binney, James
2018-02-01
Our Galaxy's bar makes the Galaxy's potential distinctly non-axisymmetric. All orbits are affected by non-axisymmetry, and significant numbers are qualitatively changed by being trapped at a resonance with the bar. Orbital tori are used to compute these effects. Thick-disc orbits are no less likely to be trapped by corotation or a Lindblad resonance than thin-disc orbits. Perturbation theory is used to create non-axisymmetric orbital tori from standard axisymmetric tori, and both trapped and untrapped orbits are recovered to surprising accuracy. Code is added to the TorusModeller library that makes it as easy to manipulate non-axisymmetric tori as axisymmetric ones. The augmented TorusModeller is used to compute the velocity structure of the solar neighbourhood for bars of different pattern speeds and a simple action-based distribution function. The technique developed here can be applied to any non-axisymmetric potential that is stationary in a rotating from - hence also to classical spiral structure.
Quantum-enhanced deliberation of learning agents using trapped ions
NASA Astrophysics Data System (ADS)
Dunjko, V.; Friis, N.; Briegel, H. J.
2015-02-01
A scheme that successfully employs quantum mechanics in the design of autonomous learning agents has recently been reported in the context of the projective simulation (PS) model for artificial intelligence. In that approach, the key feature of a PS agent, a specific type of memory which is explored via random walks, was shown to be amenable to quantization, allowing for a speed-up. In this work we propose an implementation of such classical and quantum agents in systems of trapped ions. We employ a generic construction by which the classical agents are ‘upgraded’ to their quantum counterparts by a nested process of adding coherent control, and we outline how this construction can be realized in ion traps. Our results provide a flexible modular architecture for the design of PS agents. Furthermore, we present numerical simulations of simple PS agents which analyze the robustness of our proposal under certain noise models.
Bauer, Ulrike; Federle, Walter; Seidel, Hannes; Grafe, T. Ulmar; Ioannou, Christos C.
2015-01-01
Carnivorous Nepenthes pitcher plants capture arthropods with specialized slippery surfaces. The key trapping surface, the pitcher rim (peristome), is highly slippery when wetted by rain, nectar or condensation, but not when dry. As natural selection should favour adaptations that maximize prey intake, the evolution of temporarily inactive traps seems paradoxical. Here, we show that intermittent trap deactivation promotes ‘batch captures' of ants. Prey surveys revealed that N. rafflesiana pitchers sporadically capture large numbers of ants from the same species. Continuous experimental wetting of the peristome increased the number of non-recruiting prey, but decreased the number of captured ants and shifted their trapping mode from batch to individual capture events. Ant recruitment was also lower to continuously wetted pitchers. Our experimental data fit a simple model that predicts that intermittent, wetness-based trap activation should allow safe access for ‘scout’ ants under dry conditions, thereby promoting recruitment and ultimately higher prey numbers. The peristome trapping mechanism may therefore represent an adaptation for capturing ants. The relatively rare batch capture events may particularly benefit larger plants with many pitchers. This explains why young plants of many Nepenthes species additionally employ wetness-independent, waxy trapping surfaces. PMID:25589604
A Simple Ground-Based Trap For Estimating Densities of Arboreal Leaf Insects
Robert A. Haack; Richard W. Blank
1991-01-01
Describes a trap design to use in collecting larval frass or head capsules for estimating densities of aboveground arthropods. The trap is light, compact, durable, and easily constructed from common inexpensive items.
NMR signals within the generalized Langevin model for fractional Brownian motion
NASA Astrophysics Data System (ADS)
Lisý, Vladimír; Tóthová, Jana
2018-03-01
The methods of Nuclear Magnetic Resonance belong to the best developed and often used tools for studying random motion of particles in different systems, including soft biological tissues. In the long-time limit the current mathematical description of the experiments allows proper interpretation of measurements of normal and anomalous diffusion. The shorter-time dynamics is however correctly considered only in a few works that do not go beyond the standard memoryless Langevin description of the Brownian motion (BM). In the present work, the attenuation function S (t) for an ensemble of spin-bearing particles in a magnetic-field gradient, expressed in a form applicable for any kind of stationary stochastic dynamics of spins with or without a memory, is calculated in the frame of the model of fractional BM. The solution of the model for particles trapped in a harmonic potential is obtained in an exceedingly simple way and used for the calculation of S (t). In the limit of free particles coupled to a fractal heat bath, the results compare favorably with experiments acquired in human neuronal tissues. The effect of the trap is demonstrated by introducing a simple model for the generalized diffusion coefficient of the particle.
Optical diagnostics with radiation trapping effect in low density and low temperature helium plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Wonwook, E-mail: wwlee@kaeri.re.kr; Kwon, Duck-Hee; Park, Kyungdeuk
2016-06-15
Low density (n{sub e} < 10{sup 11 }cm{sup −3}) and low temperature (T{sub e} < 10 eV) helium plasma was generated by hot filament discharge. Electron temperature and density of neutral helium plasma were measured by Langmuir probe and were determined by line intensity ratio method using optical emission spectroscopy with population modelings. Simple corona model and collisional-radiative (CR) model without consideration for radiation trapping effect are applied. In addition, CR model taking into account the radiation trapping effect (RTE) is adopted. The change of single line intensity ratio as a function of electron temperature and density were investigated when the RTE is included and excluded.more » The changes of multi line intensity ratios as a function of electron temperature were scanned for various radiative-excitation rate coefficients from the ground state and the helium gas pressures related with the RTE. Our CR modeling with RTE results in fairly better agreement of the spectroscopic diagnostics for the plasma temperature or density with the Langmuir probe measurements for various helium gas pressures than corona modeling and CR modeling without RTE.« less
Sukumaran, D; Ponmariappan, S; Sharma, Atul K; Jha, Hemendra K; Wasu, Yogesh H; Sharma, Ajay K
2016-04-01
Surveillance is a prime requisite for controlling arthropod vectors like mosquitoes that transmit diseases such as malaria, dengue and chikungunya. Carbon dioxide (CO2) is one of the main cues from vertebrate breath that attracts mosquitoes towards the host. Hence, CO2 is used as an attractant during surveillance of mosquitoes either from commercial cylinders or dry ice for mosquito traps. In the present study, the biogenic carbon dioxide production was optimized with different carbon sources such as glucose, simple sugar and jaggery with and without yeast peptone dextrose (YPD) media using commercial baker's yeast. The results showed that yeast produced more biogenic CO2 with simple sugar as compared to other carbon sources. Further substrate concentration was optimized for the continuous production of biogenic CO2 for a minimum of 12 h by using 10 g of baker's yeast with 50 g of simple sugar added to 1.5 l distilled water (without YPD media) in a 2-l plastic bottle. This setup was applied in field condition along with two different mosquito traps namely Mosquito Killing System (MKS) and Biogents Sentinel (BGS) trap. Biogenic CO2 from this setup has increased the trapping efficiency of MKS by 6.48-fold for Culex quinquefasciatus, 2.62-fold for Aedes albopictus and 1.5-fold for Anopheles stephensi. In the case of BGS, the efficiency was found to be increased by 3.54-fold for Ae. albopictus, 4.33-fold for An. stephensi and 1.3-fold for Armigeres subalbatus mosquitoes. On the whole, plastic bottle setup releasing biogenic CO2 from sugar and yeast has increased the efficiency of MKS traps by 6.38-fold and 2.74-fold for BGS traps as compared to traps without biogenic CO2. The present study reveals that, among different carbon sources used, simple sugar as a substance (which is economical and readily available across the world) yielded maximum biogenic CO2 with yeast. This setup can be used as an alternative to CO2 cylinder and dry ice in any adult mosquito traps to enhance their trapping efficiency of a mosquito surveillance programme.
A Trap For Capturing Arthropods Crawling up Tree Boles
James L. Hanula; Kirsten C.P. New
1996-01-01
A simple trap is described that captures arthropods as they crawl up tree boles. Constructed from metal funnels, plastic sandwich containers, and specimen cups, the traps can be assembled by one person at a rate of 5 to 6 per hour and installed in 2 to 3 minutes. Specimen collection required 15 to 20 seconds per trap. In 1993, three traps were placed on each tree. In...
Do the Details Matter? Comparing Performance Forecasts from Two Computational Theories of Fatigue
2009-12-01
Bulletin & Review , 9(1), 3-25. Dinges, D. F., & Powell, J. W. (1985). Microcomputer analyses of performance on a portable, simple visual RT task during...Force Office of Scientific Research (AFOSR). References Estes, W. K. (2002). Traps in the route to models of memory and decision. Psychonomic
Microfluidic droplet trapping array as nanoliter reactors for gas-liquid chemical reaction.
Zhang, Qingquan; Zeng, Shaojiang; Qin, Jianhua; Lin, Bingcheng
2009-09-01
This article presents a simple method for trapping arrays of droplets relying on the designed microstructures of the microfluidic device, and this has been successfully used for parallel gas-liquid chemical reaction. In this approach, the trapping structure is composed of main channel, lateral channel and trapping region. Under a negative pressure, array droplets can be generated and trapped in the microstructure simultaneously, without the use of surfactant and the precise control of the flow velocity. By using a multi-layer microdevice containing the microstructures, single (pH gradient) and multiple gas-liquid reactions (metal ion-NH3 complex reaction) can be performed in array droplets through the transmembrane diffusion of the gas. The droplets with quantitative concentration gradient can be formed by only replacing the specific membrane. The established method is simple, robust and easy to operate, demonstrating the potential of this device for droplet-based high-throughput screening.
Ghost features in Doppler-broadened spectra of rovibrational transitions in trapped HD+ ions
NASA Astrophysics Data System (ADS)
Patra, Sayan; Koelemeij, J. C. J.
2017-02-01
Doppler broadening plays an important role in laser rovibrational spectroscopy of trapped deuterated molecular hydrogen ions (HD+), even at the millikelvin temperatures achieved through sympathetic cooling by laser-cooled beryllium ions. Recently, Biesheuvel et al. (2016) presented a theoretical lineshape model for such transitions which not only considers linestrengths and Doppler broadening, but also the finite sample size and population redistribution by blackbody radiation, which are important in view of the long storage and probe times achievable in ion traps. Here, we employ the rate equation model developed by Biesheuvel et al. to theoretically study the Doppler-broadened hyperfine structure of the (v, L) : (0, 3) → (4, 2) rovibrational transition in HD+ at 1442 nm. We observe prominent yet hitherto unrecognized ghost features in the simulated spectrum, whose positions depend on the Doppler width, transition rates, and saturation levels of the hyperfine components addressed by the laser. We explain the origin and behavior of such features, and we provide a simple quantitative guideline to assess whether ghost features may appear. As such ghost features may be common to saturated Doppler-broadened spectra of rotational and vibrational transitions in trapped ions composed of partly overlapping lines, our work illustrates the necessity to use lineshape models that take into account all the relevant physics.
Risk-taking behavior in the presence of nonconvex asset dynamics.
Lybbert, Travis J; Barrett, Christopher B
2011-01-01
The growing literature on poverty traps emphasizes the links between multiple equilibria and risk avoidance. However, multiple equilibria may also foster risk-taking behavior by some poor people. We illustrate this idea with a simple analytical model in which people with different wealth and ability endowments make investment and risky activity choices in the presence of known nonconvex asset dynamics. This model underscores a crucial distinction between familiar static concepts of risk aversion and forward-looking dynamic risk responses to nonconvex asset dynamics. Even when unobservable preferences exhibit decreasing absolute risk aversion, observed behavior may suggest that risk aversion actually increases with wealth near perceived dynamic asset thresholds. Although high ability individuals are not immune from poverty traps, they can leverage their capital endowments more effectively than lower ability types and are therefore less likely to take seemingly excessive risks. In general, linkages between behavioral responses and wealth dynamics often seem to run in both directions. Both theoretical and empirical poverty trap research could benefit from making this two-way linkage more explicit.
On the origin of the driving force in the Marangoni propelled gas bubble trapping mechanism.
Miniewicz, A; Quintard, C; Orlikowska, H; Bartkiewicz, S
2017-07-19
Gas bubbles can be trapped and then manipulated with laser light. In this report, we propose the detailed optical trapping mechanism of gas bubbles confined inside a thin light-absorbing liquid layer between two glass plates. The necessary condition of bubble trapping in this case is the direct absorption of light by the solution containing a dye. Due to heat release, fluid whirls propelled by the surface Marangoni effect at the liquid/gas interface emerge and extend to large distances. We report the experimental microscopic observation of the origin of whirls at an initially flat liquid/air interface as well as at the curved interface of a liquid/gas bubble and support this finding with advanced numerical simulations using the finite element method within the COMSOL Multiphysics platform. The simulation results were in good agreement with the observations, which allowed us to propose a simple physical model for this particular trapping mechanism, to establish the origin of forces attracting bubbles toward a laser beam and to predict other phenomena related to this effect.
NASA Technical Reports Server (NTRS)
Wilson, Thomas L.; Lodhi, M. A. K.; Diaz, Abel B.
2005-01-01
No simple algorithm seems to exist for calculating proton fluxes and lifetimes in the Earth's inner, trapped radiation belt throughout the solar cycle. Most models of the inner trapped belt in use depend upon AP8 which only describes the radiation environment at solar maximum and solar minimum in Cycle 20. One exception is NOAAPRO which incorporates flight data from the TIROS/NOAA polar orbiting spacecraft. The present study discloses yet another, simple formulation for approximating proton fluxes at any time in a given solar cycle, in particular between solar maximum and solar minimum. It is derived from AP8 using a regression algorithm technique from nuclear physics. From flux and its time integral fluence, one can then approximate dose rate and its time integral dose. It has already been published in this journal that the absorbed dose rate, D, in the trapped belts exhibits a power law relationship, D = A(rho)(sup -n), where A is a constant, rho is the atmospheric density, and the index n is weakly dependent upon shielding. However, that method does not work for flux and fluence. Instead, we extend this idea by showing that the power law approximation for flux J is actually bivariant in energy E as well as density rho. The resulting relation is J(E,rho)approx.(sum of)A(E(sup n))rho(sup -n), with A itself a power law in E. This provides another method for calculating approximate proton flux and lifetime at any time in the solar cycle. These in turn can be used to predict the associated dose and dose rate.
Slow positrons in single-crystal samples of Al and Al-AlxOy
NASA Astrophysics Data System (ADS)
Lynn, K. G.; Lutz, H.
1980-11-01
Well-characterized Al(111) and Al(100) samples were studied with monoenergetic positrons before and after exposure to oxygen. Both positronium-formation and positron-emission curves were obtained for various incident positron energies at sample temperatures ranging from 160-900 K. The orthopositronium decay signal provides a unique signature that the positron has emerged from the surface region of a clean metal. In the clean Al crystals part of the positronium formed near the surface is found to be associated with a temperature-activated process described as the thermally activated detrapping of a positron from a surface state. A simple positron diffusion model, including surface and vacancy trapping, is fitted to the positronium data and an estimate of the binding energy of the positron in this trap is made. The positron diffusion constant is found to have a negative temperature dependence before the onset of positron trapping at thermally generated monovacancies (>500 K), in reasonable agreement with theoretical predictions. The depth of the positron surface state is reduced or positronium is formed in the chemisorbed layer as oxygen is adsorbed on both Al sample surfaces, thus increasing the positronium fraction and decreasing the positron emission. At higher oxygen exposures [>500 L (1 L = 10-6 torr sec)] positron or positronium traps are generated in the overlayer and the positronium fraction is reduced. The amorphous-to-crystalline surface transition of AlxOy on Al is observed between 650 and 800 K by the change in the positronium fraction and is interpreted as the removal of trapping centers in the metal-oxide overlayer. At the higher temperatures and incident energies vacancy trapping is observed by the decrease in the positron diffusion length in both the clean and the underlying Al of the oxygen-exposed samples. Similar vacancy formation enthalpies for Al are extracted in both the clean and oxygen-covered samples by a simple model and are in good agreement with those measured by other experimental methods. This technique provides a new experimental means for the study of interfaces and thin films and the vacancy-type defects associated with them.
NASA Astrophysics Data System (ADS)
Wei, Xixiong; Deng, Wanling; Fang, Jielin; Ma, Xiaoyu; Huang, Junkai
2017-10-01
A physical-based straightforward extraction technique for interface and bulk density of states in metal oxide semiconductor thin film transistors (TFTs) is proposed by using the capacitance-voltage (C-V) characteristics. The interface trap density distribution with energy has been extracted from the analysis of capacitance-voltage characteristics. Using the obtained interface state distribution, the bulk trap density has been determined. With this method, for the interface trap density, it is found that deep state density nearing the mid-gap is approximately constant and tail states density increases exponentially with energy; for the bulk trap density, it is a superposition of exponential deep states and exponential tail states. The validity of the extraction is verified by comparisons with the measured current-voltage (I-V) characteristics and the simulation results by the technology computer-aided design (TCAD) model. This extraction method uses non-numerical iteration which is simple, fast and accurate. Therefore, it is very useful for TFT device characterization.
Ultrafast state detection and 2D ion crystals in a Paul trap
NASA Astrophysics Data System (ADS)
Ip, Michael; Ransford, Anthony; Campbell, Wesley
2016-05-01
Projective readout of quantum information stored in atomic qubits typically uses state-dependent CW laser-induced fluorescence. This method requires an often sophisticated imaging system to spatially filter out the background CW laser light. We present an alternative approach that instead uses simple pulse sequences from a mode-locked laser to affect the same state-dependent excitations in less than 1 ns. The resulting atomic fluorescence occurs in the dark, allowing the placement of non-imaging detectors right next to the atom to improve the qubit state detection efficiency and speed. We also study 2D Coulomb crystals of atomic ions in an oblate Paul trap. We find that crystals with hundreds of ions can be held in the trap, potentially offering an alternative to the use of Penning traps for the quantum simulation of 2D lattice spin models. We discuss the classical physics of these crystals and the metastable states that are supported in 2D. This work is supported by the US Army Research Office.
Understanding mobility degeneration mechanism in organic thin-film transistors (OTFT)
NASA Astrophysics Data System (ADS)
Wang, Wei; Wang, Long; Xu, Guangwei; Gao, Nan; Wang, Lingfei; Ji, Zhuoyu; Lu, Congyan; Lu, Nianduan; Li, Ling; Liu, Miwng
2017-08-01
Mobility degradation at high gate bias is often observed in organic thin film transistors. We propose a mechanism for this confusing phenomenon, based on the percolation theory with the presence of disordered energy landscape with an exponential density of states. Within a simple model we show how the surface states at insulator/organic interface trap a portion of channel carriers, and result in decrease of mobility as well as source/drain current with gate voltage. Depending on the competition between the carrier accumulation and surface trapping effect, two different carrier density dependences of mobility are obtained, in excellent agreement with experiment data.
Breeding based remobilization of Tol2 transposon in Xenopus tropicalis.
Lane, Maura A; Kimber, Megan; Khokha, Mustafa K
2013-01-01
Xenopus is a powerful model for studying a diverse array of biological processes. However, despite multiple methods for transgenesis, relatively few transgenic reporter lines are available and commonly used. Previous work has demonstrated that transposon based strategies are effective for generating transgenic lines in both invertebrate and vertebrate systems. Here we show that the Tol2 transposon can be remobilized in the genome of X. tropicalis and passed through the germline via a simple breeding strategy of crossing transposase expressing and transposon lines. This remobilization system provides another tool to exploit transgenesis and opens new opportunities for gene trap and enhancer trap strategies.
Neuman, Keir C.; Block, Steven M.
2006-01-01
Since their invention just over 20 years ago, optical traps have emerged as a powerful tool with broad-reaching applications in biology and physics. Capabilities have evolved from simple manipulation to the application of calibrated forces on—and the measurement of nanometer-level displacements of—optically trapped objects. We review progress in the development of optical trapping apparatus, including instrument design considerations, position detection schemes and calibration techniques, with an emphasis on recent advances. We conclude with a brief summary of innovative optical trapping configurations and applications. PMID:16878180
Alencar, Jeronimo; de Mello, Viviane Soares; Serra-Freire, Nicolau Maués; Silva, Júlia dos Santos; Morone, Fernanda; Guimarães, Anthony Érico
2012-04-01
We compared two types of light traps used for monitoring mosquito abundance in the hydroelectric reservoir of Simplício, Além Paraíba - Minas Gerais. Mosquitoes were captured bimonthly using automatic CDC and Shannon traps before the filling of the hydroelectric plant reservoir from December 2008 to December 2009. In total, 1474 specimens from 13 genera were captured. Among the captured specimens, several species known to be vectors of disease-causing agents for humans and/or animals were identified, including Anopheles aquasalis, Aedes albopictus, Coquillettidia venezuelensis, Haemagogus leucocelaenus, and Aedes scapularis. Sampling efficacy between the four capture sites was not found to be significantly different, irrespective of species captured or type of trap used. Poor correlation (r (x, y) = -0.0444) between the number of mosquito species and capture site was observed when not influenced by the type of trap used. Among the installation sites of the CDC and Shannon traps in the areas investigated, CDC traps fixed in livestock shelters obtained an overall higher abundance of species captured.
NASA Astrophysics Data System (ADS)
Franklin, A.; Marzo, A.; Malkin, R.; Drinkwater, B. W.
2017-08-01
We report a simple and compact piezoelectric transducer capable of stably trapping single and multiple micro-particles in water. A 3D-printed Fresnel lens is bonded to a two-element kerfless piezoceramic disk and actuated in a split-piston mode to produce an acoustic radiation force trap that is stable in three-dimensions. Polystyrene micro-particles in the Rayleigh regime (radius λ/14 to λ/7) are trapped at the focus of the lens (F# = 0.4) and manipulated in two-dimensions on an acoustically transparent membrane with a peak trap stiffness of 0.43 mN/m. Clusters of Rayleigh particles are also trapped and manipulated in three-dimensions, suspended in water against gravity. This transducer represents a significant simplification over previous acoustic devices used for micro-particle manipulation in liquids as it operates at relatively low frequency (688 kHz) and only requires a single electrical drive signal. This simplified device has potential for widespread use in applications such as micro-scale manufacturing and handling of cells or drug capsules in biomedical assays.
Modeling the Free Carrier Recombination Kinetics in PTB7:PCBM Organic Photovoltaics
Oosterhout, Stefan D.; Ferguson, Andrew J.; Larson, Bryon W.; ...
2016-10-03
Currently the exact recombination mechanism of free carriers in organic photovoltaic (OPV) devices is poorly understood. Often a reduced Langevin model is used to describe the decay behavior of electrons and holes. Here we propose a novel, simple kinetic model that accurately describes the decay behavior of free carriers in the PTB7:PCBM organic photovoltaic blend. In order to accurately describe the recombination behavior of free carriers as measured by time-resolved microwave conductivity (TRMC), this model needs to only take into account free and trapped holes in the polymer, and free electrons in the fullerene. The model is consistent for differentmore » PTB7:PCBM blend ratios and spans a light intensity range of over 3 orders of magnitude. Furthermore, the model demonstrates that dark carriers exist in the polymer and interact with photoinduced charge carriers, and that the trapping and detrapping rates of the holes are of high importance to the overall carrier lifetime.« less
A simple model of electron beam initiated dielectric breakdown
NASA Technical Reports Server (NTRS)
Beers, B. L.; Daniell, R. E.; Delmer, T. N.
1985-01-01
A steady state model that describes the internal charge distribution of a planar dielectric sample exposed to a uniform electron beam was developed. The model includes the effects of charge deposition and ionization of the beam, separate trap-modulated mobilities for electrons and holes, electron-hole recombination, and pair production by drifting thermal electrons. If the incident beam current is greater than a certain critical value (which depends on sample thickness as well as other sample properties), the steady state solution is non-physical.
CO2 storage capacity estimates from fluid dynamics (Invited)
NASA Astrophysics Data System (ADS)
Juanes, R.; MacMinn, C. W.; Szulczewski, M.
2009-12-01
We study a sharp-interface mathematical model for the post-injection migration of a plume of CO2 in a deep saline aquifer under the influence of natural groundwater flow, aquifer slope, gravity override, and capillary trapping. The model leads to a nonlinear advection-diffusion equation, where the diffusive term describes the upward spreading of the CO2 against the caprock. We find that the advective terms dominate the flow dynamics even for moderate gravity override. We solve the model analytically in the hyperbolic limit, accounting rigorously for the injection period—using the true end-of-injection plume shape as an initial condition. We extend the model by incorporating the effect of CO2 dissolution into the brine, which—we find—is dominated by convective mixing. This mechanism enters the model as a nonlinear sink term. From a linear stability analysis, we propose a simple estimate of the convective dissolution flux. We then obtain semi-analytic estimates of the maximum plume migration distance and migration time for complete trapping. Our analytical model can be used to estimate the storage capacity (from capillary and dissolution trapping) at the geologic basin scale, and we apply the model to various target formations in the United States. Schematic of the migration of a CO2 plume at the geologic basin scale. During injection, the CO2 forms a plume that is subject to gravity override. At the end of the injection, all the CO2 is mobile. During the post-injection period, the CO2 migrates updip and also driven by regional groundwater flow. At the back end of the plume, where water displaces CO2, the plume leaves a wake or residual CO2 due to capillary trapping. At the bottom of the moving plume, CO2 dissolves into the brine—a process dominated by convective mixing. These two mechanisms—capillary trapping and convective dissolution—reduce the size of the mobile plume as it migrates. In this communication, we present an analytical model that predicts the migration distance and time for complete trapping. This is used to estimate storage capacity of geologic formations at the basin scale.
Force fields of charged particles in micro-nanofluidic preconcentration systems
NASA Astrophysics Data System (ADS)
Gong, Lingyan; Ouyang, Wei; Li, Zirui; Han, Jongyoon
2017-12-01
Electrokinetic concentration devices based on the ion concentration polarization (ICP) phenomenon have drawn much attention due to their simple setup, high enrichment factor, and easy integration with many subsequent processes, such as separation, reaction, and extraction etc. Despite significant progress in the experimental research, fundamental understanding and detailed modeling of the preconcentration systems is still lacking. The mechanism of the electrokinetic trapping of charged particles is currently limited to the force balance analysis between the electric force and fluid drag force in an over-simplified one-dimensional (1D) model, which misses many signatures of the actual system. This letter studies the particle trapping phenomena that are not explainable in the 1D model through the calculation of the two-dimensional (2D) force fields. The trapping of charged particles is shown to significantly distort the electric field and fluid flow pattern, which in turn leads to the different trapping behaviors of particles of different sizes. The mechanisms behind the protrusions and instability of the focused band, which are important factors determining overall preconcentration efficiency, are revealed through analyzing the rotating fluxes of particles in the vicinity of the ion-selective membrane. The differences in the enrichment factors of differently sized particles are understood through the interplay between the electric force and convective fluid flow. These results provide insights into the electrokinetic concentration effect, which could facilitate the design and optimization of ICP-based preconcentration systems.
Zhao, Cunlu; Yang, Chun
2018-02-14
In this work, we report an effective microfluidic technique for continuous-flow trapping and localized enrichment of micro- and nano-particles by using induced-charge electrokinetic (ICEK) phenomena. The proposed technique utilizes a simple microfluidic device that consists of a straight microchannel and a conducting strip attached to the bottom wall of the microchannel. Upon application of the electric field along the microchannel, the conducting strip becomes polarized to introduce two types of ICEK phenomena, the ICEK flow vortex and particle dielectrophoresis, and they are identified by a theoretical model formulated in this study to be jointly responsible for the trapping of particles over the edge of the conducting strip. Our experiments showed that successful trapping requires an AC/DC combined electric field: the DC component is mainly to induce electroosmotic flow for transporting particles to the trapping location; the AC component induces ICEK phenomena over the edge of the conducting strip for particle trapping. The performance of the technique is examined with respect to the applied electric voltage, AC frequency and the particle size. We observed that the trapped particles form a narrow band (nearly a straight line) defined by the edge of the conducting strip, thereby allowing localized particle enrichment. For instance, we found that under certain conditions a high particle enrichment ratio of 200 was achieved within 30 seconds. We also demonstrated that the proposed technique was able to trap particles from several microns down to several tens of nanometer. We believe that the proposed ICEK trapping would have great flexibility that the trapping location can be readily varied by controlling the location of the patterned conducting strip and multiple-location trapping can be expected with the use of multiple conducting strips.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Shu; Zhou, Chunhua; Jiang, Qimeng
2014-01-06
Thermally stimulated current (TSC) spectroscopy and high-voltage back-gating measurement are utilized to study GaN buffer traps specific to AlGaN/GaN lateral heterojunction structures grown on a low-resistivity Si substrate. Three dominating deep-level traps in GaN buffer with activation energies of ΔE{sub T1} ∼ 0.54 eV, ΔE{sub T2} ∼ 0.65 eV, and ΔE{sub T3} ∼ 0.75 eV are extracted from TSC spectroscopy in a vertical GaN-on-Si structure. High back-gate bias applied to the Si substrate could influence the drain current in an AlGaN/GaN-on-Si high-electron-mobility transistor in a way that cannot be explained with a simple field-effect model. By correlating the trap states identified in TSC with the back-gating measurement results, itmore » is proposed that the ionization/deionization of both donor and acceptor traps are responsible for the generation of buffer space charges, which impose additional modulation to the 2DEG channel.« less
Accumulator for Low-Energy Laser-Cooled Particles
NASA Astrophysics Data System (ADS)
Mertes, Kevin; Walstrom, Peter; di Rosa, Michael; LANL Collaboration
2017-04-01
An accumulator builds phase-space density by use of a non-Hamiltonian process, thereby circumventing Liouville's theorem, which states that phase-space density is preserved in processes governed by Hamilton's equations. We have built an accumulator by a simple magneto-static cusp trap formed from two ring shaped permanent magnets. In traps with a central minimum of | B | , the stored particles are in a field-repelled (FR) Zeeman state, pushed away by | B | and oscillating about its minimum. After laser-cooling our particles and before entering the trap, we employ the non-hamiltonian process of optical pumping: A FR particle approaches the trap and climbs to the top of the confining potential with a finite velocity. There, it is switched to a field seeking (FS) state. As the switch does not change the velocity, the particle proceeds into the trap but continues to lose momentum because, now in the FS state, the particles sees the decreasing field as a potential hill to climb. Before it comes to a halt, the particle is switched back to a FR state for storage. The process repeats, building the trapped number and density. A simple consideration of potential and kinetic energies would show the trapped particles to have less kinetic energy than those injected. Los Alamos National Laboratory's Office of Laboratory Directed Research and Development.
Schmied, Wolfgang H; Takken, Willem; Killeen, Gerry F; Knols, Bart GJ; Smallegange, Renate C
2008-01-01
Background Evaluation of mosquito responses towards different trap-bait combinations in field trials is a time-consuming process that can be shortened by experiments in contained semi-field systems. Possible use of the BG Sentinel (BGS) trap to sample Anopheles gambiae s.s. was evaluated. The efficiency of this trap was compared with that of the Mosquito Magnet-X (MM-X) trap, when baited with foot odour alone or combinations of foot odour with carbon dioxide (CO2) or lemongrass as behaviour-modifying cues. Methods Female An. gambiae s.s. were released in an experimental flight arena that was placed in a semi-field system and left overnight. Catch rates for the MM-X and BGS traps were recorded. Data were analysed by fitting a generalized linear model to the (n+1) transformed catches. Results Both types of traps successfully captured mosquitoes with all odour cues used. When the BGS trap was tested against the MM-X trap in a choice assay with foot odour as bait, the BGS trap caught about three times as many mosquitoes as the MM-X trap (P = 0.002). Adding CO2 (500 ml/min) to foot odour increased the number of mosquitoes caught by 268% for the MM-X (P < 0.001) and 34% (P = 0.051) for the BGS trap, compared to foot odour alone. When lemongrass leaves were added to foot odour, mosquito catches were reduced by 39% (BGS, P < 0.001) and 38% (MM-X, P = 0.353), respectively. Conclusion The BGS trap shows high potential for field trials due to its simple construction and high catch rate when baited with human foot odour only. However, for rapid screening of different baits in a contained semi-field system, the superior discriminatory power of the MM-X trap is advantageous. PMID:18980669
Okuda, Mitsuru; Okuda, Shiori; Iwai, Hisashi
2015-09-01
Cucurbit chlorotic yellows virus (CCYV) of the genus Crinivirus within the family Closteroviridae is an emerging infectious agent of cucurbits leading to severe disease and significant economic losses. Effective detection and identification methods for this virus are urgently required. In this study, a reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed to detect CCYV from its vector Bemisia tabaci. LAMP primer sets to detect CCYV were evaluated for their sensitivity and specificity, and a primer set designed from the HSP70h gene with corresponding loop primers were selected. The RT-LAMP assay was applied to detect CCYV from viruliferous B. tabaci trapped on sticky traps. A simple extraction procedure using RNAsecure™ was developed for template preparation. CCYV was detected in all of the B. tabaci 0, 1, 7 and 14 days after they were trapped. Although the rise of turbidity was delayed in reactions using RNA from B. tabaci trapped for 7 and 14 days compared with those from 0 and 1 day, the DNA amplification was sufficient to detect CCYV in all of the samples. These findings therefore present a simple template preparation method and an effective RT-LAMP assay, which can be easily and rapidly performed to monitor CCYV-viruliferous B. tabaci in the field. Copyright © 2015 Elsevier B.V. All rights reserved.
Design and evaluation of a simple signaling device for live traps
Benevides, F.L.; Hansen, H.; Hess, S.C.
2008-01-01
Frequent checks of live traps require enormous amounts of labor and add human scents associated with repeated monitoring, which may reduce capture efficiency. To reduce efforts and increase efficiency, we developed a trap-signaling device with long-distance reception, durability in adverse weather, and ease of transport, deployment, and use. Modifications from previous designs include a normally open magnetic switch and a mounting configuration to maximize reception. The system weighed <225 g, was effective ???17.1 km, and failed in <1% of trap-nights. Employing this system, researchers and wildlife managers may reduce the amount of effort checking traps while improving the welfare of trapped animals.
Byers, John A
2008-09-01
The release rate of a semiochemical lure that attracts flying insects has a specific effective attraction radius (EAR) that corresponds to the lure's orientation response strength. EAR is defined as the radius of a passive sphere that intercepts the same number of insects as a semiochemical-baited trap. It is estimated by calculating the ratio of trap catches in the field in baited and unbaited traps and the interception area of the unbaited trap. EAR serves as a standardized method for comparing the attractive strengths of lures that is independent of population density. In two-dimensional encounter rate models that are used to describe insect mass trapping and mating disruption, a circular EAR (EAR(c)) describes a key parameter that affects catch or influence by pheromone in the models. However, the spherical EAR, as measured in the field, should be transformed to an EAR(c) for appropriate predictions in such models. The EAR(c) is calculated as (pi/2EAR(2))/F (L), where F (L) is the effective thickness of the flight layer where the insect searches. F (L) was estimated from catches of insects (42 species in the orders Coleoptera, Lepidoptera, Diptera, Hemiptera, and Thysanoptera) on traps at various heights as reported in the literature. The EAR(c) was proposed further as a simple but equivalent alternative to simulations of highly complex active-space plumes with variable response surfaces that have proven exceedingly difficult to quantify in nature. This hypothesis was explored in simulations where flying insects, represented as coordinate points, moved about in a correlated random walk in an area that contained a pheromone plume, represented as a sector of active space composed of a capture probability surface of variable complexity. In this plume model, catch was monitored at a constant density of flying insects and then compared to simulations in which a circular EAR(c) was enlarged until an equivalent rate was caught. This demonstrated that there is a circular EAR(c), where all insects that enter are caught, which corresponds in catch effect to any plume. Thus, the EAR(c), based on the field-observed EAR, can be used in encounter rate models to develop effective control programs based on mass trapping and/or mating disruption.
Modeling study of mecamylamine block of muscle type acetylcholine receptors.
Ostroumov, Konstantin; Shaikhutdinova, Asya; Skorinkin, Andrey
2008-04-01
The blocking action of mecamylamine on different types of nicotinic acetylcholine receptors (nAChRs) has been extensively studied and used as a tool to characterize the nAChRs from different synapses. However, mechanism of mecamylamine action was not fully explored for all types of nAChRs. In the present study, we provide brief description of the mecamylamine action on muscle nAChRs expressed at the frog neuromuscular junction. In this preparation mecamylamine block of nAChRs was accompanied by a use-dependent block relief induced by membrane depolarization combined with the activation of nAChRs by endogenous agonist acetylcholine (ACh). Further, three kinetic models of possible mecamylamine interaction with nAChRs were analyzed including simple open channel block, symmetrical trapping block and asymmetrical trapping block. This analysis suggested that mecamylamine action could be described on the basis of trapping mechanism, when the antagonist remained inside the channel even in the absence of bound agonist. Such receptors with trapped mecamylamine inside were predicted to have a closing rate constant about three times faster than resting one and a fast voltage-dependent unblocking rate constant. Specific experimental conditions and morphological organization of the neuromuscular synapses were considered to simulate time course of the mecamylamine block development. Thus, likewise for the neuronal nAChRs, the trapping mechanism determined the action of mecamylamine on synaptic neuromuscular currents evoked by the endogenous agonist acetylcholine (ACh), however specific morphological organization of the synaptic transmission delayed time development of the currents block.
Symmetry dependence of holograms for optical trapping
NASA Astrophysics Data System (ADS)
Curtis, Jennifer E.; Schmitz, Christian H. J.; Spatz, Joachim P.
2005-08-01
No iterative algorithm is necessary to calculate holograms for most holographic optical trapping patterns. Instead, holograms may be produced by a simple extension of the prisms-and-lenses method. This formulaic approach yields the same diffraction efficiency as iterative algorithms for any asymmetric or symmetric but nonperiodic pattern of points while requiring less calculation time. A slight spatial disordering of periodic patterns significantly reduces intensity variations between the different traps without extra calculation costs. Eliminating laborious hologram calculations should greatly facilitate interactive holographic trapping.
Controlling the light shift of the CPT resonance by modulation technique
NASA Astrophysics Data System (ADS)
Tsygankov, E. A.; Petropavlovsky, S. V.; Vaskovskaya, M. I.; Zibrov, S. A.; Velichansky, V. L.; Yakovlev, V. P.
2017-12-01
Motivated by recent developments in atomic frequency standards employing the effect of coherent population trapping (CPT), we propose a theoretical framework for the frequency modulation spectroscopy of the CPT resonances. Under realistic assumptions we provide simple yet non-trivial analytical formulae for the major spectroscopic signals such as the CPT resonance line and the in-phase/quadrature responses. We discuss the influence of the light shift and, in particular, derive a simple expression for the displacement of the resonance as a function of modulation index. The performance of the model is checked against numerical simulations, the agreement is good to perfect. The obtained results can be used in more general models accounting for light absorption in the thick optical medium.
An efficient transport solver for tokamak plasmas
Park, Jin Myung; Murakami, Masanori; St. John, H. E.; ...
2017-01-03
A simple approach to efficiently solve a coupled set of 1-D diffusion-type transport equations with a stiff transport model for tokamak plasmas is presented based on the 4th order accurate Interpolated Differential Operator scheme along with a nonlinear iteration method derived from a root-finding algorithm. Here, numerical tests using the Trapped Gyro-Landau-Fluid model show that the presented high order method provides an accurate transport solution using a small number of grid points with robust nonlinear convergence.
Current sheet in plasma as a system with a controlling parameter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fridman, Yu. A., E-mail: yulya-fridman@yandex.ru; Chukbar, K. V., E-mail: Chukbar-KV@nrcki.ru
2015-08-15
A simple kinetic model describing stationary solutions with bifurcated and single-peaked current density profiles of a plane electron beam or current sheet in plasma is presented. A connection is established between the two-dimensional constructions arising in terms of the model and the one-dimensional considerations by Bernstein−Greene−Kruskal facilitating the reconstruction of the distribution function of trapped particles when both the profile of the electric potential and the free particles distribution function are known.
Lee, Jungwoo; Teh, Shia-Yen; Lee, Abraham; Kim, Hyung Ham; Lee, Changyang; Shung, K. Kirk
2009-01-01
A single beam acoustic device, with its relatively simple scheme and low intensity, can trap a single lipid droplet in a manner similar to optical tweezers. Forces in the order of hundreds of nanonewtons direct the droplet toward the beam focus, within the range of hundreds of micrometers. This trapping method, therefore, can be a useful tool for particle manipulation in areas where larger particles or forces are involved. PMID:19798424
Single beam acoustic trapping.
Lee, Jungwoo; Teh, Shia-Yen; Lee, Abraham; Kim, Hyung Ham; Lee, Changyang; Shung, K Kirk
2009-08-17
A single beam acoustic device, with its relatively simple scheme and low intensity, can trap a single lipid droplet in a manner similar to optical tweezers. Forces in the order of hundreds of nanonewtons direct the droplet toward the beam focus, within the range of hundreds of micrometers. This trapping method, therefore, can be a useful tool for particle manipulation in areas where larger particles or forces are involved.
Density estimation using the trapping web design: A geometric analysis
Link, W.A.; Barker, R.J.
1994-01-01
Population densities for small mammal and arthropod populations can be estimated using capture frequencies for a web of traps. A conceptually simple geometric analysis that avoid the need to estimate a point on a density function is proposed. This analysis incorporates data from the outermost rings of traps, explaining large capture frequencies in these rings rather than truncating them from the analysis.
Crosstalk elimination in the detection of dual-beam optical tweezers by spatial filtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ott, Dino; Oddershede, Lene B., E-mail: oddershede@nbi.dk; Reihani, S. Nader S.
2014-05-15
In dual-beam optical tweezers, the accuracy of position and force measurements is often compromised by crosstalk between the two detected signals, this crosstalk leading to systematic and significant errors on the measured forces and distances. This is true both for dual-beam optical traps where the splitting of the two traps is done by polarization optics and for dual optical traps constructed by other methods, e.g., holographic tweezers. If the two traps are orthogonally polarized, most often crosstalk is minimized by inserting polarization optics in front of the detector; however, this method is not perfect because of the de-polarization of themore » trapping beam introduced by the required high numerical aperture optics. Here we present a simple and easy-to-implement method to efficiently eliminate crosstalk. The method is based on spatial filtering by simply inserting a pinhole at the correct position and is highly compatible with standard back focal plane photodiode based detection of position and force. Our spatial filtering method reduces crosstalk up to five times better than polarization filtering alone. The effectiveness is dependent on pinhole size and distance between the traps and is here quantified experimentally and reproduced by theoretical modeling. The method here proposed will improve the accuracy of force-distance measurements, e.g., of single molecules, performed by dual-beam optical traps and hence give much more scientific value for the experimental efforts.« less
On the half-life of luminescence signals in dosimetric applications: A unified presentation
NASA Astrophysics Data System (ADS)
Pagonis, V.; Kitis, G.; Polymeris, G. S.
2018-06-01
Luminescence signals from natural and man-made materials are widely used in dosimetric and dating applications. In general, there are two types of half-lives of luminescence signals which are of importance to experimental and modeling work in this research area. The first type of half-life is the time required for the population of the trapped charge in a single trap to decay to half its initial value. The second type of half-life is the time required for the luminescence intensity to drop to half of its initial value. While there a handful of analytical expressions available in the literature for the first type of half-life, there are no corresponding analytical expressions for the second type. In this work new analytical expressions are derived for the half-life of luminescence signals during continuous wave optical stimulation luminescence (CW-OSL) or isothermal luminescence (ITL) experiments. The analytical expressions are derived for several commonly used luminescence models which are based on delocalized transitions involving the conduction band: first and second order kinetics, empirical general order kinetics (GOK), mixed order kinetics (MOK) and the one-trap one-recombination center (OTOR) model. In addition, half-life expressions are derived for a different type of luminescence model, which is based on localized transitions in a random distribution of charges. The new half-life expressions contain two parts. The first part is inversely proportional to the thermal or optical excitation rate, and depends on the experimental conditions and on the cross section of the relevant luminescence process. The second part is characteristic of the optical and/or thermal properties of the material, as expressed by the parameters in the model. A new simple and quick method for analyzing luminescence signals is developed, and examples are given of applying the new method to a variety of dosimetric materials. The new test allows quick determination of whether a set of experimentally measured luminescence signals originate in a single trap, or in multiple traps.
Local condensate depletion at trap center under strong interactions
NASA Astrophysics Data System (ADS)
Yukalov, V. I.; Yukalova, E. P.
2018-04-01
Cold trapped Bose-condensed atoms, interacting via hard-sphere repulsive potentials are considered. Simple mean-field approximations show that the condensate distribution inside a harmonic trap always has the shape of a hump with the maximum condensate density occurring at the trap center. However, Monte Carlo simulations at high density and strong interactions display the condensate depletion at the trap center. The explanation of this effect of local condensate depletion at trap center is suggested in the frame of self-consistent theory of Bose-condensed systems. The depletion is shown to be due to the existence of the anomalous average that takes into account pair correlations and appears in systems with broken gauge symmetry.
Uncovering the density of nanowire surface trap states hidden in the transient photoconductance.
Xu, Qiang; Dan, Yaping
2016-09-21
The gain of nanoscale photoconductors is closely correlated with surface trap states. Mapping out the density of surface trap states in the semiconductor bandgap is crucial for engineering the performance of nanoscale photoconductors. Traditional capacitive techniques for the measurement of surface trap states are not readily applicable to nanoscale devices. Here, we demonstrate a simple technique to extract the information on the density of surface trap states hidden in the transient photoconductance that is widely observed. With this method, we found that the density of surface trap states of a single silicon nanowire is ∼10(12) cm(-2) eV(-1) around the middle of the upper half bandgap.
Yuan, Jin-Peng; Ji, Zhong-Hua; Zhao, Yan-Ting; Chang, Xue-Fang; Xiao, Lian-Tuan; Jia, Suo-Tang
2013-09-01
We present a simple, reliable, and nondestructive method for the measurement of vacuum pressure in a magneto-optical trap. The vacuum pressure is verified to be proportional to the collision rate constant between cold atoms and the background gas with a coefficient k, which can be calculated by means of the simple ideal gas law. The rate constant for loss due to collisions with all background gases can be derived from the total collision loss rate by a series of loading curves of cold atoms under different trapping laser intensities. The presented method is also applicable for other cold atomic systems and meets the miniaturization requirement of commercial applications.
NASA Astrophysics Data System (ADS)
Yin, L.; Albright, B. J.; Rose, H. A.; Bowers, K. J.; Bergen, B.; Montgomery, D. S.; Kline, J. L.; Fernández, J. C.
2009-11-01
A suite of three-dimensional (3D) VPIC [K. J. Bowers et al., Phys. Plasmas 15, 055703 (2008)] particle-in-cell simulations of backward stimulated Raman scattering (SRS) in inertial confinement fusion hohlraum plasma has been performed on the heterogeneous multicore supercomputer, Roadrunner, presently the world's most powerful supercomputer. These calculations reveal the complex nonlinear behavior of SRS and point to a new era of "at scale" 3D modeling of SRS in solitary and multiple laser speckles. The physics governing nonlinear saturation of SRS in a laser speckle in 3D is consistent with that of prior two-dimensional (2D) studies [L. Yin et al., Phys. Rev. Lett. 99, 265004 (2007)], but with important differences arising from enhanced diffraction and side loss in 3D compared with 2D. In addition to wave front bowing of electron plasma waves (EPWs) due to trapped electron nonlinear frequency shift and amplitude-dependent damping, we find for the first time that EPW self-focusing, which evolved from trapped particle modulational instability [H. A. Rose and L. Yin, Phys. Plasmas 15, 042311 (2008)], also exhibits loss of angular coherence by formation of a filament necklace, a process not available in 2D. These processes in 2D and 3D increase the side-loss rate of trapped electrons, increase wave damping, decrease source coherence for backscattered light, and fundamentally limit how much backscatter can occur from a laser speckle. For both SRS onset and saturation, the nonlinear trapping induced physics is not captured in linear gain modeling of SRS. A simple metric is described for using single-speckle reflectivities obtained from VPIC simulations to infer the total reflectivity from the population of laser speckles of amplitude sufficient for significant trapping-induced nonlinearity to arise.
Anomalous transport in cellular flows: The role of initial conditions and aging
NASA Astrophysics Data System (ADS)
Pöschke, Patrick; Sokolov, Igor M.; Nepomnyashchy, Alexander A.; Zaks, Michael A.
2016-09-01
We consider the diffusion-advection problem in two simple cellular flow models (often invoked as examples of subdiffusive tracer motion) and concentrate on the intermediate time range, in which the tracer motion indeed may show subdiffusion. We perform extensive numerical simulations of the systems under different initial conditions and show that the pure intermediate-time subdiffusion regime is only evident when the particles start at the border between different cells, i.e., at the separatrix, and is less pronounced or absent for other initial conditions. The motion moreover shows quite peculiar aging properties, which are also mirrored in the behavior of the time-averaged mean squared displacement for single trajectories. This kind of behavior is due to the complex motion of tracers trapped inside the cell and is absent in classical models based on continuous-time random walks with no dynamics in the trapped state.
Loading an Optical Trap with Diamond Nanocrystals Containing Nitrogen-Vacancy Centers from a Surface
NASA Astrophysics Data System (ADS)
Hsu, Jen-Feng; Ji, Peng; Dutt, M. V. Gurudev; D'Urso, Brian R.
2015-03-01
We present a simple and effective method of loading particles into an optical trap. Our primary application of this method is loading photoluminescent material, such as diamond nanocrystals containing nitrogen-vacancy (NV) centers, for coupling the mechanical motion of the trapped crystal with the spin of the NV centers. Highly absorptive material at the trapping laser frequency, such as tartrazine dye, is used as media to attach nanodiamonds and burn into a cloud of air-borne particles as the material is swept near the trapping laser focus on a glass slide. Particles are then trapped with the laser used for burning or transferred to a second laser trap at a different wavelength. Evidence of successful loading diamond nanocrystals into the trap presented includes high sensitivity of the photoluminecscence (PL) to the excitation laser and the PL spectra of the optically trapped particles
Thermometry of levitated nanoparticles in a hybrid electro-optical trap
NASA Astrophysics Data System (ADS)
Aranas, E. B.; Fonseca, P. Z. G.; Barker, P. F.; Monteiro, T. S.
2017-03-01
There have been recent rapid developments in stable trapping of levitated nanoparticles in high vacuum. Cooling of nanoparticles, from phonon occupancies of 107 down to ≃ 100{--}1000 phonons, have already been achieved by several groups. Prospects for quantum ground-state cooling seem extremely promising. Cavity-cooling without added stabilisation by feedback cooling remains challenging, but trapping at high vacuum in a cavity is now possible through the addition of a Paul trap. However, the Paul trap has been found to qualitatively modify the cavity output spectrum, with the latter acquiring an atypical ‘split-sideband’ structure, of different form from the displacement spectrum, and which depends on N, the optical well at which the particle localises. In the present work we investigate the N-dependence of the dynamics, in particular with respect to thermometry: we show that in strong cooling regions N≳ 100, the temperature may still be reliably inferred from the cavity output spectra. We also explain the N-dependence of the mechanical frequencies and optomechanical coupling showing that these may be accurately estimated. We present a simple ‘fast-cavity’ model for the cavity output and test all our findings against full numerical solutions of the nonlinear stochastic equations of motion for the system.
Popescu, Viorel D; Valpine, Perry; Sweitzer, Rick A
2014-04-01
Wildlife data gathered by different monitoring techniques are often combined to estimate animal density. However, methods to check whether different types of data provide consistent information (i.e., can information from one data type be used to predict responses in the other?) before combining them are lacking. We used generalized linear models and generalized linear mixed-effects models to relate camera trap probabilities for marked animals to independent space use from telemetry relocations using 2 years of data for fishers (Pekania pennanti) as a case study. We evaluated (1) camera trap efficacy by estimating how camera detection probabilities are related to nearby telemetry relocations and (2) whether home range utilization density estimated from telemetry data adequately predicts camera detection probabilities, which would indicate consistency of the two data types. The number of telemetry relocations within 250 and 500 m from camera traps predicted detection probability well. For the same number of relocations, females were more likely to be detected during the first year. During the second year, all fishers were more likely to be detected during the fall/winter season. Models predicting camera detection probability and photo counts solely from telemetry utilization density had the best or nearly best Akaike Information Criterion (AIC), suggesting that telemetry and camera traps provide consistent information on space use. Given the same utilization density, males were more likely to be photo-captured due to larger home ranges and higher movement rates. Although methods that combine data types (spatially explicit capture-recapture) make simple assumptions about home range shapes, it is reasonable to conclude that in our case, camera trap data do reflect space use in a manner consistent with telemetry data. However, differences between the 2 years of data suggest that camera efficacy is not fully consistent across ecological conditions and make the case for integrating other sources of space-use data.
Hawking-like radiation does not require a trapped region.
Barceló, Carlos; Liberati, Stefano; Sonego, Sebastiano; Visser, Matt
2006-10-27
We discuss the issue of quasiparticle production by "analogue black holes" with particular attention paid to the possibility of reproducing Hawking radiation in a laboratory. By constructing simple geometric acoustic models, we obtain a somewhat unexpected result: We show that, in order to obtain a stationary and Planckian emission of quasiparticles, it is not necessary to create a trapped region in the acoustic spacetime (corresponding to a supersonic regime in the fluid flow). It is sufficient to set up a dynamically changing flow asymptotically approaching a sonic regime with sufficient rapidity in laboratory time. This result is generic to curved-space quantum field theory, the "analogue spacetimes" we consider providing a guide to physical intuition, and a possible route to laboratory experiments.
Controlling spin flips of molecules in an electromagnetic trap
NASA Astrophysics Data System (ADS)
Reens, David; Wu, Hao; Langen, Tim; Ye, Jun
2017-12-01
Doubly dipolar molecules exhibit complex internal spin dynamics when electric and magnetic fields are both applied. Near magnetic trap minima, these spin dynamics lead to enhancements in Majorana spin-flip transitions by many orders of magnitude relative to atoms and are thus an important obstacle for progress in molecule trapping and cooling. We conclusively demonstrate and address this with OH molecules in a trap geometry where spin-flip losses can be tuned from over 200 s-1 to below our 2 s-1 vacuum-limited loss rate with only a simple external bias coil and with minimal impact on trap depth and gradient.
Kang, Zhiwen; Chen, Jiajie; Wu, Shu-Yuen; Chen, Kun; Kong, Siu-Kai; Yong, Ken-Tye; Ho, Ho-Pui
2015-01-01
We experimentally demonstrated the use of random plasmonic nano-islands for optical trapping and assembling of particles and live cells into highly organized pattern with low power density. The observed trapping effect is attributed to the net contribution due to near-field optical trapping force and long-range thermophoretic force, which overcomes the axial convective drag force, while the lateral convection pushes the target objects into the trapping zone. Our work provides a simple platform for on-chip optical manipulation of nano- and micro-sized objects, and may find applications in physical and life sciences. PMID:25928045
Heating rates in collisionally opaque alkali-metal atom traps: Role of secondary collisions
NASA Astrophysics Data System (ADS)
Beijerinck, H. C. W.
2000-12-01
Grazing collisions with background gas are the major cause of trap loss and trap heating in atom traps. To first order, these effects do not depend on the trap density. In collisionally opaque trapped atom clouds, however, scattered atoms with an energy E larger than the effective trap depth Eeff, which are destined to escape from the atom cloud, will have a finite probability for a secondary collision. This results in a contribution to the heating rate that depends on the column density
A simple optical tweezers for trapping polystyrene particles
NASA Astrophysics Data System (ADS)
Shiddiq, Minarni; Nasir, Zulfa; Yogasari, Dwiyana
2013-09-01
Optical tweezers is an optical trap. For decades, it has become an optical tool that can trap and manipulate any particle from the very small size like DNA to the big one like bacteria. The trapping force comes from the radiation pressure of laser light which is focused to a group of particles. Optical tweezers has been used in many research areas such as atomic physics, medical physics, biophysics, and chemistry. Here, a simple optical tweezers has been constructed using a modified Leybold laboratory optical microscope. The ocular lens of the microscope has been removed for laser light and digital camera accesses. A laser light from a Coherent diode laser with wavelength λ = 830 nm and power 50 mW is sent through an immersion oil objective lens with magnification 100 × and NA 1.25 to a cell made from microscope slides containing polystyrene particles. Polystyrene particles with size 3 μm and 10 μm are used. A CMOS Thorlabs camera type DCC1545M with USB Interface and Thorlabs camera lens 35 mm are connected to a desktop and used to monitor the trapping and measure the stiffness of the trap. The camera is accompanied by camera software which makes able for the user to capture and save images. The images are analyzed using ImageJ and Scion macro. The polystyrene particles have been trapped successfully. The stiffness of the trap depends on the size of the particles and the power of the laser. The stiffness increases linearly with power and decreases as the particle size larger.
NASA Astrophysics Data System (ADS)
Peng, Zhao-Yang; Wang, Sheng-Kai; Bai, Yun; Tang, Yi-Dan; Chen, Xi-Ming; Li, Cheng-Zhan; Liu, Ke-An; Liu, Xin-Yu
2018-04-01
In this work, border traps located in SiO2 at different depths in 4H-SiC MOS system are evaluated by a simple and effective method based on capacitance-voltage (C-V) measurements. This method estimates the border traps between two adjacent depths through C-V measurement at various frequencies at room and elevated temperatures. By comparison of these two C-V characteristics, the correlation between time constant of border traps and temperatures is obtained. Then the border trap density is determined by integration of capacitance difference against gate voltage at the regions where border traps dominate. The results reveal that border trap concentration a few nanometers away from the interface increases exponentially towards the interface, which is in good agreement with previous work. It has been proved that high temperature 1 MHz C-V method is effective for border trap evaluation.
Short Range Photoassociation of Rb2 by a high power fiber laser
NASA Astrophysics Data System (ADS)
Passagem, Henry; Rodriguez, Ricardo; Ventura, Paulo; Bouloufa, Nadia; Dulieu, Olivier; Marcassa, Luis
2016-05-01
Photoassociation has been studied using cold trapped atomic samples for the last 20 years. Due to poor Franck-Condon overlap, a free-to-bound transition followed by spontaneous decay results in a small production of electronic ground state molecules. If the photoassociation is done at short range, deeply bound ground state molecules can be formed. Optical pumping schemes can be used to populate a single state. In our experiment, we have performed trap loss spectroscopy on trapped 85 Rb atoms in a MOT using a high power fiber laser. Our single mode fiber laser (linewidth < 1 MHz) produces about 50 W, which can be tuned in the 1060-1070 nm range. Two vibrational bound states of the 0u+ potential were observed (ν = 137 and 138). The frequency positions as well as the rotational constants of these states are in good agreement with theoretical predictions. We have also measured the lifetime of a crossed optical dipole trap using such fiber laser. The lifetime on resonance is shorter than off resonance as expected. A simple theoretical model indicates that the molecules decay to deeply bound vibrational levels in the ground state. This work was supported by Fapesp and INCT-IQ.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watts, Christopher A.
In this dissertation the possibility that chaos and simple determinism are governing the dynamics of reversed field pinch (RFP) plasmas is investigated. To properly assess this possibility, data from both numerical simulations and experiment are analyzed. A large repertoire of nonlinear analysis techniques is used to identify low dimensional chaos in the data. These tools include phase portraits and Poincare sections, correlation dimension, the spectrum of Lyapunov exponents and short term predictability. In addition, nonlinear noise reduction techniques are applied to the experimental data in an attempt to extract any underlying deterministic dynamics. Two model systems are used to simulatemore » the plasma dynamics. These are the DEBS code, which models global RFP dynamics, and the dissipative trapped electron mode (DTEM) model, which models drift wave turbulence. Data from both simulations show strong indications of low dimensional chaos and simple determinism. Experimental date were obtained from the Madison Symmetric Torus RFP and consist of a wide array of both global and local diagnostic signals. None of the signals shows any indication of low dimensional chaos or low simple determinism. Moreover, most of the analysis tools indicate the experimental system is very high dimensional with properties similar to noise. Nonlinear noise reduction is unsuccessful at extracting an underlying deterministic system.« less
On the existence of horizons in spacetimes with vanishing curvature invariants
NASA Astrophysics Data System (ADS)
Senovilla, José M. M.
2003-11-01
A direct very simple proof that there can be no closed trapped surfaces (ergo no black hole regions) in spacetimes with all curvature scalar invariants vanishing is given. Explicit examples of the recently introduced ``dynamical horizons'' which nevertheless do not enclose any trapped region are presented too.
Tracing compartment exchange by NMR diffusometry: Water in lithium-exchanged low-silica X zeolites
NASA Astrophysics Data System (ADS)
Lauerer, A.; Kurzhals, R.; Toufar, H.; Freude, D.; Kärger, J.
2018-04-01
The two-region model for analyzing signal attenuation in pulsed field gradient (PFG) NMR diffusion studies with molecules in compartmented media implies that, on their trajectory, molecules get from one region (one type of compartment) into the other one with a constant (i.e. a time-invariant) probability. This pattern has proved to serve as a good approach for considering guest diffusion in beds of nanoporous host materials, with the two regions ("compartments") identified as the intra- and intercrystalline pore spaces. It is obvious, however, that the requirements of the application of the two-region model are not strictly fulfilled given the correlation between the covered diffusion path lengths in the intracrystalline pore space and the probability of molecular "escape" from the individual crystallites. On considering water diffusion in lithium-exchanged low-silica X zeolite, we are now assuming a different position since this type of material is known to offer "traps" in the trajectories of the water molecules. Now, on attributing the water molecules in the traps and outside of the traps to these two types of regions, we perfectly comply with the requirements of the two-region model. We do, moreover, benefit from the option of high-resolution measurements owing to the combination of magic angle spinning (MAS) with PFG NMR. Data analysis via the two-region model under inclusion of the influence of nuclear magnetic relaxation yields satisfactory agreement between experimental evidence and theoretical estimates. Limitations in accuracy are shown to result from the fact that mass transfer outside of the traps is too complicated for being adequately reflected by simple Fick's laws with but one diffusivity.
Vanadium substitution: A simple and economic way to improve UV sensing in ZnO
NASA Astrophysics Data System (ADS)
Srivastava, Tulika; Bajpai, Gaurav; Rathore, Gyanendra; Liu, Shun Wei; Biring, Sajal; Sen, Somaditya
2018-04-01
The UV sensing in pure ZnO is due to oxygen adsorption/desorption process from the ZnO surface. Vanadium doping improves the UV sensitivity of ZnO. The enhancement in UV sensitivity in vanadium-substituted ZnO is attributed to trapping and de-trapping of electrons at V4+ and V5+-related defect states. The V4+ state has an extra electron than the V5+ state. A V4+ to V5+ transformation happens with excitation of this electron to the conduction band, while a reverse trapping process liberates a visible light. An analytic study of response phenomenon reveals this trapping and de-trapping process.
A simple technique for trapping Siren lacertina, Amphiuma means, and other aquatic vertebrates
Johnson, S.A.; Barichivich, W.J.
2004-01-01
We describe a commercially-available funnel trap for sampling aquatic vertebrates. The traps can be used in heavily vegetated wetlands and can be set in water up to 60 cm deep without concern for drowning the animals. They were especially useful for capturing the aquatic salamanders Siren lacertina and Amphiuma means, which have been difficult to capture with traditional sampling methods. They also were effective for sampling small fishes, particularly centrarchids, and larval anurans. In total, 14 species of amphibians, nine species of aquatic reptiles, and at least 32 fish species were captured. The trap we describe differs significantly from traditional funnel traps (e.g., minnow traps) and holds great promise for studies of small, aquatic vertebrates, in particular Siren and Amphiuma species.
NASA Technical Reports Server (NTRS)
Simons, M.
1978-01-01
Radiation effects in MOS devices and circuits are considered along with radiation effects in materials, space radiation effects and spacecraft charging, SGEMP, IEMP, EMP, fabrication of radiation-hardened devices, radiation effects in bipolar devices and circuits, simulation, energy deposition, and dosimetry. Attention is given to the rapid anneal of radiation-induced silicon-sapphire interface charge trapping, cosmic ray induced errors in MOS memory cells, a simple model for predicting radiation effects in MOS devices, the response of MNOS capacitors to ionizing radiation at 80 K, trapping effects in irradiated and avalanche-injected MOS capacitors, inelastic interactions of electrons with polystyrene, the photoelectron spectral yields generated by monochromatic soft X radiation, and electron transport in reactor materials.
NASA Astrophysics Data System (ADS)
Kim, E.; Safavi-Naini, A.; Hite, D. A.; McKay, K. S.; Pappas, D. P.; Weck, P. F.; Sadeghpour, H. R.
2017-03-01
The decoherence of trapped-ion quantum gates due to heating of their motional modes is a fundamental science and engineering problem. This heating is attributed to electric-field noise arising from the trap-electrode surfaces. In this work, we investigate the source of this noise by focusing on the diffusion of carbon-containing adsorbates on the surface of Au(110). We show by density functional theory, based on detailed scanning probe microscopy, how the carbon adatom diffusion on the gold surface changes the energy landscape and how the adatom dipole moment varies with the diffusive motion. A simple model for the diffusion noise, which varies quadratically with the variation of the dipole moment, predicts a noise spectrum, in accordance with the measured values.
Chaos in plasma simulation and experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watts, C.; Newman, D.E.; Sprott, J.C.
1993-09-01
We investigate the possibility that chaos and simple determinism are governing the dynamics of reversed field pinch (RFP) plasmas using data from both numerical simulations and experiment. A large repertoire of nonlinear analysis techniques is used to identify low dimensional chaos. These tools include phase portraits and Poincard sections, correlation dimension, the spectrum of Lyapunov exponents and short term predictability. In addition, nonlinear noise reduction techniques are applied to the experimental data in an attempt to extract any underlying deterministic dynamics. Two model systems are used to simulate the plasma dynamics. These are -the DEBS code, which models global RFPmore » dynamics, and the dissipative trapped electron mode (DTEM) model, which models drift wave turbulence. Data from both simulations show strong indications of low,dimensional chaos and simple determinism. Experimental data were obtained from the Madison Symmetric Torus RFP and consist of a wide array of both global and local diagnostic signals. None of the signals shows any indication of low dimensional chaos or other simple determinism. Moreover, most of the analysis tools indicate the experimental system is very high dimensional with properties similar to noise. Nonlinear noise reduction is unsuccessful at extracting an underlying deterministic system.« less
Optoelectronically probing the density of nanowire surface trap states to the single state limit
NASA Astrophysics Data System (ADS)
Dan, Yaping
2015-02-01
Surface trap states play a dominant role in the optoelectronic properties of nanoscale devices. Understanding the surface trap states allows us to properly engineer the device surfaces for better performance. But characterization of surface trap states at nanoscale has been a formidable challenge using the traditional capacitive techniques. Here, we demonstrate a simple but powerful optoelectronic method to probe the density of nanowire surface trap states to the single state limit. In this method, we choose to tune the quasi-Fermi level across the bandgap of a silicon nanowire photoconductor, allowing for capture and emission of photogenerated charge carriers by surface trap states. The experimental data show that the energy density of nanowire surface trap states is in a range from 109 cm-2/eV at deep levels to 1012 cm-2/eV near the conduction band edge. This optoelectronic method allows us to conveniently probe trap states of ultra-scaled nano/quantum devices at extremely high precision.
Near-field tsunami edge waves and complex earthquake rupture
Geist, Eric L.
2013-01-01
The effect of distributed coseismic slip on progressive, near-field edge waves is examined for continental shelf tsunamis. Detailed observations of edge waves are difficult to separate from the other tsunami phases that are observed on tide gauge records. In this study, analytic methods are used to compute tsunami edge waves distributed over a finite number of modes and for uniformly sloping bathymetry. Coseismic displacements from static elastic theory are introduced as initial conditions in calculating the evolution of progressive edge-waves. Both simple crack representations (constant stress drop) and stochastic slip models (heterogeneous stress drop) are tested on a fault with geometry similar to that of the M w = 8.8 2010 Chile earthquake. Crack-like ruptures that are beneath or that span the shoreline result in similar longshore patterns of maximum edge-wave amplitude. Ruptures located farther offshore result in reduced edge-wave excitation, consistent with previous studies. Introduction of stress-drop heterogeneity by way of stochastic slip models results in significantly more variability in longshore edge-wave patterns compared to crack-like ruptures for the same offshore source position. In some cases, regions of high slip that are spatially distinct will yield sub-events, in terms of tsunami generation. Constructive interference of both non-trapped and trapped waves can yield significantly larger tsunamis than those that produced by simple earthquake characterizations.
Yoo, Daehan; Gurunatha, Kargal L; Choi, Han-Kyu; Mohr, Daniel A; Ertsgaard, Christopher T; Gordon, Reuven; Oh, Sang-Hyun
2018-06-13
We present optical trapping with a 10 nm gap resonant coaxial nanoaperture in a gold film. Large arrays of 600 resonant plasmonic coaxial nanoaperture traps are produced on a single chip via atomic layer lithography with each aperture tuned to match a 785 nm laser source. We show that these single coaxial apertures can act as efficient nanotweezers with a sharp potential well, capable of trapping 30 nm polystyrene nanoparticles and streptavidin molecules with a laser power as low as 4.7 mW. Furthermore, the resonant coaxial nanoaperture enables real-time label-free detection of the trapping events via simple transmission measurements. Our fabrication technique is scalable and reproducible, since the critical nanogap dimension is defined by atomic layer deposition. Thus our platform shows significant potential to push the limit of optical trapping technologies.
Aerospace devices for magnetic replicas
NASA Technical Reports Server (NTRS)
Weinstein, Roy
1993-01-01
Retained persistent magnetic field has been studied and improved in the superconductor YBa2Cu3O7 (Y123). During the study, trapped magnetic field, B(t), has been increased by over a factor of 10(exp 5). Methods used to improve magnetic field trapping were principally: (1) the adoption of the Melt Texturing process to increase grain size; (2) the addition of excess Y to disperse deposits of Y2BaCuO5 (Y211) and again increase grain size; (3) irradiation with high energy particles including 1H+, 3He++, 4He++, and fission fragments; and (4) utilizing temperatures below 77 K has also been quantified as a way to increase trapped field. In addition, in our study of B(t), we have found laws governing creep, activation, temperature dependence, creep vs. current flow, etc. In the range 20 K less than or equal to T less than or equal to 65 K, and for B less than 10 Tesla, a simple empirical relationship was found: B(trap) (T2) = B(trap) (T1) ((Tc - T2)/(Tc - T1))squared where Tc is the critical temperature. The highest experimental trapped field was B(trap) = 3.96 Tesla, at 65 K. We believe this to be the highest persistent field ever produced, by any method. A two component model of the persistent currents has been developed. This accurately reproduces the data, using as parameters only the magnitude of a constant surface current, J(s), and a constant volume current J(v). The model successfully predicts B(t) (xyz) for the case of maximum trapped field, for all samples observed. It has also been extended to describe the unsaturated case either zero field cooled, or field cooled. Loss of strap with time has been studied for the critical state (Bt,max), and non critical state (Bt less than Bt,max), for times from a few minutes to a few months, for unirradiated material, for irradiation by 1H+, 3He++, 4He++, high z projectiles, and neutrons, and for all materials used in the overall study. We conclude that: (1) multi Tesla trapped fields are attained; (2) fields over 10 T are achievable; (3) creep is not a large problem; (4) application is feasible to motors, generators, magnets for particle beam optics, separators, levitating bearings, energy storage, shielding, and transportation.
Topological analysis of metabolic networks based on petri net theory.
Zevedei-Oancea, Ionela; Schuster, Stefan
2011-01-01
Petri net concepts provide additional tools for the modelling of metabolic networks. Here, the similarities between the counterparts in traditional biochemical modelling and Petri net theory are discussed. For example the stoichiometry matrix of a metabolic network corresponds to the incidence matrix of the Petri net. The flux modes and conservation relations have the T-invariants, respectively, P-invariants as counterparts. We reveal the biological meaning of some notions specific to the Petri net framework (traps, siphons, deadlocks, liveness). We focus on the topological analysis rather than on the analysis of the dynamic behaviour. The treatment of external metabolites is discussed. Some simple theoretical examples are presented for illustration. Also the Petri nets corresponding to some biochemical networks are built to support our results. For example, the role of triose phosphate isomerase (TPI) in Trypanosoma brucei metabolism is evaluated by detecting siphons and traps. All Petri net properties treated in this contribution are exemplified on a system extracted from nucleotide metabolism.
Topological analysis of metabolic networks based on Petri net theory.
Zevedei-Oancea, Ionela; Schuster, Stefan
2003-01-01
Petri net concepts provide additional tools for the modelling of metabolic networks. Here, the similarities between the counterparts in traditional biochemical modelling and Petri net theory are discussed. For example the stoichiometry matrix of a metabolic network corresponds to the incidence matrix of the Petri net. The flux modes and conservation relations have the T-invariants, respectively, P-invariants as counterparts. We reveal the biological meaning of some notions specific to the Petri net framework (traps, siphons, deadlocks, liveness). We focus on the topological analysis rather than on the analysis of the dynamic behaviour. The treatment of external metabolites is discussed. Some simple theoretical examples are presented for illustration. Also the Petri nets corresponding to some biochemical networks are built to support our results. For example, the role of triose phosphate isomerase (TPI) in Trypanosoma brucei metabolism is evaluated by detecting siphons and traps. All Petri net properties treated in this contribution are exemplified on a system extracted from nucleotide metabolism.
Budria, Alexandre; DeFaveri, Jacquelin; Merilä, Juha
2015-12-21
Minnow traps are commonly used in the stickleback (Gasterostidae) fishery, but the potential differences in catch per unit effort (CPUE) among different minnow trap models are little studied. We compared the CPUE of four different minnow trap models in field experiments conducted with three-spined sticklebacks (Gasterosteus aculeatus). Marked (up to 26 fold) differences in median CPUE among different trap models were observed. Metallic uncoated traps yielded the largest CPUE (2.8 fish/h), followed by metallic black nylon-coated traps (1.3 fish/h). Collapsible canvas traps yielded substantially lower CPUEs (black: 0.7 fish/h; red: 0.1 fish/h) than the metallic traps. Laboratory trials further revealed significant differences in escape probabilities among the different trap models. While the differences in escape probability can explain at least part of the differences in CPUE among the trap models (e.g. high escape rate and low CPUE in red canvas traps), discrepancies between model-specific CPUEs and escape rates suggests that variation in entrance rate also contributes to the differences in CPUE. In general, and in accordance with earlier data on nine-spined stickleback (Pungitius pungitius) trapping, the results suggest that uncoated metallic (Gee-type) traps are superior to the other commonly used minnow trap models in stickleback fisheries.
Budria, Alexandre; DeFaveri, Jacquelin; Merilä, Juha
2015-01-01
Minnow traps are commonly used in the stickleback (Gasterostidae) fishery, but the potential differences in catch per unit effort (CPUE) among different minnow trap models are little studied. We compared the CPUE of four different minnow trap models in field experiments conducted with three-spined sticklebacks (Gasterosteus aculeatus). Marked (up to 26 fold) differences in median CPUE among different trap models were observed. Metallic uncoated traps yielded the largest CPUE (2.8 fish/h), followed by metallic black nylon-coated traps (1.3 fish/h). Collapsible canvas traps yielded substantially lower CPUEs (black: 0.7 fish/h; red: 0.1 fish/h) than the metallic traps. Laboratory trials further revealed significant differences in escape probabilities among the different trap models. While the differences in escape probability can explain at least part of the differences in CPUE among the trap models (e.g. high escape rate and low CPUE in red canvas traps), discrepancies between model-specific CPUEs and escape rates suggests that variation in entrance rate also contributes to the differences in CPUE. In general, and in accordance with earlier data on nine-spined stickleback (Pungitius pungitius) trapping, the results suggest that uncoated metallic (Gee-type) traps are superior to the other commonly used minnow trap models in stickleback fisheries. PMID:26685761
NASA Astrophysics Data System (ADS)
Rozairo, Damith; Croll, Andrew
Understanding the dynamics of the formation and drainage of the thin fluid film that becomes trapped by a deformable droplet as it approaches another object is crucial to the advancement of many industrial and biomedical applications. Adding amphiphilic diblock copolymers, which are becoming more commonly used in drug delivery and oil recovery, only add to the complexity. Despite their increased use, little is known about how long polymer chains fill an emulsion drop's interface or how the molecules influence hydrodynamic processes. We study the drainage dynamics of a thin water film trapped between mica and a diblock copolymer saturated oil droplet. Specifically, we examine several different polystyrene-b-poly(ethylene oxide) (PS-PEO) molecules self-assembled at a toluene-water interface using laser scanning confocal microscopy. Our experiments reveal that the molecular details of the polymer chains deeply influence the drainage times, indicating that they are not acting as a 'simple' surfactant. The presence of the chains creates a much slower dynamic as fluid is forced to drain through an effective polymer brush, the brush itself determined by chain packing at the interface. We present a simple model which accounts for the basic physics of the interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frey, Brian J.; Kuang, Ping; Hsieh, Mei-Li
A 900 nm thick TiO 2 simple cubic photonic crystal with lattice constant 450 nm was fabricated and used to experimentally validate a newly-discovered mechanism for extreme light-bending. Absorption enhancement was observed extending 1–2 orders of magnitude over that of a reference TiO 2 film. Several enhancement peaks in the region from 600–950 nm were identified, which far exceed both the ergodic fundamental limit and the limit based on surface-gratings, with some peaks exceeding 100 times enhancement. These results are attributed to radically sharp refraction where the optical path length approaches infinity due to the Poynting vector lying nearly parallelmore » to the photonic crystal interface. The observed phenomena follow directly from the simple cubic symmetry of the photonic crystal, and can be achieved by integrating the light-trapping architecture into the absorbing volume. These results are not dependent on the material used, and can be applied to any future light trapping applications such as phosphor-converted white light generation, water-splitting, or thin-film solar cells, where increased response in areas of weak absorption is desired.« less
Frey, Brian J.; Kuang, Ping; Hsieh, Mei-Li; ...
2017-06-23
A 900 nm thick TiO 2 simple cubic photonic crystal with lattice constant 450 nm was fabricated and used to experimentally validate a newly-discovered mechanism for extreme light-bending. Absorption enhancement was observed extending 1–2 orders of magnitude over that of a reference TiO 2 film. Several enhancement peaks in the region from 600–950 nm were identified, which far exceed both the ergodic fundamental limit and the limit based on surface-gratings, with some peaks exceeding 100 times enhancement. These results are attributed to radically sharp refraction where the optical path length approaches infinity due to the Poynting vector lying nearly parallelmore » to the photonic crystal interface. The observed phenomena follow directly from the simple cubic symmetry of the photonic crystal, and can be achieved by integrating the light-trapping architecture into the absorbing volume. These results are not dependent on the material used, and can be applied to any future light trapping applications such as phosphor-converted white light generation, water-splitting, or thin-film solar cells, where increased response in areas of weak absorption is desired.« less
Evaluation method for acoustic trapping performance by tracking motion of trapped microparticle
NASA Astrophysics Data System (ADS)
Lim, Hae Gyun; Ham Kim, Hyung; Yoon, Changhan
2018-05-01
We report a method to evaluate the performances of a single-beam acoustic tweezer using a high-frequency ultrasound transducer. The motion of a microparticle trapped by a 45-MHz single-element transducer was captured and analyzed to deduce the magnitude of trapping force. In the proposed method, the motion of a trapped microparticle was analyzed from a series of microscopy images to compute trapping force; thus, no additional equipment such as microfluidics is required. The method could be used to estimate the effective trapping force in an acoustic tweezer experiment to assess cell membrane deformability by attaching a microbead to the surface of a cell and tracking the motion of the trapped bead, which is similar to a bead-based assay that uses optical tweezers. The results showed that the trapping force increased with increasing acoustic intensity and duty factor, but the force eventually reached a plateau at a higher acoustic intensity. They demonstrated that this method could be used as a simple tool to evaluate the performance and to optimize the operating conditions of acoustic tweezers.
Chin, Lijin; Moran, Jonathan A; Clarke, Charles
2010-04-01
*Three Bornean pitcher plant species, Nepenthes lowii, N. rajah and N. macrophylla, produce modified pitchers that 'capture' tree shrew faeces for nutritional benefit. Tree shrews (Tupaia montana) feed on exudates produced by glands on the inner surfaces of the pitcher lids and defecate into the pitchers. *Here, we tested the hypothesis that pitcher geometry in these species is related to tree shrew body size by comparing the pitcher characteristics with those of five other 'typical' (arthropod-trapping) Nepenthes species. *We found that only pitchers with large orifices and lids that are concave, elongated and oriented approximately at right angles to the orifice capture faeces. The distance from the tree shrews' food source (that is, the lid nectar glands) to the front of the pitcher orifice precisely matches the head plus body length of T. montana in the faeces-trapping species, and is a function of orifice size and the angle of lid reflexion. *Substantial changes to nutrient acquisition strategies in carnivorous plants may occur through simple modifications to trap geometry. This extraordinary plant-animal interaction adds to a growing body of evidence that Nepenthes represents a candidate model for adaptive radiation with regard to nitrogen sequestration strategies.
Protein unfolding with a steric trap.
Blois, Tracy M; Hong, Heedeok; Kim, Tae H; Bowie, James U
2009-10-07
The study of protein folding requires a method to drive unfolding, which is typically accomplished by altering solution conditions to favor the denatured state. This has the undesirable consequence that the molecular forces responsible for configuring the polypeptide chain are also changed. It would therefore be useful to develop methods that can drive unfolding without the need for destabilizing solvent conditions. Here we introduce a new method to accomplish this goal, which we call steric trapping. In the steric trap method, the target protein is labeled with two biotin tags placed close in space so that both biotin tags can only be bound by streptavidin when the protein unfolds. Thus, binding of the second streptavidin is energetically coupled to unfolding of the target protein. Testing the method on a model protein, dihydrofolate reductase (DHFR), we find that streptavidin binding can drive unfolding and that the apparent binding affinity reports on changes in DHFR stability. Finally, by employing the slow off-rate of wild-type streptavidin, we find that DHFR can be locked in the unfolded state. The steric trap method provides a simple method for studying aspects of protein folding and stability in native solvent conditions, could be used to specifically unfold selected domains, and could be applicable to membrane proteins.
NASA Technical Reports Server (NTRS)
Gu, Ye-Ming; Li, Chung-Sheng
1986-01-01
On the basis of the summing-up and analysis of the observations and theories about the impulsive microwave and hard X-ray bursts, the correlations between these two kinds of emissions were investigated. It is shown that it is only possible to explain the optically-thin microwave spectrum and its relations with the hard X-ray spectrum by means of the nonthermal source model. A simple nonthermal trap model in the mildly-relativistic case can consistently explain the main characteristics of the spectrum and the relative time delays.
NASA Astrophysics Data System (ADS)
Teixeira, Miguel A. C.
2017-04-01
A linear model is used to diagnose the onset of rotors in flow over 2D ridges, for atmospheres that are neutrally stratified near the surface and stably stratified aloft, with a sharp temperature inversion in between, where trapped lee waves may propagate. This is achieved by coupling an inviscid two-layer mountain-wave model with a bulk boundary-layer model. The full model shows some ability to detect flow stagnation as a function of key input parameters, such as the Froude number and the height of the inversion, by comparison with results from numerical simulations and laboratory experiments carried out by previous authors. The effect of a boundary layer is essential to correctly predict flow stagnation, as the inviscid version of the model severely overestimates the dimensionless critical mountain height necessary for stagnation to occur. An improved model that includes only the effects of mean flow deceleration and amplification of the velocity perturbation within the boundary layer predicts flow stagnation much better in the most non-hydrostatic cases treated here, where waves appear to be directly forced by the orography. However, in the most hydrostatic case, only the full model, taking into account the feedback of the boundary layer on the inviscid flow, satisfactorily predicts flow stagnation, although the corresponding stagnation condition is unable to discriminate between rotors and hydraulic jumps. This is due to the fact that the trapped lee waves associated with the rotors are not forced directly by the orography in this case, but rather seem to be generated indirectly by nonlinear processes. This mechanism is, to a certain extent, mimicked by the modified surface boundary condition adopted in the full model, where an "effective orography" that differs from the real one forces the trapped lee waves. Versions of the model not including this feedback severely underestimate the amplitude of the trapped lee waves in the most hydrostatic case, partly because the Fourier transform of the orography has zeros, which unrealistically weaken the wave response. Concerning the inability of even the full model to discriminate between rotors and hydraulic jumps, this may be attributed to the fact that the flow perturbations associated with stagnation in the model differ from those seen in the numerical simulations, especially for the most hydrostatic rotors, where the waves are generated indirectly. This suggests that flow stagnation may not be occurring for the right reasons in those cases.
Multichannel microfluidic chip for rapid and reliable trapping and imaging plant-parasitic nematodes
NASA Astrophysics Data System (ADS)
Amrit, Ratthasart; Sripumkhai, Witsaroot; Porntheeraphat, Supanit; Jeamsaksiri, Wutthinan; Tangchitsomkid, Nuchanart; Sutapun, Boonsong
2013-05-01
Faster and reliable testing technique to count and identify nematode species resided in plant roots is therefore essential for export control and certification. This work proposes utilizing a multichannel microfluidic chip with an integrated flow-through microfilter to retain the nematodes in a trapping chamber. When trapped, it is rather simple and convenient to capture images of the nematodes and later identify their species by a trained technician. Multiple samples can be tested in parallel using the proposed microfluidic chip therefore increasing number of samples tested per day.
Growth and instability of a phospholipid vesicle in a bath of fatty acids
NASA Astrophysics Data System (ADS)
Dervaux, J.; Noireaux, V.; Libchaber, A. J.
2017-06-01
Using a microfluidic trap, we study the behavior of individual phospholipid vesicles in contact with fatty acids. We show that spontaneous fatty acids insertion inside the bilayer is controlled by the vesicle size, osmotic pressure difference across the membrane and fatty acids concentration in the external bath. Depending on these parameters, vesicles can grow spherically or become unstable and fragment into several daughter vesicles. We establish the phase diagram for vesicle growth and we derive a simple thermodynamic model that reproduces the time evolution of the vesicle volume. Finally, we show that stable growth can be achieved on an artificial cell expressing a simple set of bacterial cytoskeletal proteins, paving the way toward artificial cell reproduction.
Dynamical traps in Wang-Landau sampling of continuous systems: Mechanism and solution
NASA Astrophysics Data System (ADS)
Koh, Yang Wei; Sim, Adelene Y. L.; Lee, Hwee Kuan
2015-08-01
We study the mechanism behind dynamical trappings experienced during Wang-Landau sampling of continuous systems reported by several authors. Trapping is caused by the random walker coming close to a local energy extremum, although the mechanism is different from that of the critical slowing-down encountered in conventional molecular dynamics or Monte Carlo simulations. When trapped, the random walker misses the entire or even several stages of Wang-Landau modification factor reduction, leading to inadequate sampling of the configuration space and a rough density of states, even though the modification factor has been reduced to very small values. Trapping is dependent on specific systems, the choice of energy bins, and the Monte Carlo step size, making it highly unpredictable. A general, simple, and effective solution is proposed where the configurations of multiple parallel Wang-Landau trajectories are interswapped to prevent trapping. We also explain why swapping frees the random walker from such traps. The efficacy of the proposed algorithm is demonstrated.
A mass transfer model of ammonia volatilization from anaerobic digestate.
Whelan, M J; Everitt, T; Villa, R
2010-10-01
Anaerobic digestion (AD) is becoming increasingly popular for treating organic waste. The methane produced can be burned to generate electricity and the digestate, which is high in mineral nitrogen, can be used as a fertiliser. In this paper we evaluate potential losses of ammonia via volatilization from food waste anaerobic digestate using a closed chamber system equipped with a sulphuric acid trap. Ammonia losses represent a pollution source and, over long periods could reduce the agronomic value of the digestate. Observed ammonia losses from the experimental system were linear with time. A simple non-steady-state partitioning model was developed to represent the process. After calibration, the model was able to describe the behaviour of ammonia in the digestate and in the trap very well. The average rate of volatilization was approximately 5.2 g Nm(-2)week(-1). The model was used to extrapolate the findings of the laboratory study to a number of AD storage scenarios. The simulations highlight that open storage of digestate could result in significant losses of ammonia to the atmosphere. Losses are predicted to be relatively minor from covered facilities, particularly if depth to surface area ratio is high. (c) 2009 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Joon Hyun; Kwon, Woo Jin; Shin, Yong-Il
2016-05-01
In a recent experiment, it was found that the dissipative evolution of a corotating vortex pair in a trapped Bose-Einstein condensate is well described by a point vortex model with longitudinal friction on the vortex motion and the thermal friction coefficient was determined as a function of sample temperature. In this poster, we present a numerical study on the relaxation of 2D superfluid turbulence based on the dissipative point vortex model. We consider a homogeneous system in a cylindrical trap having randomly distributed vortices and implement the vortex-antivortex pair annihilation by removing a pair when its separation becomes smaller than a certain threshold value. We characterize the relaxation of the turbulent vortex states with the decay time required for the vortex number to be reduced to a quarter of initial number. We find the vortex decay time is inversely proportional to the thermal friction coefficient. In particular, we observe the decay times obtained from this work show good quantitative agreement with the experimental results in, indicating that in spite of its simplicity, the point vortex model reasonably captures the physics in the relaxation dynamics of the real system.
Tufto, Jarle; Lande, Russell; Ringsby, Thor-Harald; Engen, Steinar; Saether, Bernt-Erik; Walla, Thomas R; DeVries, Philip J
2012-07-01
1. We develop a Bayesian method for analysing mark-recapture data in continuous habitat using a model in which individuals movement paths are Brownian motions, life spans are exponentially distributed and capture events occur at given instants in time if individuals are within a certain attractive distance of the traps. 2. The joint posterior distribution of the dispersal rate, longevity, trap attraction distances and a number of latent variables representing the unobserved movement paths and time of death of all individuals is computed using Gibbs sampling. 3. An estimate of absolute local population density is obtained simply by dividing the Poisson counts of individuals captured at given points in time by the estimated total attraction area of all traps. Our approach for estimating population density in continuous habitat avoids the need to define an arbitrary effective trapping area that characterized previous mark-recapture methods in continuous habitat. 4. We applied our method to estimate spatial demography parameters in nine species of neotropical butterflies. Path analysis of interspecific variation in demographic parameters and mean wing length revealed a simple network of strong causation. Larger wing length increases dispersal rate, which in turn increases trap attraction distance. However, higher dispersal rate also decreases longevity, thus explaining the surprising observation of a negative correlation between wing length and longevity. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
Squiggle Ball Capture: A Simple, Visual Kinetic Theory Experiment
ERIC Educational Resources Information Center
Gfroerer, Tim; Rathbun, Ken
2007-01-01
When particles move about randomly in the presence of traps, how long does it take for them to be captured? Well, it depends on the average speed of the particles and the dimensions and distribution of the traps. For example, when neutrons are generated in nuclear fission reactions, they must be captured by other fissionable nuclei in order to…
ERIC Educational Resources Information Center
Christensen, David R.
2016-01-01
Remote camera-traps are commonly used to estimate the abundance, diversity, behavior and habitat use of wildlife in an inexpensive and nonintrusive manner. Because of the increasing use of remote-cameras in wildlife studies, students interested in wildlife biology should be exposed to the use of remote-cameras early in their academic careers.…
A Computer Model of Insect Traps in a Landscape
NASA Astrophysics Data System (ADS)
Manoukis, Nicholas C.; Hall, Brian; Geib, Scott M.
2014-11-01
Attractant-based trap networks are important elements of invasive insect detection, pest control, and basic research programs. We present a landscape-level, spatially explicit model of trap networks, focused on detection, that incorporates variable attractiveness of traps and a movement model for insect dispersion. We describe the model and validate its behavior using field trap data on networks targeting two species, Ceratitis capitata and Anoplophora glabripennis. Our model will assist efforts to optimize trap networks by 1) introducing an accessible and realistic mathematical characterization of the operation of a single trap that lends itself easily to parametrization via field experiments and 2) allowing direct quantification and comparison of sensitivity between trap networks. Results from the two case studies indicate that the relationship between number of traps and their spatial distribution and capture probability under the model is qualitatively dependent on the attractiveness of the traps, a result with important practical consequences.
Landry, Markita P; McCall, Patrick M; Qi, Zhi; Chemla, Yann R
2009-10-21
Optical traps or "tweezers" use high-power, near-infrared laser beams to manipulate and apply forces to biological systems, ranging from individual molecules to cells. Although previous studies have established that optical tweezers induce photodamage in live cells, the effects of trap irradiation have yet to be examined in vitro, at the single-molecule level. In this study, we investigate trap-induced damage in a simple system consisting of DNA molecules tethered between optically trapped polystyrene microspheres. We show that exposure to the trapping light affects the lifetime of the tethers, the efficiency with which they can be formed, and their structure. Moreover, we establish that these irreversible effects are caused by oxidative damage from singlet oxygen. This reactive state of molecular oxygen is generated locally by the optical traps in the presence of a sensitizer, which we identify as the trapped polystyrene microspheres. Trap-induced oxidative damage can be reduced greatly by working under anaerobic conditions, using additives that quench singlet oxygen, or trapping microspheres lacking the sensitizers necessary for singlet state photoexcitation. Our findings are relevant to a broad range of trap-based single-molecule experiments-the most common biological application of optical tweezers-and may guide the development of more robust experimental protocols.
Characterization of Photoactivated Singlet Oxygen Damage in Single-Molecule Optical Trap Experiments
Landry, Markita P.; McCall, Patrick M.; Qi, Zhi; Chemla, Yann R.
2009-01-01
Abstract Optical traps or “tweezers” use high-power, near-infrared laser beams to manipulate and apply forces to biological systems, ranging from individual molecules to cells. Although previous studies have established that optical tweezers induce photodamage in live cells, the effects of trap irradiation have yet to be examined in vitro, at the single-molecule level. In this study, we investigate trap-induced damage in a simple system consisting of DNA molecules tethered between optically trapped polystyrene microspheres. We show that exposure to the trapping light affects the lifetime of the tethers, the efficiency with which they can be formed, and their structure. Moreover, we establish that these irreversible effects are caused by oxidative damage from singlet oxygen. This reactive state of molecular oxygen is generated locally by the optical traps in the presence of a sensitizer, which we identify as the trapped polystyrene microspheres. Trap-induced oxidative damage can be reduced greatly by working under anaerobic conditions, using additives that quench singlet oxygen, or trapping microspheres lacking the sensitizers necessary for singlet state photoexcitation. Our findings are relevant to a broad range of trap-based single-molecule experiments—the most common biological application of optical tweezers—and may guide the development of more robust experimental protocols. PMID:19843445
Optical Trapping and Manipulation in the Single- and Many-Body Limits
NASA Astrophysics Data System (ADS)
Spalding, Gabriel
2007-03-01
Analysis of optical dipole/scattering forces can be done at a variety of levels, some of which are appropriate to the undergraduate curriculum. The addition of simple holographic techniques has extended the basic capabilities of optical tweezing, making it a more viable tool for the assembly of micro-systems and organization of specimens into user-defined structures. In 2D, we have demonstrated an approach that allows optical forces alone to assemble microparticles over macroscopic areas. 3D structures pose greater challenges, but also significant opportunities. Our early efforts at filling a 3D lattice of optical traps led to an appreciation for the dynamics of injected microparticle streams, which yield a surprisingly successful method of sorting or re- routing within microfludic environments. We will discuss the status of efforts using optical trapping to create static many-body structures (both simple and complex), as well as recent results on dynamic interactions. At the same time, some of these techniques have clear pedagogical value, as will be emphasized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandit, Bill; Jackson, Nicholas E.; Zheng, Tianyue
Rational design strategies for controlling the energetics of conjugated “donor–acceptor” copolymers are ubiquitous in the literature, as they allow for simple energy-level tuning strategies to be employed for photovoltaic and transistor applications. Utilizing the recently reported PTRn series of conjugated polymers closely related to the widely implemented material PTB7, we investigate the effect of local copolymer block energetics on the generation of transient excitonic and charge carrier species. It is clearly demonstrated that local copolymer block energetics play a much larger role than is apparent from simple energy-level tuning arguments, and drastically affect the ultrafast generation of free-charge carrier andmore » trap state populations. Specifically, we observe an almost complete reversal in the efficient generation of free-charge in PTB7 to the ultrafast creation of a high percentage of trapped pseudo charge-transfer states. The implications of this secondary effect of “donor–acceptor” energy level tuning are discussed, along with strategies for avoiding the generation of trap states in “donor–acceptor” copolymers.« less
Trap the Energy of the Sun. What We Make. Science and Technology Education in Philippine Society.
ERIC Educational Resources Information Center
Philippines Univ., Quezon City. Inst. for Science and Mathematics Education Development.
Filipino scientists and inventors have tried many ways of using solar energy. One simple device, made of wood and ordinary plastic sheets, traps solar energy to dry palay grains and other agricultural products. In this module, information and activities are provided to help students: (1) learn the advantages of using a solar crop dryer over direct…
Picosecond time-resolved photoluminescence using picosecond excitation correlation spectroscopy
NASA Astrophysics Data System (ADS)
Johnson, M. B.; McGill, T. C.; Hunter, A. T.
1988-03-01
We present a study of the temporal decay of photoluminescence (PL) as detected by picosecond excitation correlation spectroscopy (PECS). We analyze the correlation signal that is obtained from two simple models; one where radiative recombination dominates, the other where trapping processes dominate. It is found that radiative recombination alone does not lead to a correlation signal. Parallel trapping type processes are found to be required to see a signal. To illustrate this technique, we examine the temporal decay of the PL signal for In-alloyed, semi-insulating GaAs substrates. We find that the PL signal indicates a carrier lifetime of roughly 100 ps, for excitation densities of 1×1016-5×1017 cm-3. PECS is shown to be an easy technique to measure the ultrafast temporal behavior of PL processes because it requires no ultrafast photon detection. It is particularly well suited to measuring carrier lifetimes.
Kim, E.; Safavi-Naini, A.; Hite, D. A.; ...
2017-03-01
The decoherence of trapped-ion quantum bits due to heating of their motional modes is a fundamental science and engineering problem. This heating is attributed to electric-field noise arising from processes on the trap-electrode surfaces. In this work, we address the source of this noise by focusing on the diffusion of carbon-containing adsorbates on the surface of Au(110). We show by detailed scanned probe microscopy and density functional theory how the carbon adatom diffusion on the gold surface changes the energy landscape, and how the adatom dipole moment varies with the diffusive motion. Lastly, a simple model for the diffusion noise,more » which varies quadratically with the variation of the dipole moment, qualitatively reproduces the measured noise spectrum, and the estimate of the noise spectral density is in accord with measured values.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, E.; Safavi-Naini, A.; Hite, D. A.
The decoherence of trapped-ion quantum bits due to heating of their motional modes is a fundamental science and engineering problem. This heating is attributed to electric-field noise arising from processes on the trap-electrode surfaces. In this work, we address the source of this noise by focusing on the diffusion of carbon-containing adsorbates on the surface of Au(110). We show by detailed scanned probe microscopy and density functional theory how the carbon adatom diffusion on the gold surface changes the energy landscape, and how the adatom dipole moment varies with the diffusive motion. Lastly, a simple model for the diffusion noise,more » which varies quadratically with the variation of the dipole moment, qualitatively reproduces the measured noise spectrum, and the estimate of the noise spectral density is in accord with measured values.« less
The range of attraction for light traps catching Culicoides biting midges (Diptera: Ceratopogonidae)
2013-01-01
Background Culicoides are vectors of e.g. bluetongue virus and Schmallenberg virus in northern Europe. Light trapping is an important tool for detecting the presence and quantifying the abundance of vectors in the field. Until now, few studies have investigated the range of attraction of light traps. Methods Here we test a previously described mathematical model (Model I) and two novel models for the attraction of vectors to light traps (Model II and III). In Model I, Culicoides fly to the nearest trap from within a fixed range of attraction. In Model II Culicoides fly towards areas with greater light intensity, and in Model III Culicoides evaluate light sources in the field of view and fly towards the strongest. Model II and III incorporated the directionally dependent light field created around light traps with fluorescent light tubes. All three models were fitted to light trap collections obtained from two novel experimental setups in the field where traps were placed in different configurations. Results Results showed that overlapping ranges of attraction of neighboring traps extended the shared range of attraction. Model I did not fit data from any of the experimental setups. Model II could only fit data from one of the setups, while Model III fitted data from both experimental setups. Conclusions The model with the best fit, Model III, indicates that Culicoides continuously evaluate the light source direction and intensity. The maximum range of attraction of a single 4W CDC light trap was estimated to be approximately 15.25 meters. The attraction towards light traps is different from the attraction to host animals and thus light trap catches may not represent the vector species and numbers attracted to hosts. PMID:23497628
Kirkeby, Carsten; Græsbøll, Kaare; Stockmarr, Anders; Christiansen, Lasse E; Bødker, René
2013-03-15
Culicoides are vectors of e.g. bluetongue virus and Schmallenberg virus in northern Europe. Light trapping is an important tool for detecting the presence and quantifying the abundance of vectors in the field. Until now, few studies have investigated the range of attraction of light traps. Here we test a previously described mathematical model (Model I) and two novel models for the attraction of vectors to light traps (Model II and III). In Model I, Culicoides fly to the nearest trap from within a fixed range of attraction. In Model II Culicoides fly towards areas with greater light intensity, and in Model III Culicoides evaluate light sources in the field of view and fly towards the strongest. Model II and III incorporated the directionally dependent light field created around light traps with fluorescent light tubes. All three models were fitted to light trap collections obtained from two novel experimental setups in the field where traps were placed in different configurations. Results showed that overlapping ranges of attraction of neighboring traps extended the shared range of attraction. Model I did not fit data from any of the experimental setups. Model II could only fit data from one of the setups, while Model III fitted data from both experimental setups. The model with the best fit, Model III, indicates that Culicoides continuously evaluate the light source direction and intensity. The maximum range of attraction of a single 4W CDC light trap was estimated to be approximately 15.25 meters. The attraction towards light traps is different from the attraction to host animals and thus light trap catches may not represent the vector species and numbers attracted to hosts.
Kline, Daniel L; Müller, Günter C; Hogsette, Jerome A
2011-03-01
In this study, we evaluated the efficacy of eleven commercial models of propane combustion traps for catching male and female Phlebotomus papatasi. The traps differed in physical appearance, amount of carbon dioxide produced and released, type and location of capturing device, and the method by which the trap suction fans were powered. The traps tested were the Mosquito Magnet™(MM)-Pro, MM-Liberty, MM-Liberty Plus, MM-Defender, SkeeterVac®(SV)-35, SV-27, Mosquito Deleto™(MD)-2200, MD-2500, MT150-Power Trap, and two models of The Guardian Mosquito Traps (MK-01 and MK-12). All trap models except the SV-35, the SV-27, the MD-2500, and the MK-12 attracted significantly more females than males. The SV-35 was the most efficient trap, catching significantly more females than all the other models. The MD-2200 and MK-12 models were the least effective in catching either female or male sand flies. These data indicate that several models of propane combustion traps might be suitable substitutes for either CO(2) -baited or unbaited light traps for adult sand fly surveillance tools. One advantageous feature is the traps' ability to remain operational 24/7 for ca. 20 days on a single tank of propane. Additionally, the models that produce their own electricity to power the trap's fans have an important logistical advantage in field operations over light traps, which require daily battery exchange and charging. © 2011 The Society for Vector Ecology.
NASA Astrophysics Data System (ADS)
Filinov, A.; Bonitz, M.; Loffhagen, D.
2018-06-01
A new combination of first principle molecular dynamics (MD) simulations with a rate equation model presented in the preceding paper (paper I) is applied to analyze in detail the scattering of argon atoms from a platinum (111) surface. The combined model is based on a classification of all atom trajectories according to their energies into trapped, quasi-trapped and scattering states. The number of particles in each of the three classes obeys coupled rate equations. The coefficients in the rate equations are the transition probabilities between these states which are obtained from MD simulations. While these rates are generally time-dependent, after a characteristic time scale t E of several tens of picoseconds they become stationary allowing for a rather simple analysis. Here, we investigate this time scale by analyzing in detail the temporal evolution of the energy distribution functions of the adsorbate atoms. We separately study the energy loss distribution function of the atoms and the distribution function of in-plane and perpendicular energy components. Further, we compute the sticking probability of argon atoms as a function of incident energy, angle and lattice temperature. Our model is important for plasma-surface modeling as it allows to extend accurate simulations to longer time scales.
The impact of fluid topology on residual saturations - A pore-network model study
NASA Astrophysics Data System (ADS)
Doster, F.; Kallel, W.; van Dijke, R.
2014-12-01
In two-phase flow in porous media only fractions of the resident fluid are mobilised during a displacement process and, in general, a significant amount of the resident fluid remains permanently trapped. Depending on the application, entrapment is desirable (geological carbon storage), or it should be obviated (enhanced oil recovery, contaminant remediation). Despite its utmost importance for these applications, predictions of trapped fluid saturations for macroscopic systems, in particular under changing displacement conditions, remain challenging. The models that aim to represent trapping phenomena are typically empirical and require tracking of the history of the state variables. This exacerbates the experimental verification and the design of sophisticated displacement technologies that enhance or impede trapping. Recently, experiments [1] have suggested that a macroscopic normalized Euler number, quantifying the topology of fluid distributions, could serve as a parameter to predict residual saturations based on state variables. In these experiments the entrapment of fluids was visualised through 3D micro CT imaging. However, the experiments are notoriously time consuming and therefore only allow for a sparse sampling of the parameter space. Pore-network models represent porous media through an equivalent network structure of pores and throats. Under quasi-static capillary dominated conditions displacement processes can be modeled through simple invasion percolation rules. Hence, in contrast to experiments, pore-network models are fast and therefore allow full sampling of the parameter space. Here, we use pore-network modeling [2] to critically investigate the knowledge gained through observing and tracking the normalized Euler number. More specifically, we identify conditions under which (a) systems with the same saturations but different normalized Euler numbers lead to different residual saturations and (b) systems with the same saturations and the same normalized Euler numbers but different process histories yield the same residual saturations. Special attention is given to contact angle and process histories with varying drainage and imbibition periods. [1] Herring et al., Adv. Water. Resour., 62, 47-58 (2013) [2] Ryazanov et al., Transp. Porous Media, 80, 79-99 (2009).
Capillarity Guided Patterning of Microliquids.
Kang, Myeongwoo; Park, Woohyun; Na, Sangcheol; Paik, Sang-Min; Lee, Hyunjae; Park, Jae Woo; Kim, Ho-Young; Jeon, Noo Li
2015-06-01
Soft lithography and other techniques have been developed to investigate biological and chemical phenomena as an alternative to photolithography-based patterning methods that have compatibility problems. Here, a simple approach for nonlithographic patterning of liquids and gels inside microchannels is described. Using a design that incorporates strategically placed microstructures inside the channel, microliquids or gels can be spontaneously trapped and patterned when the channel is drained. The ability to form microscale patterns inside microfluidic channels using simple fluid drain motion offers many advantages. This method is geometrically analyzed based on hydrodynamics and verified with simulation and experiments. Various materials (i.e., water, hydrogels, and other liquids) are successfully patterned with complex shapes that are isolated from each other. Multiple cell types are patterned within the gels. Capillarity guided patterning (CGP) is fast, simple, and robust. It is not limited by pattern shape, size, cell type, and material. In a simple three-step process, a 3D cancer model that mimics cell-cell and cell-extracellular matrix interactions is engineered. The simplicity and robustness of the CGP will be attractive for developing novel in vitro models of organ-on-a-chip and other biological experimental platforms amenable to long-term observation of dynamic events using advanced imaging and analytical techniques. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Messerli, Mark A.; Collis, Leon P.; Smith, Peter J.S.
2009-01-01
Previously, functional mapping of channels has been achieved by measuring the passage of net charge and of specific ions with electrophysiological and intracellular fluorescence imaging techniques. However, functional mapping of ion channels using extracellular ion-selective microelectrodes has distinct advantages over the former methods. We have developed this method through measurement of extracellular K+ gradients caused by efflux through Ca2+-activated K+ channels expressed in Chinese hamster ovary cells. We report that electrodes constructed with short columns of a mechanically stable K+-selective liquid membrane respond quickly and measure changes in local [K+] consistent with a diffusion model. When used in close proximity to the plasma membrane (<4 μm), the ISMs pose a barrier to simple diffusion, creating an ion trap. The ion trap amplifies the local change in [K+] without dramatically changing the rise or fall time of the [K+] profile. Measurement of extracellular K+ gradients from activated rSlo channels shows that rapid events, 10–55 ms, can be characterized. This method provides a noninvasive means for functional mapping of channel location and density as well as for characterizing the properties of ion channels in the plasma membrane. PMID:19217875
NASA Astrophysics Data System (ADS)
Cui, Yingqi; Cui, Xianhui; Zhang, Li; Xie, Yujuan; Yang, Mingli
2018-04-01
Ligand passivation is often used to suppress the surface trap states of semiconductor quantum dots (QDs) for their continuous photoluminescence output. The suppression process is related to the electrophilic/nucleophilic activity of surface atoms that varies with the structure and size of QD and the electron donating/accepting nature of ligand. Based on first-principles-based descriptors and cluster models, the electrophilic/nucleophilic activities of bare and chloride-coated CdSe clusters were studied to reveal the suppression mechanism of Cl-passivated QDs and compared to experimental observations. The surface atoms of bare clusters have higher activity than inner atoms and their activity decreases with cluster size. In the ligand-coated clusters, the Cd atom remains as the electrophilic site, while the nucleophilic site of Se atoms is replaced by Cl atoms. The activities of Cd and Cl atoms in the coated clusters are, however, remarkably weaker than those in bare clusters. Cluster size, dangling atoms, ligand coverage, electronegativity of ligand atoms, and solvent (water) were found to have considerable influence on the activity of surface atoms. The suppression of surface trap states in Cl-passivated QDs was attributed to the reduction of electrophilic/nucleophilic activity of Cd/Se/Cl atoms. Both saturation to under-coordinated surface atoms and proper selection for the electron donating/accepting strength of ligands are crucial for eliminating the charge carrier traps. Our calculations predicted a similar suppressing effect of chloride ligands with experiments and provided a simple but effective approach to assess the charge carrier trapping behaviors of semiconductor QDs.
Experimental Parameters for Wax Modeling of the Deccan Traps Flood Basalt Province
NASA Astrophysics Data System (ADS)
Rader, E. L.; Vanderkluysen, L.; Clarke, A. B.
2015-12-01
The Deccan Traps consist of ~1,000,000 km3 of predominantly tholeiitic basaltic lava flows, which cover the western Indian subcontinent. Their eruption occurred over a ~1-3 million year period overlapping with the Cretaceous-Paleogene (K-Pg) boundary and, hence, has been implicated in one of the most significant extinction events in the history of the planet. The extent of environmental impacts caused by flood basalt eruptions is thought to be related, in part, to the amount, species, and timescales of volcanic gases released. Therefore, constraining the effusion rate of Deccan Traps lava flows is fundamental to understanding the K-Pg extinction event. Previous field and experimental work with polyethylene glycol (PEG) wax has shown that effusion rate is a primary factor controlling flow morphology. While sinuous flows and lava domes have been successfully recreated with PEG wax, the two most common morphologies seen in the Deccan Traps (compound and inflated sheet lobes) have not. We used heated PEG-400 wax injected into a tank of chilled water with a peristaltic pump to form experimental eruptions with high flow rate and low viscosity to replicate inflated flow lobes, and low flow rate with higher viscosity for compound flows. Unlike previous experiments, flow rate was varied during a single experiment to examine the effect on flow morphology. The Psi value is used as a scaling parameter to estimate effusion rates for compound and 'simple' inflated flows in the Deccan Traps. When combined with field work for volume estimates of the two flow types, these experiments will provide the best constraint on eruption rates to date.
Evaluation of various models of propane-powered mosquito traps.
Kline, Daniel L
2002-06-01
Large cage and field studies were conducted to determine the efficacy of various models of propane-powered mosquito traps. These traps utilized counterflow technology in conjunction with catalytic combustion to produce attractants (carbon dioxide, water vapor, and heat) and a thermoelectric generator that converted excess heat into electricity for stand-alone operation. The cage studies showed that large numbers of Aedes aegypti and Ochlerotatus taeniorhynchus were captured and that each progressive model resulted in increased trapping efficiency. In several field studies against natural populations of mosquitoes two different propane traps were compared against two other trap systems, the professional (PRO) and counterflow geometry (CFG) traps. In these studies the propane traps consistently caught more mosquitoes than the PRO trap and significantly fewer mosquitoes than the CFG traps. The difference in collection size between the CFG and propane traps was due mostly to Anopheles crucians. In spring 1997 the CFG trap captured 3.6X more An. crucians than the Portable Propane (PP) model and in spring 1998 it captured 6.3X more An. crucians than the Mosquito Magnet Beta-1 (MMB-1) trap. Both the PP and MMB-1 captured slightly more Culex spp. than the CFG trap.
A simple shape-free model for pore-size estimation with positron annihilation lifetime spectroscopy
NASA Astrophysics Data System (ADS)
Wada, Ken; Hyodo, Toshio
2013-06-01
Positron annihilation lifetime spectroscopy is one of the methods for estimating pore size in insulating materials. We present a shape-free model to be used conveniently for such analysis. A basic model in classical picture is modified by introducing a parameter corresponding to an effective size of the positronium (Ps). This parameter is adjusted so that its Ps-lifetime to pore-size relation merges smoothly with that of the well-established Tao-Eldrup model (with modification involving the intrinsic Ps annihilation rate) applicable to very small pores. The combined model, i.e., modified Tao-Eldrup model for smaller pores and the modified classical model for larger pores, agrees surprisingly well with the quantum-mechanics based extended Tao-Eldrup model, which deals with Ps trapped in and thermally equilibrium with a rectangular pore.
Multiconfigurational quantum propagation with trajectory-guided generalized coherent states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grigolo, Adriano, E-mail: agrigolo@ifi.unicamp.br; Aguiar, Marcus A. M. de, E-mail: aguiar@ifi.unicamp.br; Viscondi, Thiago F., E-mail: viscondi@if.usp.br
2016-03-07
A generalized version of the coupled coherent states method for coherent states of arbitrary Lie groups is developed. In contrast to the original formulation, which is restricted to frozen-Gaussian basis sets, the extended method is suitable for propagating quantum states of systems featuring diversified physical properties, such as spin degrees of freedom or particle indistinguishability. The approach is illustrated with simple models for interacting bosons trapped in double- and triple-well potentials, most adequately described in terms of SU(2) and SU(3) bosonic coherent states, respectively.
Single particle and collective behavior of electrons in a diamagnetic Kepler trap
NASA Astrophysics Data System (ADS)
Godino, Joseph L.
2001-10-01
The Diamagnetic Kepler Trap (DKT) is a potential energy well that arises from a static Coulomb potential in a superimposed uniform magnetic field. Our goal is to study the single particle and collective behavior of electrons in a DKT. We have three principal reasons for doing so. First, trajectories of a single electron in a DKT can exhibit chaotic motion. The transition from regular to chaotic motion is theoretically interesting and we want to understand how this occurs. Second, we want to understand the behavior of a system of electrons in a laboratory realization of a DKT. In this situation, we have a many particle system of electrons and ions that move under the influence of external potentials in a neutral background gas. Under these conditions, trapped electrons exhibit collective modes of oscillation. Finally, by understanding the behavior of the trapped electrons we believe that we may be able to develop the DKT into an ion beam source. Due to the complexity of the DKT, we break our investigation into three parts. First, we conduct a theoretical and computational study of the motion of a single electron in a DKT. To enhance our understanding, we develop a simple model of the DKT that retains the significant properties of the exact system while permitting us to go further with our theoretical analysis. We develop a solution to the model equations of motion, which provide us with additional insight into the behavior of trajectories near the chaotic transition. Second, we characterize the behavior of trapped electrons in our experimental DKT. We present a set of measurements showing the collective oscillations. In addition, when we operate the DKT at magnetic fields greater than 100 gauss, we observe a columnar plasma beam emerging from the trap that we also characterize. Finally, we simulate the dynamics of the electrons and ions in a DKT. Here we include their interactions with the neutral background gas, boundary effects and space charge. We use the information obtained from our simulations to enhance our knowledge of the electrons in the experimental system.
NASA Astrophysics Data System (ADS)
Park, Junghak; Hur, Ji-Hyun; Jeon, Sanghun
2018-04-01
The threshold voltage instabilities and huge hysteresis of MoS2 thin film transistors (TFTs) have raised concerns about their practical applicability in next-generation switching devices. These behaviors are associated with charge trapping, which stems from tunneling to the adjacent trap site, interfacial redox reaction and interface and/or bulk trap states. In this report, we present quantitative analysis on the electron charge trapping mechanism of MoS2 TFT by fast pulse I-V method and the space charge limited current (SCLC) measurement. By adopting the fast pulse I-V method, we were able to obtain effective mobility. In addition, the origin of the trap states was identified by disassembling the sub-gap states into interface trap and bulk trap states by simple extraction analysis. These measurement methods and analyses enable not only quantitative extraction of various traps but also an understanding of the charge transport mechanism in MoS2 TFTs. The fast I-V data and SCLC data obtained under various measurement temperatures and ambient show that electron transport to neighboring trap sites by tunneling is the main charge trapping mechanism in thin-MoS2 TFTs. This implies that interfacial traps account for most of the total sub-gap states while the bulk trap contribution is negligible, at approximately 0.40% and 0.26% in air and vacuum ambient, respectively. Thus, control of the interface trap states is crucial to further improve the performance of devices with thin channels.
Park, Junghak; Hur, Ji-Hyun; Jeon, Sanghun
2018-04-27
The threshold voltage instabilities and huge hysteresis of MoS 2 thin film transistors (TFTs) have raised concerns about their practical applicability in next-generation switching devices. These behaviors are associated with charge trapping, which stems from tunneling to the adjacent trap site, interfacial redox reaction and interface and/or bulk trap states. In this report, we present quantitative analysis on the electron charge trapping mechanism of MoS 2 TFT by fast pulse I-V method and the space charge limited current (SCLC) measurement. By adopting the fast pulse I-V method, we were able to obtain effective mobility. In addition, the origin of the trap states was identified by disassembling the sub-gap states into interface trap and bulk trap states by simple extraction analysis. These measurement methods and analyses enable not only quantitative extraction of various traps but also an understanding of the charge transport mechanism in MoS 2 TFTs. The fast I-V data and SCLC data obtained under various measurement temperatures and ambient show that electron transport to neighboring trap sites by tunneling is the main charge trapping mechanism in thin-MoS 2 TFTs. This implies that interfacial traps account for most of the total sub-gap states while the bulk trap contribution is negligible, at approximately 0.40% and 0.26% in air and vacuum ambient, respectively. Thus, control of the interface trap states is crucial to further improve the performance of devices with thin channels.
Bayesian inference in camera trapping studies for a class of spatial capture-recapture models
Royle, J. Andrew; Karanth, K. Ullas; Gopalaswamy, Arjun M.; Kumar, N. Samba
2009-01-01
We develop a class of models for inference about abundance or density using spatial capture-recapture data from studies based on camera trapping and related methods. The model is a hierarchical model composed of two components: a point process model describing the distribution of individuals in space (or their home range centers) and a model describing the observation of individuals in traps. We suppose that trap- and individual-specific capture probabilities are a function of distance between individual home range centers and trap locations. We show that the models can be regarded as generalized linear mixed models, where the individual home range centers are random effects. We adopt a Bayesian framework for inference under these models using a formulation based on data augmentation. We apply the models to camera trapping data on tigers from the Nagarahole Reserve, India, collected over 48 nights in 2006. For this study, 120 camera locations were used, but cameras were only operational at 30 locations during any given sample occasion. Movement of traps is common in many camera-trapping studies and represents an important feature of the observation model that we address explicitly in our application.
NASA Technical Reports Server (NTRS)
Fu, Lee-Lueng; Vazquez, Jorge; Perigaud, Claire
1991-01-01
Free, equatorially trapped sinusoidal wave solutions to a linear model on an equatorial beta plane are used to fit the Geosat altimetric sea level observations in the tropical Pacific Ocean. The Kalman filter technique is used to estimate the wave amplitude and phase from the data. The estimation is performed at each time step by combining the model forecast with the observation in an optimal fashion utilizing the respective error covariances. The model error covariance is determined such that the performance of the model forecast is optimized. It is found that the dominant observed features can be described qualitatively by basin-scale Kelvin waves and the first meridional-mode Rossby waves. Quantitatively, however, only 23 percent of the signal variance can be accounted for by this simple model.
Direct observation of individual hydrogen atoms at trapping sites in a ferritic steel
NASA Astrophysics Data System (ADS)
Chen, Y.-S.; Haley, D.; Gerstl, S. S. A.; London, A. J.; Sweeney, F.; Wepf, R. A.; Rainforth, W. M.; Bagot, P. A. J.; Moody, M. P.
2017-03-01
The design of atomic-scale microstructural traps to limit the diffusion of hydrogen is one key strategy in the development of hydrogen-embrittlement-resistant materials. In the case of bearing steels, an effective trapping mechanism may be the incorporation of finely dispersed V-Mo-Nb carbides in a ferrite matrix. First, we charged a ferritic steel with deuterium by means of electrolytic loading to achieve a high hydrogen concentration. We then immobilized it in the microstructure with a cryogenic transfer protocol before atom probe tomography (APT) analysis. Using APT, we show trapping of hydrogen within the core of these carbides with quantitative composition profiles. Furthermore, with this method the experiment can be feasibly replicated in any APT-equipped laboratory by using a simple cold chain.
Trapping hydrogen atoms from a neon-gas matrix: a theoretical simulation.
Bovino, S; Zhang, P; Kharchenko, V; Dalgarno, A
2009-08-07
Hydrogen is of critical importance in atomic and molecular physics and the development of a simple and efficient technique for trapping cold and ultracold hydrogen atoms would be a significant advance. In this study we simulate a recently proposed trap-loading mechanism for trapping hydrogen atoms released from a neon matrix. Accurate ab initio quantum calculations are reported of the neon-hydrogen interaction potential and the energy- and angular-dependent elastic scattering cross sections that control the energy transfer of initially cold atoms are obtained. They are then used to construct the Boltzmann kinetic equation, describing the energy relaxation process. Numerical solutions of the Boltzmann equation predict the time evolution of the hydrogen energy distribution function. Based on the simulations we discuss the prospects of the technique.
A Minimal Optical Trapping and Imaging Microscopy System
Hernández Candia, Carmen Noemí; Tafoya Martínez, Sara; Gutiérrez-Medina, Braulio
2013-01-01
We report the construction and testing of a simple and versatile optical trapping apparatus, suitable for visualizing individual microtubules (∼25 nm in diameter) and performing single-molecule studies, using a minimal set of components. This design is based on a conventional, inverted microscope, operating under plain bright field illumination. A single laser beam enables standard optical trapping and the measurement of molecular displacements and forces, whereas digital image processing affords real-time sample visualization with reduced noise and enhanced contrast. We have tested our trapping and imaging instrument by measuring the persistence length of individual double-stranded DNA molecules, and by following the stepping of single kinesin motor proteins along clearly imaged microtubules. The approach presented here provides a straightforward alternative for studies of biomaterials and individual biomolecules. PMID:23451216
NASA Astrophysics Data System (ADS)
Luu, Keurfon; Noble, Mark; Gesret, Alexandrine; Belayouni, Nidhal; Roux, Pierre-François
2018-04-01
Seismic traveltime tomography is an optimization problem that requires large computational efforts. Therefore, linearized techniques are commonly used for their low computational cost. These local optimization methods are likely to get trapped in a local minimum as they critically depend on the initial model. On the other hand, global optimization methods based on MCMC are insensitive to the initial model but turn out to be computationally expensive. Particle Swarm Optimization (PSO) is a rather new global optimization approach with few tuning parameters that has shown excellent convergence rates and is straightforwardly parallelizable, allowing a good distribution of the workload. However, while it can traverse several local minima of the evaluated misfit function, classical implementation of PSO can get trapped in local minima at later iterations as particles inertia dim. We propose a Competitive PSO (CPSO) to help particles to escape from local minima with a simple implementation that improves swarm's diversity. The model space can be sampled by running the optimizer multiple times and by keeping all the models explored by the swarms in the different runs. A traveltime tomography algorithm based on CPSO is successfully applied on a real 3D data set in the context of induced seismicity.
A gel as an array of channels.
Zimm, B H
1996-06-01
We consider the theory of charged point molecules ('probes') being pulled by an electric field through a two-dimensional net of channels that represents a piece of gel. Associated with the position in the net is a free energy of interaction between the probe and the net; this free energy fluctuates randomly with the position of the probe in the net. The free energy is intended to represent weak interactions between the probe and the gel, such as entropy associated with the restriction of the freedom of motion of the probe by the gel, or electrostatic interactions between the probe and charges fixed to the gel. The free energy can be thought of as a surface with the appearance of a rough, hilly landscape spread over the net; the roughness is measured by the standard deviation of the free-energy distribution. Two variations of the model are examined: (1) the net is assumed to have all channels open, or (2) only channels parallel to the electric field are open and all the cross-connecting channels are closed. Model (1) is more realistic but presents a two-dimensional mathematical problem which can only be solved by slow iteration methods, while model (2) is less realistic but presents a one-dimensional problem that can be reduced to simple quadratures and is easy to solve by numerical integration. In both models the mobility of the probe decreases as the roughness parameter is increased, but the effect is larger in the less realistic model (2) if the same free-energy surface is used in both. The mobility in model (2) is reduced both by high points in the rough surface ('bumps') and by low points ('traps'), while in model (1) only the traps are effective, since the probes can flow around the bumps through the cross channels. The mobility in model (2) can be made to agree with model (1) simply by cutting off the bumps of the surface. Thus the simple model (2) can be used in place of the more realistic model (1) that is more difficult to compute.
Using simple structures for flow dispersion in wet meadow restoration
Bill Zeedyk; Benjamin Romero; Steven K. Albert
1996-01-01
Historically, wet meadow recovery projects have relied on heavy earth moving equipment to harden nick points and install gully plugs or terraces to trap and detain sediments. We experimented with a variety of simple hand-built structures fashioned of logs, rocks, geotextile fabrics and/or sandbags designed to disperse runoff, rewet surface and subsurface soils and...
Swimming trajectories of a three-sphere microswimmer near a wall
NASA Astrophysics Data System (ADS)
Daddi-Moussa-Ider, Abdallah; Lisicki, Maciej; Hoell, Christian; Löwen, Hartmut
2018-04-01
The hydrodynamic flow field generated by self-propelled active particles and swimming microorganisms is strongly altered by the presence of nearby boundaries in a viscous flow. Using a simple model three-linked sphere swimmer, we show that the swimming trajectories near a no-slip wall reveal various scenarios of motion depending on the initial orientation and the distance separating the swimmer from the wall. We find that the swimmer can either be trapped by the wall, completely escape, or perform an oscillatory gliding motion at a constant mean height above the wall. Using a far-field approximation, we find that, at leading order, the wall-induced correction has a source-dipolar or quadrupolar flow structure where the translational and angular velocities of the swimmer decay as inverse third and fourth powers with distance from the wall, respectively. The resulting equations of motion for the trajectories and the relevant order parameters fully characterize the transition between the states and allow for an accurate description of the swimming behavior near a wall. We demonstrate that the transition between the trapping and oscillatory gliding states is first order discontinuous, whereas the transition between the trapping and escaping states is continuous, characterized by non-trivial scaling exponents of the order parameters. In order to model the circular motion of flagellated bacteria near solid interfaces, we further assume that the spheres can undergo rotational motion around the swimming axis. We show that the general three-dimensional motion can be mapped onto a quasi-two-dimensional representational model by an appropriate redefinition of the order parameters governing the transition between the swimming states.
Lasa, R; Herrera, F; Miranda, E; Gómez, E; Antonio, S; Aluja, M
2015-08-01
Monitoring population levels of the Mexican fruit fly, Anastrepha ludens (Loew) (Diptera: Tephritidae), at the orchard level prior and during the fruit ripening period can result in significant savings in the costs of managing this pestiferous insect. Unfortunately, to date, no highly effective and economically viable trap is available to growers. To move toward this goal, trap-lure combinations were evaluated in trials performed in citrus orchards in Veracruz, Mexico. CeraTrap, an enzymatic hydrolyzed protein from pig intestinal mucose, was 3.6 times more attractive to A. ludens than the most commonly used bait of Captor (hydrolyzed protein and borax) when using Multilure traps. When several commercial traps were evaluated, the efficacy of a simple and inexpensive transparent polyethylene (PET) bottle with 10-mm lateral holes was similar to that of the costly Multilure trap when baited with CeraTrap and significantly more effective than a Multilure trap baited with Captor. PET bottles filled with Cera Trap, rebaited at 8-wk intervals, and tested in trials encompassing 72 ha of citrus groves, were significantly more effective than Multilure traps baited with Captor that need to be serviced weekly. In addition to this relevant finding, CeraTrap baited traps detected A. ludens at lower population densities and attracted a significantly higher number of flies at all densities when compared with Captor-baited traps. We conclude that CeraTrap represents a cost-effective and highly efficient bait that will enable us to pursue the goal of developing economic thresholds, a badly needed management tool for A. ludens. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Liu, Zhengqi; Liu, Long; Lu, Haiyang; Zhan, Peng; Du, Wei; Wan, Mingjie; Wang, Zhenlin
2017-01-01
Recently, techniques involving random patterns have made it possible to control the light trapping of microstructures over broad spectral and angular ranges, which provides a powerful approach for photon management in energy efficiency technologies. Here, we demonstrate a simple method to create a wideband near-unity light absorber by introducing a dense and random pattern of metal-capped monodispersed dielectric microspheres onto an opaque metal film; the absorber works due to the excitation of multiple optical and plasmonic resonant modes. To further expand the absorption bandwidth, two different-sized metal-capped dielectric microspheres were integrated into a densely packed monolayer on a metal back-reflector. This proposed ultra-broadband plasmonic-photonic super absorber demonstrates desirable optical trapping in dielectric region and slight dispersion over a large incident angle range. Without any effort to strictly control the spatial arrangement of the resonant elements, our absorber, which is based on a simple self-assembly process, has the critical merits of high reproducibility and scalability and represents a viable strategy for efficient energy technologies. PMID:28256599
Langlands, T A M; Henry, B I; Wearne, S L
2009-12-01
We introduce fractional Nernst-Planck equations and derive fractional cable equations as macroscopic models for electrodiffusion of ions in nerve cells when molecular diffusion is anomalous subdiffusion due to binding, crowding or trapping. The anomalous subdiffusion is modelled by replacing diffusion constants with time dependent operators parameterized by fractional order exponents. Solutions are obtained as functions of the scaling parameters for infinite cables and semi-infinite cables with instantaneous current injections. Voltage attenuation along dendrites in response to alpha function synaptic inputs is computed. Action potential firing rates are also derived based on simple integrate and fire versions of the models. Our results show that electrotonic properties and firing rates of nerve cells are altered by anomalous subdiffusion in these models. We have suggested electrophysiological experiments to calibrate and validate the models.
PyBoolNet: a python package for the generation, analysis and visualization of boolean networks.
Klarner, Hannes; Streck, Adam; Siebert, Heike
2017-03-01
The goal of this project is to provide a simple interface to working with Boolean networks. Emphasis is put on easy access to a large number of common tasks including the generation and manipulation of networks, attractor and basin computation, model checking and trap space computation, execution of established graph algorithms as well as graph drawing and layouts. P y B ool N et is a Python package for working with Boolean networks that supports simple access to model checking via N u SMV, standard graph algorithms via N etwork X and visualization via dot . In addition, state of the art attractor computation exploiting P otassco ASP is implemented. The package is function-based and uses only native Python and N etwork X data types. https://github.com/hklarner/PyBoolNet. hannes.klarner@fu-berlin.de. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Experimental Study of Cement - Sandstone/Shale - Brine - CO2 Interactions
2011-01-01
Background Reactive-transport simulation is a tool that is being used to estimate long-term trapping of CO2, and wellbore and cap rock integrity for geologic CO2 storage. We reacted end member components of a heterolithic sandstone and shale unit that forms the upper section of the In Salah Gas Project carbon storage reservoir in Krechba, Algeria with supercritical CO2, brine, and with/without cement at reservoir conditions to develop experimentally constrained geochemical models for use in reactive transport simulations. Results We observe marked changes in solution composition when CO2 reacted with cement, sandstone, and shale components at reservoir conditions. The geochemical model for the reaction of sandstone and shale with CO2 and brine is a simple one in which albite, chlorite, illite and carbonate minerals partially dissolve and boehmite, smectite, and amorphous silica precipitate. The geochemical model for the wellbore environment is also fairly simple, in which alkaline cements and rock react with CO2-rich brines to form an Fe containing calcite, amorphous silica, smectite and boehmite or amorphous Al(OH)3. Conclusions Our research shows that relatively simple geochemical models can describe the dominant reactions that are likely to occur when CO2 is stored in deep saline aquifers sealed with overlying shale cap rocks, as well as the dominant reactions for cement carbonation at the wellbore interface. PMID:22078161
NASA Astrophysics Data System (ADS)
Li, Jie; Zippilli, Stefano; Zhang, Jing; Vitali, David
2016-05-01
Collapse models postulate the existence of intrinsic noise which modifies quantum mechanics and is responsible for the emergence of macroscopic classicality. Assessing the validity of these models is extremely challenging because it is nontrivial to discriminate unambiguously their presence in experiments where other hardly controllable sources of noise compete to the overall decoherence. Here we provide a simple procedure that is able to probe the hypothetical presence of the collapse noise with a levitated nanosphere in a Fabry-Pérot cavity. We show that the stationary state of the system is particularly sensitive, under specific experimental conditions, to the interplay between the trapping frequency, the cavity size, and the momentum diffusion induced by the collapse models, allowing one to detect them even in the presence of standard environmental noises.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Jinyong; Gao, Feng; Karim, Ayman M.
MgAlOx mixed oxides were employed as supports for potassium-based lean NOx traps (LNTs) targeted for high temperature applications. Effects of support compositions, K/Pt loadings, thermal aging and catalyst regeneration on NOx storage capacity were systematically investigated. The catalysts were characterized by XRD, NOx-TPD, TEM, STEM-HAADF and in-situ XAFS. The results indicate that MgAlOx mixed oxides have significant advantages over conventional gamma-Al2O3-supports for LNT catalysts, in terms of high temperature NOx trapping capacity and thermal stability. First, as a basic support, MgAlOx stabilizes stored nitrates (in the form of KNO3) to much higher temperatures than mildly acidic gamma-Al2O3. Second, MgAlOx minimizesmore » Pt sintering during thermal aging, which is not possible for gamma-Al2O3 supports. Notably, combined XRD, in-situ XAFS and STEM-HAADF results indicate that Pt species in the thermally aged Pt/MgAlOx samples are finely dispersed in the oxide matrix as isolated atoms. This strong metal-support interaction stabilizes Pt and minimizes the extent of sintering. However, such strong interactions result in Pt oxidation via coordination with the support so that NO oxidation activity can be adversely affected after aging which, in turn, decreases NOx trapping ability for these catalysts. Interestingly, a high-temperature reduction treatment regenerates essentially full NOx trapping performance. In fact, regenerated Pt/K/MgAlOx catalyst exhibits much better NOx trapping performance than fresh Pt/K/Al2O3 LNTs over the entire temperature range investigated here. In addition to thermal aging, Pt/K loading effects were systemically studied over the fresh samples. The results indicate that NOx trapping is kinetically limited at low temperatures, while thermodynamically limited at high temperatures. A simple conceptual model was developed to explain the Pt and K loading effects on NOx storage. An optimized K loading, which allows balancing between the stability of nitrates and exposed Pt surface, gives the best NOx trapping capability.« less
The hidden traps in decision making.
Hammond, J S; Keeney, R L; Raiffa, H
1998-01-01
Bad decisions can often be traced back to the way the decisions were made--the alternatives were not clearly defined, the right information was not collected, the costs and benefits were not accurately weighted. But sometimes the fault lies not in the decision-making process but rather in the mind of the decision maker. The way the human brain works can sabotage the choices we make. John Hammond, Ralph Keeney, and Howard Raiffa examine eight psychological traps that are particularly likely to affect the way we make business decisions: The anchoring trap leads us to give disproportionate weight to the first information we receive. The statusquo trap biases us toward maintaining the current situation--even when better alternatives exist. The sunk-cost trap inclines us to perpetuate the mistakes of the past. The confirming-evidence trap leads us to seek out information supporting an existing predilection and to discount opposing information. The framing trap occurs when we misstate a problem, undermining the entire decision-making process. The overconfidence trap makes us overestimate the accuracy of our forecasts. The prudence trap leads us to be overcautious when we make estimates about uncertain events. And the recallability trap leads us to give undue weight to recent, dramatic events. The best way to avoid all the traps is awareness--forewarned is forearmed. But executives can also take other simple steps to protect themselves and their organizations from the various kinds of mental lapses. The authors show how to take action to ensure that important business decisions are sound and reliable.
Density estimation in a wolverine population using spatial capture-recapture models
Royle, J. Andrew; Magoun, Audrey J.; Gardner, Beth; Valkenbury, Patrick; Lowell, Richard E.; McKelvey, Kevin
2011-01-01
Classical closed-population capture-recapture models do not accommodate the spatial information inherent in encounter history data obtained from camera-trapping studies. As a result, individual heterogeneity in encounter probability is induced, and it is not possible to estimate density objectively because trap arrays do not have a well-defined sample area. We applied newly-developed, capture-recapture models that accommodate the spatial attribute inherent in capture-recapture data to a population of wolverines (Gulo gulo) in Southeast Alaska in 2008. We used camera-trapping data collected from 37 cameras in a 2,140-km2 area of forested and open habitats largely enclosed by ocean and glacial icefields. We detected 21 unique individuals 115 times. Wolverines exhibited a strong positive trap response, with an increased tendency to revisit previously visited traps. Under the trap-response model, we estimated wolverine density at 9.7 individuals/1,000-km2(95% Bayesian CI: 5.9-15.0). Our model provides a formal statistical framework for estimating density from wolverine camera-trapping studies that accounts for a behavioral response due to baited traps. Further, our model-based estimator does not have strict requirements about the spatial configuration of traps or length of trapping sessions, providing considerable operational flexibility in the development of field studies.
A new site for 85Kr measurements on groundwater samples
NASA Astrophysics Data System (ADS)
Lange, T.; Hebert, D.
2001-06-01
As a part of a new 85Kr laboratory, which is currently being established at the Institute of Applied Physics in Freiberg, Germany, a modified CO 2 extractor for krypton sampling is used. The operation principle is simple and contamination-safe with a reasonable effort. Continuously pumped under pressure, the water passes a Venturi-type nozzle and degasses due to relaxing. The extracted gas mixture then enters a recirculation system flowing through a CO 2 trap (NaOH), molecular sieves and a cooled charcoal trap, where krypton and other components are adsorbed. Remaining gases reenter the system at the Venturi-type nozzle. To keep the circulation alive an additional helium support is needed. In a simple field experiment, extraction efficiencies up to 0.8 for 222Rn have been measured.
Bertoluzzi, Luca; Badia-Bou, Laura; Fabregat-Santiago, Francisco; Gimenez, Sixto; Bisquert, Juan
2013-04-18
A simple model is proposed that allows interpretation of the cyclic voltammetry diagrams obtained experimentally for photoactive semiconductors with surface states or catalysts used for fuel production from sunlight. When the system is limited by charge transfer from the traps/catalyst layer and by detrapping, it is shown that only one capacitive peak is observable and is not recoverable in the return voltage scan. If the system is limited only by charge transfer and not by detrapping, two symmetric capacitive peaks can be observed in the cathodic and anodic directions. The model appears as a useful tool for the swift analysis of the electronic processes that limit fuel production.
Magnetic core shell nanoparticles trapping in a microdevice generating high magnetic gradient.
Teste, Bruno; Malloggi, Florent; Gassner, Anne-Laure; Georgelin, Thomas; Siaugue, Jean-Michel; Varenne, Anne; Girault, Hubert; Descroix, Stéphanie
2011-03-07
Magnetic core shell nanoparticles (MCSNPs) 30 nm diameter with a magnetic weight of 10% are usually much too small to be trapped in microfluidic systems using classical external magnets. Here, a simple microchip for efficient MCSNPs trapping and release is presented. It comprises a bed of micrometric iron beads (6-8 μm diameter) packed in a microchannel against a physical restriction and presenting a low dead volume of 0.8 nL. These beads of high magnetic permeability are used to focus magnetic field lines from an external permanent magnet and generate local high magnetic gradients. The nanoparticles magnetic trap has been characterised both by numerical simulations and fluorescent MCSNPs imaging. Numerical simulations have been performed to map both the magnetic flux density and the magnetic force, and showed that MCSNPs are preferentially trapped at the iron bead magnetic poles where the magnetic force is increased by 3 orders of magnitude. The trapping efficiency was experimentally determined using fluorescent MCSNPs for different flow rates, different iron beads and permanent magnet positions. At a flow rate of 100 μL h(-1), the nanoparticles trapping/release can be achieved within 20 s with a preconcentration factor of 4000.
A versatile strategy for gene trapping and trap conversion in emerging model organisms.
Kontarakis, Zacharias; Pavlopoulos, Anastasios; Kiupakis, Alexandros; Konstantinides, Nikolaos; Douris, Vassilis; Averof, Michalis
2011-06-01
Genetic model organisms such as Drosophila, C. elegans and the mouse provide formidable tools for studying mechanisms of development, physiology and behaviour. Established models alone, however, allow us to survey only a tiny fraction of the morphological and functional diversity present in the animal kingdom. Here, we present iTRAC, a versatile gene-trapping approach that combines the implementation of unbiased genetic screens with the generation of sophisticated genetic tools both in established and emerging model organisms. The approach utilises an exon-trapping transposon vector that carries an integrase docking site, allowing the targeted integration of new constructs into trapped loci. We provide proof of principle for iTRAC in the emerging model crustacean Parhyale hawaiensis: we generate traps that allow specific developmental and physiological processes to be visualised in unparalleled detail, we show that trapped genes can be easily cloned from an unsequenced genome, and we demonstrate targeting of new constructs into a trapped locus. Using this approach, gene traps can serve as platforms for generating diverse reporters, drivers for tissue-specific expression, gene knockdown and other genetic tools not yet imagined.
Trap configuration and spacing influences parameter estimates in spatial capture-recapture models
Sun, Catherine C.; Fuller, Angela K.; Royle, J. Andrew
2014-01-01
An increasing number of studies employ spatial capture-recapture models to estimate population size, but there has been limited research on how different spatial sampling designs and trap configurations influence parameter estimators. Spatial capture-recapture models provide an advantage over non-spatial models by explicitly accounting for heterogeneous detection probabilities among individuals that arise due to the spatial organization of individuals relative to sampling devices. We simulated black bear (Ursus americanus) populations and spatial capture-recapture data to evaluate the influence of trap configuration and trap spacing on estimates of population size and a spatial scale parameter, sigma, that relates to home range size. We varied detection probability and home range size, and considered three trap configurations common to large-mammal mark-recapture studies: regular spacing, clustered, and a temporal sequence of different cluster configurations (i.e., trap relocation). We explored trap spacing and number of traps per cluster by varying the number of traps. The clustered arrangement performed well when detection rates were low, and provides for easier field implementation than the sequential trap arrangement. However, performance differences between trap configurations diminished as home range size increased. Our simulations suggest it is important to consider trap spacing relative to home range sizes, with traps ideally spaced no more than twice the spatial scale parameter. While spatial capture-recapture models can accommodate different sampling designs and still estimate parameters with accuracy and precision, our simulations demonstrate that aspects of sampling design, namely trap configuration and spacing, must consider study area size, ranges of individual movement, and home range sizes in the study population.
Monitoring the endocytosis of magnetic nanoparticles by cells using permanent micro-flux sources.
Osman, O; Zanini, L F; Frénéa-Robin, M; Dumas-Bouchiat, F; Dempsey, N M; Reyne, G; Buret, F; Haddour, N
2012-10-01
Trapping of cells is essential to perform basic handling operations in cell-based microsystems, such as media exchange, concentration, cell isolation and cell sorting. Cell trapping by magnetophoresis typically requires cell labeling with magnetic nanoparticles. Here we report on endocytotic uptake of 100 nm magnetic nanoparticles by Human Embryonic Kidney 293 cells. The attraction of labeled cells by micro-magnet arrays characterised by very high magnetic field gradients (≤10⁶ T/m) was studied as a function of labeling conditions (nanoparticle concentration in the extracellular medium, incubation time). The threshold incubation conditions for effective magnetophoretic trapping were established. This simple technique may be exploited to minimise the quantity of magnetic nanoparticles needed for efficient cell trapping, thus reducing stress or nanoparticle-mediated toxicity. Nanoparticle internalization into cells was confirmed using both confocal and Transmission Electron Microscopy (TEM).
An electrostatic autoresonant ion trap mass spectrometer.
Ermakov, A V; Hinch, B J
2010-01-01
A new method for ion extraction from an anharmonic electrostatic trap is introduced. Anharmonicity is a common feature of electrostatic traps which can be used for small scale spatial confinement of ions, and this feature is also necessary for autoresonant ion extraction. With the aid of ion trajectory simulations, novel autoresonant trap mass spectrometers (ART-MSs) have been designed based on these very simple principles. A mass resolution approximately 60 is demonstrated for the prototypes discussed here. We report also on the pressure dependencies, and the (mV) rf field strength dependencies of the ART-MS sensitivity. Importantly the new MS designs do not require heavy magnets, tight manufacturing tolerances, introduction of buffer gases, high power rf sources, nor complicated electronics. The designs described here are very inexpensive to implement relative to other instruments, and can be easily miniaturized. Possible applications are discussed.
A high fusion power gain tandem mirror
NASA Astrophysics Data System (ADS)
Fowler, T. K.; Moir, R. W.; Simonen, T. C.
2017-10-01
Utilizing advances in high field superconducting magnet technology and microwave gyrotrons we illustrate the possibility of a high power gain (Q = 10-20) tandem mirror fusion reactor. Inspired by recent Gas Dynamic Trap (GDT) achievements we employ a simple axisymmetric mirror magnet configuration. We consider both DT and cat. DD fuel options that utilize existing as well as future technology development. We identify subjects requiring further study such as hot electron physics, trapped particle modes and plasma startup.
Michalko, Jaroslav; Socha, Peter; Mészáros, Patrik; Blehová, Alžbeta; Libantová, Jana; Moravčíková, Jana; Matušíková, Ildikó
2013-10-01
Carnivory in plants evolved as an adaptation strategy to nutrient-poor environments. Thanks to specialized traps, carnivorous plants can gain nutrients from various heterotrophic sources such as small insects. Digestion in traps requires a coordinated action of several hydrolytic enzymes that break down complex substances into simple absorbable nutrients. Among these, several pathogenesis-related proteins including β-1,3-glucanases have previously been identified in digestive fluid of some carnivorous species. Here we show that a single acidic endo-β-1,3-glucanase of ~50 kDa is present in the digestive fluid of the flypaper-trapped sundew (Drosera rotundifolia L.). The enzyme is inducible with a complex plant β-glucan laminarin from which it releases simple saccharides when supplied to leaves as a substrate. Moreover, thin-layer chromatography of digestive exudates showed that the simplest degradation products (especially glucose) are taken up by the leaves. These results for the first time point on involvement of β-1,3-glucanases in digestion of carnivorous plants and demonstrate the uptake of saccharide-based compounds by traps. Such a strategy could enable the plant to utilize other types of nutritional sources e.g., pollen grains, fungal spores or detritus from environment. Possible multiple roles of β-1,3-glucanases in the digestive fluid of carnivorous sundew are also discussed.
Impact of cool-down conditions at Tc on the superconducting rf cavity quality factor
NASA Astrophysics Data System (ADS)
Vogt, J.-M.; Kugeler, O.; Knobloch, J.
2013-10-01
Many next-generation, high-gradient accelerator applications, from energy-recovery linacs to accelerator-driven systems (ADS) rely on continuous wave (CW) operation for which superconducting radio-frequency (SRF) systems are the enabling technology. However, while SRF cavities dissipate little power, they must be cooled by liquid helium and for many CW accelerators the complexity as well as the investment and operating costs of the cryoplant can prove to be prohibitive. We investigated ways to reduce the dynamic losses by improving the residual resistance (Rres) of niobium cavities. Both the material treatment and the magnetic shielding are known to have an impact. In addition, we found that Rres can be reduced significantly when the cool-down conditions during the superconducting phase transition of the niobium are optimized. We believe that not only do the cool-down conditions impact the level to which external magnetic flux is trapped in the cavity but also that thermoelectric currents are generated which in turn create additional flux that can be trapped. Therefore, we investigated the generation of flux and the dynamics of flux trapping and release in a simple model niobium-titanium system that mimics an SRF cavity in its helium tank. We indeed found that thermal gradients along the system during the superconducting transition can generate a thermoelectric current and magnetic flux, which subsequently can be trapped. These effects may explain the observed variation of the cavity’s Rres with cool-down conditions.
von Hansen, Yann; Mehlich, Alexander; Pelz, Benjamin; Rief, Matthias; Netz, Roland R
2012-09-01
The thermal fluctuations of micron-sized beads in dual trap optical tweezer experiments contain complete dynamic information about the viscoelastic properties of the embedding medium and-if present-macromolecular constructs connecting the two beads. To quantitatively interpret the spectral properties of the measured signals, a detailed understanding of the instrumental characteristics is required. To this end, we present a theoretical description of the signal processing in a typical dual trap optical tweezer experiment accounting for polarization crosstalk and instrumental noise and discuss the effect of finite statistics. To infer the unknown parameters from experimental data, a maximum likelihood method based on the statistical properties of the stochastic signals is derived. In a first step, the method can be used for calibration purposes: We propose a scheme involving three consecutive measurements (both traps empty, first one occupied and second empty, and vice versa), by which all instrumental and physical parameters of the setup are determined. We test our approach for a simple model system, namely a pair of unconnected, but hydrodynamically interacting spheres. The comparison to theoretical predictions based on instantaneous as well as retarded hydrodynamics emphasizes the importance of hydrodynamic retardation effects due to vorticity diffusion in the fluid. For more complex experimental scenarios, where macromolecular constructs are tethered between the two beads, the same maximum likelihood method in conjunction with dynamic deconvolution theory will in a second step allow one to determine the viscoelastic properties of the tethered element connecting the two beads.
Laser heating tunability by off-resonant irradiation of gold nanoparticles.
Hormeño, Silvia; Gregorio-Godoy, Paula; Pérez-Juste, Jorge; Liz-Marzán, Luis M; Juárez, Beatriz H; Arias-Gonzalez, J Ricardo
2014-01-29
Temperature changes in the vicinity of a single absorptive nanostructure caused by local heating have strong implications in technologies such as integrated electronics or biomedicine. Herein, the temperature changes in the vicinity of a single optically trapped spherical Au nanoparticle encapsulated in a thermo-responsive poly(N-isopropylacrylamide) shell (Au@pNIPAM) are studied in detail. Individual beads are trapped in a counter-propagating optical tweezers setup at various laser powers, which allows the overall particle size to be tuned through the phase transition of the thermo-responsive shell. The experimentally obtained sizes measured at different irradiation powers are compared with average size values obtained by dynamic light scattering (DLS) from an ensemble of beads at different temperatures. The size range and the tendency to shrink upon increasing the laser power in the optical trap or by increasing the temperature for DLS agree with reasonable accuracy for both approaches. Discrepancies are evaluated by means of simple models accounting for variations in the thermal conductivity of the polymer, the viscosity of the aqueous solution and the absorption cross section of the coated Au nanoparticle. These results show that these parameters must be taken into account when considering local laser heating experiments in aqueous solution at the nanoscale. Analysis of the stability of the Au@pNIPAM particles in the trap is also theoretically carried out for different particle sizes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mushroom Emergence Detected by Combining Spore Trapping with Molecular Techniques.
Castaño, Carles; Oliva, Jonàs; Martínez de Aragón, Juan; Alday, Josu G; Parladé, Javier; Pera, Joan; Bonet, José Antonio
2017-07-01
Obtaining reliable and representative mushroom production data requires time-consuming sampling schemes. In this paper, we assessed a simple methodology to detect mushroom emergence by trapping the fungal spores of the fruiting body community in plots where mushroom production was determined weekly. We compared the performance of filter paper traps with that of funnel traps and combined these spore trapping methods with species-specific quantitative real-time PCR and Illumina MiSeq to determine the spore abundance. Significantly more MiSeq proportional reads were generated for both ectomycorrhizal and saprotrophic fungal species using filter traps than were obtained using funnel traps. The spores of 37 fungal species that produced fruiting bodies in the study plots were identified. Spore community composition changed considerably over time due to the emergence of ephemeral fruiting bodies and rapid spore deposition (lasting from 1 to 2 weeks), which occurred in the absence of rainfall events. For many species, the emergence of epigeous fruiting bodies was followed by a peak in the relative abundance of their airborne spores. There were significant positive relationships between fruiting body yields and spore abundance in time for five of seven fungal species. There was no relationship between fruiting body yields and their spore abundance at plot level, indicating that some of the spores captured in each plot were arriving from the surrounding areas. Differences in fungal detection capacity by spore trapping may indicate different dispersal ability between fungal species. Further research can help to identify the spore rain patterns for most common fungal species. IMPORTANCE Mushroom monitoring represents a serious challenge in economic and logistical terms because sampling approaches demand extensive field work at both the spatial and temporal scales. In addition, the identification of fungal taxa depends on the expertise of experienced fungal taxonomists. Similarly, the study of fungal dispersal has been constrained by technological limitations, especially because the morphological identification of spores is a challenging and time-consuming task. Here, we demonstrate that spores from ectomycorrhizal and saprotrophic fungal species can be identified using simple spore traps together with either MiSeq fungus-specific amplicon sequencing or species-specific quantitative real-time PCR. In addition, the proposed methodology can be used to characterize the airborne fungal community and to detect mushroom emergence in forest ecosystems. Copyright © 2017 American Society for Microbiology.
Mushroom Emergence Detected by Combining Spore Trapping with Molecular Techniques
Oliva, Jonàs; Martínez de Aragón, Juan; Alday, Josu G.; Parladé, Javier; Pera, Joan; Bonet, José Antonio
2017-01-01
ABSTRACT Obtaining reliable and representative mushroom production data requires time-consuming sampling schemes. In this paper, we assessed a simple methodology to detect mushroom emergence by trapping the fungal spores of the fruiting body community in plots where mushroom production was determined weekly. We compared the performance of filter paper traps with that of funnel traps and combined these spore trapping methods with species-specific quantitative real-time PCR and Illumina MiSeq to determine the spore abundance. Significantly more MiSeq proportional reads were generated for both ectomycorrhizal and saprotrophic fungal species using filter traps than were obtained using funnel traps. The spores of 37 fungal species that produced fruiting bodies in the study plots were identified. Spore community composition changed considerably over time due to the emergence of ephemeral fruiting bodies and rapid spore deposition (lasting from 1 to 2 weeks), which occurred in the absence of rainfall events. For many species, the emergence of epigeous fruiting bodies was followed by a peak in the relative abundance of their airborne spores. There were significant positive relationships between fruiting body yields and spore abundance in time for five of seven fungal species. There was no relationship between fruiting body yields and their spore abundance at plot level, indicating that some of the spores captured in each plot were arriving from the surrounding areas. Differences in fungal detection capacity by spore trapping may indicate different dispersal ability between fungal species. Further research can help to identify the spore rain patterns for most common fungal species. IMPORTANCE Mushroom monitoring represents a serious challenge in economic and logistical terms because sampling approaches demand extensive field work at both the spatial and temporal scales. In addition, the identification of fungal taxa depends on the expertise of experienced fungal taxonomists. Similarly, the study of fungal dispersal has been constrained by technological limitations, especially because the morphological identification of spores is a challenging and time-consuming task. Here, we demonstrate that spores from ectomycorrhizal and saprotrophic fungal species can be identified using simple spore traps together with either MiSeq fungus-specific amplicon sequencing or species-specific quantitative real-time PCR. In addition, the proposed methodology can be used to characterize the airborne fungal community and to detect mushroom emergence in forest ecosystems. PMID:28432095
A new quasi-thermal trap model for solar flare hard X-ray bursts - An electrostatic trap model
NASA Technical Reports Server (NTRS)
Spicer, D. S.; Emslie, A. G.
1988-01-01
A new quasi-thermal trap model of solar flare hard X-ray bursts is presented. The new model utilizes the trapping ability of a magnetic mirror and a magnetic field-aligned electrostatic potential produced by differences in anisotropies of the electron and ion distribution function. It is demonstrated that this potential can, together with the magnetic mirror itself, effectively confine electrons in a trap, thereby enhancing their bremsstrahlung yield per electron. This analysis makes even more untenable models involving precipitation of the bremsstrahlung-producing electrons onto a cold target.
Lau, Sai Ming; Chua, Tock H; Sulaiman, Wan-Yussof; Joanne, Sylvia; Lim, Yvonne Ai-Lian; Sekaran, Shamala Devi; Chinna, Karuthan; Venugopalan, Balan; Vythilingam, Indra
2017-03-21
Dengue remains a serious public health problem in Southeast Asia and has increased 37-fold in Malaysia compared to decades ago. New strategies are urgently needed for early detection and control of dengue epidemics. We conducted a two year study in a high human density dengue-endemic urban area in Selangor, where Gravid Ovipositing Sticky (GOS) traps were set up to capture adult Aedes spp. mosquitoes. All Aedes mosquitoes were tested using the NS1 dengue antigen test kit. All dengue cases from the study site notified to the State Health Department were recorded. Weekly microclimatic temperature, relative humidity (RH) and rainfall were monitored. Aedes aegypti was the predominant mosquito (95.6%) caught in GOS traps and 23% (43/187 pools of 5 mosquitoes each) were found to be positive for dengue using the NS1 antigen kit. Confirmed cases of dengue were observed with a lag of one week after positive Ae. aegypti were detected. Aedes aegypti density as analysed by distributed lag non-linear models, will increase lag of 2-3 weeks for temperature increase from 28 to 30 °C; and lag of three weeks for increased rainfall. Proactive strategy is needed for dengue vector surveillance programme. One method would be to use the GOS trap which is simple to setup, cost effective (below USD 1 per trap) and environmental friendly (i.e. use recyclable plastic materials) to capture Ae. aegypti followed by a rapid method of detecting of dengue virus using the NS1 dengue antigen kit. Control measures should be initiated when positive mosquitoes are detected.
Raudsepp, Allan; A K Williams, Martin; B Hall, Simon
2016-07-01
Measurements of the electrostatic force with separation between a fixed and an optically trapped colloidal particle are examined with experiment, simulation and analytical calculation. Non-Gaussian Brownian motion is observed in the position of the optically trapped particle when particles are close and traps weak. As a consequence of this motion, a simple least squares parameterization of direct force measurements, in which force is inferred from the displacement of an optically trapped particle as separation is gradually decreased, contains forces generated by the rectification of thermal fluctuations in addition to those originating directly from the electrostatic interaction between the particles. Thus, when particles are close and traps weak, simply fitting the measured direct force measurement to DLVO theory extracts parameters with modified meanings when compared to the original formulation. In such cases, however, physically meaningful DLVO parameters can be recovered by comparing the measured non-Gaussian statistics to those predicted by solutions to Smoluchowski's equation for diffusion in a potential.
Roslan, Muhammad Aidil; Ngui, Romano; Vythilingam, Indra; Sulaiman, Wan Yusoff Wan
2017-12-01
The present study compared the performance of sticky traps in order to identify the most effective and practical trap for capturing Aedes aegypti and Aedes albopictus mosquitoes. Three phases were conducted in the study, with Phase 1 evaluating the five prototypes (Models A, B, C, D, and E) of sticky trap release-and-recapture using two groups of mosquito release numbers (five and 50) that were released in each replicate. Similarly, Phase 2 compared the performance between Model E and the classical ovitrap that had been modified (sticky ovitrap), using five and 50 mosquito release numbers. Further assessment of both traps was carried out in Phase 3, in which both traps were installed in nine sampling grids. Results from Phase 1 showed that Model E was the trap that recaptured higher numbers of mosquitoes when compared to Models A, B, C, and D. Further assessment between Model E and the modified sticky ovitrap (known as Model F) found that Model F outperformed Model E in both Phases 2 and 3. Thus, Model F was selected as the most effective and practical sticky trap, which could serve as an alternative tool for monitoring and controlling dengue vectors in Malaysia. © 2017 The Society for Vector Ecology.
Smith, Joshua T.; Kennedy, Theodore A.; Muehlbauer, Jeffrey D.
2014-01-01
Insect emergence is a fundamental process in freshwaters. It is a critical life-history stage for aquatic insects and provides an important prey resource for terrestrial and aquatic consumers. Sticky traps are increasingly being used to sample these insects. The most common design consists of an acetate sheet coated with a nondrying adhesive that is attached to a wire frame or cylinder. These traps must be prepared at the deployment site, a process that can be time consuming and difficult given the vagaries of field conditions. Our goals were to develop a sturdy, low-cost sticky trap that could be prepared in advance, rapidly deployed and recovered in the field, and used to estimate the flight direction of insects. We used 150-mm Petri dishes with lids. The dishes can be coated cleanly and consistently with Tangle-Trap® adhesive. Deploying traps is simple and requires only a pole set near the body of water being sampled. Four dishes can be attached to the pole using Velcro and aligned in 4 different directions to enable quantification of insect flight direction. After sampling, Petri dishes can be taped closed, packed in boxes, and stored indefinitely. Petri traps are comparable in price to standard acetate sheet traps at ∼US$0.50/directional deployment, but they require more space for storage than acetate sheet traps. However, a major benefit of Petri traps is that field deployment times are ⅓ those of acetate traps. Our study demonstrated that large Petri dishes are an ideal platform for sampling postemergent adult aquatic insects, particularly when the study design involves estimating flight direction and when rapid deployment and recovery of traps is critical.
Quantum Bose-Hubbard model with an evolving graph as a toy model for emergent spacetime
NASA Astrophysics Data System (ADS)
Hamma, Alioscia; Markopoulou, Fotini; Lloyd, Seth; Caravelli, Francesco; Severini, Simone; Markström, Klas
2010-05-01
We present a toy model for interacting matter and geometry that explores quantum dynamics in a spin system as a precursor to a quantum theory of gravity. The model has no a priori geometric properties; instead, locality is inferred from the more fundamental notion of interaction between the matter degrees of freedom. The interaction terms are themselves quantum degrees of freedom so that the structure of interactions and hence the resulting local and causal structures are dynamical. The system is a Hubbard model where the graph of the interactions is a set of quantum evolving variables. We show entanglement between spatial and matter degrees of freedom. We study numerically the quantum system and analyze its entanglement dynamics. We analyze the asymptotic behavior of the classical model. Finally, we discuss analogues of trapped surfaces and gravitational attraction in this simple model.
Constitutive model for porous materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weston, A.M.; Lee, E.L.
1982-01-01
A simple pressure versus porosity compaction model is developed to calculate the response of granular porous bed materials to shock impact. The model provides a scheme for calculating compaction behavior when relatively limited material data are available. While the model was developed to study porous explosives and propellants, it has been applied to a much wider range of materials. The early development of porous material models, such as that of Hermann, required empirical dynamic compaction data. Erkman and Edwards successfully applied the early theory to unreacted porous high explosives using a Gruneisen equation of state without yield behavior and withoutmore » trapped gas in the pores. Butcher included viscoelastic rate dependance in pore collapse. The theoretical treatment of Carroll and Holt is centered on the collapse of a circular pore and includes radial inertia terms and a complex set of stress, strain and strain rate constitutive parameters. Unfortunately data required for these parameters are generally not available. The model described here is also centered on the collapse of a circular pore, but utilizes a simpler elastic-plastic static equilibrium pore collapse mechanism without strain rate dependence, or radial inertia terms. It does include trapped gas inside the pore, a solid material flow stress that creates both a yield point and a variation in solid material pressure with radius. The solid is described by a Mie-Gruneisen type EOS. Comparisons show that this model will accurately estimate major mechanical features which have been observed in compaction experiments.« less
The contemporary degassing rate of 40Ar from the solid Earth.
Bender, Michael L; Barnett, Bruce; Dreyfus, Gabrielle; Jouzel, Jean; Porcelli, Don
2008-06-17
Knowledge of the outgassing history of radiogenic (40)Ar, derived over geologic time from the radioactive decay of (40)K, contributes to our understanding of the geodynamic history of the planet and the origin of volatiles on Earth's surface. The (40)Ar inventory of the atmosphere equals total (40)Ar outgassing during Earth history. Here, we report the current rate of (40)Ar outgassing, accessed by measuring the Ar isotope composition of trapped gases in samples of the Vostok and Dome C deep ice cores dating back to almost 800 ka. The modern outgassing rate (1.1 +/- 0.1 x 10(8) mol/yr) is in the range of values expected by summing outgassing from the continental crust and the upper mantle, as estimated from simple calculations and models. The measured outgassing rate is also of interest because it allows dating of air trapped in ancient ice core samples of unknown age, although uncertainties are large (+/-180 kyr for a single sample or +/-11% of the calculated age, whichever is greater).
Watching conformational- and photo-dynamics of single fluorescent proteins in solution.
Goldsmith, Randall H; Moerner, W E
2010-03-01
Observing the dynamics of single biomolecules over prolonged time periods is difficult to achieve without significantly altering the molecule through immobilization. It can, however, be accomplished using the Anti-Brownian ELectrokinetic (ABEL) Trap, which allows extended investigation of solution-phase biomolecules - without immobilization -through real-time electrokinetic feedback. Here we apply the ABEL trap to study an important photosynthetic antenna protein, Allophycocyanin (APC). The technique allows the observation of single molecules of solution-phase APC for more than one second. We observe a complex relationship between fluorescence intensity and lifetime that cannot be explained by simple static kinetic models. Light-induced conformational changes are shown to occur and evidence is obtained for fluctuations in the spontaneous emission lifetime, which is typically assumed to be constant. Our methods provide a new window into the dynamics of fluorescent proteins and the observations are relevant for the interpretation of in vivo single-molecule imaging experiments, bacterial photosynthetic regulation, and biomaterials for solar energy harvesting.
Hydrodynamic Trapping of Swimming Bacteria by Convex Walls
NASA Astrophysics Data System (ADS)
Sipos, O.; Nagy, K.; Di Leonardo, R.; Galajda, P.
2015-06-01
Swimming bacteria display a remarkable tendency to move along flat surfaces for prolonged times. This behavior may have a biological importance but can also be exploited by using microfabricated structures to manipulate bacteria. The main physical mechanism behind the surface entrapment of swimming bacteria is, however, still an open question. By studying the swimming motion of Escherichia coli cells near microfabricated pillars of variable size, we show that cell entrapment is also present for convex walls of sufficiently low curvature. Entrapment is, however, markedly reduced below a characteristic radius. Using a simple hydrodynamic model, we predict that trapped cells swim at a finite angle with the wall and a precise relation exists between the swimming angle at a flat wall and the critical radius of curvature for entrapment. Both predictions are quantitatively verified by experimental data. Our results demonstrate that the main mechanism for wall entrapment is hydrodynamic in nature and show the possibility of inhibiting cell adhesion, and thus biofilm formation, using convex features of appropriate curvature.
Watching conformational- and photo-dynamics of single fluorescent proteins in solution
Goldsmith, Randall H.
2010-01-01
Observing the dynamics of single biomolecules over prolonged time periods is difficult to achieve without significantly altering the molecule through immobilization. It can, however, be accomplished using the Anti-Brownian ELectrokinetic (ABEL) Trap, which allows extended investigation of solution-phase biomolecules - without immobilization -through real-time electrokinetic feedback. Here we apply the ABEL trap to study an important photosynthetic antenna protein, Allophycocyanin (APC). The technique allows the observation of single molecules of solution-phase APC for more than one second. We observe a complex relationship between fluorescence intensity and lifetime that cannot be explained by simple static kinetic models. Light-induced conformational changes are shown to occur and evidence is obtained for fluctuations in the spontaneous emission lifetime, which is typically assumed to be constant. Our methods provide a new window into the dynamics of fluorescent proteins and the observations are relevant for the interpretation of in vivo single-molecule imaging experiments, bacterial photosynthetic regulation, and biomaterials for solar energy harvesting. PMID:20625479
Watching conformational- and photodynamics of single fluorescent proteins in solution
NASA Astrophysics Data System (ADS)
Goldsmith, Randall H.; Moerner, W. E.
2010-03-01
Observing the dynamics of single biomolecules over prolonged time periods is difficult to achieve without significantly altering the molecule through immobilization. It can, however, be accomplished using the anti-Brownian electrokinetic trap, which allows extended investigation of solution-phase biomolecules-without immobilization-through real-time electrokinetic feedback. Here we apply the trap to study an important photosynthetic antenna protein, allophycocyanin. The technique allows the observation of single molecules of solution-phase allophycocyanin for more than one second. We observe a complex relationship between fluorescence intensity and lifetime that cannot be explained by simple static kinetic models. Light-induced conformational changes are shown to occur and evidence is obtained for fluctuations in the spontaneous emission lifetime, which is typically assumed to be constant. Our methods provide a new window into the dynamics of fluorescent proteins and the observations are relevant for the interpretation of in vivo single-molecule imaging experiments, bacterial photosynthetic regulation and biomaterials for solar energy harvesting.
Surface diffusion of a carbon-adatom on Au(110) surfaces
NASA Astrophysics Data System (ADS)
Kim, E.; Safavi-Naini, A.; Hite, D. A.; McKay, K. S.; Pappas, D. P.; Weck, P. F.; Sadeghpour, H. R.
We have investigated the surface diffusion of carbon-adatom on gold surfaces using density functional theory and detailed scanning probe microscopy. The decoherence of trapped-ion quantum gates due to heating of their motional modes is a fundamental science and engineering problem. In an effort to understand heating at the trap-electrode surfaces, we investigate the possible source of noise by focusing on the diffusion of carbon-containing adsorbates onto the Au(110) surface. In this study, we show how the diffusive motion of carbon adatom on gold surface significantly affects the energy landscape and adatom dipole moment variation. A simple model for the diffusion noise, which varies quadratically with the variation of the dipole moment, qualitatively reproduces the measured noise spectrum, and the estimate of the noise spectral density is in accord with measured values. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the United States Department of Energy's NNSA under Contract DE-AC04-94AL85000.
The effects of staggered bandgap in the InP/CdSe and CdSe/InP core/shell quantum dots.
Kim, Sunghoon; Park, Jaehyun; Kim, Sungwoo; Jung, Won; Sung, Jaeyoung; Kim, Sang-Wook
2010-06-15
New type-II structures of CdSe/InP and InP/CdSe core-shell nanocrystals which have staggered bandgap alignment were fabricated. Using a simple model for the wave function for electrons and holes in InP/CdSe and CdSe/InP core/shell nanocrystals showed the wave function of the electron and hole spread into the shell, respectively. The probability density of the InP/CdSe and CdSe/InP core/shell QDs also showed a similar tendency. As a result, the structure exhibits increased delocalization of electrons and holes, leading to a red-shift in absorption and emission. Quantum yield increased in the InP/CdSe, however decreased in the CdSe/InP. The reason may be due to the surface trap and high activation barrier for de-trapping in the InP shell. 2010 Elsevier Inc. All rights reserved.
Local Charge Injection and Extraction on Surface-Modified Al2O3 Nanoparticles in LDPE.
Borgani, Riccardo; Pallon, Love K H; Hedenqvist, Mikael S; Gedde, Ulf W; Haviland, David B
2016-09-14
We use a recently developed scanning probe technique to image with high spatial resolution the injection and extraction of charge around individual surface-modified aluminum oxide nanoparticles embedded in a low-density polyethylene (LDPE) matrix. We find that the experimental results are consistent with a simple band structure model where localized electronic states are available in the band gap (trap states) in the vicinity of the nanoparticles. This work offers experimental support to a previously proposed mechanism for enhanced insulating properties of nanocomposite LDPE and provides a powerful experimental tool to further investigate such properties.
Photoconductivity response time in amorphous semiconductors
NASA Astrophysics Data System (ADS)
Adriaenssens, G. J.; Baranovskii, S. D.; Fuhs, W.; Jansen, J.; Öktü, Ö.
1995-04-01
The photoconductivity response time of amorphous semiconductors is examined theoretically on the basis of standard definitions for free- and trapped-carrier lifetimes, and experimentally for a series of a-Si1-xCx:H alloys with x<0.1. Particular attention is paid to its dependence on carrier generation rate and temperature. As no satisfactory agreement between models and experiments emerges, a simple theory is developed that can account for the experimental observations on the basis of the usual multiple-trappping ideas, provided a small probability of direct free-carrier recombination is included. The theory leads to a stretched-exponential photocurrent decay.
Albright, B. J.; Yin, L.; Bowers, K. J.; ...
2016-03-04
Two- and three-dimensional particle-in-cell simulations of stimulated Brillouin scattering(SBS) in laser speckle geometry have been analyzed to evaluate the relative importance of competing nonlinear processes in the evolution and saturation of SBS. It is found that ion-trapping-induced wavefront bowing and breakup of ion acoustic waves(IAW) and the associated side-loss of trapped ions dominate electron-trapping-induced IAW wavefront bowing and breakup, as well as the two-ion-wave decay instability over a range of ZT e/T i conditions and incident laser intensities. In the simulations, the latter instability does not govern the nonlinear saturation of SBS; however, evidence of two-ion-wave decay is seen, appearingmore » as a modulation of the ion acoustic wavefronts. This modulation is periodic in the laser polarization plane, anti-symmetric across the speckle axis, and of a wavenumber matching that of the incident laser pulse. Furthermore, a simple analytic model is provided for how spatial “imprinting” from a high frequency inhomogeneity (in this case, the density modulation from the laser) in an unstable system with continuum eigenmodes can selectively amplify modes with wavenumbers that match that of the inhomogeneity.« less
NASA Astrophysics Data System (ADS)
Ruspini, L. C.; Farokhpoor, R.; Øren, P. E.
2017-10-01
We present a pore-network model study of capillary trapping in water-wet porous media. The amount and distribution of trapped non-wetting phase is determined by the competition between two trapping mechanisms - snap-off and cooperative pore-body filling. We develop a new model to describe the pore-body filling mechanism in geologically realistic pore-networks. The model accounts for the geometrical characteristics of the pore, the spatial location of the connecting throats and the local fluid topology at the time of the displacement. We validate the model by comparing computed capillary trapping curves with published data for four different water-wet rocks. Computations are performed on pore-networks extracted from micro-CT images and process-based reconstructions of the actual rocks used in the experiments. Compared with commonly used stochastic models, the new model describes more accurately the experimental measurements, especially for well connected porous systems where trapping is controlled by subtleties of the pore structure. The new model successfully predicts relative permeabilities and residual saturation for Bentheimer sandstone using in-situ measured contact angles as input to the simulations. The simulated trapped cluster size distributions are compared with predictions from percolation theory.
NASA Astrophysics Data System (ADS)
Ling, C. C.; Shek, Y. F.; Huang, A. P.; Fung, S.; Beling, C. D.
1999-02-01
Positron-lifetime spectroscopy has been used to investigate the electric-field distribution occurring at the Au-semi-insulating GaAs interface. Positrons implanted from a 22Na source and drifted back to the interface are detected through their characteristic lifetime at interface traps. The relative intensity of this fraction of interface-trapped positrons reveals that the field strength in the depletion region saturates at applied biases above 50 V, an observation that cannot be reconciled with a simple depletion approximation model. The data, are, however, shown to be fully consistent with recent direct electric-field measurements and the theoretical model proposed by McGregor et al. [J. Appl. Phys. 75, 7910 (1994)] of an enhanced EL2+ electron-capture cross section above a critical electric field that causes a dramatic reduction of the depletion region's net charge density. Two theoretically derived electric field profiles, together with an experimentally based profile, are used to estimate a positron mobility of ~95+/-35 cm2 V-1 s-1 under the saturation field. This value is higher than previous experiments would suggest, and reasons for this effect are discussed.
Molecular simulation of surfactant-assisted protein refolding
NASA Astrophysics Data System (ADS)
Lu, Diannan; Liu, Zheng; Liu, Zhixia; Zhang, Minlian; Ouyang, Pingkai
2005-04-01
Protein refolding to its native state in vitro is a challenging problem in biotechnology, i.e., in the biomedical, pharmaceutical, and food industry. Protein aggregation and misfolding usually inhibit the recovery of proteins with their native states. These problems can be partially solved by adding a surfactant into a suitable solution environment. However, the process of this surfactant-assisted protein refolding is not well understood. In this paper, we wish to report on the first-ever simulations of surfactant-assisted protein refolding. For these studies, we defined a simple model for the protein and the surfactant and investigated how a surfactant affected the folding behavior of a two-dimensional lattice protein molecule. The model protein and model surfactant were chosen such that we could capture the important features of the folding process and the interaction between the protein and the surfactant, namely, the hydrophobic interaction. It was shown that, in the absence of surfactants, a protein in an "energy trap" conformation, i.e., a local energy minima, could not fold into the native form, which was characterized by a global energy minimum. The addition of surfactants created folding pathways via the formation of protein-surfactant complexes and thus enabled the conformations that fell into energy trap states to escape from these traps and to form the native proteins. The simulation results also showed that it was necessary to match the hydrophobicity of surfactant to the concentration of denaturant, which was added to control the folding or unfolding of a protein. The surfactants with different hydrophobicity had their own concentration range on assisting protein refolding. All of these simulations agreed well with experimental results reported elsewhere, indicating both the validity of the simulations presented here and the potential application of the simulations for the design of a surfactant on assisting protein refolding.
Automating quantum experiment control
NASA Astrophysics Data System (ADS)
Stevens, Kelly E.; Amini, Jason M.; Doret, S. Charles; Mohler, Greg; Volin, Curtis; Harter, Alexa W.
2017-03-01
The field of quantum information processing is rapidly advancing. As the control of quantum systems approaches the level needed for useful computation, the physical hardware underlying the quantum systems is becoming increasingly complex. It is already becoming impractical to manually code control for the larger hardware implementations. In this chapter, we will employ an approach to the problem of system control that parallels compiler design for a classical computer. We will start with a candidate quantum computing technology, the surface electrode ion trap, and build a system instruction language which can be generated from a simple machine-independent programming language via compilation. We incorporate compile time generation of ion routing that separates the algorithm description from the physical geometry of the hardware. Extending this approach to automatic routing at run time allows for automated initialization of qubit number and placement and additionally allows for automated recovery after catastrophic events such as qubit loss. To show that these systems can handle real hardware, we present a simple demonstration system that routes two ions around a multi-zone ion trap and handles ion loss and ion placement. While we will mainly use examples from transport-based ion trap quantum computing, many of the issues and solutions are applicable to other architectures.
NASA Technical Reports Server (NTRS)
Rosenfeld, David; Bahir, Gad
1992-01-01
This paper presents a theoretical model for the trap-assisted tunneling process in diffused n-on-p and implanted n(+)-on-p HgCdTe photodiodes. The model describes the connection between the leakage current associated with the traps and the trap characteristics: concentration, energy level, and capture cross sections. It is observed that the above two types of diodes differ the voltage dependence of the trap-assisted tunneling current and dynamic resistance. The model takes this difference into account and offers an explanation of the phenomenon. The good fit between measured and calculated dc characteristics of the photodiodes supports the validity of the model.
Health safety nets can break cycles of poverty and disease: a stochastic ecological model.
Plucinski, Mateusz M; Ngonghala, Calistus N; Bonds, Matthew H
2011-12-07
The persistence of extreme poverty is increasingly attributed to dynamic interactions between biophysical processes and economics, though there remains a dearth of integrated theoretical frameworks that can inform policy. Here, we present a stochastic model of disease-driven poverty traps. Whereas deterministic models can result in poverty traps that can only be broken by substantial external changes to the initial conditions, in the stochastic model there is always some probability that a population will leave or enter a poverty trap. We show that a 'safety net', defined as an externally enforced minimum level of health or economic conditions, can guarantee ultimate escape from a poverty trap, even if the safety net is set within the basin of attraction of the poverty trap, and even if the safety net is only in the form of a public health measure. Whereas the deterministic model implies that small improvements in initial conditions near the poverty-trap equilibrium are futile, the stochastic model suggests that the impact of changes in the location of the safety net on the rate of development may be strongest near the poverty-trap equilibrium.
Results from the GSFC fluxgate magnetometer on Pioneer 11
NASA Technical Reports Server (NTRS)
Acuna, M. H.; Ness, N. F.
1976-01-01
A high-field triaxial fluxgate magnetometer was mounted on Pioneer 11 to measure the main magnetic field of Jupiter. It is found that this planetary magnetic field is more complex than that indicated by the results of the Pioneer 10 vector helium magnetometer. At distances less than 3 Jupiter radii, the magnetic field is observed to increase more rapidly than an inverse-cubed distance law associated with any simple dipole model. Contributions from higher-order multipoles are significant, with the quadrupole and octupole being 24 and 21 percent of the dipole moment, respectively. Implications of the results for the study of trapped particles, planetary radio emission, and planetary interiors are discussed. Major conclusions are that the deviation of the main planetary magnetic field from a simple dipole leads to distortion of the L shells of the charged particles and to warping of the magnetic equator. Enhanced absorption effects associated with Amalthea and Io are predicted.
Applications of Photonic Crystals to Photovoltaic Devices
NASA Astrophysics Data System (ADS)
Foster, Stephen
Photonic crystals are structures that exhibit wavelength-scale spatial periodicity in their dielectric function. They are best known for their ability to exhibit complete photonic band gaps (PBGs) - spectral regions over which no light can propagate within the crystal. PBGs are specific instances of a more general phenomenon, in which the local photonic density of states can be enhanced or suppressed over different frequency ranges by tuning the properties of the crystal. This can be used to redirect, concentrate, or even trap light incident on the crystal. In this thesis, we investigate how photonic crystals can be used to enhance the efficiency of photovoltaic devices by trapping light. Due to the many different types of photovoltaic devices in existence (varying widely in materials used, modes of operation, and internal structure), there is no single light trapping architecture that can be applied to all photovoltaics. In this work we study a number of different devices: dye-sensitized solar cells, polymer solar cells, silicon-perovskite tandem cells, and single-junction silicon cells. We propose novel photonic crystal-based light trapping designs for each type of device, and evaluate these designs numerically to demonstrate their effectiveness. Full-field optical simulations of the cell are performed for each design, using either finite element method (FEM) or finite-difference time-domain (FDTD) techniques. Where appropriate, electrical modelling of the cell is also performed, through either the use of a simple one-diode model, or by obtaining full solutions to the semiconductor drift-diffusion equations within the cell. In all cases we find that the photonic crystal-based designs significantly outperform their non-nanostructured counterparts. In the case of dye-sensitized and polymer cells, enhancements in light absorption of 33% and 40% (respectively) are seen, relative to reference cells with planar geometries. In the case of silicon-perovskite tandem cells and silicon cells, projected power conversion efficiencies of over 30% are obtained, well beyond the current world record for silicon-based cells. We conclude the thesis with a discussion on the overall prospects for photonic crystal-based solar cells, with a focus on the factors that make solar cell technologies amenable to light trapping.
Nikolaev, A G; Savkin, K P; Oks, E M; Vizir, A V; Yushkov, G Yu; Vodopyanov, A V; Izotov, I V; Mansfeld, D A
2012-02-01
A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent "minimum-B" structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap--axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 μs) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams.
NASA Astrophysics Data System (ADS)
Macedo-Filho, A.; Alves, G. A.; Costa Filho, R. N.; Alves, T. F. A.
2018-04-01
We investigated the susceptible-infected-susceptible model on a square lattice in the presence of a conjugated field based on recently proposed reactivating dynamics. Reactivating dynamics consists of reactivating the infection by adding one infected site, chosen randomly when the infection dies out, avoiding the dynamics being trapped in the absorbing state. We show that the reactivating dynamics can be interpreted as the usual dynamics performed in the presence of an effective conjugated field, named the reactivating field. The reactivating field scales as the inverse of the lattice number of vertices n, which vanishes at the thermodynamic limit and does not affect any scaling properties including ones related to the conjugated field.
Slow dynamics in glasses: A comparison between theory and experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, J. C.
Minimalist theories of complex systems are broadly of two kinds: mean field and axiomatic. So far, all theories of complex properties absent from simple systems and intrinsic to glasses are axiomatic. Stretched Exponential Relaxation (SER) is the prototypical complex temporal property of glasses, discovered by Kohlrausch 150 years ago, and now observed almost universally in microscopically homogeneous, complex nonequilibrium materials, including luminescent electronic Coulomb glasses. A critical comparison of alternative axiomatic theories with both numerical simulations and experiments strongly favors channeled dynamical trap models over static percolative or energy landscape models. The topics discussed cover those reported since the author'smore » review article in 1996, with an emphasis on parallels between channel bifurcation in electronic and molecular relaxation.« less
Camera traps can be heard and seen by animals.
Meek, Paul D; Ballard, Guy-Anthony; Fleming, Peter J S; Schaefer, Michael; Williams, Warwick; Falzon, Greg
2014-01-01
Camera traps are electrical instruments that emit sounds and light. In recent decades they have become a tool of choice in wildlife research and monitoring. The variability between camera trap models and the methods used are considerable, and little is known about how animals respond to camera trap emissions. It has been reported that some animals show a response to camera traps, and in research this is often undesirable so it is important to understand why the animals are disturbed. We conducted laboratory based investigations to test the audio and infrared optical outputs of 12 camera trap models. Camera traps were measured for audio outputs in an anechoic chamber; we also measured ultrasonic (n = 5) and infrared illumination outputs (n = 7) of a subset of the camera trap models. We then compared the perceptive hearing range (n = 21) and assessed the vision ranges (n = 3) of mammals species (where data existed) to determine if animals can see and hear camera traps. We report that camera traps produce sounds that are well within the perceptive range of most mammals' hearing and produce illumination that can be seen by many species.
Aeolian sand transport over complex intertidal bar-trough beach topography
NASA Astrophysics Data System (ADS)
Anthony, Edward J.; Ruz, Marie-Hélène; Vanhée, Stéphane
2009-04-01
Aeolian sand transport on macrotidal beaches with complex intertidal bar-trough topography (ridge-and-runnel beaches) was assessed from experiments in northern France that involved measurements of wind speed, saltation, surface moisture contents, and rates of sand trapping across surveyed portions of the upper beach profile. Beaches exhibiting intertidal bars and troughs are much more complex, topographically, than simple reflective or dissipative beaches. Furthermore, the intertidal bar-trough morphology commonly exhibits strong cross-shore variations in the moisture contents of the beach surface and in patterns of bedform development. The results of four 30-minute experiments, conducted along topographically surveyed portions of the upper beach-dune toe profile, show that troughs act as extremely efficient sand interceptors, because of their permanently saturated state, which also inhibits sand mobilisation. Troughs, thus, limit or segment the dry fetch during conditions of intermittent saltation. Flow lines, inferred from the wind profiles, suggest that complex interactions at the boundary layer are generated by the bar-trough topography. Troughs systematically appear to be characterised by air expansion, while bar faces generate ramp wind acceleration for onshore winds, and sometimes immediate downwind deceleration for offshore winds. These effects may also contribute to cross-shore variations in the rates of sand trapping. Finally, a simple conceptual model of effective fetch development, integrating the effects of the spring-neap tidal range and of gross bar-trough morphological variability over time, is proposed for bar-trough beaches. The model highlights the key theme of fetch segmentation induced by cross-shore differentiation in the moisture contents of the beach surface hinged on the complex topography of multiple bars and troughs.
Field evaluation of a new light trap for phlebotomine sand flies.
Gaglio, Gabriella; Napoli, Ettore; Falsone, Luigi; Giannetto, Salvatore; Brianti, Emanuele
2017-10-01
Light traps are one of the most common attractive method for the collection of nocturnal insects. Although light traps are generally referred to as "CDC light traps", different models, equipped with incandescent or UV lamps, have been developed. A new light trap, named Laika trap 3.0, equipped with LED lamps and featured with a light and handy design, has been recently proposed into the market. In this study we tested and compared the capture performances of this new trap with those of a classical light trap model under field conditions. From May to November 2013, a Laika trap and a classical light trap were placed biweekly in an area endemic for sand flies. A total of 256 sand fly specimens, belonging to 3 species (Sergentomyia minuta, Phlebotomus perniciosus, Phlebotomus neglectus) were collected during the study period. The Laika trap captured 126 phlebotomine sand flies: P. perniciosus (n=38); S. minuta (n=88), a similar number of specimens (130) and the same species were captured by classical light trap which collected also 3 specimens of P. neglectus. No significant differences in the capture efficiency at each day of trapping, neither in the number of species or in the sex of sand flies were observed. According to results of this study, the Laika trap may be a valid alternative to classical light trap models especially when handy design and low power consumption are key factors in field studies. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bussi, G.; Rodríguez, X.; Francés, F.; Benito, G.; Sánchez-Moya, Y.; Sopeña, A.
2012-04-01
When using hydrological and sedimentological models, lack of historical records is often one of the main problems to face, since observed data are essential for model validation. If gauged data are poor or absent, a source of additional proxy data may be the slack-water deposits accumulated in check dams. The aim of this work is to present the result of the reconstruction of the recent hydrological and sediment yield regime of a semi-arid Mediterranean catchment (Rambla del Poyo, Spain, 184 square km) by coupling palaeoflood techniques with a distributed hydrological and sediment cycle model, using as proxy data the sandy slack-water deposits accumulated upstream a small check dam (reservoir volume 2,500 square m) located in the headwater basin (drainage area 13 square km). The solid volume trapped into the reservoir has been estimated using differential GPS data and an interpolation technique. Afterwards, the total solid volume has been disaggregated into various layers (flood units), by means of a stratigraphical description of a depositional sequence in a 3.5 m trench made across the reservoir sediment deposit, taking care of identifying all flood units; the separation between flood units is indicated by a break in deposition. The sedimentary sequence shows evidence of 15 flood events that occurred after the dam construction (early '90). Not all events until the present are included; for the last ones, the stream velocity and energy conditions for generating slack-water deposits were not fulfilled due to the reservoir filling. The volume of each flood unit has been estimated making the hypothesis that layers have a simple pyramidal shape (or wedge); every volume represents an estimation of the sediments trapped into the reservoir corresponding to each flood event. The obtained results have been compared with the results of modeling a 20 year time series (1990 - 2009) with the distributed conceptual hydrological and sediment yield model TETIS-SED, in order to assign a date to every flood unit. The TETIS-SED model provides the sediment yield series divided into textural fractions (sand, silt and clay). In order to determine the amount of sediments trapped into the ponds, trap efficiency of each check dam is computed by using the STEP model (Sediment Trap Efficiency model for small Ponds, Verstraeten and Poesen, 2001). Sediment dry bulk density is calculated according to Lane and Koelzer (1943) formulae. In order to improve the reliability of the flood reconstruction, distributed historical fire data has also been used for dating carbon layers found in the depositional sequence. Finally, a date has been assigned to every flood unit, corresponding to an extreme rainfall event; the result is a sediment volume series from 1990 to 2009, which may be very helpful for validating both hydrological and sediment yield models and can improve our understanding on erosion and sediment yield in this catchment.
NASA Technical Reports Server (NTRS)
Rosenfeld, David; Bahir, Gad
1992-01-01
A theoretical model for the trap-assisted tunneling process in diffused n-on-p and implanted n(+)-on-p HgCdTe photodiodes is presented. The model describes the traps and the trap characteristics: concentration, energy level, and capture cross sections. We have observed that the above two types of diodes differ in the voltage dependence of the trap-assisted tunneling current and dynamic resistance. Our model takes this difference into account and offers an explanation of the phenomenon. The good fit between measured and calculated DC characteristics of the photodiodes (for medium and high reverse bias and for temperatures from 65 to 140 K) supports the validity of the model.
NASA Astrophysics Data System (ADS)
Seeley, Alexander J. A. B.; Friend, Richard H.; Kim, Ji-Seon; Burroughes, Jeremy H.
2004-12-01
We report a reversible many-fold quantum efficiency enhancement during electrical driving of polymer light-emitting diodes (LEDs) containing poly(9,9' dioctylfluorene-alt-benzothiadiazole) (F8BT), developing over several minutes or hours at low applied bias and recovering on similar time scales after driving. This phenomenon is observed only in devices containing F8BT as an emissive layer in pure or blended form, regardless of anode and cathode choices and even in the absence of a poly(styrene-sulphonate)-doped poly(3,4-ethylene-dioxythiophene) (PEDOT:PSS) layer. We report detailed investigations using a standardized device structure containing PEDOT:PSS and a calcium cathode. Direct measurements of trapped charge recovered from the device after driving significantly exceed the unipolar limit, and thermally activated relaxation suggests a maximum trap depth around 0.6eV. Neither photoluminescence nor electroluminescence spectra reveal any change in the bulk optoelectronic properties of the emissive polymer nor any new emissive species. During the quantum efficiency (QE) enhancement process, the bulk conduction of the device increases. Reverse bias treatment of the device significantly reinforces the QE enhancement. Based on these observations, we propose a simple model in which interfacial dipoles are generated by trapped holes near the anode combining with injected electrons, to produce a narrow tunneling barrier for easy hole injection. The new injection pathway leads to a higher hole current density and thus a better charge injection balance. This produces the relatively high quantum efficiency observed in all F8BT LEDs.
A Survey of Radiation Measurements Made Aboard Russian Spacecraft in Low-Earth Orbit
NASA Technical Reports Server (NTRS)
Benton, E. R.; Benton, E. V.
1999-01-01
The accurate prediction of ionizing radiation exposure in low-Earth orbit is necessary in order to minimize risks to astronauts, spacecraft and instrumentation. To this end, models of the radiation environment, the AP-8 trapped proton model and the AE-8 trapped electron model, have been developed for use by spacecraft designers and mission planners. It has been widely acknowledged for some time now by the space radiation community that these models possess some major shortcomings. Both models cover only a limited trapped particle energy region and predictions at low altitudes are extrapolated from higher altitude data. With the launch of the first components of the International Space Station with numerous constellations of low-Earth orbit communications satellites now being planned and deployed, the inadequacies of these trapped particle models need to be addressed. Efforts are now underway both in the U.S. and in Europe to refine the AP-8 and AE-8 trapped particle models. This report is an attempt to collect a significant fraction of data for use in validation of trapped radiation models at low altitudes.
Cunha, Lucas M; Cunha, Mariana M; Leite, Romário C; Silva, Israel J; Oliveira, Paulo R de
2009-01-01
This work aims to compare the performance of corrugated paper and "taquaril" bamboo (Phyllostachys sp.) straw traps for collecting (in sampling) Dermanyssus gallinae in a metal cages battery laying hens. The presence of eggs in the two trap models were compared using a Qui-square test and a proportion confidence interval test. Total daily values of mobile instars gathered in each type of trap were compared using the Wilcoxon's test. The amount of traps containing eggs was not different in neither of the traps (p < 0,05). The number of mobile instars sampled at every two days per trap model was different (p = 0,01). Counting in the corrugated paper traps showed a Gauss distribution histogram and was superior to the values of the bamboo straw traps.
Dennis, Todd E; Shah, Shabana F
2012-01-01
Trapping, handling, and deployment of tracking devices (tagging) are essential aspects of many research and conservation studies of wildlife. However, often these activities place nonhuman animals under considerable physical or psychological distress, which disrupts normal patterns of behavior and may ultimately result in deleterious effects on animal welfare and the validity of research results. Thus, knowledge of how trapping, handling, and tagging alter the behavior of research animals is essential if measures to ameliorate stress-related effects are to be developed and implemented. This article describes how time-stamped location data obtained by global-positioning-system telemetry can be used to retrospectively characterize acute behavioral responses to trapping, handling, and tagging in free-ranging animals used for research. Methods are demonstrated in a case study of the common brushtail possum, a semiarboreal phalangerid marsupial native to Australia. The study discusses possible physiological causes of observed effects and offers general suggestions regarding simple means to reduce trapping-handling-and-tagging-related stress in field studies of vertebrates.
Luo, C; Zhang, F; Zhang, Q L; Guo, D Y; Luo, Z R
2013-01-09
We developed and characterized expressed sequence tags (ESTs)-simple sequence repeats (SSRs) and targeted region amplified polymorphism (TRAP) markers to examine genetic relationships in the persimmon genus Diospyros gene pool. In total, we characterized 14 EST-SSR primer pairs and 36 TRAP primer combinations, which were amplified across 20 germplasms of 4 species in the genus Diospyros. We used various genetic parameters, including effective multiplex ratio (EMR), diversity index (DI), and marker index (MI), to test the utility of these markers. TRAP markers gave higher EMR (24.85) but lower DI (0.33), compared to EST-SSRs (EMR = 3.65, DI = 0.34). TRAP gave a very high MI (8.08), which was about 8 times than the MI of EST-SSR (1.25). These markers were utilized for phylogenetic inference of 20 genotypes of Diospyros kaki Thunb. and allied species, with a result that all kaki genotypes clustered closely and 3 allied species formed an independent group. These markers could be further exploited for large-scale genetic relationship inference.
Volcanological and tectonic control of stratigraphy and structure in the western Deccan traps
NASA Astrophysics Data System (ADS)
Devey, C. W.; Lightfoot, P. C.
1986-08-01
Many of the world's flood basalt provinces form elevated plateaux at the margins of continents, although in most cases their present large elevation is not the result of mountain building processes. Several explanations have recently been put forward to explain such occurrences of epeirogeny. The Deccan Trap basalt province forms one such elevated plateau, and results are presented here showing how the epeirogenic uplift in this region, combined with crustal subsidence probably associated with the rifting of the Indian continental margin, has affected the structure of the basalt sequence. Trace element analytical data are used for samples from numerous vertical sections through the Deccan Traps lava series along and around the Western Ghats ridge in India. The results reinforce the previously defined stratigraphy of the Mahabaleshwar area, and extend it over a region covering some 36 000 km2, reaching as far south as Belgaum and the Trap/basement contact. These results show that the lava pile is not flat lying, but forms a very low amplitude anticlinal fold structure plunging southwards by up to 0.3 ° over most of the area, although in the south there is evidence of a reversal of this plunge. The fold is interpreted as being the result of two tilting processes: (1) westward tilting near the coast, due to the foundering of the passive continental margin, and (2) epeirogenic uplift along the whole west coast of India producing the observed topography and the peninsula-wide drainage patterns, and also the easterly component of dip. Variations in the magnitude of the latter effect along the western continental margin may also be important in generating the plunge of the fold, although the possibility of some component of depositional dip may also be important. This latter possibility can be modelled using a simple computer program. The results of this modelling show that a migrating linear volcanic edifice fits the observations best.
Circuit model for single-energy-level trap centers in FETs
NASA Astrophysics Data System (ADS)
Albahrani, Sayed Ali; Parker, Anthony; Heimlich, Michael
2016-12-01
A circuit implementation of a single-energy-level trap center in an FET is presented. When included in transistor models it explains the temperature-potential-dependent time constants seen in the circuit manifestations of charge trapping, being gate lag and drain overshoot. The implementation is suitable for both time-domain and harmonic-balance simulations. The proposed model is based on the Shockley-Read-Hall (SRH) statistics of the trapping process. The results of isothermal pulse measurements performed on a GaN HEMT are presented. These measurement allow characterizing charge trapping in isolation from the effect of self-heating. These results are used to obtain the parameters of the proposed model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmonds, M. J.; Yu, J. H.; Wang, Y. Q.
Simulating the implantation and thermal desorption evolution in a reaction-diffusion model requires solving a set of coupled differential equations that describe the trapping and release of atomic species in Plasma Facing Materials (PFMs). These fundamental equations are well outlined by the Tritium Migration Analysis Program (TMAP) which can model systems with no more than three active traps per atomic species. To overcome this limitation, we have developed a Pseudo Trap and Temperature Partition (PTTP) scheme allowing us to lump multiple inactive traps into one pseudo trap, simplifying the system of equations to be solved. For all temperatures, we show themore » trapping of atoms from solute is exactly accounted for when using a pseudo trap. However, a single effective pseudo trap energy can not well replicate the release from multiple traps, each with its own detrapping energy. However, atoms held in a high energy trap will remain trapped at relatively low temperatures, and thus there is a temperature range in which release from high energy traps is effectively inactive. By partitioning the temperature range into segments, a pseudo trap can be defined for each segment to account for multiple high energy traps that are actively trapping but are effectively not releasing atoms. With increasing temperature, as in controlled thermal desorption, the lowest energy trap is nearly emptied and can be removed from the set of coupled equations, while the next higher energy trap becomes an actively releasing trap. Each segment is thus calculated sequentially, with the last time step of a given segment solution being used as an initial input for the next segment as only the pseudo and actively releasing traps are modeled. This PTTP scheme is then applied to experimental thermal desorption data for tungsten (W) samples damaged with heavy ions, which display six distinct release peaks during thermal desorption. Without modifying the TMAP7 source code the PTTP scheme is shown to successfully model the D retention in all six traps. In conclusion, we demonstrate the full reconstruction from the plasma implantation phase through the controlled thermal desorption phase with detrapping energies near 0.9, 1.1, 1.4, 1.7, 1.9 and 2.1 eV for a W sample damaged at room temperature.« less
Simmonds, M. J.; Yu, J. H.; Wang, Y. Q.; ...
2018-06-04
Simulating the implantation and thermal desorption evolution in a reaction-diffusion model requires solving a set of coupled differential equations that describe the trapping and release of atomic species in Plasma Facing Materials (PFMs). These fundamental equations are well outlined by the Tritium Migration Analysis Program (TMAP) which can model systems with no more than three active traps per atomic species. To overcome this limitation, we have developed a Pseudo Trap and Temperature Partition (PTTP) scheme allowing us to lump multiple inactive traps into one pseudo trap, simplifying the system of equations to be solved. For all temperatures, we show themore » trapping of atoms from solute is exactly accounted for when using a pseudo trap. However, a single effective pseudo trap energy can not well replicate the release from multiple traps, each with its own detrapping energy. However, atoms held in a high energy trap will remain trapped at relatively low temperatures, and thus there is a temperature range in which release from high energy traps is effectively inactive. By partitioning the temperature range into segments, a pseudo trap can be defined for each segment to account for multiple high energy traps that are actively trapping but are effectively not releasing atoms. With increasing temperature, as in controlled thermal desorption, the lowest energy trap is nearly emptied and can be removed from the set of coupled equations, while the next higher energy trap becomes an actively releasing trap. Each segment is thus calculated sequentially, with the last time step of a given segment solution being used as an initial input for the next segment as only the pseudo and actively releasing traps are modeled. This PTTP scheme is then applied to experimental thermal desorption data for tungsten (W) samples damaged with heavy ions, which display six distinct release peaks during thermal desorption. Without modifying the TMAP7 source code the PTTP scheme is shown to successfully model the D retention in all six traps. In conclusion, we demonstrate the full reconstruction from the plasma implantation phase through the controlled thermal desorption phase with detrapping energies near 0.9, 1.1, 1.4, 1.7, 1.9 and 2.1 eV for a W sample damaged at room temperature.« less
Health safety nets can break cycles of poverty and disease: a stochastic ecological model
Pluciński, Mateusz M.; Ngonghala, Calistus N.; Bonds, Matthew H.
2011-01-01
The persistence of extreme poverty is increasingly attributed to dynamic interactions between biophysical processes and economics, though there remains a dearth of integrated theoretical frameworks that can inform policy. Here, we present a stochastic model of disease-driven poverty traps. Whereas deterministic models can result in poverty traps that can only be broken by substantial external changes to the initial conditions, in the stochastic model there is always some probability that a population will leave or enter a poverty trap. We show that a ‘safety net’, defined as an externally enforced minimum level of health or economic conditions, can guarantee ultimate escape from a poverty trap, even if the safety net is set within the basin of attraction of the poverty trap, and even if the safety net is only in the form of a public health measure. Whereas the deterministic model implies that small improvements in initial conditions near the poverty-trap equilibrium are futile, the stochastic model suggests that the impact of changes in the location of the safety net on the rate of development may be strongest near the poverty-trap equilibrium. PMID:21593026
Costs and benefits of trap-neuter-release and euthanasia for removal of urban cats in Oahu, Hawaii.
Lohr, Cheryl A; Cox, Linda J; Lepczyk, Christopher A
2013-02-01
Our goal was to determine whether it is more cost-effective to control feral cat abundance with trap-neuter-release programs or trap and euthanize programs. Using STELLA 7, systems modeling software, we modeled changes over 30 years in abundance of cats in a feral colony in response to each management method and the costs and benefits associated with each method . We included costs associated with providing food, veterinary care, and microchips to the colony cats and the cost of euthanasia, wages, and trapping equipment in the model. Due to a lack of data on predation rates and disease transmission by feral cats the only benefits incorporated into the analyses were reduced predation on Wedge-tailed Shearwaters (Puffinus pacificus). When no additional domestic cats were abandoned by owners and the trap and euthanize program removed 30,000 cats in the first year, the colony was extirpated in at least 75% of model simulations within the second year. It took 30 years for trap-neuter-release to extirpate the colony. When the cat population was supplemented with 10% of the initial population size per year, the colony returned to carrying capacity within 6 years and the trap and euthanize program had to be repeated, whereas trap-neuter-release never reduced the number of cats to near zero within the 30-year time frame of the model. The abandonment of domestic cats reduced the cost effectiveness of both trap-neuter-release and trap and euthanize. Trap-neuter-release was approximately twice as expensive to implement as a trap and euthanize program. Results of sensitivity analyses suggested trap-neuter-release programs that employ volunteers are still less cost-effective than trap and euthanize programs that employ paid professionals and that trap-neuter-release was only effective when the total number of colony cats in an area was below 1000. Reducing the rate of abandonment of domestic cats appears to be a more effective solution for reducing the abundance of feral cats. ©2012 Society for Conservation Biology.
Testing the Model of Oscillating Magnetic Traps
NASA Astrophysics Data System (ADS)
Szaforz, Ż.; Tomczak, M.
2015-01-01
The aim of this paper is to test the model of oscillating magnetic traps (the OMT model), proposed by Jakimiec and Tomczak ( Solar Phys. 261, 233, 2010). This model describes the process of excitation of quasi-periodic pulsations (QPPs) observed during solar flares. In the OMT model energetic electrons are accelerated within a triangular, cusp-like structure situated between the reconnection point and the top of a flare loop as seen in soft X-rays. We analyzed QPPs in hard X-ray light curves for 23 flares as observed by Yohkoh. Three independent methods were used. We also used hard X-ray images to localize magnetic traps and soft X-ray images to diagnose thermal plasmas inside the traps. We found that the majority of the observed pulsation periods correlates with the diameters of oscillating magnetic traps, as was predicted by the OMT model. We also found that the electron number density of plasma inside the magnetic traps in the time of pulsation disappearance is strongly connected with the pulsation period. We conclude that the observations are consistent with the predictions of the OMT model for the analyzed set of flares.
A qualitative study of vortex trapping capability for lift enhancement on unconventional wing
NASA Astrophysics Data System (ADS)
Salleh, M. B.; Kamaruddin, N. M.; Mohamed-Kassim, Z.
2018-05-01
Lift enhancement by using passive vortex trapping technique offers great advantage in small aircraft design as it can improve aerodynamics performance and reduce weight of the wing. To achieve this aim, a qualitative study on the flow structures across wing models with cavities has been performed using smoke wire visualisation technique. An experiment has been conducted at low Reynolds number of 26,000 with angle of attack (α) = 0°, 5°, 10° and 15° to investigate the vortex trapping capability of semi-circular leading edge (SCLE) flat-plate wing model and elliptical leading edge (ELE) flat-plate wing model with cavities, respectively. Results from the qualitative study indicated unique characteristics in the flow structures between the tested wing models. The SCLE wing models were able to trap stable rotating vortices for α ≤ 10° whereas the ability of ELE wing models to suppress flow separation allowed stable clockwise vortices to be trapped inside the cavities even at α > 10°. The trapped vortices found to have the potential to increase lift on the unconventional wing models.
Füzesi, F; Jornod, A; Thomann, P; Plimmer, M D; Dudle, G; Moser, R; Sache, L; Bleuler, H
2007-10-01
This article describes the design, characterization, and performance of an electrostatic glass actuator adapted to an ultrahigh vacuum environment (10(-8) mbar). The three-phase rotary motor is used to drive a turbine that acts as a velocity-selective light trap for a slow continuous beam of laser-cooled atoms. This simple, compact, and nonmagnetic device should find applications in the realm of time and frequency metrology, as well as in other areas of atomic, molecular physics and elsewhere.
Camera Traps Can Be Heard and Seen by Animals
Meek, Paul D.; Ballard, Guy-Anthony; Fleming, Peter J. S.; Schaefer, Michael; Williams, Warwick; Falzon, Greg
2014-01-01
Camera traps are electrical instruments that emit sounds and light. In recent decades they have become a tool of choice in wildlife research and monitoring. The variability between camera trap models and the methods used are considerable, and little is known about how animals respond to camera trap emissions. It has been reported that some animals show a response to camera traps, and in research this is often undesirable so it is important to understand why the animals are disturbed. We conducted laboratory based investigations to test the audio and infrared optical outputs of 12 camera trap models. Camera traps were measured for audio outputs in an anechoic chamber; we also measured ultrasonic (n = 5) and infrared illumination outputs (n = 7) of a subset of the camera trap models. We then compared the perceptive hearing range (n = 21) and assessed the vision ranges (n = 3) of mammals species (where data existed) to determine if animals can see and hear camera traps. We report that camera traps produce sounds that are well within the perceptive range of most mammals’ hearing and produce illumination that can be seen by many species. PMID:25354356
A hierarchical model for estimating density in camera-trap studies
Royle, J. Andrew; Nichols, James D.; Karanth, K.Ullas; Gopalaswamy, Arjun M.
2009-01-01
Estimating animal density using capture–recapture data from arrays of detection devices such as camera traps has been problematic due to the movement of individuals and heterogeneity in capture probability among them induced by differential exposure to trapping.We develop a spatial capture–recapture model for estimating density from camera-trapping data which contains explicit models for the spatial point process governing the distribution of individuals and their exposure to and detection by traps.We adopt a Bayesian approach to analysis of the hierarchical model using the technique of data augmentation.The model is applied to photographic capture–recapture data on tigers Panthera tigris in Nagarahole reserve, India. Using this model, we estimate the density of tigers to be 14·3 animals per 100 km2 during 2004.Synthesis and applications. Our modelling framework largely overcomes several weaknesses in conventional approaches to the estimation of animal density from trap arrays. It effectively deals with key problems such as individual heterogeneity in capture probabilities, movement of traps, presence of potential ‘holes’ in the array and ad hoc estimation of sample area. The formulation, thus, greatly enhances flexibility in the conduct of field surveys as well as in the analysis of data, from studies that may involve physical, photographic or DNA-based ‘captures’ of individual animals.
Characterization and Upscaling of Pore Scale Hydrodynamic Mass Transfer
NASA Astrophysics Data System (ADS)
Gouze, P.; Roubinet, D.; Dentz, M.; Planes, V.; Russian, A.
2017-12-01
Imaging reservoir rocks in 3D using X-ray microtomography with spatial resolution ranging from about 1 to 10 mm provides us a unique opportunity not only to characterize pore space geometry but also for simulating hydrodynamical processes. Yet, pores and throats displaying sizes smaller than the resolution cannot be distinguished on the images and must be assigned to a so called microporous phase during the process of image segmentation. Accordingly one simulated mass transfers caused by advection and diffusion in the connected pores (mobile domain) and diffusion in the microporous clusters (immobile domain) using Time Domain Random Walk (TDRW) and developed a set of metrics that can be used to monitor the different mechanisms of transport in the sample, the final objective being of proposing a simple but accurate upscaled 1D model in which the particle travel times in the mobile and immobile domain and the number of mobile-immobile transfer events (called trapping events) are independently distributed random variables characterized by PDFs. For TDRW the solute concentration is represented by the density distribution of non-interacting point-like solute particles which move due to advection and dispersion. The set of metrics derives from different spatial and temporal statistical analyses of the particle motion, and is used for characterizing the particles transport (i) in the mobile domain in relation with the velocity field properties, (ii) in the immobile domain in relation with the structure and the properties of microporous phase and at the mobile-immobile interface. We specifically focused on how to model the trapping frequency and rate into the immobile domain in relation with the structure and the spatial distribution of the mobile-immobile domain interface. This thorough analysis of the particle motion for both simple artificial structures and real rock images allowed us to derive the parametrization of the upscaled 1D model.
High negative charge of a dust particle in a hot cathode discharge.
Arnas, C; Mikikian, M; Doveil, F
1999-12-01
Dust particle levitation experiments in a plasma produced by a hot filament discharge, operating at low argon pressure, are presented. The basic characteristics of a dust grain trapped in a plate sheath edge in these experimental conditions are reported. Taking into account the sheath potential profiles measured with a differential emissive probe diagnostic, the forces applied to an isolated dust grain can be determined. Two different experimental methods yield approximately the same value for the dust charge. The observed high negative charge is mainly due to the contribution of the primary electrons emitted by the filaments as predicted by a simple model.
Effect of gamma-ray irradiation on the surface states of MOS tunnel junctions
NASA Technical Reports Server (NTRS)
Ma, T. P.; Barker, R. C.
1974-01-01
Gamma-ray irradiation with doses up to 8 megarad produces no significant change on either the C(V) or the G(V) characteristics of MOS tunnel junctions with intermediate oxide thicknesses (40-60 A), whereas the expected flat-band shift toward negative electrode voltages occurs in control thick oxide capacitors. A simple tunneling model would explain the results if the radiation-generated hole traps are assumed to lie below the valence band of the silicon. The experiments also suggest that the observed radiation-generated interface states in conventional MOS devices are not due to the radiation damage of the silicon surface.
Trapping force and optical lifting under focused evanescent wave illumination.
Ganic, Djenan; Gan, Xiaosong; Gu, Min
2004-11-01
A physical model is presented to understand and calculate trapping force exerted on a dielectric micro-particle under focused evanescent wave illumination. This model is based on our recent vectorial diffraction model by a high numerical aperture objective operating under the total internal condition. As a result, trapping force in a focused evanescent spot generated by both plane wave (TEM00) and doughnut beam (TEM*01) illumination is calculated, showing an agreement with the measured results. It is also revealed by this model that unlike optical trapping in the far-field region, optical axial trapping force in an evanescent focal spot increases linearly with the size of a trapped particle. This prediction shows that it is possible to overcome the force of gravity to lift a polystyrene particle of up to 800 nm in radius with a laser beam of power 10 microW.
Friedel-Crafts Acylation: An Experiment Incorporating Spectroscopic Structure Determination.
ERIC Educational Resources Information Center
Schatz, Paul F.
1979-01-01
Describes a laboratory experiment which demonstrates manipulation of highly reactive chemicals, use of a gas trap, and simple and reduced pressure distillation. Student must characterize starting material and product with nuclear magnetic resonance and infrared spectroscopy. (Author/SA)
Water security, risk and economic growth: lessons from a dynamical systems model
NASA Astrophysics Data System (ADS)
Dadson, Simon; Hall, Jim; Garrick, Dustin; Sadoff, Claudia; Grey, David; Whittington, Dale
2016-04-01
Investments in the physical infrastructure, human capital, and institutions needed for water resources management have been a noteworthy feature in the development of most civilisations. These investments affect the economy in two distinct ways: (i) by improving the factor productivity of water in multiple sectors of the economy, especially those that are water intensive such as agriculture and energy; and (ii) by reducing the acute and chronic harmful effects of water-related hazards like floods, droughts, and water-related diseases. The need for capital investment to mitigate these risks in order to promote economic growth is widely acknowledged, but prior work to conceptualise the relationship between water-related risks and economic growth has focused on the productive and harmful roles of water in the economy independently. Here the two influences are combined using a simple, dynamical model of water-related investment, risk, and growth at the national level. The model suggests the existence of a context-specific threshold above which growth proceeds along an 'S'-curve. In many cases there is a requirement for initial investment in water-related assets to enable growth. Below the threshold it is possible for a poverty trap to arise. The presence and location of the poverty trap is context-specific and depends on the relative exposure of productive water-related assets to risk, compared with risks faced by assets in the wider economy. Exogenous changes in the level of water-related risk (through, for example, climate and land cover change) can potentially push an economy away from a growth path towards a poverty trap. These results illustrate the value of accounting for environmental risk in models of economic growth and may offer guidance in the design of robust policies for investment in water-related productive assets to manage risk, particularly in the face of global and regional environmental change.
Saito, Shinta; Ura, Kiyoe; Kodama, Miho; Adachi, Noritaka
2015-06-30
Targeted gene modification by homologous recombination provides a powerful tool for studying gene function in cells and animals. In higher eukaryotes, non-homologous integration of targeting vectors occurs several orders of magnitude more frequently than does targeted integration, making the gene-targeting technology highly inefficient. For this reason, negative-selection strategies have been employed to reduce the number of drug-resistant clones associated with non-homologous vector integration, particularly when artificial nucleases to introduce a DNA break at the target site are unavailable or undesirable. As such, an exon-trap strategy using a promoterless drug-resistance marker gene provides an effective way to counterselect non-homologous integrants. However, constructing exon-trapping targeting vectors has been a time-consuming and complicated process. By virtue of highly efficient att-mediated recombination, we successfully developed a simple and rapid method to construct plasmid-based vectors that allow for exon-trapping gene targeting. These exon-trap vectors were useful in obtaining correctly targeted clones in mouse embryonic stem cells and human HT1080 cells. Most importantly, with the use of a conditionally cytotoxic gene, we further developed a novel strategy for negative selection, thereby enhancing the efficiency of counterselection for non-homologous integration of exon-trap vectors. Our methods will greatly facilitate exon-trapping gene-targeting technologies in mammalian cells, particularly when combined with the novel negative selection strategy.
Space Environments and Effects: Trapped Proton Model
NASA Technical Reports Server (NTRS)
Huston, S. L.; Kauffman, W. (Technical Monitor)
2002-01-01
An improved model of the Earth's trapped proton environment has been developed. This model, designated Trapped Proton Model version 1 (TPM-1), determines the omnidirectional flux of protons with energy between 1 and 100 MeV throughout near-Earth space. The model also incorporates a true solar cycle dependence. The model consists of several data files and computer software to read them. There are three versions of the mo'del: a FORTRAN-Callable library, a stand-alone model, and a Web-based model.
Unexpected trapping of particles at a T junction.
Vigolo, Daniele; Radl, Stefan; Stone, Howard A
2014-04-01
A common element in physiological flow networks, as well as most domestic and industrial piping systems, is a T junction that splits the flow into two nearly symmetric streams. It is reasonable to assume that any particles suspended in a fluid that enters the bifurcation will leave it with the fluid. Here we report experimental evidence and a theoretical description of a trapping mechanism for low-density particles in steady and pulsatile flows through T-shaped junctions. This mechanism induces accumulation of particles, which can form stable chains, or give rise to significant growth of bubbles due to coalescence. In particular, low-density material dispersed in the continuous phase fluid interacts with a vortical flow that develops at the T junction. As a result suspended particles can enter the vortices and, for a wide range of common flow conditions, the particles do not leave the bifurcation. Via 3D numerical simulations and a model of the two-phase flow we predict the location of particle accumulation, which is in excellent agreement with experimental data. We identify experimentally, as well as confirm by numerical simulations and a simple force balance, that there is a wide parameter space in which this phenomenon occurs. The trapping effect is expected to be important for the design of particle separation and fractionation devices, as well as used for better understanding of system failures in piping networks relevant to industry and physiology.
Unexpected trapping of particles at a T junction
Vigolo, Daniele; Radl, Stefan; Stone, Howard A.
2014-01-01
A common element in physiological flow networks, as well as most domestic and industrial piping systems, is a T junction that splits the flow into two nearly symmetric streams. It is reasonable to assume that any particles suspended in a fluid that enters the bifurcation will leave it with the fluid. Here we report experimental evidence and a theoretical description of a trapping mechanism for low-density particles in steady and pulsatile flows through T-shaped junctions. This mechanism induces accumulation of particles, which can form stable chains, or give rise to significant growth of bubbles due to coalescence. In particular, low-density material dispersed in the continuous phase fluid interacts with a vortical flow that develops at the T junction. As a result suspended particles can enter the vortices and, for a wide range of common flow conditions, the particles do not leave the bifurcation. Via 3D numerical simulations and a model of the two-phase flow we predict the location of particle accumulation, which is in excellent agreement with experimental data. We identify experimentally, as well as confirm by numerical simulations and a simple force balance, that there is a wide parameter space in which this phenomenon occurs. The trapping effect is expected to be important for the design of particle separation and fractionation devices, as well as used for better understanding of system failures in piping networks relevant to industry and physiology. PMID:24639547
TRAP/SEE Code Users Manual for Predicting Trapped Radiation Environments
NASA Technical Reports Server (NTRS)
Armstrong, T. W.; Colborn, B. L.
2000-01-01
TRAP/SEE is a PC-based computer code with a user-friendly interface which predicts the ionizing radiation exposure of spacecraft having orbits in the Earth's trapped radiation belts. The code incorporates the standard AP8 and AE8 trapped proton and electron models but also allows application of an improved database interpolation method. The code treats low-Earth as well as highly-elliptical Earth orbits, taking into account trajectory perturbations due to gravitational forces from the Moon and Sun, atmospheric drag, and solar radiation pressure. Orbit-average spectra, peak spectra per orbit, and instantaneous spectra at points along the orbit trajectory are calculated. Described in this report are the features, models, model limitations and uncertainties, input and output descriptions, and example calculations and applications for the TRAP/SEE code.
The effects of deep level traps on the electrical properties of semi-insulating CdZnTe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zha, Gangqiang; Yang, Jian; Xu, Lingyan
2014-01-28
Deep level traps have considerable effects on the electrical properties and radiation detection performance of high resistivity CdZnTe. A deep-trap model for high resistivity CdZnTe was proposed in this paper. The high resistivity mechanism and the electrical properties were analyzed based on this model. High resistivity CdZnTe with high trap ionization energy E{sub t} can withstand high bias voltages. The leakage current is dependent on both the deep traps and the shallow impurities. The performance of a CdZnTe radiation detector will deteriorate at low temperatures, and the way in which sub-bandgap light excitation could improve the low temperature performance canmore » be explained using the deep trap model.« less
Contact between traps and surfaces during contact sampling of explosives in security settings.
Chaffee-Cipich, Michelle N; Hoss, Darby J; Sweat, Melissa L; Beaudoin, Stephen P
2016-03-01
Realistic descriptions of interfacial contact between rough, deformable surfaces under load are difficult to obtain; however, this contact is of great import in a wide range of applications. Here, we detail, through experiment and computational simulation, the interfacial contact between four common traps and five commonly investigated surfaces encountered in explosives detection applications associated with airport security. The Young's modulus and hardness of four traps and seven substrates were measured using nanoindentation. These properties determine how deformation occurs when traps are applied for contact sampling of explosives. The nanoindentation data were analyzed using the Oliver-Pharr method, and an indenter area function was created using silicon and gold as the reference materials. The Young's moduli of the traps ranged from 0.2 to 8 GPa, while those of the surfaces ranged from 0.5 to 4 GPa. The hardness values of the traps ranged from 0.005 to 0.22 GPa, while those of the surfaces ranged from 0.02 to 0.2 GPa. For each of 20 scenarios (4 traps, 5 surfaces), six contact simulations were performed. In these contact simulations, the Greenwood-Willliamson microcontact model was used to represent the behavior of the asperities on the traps, while the Timoshenko Beam model was used to describe the macroscopic behavior of the bulk trap materials spanning the space between asperities. This combination of feature- and trap-scale modeling provides a more realistic description of the interfacial contact than either model applied individually. The calculated distributions of separation distances between the traps and surfaces when the traps were contacted with the surfaces under a normal load were compared to estimate the relative effectiveness of the traps at interrogating the topography of the surfaces. This method is proposed as a tool to guide the development of trap materials for surface sampling and surface cleaning applications. Copyright © 2016. Published by Elsevier Ireland Ltd.
NASA Astrophysics Data System (ADS)
Hu, Yin; White, Marvin H.
1993-10-01
A new analytical model is developed to investigate the influence of the charge loss processes in the retention mode of the SONOS NVSM device. The model considers charge loss by the following processes: (1) electron back-tunneling from the nitride traps to the Si conduction band, (2) electron back-tunneling from the nitride traps to the Si/SiO 2 interface traps and (3) hole injection from the Si valence band to the nitride traps. An amphoteric trap charge distribution is used in this model. The new charge retention model predicts that process (1) determines the short term retention, while processes (2) and (3) determine the long term retention. Good agreement has been reached between the results of analytical calculations and the experimental retention data on both surface channel and buried channel SONOS devices.
Determination of volatile marker compounds in raw ham using headspace-trap gas chromatography.
Bosse Née Danz, Ramona; Wirth, Melanie; Konstanz, Annette; Becker, Thomas; Weiss, Jochen; Gibis, Monika
2017-03-15
A simple, reliable and automated method was developed and optimized for qualification and quantification of aroma-relevant volatile marker compounds of North European raw ham using a headspace (HS)-Trap gas chromatography-mass spectrometry (GC-MS) and GC-flame ionization detector (FID) analysis. A total of 38 volatile compounds were detected with this HS-Trap GC-MS method amongst which the largest groups were ketones (12), alcohols (8), hydrocarbons (7), aldehydes (6) and esters (3). The HS-Trap GC-FID method was optimized for the parameters: thermostatting time and temperature, vial and desorption pressure, number of extraction cycles and salt addition. A validation for 13 volatile marker compounds with limits of detection in ng/g was carried out. The optimized method can serve as alternative to conventional headspace and solid phase micro extraction methods and allows users to determine volatile compounds in raw hams making it of interest to industrial and academic meat scientists. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Kyoohyun; Park, Yongkeun
2017-05-01
Optical trapping can manipulate the three-dimensional (3D) motion of spherical particles based on the simple prediction of optical forces and the responding motion of samples. However, controlling the 3D behaviour of non-spherical particles with arbitrary orientations is extremely challenging, due to experimental difficulties and extensive computations. Here, we achieve the real-time optical control of arbitrarily shaped particles by combining the wavefront shaping of a trapping beam and measurements of the 3D refractive index distribution of samples. Engineering the 3D light field distribution of a trapping beam based on the measured 3D refractive index map of samples generates a light mould, which can manipulate colloidal and biological samples with arbitrary orientations and/or shapes. The present method provides stable control of the orientation and assembly of arbitrarily shaped particles without knowing a priori information about the sample geometry. The proposed method can be directly applied in biophotonics and soft matter physics.
Staunton, Jack R.; Blehm, Ben; Devine, Alexus; Tanner, Kandice
2017-01-01
In optical trapping, accurate determination of forces requires calibration of the position sensitivity relating displacements to the detector readout via the V-nm conversion factor (β). Inaccuracies in measured trap stiffness (k) and dependent calculations of forces and material properties occur if β is assumed to be constant in optically heterogeneous materials such as tissue, necessitating calibration at each probe. For solid-like samples in which probes are securely positioned, calibration can be achieved by moving the sample with a nanopositioning stage and stepping the probe through the detection beam. However, this method may be applied to samples only under select circumstances. Here, we introduce a simple method to find β in any material by steering the detection laser beam while the probe is trapped. We demonstrate the approach in the yolk of living Danio rerio (zebrafish) embryos and measure the viscoelastic properties over an order of magnitude of stress-strain amplitude. PMID:29519028
Piecewise silence in discrete cosmological models
NASA Astrophysics Data System (ADS)
Clifton, Timothy; Gregoris, Daniele; Rosquist, Kjell
2014-05-01
We consider a family of cosmological models in which all mass is confined to a regular lattice of identical black holes. By exploiting the reflection symmetry about planes that bisect these lattices into identical halves, we are able to consider the evolution of a number of geometrically distinguished surfaces that exist within each of them. We find that the evolution equations for the reflection symmetric surfaces can be written as a simple set of Friedmann-like equations, with source terms that behave like a set of interacting effective fluids. We then show that gravitational waves are effectively trapped within small chambers for all time, and are not free to propagate throughout the space-time. Each chamber therefore evolves as if it were in isolation from the rest of the universe. We call this phenomenon ‘piecewise silence’.
An Investigation into the Effect of Hydrodynamic Cavitation on Diesel using Optical Extinction
NASA Astrophysics Data System (ADS)
Lockett, R. D.; Fatmi, Z.; Kuti, O.; Price, R.
2015-12-01
A conventional diesel and paraffinic-rich model diesel fuel were subjected to sustained cavitation in a custom-built high-pressure recirculation flow rig. Changes to the spectral extinction coefficient at 405 nm were measured using a simple optical arrangement. The spectral extinction coefficient at 405 nm for the conventional diesel sample was observed to increase to a maximum value and then asymptotically decrease to a steady-state value, while that for the paraffinic-rich model diesel was observed to progressively decrease. It is suggested that this is caused by the sonochemical pyrolysis of mono-aromatics to form primary soot-like carbonaceous particles, which then coagulate to form larger particles, which are then trapped by the filter, leading to a steady-state spectral absorbance.
The contemporary degassing rate of 40Ar from the solid Earth
Bender, Michael L.; Barnett, Bruce; Dreyfus, Gabrielle; Jouzel, Jean; Porcelli, Don
2008-01-01
Knowledge of the outgassing history of radiogenic 40Ar, derived over geologic time from the radioactive decay of 40K, contributes to our understanding of the geodynamic history of the planet and the origin of volatiles on Earth's surface. The 40Ar inventory of the atmosphere equals total 40Ar outgassing during Earth history. Here, we report the current rate of 40Ar outgassing, accessed by measuring the Ar isotope composition of trapped gases in samples of the Vostok and Dome C deep ice cores dating back to almost 800 ka. The modern outgassing rate (1.1 ± 0.1 × 108 mol/yr) is in the range of values expected by summing outgassing from the continental crust and the upper mantle, as estimated from simple calculations and models. The measured outgassing rate is also of interest because it allows dating of air trapped in ancient ice core samples of unknown age, although uncertainties are large (±180 kyr for a single sample or ±11% of the calculated age, whichever is greater). PMID:18550816
Measurement of the electron shake-off in the β-decay of laser-trapped 6He atoms
NASA Astrophysics Data System (ADS)
Hong, Ran; Bagdasarova, Yelena; Garcia, Alejandro; Storm, Derek; Sternberg, Matthew; Swanson, Erik; Wauters, Frederik; Zumwalt, David; Bailey, Kevin; Leredde, Arnaud; Mueller, Peter; O'Connor, Thomas; Flechard, Xavier; Liennard, Etienne; Knecht, Andreas; Naviliat-Cuncic, Oscar
2016-03-01
Electron shake-off is an important process in many high precision nuclear β-decay measurements searching for physics beyond the standard model. 6He being one of the lightest β-decaying isotopes, has a simple atomic structure. Thus, it is well suited for testing calculations of shake-off effects. Shake-off probabilities from the 23S1 and 23P2 initial states of laser trapped 6He matter for the on-going beta-neutrino correlation study at the University of Washington. These probabilities are obtained by analyzing the time-of-flight distribution of the recoil ions detected in coincidence with the beta particles. A β-neutrino correlation independent analysis approach was developed. The measured upper limit of the double shake-off probability is 2 ×10-4 at 90% confidence level. This result is ~100 times lower than the most recent calculation by Schulhoff and Drake. This work is supported by DOE, Office of Nuclear Physics, under Contract Nos. DE-AC02-06CH11357 and DE-FG02-97ER41020.
The role of solitons in charge and energy transfer in 1D molecular chains
NASA Astrophysics Data System (ADS)
Ivić , Zoran
1998-03-01
The idea that polarons and solitons could play the crucial role in the transport processes in biological structures, has been critically reexamined on the basis of the general theory of self-trapping phenomena. The criteria which enable one to determine conditions for the existence and stability of polarons and solitons and to determine their character, in dependence of the values of the basic physical parameters of the system, were formulated. Validity of the so-called Davydov's soliton model was discussed on the basis of these criteria. It was found that the original Davydov's proposal, based upon the idea of the soliton creation due to the single excitation (particle, vibron, etc.) self-trapping, cannot explain the intramolecular energy transfer in α-helix and acetanilide. However, Davydov theory is flexible enough to describe the single electron transfer in some systems (α-helix and acetanilide for example). In the many-particle systems, dressing effect, due to the quantum nature of phonons, may cause the creation of the bound states of the several excitons in the molecular chain. The possibility of creation of the soliton states of this type is discussed for the simple Fröhlich's one-dimensional model. The regions of the system parameter space where different mechanisms dominate the behaviour of such entities are characterized.
Understanding the Venus flytrap through mathematical modelling.
Lehtinen, Sami
2018-05-07
Among carnivorous plants, the Venus flytrap is of particular interest for the rapid movement of its snap-traps and hypothesised prey selection, where small prey are allowed to escape from the traps. In this paper, we provide the first mathematical cost-benefit model for carnivory in the Venus flytrap. Specifically, we analyse the dynamics of prey capture; the costs and benefits of capturing and digesting its prey; and optimisation of trap size and prey selection. We fit the model to available data, making predictions regarding trap behaviour. In particular, we predict that non-prey sources, such as raindrops or wind, cause a large proportion of trap closures; only few trap closures result in a meal; most of the captured prey are allowed to escape; the closure mechanism of a trap is triggered about once every two days; and a trap has to wait more than a month for a meal. We also find that prey capture of traps of the Venus flytrap follows the Beddington-DeAngelis functional response. These predictions indicate that the Venus flytrap is highly selective in its prey capture. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Modeling of reference operating scenario of GOL-NB multiple-mirror trap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Postupaev, V. V., E-mail: V.V.Postupaev@inp.nsk.su; Yurov, D. V.
Currently, the GOL-NB multiple-mirror trap is being developed at the Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences. The main scientific goal pursued by building GOL-NB is direct demonstration of suppression of longitudinal losses of particles and energy from the trap by using sections with a multiple-mirror magnetic field, which can be attached to the central gas-dynamic trap. Plasma heating in GOL-NB will be accomplished by neutral beam injection with a power of up to 1.5MW. The paper presents the first results of modeling the dynamics of the plasma parameters and fast ions under the reference operatingmore » scenario of the trap in which traditional short magnetic mirrors, rather than multiple-mirror sections, are attached to the central trap. In such a configuration, the plasma lifetime in the trap is expected to be minimal. The modeling was performed by using the DOL kinetic code. As a result, the initial conditions of the experiments are refined and the requirements to the system of maintaining the particle balance in the trap are determined.« less
NASA Astrophysics Data System (ADS)
Hur, Ji-Hyun; Park, Junghak; Kim, Deok-kee; Jeon, Sanghun
2017-04-01
We propose a model that describes the operation characteristics of a two-dimensional electron gas (2DEG) in a monolayer transition-metal dichalcogenide thin-film transistor (TFT) having trapped charges near the channel interface. We calculate the drift mobility of the carriers scattered by charged defects located in the channel or near the channel interfaces. The calculated drift mobility is a function of the 2DEG areal density of interface traps. Finally, we calculate the model transfer (ID-VG S ) and output (ID-VS D ) characteristics and verify them by comparing with the experimental results performed with monolayer MoS2 TFTs. We find the modeled results to be excellently consistent with the experiments. This proposed model can be utilized for measuring the interface-trapped charge and trap site densities from the measured transfer curves directly, avoiding more complicated and expensive measurement methods.
Single-ion, transportable optical atomic clocks
NASA Astrophysics Data System (ADS)
Delehaye, Marion; Lacroûte, Clément
2018-03-01
For the past 15 years, tremendous progress within the fields of laser stabilization, optical frequency combs and atom cooling and trapping have allowed the realization of optical atomic clocks with unrivaled performances. These instruments can perform frequency comparisons with fractional uncertainties well below ?, finding applications in fundamental physics tests, relativistic geodesy and time and frequency metrology. Even though most optical clocks are currently laboratory setups, several proposals for using these clocks for field measurements or within an optical clock network have been published, and most of time and frequency metrology institutes have started to develop transportable optical clocks. For the purpose of this special issue, we chose to focus on trapped-ion optical clocks. Even though their short-term fractional frequency stability is impaired by a lower signal-to-noise ratio, they offer a high potential for compactness: trapped ions demand low optical powers and simple loading schemes, and can be trapped in small vacuum chambers. We review recent advances on the clock key components, including ion trap and ultra-stable optical cavity, as well as existing projects and experiments which draw the picture of what future transportable, single-ion optical clocks may resemble.
The UAH Spinning Terrella Experiment: A Laboratory Analog for the Earth's Magnetosphere
NASA Technical Reports Server (NTRS)
Sheldon, R. B.; Gallagher, D. L.; Craven, P. D.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
The UAH Spinning Terrella Experiment has been modified to include the effect of a second magnet. This is a simple laboratory demonstration of the well-known double-dipole approximation to the Earth's magnetosphere. In addition, the magnet has been biassed $\\sim$-400V which generates a DC glow discharge and traps it in a ring current around the magnet. This ring current is easily imaged with a digital camera and illustrates several significant topological properties of a dipole field. In particular, when the two dipoles are aligned, and therefore repel, they emulate a northward IMF Bz magnetosphere. Such a geometry traps plasma in the high latitude cusps as can be clearly seen in the movies. Likewise, when the two magnets are anti-aligned, they emulate a southward IMF Bz magnetosphere with direct feeding of plasma through the x-line. We present evidence for trapping and heating of the plasma, comparing the dipole-trapped ring current to the cusp-trapped population. We also present a peculiar asymmetric ring current produced in by the plasma at low plasma densities. We discuss the similarities and dissimilarities of the laboratory analog to the collisionless Earth plasma, and implications for the interpretation of IMAGE data.
A viscoelastic deadly fluid in carnivorous pitcher plants.
Gaume, Laurence; Forterre, Yoel
2007-11-21
The carnivorous plants of the genus Nepenthes, widely distributed in the Asian tropics, rely mostly on nutrients derived from arthropods trapped in their pitcher-shaped leaves and digested by their enzymatic fluid. The genus exhibits a great diversity of prey and pitcher forms and its mechanism of trapping has long intrigued scientists. The slippery inner surfaces of the pitchers, which can be waxy or highly wettable, have so far been considered as the key trapping devices. However, the occurrence of species lacking such epidermal specializations but still effective at trapping insects suggests the possible implication of other mechanisms. Using a combination of insect bioassays, high-speed video and rheological measurements, we show that the digestive fluid of Nepenthes rafflesiana is highly viscoelastic and that this physical property is crucial for the retention of insects in its traps. Trapping efficiency is shown to remain strong even when the fluid is highly diluted by water, as long as the elastic relaxation time of the fluid is higher than the typical time scale of insect movements. This finding challenges the common classification of Nepenthes pitchers as simple passive traps and is of great adaptive significance for these tropical plants, which are often submitted to high rainfalls and variations in fluid concentration. The viscoelastic trap constitutes a cryptic but potentially widespread adaptation of Nepenthes species and could be a homologous trait shared through common ancestry with the sundew (Drosera) flypaper plants. Such large production of a highly viscoelastic biopolymer fluid in permanent pools is nevertheless unique in the plant kingdom and suggests novel applications for pest control.
A Viscoelastic Deadly Fluid in Carnivorous Pitcher Plants
Gaume, Laurence; Forterre, Yoel
2007-01-01
Background The carnivorous plants of the genus Nepenthes, widely distributed in the Asian tropics, rely mostly on nutrients derived from arthropods trapped in their pitcher-shaped leaves and digested by their enzymatic fluid. The genus exhibits a great diversity of prey and pitcher forms and its mechanism of trapping has long intrigued scientists. The slippery inner surfaces of the pitchers, which can be waxy or highly wettable, have so far been considered as the key trapping devices. However, the occurrence of species lacking such epidermal specializations but still effective at trapping insects suggests the possible implication of other mechanisms. Methodology/Principal Findings Using a combination of insect bioassays, high-speed video and rheological measurements, we show that the digestive fluid of Nepenthes rafflesiana is highly viscoelastic and that this physical property is crucial for the retention of insects in its traps. Trapping efficiency is shown to remain strong even when the fluid is highly diluted by water, as long as the elastic relaxation time of the fluid is higher than the typical time scale of insect movements. Conclusions/Significance This finding challenges the common classification of Nepenthes pitchers as simple passive traps and is of great adaptive significance for these tropical plants, which are often submitted to high rainfalls and variations in fluid concentration. The viscoelastic trap constitutes a cryptic but potentially widespread adaptation of Nepenthes species and could be a homologous trait shared through common ancestry with the sundew (Drosera) flypaper plants. Such large production of a highly viscoelastic biopolymer fluid in permanent pools is nevertheless unique in the plant kingdom and suggests novel applications for pest control. PMID:18030325
A circularly polarized optical dipole trap and other developments in laser trapping of atoms
NASA Astrophysics Data System (ADS)
Corwin, Kristan Lee
Several innovations in laser trapping and cooling of alkali atoms are described. These topics share a common motivation to develop techniques for efficiently manipulating cold atoms. Such advances facilitate sensitive precision measurements such as parity non- conservation and 8-decay asymmetry in large trapped samples, even when only small quantities of the desired species are available. First, a cold, bright beam of Rb atoms is extracted from a magneto-optical trap (MOT) using a very simple technique. This beam has a flux of 5 × 109 atoms/s and a velocity of 14 m/s, and up to 70% of the atoms in the MOT were transferred to the atomic beam. Next, a highly efficient MOT for radioactive atoms is described, in which more than 50% of 221Fr atoms contained in a vapor cell are loaded into a MOT. Measurements were also made of the 221Fr 7 2P1/2 and 7 2P3/2 energies and hyperfine constants. To perform these experiments, two schemes for stabilizing the frequency of the light from a diode laser were developed and are described in detail. Finally, a new type of trap is described and a powerful cooling technique is demonstrated. The circularly polarized optical dipole trap provides large samples of highly spin-polarized atoms, suitable for many applications. Physical processes that govern the transfer of large numbers of atoms into the trap are described, and spin-polarization is measured to be 98(1)%. In addition, the trap breaks the degeneracy of the atomic spin states much like a magnetic trap does. This allows for RF and microwave cooling via both forced evaporation and a Sisyphus mechanism. Preliminary application of these techniques to the atoms in the circularly polarized dipole trap has successfully decreased the temperature by a factor of 4 while simultaneously increasing phase space density.
Computational Modeling of Blood Flow in the TrapEase Inferior Vena Cava Filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singer, M A; Henshaw, W D; Wang, S L
To evaluate the flow hemodynamics of the TrapEase vena cava filter using three dimensional computational fluid dynamics, including simulated thrombi of multiple shapes, sizes, and trapping positions. The study was performed to identify potential areas of recirculation and stagnation and areas in which trapped thrombi may influence intrafilter thrombosis. Computer models of the TrapEase filter, thrombi (volumes ranging from 0.25mL to 2mL, 3 different shapes), and a 23mm diameter cava were constructed. The hemodynamics of steady-state flow at Reynolds number 600 was examined for the unoccluded and partially occluded filter. Axial velocity contours and wall shear stresses were computed. Flowmore » in the unoccluded TrapEase filter experienced minimal disruption, except near the superior and inferior tips where low velocity flow was observed. For spherical thrombi in the superior trapping position, stagnant and recirculating flow was observed downstream of the thrombus; the volume of stagnant flow and the peak wall shear stress increased monotonically with thrombus volume. For inferiorly trapped spherical thrombi, marked disruption to the flow was observed along the cava wall ipsilateral to the thrombus and in the interior of the filter. Spherically shaped thrombus produced a lower peak wall shear stress than conically shaped thrombus and a larger peak stress than ellipsoidal thrombus. We have designed and constructed a computer model of the flow hemodynamics of the TrapEase IVC filter with varying shapes, sizes, and positions of thrombi. The computer model offers several advantages over in vitro techniques including: improved resolution, ease of evaluating different thrombus sizes and shapes, and easy adaptation for new filter designs and flow parameters. Results from the model also support a previously reported finding from photochromic experiments that suggest the inferior trapping position of the TrapEase IVC filter leads to an intra-filter region of recirculating/stagnant flow with very low shear stress that may be thrombogenic.« less
Trapping of a microsphere pendulum resonator in an optical potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, J. M.; Photonics Centre, Tyndall National Institute, Prospect Row, Cork; Wu, Y.
We propose a method to spatially confine or corral the movements of a micropendulum via the optical forces produced by two simultaneously excited optical modes of a photonic molecule comprising two microspherical cavities. We discuss how the cavity-enhanced optical force generated in the photonic molecule can create an optomechanical potential of about 10 eV deep and 30 pm wide, which can be used to trap the pendulum at any given equilibrium position by a simple choice of laser frequencies. This result presents opportunities for very precise all-optical self-alignment of microsystems.
A millisecond micromixer via single-bubble-based acoustic streaming.
Ahmed, Daniel; Mao, Xiaole; Shi, Jinjie; Juluri, Bala Krishna; Huang, Tony Jun
2009-09-21
We present ultra-fast homogeneous mixing inside a microfluidic channel via single-bubble-based acoustic streaming. The device operates by trapping an air bubble within a "horse-shoe" structure located between two laminar flows inside a microchannel. Acoustic waves excite the trapped air bubble at its resonance frequency, resulting in acoustic streaming, which disrupts the laminar flows and triggers the two fluids to mix. Due to this technique's simple design, excellent mixing performance, and fast mixing speed (a few milliseconds), our single-bubble-based acoustic micromixer may prove useful for many biochemical studies and applications.
Monolayer organic field effect phototransistors: photophysical characterization and modeling
NASA Astrophysics Data System (ADS)
Trukhanov, Vasily A.; Anisimov, Daniil S.; Bruevich, Vladimir V.; Agina, Elena V.; Borshchev, Oleg V.; Ponomarenko, Sergei; Zhang, Jiangbin; Bakulin, Artem A.; Paraschuk, Dmitri Yu.
2016-09-01
Organic field-effect transistors (OFET) can combine photodetection and light amplification and, for example, work as phototransistors. Such organic phototransistors can be used in light-controlled switches and amplifiers, detection circuits, and sensors of ultrasensitive images. In this work, we present photophysical characterization of well-defined ultrathin organic field-effect devices with a semiconductive channel based on Langmuir-Blodgett monolayer film. We observe clear generation of photocurrent under illumination with a modulated laser at 405 nm. The increase of photocurrent with the optical modulation frequency indicates the presence of defect states serving as traps for photogenerated carriers and/or the saturation of charge concentration in the thin active layer. We also propose a simple one-dimensional numerical model of a photosensitive OFET. The model is based on the Poisson, current continuity and drift-diffusion equations allows future evaluation of the photocurrent generation mechanism in the studied systems.
The effect of atomic response time in the theory of Doppler cooling of trapped ions
NASA Astrophysics Data System (ADS)
Janacek, H.; Steane, A. M.; Lucas, D. M.; Stacey, D. N.
2018-03-01
We describe a simple approach to the problem of incorporating the response time of an atom or ion being Doppler-cooled into the theory of the cooling process. The system being cooled does not in general respond instantly to the changing laser frequencies it experiences in its rest frame, and this 'dynamic effect' can affect significantly the temperatures attainable. It is particularly important for trapped ions when there is a slow decay out of the cooling cycle requiring the use of a repumping beam. We treat the cases of trapped ions with two and three internal states, then apply the theory to ?. For this ion experimental data exist showing the ion to be cold under conditions for which heating is predicted if the dynamic effect is neglected. The present theory accounts for the observed behaviour.
A 'feather-trap' for collecting DNA samples from birds.
Maurer, Golo; Beck, Nadeena; Double, Michael C
2010-01-01
Genetic analyses of birds are usually based on DNA extracted from a blood sample. For some species, however, obtaining blood samples is difficult because they are sensitive to handling, pose a conservation or animal welfare concern, or evade capture. In such cases, feathers obtained from live birds in the wild can provide an alternative source of DNA. Here, we provide the first description and evaluation of a 'feather-trap', consisting of small strips of double-sided adhesive tape placed close to a nest with chicks, as a simple, inexpensive and minimally invasive method to collect feathers. The feather-trap was tested in tropical conditions on the Australian pheasant coucal (Centropus phasianinus). None of the 12 pairs of coucals on which the feather-trap was used abandoned the nest, and feeding rates did not differ from those of birds not exposed to a feather-trap. On average, 4.2 feathers were collected per trap over 2-5 days and, despite exposure to monsoonal rain, DNA was extracted from 71.4% of samples, albeit at low concentrations. The amount of genomic DNA extracted from each feather was sufficient to reliably genotype individuals at up to five microsatellite loci for parentage analysis. We show that a feather-trap can provide a reliable alternative for obtaining DNA in species where taking blood is difficult. It may also prove useful for collecting feather samples for other purposes, e.g. stable-isotope analysis. © 2009 Blackwell Publishing Ltd.
An Ingenious Super Light Trapping Surface Templated from Butterfly Wing Scales
NASA Astrophysics Data System (ADS)
Han, Zhiwu; Li, Bo; Mu, Zhengzhi; Yang, Meng; Niu, Shichao; Zhang, Junqiu; Ren, Luquan
2015-08-01
Based on the super light trapping property of butterfly Trogonoptera brookiana wings, the SiO2 replica of this bionic functional surface was successfully synthesized using a simple and highly effective synthesis method combining a sol-gel process and subsequent selective etching. Firstly, the reflectivity of butterfly wing scales was carefully examined. It was found that the whole reflectance spectroscopy of the butterfly wings showed a lower level (less than 10 %) in the visible spectrum. Thus, it was confirmed that the butterfly wings possessed a super light trapping effect. Afterwards, the morphologies and detailed architectures of the butterfly wing scales were carefully investigated using the ultra-depth three-dimensional (3D) microscope and field emission scanning electronic microscopy (FESEM). It was composed by the parallel ridges and quasi-honeycomb-like structure between them. Based on the biological properties and function above, an exact SiO2 negative replica was fabricated through a synthesis method combining a sol-gel process and subsequent selective etching. At last, the comparative analysis of morphology feature size and the reflectance spectroscopy between the SiO2 negative replica and the flat plate was conducted. It could be concluded that the SiO2 negative replica inherited not only the original super light trapping architectures, but also the super light trapping characteristics of bio-template. This work may open up an avenue for the design and fabrication of super light trapping materials and encourage people to look for more super light trapping architectures in nature.
Trapping in scale-free networks with hierarchical organization of modularity.
Zhang, Zhongzhi; Lin, Yuan; Gao, Shuyang; Zhou, Shuigeng; Guan, Jihong; Li, Mo
2009-11-01
A wide variety of real-life networks share two remarkable generic topological properties: scale-free behavior and modular organization, and it is natural and important to study how these two features affect the dynamical processes taking place on such networks. In this paper, we investigate a simple stochastic process--trapping problem, a random walk with a perfect trap fixed at a given location, performed on a family of hierarchical networks that exhibit simultaneously striking scale-free and modular structure. We focus on a particular case with the immobile trap positioned at the hub node having the largest degree. Using a method based on generating functions, we determine explicitly the mean first-passage time (MFPT) for the trapping problem, which is the mean of the node-to-trap first-passage time over the entire network. The exact expression for the MFPT is calculated through the recurrence relations derived from the special construction of the hierarchical networks. The obtained rigorous formula corroborated by extensive direct numerical calculations exhibits that the MFPT grows algebraically with the network order. Concretely, the MFPT increases as a power-law function of the number of nodes with the exponent much less than 1. We demonstrate that the hierarchical networks under consideration have more efficient structure for transport by diffusion in contrast with other analytically soluble media including some previously studied scale-free networks. We argue that the scale-free and modular topologies are responsible for the high efficiency of the trapping process on the hierarchical networks.
Characterization of Defects in Scaled Mis Dielectrics with Variable Frequency Charge Pumping
NASA Astrophysics Data System (ADS)
Paulsen, Ronald Eugene
1995-01-01
Historically, the interface trap has been extensively investigated to determine the effects on device performance. Recently, much attention has been paid to trapping in near-interface oxide traps. Performance of high precision analog circuitry is affected by charge trapping in near-interface oxide traps which produces hysteresis, charge redistribution errors, and dielectric relaxation effects. In addition, the performance of low power digital circuitry, with reduced noise margins, may be drastically affected by the threshold voltage shifts associated with charge trapping in near -interface oxide traps. Since near-interface oxide traps may substantially alter the performance of devices, complete characterization of these defects is necessary. In this dissertation a new characterization technique, variable frequency charge pumping, is introduced which allows charge trapped at the interface to be distinguished from the charge trapped within the oxide. The new experimental technique is an extension of the charge pumping technique to low frequencies such that tunneling may occur from interface traps to near-interface oxide traps. A generalized charge pumping model, based on Shockley-Read-Hall statistics and trap-to-trap tunneling theory, has been developed which allows a more complete characterization of near-interface oxide traps. A pair of coupled differential equations governing the rate of change of occupied interface and near-interface oxide traps have been developed. Due to the experimental conditions in the charge pumping technique the equations may be decoupled, leading to an equation governing the rate of change of occupied interface traps and an equation governing the rate of change of occcupied near-interface oxide traps. Solving the interface trap equation and applying non-steady state charge dynamics leads to an interface trap component of the charge pumping current. In addition, solution to the near-interface oxide trap equation leads to an additional oxide trap component to the charge pumping current. Numerical simulations have been performed to support the analytical development of the generalized charge pumping model. By varying the frequency of the applied charge pumping waveform and monitoring the charge recombined per cycle, the contributions from interface traps may be separated from the contributions of the near-interface oxide traps. The generalized charge pumping model allows characterization of the density and spatial distribution of near-interface oxide traps from this variable frequency charge pumping technique. Characterization of interface and near-interface oxide trap generation has been performed on devices exposed to ionizing radiation, hot electron injection, and high -field/Fowler-Nordheim stressing. Finally, using SONOS nonvolatile memory devices, a framework has been established for experimentally determining not only the spatial distribution of near-interface oxide traps, but also the energetic distribution. An experimental approach, based on tri-level charge pumping, is discussed which allows the energetic distribution of near-interface oxide traps to be determined.
Akhtar, Parveen; Zhang, Cheng; Liu, Zhengtang; Tan, Howe-Siang; Lambrev, Petar H
2018-03-01
Photosystem I is a robust and highly efficient biological solar engine. Its capacity to utilize virtually every absorbed photon's energy in a photochemical reaction generates great interest in the kinetics and mechanisms of excitation energy transfer and charge separation. In this work, we have employed room-temperature coherent two-dimensional electronic spectroscopy and time-resolved fluorescence spectroscopy to follow exciton equilibration and excitation trapping in intact Photosystem I complexes as well as core complexes isolated from Pisum sativum. We performed two-dimensional electronic spectroscopy measurements with low excitation pulse energies to record excited-state kinetics free from singlet-singlet annihilation. Global lifetime analysis resolved energy transfer and trapping lifetimes closely matches the time-correlated single-photon counting data. Exciton energy equilibration in the core antenna occurred on a timescale of 0.5 ps. We further observed spectral equilibration component in the core complex with a 3-4 ps lifetime between the bulk Chl states and a state absorbing at 700 nm. Trapping in the core complex occurred with a 20 ps lifetime, which in the supercomplex split into two lifetimes, 16 ps and 67-75 ps. The experimental data could be modelled with two alternative models resulting in equally good fits-a transfer-to-trap-limited model and a trap-limited model. However, the former model is only possible if the 3-4 ps component is ascribed to equilibration with a "red" core antenna pool absorbing at 700 nm. Conversely, if these low-energy states are identified with the P 700 reaction centre, the transfer-to-trap-model is ruled out in favour of a trap-limited model.
Park, Rebecca Sejung; Shulaker, Max Marcel; Hills, Gage; Suriyasena Liyanage, Luckshitha; Lee, Seunghyun; Tang, Alvin; Mitra, Subhasish; Wong, H-S Philip
2016-04-26
We present a measurement technique, which we call the Pulsed Time-Domain Measurement, for characterizing hysteresis in carbon nanotube field-effect transistors, and demonstrate its applicability for a broad range of 1D and 2D nanomaterials beyond carbon nanotubes. The Pulsed Time-Domain Measurement enables the quantification (density, energy level, and spatial distribution) of charged traps responsible for hysteresis. A physics-based model of the charge trapping process for a carbon nanotube field-effect transistor is presented and experimentally validated using the Pulsed Time-Domain Measurement. Leveraging this model, we discover a source of traps (surface traps) unique to devices with low-dimensional channels such as carbon nanotubes and nanowires (beyond interface traps which exist in today's silicon field-effect transistors). The different charge trapping mechanisms for interface traps and surface traps are studied based on their temperature dependencies. Through these advances, we are able to quantify the interface trap density for carbon nanotube field-effect transistors (∼3 × 10(13) cm(-2) eV(-1) near midgap), and compare this against a range of previously studied dielectric/semiconductor interfaces.
Generalized Dicke Nonequilibrium Dynamics in Trapped Ions
NASA Astrophysics Data System (ADS)
Genway, Sam; Li, Weibin; Ates, Cenap; Lanyon, Benjamin P.; Lesanovsky, Igor
2014-01-01
We explore trapped ions as a setting to investigate nonequilibrium phases in a generalized Dicke model of dissipative spins coupled to phonon modes. We find a rich dynamical phase diagram including superradiantlike regimes, dynamical phase coexistence, and phonon-lasing behavior. A particular advantage of trapped ions is that these phases and transitions among them can be probed in situ through fluorescence. We demonstrate that the main physical insights are captured by a minimal model and consider an experimental realization with Ca+ ions trapped in a linear Paul trap with a dressing scheme to create effective two-level systems with a tunable dissipation rate.
Vortex breakdown in simple pipe bends
NASA Astrophysics Data System (ADS)
Ault, Jesse; Shin, Sangwoo; Stone, Howard
2016-11-01
Pipe bends and elbows are one of the most common fluid mechanics elements that exists. However, despite their ubiquity and the extensive amount of research related to these common, simple geometries, unexpected complexities still remain. We show that for a range of geometries and flow conditions, these simple flows experience unexpected fluid dynamical bifurcations resembling the bubble-type vortex breakdown phenomenon. Specifically, we show with simulations and experiments that recirculation zones develop within the bends under certain conditions. As a consequence, fluid and particles can remain trapped within these structures for unexpectedly-long time scales. We also present simple techniques to mitigate this recirculation effect which can potentially have impact across industries ranging from biomedical and chemical processing to food and health sciences.
Trap efficiency for Glossina pallidipes (Diptera: Glossinidae) at Nguruman, south-west Kenya.
Dransfield, R D; Brightwell, R
2001-12-01
An incomplete ring of electric nets was evaluated as a means of estimating trap efficiency for Glossina spp. This methodology assumes flies approach the trap directly, and then enter, or leave directly in random directions. These results showed that the ratio of the number of flies intercepted on the outside of the electric nets to the number on the inside was lower than predicted by this single-approach behavioural model. Moreover, an incomplete ring of nets around a trap reduced trap catch more than the model predicted. These inconsistencies were greater early in the day, and greater for females than for males. It is suggested that flies may make several approaches to a trap before entering or departing. This mixes arriving and departing flies on each side of the electric nets. Use of a complete ring of nets around a trap to estimate trap efficiency entails fewer behavioural assumptions. Catches at a complete ring around a trap were compared to catches in a trap without nets, replicated in a cross-over design. The efficiency of an odour baited NG2G trap was estimated to be 58% for males and 37% for females. Biconical traps were much less efficient. Both trap types were less efficient in the early morning, suggesting entry response is temperature dependent. The NG2G trap was more efficient for non-teneral nulliparous females than for other ages. For both trap types there was little difference between mean fat content of approaching and trapped males, but the mean fat content of trapped females was lower than that of approaching females.
Light-Stimulated Synaptic Devices Utilizing Interfacial Effect of Organic Field-Effect Transistors.
Dai, Shilei; Wu, Xiaohan; Liu, Dapeng; Chu, Yingli; Wang, Kai; Yang, Ben; Huang, Jia
2018-06-14
Synaptic transistors stimulated by light waves or photons may offer advantages to the devices, such as wide bandwidth, ultrafast signal transmission, and robustness. However, previously reported light-stimulated synaptic devices generally require special photoelectric properties from the semiconductors and sophisticated device's architectures. In this work, a simple and effective strategy for fabricating light-stimulated synaptic transistors is provided by utilizing interface charge trapping effect of organic field-effect transistors (OFETs). Significantly, our devices exhibited highly synapselike behaviors, such as excitatory postsynaptic current (EPSC) and pair-pulse facilitation (PPF), and presented memory and learning ability. The EPSC decay, PPF curves, and forgetting behavior can be well expressed by mathematical equations for synaptic devices, indicating that interfacial charge trapping effect of OFETs can be utilized as a reliable strategy to realize organic light-stimulated synapses. Therefore, this work provides a simple and effective strategy for fabricating light-stimulated synaptic transistors with both memory and learning ability, which enlightens a new direction for developing neuromorphic devices.
Schroeteler, Juliane; Reeker, Ralf; Suero Molina, Eric; Brokinkel, Benjamin; Holling, Markus; Grauer, Oliver M; Senner, Volker; Stummer, Walter; Ewelt, Christian
2014-01-01
Ultrasonic aspiration is widely used in the resection of brain tumors. Nevertheless, tumor tissue fragments obtained by ultrasonic aspiration are usually discarded. In this study, we demonstrate that these fragments are possible sources of material for histopathological study and tissue culture and compare their microscopic features and viability in tissue culture of cavitron ultrasonic surgical aspirator tissue fragments. Brain tumor tissue collected by ultrasonic aspiration (CUSA EXcel®; Integra Radionics Inc.) in a simple sterile suction trap during resection was processed for primary cell culture. Cell viability and immunohistological markers were measured by the WST-1 test, microscopy and immunofluorescent evaluation. Six gliomas are presented to demonstrate that these tissue fragments show good preservation of histological detail and tissue viability in culture. Utilization of this material may facilitate pathological interpretation by providing a more representative sample of tumor histology as well as an adequate and sterile biosource of material for tissue culture studies.
Atomistic modeling trap-assisted tunneling in hole tunnel field effect transistors
NASA Astrophysics Data System (ADS)
Long, Pengyu; Huang, Jun Z.; Povolotskyi, Michael; Sarangapani, Prasad; Valencia-Zapata, Gustavo A.; Kubis, Tillmann; Rodwell, Mark J. W.; Klimeck, Gerhard
2018-05-01
Tunnel Field Effect Transistors (FETs) have the potential to achieve steep Subthreshold Swing (S.S.) below 60 mV/dec, but their S.S. could be limited by trap-assisted tunneling (TAT) due to interface traps. In this paper, the effect of trap energy and location on OFF-current (IOFF) of tunnel FETs is evaluated systematically using an atomistic trap level representation in a full quantum transport simulation. Trap energy levels close to band edges cause the highest leakage. Wave function penetration into the surrounding oxide increases the TAT current. To estimate the effects of multiple traps, we assume that the traps themselves do not interact with each other and as a whole do not modify the electrostatic potential dramatically. Within that model limitation, this numerical metrology study points to the critical importance of TAT in the IOFF in tunnel FETs. The model shows that for Dit higher than 1012/(cm2 eV) IO F F is critically increased with a degraded IO N/IO F F ratio of the tunnel FET. In order to have an IO N/IO F F ratio higher than 104, the acceptable Dit near Ev should be controlled to no larger than 1012/(cm2 eV) .
NASA Technical Reports Server (NTRS)
Israelsson, Ulf E. (Inventor); Strayer, Donald M. (Inventor)
1992-01-01
A contact-less method for determining transport critical current density and flux penetration depth in bulk superconductor material. A compressor having a hollow interior and a plunger for selectively reducing the free space area for distribution of the magnetic flux therein are formed of superconductor material. Analytical relationships, based upon the critical state model, Maxwell's equations and geometrical relationships define transport critical current density and flux penetration depth in terms of the initial trapped magnetic flux density and the ratio between initial and final magnetic flux densities whereby data may be reliably determined by means of the simple test apparatus for evaluating the current density and flux penetration depth.
Parametric control in coupled fermionic oscillators
NASA Astrophysics Data System (ADS)
Ghosh, Arnab
2014-10-01
A simple model of parametric coupling between two fermionic oscillators is considered. Statistical properties, in particular the mean and variance of quanta for a single mode, are described by means of a time-dependent reduced density operator for the system and the associated P function. The density operator for fermionic fields as introduced by Cahill and Glauber [K. E. Cahill and R. J. Glauber, Phys. Rev. A 59, 1538 (1999), 10.1103/PhysRevA.59.1538] thus can be shown to provide a quantum mechanical description of the fields closely resembling their bosonic counterpart. In doing so, special emphasis is given to population trapping, and quantum control over the states of the system.
Controlling the net charge on a nanoparticle optically levitated in vacuum
NASA Astrophysics Data System (ADS)
Frimmer, Martin; Luszcz, Karol; Ferreiro, Sandra; Jain, Vijay; Hebestreit, Erik; Novotny, Lukas
2017-06-01
Optically levitated nanoparticles in vacuum are a promising model system to test physics beyond our current understanding of quantum mechanics. Such experimental tests require extreme control over the dephasing of the levitated particle's motion. If the nanoparticle carries a finite net charge, it experiences a random Coulomb force due to fluctuating electric fields. This dephasing mechanism can be fully excluded by discharging the levitated particle. Here, we present a simple and reliable technique to control the charge on an optically levitated nanoparticle in vacuum. Our method is based on the generation of charges in an electric discharge and does not require additional optics or mechanics close to the optical trap.
NASA Astrophysics Data System (ADS)
Li, Ying; Holloway, Gregory W.; Benjamin, Simon C.; Briggs, G. Andrew D.; Baugh, Jonathan; Mol, Jan A.
2017-08-01
Memristive systems are generalizations of memristors, which are resistors with memory. In this paper, we present a quantum description of quantum dot memristive systems. Using this model we propose and experimentally demonstrate a simple and practical scheme for realizing memristive systems with quantum dots. The approach harnesses a phenomenon that is commonly seen as a bane of nanoelectronics, i.e., switching of a trapped charge in the vicinity of the device. We show that quantum dot memristive systems have hysteresis current-voltage characteristics and quantum jump-induced stochastic behavior. While our experiment requires low temperatures, the same setup could, in principle, be realized with a suitable single-molecule transistor and operated at or near room temperature.
Optical trapping and optical force positioning of two-dimensional materials.
Donato, M G; Messina, E; Foti, A; Smart, T J; Jones, P H; Iatì, M A; Saija, R; Gucciardi, P G; Maragò, O M
2018-01-18
In recent years, considerable effort has been devoted to the synthesis and characterization of two-dimensional materials. Liquid phase exfoliation (LPE) represents a simple, large-scale method to exfoliate layered materials down to mono- and few-layer flakes. In this context, the contactless trapping, characterization, and manipulation of individual nanosheets hold perspectives for increased accuracy in flake metrology and the assembly of novel functional materials. Here, we use optical forces for high-resolution structural characterization and precise mechanical positioning of nanosheets of hexagonal boron nitride, molybdenum disulfide, and tungsten disulfide obtained by LPE. Weakly optically absorbing nanosheets of boron nitride are trapped in optical tweezers. The analysis of the thermal fluctuations allows a direct measurement of optical forces and the mean flake size in a liquid environment. Measured optical trapping constants are compared with T-matrix light scattering calculations to show a quadratic size scaling for small size, as expected for a bidimensional system. In contrast, strongly absorbing nanosheets of molybdenum disulfide and tungsten disulfide are not stably trapped due to the dominance of radiation pressure over the optical trapping force. Thus, optical forces are used to pattern a substrate by selectively depositing nanosheets in short times (minutes) and without any preparation of the surface. This study will be useful for improving ink-jet printing and for a better engineering of optoelectronic devices based on two-dimensional materials.
Water security, risk, and economic growth: Insights from a dynamical systems model
NASA Astrophysics Data System (ADS)
Dadson, Simon; Hall, Jim W.; Garrick, Dustin; Sadoff, Claudia; Grey, David; Whittington, Dale
2017-08-01
Investments in the physical infrastructure, human capital, and institutions needed for water resources management have been noteworthy in the development of most civilizations. These investments affect the economy in two distinct ways: (i) by improving the factor productivity of water in multiple economic sectors, especially those that are water intensive such as agriculture and energy and (ii) by reducing acute and chronic harmful effects of water-related hazards like floods, droughts, and water-related diseases. The need for capital investment to mitigate risks and promote economic growth is widely acknowledged, but prior conceptual work on the relationship between water-related investments and economic growth has focused on the productive and harmful roles of water in the economy independently. Here the two influences are combined using a simple, dynamical systems model of water-related investment, risk, and growth. In cases where initial water security is low, initial investment in water-related assets enables growth. Without such investment, losses due to water-related hazards exert a drag on economic growth and may create a poverty trap. The presence and location of the poverty trap is context-specific and depends on the exposure of productive water-related assets to water-related risk. Exogenous changes in water-related risk can potentially push an economy away from a growth path toward a poverty trap. Our investigation shows that an inverted-U-shaped investment relation between the level of investment in water security and the current level of water security leads to faster rates of growth than the alternatives that we consider here, and that this relation is responsible for the "S"-curve that is posited in the literature. These results illustrate the importance of accounting for environmental and health risks in economic models and offer insights for the design of robust policies for investment in water-related productive assets to manage risk, in the face of environmental change.
An effective box trap for capturing lynx
Jay A. Kolbe; John R. Squires; Thomas W. Parker
2003-01-01
We designed a box trap for capturing lynx (Lynx lynx) that is lightweight, safe, effective, and less expensive than many commercial models. It can be constructed in approximately 3-4 hours from readily available materials. We used this trap to capture 40 lynx 89 times (96% of lynx entering traps) and observed no trapping related injuries. We compare our box...
NASA Astrophysics Data System (ADS)
Elshazly, Ezzat S.; Tepper, Gary; Burger, Arnold
2010-08-01
Carrier trapping times were measured in detector grade thallium bromide (TlBr) and cadmium zinc telluride (CZT) from 300 to 110 K and the experimental data were analyzed using a trapping model. In CZT, because the majority carrier concentration is close to the intrinsic carrier concentration, the trapping time increases exponentially as the temperature decreases below about 160 K. In TlBr, the majority carrier concentration is many orders of magnitude greater than the intrinsic carrier concentration and the trapping time followed a (1/ T) 1/2 temperature dependence over the range of temperatures studied. The results of the model suggest that a moderately deep compensation center could be used to significantly increase the room temperature trapping time in TlBr.
Developments in a methodology for the design of engineered invert traps in combined sewer systems.
Buxton, A; Tait, S; Stovin, V; Saul, A
2002-01-01
Sediments within sewers can have a significant effect on the operation of the sewer system and on the surrounding natural and urban environment. One possible method for the management of sewer sediments is the use of slotted invert traps. Although invert traps can be used to selectively trap only inorganic bedload material, little is known with regard to the design of these structures. This paper presents results from a laboratory investigation comparing the trapping performance of three slot size configurations of a laboratory-scale invert trap. The paper also presents comparative results from a two-dimensional computational model utilising stochastic particle tracking. This investigation shows that particle tracking consistently over-predicts sediment retention efficiencies observed within the laboratory model.
NASA Astrophysics Data System (ADS)
Joodaki, S.; Yang, Z.; Niemi, A. P.
2016-12-01
CO2 trapping in saline aquifers can be enhanced by applying specific injection strategies. Water-alternating-gas (WAG) injection, in which intermittent slugs of CO2 and water are injected, is one of the suggested methods to increase the trapping of CO2 as a result of both capillary forces (residual trapping) and dissolution into the ambient water (dissolution trapping). In this study, 3D numerical modeling was used to investigate the importance of parameters needed to design an effective WAG injection sequence including (i) CO2 and water injection rates, (ii) WAG ratio, (iii) number of cycles and their duration. We employ iTOUGH2-EOS17 model to simulate the CO2 injection and subsequent trapping in heterogeneous formations. Spatially correlated random permeability fields are generated using GSLIB based on available data at the Heletz, a pilot injection site in Israel, aimed for scientifically motivated CO2 injection experiments. Hysteresis effects on relative permeability and capillary pressure function are taken into account based on the Land model (1968). The results showed that both residual and dissolution trapping can be enhanced by increasing in CO2 injection rate due to the fact that higher CO2 injection rate reduces the gravity segregation and increases the reservoir volume swept by CO2. Faster water injection will favor the residual and dissolution trapping due to improved mixing. Increasing total amount of water injection will increase the dissolution trapping but also the cost of the injection. It causes higher pressure increases as well. Using numerical modeling, it is possible to predict the best parameter combination to optimize the trapping and find the balance between safety and cost of the injection process.
Ostrom, Elinor; Janssen, Marco A.; Anderies, John M.
2007-01-01
In the context of governance of human–environment interactions, a panacea refers to a blueprint for a single type of governance system (e.g., government ownership, privatization, community property) that is applied to all environmental problems. The aim of this special feature is to provide theoretical analysis and empirical evidence to caution against the tendency, when confronted with pervasive uncertainty, to believe that scholars can generate simple models of linked social–ecological systems and deduce general solutions to the overuse of resources. Practitioners and scholars who fall into panacea traps falsely assume that all problems of resource governance can be represented by a small set of simple models, because they falsely perceive that the preferences and perceptions of most resource users are the same. Readers of this special feature will become acquainted with many cases in which panaceas fail. The articles provide an excellent overview of why they fail. Furthermore, the articles in this special feature address how scholars and public officials can increase the prospects for future sustainable resource use by facilitating a diagnostic approach in selecting appropriate starting points for governance and monitoring, as well as by learning from the outcomes of new policies and adapting in light of effective feedback. PMID:17881583
Statistical Modeling of an Optically Trapped Cilium
NASA Astrophysics Data System (ADS)
Flaherty, Justin; Resnick, Andrew
We explore, analytically and experimentally, the stochastic dynamics of a biologically significant slender microcantilever, the primary cilium, held within an optical trap. Primary cilia are cellular organelles, present on most vertebrate cells, hypothesized to function as a fluid flow sensor. The mechanical properties of a cilium remain incompletely characterized. Optical trapping is an ideal method to probe the mechanical response of a cilium due to the spatial localization and non-contact nature of the applied force. However, analysis of an optically trapped cilium is complicated both by the geometry of a cilium and boundary conditions. Here, we present experimentally measured mean-squared displacement data of trapped cilia where the trapping force is oppositely directed to the elastic restoring force of the ciliary axoneme, analytical modeling results deriving the mean-squared displacement of a trapped cilium using the Langevin approach, and apply our analytical results to the experimental data. We demonstrate that mechanical properties of the cilium can be accurately determined and efficiently extracted from the data using our model. It is hoped that improved measurements will result in deeper understanding of the biological function of cellular flow sensing by this organelle.
Can camera traps monitor Komodo dragons a large ectothermic predator?
Ariefiandy, Achmad; Purwandana, Deni; Seno, Aganto; Ciofi, Claudio; Jessop, Tim S
2013-01-01
Camera trapping has greatly enhanced population monitoring of often cryptic and low abundance apex carnivores. Effectiveness of passive infrared camera trapping, and ultimately population monitoring, relies on temperature mediated differences between the animal and its ambient environment to ensure good camera detection. In ectothermic predators such as large varanid lizards, this criterion is presumed less certain. Here we evaluated the effectiveness of camera trapping to potentially monitor the population status of the Komodo dragon (Varanus komodoensis), an apex predator, using site occupancy approaches. We compared site-specific estimates of site occupancy and detection derived using camera traps and cage traps at 181 trapping locations established across six sites on four islands within Komodo National Park, Eastern Indonesia. Detection and site occupancy at each site were estimated using eight competing models that considered site-specific variation in occupancy (ψ)and varied detection probabilities (p) according to detection method, site and survey number using a single season site occupancy modelling approach. The most parsimonious model [ψ (site), p (site survey); ω = 0.74] suggested that site occupancy estimates differed among sites. Detection probability varied as an interaction between site and survey number. Our results indicate that overall camera traps produced similar estimates of detection and site occupancy to cage traps, irrespective of being paired, or unpaired, with cage traps. Whilst one site showed some evidence detection was affected by trapping method detection was too low to produce an accurate occupancy estimate. Overall, as camera trapping is logistically more feasible it may provide, with further validation, an alternative method for evaluating long-term site occupancy patterns in Komodo dragons, and potentially other large reptiles, aiding conservation of this species.
Can Camera Traps Monitor Komodo Dragons a Large Ectothermic Predator?
Ariefiandy, Achmad; Purwandana, Deni; Seno, Aganto; Ciofi, Claudio; Jessop, Tim S.
2013-01-01
Camera trapping has greatly enhanced population monitoring of often cryptic and low abundance apex carnivores. Effectiveness of passive infrared camera trapping, and ultimately population monitoring, relies on temperature mediated differences between the animal and its ambient environment to ensure good camera detection. In ectothermic predators such as large varanid lizards, this criterion is presumed less certain. Here we evaluated the effectiveness of camera trapping to potentially monitor the population status of the Komodo dragon (Varanus komodoensis), an apex predator, using site occupancy approaches. We compared site-specific estimates of site occupancy and detection derived using camera traps and cage traps at 181 trapping locations established across six sites on four islands within Komodo National Park, Eastern Indonesia. Detection and site occupancy at each site were estimated using eight competing models that considered site-specific variation in occupancy (ψ)and varied detection probabilities (p) according to detection method, site and survey number using a single season site occupancy modelling approach. The most parsimonious model [ψ (site), p (site*survey); ω = 0.74] suggested that site occupancy estimates differed among sites. Detection probability varied as an interaction between site and survey number. Our results indicate that overall camera traps produced similar estimates of detection and site occupancy to cage traps, irrespective of being paired, or unpaired, with cage traps. Whilst one site showed some evidence detection was affected by trapping method detection was too low to produce an accurate occupancy estimate. Overall, as camera trapping is logistically more feasible it may provide, with further validation, an alternative method for evaluating long-term site occupancy patterns in Komodo dragons, and potentially other large reptiles, aiding conservation of this species. PMID:23527027
A new route to the stable capture and final immobilization of radioactive cesium.
Yang, Jae Hwan; Han, Ahreum; Yoon, Joo Young; Park, Hwan-Seo; Cho, Yung-Zun
2017-10-05
Radioactive Cs released from damaged fuel materials in the event of nuclear accidents must be controlled to prevent the spreading of hazardous Cs into the environment. This study describes a simple and novel process to safely manage Cs gas by capturing it within ceramic filters and converting it into monolithic waste forms. The results of Cs trapping tests showed that CsAlSiO 4 was a reaction product of gas-solid reactions between Cs gas and our ceramic filters. Monolithic waste forms were readily prepared from the Cs-trapping filters by the addition of a glass frit followed by thermal treatment at 1000°C for 3h. Major findings revealed that the Cs-trapping filters could be added up to 50wt% to form durable monoliths. In 30-50wt% of waste fraction, CsAlSiO 4 was completely converted to pollucite (CsAlSi 2 O 6 ), which is a potential phase for radioactive Cs due to its excellent thermal and chemical stability. A static leaching test for 28 d confirmed the excellent chemical resistance of the pollucite structure, with a Cs leaching rate as low as 7.21×10 -5 gm -2 /d. This simple scheme of waste processing promises a new route for radioactive Cs immobilization by synthesizing pollucite-based monoliths. Copyright © 2017 Elsevier B.V. All rights reserved.
Modeling photovoltaic performance in periodic patterned colloidal quantum dot solar cells.
Fu, Yulan; Dinku, Abay G; Hara, Yukihiro; Miller, Christopher W; Vrouwenvelder, Kristina T; Lopez, Rene
2015-07-27
Colloidal quantum dot (CQD) solar cells have attracted tremendous attention mostly due to their wide absorption spectrum window and potentially low processability cost. The ultimate efficiency of CQD solar cells is highly limited by their high trap state density. Here we show that the overall device power conversion efficiency could be improved by employing photonic structures that enhance both charge generation and collection efficiencies. By employing a two-dimensional numerical model, we have calculated the characteristics of patterned CQD solar cells based of a simple grating structure. Our calculation predicts a power conversion efficiency as high as 11.2%, with a short circuit current density of 35.2 mA/cm2, a value nearly 1.5 times larger than the conventional flat design, showing the great potential value of patterned quantum dot solar cells.
Hierarchical models for estimating density from DNA mark-recapture studies
Gardner, B.; Royle, J. Andrew; Wegan, M.T.
2009-01-01
Genetic sampling is increasingly used as a tool by wildlife biologists and managers to estimate abundance and density of species. Typically, DNA is used to identify individuals captured in an array of traps ( e. g., baited hair snares) from which individual encounter histories are derived. Standard methods for estimating the size of a closed population can be applied to such data. However, due to the movement of individuals on and off the trapping array during sampling, the area over which individuals are exposed to trapping is unknown, and so obtaining unbiased estimates of density has proved difficult. We propose a hierarchical spatial capture-recapture model which contains explicit models for the spatial point process governing the distribution of individuals and their exposure to (via movement) and detection by traps. Detection probability is modeled as a function of each individual's distance to the trap. We applied this model to a black bear (Ursus americanus) study conducted in 2006 using a hair-snare trap array in the Adirondack region of New York, USA. We estimated the density of bears to be 0.159 bears/km2, which is lower than the estimated density (0.410 bears/km2) based on standard closed population techniques. A Bayesian analysis of the model is fully implemented in the software program WinBUGS.
NASA Astrophysics Data System (ADS)
Pollyea, R.; Rimstidt, J. D.
2016-12-01
Geologic carbon sequestration in terrestrial basalt reservoirs is predicated on permanent CO2 trapping through CO2-water-rock dissolution reactions followed by carbonate precipitation. Bench-scale experiments have shown these reaction paths to be rapid, occurring on a timescale 100 - 102 years. Moreover, recent results from the CarbFix basalt sequestration pilot project in Iceland demonstrate >95% CO2 isolation two years after a small-scale injection. In order to assess the viability of basalt sequestration worldwide (e.g., Deccan Traps, Columbia Plateau, etc.), flexible simulation tools are required that distill the dissolution reactions into a user-friendly format that is readily transmissible to existing reactive transport numerical simulators. In the present research, we combine experimental results extant in the literature for Icelandic basalt to develop kinetic rate models describing the pH-dependent dissolution of (1) basaltic glass and (2) an aggregate mineral assemblage for crystalline basalt comprising olivine, pyroxene, and plagioclase phases. In order to utilize these kinetic rate models with numerical simulation, a thermodynamic solubility model for each phase is developed for use with the reactive transport simulation code, TOUGHREACT. We use reactive transport simulation in a simple 1-D reactor to compare dissolution of the aggregate crystalline basalt phase with the traditional formulation comprising individual mineral phases for the crystalline basalt. Simulation results are in general agreement, illustrating the efficacy of this simplified approach for modeling basalt dissolution at temperature and pressure conditions typical of geologic CO2 reservoirs. Moreover, this approach may be of value to investigators seeking dissolution models for crystalline basalt in other mafic provinces.
Evaluation of a Diffusion/Trapping Model for Hydrogen Ingress in High-Strength Alloys
1990-11-14
Potential traps are the intermetallic compounds, Ni3Mo and possibly Ni3 Ti or FeTi, precipitated during age hardening of the maraging steel .23 The energy of...1972); Ref 105 in "The Stress Corrosion and Hydrogen Embrittlement Behavior of Maraging Steels ," Proceedings of the Conference on the Stress Corrosion ...718, 18Ni Maraging Steel Hydrogen Trapping, Incoloy 925, Titanium, Trapping Model 19. ABSTRACT (Continue on reverse if necessary and ientify by block
High current multicharged metal ion source using high power gyrotron heating of vacuum arc plasma.
Vodopyanov, A V; Golubev, S V; Khizhnyak, V I; Mansfeld, D A; Nikolaev, A G; Oks, E M; Savkin, K P; Vizir, A V; Yushkov, G Yu
2008-02-01
A high current, multi charged, metal ion source using electron heating of vacuum arc plasma by high power gyrotron radiation has been developed. The plasma is confined in a simple mirror trap with peak magnetic field in the plug up to 2.5 T, mirror ratio of 3-5, and length variable from 15 to 20 cm. Plasma formed by a cathodic vacuum arc is injected into the trap either (i) axially using a compact vacuum arc plasma gun located on axis outside the mirror trap region or (ii) radially using four plasma guns surrounding the trap at midplane. Microwave heating of the mirror-confined, vacuum arc plasma is accomplished by gyrotron microwave radiation of frequency 75 GHz, power up to 200 kW, and pulse duration up to 150 micros, leading to additional stripping of metal ions by electron impact. Pulsed beams of platinum ions with charge state up to 10+, a mean charge state over 6+, and total (all charge states) beam current of a few hundred milliamperes have been formed.
Swanson, Alexandra; Kosmala, Margaret; Lintott, Chris; Simpson, Robert; Smith, Arfon; Packer, Craig
2015-01-01
Camera traps can be used to address large-scale questions in community ecology by providing systematic data on an array of wide-ranging species. We deployed 225 camera traps across 1,125 km2 in Serengeti National Park, Tanzania, to evaluate spatial and temporal inter-species dynamics. The cameras have operated continuously since 2010 and had accumulated 99,241 camera-trap days and produced 1.2 million sets of pictures by 2013. Members of the general public classified the images via the citizen-science website www.snapshotserengeti.org. Multiple users viewed each image and recorded the species, number of individuals, associated behaviours, and presence of young. Over 28,000 registered users contributed 10.8 million classifications. We applied a simple algorithm to aggregate these individual classifications into a final ‘consensus’ dataset, yielding a final classification for each image and a measure of agreement among individual answers. The consensus classifications and raw imagery provide an unparalleled opportunity to investigate multi-species dynamics in an intact ecosystem and a valuable resource for machine-learning and computer-vision research. PMID:26097743
Gao, Changlu; Sun, Xiuhua; Gillis, Kevin D.
2016-01-01
The design, fabrication and test of a microfluidic cell trapping device to measure single cell exocytosis were reported. Research on the patterning of double layer template based on repetitive standard photolithography of AZ photoresist was investigated. The replicated poly(dimethyl siloxane) devices with 2.5 μm deep channels were proved to be efficient for stopping cells. Quantal exocytosis measurement can be achieved by targeting single or small clumps of chromaffin cells on top of the 10 μm ×10 μm indium tin oxide microelectrodes arrays with the developed microdevice. And about 72% of the trapping sites can be occupied by cells with hydrodynamic trapping method and the recorded amperometric signals are comparable to the results with traditional carbon fiber microelectrodes. The method of manufacturing the microdevices is simple, low-cost and easy to perform. The manufactured device offers a platform for the high throughput detection of quantal catecholamine exocytosis from chromaffin cells with sufficient sensitivity and broad application. PMID:23329291
NASA Astrophysics Data System (ADS)
Han, Zhiwu; Li, Bo; Mu, Zhengzhi; Yang, Meng; Niu, Shichao; Zhang, Junqiu; Ren, Luquan
2015-11-01
The polydimethylsiloxane (PDMS) positive replica templated twice from the excellent light trapping surface of butterfly Trogonoptera brookiana wing scales was fabricated by a simple and promising route. The exact SiO2 negative replica was fabricated by using a synthesis method combining a sol-gel process and subsequent selective etching. Afterwards, a vacuum-aided process was introduced to make PDMS gel fill into the SiO2 negative replica, and the PDMS gel was solidified in an oven. Then, the SiO2 negative replica was used as secondary template and the structures in its surface was transcribed onto the surface of PDMS. At last, the PDMS positive replica was obtained. After comparing the PDMS positive replica and the original bio-template in terms of morphology, dimensions and reflectance spectra and so on, it is evident that the excellent light trapping structures of butterfly wing scales were inherited by the PDMS positive replica faithfully. This bio-inspired route could facilitate the preparation of complex light trapping nanostructure surfaces without any assistance from other power-wasting and expensive nanofabrication technologies.
Dawson, Heather; Jones, Michael L.; Irwin, Brian J.; Johnson, Nicholas; Wagner, Michael C.; Szymanski, Melissa
2016-01-01
We applied a management strategy evaluation (MSE) model to examine the potential cost-effectiveness of using pheromone-baited trapping along with conventional lampricide treatment to manage invasive sea lamprey. Four pheromone-baited trapping strategies were modeled: (1) stream activation wherein pheromone was applied to existing traps to achieve 10−12 mol/L in-stream concentration, (2) stream activation plus two additional traps downstream with pheromone applied at 2.5 mg/hr (reverse-intercept approach), (3) trap activation wherein pheromone was applied at 10 mg/hr to existing traps, and (4) trap activation and reverse-intercept approach. Each new strategy was applied, with remaining funds applied to conventional lampricide control. Simulating deployment of these hybrid strategies on fourteen Lake Michigan streams resulted in increases of 17 and 11% (strategies 1 and 2) and decreases of 4 and 7% (strategies 3 and 4) of the lakewide mean abundance of adult sea lamprey relative to status quo. MSE revealed performance targets for trap efficacy to guide additional research because results indicate that combining lampricides and high efficacy trapping technologies can reduce sea lamprey abundance on average without increasing control costs.
A Monte Carlo model of hot electron trapping and detrapping in SiO2
NASA Astrophysics Data System (ADS)
Kamocsai, R. L.; Porod, W.
1991-02-01
High-field stressing and oxide degradation of SiO2 are studied using a microscopic model of electron heating and charge trapping and detrapping. Hot electrons lead to a charge buildup in the oxide according to the dynamic trapping-detrapping model by Nissan-Cohen and co-workers [Y. Nissan-Cohen, J. Shappir, D. Frohman-Bentchkowsky, J. Appl. Phys. 58, 2252 (1985)]. Detrapping events are modeled as trap-to-band impact ionization processes initiated by high energy conduction electrons. The detailed electronic distribution function obtained from Monte Carlo transport simulations is utilized for the determination of the detrapping rates. We apply our microscopic model to the calculation of the flat-band voltage shift in silicon dioxide as a function of the electric field, and we show that our model is able to reproduce the experimental results. We also compare these results to the predictions of the empirical trapping-detrapping model which assumes a heuristic detrapping cross section. Our microscopic theory accounts for the nonlocal nature of impact ionization which leads to a dark space close to the injecting cathode, which is unaccounted for in the empirical model.
NASA Astrophysics Data System (ADS)
Krasovsky, Victor L.; Kiselyov, Alexander A.
2017-12-01
New results of numerical simulation of collisionless plasma perturbation caused by a sphere absorbing electrons and ions are presented. Consideration is given to nonstationary phenomena accompanying the process of charging as well as to plasma steady state reached at long times. Corresponding asymptotic values of charges of the sphere and trapped-ion cloud around it have been found along with self-consistent electric field pattern depending on parameters of the unperturbed plasma. It is established that contribution of the trapped ions to screening of the charged sphere can be quite significant, so that the screening becomes essentially nonlinear in nature. A simple interconnection between the sphere radius, electron and ion Debye lengths has been revealed as the condition for maximum trapped-ion effect. Kinetic structure of the space charge induced in the plasma is discussed with relation to the specific form of the unperturbed charged particle distribution functions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xianliang, Zhou; Mopper, K.
1990-10-01
Carbonyl compounds in clean marine air were trapped onto 2,4-dinitrophenylhydrazine- (DNPH-) coated cartridges, and their hydrazone derivatives were separated by HPLC and detected by UV absorbance. More than 20 carbonyl compounds were isolated from marine air with >92% collection efficiency. The technique employs a highly effective reagent purification procedure, which results in much lower blanks compared to previously reported trapping techniques for carbonyl compounds. Blanks were routinely <0.07 ppb for formaldehyde and acetone and <0.02 ppb for the others. Humidity and reactive gases have no detectable effect on collection efficiencies. Carbonyl-DNPH derivatives eluted from the cartridges are stable in acetonitrilemore » for at least 2 weeks, which facilitates field studies. Several previously undetected unknown carbonyl compounds were found in marine air by this technique. Typical results for open ocean and coastal marine air are shown.« less
Konstantatos, Gerasimos; Levina, Larissa; Fischer, Armin; Sargent, Edward H
2008-05-01
Photoconductive photodetectors fabricated using simple solution-processing have recently been shown to exhibit high gains (>1000) and outstanding sensitivities ( D* > 10(13) Jones). One ostensible disadvantage of exploiting photoconductive gain is that the temporal response is limited by the release of carriers from trap states. Here we show that it is possible to introduce specific chemical species onto the surfaces of colloidal quantum dots to produce only a single, desired trap state having a carefully selected lifetime. In this way we demonstrate a device that exhibits an attractive photoconductive gain (>10) combined with a response time ( approximately 25 ms) useful in imaging. We achieve this by preserving a single surface species, lead sulfite, while eliminating lead sulfate and lead carboxylate. In doing so we preserve the outstanding sensitivity of these devices, achieving a specific detectivity of 10(12) Jones in the visible, while generating a temporal response suited to imaging applications.
Microwave-mediated magneto-optical trap for polar molecules
NASA Astrophysics Data System (ADS)
Dizhou, Xie; Wenhao, Bu; Bo, Yan
2016-05-01
Realizing a molecular magneto-optical trap has been a dream for cold molecular physicists for a long time. However, due to the complex energy levels and the small effective Lande g-factor of the excited states, the traditional magneto-optical trap (MOT) scheme does not work very well for polar molecules. One way to overcome this problem is the switching MOT, which requires very fast switching of both the magnetic field and the laser polarizations. Switching laser polarizations is relatively easy, but fast switching of the magnetic field is experimentally challenging. Here we propose an alternative approach, the microwave-mediated MOT, which requires a slight change of the current experimental setup to solve the problem. We calculate the MOT force and compare it with the traditional MOT and the switching MOT scheme. The results show that we can operate a good MOT with this simple setup. Project supported by the Fundamental Research Funds for the Central Universities of China.
Trapped-Ion Quantum Logic with Global Radiation Fields.
Weidt, S; Randall, J; Webster, S C; Lake, K; Webb, A E; Cohen, I; Navickas, T; Lekitsch, B; Retzker, A; Hensinger, W K
2016-11-25
Trapped ions are a promising tool for building a large-scale quantum computer. However, the number of required radiation fields for the realization of quantum gates in any proposed ion-based architecture scales with the number of ions within the quantum computer, posing a major obstacle when imagining a device with millions of ions. Here, we present a fundamentally different approach for trapped-ion quantum computing where this detrimental scaling vanishes. The method is based on individually controlled voltages applied to each logic gate location to facilitate the actual gate operation analogous to a traditional transistor architecture within a classical computer processor. To demonstrate the key principle of this approach we implement a versatile quantum gate method based on long-wavelength radiation and use this method to generate a maximally entangled state of two quantum engineered clock qubits with fidelity 0.985(12). This quantum gate also constitutes a simple-to-implement tool for quantum metrology, sensing, and simulation.
An adaptive strategy for reducing Feral Cat predation on endangered hawaiian birds
Hess, S.C.; Banko, P.C.; Hansen, H.
2009-01-01
Despite the long history of Feral Cats Felis catus in Hawai'i, there has been little research to provide strategies to improve control programmes and reduce depredation on endangered species. Our objective Was to develop a predictive model to determine how landscape features on Mauna Kea, such as habitat, elevation, and proximity to roads, may affect the number of Feral Cats captured at each trap. We used log-link generalized linear models and QAIC c model ranking criteria to determine the effect of these factors. We found that The number of cats captured per trap Was related to effort, habitat type, and Whether traps Were located on The West or North Slope of Mauna Kea. We recommend an adaptive management strategy to minimize trapping interference by non-target Small Indian Mongoose Herpestes auropunctatus with toxicants, to focus trapping efforts in M??mane Sophora chrysophylla habitat on the West slope of Mauna Kea, and to cluster traps near others that have previously captured multiple cats.
Revised prediction of LDEF exposure to trapped protons
NASA Technical Reports Server (NTRS)
Watts, John W.; Armstrong, T. W.; Colborn, B. L.
1993-01-01
The Long Duration Exposure Facility (LDEF) spacecraft flew in a 28.5 deg inclination circular orbit with an altitude in the range from 319.4 to 478.7 km. For this orbital altitude and inclination, two components contribute most of the penetrating charge particle radiation encountered - the galactic cosmic rays and the geomagnetically trapped Van Allen protons. Where shielding is less than 1.0 g/sq cm geomagnetically trapped electrons make a significant contribution. The 'Vette' models together with the associated magnetic field models and the solar conditions were used to obtain the trapped electron and proton omnidirectional fluences reported previously. Results for directional proton spectra using the MSFC anisotropy model for solar minimum and 463 km altitude (representative for the LDEF mission) were also reported. The directional trapped proton flux as a function of mission time is presented considering altitude and solar activity variation during the mission. These additional results represent an extension of previous calculations to provide a more definitive description of the LDEF trapped proton exposure.
Trapped particle flux models at NSSDC/WDC-A-R/S
NASA Technical Reports Server (NTRS)
Bilitza, D.; Sawyer, D. M.; King, J. H.
1989-01-01
The data needed in the future for trapped particle modeling are summarized. A short summary of past and future modeling activities and a list of satellite data that have not yet been considered in the modeling efforts is included.
NASA Astrophysics Data System (ADS)
Huo, Xinming; Tang, Fei; Zhang, Xiaohua; Chen, Jin; Zhang, Yan; Guo, Cheng'an; Wang, Xiaohao
2016-10-01
The rectilinear ion trap (RIT) has gradually become one of the preferred mass analyzers for portable mass spectrometers because of its simple configuration. In order to enhance the performance, including sensitivity, quantitation capability, throughput, and resolution, a novel RIT mass spectrometer with dual pressure chambers was designed and characterized. The studied system constituted a quadrupole linear ion trap (QLIT) in the first chamber and a RIT in the second chamber. Two control modes are hereby proposed: Storage Quadrupole Linear Ion Trap-Rectilinear Ion Trap (SQLIT-RIT) mode, in which the QLIT was used at high pressure for ion storage and isolation, and the RIT was used for analysis; and Analysis Quadrupole Linear Ion Trap-Rectilinear Ion Trap (AQLIT-RIT) mode, in which the QLIT was used for ion storage and cooling. Subsequently, synchronous scanning and analysis were carried out by QLIT and RIT. In SQLIT-RIT mode, signal intensity was improved by a factor of 30; the limit of quantitation was reduced more than tenfold to 50 ng mL-1, and an optimal duty cycle of 96.4% was achieved. In AQLIT-RIT mode, the number of ions coexisting in the RIT was reduced, which weakened the space-charge effect and reduced the mass shift. Furthermore, the mass resolution was enhanced by a factor of 3. The results indicate that the novel control modes achieve satisfactory performance without adding any system complexity, which provides a viable pathway to guarantee good analytical performance in miniaturization of the mass spectrometer.
Kodikara, Sarathchandra; Kudagama, Muditha
2014-03-01
Among a variety of uncommon firearms of different origin used worldwide, the trap gun used in Sri Lanka is underreported. This is an illegal, locally made, smooth-bore, long-barreled, muzzle-loading firearm with a victim-activated simple trigger mechanism. It is mainly used to protect crops and livestock from the potential harm by wild animals. Trap gun is mounted horizontally on pegs of sticks fixed to the ground. Miscellaneous metal pieces are used as ammunition. A small metal container filled with powdered matchstick heads/firecrackers covered by the striker surface of the matchstick box is used as the percussion cap. A metal hammer is set to hit the percussion cap. Through a lever mechanism, the hammer is kept under tension. The lever mechanism is connected to a trigger cord, which runs across the animal path. The first passerby, a human being or a wild animal, who accidentally trips the trigger cord and activates the trigger mechanism is critically injured. This characteristically damages the lower limbs of the human being. This communication highlights a death due to trap gun injury. The injury pattern caused by trap gun could overlap with that of shotgun and rifled firearm. A meticulous autopsy could sort it out.
Repulsive atomic gas in a harmonic trap on the border of itinerant ferromagnetism.
Conduit, G J; Simons, B D
2009-11-13
Alongside superfluidity, itinerant (Stoner) ferromagnetism remains one of the most well-characterized phases of correlated Fermi systems. A recent experiment has reported the first evidence for novel phase behavior on the repulsive side of the Feshbach resonance in a two-component ultracold Fermi gas. By adapting recent theoretical studies to the atomic trap geometry, we show that an adiabatic ferromagnetic transition would take place at a weaker interaction strength than is observed in experiment. This discrepancy motivates a simple nonequilibrium theory that takes account of the dynamics of magnetic defects and three-body losses. The formalism developed displays good quantitative agreement with experiment.
Carrier removal and defect behavior in p-type InP
NASA Technical Reports Server (NTRS)
Weinberg, I.; Swartz, C. K.; Drevinsky, P. J.
1992-01-01
A simple expression, obtained from the rate equation for defect production, was used to relate carrier removal to defect production and hole trapping rates in p-type InP after irradiation by 1-MeV electrons. Specific contributions to carrier removal from defect levels H3, H4, and H5 were determined from combined deep-level transient spectroscopy (DLTS) and measured carrier concentrations. An additional contribution was attributed to one or more defects not observed by the present DLTS measurements. The high trapping rate observed for H5 suggests that this defect, if present in relatively high concentration, could be dominant in p-type InP.
On the variances of generation-recombination noise in a three-level system
NASA Astrophysics Data System (ADS)
Hooge, F. N.; Ren, L.
1994-01-01
A statistical treatment is given of the generation-recombination noise in a semiconductor with a conduction band and two traps X and Y. The system is described in terms of x and y, where x is half the harmonic mean of the numbers of occupied and empty traps X. A corresponding definition is given for y. The use of x and y makes the formalism very transparent. Simple, explicit relations are easily found, which can be further simplified by approximations depending on the ratios between N, x and y. We consider correlations and Burgess' theorem; time dependence and spectra are not discussed.
Shrink-induced sorting using integrated nanoscale magnetic traps.
Nawarathna, Dharmakeerthi; Norouzi, Nazila; McLane, Jolie; Sharma, Himanshu; Sharac, Nicholas; Grant, Ted; Chen, Aaron; Strayer, Scott; Ragan, Regina; Khine, Michelle
2013-02-11
We present a plastic microfluidic device with integrated nanoscale magnetic traps (NSMTs) that separates magnetic from non-magnetic beads with high purity and throughput, and unprecedented enrichments. Numerical simulations indicate significantly higher localized magnetic field gradients than previously reported. We demonstrated >20 000-fold enrichment for 0.001% magnetic bead mixtures. Since we achieve high purity at all flow-rates tested, this is a robust, rapid, portable, and simple solution to sort target species from small volumes amenable for point-of-care applications. We used the NSMT in a 96 well format to extract DNA from small sample volumes for quantitative polymerase chain reaction (qPCR).
Geology and hydrocarbon potential of the Dead Sea Rift Basins of Israel and Jordan
Coleman, James; ten Brink, Uri S.
2016-01-01
Geochemical analyses indicate that the source of all oils, asphalts, and tars recovered in the Lake Lisan basin is the Ghareb Formation. Geothermal gradients along the Dead Sea fault zone vary from basin to basin. Syn-wrench potential reservoir rocks are highly porous and permeable, whereas pre-wrench strata commonly exhibit lower porosity and permeability. Biogenic gas has been produced from Pleistocene reservoirs. Potential sealing intervals may be present in Neogene evaporites and tight lacustrine limestones and shales. Simple structural traps are not evident; however, subsalt traps may exist. Unconventional source rock reservoir potential has not been tested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dugrain, Vincent; Reichel, Jakob; Rosenbusch, Peter
2014-08-15
We describe and characterize a device for alkali vapor pressure modulation on the 100 ms timescale in a single-cell cold atom experiment. Its mechanism is based on optimized heat conduction between a current-modulated alkali dispenser and a heat sink at room temperature. We have studied both the short-term behavior during individual pulses and the long-term pressure evolution in the cell. The device combines fast trap loading and relatively long trap lifetime, enabling high repetition rates in a very simple setup. These features make it particularly suitable for portable atomic sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ning, E-mail: nl4g12@soton.ac.uk; He, Miao; Alghamdi, Hisham
2015-08-14
Trapping parameters can be considered as one of the important attributes to describe polymeric materials. In the present paper, a more accurate charge dynamics model has been developed, which takes account of charge dynamics in both volts-on and off stage into simulation. By fitting with measured charge data with the highest R-square value, trapping parameters together with injection barrier of both normal and aged low-density polyethylene samples were estimated using the improved model. The results show that, after long-term ageing process, the injection barriers of both electrons and holes is lowered, overall trap depth is shallower, and trap density becomesmore » much greater. Additionally, the changes in parameters for electrons are more sensitive than those of holes after ageing.« less
Microfluidic evaporator for on-chip sample concentration.
Casadevall i Solvas, Xavier; Turek, Vladimir; Prodromakis, Themistoklis; Edel, Joshua B
2012-10-21
We present a simple technique for the concentration of liquid samples in microfluidic devices applicable for single or multiple-phase configurations. The strategy consists of capturing the sample of interest within microfluidic traps and breaking its continuity by the introduction of a gas phase, which is also used to evaporate it.
Development of GaInP Solar Cells Grown by Hydride Vapor Phase Epitaxy
Schulte, Kevin L.; Simon, John; Mangum, John; ...
2017-04-30
We demonstrate the growth of homojunction GaInP solar cells by dynamic hydride vapor phase epitaxy for the first time. Simple unpassivated n-on-p structures grown in an inverted configuration with gold back reflectors were analyzed. Short wavelength performance varied strongly with emitter thickness, since collection in the emitter was limited by the lack of surface passivation. Collection in the base increased strongly with decreasing doping density, in the range 1 x 10 16 - 5 x 10 17 cm -3. Optical modeling indicated that, in our best device, doped ~1 x 10 16 cm -3, almost 94% of photons that passedmore » through the emitter were collected. Modeling also indicated that the majority of collection occurs in the depletion region with this design, suggesting that nonradiative recombination there might limit device performance. In agreement with this observation, the experimental dark J-V curve exhibited an ideality factor near n = 2. Thus, limitation of deep level carrier traps in the material is a path to improved performance. Preliminary experiments indicate that a reduced V/III ratio, which potentially affects the density of these presumed traps, improves cell performance. With reduced V/III ratio, we demonstrate a ~13% efficient GaInP cell measured under the 1-sun AM1.5G spectrum. In conclusion, this cell had an antireflective coating, but no front surface passivation.« less
NASA Astrophysics Data System (ADS)
Yi, Sunghwan; Khudik, Vladimir; Shvets, Gennady
2012-10-01
We study self-injection into a plasma wakefield accelerator in the blowout (or bubble) regime, where the bubble evolves due to background density inhomogeneities. To explore trapping, we generalize an analytic model for the wakefields inside the bubble [1] to derive expressions for the fields outside. With this extended model, we show that a return current in the bubble sheath layer plays an important role in determining the trapped electron trajectories. We explore an injection mechanism where bubble growth due to a background density downramp causes reduction of the electron Hamiltonian in the co-moving frame, trapping the particle in the dynamically deepening potential well [2]. Model calculations agree quantitatively with PIC simulations on the bubble expansion rate required for trapping, as well as the range of impact parameters for which electrons are trapped. This is an improvement over our previous work [3] using a simplified spherical bubble model, which ignored the fields outside of the bubble and hence overestimated the expansion rate required for trapping. [4pt] [1] W. Lu et al., Phys. Plasmas 13, 056709 (2006).[0pt] [2] S. Kalmykov et al., Phys. Rev. Lett 103, 135004 (2009).[0pt] [3] S.A. Yi et al., Plasma Phys. Contr. Fus. 53, 014012 (2011).
Quantum Theories of Self-Localization
NASA Astrophysics Data System (ADS)
Bernstein, Lisa Joan
In the classical dynamics of coupled oscillator systems, nonlinearity leads to the existence of stable solutions in which energy remains localized for all time. Here the quantum-mechanical counterpart of classical self-localization is investigated in the context of two model systems. For these quantum models, the terms corresponding to classical nonlinearities modify a subset of the stationary quantum states to be particularly suited to the creation of nonstationary wavepackets that localize energy for long times. The first model considered here is the Quantized Discrete Self-Trapping model (QDST), a system of anharmonic oscillators with linear dispersive coupling used to model local modes of vibration in polyatomic molecules. A simple formula is derived for a particular symmetry class of QDST systems which gives an analytic connection between quantum self-localization and classical local modes. This formula is also shown to be useful in the interpretation of the vibrational spectra of some molecules. The second model studied is the Frohlich/Einstein Dimer (FED), a two-site system of anharmonically coupled oscillators based on the Frohlich Hamiltonian and motivated by the theory of Davydov solitons in biological protein. The Born-Oppenheimer perturbation method is used to obtain approximate stationary state wavefunctions with error estimates for the FED at the first excited level. A second approach is used to reduce the first excited level FED eigenvalue problem to a system of ordinary differential equations. A simple theory of low-energy self-localization in the FED is discussed. The quantum theories of self-localization in the intrinsic QDST model and the extrinsic FED model are compared.
Estimating black bear density using DNA data from hair snares
Gardner, B.; Royle, J. Andrew; Wegan, M.T.; Rainbolt, R.E.; Curtis, P.D.
2010-01-01
DNA-based mark-recapture has become a methodological cornerstone of research focused on bear species. The objective of such studies is often to estimate population size; however, doing so is frequently complicated by movement of individual bears. Movement affects the probability of detection and the assumption of closure of the population required in most models. To mitigate the bias caused by movement of individuals, population size and density estimates are often adjusted using ad hoc methods, including buffering the minimum polygon of the trapping array. We used a hierarchical, spatial capturerecapture model that contains explicit components for the spatial-point process that governs the distribution of individuals and their exposure to (via movement), and detection by, traps. We modeled detection probability as a function of each individual's distance to the trap and an indicator variable for previous capture to account for possible behavioral responses. We applied our model to a 2006 hair-snare study of a black bear (Ursus americanus) population in northern New York, USA. Based on the microsatellite marker analysis of collected hair samples, 47 individuals were identified. We estimated mean density at 0.20 bears/km2. A positive estimate of the indicator variable suggests that bears are attracted to baited sites; therefore, including a trap-dependence covariate is important when using bait to attract individuals. Bayesian analysis of the model was implemented in WinBUGS, and we provide the model specification. The model can be applied to any spatially organized trapping array (hair snares, camera traps, mist nests, etc.) to estimate density and can also account for heterogeneity and covariate information at the trap or individual level. ?? The Wildlife Society.
Solutal Convection in Porous Media
NASA Astrophysics Data System (ADS)
Liang, Y.; Wen, B.; DiCarlo, D. A.; Hesse, M. A.
2017-12-01
Atmospheric CO2 is one important component of greenhouse gases, which can greatly affect the temperature of the Earth. There are four trapping mechanisms for CO2sequestration, including structural & stratigraphic trapping, residual trapping, dissolution trapping and mineral trapping. Leakage potential is a serious problem for its storage efficiency, and dissolution trapping is a method that can prevent such leakages effectively. Convective dissolution trapping process can be simplified to an interesting physical problem: in porous media, dissolution can initiate convection, and then its dynamics can be affected by the continuous convection conversely. However, it is difficult to detect whether the convective dissolution may take place, as well as how fast and in what pattern it may take place. Previous studies have established a model and related scaling (Rayleigh number and Sherwood number) to describe this physical problem. To testify this model with a large range of Rayleigh numbers, we conducted a series of convective dissolution experiments in porous media. In addition, this large experimental assembly can allow us to quantify relation between wavenumber of the convective motion and the controlling factors of the system for the first time. The result of our laboratory experiments are revolutionary: On one hand, it shows that previous scaling of the convective dissolution becomes invalid once the permeability is large enough; On the other hand, the relation between wavenumber and Rayleigh number demonstrates an opposite trend against the classic model. According to our experimental results, we propose a new model to describe the solutal convection in porous media, and our model can describe and explain our experimental observations. Also, simulation work has been conducted to confirm our model. In the future, our model and relevant knowledge can be unscaled to industrial applications which are relevant to convective dissolution process.
Interchange mode excited by trapped energetic ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishimura, Seiya, E-mail: n-seiya@kobe-kosen.ac.jp
2015-07-15
The kinetic energy principle describing the interaction between ideal magnetohydrodynamic (MHD) modes with trapped energetic ions is revised. A model is proposed on the basis of the reduced ideal MHD equations for background plasmas and the bounce-averaged drift-kinetic equation for trapped energetic ions. The model is applicable to large-aspect-ratio toroidal devices. Specifically, the effect of trapped energetic ions on the interchange mode in helical systems is analyzed. Results show that the interchange mode is excited by trapped energetic ions, even if the equilibrium states are stable to the ideal interchange mode. The energetic-ion-induced branch of the interchange mode might bemore » associated with the fishbone mode in helical systems.« less
Efficiency at Maximum Power Output of a Quantum-Mechanical Brayton Cycle
NASA Astrophysics Data System (ADS)
Yuan, Yuan; He, Ji-Zhou; Gao, Yong; Wang, Jian-Hui
2014-03-01
The performance in finite time of a quantum-mechanical Brayton engine cycle is discussed, without introduction of temperature. The engine model consists of two quantum isoenergetic and two quantum isobaric processes, and works with a single particle in a harmonic trap. Directly employing the finite-time thermodynamics, the efficiency at maximum power output is determined. Extending the harmonic trap to a power-law trap, we find that the efficiency at maximum power is independent of any parameter involved in the model, but depends on the confinement of the trapping potential.
Coherent population trapping with polarization modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yun, Peter, E-mail: enxue.yun@obspm.fr; Guérandel, Stéphane; Clercq, Emeric de
Coherent population trapping (CPT) is extensively studied for future vapor cell clocks of high frequency stability. In the constructive polarization modulation CPT scheme, a bichromatic laser field with polarization and phase synchronously modulated is applied on an atomic medium. A high contrast CPT signal is observed in this so-called double-modulation configuration, due to the fact that the atomic population does not leak to the extreme Zeeman states, and that the two CPT dark states, which are produced successively by the alternate polarizations, add constructively. Here, we experimentally investigate CPT signal dynamics first in the usual configuration, a single circular polarization.more » The double-modulation scheme is then addressed in both cases: one pulse Rabi interaction and two pulses Ramsey interaction. The impact and the optimization of the experimental parameters involved in the time sequence are reviewed. We show that a simple seven-level model explains the experimental observations. The double-modulation scheme yields a high contrast similar to the one of other high contrast configurations like push-pull optical pumping or crossed linear polarization scheme, with a setup allowing a higher compactness. The constructive polarization modulation is attractive for atomic clock, atomic magnetometer, and high precision spectroscopy applications.« less
Ferrer-Paris, José Rafael; Sánchez-Mercado, Ada; Rodríguez, Jon Paul
2013-03-01
The development of efficient sampling protocols is an essential prerequisite to evaluate and identify priority conservation areas. There are f ew protocols for fauna inventory and monitoring in wide geographical scales for the tropics, where the complexity of communities and high biodiversity levels, make the implementation of efficient protocols more difficult. We proposed here a simple strategy to optimize the capture of dung beetles, applied to sampling with baited traps and generalizable to other sampling methods. We analyzed data from eight transects sampled between 2006-2008 withthe aim to develop an uniform sampling design, that allows to confidently estimate species richness, abundance and composition at wide geographical scales. We examined four characteristics of any sampling design that affect the effectiveness of the sampling effort: the number of traps, sampling duration, type and proportion of bait, and spatial arrangement of the traps along transects. We used species accumulation curves, rank-abundance plots, indicator species analysis, and multivariate correlograms. We captured 40 337 individuals (115 species/morphospecies of 23 genera). Most species were attracted by both dung and carrion, but two thirds had greater relative abundance in traps baited with human dung. Different aspects of the sampling design influenced each diversity attribute in different ways. To obtain reliable richness estimates, the number of traps was the most important aspect. Accurate abundance estimates were obtained when the sampling period was increased, while the spatial arrangement of traps was determinant to capture the species composition pattern. An optimum sampling strategy for accurate estimates of richness, abundance and diversity should: (1) set 50-70 traps to maximize the number of species detected, (2) get samples during 48-72 hours and set trap groups along the transect to reliably estimate species abundance, (3) set traps in groups of at least 10 traps to suitably record the local species composition, and (4) separate trap groups by a distance greater than 5-10km to avoid spatial autocorrelation. For the evaluation of other sampling protocols we recommend to, first, identify the elements of sampling design that could affect the sampled effort (the number of traps, sampling duration, type and proportion of bait) and their spatial distribution (spatial arrangement of the traps) and then, to evaluate how they affect richness, abundance and species composition estimates.
Modeling Thin Film Oxide Growth
NASA Astrophysics Data System (ADS)
Sherman, Quentin
Thin film oxidation is investigated using two modeling techniques in the interest of better understanding the roles of space charge and non-equilibrium effects. An electrochemical phase-field model of an oxide-metal interface is formulated in one dimension and studied at equilibrium and during growth. An analogous sharp interface model is developed to validate the phase-field model in the thick film limit. Electrochemical profiles across the oxide are shown to deviate from the sharp interface prediction when the oxide film is thin compared to the Debye length, however no effect on the oxidation kinetics is found. This is attributed to the simple thermodynamic and kinetic models used therein. The phase-field model provides a framework onto to which additional physics can be added to better model thin film oxidation. A model for solute trapping during the oxidation of binary alloys is developed to study non-equilibrium effects during the early stages of oxide growth. The model is applied to NiCr alloys, and steady-state interfacial composition maps are presented for the growth of an oxide with the rock salt structure. No detailed experimental data is available to verify the predictions of the solute trapping model, however it is shown to be consistent with the trends observed during the early stages of NiCr oxidation. Lastly, experimental studies of the wet infiltration technique for decorating solid oxide fuel cell anodes with nickel nanoparticles are presented. The effect of nickel nitrate calcination parameters on the resulting nickel oxide microstructures are studied on both porous and planar substrates. Decreasing the calcination temperature and dwell time, as well as a dehydration step after nickel nitrate infiltration, are all shown to decrease the initial nickel oxide particle size, but other factors such as geometry and nickel loading per unit area also affected the final nickel particle size and morphology upon reduction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beau, Mathieu, E-mail: mbeau@stp.dias.ie; Savoie, Baptiste, E-mail: baptiste.savoie@gmail.com
2014-05-15
In this paper, we rigorously investigate the reduced density matrix (RDM) associated to the ideal Bose gas in harmonic traps. We present a method based on a sum-decomposition of the RDM allowing to treat not only the isotropic trap, but also general anisotropic traps. When focusing on the isotropic trap, the method is analogous to the loop-gas approach developed by Mullin [“The loop-gas approach to Bose-Einstein condensation for trapped particles,” Am. J. Phys. 68(2), 120 (2000)]. Turning to the case of anisotropic traps, we examine the RDM for some anisotropic trap models corresponding to some quasi-1D and quasi-2D regimes. Formore » such models, we bring out an additional contribution in the local density of particles which arises from the mesoscopic loops. The close connection with the occurrence of generalized-Bose-Einstein condensation is discussed. Our loop-gas-like approach provides relevant information which can help guide numerical investigations on highly anisotropic systems based on the Path Integral Monte Carlo method.« less
Optical Tweezer Assembly and Calibration
NASA Technical Reports Server (NTRS)
Collins, Timothy M.
2004-01-01
An Optical Tweezer, as the name implies, is a useful tool for precision manipulation of micro and nano scale objects. Using the principle of electromagnetic radiation pressure, an optical tweezer employs a tightly focused laser beam to trap and position objects of various shapes and sizes. These devices can trap micrometer and nanometer sized objects. An exciting possibility for optical tweezers is its future potential to manipulate and assemble micro and nano sized sensors. A typical optical tweezer makes use of the following components: laser, mirrors, lenses, a high quality microscope, stage, Charge Coupled Device (CCD) camera, TV monitor and Position Sensitive Detectors (PSDs). The laser wavelength employed is typically in the visible or infrared spectrum. The laser beam is directed via mirrors and lenses into the microscope. It is then tightly focused by a high magnification, high numerical aperture microscope objective into the sample slide, which is mounted on a translating stage. The sample slide contains a sealed, small volume of fluid that the objects are suspended in. The most common objects trapped by optical tweezers are dielectric spheres. When trapped, a sphere will literally snap into and center itself in the laser beam. The PSD s are mounted in such a way to receive the backscatter after the beam has passed through the trap. PSD s used with the Differential Interference Contrast (DIC) technique provide highly precise data. Most optical tweezers employ lasers with power levels ranging from 10 to 100 miliwatts. Typical forces exerted on trapped objects are in the pico-newton range. When PSDs are employed, object movement can be resolved on a nanometer scale in a time range of milliseconds. Such accuracy, however, can only by utilized by calibrating the optical tweezer. Fortunately, an optical tweezer can be modeled accurately as a simple spring. This allows Hook s Law to be used. My goal this summer at NASA Glenn Research Center is the assembly and calibration of an optical tweezer setup in the Instrumentation and Controls Division (5520). I am utilizing a custom LabVIEW Virtual Instrument program for data collection and microscope stage control. Helping me in my assignment are the following people: Mentor Susan Wrbanek (5520), Dr. Baha Jassemnejad (UCO) and Technicians Ken Weiland (7650) and James Williams (7650). Without their help, my task would not be possible.
del Río, R; Monerris, M; Miquel, M; Borràs, D; Calvete, C; Estrada, R; Lucientes, J; Miranda, M A
2013-07-01
Bluetongue (BT) is a viral disease that affects ruminants, being especially pathogenic in certain breeds of sheep. Its viral agent (bluetongue virus; BTV) is transmitted by several species of Culicoides biting midges (Diptera: Ceratopogonidae). Different models of suction light traps are being used in a number of countries for the collection of BTV vector species. To determine the relative effectiveness of different light traps under field conditions, four traps (Onderstepoort, Mini-CDC, Rieb and Pirbright) were compared. These traps were rotated between four sites on a cattle farm in Mallorca (Balearic Islands, Spain) for several non-consecutive nights. Results showed remarkable disparities in the efficacy of the traps for the collection of Culicoides midges. The highest number of midges collected in the Onderstepoort trap (x¯±SD=62±94.2) was not significantly different from that collected in the Mini-CDC (x¯±SD=58±139.2). The Rieb trap collected the lowest number of midges (x¯±SD=3±4.0). Significantly higher mean numbers of midges were collected in the Onderstepoort than in either the Pirbright (P=0.002) or Rieb traps (P=0.008). There were also differences in the Culicoides species composition as determine with the various traps. These results indicate that the Onderstepoort or Mini-CDC traps will be more effective than either the Rieb or Pirbright traps for the collection of large numbers of Culicoides midges. Copyright © 2013 Elsevier B.V. All rights reserved.
Modelling deuterium release during thermal desorption of D +-irradiated tungsten
NASA Astrophysics Data System (ADS)
Poon, M.; Haasz, A. A.; Davis, J. W.
2008-03-01
Thermal desorption profiles were modelled based on SIMS measurements of implantation profiles and using the multi-trap diffusion code TMAP7 [G.R. Longhurst, TMAP7: Tritium Migration Analysis Program, User Manual, Idaho National Laboratory, INEEL/EXT-04-02352 (2004)]. The thermal desorption profiles were the result of 500 eV/D + irradiations on single crystal tungsten at 300 and 500 K to fluences of 10 22-10 24 D +/m 2. SIMS depth profiling was performed after irradiation to obtain the distribution of trapped D within the top 60 nm of the surface. Thermal desorption spectroscopy (TDS) was performed subsequently to obtain desorption profiles and to extract the total trapped D inventory. The SIMS profiles were calibrated to give D concentrations. To account for the total trapped D inventory measured by TDS, SIMS depth distributions were used in the near-surface (surface to 30 nm), NRA measurements [V.Kh. Alimov, J. Roth, M. Mayer, J. Nucl. Mater. 337-339 (2005) 619] were used in the range 1-7 μm, and a linear drop in the D distribution was assumed in the intermediate sub-surface region (˜30 nm to 1 μm). Traps were assumed to be saturated so that the D distribution also represented the trap distribution. Three trap energies, 1.07 ± 0.03, 1.34 ± 0.03 and 2.1 ± 0.05 eV were required to model the 520, 640 and 900 K desorption peaks, respectively. The 1.34 and 1.07 eV traps correspond to trapping of a first and second D atom at a vacancy, respectively, while the 2.1 eV trap corresponds to atomic D trapping at a void. A fourth trap energy of 0.65 eV was used to fit the 400 K desorption peak observed by Quastel et al. [A.D. Quastel, J.W. Davis, A.A. Haasz, R.G. Macaulay-Newcombe, J. Nucl. Mater. 359 (2006) 8].
Electric dipole moment of magnetoexciton in concentric quantum rings
NASA Astrophysics Data System (ADS)
García, L. F.; Mikhailov, I. D.; Revinova, S. Yu
2017-12-01
We study properties of exciton in a weakly coupled concentric quantum rings, penetrated by an axially directed magnetic flux and subjected to an electric field in the ring’s plane. To this end, we adopt a simple model of quasi-one-dimensional rotator, for which the wave functions and the corresponding energies we found by using the double Fourier series expansion method. Revealed multiple intersections of the energy levels provide conditions for abrupt changes of the radial and the angular quantum numbers, making possible the tunnelling of carriers between rings and allowing the formation of a permanent large dipole moment. We show that the electric and magnetic polarizability of concentric quantum rings with a trapped exciton are very sensible to external electric and magnetic fields.
Monte Carlo modeling and optimization of buffer gas positron traps
NASA Astrophysics Data System (ADS)
Marjanović, Srđan; Petrović, Zoran Lj
2017-02-01
Buffer gas positron traps have been used for over two decades as the prime source of slow positrons enabling a wide range of experiments. While their performance has been well understood through empirical studies, no theoretical attempt has been made to quantitatively describe their operation. In this paper we apply standard models as developed for physics of low temperature collision dominated plasmas, or physics of swarms to model basic performance and principles of operation of gas filled positron traps. The Monte Carlo model is equipped with the best available set of cross sections that were mostly derived experimentally by using the same type of traps that are being studied. Our model represents in realistic geometry and fields the development of the positron ensemble from the initial beam provided by the solid neon moderator through voltage drops between the stages of the trap and through different pressures of the buffer gas. The first two stages employ excitation of N2 with acceleration of the order of 10 eV so that the trap operates under conditions when excitation of the nitrogen reduces the energy of the initial beam to trap the positrons without giving them a chance to become annihilated following positronium formation. The energy distribution function develops from the assumed distribution leaving the moderator, it is accelerated by the voltage drops and forms beams at several distinct energies. In final stages the low energy loss collisions (vibrational excitation of CF4 and rotational excitation of N2) control the approach of the distribution function to a Maxwellian at room temperature but multiple non-Maxwellian groups persist throughout most of the thermalization. Optimization of the efficiency of the trap may be achieved by changing the pressure and voltage drops and also by selecting to operate in a two stage mode. The model allows quantitative comparisons and test of optimization as well as development of other properties.
NASA Astrophysics Data System (ADS)
Hamzah, Afiq; Hamid, Fatimah A.; Ismail, Razali
2016-12-01
An explicit solution for long-channel surrounding-gate (SRG) MOSFETs is presented from intrinsic to heavily doped body including the effects of interface traps and fixed oxide charges. The solution is based on the core SRGMOSFETs model of the Unified Charge Control Model (UCCM) for heavily doped conditions. The UCCM model of highly doped SRGMOSFETs is derived to obtain the exact equivalent expression as in the undoped case. Taking advantage of the undoped explicit charge-based expression, the asymptotic limits for below threshold and above threshold have been redefined to include the effect of trap states for heavily doped cases. After solving the asymptotic limits, an explicit mobile charge expression is obtained which includes the trap state effects. The explicit mobile charge model shows very good agreement with respect to numerical simulation over practical terminal voltages, doping concentration, geometry effects, and trap state effects due to the fixed oxide charges and interface traps. Then, the drain current is obtained using the Pao-Sah's dual integral, which is expressed as a function of inversion charge densities at the source/drain ends. The drain current agreed well with the implicit solution and numerical simulation for all regions of operation without employing any empirical parameters. A comparison with previous explicit models has been conducted to verify the competency of the proposed model with the doping concentration of 1× {10}19 {{cm}}-3, as the proposed model has better advantages in terms of its simplicity and accuracy at a higher doping concentration.
Low Earth orbit assessment of proton anisotropy using AP8 and AP9 trapped proton models
NASA Astrophysics Data System (ADS)
Badavi, Francis F.; Walker, Steven A.; Santos Koos, Lindsey M.
2015-04-01
The completion of the International Space Station (ISS) in 2011 has provided the space research community with an ideal evaluation and testing facility for future long duration human activities in space. Ionized and secondary neutral particles radiation measurements inside ISS form the ideal tool for validation of radiation environmental models, nuclear reaction cross sections and transport codes. Studies using thermo-luminescent detectors (TLD), tissue equivalent proportional counter (TPEC), and computer aided design (CAD) models of early ISS configurations confirmed that, as input, computational dosimetry at low Earth orbit (LEO) requires an environmental model with directional (anisotropic) capability to properly describe the exposure of trapped protons within ISS. At LEO, ISS encounters exposure from trapped electrons, protons and geomagnetically attenuated galactic cosmic rays (GCR). For short duration studies at LEO, one can ignore trapped electrons and ever present GCR exposure contributions during quiet times. However, within the trapped proton field, a challenge arises from properly estimating the amount of proton exposure acquired. There exist a number of models to define the intensity of trapped particles. Among the established trapped models are the historic AE8/AP8, dating back to the 1980s and the recently released AE9/AP9/SPM. Since at LEO electrons have minimal exposure contribution to ISS, this work ignores the AE8 and AE9 components of the models and couples a measurement derived anisotropic trapped proton formalism to omnidirectional output from the AP8 and AP9 models, allowing the assessment of the differences between the two proton models. The assessment is done at a target point within the ISS-11A configuration (circa 2003) crew quarter (CQ) of Russian Zvezda service module (SM), during its ascending and descending nodes passes through the south Atlantic anomaly (SAA). The anisotropic formalism incorporates the contributions of proton narrow pitch angle (PA) and east-west (EW) effects. Within SAA, the EW anisotropy results in different level of exposure to each side of the ISS Zvezda SM, allowing angular evaluation of the anisotropic proton spectrum. While the combined magnitude of PA and EW effects at LEO depends on a multitude of factors such as trapped proton energy, orientation and altitude of the spacecraft along the velocity vector, this paper draws quantitative conclusions on the combined anisotropic magnitude differences within ISS SM target point between AP8 and AP9 models.
Low Earth orbit assessment of proton anisotropy using AP8 and AP9 trapped proton models.
Badavi, Francis F; Walker, Steven A; Santos Koos, Lindsey M
2015-04-01
The completion of the International Space Station (ISS) in 2011 has provided the space research community with an ideal evaluation and testing facility for future long duration human activities in space. Ionized and secondary neutral particles radiation measurements inside ISS form the ideal tool for validation of radiation environmental models, nuclear reaction cross sections and transport codes. Studies using thermo-luminescent detectors (TLD), tissue equivalent proportional counter (TPEC), and computer aided design (CAD) models of early ISS configurations confirmed that, as input, computational dosimetry at low Earth orbit (LEO) requires an environmental model with directional (anisotropic) capability to properly describe the exposure of trapped protons within ISS. At LEO, ISS encounters exposure from trapped electrons, protons and geomagnetically attenuated galactic cosmic rays (GCR). For short duration studies at LEO, one can ignore trapped electrons and ever present GCR exposure contributions during quiet times. However, within the trapped proton field, a challenge arises from properly estimating the amount of proton exposure acquired. There exist a number of models to define the intensity of trapped particles. Among the established trapped models are the historic AE8/AP8, dating back to the 1980s and the recently released AE9/AP9/SPM. Since at LEO electrons have minimal exposure contribution to ISS, this work ignores the AE8 and AE9 components of the models and couples a measurement derived anisotropic trapped proton formalism to omnidirectional output from the AP8 and AP9 models, allowing the assessment of the differences between the two proton models. The assessment is done at a target point within the ISS-11A configuration (circa 2003) crew quarter (CQ) of Russian Zvezda service module (SM), during its ascending and descending nodes passes through the south Atlantic anomaly (SAA). The anisotropic formalism incorporates the contributions of proton narrow pitch angle (PA) and east-west (EW) effects. Within SAA, the EW anisotropy results in different level of exposure to each side of the ISS Zvezda SM, allowing angular evaluation of the anisotropic proton spectrum. While the combined magnitude of PA and EW effects at LEO depends on a multitude of factors such as trapped proton energy, orientation and altitude of the spacecraft along the velocity vector, this paper draws quantitative conclusions on the combined anisotropic magnitude differences within ISS SM target point between AP8 and AP9 models. Copyright © 2015 The Committee on Space Research (COSPAR). All rights reserved.
Dynamical transition for a particle in a squared Gaussian potential
NASA Astrophysics Data System (ADS)
Touya, C.; Dean, D. S.
2007-02-01
We study the problem of a Brownian particle diffusing in finite dimensions in a potential given by ψ = phi2/2 where phi is Gaussian random field. Exact results for the diffusion constant in the high temperature phase are given in one and two dimensions and it is shown to vanish in a power-law fashion at the dynamical transition temperature. Our results are confronted with numerical simulations where the Gaussian field is constructed, in a standard way, as a sum over random Fourier modes. We show that when the number of Fourier modes is finite the low temperature diffusion constant becomes non-zero and has an Arrhenius form. Thus we have a simple model with a fully understood finite size scaling theory for the dynamical transition. In addition we analyse the nature of the anomalous diffusion in the low temperature regime and show that the anomalous exponent agrees with that predicted by a trap model.
Discrete Time Crystals: Rigidity, Criticality, and Realizations.
Yao, N Y; Potter, A C; Potirniche, I-D; Vishwanath, A
2017-01-20
Despite being forbidden in equilibrium, spontaneous breaking of time translation symmetry can occur in periodically driven, Floquet systems with discrete time-translation symmetry. The period of the resulting discrete time crystal is quantized to an integer multiple of the drive period, arising from a combination of collective synchronization and many body localization. Here, we consider a simple model for a one-dimensional discrete time crystal which explicitly reveals the rigidity of the emergent oscillations as the drive is varied. We numerically map out its phase diagram and compute the properties of the dynamical phase transition where the time crystal melts into a trivial Floquet insulator. Moreover, we demonstrate that the model can be realized with current experimental technologies and propose a blueprint based upon a one dimensional chain of trapped ions. Using experimental parameters (featuring long-range interactions), we identify the phase boundaries of the ion-time-crystal and propose a measurable signature of the symmetry breaking phase transition.
Microtubules soften due to cross-sectional flattening
Memet, Edvin; Hilitsk, Feodor; Morris, Margaret A.; ...
2018-06-01
We use optical trapping to continuously bend an isolated microtubule while simultaneously measuring the applied force and the resulting filament strain, thus allowing us to determine its elastic properties over a wide range of applied strains. We find that, while in the low-strain regime, microtubules may be quantitatively described in terms of the classical Euler-Bernoulli elastic filament, above a critical strain they deviate from this simple elastic model, showing a softening response with increasing deformations. A three-dimensional thin-shell model, in which the increased mechanical compliance is caused by flattening and eventual buckling of the filament cross-section, captures this softening effectmore » in the high strain regime and yields quantitative values of the effective mechanical properties of microtubules. Our results demonstrate that properties of microtubules are highly dependent on the magnitude of the applied strain and offer a new interpretation for the large variety in microtubule mechanical data measured by different methods.« less
Microtubules soften due to cross-sectional flattening
DOE Office of Scientific and Technical Information (OSTI.GOV)
Memet, Edvin; Hilitsk, Feodor; Morris, Margaret A.
We use optical trapping to continuously bend an isolated microtubule while simultaneously measuring the applied force and the resulting filament strain, thus allowing us to determine its elastic properties over a wide range of applied strains. We find that, while in the low-strain regime, microtubules may be quantitatively described in terms of the classical Euler-Bernoulli elastic filament, above a critical strain they deviate from this simple elastic model, showing a softening response with increasing deformations. A three-dimensional thin-shell model, in which the increased mechanical compliance is caused by flattening and eventual buckling of the filament cross-section, captures this softening effectmore » in the high strain regime and yields quantitative values of the effective mechanical properties of microtubules. Our results demonstrate that properties of microtubules are highly dependent on the magnitude of the applied strain and offer a new interpretation for the large variety in microtubule mechanical data measured by different methods.« less
Seismic anisotropy in deforming salt bodies
NASA Astrophysics Data System (ADS)
Prasse, P.; Wookey, J. M.; Kendall, J. M.; Dutko, M.
2017-12-01
Salt is often involved in forming hydrocarbon traps. Studying salt dynamics and the deformation processes is important for the exploration industry. We have performed numerical texture simulations of single halite crystals deformed by simple shear and axial extension using the visco-plastic self consistent approach (VPSC). A methodology from subduction studies to estimate strain in a geodynamic simulation is applied to a complex high-resolution salt diapir model. The salt diapir deformation is modelled with the ELFEN software by our industrial partner Rockfield, which is based on a finite-element code. High strain areas at the bottom of the head-like strctures of the salt diapir show high amount of seismic anisotropy due to LPO development of halite crystals. The results demonstrate that a significant degree of seismic anisotropy can be generated, validating the view that this should be accounted for in the treatment of seismic data in, for example, salt diapir settings.
Toroidal gyrofluid equations for simulations of tokamak turbulence
NASA Astrophysics Data System (ADS)
Beer, M. A.; Hammett, G. W.
1996-11-01
A set of nonlinear gyrofluid equations for simulations of tokamak turbulence are derived by taking moments of the nonlinear toroidal gyrokinetic equation. The moment hierarchy is closed with approximations that model the kinetic effects of parallel Landau damping, toroidal drift resonances, and finite Larmor radius effects. These equations generalize the work of Dorland and Hammett [Phys. Fluids B 5, 812 (1993)] to toroidal geometry by including essential toroidal effects. The closures for phase mixing from toroidal ∇B and curvature drifts take the basic form presented in Waltz et al. [Phys. Fluids B 4, 3138 (1992)], but here a more rigorous procedure is used, including an extension to higher moments, which provides significantly improved accuracy. In addition, trapped ion effects and collisions are incorporated. This reduced set of nonlinear equations accurately models most of the physics considered important for ion dynamics in core tokamak turbulence, and is simple enough to be used in high resolution direct numerical simulations.
Radiation dependence of inverter propagation delay from timing sampler measurements
NASA Technical Reports Server (NTRS)
Buehler, M. G.; Blaes, B. R.; Lin, Y.-S.
1989-01-01
A timing sampler consisting of 14 four-stage inverter-pair chains with different load capacitances was fabricated in 1.6-micron n-well CMOS and irradiated with cobalt-60 at 10 rad(Si)/s. For this CMOS process the measured results indicate that the rising delay increases by about 2.2 ns/Mrad(Si) and the falling delay increase is very small, i.e., less than 300 ps/Mrad(Si). The amount of radiation-induced delay depends on the size of the load capacitance. The maximum value observed for this effect was 5.65 ns/pF-Mrad(Si). Using a sensitivity analysis, the sensitivity of the rising delay to radiation can be explained by a simple timing model and the radiation sensitivity of dc MOSFET parameters. This same approach could not explain the insensitivity of the falling delay to radiation. This may be due to a failure of the timing model and/or trapping effects.
Trapping two types of particles with a focused generalized Multi-Gaussian Schell model beam
NASA Astrophysics Data System (ADS)
Liu, Xiayin; Zhao, Daomu
2015-11-01
We numerically investigate the trapping effect of the focused generalized Multi-Gaussian Schell model (GMGSM) beam of the first kind which produces dark hollow beam profile at the focal plane. By calculating the radiation forces on the Rayleigh dielectric sphere in the focused GMGSM beam, we show that such beam can trap low-refractive-index particles at the focus, and simultaneously capture high-index particles at different positions of the focal plane. The trapping range and stability depend on the values of the beam index N and the coherence width. Under the same conditions, the low limits of the radius of low-index and high-index particles for stable trapping are indicated to be different.
NASA Astrophysics Data System (ADS)
Li, Jian; Du, Bin; Wang, Feipeng; Yao, Wei; Yao, Shuhan
2016-02-01
Nanoparticles can generate charge carrier trapping and reduce the velocity of streamer development in insulating oils ultimately leading to an enhancement of the breakdown voltage of insulating oils. Vegetable insulating oil-based nanofluids with three sizes of monodispersed Fe3O4 nanoparticles were prepared and their trapping depths were measured by thermally stimulated method (TSC). It is found that the nanoparticle surfactant polarization can significantly influence the trapping depth of vegetable insulating oil-based nanofluids. A nanoparticle polarization model considering surfactant polarization was proposed to calculate the trapping depth of the nanofluids at different nanoparticle sizes and surfactant thicknesses. The results show the calculated values of the model are in a fairly good agreement with the experimental values.
NASA Astrophysics Data System (ADS)
Scheinert, Susanne; Pernstich, Kurt P.; Batlogg, Bertram; Paasch, Gernot
2007-11-01
It has been demonstrated [K. P. Pernstich, S. Haas, D. Oberhoff, C. Goldmann, D. J. Gundlach, B. Batlogg, A. N. Rashid, and G. Schitter, J. Appl. Phys. 96, 6431 (2004)] that a controllable shift of the threshold voltage in pentacene thin film transistors is caused by the use of organosilanes with different functional groups forming a self-assembled monolayer (SAM) on the gate oxide. The observed broadening of the subthreshold region indicates that the SAM creates additional trap states. Indeed, it is well known that traps strongly influence the behavior of organic field-effect transistors (OFETs). Therefore, the so-called "amorphous silicon (a-Si) model" has been suggested to be an appropriate model to describe OFETs. The main specifics of this model are transport of carriers above a mobility edge obeying Boltzmann statistics and exponentially distributed tail states and deep trap states. Here, approximate trap distributions are determined by adjusting two-dimensional numerical simulations to the experimental data. It follows from a systematic variation of parameters describing the trap distributions that the existence of both donorlike and acceptorlike trap distributions near the valence band, respectively, and a fixed negative interface charge have to be assumed. For two typical devices with different organosilanes the electrical characteristics can be described well with a donorlike bulk trap distribution, an acceptorlike interface distribution, and/or a fixed negative interface charge. As expected, the density of the fixed or trapped interface charge depends strongly on the surface treatment of the dielectric. There are some limitations in determining the trap distributions caused by either slow time-dependent processes resulting in differences between transfer and output characteristics, or in the uncertainty of the effective mobility.
Diffusion mediated localization on membrane surfaces
NASA Technical Reports Server (NTRS)
Weaver, D. L.
1982-01-01
Using the model of a cell membrane of a spherical surface in which membrane components may diffuse, the rate of localization due to trapping under diffusion control has been estimated by computing an analytical expression for the mean trapping time including the possibilities of a trapping probability less than one and/or the establishment of an equilibrium at the trap boundary.
Nantucket pine tip moth, Rhyacionia Frustrana, lures and traps: What is the optimum combination?
Gary L. DeBarr; J. wayne Brewer; R. Scott Cameron; C. Wayne Berisford
1999-01-01
Pheromone traps are used to monitor flight activity of male Nantucket pine tip moths, Rhyacionia frustrana (Comstock), to initialize spray timing models, determine activity periods, or detect population trends. However, a standardized trapping procedure has not been developed. The relative efficacies of six types of lures and eight commercial pheromone traps were...
Nonlinear Spectroscopy Study of Vibrational Self-Trapping in Hydrogen Bonded Crystals
NASA Astrophysics Data System (ADS)
Edler, Julian; Hamm, Peter
Femtosecond pump probe spectroscopy proves that self-trapping occurs in the NH and amide I band of crystalline acetanilide (ACN). The phonon modes that mediate the self-trapping are identified. Comparison between ACN and N-methylacetamide, both model systems for proteins, shows that self-trapping is a common feature in hydrogen bonded systems.
Rheology: liquefaction of quicksand under stress.
Khaldoun, A; Eiser, E; Wegdam, G H; Bonn, Daniel
2005-09-29
People or animals caught in quicksand find it very hard to escape. Here we show that quicksand acts as a trap because it becomes unstable when it is forced to move--first it liquefies, and then it collapses. But a simple sinking test demonstrates that it is impossible for a human to be drawn into quicksand altogether.
Laser-cooled cesium fountain clock: design and expected performances
NASA Astrophysics Data System (ADS)
Clairon, Andre; Laurent, Phillipe; Nadir, A.; Santarelli, G.; Drewsen, M.; Grison, D.; Lounis, B.; Salomon, C.
1993-04-01
The use of diode lasers to cool and trap Cesium atoms in a low Cs pressure cell allows the construction of a relatively simple and reliable atomic fountain frequency standard. Here we discuss the design and the potentialities of the Cs clock frequency standards being built at L.P.T.F..
Improvement of persistent magnetic field trapping in bulk Y-Ba-Cu-O superconductors
NASA Technical Reports Server (NTRS)
Chen, In-Gann; Weinstein, Roy
1993-01-01
For type-II superconductors, magnetic field can be trapped due to persistent internal supercurrent. Quasi-persistent magnetic fields near 2 T at 60 K (and 1.4 T at 77 K) have been measured in minimagnets made of proton-irradiated melt-textured Y-Ba-Cu-O (MT-Y123) samples. Using the trapping effect, high-field permanent magnets with dipole, quadrupole, or more complicated configurations can be made of existing MT-Y123 material, thus bypassing the need for high-temperature superconductor (HTS) wires. A phenomenological current model has been developed to account for the trapped field intensity and profile in HTS samples. This model is also a guide to select directions of materials development to further improve field trapping properties. General properties such as magnetic field intensities, spatial distributions, stabilities, and temperature dependence of trapped field are discussed.
NASA Astrophysics Data System (ADS)
Odagaki, Takashi; Kasuya, Keisuke
2017-09-01
Using the Monte Carlo simulation, we investigate a memory-impaired self-avoiding walk on a square lattice in which a random walker marks each of sites visited with a given probability p and makes a random walk avoiding the marked sites. Namely, p = 0 and p = 1 correspond to the simple random walk and the self-avoiding walk, respectively. When p> 0, there is a finite probability that the walker is trapped. We show that the trap time distribution can well be fitted by Stacy's Weibull distribution b(a/b){a+1}/{b}[Γ({a+1}/{b})]-1x^a\\exp(-a/bx^b)} where a and b are fitting parameters depending on p. We also find that the mean trap time diverges at p = 0 as p- α with α = 1.89. In order to produce sufficient number of long walks, we exploit the pivot algorithm and obtain the mean square displacement and its Flory exponent ν(p) as functions of p. We find that the exponent determined for 1000 step walks interpolates both limits ν(0) for the simple random walk and ν(1) for the self-avoiding walk as [ ν(p) - ν(0) ] / [ ν(1) - ν(0) ] = pβ with β = 0.388 when p ≪ 0.1 and β = 0.0822 when p ≫ 0.1. Contribution to the Topical Issue "Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.
INSIDE-OUT PLANET FORMATION. III. PLANET–DISK INTERACTION AT THE DEAD ZONE INNER BOUNDARY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Xiao; Tan, Jonathan C.; Chatterjee, Sourav
The Kepler mission has discovered more than 4000 exoplanet candidates. Many of them are in systems with tightly packed inner planets. Inside-out planet formation (IOPF) has been proposed as a scenario to explain these systems. It involves sequential in situ planet formation at the local pressure maximum of a retreating dead zone inner boundary (DZIB). Pebbles accumulate at this pressure trap, which builds up a pebble ring and then a planet. The planet is expected to grow in mass until it opens a gap, which helps to both truncate pebble accretion and also induce DZIB retreat that sets the location ofmore » formation of the next planet. This simple scenario may be modified if the planet undergoes significant migration from its formation location. Thus, planet–disk interactions play a crucial role in the IOPF scenario. Here we present numerical simulations that first assess the degree of migration for planets of various masses that are forming at the DZIB of an active accretion disk, where the effective viscosity is undergoing a rapid increase in the radially inward direction. We find that torques exerted on the planet by the disk tend to trap the planet at a location very close to the initial pressure maximum where it formed. We then study gap opening by these planets to assess at what mass a significant gap is created. Finally, we present a simple model for DZIB retreat due to penetration of X-rays from the star to the disk midplane. Overall, these simulations help to quantify both the mass scale of first (“Vulcan”) planet formation and the orbital separation to the location of second planet formation.« less
Shock Synthesis in the Atmosphere of Jupiter
NASA Astrophysics Data System (ADS)
Khare, B. N.; Sagan, C.; McDonald, G. D.; de Vanssay, E.; Borucki, W. J.; McKay, C. P.; Bernstein, M. P.; Hartman, T. G.; Lech, J.
1996-09-01
We have previously investigated an approximate simulation of the Jupiter troposphere at the 1 bar NH_3 cloud level using Laser Induced Plasma (LIP) for shock synthesis in a 84.62:13.3:1.07:1.01 H_2:He:CH_4:NH_3 gas mixture, and found by GC/MS that HCN is the most abundant product, more abundant than all the major product hydrocarbons (C_2H_6, C_2H_2, C_3H_8, and C_4H10) combined. Using purge and trap isolation techniques on the LIP gas mixture using two absorbent traps in tandem, thermal desorption GC/MS has revealed a large array of product molecules starting from simple hydrocarbons such as C_2H_2, C_2H_4, etc., simple nitriles such as HCN, CH_3CN, etc., to molecules up to C13 (e.g. C13H23N). Here we report the results of our more accurate simulation of Jupiter at the 5 bar level using LIP with a 88:11.7:0.2:0.1 H_2:He:CH_4:NH_3 mixture, for comparison with mass spectral data from the Galileo probe. We detect in this more acurate simulation of Jupiter many of the same compounds, such as HCN, dimethylaminoacetonitrile, and dimethylcyanamide, as in the previous lower dilution experiment. We will compare the present results with those from low-pressure continuous flow plasma discharge experiments (McDonald et al. 1992, al Icarus 99, 131). We will also discuss the relevance of our data in light of the significant discrepancies between standard models of the jovian atmosphere and the compositional data returned by the Galileo entry probe.
Inside-out Planet Formation. III. Planet-Disk Interaction at the Dead Zone Inner Boundary
NASA Astrophysics Data System (ADS)
Hu, Xiao; Zhu, Zhaohuan; Tan, Jonathan C.; Chatterjee, Sourav
2016-01-01
The Kepler mission has discovered more than 4000 exoplanet candidates. Many of them are in systems with tightly packed inner planets. Inside-out planet formation (IOPF) has been proposed as a scenario to explain these systems. It involves sequential in situ planet formation at the local pressure maximum of a retreating dead zone inner boundary (DZIB). Pebbles accumulate at this pressure trap, which builds up a pebble ring and then a planet. The planet is expected to grow in mass until it opens a gap, which helps to both truncate pebble accretion and also induce DZIB retreat that sets the location of formation of the next planet. This simple scenario may be modified if the planet undergoes significant migration from its formation location. Thus, planet-disk interactions play a crucial role in the IOPF scenario. Here we present numerical simulations that first assess the degree of migration for planets of various masses that are forming at the DZIB of an active accretion disk, where the effective viscosity is undergoing a rapid increase in the radially inward direction. We find that torques exerted on the planet by the disk tend to trap the planet at a location very close to the initial pressure maximum where it formed. We then study gap opening by these planets to assess at what mass a significant gap is created. Finally, we present a simple model for DZIB retreat due to penetration of X-rays from the star to the disk midplane. Overall, these simulations help to quantify both the mass scale of first (“Vulcan”) planet formation and the orbital separation to the location of second planet formation.
Giusto, Bruno Di; Grosbois, Vladimir; Fargeas, Elodie; Marshall, David J; Gaume, Laurence
2008-03-01
Mechanisms that improve prey richness in carnivorous plants may involve three crucial phases of trapping:attraction, capture and retention. Nepenthes rafflesiana var. typica is an insectivorous pitcher plant that is widespread in northern Borneo. It exhibits ontogenetic pitcher dimorphism with the upper pitchers trapping more flying prey than the lower pitchers. While this difference in prey composition has been ascribed to differences in attraction,the contribution of capture and retention has been overlooked. This study focused on distinguishing between the prey trapping mechanisms, and assessing their relative contribution to prey diversity. Arthropod richness and diversity of both visitors and prey in the two types of pitchers were analysed to quantify the relative contribution of attraction to prey trapping. Rate of insect visits to the different pitcher parts and the presence or absence of a sweet fragrance was recorded to clarify the origin and mechanism of attraction. The mechanism of retention was studied by insect bioassays and measurements of fluid viscosity. Nepenthes rafflesiana was found to trap a broader prey spectrum than that previously described for any Nepenthes species,with the upper pitchers attracting and trapping a greater quantity and diversity of prey items than the lower pitchers. Capture efficiency was low compared with attraction or retention efficiency. Fragrance of the peristome,or nectar rim,accounted mainly for the observed non-specific, better prey attraction by the upper pitchers, while the retentive properties of the viscous fluid in these upper pitchers arguably explains the species richness of their flying prey. The pitchers of N. rafflesiana are therefore more than simple pitfall traps and the digestive fluid plays an important yet unsuspected role in the ecological success of the species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Guochang; Chen, George, E-mail: gc@ecs.soton.ac.uk, E-mail: sli@mail.xjtu.edu.cn; School of Electronic and Computer Science, University of Southampton, Southampton SO17 1BJ
Charge transport properties in nanodielectrics present different tendencies for different loading concentrations. The exact mechanisms that are responsible for charge transport in nanodielectrics are not detailed, especially for high loading concentration. A charge transport model in nanodielectrics has been proposed based on quantum tunneling mechanism and dual-level traps. In the model, the thermally assisted hopping (TAH) process for the shallow traps and the tunnelling process for the deep traps are considered. For different loading concentrations, the dominant charge transport mechanisms are different. The quantum tunneling mechanism plays a major role in determining the charge conduction in nanodielectrics with high loadingmore » concentrations. While for low loading concentrations, the thermal hopping mechanism will dominate the charge conduction process. The model can explain the observed conductivity property in nanodielectrics with different loading concentrations.« less
Metastable self-trapping of positrons in MgO
NASA Astrophysics Data System (ADS)
Monge, M. A.; Pareja, R.; González, R.; Chen, Y.
1997-01-01
Low-temperature positron annihilation measurements have been performed on MgO single crystals containing either cation or anion vacancies. The temperature dependence of the S parameter is explained in terms of metastable self-trapped positrons which thermally hop through the crystal lattice. The experimental results are analyzed using a three-state trapping model assuming transitions from both delocalized and self-trapped states to deep trapped states at vacancies. The energy level of the self-trapped state was determined to be (62+/-5) meV above the delocalized state. The activation enthalpy for the hopping process of self-trapped positrons appears to depend on the kind of defect present in the crystals.
NASA Astrophysics Data System (ADS)
Basile, A. F.; Cramer, T.; Kyndiah, A.; Biscarini, F.; Fraboni, B.
2014-06-01
Metal-oxide-semiconductor (MOS) transistors fabricated with pentacene thin films were characterized by temperature-dependent current-voltage (I-V) characteristics, time-dependent current measurements, and admittance spectroscopy. The channel mobility shows almost linear variation with temperature, suggesting that only shallow traps are present in the semiconductor and at the oxide/semiconductor interface. The admittance spectra feature a broad peak, which can be modeled as the sum of a continuous distribution of relaxation times. The activation energy of this peak is comparable to the polaron binding energy in pentacene. The absence of trap signals in the admittance spectra confirmed that both the semiconductor and the oxide/semiconductor interface have negligible density of deep traps, likely owing to the passivation of SiO2 before pentacene growth. Nevertheless, current instabilities were observed in time-dependent current measurements following the application of gate-voltage pulses. The corresponding activation energy matches the energy of a hole trap in SiO2. We show that hole trapping in the oxide can explain both the temperature and the time dependences of the current instabilities observed in pentacene MOS transistors. The combination of these experimental techniques allows us to derive a comprehensive model for charge transport in hybrid architectures where trapping processes occur at various time and length scales.
Radiation model predictions and validation using LDEF satellite data
NASA Technical Reports Server (NTRS)
Armstrong, T. W.; Colborn, B. L.
1993-01-01
Predictions and comparisons with the radiation dose measurements on Long Duration Exposure Facility (LDEF) by thermoluminescent dosimeters were made to evaluate the accuracy of models currently used in defining the ionizing radiation environment for low Earth orbit missions. The calculations include a detailed simulation of the radiation exposure (altitude and solar cycle variations, directional dependence) and shielding effects (three-dimensional LDEF geometry model) so that differences in the predicted and observed doses can be attributed to environment model uncertainties. The LDEF dose data are utilized to assess the accuracy of models describing the trapped proton flux, the trapped proton directionality, and the trapped electron flux.
A compact model of the reverse gate-leakage current in GaN-based HEMTs
NASA Astrophysics Data System (ADS)
Ma, Xiaoyu; Huang, Junkai; Fang, Jielin; Deng, Wanling
2016-12-01
The gate-leakage behavior in GaN-based high electron mobility transistors (HEMTs) is studied as a function of applied bias and temperature. A model to calculate this current is given, which shows that trap-assisted tunneling, trap-assisted Frenkel-Poole (FP) emission, and direct Fowler-Nordheim (FN) tunneling have their main contributions at different electric field regions. In addition, the proposed model clearly illustrates the effect of traps and their assistance to the gate leakage. We have demonstrated the validity of the model by comparisons between model simulation results and measured experimental data of HEMTs, and a good agreement is obtained.
Generation of multiple Bessel beams for a biophotonics workstation.
Cizmár, T; Kollárová, V; Tsampoula, X; Gunn-Moore, F; Sibbett, W; Bouchal, Z; Dholakia, K
2008-09-01
We present a simple method using an axicon and spatial light modulator to create multiple parallel Bessel beams and precisely control their individual positions in three dimensions. This technique is tested as an alternative to classical holographic beam shaping commonly used now in optical tweezers. Various applications of precise control of multiple Bessel beams are demonstrated within a single microscope giving rise to new methods for three-dimensional positional control of trapped particles or active sorting of micro-objects as well as "focus-free" photoporation of living cells. Overall this concept is termed a 'biophotonics workstation' where users may readily trap, sort and porate material using Bessel light modes in a microscope.
NASA Astrophysics Data System (ADS)
Alekseev, V. A.; Krylova, D. D.
1996-02-01
The analytical investigation of Bloch equations is used to describe the main features of the 1D velocity selective coherent population trapping cooling scheme. For the initial stage of cooling the fraction of cooled atoms is derived in the case of a Gaussian initial velocity distribution. At very long times of interaction the fraction of cooled atoms and the velocity distribution function are described by simple analytical formulae and do not depend on the initial distribution. These results are in good agreement with those of Bardou, Bouchaud, Emile, Aspect and Cohen-Tannoudji based on statistical analysis in terms of Levy flights and with Monte-Carlo simulations of the process.
Quantum Corrections to the 'Atomistic' MOSFET Simulations
NASA Technical Reports Server (NTRS)
Asenov, Asen; Slavcheva, G.; Kaya, S.; Balasubramaniam, R.
2000-01-01
We have introduced in a simple and efficient manner quantum mechanical corrections in our 3D 'atomistic' MOSFET simulator using the density gradient formalism. We have studied in comparison with classical simulations the effect of the quantum mechanical corrections on the simulation of random dopant induced threshold voltage fluctuations, the effect of the single charge trapping on interface states and the effect of the oxide thickness fluctuations in decanano MOSFETs with ultrathin gate oxides. The introduction of quantum corrections enhances the threshold voltage fluctuations but does not affect significantly the amplitude of the random telegraph noise associated with single carrier trapping. The importance of the quantum corrections for proper simulation of oxide thickness fluctuation effects has also been demonstrated.
Maximal liquid bridges between horizontal cylinders
NASA Astrophysics Data System (ADS)
Cooray, Himantha; Huppert, Herbert E.; Neufeld, Jerome A.
2016-08-01
We investigate two-dimensional liquid bridges trapped between pairs of identical horizontal cylinders. The cylinders support forces owing to surface tension and hydrostatic pressure that balance the weight of the liquid. The shape of the liquid bridge is determined by analytically solving the nonlinear Laplace-Young equation. Parameters that maximize the trapping capacity (defined as the cross-sectional area of the liquid bridge) are then determined. The results show that these parameters can be approximated with simple relationships when the radius of the cylinders is small compared with the capillary length. For such small cylinders, liquid bridges with the largest cross-sectional area occur when the centre-to-centre distance between the cylinders is approximately twice the capillary length. The maximum trapping capacity for a pair of cylinders at a given separation is linearly related to the separation when it is small compared with the capillary length. The meniscus slope angle of the largest liquid bridge produced in this regime is also a linear function of the separation. We additionally derive approximate solutions for the profile of a liquid bridge, using the linearized Laplace-Young equation. These solutions analytically verify the above-mentioned relationships obtained for the maximization of the trapping capacity.
Optical Characterization of Light-Bending Mechanisms in Photonic Crystals with Simple Cubic Symmetry
NASA Astrophysics Data System (ADS)
Frey, Brian James
For much of Earth's history, light was reputed to be an intangible, intractable, and transient quantity, but our understanding of light has since been revolutionized. The flow of electromagnetic energy through space can today be manipulated with a degree of precision and control once only dreamed of; rapidly developing technologies can create, guide, bend, and detect light to produce useful energy and information. One field where these technologies are most relevant is the field of light trapping, which concerns the harvesting of incident photons within a limited space by scattering, slowing, or otherwise prolonging and enhancing their interaction with matter. Over the past few decades, a class of materials, called photonic crystals (PCs), has emerged that is ideally suited for this task. This is because their wavelength-scale periodicity in one, two, or three dimensions can be designed to alter the dispersion relation and photonic density-of-states in a controllable manner. In this work, a TiO2 simple cubic PC with high dielectric contrast ( > 4:1) is fabricated with a lattice constant of 450 nm, and a newly discovered light-trapping mechanism is demonstrated, which bends light by 90 degrees and enhances optical absorption by one to two orders-of-magnitude over that in a reference film of the same thickness. It is shown that, for wavelengths from 450-950 nm, the achievable enhancement factor for this structure surpasses the theoretical limit of 4n2 derived under the assumption of ergodic system by multiple times. These results derive directly from the symmetry of the simple cubic lattice and are fundamental in nature, not depending on the material used or on the method of fabrication. The light trapping capability of these PCs has straight-forward applications that would be useful in a variety of areas where increased light-matter interaction is desirable, such as white-light generation, thin-film solar cells, photocatalytic pollutant degradation and hydrogen fuel production, and chemical sensing.
NASA Astrophysics Data System (ADS)
Lisý, Vladimír; Tóthová, Jana
2018-02-01
Nuclear magnetic resonance is often used to study random motion of spins in different systems. In the long-time limit the current mathematical description of the experiments allows proper interpretation of measurements of normal and anomalous diffusion. The shorter-time dynamics is however correctly considered only in a few works that do not go beyond the standard Langevin theory of the Brownian motion (BM). In the present work, the attenuation function S (t) for an ensemble of spins in a magnetic-field gradient, expressed in a form applicable for any kind of stationary stochastic dynamics of spins with or without a memory, is calculated in the frame of the model of fractional BM. The solution of the model for particles trapped in a harmonic potential is obtained in a simple way and used for the calculation of S (t). In the limit of free particles coupled to a fractal heat bath, the results compare favorably with experiments acquired in human neuronal tissues.
Adaptation, Growth, and Resilience in Biological Distribution Networks
NASA Astrophysics Data System (ADS)
Ronellenfitsch, Henrik; Katifori, Eleni
Highly optimized complex transport networks serve crucial functions in many man-made and natural systems such as power grids and plant or animal vasculature. Often, the relevant optimization functional is nonconvex and characterized by many local extrema. In general, finding the global, or nearly global optimum is difficult. In biological systems, it is believed that such an optimal state is slowly achieved through natural selection. However, general coarse grained models for flow networks with local positive feedback rules for the vessel conductivity typically get trapped in low efficiency, local minima. We show how the growth of the underlying tissue, coupled to the dynamical equations for network development, can drive the system to a dramatically improved optimal state. This general model provides a surprisingly simple explanation for the appearance of highly optimized transport networks in biology such as plant and animal vasculature. In addition, we show how the incorporation of spatially collective fluctuating sources yields a minimal model of realistic reticulation in distribution networks and thus resilience against damage.
Pote, John M; Nielsen, Anne L; Grieshop, Matthew J
2016-08-01
Rhynchaenus pallicornis (Say) is a pest of commercially grown apples in the upper Midwest. This historic pest has resurged and caused severe yield loss on farms using certified organic production practices. The life history and potential monitoring methods of R. pallicornis are presented. Seasonal abundance data were collected through beat and visual sampling. A phenological model was developed for R. pallicornis. The minimum developmental threshold of R. pallicornis was determined to be 3.5°C with a required degree-day accumulation of 125°D for first adult emergence. Larval damage was observed on >60% of leaves in unmanaged orchards and affected significantly fewer basal leaf clusters (near the trunk), than medially or apically located clusters. Of 2,900 R. pallicornis larval mines collected over two years at three different sites, 18.0% produced at least one adult parasitoid, but the targeted larval stage is unknown. Measurements of R. pallicornis larval head capsules and the simple frequency method were used to determine three larval instars of R. pallicornis The number of larval instars could also be accurately determined by observing the presence or absence of two sets of thoracic sclerites. Pyramid traps, yellow sticky cards baited with olfactory cues (pear essence, benzaldehyde, and an aggregation of adult R. pallicornis) were evaluated as R. pallicornis monitoring tools. None of the traps or lures tested significantly affected the number of adult R. pallicornis per trap. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The Search for Surviving Direct Samples of Early Solar System Water
NASA Technical Reports Server (NTRS)
Zolensky, Michael
2016-01-01
We have become increasingly aware of the fundamental importance of water, and aqueous alteration, on primitive solar-system bodies. All classes of astromaterials studied show some degree of interaction with aqueous fluids. Nevertheless, we are still lacking fundamental information such as the location and timing of the aqueous alteration and the detailed nature of the aqueous fluids. Halite crystals in two meteorite regolith breccias were found to contain aqueous fluid inclusions (brines) trapped approx. 4.5 BYBP. Heating/freezing studies of the aqueous fluid inclusions in these halites demonstrated that they were trapped near 25 C. The initial results of our O and H isotopic measurements on these brine inclusions can be explained by a simple model mixing asteroidal and cometary water. We have been analyzing solids and organics trapped alongside the brines in the halites by FTIR, C-XANES, SXRD and Raman, as clues to the origin of the water. The organics show thermal effects that span the entire range witnessed by organics in all chondrite types. Since we identified water-soluble aromatics, including partially halogenated methanol, in some of the halite, we suspected amino acids were also present, but have thus far found that levels of amino acids were undetectable (which is very interesting). We have also been locating aqueous fluid inclusions in other astromaterials, principally carbonates in CI and CM chondrites. Although we have advanced slowly towards detailed analysis of these ancient brines, since they require techniques right at or just beyond current analytical capabilities, their eventual full characterization will completely open the window onto the origin and activity of early solar system water.
Microfabricated magnetic traps for single molecule manipulation and measurement
NASA Astrophysics Data System (ADS)
Mirowski, Elizabeth; Moreland, John; Russek, Stephen; Donahue, Michael
2003-03-01
We have microfabricated patterned magnetic thin film traps for capturing superparamagnetic beads in microfluidic cells. The traps are based on a novel concept of using a magnetic force microsope cantilever for transporting magnetic beads from one trap to another along the surface of a thin silicon nitride membrane. We specifically address the optimal design criteria for the traps. In addition, we present measurements of the forces on a bead (attached to a functionalized cantilever tip) as a function of its position near the trap. Equivalent spring constants of various trap geometries are extrapolated from the force measurements. The force measurements will be compared to micromagnetic modelling of the system as well as the Brownian motion of the bead in the trap.
Effect of high-dose irradiation on the optically stimulated luminescence of Al2O3:C
NASA Technical Reports Server (NTRS)
Yukihara, E. G.; Whitley, V. H.; McKeever, S. W. S.; Akselrod, A. E.; Akselrod, M. S.
2004-01-01
This paper examines the effect of high-dose irradiation on the optically stimulated luminescence (OSL) of Al2O3:C, principally on the shape of the OSL decay curve and on the OSL sensitivity. The effect of the degree of deep trap filling on the OSL was also studied by monitoring the sensitivity changes after doses of beta irradiation and after step-annealing of samples previously irradiated with high doses. The OSL response to dose shows a linear-supralinear-saturation behavior, with a decrease in the response for doses higher than those required for saturation. This behavior correlates with the sensitivity changes observed in the samples annealed only to 773 K, which show sensitization for doses up to 20-50 Gy and desensitization for higher doses. Data from the step-annealing study leads to the suggestion that the sensitization is caused by the filling of deep electron traps, which become thermally unstable at 1100-1200 K, whereas the desensitization is caused by the filling of deep hole traps, which become thermally unstable at 800-875 K, along with a concomitant decrease in the concentration of recombination centers (F+ -centers). Changes in the shape of the OSL decay curves are also observed at high doses, the decay becoming faster as the dose increases. These changes in the OSL decay curves are discussed in terms of multiple overlapping components, each characterized by different photoionization cross-sections. However, using numerical solutions of the rate equations for a simple model consisting of a main trap and a recombination center, it is shown that the kinetics of OSL process may also be partially responsible for the changes in the OSL curves at high doses in Al2O3:C. Finally, the implication of these results for the dosimetry of heavy charged particles is discussed. c2004 Elsevier Ltd. All rights reserved.
Trapped Radiation Model Uncertainties: Model-Data and Model-Model Comparisons
NASA Technical Reports Server (NTRS)
Armstrong, T. W.; Colborn, B. L.
2000-01-01
The standard AP8 and AE8 models for predicting trapped proton and electron environments have been compared with several sets of flight data to evaluate model uncertainties. Model comparisons are made with flux and dose measurements made on various U.S. low-Earth orbit satellites (APEX, CRRES, DMSP, LDEF, NOAA) and Space Shuttle flights, on Russian satellites (Photon-8, Cosmos-1887, Cosmos-2044), and on the Russian Mir Space Station. This report gives the details of the model-data comparisons-summary results in terms of empirical model uncertainty factors that can be applied for spacecraft design applications are given in a combination report. The results of model-model comparisons are also presented from standard AP8 and AE8 model predictions compared with the European Space Agency versions of AP8 and AE8 and with Russian-trapped radiation models.
Trapped Radiation Model Uncertainties: Model-Data and Model-Model Comparisons
NASA Technical Reports Server (NTRS)
Armstrong, T. W.; Colborn, B. L.
2000-01-01
The standard AP8 and AE8 models for predicting trapped proton and electron environments have been compared with several sets of flight data to evaluate model uncertainties. Model comparisons are made with flux and dose measurements made on various U.S. low-Earth orbit satellites (APEX, CRRES, DMSP. LDEF, NOAA) and Space Shuttle flights, on Russian satellites (Photon-8, Cosmos-1887, Cosmos-2044), and on the Russian Mir space station. This report gives the details of the model-data comparisons -- summary results in terms of empirical model uncertainty factors that can be applied for spacecraft design applications are given in a companion report. The results of model-model comparisons are also presented from standard AP8 and AE8 model predictions compared with the European Space Agency versions of AP8 and AE8 and with Russian trapped radiation models.
NASA Astrophysics Data System (ADS)
Zhao, Peng; Khosravi, Ava; Azcatl, Angelica; Bolshakov, Pavel; Mirabelli, Gioele; Caruso, Enrico; Hinkle, Christopher L.; Hurley, Paul K.; Wallace, Robert M.; Young, Chadwin D.
2018-07-01
Border traps and interface traps in HfO2/few-layer MoS2 top-gate stacks are investigated by C–V characterization. Frequency dependent C–V data shows dispersion in both the depletion and accumulation regions for the MoS2 devices. The border trap density is extracted with a distributed model, and interface traps are analyzed using the high-low frequency and multi-frequency methods. The physical origins of interface traps appear to be caused by impurities/defects in the MoS2 layers, performing as band tail states, while the border traps are associated with the dielectric, likely a consequence of the low-temperature deposition. This work provides a method of using multiple C–V measurements and analysis techniques to analyze the behavior of high-k/TMD gate stacks and deconvolute border traps from interface traps.
Predator-prey interactions of nematode-trapping fungi and nematodes: both sides of the coin.
Vidal-Diez de Ulzurrun, Guillermo; Hsueh, Yen-Ping
2018-05-01
Nematode-trapping fungi develop complex trapping devices to capture and consume nematodes. The dynamics of these organisms is especially important given the pathogenicity of nematodes and, consequently, the potential application of nematode-trapping fungi as biocontrol agents. Furthermore, both the nematodes and nematode-trapping fungi can be easily grown in laboratories, making them a unique manipulatable predator-prey system to study their coevolution. Several different aspects of these fungi have been studied, such as their genetics and the different factors triggering trap formation. In this review, we use the nematode-trapping fungus Arthrobotrys oligospora (which forms adhesive nets) as a model to describe the trapping process. We divide this process into several stages; namely attraction, recognition, trap formation, adhesion, penetration, and digestion. We summarize the latest findings in the field and current knowledge on the interactions between nematodes and nematode-trapping fungi, representing both sides of the predator-prey interaction.
Monitoring populations of saddled prominent (Lepidoptera: Notodontidae) with pheromone-baited traps.
Spear-O'Mara, Jennifer; Allen, Douglas C
2007-04-01
Field trials with three types of pheromone traps were performed in eight northern hardwood stands in northern New York state to develop a population-monitoring tool for the saddled prominent, Heterocampa guttivitta (Walker) (Lepidoptera: Notodontidae). Lure specificity and the relationship between pheromone trap catch and subsequent egg density were examined. A study of moth emergence in relation to temperature was designed to determine whether moth activity throughout the flight season can be predicted using a growing degree-day (DD) model. Pherocon 1C wing traps were significantly more effective than the green Unitrap bucket style. Catch was not affected by position when traps were > or =20 m from an opening (road), and lures were specific to saddled prominent. Lure specificity was examined using green Multipher bucket traps, which effectively attracted and held moths. In the first year of the study, number of viable eggs per 10 leaf clusters was significantly correlated (r2 = 0.59) with average moth catch/trap in pheromone-baited Pherocon traps. When differences in stand density (basal area) and relative abundance of sugar maple (percentage of total stems per hectare), the principle host, were accounted for, the multiple regression model also was significant and r2 = 0. 83. Neither model, however, was significant the second year. Using a base temperature of 5.5 degrees C and on-site temperature data, the peak of moth flight occurred at 316 +/- 8 DD and end of flight occurred at 533 +/- 9 DD.
Holbrook, Christopher M.; Johnson, Nicholas S.; Steibel, Juan P.; Twohey, Michael B.; Binder, Thomas R.; Krueger, Charles C.; Jones, Michael L.
2014-01-01
Improved methods are needed to evaluate barriers and traps for control and assessment of invasive sea lamprey (Petromyzon marinus) in the Great Lakes. A Bayesian state-space model provided reach-specific probabilities of movement, including trap capture and dam passage, for 148 acoustic tagged invasive sea lamprey in the lower Cheboygan River, Michigan, a tributary to Lake Huron. Reach-specific movement probabilities were combined to obtain estimates of spatial distribution and abundance needed to evaluate a barrier and trap complex for sea lamprey control and assessment. Of an estimated 21 828 – 29 300 adult sea lampreys in the river, 0%–2%, or 0–514 untagged lampreys, could have passed upstream of the dam, and 46%–61% were caught in the trap. Although no tagged lampreys passed above the dam (0/148), our sample size was not sufficient to consider the lock and dam a complete barrier to sea lamprey. Results also showed that existing traps are in good locations because 83%–96% of the population was vulnerable to existing traps. However, only 52%–69% of lampreys vulnerable to traps were caught, suggesting that traps can be improved. The approach used in this study was a novel use of Bayesian state-space models that may have broader applications, including evaluation of barriers for other invasive species (e.g., Asian carp (Hypophthalmichthys spp.)) and fish passage structures for other diadromous fishes.
The effect of under-ice melt ponds on their surroundings in the Arctic
NASA Astrophysics Data System (ADS)
Feltham, D. L.; Smith, N.; Flocco, D.
2016-12-01
In the summer months, melt water from the surface of the Arctic sea ice can percolate down through the ice and flow out of its base. This water is relatively warm and fresh compared to the ocean water beneath it, and so it floats between the ice and the oceanic mixed layer, forming pools of melt water called under-ice melt ponds. Sheets of ice, known as false bottoms, can subsequently form via double diffusion processes at the under-ice melt pond interface with the ocean, trapping the pond against the ice and completely isolating it from the ocean below. This has an insulating effect on the parent sea ice above the trapped pond, altering its rate of basal ablation. A one-dimensional, thermodynamic model of Arctic sea ice has been adapted to study the evolution of under-ice melt ponds and false bottoms over time. Comparing simulations of sea ice evolution with and without an under-ice melt pond provides a measure of how an under-ice melt pond affects the mass balance of the sea ice above it. Sensitivity studies testing the response of the model to a range of uncertain parameters have been performed, revealing some interesting implications of under-ice ponds during their life cycle. By changing the rate of basal ablation of the parent sea ice, and so the flux of fresh water and salt into the ocean, under-ice melt ponds affect the properties of the mixed layer beneath the sea ice. Our model of under-ice melt pond refreezing has been coupled to a simple oceanic mixed layer model to determine the effect on mixed layer depth, salinity and temperature.
CO2 Capillary-Trapping Processes in Deep Saline Aquifers
NASA Astrophysics Data System (ADS)
Gershenzon, Naum I.; Soltanian, Mohamadreza; Ritzi, Robert W., Jr.; Dominic, David F.
2014-05-01
The idea of reducing the Earth's greenhouse effect by sequestration of CO2 into the Earth's crust has been discussed and evaluated for more than two decades. Deep saline aquifers are the primary candidate formations for realization of this idea. Evaluation of reservoir capacity and the risk of CO2 leakage require a detailed modeling of the migration and distribution of CO2 in the subsurface structure. There is a finite risk that structural (or hydrodynamic) trapping by caprock may be compromised (e.g. by improperly abandoned wells, stratigraphic discontinuities, faults, etc.). Therefore, other trapping mechanisms (capillary trapping, dissolution, and mineralization) must be considered. Capillary trapping may be very important in providing a "secondary-seal", and is the focus of our investigation. The physical mechanism of CO2 trapping in porous media by capillary trapping incorporates three related processes, i.e. residual trapping, trapping due to hysteresis of the relative permeability, and trapping due to hysteresis of the capillary pressure. Additionally CO2 may be trapped in heterogeneous media due to difference in capillary pressure entry points for different materials. The amount of CO2 trapped by these processes is a complicated nonlinear function of the spatial distribution of permeability, permeability anisotropy, capillary pressure, relative permeability of brine and CO2, permeability hysteresis and residual gas saturation (as well as the rate, total amount and placement of injected CO2). Geological heterogeneities essentially affect the dynamics of a CO2 plume in subsurface environments. Recent studies have led to new conceptual and quantitative models for sedimentary architecture in fluvial deposits over a range of scales that are relevant to the performance of some deep saline reservoirs [1, 2]. We investigated how the dynamics of a CO2 plume, during and after injection, is influenced by the hierarchical and multi-scale stratal architecture in such reservoirs. The results strongly suggest that representing these small scales features, and representing how they are organized within a hierarchy of larger-scale features, is critical to understanding capillary trapping processes. References [1] Bridge, J.S. (2006), Fluvial facies models: Recent developments, in Facies Models Revisited, SEPM Spec. Publ., 84, edited by H. W. Posamentier and R. G. Walker, pp. 85-170, Soc. for Sediment. Geol. (SEPM), Tulsa, Okla [2] Ramanathan, R., A. Guin, R.W. Ritzi, D.F. Dominic, V.L. Freedman, T.D. Scheibe, and I.A. Lunt (2010), Simulating the heterogeneity in channel belt deposits: Part 1. A geometric-based methodology and code, Water Resources Research, v. 46, W04515.
Evidences of trapping in tungsten and implications for plasma-facing components
NASA Astrophysics Data System (ADS)
Longhurst, G. R.; Anderl, R. A.; Holland, D. F.
Trapping effects that include significant delays in permeation saturation, abrupt changes in permeation rate associated with temperature changes, and larger than expected inventories of hydrogen isotopes in the material, were seen in implantation-driven permeation experiments using 25- and 50-micron thick tungsten foils at temperatures of 638 to 825 K. Computer models that simulate permeation transients reproduce the steady-state permeation and reemission behavior of these experiments with expected values of material parameters. However, the transient time characteristics were not successfully simulated without the assumption of traps of substantial trap energy and concentration. An analytical model based on the assumptions of thermodynamic equilibrium between trapped hydrogen atoms and a comparatively low mobile atom concentration successfully accounts for the observed behavior. Using steady-state and transient permeation data from experiments at different temperatures, the effective trap binding energy may be inferred. We analyze a tungsten coated divertor plate design representative of those proposed for ITER and ARIES and consider the implications for tritium permeation and retention if the same trapping we observed was present in that tungsten. Inventory increases of several orders of magnitude may result.
Razin, S; Zorin, V; Izotov, I; Sidorov, A; Skalyga, V
2014-02-01
We present experimental results on measuring the emittance of short-pulsed (≤100 μs) high-current (80-100 mA) ion beams of heavy gases (Nitrogen, Argon) formed from a dense plasma of an ECR source of multiply charged ions (MCI) with quasi-gas-dynamic mode of plasma confinement in a magnetic trap of simple mirror configuration. The discharge was created by a high-power (90 kW) pulsed radiation of a 37.5-GHz gyrotron. The normalized emittance of generated ion beams of 100 mA current was (1.2-1.3) π mm mrad (70% of ions in the beams). Comparing these results with those obtained using a cusp magnetic trap, it was concluded that the structure of the trap magnetic field lines does not exert a decisive influence on the emittance of ion beams in the gas-dynamic ECR source of MCI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Razin, S., E-mail: sevraz@appl.sci-nnov.ru; Zorin, V.; Izotov, I.
2014-02-15
We present experimental results on measuring the emittance of short-pulsed (≤100 μs) high-current (80–100 mA) ion beams of heavy gases (Nitrogen, Argon) formed from a dense plasma of an ECR source of multiply charged ions (MCI) with quasi-gas-dynamic mode of plasma confinement in a magnetic trap of simple mirror configuration. The discharge was created by a high-power (90 kW) pulsed radiation of a 37.5-GHz gyrotron. The normalized emittance of generated ion beams of 100 mA current was (1.2–1.3) π mm mrad (70% of ions in the beams). Comparing these results with those obtained using a cusp magnetic trap, it was concluded thatmore » the structure of the trap magnetic field lines does not exert a decisive influence on the emittance of ion beams in the gas-dynamic ECR source of MCI.« less
Self-assembled antireflection coatings for light trapping based on SiGe random metasurfaces
NASA Astrophysics Data System (ADS)
Bouabdellaoui, Mohammed; Checcucci, Simona; Wood, Thomas; Naffouti, Meher; Sena, Robert Paria; Liu, Kailang; Ruiz, Carmen M.; Duche, David; le Rouzo, Judikael; Escoubas, Ludovic; Berginc, Gerard; Bonod, Nicolas; Zazoui, Mimoun; Favre, Luc; Metayer, Leo; Ronda, Antoine; Berbezier, Isabelle; Grosso, David; Gurioli, Massimo; Abbarchi, Marco
2018-03-01
We demonstrate a simple self-assembly method based on solid state dewetting of ultrathin silicon films and germanium deposition for the fabrication of efficient antireflection coatings on silicon for light trapping. We fabricate SiGe islands with a high surface density, randomly positioned and broadly varied in size. This allows one to reduce the reflectance to low values in a broad spectral range (from 500 nm to 2500 nm) and a broad angle (up to 55°) and to trap within the wafer a large portion of the impinging light (˜40 % ) also below the band gap, where the Si substrate is nonabsorbing. Theoretical simulations agree with the experimental results, showing that the efficient light coupling into the substrate is mediated by Mie resonances formed within the SiGe islands. This lithography-free method can be implemented on arbitrarily thick or thin SiO2 layers and its duration only depends on the sample thickness and on the annealing temperature.
Trap-assisted large gain in Cu{sub 2}O/C{sub 60} hybrid ultraviolet/visible photodetectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Lan; Xi, Qiaoyue; Gao, Ge
2016-04-18
Photomultiplication-type ultraviolet (UV)/visible photodetectors (PDs) are demonstrated in an electrodeposited Cu{sub 2}O/C{sub 60} hybrid structure. These simple organic/inorganic hybrid PDs exhibit external quantum efficiencies (EQEs) of 1.1 × 10{sup 4}% under illumination of 365 nm UV light at −3 V, indicating a large gain of photocurrent for these devices. Such an EQE is one of the highest values among the reported organic/inorganic hybrid PDs at the same voltage. Cu{sub 2}O and C{sub 60} are found to play different roles in realizing the photomultiplication. Copper vacancies are proposed as the defects in the electrodeposited Cu{sub 2}O layers, which can trap photogenerated holes. Such trapped holesmore » will trigger the injection of multiple electrons and hence result in the photocurrent gain of the devices while C{sub 60} primarily acts as a light absorption media to provide free holes.« less
Decision Making in Paediatric Cardiology. Are We Prone to Heuristics, Biases and Traps?
Ryan, Aedin; Duignan, Sophie; Kenny, Damien; McMahon, Colin J
2018-01-01
Hidden traps in decision making have been long recognised in the behavioural economics community. Yet we spend very limited, if any time, analysing our decision-making processes in medicine and paediatric cardiology. Systems 1 and 2 thought processes differentiate between rapid emotional thoughts and slow deliberate rational thoughts. For fairly clear cut medical decisions, in-depth analysis may not be needed, but in our field of paediatric cardiology it is not uncommon for challenging cases and occasionally 'simple' cases to generate significant debate and uncertainty as to the best decision. Although morbidity and mortality meetings frequently highlight poor outcomes for our patients, they often neglect to analyse the process of thought which underlined those decisions taken. This article attempts to review commonly acknowledged traps in decision making in the behavioural economics world to ascertain whether these heuristics translate to decision making in the paediatric cardiology environment. We also discuss potential individual and collective solutions to pitfalls in decision making.
Aycock, Kenneth I; Campbell, Robert L; Manning, Keefe B; Craven, Brent A
2017-06-01
Inferior vena cava (IVC) filters are medical devices designed to provide a mechanical barrier to the passage of emboli from the deep veins of the legs to the heart and lungs. Despite decades of development and clinical use, IVC filters still fail to prevent the passage of all hazardous emboli. The objective of this study is to (1) develop a resolved two-way computational model of embolus transport, (2) provide verification and validation evidence for the model, and (3) demonstrate the ability of the model to predict the embolus-trapping efficiency of an IVC filter. Our model couples computational fluid dynamics simulations of blood flow to six-degree-of-freedom simulations of embolus transport and resolves the interactions between rigid, spherical emboli and the blood flow using an immersed boundary method. Following model development and numerical verification and validation of the computational approach against benchmark data from the literature, embolus transport simulations are performed in an idealized IVC geometry. Centered and tilted filter orientations are considered using a nonlinear finite element-based virtual filter placement procedure. A total of 2048 coupled CFD/6-DOF simulations are performed to predict the embolus-trapping statistics of the filter. The simulations predict that the embolus-trapping efficiency of the IVC filter increases with increasing embolus diameter and increasing embolus-to-blood density ratio. Tilted filter placement is found to decrease the embolus-trapping efficiency compared with centered filter placement. Multiple embolus-trapping locations are predicted for the IVC filter, and the trapping locations are predicted to shift upstream and toward the vessel wall with increasing embolus diameter. Simulations of the injection of successive emboli into the IVC are also performed and reveal that the embolus-trapping efficiency decreases with increasing thrombus load in the IVC filter. In future work, the computational tool could be used to investigate IVC filter design improvements, the effect of patient anatomy on embolus transport and IVC filter embolus-trapping efficiency, and, with further development and validation, optimal filter selection and placement on a patient-specific basis.
Characterization of YBa2Cu3O7, including critical current density Jc, by trapped magnetic field
NASA Technical Reports Server (NTRS)
Chen, In-Gann; Liu, Jianxiong; Weinstein, Roy; Lau, Kwong
1992-01-01
Spatial distributions of persistent magnetic field trapped by sintered and melt-textured ceramic-type high-temperature superconductor (HTS) samples have been studied. The trapped field can be reproduced by a model of the current consisting of two components: (1) a surface current Js and (2) a uniform volume current Jv. This Js + Jv model gives a satisfactory account of the spatial distribution of the magnetic field trapped by different types of HTS samples. The magnetic moment can be calculated, based on the Js + Jv model, and the result agrees well with that measured by standard vibrating sample magnetometer (VSM). As a consequence, Jc predicted by VSM methods agrees with Jc predicted from the Js + Jv model. The field mapping method described is also useful to reveal the granular structure of large HTS samples and regions of weak links.
Evolutionary traps as keys to understanding behavioral maladaptation
Robertson, Bruce A.; Chalfoun, Anna
2016-01-01
Evolutionary traps are severe cases of behavioral maladaptation that occur when, due to human activity, the cues animals use to guide their behavior become uncoupled from their fitness consequences. The result is that animals can prefer the most dangerous resources or behaviors, even when better options are available. Traps are increasingly common and represent a significant wildlife conservation problem. Understanding of the more proximate sensory-cognitive mechanisms underpinning traps remains poor, which highlights the need for interdisciplinary and collaborative approaches to investigating traps. Key to advancing basic trap theory and its conservation applications will be the development of appropriate and tractable model systems to investigate the mechanisms that cause traps within species, and how mechanisms vary across species.
A model of optical trapping cold atoms using a metallic nano wire with surface plasmon effect
NASA Astrophysics Data System (ADS)
Thi Phuong Lan, Nguyen; Thi Nga, Do; Viet, Nguyen Ai
2016-06-01
In this work, we construct a new model of optical trapping cold atoms with a metallic nano wire by using surface plasmon effect generated by strong field of laser beams. Using the skin effect, we send a strong oscillated electromagnetic filed through the surface of a metallic nano wire. The local field generated by evanescent effect creates an effective attractive potential near the surface of metallic nano wires. The consideration of some possible boundary and frequency conditions might lead to non-trivial bound state solution for a cold atom. We discus also the case of the laser reflection optical trap with shell-core design, and compare our model with another recent schemes of cold atom optical traps using optical fibers and carbon nanotubes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghizzo, A.
2013-08-15
The stationary state with magnetically trapped particles is investigated at the saturation of the relativistic Weibel instability, within the “multiring” model in a Hamiltonian framework. The multistream model and its multiring extension have been developed in Paper I, under the assumption that the generalized canonical momentum is conserved in the perpendicular direction. One dimensional relativistic Bernstein-Greene-Kruskal waves with deeply trapped particles are addressed using similar mathematical formalism developed by Lontano et al.[Phys. Plasmas 9, 2562 (2002); Phys. Plasmas 10, 639 (2003)] using several streams and in the presence of both electrostatic and magnetic trapping mechanisms.
Minimum-variance Brownian motion control of an optically trapped probe.
Huang, Yanan; Zhang, Zhipeng; Menq, Chia-Hsiang
2009-10-20
This paper presents a theoretical and experimental investigation of the Brownian motion control of an optically trapped probe. The Langevin equation is employed to describe the motion of the probe experiencing random thermal force and optical trapping force. Since active feedback control is applied to suppress the probe's Brownian motion, actuator dynamics and measurement delay are included in the equation. The equation of motion is simplified to a first-order linear differential equation and transformed to a discrete model for the purpose of controller design and data analysis. The derived model is experimentally verified by comparing the model prediction to the measured response of a 1.87 microm trapped probe subject to proportional control. It is then employed to design the optimal controller that minimizes the variance of the probe's Brownian motion. Theoretical analysis is derived to evaluate the control performance of a specific optical trap. Both experiment and simulation are used to validate the design as well as theoretical analysis, and to illustrate the performance envelope of the active control. Moreover, adaptive minimum variance control is implemented to maintain the optimal performance in the case in which the system is time varying when operating the actively controlled optical trap in a complex environment.
Nonlinear quantum Rabi model in trapped ions
NASA Astrophysics Data System (ADS)
Cheng, Xiao-Hang; Arrazola, Iñigo; Pedernales, Julen S.; Lamata, Lucas; Chen, Xi; Solano, Enrique
2018-02-01
We study the nonlinear dynamics of trapped-ion models far away from the Lamb-Dicke regime. This nonlinearity induces a blockade on the propagation of quantum information along the Hilbert space of the Jaynes-Cummings and quantum Rabi models. We propose to use this blockade as a resource for the dissipative generation of high-number Fock states. Also, we compare the linear and nonlinear cases of the quantum Rabi model in the ultrastrong and deep strong-coupling regimes. Moreover, we propose a scheme to simulate the nonlinear quantum Rabi model in all coupling regimes. This can be done via off-resonant nonlinear red- and blue-sideband interactions in a single trapped ion, yielding applications as a dynamical quantum filter.
Kleckner, Ian R.; McElroy, Craig A.; Kuzmic, Petr; Gollnick, Paul; Foster, Mark P.
2014-01-01
The trp RNA-binding Attenuation Protein (TRAP) assembles into an 11-fold symmetric ring that regulates transcription and translation of trp-mRNA in bacilli via heterotropic allosteric activation by the amino acid tryptophan (Trp). Whereas nuclear magnetic resonance studies have revealed that Trp-induced activation coincides with both μs-ms rigidification and local structural changes in TRAP, the pathway of binding of the 11 Trp ligands to the TRAP ring remains unclear. Moreover, because each of eleven bound Trp molecules is completely surrounded by protein, its release requires flexibility of Trp-bound (holo) TRAP. Here, we used stopped-flow fluorescence to study the kinetics of Trp binding by Bacillus stearothermophilus TRAP over a range of temperatures and we observed well-separated kinetic steps. These data were analyzed using non-linear least-squares fitting of several two- and three-step models. We found that a model with two binding steps best describes the data, although the structural equivalence of the binding sites in TRAP implies a fundamental change in the time-dependent structure of the TRAP rings upon Trp binding. Application of the two binding step model reveals that Trp binding is much slower than the diffusion limit, suggesting a gating mechanism that depends on the dynamics of apo TRAP. These data also reveal that Trp dissociation from the second binding mode is much slower than after the first Trp binding mode, revealing insight into the mechanism for positive homotropic allostery, or cooperativity. Temperature dependent analyses reveal that both binding modes imbue increases in bondedness and order toward a more compressed active state. These results provide insight into mechanisms of cooperative TRAP activation, and underscore the importance of protein dynamics for ligand binding, ligand release, protein activation, and allostery. PMID:24224873
Charge Transport in Spiro-OMeTAD Investigated through Space-Charge-Limited Current Measurements
NASA Astrophysics Data System (ADS)
Röhr, Jason A.; Shi, Xingyuan; Haque, Saif A.; Kirchartz, Thomas; Nelson, Jenny
2018-04-01
Extracting charge-carrier mobilities for organic semiconductors from space-charge-limited conduction measurements is complicated in practice by nonideal factors such as trapping in defects and injection barriers. Here, we show that by allowing the bandlike charge-carrier mobility, trap characteristics, injection barrier heights, and the shunt resistance to vary in a multiple-trapping drift-diffusion model, a numerical fit can be obtained to the entire current density-voltage curve from experimental space-charge-limited current measurements on both symmetric and asymmetric 2 ,2',7 ,7' -tetrakis(N ,N -di-4-methoxyphenylamine)-9 ,9' -spirobifluorene (spiro-OMeTAD) single-carrier devices. This approach yields a bandlike mobility that is more than an order of magnitude higher than the effective mobility obtained using analytical approximations, such as the Mott-Gurney law and the moving-electrode equation. It is also shown that where these analytical approximations require a temperature-dependent effective mobility to achieve fits, the numerical model can yield a temperature-, electric-field-, and charge-carrier-density-independent mobility. Finally, we present an analytical model describing trap-limited current flow through a semiconductor in a symmetric single-carrier device. We compare the obtained charge-carrier mobility and trap characteristics from this analytical model to the results from the numerical model, showing excellent agreement. This work shows the importance of accounting for traps and injection barriers explicitly when analyzing current density-voltage curves from space-charge-limited current measurements.
Simple Laboratory Experiment for Illustrating Soil Respiration.
ERIC Educational Resources Information Center
Hattey, J. A.; Johnson, G. V.
1997-01-01
Describes an experiment to illustrate the effect of food source and added nutrients (N) on microbial activity in the soil. Supplies include air-dried soil, dried plant material, sources of carbon and nitrogen, a trap such as KOH, colored water, and a 500-mL Erlenmeyer flask. Includes a diagram of an incubation chamber to demonstrate microbial…
A Simple, Inexpensive Pollen Trap
P. E. Hoekstra
1965-01-01
Pollen plays a role of vital importance in the sexual reproduction of all plants but it is especially important in forestry. With few exceptions, sexual reproduction is the only link between succeeding generations in the forest. To be sure, vegetative reproduction is important for special purposes, but it will probably not be used on a mass scale in timber...
How primitive are the gases in Titan's atmosphere?
Owen, T
1987-01-01
Titan's atmosphere contains a mixture of nitrogen, methane, argon, hydrogen, simple hydrocarbons and nitriles, carbon monoxide, and carbon dioxide. Sources of nitrogen may be as a product of the photodissociation of ammonia or trapped in the ices that formed the satellite. Reasons for the abundance of deuterium are examined and its association with nitrogen on Titan is explained.
Dynamics of submicron aerosol droplets in a robust optical trap formed by multiple Bessel beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thanopulos, Ioannis; Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Athens 11635; Luckhaus, David
In this paper, we model the three-dimensional escape dynamics of single submicron-sized aerosol droplets in optical multiple Bessel beam traps. Trapping in counter-propagating Bessel beams (CPBBs) is compared with a newly proposed quadruple Bessel beam (QBB) trap, which consists of two perpendicularly arranged CPBB traps. Calculations are performed for perfectly and imperfectly aligned traps. Mie-theory and finite-difference time-domain methods are used to calculate the optical forces. The droplet escape kinetics are obtained from the solution of the Langevin equation using a Verlet algorithm. Provided the traps are perfectly aligned, the calculations indicate very long lifetimes for droplets trapped either inmore » the CPBB or in the QBB trap. However, minor misalignments that are hard to control experimentally already severely diminish the stability of the CPBB trap. By contrast, such minor misalignments hardly affect the extended droplet lifetimes in a QBB trap. The QBB trap is found to be a stable, robust optical trap, which should enable the experimental investigation of submicron droplets with radii down to 100 nm. Optical binding between two droplets and its potential role in preventing coagulation when loading a CPBB trap is briefly addressed.« less
Alencar, Jeronimo; Morone, Fernanda; De Mello, Cecília Ferreira; Dégallier, Nicolas; Lucio, Paulo Sérgio; de Serra-Freire, Nicolau Maués; Guimarães, Anthony Erico
2013-07-01
In this study, the oviposition behavior of mosquito species exhibiting acrodendrophilic habits was investigated. The study was conducted near the Simplicio Hydroelectic Reservoir (SHR) located on the border of the states of Minas Gerais and Rio de Janeiro, Brazil. Samples were collected using oviposition traps installed in forest vegetation cover between 1.70 and 4.30 m above ground level during the months of April, June, August, October, and December of 2011. Haemagogus janthinomys (Dyar), Haemagogus leucocelaenus (Dyar and Shannon), Aedes albopictus (Skuse), and Aedes terrens (Walker) specimens were present among the collected samples, the first two of which being proven vectors of sylvatic yellow fever (SYF) in Brazil and the latter is a vector of dengue in mainland Asia. As the data set was zero-inflated, a specific Poisson-based model was used for the statistical analysis. When all four species were considered in the model, only heights used for egg laying and months of sampling were explaining the distribution. However, grouping the species under the genera Haemagogus Williston and Aedes Meigen showed a significant preference for higher traps of the former. Considering the local working population of SHR is very large, fluctuating, and potentially exposed to SYF, and that this virus occurs in almost all Brazilian states, monitoring of Culicidae in Brazil is essential for assessing the risk of transmission of this arbovirus.
Coggins, Lewis G; Bacheler, Nathan M; Gwinn, Daniel C
2014-01-01
Occupancy models using incidence data collected repeatedly at sites across the range of a population are increasingly employed to infer patterns and processes influencing population distribution and dynamics. While such work is common in terrestrial systems, fewer examples exist in marine applications. This disparity likely exists because the replicate samples required by these models to account for imperfect detection are often impractical to obtain when surveying aquatic organisms, particularly fishes. We employ simultaneous sampling using fish traps and novel underwater camera observations to generate the requisite replicate samples for occupancy models of red snapper, a reef fish species. Since the replicate samples are collected simultaneously by multiple sampling devices, many typical problems encountered when obtaining replicate observations are avoided. Our results suggest that augmenting traditional fish trap sampling with camera observations not only doubled the probability of detecting red snapper in reef habitats off the Southeast coast of the United States, but supplied the necessary observations to infer factors influencing population distribution and abundance while accounting for imperfect detection. We found that detection probabilities tended to be higher for camera traps than traditional fish traps. Furthermore, camera trap detections were influenced by the current direction and turbidity of the water, indicating that collecting data on these variables is important for future monitoring. These models indicate that the distribution and abundance of this species is more heavily influenced by latitude and depth than by micro-scale reef characteristics lending credence to previous characterizations of red snapper as a reef habitat generalist. This study demonstrates the utility of simultaneous sampling devices, including camera traps, in aquatic environments to inform occupancy models and account for imperfect detection when describing factors influencing fish population distribution and dynamics.
Coggins, Lewis G.; Bacheler, Nathan M.; Gwinn, Daniel C.
2014-01-01
Occupancy models using incidence data collected repeatedly at sites across the range of a population are increasingly employed to infer patterns and processes influencing population distribution and dynamics. While such work is common in terrestrial systems, fewer examples exist in marine applications. This disparity likely exists because the replicate samples required by these models to account for imperfect detection are often impractical to obtain when surveying aquatic organisms, particularly fishes. We employ simultaneous sampling using fish traps and novel underwater camera observations to generate the requisite replicate samples for occupancy models of red snapper, a reef fish species. Since the replicate samples are collected simultaneously by multiple sampling devices, many typical problems encountered when obtaining replicate observations are avoided. Our results suggest that augmenting traditional fish trap sampling with camera observations not only doubled the probability of detecting red snapper in reef habitats off the Southeast coast of the United States, but supplied the necessary observations to infer factors influencing population distribution and abundance while accounting for imperfect detection. We found that detection probabilities tended to be higher for camera traps than traditional fish traps. Furthermore, camera trap detections were influenced by the current direction and turbidity of the water, indicating that collecting data on these variables is important for future monitoring. These models indicate that the distribution and abundance of this species is more heavily influenced by latitude and depth than by micro-scale reef characteristics lending credence to previous characterizations of red snapper as a reef habitat generalist. This study demonstrates the utility of simultaneous sampling devices, including camera traps, in aquatic environments to inform occupancy models and account for imperfect detection when describing factors influencing fish population distribution and dynamics. PMID:25255325
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wildenschild, Dorthe
2017-04-06
The proposed research focuses on improved fundamental understanding of the efficiency of physical trapping mechanisms, and as such will provide the basis for subsequent upscaling efforts. The overarching hypothesis of the proposed research is that capillary pressure plays a significant role in capillary trapping of CO 2, especially during the water imbibition stage of the sequestration process. We posit that the relevant physics of the sequestration process is more complex than is currently captured in relative permeability models, which are often based on so-called trapping models to represent relative permeability hysteresis. Our 4 main questions, guiding the 4 main tasksmore » of the proposed research, are as follows: (1) What is the morphology of capillary trapped CO 2 at the pore scale as a function of temperature, pressure, brine concentration, interfacial tension, and pore-space morphology under injection and subsequent imbibition? (2) Is it possible to describe the capillary trapping process using formation-dependent, but otherwise unique continuum-scale functions in permeability-capillary pressure, interfacial area and saturation space, rather than hysteretic functions in permeability-saturation or capillary pressure-saturation space? (3) How do continuum-scale relationships between kr-Pc-S-Anw developed based on pore-scale observations compare with traditional models incorporating relative permeability hysteresis (such as Land’s and other models,) and with observations at the core (5-10cm) scale? (4) How can trapped CO 2 volume be optimized via engineered injection and sweep strategies, and as a function of formation type (incl. heterogeneity)?« less
Capillary Trapping of CO2 in Oil Reservoirs: Observations in a Mixed-Wet Carbonate Rock.
Al-Menhali, Ali S; Krevor, Samuel
2016-03-01
Early deployment of carbon dioxide storage is likely to focus on injection into mature oil reservoirs, most of which occur in carbonate rock units. Observations and modeling have shown how capillary trapping leads to the immobilization of CO2 in saline aquifers, enhancing the security and capacity of storage. There are, however, no observations of trapping in rocks with a mixed-wet-state characteristic of hydrocarbon-bearing carbonate reservoirs. Here, we found that residual trapping of supercritical CO2 in a limestone altered to a mixed-wet state with oil was significantly less than trapping in the unaltered rock. In unaltered samples, the trapping of CO2 and N2 were indistinguishable, with a maximum residual saturation of 24%. After the alteration of the wetting state, the trapping of N2 was reduced, with a maximum residual saturation of 19%. The trapping of CO2 was reduced even further, with a maximum residual saturation of 15%. Best-fit Land-model constants shifted from C = 1.73 in the water-wet rock to C = 2.82 for N2 and C = 4.11 for the CO2 in the mixed-wet rock. The results indicate that plume migration will be less constrained by capillary trapping for CO2 storage projects using oil fields compared with those for saline aquifers.
ERIC Educational Resources Information Center
Ludwig, Meredith; Song, Mengli
2015-01-01
In 2010, the Wolf Trap Foundation for the Performing Arts, Institute for Early Learning Through the Arts (Wolf Trap), was awarded a U.S. Department of Education Arts in Education Model Development and Dissemination (AEMDD) grant. The purpose of the AEMDD grant was to develop, implement, and disseminate a research-based program of professional…
Normal-metal quasiparticle traps for superconducting qubits
NASA Astrophysics Data System (ADS)
Riwar, R.-P.; Hosseinkhani, A.; Burkhart, L. D.; Gao, Y. Y.; Schoelkopf, R. J.; Glazman, L. I.; Catelani, G.
2016-09-01
The presence of quasiparticles in superconducting qubits emerges as an intrinsic constraint on their coherence. While it is difficult to prevent the generation of quasiparticles, keeping them away from active elements of the qubit provides a viable way of improving the device performance. Here we develop theoretically and validate experimentally a model for the effect of a single small trap on the dynamics of the excess quasiparticles injected in a transmon-type qubit. The model allows one to evaluate the time it takes to evacuate the injected quasiparticles from the transmon as a function of trap parameters. With the increase of the trap size, this time decreases monotonically, saturating at the level determined by the quasiparticles diffusion constant and the qubit geometry. We determine the characteristic trap size needed for the relaxation time to approach that saturation value.
The Folding Energy Landscape and Free Energy Excitations of Cytochrome c
Weinkam, Patrick; Zimmermann, Jörg; Romesberg, Floyd E.
2014-01-01
The covalently bound heme cofactor plays a dominant role in the folding of cytochrome c. Due to the complicated inorganic chemistry of the heme, some might consider the folding of cytochrome c to be a special case that follows different principles than those used to describe folding of proteins without cofactors. Recent investigations, however, demonstrate that models which are commonly used to describe folding for many proteins work well for cytochrome c when heme is explicitly introduced and generally provide results that agree with experimental observations. We will first discuss results from simple native structure-based models. These models include attractive interactions between nonadjacent residues only if they are present in the crystal structure at pH 7. Since attractive nonnative contacts are not included in native structure-based models, their energy landscapes can be described as “perfectly funneled.” In other words, native structure-based models are energetically guided towards the native state and contain no energetic traps that would hinder folding. Energetic traps are sources of frustration which cause specific transient intermediates to be populated. Native structure-based models do include repulsion between residues due to excluded volume. Nonenergetic traps can therefore exist if the chain, which cannot cross over itself, must partially unfold in order for folding to proceed. The ability of native structure-based models to capture these type of motions is in part responsible for their successful predictions of folding pathways for many types of proteins. Models without frustration describe well the sequence of folding events for cytochrome c inferred from hydrogen exchange experiments thereby justifying their use as a starting point. At low pH, the folding sequence of cytochrome c deviates from that at pH 7 and from those predicted from models with perfectly funneled energy landscapes. Alternate folding pathways are a result of “chemical frustration.” This frustration arises because some regions of the protein are destabilized more than others due to the heterogeneous distribution of titratable residues that are protonated at low pH. We construct more complex models that include chemical frustration, in addition to the native structure-based terms. These more complex models only modestly perturb the energy landscape which remains overall well funneled. These perturbed models can accurately describe how alternative folding pathways are used at low pH. At alkaline pH, cytochrome c populates distinctly different structural ensembles. For instance, lysine residues are deprotonated and compete for the heme ligation site. The same models that can describe folding at low pH also predict well the structures and relative stabilities of intermediates populated at alkaline pH. PMID:20143816
Development and field evaluation of the sentinel mosquito arbovirus capture kit (SMACK).
Johnson, Brian J; Kerlin, Tim; Hall-Mendelin, Sonja; van den Hurk, Andrew F; Cortis, Giles; Doggett, Stephen L; Toi, Cheryl; Fall, Ken; McMahon, Jamie L; Townsend, Michael; Ritchie, Scott A
2015-10-06
Although sentinel animals are used successfully throughout the world to monitor arbovirus activity, ethical considerations and cross-reactions in serological assays highlight the importance of developing viable alternatives. Here we outline the development of a passive sentinel mosquito arbovirus capture kit (SMACK) that allows for the detection of arboviruses on honey-baited nucleic acid preservation cards (Flinders Technology Associates; FTA®) and has a similar trap efficacy as standard light traps in our trials. The trap efficacy of the SMACK was assessed against Centers for Disease Control and Prevention (CDC) miniature light traps (standard and ultraviolet) and the Encephalitis Vector Survey (EVS) trap in a series of Latin square field trials conducted in North Queensland, Australia. The ability of the SMACK to serve as a sentinel arbovirus surveillance tool was assessed in comparison to Passive Box Traps (PBT) during the 2014 wet season in the Cairns, Australia region and individually in the remote Northern Peninsula Area (NPA) of Australia during the 2015 wet season. The SMACK caught comparable numbers of mosquitoes to both CDC light traps (mean capture ratio 0.86: 1) and consistently outperformed the EVS trap (mean capture ratio 2.28: 1) when CO2 was supplied by either a gas cylinder (500 ml/min) or dry ice (1 kg). During the 2014 arbovirus survey, the SMACK captured significantly (t 6 = 2.1, P = 0.04) more mosquitoes than the PBT, and 2 and 1 FTA® cards were positive for Ross River virus and Barmah Forest virus, respectively, while no arboviruses were detected from PBTs. Arbovirus activity was detected at all three surveillance sites during the NPA survey in 2015 and ca. 27 % of FTA® cards tested positive for either Murray Valley encephalitis virus (2 detections), West Nile virus (Kunjin subtype; 13 detections), or both viruses on two occasions. These results demonstrate that the SMACK is a versatile, simple, and effective passive arbovirus surveillance tool that may also be used as a traditional overnight mosquito trap and has the potential to become a practical substitute for sentinel animal programs.
Noonan, Michael J; Rahman, M Abidur; Newman, Chris; Buesching, Christina D; Macdonald, David W
2015-10-01
The signal for climate change effects can be abstruse; consequently, interpretations of evidence must avoid verisimilitude, or else misattribution of causality could compromise policy decisions. Examining climatic effects on wild animal population dynamics requires ability to trap, observe or photograph and to recapture study individuals consistently. In this regard, we use 19 years of data (1994-2012), detailing the life histories on 1179 individual European badgers over 3288 (re-) trapping events, to test whether trapping efficiency was associated with season, weather variables (both contemporaneous and time lagged), body-condition index (BCI) and trapping efficiency (TE). PCA factor loadings demonstrated that TE was affected significantly by temperature and precipitation, as well as time lags in these variables. From multi-model inference, BCI was the principal driver of TE, where badgers in good condition were less likely to be trapped. Our analyses exposed that this was enacted mechanistically via weather variables driving BCI, affecting TE. Notably, the very conditions that militated for poor trapping success have been associated with actual survival and population abundance benefits in badgers. Using these findings to parameterize simulations, projecting best-/worst-case scenario weather conditions and BCI resulted in 8.6% ± 4.9 SD difference in seasonal TE, leading to a potential 55.0% population abundance under-estimation under the worst-case scenario; 38.6% over-estimation under the best case. Interestingly, simulations revealed that while any single trapping session might prove misrepresentative of the true population abundance, due to weather effects, prolonging capture-mark-recapture studies under sub-optimal conditions decreased the accuracy of population estimates significantly. We also use these projection scenarios to explore how weather could impact government-led trapping of badgers in the UK, in relation to TB management. We conclude that population monitoring must be calibrated against the likelihood that weather conditions could be altering trap success directly, and therefore biasing model design. © 2015 John Wiley & Sons Ltd.
Optical manipulation of microparticles and biological structures
NASA Astrophysics Data System (ADS)
Gahagan, Kevin Thomas
1998-06-01
We report experimental and theoretical investigations of the trapping of microparticles and biological objects using radiation pressure. Part I of this thesis presents a technique for trapping both low and high index microparticles using a single, stationary focused laser beam containing an optical vortex. Advantages of this vortex trap include the ease of implementation, a lower exposure level for high-index particles compared to a standard Gaussian beam trap, and the ability to isolate individual low-index particles in concentrated dispersions. The vortex trap is modeled using ray-tracing methods and a more precise electromagnetic model, which is accurate for particles less than 10 μm in diameter. We have measured the stable equilibrium position for two low-index particle systems (e.g., hollow glass spheres (HGS) in water, and water droplets in acetophenone (W/A)). The strength of the trap was measured for the HGS system along the longitudinal and transverse directions. We also demonstrate simultaneous trapping of a low and high index particle with a vortex beam. The stability of this dual-particle trap is found to depend on the relative particle size, the divergence angle of the beam, and the depth of the particles within the trapping chamber. Part II presents results from an interdisciplinary and collaborative investigation of an all-optical genetic engineering technique whereby Agrobacterium rhizogenes were inserted through a laser-ablated hole in the cell wall of the plant, Gingko biloba. We describe a protocol which includes the control of osmotic conditions, culturing procedures, viability assays and laser microsurgery. We succeeded in placing up to twelve viable bacteria into a single plant cell using this technique. The bacteria are believed to be slightly heated by the Gaussian beam trap. A numerical model is presented predicting a temperature rise of just a few degrees. Whereas G. biloba and A. rhitogenes were chosen for this study because of Ginkgo's pharmaceutical importance, only slight modification of the protocol is needed for other plant species.
Rigidity, Criticality and Prethermalization of Discrete Time Crystals
NASA Astrophysics Data System (ADS)
Yao, Norman
2017-04-01
Despite being forbidden in equilibrium, spontaneous breaking of time translation symmetry can occur in periodically driven, Floquet systems with discrete time-translation symmetry. The period of the resulting discrete time crystal (DTC) is quantized to an integer multiple of the drive period, arising from a combination of collective synchronization and many body localization. In this talk, I will describe a simple model for a one dimensional discrete time crystal which explicitly reveals the rigidity of the emergent oscillations as the drive is varied. I will analyze the properties of the dynamical phase transition where the time crystal melts into a trivial Floquet insulator. Effects of long-range interactions and pre-thermalization will be considered in the context of recent DTC realizations in trapped ions and solid-state spins.
Nanoplasmonics: a frontier of photovoltaic solar cells
NASA Astrophysics Data System (ADS)
Gu, Min; Ouyang, Zi; Jia, Baohua; Stokes, Nicholas; Chen, Xi; Fahim, Narges; Li, Xiangping; Ventura, Michael James; Shi, Zhengrong
2012-12-01
Nanoplasmonics recently has emerged as a new frontier of photovoltaic research. Noble metal nanostructures that can concentrate and guide light have demonstrated great capability for dramatically improving the energy conversion efficiency of both laboratory and industrial solar cells, providing an innovative pathway potentially transforming the solar industry. However, to make the nanoplasmonic technology fully appreciated by the solar industry, key challenges need to be addressed; including the detrimental absorption of metals, broadband light trapping mechanisms, cost of plasmonic nanomaterials, simple and inexpensive fabrication and integration methods of the plasmonic nanostructures, which are scalable for full size manufacture. This article reviews the recent progress of plasmonic solar cells including the fundamental mechanisms, material fabrication, theoretical modelling and emerging directions with a distinct emphasis on solutions tackling the above-mentioned challenges for industrial relevant applications.
NASA Astrophysics Data System (ADS)
Richard, R. L.; El-Alaoui, M.; Ashour-Abdalla, M.; Walker, R. J.
2009-04-01
We have modeled the entry of solar energetic particles (SEPs) into the magnetosphere during the November 24-25, 2001 magnetic storm and the trapping of particles in the inner magnetosphere. The study used the technique of following many test particles, protons with energies greater than about 100 keV, in the electric and magnetic fields from a global magnetohydrodynamic (MHD) simulation of the magnetosphere during this storm. SEP protons formed a quasi-trapped and trapped population near and within geosynchronous orbit. Preliminary data comparisons show that the simulation does a reasonably good job of predicting the differential flux measured by geosynchronous spacecraft. Particle trapping took place mainly as a result of particles becoming non-adiabatic and crossing onto closed field lines. Particle flux in the inner magnetosphere increased dramatically as an interplanetary shock impacted and compressed the magnetosphere near 0600 UT, but long term trapping (hours) did not become widespread until about an hour later, during a further compression of the magnetosphere. Trapped and quasi-trapped particles were lost during the simulation by motion through the magnetopause and by precipitation, primarily the former. This caused the particle population near and within geosynchronous orbit to gradually decrease later on during the latter part of the interval.
Single and dual fiber nano-tip optical tweezers: trapping and analysis.
Decombe, Jean-Baptiste; Huant, Serge; Fick, Jochen
2013-12-16
An original optical tweezers using one or two chemically etched fiber nano-tips is developed. We demonstrate optical trapping of 1 micrometer polystyrene spheres at optical powers down to 2 mW. Harmonic trap potentials were found in the case of dual fiber tweezers by analyzing the trapped particle position fluctuations. The trap stiffness was deduced using three different models. Consistent values of up to 1 fN/nm were found. The stiffness linearly decreases with decreasing light intensity and increasing fiber tip-to-tip distance.
Two Simple Models for Fracking
NASA Astrophysics Data System (ADS)
Norris, Jaren Quinn
Recent developments in fracking have enable the recovery of oil and gas from tight shale reservoirs. These developments have also made fracking one of the most controversial environmental issues in the United States. Despite the growing controversy surrounding fracking, there is relatively little publicly available research. This dissertation introduces two simple models for fracking that were developed using techniques from non-linear and statistical physics. The first model assumes that the volume of induced fractures must be equal to the volume of injected fluid. For simplicity, these fractures are assumed to form a spherically symmetric damage region around the borehole. The predicted volumes of water necessary to create a damage region with a given radius are in good agreement with reported values. The second model is a modification of invasion percolation which was previously introduced to model water flooding. The reservoir rock is represented by a regular lattice of local traps that contain oil and/or gas separated by rock barriers. The barriers are assumed to be highly heterogeneous and are assigned random strengths. Fluid is injected from a central site and the weakest rock barrier breaks allowing fluid to flow into the adjacent site. The process repeats with the weakest barrier breaking and fluid flowing to an adjacent site each time step. Extensive numerical simulations were carried out to obtain statistical properties of the growing fracture network. The network was found to be fractal with fractal dimensions differing slightly from the accepted values for traditional percolation. Additionally, the network follows Horton-Strahler and Tokunaga branching statistics which have been used to characterize river networks. As with other percolation models, the growth of the network occurs in bursts. These bursts follow a power-law size distribution similar to observed microseismic events. Reservoir stress anisotropy is incorporated into the model by assigning horizontal bonds weaker strengths on average than vertical bonds. Numerical simulations show that increasing bond strength anisotropy tends to reduce the fractal dimension of the growing fracture network, and decrease the power-law slope of the burst size distribution. Although simple, these two models are useful for making informed decisions about fracking.
Impact of doping on the density of states and the mobility in organic semiconductors
NASA Astrophysics Data System (ADS)
Zuo, Guangzheng; Abdalla, Hassan; Kemerink, Martijn
2016-06-01
We experimentally investigated conductivity and mobility of poly(3-hexylthiophene) (P3HT) doped with tetrafluorotetracyanoquinodimethane (F4TCNQ ) for various relative doping concentrations ranging from ultralow (10-5) to high (10-1) and various active layer thicknesses. Although the measured conductivity monotonously increases with increasing doping concentration, the mobilities decrease, in agreement with previously published work. Additionally, we developed a simple yet quantitative model to rationalize the results on basis of a modification of the density of states (DOS) by the Coulomb potentials of ionized dopants. The DOS was integrated in a three-dimensional (3D) hopping formalism in which parameters such as energetic disorder, intersite distance, energy level difference, and temperature were varied. We compared predictions of our model as well as those of a previously developed model to kinetic Monte Carlo (MC) modeling and found that only the former model accurately reproduces the mobility of MC modeling in a large part of the parameter space. Importantly, both our model and MC simulations are in good agreement with experiments; the crucial ingredient to both is the formation of a deep trap tail in the Gaussian DOS with increasing doping concentration.
Modeling of photocurrent and lag signals in amorphous selenium x-ray detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siddiquee, Sinchita; Kabir, M. Z., E-mail: kabir@encs.concordia.ca
2015-07-15
A mathematical model for transient photocurrent and lag signal in x-ray imaging detectors has been developed by considering charge carrier trapping and detrapping in the energy distributed defect states under exponentially distributed carrier generation across the photoconductor. The model for the transient and steady-state carrier distributions and hence the photocurrent has been developed by solving the carrier continuity equation for both holes and electrons. The residual (commonly known as lag signal) current is modeled by solving the trapping rate equations considering the thermal release and trap filling effects. The model is applied to amorphous selenium (a-Se) detectors for both chestmore » radiography and mammography. The authors analyze the dependence of the residual current on various factors, such as x-ray exposure, applied electric field, and temperature. The electron trapping and detrapping mostly determines the residual current in a-Se detectors. The lag signal is more prominent in chest radiographic detector than in mammographic detectors. The model calculations are compared with the published experimental data and show a very good agreement.« less
NASA Astrophysics Data System (ADS)
Yazdani, Armin; Chen, Renyu; Dunham, Scott T.
2017-03-01
This work models competitive gettering of metals (Cu, Ni, Fe, Mo, and W) by boron, phosphorus, and dislocation loops, and connects those results directly to device performance. Density functional theory calculations were first performed to determine the binding energies of metals to the gettering sites, and based on that, continuum models were developed to model the redistribution and trapping of the metals. Our models found that Fe is most strongly trapped by the dislocation loops while Cu and Ni are most strongly trapped by the P4V clusters formed in high phosphorus concentrations. In addition, it is found that none of the mentioned gettering sites are effective in gettering Mo and W. The calculated metal redistribution along with the associated capture cross sections and trap energy levels are passed to device simulation via the recombination models to calculate carrier lifetime and the resulting device performance. Thereby, a comprehensive and predictive TCAD framework is developed to optimize the processing conditions to maximize performance of lifetime sensitive devices.
Efficient Band-to-Trap Tunneling Model Including Heterojunction Band Offset
Gao, Xujiao; Huang, Andy; Kerr, Bert
2017-10-25
In this paper, we present an efficient band-to-trap tunneling model based on the Schenk approach, in which an analytic density-of-states (DOS) model is developed based on the open boundary scattering method. The new model explicitly includes the effect of heterojunction band offset, in addition to the well-known field effect. Its analytic form enables straightforward implementation into TCAD device simulators. It is applicable to all one-dimensional potentials, which can be approximated to a good degree such that the approximated potentials lead to piecewise analytic wave functions with open boundary conditions. The model allows for simulating both the electric-field-enhanced and band-offset-enhanced carriermore » recombination due to the band-to-trap tunneling near the heterojunction in a heterojunction bipolar transistor (HBT). Simulation results of an InGaP/GaAs/GaAs NPN HBT show that the proposed model predicts significantly increased base currents, due to the hole-to-trap tunneling enhanced by the emitter-base junction band offset. Finally, the results compare favorably with experimental observation.« less
Efficient Band-to-Trap Tunneling Model Including Heterojunction Band Offset
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Xujiao; Huang, Andy; Kerr, Bert
In this paper, we present an efficient band-to-trap tunneling model based on the Schenk approach, in which an analytic density-of-states (DOS) model is developed based on the open boundary scattering method. The new model explicitly includes the effect of heterojunction band offset, in addition to the well-known field effect. Its analytic form enables straightforward implementation into TCAD device simulators. It is applicable to all one-dimensional potentials, which can be approximated to a good degree such that the approximated potentials lead to piecewise analytic wave functions with open boundary conditions. The model allows for simulating both the electric-field-enhanced and band-offset-enhanced carriermore » recombination due to the band-to-trap tunneling near the heterojunction in a heterojunction bipolar transistor (HBT). Simulation results of an InGaP/GaAs/GaAs NPN HBT show that the proposed model predicts significantly increased base currents, due to the hole-to-trap tunneling enhanced by the emitter-base junction band offset. Finally, the results compare favorably with experimental observation.« less
NASA Astrophysics Data System (ADS)
Liang, Gui-Yun; Wei, Hui-Gang; Yuan, Da-Wei; Wang, Fei-Lu; Peng, Ji-Min; Zhong, Jia-Yong; Zhu, Xiao-Long; Schmidt, Mike; Zschornack, Günter; Ma, Xin-Wen; Zhao, Gang
2018-01-01
Spectra are fundamental observation data used for astronomical research, but understanding them strongly depends on theoretical models with many fundamental parameters from theoretical calculations. Different models give different insights for understanding a specific object. Hence, laboratory benchmarks for these theoretical models become necessary. An electron beam ion trap is an ideal facility for spectroscopic benchmarks due to its similar conditions of electron density and temperature compared to astrophysical plasmas in stellar coronae, supernova remnants and so on. In this paper, we will describe the performance of a small electron beam ion trap/source facility installed at National Astronomical Observatories, Chinese Academy of Sciences.We present some preliminary experimental results on X-ray emission, ion production, the ionization process of trapped ions as well as the effects of charge exchange on the ionization.
NASA Astrophysics Data System (ADS)
Peng, Z.; Ben-Zion, Y.; Michael, A. J.; Zhu, L.
2002-12-01
Waveform modeling of seismic fault zone (FZ) trapped waves has been claimed to provide a high resolution imaging of FZ structure at seismogenic depth. We analyze quantitatively a waveform data set generated by 238 Landers aftershocks recorded by a portable seismic array (Lee, 1999). The array consists of 33 three-component L-22 seismometers, 22 of which on a line crossing the surface rupture zone of the mainshock. A subset of 93 aftershocks were also recorded by the Southern California Seismic Network, while the other events were recorded only by the FZ array. We locate the latter subset of events with a "grid-search relocation method" using accurately picked P and S arrival times, a half-space velocity model, and back-azimuth adjustment to correct the effect of low velocity FZ material on phase arrivals. Next we determine the quality of FZ trapped wave generation from the ratio of trapped waves to S-wave energy for stations relatively close to and far from the FZ. Energy ratios exceeding 4, between 2 and 4, and less than 2, are assigned quality A, B, and C of trapped wave generation. We find that about 70% of nearby events with S-P time less than 2 sec, including many clearly off the fault, generate FZ trapped waves with quality A or B. This distribution is in marked contrast with previous claims that trapped waves at Landers are generated only by sources close to or inside the fault zone (Li et al., 1994, 2000). The existence of trapped waves due to sources outside the Landers rupture zone indicates that the generating structure is shallow, as demonstrated in recent 3D calculations of wave propagation in irregular FZ structures (Fohrmann et al., 2002). The time difference between the S arrivals and trapped wave group does not grow systematically with increasing source-receiver distance along the fault, in agreement with the above conclusion. The dispersion of trapped waves at Landers is rather weak, again suggesting a short propagation distance inside the low velocity FZ material. To put additional constraints on properties of the shallow trapping structure at Landers, we modeled FZ trapped waves with a genetic inversion algorithm (Michael and Ben-Zion, 2002) using the 2D analytical solution of Ben-Zion and Aki (1990) and Ben-Zion (1998) for a uniform FZ structure. The synthetic waveform modeling indicates an effective FZ waveguide with depth of about 3-5 km, width on the order of 200 m, shear velocity reduction relative to the host rock of about 40-50%, and S wave quality factor of about 30. The modeling also shows that the waveguide is not centered at the exposed fault trace (station C00), but at a distance of about 100 m east of C00. Shallow trapping structures with similar properties appear to characterize also the Karadere-Duzce branch of the north Anatolian fault (Ben-Zion et al., 2002) and the Parkfield segment of the San Andreas fault (Michael and Ben-Zion, 2002; Korneev et al., 2002).
NASA Astrophysics Data System (ADS)
Nour, Mohamed
Constructing an effective statistical model and a simulation tool that can predict the phenomenon of random telegraph signals (RTS) is the objective of this work. The continuous scaling down of metal oxide -- semiconductor field effect transistors (MOSFETs) makes charging/discharging traps(s) located at the silicon/silicon dioxide interface or deep in the oxide bulk by mobile charge(s) a more pronounced problem for both analog and digital applications. The intent of this work is to develop an RTS statistical model and a simulation tool based on first principles and supported by extensive experimental data. The newly developed RTS statistical model and its simulation tool should be able to replicate and predict the RTS in time and frequency domains. First, room temperature RTS measurements are performed which provide limited information about the trap. They yield the extraction of some trap and RTS characteristics such as average capture and emission times associated with RTS traces, trap position in the oxide with respect to the Si/SiO 2 interface and along the channel with respect to the source, capture cross section, and trap energies in the Si and SiO2 band -- gaps. Variable temperature measurements, on the other hand, yield much more valuable information. Variable temperature RTS measurements from room temperature down to 80 K were performed, with the MOSFET biased from threshold voltage to strong inversion, in the linear and saturation regions. Variable temperature RTS measurements yield the extraction of trap characteristics such as capture cross -- section prefactor, capture and emission activation energies, change in entropy and enthalpy, and relaxation energy associated with a trap from which the nature and origin of a defect center can be identified. The newly developed Random Telegraph Signals Simulation (RTSSIM) is based on several physical principles and mechanisms e.g. (1) capturing and emitting a mobile charge from and to the channel is governed by phonon- assisted- tunneling, (2) traps only within a few kBT of the Fermi energy level are considered electrically active, (3) trap density is taken as U -- shaped in energy in the silicon band-gap, (4) device scalability is accounted for, (5) and temperature dependence of all parameters is considered. RTSSIM reconstructs the RTS traces in time domain from which the power spectral density (PSD) is evaluated. If there is 20 or more active traps, RTSSIM evaluates the PSD from the superposition of the RTS spectra. RTSSIM extracts RTS and trap characteristics from the simulated RTS data and outputs them to MS Excel files for further analyses and study. The novelty of this work is: (1) it is the first time quantum trap states have been accurately assigned to each switching level in a complex RTS corresponding to dependently and independently interacting traps, (2) new physics-based measurement-driven model and simulation tool has been developed for RTS phenomenon in a MOSFET, (3) and it is the first time a species in SiO2 responsible for RTS has been identified through time-domain measurements and extensive analysis using four trap characteristics at the same time.
Xiong, T P; Yan, L L; Zhou, F; Rehan, K; Liang, D F; Chen, L; Yang, W L; Ma, Z H; Feng, M; Vedral, V
2018-01-05
Most nonequilibrium processes in thermodynamics are quantified only by inequalities; however, the Jarzynski relation presents a remarkably simple and general equality relating nonequilibrium quantities with the equilibrium free energy, and this equality holds in both the classical and quantum regimes. We report a single-spin test and confirmation of the Jarzynski relation in the quantum regime using a single ultracold ^{40}Ca^{+} ion trapped in a harmonic potential, based on a general information-theoretic equality for a temporal evolution of the system sandwiched between two projective measurements. By considering both initially pure and mixed states, respectively, we verify, in an exact and fundamental fashion, the nonequilibrium quantum thermodynamics relevant to the mutual information and Jarzynski equality.
Baranyai, Zsolt; Reich, Dominik; Vágner, Adrienn; Weineisen, Martina; Tóth, Imre; Wester, Hans-Jürgen; Notni, Johannes
2015-06-28
Due to its 3 carbonic acid groups being available for bioconjugation, the TRAP chelator (1,4,7-triazacyclononane-1,4,7-tris(methylene(2-carboxyethylphosphinic acid))) is chosen for the synthesis of trimeric bioconjugates for radiolabelling. We optimized a protocol for bio-orthogonal TRAP conjugation via Cu(I)-catalyzed Huisgen-cycloaddition of terminal azides and alkynes (CuAAC), including a detailed investigation of kinetic properties of Cu(II)-TRAP complexes. TRAP building blocks for CuAAC, TRAP(alkyne)3 and TRAP(azide)3 were obtained by amide coupling of propargylamine/3-azidopropyl-1-amine, respectively. For Cu(II) complexes of neat and triply amide-functionalized TRAP, the equilibrium properties as well as pseudo-first-order Cu(II)-transchelation, using 10 to 30 eq. of NOTA and EDTA, were studied by UV-spectrophotometry. Dissociation of any Cu(II)-TRAP species was found to be independent on the nature or excess of a competing chelator, confirming a proton-driven two-step mechanism. The respective thermodynamic stability constants (log K(ML): 19.1 and 17.6) and dissociation rates (k: 38 × 10(-6) and 7 × 10(-6) s(-1), 298 K, pH 4) show that the Cu(II) complex of the TRAP-conjugate possesses lower thermodynamic stability but higher kinetic inertness. At pH 2-3, its demetallation with NOTA was complete within several hours/days at room temperature, respectively, enabling facile Cu(II) removal after click coupling by direct addition of NOTA trihydrochloride to the CuAAC reaction mixture. Notwithstanding this, an extrapolated dissociation half life of >100 h at 37 °C and pH 7 confirms the suitability of TRAP-bioconjugates for application in Cu-64 PET (cf. t(1/2)(Cu-64) = 12.7 h). To showcase advantages of the method, TRAP(DUPA-Pep)3, a trimer of the PSMA inhibitor DUPA-Pep, was synthesized using 1 eq. TRAP(alkyne)3, 3.3 eq. DUPA-Pep-azide, 10 eq. Na ascorbate, and 1.2 eq. Cu(II)-acetate. Its PSMA affinity (IC50), determined by the competition assay on LNCaP cells, was 18-times higher than that of the corresponding DOTAGA monomer (IC50: 2 ± 0.1 vs. 36 ± 4 nM), resulting in markedly improved contrast in Ga-68-PET imaging. In conclusion, the kinetic inertness profile of Cu(II)-TRAP conjugates allows for simple Cu(II) removal after click functionalisation by means of transchelation, but also confirms their suitability for Cu-64-PET as demonstrated previously (Dalton Trans., 2012, 41, 13803).
Microfluidic cell trap array for controlled positioning of single cells on adhesive micropatterns.
Lin, Laiyi; Chu, Yeh-Shiu; Thiery, Jean Paul; Lim, Chwee Teck; Rodriguez, Isabel
2013-02-21
Adhesive micropattern arrays permit the continuous monitoring and systematic study of the behavior of spatially confined cells of well-defined shape and size in ordered configurations. This technique has contributed to defining mechanisms that control cell polarity and cell functions, including proliferation, apoptosis, differentiation and migration in two-dimensional cell culture systems. These micropattern studies often involve isolating a single cell on one adhesive protein micropattern using random seeding methods. Random seeding has been successful for isolated and, to a lesser degree, paired patterns, where two patterns are placed in close proximity. Using this method, we found that the probability of obtaining one cell per pattern decreases significantly as the number of micropatterns in a cluster increases, from 16% for paired micropatterns to 0.3% for clusters of 6 micropatterns. This work presents a simple yet effective platform based on a microfludic sieve-like trap array to exert precise control over the positioning of single cells on micropatterns. We observed a 4-fold improvement over random seeding in the efficiency of placing a pair of single cells on paired micropattern and a 40-fold improvement for 6-pattern clusters. The controlled nature of this platform can also allow the juxtaposition of two different cell populations through a simple modification in the trap arrangement. With excellent control of the identity, number and position of neighbouring cells, this cell-positioning platform provides a unique opportunity for the extension of two-dimensional micropattern studies beyond paired micropatterns to organizations containing many cells or different cell types.
Stable Trapping of Multielectron Helium Bubbles in a Paul Trap
NASA Astrophysics Data System (ADS)
Joseph, E. M.; Vadakkumbatt, V.; Pal, A.; Ghosh, A.
2017-06-01
In a recent experiment, we have used a linear Paul trap to store and study multielectron bubbles (MEBs) in liquid helium. MEBs have a charge-to-mass ratio (between 10^{-4} and 10^{-2} C/kg) which is several orders of magnitude smaller than ions (between 10^6 and 10^8 C/kg) studied in traditional ion traps. In addition, MEBs experience significant drag force while moving through the liquid. As a result, the experimental parameters for stable trapping of MEBs, such as magnitude and frequency of the applied electric fields, are very different from those used in typical ion trap experiments. The purpose of this paper is to model the motion of MEBs inside a linear Paul trap in liquid helium, determine the range of working parameters of the trap, and compare the results with experiments.
NASA Astrophysics Data System (ADS)
Xu, Huifang; Dai, Yuehua
2017-02-01
A two-dimensional analytical model of double-gate (DG) tunneling field-effect transistors (TFETs) with interface trapped charges is proposed in this paper. The influence of the channel mobile charges on the potential profile is also taken into account in order to improve the accuracy of the models. On the basis of potential profile, the electric field is derived and the expression for the drain current is obtained by integrating the BTBT generation rate. The model can be used to study the impact of interface trapped charges on the surface potential, the shortest tunneling length, the drain current and the threshold voltage for varying interface trapped charge densities, length of damaged region as well as the structural parameters of the DG TFET and can also be utilized to design the charge trapped memory devices based on TFET. The biggest advantage of this model is that it is more accurate, and in its expression there are no fitting parameters with small calculating amount. Very good agreements for both the potential, drain current and threshold voltage are observed between the model calculations and the simulated results. Project supported by the National Natural Science Foundation of China (No. 61376106), the University Natural Science Research Key Project of Anhui Province (No. KJ2016A169), and the Introduced Talents Project of Anhui Science and Technology University.
Phase-field-crystal study of solute trapping
NASA Astrophysics Data System (ADS)
Humadi, Harith; Hoyt, Jeffrey J.; Provatas, Nikolas
2013-02-01
In this study we have incorporated two time scales into the phase-field-crystal model of a binary alloy to explore different solute trapping properties as a function of crystal-melt interface velocity. With only diffusive dynamics, we demonstrate that the segregation coefficient, K as a function of velocity for a binary alloy is consistent with the model of Kaplan and Aziz where K approaches unity in the limit of infinite velocity. However, with the introduction of wavelike dynamics in both the density and concentration fields, the trapping follows the kinetics proposed by Sobolev [Phys. Lett. A10.1016/0375-9601(95)00084-G 199, 383 (1995)], where complete trapping occurs at a finite velocity.
Negative specific heat with trapped ultracold quantum gases
NASA Astrophysics Data System (ADS)
Strzys, M. P.; Anglin, J. R.
2014-01-01
The second law of thermodynamics normally prescribes that heat tends to disperse, but in certain cases it instead implies that heat will spontaneously concentrate. The spontaneous formation of stars out of cold cosmic nebulae, without which the universe would be dark and dead, is an example of this phenomenon. Here we show that the counter-intuitive thermodynamics of spontaneous heat concentration can be studied experimentally with trapped quantum gases, by using optical lattice potentials to realize weakly coupled arrays of simple dynamical subsystems, so that under the standard assumptions of statistical mechanics, the behavior of the whole system can be predicted from ensemble properties of the isolated components. A naive application of the standard statistical mechanical formalism then identifies the subsystem excitations as heat in this case, but predicts them to share the peculiar property of self-gravitating protostars, of having negative micro-canonical specific heat. Numerical solution of real-time evolution equations confirms the spontaneous concentration of heat in such arrays, with initially dispersed energy condensing quickly into dense ‘droplets’. Analysis of the nonlinear dynamics in adiabatic terms allows it to be related to familiar modulational instabilities. The model thus provides an example of a dictionary mesoscopic system, in which the same non-trivial phenomenon can be understood in both thermodynamical and mechanical terms.
Edge and divertor plasma: detachment, stability, and plasma-wall interactions
NASA Astrophysics Data System (ADS)
Krasheninnikov, S. I.; Kukushkin, A. S.; Lee, Wonjae; Phsenov, A. A.; Smirnov, R. D.; Smolyakov, A. I.; Stepanenko, A. A.; Zhang, Yanzeng
2017-10-01
The paper presents an overview of the results of studies on a wide range of the edge plasma related issues. The rollover of the plasma flux to the target during progressing detachment process is shown to be caused by the increase of the impurity radiation loss and volumetric plasma recombination, whereas the ion-neutral friction, although important for establishing the necessary edge plasma conditions, does not contribute per se to the rollover of the plasma flux to the target. The processes limiting the power loss by impurity radiation are discussed and a simple estimate of this limit is obtained. Different mechanisms of meso-scale thermal instabilities driven by impurity radiation and resulting in self-sustained oscillations in the edge plasma are identified. An impact of sheared magnetic field on the dynamics of the blobs and ELM filaments playing an important role in the edge and SOL plasma transport is discussed. Trapping of He, which is an intrinsic impurity for the fusion plasmas, in the plasma-facing tungsten material is considered. A newly developed model, accounting for the generation of additional He traps caused by He bubble growth, fits all the available experimental data on the layer of nano-bubbles observed in W under irradiation by low energy He plasma.
Colloidal motility and patterning by physical chemotaxis
NASA Astrophysics Data System (ADS)
Palacci, Jeremie; Abecassis, Benjamin; Cottin-Bizonne, Cecile; Ybert, Christophe; Bocquet, Lyderic
2009-11-01
We developped a microfluidic setup to show the motility of colloids or biomolecules under a controlled salt gradient thanks to the diffusiophoresis phenomenon [1,2]. We can therefore mimic chemotaxis on simple physical basis with thrilling analogies with the biological chemotaxis of E. Coli bacteria: salt dependance of the velocity [3] and log-sensing behavior [4]. In addition with a temporally tunable gradient we show we can generate an effective osmotic potential to trap colloids or DNA. These experimental observations are supported by numerical simulations and an asymptotic ratchet model. Finally, we use these traps to generate various patterns and because concentration gradients are ubiquitous in nature, we question for the role of such a mecanism in morphogenesis [5] or positioning perspectives in cells [6]. [4pt] [1] B. Abecassis, C. Cottin-Bizonne, C. Ybert, A. Ajdari, and L. Bocquet, Nat. Mat., 7(10):785--789, 2008. [2] Anderson, Ann. Rev. Fluid Mech, 21, 1989. [3] Y. L. Qi and J. Adler, PNAS, 86(21):8358--8362, 1989. [4] Y. V. Kalinin, L. L. Jiang, Y. H. Tu, and M. M. Wu, Biophys. J., 96(6):2439--2448, 2009. [4] J. B. Moseley, A. Mayeux, A. Paoletti, and P. Nurse, Nat., 459(7248):857--U8, 2009. [6] L. Wolpert, Dev., 107:3--12, 1989
Mathematical Modeling of Resonant Processes in Confined Geometry of Atomic and Atom-Ion Traps
NASA Astrophysics Data System (ADS)
Melezhik, Vladimir S.
2018-02-01
We discuss computational aspects of the developed mathematical models for resonant processes in confined geometry of atomic and atom-ion traps. The main attention is paid to formulation in the nondirect product discrete-variable representation (npDVR) of the multichannel scattering problem with nonseparable angular part in confining traps as the boundary-value problem. Computational efficiency of this approach is demonstrated in application to atomic and atom-ion confinement-induced resonances we predicted recently.
High current proton beams production at Simple Mirror Ion Source 37.
Skalyga, V; Izotov, I; Razin, S; Sidorov, A; Golubev, S; Kalvas, T; Koivisto, H; Tarvainen, O
2014-02-01
This paper presents the latest results of high current proton beam production at Simple Mirror Ion Source (SMIS) 37 facility at the Institute of Applied Physics (IAP RAS). In this experimental setup, the plasma is created and the electrons are heated by 37.5 GHz gyrotron radiation with power up to 100 kW in a simple mirror trap fulfilling the ECR condition. Latest experiments at SMIS 37 were performed using a single-aperture two-electrode extraction system. Proton beams with currents up to 450 mA at high voltages below 45 kV were obtained. The maximum beam current density was measured to be 600 mA/cm(2). A possibility of further improvement through the development of an advanced extraction system is discussed.
Solórzano, José-Arturo; Gilles, Jeremie; Bravo, Oscar; Vargas, Cristina; Gomez-Bonilla, Yannery; Bingham, Georgina V; Taylor, David B
2015-01-01
Pineapple production in Costa Rica increased nearly 300-fold during the last 30 yr, and >40,000 hectares of land are currently dedicated to this crop. At the end of the pineapple cropping cycle, plants are chopped and residues incorporated into the soil in preparation for replanting. Associated with increased pineapple production has been a large increase in stable fly, Stomoxys calcitrans (L.), populations. Stable flies are attracted to, and oviposit in, the decomposing, chopped pineapple residues. In conjunction with chemical control of developing larvae, adult trapping is an important control strategy. In this study, four blue-black fabric traps, Nzi, Vavoua, Model H, and Ngu, were compared with a white sticky trap currently used for stable fly control in Costa Rica. Overall, the white sticky trap caught the highest number of stable flies, followed by the Nzi, Vavoua, Model H, and Ngu. Collections on the white sticky trap increased 16 d after residues were chopped; coinciding with the expected emergence of flies developing in the pineapple residues. During this same time period, collections in the blue-black fabric traps decreased. Sex ratio decreased from >7:1 (females:males) 3-7 d after chopping to 1:1 at 24-28 d. White sticky, Nzi and Vavoua traps collected similar numbers of colonizing flies 3-7 d after residues were chopped. However, white sticky traps collected more flies once emergence from the pineapple residues began. Although white sticky traps collected more flies than fabric traps, they remain labor intensive and environmentally unsound because of their disposable and nonbiodegradable nature. Published by Oxford University Press on behalf of the Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.
Solórzano, José-Arturo; Gilles, Jeremie; Bravo, Oscar; Vargas, Cristina; Gomez-Bonilla, Yannery; Bingham, Georgina V.; Taylor, David B.
2015-01-01
Pineapple production in Costa Rica increased nearly 300-fold during the last 30 yr, and >40,000 hectares of land are currently dedicated to this crop. At the end of the pineapple cropping cycle, plants are chopped and residues incorporated into the soil in preparation for replanting. Associated with increased pineapple production has been a large increase in stable fly, Stomoxys calcitrans (L.), populations. Stable flies are attracted to, and oviposit in, the decomposing, chopped pineapple residues. In conjunction with chemical control of developing larvae, adult trapping is an important control strategy. In this study, four blue-black fabric traps, Nzi, Vavoua, Model H, and Ngu, were compared with a white sticky trap currently used for stable fly control in Costa Rica. Overall, the white sticky trap caught the highest number of stable flies, followed by the Nzi, Vavoua, Model H, and Ngu. Collections on the white sticky trap increased 16 d after residues were chopped; coinciding with the expected emergence of flies developing in the pineapple residues. During this same time period, collections in the blue-black fabric traps decreased. Sex ratio decreased from >7:1 (females:males) 3–7 d after chopping to 1:1 at 24–28 d. White sticky, Nzi and Vavoua traps collected similar numbers of colonizing flies 3–7 d after residues were chopped. However, white sticky traps collected more flies once emergence from the pineapple residues began. Although white sticky traps collected more flies than fabric traps, they remain labor intensive and environmentally unsound because of their disposable and nonbiodegradable nature. PMID:26454479
Arimoto, Hanayo; Harwood, James F; Nunn, Peter J; Richardson, Alec G; Gordon, Scott; Obenauer, Peter J
2015-12-01
Recently, the BG-Sentinel® trap (BGS) trap has been reconfigured for increased durability during harsh field conditions. We evaluated the attractiveness of this redesigned trap, BG-Sentinel 2® (BGS2), and its novel granular lure cartridge system relative to the original trap and lure. Granular lures containing different combinations of lactic acid, ammonia, hexanoic acid, and octenol were also evaluated. Lure cartridges with all components except octenol trapped significantly more Aedes albopictus than lures containing octenol. This new granular lure combination and original BG-Lure® system were paired with BGS and BGS2 traps to compare relative attractiveness of the lures and the traps. All evaluations were conducted under field conditions in a suburban neighborhood in northeastern Florida from July to October 2014. Overall, the average numbers of Ae. albopictus collected by BGS or BGS2 were similar regardless of the lure type (i.e., mesh bag versus granules) (P = 0.56). The functionality and durability of both trap models are discussed.
Effect of traps on the charge transport in semiconducting polymer PCDTBT
NASA Astrophysics Data System (ADS)
Khan, Mohd Taukeer; Agrawal, Vikash; Almohammedi, Abdullah; Gupta, Vinay
2018-07-01
Organic semiconductors (OSCs) are nowadays called upon as promising candidates for next generation electronics devices. Due to disorder structure of these materials, a high density of traps are present in their energy band gap which affect the performance of these devices. In the present manuscript, we have investigated the role of traps on charge transport in PCDTBT thin film by measuring the temperature dependent J(V) characteristics in hole only device configuration. The obtained results were analyzed by space charge limited (SCL) conduction model. It has been found that the room temperature J(V) characteristics follow Mott-Gurney square law for trap-free SCL conduction. But below 278 K, the current increases according to trap-filling SCL law with traps distributed exponentially in the band gap of semiconductor. Furthermore, after reaching a crossover voltage of VC ∽ 12 V, all the traps filled by injected carriers and the trap-filling SCL current switch to trap-free SCL current. The hole mobility of trap-free SCL current is about one order higher as compared trap-filling SCL current and remains constant with temperature.
Optical levitation particle delivery system for a dual beam fiber optic trap.
Gauthier, R C; Frangioudakis, A
2000-01-01
We combine a radiation-pressure-based levitation system with a dual fiber, laser trapping system to demonstrate the potential of delivering single particles into the fiber trap. The forces versus position and the trajectory of the particle subjected to the laser beams are examined with an enhanced ray optics model. A sequence of video images taken from the experimental apparatus demonstrates the principle of particle delivery, trapping, and further manipulation.
Collisional Decoherence in Trapped-Atom Interferometers that use Nondegenerate Sources
2009-01-22
a magneto - optical trap . The trap is switched off and the atomic cloud begins to fall due to gravity. At the time t=0, the cloud is illuminated with...model is used to find the optimal operating conditions of the interferometer and direct Monte-Carlo simulation of the interferometer is used to...A major difficulty with all trapped -atom interferometers that use optical pulses is that the residual potential along the guide causes
Turkin, Alexander; van Oijen, Antoine M; Turkin, Anatoliy A
2015-01-01
One-dimensional sliding along DNA as a means to accelerate protein target search is a well-known phenomenon occurring in various biological systems. Using a biomimetic approach, we have recently demonstrated the practical use of DNA-sliding peptides to speed up bimolecular reactions more than an order of magnitude by allowing the reactants to associate not only in the solution by three-dimensional (3D) diffusion, but also on DNA via one-dimensional (1D) diffusion [A. Turkin et al., Chem. Sci. (2015)]. Here we present a mean-field kinetic model of a bimolecular reaction in a solution with linear extended sinks (e.g., DNA) that can intermittently trap molecules present in a solution. The model consists of chemical rate equations for mean concentrations of reacting species. Our model demonstrates that addition of linear traps to the solution can significantly accelerate reactant association. We show that at optimum concentrations of linear traps the 1D reaction pathway dominates in the kinetics of the bimolecular reaction; i.e., these 1D traps function as an assembly line of the reaction product. Moreover, we show that the association reaction on linear sinks between trapped reactants exhibits a nonclassical third-order behavior. Predictions of the model agree well with our experimental observations. Our model provides a general description of bimolecular reactions that are controlled by a combined 3D+1D mechanism and can be used to quantitatively describe both naturally occurring as well as biomimetic biochemical systems that reduce the dimensionality of search.
NASA Astrophysics Data System (ADS)
Jung, Haesun; Choi, Sungju; Jang, Jun Tae; Yoon, Jinsu; Lee, Juhee; Lee, Yongwoo; Rhee, Jihyun; Ahn, Geumho; Yu, Hye Ri; Kim, Dong Myong; Choi, Sung-Jin; Kim, Dae Hwan
2018-02-01
We propose a universal model for bias-stress (BS)-induced instability in the inkjet-printed carbon nanotube (CNT) networks used in field-effect transistors (FETs). By combining two experimental methods, i.e., a comparison between air and vacuum BS tests and interface trap extraction, BS instability is explained regardless of either the BS polarity or ambient condition, using a single platform constituted by four key factors: OH- adsorption/desorption followed by a change in carrier concentration, electron concentration in CNT channel corroborated with H2O/O2 molecules in ambient, charge trapping/detrapping, and interface trap generation. Under negative BS (NBS), the negative threshold voltage shift (ΔVT) is dominated by OH- desorption, which is followed by hole trapping in the interface and/or gate insulator. Under positive BS (PBS), the positive ΔVT is dominated by OH- adsorption, which is followed by electron trapping in the interface and/or gate insulator. This instability is compensated by interface trap extraction; PBS instability is slightly more complicated than NBS instability. Furthermore, our model is verified using device simulation, which gives insights on how much each mechanism contributes to BS instability. Our result is potentially useful for the design of highly stable CNT-based flexible circuits in the Internet of Things wearable healthcare era.
Magneto-optical trapping of potassium isotopes
NASA Astrophysics Data System (ADS)
Williamson, Robert Sylvester, III
1997-12-01
We have demonstrated a magneto-optical trap (scMOT) suitable for capturing radioactive potassium produced on- line with the UW-Madison 12MeV tandem electrostatic accelerator. To do this, we made and characterized the first scMOT for potassium, measured the potassium ultracold collision rate, and developed a numerical trap- loading rate model that makes useful quantitative predictions. We have created a cold beam of collimated potassium atoms using a pyramidal magneto-optical funnel and used it to load a long-lifetime scMOT operating at ultrahigh vacuum. We have also built a target that produces a beam of radioactive 37K and 38K and coupled it to the magneto-optical funnel and trap. Once a trap of radioactive 38K has been demonstrated, the primary goal of this project is to measure the beta-asymmetry parameter in the decay of 38K, performing a sensitive test of the Standard Model of weak interactions.
Analytical theory of mesoscopic Bose-Einstein condensation in an ideal gas
NASA Astrophysics Data System (ADS)
Kocharovsky, Vitaly V.; Kocharovsky, Vladimir V.
2010-03-01
We find the universal structure and scaling of the Bose-Einstein condensation (BEC) statistics and thermodynamics (Gibbs free energy, average energy, heat capacity) for a mesoscopic canonical-ensemble ideal gas in a trap with an arbitrary number of atoms, any volume, and any temperature, including the whole critical region. We identify a universal constraint-cutoff mechanism that makes BEC fluctuations strongly non-Gaussian and is responsible for all unusual critical phenomena of the BEC phase transition in the ideal gas. The main result is an analytical solution to the problem of critical phenomena. It is derived by, first, calculating analytically the universal probability distribution of the noncondensate occupation, or a Landau function, and then using it for the analytical calculation of the universal functions for the particular physical quantities via the exact formulas which express the constraint-cutoff mechanism. We find asymptotics of that analytical solution as well as its simple analytical approximations which describe the universal structure of the critical region in terms of the parabolic cylinder or confluent hypergeometric functions. The obtained results for the order parameter, all higher-order moments of BEC fluctuations, and thermodynamic quantities perfectly match the known asymptotics outside the critical region for both low and high temperature limits. We suggest two- and three-level trap models of BEC and find their exact solutions in terms of the cutoff negative binomial distribution (which tends to the cutoff gamma distribution in the continuous limit) and the confluent hypergeometric distribution, respectively. Also, we present an exactly solvable cutoff Gaussian model of BEC in a degenerate interacting gas. All these exact solutions confirm the universality and constraint-cutoff origin of the strongly non-Gaussian BEC statistics. We introduce a regular refinement scheme for the condensate statistics approximations on the basis of the infrared universality of higher-order cumulants and the method of superposition and show how to model BEC statistics in the actual traps. In particular, we find that the three-level trap model with matching the first four or five cumulants is enough to yield remarkably accurate results for all interesting quantities in the whole critical region. We derive an exact multinomial expansion for the noncondensate occupation probability distribution and find its high-temperature asymptotics (Poisson distribution) and corrections to it. Finally, we demonstrate that the critical exponents and a few known terms of the Taylor expansion of the universal functions, which were calculated previously from fitting the finite-size simulations within the phenomenological renormalization-group theory, can be easily obtained from the presented full analytical solutions for the mesoscopic BEC as certain approximations in the close vicinity of the critical point.
Optical characterization of wide-gap detector-grade semiconductors
NASA Astrophysics Data System (ADS)
Elshazly, Ezzat S.
Wide bandgap semiconductors are being widely investigated because they have the potential to satisfy the stringent material requirements of high resolution, room temperature gamma-ray spectrometers. In particular, Cadmium Zinc Telluride (Cd1-xZnxTe, x˜0.1) and Thallium Bromide (TlBr), due to their combination of high resistivity, high atomic number and good electron mobility, have became very promising candidates for use in X- and gamma-ray detectors operating at room temperature. In this study, carrier trapping times were measured in CZT and TlBr as a function of temperature and material quality. Carrier lifetimes and tellurium inclusion densities were measured in detector-grade Cadmium Zinc Telluride (CZT) crystals grown by the High Pressure Bridgman method and Modified Bridgman method. Excess carriers were produced in the material using a pulsed YAG laser with a 1064nm wavelength and 7ns pulse width. Infrared microscopy was used to measure the tellurium defect densities in CZT crystals. The electronic decay was optically measured at room temperature. Spatial mapping of lifetimes and defect densities in CZT was performed to determine the relationship between defect density and electronic decay. A significant and strong correlation was found between the volume fraction of tellurium inclusions and the carrier trapping time. Carrier trapping times and tellurium inclusions were measured in CZT in the temperature range from 300K to 110K and the results were analyzed using a theoretical trapping model. Spatial mapping of carrier trapping times and defect densities in CZT was performed to determine the relationship between defect density and electronic decay. While a strong correlation between trapping time and defect density of tellurium inclusions was observed, there was no significant change in the trap energy. Carrier trapping times were measured in detector grade thallium bromide (TlBr) and compared with the results for cadmium zinc telluride (CZT) in a temperature range from 300K to 110K. The experimental data was analyzed using a trapping model. In CZT, because the majority carrier concentration is close to the intrinsic carrier concentration, the trapping time increases exponentially as the temperature decreases below about 160K. While, in TlBr, the majority carrier concentration is many orders of magnitude greater than the intrinsic carrier concentration and the trapping time followed a 1T temperature dependence over the range of temperatures studied. The results of the model suggest that a moderately deep compensation center, located approximately 200 meV from the middle of the bandgap, could be used to significantly increase the room temperature trapping time in TlBr. The results of this model demonstrate that the room temperature trapping time in TlBr can, in principle, approach 0.1ms through the introduction of a moderately deep compensation level but without decreasing the overall trap concentration. This strategy is not possible in CZT, because the band gap is too small to use a moderately deep compensation level while still maintaining high material resistivity. Carrier trapping times were measured in three polycrystalline TlBr samples produced by melting commercial TlBr beads in a sealed quartz ampoule for two hours at three different temperatures near the melting point. The trapping time decreased with increasing melting temperature, presumably due to the thermal generation of a trap state.
USDA-ARS?s Scientific Manuscript database
Grey Leaf Spot (GLS) is a detrimental disease of perennial ryegrass caused by a host-specialized form of Magnaporthe oryzae (Mot). In order to improve turf management, a quantitative loop-mediated isothermal amplification (LAMP) assay coupled with a simple spore trap is being developed to monitor GL...
Dose in critical body organs in low Earth orbit
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Cucinotta, F.
1984-01-01
Human exposure to trapped radiations in low Earth orbit (LEO) are evaluated on the basis of a simple approximation of the human geometry for spherical shell shields of varying thickness. A data base is presented that may be used to make preliminary assessment of the impact of radiation exposure constraints on human performance. A sample impact assessment is discussed.
Demirtaş, İlknur; Bakırdere, Sezgin; Ataman, O Yavuz
2015-06-01
Flame atomic absorption spectrometry (FAAS) still keeps its importance despite the relatively low sensitivity; because it is a simple and economical technique for determination of metals. In recent years, atom traps have been developed to increase the sensitivity of FAAS. Although the detection limit of FAAS is only at the level of µg/mL, with the use of atom traps it can reach to ng/mL. Slotted quartz tube (SQT) is one of the atom traps used to improve sensitivity. In atom trapping mode of SQT, analyte is trapped on-line in SQT for few minutes using ordinary sample aspiration, followed by the introduction of a small volume of organic solvent to effect the revolatilization and atomization of analyte species resulting in a transient signal. This system is economical, commercially available and easy to use. In this study, a sensitive analytical method was developed for the determination of lead with the help of SQT atom trapping flame atomization (SQT-AT-FAAS). 574 Fold sensitivity enhancement was obtained at a sample suction rate of 3.9 mL/min for 5.0 min trapping period with respect to FAAS. Organic solvent was selected as 40 µL of methyl isobutyl ketone (MIBK). To obtain a further sensitivity enhancement inner surface of SQT was coated with several transition metals. The best sensitivity enhancement, 1650 fold enhancement, was obtained by the Ta-coated SQT-AT-FAAS. In addition, chemical nature of Pb species trapped on quartz and Ta surface, and the chemical nature of Ta on quartz surface were investigated by X-ray photoelectron spectroscopy (XPS) and Raman Spectroscopy. Raman spectrometric results indicate that tantalum is coated on SQT surface in the form of Ta2O5. XPS studies revealed that the oxidation state of Pb in species trapped on both bare and Ta coated SQT surfaces is +2. For the accuracy check, the analyses of standard reference material were performed by use of SCP SCIENCE EnviroMAT Low (EU-L-2) and results for Pb were to be in good agreement with the certified value using SQT-AT-FAAS and Ta coated-SQT. Copyright © 2015 Elsevier B.V. All rights reserved.
Serum Hydroxyl Radical Scavenging Capacity as Quantified with Iron-Free Hydroxyl Radical Source
Endo, Nobuyuki; Oowada, Shigeru; Sueishi, Yoshimi; Shimmei, Masashi; Makino, Keisuke; Fujii, Hirotada; Kotake, Yashige
2009-01-01
We have developed a simple ESR spin trapping based method for hydroxyl (OH) radical scavenging-capacity determination, using iron-free OH radical source. Instead of the widely used Fenton reaction, a short (typically 5 seconds) in situ UV-photolysis of a dilute hydrogen peroxide aqueous solution was employed to generate reproducible amounts of OH radicals. ESR spin trapping was applied to quantify OH radicals; the decrease in the OH radical level due to the specimen’s scavenging activity was converted into the OH radical scavenging capacity (rate). The validity of the method was confirmed in pure antioxidants, and the agreement with the previous data was satisfactory. In the second half of this work, the new method was applied to the sera of chronic renal failure (CRF) patients. We show for the first time that after hemodialysis, OH radical scavenging capacity of the CRF serum was restored to the level of healthy control. This method is simple and rapid, and the low concentration hydrogen peroxide is the only chemical added to the system, that could eliminate the complexity of iron-involved Fenton reactions or the use of the pulse-radiolysis system. PMID:19794928
Green, K Kappmeier; Venter, G J
2007-12-01
The attractiveness of various colours, colour combinations and sizes of sticky traps of the 3-dimensional trap (3DT), cross-shaped target (XT), rectangular screen (RT) and monopanels were evaluated for their efficacy to capture Glossina austeni Newstead and G. brevipalpis Newstead in north-eastern KwaZulu-Natal, South Africa. The 3-dimensional shapes of the XT and 3DT in light blue (l.blue) and white were significantly (ca. 3.1-6.9 times) better than the RT for G. austeni. On bicoloured XTs, G. austeni landed preferentially on electric blue (e.blue) (58%) and black (63%) surfaces when used with white; while for G. brevipalpis, significantly more landed on e.blue (60-66%) surfaces when used with l.blue, black or white surfaces. Increased trap size increased the catches of G. brevipalpis females and both sexes of G. austeni significantly. Temoocid and polybutene sticky materials were equally effective and remained durable for 2-3 weeks. The glossy shine of trap surfaces did not have any significant effect on the attraction and landing responses of the two species. The overall trap efficiency of the e.blue/l.blue XT was 23% for G. brevipalpis and 28% for G. austeni, and that of the e.blue/black XT was 16% for G. brevipalpis and 51% for G. austeni. Larger monopanels, painted e.blue/black on both sides, increased the catches of G. austeni females significantly by up to four times compared to the standard e.blue/black XT. This monopanel would be recommended for use as a simple and cost effective survey tool for both species in South Africa.
IMMUNO-SPIN TRAPPING FROM BIOCHEMISTRY TO MEDICINE: advances, challenges, and pitfalls
Gomez-Mejiba, Sandra E.; Zili, Zhai; Della-Vedova, Maria C.; Muñoz, Marcos D.; Chatterjee, Saurabh; Towner, Rheal A.; Hensley, Kenneth; Floyd, Robert A.; Mason, Ronald P.; Ramirez, Dario C.
2013-01-01
BACKGROUND Immuno-spin trapping (IST) is based on the reaction of a spin trap with a free radical to form a stable nitrone adduct, followed by the use of antibodies, rather than traditional electron paramagnetic resonance spectroscopy, to detect the nitrone adduct. IST has been successfully applied to mechanistic in vitro studies, and recently, macromolecule-centered radicals have been detected in models of drug-induced agranulocytosis, hepatotoxicity, cardiotoxicity, and ischemia/reperfusion, as well as in models of neurological, metabolic and immunological diseases. SCOPE OF THE REVIEW To critically evaluate advances, challenges, and pitfalls as well as the scientific opportunities of IST as applied to the study of protein-centered free radicals generated in stressed organelles, cells, tissues and animal models of disease and exposure. MAJOR CONCLUSIONS Because the spin trap has to be present at high enough concentrations in the microenvironment where the radical is formed, the possible effects of the spin trap on gene expression, metabolism and cell physiology have to be considered in the use of IST and in the interpretation of results. These factors have not yet been thoroughly dealt with in the literature. GENERAL SIGNIFICANCE The identification of radicalized proteins during cell/tissue response to stressors will help define their role in the complex cellular response to stressors and pathogenesis; however, the fidelity of spin trapping/ immuno-detection and the effects of the spin trap on the biological system should be considered. PMID:23644035
Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating.
Seol, Yeonee; Carpenter, Amanda E; Perkins, Thomas T
2006-08-15
Gold nanoparticles appear to be superior handles in optical trapping assays. We demonstrate that relatively large gold particles (R(b)=50 nm) indeed yield a sixfold enhancement in trapping efficiency and detection sensitivity as compared to similar-sized polystyrene particles. However, optical absorption by gold at the most common trapping wavelength (1064 nm) induces dramatic heating (266 degrees C/W). We determined this heating by comparing trap stiffness from three different methods in conjunction with detailed modeling. Due to this heating, gold nanoparticles are not useful for temperature-sensitive optical-trapping experiments, but may serve as local molecular heaters. Also, such particles, with their increased detection sensitivity, make excellent probes for certain zero-force biophysical assays.
NASA Astrophysics Data System (ADS)
Hodille, E. A.; Ghiorghiu, F.; Addab, Y.; Založnik, A.; Minissale, M.; Piazza, Z.; Martin, C.; Angot, T.; Gallais, L.; Barthe, M.-F.; Becquart, C. S.; Markelj, S.; Mougenot, J.; Grisolia, C.; Bisson, R.
2017-07-01
Fusion fuel retention (trapping) and release (desorption) from plasma-facing components are critical issues for ITER and for any future industrial demonstration reactors such as DEMO. Therefore, understanding the fundamental mechanisms behind the retention of hydrogen isotopes in first wall and divertor materials is necessary. We developed an approach that couples dedicated experimental studies with modelling at all relevant scales, from microscopic elementary steps to macroscopic observables, in order to build a reliable and predictive fusion reactor wall model. This integrated approach is applied to the ITER divertor material (tungsten), and advances in the development of the wall model are presented. An experimental dataset, including focused ion beam scanning electron microscopy, isothermal desorption, temperature programmed desorption, nuclear reaction analysis and Auger electron spectroscopy, is exploited to initialize a macroscopic rate equation wall model. This model includes all elementary steps of modelled experiments: implantation of fusion fuel, fuel diffusion in the bulk or towards the surface, fuel trapping on defects and release of trapped fuel during a thermal excursion of materials. We were able to show that a single-trap-type single-detrapping-energy model is not able to reproduce an extended parameter space study of a polycrystalline sample exhibiting a single desorption peak. It is therefore justified to use density functional theory to guide the initialization of a more complex model. This new model still contains a single type of trap, but includes the density functional theory findings that the detrapping energy varies as a function of the number of hydrogen isotopes bound to the trap. A better agreement of the model with experimental results is obtained when grain boundary defects are included, as is consistent with the polycrystalline nature of the studied sample. Refinement of this grain boundary model is discussed as well as the inclusion in the model of a thin defective oxide layer following the experimental observation of the presence of an oxygen layer on the surface even after annealing to 1300 K.
Measurement of Trap Length for an Optical Trap
NASA Technical Reports Server (NTRS)
Wrbanek, Susan Y.
2009-01-01
The trap length along the beam axis for an optical trap formed with an upright, oil-immersion microscope was measured. The goals for this effort were twofold. It was deemed useful to understand the depth to which an optical trap can reach for purposes of developing a tool to assist in the fabrication of miniature devices. Additionally, it was desired to know whether the measured trap length favored one or the other of two competing theories to model an optical trap. The approach was to trap a microsphere of known size and mass and raise it from its initial trap position. The microsphere was then dropped by blocking the laser beam for a pre-determined amount of time. Dropping the microsphere in a free-fall mode from various heights relative to the coverslip provides an estimate of how the trapping length changes with depth in water in a sample chamber on a microscope slide. While it was not possible to measure the trap length with sufficient precision to support any particular theory of optical trap formation, it was possible to find regions where the presence of physical boundaries influenced optical traps, and determine that the trap length, for the apparatus studied, is between 6 and 7 m. These results allow more precise control using optical micromanipulation to assemble miniature devices by providing information about the distance over which an optical trap is effective.
Cowan, A E; Myles, D G; Koppel, D E
1991-03-01
The redistribution of membrane proteins on the surface of cells is a prevalent feature of differentiation in a variety of cells. In most cases the mechanism responsible for such redistribution is poorly understood. Two potential mechanisms for the redistribution of surface proteins are: (1) passive diffusion coupled with trapping, and (2) active translocation. We have studied the process of membrane protein redistribution for the PH-20 protein of guinea pig sperm, a surface protein required for sperm binding to the egg zona pellucida (P. Primakoff, H. Hyatt, and D. G. Myles (1985). J. Cell Biol. 101, 2239-2244). PH-20 protein is localized to the posterior head plasma menbrane of the mature sperm cell. Following the exocytotic acrosome reaction, PH-20 protein moves into the newly incorporated inner acrosomal membrane (IAM), placing it in a position favorable for a role in binding sperm to the egg zona pellucida (D. G. Myles, and P. Primakoff (1984), J. Cell Biol. 99, 1634-1641). To analyze the mechanistic basis for this protein migration, we have used fluorescence microscopy and digital image processing to characterize PH-20 protein migration in individual cells. PH-20 protein was observed to move against a concentration gradient in the posterior head plasma membrane. This result argues strongly against a model of passive diffusion followed by trapping in the IAM, and instead suggests that an active process serves to concentrate PH-20 protein toward the boundary separating the posterior head and IAM regions. A transient gradient of PH-20 concentration observed in the IAM suggests that once PH-20 protein reaches the IAM, it is freely diffusing. Additionally, we observed that migration of PH-20 protein was calcium dependent.
Modification of ocean-estuary salt fluxes by density-driven advection of a headland eddy
NASA Astrophysics Data System (ADS)
Fram, J. P.; Stacey, M. T.
2005-05-01
Scalar exchange between San Francisco Bay and the coastal ocean is examined using shipboard observations made across the Golden Gate Channel. Ocean-estuary exchange is often described as a combination of two independent types of mechanisms: density-driven exchange such as gravitational circulation and tidal asymmetries such as tidal trapping. In this study we found that exchange is also governed by an interaction between these mechanisms. Tidally trapped eddies created in shallow shoals are mixed into the main channel earlier in the tidal cycle during the rainy season because the eddies are pushed seaward by gravitational circulation. This interaction increases the tidally averaged dispersive salt flux into the bay. The study consists of experiments during each of three 'seasons': winter/spring runoff (March 2002), summer upwelling (July 2003), and fall relaxation (October 2002). Within each experiment, transects across the channel were repeated approximately every 12 minutes for 25 hours during both spring tide and the following neap tide. Velocity was measured from a boat-mounted ADCP. Scalar concentrations were measured from a tow-yoed SeaSciences Acrobat. Salinity exchange over each spring-neap cycle is quantified with harmonic analysis. Harmonic results are decomposed into flux mechanisms using temporal and spatial correlations. The temporal correlation of cross-sectional averaged salinity and velocity (tidal pumping flux) is the largest part of the dispersive flux of salinity into the bay. From the tidal pumping portion of the dispersive flux, it is shown that there is less exchange than was found in earlier studies. Furthermore, tidal pumping flux scales strongly with flow due to density-driven movement of tidally trapped eddies and density-driven increases in ebb-flood frictional phasing. Complex bathymetry makes salinity exchange scale differently with flow than would be expected from simple tidal pumping and gravitational circulation models.
Model for thickness dependence of radiation charging in MOS structures
NASA Technical Reports Server (NTRS)
Viswanathan, C. R.; Maserjian, J.
1976-01-01
The model considers charge buildup in MOS structures due to hole trapping in the oxide and the creation of sheet charge at the silicon interface. The contribution of hole trapping causes the flatband voltage to increase with thickness in a manner in which square and cube dependences are limiting cases. Experimental measurements on samples covering a 200 - 1000 A range of oxide thickness are consistent with the model, using independently obtained values of hole-trapping parameters. An important finding of our experimental results is that a negative interface charge contribution due to surface states created during irradiation compensates most of the positive charge in the oxide at flatband. The tendency of the surface states to 'track' the positive charge buildup in the oxide, for all thicknesses, applies both in creation during irradiation and in annihilation during annealing. An explanation is proposed based on the common defect origin of hole traps and potential surface states.
Saska, Pavel; van der Werf, Wopke; Hemerik, Lia; Luff, Martin L; Hatten, Timothy D; Honek, Alois; Pocock, Michael
2013-02-01
Carabids and other epigeal arthropods make important contributions to biodiversity, food webs and biocontrol of invertebrate pests and weeds. Pitfall trapping is widely used for sampling carabid populations, but this technique yields biased estimates of abundance ('activity-density') because individual activity - which is affected by climatic factors - affects the rate of catch. To date, the impact of temperature on pitfall catches, while suspected to be large, has not been quantified, and no method is available to account for it. This lack of knowledge and the unavailability of a method for bias correction affect the confidence that can be placed on results of ecological field studies based on pitfall data.Here, we develop a simple model for the effect of temperature, assuming a constant proportional change in the rate of catch per °C change in temperature, r , consistent with an exponential Q 10 response to temperature. We fit this model to 38 time series of pitfall catches and accompanying temperature records from the literature, using first differences and other detrending methods to account for seasonality. We use meta-analysis to assess consistency of the estimated parameter r among studies.The mean rate of increase in total catch across data sets was 0·0863 ± 0·0058 per °C of maximum temperature and 0·0497 ± 0·0107 per °C of minimum temperature. Multiple regression analyses of 19 data sets showed that temperature is the key climatic variable affecting total catch. Relationships between temperature and catch were also identified at species level. Correction for temperature bias had substantial effects on seasonal trends of carabid catches. Synthesis and Applications . The effect of temperature on pitfall catches is shown here to be substantial and worthy of consideration when interpreting results of pitfall trapping. The exponential model can be used both for effect estimation and for bias correction of observed data. Correcting for temperature-related trapping bias is straightforward and enables population estimates to be more comparable. It may thus improve data interpretation in ecological, conservation and monitoring studies, and assist in better management and conservation of habitats and ecosystem services. Nevertheless, field ecologists should remain vigilant for other sources of bias.
Heterogeneously entrapped, vapor-rich melt inclusions record pre-eruptive magmatic volatile contents
NASA Astrophysics Data System (ADS)
Steele-MacInnis, Matthew; Esposito, Rosario; Moore, Lowell R.; Hartley, Margaret E.
2017-04-01
Silicate melt inclusions (MI) commonly provide the best record of pre-eruptive H2O and CO2 contents of subvolcanic melts, but the concentrations of CO2 and H2O in the melt (glass) phase within MI can be modified by partitioning into a vapor bubble after trapping. Melt inclusions may also enclose vapor bubbles together with the melt (i.e., heterogeneous entrapment), affecting the bulk volatile composition of the MI, and its post-entrapment evolution. In this study, we use numerical modeling to examine the systematics of post-entrapment volatile evolution within MI containing various proportions of trapped vapor from zero to 95 volume percent. Modeling indicates that inclusions that trap only a vapor-saturated melt exhibit significant decrease in CO2 and moderate increase in H2O concentrations in the melt upon nucleation and growth of a vapor bubble. In contrast, inclusions that trap melt plus vapor exhibit subdued CO2 depletion at equivalent conditions. In the extreme case of inclusions that trap mostly the vapor phase (i.e., CO2-H2O fluid inclusions containing trapped melt), degassing of CO2 from the melt is negligible. In the latter scenario, the large fraction of vapor enclosed in the MI during trapping essentially serves as a buffer, preventing post-entrapment modification of volatile concentrations in the melt. Hence, the glass phase within such heterogeneously entrapped, vapor-rich MI records the volatile concentrations of the melt at the time of trapping. These numerical modeling results suggest that heterogeneously entrapped MI containing large vapor bubbles represent amenable samples for constraining pre-eruptive volatile concentrations of subvolcanic melts.
NASA Astrophysics Data System (ADS)
Bouwman, J.; Cuppen, H. M.; Steglich, M.; Allamandola, L. J.; Linnartz, H.
2011-05-01
Context. Mid-infrared emission features originating from polycyclic aromatic hydrocarbons (PAHs) are observed towards photon dominated regions in space. Towards dense clouds, however, these emission features are quenched. Observations of dense clouds show that many simple volatile molecules are frozen out on interstellar grains, forming thin layers of ice. Recently, observations have shown that more complex non-volatile species, presumably including PAHs, also freeze out and contribute to the ongoing solid-state chemistry. Aims: The study presented here aims at obtaining reaction rate data that characterize PAH photochemistry upon vacuum ultraviolet (VUV) irradiation in an interstellar H2O ice analogue to explore the potential impact of PAH:H2O ice reactions on overall interstellar ice chemistry. To this end, the experimental results are implemented in a chemical model under simple interstellar cloud conditions. Methods: Time-dependent near-UV/VIS spectroscopy on the VUV photochemistry of anthracene, pyrene, benzo[ghi]perylene and coronene containing interstellar H2O ice analogs is performed at 25 and 125 K, using an optical absorption setup. Results: Near-UV/VIS absorption spectra are presented for these four PAHs and their photoproducts including cationic species trapped in H2O ice. Oscillator strengths of the cation absorption bands are derived relative to the oscillator strength of the neutral parent PAH. The loss of the parent and growth of PAH photoproducts are measured as a function of VUV dose, yielding solid state reaction constants. The rate constants are used in an exploratory astrochemical model, to assess the importance of PAH:H2O ice photoprocessing in UV exposed interstellar environments, compared with the timescales in which PAH molecules are incorporated in interstellar ices. Conclusions: All four PAHs studied here are found to be readily ionized upon VUV photolysis when trapped in H2O ice and exhibit similar rates for ionization at astronomically relevant temperatures. Depending on the relative efficiency of H2O photodesorption and PAH photoionization in H2O ice, the latter may trigger a charge induced aromatic solid state chemistry, in which PAH cations play a central role.
Communication — Modeling polymer-electrolyte fuel-cell agglomerates with double-trap kinetics
Pant, Lalit M.; Weber, Adam Z.
2017-04-14
A new semi-analytical agglomerate model is presented for polymer-electrolyte fuel-cell cathodes. The model uses double-trap kinetics for the oxygen-reduction reaction, which can capture the observed potential-dependent coverage and Tafel-slope changes. An iterative semi-analytical approach is used to obtain reaction rate constants from the double-trap kinetics, oxygen concentration at the agglomerate surface, and overall agglomerate reaction rate. The analytical method can predict reaction rates within 2% of the numerically simulated values for a wide range of oxygen concentrations, overpotentials, and agglomerate sizes, while saving simulation time compared to a fully numerical approach.
Evaluation of Trapped Radiation Model Uncertainties for Spacecraft Design
NASA Technical Reports Server (NTRS)
Armstrong, T. W.; Colborn, B. L.
2000-01-01
The standard AP8 and AE8 models for predicting trapped proton and electron environments have been compared with several sets of flight data to evaluate model uncertainties. Model comparisons are made with flux, dose, and activation measurements made on various U.S. low-Earth orbit satellites (APEX, CRRES, DMSP, LDEF, NOAA) and Space Shuttle flights, on Russian satellites (Photon-8, Cosmos-1887, Cosmos-2044), and on the Russian Mir Space Station. This report gives a summary of the model-data comparisons-detailed results are given in a companion report. Results from the model comparisons with flic,ht data show, for example, the AP8 model underpredicts the trapped proton flux at low altitudes by a factor of about two (independent of proton energy and solar cycle conditions), and that the AE8 model overpredicts the flux in the outer electron belt by an order of magnitude or more.
Evaluation of Trapped Radiation Model Uncertainties for Spacecraft Design
NASA Technical Reports Server (NTRS)
Armstrong, T. W.; Colborn, B. L.
2000-01-01
The standard AP8 and AE8 models for predicting trapped proton and electron environments have been compared with several sets of flight data to evaluate model uncertainties. Model comparisons are made with flux, dose, and activation measurements made on various U.S. low-Earth orbit satellites (APEX, CRRES, DMSP. LDEF, NOAA) and Space Shuttle flights, on Russian satellites (Photon-8, Cosmos-1887, Cosmos-2044), and on the Russian Mir space station. This report gives a summary of the model-data given in a companion report. Results from the model comparisons with flight data show, for example, that the AP8 model underpredicts the trapped proton flux at low altitudes by a factor of about two (independent of proton energy and solar cycle conditions), and that the AE8 model overpredict the flux in the outer electron belt be an order of magnitude or more.
Degradation Behavior of the HTS Bulk Magnet in Cryocooler System with Cyclic Temperature Variation
NASA Astrophysics Data System (ADS)
Okuno, K.; Sawa, K.; Iwasa, Y.
2006-03-01
This paper presents a change of magnetic flux trapped in the YBCO bulk magnet under thermal excursions. We have supposed a new cryocooler system for the high temperature superconducting(HTS) bulk magnet in which the thermal cycles are generated. From the past research, it was found that the trapped flux mainly deteriorated at the first temperature rise, but a large change of the trapped flux was not seen at the first temperature descent and following thermal cycles. Degradation of the trapped flux by the first temperature-rise was explained by using the bean model. Moreover we proposed the model which does not have a current distribution constant. In this paper, we examined a change of magnetic field in each part of the bulk in detail. In addition, we applied attention to the change of the trapped flux after the first temperature rise. Although there is no big change of the trapped flux after the first temperature-rise, it is decreasing slowly. This cause is considered as influence of the flux creep, but its decay is more rapid than usual.
Prisoner's Dilemma: Reflections and Recollections.
ERIC Educational Resources Information Center
Rapoport, Anatol
1995-01-01
Traces the roots of social trap situations and describes a parasitism-symbiosis model, showing that when each organism attempts to maximize its survival potential without regard for the other's, neither does as well as when they behave collectively. Discusses a model social trap situation, "Prisoner's Dilemma" ("PD") and a…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Buhao; Xu, Xuhui; Li, Qianyue
Properties of long persistent luminescence (LPL) and optically stimulated luminescence (OSL) of CaAl{sub 2}O{sub 4}:Eu{sup 2+}, R{sup 3+} (R=Nd, Dy, Tm) materials were investigated. The observed phenomenon indicates that R{sup 3+} ions (R=Nd, Dy, Tm) have different effects on trap properties of CaAl{sub 2}O{sub 4}:Eu{sup 2+}. The greatly improved LPL performance was observed in Nd{sup 3+} co-doped samples, which indicates that the incorporation of Nd{sup 3+} creates suitable traps for LPL. While co-doping Tm{sup 3+} ions, the intensity of high temperature of thermoluminescence band in CaAl{sub 2}O{sub 4}:Eu{sup 2+} phosphors is enhanced for the formation of the most suitable trapsmore » which benefits the intense and stable OSL. These results suggest that the effective traps contributed to the LPL/OSL are complex, of which could be an aggregation formation with shallow and deep traps other than simple traps from co-doped R{sup 3+} ions. The mechanism presented in the end potentially provides explanations of why the OSL of CaAl{sub 2}O{sub 4}:Eu{sup 2+}, R{sup 3+} exhibits different read-in/read-out performance as well. - Graphical abstract: OSL emission spectra of Ca{sub 0.995}Al{sub 2}O{sub 4}:0.0025Eu{sup 2+}, 0.0025R{sup 3+} (R=Nd, Dy, Tm) taken under varying stimulation time (0, 25, 50, 75, 100 s). Inset: Blue emission pictures under varying stimulation time. - Highlights: • The LPL and OSL properties of CaAl{sub 2}O{sub 4}:Eu{sup 2+}, R{sup 3+} were investigated. • An alternative approach to control the trap depth of CaAl{sub 2}O{sub 4}:Eu{sup 2+} phosphor was proposed. • A new oxide ETM phosphor exhibiting intense and stable OSL was explored.« less
Selby, R D; Gage, S H; Whalon, M E
2014-04-01
Incorporating camera systems into insect traps potentially benefits insect phenology modeling, nonlethal insect monitoring, and research into the automated identification of traps counts. Cameras originally for monitoring mammals were instead adapted to monitor the entrance to pyramid traps designed to capture the plum curculio, Conotrachelus nenuphar (Herbst) (Coleoptera: Curculionidae). Using released curculios, two new trap designs (v.I and v.II) were field-tested alongside conventional pyramid traps at one site in autumn 2010 and at four sites in autumn 2012. The traps were evaluated on the basis of battery power, ease-of-maintenance, adaptability, required-user-skills, cost (including labor), and accuracy-of-results. The v.II design fully surpassed expectations, except that some trapped curculios were not photographed. In 2012, 13 of the 24 traps recorded every curculio entering the traps during the 18-d study period, and in traps where some curculios were not photographed, over 90% of the omissions could be explained by component failure or external interference with the motion sensor. Significantly more curculios entered the camera traps between 1800 and 0000 hours. When compared with conventional pyramid traps, the v.I traps collected a similar number of curculios. Two observed but not significant trends were that the v.I traps collected twice as many plum curculios as the v.II traps, while at the same time the v.II traps collected more than twice as many photos per plum curculio as the v.I traps. The research demonstrates that low-cost, precise monitoring of field insect populations is feasible without requiring extensive technical expertise.
Modelling deuterium release from tungsten after high flux high temperature deuterium plasma exposure
NASA Astrophysics Data System (ADS)
Grigorev, Petr; Matveev, Dmitry; Bakaeva, Anastasiia; Terentyev, Dmitry; Zhurkin, Evgeny E.; Van Oost, Guido; Noterdaeme, Jean-Marie
2016-12-01
Tungsten is a primary candidate for plasma facing materials for future fusion devices. An important safety concern in the design of plasma facing components is the retention of hydrogen isotopes. Available experimental data is vast and scattered, and a consistent physical model of retention of hydrogen isotopes in tungsten is still missing. In this work we propose a model of non-equilibrium hydrogen isotopes trapping under fusion relevant plasma exposure conditions. The model is coupled to a diffusion-trapping simulation tool and is used to interpret recent experiments involving high plasma flux exposures. From the computational analysis performed, it is concluded that high flux high temperature exposures (T = 1000 K, flux = 1024 D/m2/s and fluence of 1026 D/m2) result in generation of sub-surface damage and bulk diffusion, so that the retention is driven by both sub-surface plasma-induced defects (bubbles) and trapping at natural defects. On the basis of the non-equilibrium trapping model we have estimated the amount of H stored in the sub-surface region to be ∼10-5 at-1, while the bulk retention is about 4 × 10-7 at-1, calculated by assuming the sub-surface layer thickness of about 10 μm and adjusting the trap concentration to comply with the experimental results for the integral retention.
Spectroscopic analysis of electron trapping levels in pentacene field-effect transistors
NASA Astrophysics Data System (ADS)
Park, Chang Bum
2014-08-01
Electron trapping phenomena have been investigated with respect to the energy levels of localized trap states and bias-induced device instability effects in pentacene field-effect transistors. The mechanism of the photoinduced threshold voltage shift (ΔVT) is presented by providing a ΔVT model governed by the electron trapping. The trap-and-release behaviour functionalized by photo-irradiation also shows that the trap state for electrons is associated with the energy levels in different positions in the forbidden gap of pentacene. Spectroscopic analysis identifies two kinds of electron trap states distributed above and below the energy of 2.5 eV in the band gap of the pentacene crystal. The study of photocurrent spectra shows the specific trap levels of electrons in energy space that play a substantial role in causing device instability. The shallow and deep trapping states are distributed at two centroidal energy levels of ˜1.8 and ˜2.67 eV in the pentacene band gap. Moreover, we present a systematic energy profile of electron trap states in the pentacene crystal for the first time.
Khreis, Haneen; Nieuwenhuijsen, Mark J
2017-03-17
Background : Current levels of traffic-related air pollution (TRAP) are associated with the development of childhood asthma, although some inconsistencies and heterogeneity remain. An important part of the uncertainty in studies of TRAP-associated asthma originates from uncertainties in the TRAP exposure assessment and assignment methods. In this work, we aim to systematically review the exposure assessment methods used in the epidemiology of TRAP and childhood asthma, highlight recent advances, remaining research gaps and make suggestions for further research. Methods : We systematically reviewed epidemiological studies published up until 8 September 2016 and available in Embase, Ovid MEDLINE (R), and "Transport database". We included studies which examined the association between children's exposure to TRAP metrics and their risk of "asthma" incidence or lifetime prevalence, from birth to the age of 18 years old. Results : We found 42 studies which examined the associations between TRAP and subsequent childhood asthma incidence or lifetime prevalence, published since 1999. Land-use regression modelling was the most commonly used method and nitrogen dioxide (NO₂) was the most commonly used pollutant in the exposure assessments. Most studies estimated TRAP exposure at the residential address and only a few considered the participants' mobility. TRAP exposure was mostly assessed at the birth year and only a few studies considered different and/or multiple exposure time windows. We recommend that further work is needed including e.g., the use of new exposure metrics such as the composition of particulate matter, oxidative potential and ultra-fine particles, improved modelling e.g., by combining different exposure assessment models, including mobility of the participants, and systematically investigating different exposure time windows. Conclusions : Although our previous meta-analysis found statistically significant associations for various TRAP exposures and subsequent childhood asthma, further refinement of the exposure assessment may improve the risk estimates, and shed light on critical exposure time windows, putative agents, underlying mechanisms and drivers of heterogeneity.
Khreis, Haneen; Nieuwenhuijsen, Mark J.
2017-01-01
Background: Current levels of traffic-related air pollution (TRAP) are associated with the development of childhood asthma, although some inconsistencies and heterogeneity remain. An important part of the uncertainty in studies of TRAP-associated asthma originates from uncertainties in the TRAP exposure assessment and assignment methods. In this work, we aim to systematically review the exposure assessment methods used in the epidemiology of TRAP and childhood asthma, highlight recent advances, remaining research gaps and make suggestions for further research. Methods: We systematically reviewed epidemiological studies published up until 8 September 2016 and available in Embase, Ovid MEDLINE (R), and “Transport database”. We included studies which examined the association between children’s exposure to TRAP metrics and their risk of “asthma” incidence or lifetime prevalence, from birth to the age of 18 years old. Results: We found 42 studies which examined the associations between TRAP and subsequent childhood asthma incidence or lifetime prevalence, published since 1999. Land-use regression modelling was the most commonly used method and nitrogen dioxide (NO2) was the most commonly used pollutant in the exposure assessments. Most studies estimated TRAP exposure at the residential address and only a few considered the participants’ mobility. TRAP exposure was mostly assessed at the birth year and only a few studies considered different and/or multiple exposure time windows. We recommend that further work is needed including e.g., the use of new exposure metrics such as the composition of particulate matter, oxidative potential and ultra-fine particles, improved modelling e.g., by combining different exposure assessment models, including mobility of the participants, and systematically investigating different exposure time windows. Conclusions: Although our previous meta-analysis found statistically significant associations for various TRAP exposures and subsequent childhood asthma, further refinement of the exposure assessment may improve the risk estimates, and shed light on critical exposure time windows, putative agents, underlying mechanisms and drivers of heterogeneity. PMID:28304360
Schut, T C; Hesselink, G; de Grooth, B G; Greve, J
1991-01-01
We have developed a computer program based on the geometrical optics approach proposed by Roosen to calculate the forces on dielectric spheres in focused laser beams. We have explicitly taken into account the polarization of the laser light and thd divergence of the laser beam. The model can be used to evaluate the stability of optical traps in a variety of different optical configurations. Our calculations explain the experimental observation by Ashkin that a stable single-beam optical trap, without the help of the gravitation force, can be obtained with a strongly divergent laser beam. Our calculations also predict a different trap stability in the directions orthogonal and parallel to the polarization direction of the incident light. Different experimental methods were used to test the predictions of the model for the gravity trap. A new method for measuring the radiation force along the beam axis in both the stable and instable regions is presented. Measurements of the radiation force on polystyrene spheres with diameters of 7.5 and 32 microns in a TEM00-mode laser beam showed a good qualitative correlation with the predictions and a slight quantitative difference. The validity of the geometrical approximations involved in the model will be discussed for spheres of different sizes and refractive indices.
Density of Trap States and Auger-mediated Electron Trapping in CdTe Quantum-Dot Solids.
Boehme, Simon C; Azpiroz, Jon Mikel; Aulin, Yaroslav V; Grozema, Ferdinand C; Vanmaekelbergh, Daniël; Siebbeles, Laurens D A; Infante, Ivan; Houtepen, Arjan J
2015-05-13
Charge trapping is an ubiquitous process in colloidal quantum-dot solids and a major limitation to the efficiency of quantum dot based devices such as solar cells, LEDs, and thermoelectrics. Although empirical approaches led to a reduction of trapping and thereby efficiency enhancements, the exact chemical nature of the trapping mechanism remains largely unidentified. In this study, we determine the density of trap states in CdTe quantum-dot solids both experimentally, using a combination of electrochemical control of the Fermi level with ultrafast transient absorption and time-resolved photoluminescence spectroscopy, and theoretically, via density functional theory calculations. We find a high density of very efficient electron traps centered ∼0.42 eV above the valence band. Electrochemical filling of these traps increases the electron lifetime and the photoluminescence quantum yield by more than an order of magnitude. The trapping rate constant for holes is an order of magnitude lower that for electrons. These observations can be explained by Auger-mediated electron trapping. From density functional theory calculations we infer that the traps are formed by dicoordinated Te atoms at the quantum dot surface. The combination of our unique experimental determination of the density of trap states with the theoretical modeling of the quantum dot surface allows us to identify the trapping mechanism and chemical reaction at play during charge trapping in these quantum dots.
The long-term dissolution characteristics of a residually trapped BTX mixture in soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rixey, W.G.
1996-12-31
A mass transfer limited model is presented to describe the long-term dissolution of organic compounds from a benzene, toluene, and xylenes (BTX) mixture residually trapped in a sandy soil. The model is an extension of a previously presented equilibrium dissolution model which takes into consideration mass transfer limitations that develop later in the leaching process and is similar to that presented by Borden and Kao for modeling BTX dissolution from residually trapped gasoline. The residual nonaqueous phase liquid (NAPL) is divided into multiple regions: one region which undergoes equilibrium dissolution and additional regions in which mass transfer is progressively limited.more » Application of the model to BTX column effluent data indicates that the initial dissolution (exponential decay region) of BTX can be effectively described by equilibrium dissolution. When applied to later dissolution times (Asymptotic region) a multiple-region model is required to rationalize the data for all three components. This explanation of the observed tailing in leaching experiments form residually trapped hydrocarbons if offered as an alternative to the explanation of tailing due to rate-limited desorption from soils. 16 refs., 5 figs., 2 tabs.« less
An efficient, self-orienting, vertical-array, sand trap
NASA Astrophysics Data System (ADS)
Hilton, Michael; Nickling, Bill; Wakes, Sarah; Sherman, Douglas; Konlechner, Teresa; Jermy, Mark; Geoghegan, Patrick
2017-04-01
There remains a need for an efficient, low-cost, portable, passive sand trap, which can provide estimates of vertical sand flux over topography and within vegetation and which self-orients into the wind. We present a design for a stacked vertical trap that has been modelled (computational fluid dynamics, CFD) and evaluated in the field and in the wind tunnel. The 'swinging' trap orients to within 10° of the flow in the wind tunnel at 8 m s-1, and more rapidly in the field, where natural variability in wind direction accelerates orientation. The CFD analysis indicates flow is steered into the trap during incident wind flow. The trap has a low profile and there is only a small decrease in mass flow rate for multiple traps, poles and rows of poles. The efficiency of the trap was evaluated against an isokinetic sampler and found to be greater than 95%. The centre pole is a key element of the design, minimally decreasing trap efficiency. Finally, field comparisons with the trap of Sherman et al. (2014) yielded comparable estimates of vertical sand flux. The trap described in this paper provides accurate estimates of sand transport in a wide range of field conditions.
Lin, Yuan; Zhang, Zhongzhi
2013-03-07
The trapping process in polymer systems constitutes a fundamental mechanism for various other dynamical processes taking place in these systems. In this paper, we study the trapping problem in two representative polymer networks, Cayley trees and Vicsek fractals, which separately model dendrimers and regular hyperbranched polymers. Our goal is to explore the impact of trap location on the efficiency of trapping in these two important polymer systems, with the efficiency being measured by the average trapping time (ATT) that is the average of source-to-trap mean first-passage time over every staring point in the whole networks. For Cayley trees, we derive an exact analytic formula for the ATT to an arbitrary trap node, based on which we further obtain the explicit expression of ATT for the case that the trap is uniformly distributed. For Vicsek fractals, we provide the closed-form solution for ATT to a peripheral node farthest from the central node, as well as the numerical solutions for the case when the trap is placed on other nodes. Moreover, we derive the exact formula for the ATT corresponding to the trapping problem when the trap has a uniform distribution over all nodes. Our results show that the influence of trap location on the trapping efficiency is completely different for the two polymer networks. In Cayley trees, the leading scaling of ATT increases with the shortest distance between the trap and the central node, implying that trap's position has an essential impact on the trapping efficiency; while in Vicsek fractals, the effect of location of the trap is negligible, since the dominant behavior of ATT is identical, respective of the location where the trap is placed. We also present that for all cases of trapping problems being studied, the trapping process is more efficient in Cayley trees than in Vicsek fractals. We demonstrate that all differences related to trapping in the two polymer systems are rooted in their underlying topological structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piri, Mohammad
2014-03-31
Under this project, a multidisciplinary team of researchers at the University of Wyoming combined state-of-the-art experimental studies, numerical pore- and reservoir-scale modeling, and high performance computing to investigate trapping mechanisms relevant to geologic storage of mixed scCO{sub 2} in deep saline aquifers. The research included investigations in three fundamental areas: (i) the experimental determination of two-phase flow relative permeability functions, relative permeability hysteresis, and residual trapping under reservoir conditions for mixed scCO{sub 2}-brine systems; (ii) improved understanding of permanent trapping mechanisms; (iii) scientifically correct, fine grid numerical simulations of CO{sub 2} storage in deep saline aquifers taking into account themore » underlying rock heterogeneity. The specific activities included: (1) Measurement of reservoir-conditions drainage and imbibition relative permeabilities, irreducible brine and residual mixed scCO{sub 2} saturations, and relative permeability scanning curves (hysteresis) in rock samples from RSU; (2) Characterization of wettability through measurements of contact angles and interfacial tensions under reservoir conditions; (3) Development of physically-based dynamic core-scale pore network model; (4) Development of new, improved high-performance modules for the UW-team simulator to provide new capabilities to the existing model to include hysteresis in the relative permeability functions, geomechanical deformation and an equilibrium calculation (Both pore- and core-scale models were rigorously validated against well-characterized core- flooding experiments); and (5) An analysis of long term permanent trapping of mixed scCO{sub 2} through high-resolution numerical experiments and analytical solutions. The analysis takes into account formation heterogeneity, capillary trapping, and relative permeability hysteresis.« less
Ferroelectric Diodes with Charge Injection and Trapping
NASA Astrophysics Data System (ADS)
Fan, Zhen; Fan, Hua; Lu, Zengxing; Li, Peilian; Huang, Zhifeng; Tian, Guo; Yang, Lin; Yao, Junxiang; Chen, Chao; Chen, Deyang; Yan, Zhibo; Lu, Xubing; Gao, Xingsen; Liu, Jun-Ming
2017-01-01
Ferroelectric diodes with polarization-modulated Schottky barriers are promising for applications in resistive switching (RS) memories. However, they have not achieved satisfactory performance reliability as originally hoped. The physical origins underlying this issue have not been well studied, although they deserve much attention. Here, by means of scanning Kelvin probe microscopy we show that the electrical poling of ferroelectric diodes can cause significant charge injection and trapping besides polarization switching. We further show that the reproducibility and stability of switchable diode-type RS behavior are significantly affected by the interfacial traps. A theoretical model is then proposed to quantitatively describe the modifications of Schottky barriers by charge injection and trapping. This model is able to reproduce various types of hysteretic current-voltage characteristics as experimentally observed. It is further revealed that the charge injection and trapping can significantly modify the electroresistance ratio, RS polarity, and high- or low-resistance states initially defined by the polarization direction. Several approaches are suggested to suppress the effect of charge injection and trapping so as to realize high-performance polarization-reversal-induced RS. This study, therefore, reveals the microscopic mechanisms for the RS behavior comodulated by polarization reversal and charge trapping in ferroelectric diodes, and also provides useful suggestions for developing reliable ferroelectric RS memories.
Modeling the Stability of Volatile Deposits in Lunar Cold Traps
NASA Technical Reports Server (NTRS)
Crider, D. H.; Vondrak, R. R.
2002-01-01
There are several mechanisms acting at the cold traps that can alter the inventory of volatiles there. Primarily, the lunar surface is bombarded by meteoroids which impact, melt, process, and redistribute the regolith. Further, solar wind and magnetospheric ion fluxes are allowed limited access onto the regions in permanent shadow. Also, although cold traps are in the permanent shadow of the Sun, there is a small flux of radiation incident on the regions from interstellar sources. We investigate the effects of these space weathering processes on a deposit of volatiles in a lunar cold trap through simulations. We simulate the development of a column of material near the surface of the Moon resulting from space weathering. This simulation treats a column of material at a lunar cold trap and focuses on the hydrogen content of the column. We model space weathering processes on several time and spatial scales to simulate the constant rain of micrometeoroids as well as sporadic larger impactors occurring near the cold traps to determine the retention efficiency of the cold traps. We perform the Monte Carlo simulation over many columns of material to determine the expectation value for hydrogen content of the top few meters of soil for comparison with Lunar Prospector neutron data.
Comparisons of Integrated Radiation Transport Models with Microdosimetry Data in Spaceflight
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Nikjoo, H.; Kim, M. Y.; Hu, X.; Dicello, J. F.; Pisacane, V. L.
2006-01-01
Astronauts are exposed to galactic cosmic rays (GCR), trapped protons, and possible solar particle events (SPE) during spaceflight. For such complicated mixtures of radiation types and kinetic energies, tissue equivalent proportional counters (TEPC's) represent a simple time-dependent approach for radiation monitoring. Of interest in radiation protection is the average quality factor of a radiation field defined as a function of linear energy transfer, LET, Q(sub ave)(LET). However TEPC's measure the average quality factors as a function of lineal energy (y), Q(sub ave)(y) defined as the average energy deposition in a volume divided by the average chord length of the volume. Lineal energy, y deviates from LET due to energy straggling, delta-ray escape or entry, and nuclear fragments produced in the detector. Using integrated space radiation models that includes the transport code HZETRN/BRYNTRN, the quantum nuclear interaction model, QMSFRG, and results from Monte-Carlo track simulations of TEPC's response to ions, we consider comparisons of model calculations to TEPC results from NASA missions in low Earth orbit and make predictions for lunar and Mars missions. Good agreement between the model and measured spectra from past NASA missions is found. A finding of this work is that TEPC's values for trapped or solar protons of Q(sub ave)(y) range from 1.9-2.5, overestimating Q(sub ave)(LET), which ranges from 1.4-1.6 with both quantities increasing with shielding depth due to nuclear secondaries Comparisons for the complete GCR spectra show that Q(sub ave)(LET) for GCR is approximately 3.5-4.5, while TEPC's measure 2.9-3.4 for Q(sub ave)(y) with the GCR values decreasing with depth as heavy ions are absorbed in shielding material. Our results support the use of TEPC's for space radiation environmental monitoring when computational analysis is used for proper data interpretation.
Origin of traps and charge transport mechanism in hafnia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Islamov, D. R., E-mail: damir@isp.nsc.ru; Gritsenko, V. A., E-mail: grits@isp.nsc.ru; Novosibirsk State University, Novosibirsk 630090
2014-12-01
In this study, we demonstrated experimentally and theoretically that oxygen vacancies are responsible for the charge transport in HfO{sub 2}. Basing on the model of phonon-assisted tunneling between traps, and assuming that the electron traps are oxygen vacancies, good quantitative agreement between the experimental and theoretical data of current-voltage characteristics was achieved. The thermal trap energy of 1.25 eV in HfO{sub 2} was determined based on the charge transport experiments.
Glass Frit Filters for Collecting Metal Oxide Nanoparticles
NASA Technical Reports Server (NTRS)
Ackerman, John; Buttry, Dan; Irvine, Geoffrey; Pope, John
2005-01-01
Filter disks made of glass frit have been found to be effective as means of high-throughput collection of metal oxide particles, ranging in size from a few to a few hundred nanometers, produced in gas-phase condensation reactors. In a typical application, a filter is placed downstream of the reactor and a valve is used to regulate the flow of reactor exhaust through the filter. The exhaust stream includes a carrier gas, particles, byproducts, and unreacted particle-precursor gas. The filter selectively traps the particles while allowing the carrier gas, the byproducts, and, in some cases, the unreacted precursor, to flow through unaffected. Although the pores in the filters are much larger than the particles, the particles are nevertheless trapped to a high degree: Anecdotal information from an experiment indicates that 6-nm-diameter particles of MnO2 were trapped with greater than 99-percent effectiveness by a filtering device comprising a glass-frit disk having pores 70 to 100 micrometer wide immobilized in an 8-cm-diameter glass tube equipped with a simple twist valve at its downstream end.
Single Aerosol Particle Studies Using Optical Trapping Raman And Cavity Ringdown Spectroscopy
NASA Astrophysics Data System (ADS)
Gong, Z.; Wang, C.; Pan, Y. L.; Videen, G.
2017-12-01
Due to the physical and chemical complexity of aerosol particles and the interdisciplinary nature of aerosol science that involves physics, chemistry, and biology, our knowledge of aerosol particles is rather incomplete; our current understanding of aerosol particles is limited by averaged (over size, composition, shape, and orientation) and/or ensemble (over time, size, and multi-particles) measurements. Physically, single aerosol particles are the fundamental units of any large aerosol ensembles. Chemically, single aerosol particles carry individual chemical components (properties and constituents) in particle ensemble processes. Therefore, the study of single aerosol particles can bridge the gap between aerosol ensembles and bulk/surface properties and provide a hierarchical progression from a simple benchmark single-component system to a mixed-phase multicomponent system. A single aerosol particle can be an effective reactor to study heterogeneous surface chemistry in multiple phases. Latest technological advances provide exciting new opportunities to study single aerosol particles and to further develop single aerosol particle instrumentation. We present updates on our recent studies of single aerosol particles optically trapped in air using the optical-trapping Raman and cavity ringdown spectroscopy.
Precombination Cloud Collapse and Baryonic Dark Matter
NASA Technical Reports Server (NTRS)
Hogan, Craig J.
1993-01-01
A simple spherical model of dense baryon clouds in the hot big bang 'strongly nonlinear primordial isocurvature baryon fluctuations' is reviewed and used to describe the dependence of cloud behavior on the model parameters, baryon mass, and initial over-density. Gravitational collapse of clouds before and during recombination is considered including radiation diffusion and trapping, remnant type and mass, and effects on linear large-scale fluctuation modes. Sufficiently dense clouds collapse early into black holes with a minimum mass of approx. 1 solar mass, which behave dynamically like collisionless cold dark matter. Clouds below a critical over-density, however, delay collapse until recombination, remaining until then dynamically coupled to the radiation like ordinary diffuse baryons, and possibly producing remnants of other kinds and lower mass. The mean density in either type of baryonic remnant is unconstrained by observed element abundances. However, mixed or unmixed spatial variations in abundance may survive in the diffuse baryon and produce observable departures from standard predictions.
NASA Astrophysics Data System (ADS)
Tomori, Zoltan; Keša, Peter; Nikorovič, Matej; Kaůka, Jan; Zemánek, Pavel
2016-12-01
We proposed the improved control software for the holographic optical tweezers (HOT) proper for simple semi-automated sorting. The controller receives data from both the human interface sensors and the HOT microscope camera and processes them. As a result, the new positions of active laser traps are calculated, packed into the network format and sent to the remote HOT. Using the photo-polymerization technique, we created a sorting container consisting of two parallel horizontal walls where one wall contains "gates" representing a place where the trapped particle enters into the container. The positions of particles and gates are obtained by image analysis technique which can be exploited to achieve the higher level of automation. Sorting is documented on computer game simulation and the real experiment.
Autonomous propulsion of nanorods trapped in an acoustic field
NASA Astrophysics Data System (ADS)
Sader, John; Collis, Jesse; Chakraborty, Debadi
2017-11-01
Recent measurements demonstrate that nanorods trapped in acoustic fields generate autonomous propulsion, with their direction and speed controlled by both the particle's shape and density distribution. In this talk, we investigate the physical mechanisms underlying this combined density/shape induced phenomenon by developing a simple yet rigorous mathematical framework for arbitrary axisymmetric particles. This only requires solution of the (linear) unsteady Stokes equations. Geometric and density asymmetries in the particle generate axial jets that can produce motion in either direction. Strikingly, the propulsion direction is found to reverse with increasing frequency, an effect that is yet to be reported experimentally. The general theory and mechanism described here enable the a priori design and fabrication of nano-motors in fluid for transport of small-scale payloads and robotic applications.
Surface modified alginate microcapsules for 3D cell culture
NASA Astrophysics Data System (ADS)
Chen, Yi-Wen; Kuo, Chiung Wen; Chueh, Di-Yen; Chen, Peilin
2016-06-01
Culture as three dimensional cell aggregates or spheroids can offer an ideal platform for tissue engineering applications and for pharmaceutical screening. Such 3D culture models, however, may suffer from the problems such as immune response and ineffective and cumbersome culture. This paper describes a simple method for producing microcapsules with alginate cores and a thin shell of poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) to encapsulate mouse induced pluripotent stem (miPS) cells, generating a non-fouling surface as an effective immunoisolation barrier. We demonstrated the trapping of the alginate microcapsules in a microwell array for the continuous observation and culture of a large number of encapsulated miPS cells in parallel. miPS cells cultured in the microcapsules survived well and proliferated to form a single cell aggregate. Droplet formation of monodisperse microcapsules with controlled size combined with flow cytometry provided an efficient way to quantitatively analyze the growth of encapsulated cells in a high-throughput manner. The simple and cost-effective coating technique employed to produce the core-shell microcapsules could be used in the emerging field of cell therapy. The microwell array would provide a convenient, user friendly and high-throughput platform for long-term cell culture and monitoring.
On the Prony series representation of stretched exponential relaxation
NASA Astrophysics Data System (ADS)
Mauro, John C.; Mauro, Yihong Z.
2018-09-01
Stretched exponential relaxation is a ubiquitous feature of homogeneous glasses. The stretched exponential decay function can be derived from the diffusion-trap model, which predicts certain critical values of the fractional stretching exponent, β. In practical implementations of glass relaxation models, it is computationally convenient to represent the stretched exponential function as a Prony series of simple exponentials. Here, we perform a comprehensive mathematical analysis of the Prony series approximation of the stretched exponential relaxation, including optimized coefficients for certain critical values of β. The fitting quality of the Prony series is analyzed as a function of the number of terms in the series. With a sufficient number of terms, the Prony series can accurately capture the time evolution of the stretched exponential function, including its "fat tail" at long times. However, it is unable to capture the divergence of the first-derivative of the stretched exponential function in the limit of zero time. We also present a frequency-domain analysis of the Prony series representation of the stretched exponential function and discuss its physical implications for the modeling of glass relaxation behavior.
Yalcinkaya, Sedat; Malina, Joseph F
2015-06-01
The performance of anaerobic co-digestion of municipal wastewater sludge with un-dewatered grease trap waste was assessed using modified biochemical methane potential tests under mesophilic conditions (35°C). Methane potentials, process inhibition and chemical behavior of the process were analyzed at different grease trap waste feed ratios on volatile solids basis. Nonlinear regression analyses of first order reaction and modified Gompertz equations were performed to assist in interpretation of the experimental results. Methane potential of un-dewatered grease trap waste was measured as 606 mL CH4/g VS(added), while methane potential of municipal wastewater sludge was only 223 mL CH4/g VS(added). The results indicated that anaerobic digestion of grease trap waste without dewatering yields less methane potential than concentrated/dewatered grease trap waste because of high wastewater content of un-dewatered grease trap waste. However, anaerobic co-digestion of municipal wastewater sludge and grease trap waste still yields over two times more methane potential and approximately 10% more volatile solids reduction than digestion of municipal wastewater sludge alone. The anaerobic co-digestion process inhibitions were reported at 70% and greater concentrated/dewatered grease trap waste additions on volatile solids basis in previous studies; however, no inhibition was observed at 100% un-dewatered grease trap waste digestion in the present study. These results indicate that anaerobic co-digestion of un-dewatered grease trap waste may reduce the inhibition risk compared to anaerobic co-digestion of concentrated/dewatered grease trap waste. In addition, a mathematical model was developed in this study for the first time to describe the relationship between grease trap waste feed ratio on volatile solids basis and resulting methane potential. Experimental data from the current study as well as previous biochemical methane potential studies were successfully fit to this relationship and allowed estimation of key performance parameters that provide additional insight into the factors affecting biochemical methane potential. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of fast electrons on the stability of resistive interchange modes in the TJ-II stellarator
DOE Office of Scientific and Technical Information (OSTI.GOV)
García, L.; Ochando, M. A.; Hidalgo, C.
2016-06-15
In this paper, we report on electromagnetic phenomena in low-β plasmas at the TJ-II stellarator, controlled by external heating. To understand the observations qualitatively, we introduce a simple modification of the standard resistive MHD equations, to include the potential impact of fast electrons on instabilities. The dominant instabilities of the modeling regime are resistive interchange modes, and calculations are performed in a configuration with similar characteristics as the TJ-II stellarator. The main effect of the trapping of fast electrons by magnetic islands induced by MHD instabilities is to increase the magnetic component of the fluctuations, changing the character of themore » instability to tearing-like and modifying the frequency of the modes. These effects seem to be consistent with some of the experimental observations.« less
NASA Technical Reports Server (NTRS)
Shervais, John W.; Vetter, Scott K.
1993-01-01
The discovery of REE-rich phosphates (dominantly whitlockite) in pristine, non-mare rocks of the western lunar nearside (Apollo 14, Apollo 12, and most recently, Apollo 17) has created a paradox for lunar petrologists. These phases are found in feldspar-rich cumulates of both the Mg-suite and the Alkali suite, which differ significantly in their mineral chemistries and major element compositions. Despite the differences in host rock compositions, whitlockites in both suites have similar compositions, with LREE concentrations around 21,000 to 37,000 x chondrite. Simple modeling of possible parent magma compositions using the experimental whitlockite/liquid partition coefficients of Dickinson and Hess show that these REE concentrations are too high to form from normal lunar magmas, even those characterized as 'urKREEP.'
Ideal sinks are not always ideal. Radiation damage accumulation in nanocomposites
Uberuaga, Blas Pedro; Choudhury, Samrat; Caro, Alfredo
2014-11-27
Designing radiation tolerant materials is one of the primary challenges associated with advanced nuclear energy systems. One attractive route that has received much attention world-wide is to introduce a high density of sinks, often in the form of interfaces or secondary phases. Here, we develop a simple model of such nanocomposites and examine the ramifications of various factors on the overall radiation stability of the material. In particular, we determine how the distribution of secondary phases, the relative sink strength of those phases, and the irradiation temperature influence the radiation tolerance of the matrix. We find that the best scenariomore » is one in which the sinks have intermediate strength, transiently trapping defects before releasing them back into the matrix.This provides new insight into the optimal properties of nanocomposites for radiation damage environments.« less
Partitioning of residual D-limonene cleaner vapor among organic materials in weapons
DOE Office of Scientific and Technical Information (OSTI.GOV)
LeMay, J.D.
1993-03-01
D-limonene is a replacement solvent selected by Sandia and Allied-Signal to clean solder flux from electronics assemblies in firesets and programmers. D-limonene is much slower drying than the solvents it has replaced and this has raised concerns that residual quantities of the cleaner could be trapped in the electronics assemblies and eventually carried into warhead assemblies. This paper describes a study designed to evaluate how vapors from residual d-limonene cleaner would be partitioned among typical organic materials in a Livermore device. The goal was to identify possible compatibility problems arising from the use of d-limonene and, in particular, any interactionsmore » it may have with energetic materials. To predict the partitioning behavior of d-limonene, a simple model was developed and its predictions are compared to the experimental findings.« less
Böcking, Till; Aguet, François; Harrison, Stephen C.; Kirchhausen, Tomas
2010-01-01
Heat shock cognate protein 70 (Hsc70) supports remodeling of protein complexes -- for example, disassembly of clathrin coats on endocytic coated vesicles. To understand how a simple ATP driven molecular clamp catalyzes a large-scale disassembly reaction, we have used single-particle fluorescence imaging to track the dynamics of Hsc70 and its clathrin substrate in real time. Hsc70 accumulates to a critical level, determined by kinetic modeling to be one Hsc70 for every two functional attachment sites; rapid, all-or-none uncoating then ensues. We propose that Hsc70 traps conformational distortions, seen previously by electron cryomicroscopy, in the vicinity of each occupied site and that accumulation of local strains destabilises the clathrin lattice. Capture of conformational fluctuations may be a general mechanism for chaperone-driven disassembly of protein complexes. PMID:21278753