Sample records for simplex virus gene

  1. Construction of Poxviruses as Cloning Vectors: Insertion of the Thymidine Kinase Gene from Herpes Simplex Virus into the DNA of Infectious Vaccinia Virus

    NASA Astrophysics Data System (ADS)

    Panicali, Dennis; Paoletti, Enzo

    1982-08-01

    We have constructed recombinant vaccinia viruses containing the thymidine kinase gene from herpes simplex virus. The gene was inserted into the genome of a variant of vaccinia virus that had undergone spontaneous deletion as well as into the 120-megadalton genome of the large prototypic vaccinia variant. This was accomplished via in vivo recombination by contransfection of eukaryotic tissue culture cells with cloned BamHI-digested thymidine kinase gene from herpes simplex virus containing flanking vaccinia virus DNA sequences and infectious rescuing vaccinia virus. Pure populations of the recombinant viruses were obtained by replica filter techniques or by growth of the recombinant virus in biochemically selective medium. The herpes simplex virus thymidine kinase gene, as an insert in vaccinia virus, is transcribed in vivo and in vitro, and the fidelity of in vivo transcription into a functional gene product was detected by the phosphorylation of 5-[125I]iodo-2'-deoxycytidine.

  2. RNA interference inhibits herpes simplex virus type 1 isolated from saliva samples and mucocutaneous lesions.

    PubMed

    Silva, Amanda Perse da; Lopes, Juliana Freitas; Paula, Vanessa Salete de

    2014-01-01

    The aim of this study was to evaluate the use of RNA interference to inhibit herpes simplex virus type-1 replication in vitro. For herpes simplex virus type-1 gene silencing, three different small interfering RNAs (siRNAs) targeting the herpes simplex virus type-1 UL39 gene (sequence si-UL 39-1, si-UL 39-2, and si-UL 39-3) were used, which encode the large subunit of ribonucleotide reductase, an essential enzyme for DNA synthesis. Herpes simplex virus type-1 was isolated from saliva samples and mucocutaneous lesions from infected patients. All mucocutaneous lesions' samples were positive for herpes simplex virus type-1 by real-time PCR and by virus isolation; all herpes simplex virus type-1 from saliva samples were positive by real-time PCR and 50% were positive by virus isolation. The levels of herpes simplex virus type-1 DNA remaining after siRNA treatment were assessed by real-time PCR, whose results demonstrated that the effect of siRNAs on gene expression depends on siRNA concentration. The three siRNA sequences used were able to inhibit viral replication, assessed by real-time PCR and plaque assays and among them, the sequence si-UL 39-1 was the most effective. This sequence inhibited 99% of herpes simplex virus type-1 replication. The results demonstrate that silencing herpes simplex virus type-1 UL39 expression by siRNAs effectively inhibits herpes simplex virus type-1 replication, suggesting that siRNA based antiviral strategy may be a potential therapeutic alternative. Copyright © 2014. Published by Elsevier Editora Ltda.

  3. NFκB-mediated activation of the cellular FUT3, 5 and 6 gene cluster by herpes simplex virus type 1.

    PubMed

    Nordén, Rickard; Samuelsson, Ebba; Nyström, Kristina

    2017-11-01

    Herpes simplex virus type 1 has the ability to induce expression of a human gene cluster located on chromosome 19 upon infection. This gene cluster contains three fucosyltransferases (encoded by FUT3, FUT5 and FUT6) with the ability to add a fucose to an N-acetylglucosamine residue. Little is known regarding the transcriptional activation of these three genes in human cells. Intriguingly, herpes simplex virus type 1 activates all three genes simultaneously during infection, a situation not observed in uninfected tissue, pointing towards a virus specific mechanism for transcriptional activation. The aim of this study was to define the underlying mechanism for the herpes simplex virus type 1 activation of FUT3, FUT5 and FUT6 transcription. The transcriptional activation of the FUT-gene cluster on chromosome 19 in fibroblasts was specific, not involving adjacent genes. Moreover, inhibition of NFκB signaling through panepoxydone treatment significantly decreased the induction of FUT3, FUT5 and FUT6 transcriptional activation, as did siRNA targeting of p65, in herpes simplex virus type 1 infected fibroblasts. NFκB and p65 signaling appears to play an important role in the regulation of FUT3, FUT5 and FUT6 transcriptional activation by herpes simplex virus type 1 although additional, unidentified, viral factors might account for part of the mechanism as direct interferon mediated stimulation of NFκB was not sufficient to induce the fucosyltransferase encoding gene cluster in uninfected cells. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Expression of varicella-zoster virus and herpes simplex virus in normal human trigeminal ganglia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vafai, A.; Wellish, M.; Devlin, M.

    1988-04-01

    Lysates of radiolabeled explants from four human trigeminal ganglia were immunoprecipitated with antibodies to varicella-zoster virus (VZV) and to herpes simplex virus. Both herpes simplex virus- and VZV-specific proteins were detected in lysates of all four ganglia. Absence of reactivity in ganglion explants with monoclonal antibodies suggested that herpes simplex virus and VZV were not reactivated during the culture period. In situ hybridization studies demonstrated the presence of RNA transcripts from the VZV immediate early gene 63. This approach to the detection of herpes simplex virus and VZV expression in human ganglia should facilitate analysis of viral RNA and proteinsmore » in human sensory ganglia.« less

  5. Expression of Herpes Simplex Virus 1 Glycoprotein B by a Recombinant Vaccinia Virus and Protection of Mice against Lethal Herpes Simplex Virus 1 Infection

    NASA Astrophysics Data System (ADS)

    Cantin, Edouard M.; Eberle, Richard; Baldick, Joseph L.; Moss, Bernard; Willey, Dru E.; Notkins, Abner L.; Openshaw, Harry

    1987-08-01

    The herpes simplex virus 1 (HSV-1) strain F gene encoding glycoprotein gB was isolated and modified at the 5' end by in vitro oligonucleotide-directed mutagenesis. The modified gB gene was inserted into the vaccinia virus genome and expressed under the control of a vaccinia virus promoter. The mature gB glycoprotein produced by the vaccinia virus recombinant was glycosylated, was expressed at the cell surface, and was indistinguishable from authentic HSV-1 gB in terms of electrophoretic mobility. Mice immunized intradermally with the recombinant vaccinia virus produced gB-specific neutralizing antibodies and were resistant to a lethal HSV-1 challenge.

  6. Amplification of Herpes Simplex Virus Types 1 and 2 and Human Herpes Virus Type 5 Polymerase Gene Segment From Formalin-Fixed Brain Tissue From Alzheimer’s Disease Patients

    DTIC Science & Technology

    2005-08-01

    The neuronal nitric oxide synthase (NOS1) gene target was amplified and sequenced in all samples tested, in addition to HSV1 , HSV2 , or Human Herpes...Triphosphate DNA Deoxyribonucleic acid GAPDH Glyceraldehyde-3 -phosphate dehydrogenase HSV Herpes Simplex Virus HSV1 Herpes Simplex Virus Type 1 HSV2 Herpes... HSV2 ) share 50-70 % homology. HSV1 is primarily associated with oral and ocular lesions, while HSV2 is primarily associated with genital and anal lesions

  7. The Function of Herpes Simplex Virus Genes: A Primer for Genetic Engineering of Novel Vectors

    NASA Astrophysics Data System (ADS)

    Roizman, Bernard

    1996-10-01

    Herpes simplex virus vectors are being developed for delivery and expression of human genes to the central nervous system, selective destruction of cancer cells, and as carriers for genes encoding antigens that induce protective immunity against infectious agents. Vectors constructed to meet these objectives must differ from wild-type virus with respect to host range, reactivation from latency, and expression of viral genes. The vectors currently being developed are (i) helper free amplicons, (ii) replication defective viruses, and (iii) genetically engineered replication competent viruses with restricted host range. Whereas the former two types of vectors require stable, continuous cell lines expressing viral genes for their replication, the replication competent viruses will replicate on approved primary human cell strains.

  8. Varicella-zoster virus complements herpes simplex virus type 1 temperature-sensitive mutants.

    PubMed Central

    Felser, J M; Straus, S E; Ostrove, J M

    1987-01-01

    Varicella-zoster virus (VZV) can complement temperature-sensitive mutants of herpes simplex virus. Of seven mutants tested, two, carrying mutations in the immediate-early ICP4 and ICP27 proteins, were complemented. This complementation was not seen in coinfections with adenovirus type 5 or cytomegalovirus. Following transfection into CV-1 cells, a DNA fragment containing the VZV short repeat sequence complemented the ICP4 mutant. These data demonstrate a functional relationship between VZV and herpes simplex virus and have allowed localization of a putative VZV immediate-early gene. PMID:3023701

  9. Herpes simplex virus-mediated human hypoxanthine-guanine phosphoribosyltransferase gene transfer into neuronal cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palella, T.D.; Silverman, L.J.; Schroll, C.T.

    1988-01-01

    The virtually complete deficiency of the purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT) results in a devastating neurological disease, Lesch-Nyhan syndrome. Transfer of the HPRT gene into fibroblasts and lymphoblasts in vitro and into hematopoietic cells in vivo has been accomplished by other groups with retroviral-derived vectors. It appears to be necessary, however, to transfer the HPRT gene into neuronal cells to correct the neurological dysfunction of this disorder. The neurotropic virus herpes simplex virus type 1 has features that make it suitable for use as a vector to transfer the HPRT gene into neuronal tissue. This report describes the isolationmore » of an HPRT-deficient rat neuroma cell line, designated B103-4C, and the construction of a recombinant herpes simplex virus type 1 that contained human HPRT cDNA. These recombinant viruses were used to infect B103-4C cells. Infected cells expressed HPRT activity which was human in origin.« less

  10. Properties of Cells Carrying the Herpes Simplex Virus Type 2 Thymidine Kinase Gene: Mechanisms of Reversion to a Thymidine Kinase-Negative Phenotype

    PubMed Central

    Bastow, K. F.; Darby, G.; Wildy, P.; Minson, A. C.

    1980-01-01

    We have isolated cells with a thymidine kinase-negative (tk−) phenotype from cells which carry the herpes simplex virus type 2 tk gene by selection in 5-bromodeoxyuridine or 9-(2-hydroxyethoxymethyl)guanine. Both selection routines generated revertants with a frequency of 10−3 to 10−4, and resistance to either compound conferred simultaneous resistance to the other. tk− revertants fell into three classes: (i) cells that arose by deletion of all virus sequences, (ii) cells that had lost the virus tk gene but retained a nonselected virus-specific function and arose by deletion of part of the virus-specific sequence, and (iii) cells that retained the potential to express all of the virus-specific functions of the parental cells and retained all of the virus-specific DNA sequences. Images PMID:16789205

  11. Gene transfer to brain using herpes simplex virus vectors.

    PubMed

    Glorioso, J C; Goins, W F; Meaney, C A; Fink, D J; DeLuca, N A

    1994-01-01

    Herpes simplex virus type 1 represents an ideal candidate for development as a vehicle for gene transfer to postmitotic neurons of the central nervous system. The natural biology of this virus makes it well suited for this purpose as it is capable of infecting a variety of neuronal cell types in the brain where the viral genome can persist indefinitely in a latent state. In latency, the viral lytic genes are transcriptionally silent and a unique set of latency-associated transcripts are expressed. Two impediments to using herpes simplex virus vectors must be overcome: (1) A noncytotoxic mutant virus backbone must be engineered, and (2) a suitable promoter-regulator that stably expresses foreign genes from the vector genome during latency must be constructed. Deletion of specific immediate early genes from the vector can render the virus nontoxic to neurons in culture and in vivo following stereotactic inoculation into specific regions of the brain. Because these viruses cannot replicate, they enter latency on infection of central nervous system neurons. A number of viral and cellular promoters have been tested for their ability to express genes during latency. Strong viral promoters and neurospecific promoters display transient activity. Although the promoter regions for the latency-associated transcripts are highly active in the peripheral nervous system, they show low-level but persistent activity in the brain. Experiments are in progress to exploit RNA polymerase III gene promoters or novel recombinant promoters capable of auto-inducing their own expression in order to increase gene expression during latency in brain neurons.

  12. Biochemical transformation of mouse cells by herpes simplex virus type 2: enhancement by means of low-level photodynamic treatment.

    PubMed Central

    Verwoerd, D W; Rapp, F

    1978-01-01

    The biochemical transformation of thymidine kinase-deficient cells by UV-inactivated herpes simplex virus is enhanced by low-level photodynamic treatment of the infected cells. At the concentration of proflavine used, the virus was not inactivated and both virus and cellular DNA syntheses were only marginally inhibited. The observed enhancement of the transfer of a virus gene to the cell genome suggests a possible cocarcinogenic role for photodynamically active dyes at very low concentrations. PMID:206727

  13. Mapping of herpes simplex virus-1 neurovirulence to. gamma. sub 1 34. 5, a gene nonessential for growth in culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, J.; Roizman, B.; Kern, E.R.

    1990-11-30

    The gene designated {gamma}{sub 1}34.5 maps in the inverted repeats flanking the long unique sequence of herpes simplex virus-1 (HSV-1) DNA, and therefore it is present in two copies per genome. This gene is not essential for viral growth in cell culture. Four recombinant viruses were genetically engineered to test the function of this gene. These were (i) a virus from which both copies of the gene were deleted, (ii) a virus containing a stop codon in both copies of the gene, (iii) a virus containing after the first codon an insert encoding a 16-amino acid epitope known to reactmore » with a specific monoclonal antibody, and (iv) a virus in which the deleted sequences were restored. The viruses from which the gene was deleted or which carried stop codons were avirulent on intracerebral inoculation of mice. The virus with the gene tagged by the sequence encoding the epitope was moderately virulent, whereas the restored virus reacquired the phenotype of the parent virus. Significant amounts of virus were recovered only from brains of animals inoculated with virulent viruses. Inasmuch as the product of the {gamma}{sub 1}34.5 gene extended the host range of the virus by enabling it to replicate and destroy brain cells, it is a viral neurovirulence factor.« less

  14. Friendly fire: redirecting herpes simplex virus-1 for therapeutic applications.

    PubMed

    Advani, S J; Weichselbaum, R R; Whitley, R J; Roizman, B

    2002-09-01

    Herpes simplex virus-1 (HSV-1) is a relatively large double-stranded DNA virus encoding at least 89 proteins with well characterized disease pathology. An understanding of the functions of viral proteins together with the ability to genetically engineer specific viral mutants has led to the development of attenuated HSV-1 for gene therapy. This review highlights the progress in creating attenuated genetically engineered HSV-1 mutants that are either replication competent (viral non-essential gene deleted) or replication defective (viral essential gene deleted). The choice between a replication-competent or -defective virus is based on the end-goal of the therapeutic intervention. Replication-competent HSV-1 mutants have primarily been employed as antitumor oncolytic viruses, with the lytic nature of the virus harnessed to destroy tumor cells selectively. In replacement gene therapy, replication-defective viruses have been utilized as delivery vectors. The advantages of HSV-1 vectors are that they infect quiescent and dividing cells efficiently and can encode for relatively large transgenes.

  15. Expression of IFN-Inducible Genes with Antiviral Function OAS1 and MX1 in Health and under Conditions of Recurrent Herpes Simplex Infection.

    PubMed

    Karaulov, A V; Shulzhenko, A E; Karsonova, A V

    2017-07-01

    We studied the expression of IFN-inducible genes OAS1 and Mx1 in lysates of peripheral blood mononuclear cells from patients suffering from recurrent Herpes simplex infections in comparison with healthy people. To induce the expression of the studied genes, blood mononuclears were incubated with recombinant IFN-α2b in concentrations of 1, 10, and 100 U/ml for 3 h and then the content of the studied transcripts was evaluated. Relative expression of OAS1 and Mx1 in patients with recurrent forms of Herpes simplex both during the acute stage and clinical remission did not differ significantly from that in healthy people after stimulation with IFN-α2b in a concentration of 1 U/ml and in higher concentrations (10 and 100 U/ml). It was concluded that intracellular signal transduction in IFN-α-activated cells in vitro was not disturbed in patients with recurrent forms of Herpes simplex infection. Thus, the reported phenomenon of IFN-signalling distortion by Herpes simplex virus proteins observed in experiments on model cell lines infected with Herpes simplex virus was not confirmed in our experiments on peripheral blood mononuclear cells from patients with Herpes simplex infection.

  16. Vaccinia Virus Recombinant Expressing Herpes Simplex Virus Type 1 Glycoprotein D Prevents Latent Herpes in Mice

    NASA Astrophysics Data System (ADS)

    Cremer, Kenneth J.; Mackett, Michael; Wohlenberg, Charles; Notkins, Abner Louis; Moss, Bernard

    1985-05-01

    In humans, herpes simplex virus causes a primary infection and then often a latent ganglionic infection that persists for life. Because these latent infections can recur periodically, vaccines are needed that can protect against both primary and latent herpes simplex infections. Infectious vaccinia virus recombinants that contain the herpes simplex virus type 1 (HSV-1) glycoprotein D gene under control of defined early or late vaccinia virus promoters were constructed. Tissue culture cells infected with these recombinant viruses synthesized a glycosylated protein that had the same mass (60,000 daltons) as the glycoprotein D produced by HSV-1. Immunization of mice with one of these recombinant viruses by intradermal, subcutaneous, or intraperitoneal routes resulted in the production of antibodies that neutralized HSV-1 and protected the mice against subsequent lethal challenge with HSV-1 or HSV-2. Immunization with the recombinant virus also protected the majority of the mice against the development of a latent HSV-1 infection of the trigeminal ganglia. This is the first demonstration that a genetically engineered vaccine can prevent the development of latency.

  17. US9, a stable lysine-less herpes simplex virus 1 protein, is ubiquitinated before packaging into virions and associates with proteasomes

    PubMed Central

    Brandimarti, Renato; Roizman, Bernard

    1997-01-01

    The US9 gene of herpes simplex virus 1 encodes a virion tegument protein with a predicted Mr of 10,000. Earlier studies have shown that the gene is not essential for viral replication in cells in culture. We report that (i) US9 forms in denaturing polyacrylamide gels multiple overlapping bands ranging in Mr from 12,000 to 25,000; (ii) the protein recovered from infected cells or purified virions reacts with anti-ubiquitin antibodies; (iii) autoradiographic images of US9 protein immunoprecipitated from cells infected with [35S]methionine-labeled virus indicate that the protein is stable for at least 4 h after entry into cells (the protein was also stable for at least 4 h after a 1-h labeling interval 12 h after infection); (iv) antibody to subunit 12 of proteasomes pulls down US9 protein from herpes simplex virus-infected cell lysates; and (v) the US9 gene is highly conserved among the members of the alpha subfamily of herpes viruses, and the US9 gene product lacks lysines. We conclude that US9 is a lysine-less, ubiquitinated protein that interacts with the ubiquitin-dependent pathway for degradation of proteins and that this function may be initiated at the time of entry of the virus into the cell. PMID:9391137

  18. Herpes simplex virus type 1 (HSV-1)-derived recombinant vectors for gene transfer and gene therapy.

    PubMed

    Marconi, Peggy; Fraefel, Cornel; Epstein, Alberto L

    2015-01-01

    Herpes simplex virus type 1 (HSV-1 ) is a human pathogen whose lifestyle is based on a long-term dual interaction with the infected host, being able to establish both lytic and latent infections. The virus genome is a 153-kilobase pair (kbp) double-stranded DNA molecule encoding more than 80 genes. The interest of HSV-1 as gene transfer vector stems from its ability to infect many different cell types, both quiescent and proliferating cells, the very high packaging capacity of the virus capsid, the outstanding neurotropic adaptations that this virus has evolved, and the fact that it never integrates into the cellular chromosomes, thus avoiding the risk of insertional mutagenesis. Two types of vectors can be derived from HSV-1, recombinant vectors and amplicon vectors, and different methodologies have been developed to prepare large stocks of each type of vector. This chapter summarizes the approach most commonly used to prepare recombinant HSV-1 vectors through homologous recombination, either in eukaryotic cells or in bacteria.

  19. The molecular basis of herpes simplex virus latency

    PubMed Central

    Nicoll, Michael P; Proença, João T; Efstathiou, Stacey

    2012-01-01

    Herpes simplex virus type 1 is a neurotropic herpesvirus that establishes latency within sensory neurones. Following primary infection, the virus replicates productively within mucosal epithelial cells and enters sensory neurones via nerve termini. The virus is then transported to neuronal cell bodies where latency can be established. Periodically, the virus can reactivate to resume its normal lytic cycle gene expression programme and result in the generation of new virus progeny that are transported axonally back to the periphery. The ability to establish lifelong latency within the host and to periodically reactivate to facilitate dissemination is central to the survival strategy of this virus. Although incompletely understood, this review will focus on the mechanisms involved in the regulation of latency that centre on the functions of the virus-encoded latency-associated transcripts (LATs), epigenetic regulation of the latent virus genome and the molecular events that precipitate reactivation. This review considers current knowledge and hypotheses relating to the mechanisms involved in the establishment, maintenance and reactivation herpes simplex virus latency. PMID:22150699

  20. Protease-deficient herpes simplex virus protects mice from lethal herpesvirus infection.

    PubMed Central

    Hippenmeyer, P J; Rankin, A M; Luckow, V A; Neises, G R

    1997-01-01

    Null mutants and attenuated mutants of herpes simplex virus (HSV) have been shown to induce immunity against challenge from wild-type virus. Null viruses with a defect in late gene products would be expected to express more viral genes than viruses with defects in essential early gene products and thus induce a better immune response. Herpesviruses encode a late gene product (serine protease) that is autocatalytic and cleaves the capsid assembly protein during viral replication. To determine whether a virus with a mutation in this gene could induce immunity, we constructed a recombinant virus containing the gusA reporter gene in the protease domain of the HSV type 1 UL26 open reading frame (ORF). Consistent with previous results (M. Gao, L. Matusick-Kumar, W. Hurlburt, S. F. DiTusa, W. W. Newcomb, J. C. Brown, P. J. McCann, I. Deckman, and R. J. Colonno, J. Virol. 68:3702-3712, 1994), recombinant virus could be isolated only from helper cell lines expressing the product of the UL26 ORF. Mice inoculated with the recombinant virus were unaffected by doses of virus that were lethal to mice infected with wild-type virus. Mice which were previously inoculated with the recombinant virus were also protected by a subsequent challenge with wild-type virus in a dose-dependent manner. These results indicate that recombinant viruses lacking the protease gene are avirulent but render protection from subsequent challenge. PMID:8995617

  1. Further Characterization of the UL37 Protein of Herpes Simplex Virus Type 1 and its Interaction with ICP8, the Major DNA-Binding Protein of Herpes Simplex Virus

    DTIC Science & Technology

    1994-01-01

    HSV envelopment and egress . Gross structures of the genomes of tbe buman herpesviruses . Layout of genes in the genome of HSV - 1 ........... . A... HSV - 1 capsid maturation . Seletion of recombinant vaccinia viruses Protein fusion and purification system . Generation of tbe recombinant plasmid...with purified HSV -I virions Effect of detergent treatment on the association of the UL37 protein with purified HSV - 1 vIrIons

  2. New frontiers in oncolytic viruses: optimizing and selecting for virus strains with improved efficacy

    PubMed Central

    2018-01-01

    Oncolytic viruses have demonstrated selective replication and killing of tumor cells. Different types of oncolytic viruses – adenoviruses, alphaviruses, herpes simplex viruses, Newcastle disease viruses, rhabdoviruses, Coxsackie viruses, and vaccinia viruses – have been applied as either naturally occurring or engineered vectors. Numerous studies in animal-tumor models have demonstrated substantial tumor regression and prolonged survival rates. Moreover, clinical trials have confirmed good safety profiles and therapeutic efficacy for oncolytic viruses. Most encouragingly, the first cancer gene-therapy drug – Gendicine, based on oncolytic adenovirus type 5 – was approved in China. Likewise, a second-generation oncolytic herpes simplex virus-based drug for the treatment of melanoma has been registered in the US and Europe as talimogene laherparepvec. PMID:29445265

  3. Differential stability of host mRNAs in Friend erythroleukemia cells infected with herpes simplex virus type 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayman, B.A.; Nishioka, Y.

    1985-01-01

    The consequences of herpes simplex virus type 1 infection on cellular macromolecules were investigated in Friend erythroleukemia cells. The patterns of protein synthesis, examined by polyacrylamide gel electrophoresis, demonstrated that by 4 h postinfection the synthesis of many host proteins, with the exception of histones, was inhibited. Examination of the steady-state level of histone H3 mRNA by molecular hybridization of total RNA to a cloned mouse histone H3 complementary DNA probe demonstrated that the ratio of histone H3 mRNA to total RNA remained unchanged for the first 4 h postinfection. In contrast, the steady-state levels of globin and actin mRNAsmore » decreased progressively at early intervals postinfection. Studies on RNA synthesis in isolated nuclei demonstrated that the transcription of the histone H3 gene was inhibited to approximately the same extent as that of actin gene. It was concluded that the stabilization of preexisting histone H3 mRNA was responsible for the persistence of H3 mRNA and histone protein synthesis in herpes simplex virus type 1-infected Friend erythroleukemia cells. The possible mechanisms influencing the differential stability of host mRNAs during the course of productive infection with herpes simplex virus type 1 are discussed.« less

  4. Cloning of the active thymidine kinase gene of herpes simplex virus type 1 in Escherichia coli K-12.

    PubMed

    Colbere-Garapin, F; Chousterman, S; Horodniceanu, F; Kourilsky, P; Garapin, A C

    1979-08-01

    A herpes simplex virus DNA fragment that is produced by digestion with BamHI endonuclease and carries the thymidine kinase (TK; ATP:thymidine 5'-phosphotransferase, EC 2.7.1.21) gene has been cloned in Escherichia coli. A recombinat plasmid, pFG5, has been analyzed extensively and a detailed restriction map is presented. pFG5 DNA efficiently transforms TK- mouse L cells. The TK coding sequence in the cloned fragment has been localized and a smaller recombinant plasmid, pAG0, also carrying an active TK gene, has been constructed to serve as a more convenient vector for transfer, into TK- cells, of genes previously cloned in E. coli.

  5. Nuclear Localization of the C1 Factor (Host Cell Factor) in Sensory Neurons Correlates with Reactivation of Herpes Simplex Virus from Latency

    NASA Astrophysics Data System (ADS)

    Kristie, Thomas M.; Vogel, Jodi L.; Sears, Amy E.

    1999-02-01

    After a primary infection, herpes simplex virus is maintained in a latent state in neurons of sensory ganglia until complex stimuli reactivate viral lytic replication. Although the mechanisms governing reactivation from the latent state remain unknown, the regulated expression of the viral immediate early genes represents a critical point in this process. These genes are controlled by transcription enhancer complexes whose assembly requires and is coordinated by the cellular C1 factor (host cell factor). In contrast to other tissues, the C1 factor is not detected in the nuclei of sensory neurons. Experimental conditions that induce the reactivation of herpes simplex virus in mouse model systems result in rapid nuclear localization of the protein, indicating that the C1 factor is sequestered in these cells until reactivation signals induce a redistribution of the protein. The regulated localization suggests that C1 is a critical switch determinant of the viral lytic-latent cycle.

  6. Hydroxyurea enhances the activity of acyclovir and cidofovir against herpes simplex virus type 1 resistant strains harboring mutations in the thymidine kinase and/or the DNA polymerase genes.

    PubMed

    Sergerie, Yan; Boivin, Guy

    2008-01-01

    Drug-resistant herpes simplex virus type 1 (HSV-1) recombinant strains harboring mutations in the thymidine kinase and/or the DNA polymerase genes were evaluated for their susceptibility to various antivirals in the presence of 25 microg/ml of hydroxyurea (HyU). The latter compound decreased the 50% inhibitory concentrations of acyclovir by 1.5-3.8-fold and that of cidofovir by 2.7-14.4-fold. However, HyU did not affect the susceptibilities of the various recombinant mutants to foscarnet. Hydroxyurea, a ribonucleotide reductase inhibitor, can increase the activity of nucleoside/nucleotide analogues against drug-resistant viruses.

  7. Virus-specific DNA sequences present in cells which carry the herpes simplex virus thymidine kinase gene.

    PubMed

    Minson, A C; Darby, G K; Wildy, P

    1979-11-01

    Two independently derived cell lines which carry the herpes simplex type 2 thymidine kinase gene have been examined for the presence of HSV-2-specific DNA sequences. Both cell lines contained 1 to 3 copies per cell of a sequence lying within map co-ordinates 0.2 to 0.4 of the HSV-2 genome. Revertant cells, which contained no detectable thymidine kinase, did not contain this DNA sequence. The failure of EcoR1-restricted HSV-2 DNA to act as a donor of the thymidine kinase gene in transformation experiments suggests that the gene lies close to the EcoR1 restriction site within this sequence at a map position of approx. 0.3. The HSV-2 kinase gene is therefore approximately co-linear with the HSV-1 gene.

  8. [The lysate and recombinant antigens in ELISA-test-systems for diagnostic of herpes simplex].

    PubMed

    Ganova, L A; Kovtoniuk, G V; Korshun, L N; Kiseleva, E K; Tereshchenko, M I; Vudmaska, M I; Moĭsa, L N; Shevchuk, V A; Spivak, N Ia

    2014-08-01

    The lysate and recombinant antigens of various production included informula of ELISA-test-systems were analyzed. The ELISA-test-systems are used for detection of IgG to Herpes simplex virus type I and II. For testing the panel of serums PTH 201 (BBI Inc.) were used. The samples of this panel contain antibodies to Herpes simplex virus type I and II in mixed titers. The 69 serums of donors were used too (17 samples had IgG to Herpes simplex virus type I, 23 samples to Herpes simplex virus type II and 29 samples had no antibodies to Herpes simplex virus). The diagnostic capacity of mixture of recombinant antigens gG1 Herpes simplex virus type I and gG2 Herpes simplex virus type II (The research-and-production complex "DiaprofMed") was comparable with mixture of lysate antigen Herpes simplex virus type I and II (Membrane) EIE Antigen ("Virion Ltd."). In the test-systems for differentiation of IgG to Herpes simplex virus type I the recombinant antigen gG1 Herpes simplex virus type I proved to be comparable with commercial analogue Herpes simplex virus-1 gG1M ("Viral Therapeutics Inc."'). At the same time, capacity to detect IgG to Herpes simplex virus type II in recombinant protein gG2 Herpes simplex virus type II is significantly higher than in its analogue Herpes simplex virus-2 gG2c ("Viral Therapeutics Inc.").

  9. Identification of a herpes simplex labialis susceptibility region on human chromosome 21.

    PubMed

    Hobbs, Maurine R; Jones, Brandt B; Otterud, Brith E; Leppert, Mark; Kriesel, John D

    2008-02-01

    Most of the United States population is infected with either herpes simplex virus type 1 (HSV-1), herpes simplex virus type 2, or both. Reactivations of HSV-1 infection cause herpes simplex labialis (HSL; cold sores or fever blisters), which is the most common recurring viral infection in humans. To investigate the possibility of a human genetic component conferring resistance or susceptibility to cold sores (i.e., a HSL susceptibility gene), we conducted a genetic linkage analysis that included serotyping and phenotyping 421 individuals from 39 families enrolled in the Utah Genetic Reference Project. Linkage analysis identified a 2.5-Mb nonrecombinant region of interest on the long arm of human chromosome 21, with a multipoint logarithm of odds score of 3.9 noted near marker abmc65 (D21S409). Nonparametric linkage analysis of the data also provided strong evidence for linkage (P = .0005). This region of human chromosome 21 contains 6 candidate genes for herpes susceptibility. The development of frequent cold sores is associated with a region on the long arm of human chromosome 21. This region contains several candidate genes that could influence the frequency of outbreaks of HSL.

  10. Entry of Herpes Simplex Virus Type 1 (HSV-1) into the Distal Axons of Trigeminal Neurons Favors the Onset of Nonproductive, Silent Infection

    PubMed Central

    Eing, Bodo R.; Müller, Marcus; King, Nicholas J. C.; Klupp, Barbara; Mettenleiter, Thomas C.; Kühn, Joachim E.

    2012-01-01

    Following productive, lytic infection in epithelia, herpes simplex virus type 1 (HSV-1) establishes a lifelong latent infection in sensory neurons that is interrupted by episodes of reactivation. In order to better understand what triggers this lytic/latent decision in neurons, we set up an organotypic model based on chicken embryonic trigeminal ganglia explants (TGEs) in a double chamber system. Adding HSV-1 to the ganglion compartment (GC) resulted in a productive infection in the explants. By contrast, selective application of the virus to distal axons led to a largely nonproductive infection that was characterized by the poor expression of lytic genes and the presence of high levels of the 2.0-kb major latency-associated transcript (LAT) RNA. Treatment of the explants with the immediate-early (IE) gene transcriptional inducer hexamethylene bisacetamide, and simultaneous co-infection of the GC with HSV-1, herpes simplex virus type 2 (HSV-2) or pseudorabies virus (PrV) helper virus significantly enhanced the ability of HSV-1 to productively infect sensory neurons upon axonal entry. Helper-virus-induced transactivation of HSV-1 IE gene expression in axonally-infected TGEs in the absence of de novo protein synthesis was dependent on the presence of functional tegument protein VP16 in HSV-1 helper virus particles. After the establishment of a LAT-positive silent infection in TGEs, HSV-1 was refractory to transactivation by superinfection of the GC with HSV-1 but not with HSV-2 and PrV helper virus. In conclusion, the site of entry appears to be a critical determinant in the lytic/latent decision in sensory neurons. HSV-1 entry into distal axons results in an insufficient transactivation of IE gene expression and favors the establishment of a nonproductive, silent infection in trigeminal neurons. PMID:22589716

  11. Microarray profiling analysis uncovers common molecular mechanisms of rubella virus, human cytomegalovirus, and herpes simplex virus type 2 infections in ECV304 cells.

    PubMed

    Mo, X; Xu, L; Yang, Q; Feng, H; Peng, J; Zhang, Y; Yuan, W; Wang, Y; Li, Y; Deng, Y; Wan, Y; Chen, Z; Li, F; Wu, X

    2011-08-01

    To study the common molecular mechanisms of various viruses infections that might result in congential cardiovascular diseases in perinatal period, changes in mRNA expression levels of ECV304 cells infected by rubella virus (RUBV), human cytomegalovirus (HCMV), and herpes simplex virus type 2 (HSV-2) were analyzed using a microarray system representing 18,716 human genes. 99 genes were found to exhibit differential expression (80 up-regulated and 19 down-regulated). Biological process analysis showed that 33 signaling pathways including 22 genes were relevant significantly to RV, HCMV and HSV-II infections. Of these 33 biological processes, 28 belong to one-gene biological processes and 5 belong to multiple-gene biological processes. Gene annotation indicated that the 5 multiple-gene biological processes including regulation of cell growth, collagen fibril organization, mRNA transport, cell adhesion and regulation of cell shape, and seven down- or up-regulated genes [CRIM1 (cysteine rich transmembrane BMP regulator 1), WISP2 (WNT1 inducible signaling pathway protein 2), COL12A1 (collagen, type XII, alpha 1), COL11A2 (collagen, type XI, alpha 2), CNTN5 (contactin 5), DDR1 (discoidin domain receptor tyrosine kinase 1), VEGF (vascular endothelial growth factor precursor)], are significantly correlated to RUBV, HCMV and HSV-2 infections in ECV304 cells. The results obtained in this study suggested the common molecular mechanisms of viruses infections that might result in congential cardiovascular diseases.

  12. Trans activation of plasmid-borne promoters by adenovirus and several herpes group viruses.

    PubMed Central

    Everett, R D; Dunlop, M

    1984-01-01

    This paper describes experiments to test the ability of a number of viruses of the Herpes group, and also Adenovirus-2 and SV40, to activate transcription from the Herpes simplex virus-1 glycoprotein D and the rabbit beta-globin promoters. Plasmids containing these genes were transfected into HeLa cells which were then infected with various viruses. Transcriptional activation in trans of the plasmid-borne promoters was monitored by quantitative S1 nuclease analysis of total cytoplasmic RNA isolated after infection. The results showed that Herpes simplex viruses 1 and 2, Pseudorabies virus, Variella Zoster virus, Human Cytomegalovirus, Equine herpes virus-1 and Adenovirus-2 activate transcription from both promoters tested. In contrast, SV40 did not activate transcription in trans in this assay. The possible mechanisms of this activation are discussed. Images PMID:6089105

  13. The effect of DNA priming-protein boosting on enhancing humoral immunity and protecting mice against lethal HSV infections.

    PubMed

    Soleimanjahi, Hoorieh; Roostaee, Mohammad Hassan; Rasaee, Mohammad Javad; Mahboudi, Fereidoon; Kazemnejad, Anooshirvan; Bamdad, Taravat; Zandi, Keivan

    2006-02-01

    Herpes simplex virus produces primary and latent infections with periodic recurrency. The prime-boost immunization strategies were studied using a DNA vaccine carrying the full-length glycoprotein D-1 gene and a baculovirus-derived recombinant glycoprotein D, both expressing herpes simplex virus glycoprotein D-1 protein. Immunization with recombinant DNAs encoding antigenic proteins could induce cellular and humoral responses by providing antigen expression in vivo. Higher immune response, however, occurred when the recombinant proteins followed DNA inoculation. While all groups of the immunized mice and positive control group could resist virus challenge, a higher virus neutralizing antibody level was detected in the animals receiving recombinant protein following DNA vaccination.

  14. A Genetic Approach to Promoter Recognition during Trans Induction of Viral Gene Expression

    NASA Astrophysics Data System (ADS)

    Coen, Donald M.; Weinheimer, Steven P.; McKnight, Steven L.

    1986-10-01

    Viral infection of mammalian cells entails the regulated induction of viral gene expression. The induction of many viral genes, including the herpes simplex virus gene encoding thymidine kinase (tk), depends on viral regulatory proteins that act in trans. Because recognition of the tk promoter by cellular transcription factors is well understood, its trans induction by viral regulatory proteins may serve as a useful model for the regulation of eukaryotic gene expression. A comprehensive set of mutations was therefore introduced into the chromosome of herpes simplex virus at the tk promoter to directly analyze the effects of promoter mutations on tk transcription. The promoter domains required for efficient tk expression under conditions of trans induction corresponded to those important for recognition by cellular transcription factors. Thus, trans induction of tk expression may be catalyzed initially by the interaction of viral regulatory proteins with cellular transcription factors.

  15. Evaluation of scopadulciol-related molecules for their stimulatory effect on the cytotoxicity of acyclovir and ganciclovir against Herpes simplex virus type 1 thymidine kinase gene-transfected HeLa cells.

    PubMed

    Hayashi, Kyoko; Rahman, S M Abdur; Ohno, Hiroaki; Tanaka, Tetsuaki; Toyooka, Naoki; Nemoto, Hideo; Hayashi, Toshimitsu

    2004-08-01

    Herpes simplex virus type 1 thymidine kinase (HSV TK) is involved in both antiherpetic therapy and cancer gene therapy with acyclovir (ACV) and ganciclovir (GCV). Enhanced sensitivity to these drugs is advantageous in their clinical use. In the present study, scopadulciol (SDC) and its related compounds were evaluated for their stimulatory effect on the cytotoxicity of ACV and GCV by determination of selective toxicities against HSV TK-expressing HeLa cells. Although SDC remarkably potenciated the cytotoxicity of ACV and GCV, the other tested compounds showed only weak selectivity, except for compound 34.

  16. Association of herpes simplex virus regulatory protein ICP22 with transcriptional complexes containing EAP, ICP4, RNA polymerase II, and viral DNA requires posttranslational modification by the U(L)13 proteinkinase.

    PubMed Central

    Leopardi, R; Ward, P L; Ogle, W O; Roizman, B

    1997-01-01

    The expression of herpes simplex virus 1 gamma (late) genes requires functional alpha proteins (gamma1 genes) and the onset of viral DNA synthesis (gamma2 genes). We report that late in infection after the onset of viral DNA synthesis, cell nuclei exhibit defined structures which contain two viral regulatory proteins (infected cell proteins 4 and 22) required for gamma gene expression, RNA polymerase II, a host nucleolar protein (EAP or L22) known to be associated with ribosomes and to bind small RNAs, including the Epstein-Barr virus small nuclear RNAs, and newly synthesized progeny DNA. The formation of these complexes required the onset of viral DNA synthesis. The association of infected cell protein 22, a highly posttranslationally processed protein, with these structures did not occur in cells infected with a viral mutant deleted in the genes U(L)13 and U(S)3, each of which specifies a protein kinase known to phosphorylate the protein. PMID:8995634

  17. An efficient deletion mutant packaging system for defective herpes simplex virus vectors: Potential applications to human gene therapy and neuronal physiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geller, A.I.; Keyomarsi, K.; Bryan, J.

    1990-11-01

    The authors have previously described a defective herpes simplex virus (HSV-1) vector system that permits that introduction of virtually any gene into nonmitotic cells. pHSVlac, the prototype vector, stably expresses Escherichia coli {beta}-galactosidase from a constitutive promoter in many human cell lines, in cultured rat neurons from throughout the nervous system, and in cells in the adult rat brain. HSV-1 vectors expressing other genes may prove useful for studying neuronal physiology or performing human gene therapy for neurological diseases, such as Parkinson disease or brain tumors. A HSV-1 temperature-sensitive (ts) mutant, ts K, has been used as helper virus; tsmore » mutants revert to wild type. In contrast, HSV-1 deletion mutants essentially cannot revert to wild type; therefore, use of a deletion mutant as helper virus might permit human gene therapy with HSV-1 vectors. They now report an efficient packaging system for HSV-1 VECTORS USING A DELETION MUTANT, d30EBA, as helper virus; virus is grown on the complementing cell line M64A. pHSVlac virus prepared using the deletion mutant packaging system stably expresses {beta}-galactosidase in cultured rat sympathetic neurons and glia. Both D30EBA and ts K contain a mutation in the IE3 gene of HSV-1 strain 17 and have the same phenotype; therefore, changing the helper virus from ts K to D30EBA does not alter the host range or other properties of the HSV-1 vector system.« less

  18. Genome-wide engineering of an infectious clone of herpes simplex virus type 1 using synthetic genomics assembly methods.

    PubMed

    Oldfield, Lauren M; Grzesik, Peter; Voorhies, Alexander A; Alperovich, Nina; MacMath, Derek; Najera, Claudia D; Chandra, Diya Sabrina; Prasad, Sanjana; Noskov, Vladimir N; Montague, Michael G; Friedman, Robert M; Desai, Prashant J; Vashee, Sanjay

    2017-10-17

    Here, we present a transformational approach to genome engineering of herpes simplex virus type 1 (HSV-1), which has a large DNA genome, using synthetic genomics tools. We believe this method will enable more rapid and complex modifications of HSV-1 and other large DNA viruses than previous technologies, facilitating many useful applications. Yeast transformation-associated recombination was used to clone 11 fragments comprising the HSV-1 strain KOS 152 kb genome. Using overlapping sequences between the adjacent pieces, we assembled the fragments into a complete virus genome in yeast, transferred it into an Escherichia coli host, and reconstituted infectious virus following transfection into mammalian cells. The virus derived from this yeast-assembled genome, KOS YA , replicated with kinetics similar to wild-type virus. We demonstrated the utility of this modular assembly technology by making numerous modifications to a single gene, making changes to two genes at the same time and, finally, generating individual and combinatorial deletions to a set of five conserved genes that encode virion structural proteins. While the ability to perform genome-wide editing through assembly methods in large DNA virus genomes raises dual-use concerns, we believe the incremental risks are outweighed by potential benefits. These include enhanced functional studies, generation of oncolytic virus vectors, development of delivery platforms of genes for vaccines or therapy, as well as more rapid development of countermeasures against potential biothreats.

  19. Genome-wide engineering of an infectious clone of herpes simplex virus type 1 using synthetic genomics assembly methods

    PubMed Central

    Grzesik, Peter; Voorhies, Alexander A.; Alperovich, Nina; MacMath, Derek; Najera, Claudia D.; Chandra, Diya Sabrina; Prasad, Sanjana; Noskov, Vladimir N.; Montague, Michael G.; Friedman, Robert M.; Desai, Prashant J.

    2017-01-01

    Here, we present a transformational approach to genome engineering of herpes simplex virus type 1 (HSV-1), which has a large DNA genome, using synthetic genomics tools. We believe this method will enable more rapid and complex modifications of HSV-1 and other large DNA viruses than previous technologies, facilitating many useful applications. Yeast transformation-associated recombination was used to clone 11 fragments comprising the HSV-1 strain KOS 152 kb genome. Using overlapping sequences between the adjacent pieces, we assembled the fragments into a complete virus genome in yeast, transferred it into an Escherichia coli host, and reconstituted infectious virus following transfection into mammalian cells. The virus derived from this yeast-assembled genome, KOSYA, replicated with kinetics similar to wild-type virus. We demonstrated the utility of this modular assembly technology by making numerous modifications to a single gene, making changes to two genes at the same time and, finally, generating individual and combinatorial deletions to a set of five conserved genes that encode virion structural proteins. While the ability to perform genome-wide editing through assembly methods in large DNA virus genomes raises dual-use concerns, we believe the incremental risks are outweighed by potential benefits. These include enhanced functional studies, generation of oncolytic virus vectors, development of delivery platforms of genes for vaccines or therapy, as well as more rapid development of countermeasures against potential biothreats. PMID:28928148

  20. Combined antitumor gene therapy with herpes simplex virus-thymidine kinase and short hairpin RNA specific for mammalian target of rapamycin.

    PubMed

    Woo, Ha-Na; Lee, Won Il; Kim, Ji Hyun; Ahn, Jeonghyun; Han, Jeong Hee; Lim, Sue Yeon; Lee, Won Woo; Lee, Heuiran

    2015-12-01

    A proof-of-concept study is presented using dual gene therapy that employed a small hairpin RNA (shRNA) specific for mammalian target of rapamycin (mTOR) and a herpes simplex virus-thymidine kinase (HSV-TK) gene to inhibit the growth of tumors. Recombinant adeno-associated virus (rAAV) vectors containing a mutant TK gene (sc39TK) were transduced into HeLa cells, and the prodrug ganciclovir (GCV) was administered to establish a suicide gene-therapy strategy. Additionally, rAAV vectors expressing an mTOR-targeted shRNA were employed to suppress mTOR-dependent tumor growth. GCV selectively induced death in tumor cells expressing TK, and the mTOR-targeted shRNA altered the cell cycle to impair tumor growth. Combining the TK-GCV system with mTOR inhibition suppressed tumor growth to a greater extent than that achieved with either treatment alone. Furthermore, HSV-TK expression and mTOR inhibition did not mutually interfere with each other. In conclusion, gene therapy that combines the TK-GCV system and mTOR inhibition shows promise as a novel strategy for cancer therapy.

  1. Herpes simplex virus following stab phlebectomy.

    PubMed

    Hicks, Caitlin W; Lum, Ying Wei; Heller, Jennifer A

    2017-03-01

    Herpes simplex virus infection following surgery is an unusual postoperative phenomenon. Many mechanisms have been suggested, with the most likely explanation related to latent virus reactivation due to a proinflammatory response in the setting of local trauma. Here, we present a case of herpes simplex virus reactivation in an immunocompetent female following a conventional right lower extremity stab phlebectomy. Salient clinical and physical examination findings are described, and management strategies for herpes simplex virus reactivation are outlined. This is the first known case report of herpes simplex virus reactivation following lower extremity phlebectomy.

  2. Discovery of Herpes B Virus-Encoded MicroRNAs▿

    PubMed Central

    Besecker, Michael I.; Harden, Mallory E.; Li, Guanglin; Wang, Xiu-Jie; Griffiths, Anthony

    2009-01-01

    Herpes B virus (BV) naturally infects macaque monkeys and is a close relative of herpes simplex virus. BV can zoonotically infect humans to cause a rapidly ascending encephalitis with ∼80% mortality. Therefore, BV is a serious danger to those who come into contact with these monkeys or their tissues and cells. MicroRNAs are regulators of gene expression, and there have been reports of virus-encoded microRNAs. We hypothesize that BV-encoded microRNAs are important for the regulation of viral and cellular genes. Herein, we report the discovery of three herpes B virus-encoded microRNAs. PMID:19144716

  3. Properties of a herpes simplex virus multiple immediate-early gene-deleted recombinant as a vaccine vector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Daisuke; Brockman, Mark A.; Ndung'u, Thumbi

    2007-01-20

    Herpes simplex virus (HSV) recombinants induce durable immune responses in rhesus macaques and mice and have induced partial protection in rhesus macaques against mucosal challenge with virulent simian immunodeficiency virus (SIV). In this study, we evaluated the properties of a new generation HSV vaccine vector, an HSV-1 multiple immediate-early (IE) gene deletion mutant virus, d106, which contains deletions in the ICP4, ICP27, ICP22, and ICP47 genes. Because several of the HSV IE genes have been implicated in immune evasion, inactivation of the genes encoding these proteins was expected to result in enhanced immunogenicity. The d106 virus expresses few HSV genemore » products and shows minimal cytopathic effect in cultured cells. When d106 was inoculated into mice, viral DNA accumulated at high levels in draining lymph nodes, consistent with an ability to transduce dendritic cells and activate their maturation and movement to lymph nodes. A d106 recombinant expressing Escherichia coli {beta}-galactosidase induced durable {beta}-gal-specific IgG and CD8{sup +} T cell responses in naive and HSV-immune mice. Finally, d106-based recombinants have been constructed that express simian immunodeficiency virus (SIV) gag, env, or a rev-tat-nef fusion protein for several days in cultured cells. Thus, d106 shows many of the properties desirable in a vaccine vector: limited expression of HSV gene products and cytopathogenicity, high level expression of transgenes, ability to induce durable immune responses, and an ability to transduce dendritic cells and induce their maturation and migration to lymph nodes.« less

  4. Serine/Arginine-rich Splicing Factor 2 Modulates Herpes Simplex Virus Type 1 Replication via Regulating Viral Gene Transcriptional Activity and Pre-mRNA Splicing.

    PubMed

    Wang, Ziqiang; Liu, Qing; Lu, Jinhua; Fan, Ping; Xie, Weidong; Qiu, Wei; Wang, Fan; Hu, Guangnan; Zhang, Yaou

    2016-12-16

    Once it enters the host cell, herpes simplex virus type 1 (HSV-1) recruits a series of host cell factors to facilitate its life cycle. Here, we demonstrate that serine/arginine-rich splicing factor 2 (SRSF2), which is an important component of the splicing speckle, mediates HSV-1 replication by regulating viral gene expression at the transcriptional and posttranscriptional levels. Our results indicate that SRSF2 functions as a transcriptional activator by directly binding to infected cell polypeptide 0 (ICP0), infected cell polypeptide 27 (ICP27), and thymidine kinase promoters. Moreover, SRSF2 participates in ICP0 pre-mRNA splicing by recognizing binding sites in ICP0 exon 3. These findings provide insight into the functions of SRSF2 in HSV-1 replication and gene expression. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Inactivation of Herpes Simplex Viruses by Nonionic Surfactants

    PubMed Central

    Asculai, Samuel S.; Weis, Margaret T.; Rancourt, Martha W.; Kupferberg, A. B.

    1978-01-01

    Nonionic surface-active agents possessing ether or amide linkages between the hydrophillic and hydrophobic portions of the molecule rapidly inactivated the infectivity of herpes simplex viruses. The activity stemmed from the ability of nonionic surfactants to dissolve lipid-containing membranes. This was confirmed by observing surfactant destruction of mammalian cell plasma membranes and herpes simplex virus envelopes. Proprietary vaginal contraceptive formulations containing nonionic surfactants also inactivated herpes simplex virus infectivity. This observation suggests that nonionic surfactants in appropriate formulation could effectively prevent herpes simplex virus transmission. Images PMID:208460

  6. The "Knife-Cut Sign" Revisited: A Distinctive Presentation of Linear Erosive Herpes Simplex Virus Infection in Immunocompromised Patients.

    PubMed

    Cohen, Philip R

    2015-10-01

    The "knife-cut sign" is a distinctive presentation of linear erosive herpes simplex virus infection in immunocompromised patients. To describe a man whose herpes simplex virus infection-related skin lesions demonstrated the "knife-cut sign" and to review the characteristics of reported immunosuppressed individuals with "knife-cut" cutaneous herpes simplex virus lesions. A man with multiple myeloma and post-stem cell transplant cutaneous graft-versus-host disease managed with systemic prednisone and sirolimus developed disseminated cutaneous herpes simplex virus infection with virus-associated linear ulcers of the inguinal folds and the area between his ear and scalp; the lesions at both sites had a distinctive "knife-cut" appearance. Using the PubMed database, an extensive literature search was performed on herpes simplex virus, immunocompromised patient, and "knife-cut sign". Herpes simplex virus infection-associated skin lesions that demonstrate the "knife-cut sign" present in patients who are immunosuppressed secondary to either an underlying medical condition or a systemic therapy or both. The distinctive virus-related cutaneous lesions appear as linear ulcers and fissures in intertriginous areas, such as the folds in the inguinal area, the vulva, and the abdomen; in addition, other sites include beneath the breast, within the gluteal cleft, and the area between the ear and the scalp. Not only herpes simplex virus-2, but also herpes simplex virus-1 has been observed as the causative viral serotype; indeed, herpes simplex virus-1 has been associated with genital and inframammary lesions in addition to those above the neck. Direct fluorescent antibody testing is a rapid method for confirming the clinically suspected viral infection; however, since false-negative direct fluorescent antibody testing occurred in some of the patients, it may be prudent to also perform viral cultures and possibly lesional skin biopsies to establish the diagnosis. The herpes simplex virus infection-related skin lesions clinically improve once systemic antiviral therapy is initiated. In immunosuppressed individuals, the "knife-cut sign" is a distinctive presentation of cutaneous linear erosive herpes simplex virus infection. Recognition of the linear ulcers in intertriginous areas and body folds should prompt the clinician to consider herpes simplex virus infection-associated skin lesions in an immunocompromised patient and to initiate systemic antiviral treatment while awaiting the results of laboratory evaluation to confirm the suspected diagnosis.

  7. Disabled infectious single cycle-herpes simplex virus (DISC-HSV) as a vector for immunogene therapy of cancer.

    PubMed

    Rees, Robert C; McArdle, Stephanie; Mian, Shahid; Li, Geng; Ahmad, Murrium; Parkinson, Richard; Ali, Selman A

    2002-02-01

    Disabled infectious single cycle-herpes simplex viruses (DISC-HSV) have been shown to be safe for use in humans and may be considered efficacious as vectors for immunogene therapy in cancer. Preclinical studies show that DISC-HSV is an efficient delivery system for cytokine genes and antigens. DISC-HSV infects a high proportion of cells, resulting in rapid gene expression for at least 72 h. The DISC-HSV-mGM-CSF vector, when inoculated into tumors, induces tumor regression in a high percentage of animals, concomitant with establishing a cytotoxic T-cell response, which is MHC class I restricted and directed against peptides of known tumor antigens. The inherent properties of DISC-HSV makes it a suitable vector for consideration in human immunogene therapy trials.

  8. Mathematical Modeling of Herpes Simplex Virus Distribution in Solid Tumors: Implications for Cancer Gene Therapy

    PubMed Central

    Mok, Wilson; Stylianopoulos, Triantafyllos; Boucher, Yves; Jain, Rakesh K.

    2010-01-01

    Purpose Although oncolytic viral vectors show promise for the treatment of various cancers, ineffective initial distribution and propagation throughout the tumor mass often limit the therapeutic response. A mathematical model is developed to describe the spread of herpes simplex virus from the initial injection site. Experimental Design The tumor is modeled as a sphere of radius R. The model incorporates reversible binding, interstitial diffusion, viral degradation, and internalization and physiologic parameters. Three species are considered as follows: free interstitial virus, virus bound to cell surfaces, and internalized virus. Results This analysis reveals that both rapid binding and internalization as well as hindered diffusion contain the virus to the initial injection volume, with negligible spread to the surrounding tissue. Unfortunately, increasing the dose to saturate receptors and promote diffusion throughout the tumor is not a viable option: the concentration necessary would likely compromise safety. However, targeted modifications to the virus that decrease the binding affinity have the potential to increase the number of infected cells by 1.5-fold or more. An increase in the effective diffusion coefficient can result in similar gains. Conclusions This analysis suggests criteria by which the potential response of a tumor to oncolytic herpes simplex virus therapy can be assessed. Furthermore, it reveals the potential of modifications to the vector delivery method, physicochemical properties of the virus, and tumor extracellular matrix composition to enhance efficacy. PMID:19318482

  9. Prevalence of Intrathecal Acyclovir Resistant Virus in Herpes Simplex Encephalitis Patients.

    PubMed

    Mitterreiter, Johanna G; Titulaer, Maarten J; van Nierop, Gijsbert P; van Kampen, Jeroen J A; Aron, Georgina I; Osterhaus, Albert D M E; Verjans, Georges M G M; Ouwendijk, Werner J D

    2016-01-01

    Herpes simplex encephalitis (HSE) is a life-threatening complication of herpes simplex virus (HSV) infection. Acyclovir (ACV) is the antiviral treatment of choice, but may lead to emergence of ACV-resistant (ACVR) HSV due to mutations in the viral UL23 gene encoding for the ACV-targeted thymidine kinase (TK) protein. Here, we determined the prevalence of intrathecal ACVR-associated HSV TK mutations in HSE patients and compared TK genotypes of sequential HSV isolates in paired cerebrospinal fluid (CSF) and blister fluid of mucosal HSV lesions. Clinical samples were obtained from 12 HSE patients, encompassing 4 HSV type 1 (HSV-1) and 8 HSV-2 encephalitis patients. HSV DNA load was determined by real-time PCR and complete HSV TK gene sequences were obtained by nested PCR followed by Sanger sequencing. All HSV-1 HSE patients contained viral TK mutations encompassing 30 unique nucleotide and 13 distinct amino acid mutations. By contrast, a total of 5 unique nucleotide and 4 distinct amino acid changes were detected in 7 of 8 HSV-2 patients. Detected mutations were identified as natural polymorphisms located in non-conserved HSV TK gene regions. ACV therapy did not induce the emergence of ACVR-associated HSV TK mutations in consecutive CSF and mucocutaneous samples of 5 individual patients. Phenotypic susceptibility analysis of these mucocutaneous HSV isolates demonstrated ACV-sensitive virus in 2 HSV-1 HSE patients, whereas in two HSV-2 HSE patients ACVR virus was detected in the absence of known ACVR-associated TK mutations. In conclusion, we did not detect intrathecal ACVR-associated TK mutations in HSV isolates obtained from 12 HSE patients.

  10. The Calcitonin Receptor Gene Is a Candidate for Regulation of Susceptibility to Herpes simplex Type 1 Neuronal Infection Leading to Encephalitis in Rat

    PubMed Central

    Abdelmagid, Nada; Bereczky-Veress, Biborka; Guerreiro-Cacais, André Ortlieb; Bergman, Petra; Luhr, Katarina M.; Bergström, Tomas; Sköldenberg, Birgit; Piehl, Fredrik

    2012-01-01

    Herpes simplex encephalitis (HSE) is a fatal infection of the central nervous system (CNS) predominantly caused by Herpes simplex virus type 1. Factors regulating the susceptibility to HSE are still largely unknown. To identify host gene(s) regulating HSE susceptibility we performed a genome-wide linkage scan in an intercross between the susceptible DA and the resistant PVG rat. We found one major quantitative trait locus (QTL), Hse1, on rat chromosome 4 (confidence interval 24.3–31 Mb; LOD score 29.5) governing disease susceptibility. Fine mapping of Hse1 using recombinants, haplotype mapping and sequencing, as well as expression analysis of all genes in the interval identified the calcitonin receptor gene (Calcr) as the main candidate, which also is supported by functional studies. Thus, using unbiased genetic approach variability in Calcr was identified as potentially critical for infection and viral spread to the CNS and subsequent HSE development. PMID:22761571

  11. Methods for Gene Transfer to the Central Nervous System

    PubMed Central

    Kantor, Boris; Bailey, Rachel M.; Wimberly, Keon; Kalburgi, Sahana N.; Gray, Steven J.

    2015-01-01

    Gene transfer is an increasingly utilized approach for research and clinical applications involving the central nervous system (CNS). Vectors for gene transfer can be as simple as an unmodified plasmid, but more commonly involve complex modifications to viruses to make them suitable gene delivery vehicles. This chapter will explain how tools for CNS gene transfer have been derived from naturally occurring viruses. The current capabilities of plasmid, retroviral, adeno-associated virus, adenovirus, and herpes simplex virus vectors for CNS gene delivery will be described. These include both focal and global CNS gene transfer strategies, with short- or long-term gene expression. As is described in this chapter, an important aspect of any vector is the cis-acting regulatory elements incorporated into the vector genome that control when, where, and how the transgene is expressed. PMID:25311922

  12. Schizophrenia Susceptibility Genes Directly Implicated in the Life Cycles of Pathogens: Cytomegalovirus, Influenza, Herpes simplex, Rubella, and Toxoplasma gondii

    PubMed Central

    Carter, C.J.

    2009-01-01

    Many genes implicated in schizophrenia can be related to glutamatergic transmission and neuroplasticity, oligodendrocyte function, and other families clearly related to neurobiology and schizophrenia phenotypes. Others appear rather to be involved in the life cycles of the pathogens implicated in the disease. For example, aspartylglucosaminidase (AGA), PLA2, SIAT8B, GALNT7, or B3GAT1 metabolize chemical ligands to which the influenza virus, herpes simplex, cytomegalovirus (CMV), rubella, or Toxoplasma gondii bind. The epidermal growth factor receptor (EGR/EGFR) is used by the CMV to gain entry to cells, and a CMV gene codes for an interleukin (IL-10) mimic that binds the host cognate receptor, IL10R. The fibroblast growth factor receptor (FGFR1) is used by herpes simplex. KPNA3 and RANBP5 control the nuclear import of the influenza virus. Disrupted in schizophrenia 1 (DISC1) controls the microtubule network that is used by viruses as a route to the nucleus, while DTNBP1, MUTED, and BLOC1S3 regulate endosomal to lysosomal routing that is also important in viral traffic. Neuregulin 1 activates ERBB receptors releasing a factor, EBP1, known to inhibit the influenza virus transcriptase. Other viral or bacterial components bind to genes or proteins encoded by CALR, FEZ1, FYN, HSPA1B, IL2, HTR2A, KPNA3, MED12, MED15, MICB, NQO2, PAX6, PIK3C3, RANBP5, or TP53, while the cerebral infectivity of the herpes simplex virus is modified by Apolipoprotein E (APOE). Genes encoding for proteins related to the innate immune response, including cytokine related (CCR5, CSF2RA, CSF2RB, IL1B, IL1RN, IL2, IL3, IL3RA, IL4, IL10, IL10RA, IL18RAP, lymphotoxin-alpha, tumor necrosis factor alpha [TNF]), human leukocyte antigen (HLA) antigens (HLA-A10, HLA-B, HLA-DRB1), and genes involved in antigen processing (angiotensin-converting enzyme and tripeptidyl peptidase 2) are all concerned with defense against invading pathogens. Human microRNAs (Hsa-mir-198 and Hsa-mir-206) are predicted to bind to influenza, rubella, or poliovirus genes. Certain genes associated with schizophrenia, including those also concerned with neurophysiology, are intimately related to the life cycles of the pathogens implicated in the disease. Several genes may affect pathogen virulence, while the pathogens in turn may affect genes and processes relevant to the neurophysiology of schizophrenia. For such genes, the strength of association in genetic studies is likely to be conditioned by the presence of the pathogen, which varies in different populations at different times, a factor that may explain the heterogeneity that plagues such studies. This scenario also suggests that drugs or vaccines designed to eliminate the pathogens that so clearly interact with schizophrenia susceptibility genes could have a dramatic effect on the incidence of the disease. PMID:18552348

  13. Concomitant herpes simplex virus colitis and hepatitis in a man with ulcerative colitis: Case report and review of the literature.

    PubMed

    Phadke, Varun K; Friedman-Moraco, Rachel J; Quigley, Brian C; Farris, Alton B; Norvell, J P

    2016-10-01

    Herpesvirus infections often complicate the clinical course of patients with inflammatory bowel disease; however, invasive disease due to herpes simplex virus is distinctly uncommon. We present a case of herpes simplex virus colitis and hepatitis, review all the previously published cases of herpes simplex virus colitis, and discuss common clinical features and outcomes. We also discuss the epidemiology, clinical manifestations, diagnosis, and management of herpes simplex virus infections, focusing specifically on patients with inflammatory bowel disease. A 43-year-old man with ulcerative colitis, previously controlled with an oral 5-aminosalicylic agent, developed symptoms of a colitis flare that did not respond to treatment with systemic corticosteroid therapy. One week later he developed orolabial ulcers and progressive hepatic dysfunction, with markedly elevated transaminases and coagulopathy. He underwent emergent total colectomy when imaging suggested bowel micro-perforation. Pathology from both the colon and liver was consistent with herpes simplex virus infection, and a viral culture of his orolabial lesions and a serum polymerase chain reaction assay also identified herpes simplex virus. He was treated with systemic antiviral therapy and made a complete recovery. Disseminated herpes simplex virus infection with concomitant involvement of the colon and liver has been reported only 3 times in the published literature, and to our knowledge this is the first such case in a patient with inflammatory bowel disease. The risk of invasive herpes simplex virus infections increases with some, but not all immunomodulatory therapies. Optimal management of herpes simplex virus in patients with inflammatory bowel disease includes targeted prophylactic therapy for patients with evidence of latent infection, and timely initiation of antiviral therapy for those patients suspected to have invasive disease.

  14. Concomitant herpes simplex virus colitis and hepatitis in a man with ulcerative colitis

    PubMed Central

    Phadke, Varun K.; Friedman-Moraco, Rachel J.; Quigley, Brian C.; Farris, Alton B.; Norvell, J. P.

    2016-01-01

    Abstract Background: Herpesvirus infections often complicate the clinical course of patients with inflammatory bowel disease; however, invasive disease due to herpes simplex virus is distinctly uncommon. Methods: We present a case of herpes simplex virus colitis and hepatitis, review all the previously published cases of herpes simplex virus colitis, and discuss common clinical features and outcomes. We also discuss the epidemiology, clinical manifestations, diagnosis, and management of herpes simplex virus infections, focusing specifically on patients with inflammatory bowel disease. Results: A 43-year-old man with ulcerative colitis, previously controlled with an oral 5-aminosalicylic agent, developed symptoms of a colitis flare that did not respond to treatment with systemic corticosteroid therapy. One week later he developed orolabial ulcers and progressive hepatic dysfunction, with markedly elevated transaminases and coagulopathy. He underwent emergent total colectomy when imaging suggested bowel micro-perforation. Pathology from both the colon and liver was consistent with herpes simplex virus infection, and a viral culture of his orolabial lesions and a serum polymerase chain reaction assay also identified herpes simplex virus. He was treated with systemic antiviral therapy and made a complete recovery. Conclusions: Disseminated herpes simplex virus infection with concomitant involvement of the colon and liver has been reported only 3 times in the published literature, and to our knowledge this is the first such case in a patient with inflammatory bowel disease. The risk of invasive herpes simplex virus infections increases with some, but not all immunomodulatory therapies. Optimal management of herpes simplex virus in patients with inflammatory bowel disease includes targeted prophylactic therapy for patients with evidence of latent infection, and timely initiation of antiviral therapy for those patients suspected to have invasive disease. PMID:27759636

  15. Role for herpes simplex virus 1 ICP27 in the inhibition of type I interferon signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Karen E.; Song, Byeongwoon; Knipe, David M.

    2008-05-10

    Host cells respond to viral infection by many mechanisms, including the production of type I interferons which act in a paracrine and autocrine manner to induce the expression of antiviral interferon-stimulated genes (ISGs). Viruses have evolved means to inhibit interferon signaling to avoid induction of the innate immune response. Herpes simplex virus 1 (HSV-1) has several mechanisms to inhibit type I interferon production, the activities of ISGs, and the interferon signaling pathway itself. We report that the inhibition of the Jak/STAT pathway by HSV-1 requires viral gene expression and that viral immediate-early protein ICP27 plays a role in downregulating STAT-1more » phosphorylation and in preventing the accumulation of STAT-1 in the nucleus. We also show that expression of ICP27 by transfection causes an inhibition of IFN-induced STAT-1 nuclear accumulation. Therefore, ICP27 is necessary and sufficient for at least some of the effects of HSV infection on STAT-1.« less

  16. Incorporation of a lambda phage recombination system and EGFP detection to simplify mutagenesis of Herpes simplex virus bacterial artificial chromosomes

    PubMed Central

    Schmeisser, Falko; Weir, Jerry P

    2007-01-01

    Background Targeted mutagenesis of the herpesvirus genomes has been facilitated by the use of bacterial artificial chromosome (BAC) technology. Such modified genomes have potential uses in understanding viral pathogenesis, gene identification and characterization, and the development of new viral vectors and vaccines. We have previously described the construction of a herpes simplex virus 2 (HSV-2) BAC and the use of an allele replacement strategy to construct HSV-2 recombinants. While the BAC mutagenesis procedure is a powerful method to generate HSV-2 recombinants, particularly in the absence of selective marker in eukaryotic culture, the mutagenesis procedure is still difficult and cumbersome. Results Here we describe the incorporation of a phage lambda recombination system into an allele replacement vector. This strategy enables any DNA fragment containing the phage attL recombination sites to be efficiently inserted into the attR sites of the allele replacement vector using phage lambda clonase. We also describe how the incorporation of EGFP into the allele replacement vector can facilitate the selection of the desired cross-over recombinant BACs when the allele replacement reaction is a viral gene deletion. Finally, we incorporate the lambda phage recombination sites directly into an HSV-2 BAC vector for direct recombination of gene cassettes using the phage lambda clonase-driven recombination reaction. Conclusion Together, these improvements to the techniques of HSV BAC mutagenesis will facilitate the construction of recombinant herpes simplex viruses and viral vectors. PMID:17501993

  17. Herpes simplex virus type 1-derived recombinant and amplicon vectors.

    PubMed

    Fraefel, Cornel; Marconi, Peggy; Epstein, Alberto L

    2011-01-01

    Herpes simplex virus type 1 (HSV-1) is a human pathogen whose lifestyle is based on a long-term dual interaction with the infected host, being able to establish both lytic and latent infections. The virus genome is a 153 kbp double-stranded DNA molecule encoding more than 80 genes. The interest of HSV-1 as gene transfer vector stems from its ability to infect many different cell types, both quiescent and proliferating cells, the very high packaging capacity of the virus capsid, the outstanding neurotropic adaptations that this virus has evolved, and the fact that it never integrates into the cellular chromosomes, thus avoiding the risk of insertional mutagenesis. Two types of vectors can be derived from HSV-1, recombinant vectors and amplicon vectors, and different methodologies have been developed to prepare large stocks of each type of vector. This chapter summarizes (1) the two approaches most commonly used to prepare recombinant vectors through homologous recombination, either in eukaryotic cells or in bacteria, and (2) the two methodologies currently used to generate helper-free amplicon vectors, either using a bacterial artificial chromosome (BAC)-based approach or a Cre/loxP site-specific recombination strategy.

  18. Combined oncolytic virotherapy with herpes simplex virus for oral squamous cell carcinoma.

    PubMed

    Ogawa, Fumi; Takaoka, Hiroo; Iwai, Soichi; Aota, Keiko; Yura, Yoshiaki

    2008-01-01

    The effect of dual infection with herpes simplex virus type 1 (HSV-1) mutants on human oral squamous cell carcinoma (SCC) cells was examined. Human oral SCC cells were infected with gamma1(34.5) gene-deficient HSV-1 R849 and HSV-1 HF that has multiple mutations and induces cell fusion. Cell viability was measured by LDH release assay. Athymic mice were injected with oral SCC cells into the buccal region to induce subcutaneous tumors. Oral SCC cells were infected with R849, followed by infection with R849 or HF. Virus production was elevated by both strains of HSV-1. Although the release of LDH from R849-infected cells was increased by secondary infection with R849 or HF, the effect of HF was more remarkable. When nude mouse tumors were treated with R849, HF, R849+R849, or R849+HF, treatment with R849+HF was the most effective. These results suggest that fusion-inducing virus HF enhances the oncolytic ability of gamma1(34.5) gene-deficient HSV-1 and provides a rationale for using fusogenic viruses as enhancing agents

  19. The potential application of a transcriptionally regulated oncolytic herpes simplex virus for human cancer therapy

    PubMed Central

    Miao, L; Fraefel, C; Sia, K C; Newman, J P; Mohamed-Bashir, S A; Ng, W H; Lam, P Y P

    2014-01-01

    Background: Emerging studies have shown the potential benefit of arming oncolytic viruses with therapeutic genes. However, most of these therapeutic genes are placed under the regulation of ubiquitous viral promoters. Our goal is to generate a safer yet potent oncolytic herpes simplex virus type-1 (HSV-1) for cancer therapy. Methods: Using bacterial artificial chromosome (BAC) recombineering, a cell cycle-regulatable luciferase transgene cassette was replaced with the infected cell protein 6 (ICP6) coding region (encoded for UL39 or large subunit of ribonucleotide reductase) of the HSV-1 genome. These recombinant viruses, YE-PC8, were further tested for its proliferation-dependent luciferase gene expression. Results: The ability of YE-PC8 to confer proliferation-dependent transgene expression was demonstrated by injecting similar amount of viruses into the tumour-bearing region of the brain and the contralateral normal brain parenchyma of the same mouse. The results showed enhanced levels of luciferase activities in the tumour region but not in the normal brain parenchyma. Similar findings were observed in YE-PC8-infected short-term human brain patient-derived glioma cells compared with normal human astrocytes. intratumoural injection of YE-PC8 viruses resulted in 77% and 80% of tumour regression in human glioma and human hepatocellular carcinoma xenografts, respectively. Conclusion: YE-PC8 viruses confer tumour selectivity in proliferating cells and may be developed further as a feasible approach to treat human cancers. PMID:24196790

  20. Dominant positive and negative selection using a hygromycin phosphotransferase-thymidine kinase fusion gene.

    PubMed

    Lupton, S D; Brunton, L L; Kalberg, V A; Overell, R W

    1991-06-01

    The hygromycin phosphotransferase gene was fused in-frame with the herpes simplex virus type 1 thymidine kinase gene. The resulting fusion gene (termed HyTK) confers hygromycin B resistance for dominant positive selection and ganciclovir sensitivity for negative selection and provides a means by which these selectable phenotypes may be expressed and regulated as a single genetic entity.

  1. The Significance of Herpes Simplex for School Nurses

    ERIC Educational Resources Information Center

    Ensor, Deirdre

    2005-01-01

    Herpes simplex is a common recurrent viral infection caused by the herpes simplex virus. The two closely related but distinct viruses that cause herpes simplex infections are herpes simplex 1 (HSV-1) and herpes simplex 2 (HSV-2). HSV-1 is commonly associated with infections around the oral mucosa and is the cause of herpes labialis, often referred…

  2. Mutations Inactivating Herpes Simplex Virus 1 MicroRNA miR-H2 Do Not Detectably Increase ICP0 Gene Expression in Infected Cultured Cells or Mouse Trigeminal Ganglia.

    PubMed

    Pan, Dongli; Pesola, Jean M; Li, Gang; McCarron, Seamus; Coen, Donald M

    2017-01-15

    Herpes simplex virus 1 (HSV-1) latency entails the repression of productive ("lytic") gene expression. An attractive hypothesis to explain some of this repression involves inhibition of the expression of ICP0, a lytic gene activator, by a viral microRNA, miR-H2, which is completely complementary to ICP0 mRNA. To test this hypothesis, we engineered mutations that disrupt miR-H2 without affecting ICP0 in HSV-1. The mutant virus exhibited drastically reduced expression of miR-H2 but showed wild-type levels of infectious virus production and no increase in ICP0 expression in lytically infected cells, which is consistent with the weak expression of miR-H2 relative to the level of ICP0 mRNA in that setting. Following corneal inoculation of mice, the mutant was not significantly different from wild-type virus in terms of infectious virus production in the trigeminal ganglia during acute infection, mouse mortality, or the rate of reactivation from explanted latently infected ganglia. Critically, the mutant was indistinguishable from wild-type virus for the expression of ICP0 and other lytic genes in acutely and latently infected mouse trigeminal ganglia. The latter result may be related to miR-H2 being less effective in inhibiting ICP0 expression in transfection assays than a host microRNA, miR-138, which has previously been shown to inhibit lytic gene expression in infected ganglia by targeting ICP0 mRNA. Additionally, transfected miR-138 reduced lytic gene expression in infected cells more effectively than miR-H2. While this study provides little support for the hypothesis that miR-H2 promotes latency by inhibiting ICP0 expression, the possibility remains that miR-H2 might target other genes during latency. Herpes simplex virus 1 (HSV-1), which causes a variety of diseases, can establish lifelong latent infections from which virus can reactivate to cause recurrent disease. Latency is the most biologically interesting and clinically vexing feature of the virus. Ever since miR-H2's discovery as a viral microRNA bearing complete sequence complementarity to the mRNA for the important viral gene activator ICP0, inhibition of ICP0 expression by miR-H2 has been a major hypothesis to help explain the repression of lytic gene expression during latency. However, this hypothesis remained untested in latently infected animals. Using a miR-H2-deficient mutant virus, we found no evidence that miR-H2 represses the expression of ICP0 or other lytic genes in cells or mice infected with HSV-1. Although miR-H2 can repress ICP0 expression in transfection assays, such repression is weak. The results suggest that other mechanisms for miR-H2 activity and for the repression of lytic gene expression during latency deserve investigation. Copyright © 2017 American Society for Microbiology.

  3. Infection of Polarized MDCK Cells with Herpes Simplex Virus 1: Two Asymmetrically Distributed Cell Receptors Interact with Different Viral Proteins

    NASA Astrophysics Data System (ADS)

    Sears, Amy E.; McGwire, Bradford S.; Roizman, Bernard

    1991-06-01

    Herpes simplex virus 1 attaches to at least two cell surface receptors. In polarized epithelial (Madin-Darby canine kidney; MDCK) cells one receptor is located in the apical surface and attachment to the cells requires the presence of glycoprotein C in the virus. The second receptor is located in the basal surface and does not require the presence of glycoprotein C. Exposure of MDCK cells at either the apical or basal surface to wild-type virus yields plaques and viral products whereas infection by a glycoprotein C-negative mutant yields identical results only after exposure of MDCK cells to virus at the basal surface. Multiple receptors for viral entry into cells expand the host range of the virus. The observation that glycoprotein C-negative mutants are infectious in many nonpolarized cell lines suggests that cells in culture may express more than one receptor and explains why genes that specify the viral proteins that recognize redundant receptors, like glycoprotein C, are expendable.

  4. Granulomatous herpes simplex encephalitis in an infant with multicystic encephalopathy: a distinct clinicopathologic entity?

    PubMed

    Schutz, Peter W; Fauth, Clarissa T; Al-Rawahi, Ghada N; Pugash, Denise; White, Valerie A; Stockler, Sylvia; Dunham, Christopher P

    2014-04-01

    Herpes simplex virus encephalitis can manifest as a range of clinical presentations including classic adult, neonatal, and biphasic chronic-granulomatous herpes encephalitis. We report an infant with granulomatous herpes simplex virus type 2 encephalitis with a subacute course and multicystic encephalopathy. A 2-month-old girl presented with lethargy and hypothermia. Computed tomography scan of the head showed multicystic encephalopathy and calcifications. Cerebrospinal fluid analysis by polymerase chain reaction testing for herpes simplex virus 1 and 2, enterovirus, and cytomegalovirus was negative. Normal cerebrospinal fluid interferon-α levels argued against Aicardi-Goutières syndrome. The patient died 2 weeks after presentation. At autopsy, multicystic encephalopathy was confirmed with bilateral gliosis, granulomatous inflammation with multinucleated giant cells, and calcifications. Bilateral healing necrotizing retinitis suggested a viral etiology, but retina and brain were free of viral inclusions and immunohistochemically negative for herpes simplex virus-2 and cytomegalovirus. However, polymerase chain reaction analysis showed herpes simplex virus-2 DNA in four cerebral paraffin blocks. Subsequent repeat testing of the initial cerebrospinal fluid sample using a different polymerase chain reaction assay was weakly positive for herpes simplex virus-2 DNA. Granulomatous herpes simplex virus encephalitis in infants can present with subacute course and result in multicystic encephalopathy with mineralization and minimal cerebrospinal fluid herpes simplex virus DNA load. Infectious etiologies should be carefully investigated in the differential diagnosis of multicystic encephalopathy with mineralization, in particular if multinucleated giant cells are present. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Clinical and biological differences between recurrent herpes simplex virus and varicella-zoster virus infections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Straus, S.E.

    1989-12-01

    The major features that distinguish recurrent herpes simplex virus infections from zoster are illustrated in this article by two case histories. The clinical and epidemiologic features that characterize recurrent herpes simplex virus and varicella-zoster virus infections are reviewed. It is noted that herpesvirus infections are more common and severe in patients with cellular immune deficiency. Each virus evokes both humoral and cellular immune response in the course of primary infection. DNA hybridization studies with RNA probes labelled with sulfur-35 indicate that herpes simplex viruses persist within neurons, and that varicella-zoster virus is found in the satellite cells that encircle themore » neurons.« less

  6. Prevalence of herpes simplex, Epstein Barr and human papilloma viruses in oral lichen planus.

    PubMed

    Yildirim, Benay; Sengüven, Burcu; Demir, Cem

    2011-03-01

    The aim of the present study was to assess the prevalence of Herpes Simplex virus, Epstein Barr virus and Human Papilloma virus -16 in oral lichen planus cases and to evaluate whether any clinical variant, histopathological or demographic feature correlates with these viruses. The study was conducted on 65 cases. Viruses were detected immunohistochemically. We evaluated the histopathological and demographic features and statistically analysed correlation of these features with Herpes Simplex virus, Epstein Barr virus and Human Papilloma virus-16 positivity. Herpes Simplex virus was positive in six (9%) cases and this was not statistically significant. The number of Epstein Barr virus positive cases was 23 (35%) and it was statistically significant. Human Papilloma virus positivity in 14 cases (21%) was statistically significant. Except basal cell degeneration in Herpes Simplex virus positive cases, we did not observe any significant correlation between virus positivity and demographic or histopathological features. However an increased risk of Epstein Barr virus and Human Papilloma virus infection was noted in oral lichen planus cases. Taking into account the oncogenic potential of both viruses, oral lichen planus cases should be detected for the presence of these viruses.

  7. Use of lambdagt11 to isolate genes for two pseudorabies virus glycoproteins with homology to herpes simplex virus and varicella-zoster virus glycoproteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrovskis, E.A.; Timmins, J.G.; Post, L.E.

    1986-10-01

    A library of pseudorabies virus (PRV) DNA fragments was constructed in the expression cloning vector lambdagt11. The library was screened with antisera which reacted with mixtures of PRV proteins to isolate recombinant bacteriophages expressing PRV proteins. By the nature of the lambdagt11 vector, the cloned proteins were expressed in Escherichia coli as ..beta..-galactosidase fusion proteins. The fusion proteins from 35 of these phages were purified and injected into mice to raise antisera. The antisera were screened by several different assays, including immunoprecipitation of (/sup 14/C)glucosamine-labeled PRV proteins. This method identified phages expressing three different PRV glycoproteins: the secreted glycoprotein, gX;more » gI; and a glycoprotein that had not been previously identified, which we designate gp63. The gp63 and gI genes map adjacent to each other in the small unique region of the PRV genome. The DNA sequence was determined for the region of the genome encoding gp63 and gI. It was found that gp63 has a region of homology with a herpes simplex virus type 1 (HSV-1) protein, encoded by US7, and also with varicella-zoster virus (VZV) gpIV. The gI protein sequence has a region of homology with HSV-1 gE and VZV gpI. It is concluded that PRV, HSV, and VZV all have a cluster of homologous glycoprotein genes in the small unique components of their genomes and that the organization of these genes is conserved.« less

  8. Neurological Consequences of Cytomegalovirus Infection

    MedlinePlus

    ... viruses that causes cold sores (herpes simplex virus), infectious mononucleosis (Epstein-Barr virus), and chickenpox/shingles (varicella zoster ... viruses that causes cold sores (herpes simplex virus), infectious mononucleosis (Epstein-Barr virus), and chickenpox/shingles (varicella zoster ...

  9. Prodrugs of herpes simplex thymidine kinase inhibitors.

    PubMed

    Yanachkova, Milka; Xu, Wei-Chu; Dvoskin, Sofya; Dix, Edward J; Yanachkov, Ivan B; Focher, Federico; Savi, Lida; Sanchez, M Dulfary; Foster, Timothy P; Wright, George E

    2015-04-01

    Because guanine-based herpes simplex virus thymidine kinase inhibitors are not orally available, we synthesized various 6-deoxy prodrugs of these compounds and evaluated them with regard to solubility in water, oral bioavailability, and efficacy to prevent herpes simplex virus-1 reactivation from latency in a mouse model. Organic synthesis was used to prepare compounds, High Performance Liquid Chromatography (HPLC) to analyze hydrolytic conversion, Mass Spectrometry (MS) to measure oral bioavailability, and mouse latent infection and induced reactivation to evaluate the efficacy of a specific prodrug. Aqueous solubilities of prodrugs were improved, oxidation of prodrugs by animal cytosols occurred in vitro, and oral absorption of the optimal prodrug sacrovir™ (6-deoxy-mCF3PG) in the presence of the aqueous adjuvant Soluplus® and conversion to active compound N(2)-[3-(trifluoromethyl)pheny])guanine (mCF3PG) were accomplished in mice. Treatment of herpes simplex virus-1 latent mice with sacrovir™ in 1% Soluplus in drinking water significantly suppressed herpes simplex virus-1 reactivation and viral genomic replication. Ad libitum oral delivery of sacrovir™ was effective in suppressing herpes simplex virus-1 reactivation in ocularly infected latent mice as measured by the numbers of mice shedding infectious virus at the ocular surface, numbers of trigeminal ganglia positive for infectious virus, number of corneas that had detectable infectious virus, and herpes simplex virus-1 genome copy numbers in trigeminal ganglia following reactivation. These results demonstrate the statistically significant effect of the prodrug on suppressing herpes simplex virus-1 reactivation in vivo. © The Author(s) 2015.

  10. Intratypic variability of a tandem repeat locus within the DNA polymerase gene of human herpes simplex virus type 2.

    PubMed

    Sun, Yongjiang; Chan, Roy Kum Wah; Tan, Suat Hoon

    2004-01-01

    In this study, the irntratypic variability of a tandem repeat locus within the DNA polymerase (pol) gene of human herpes simplex virus type 2 (HSV2) was uncovered. The locus contained variable numbers of tandem dodecanucleotide (5'-GAC GAG GAC GGG-3') repetitive units. Our result showed that approximately 95% of analyzed HSV2 clinical isolates and the current GenBank HSV2 strains contained two copies of the repetitive units. From genital herpes specimens, three new HSV2 strains, which respectively contained 1, 3, and 4 copies of the repetitive units, were identified. This variable number of tandem repeat (VNTR) locus is absent in HSV1, and thus it also contributes to the intertypic variability of HSV1 and HSV2. The intratypic variability of the locus may be useful for HSV2 strain genotyping and this application is discussed.

  11. Disparities in herpes simplex virus type 2 infection between black and white men who have sex with men in Atlanta, GA.

    PubMed

    Okafor, Netochukwu; Rosenberg, Eli S; Luisi, Nicole; Sanchez, Travis; del Rio, Carlos; Sullivan, Patrick S; Kelley, Colleen F

    2015-09-01

    HIV disproportionately affects black men who have sex with men, and herpes simplex virus type 2 is known to increase acquisition of HIV. However, data on racial disparities in herpes simplex virus type 2 prevalence and risk factors are limited among men who have sex with men in the United States. InvolveMENt was a cohort study of black and white HIV-negative men who have sex with men in Atlanta, GA. Univariate and multivariate cross-sectional associations with herpes simplex virus type 2 seroprevalence were assessed among 455 HIV-negative men who have sex with men for demographic, behavioural and social determinant risk factors using logistic regression. Seroprevalence of herpes simplex virus type 2 was 23% (48/211) for black and 16% (38/244) for white men who have sex with men (p = 0.05). Education, poverty, drug/alcohol use, incarceration, circumcision, unprotected anal intercourse, and condom use were not associated with herpes simplex virus type 2. In multivariate analyses, black race for those ≤25 years, but not >25 years, and number of sexual partners were significantly associated. Young black men who have sex with men are disproportionately affected by herpes simplex virus type 2, which may contribute to disparities in HIV acquisition. An extensive assessment of risk factors did not explain this disparity in herpes simplex virus type 2 infection suggesting differences in susceptibility or partner characteristics. © The Author(s) 2014.

  12. Glutamine supplementation suppresses herpes simplex virus reactivation.

    PubMed

    Wang, Kening; Hoshino, Yo; Dowdell, Kennichi; Bosch-Marce, Marta; Myers, Timothy G; Sarmiento, Mayra; Pesnicak, Lesley; Krause, Philip R; Cohen, Jeffrey I

    2017-06-30

    Chronic viral infections are difficult to treat, and new approaches are needed, particularly those aimed at reducing reactivation by enhancing immune responses. Herpes simplex virus (HSV) establishes latency and reactivates frequently, and breakthrough reactivation can occur despite suppressive antiviral therapy. Virus-specific T cells are important to control HSV, and proliferation of activated T cells requires increased metabolism of glutamine. Here, we found that supplementation with oral glutamine reduced virus reactivation in latently HSV-1-infected mice and HSV-2-infected guinea pigs. Transcriptome analysis of trigeminal ganglia from latently HSV-1-infected, glutamine-treated WT mice showed upregulation of several IFN-γ-inducible genes. In contrast to WT mice, supplemental glutamine was ineffective in reducing the rate of HSV-1 reactivation in latently HSV-1-infected IFN-γ-KO mice. Mice treated with glutamine also had higher numbers of HSV-specific IFN-γ-producing CD8 T cells in latently infected ganglia. Thus, glutamine may enhance the IFN-γ-associated immune response and reduce the rate of reactivation of latent virus infection.

  13. A Fusogenic Oncolytic Herpes Simplex Virus for Therapy of Advanced Ovarian Cancer

    DTIC Science & Technology

    2006-06-01

    killer and NKT cells play a critical role in innate protection against genital herpes simplex virus type 2 infection. J Virol 2003;77:10168-71. 8...AD_________________ Award Number: DAMD17-03-1-0434 TITLE: A Fusogenic Oncolytic Herpes Simplex...CONTRACT NUMBER A Fusogenic Oncolytic Herpes Simplex Virus for Therapy of Advanced Ovarian Cancer 5b. GRANT NUMBER DAMD17-03-1-0434 5c

  14. Reactivation of latent herpes simplex virus infection by ultraviolet light: a human model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perna, J.J.; Mannix, M.L.; Rooney, J.F.

    1987-09-01

    Infection with herpes simplex virus often results in a latent infection of local sensory ganglia and a disease characterized by periodic viral reactivation and mucocutaneous lesions. The factors that trigger reactivation in humans are still poorly defined. In our study, five patients with documented histories of recurrent herpes simplex virus infection on the buttocks or sacrum were exposed to three times their minimal erythema dose of ultraviolet light. Site-specific cutaneous herpes simplex virus infection occurred at 4.4 +/- 0.4 days after exposure to ultraviolet light in 8 of 13 attempts at reactivation. We conclude that ultraviolet light can reactivate herpesmore » simplex virus under experimentally defined conditions. This model in humans should prove useful in evaluating the pathophysiology and prevention of viral reactivation.« less

  15. Reactivation of latent herpes simplex virus infection by ultraviolet light: a human model.

    PubMed

    Perna, J J; Mannix, M L; Rooney, J F; Notkins, A L; Straus, S E

    1987-09-01

    Infection with herpes simplex virus often results in a latent infection of local sensory ganglia and a disease characterized by periodic viral reactivation and mucocutaneous lesions. The factors that trigger reactivation in humans are still poorly defined. In our study, five patients with documented histories of recurrent herpes simplex virus infection on the buttocks or sacrum were exposed to three times their minimal erythema dose of ultraviolet light. Site-specific cutaneous herpes simplex virus infection occurred at 4.4 +/- 0.4 days after exposure to ultraviolet light in 8 of 13 attempts at reactivation. We conclude that ultraviolet light can reactivate herpes simplex virus under experimentally defined conditions. This model in humans should prove useful in evaluating the pathophysiology and prevention of viral reactivation.

  16. Surgical excision for recurrent herpes simplex virus 2 (HSV-2) anogenital infection in a patient with human immunodeficiency virus (HIV).

    PubMed

    Arinze, Folasade; Shaver, Aaron; Raffanti, Stephen

    2017-10-01

    Recurrent anogenital herpes simplex virus infections are common in patients with human immunodeficiency virus (HIV), of whom approximately 5% develop resistance to acyclovir. We present a case of a 49-year-old man with HIV who had an 8-year history of recurrent left inguinal herpes simplex virus type 2 ulcerations. He initially responded to oral acyclovir, but developed resistance to acyclovir and eventually foscarnet. The lesion progressed to a large hypertrophic mass that required surgical excision, which led to resolution without recurrences. Our case highlights the importance of surgical excision as a treatment option in refractory herpes simplex virus anogenital infections.

  17. Tissue-Specific Expression of Herpes Simplex Virus Thymidine Kinase Gene Delivered by Adeno-Associated Virus Inhibits the Growth of Human Hepatocellular Carcinoma in Athymic Mice

    NASA Astrophysics Data System (ADS)

    Su, Hua; Lu, Ronghua; Chang, Judy C.; Kan, Yuet Wai

    1997-12-01

    About 70% of hepatocellular carcinomas are known to express α -fetoprotein, which is normally expressed in fetal but not in adult livers. To induce herpes simplex virus-thymidine kinase expression in these cancer cells, we constructed an adeno-associated viral vector containing the HSV-TK gene under the control of the α -fetoprotein enhancer and albumin promoter. We previously demonstrated in vitro that although this vector can transduce a variety of human cells, only transduced AFP and albumin-expressing hepatocellular carcinoma cell lines were sensitive to killing by ganciclovir (GCV). In the present study, we explored the effect of this vector on hepatocellular carcinoma cells in vivo. Subcutaneous tumors generated in nude mice by implanting hepatocellular carcinoma cells previously transduced with this vector shrank dramatically after treatment with GCV. Bystander effect was also observed on the tumors generated by mixing transduced and untransduced cells. To test whether the tumor cells can be transduced by the virus in vivo, we injected the recombinant adeno-associated virus into tumors generated by untransduced hepatocarcinoma cell line. Tumor growth were retarded after treatment with GCV. These experiments demonstrate the feasibility of in vivo transduction of tumor cell with rAAV.

  18. Detection of herpes simplex virus-specific DNA sequences in latently infected mice and in humans.

    PubMed

    Efstathiou, S; Minson, A C; Field, H J; Anderson, J R; Wildy, P

    1986-02-01

    Herpes simplex virus-specific DNA sequences have been detected by Southern hybridization analysis in both central and peripheral nervous system tissues of latently infected mice. We have detected virus-specific sequences corresponding to the junction fragment but not the genomic termini, an observation first made by Rock and Fraser (Nature [London] 302:523-525, 1983). This "endless" herpes simplex virus DNA is both qualitatively and quantitatively stable in mouse neural tissue analyzed over a 4-month period. In addition, examination of DNA extracted from human trigeminal ganglia has shown herpes simplex virus DNA to be present in an "endless" form similar to that found in the mouse model system. Further restriction enzyme analysis of latently infected mouse brainstem and human trigeminal DNA has shown that this "endless" herpes simplex virus DNA is present in all four isomeric configurations.

  19. Detection of herpes simplex virus-specific DNA sequences in latently infected mice and in humans.

    PubMed Central

    Efstathiou, S; Minson, A C; Field, H J; Anderson, J R; Wildy, P

    1986-01-01

    Herpes simplex virus-specific DNA sequences have been detected by Southern hybridization analysis in both central and peripheral nervous system tissues of latently infected mice. We have detected virus-specific sequences corresponding to the junction fragment but not the genomic termini, an observation first made by Rock and Fraser (Nature [London] 302:523-525, 1983). This "endless" herpes simplex virus DNA is both qualitatively and quantitatively stable in mouse neural tissue analyzed over a 4-month period. In addition, examination of DNA extracted from human trigeminal ganglia has shown herpes simplex virus DNA to be present in an "endless" form similar to that found in the mouse model system. Further restriction enzyme analysis of latently infected mouse brainstem and human trigeminal DNA has shown that this "endless" herpes simplex virus DNA is present in all four isomeric configurations. Images PMID:3003377

  20. Combination of a fusogenic glycoprotein, prodrug activation, and oncolytic herpes simplex virus for enhanced local tumor control.

    PubMed

    Simpson, Guy R; Han, Ziqun; Liu, Binlei; Wang, Yibing; Campbell, Gregor; Coffin, Robert S

    2006-05-01

    We have previously developed an oncolytic herpes simplex virus-1 based on a clinical virus isolate, which was deleted for ICP34.5 to provide tumor selected replication and ICP47 to increase antigen presentation as well as tumor selective virus replication. A phase I/II clinical trial using a version of this virus expressing granulocyte macrophage colony-stimulating factor has shown promising results. The work reported here aimed to develop a version of this virus in which local tumor control was further increased through the combined expression of a highly potent prodrug activating gene [yeast cytosine deaminase/uracil phospho-ribosyltransferase fusion (Fcy::Fur)] and the fusogenic glycoprotein from gibbon ape leukemia virus (GALV), which it was hoped would aid the spread of the activated prodrug through the tumor. Viruses expressing the two genes individually or in combination were constructed and tested, showing (a) GALV and/or Fcy::Fur expression did not affect virus growth; (b) GALV expression causes cell fusion and increases the tumor cell killing at least 30-fold in vitro and tumor shrinkage 5- to 10-fold in vivo; (c) additional expression of Fcy::Fur combined with 5-fluorocytosine administration improves tumor shrinkage further. These results indicate, therefore, that the combined expression of the GALV protein and Fcy::Fur provides a highly potent oncolytic virus with improved capabilities for local tumor control. It is intended to enter the GALV/Fcy::Fur expressing virus into clinical development for the treatment of tumor types, such as pancreatic or lung cancer, where local control would be anticipated to be clinically advantageous.

  1. Transcriptional and translational dual-regulated oncolytic herpes simplex virus type 1 for targeting prostate tumors.

    PubMed

    Lee, Cleo Y F; Bu, Luke X X; DeBenedetti, Arrigo; Williams, B Jill; Rennie, Paul S; Jia, William W G

    2010-05-01

    The aim of this project was to demonstrate that an oncolytic herpes simplex virus type 1 (HSV-1) can replicate in a tissue- and tumor-specific fashion through both transcriptional (prostate-specific promoter, ARR(2)PB) and translational (5'-untranslated regions (5'UTRs) of rFGF-2) regulation of an essential viral gene, ICP27. We generated two recombinant viruses, ARR(2)PB-ICP27 (A27) and ARR(2)PB-5'UTR-ICP27 (AU27) and tested their efficacy and toxicity both in vitro and in vivo. The ARR(2)PB promoter caused overexpression of ICP27 gene in the presence of activated androgen receptors (ARs) and increased viral replication in prostate cells. However, this transcriptional upregulation was effectively constrained by the 5'UTR-mediated translational regulation. Mice bearing human prostate LNCaP tumors, treated with a single intravenous injection of 5 x 10(7) plaque-forming units (pfu) of AU27 virus exhibited a >85% reduction in tumor size at day 28 after viral injection. Although active viral replication was readily evident in the tumors, no viral DNA was detectable in normal organs as measured by real-time PCR analyses. In conclusion, a transcriptional and translational dual-regulated (TTDR) viral essential gene expression can increase both viral lytic activity and tumor specificity, and this provides a basis for the development of a novel tumor-specific oncolytic virus for systemic treatment of locally advanced and metastatic prostate cancers.

  2. Development and clinical validation of a multiplex real-time PCR assay for herpes simplex and varicella zoster virus.

    PubMed

    Tan, Thean Yen; Zou, Hao; Ong, Danny Chee Tiong; Ker, Khor Jia; Chio, Martin Tze Wei; Teo, Rachael Yu Lin; Koh, Mark Jean Aan

    2013-12-01

    Herpes simplex virus (HSV) and varicella zoster virus (VZV) are related members of the Herpesviridae family and are well-documented human pathogens causing a spectrum of diseases, from mucocutaneous disease to infections of the central nervous system. This study was carried out to evaluate and validate the performance of a multiplex real-time polymerase chain reaction (PCR) assay in detecting and differentiating HSV1, HSV2, and VZV from clinical samples. Consensus PCR primers for HSV were designed from the UL30 component of the DNA polymerase gene of HSV, with 2 separate hydrolysis probes designed to differentiate HSV1 and HSV2. Separate primers and a probe were also designed against the DNA polymerase gene of VZV. A total of 104 clinical samples were available for testing by real-time PCR, conventional PCR, and viral culture. The sensitivity and specificity of the real-time assay was calculated by comparing the multiplex PCR result with that of a combined standard of virus culture and conventional PCR. The sensitivity of the real-time assay was 100%, with specificity ranging from 98% to 100% depending on the target gene. Both PCR methods detected more positive samples for HSV or VZV, compared with conventional virus culture. This multiplex PCR assay provides accurate and rapid diagnostic capabilities for the diagnosis and differentiation of HSV1, HSV2, and VZV infections, with the presence of an internal control to monitor for inhibition of the PCR reaction.

  3. Unequal homologous recombination between tandemly arranged sequences stably incorporated into cultured rat cells.

    PubMed Central

    Stringer, J R; Kuhn, R M; Newman, J L; Meade, J C

    1985-01-01

    Cultured rat cells deficient in endogenous thymidine kinase activity (tk) were stably transformed with a recombination-indicator DNA substrate constructed in vitro by rearrangement of the herpes simplex virus tk gene sequences into a partially redundant permutation of the functional gene. The recombination-indicator DNA did not express tk, but was designed to allow formation of a functional tk gene via homologous recombination. A clonal cell line (519) was isolated that harbored several permuted herpes simplex virus tk genes. 519 cells spontaneously produced progeny that survived in medium containing hypoxanthine, aminopterin, and thymidine. Acquisition of resistance to hypoxanthine, aminopterin, and thymidine was accompanied by the rearrangement of the defective tk gene to functional configuration. The rearrangement apparently occurred by unequal exchange between one permuted tk gene and a replicated copy of itself. Recombination was between 500-base-pair tracts of DNA sequence homology that were separated by 3.4 kilobases. Exchanges occurred spontaneously at a frequency of approximately 5 X 10(-6) events per cell per generation. Recombination also mediated reversion to the tk- phenotype; however, the predominant mechanism by which cells escaped death in the presence of drugs rendered toxic by thymidine kinase was not recombination, but rather inactivation of the intact tk gene. Images PMID:3016511

  4. Expression and regulation of glycoprotein C gene of herpes simplex virus 1 resident in a clonal L-cell line.

    PubMed Central

    Arsenakis, M; Tomasi, L F; Speziali, V; Roizman, B; Campadelli-Fiume, G

    1986-01-01

    Ltk- cells were transfected with a plasmid containing the entire domain of glycoprotein C (gC), a true gamma or gamma 2 gene of herpes simplex virus 1 (HSV-1) and the methotrexate-resistant mouse dihydrofolate reductase mutant gene. The resulting methotrexate-resistant cell line was cloned; of the 39 clonal lines tested only 1, L3153(28), expressed gC after infection with HSV-1(MP), a gC- mutant, and none expressed gC constitutively. The induction of gC was optimal at multiplicities ranging between 0.5 and 2 PFU per cell, and the quantities produced were equivalent to or higher than those made by methotrexate-resistant gC- L cells infected with wild-type (gC+) virus. The gC gene resident in the L3153(28) cells was regulated as a beta gene inasmuch as the amounts of gC made in infected L3153(28) cells exposed to concentrations of phosphonoacetate that inhibited viral DNA synthesis were higher than those made in the absence of the drug, gC was induced at both permissive and nonpermissive temperatures by the DNA- mutant tsHA1 carrying a lesion in the gene specifying the major DNA-binding protein and which does not express gamma 2 genes at the nonpermissive temperature, and gC was induced only at the permissive temperature in cells infected with ts502 containing a mutation in the alpha 4 gene. The gC induced in L3153(28) cells was made earlier and processed faster to the mature form than that induced in a gC- clone of methotrexate-resistant cells infected with wild-type virus. Unlike virus stocks made in gC- cells, HSV-1(MP) made in L3153(28) cells was susceptible to neutralization by anti-gC monoclonal antibody. Images PMID:3009854

  5. Herpes simplex virus type 1 gene UL14: phenotype of a null mutant and identification of the encoded protein.

    PubMed

    Cunningham, C; Davison, A J; MacLean, A R; Taus, N S; Baines, J D

    2000-01-01

    Herpes simplex virus type 1 (HSV-1) gene UL14 is located between divergently transcribed genes UL13 and UL15 and overlaps the promoters for both of these genes. UL14 also exhibits a substantial overlap of its coding region with that of UL13. It is one of the few HSV-1 genes for which a phenotype and protein product have not been described. Using mass spectrometric and immunological approaches, we demonstrated that the UL14 protein is a minor component of the virion tegument of 32 kDa which is expressed late in infection. In infected cells, the UL14 protein was detected in the nucleus at discrete sites within electron-dense nuclear bodies and in the cytoplasm initially in a diffuse distribution and then at discrete sites. Some of the UL14 protein was phosphorylated. A mutant with a 4-bp deletion in the central region of UL14 failed to produce the UL14 protein and generated small plaques. The mutant exhibited an extended growth cycle at low multiplicity of infection and appeared to be compromised in efficient transit of virus particles from the infected cell. In mice injected intracranially, the 50% lethal dose of the mutant was reduced more than 30,000-fold. Recovery of the mutant from the latently infected sacral ganglia of mice injected peripherally was significantly less than that of wild-type virus, suggesting a marked defect in the establishment of, or reactivation from, latent infection.

  6. Effect of Prior Immunization on Induction of Cervical Cancer in Mice by Herpes Simplex Virus Type 2

    NASA Astrophysics Data System (ADS)

    Budd Wentz, W.; Heggie, Alfred D.; Anthony, Donald D.; Reagan, James W.

    1983-12-01

    Previous studies at this laboratory showed that repeated application of inactivated herpes simplex virus type 2 to the mouse cervix produces premalignant and malignant lesions. In the present study mice were inoculated with inactivated herpes simplex virus type 2 or control solution and Freund's adjuvant by intraperitoneal and subcutaneous routes before exposure of the cervix to inactivated virus. It appears that immunization with inactivated virus conferred a protection against the induction of cervical carcinoma.

  7. Association between Psychopathic Disorder and Serum Antibody to Herpes Simplex Virus (Type 1)

    PubMed Central

    Cleobury, J. F.; Skinner, G. R. B.; Thouless, M. E.; Wildy, P.

    1971-01-01

    The sera of a small of patients has been examined for herpes simplex virus antibody. Three clinically-defined groups of patients were compared: (a) aggressive psychopaths, (b) psychiatric controls, and (c) general hospital patients. The first group had an unusually high average kinetic neutralization constant against type 1 herpes simplex virus. PMID:5543996

  8. Association between psychopathic disorder and serum antibody to herpes simplex virus (type 1).

    PubMed

    Cleobury, J F; Skinner, G R; Thouless, M E; Wildy, P

    1971-02-20

    The sera of a small of patients has been examined for herpes simplex virus antibody. Three clinically-defined groups of patients were compared: (a) aggressive psychopaths, (b) psychiatric controls, and (c) general hospital patients. The first group had an unusually high average kinetic neutralization constant against type 1 herpes simplex virus.

  9. Ancient Recombination Events between Human Herpes Simplex Viruses

    PubMed Central

    Burrel, Sonia; Boutolleau, David; Ryu, Diane; Agut, Henri; Merkel, Kevin; Leendertz, Fabian H.

    2017-01-01

    Abstract Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) are seen as close relatives but also unambiguously considered as evolutionary independent units. Here, we sequenced the genomes of 18 HSV-2 isolates characterized by divergent UL30 gene sequences to further elucidate the evolutionary history of this virus. Surprisingly, genome-wide recombination analyses showed that all HSV-2 genomes sequenced to date contain HSV-1 fragments. Using phylogenomic analyses, we could also show that two main HSV-2 lineages exist. One lineage is mostly restricted to subSaharan Africa whereas the other has reached a global distribution. Interestingly, only the worldwide lineage is characterized by ancient recombination events with HSV-1. Our findings highlight the complexity of HSV-2 evolution, a virus of putative zoonotic origin which later recombined with its human-adapted relative. They also suggest that coinfections with HSV-1 and 2 may have genomic and potentially functional consequences and should therefore be monitored more closely. PMID:28369565

  10. Detection of herpes simplex virus and varicella-zoster virus in clinical swabs: frequent inhibition of PCR as determined by internal controls.

    PubMed

    Bezold, G; Volkenandt, M; Gottlöber, P; Peter, R U

    2000-12-01

    PCR-based detection of microorganisms is widely used for diagnostic purposes. Most routine PCR applications do not control for inhibition of PCR, thus leading to false-negative results. One hundred eighteen swab samples obtained from skin and mucosa were investigated for the presence of herpes simplex virus (HSV), varicella-zoster virus (VZV), and the control gene betaglobin by internally controlled PCR with purified and unpurified DNA in parallel. With unpurified DNA, inhibition of PCR was detected in 23% of betaglobin PCRs, 25% of VZV PCRs, and 16% of HSV PCRs versus 3% each for purified DNA. Approximately 20% of the samples with positive results for HSV or VZV had negative or inhibited results using unpurified DNA. These results indicate that PCR from clinical swab specimens should be performed exclusively with internal controls because the positive control alone cannot exclude PCR inhibition in individual samples. Purification of DNA will decrease, but not exclude, PCR inhibition.

  11. Inhibition of PKR Activation by the Proline-Rich RNA Binding Domain of the Herpes Simplex Virus Type 1 Us11 Protein

    PubMed Central

    Poppers, Jeremy; Mulvey, Matthew; Khoo, David; Mohr, Ian

    2000-01-01

    Upon activation by double-stranded RNA in virus-infected cells, the cellular PKR kinase phosphorylates the translation initiation factor eukaryotic initiation factor 2 (eIF2) and thereby inhibits protein synthesis. The γ34.5 and Us11 gene products encoded by herpes simplex virus type 1 (HSV-1) are dedicated to preventing the accumulation of phosphorylated eIF2. While the γ34.5 gene specifies a regulatory subunit for protein phosphatase 1α, the Us11 gene encodes an RNA binding protein that also prevents PKR activation. γ34.5 mutants fail to grow on a variety of human cells as phosphorylated eIF2 accumulates and protein synthesis ceases prior to the completion of the viral life cycle. We demonstrate that expression of a 68-amino-acid fragment of Us11 containing a novel proline-rich basic RNA binding domain allows for sustained protein synthesis and enhanced growth of γ34.5 mutants. Furthermore, this fragment is sufficient to inhibit activation of the cellular PKR kinase in a cell-free system, suggesting that the intrinsic activities of this small fragment, notably RNA binding and ribosome association, may be required to prevent PKR activation. PMID:11070019

  12. Inhibition of PKR activation by the proline-rich RNA binding domain of the herpes simplex virus type 1 Us11 protein.

    PubMed

    Poppers, J; Mulvey, M; Khoo, D; Mohr, I

    2000-12-01

    Upon activation by double-stranded RNA in virus-infected cells, the cellular PKR kinase phosphorylates the translation initiation factor eukaryotic initiation factor 2 (eIF2) and thereby inhibits protein synthesis. The gamma 34.5 and Us11 gene products encoded by herpes simplex virus type 1 (HSV-1) are dedicated to preventing the accumulation of phosphorylated eIF2. While the gamma 34.5 gene specifies a regulatory subunit for protein phosphatase 1 alpha, the Us11 gene encodes an RNA binding protein that also prevents PKR activation. gamma 34.5 mutants fail to grow on a variety of human cells as phosphorylated eIF2 accumulates and protein synthesis ceases prior to the completion of the viral life cycle. We demonstrate that expression of a 68-amino-acid fragment of Us11 containing a novel proline-rich basic RNA binding domain allows for sustained protein synthesis and enhanced growth of gamma 34.5 mutants. Furthermore, this fragment is sufficient to inhibit activation of the cellular PKR kinase in a cell-free system, suggesting that the intrinsic activities of this small fragment, notably RNA binding and ribosome association, may be required to prevent PKR activation.

  13. Expression of Glycoproteins in Wild-Type and Vaccine Strains of Varicella Zoster Virus

    DTIC Science & Technology

    1990-06-18

    gpV vaccinia recombinants 142 XI LIST OF FIGURES ^ig^rfi Page 1 . Structural model of the herpesvirus virion 8 2. A diagram of the VZV and HSV ...gpIV-specific antiserum 139 36. Fc receptor activity in HSV - 1 and VZV glycoprotein recombinant vaccinia viruses 145 37. The gene 14 transcription...subfamily alphaherpesvirinae. The human alphaherpesviruses are comprised of VZV and herpes simplex viruses 1 and 2 ( HSV - 1 and HSV -2). Four other

  14. Database on natural polymorphisms and resistance-related non-synonymous mutations in thymidine kinase and DNA polymerase genes of herpes simplex virus types 1 and 2.

    PubMed

    Sauerbrei, Andreas; Bohn-Wippert, Kathrin; Kaspar, Marisa; Krumbholz, Andi; Karrasch, Matthias; Zell, Roland

    2016-01-01

    The use of genotypic resistance testing of herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) is increasing because the rapid availability of results significantly improves the treatment of severe infections, especially in immunocompromised patients. However, an essential precondition is a broad knowledge of natural polymorphisms and resistance-associated mutations in the thymidine kinase (TK) and DNA polymerase (pol) genes, of which the DNA polymerase (Pol) enzyme is targeted by the highly effective antiviral drugs in clinical use. Thus, this review presents a database of all non-synonymous mutations of TK and DNA pol genes of HSV-1 and HSV-2 whose association with resistance or natural gene polymorphism has been clarified by phenotypic and/or functional assays. In addition, the laboratory methods for verifying natural polymorphisms or resistance mutations are summarized. This database can help considerably to facilitate the interpretation of genotypic resistance findings in clinical HSV-1 and HSV-2 strains. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Medical Surveillance Monthly Report (MSMR). Volume 20, Number 2, February 2013

    DTIC Science & Technology

    2013-02-01

    have viral etiologies: infections with human papillomavirus (HPV) and genital herpes simplex virus (HSV). Sexually transmitted infections have...infertility No Genital herpes simplex virus (HSV) 3 Virus No Yes Genital sores, infection of newborn babies No Acute gonorrhea 4 Bacterium Yes . PID...796.79 Chlamydia 099.41, 099.5 Genital herpes simplex virus (HSV) 054.1 Acute gonorrhea 098.0x, 098.1x, 098.4x, 098.8x Syphilis, all types All of those

  16. Tranylcypromine Reduces Herpes Simplex Virus 1 Infection in Mice

    PubMed Central

    Yao, Hui-Wen; Lin, Pin-Hung; Shen, Fang-Hsiu; Perng, Guey-Chuen; Tung, Yuk-Ying

    2014-01-01

    Herpes simplex virus 1 (HSV-1) infects the majority of the human population and establishes latency by maintaining viral genomes in neurons of sensory ganglia. Latent virus can undergo reactivation to cause recurrent infection. Both primary and recurrent infections can cause devastating diseases, including encephalitis and corneal blindness. Acyclovir is used to treat patients, but virus resistance to acyclovir is frequently reported. Recent in vitro findings reveal that pretreatment of cells with tranylcypromine (TCP), a drug widely used in the clinic to treat neurological disorders, restrains HSV-1 gene transcription by inhibiting the histone-modifying enzyme lysine-specific demethylase 1. The present study was designed to examine the anti-HSV-1 efficacy of TCP in vivo because of the paucity of reports on this issue. Using the murine model, we found that TCP decreased the severity of wild-type-virus-induced encephalitis and corneal blindness, infection with the acyclovir-resistant (thymidine kinase-negative) HSV-1 mutant, and tissue viral loads. Additionally, TCP blocked in vivo viral reactivation in trigeminal ganglia. These results support the therapeutic potential of TCP for controlling HSV-1 infection. PMID:24590478

  17. Smallpox Antiviral Drug

    DTIC Science & Technology

    2007-01-01

    viruses, herpes simplex virus (HSV), cytomegalovirus (CMV), varicella-zoster virus (VZV), influenza A and B viruses, and respiratory syncytial virus...Rouzioux C. 2004. Penetration of enfuvirtide, tenofovir, efavirenz, and protease inhibitors in the genital tract of HIV-1-infected men. Aids 18:1958...1968. Sensitivity of herpes simplex virus, vaccinia virus, and adenoviruses to deoxyribonucleic acid inhibitors and thiosemicarbazones in a plaque

  18. Resistance of herpes simplex virus type 2 to neomycin maps to the N-terminal portion of glycoprotein C.

    PubMed Central

    Oyan, A M; Dolter, K E; Langeland, N; Goins, W F; Glorioso, J C; Haarr, L; Crumpacker, C S

    1993-01-01

    Entry of herpes simplex virus (HSV) into cells is believed to be mediated by specific binding of envelope proteins to a cellular receptor. Neomycin specifically blocks this initial step in infection by HSV-1 but not HSV-2. Resistance of HSV-2 to this compound maps to a region of the genome encoding glycoprotein C (gC-2). We have studied the function of gC-2 in the initial interaction of the virus with the host cell, using HSV-2 mutants deleted for gC-2 and gC-2-rescued recombinants. Resistance to neomycin was directly linked to the presence of gC-2 within the viral genome. In addition, deletion of the gC-2 gene caused a marked delay in adsorption to cells relative to the wild-type virus. HSV-1 recombinants containing chimeric gC genes composed of HSV-1 and HSV-2 sequences were used to localize neomycin resistance within the N-terminal 223 amino acids of gC-2. This region of the glycoprotein comprises an important domain responsible for binding of HSV-2 to cell receptors in the presence of neomycin. A gC-2-negative mutant is still infectious, indicating that HSV-2 also has an alternative pathway of adsorption. Images PMID:8386261

  19. Cellular FLIP can substitute for the herpes simplex virus type 1 latency-associated transcript gene to support a wild-type virus reactivation phenotype in mice

    PubMed Central

    Jin, Ling; Carpenter, Dale; Moerdyk-Schauwecker, Megan; Vanarsdall, Adam L; Osorio, Nelson; Hsiang, Chinhui; Jones, Clinton; Wechsler, Steven L

    2010-01-01

    Latency-associated transcript (LAT) deletion mutants of herpes simplex virus type 1 (HSV-1) have reduced reactivation phenotypes. Thus, LAT plays an essential role in the latency-reactivation cycle of HSV-1. We have shown that LAT has antiapoptosis activity and demonstrated that the chimeric virus, dLAT-cpIAP, resulting from replacing LAT with the baculovirus antiapoptosis gene cpIAP, has a wild-type HSV-1 reactivation phenotype in mice and rabbits. Thus, LAT can be replaced by an alternative antiapoptosis gene, confirming that LAT’s antiapoptosis activity plays an important role in the mechanism by which LAT enhances the virus’ reactivation phenotype. However, because cpIAP interferes with both of the major apoptosis pathways, these studies did not address whether LAT’s proreactivation phenotype function was due to blocking the extrinsic (Fas-ligand–, caspase-8–, or caspase-10–dependent pathway) or the intrinsic (mitochondria-, caspase-9–dependent pathway) pathway, or whether both pathways must be blocked. Here we constructed an HSV-1 LAT(−) mutant that expresses cellular FLIP (cellular FLICE-like inhibitory protein) under control of the LAT promoter and in place of LAT nucleotides 76 to 1667. Mice were ocularly infected with this mutant, designated dLAT-FLIP, and the reactivation phenotype was determined using the trigeminal ganglia explant model. dLAT-FLIP had a reactivation phenotype similar to wild-type virus and significantly higher than the LAT(−) mutant dLAT2903. Thus, the LAT function responsible for enhancing the reactivation phenotype could be replaced with an antiapoptosis gene that primarily blocks the extrinsic signaling apoptosis pathway. PMID:18989818

  20. Bovine Herpes Virus 1 (BHV-1) and Herpes Simplex Virus Type 1 (HSV-1) Promote Survival of Latently Infected Sensory Neurons, in Part by Inhibiting Apoptosis

    PubMed Central

    Jones, Clinton

    2013-01-01

    α-Herpesvirinae subfamily members, including herpes simplex virus type 1 (HSV-1) and bovine herpes virus 1 (BHV-1), initiate infection in mucosal surfaces. BHV-1 and HSV-1 enter sensory neurons by cell-cell spread where a burst of viral gene expression occurs. When compared to non-neuronal cells, viral gene expression is quickly extinguished in sensory neurons resulting in neuronal survival and latency. The HSV-1 latency associated transcript (LAT), which is abundantly expressed in latently infected neurons, inhibits apoptosis, viral transcription, and productive infection, and directly or indirectly enhances reactivation from latency in small animal models. Three anti-apoptosis genes can be substituted for LAT, which will restore wild type levels of reactivation from latency to a LAT null mutant virus. Two small non-coding RNAs encoded by LAT possess anti-apoptosis functions in transfected cells. The BHV-1 latency related RNA (LR-RNA), like LAT, is abundantly expressed during latency. The LR-RNA encodes a protein (ORF2) and two microRNAs that are expressed in certain latently infected neurons. Wild-type expression of LR gene products is required for stress-induced reactivation from latency in cattle. ORF2 has anti-apoptosis functions and interacts with certain cellular transcription factors that stimulate viral transcription and productive infection. ORF2 is predicted to promote survival of infected neurons by inhibiting apoptosis and sequestering cellular transcription factors which stimulate productive infection. In addition, the LR encoded microRNAs inhibit viral transcription and apoptosis. In summary, the ability of BHV-1 and HSV-1 to interfere with apoptosis and productive infection in sensory neurons is crucial for the life-long latency-reactivation cycle in their respective hosts. PMID:25278776

  1. DNA immunization against experimental genital herpes simplex virus infection.

    PubMed

    Bourne, N; Stanberry, L R; Bernstein, D I; Lew, D

    1996-04-01

    A nucleic acid vaccine, expressing the gene encoding herpes simplex virus (HSV) type 2 glycoprotein D (gD2) under control of the cytomegalovirus immediate-early gene promoter, was used to immunize guinea pigs against genital HSV-2 infection. The vaccine elicited humoral immune responses comparable to those seen after HSV-2 infection. Immunized animals exhibited protection from primary genital HSV-2 disease with little or no development of vesicular skin lesions and significantly reduced HSV-2 replication in the genital tract. After recovery from primary infection, immunized guinea pigs experienced significantly fewer recurrences and had significantly less HSV-2 genomic DNA detected in the sacral dorsal root ganglia compared with control animals. Thus, immunization reduced the burden of latent infection resulting from intravaginal HSV-2 challenge, and a nucleic acid vaccine expressing the HSV-2 gD2 antigen protected guinea pigs against genital herpes, limiting primary infection and reducing the magnitude of latent infection and the frequency of recurrent disease.

  2. The Herpes Simplex Virus 1 Latency-Associated Transcript Promotes Functional Exhaustion of Virus-Specific CD8+ T Cells in Latently Infected Trigeminal Ganglia: a Novel Immune Evasion Mechanism▿

    PubMed Central

    Chentoufi, Aziz A.; Kritzer, Elizabeth; Tran, Michael V.; Dasgupta, Gargi; Lim, Chang Hyun; Yu, David C.; Afifi, Rasha E.; Jiang, Xianzhi; Carpenter, Dale; Osorio, Nelson; Hsiang, Chinhui; Nesburn, Anthony B.; Wechsler, Steven L.; BenMohamed, Lbachir

    2011-01-01

    Following ocular herpes simplex virus 1 (HSV-1) infection of C57BL/6 mice, HSV-specific (HSV-gB498–505 tetramer+) CD8+ T cells are induced, selectively retained in latently infected trigeminal ganglia (TG), and appear to decrease HSV-1 reactivation. The HSV-1 latency-associated transcript (LAT) gene, the only viral gene that is abundantly transcribed during latency, increases reactivation. Previously we found that during latency with HSV-1 strain McKrae-derived viruses, more of the total TG resident CD8 T cells expressed markers of exhaustion with LAT+ virus compared to LAT− virus. Here we extend these findings to HSV-1 strain 17syn+-derived LAT+ and LAT− viruses and to a virus expressing just the first 20% of LAT. Thus, the previous findings were not an artifact of HSV-1 strain McKrae, and the LAT function involved mapped to the first 1.5 kb of LAT. Importantly, to our knowledge, we show here for the first time that during LAT+ virus latency, most of the HSV-1-specific TG resident CD8 T cells were functionally exhausted, as judged by low cytotoxic function and decreased gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α) production. This resulted in LAT− TG having more functional HSV-gB498–505 tetramer+ CD8+ T cells compared to LAT+ TG. In addition, LAT expression, in the absence of other HSV-1 gene products, appeared to be able to directly or indirectly upregulate both PD-L1 and major histocompatibility complex class I (MHC-I) on mouse neuroblastoma cells (Neuro2A). These findings may constitute a novel immune evasion mechanism whereby the HSV-1 LAT directly or indirectly promotes functional exhaustion (i.e., dysfunction) of HSV-specific CD8+ T cells in latently infected TG, resulting in increased virus reactivation. PMID:21715478

  3. A gene capable of blocking apoptosis can substitute for the herpes simplex virus type 1 latency-associated transcript gene and restore wild-type reactivation levels.

    PubMed

    Perng, Guey-Chuen; Maguen, Barak; Jin, Ling; Mott, Kevin R; Osorio, Nelson; Slanina, Susan M; Yukht, Ada; Ghiasi, Homayon; Nesburn, Anthony B; Inman, Melissa; Henderson, Gail; Jones, Clinton; Wechsler, Steven L

    2002-02-01

    After ocular herpes simplex virus type 1 (HSV-1) infection, the virus travels up axons and establishes a lifelong latent infection in neurons of the trigeminal ganglia. LAT (latency-associated transcript), the only known viral gene abundantly transcribed during HSV-1 neuronal latency, is required for high levels of reactivation. The LAT function responsible for this reactivation phenotype is not known. Recently, we showed that LAT can block programmed cell death (apoptosis) in neurons of the trigeminal ganglion in vivo and in tissue culture cells in vitro (G.-C. Perng et al., Science 287:1500-1503, 2000; M. Inman et al., J. Virol. 75:3636-3646, 2001). Consequently, we proposed that this antiapoptosis function may be a key to the mechanism by which LAT enhances reactivation. To study this further, we constructed a recombinant HSV-1 virus in which the HSV-1 LAT gene was replaced by an alternate antiapoptosis gene. We used the bovine herpes virus 1 (BHV-1) latency-related (LR) gene, which was previously shown to have antiapoptosis activity, for this purpose. The resulting chimeric virus, designated CJLAT, contains two complete copies of the BHV-1 LR gene (one in each viral long repeat) in place of the normal two copies of the HSV-1 LAT, on an otherwise wild-type HSV-1 strain McKrae genomic background. We report here that in both rabbits and mice reactivation of CJLAT was significantly greater than the LAT null mutant dLAT2903 (P < 0.0004 and P = 0.001, respectively) and was at least as efficient as wild-type McKrae. This strongly suggests that a BHV-1 LR gene function was able to efficiently substitute for an HSV-1 LAT gene function involved in reactivation. Although replication of CJLAT in rabbits and mice was similar to that of wild-type McKrae, CJLAT killed more mice during acute infection and caused more corneal scarring in latently infected rabbits. This suggested that the BHV-1 LR gene and the HSV-1 LAT gene are not functionally identical. However, LR and LAT both have antiapoptosis activity. These studies therefore strongly support the hypothesis that replacing LAT with an antiapoptosis gene restores the wild-type reactivation phenotype to a LAT null mutant of HSV-1 McKrae.

  4. The Us2 gene product of herpes simplex virus 2 is a membrane-associated ubiquitin-interacting protein.

    PubMed

    Kang, Ming-Hsi; Roy, Bibhuti B; Finnen, Renée L; Le Sage, Valerie; Johnston, Susan M; Zhang, Hui; Banfield, Bruce W

    2013-09-01

    The Us2 gene encodes a tegument protein that is conserved in most members of the Alphaherpesvirinae. Previous studies on the pseudorabies virus (PRV) Us2 ortholog indicated that it is prenylated, associates with membranes, and spatially regulates the enzymatic activity of the MAP (mitogen-activated protein) kinase ERK (extracellular signal-related kinase) through direct binding and sequestration of ERK at the cytoplasmic face of the plasma membrane. Here we present an analysis of the herpes simplex virus 2 (HSV-2) Us2 ortholog and demonstrate that, like PRV Us2, HSV-2 Us2 is a virion component and that, unlike PRV Us2, it does not interact with ERK in yeast two-hybrid assays. HSV-2 Us2 lacks prenylation signals and other canonical membrane-targeting motifs yet is tightly associated with detergent-insoluble membranes and localizes predominantly to recycling endosomes. Experiments to identify cellular proteins that facilitate HSV-2 Us2 membrane association were inconclusive; however, these studies led to the identification of HSV-2 Us2 as a ubiquitin-interacting protein, providing new insight into the functions of HSV-2 Us2.

  5. Identification of two novel functional p53 responsive elements in the Herpes Simplex Virus-1 genome

    PubMed Central

    Hsieh, Jui-Cheng; Kuta, Ryan; Armour, Courtney R.; Boehmer, Paul E.

    2014-01-01

    Analysis of the herpes simplex virus-1 (HSV-1) genome reveals two candidate p53 responsive elements (p53RE), located in proximity to the replication origins oriL and oriS, referred to as p53RE-L and p53RE-S, respectively. The sequences of p53RE-L and p53RE-S conform to the p53 consensus site and are present in HSV-1 strains KOS, 17, and F. p53 binds to both elements in vitro and in virus-infected cells. Both p53RE-L and p53RE-S are capable of conferring p53-dependent transcriptional activation onto a heterologous reporter gene. Importantly, expression of the essential immediate early viral transactivator ICP4 and the essential DNA replication protein ICP8, that are adjacent to p53RE-S and p53RE-L, are repressed in a p53-dependent manner. Taken together, this study identifies two novel functional p53RE in the HSV-1 genome and suggests a complex mechanism of viral gene regulation by p53 which may determine progression of the lytic viral replication cycle or the establishment of latency. PMID:25010269

  6. Oncolytic Herpes Simplex Viral Therapy: A Stride toward Selective Targeting of Cancer Cells.

    PubMed

    Sanchala, Dhaval S; Bhatt, Lokesh K; Prabhavalkar, Kedar S

    2017-01-01

    Oncolytic viral therapy, which makes use of replication-competent lytic viruses, has emerged as a promising modality to treat malignancies. It has shown meaningful outcomes in both solid tumor and hematologic malignancies. Advancements during the last decade, mainly genetic engineering of oncolytic viruses have resulted in improved specificity and efficacy of oncolytic viruses in cancer therapeutics. Oncolytic viral therapy for treating cancer with herpes simplex virus-1 has been of particular interest owing to its range of benefits like: (a) large genome and power to infiltrate in the tumor, (b) easy access to manipulation with the flexibility to insert multiple transgenes, (c) infecting majority of the malignant cell types with quick replication in the infected cells and (d) as Anti-HSV agent to terminate HSV replication. This review provides an exhaustive list of oncolytic herpes simplex virus-1 along with their genetic alterations. It also encompasses the major developments in oncolytic herpes simplex-1 viral therapy and outlines the limitations and drawbacks of oncolytic herpes simplex viral therapy.

  7. Herpes simplex ulcerative esophagitis in healthy children.

    PubMed

    Al-Hussaini, Abdulrahman A; Fagih, Mosa A

    2011-01-01

    Herpes simplex virus is a common cause of ulcerative esophagitis in the immunocompromised or debilitated host. Despite a high prevalence of primary and recurrent Herpes simplex virus infection in the general population, Herpes simplex virus esophagitis (HSVE) appears to be rare in the immunocompetent host. We report three cases of endoscopically-diagnosed HSVE in apparently immunocompetent children; the presentation was characterized by acute onset of fever, odynophagia, and dysphagia. In two cases, the diagnosis was confirmed histologically by identification of herpes viral inclusions and culture of the virus in the presence of inflammation. The third case was considered to have probable HSVE based on the presence of typical cold sore on his lip, typical endoscopic finding, histopathological evidence of inflammation in esophageal biopsies and positive serologic evidence of acute Herpes simplex virus infection. Two cases received an intravenous course of acyclovir and one had self-limited recovery. All three cases had normal immunological workup and excellent health on long-term follow-up.

  8. Laboratory diagnosis and epidemiology of herpes simplex 1 and 2 genital infections.

    PubMed

    Glinšek Biškup, Urška; Uršič, Tina; Petrovec, Miroslav

    2015-01-01

    Herpes simplex virus types 1 and 2 are the main cause of genital ulcers worldwide. Although herpes simplex virus type 2 is the major cause of genital lesions, herpes simplex virus type 1 accounts for half of new cases in developed countries. Herpes simplex virus type 2 seroprevalence rises with sexual activity from adolescence through adulthood. Slovenian data in a high-risk population shows 16% seroprevalence of HSV-2. HSV-1 and HSV-2 DNA in genital swabs was detected in 19% and 20.7%, respectively. In most cases, genital herpes is asymptomatic. Primary genital infection with herpes simplex virus types 1 and 2 can be manifested by a severe clinical picture, involving the vesicular skin and mucosal changes and ulcerative lesions of the vulva, vagina, and cervix in women and in the genital region in men. Direct methods of viral genome detection are recommended in the acute stage of primary and recurrent infections when manifest ulcers or lesions are evident. Serological testing is recommended as an aid in diagnosing genital herpes in patients with reinfection in atypical or already healed lesions. When herpes lesions are present, all sexual activities should be avoided to prevent transmission of infection. Antiviral drugs can reduce viral shedding and thus reduce the risk of sexual transmission of the virus.

  9. Replication-Competent Controlled Herpes Simplex Virus

    PubMed Central

    Bloom, David C.; Feller, Joyce; McAnany, Peterjon; Vilaboa, Nuria

    2015-01-01

    ABSTRACT We present the development and characterization of a replication-competent controlled herpes simplex virus 1 (HSV-1). Replication-essential ICP4 and ICP8 genes of HSV-1 wild-type strain 17syn+ were brought under the control of a dually responsive gene switch. The gene switch comprises (i) a transactivator that is activated by a narrow class of antiprogestins, including mifepristone and ulipristal, and whose expression is mediated by a promoter cassette that comprises an HSP70B promoter and a transactivator-responsive promoter and (ii) transactivator-responsive promoters that drive the ICP4 and ICP8 genes. Single-step growth experiments in different cell lines demonstrated that replication of the recombinant virus, HSV-GS3, is strictly dependent on an activating treatment consisting of administration of a supraphysiological heat dose in the presence of an antiprogestin. The replication-competent controlled virus replicates with an efficiency approaching that of the wild-type virus from which it was derived. Essentially no replication occurs in the absence of activating treatment or if HSV-GS3-infected cells are exposed only to heat or antiprogestin. These findings were corroborated by measurements of amounts of viral DNA and transcripts of the regulated ICP4 gene and the glycoprotein C (gC) late gene, which was not regulated. Similar findings were made in experiments with a mouse footpad infection model. IMPORTANCE The alphaherpesviruses have long been considered vectors for recombinant vaccines and oncolytic therapies. The traditional approach uses vector backbones containing attenuating mutations that restrict replication to ensure safety. The shortcoming of this approach is that the attenuating mutations tend to limit both the immune presentation and oncolytic properties of these vectors. HSV-GS3 represents a novel type of vector that, when activated, replicates with the efficiency of a nonattenuated virus and whose safety is derived from deliberate, stringent regulation of multiple replication-essential genes. By directing activating heat to the region of virus administration, replication is strictly confined to infected cells within this region. The requirement for antiprogestin provides an additional level of safety, ensuring that virus replication cannot be triggered inadvertently. Replication-competent controlled vectors such as HSV-GS3 may have the potential to be superior to conventional attenuated HSV vaccine and oncolytic vectors without sacrificing safety. PMID:26269179

  10. T cell-macrophage interaction in arginase-mediated resistance to herpes simplex virus.

    PubMed

    Bonina, L; Nash, A A; Arena, A; Leung, K N; Wildy, P

    1984-09-01

    Peritoneal macrophages activated by-products derived from a herpes simplex virus-specific helper T cell clone were used to investigate intrinsic and extrinsic resistance mechanisms to herpes simplex virus type 1 infection in vitro. T cell-activated macrophages produced fewer infective centres, indicating enhanced intrinsic resistance, and markedly reduced the growth of virus in a permissive cell line. The reduction in virus growth correlated with the depletion of arginine in the support medium, presumably resulting from increased arginase production by activated macrophages. The significance of these findings for antiviral immunity in vivo is discussed.

  11. Latent Herpes Simplex Virus Infection of Sensory Neurons Alters Neuronal Gene Expression

    PubMed Central

    Kramer, Martha F.; Cook, W. James; Roth, Frederick P.; Zhu, Jia; Holman, Holly; Knipe, David M.; Coen, Donald M.

    2003-01-01

    The persistence of herpes simplex virus (HSV) and the diseases that it causes in the human population can be attributed to the maintenance of a latent infection within neurons in sensory ganglia. Little is known about the effects of latent infection on the host neuron. We have addressed the question of whether latent HSV infection affects neuronal gene expression by using microarray transcript profiling of host gene expression in ganglia from latently infected versus mock-infected mouse trigeminal ganglia. 33P-labeled cDNA probes from pooled ganglia harvested at 30 days postinfection or post-mock infection were hybridized to nylon arrays printed with 2,556 mouse genes. Signal intensities were acquired by phosphorimager. Mean intensities (n = 4 replicates in each of three independent experiments) of signals from mock-infected versus latently infected ganglia were compared by using a variant of Student's t test. We identified significant changes in the expression of mouse neuronal genes, including several with roles in gene expression, such as the Clk2 gene, and neurotransmission, such as genes encoding potassium voltage-gated channels and a muscarinic acetylcholine receptor. We confirmed the neuronal localization of some of these transcripts by using in situ hybridization. To validate the microarray results, we performed real-time reverse transcriptase PCR analyses for a selection of the genes. These studies demonstrate that latent HSV infection can alter neuronal gene expression and might provide a new mechanism for how persistent viral infection can cause chronic disease. PMID:12915567

  12. Cell Cycle-Dependent Expression of Adeno-Associated Virus 2 (AAV2) Rep in Coinfections with Herpes Simplex Virus 1 (HSV-1) Gives Rise to a Mosaic of Cells Replicating either AAV2 or HSV-1

    PubMed Central

    Franzoso, Francesca D.; Seyffert, Michael; Vogel, Rebecca; Yakimovich, Artur; de Andrade Pereira, Bruna; Meier, Anita F.; Sutter, Sereina O.; Tobler, Kurt; Vogt, Bernd; Greber, Urs F.; Büning, Hildegard; Ackermann, Mathias

    2017-01-01

    ABSTRACT Adeno-associated virus 2 (AAV2) depends on the simultaneous presence of a helper virus such as herpes simplex virus 1 (HSV-1) for productive replication. At the same time, AAV2 efficiently blocks the replication of HSV-1, which would eventually limit its own replication by diminishing the helper virus reservoir. This discrepancy begs the question of how AAV2 and HSV-1 can coexist in a cell population. Here we show that in coinfected cultures, AAV2 DNA replication takes place almost exclusively in S/G2-phase cells, while HSV-1 DNA replication is restricted to G1 phase. Live microscopy revealed that not only wild-type AAV2 (wtAAV2) replication but also reporter gene expression from both single-stranded and double-stranded (self-complementary) recombinant AAV2 vectors preferentially occurs in S/G2-phase cells, suggesting that the preference for S/G2 phase is independent of the nature of the viral genome. Interestingly, however, a substantial proportion of S/G2-phase cells transduced by the double-stranded but not the single-stranded recombinant AAV2 vectors progressed through mitosis in the absence of the helper virus. We conclude that cell cycle-dependent AAV2 rep expression facilitates cell cycle-dependent AAV2 DNA replication and inhibits HSV-1 DNA replication. This may limit competition for cellular and viral helper factors and, hence, creates a biological niche for either virus to replicate. IMPORTANCE Adeno-associated virus 2 (AAV2) differs from most other viruses, as it requires not only a host cell for replication but also a helper virus such as an adenovirus or a herpesvirus. This situation inevitably leads to competition for cellular resources. AAV2 has been shown to efficiently inhibit the replication of helper viruses. Here we present a new facet of the interaction between AAV2 and one of its helper viruses, herpes simplex virus 1 (HSV-1). We observed that AAV2 rep gene expression is cell cycle dependent and gives rise to distinct time-controlled windows for HSV-1 replication. High Rep protein levels in S/G2 phase support AAV2 replication and inhibit HSV-1 replication. Conversely, low Rep protein levels in G1 phase permit HSV-1 replication but are insufficient for AAV2 replication. This allows both viruses to productively replicate in distinct sets of dividing cells. PMID:28515305

  13. Latency of Herpes Simplex Virus in Absence of Neutralizing Antibody: Model for Reactivation

    NASA Astrophysics Data System (ADS)

    Sekizawa, Tsuyoshi; Openshaw, Harry; Wohlenberg, Charles; Notkins, Abner Louis

    1980-11-01

    Mice inoculated with herpes simplex virus (type 1) by the lip or corneal route and then passively immunized with rabbit antibody to herpes simplex virus developed a latent infection in the trigeminal ganglia within 96 hours. Neutralizing antibody to herpes simplex virus was cleared from the circulation and could not be detected in most of these mice after 2 months. Examination of ganglia from the antibody-negative mice revealed latent virus in over 90 percent of the animals, indicating that serum neutralizing antibody is not necessary to maintain the latent state. When the lips or corneas of these mice were traumatized, viral reactivation occurred in up to 90 percent of the mice, as demonstrated by the appearance of neutralizing antibody. This study provides a model for identifying factors that trigger viral reactivation.

  14. [Study on the inhibition effect of siRNA on herpes simplex virus type 2 ICP4 gene].

    PubMed

    Liu, Ji-feng; Guan, Cui-ping; Tang, Xu; Xu, Ai-e

    2010-06-01

    To explore the inhibition effect of RNA interference on the ICP4 expression and DNA replication of herpes simplex virus type 2 (HSV2). Four pairs of siRNA targeted to HSV2 ICP4 gene and negative control siRNA were synthetized by chemical method, named as siRNA-1, siRNA-2, siRNA-3, siRNA-4 and siRNA-N respecticely. HSV2 HG52 was used to attack Vero cell after transfection overnight. Vero cell and supernatant were collected at 1d, 2d, 3d, 4d and 5d after virus attacking. Flurogenic quantitative reverse transcription polymerase chain reaction (FQ-RT-PCR)was used to detect the expression of HSV2 ICP4 mRNA, flurogenic quantitative polymerase chain reaction(FG-PCR) was used to detect the expression of HSV2 DNA and Western-Blot was used to detect the expression of HSV2 ICP4 protein. All the four pairs of siRNA could significantly inhibit the expression of HSV2 ICP4 mRNA and protein, especially siRNA-2. The above siRNAs could significantly decrease HSV2 DNA copy number,too. siRNAs targeted to HSV2 ICP4 gene could significantly inhibit expression of HSV2 ICP4 mRNA and protein, and decrease HSV2 DNA copy number, suggesting that siRNA can inhibit HSV2 DNA replication through silencing ICP4 gene.

  15. A Herpes Simplex Virus Type 1 Mutant Expressing a Baculovirus Inhibitor of Apoptosis Gene in Place of Latency-Associated Transcript Has a Wild-Type Reactivation Phenotype in the Mouse

    PubMed Central

    Jin, Ling; Perng, Guey-Chuen; Mott, Kevin R.; Osorio, Nelson; Naito, Julia; Brick, David J.; Carpenter, Dale; Jones, Clinton; Wechsler, Steven L.

    2005-01-01

    The latency-associated transcript (LAT) is essential for the wild-type herpes simplex virus type 1 (HSV-1) high-reactivation phenotype since LAT− mutants have a low-reactivation phenotype. We previously reported that LAT can decrease apoptosis and proposed that this activity is involved in LAT's ability to enhance the HSV-1 reactivation phenotype. The first 20% of the primary 8.3-kb LAT transcript is sufficient for enhancing the reactivation phenotype and for decreasing apoptosis, supporting this proposal. For this study, we constructed an HSV-1 LAT− mutant that expresses the baculovirus antiapoptosis gene product cpIAP under control of the LAT promoter and in place of the LAT region mentioned above. Mice were ocularly infected with this mutant, designated dLAT-cpIAP, and the reactivation phenotype was determined using the trigeminal ganglion explant model. dLAT-cpIAP had a reactivation phenotype similar to that of wild-type virus and significantly higher than that of (i) the LAT− mutant dLAT2903; (ii) dLAT1.5, a control virus containing the same LAT deletion as dLAT-cpIAP, but with no insertion of foreign DNA, thereby controlling for potential readthrough transcription past the cpIAP insert; and (iii) dLAT-EGFP, a control virus identical to dLAT-cpIAP except that it contained the enhanced green fluorescent protein open reading frame (ORF) in place of the cpIAP ORF, thereby controlling for expression of a random foreign gene instead of the cpIAP gene. These results show that an antiapoptosis gene with no sequence similarity to LAT can efficiently substitute for the LAT function involved in enhancing the in vitro-induced HSV-1 reactivation phenotype in the mouse. PMID:16160155

  16. Ancient Recombination Events between Human Herpes Simplex Viruses.

    PubMed

    Burrel, Sonia; Boutolleau, David; Ryu, Diane; Agut, Henri; Merkel, Kevin; Leendertz, Fabian H; Calvignac-Spencer, Sébastien

    2017-07-01

    Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) are seen as close relatives but also unambiguously considered as evolutionary independent units. Here, we sequenced the genomes of 18 HSV-2 isolates characterized by divergent UL30 gene sequences to further elucidate the evolutionary history of this virus. Surprisingly, genome-wide recombination analyses showed that all HSV-2 genomes sequenced to date contain HSV-1 fragments. Using phylogenomic analyses, we could also show that two main HSV-2 lineages exist. One lineage is mostly restricted to subSaharan Africa whereas the other has reached a global distribution. Interestingly, only the worldwide lineage is characterized by ancient recombination events with HSV-1. Our findings highlight the complexity of HSV-2 evolution, a virus of putative zoonotic origin which later recombined with its human-adapted relative. They also suggest that coinfections with HSV-1 and 2 may have genomic and potentially functional consequences and should therefore be monitored more closely. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. Laryngopharyngeal reflux and herpes simplex virus type 2 are possible risk factors for adult-onset recurrent respiratory papillomatosis (prospective case-control study).

    PubMed

    Formánek, M; Jančatová, D; Komínek, P; Matoušek, P; Zeleník, K

    2017-06-01

    The human papillomavirus (HPV) causes recurrent respiratory papillomatosis (RRP). Although HPV prevalence is high, the incidence of papillomatosis is low. Thus, factors other than HPV infection probably contribute to RRP. This study investigated whether patients with papillomatosis are more often infected with herpes simplex virus type 2 and chlamydia trachomatis (ChT) and whether laryngopharyngeal reflux (LPR) occurs in this group of patients more often. Prospective case-control study. Department of Otorhinolaryngology of University Hospital. The study included 20 patients with adult-onset RRP and 20 adult patients with vocal cord cyst and no pathology of laryngeal mucosa (control group). Immunohistochemical analysis of pepsin, HPV, herpes simplex virus type 2 and ChT was performed in biopsy specimens of laryngeal papillomas and of healthy laryngeal mucosa (control group) obtained from medial part of removed vocal cord cyst during microlaryngoscopy procedures. Pathologic LPR (pepsin in tissue) was diagnosed in 8/20 (40.0%) patients with papillomatosis and in 0/20 control patients (P = .003). Herpes simplex virus type 2 was present in 9/20 (45.0%) patients with papillomatosis and in 0/20 control patients (P = .001). Five specimens were positive for both pepsin and herpes simplex virus type 2. No samples were positive for ChT. There were no significant differences between groups for age, body mass index, diabetes mellitus and gastrooesophageal reflux disease. Tobacco exposure was not more frequent in RRP group either (P = .01). Results show that LPR and herpes simplex virus type 2 are significantly more often present in patients with RRP. LPR and herpes simplex virus type 2 might activate latent HPV infection and thereby be possible risk factors for RRP. © 2016 John Wiley & Sons Ltd.

  18. A Real-Time PCR Assay to Identify and Discriminate Among Wild-Type and Vaccine Strains of Varicella-Zoster Virus and Herpes Simplex Virus in Clinical Specimens, and Comparison With the Clinical Diagnoses

    PubMed Central

    Harbecke, Ruth; Oxman, Michael N.; Arnold, Beth A.; Ip, Charlotte; Johnson, Gary R.; Levin, Myron J.; Gelb, Lawrence D.; Schmader, Kenneth E.; Straus, Stephen E.; Wang, Hui; Wright, Peter F.; Pachucki, Constance T.; Gershon, Anne A.; Arbeit, Robert D.; Davis, Larry E.; Simberkoff, Michael S.; Weinberg, Adriana; Williams, Heather M.; Cheney, Carol; Petrukhin, Luba; Abraham, Katalin G.; Shaw, Alan; Manoff, Susan; Antonello, Joseph M.; Green, Tina; Wang, Yue; Tan, Charles; Keller, Paul M.

    2014-01-01

    A real-time PCR assay was developed to identify varicella-zoster virus (VZV) and herpes simplex virus (HSV) DNA in clinical specimens from subjects with suspected herpes zoster (HZ; shingles). Three sets of primers and probes were used in separate PCR reactions to detect and discriminate among wild-type VZV (VZV-WT), Oka vaccine strain VZV (VZV-Oka), and HSV DNA, and the reaction for each virus DNA was multiplexed with primers and probe specific for the human β-globin gene to assess specimen adequacy. Discrimination of all VZV-WT strains, including Japanese isolates and the Oka parent strain, from VZV-Oka was based upon a single nucleotide polymorphism at position 106262 in ORF 62, resulting in preferential amplification by the homologous primer pair. The assay was highly sensitive and specific for the target virus DNA, and no cross-reactions were detected with any other infectious agent. With the PCR assay as the gold standard, the sensitivity of virus culture was 53% for VZV and 77% for HSV. There was 92% agreement between the clinical diagnosis of HZ by the Clinical Evaluation Committee and the PCR assay results. PMID:19475609

  19. Amino acid substitutions in the thymidine kinase gene of induced acyclovir-resistant herpes simplex virus type 1

    NASA Astrophysics Data System (ADS)

    Hussin, Ainulkhir; Nor, Norefrina Shafinaz Md; Ibrahim, Nazlina

    2013-11-01

    Acyclovir (ACV) is an antiviral drug of choice in healthcare setting to treat infections caused by herpes viruses, including, but not limited to genital herpes, cold sores, shingles and chicken pox. Acyclovir resistance has emerged significantly due to extensive use and misuse of this antiviral in human, especially in immunocompromised patients. However, it remains unclear about the amino acid substitutions in thymidine (TK) gene, which specifically confer the resistance-associated mutation in herpes simplex virus. Hence, acyclovir-resistant HSV-1 was selected at high concentration (2.0 - 4.5 μg/mL), and the TK-gene was subjected to sequencing and genotypic characterization. Genotypic sequences comparison was done using HSV-1 17 (GenBank Accesion no. X14112) for resistance-associated mutation determination whereas HSV-1 KOS, HSV-1 473/08 and HSV clinical isolates sequences were used for polymorphism-associated mutation. The result showed that amino acid substitutions at the non-conserved region (UKM-1: Gln34Lys, UKM-2: Arg32Ser & UKM-5: Arg32Cys) and ATP-binding site (UKM-3: Tyr53End & UKM-4: Ile54Leu) of the TK-gene. These discoveries play an important role to extend another dimension to the evolution of acyclovir-resistant HSV-1 and suggest that selection at high ACV concentration induced ACV-resistant HSV-1 evolution. These findings also expand the knowledge on the type of mutations among acyclovir-resistant HSV-1. In conclusion, HSV-1 showed multiple strategies to exhibit acyclovir resistance, including amino acid substitutions in the TK gene.

  20. Helicase-primase inhibitors for herpes simplex virus: looking to the future of non-nucleoside inhibitors for treating herpes virus infections.

    PubMed

    Biswas, Subhajit; Sukla, Soumi; Field, Hugh J

    2014-01-01

    Helicase-primase inhibitors (HPIs) are the first new family of potent herpes virus (herpes simplex and varicella-zoster virus) inhibitors to go beyond the preliminary stages of investigation since the emergence of the original nucleoside analog inhibitors. To consider the clinical future of HPIs, this review puts the exciting new findings with two HPIs, amenamevir and pritelivir, into the historical context of antiviral development for the prevention and treatment of herpes simplex virus over the last century and, on this basis, the authors speculate on the potential evolution of these and other non-nucleoside inhibitors in the future.

  1. Herpes simplex virus type 2: Cluster of unrelated cases in an intensive care unit.

    PubMed

    Troché, Gilles; Marque Juillet, Stephanie; Burrel, Sonia; Boutolleau, David; Bédos, Jean-Pierre; Legriel, Stephane

    2016-10-01

    Herpes simplex viruses, which are associated with various clinical manifestations, can be transmitted to critically ill patients from other patients or health care staff. We report an apparent outbreak of mucocutaneous herpes simplex virus 2 infections (5 cases in 10 weeks). An epidemiologic investigation and genotype analysis showed no connections among the 5 cases. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  2. Herpes simplex encephalitis with thalamic, brainstem and cerebellar involvement.

    PubMed

    Garg, Meenal; Kulkarni, Shilpa; Udwadia Hegde, Anaita

    2018-04-01

    Herpes simplex virus encephalitis is a common and treatable cause of acute encephalitis in all age groups. Certain radiological features such as temporal parenchymal involvement facilitate the diagnosis. The use of herpes simplex virus polymerase chain reaction has expanded the clinical and imaging spectrum. We report the case of a young patient who presented with a movement disorder and predominant involvement of thalami, brainstem and cerebellum on magnetic resonance imaging, and was diagnosed with herpes simplex virus encephalitis. Differentiation from Japanese encephalitis may be difficult in these patients, especially in endemic areas, and may necessitate the use of relevant investigations in all patients.

  3. Molecular Basis of Latency in Pathogenic Human Viruses

    NASA Astrophysics Data System (ADS)

    Garcia-Blanco, Mariano A.; Cullen, Bryan R.

    1991-11-01

    Several human viruses are able to latently infect specific target cell populations in vivo. Analysis of the replication cycles of herpes simplex virus, Epstein-Barr virus, and human immunodeficiency virus suggests that the latent infections established by these human pathogens primarily result from a lack of host factors critical for the expression of viral early gene products. The subsequent activation of specific cellular transcription factors in response to extracellular stimuli can induce the expression of these viral regulatory proteins and lead to a burst of lytic viral replication. Latency in these eukaryotic viruses therefore contrasts with latency in bacteriophage, which is maintained primarily by the expression of virally encoded repressors of lytic replication.

  4. Genital herpes simplex virus infections.

    PubMed

    Rosenthal, M S

    1979-09-01

    In recent years, a great increase in interest in genital herpes has been stimulated partly by the rising prevalence of this disease and partly by observations suggesting that genital herpes is a cause of cervical cancer. The clinical pictures produced by genital herpes simplex virus infections are similar in men and women. In contrast to recurrent attacks, initial episodes of infection are generally more extensive, last longer, and are more often associated with regional lymphadenopathy and systemic symptoms. Genital herpes in pregnancy may pose a serious threat to the newborn infant. Although the data suggesting genital herpes simplex virus infection is a cause of cervical cancer are quite extensive, the evidence is largely circumstantial. In spite of these more serious aspects of genital herpes simplex virus infection, episodes of genital herpes are almost always self-limited and benign. Frequent recurrences pose the major therapeutic and management problem. At present, there is no satisfactory treatment for recurrent genital herpes simplex virus in fection. Many of the suggested therapies, although some sound very promising, are potentially dangerous and should be used only under carefully controlled conditions.

  5. Pediatric herpes simplex virus infections: an evidence-based approach to treatment.

    PubMed

    Sanders, Jennifer E; Garcia, Sylvia E

    2014-01-01

    Herpes simplex virus is a common virus that causes a variety of clinical presentations ranging from mild to life-threatening. Orolabial and genital herpes are common disorders that can often be managed in an outpatient setting; however, some patients do present to the emergency department with those conditions, and emergency clinicians should be aware of possible complications in the pediatric population. Neonatal herpes is a rare disorder, but prompt recognition and initiation of antiviral therapy is imperative, as the morbidity and mortality of the disease is high. Herpes encephalitis is an emergency that also requires a high index of suspicion to diagnose. Herpes simplex virus is also responsible for a variety of other clinical presentations, including herpes gladiatorum, herpetic whitlow, eczema herpeticum, and ocular herpes. This issue reviews the common clinical presentations of the herpes simplex virus, the life-threatening infections that require expedient identification and management, and recommended treatment regimens.

  6. Herpes Simplex Virus Is Equipped with RNA- and Protein-Based Mechanisms To Repress Expression of ATRX, an Effector of Intrinsic Immunity

    PubMed Central

    Jurak, Igor; Silverstein, Leah B.; Sharma, Mayuri

    2012-01-01

    Intrinsic immunity is a first-line intracellular defense against virus infection, and viruses have evolved mechanisms to counteract it. During herpes simplex virus (HSV) infection, nuclear domain 10 (ND10) components localize adjacent to incoming viral genomes and generate a repressive environment for viral gene expression. Here, we found that the ND10 component, alpha-thalassemia/mental retardation syndrome X-linked (ATRX) protein, is predicted to be a target of HSV-1 miR-H1 and HSV-2 miR-H6. These microRNAs (miRNAs) share a seed sequence and are abundant during lytic infection. Mimics of both miRNAs could deplete endogenous ATRX, and an miR-H1 mimic could repress the expression of a reporter linked to the 3′ untranslated region of ATRX mRNA, identifying a cellular mRNA targeted by an HSV miRNA. Interestingly, ATRX protein and its mRNA were depleted in cells lytically infected with HSV, and ATRX protein was also depleted in cells infected with human cytomegalovirus. However, infection with an HSV-1 mutant lacking miR-H1 still resulted in ATRX depletion. This depletion was sensitive to a proteasome inhibitor and was largely ablated by a deletion of the gene encoding the immediate-early ICP0 protein. Additionally, a deletion of the gene encoding the tegument protein Vhs ablated most of the depletion of ATRX mRNA. Thus, HSV is equipped with multiple mechanisms to limit the expression of ATRX. As ATRX is implicated in repression of lytic viral gene expression, our results suggest roles for these different mechanisms during various phases of HSV infection. PMID:22787211

  7. Herpes simplex virus is equipped with RNA- and protein-based mechanisms to repress expression of ATRX, an effector of intrinsic immunity.

    PubMed

    Jurak, Igor; Silverstein, Leah B; Sharma, Mayuri; Coen, Donald M

    2012-09-01

    Intrinsic immunity is a first-line intracellular defense against virus infection, and viruses have evolved mechanisms to counteract it. During herpes simplex virus (HSV) infection, nuclear domain 10 (ND10) components localize adjacent to incoming viral genomes and generate a repressive environment for viral gene expression. Here, we found that the ND10 component, alpha-thalassemia/mental retardation syndrome X-linked (ATRX) protein, is predicted to be a target of HSV-1 miR-H1 and HSV-2 miR-H6. These microRNAs (miRNAs) share a seed sequence and are abundant during lytic infection. Mimics of both miRNAs could deplete endogenous ATRX, and an miR-H1 mimic could repress the expression of a reporter linked to the 3' untranslated region of ATRX mRNA, identifying a cellular mRNA targeted by an HSV miRNA. Interestingly, ATRX protein and its mRNA were depleted in cells lytically infected with HSV, and ATRX protein was also depleted in cells infected with human cytomegalovirus. However, infection with an HSV-1 mutant lacking miR-H1 still resulted in ATRX depletion. This depletion was sensitive to a proteasome inhibitor and was largely ablated by a deletion of the gene encoding the immediate-early ICP0 protein. Additionally, a deletion of the gene encoding the tegument protein Vhs ablated most of the depletion of ATRX mRNA. Thus, HSV is equipped with multiple mechanisms to limit the expression of ATRX. As ATRX is implicated in repression of lytic viral gene expression, our results suggest roles for these different mechanisms during various phases of HSV infection.

  8. Preparation of herpes simplex virus-infected primary neurons for transmission electron microscopy.

    PubMed

    Miranda-Saksena, Monica; Boadle, Ross; Cunningham, Anthony L

    2014-01-01

    Transmission electron microscopy (TEM) provides the resolution necessary to identify both viruses and subcellular components of cells infected with many types of viruses, including herpes simplex virus. Recognized as a powerful tool in both diagnostic and research-based virology laboratories, TEM has made possible the identification of new viruses and has contributed to the elucidation of virus life cycle and virus-host cell interaction. Whilst there are many sample preparation techniques for TEM, conventional processing using chemical fixation and resin embedding remains a useful technique, available in virtually all EM laboratories, for studying virus/cell ultrastructure. In this chapter, we describe the preparation of herpes simplex virus-infected primary neurons, grown on plastic cover slips, to allow sectioning of neurons and axons in their growth plane. This technique allows TEM examination of cell bodies, axons, growth cones, and varicosities, providing powerful insights into virus-cell interaction.

  9. A limited innate immune response is induced by a replication-defective herpes simplex virus vector following delivery to the murine central nervous system

    PubMed Central

    Zeier, Zane; Aguilar, J Santiago; Lopez, Cecilia M; Devi-Rao, G B; Watson, Zachary L; Baker, Henry V; Wagner, Edward K; Bloom, David C

    2010-01-01

    Herpes simplex virus type 1 (HSV-1)–based vectors readily transduce neurons and have a large payload capacity, making them particularly amenable to gene therapy applications within the central nervous system (CNS). Because aspects of the host responses to HSV-1 vectors in the CNS are largely unknown, we compared the host response of a nonreplicating HSV-1 vector to that of a replication-competent HSV-1 virus using microarray analysis. In parallel, HSV-1 gene expression was tracked using HSV-specific oligonucleotide-based arrays in order to correlate viral gene expression with observed changes in host response. Microarray analysis was performed following stereotactic injection into the right hippocampal formation of mice with either a replication-competent HSV-1 or a nonreplicating recombinant of HSV-1, lacking the ICP4 gene (ICP4−). Genes that demonstrated a significant change (P < .001) in expression in response to the replicating HSV-1 outnumbered those that changed in response to mock or nonreplicating vector by approximately 3-fold. Pathway analysis revealed that both the replicating and nonreplicating vectors induced robust antigen presentation but only mild interferon, chemokine, and cytokine signaling responses. The ICP4− vector was restricted in several of the Toll-like receptor-signaling pathways, indicating reduced stimulation of the innate immune response. These array analyses suggest that although the nonreplicating vector induces detectable activation of immune response pathways, the number and magnitude of the induced response is dramatically restricted compared to the replicating vector, and with the exception of antigen presentation, host gene expression induced by the non-replicating vector largely resembles mock infection. PMID:20095947

  10. Quantitative Evaluation of Protein Heterogeneity within Herpes Simplex Virus 1 Particles.

    PubMed

    El Bilali, Nabil; Duron, Johanne; Gingras, Diane; Lippé, Roger

    2017-05-15

    Several virulence genes have been identified thus far in the herpes simplex virus 1 genome. It is also generally accepted that protein heterogeneity among virions further impacts viral fitness. However, linking this variability directly with infectivity has been challenging at the individual viral particle level. To address this issue, we resorted to flow cytometry (flow virometry), a powerful approach we recently employed to analyze individual viral particles, to identify which tegument proteins vary and directly address if such variability is biologically relevant. We found that the stoichiometry of the U L 37, ICP0, and VP11/12 tegument proteins in virions is more stable than the VP16 and VP22 tegument proteins, which varied significantly among viral particles. Most interestingly, viruses sorted for their high VP16 or VP22 content yielded modest but reproducible increases in infectivity compared to their corresponding counterparts containing low VP16 or VP22 content. These findings were corroborated for VP16 in short interfering RNA experiments but proved intriguingly more complex for VP22. An analysis by quantitative Western blotting revealed substantial alterations of virion composition upon manipulation of individual tegument proteins and suggests that VP22 protein levels acted indirectly on viral fitness. These findings reaffirm the interdependence of the virion components and corroborate that viral fitness is influenced not only by the genome of viruses but also by the stoichiometry of proteins within each virion. IMPORTANCE The ability of viruses to spread in animals has been mapped to several viral genes, but other factors are clearly involved, including virion heterogeneity. To directly probe whether the latter influences viral fitness, we analyzed the protein content of individual herpes simplex virus 1 particles using an innovative flow cytometry approach. The data confirm that some viral proteins are incorporated in more controlled amounts, while others vary substantially. Interestingly, this correlates with the VP16 trans -activating viral protein and indirectly with VP22, a second virion component whose modulation profoundly alters virion composition. This reaffirms that not only the presence but also the amount of specific tegument proteins is an important determinant of viral fitness. Copyright © 2017 American Society for Microbiology.

  11. Quantitative Evaluation of Protein Heterogeneity within Herpes Simplex Virus 1 Particles

    PubMed Central

    El Bilali, Nabil; Duron, Johanne; Gingras, Diane

    2017-01-01

    ABSTRACT Several virulence genes have been identified thus far in the herpes simplex virus 1 genome. It is also generally accepted that protein heterogeneity among virions further impacts viral fitness. However, linking this variability directly with infectivity has been challenging at the individual viral particle level. To address this issue, we resorted to flow cytometry (flow virometry), a powerful approach we recently employed to analyze individual viral particles, to identify which tegument proteins vary and directly address if such variability is biologically relevant. We found that the stoichiometry of the UL37, ICP0, and VP11/12 tegument proteins in virions is more stable than the VP16 and VP22 tegument proteins, which varied significantly among viral particles. Most interestingly, viruses sorted for their high VP16 or VP22 content yielded modest but reproducible increases in infectivity compared to their corresponding counterparts containing low VP16 or VP22 content. These findings were corroborated for VP16 in short interfering RNA experiments but proved intriguingly more complex for VP22. An analysis by quantitative Western blotting revealed substantial alterations of virion composition upon manipulation of individual tegument proteins and suggests that VP22 protein levels acted indirectly on viral fitness. These findings reaffirm the interdependence of the virion components and corroborate that viral fitness is influenced not only by the genome of viruses but also by the stoichiometry of proteins within each virion. IMPORTANCE The ability of viruses to spread in animals has been mapped to several viral genes, but other factors are clearly involved, including virion heterogeneity. To directly probe whether the latter influences viral fitness, we analyzed the protein content of individual herpes simplex virus 1 particles using an innovative flow cytometry approach. The data confirm that some viral proteins are incorporated in more controlled amounts, while others vary substantially. Interestingly, this correlates with the VP16 trans-activating viral protein and indirectly with VP22, a second virion component whose modulation profoundly alters virion composition. This reaffirms that not only the presence but also the amount of specific tegument proteins is an important determinant of viral fitness. PMID:28275191

  12. Integrating Molecular Imaging Approaches to Monitor Prostate Targeted Suicide and Anti-angiogenic Gene Therapy

    DTIC Science & Technology

    2005-02-01

    tissue-specific expression of prostate-specific antigen. Cancer Res. 57: 495–499. 11. Schuur, E. R ., Henderson, G . A., Kmetec, L. A., Miller, J. D...Lamparski, H. G ., and Henderson, D. R . (1996). Prostate-specific antigen expression is regulated by an up- stream enhancer. J. Biol. Chem. 271: 7043...5: 223–232. 29. Blasberg, R . G ., and Tjuvajev, J. G . (1999). Herpes simplex virus thymidine kinase as a marker/reporter gene for PET imaging of gene

  13. A speculated ribozyme site in the herpes simplex virus type 1 latency-associated transcript gene is not essential for a wild-type reactivation phenotype

    PubMed Central

    Carpenter, Dale; Singh, Sukhpreet; Osorio, Nelson; Hsiang, Chinhui; Jiang, Xianzhi; Jin, Ling; Jones, Clinton; Wechsler, Steven L

    2010-01-01

    During herpes simplex virus-1 (HSV-1) latency in sensory neurons, LAT (latency-associated transcript) is the only abundantly expressed viral gene. LAT plays an important role in the HSV-1 latency-reactivation cycle, because LAT deletion mutants have a significantly decreased reactivation phenotype. Based solely on sequence analysis, it was speculated that LAT encodes a ribozyme that plays an important role in how LAT enhances the virus’ reactivation phenotype. Because LAT ribozyme activity has never been reported, we decided to test the converse hypothesis, namely, that this region of LAT does not encode a ribozyme function important for LAT’s ability to enhance the reactivation phenotype. We constructed a viral mutant (LAT-Rz) in which the speculated ribozyme consensus sequence was altered such that no ribozyme was encoded. We report here that LAT-Rz had a wild-type reactivation phenotype in mice, confirming the hypothesis that the speculated LAT ribozyme is not a dominant factor in stimulating the latency-reactivation cycle in mice. PMID:18982533

  14. A novel system for constructing a recombinant highly-attenuated vaccinia virus strain (LC16m8) expressing foreign genes and its application for the generation of LC16m8-based vaccines against herpes simplex virus 2.

    PubMed

    Omura, Natsumi; Yoshikawa, Tomoki; Fujii, Hikaru; Shibamura, Miho; Inagaki, Takuya; Kato, Hirofumi; Egawa, Kazutaka; Harada, Shizuko; Yamada, Souichi; Takeyama, Haruko; Saijo, Masayuki

    2018-04-27

    A novel system was developed for generating a highly-attenuated vaccinia virus LC16m8 (m8, third generation smallpox vaccine) that expresses foreign genes. The innovations in this system are its excisable selection marker, specificity of the integration site of a gene of interest, and easy identification of clones with the fluorescent signal. Using this system, recombinant m8s, which expressed either herpes simplex virus 2 (HSV-2) glycoprotein B (gB)-, gD-, or both gB and gD (gB+gD) were developed, and their efficacy was evaluated. First, the induction of a specific IgG against these HSV-2 glycoproteins in mice infected with each of these recombinant m8s was confirmed with an immunofluorescence assay. Next, mice pre-infected with each of the recombinant m8s were infected with HSV-2 at the lethal dose to examine the vaccine efficacy. The fatality rate in mice pre-infected with either of the recombinant gB+gD- or gD-expressing m8s significantly decreased in comparison with that of the control. The survival rate in both male and female mice pre-infected with either of the recombinant gB+gD- and gD-expressing m8s increased to 100 % and 60 %, respectively, while most of the control mice died. In summary, this new system might be applicable for generating a novel m8-based vaccine.

  15. Cell lines that support replication of a novel herpes simplex virus 1 U{sub L}31 deletion mutant can properly target U{sub L}34 protein to the nuclear rim in the absence of U{sub L}31

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang Li; Tanaka, Michiko; Kawaguchi, Yasushi

    2004-11-10

    Previous results indicated that the herpes simplex virus 1 (HSV-1) U{sub L}31 gene is necessary and sufficient for localization of the U{sub L}34 protein exclusively to the nuclear membrane of infected Hep2 cells. In the current studies, a bacterial artificial chromosome containing the entire HSV-1 strain F genome was used to construct a recombinant viral genome in which a gene encoding kanamycin resistance was inserted in place of 262 codons of the 306 codon U{sub L}31 open reading frame. The deletion virus produced virus titers approximately 10- to 50-fold lower in rabbit skin cells, more than 2000-fold lower in Veromore » cells, and more than 1500-fold lower in CV1 cells, compared to a virus bearing a restored U{sub L}31 gene. The replication of the U{sub L}31 deletion virus was restored on U{sub L}31-complementing cell lines derived either from rabbit skin cells or CV1 cells. Confocal microscopy indicated that the majority of U{sub L}34 protein localized aberrantly in the cytoplasm and nucleoplasm of Vero cells and CV1 cells, whereas U{sub L}34 protein localized at the nuclear membrane in rabbit skin cells, and U{sub L}31 complementing CV1 cells infected with the U{sub L}31 deletion virus. We conclude that rabbit skin cells encode a function that allows proper localization of U{sub L}34 protein to the nuclear membrane. We speculate that this function partially complements that of U{sub L}31 and may explain why U{sub L}31 is less critical for replication in rabbit skin cells as opposed to Vero and CV1 cells.« less

  16. Anti-herpes simplex virus 1 and immunomodulatory activities of a poly-γ- glutamic acid from Bacillus horneckiae strain APA of shallow vent origin.

    PubMed

    Marino-Merlo, Francesca; Papaianni, Emanuela; Maugeri, Teresa L; Zammuto, Vincenzo; Spanò, Antonio; Nicolaus, Barbara; Poli, Annarita; Di Donato, Paola; Mosca, Claudia; Mastino, Antonio; Gugliandolo, Concetta

    2017-10-01

    Herpes simplex virus type 1 (HSV-1) is responsible of common and widespread viral infections in humans through the world, and of rare, but extremely severe, clinical syndromes in the central nervous system. The emergence of resistant strains to drugs actually in use encourages the searching for novel antiviral compounds, including those of natural origin. In this study, the recently described poly-γ-glutamic acid (γ-PGA-APA), produced by the marine thermotolerant Bacillus horneckiae strain APA, and previously shown to possess biological and antiviral activity, was evaluated for its anti-HSV-1 and immunomodulatory properties. The biopolymer hindered the HSV-1 infection in the very early phase of virus replication. In addition, the γ-PGA-APA was shown to exert low cytotoxicity and noticeable immunomodulatory activities towards TNF-α and IL-1β gene expression. Moreover, the capacity to positively modulate the transcriptional activity of the cytokine genes was paired with increased level of activation of the transcription factor NF-kB by γ-PGA-APA. Overall, as non-cytotoxic biopolymer able to contribute in the antiviral defense against HSV-1, γ-PGA-APA could lead to the development of novel natural drugs for alternative therapies.

  17. Identification of two novel functional p53 responsive elements in the herpes simplex virus-1 genome.

    PubMed

    Hsieh, Jui-Cheng; Kuta, Ryan; Armour, Courtney R; Boehmer, Paul E

    2014-07-01

    Analysis of the herpes simplex virus-1 (HSV-1) genome reveals two candidate p53 responsive elements (p53RE), located in proximity to the replication origins oriL and oriS, referred to as p53RE-L and p53RE-S, respectively. The sequences of p53RE-L and p53RE-S conform to the p53 consensus site and are present in HSV-1 strains KOS, 17, and F. p53 binds to both elements in vitro and in virus-infected cells. Both p53RE-L and p53RE-S are capable of conferring p53-dependent transcriptional activation onto a heterologous reporter gene. Importantly, expression of the essential immediate early viral transactivator ICP4 and the essential DNA replication protein ICP8, that are adjacent to p53RE-S and p53RE-L, are repressed in a p53-dependent manner. Taken together, this study identifies two novel functional p53RE in the HSV-1 genome and suggests a complex mechanism of viral gene regulation by p53 which may determine progression of the lytic viral replication cycle or the establishment of latency. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Herpes Simplex Encephalitis during Treatment with Tumor Necrosis Factor-α Inhibitors

    PubMed Central

    Bradford, Russell D.; Pettit, April C.; Wright, Patty W.; Mulligan, Mark J.; Moreland, Larry W.; McLain, David A.; Gnann, John W.; Bloch, Karen C.

    2012-01-01

    We report 3 cases of herpes simplex virus encephalitis in patients receiving tumor necrosis factor-alpha (TNF-α) inhibitors for rheumatologic disorders. Although TNF-α inhibitors have been reported to increase the risk of other infectious diseases, to our knowledge, an association between anti–TNF-α drugs and herpes simplex virus encephalitis has not been previously described. PMID:19681709

  19. Herpes simplex virus type 2 (Mollaret's) meningitis: a case report.

    PubMed

    Abu Khattab, Mohammed; Al Soub, Hussam; Al Maslamani, Mona; Al Khuwaiter, Jameela; El Deeb, Yasser

    2009-11-01

    Mollaret's meningitis is an unusual and under-appreciated syndrome of benign, recurrent aseptic meningitis. The available literature indicates that the causative agent is herpes simplex virus type 2 (HSV-2) in the majority of cases and much less frequently herpes simplex virus type 1 (HSV-1). We report the case of a 49-year-old Indian female who had four attacks of recurrent lymphocytic meningitis (Mollaret's meningitis) occurring over a 7-year period. The diagnosis of herpes simplex meningitis was made at the time of the fourth episode by a positive PCR for herpes simplex virus infection in the cerebrospinal fluid. During the first three episodes, the patient was treated with anti-tuberculous drugs and antibiotics for bacterial meningitis; however for the last episode, once the diagnosis of herpes simplex meningitis was confirmed, only symptomatic treatment was given. No long-term suppressive therapy was given and no recurrence has been experienced so far. Mollaret's meningitis should be suspected in all cases of recurrent lymphocytic meningitis. Early diagnosis may prevent prolonged hospital admissions, unnecessary investigations, and exposure to unnecessary medications, with the associated considerable costs. Treatment with acyclovir may be beneficial in decreasing the severity and duration of attacks and in preventing further episodes. [Au?1].

  20. [The Spanish Society of Paediatric Infectious Diseases guidelines on the prevention, diagnosis and treatment of neonatal herpes simplex infections].

    PubMed

    2018-02-13

    Neonatal herpes simplex virus infections are rare, but are associated with significant morbidity and mortality. Most newborns acquire herpes simplex virus infection in the peripartum period. For peripartum transmission to occur, women must be shedding the virus in their genital tracts symptomatically or asymptomatically around the time of delivery. There are evidence-based interventions in pregnancy to prevent the transmission to the newborn. Caesarean section should be performed in the presence of herpetic lesions, and antiviral prophylaxis in the last weeks of pregnancy is recommended to suppress genital tract herpes simplex virus at the time of delivery. The diagnosis and early treatment of neonatal herpes simplex virus infections require a high index of suspicion, especially in the absence of skin lesions. It is recommended to rule out herpes simplex virus infections in those newborns with mucocutaneous lesions, central nervous system involvement, or septic appearance. The prognosis of newborns with skin, eye, and/or mouth disease in the high-dose acyclovir era is very good. Antiviral treatment not only improves mortality rates in disseminated and central nervous system disease, but also improves the rates of long-term neurodevelopmental impairment in the cases of disseminated disease. Interestingly, a 6-month suppressive course of oral acyclovir following the acute infection has improved the neurodevelopmental prognosis in patients with CNS involvement. Copyright © 2017 Asociación Española de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. Prevalence of Herpes Simplex Virus Antibodies in Dental Students.

    ERIC Educational Resources Information Center

    Rodu, Brad; And Others

    1992-01-01

    A study of 125 sophomore preclinical dental students found that these young professionals, because of having a low prevalence of herpes simplex virus (HSV) antibodies, are at risk for acquiring a primary HSV infection when treating HSV positive patients and should take precautions to avoid virus transmission. (MSE)

  2. Herpes simplex type 1 pneumonitis and acute respiratory distress syndrome in a patient with chronic lymphatic leukemia: a case report.

    PubMed

    Luginbuehl, Miriam; Imhof, Alexander; Klarer, Alexander

    2017-11-23

    Pulmonary pathogenicity of herpes simplex virus type 1 in patients in intensive care without classic immunosuppression as well as the necessity of antiviral treatment in the case of herpes simplex virus detection in respiratory specimens in these patients is controversial. We present a case of acute respiratory distress syndrome in a patient with stable chronic lymphatic leukemia not requiring treatment, in whom we diagnosed herpes simplex virus type 1 bronchopneumonitis based on herpes simplex virus type 1 detection in bronchoalveolar lavage fluid and clinical response to antiviral treatment. A 72-year-old white man presented with symptoms of lower respiratory tract infection. His medical history was significant for chronic lymphatic leukemia, which had been stable without treatment, arterial hypertension, multiple squamous cell carcinomas of the scalp, and alcohol overuse. Community-acquired pneumonia was suspected and appropriate broad-spectrum antibacterial treatment was initiated. Within a few hours, rapid respiratory deterioration led to cardiac arrest. He was successfully resuscitated, but developed acute respiratory distress syndrome. Furthermore, he remained febrile and inflammation markers remained elevated despite antibacterial treatment. Polymerase chain reaction from bronchoalveolar lavage fluid and viral culture from tracheobronchial secretions tested positive for herpes simplex virus type 1. We initiated antiviral treatment with acyclovir. Concomitantly we further escalated the antibacterial treatment, although no bacterial pathogen had been isolated at any point. Defervescence occurred rapidly and his C-reactive protein and leukocyte levels decreased. He was successfully weaned from mechanical ventilation, transferred to the ward, and eventually discharged to home. Herpes simplex virus should be considered a cause for lower respiratory tract infection in critically ill patients, especially in the setting of an underlying disease.

  3. Evolution of the HIV-1 Envelope Glycoprotein Genes and Neutralizing Antibody Response in an Individual with Broadly Cross Neutralizing Antibodies

    DTIC Science & Technology

    2010-08-31

    genital fluids HIV -1 infected cells are present in more substantial numbers than free virus, and the former may account for the majority of...Severe acquired immunodeficiency in male homosexuals, manifested by chronic perianal ulcerative herpes simplex lesions. N Engl J Med 1981 , 305:1439...1994,179:463-472. 59. Miller CJ: Localization of Simian immunodeficiency virus-infected cells in the genital tract of male and female Rhesus macaques. J

  4. Towards β-globin gene-targeting with integrase-defective lentiviral vectors.

    PubMed

    Inanlou, Davoud Nouri; Yakhchali, Bagher; Khanahmad, Hossein; Gardaneh, Mossa; Movassagh, Hesam; Cohan, Reza Ahangari; Ardestani, Mehdi Shafiee; Mahdian, Reza; Zeinali, Sirous

    2010-11-01

    We have developed an integrase-defective lentiviral (LV) vector in combination with a gene-targeting approach for gene therapy of β-thalassemia. The β-globin gene-targeting construct has two homologous stems including sequence upstream and downstream of the β-globin gene, a β-globin gene positioned between hygromycin and neomycin resistant genes and a herpes simplex virus type 1 thymidine kinase (HSVtk) suicide gene. Utilization of integrase-defective LV as a vector for the β-globin gene increased the number of selected clones relative to non-viral methods. This method represents an important step toward the ultimate goal of a clinical gene therapy for β-thalassemia.

  5. Response of dairy calves to vaccinia viruses that express foreign genes.

    PubMed Central

    Gillespie, J H; Geissinger, C; Scott, F W; Higgins, W P; Holmes, D F; Perkus, M; Mercer, S; Paoletti, E

    1986-01-01

    Repeated intradermal inoculations of calves with wild-type vaccinia virus and recombinant vaccinia viruses expressing human hepatitis B virus surface antigen and herpes simplex virus, type 1, glycoprotein D produced characteristic pox lesions at each site of injection. In some instances, calves were inoculated as many as five times at intervals from 4 to 7 weeks. The lesions invariably were more severe after the second inoculation. Subsequent inoculations produced a less severe area of redness, swelling, necrosis, and scab formation. No other signs of illness, such as an elevation in temperature, were noted in the calves. Vaccinia virus was isolated in low titers from scabs taken at various times after inoculation. No lesions were formed at the sites injected with tissue culture fluid and cellular debris at the same time that virus inoculations were made. Calf contact controls remained normal through the 8-week exposure in isolation units with calves inoculated twice with vaccinia virus. No neutralizing antibody to vaccinia virus was detected in the contact controls. In contrast, the virus-inoculated calves developed neutralizing antibody to vaccinia virus and to herpes simplex virus glycoprotein D in serum. In all cattle, a second inoculation significantly enhanced the neutralizing antibody response within 1 week, suggesting that an anamnestic response had occurred. No antibody to hepatitis B virus surface antigen was elicited in calves after repeated inoculations with vaccinia recombinants that express hepatitis B virus surface antigen and are known to elicit in rabbits antibodies reactive with hepatitis B virus surface antigen. Images PMID:3700615

  6. Amino-terminal sequence of glycoprotein D of herpes simplex virus types 1 and 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisenberg, R.J.; Long, D.; Hogue-Angeletti, R.

    1984-01-01

    Glycoprotein D (gD) of herpes simplex virus is a structural component of the virion envelope which stimulates production of high titers of herpes simplex virus type-common neutralizing antibody. The authors caried out automated N-terminal amino acid sequencing studies on radiolabeled preparations of gD-1 (gD of herpes simplex virus type 1) and gD-2 (gD of herpes simplex virus type 2). Although some differences were noted, particularly in the methionine and alanine profiles for gD-1 and gD-2, the amino acid sequence of a number of the first 30 residues of the amino terminus of gD-1 and gD-2 appears to be quite similar.more » For both proteins, the first residue is a lysine. When we compared out sequence data for gD-1 with those predicted by nucleic acid sequencing, the two sequences could be aligned (with one exception) starting at residue 26 (lysine) of the predicted sequence. Thus, the first 25 amino acids of the predicted sequence are absent from the polypeptides isolated from infected cells.« less

  7. Identification of sequences in herpes simplex virus type 1 ICP22 that influence RNA polymerase II modification and viral late gene expression.

    PubMed

    Bastian, Thomas W; Rice, Stephen A

    2009-01-01

    Previous studies have shown that the herpes simplex virus type 1 (HSV-1) immediate-early protein ICP22 alters the phosphorylation of the host cell RNA polymerase II (Pol II) during viral infection. In this study, we have engineered several ICP22 plasmid and virus mutants in order to map the ICP22 sequences that are involved in this function. We identify a region in the C-terminal half of ICP22 (residues 240 to 340) that is critical for Pol II modification and further show that the N-terminal half of the protein (residues 1 to 239) is not required. However, immunofluorescence analysis indicates that the N-terminal half of ICP22 is needed for its localization to nuclear body structures. These results demonstrate that ICP22's effects on Pol II do not require that it accumulate in nuclear bodies. As ICP22 is known to enhance viral late gene expression during infection of certain cultured cells, including human embryonic lung (HEL) cells, we used our engineered viral mutants to map this function of ICP22. It was found that mutations in both the N- and C-terminal halves of ICP22 result in similar defects in viral late gene expression and growth in HEL cells, despite having distinctly different effects on Pol II. Thus, our results genetically uncouple ICP22's effects on Pol II from its effects on viral late gene expression. This suggests that these two functions of ICP22 may be due to distinct activities of the protein.

  8. Herpes Simplex Virus Type 2 Glycoprotein G-Negative Clinical Isolates Are Generated by Single Frameshift Mutations

    PubMed Central

    Liljeqvist, Jan-Åke; Svennerholm, Bo; Bergström, Tomas

    1999-01-01

    Herpes simplex virus (HSV) codes for several envelope glycoproteins, including glycoprotein G-2 (gG-2) of HSV type 2 (HSV-2), which are dispensable for replication in cell culture. However, clinical isolates which are deficient in such proteins occur rarely. We describe here five clinical HSV-2 isolates which were found to be unreactive to a panel of anti-gG-2 monoclonal antibodies and therefore considered phenotypically gG-2 negative. These isolates were further examined for expression of the secreted amino-terminal and cell-associated carboxy-terminal portions of gG-2 by immunoblotting and radioimmunoprecipitation. The gG-2 gene was completely inactivated in four isolates, with no expression of the two protein products. For one isolate a normally produced secreted portion and a truncated carboxy-terminal portion of gG-2 were detected in virus-infected cell medium. Sequencing of the complete gG-2 gene identified a single insertion or deletion of guanine or cytosine nucleotides in all five strains, resulting in a premature termination codon. The frameshift mutations were localized within runs of five or more guanine or cytosine nucleotides and were dispersed throughout the gene. For the isolate for which a partially inactivated gG-2 gene was detected, the frameshift mutation was localized upstream of but adjacent to the nucleotides coding for the transmembranous region. Thus, this study demonstrates the existence of clinical HSV-2 isolates which do not express an envelope glycoprotein and identifies the underlying molecular mechanism to be a single frameshift mutation. PMID:10559290

  9. The biology of herpes simplex virus infection in humans.

    PubMed

    Baringer, J R

    1976-01-01

    Herpes simplex virus is a frequent cause of recurrent ocular, oral, genital or cutaneous eruptions in man. Lesions are highly localized and tend to recur at the same site. Among the most consistent factors provoking recurrence is root section of the trigeminal nerve. Clinical and experimental data suggest that herpes simplex virus is commonly resident within the trigeminal ganglia of man, where it may be responsible for recurrent oral or lip lesions, and is less frequently a resident of the second or third sacral ganglia where it might be responsible for genital eruptions. Generally, the trigeminal virus is type 1 and the sacral virus is type 2; the virus is only rarely recoverable from other sensory ganglia. Factors provoking the reactivation from the virus' latent site and the mechanism for reactivation remain largely unknown. Further study is needed to understand the behavior of HSV and other viruses in nervous system tissue.

  10. Immunity to herpes simplex virus type 2. Suppression of virus-induced immune responses in ultraviolet B-irradiated mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasumoto, S.; Hayashi, Y.; Aurelian, L.

    1987-10-15

    Ultraviolet B irradiation (280 to 320 nm) of mice at the site of intradermal infection with herpes simplex virus type 2 increased the severity of the herpes simplex virus type 2 disease and decreased delayed-type hypersensitivity (DTH) responses to viral antigen. Decrease in DTH resulted from the induction of suppressor T cells, as evidenced by the ability of spleen cells from UV-irradiated mice to inhibit DTH and proliferative responses after adoptive transfer. Lymph node cells from UV-irradiated animals did not transfer suppression. DTH was suppressed at the induction but not the expression phase. Suppressor T cells were Lyt-1+, L3T4+, andmore » their activity was antigen-specific. However, after in vitro culture of spleen cells from UV-irradiated mice with herpes simplex virus type 2 antigen, suppressor activity was mediated by Lyt-2+ cells. Culture supernatants contained soluble nonantigen-specific suppressive factors.« less

  11. Mersalyl: a Diuretic with Antiviral Properties

    PubMed Central

    Kramer, M. J.; Cleeland, R.; Grunberg, E.

    1975-01-01

    Mersalyl (Salyrgan), an organic mercurial diuretic, was tested against human and animal viruses with in vivo model infections in mice and tissue culture systems. Mersalyl was active against coxsackieviruses A21 and B1 in mice if administered intraperitoneally immediately after infection. No effect was observed if intraperitoneal treatment was delayed 1 or 2 h postinfection, or if treatment was administered either subcutaneously or per os. Topical treatment with a 5% aqueous solution of mersalyl produced a statistically significant effect against herpes simplex dermatitis in mice but the substance was inactive against systemic infections in mice with herpes simplex as well as Columbia SK, influenza, Semliki Forest, and Sendai viruses. Contact inactivation of coxsackieviruses A21 and B1 and herpes simplex virus was observed, but mersalyl was inactive in tissue culture against coxackieviruses A21 and B1, herpes simplex, influenza, rhinovirus, Semliki Forest, Sendai, and vaccinia viruses. PMID:810082

  12. A 9 year-old girl with herpes simplex virus type 2 acute retinal necrosis treated with intravitreal foscarnet.

    PubMed

    King, John; Chung, Mina; DiLoreto, David A

    2007-01-01

    A 9-year-old girl presented with a 2-week history of redness in the left eye. Examination revealed vitritis, retinal whitening, vasculitis, and optic nerve head edema. Polymerase chain reaction testing of the aqueous fluid revealed herpes simplex virus type 2. The retinitis was controlled with intravenous acyclovir and intravitreal foscarnet. The clinical course was complicated by retinal neovascularization and vitreous hemorrhage, which was treated by pars plana vitrectomy and endolaser. While there are few case reports of herpes simplex virus type 2 retinitis in children, this one is unique for the following reasons: it is the first reported case of herpes simplex virus type 2 retinitis in a child less than 10 years old without a previous history of neonatal infection or central nervous system involvement; no other children have been reported to have been treated with intravitreal foscarnet; and retinal neovascularization complicated the recovery.

  13. Selection and Characterization of Drug-Resistant Variants of Human Immunodeficiency Virus (AIDS).

    DTIC Science & Technology

    1995-10-01

    on Antiviral Reserach, Santa Fe, New Mexico , 1995. Page 18 APPENDIX Page 19 p - FACTFILE Mutations in HIV-1 Reverse Transcriptase and Protease...including herpes simplex viruses, varicella -zoster Resistance of clinical HIV-1 isolates to foscarnet has not virus, cytomegalovirus (CMV), hepatitis B...This effect of the Tyr-208 substitution was not ob- reported previously for herpes simplex viruses, varicella -zoster served in MT-2 cells, however. virus

  14. Nuclear envelope breakdown induced by herpes simplex virus type 1 involves the activity of viral fusion proteins.

    PubMed

    Maric, Martina; Haugo, Alison C; Dauer, William; Johnson, David; Roller, Richard J

    2014-07-01

    Herpesvirus infection reorganizes components of the nuclear lamina usually without loss of integrity of the nuclear membranes. We report that wild-type HSV infection can cause dissolution of the nuclear envelope in transformed mouse embryonic fibroblasts that do not express torsinA. Nuclear envelope breakdown is accompanied by an eight-fold inhibition of virus replication. Breakdown of the membrane is much more limited during infection with viruses that lack the gB and gH genes, suggesting that breakdown involves factors that promote fusion at the nuclear membrane. Nuclear envelope breakdown is also inhibited during infection with virus that does not express UL34, but is enhanced when the US3 gene is deleted, suggesting that envelope breakdown may be enhanced by nuclear lamina disruption. Nuclear envelope breakdown cannot compensate for deletion of the UL34 gene suggesting that mixing of nuclear and cytoplasmic contents is insufficient to bypass loss of the normal nuclear egress pathway. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Selective enhancement of radiation response of herpes simplex virus thymidine kinase transduced 9L gliosarcoma cells in vitro and in vivo by antiviral agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jae Ho; Kim, Sang Hie; Kolozsvary, A.

    1995-11-01

    The purpose of this investigation was to demonstrate in a well-characterized tumor model that the radiosensitivity of tumor cells transduced with a herpes simplex virus thymidine kinase gene (HS-tk) would be selectively enhanced by antiviral agents. Rat 9L gliosarcoma cells transduced with a retroviral vector containing an HS-tk gene, 9L-tk cells were exposed to various doses or irradiation under either in vitro or in vivo conditions. The radiation sensitizing potential of two antiviral drugs, bromovinyl deoxyuridine (BVdU) and dihydroxymethyl ethyl methyl guanine (acyclovir), was evaluated in vitro. The radiosensitizing ability of BVdU was also evaluated with a 9L-tk tumor growingmore » in the rat brain. Tumors growing in the right hemisphere of rat brains were irradiated stereotactically with single-dose irradiation. The radiation response of 9L-tk cells was selectively enhanced by antiviral agents relative to nontransduced cells. In the cell culture, when a 24-h drug exposure (20 {mu}g/ml) preceded radiation, the sensitizer enhancement ratio (SER) for BVdU and acyclovir was 1.4 {plus_minus} 0.1 and 1.3 {plus_minus} 0.1, respectively. Exposure of cells to 10 {mu}g/ml acyclovir for two 24-h periods both pre- and postirradiation resulted in a SER of 1.6 {plus_minus} 0.1. In vivo, a significant increase in median survival time of rats with 9L-tk tumors was found when BVdU was administered prior to single-dose irradiation relative to the survival time of similar rats receiving radiation alone. An antiviral agent can enhance cell killing by radiation with selective action in cells transduced with the herpes simplex virus thymidine kinase gene. The results suggest that the three-pronged therapy of HS-tk gene transduction, systemically administered antiviral drug, and stereotactically targeted radiation therapy will improve the effectiveness of radiation therapy for the treatment of radioresistant tumors. 25 refs., 6 figs.« less

  16. Herpes Simplex Virus 1 Inhibits TANK-Binding Kinase 1 through Formation of the Us11-Hsp90 Complex.

    PubMed

    Liu, Xing; Main, David; Ma, Yijie; He, Bin

    2018-05-09

    The Us11 protein of herpes simplex virus 1 (HSV-1) is an accessory factor with multiple functions. In virus-infected cells, it inhibits double-stranded RNA dependent protein kinase PKR, 2',5'-oligoadenylate synthetase, RIG-I and MDA-5. However, its precise role is incompletely defined. By screening human cDNA library, we show that the Us11 protein targets heat shock protein 90 (Hsp90), which inactivates TANK binding kinase 1 (TBK1) and antiviral immunity. When ectopically expressed, HSV-1 Us11 precludes the access of TBK1 to Hsp90 and IFN promoter activation. Consistently, upon HSV infection the Us11 protein suppresses the expression of IFN-β, RANTES, and interferon stimulated genes. This is mirrored by a blockade in the phosphorylation of interferon regulatory factor 3. Mechanistically, the Us11 protein associates with endogenous Hsp90 to disrupt the Hsp90-TBK1 complex. Furthermore, Us11 induces destabilization of TBK1 through a proteasome dependent pathway. Accordingly, Us11 expression facilitates HSV growth. Conversely, TBK1 expression restricts viral replication. These results suggest that control of TBK1 by Us11 promotes HSV-1 infection. IMPORTANCE TANK binding kinase 1 plays a key role in antiviral immunity. Although multiple factors are thought to participate in this process, the picture is obscure in herpes simplex virus infection. We demonstrate that the Us11 protein of HSV-1 forms a complex with heat shock protein 90, which inactivates TANK binding kinase 1 and IFN induction. As a result, expression of the Us11 protein promotes HSV replication. These experimental data provide a new insight into the molecular network of virus-host interactions. Copyright © 2018 American Society for Microbiology.

  17. Dendritic cells in the cornea during Herpes simplex viral infection and inflammation.

    PubMed

    Kwon, Min S; Carnt, Nicole A; Truong, Naomi R; Pattamatta, Ushasree; White, Andrew J; Samarawickrama, Chameen; Cunningham, Anthony L

    Herpes simplex keratitis is commonly caused by Herpes simplex virus type 1, which primarily infects eyelids, corneas, or conjunctiva. Herpes simplex virus type 1-through sophisticated interactions with dendritic cells (DCs), a type of antigen-presenting cell)-initiates proinflammatory responses in the cornea. Corneas were once thought to be an immune-privileged region; however, with the recent discovery of DCs that reside in the cornea, this long-held conjecture has been overturned. Therefore, evaluating the clinical, preclinical, and cell-based studies that investigate the roles of DCs in corneas infected with Herpes simplex virus is critical. With in vivo confocal microscopy, animal models, and cell culture experiments, we may further the understanding of the sophisticated interactions of Herpes simplex virus with DCs in the cornea and the molecular mechanism associated with it. It has been shown that specific differentiation of DCs using immunohistochemistry, flow cytometry, and polymerase chain reaction analysis in both human and mice tissues and viral tissue infections are integral to increasing understanding. As for in vivo confocal microscopy, it holds promise as it is the least invasive and a real-time investigation. These tools will facilitate the discovery of various targets to develop new treatments. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Tanshinone IIA Increases the Bystander Effect of Herpes Simplex Virus Thymidine Kinase/Ganciclovir Gene Therapy via Enhanced Gap Junctional Intercellular Communication

    PubMed Central

    Liu, Xijuan; Wu, Yingya; Du, Biaoyan; Li, Jiefen; Zhou, Jing; Li, Jingjing; Tan, Yuhui

    2013-01-01

    The bystander effect is an intriguing phenomenon by which adjacent cells become sensitized to drug treatment during gene therapy with herpes simplex virus thymidine kinase/ganciclovir (HSV-tk/GCV). This effect is reported to be mediated by gap junctional intercellular communication (GJIC), and therefore, we postulated that upregulation of genes that facilitate GJIC may enhance the HSV-tk/GCV bystander effect. Previous findings have shown Tanshinone IIA (Tan IIA), a chemical substance derived from a Chinese medicine herb, promotes the upregulation of the connexins Cx26 and Cx43 in B16 cells. Because gap junctions are formed by connexins, we hypothesized that Tan IIA might increase GJIC. Our results show that Tan IIA increased GJIC in B16 melanoma cells, leading to more efficient GCV-induced bystander killing in cells stably expressing HSV-tk. Additionally, in vivo experiments demonstrated that tumors in mice with 10% HSV-tk positive B16 cells and 90% wild-type B16 cells became smaller following treatment with the combination of GCV and Tan IIA as compared to GCV or Tan IIA alone. These data demonstrate that Tan IIA can augment the bystander effect of HSV-tk/GCV system through increased gap junction coupling, which adds strength to the promising strategy that develops connexins inducer to potentiate the effects of suicide gene therapy. PMID:23861780

  19. Inhibition of herpes simplex virus 1 gene expression and replication by RNase P-associated external guide sequences.

    PubMed

    Liu, Jin; Shao, Luyao; Trang, Phong; Yang, Zhu; Reeves, Michael; Sun, Xu; Vu, Gia-Phong; Wang, Yu; Li, Hongjian; Zheng, Congyi; Lu, Sangwei; Liu, Fenyong

    2016-06-09

    An external guide sequence (EGS) is a RNA sequence which can interact with a target mRNA to form a tertiary structure like a pre-tRNA and recruit intracellular ribonuclease P (RNase P), a tRNA processing enzyme, to degrade target mRNA. Previously, an in vitro selection procedure has been used by us to engineer new EGSs that are more robust in inducing human RNase P to cleave their targeted mRNAs. In this study, we constructed EGSs from a variant to target the mRNA encoding herpes simplex virus 1 (HSV-1) major transcription regulator ICP4, which is essential for the expression of viral early and late genes and viral growth. The EGS variant induced human RNase P cleavage of ICP4 mRNA sequence 60 times better than the EGS generated from a natural pre-tRNA. A decrease of about 97% and 75% in the level of ICP4 gene expression and an inhibition of about 7,000- and 500-fold in viral growth were observed in HSV infected cells expressing the variant and the pre-tRNA-derived EGS, respectively. This study shows that engineered EGSs can inhibit HSV-1 gene expression and viral growth. Furthermore, these results demonstrate the potential for engineered EGS RNAs to be developed and used as anti-HSV therapeutics.

  20. Inhibition of herpes simplex virus 1 gene expression and replication by RNase P-associated external guide sequences

    PubMed Central

    Liu, Jin; Shao, Luyao; Trang, Phong; Yang, Zhu; Reeves, Michael; Sun, Xu; Vu, Gia-Phong; Wang, Yu; Li, Hongjian; Zheng, Congyi; Lu, Sangwei; Liu, Fenyong

    2016-01-01

    An external guide sequence (EGS) is a RNA sequence which can interact with a target mRNA to form a tertiary structure like a pre-tRNA and recruit intracellular ribonuclease P (RNase P), a tRNA processing enzyme, to degrade target mRNA. Previously, an in vitro selection procedure has been used by us to engineer new EGSs that are more robust in inducing human RNase P to cleave their targeted mRNAs. In this study, we constructed EGSs from a variant to target the mRNA encoding herpes simplex virus 1 (HSV-1) major transcription regulator ICP4, which is essential for the expression of viral early and late genes and viral growth. The EGS variant induced human RNase P cleavage of ICP4 mRNA sequence 60 times better than the EGS generated from a natural pre-tRNA. A decrease of about 97% and 75% in the level of ICP4 gene expression and an inhibition of about 7,000- and 500-fold in viral growth were observed in HSV infected cells expressing the variant and the pre-tRNA-derived EGS, respectively. This study shows that engineered EGSs can inhibit HSV-1 gene expression and viral growth. Furthermore, these results demonstrate the potential for engineered EGS RNAs to be developed and used as anti-HSV therapeutics. PMID:27279482

  1. Human cytomegalovirus and Herpes Simplex type I virus can engage RNA polymerase I for transcription of immediate early genes

    PubMed Central

    Kostopoulou, Ourania N.; Wilhelmi, Vanessa; Raiss, Sina; Ananthaseshan, Sharan; Lindström, Mikael S.; Bartek, Jiri; Söderberg-Naucler, Cecilia

    2017-01-01

    Human cytomegalovirus (HCMV) utilizes RNA polymerase II to transcribe viral genes and produce viral mRNAs. It can specifically target the nucleolus to facilitate viral transcription and translation. As RNA polymerase I (Pol I)-mediated transcription is active in the nucleolus, we investigated the role of Pol I, along with relative contributions of the human Pol II and Pol III, to early phases of viral transcription in HCMV infected cells, compared with Herpes Simplex Virus-1 (HSV-1) and Murine cytomegalovirus (MCMV). Inhibition of Pol I with siRNA or the Pol I inhibitors CX-5461 or Actinomycin D (5nM) resulted in significantly decreased IE and pp65 mRNA and protein levels in human fibroblasts at early times post infection. This initially delayed replication was compensated for later during the replication process, at which stage it didn’t significantly affect virus production. Pol I inhibition also reduced HSV-1 ICP0 and gB transcripts, suggesting that some herpesviruses engage Pol I for their early transcription. In contrast, inhibition of Pol I failed to affect MCMV transcription. Collectively, our results contribute to better understanding of the functional interplay between RNA Pol I-mediated nucleolar events and the Herpes viruses, particularly HCMV whose pathogenic impact ranges from congenital malformations and potentially deadly infections among immunosuppressed patients, up to HCMV’s emerging oncomodulatory role in human tumors. PMID:29228551

  2. IL-12 Expressing oncolytic herpes simplex virus promotes anti-tumor activity and immunologic control of metastatic ovarian cancer in mice.

    PubMed

    Thomas, Eric D; Meza-Perez, Selene; Bevis, Kerri S; Randall, Troy D; Gillespie, G Yancey; Langford, Catherine; Alvarez, Ronald D

    2016-10-27

    Despite advances in surgical aggressiveness and conventional chemotherapy, ovarian cancer remains the most lethal cause of gynecologic cancer mortality; consequently there is a need for new therapeutic agents and innovative treatment paradigms for the treatment of ovarian cancer. Several studies have demonstrated that ovarian cancer is an immunogenic disease and immunotherapy represents a promising and novel approach that has not been completely evaluated in ovarian cancer. Our objective was to evaluate the anti-tumor activity of an oncolytic herpes simplex virus "armed" with murine interleukin-12 and its ability to elicit tumor-specific immune responses. We evaluated the ability of interleukin-12-expressing and control oncolytic herpes simplex virus to kill murine and human ovarian cancer cell lines in vitro. We also administered interleukin-12-expressing oncolytic herpes simplex virus to the peritoneal cavity of mice that had developed spontaneous, metastatic ovarian cancer and determined overall survival and tumor burden at 95 days. We used flow cytometry to quantify the tumor antigen-specific CD8 + T cell response in the omentum and peritoneal cavity. All ovarian cancer cell lines demonstrated susceptibility to oncolytic herpes simplex virus in vitro. Compared to controls, mice treated with interleukin-12-expressing oncolytic herpes simplex virus demonstrated a more robust tumor antigen-specific CD8 + T-cell immune response in the omentum (471.6 cells vs 33.1 cells; p = 0.02) and peritoneal cavity (962.3 cells vs 179.5 cells; p = 0.05). Compared to controls, mice treated with interleukin-12-expressing oncolytic herpes simplex virus were more likely to control ovarian cancer metastases (81.2 % vs 18.2 %; p = 0.008) and had a significantly longer overall survival (p = 0.02). Finally, five of 6 mice treated with interleukin-12-expressing oHSV had no evidence of metastatic tumor when euthanized at 6 months, compared to two of 4 mice treated with sterile phosphate buffer solution. Our pilot study demonstrates that an interleukin-12-expressing oncolytic herpes simplex virus effectively kills both murine and human ovarian cancer cell lines and promotes tumor antigen-specific CD8 + T-cell responses in the peritoneal cavity and omentum, leading to reduced peritoneal metastasis and improved survival in a mouse model.

  3. In vitro stimulation of rabbit T lymphocytes by cells expressing herpes simplex antigens.

    PubMed

    Kapoor, A K; Ling, N R; Nash, A A; Bachan, A; Wildy, P

    1982-04-01

    Lymphocyte stimulation responses to herpes antigens were studied using virus-infected X-irradiated cells. Rabbits were immunized with herpes simplex virus type 1 (strain HFEM) grown in RK 13 cells. For in vitro stimulation assay BHK21 cells were X-irradiated (15 000 rad) and infected with a high m.o.i. of a temperature-sensitive (ts) mutant (N102) of HFEM strain at the non-permissive temperature (38.5 degrees C) of virus. Virus antigens were expressed on the infected cells and there was no leakage of infectious virus into the medium at 38.5 degrees C. T lymphocytes from rabbits immunized with herpes simplex virus were specifically activated by herpesvirus-infected X-irradiated cells; lymph node cells from rabbits immunized with RK13 cells and from non-immune rabbits showed no proliferative response.

  4. Psi- vectors: murine leukemia virus-based self-inactivating and self-activating retroviral vectors.

    PubMed Central

    Delviks, K A; Hu, W S; Pathak, V K

    1997-01-01

    We have developed murine leukemia virus (MLV)-based self-inactivating and self-activating vectors to show that the previously demonstrated high-frequency direct repeat deletions are not unique to spleen necrosis virus (SNV) or the neomycin drug resistance gene. Retroviral vectors pKD-HTTK and pKD-HTpTK containing direct repeats composed of segments of the herpes simplex virus type 1 thymidine kinase (HTK) gene were constructed; in pKD-HTpTK, the direct repeat flanked the MLV packaging signal. The generation of hypoxanthine-aminopterin-thymidine-resistant colonies after one cycle of retroviral replication demonstrated functional reconstitution of the HTK gene. Quantitative Southern analysis indicated that direct repeat deletions occurred in 57 and 91% of the KD-HTTK and KD-HTpTK proviruses, respectively. These results demonstrate that (i) deletion of direct repeats occurs at similar high frequencies in SNV and MLV vectors, (ii) MLV psi can be efficiently deleted by using direct repeats, (iii) suicide genes can be functionally reconstituted during reverse transcription, and (iv) the psi region may be a hot spot for reverse transcriptase template switching events. PMID:9223521

  5. Demonstration of the oncogenic potential of Herpes simplex viruses and human cytomegalovirus. [UV radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapp, F.; Li, J.L.H.

    1975-01-01

    The following topics are reviewed: transformation of hamster embryo cells by herpes simplex viruses and human cytomegalovirus; the use of uv radiation and photodynamic action to inactivate virus infectivity while retaining the transformation potential of the virus; detection of virus-specific antigens in transformed cells; oncogenicity of HSV- and CMV-transformed cells in vivo; immunological studies of metastases induced by herpes virus-transformed cells; resistance of transformed cells to superinfection; maintenance of the virus genome in the transformed state; and stimulation of cellular DNA synthesis by human cytomegalovirus. (HLW)

  6. Virus specific antigens in mammalian cells infected with herpes simplex virus

    PubMed Central

    Watson, D. H.; Shedden, W. I. H.; Elliot, A.; Tetsuka, T.; Wildy, P.; Bourgaux-Ramoisy, D.; Gold, E.

    1966-01-01

    Antisera to specific proteins in herpes simplex infected cells were produced by immunization of rabbits with infected rabbit kidney cells. These antisera were highly virus specific and produced up to twelve lines in immunodiffusion tests against infected cell extracts. Acrylamide electrophoresis and immunoelectrophoresis revealed up to ten virus specific proteins of varying size. ImagesFIG. 1FIG. 2FIG. 3FIG. 4FIG. 5 PMID:4288648

  7. Regulation of eIF2alpha phosphorylation by different functions that act during discrete phases in the herpes simplex virus type 1 life cycle.

    PubMed

    Mulvey, Matthew; Poppers, Jeremy; Sternberg, David; Mohr, Ian

    2003-10-01

    Multiple herpes simplex virus type 1 functions control translation by regulating phosphorylation of the initiation factor eIF2 on its alpha subunit. Both of the two known regulators, the gamma(1)34.5 and Us11 gene products, are produced late in the viral life cycle, although the gamma(1)34.5 gene is expressed prior to the gamma(2) Us11 gene, as gamma(2) genes require viral DNA replication for their expression while gamma(1) genes do not. The gamma(1)34.5 protein, through a GADD34-related domain, binds a cellular phosphatase (PP1alpha), maintaining pools of active, unphosphorylated eIF2. Infection of a variety of cultured cells with a gamma(1)34.5 mutant virus results in the accumulation of phosphorylated eIF2alpha and the inhibition of translation prior to the completion of the viral lytic program. Ectopic, immediate-early Us11 expression prevents eIF2alpha phosphorylation and the inhibition of translation observed in cells infected with a gamma(1)34.5 mutant by inhibiting activation of the cellular kinase PKR and the subsequent phosphorylation of eIF2alpha; however, a requirement for the Us11 protein, produced in its natural context as a gamma(2) polypeptide, remains to be demonstrated. To determine if Us11 regulates late translation, we generated two Us11 null viruses. In cells infected with a Us11 mutant, elevated levels of activated PKR and phosphorylated eIF2alpha were detected, viral translation rates were reduced 6- to 7-fold, and viral replication was reduced 13-fold compared to replication in cells infected with either wild-type virus or a virus in which the Us11 mutation was repaired. This establishes that the Us11 protein is critical for proper late translation rates. Moreover, it demonstrates that the shutoff of protein synthesis observed in cells infected with a gamma(1)34.5 mutant virus, previously ascribed solely to the gamma(1)34.5 mutation, actually results from the combined loss of gamma(1)34.5 and Us11 functions, as the gamma(2) Us11 mRNA is not translated in cells infected with a gamma(1)34.5 mutant.

  8. Regulation of eIF2α Phosphorylation by Different Functions That Act during Discrete Phases in the Herpes Simplex Virus Type 1 Life Cycle

    PubMed Central

    Mulvey, Matthew; Poppers, Jeremy; Sternberg, David; Mohr, Ian

    2003-01-01

    Multiple herpes simplex virus type 1 functions control translation by regulating phosphorylation of the initiation factor eIF2 on its alpha subunit. Both of the two known regulators, the γ134.5 and Us11 gene products, are produced late in the viral life cycle, although the γ134.5 gene is expressed prior to the γ2 Us11 gene, as γ2 genes require viral DNA replication for their expression while γ1 genes do not. The γ134.5 protein, through a GADD34-related domain, binds a cellular phosphatase (PP1α), maintaining pools of active, unphosphorylated eIF2. Infection of a variety of cultured cells with a γ134.5 mutant virus results in the accumulation of phosphorylated eIF2α and the inhibition of translation prior to the completion of the viral lytic program. Ectopic, immediate-early Us11 expression prevents eIF2α phosphorylation and the inhibition of translation observed in cells infected with a γ134.5 mutant by inhibiting activation of the cellular kinase PKR and the subsequent phosphorylation of eIF2α; however, a requirement for the Us11 protein, produced in its natural context as a γ2 polypeptide, remains to be demonstrated. To determine if Us11 regulates late translation, we generated two Us11 null viruses. In cells infected with a Us11 mutant, elevated levels of activated PKR and phosphorylated eIF2α were detected, viral translation rates were reduced 6- to 7-fold, and viral replication was reduced 13-fold compared to replication in cells infected with either wild-type virus or a virus in which the Us11 mutation was repaired. This establishes that the Us11 protein is critical for proper late translation rates. Moreover, it demonstrates that the shutoff of protein synthesis observed in cells infected with a γ134.5 mutant virus, previously ascribed solely to the γ134.5 mutation, actually results from the combined loss of γ134.5 and Us11 functions, as the γ2 Us11 mRNA is not translated in cells infected with a γ134.5 mutant. PMID:14512542

  9. The herpes simplex virus 1 UL51 protein interacts with the UL7 protein and plays a role in its recruitment into the virion.

    PubMed

    Roller, Richard J; Fetters, Rachel

    2015-03-01

    The alphaherpesvirus UL51 protein is a tegument component that interacts with the viral glycoprotein E and functions at multiple steps in virus assembly and spread in epithelial cells. We show here that pUL51 forms a complex in infected cells with another conserved tegument protein, pUL7. This complex can form in the absence of other viral proteins and is largely responsible for recruitment of pUL7 to cytoplasmic membranes and into the virion tegument. Incomplete colocalization of pUL51 and pUL7 in infected cells, however, suggests that a significant fraction of the population of each protein is not complexed with the other and that they may accomplish independent functions. The ability of herpesviruses to spread from cell to cell in the face of an immune response is critical for disease and shedding following reactivation from latency. Cell-to-cell spread is a conserved ability of herpesviruses, and the identification of conserved viral genes that mediate this process will aid in the design of attenuated vaccines and of novel therapeutics. The conserved UL51 gene of herpes simplex virus 1 plays important roles in cell-to-cell spread and in virus assembly in the cytoplasm, both of which likely depend on specific interactions with other viral and cellular proteins. Here we identify one of those interactions with the product of another conserved herpesvirus gene, UL7, and show that formation of this complex mediates recruitment of UL7 to membranes and to the virion. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Regulation of proliferation and functioning of transplanted cells by using herpes simplex virus thymidine kinase gene in mice.

    PubMed

    Tsujimura, Mari; Kusamori, Kosuke; Oda, Chihiro; Miyazaki, Airi; Katsumi, Hidemasa; Sakane, Toshiyasu; Nishikawa, Makiya; Yamamoto, Akira

    2018-04-10

    Though cell transplantation is becoming an attractive therapeutic method, uncontrolled cell proliferation or overexpression of cellular functions could cause adverse effects. These unfavorable outcomes could be avoided by regulating the proliferation or functioning of transplanted cells. In this study, we used a combination of the herpes simplex virus thymidine kinase (HSVtk) gene, a suicide gene, and ganciclovir (GCV) to control the proliferation and functioning of insulin-secreting cells after transplantation in diabetic mice. Mouse pancreatic β cell line MIN6 cells were selected as insulin-secreting cells for transfection with the HSVtk gene to obtain MIN6/HSVtk cells. Proliferation of MIN6/HSVtk cells was suppressed by GCV in a concentration-dependent manner; 0.25 μg/mL GCV maintained a constant number of MIN6/HSVtk cells for at least 16 days. MIN6 or MIN6/HSVtk cells were then transplanted to streptozotocin-induced diabetic mice. Mice transplanted with MIN6 cells exhibited hypoglycemia irrespective of GCV administration. In contrast, normal (around 150 mg/dL) blood glucose levels were maintained in mice transplanted with MIN6/HSVtk cells by a daily administration of 50 mg/kg of GCV. These results indicate that controlling the proliferation and functioning of HSVtk gene-expressing cells by GCV could greatly improve the usefulness and safety of cell-based therapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Impaired STING Pathway in Human Osteosarcoma U2OS Cells Contributes to the Growth of ICP0-Null Mutant Herpes Simplex Virus.

    PubMed

    Deschamps, Thibaut; Kalamvoki, Maria

    2017-05-01

    Human herpes simplex virus 1 (HSV-1) is a widespread pathogen, with 80% of the population being latently infected. To successfully evade the host, the virus has evolved strategies to counteract antiviral responses, including the gene-silencing and innate immunity machineries. The immediately early protein of the virus, infected cell protein 0 (ICP0), plays a central role in these processes. ICP0 blocks innate immunity, and one mechanism is by degrading hostile factors with its intrinsic E3 ligase activity. ICP0 also functions as a promiscuous transactivator, and it blocks repressor complexes to enable viral gene transcription. For these reasons, the growth of a ΔICP0 virus is impaired in most cells, except cells of the human osteosarcoma cell line U2OS, and it is only partially impaired in cells of the human osteosarcoma cell line Saos-2. We found that the two human osteosarcoma cell lines that supported the growth of the ΔICP0 virus failed to activate innate immune responses upon treatment with 2'3'-cyclic GAMP (2'3'-cGAMP), the natural agonist of STING (i.e., stimulator of interferon genes) or after infection with the ΔICP0 mutant virus. Innate immune responses were restored in these cells by transient expression of the STING protein but not after overexpression of interferon-inducible protein 16 (IFI16). Restoration of STING expression resulted in suppression of ΔICP0 virus gene expression and a decrease in viral yields. Overexpression of IFI16 also suppressed ΔICP0 virus gene expression, albeit to a lesser extent than STING. These data suggest that the susceptibility of U2OS and Saos-2 cells to the ΔICP0 HSV-1 is in part due to an impaired STING pathway. IMPORTANCE The DNA sensor STING plays pivotal role in controlling HSV-1 infection both in cell culture and in mice. The HSV-1 genome encodes numerous proteins that are dedicated to combat host antiviral responses. The immediate early protein of the virus ICP0 plays major role in this process as it targets hostile host proteins for degradation with its E3 ligase activity, and it disrupts repressor complexes via protein-protein interaction to enable viral gene transcription. Therefore, the ΔICP0 HSV-1 virus is defective for growth in most cells, except the human osteosarcoma cell lines U2OS and Saos-2. We found that both cell lines that support ΔICP0 virus infection have defects in the STING DNA-sensing pathway, which partially accounts for the rescue of the ΔICP0 virus growth. Restoration of STING expression in these cells rescued innate immunity and suppressed ΔICP0 virus infection. This study underscores the importance of STING in the control of HSV-1. Copyright © 2017 American Society for Microbiology.

  12. Impaired STING Pathway in Human Osteosarcoma U2OS Cells Contributes to the Growth of ICP0-Null Mutant Herpes Simplex Virus

    PubMed Central

    Deschamps, Thibaut

    2017-01-01

    ABSTRACT Human herpes simplex virus 1 (HSV-1) is a widespread pathogen, with 80% of the population being latently infected. To successfully evade the host, the virus has evolved strategies to counteract antiviral responses, including the gene-silencing and innate immunity machineries. The immediately early protein of the virus, infected cell protein 0 (ICP0), plays a central role in these processes. ICP0 blocks innate immunity, and one mechanism is by degrading hostile factors with its intrinsic E3 ligase activity. ICP0 also functions as a promiscuous transactivator, and it blocks repressor complexes to enable viral gene transcription. For these reasons, the growth of a ΔICP0 virus is impaired in most cells, except cells of the human osteosarcoma cell line U2OS, and it is only partially impaired in cells of the human osteosarcoma cell line Saos-2. We found that the two human osteosarcoma cell lines that supported the growth of the ΔICP0 virus failed to activate innate immune responses upon treatment with 2′3′-cyclic GAMP (2′3′-cGAMP), the natural agonist of STING (i.e., stimulator of interferon genes) or after infection with the ΔICP0 mutant virus. Innate immune responses were restored in these cells by transient expression of the STING protein but not after overexpression of interferon-inducible protein 16 (IFI16). Restoration of STING expression resulted in suppression of ΔICP0 virus gene expression and a decrease in viral yields. Overexpression of IFI16 also suppressed ΔICP0 virus gene expression, albeit to a lesser extent than STING. These data suggest that the susceptibility of U2OS and Saos-2 cells to the ΔICP0 HSV-1 is in part due to an impaired STING pathway. IMPORTANCE The DNA sensor STING plays pivotal role in controlling HSV-1 infection both in cell culture and in mice. The HSV-1 genome encodes numerous proteins that are dedicated to combat host antiviral responses. The immediate early protein of the virus ICP0 plays major role in this process as it targets hostile host proteins for degradation with its E3 ligase activity, and it disrupts repressor complexes via protein-protein interaction to enable viral gene transcription. Therefore, the ΔICP0 HSV-1 virus is defective for growth in most cells, except the human osteosarcoma cell lines U2OS and Saos-2. We found that both cell lines that support ΔICP0 virus infection have defects in the STING DNA-sensing pathway, which partially accounts for the rescue of the ΔICP0 virus growth. Restoration of STING expression in these cells rescued innate immunity and suppressed ΔICP0 virus infection. This study underscores the importance of STING in the control of HSV-1. PMID:28179534

  13. Recurrent lumbosacral herpes simplex virus infection

    PubMed Central

    Vassantachart, Janna M.

    2016-01-01

    We present the case of a 54-year-old white woman with episodic lumbosacral lesions that she had been treating as psoriasis. Evaluation revealed classic herpes simplex virus (HSV) infection. The discussion reviews the significance and potential complications of recurrent lumbosacral HSV infection. PMID:26722168

  14. Mediators and mechanisms of herpes simplex virus entry into ocular cells.

    PubMed

    Farooq, Asim V; Valyi-Nagy, Tibor; Shukla, Deepak

    2010-06-01

    The entry of herpes simplex virus into cells was once thought to be a general process. It is now understood that the virus is able to use multiple mechanisms for entry and spread, including the use of receptors and co-receptors that have been determined to be cell-type specific. This is certainly true for ocular cell types, which is important as the virus may use different mechanisms to gain access to multiple anatomic structures in close proximity, leading to various ocular diseases. There are some patterns that may be utilized by the virus in the eye and elsewhere, including surfing along filopodia in moving from cell to cell. There are common themes as well as intriguing differences in the entry mechanisms of herpes simplex virus into ocular cells. We discuss these issues in the context of conjunctivitis, keratitis, acute retinal necrosis, and other ocular diseases.

  15. Evasion of Early Antiviral Responses by Herpes Simplex Viruses

    PubMed Central

    Suazo, Paula A.; Ibañez, Francisco J.; Retamal-Díaz, Angello R.; Paz-Fiblas, Marysol V.; Bueno, Susan M.; Kalergis, Alexis M.; González, Pablo A.

    2015-01-01

    Besides overcoming physical constraints, such as extreme temperatures, reduced humidity, elevated pressure, and natural predators, human pathogens further need to overcome an arsenal of antimicrobial components evolved by the host to limit infection, replication and optimally, reinfection. Herpes simplex virus-1 (HSV-1) and herpes simplex virus-2 (HSV-2) infect humans at a high frequency and persist within the host for life by establishing latency in neurons. To gain access to these cells, herpes simplex viruses (HSVs) must replicate and block immediate host antiviral responses elicited by epithelial cells and innate immune components early after infection. During these processes, infected and noninfected neighboring cells, as well as tissue-resident and patrolling immune cells, will sense viral components and cell-associated danger signals and secrete soluble mediators. While type-I interferons aim at limiting virus spread, cytokines and chemokines will modulate resident and incoming immune cells. In this paper, we discuss recent findings relative to the early steps taking place during HSV infection and replication. Further, we discuss how HSVs evade detection by host cells and the molecular mechanisms evolved by these viruses to circumvent early antiviral mechanisms, ultimately leading to neuron infection and the establishment of latency. PMID:25918478

  16. Proteomic analysis of the herpes simplex virus 1 virion protein 16 transactivator protein in infected cells.

    PubMed

    Suk, Hyung; Knipe, David M

    2015-06-01

    The herpes simplex virus 1 virion protein 16 (VP16) tegument protein forms a transactivation complex with the cellular proteins host cell factor 1 (HCF-1) and octamer-binding transcription factor 1 (Oct-1) upon entry into the host cell. VP16 has also been shown to interact with a number of virion tegument proteins and viral glycoprotein H to promote viral assembly, but no comprehensive study of the VP16 proteome has been performed at early times postinfection. We therefore performed a proteomic analysis of VP16-interacting proteins at 3 h postinfection. We confirmed the interaction of VP16 with HCF-1 and a large number of cellular Mediator complex proteins, but most surprisingly, we found that the major viral protein associating with VP16 is the infected cell protein 4 (ICP4) immediate-early (IE) transactivator protein. These results raise the potential for a new function for VP16 in associating with the IE ICP4 and playing a role in transactivation of early and late gene expression, in addition to its well-documented function in transactivation of IE gene expression. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Induction of reactivation of herpes simplex virus in murine sensory ganglia in vivo by cadmium.

    PubMed Central

    Fawl, R L; Roizman, B

    1993-01-01

    Herpes simplex viruses maintained in a latent state in sensory neurons in mice do not reactivate spontaneously, and therefore the factors or procedures which cause the virus to reactivate serve as a clue to the mechanisms by which the virus is maintained in a latent state. We report that cadmium sulfate induces latent virus to reactivate in 75 to 100% of mice tested. The following specific findings are reported. (i) The highest frequency of induction was observed after two to four daily administrations of 100 micrograms of cadmium sulfate. (ii) Zinc, copper, manganese, or nickel sulfate administered in equimolar amounts under the same regimen did not induce viral reactivation; however, zinc sulfate in molar ratios 25-fold greater than those of cadmium induced viral replication in 2 of 16 ganglia tested. (iii) Administration of zinc, nickel, or manganese prior to the cadmium sulfate reduced the incidence of ganglia containing infectious virus. (iv) Administration of cadmium daily during the first week after infection and at 2-day intervals to 13 days after infection resulted in the recovery from ganglia of infectious virus in titers 10- to 100-fold higher than those obtained from animals given saline. Moreover, infectious virus was recovered as late as 11 days after infection compared with 6 days in mice administered saline. (v) Administration of cadmium immediately after infection or repeatedly after establishment of latency did not exhaust the latent virus harbored by sensory neurons, inasmuch as the fraction of ganglia of mice administered cadmium and yielding infectious virus was similar to that observed in mice treated with saline. We conclude that induction of cadmium tolerance precludes reactivation of latent virus. If the induction of metallothionein genes was the sole factor required to cause reactivation of latent virus, it would have been expected that all metals which induce metallothioneins would also induce reactivation, which was not observed. The results therefore raise the possibility that in addition to inducing the metallothionein genes, cadmium inactivates the factors which maintain the virus in latent state. PMID:8230427

  18. Unique spectrum of activity of 9-[(1,3-dihydroxy-2-propoxy)methyl]-guanine against herpesviruses in vitro and its mode of action against herpes simplex virus type 1.

    PubMed Central

    Cheng, Y C; Huang, E S; Lin, J C; Mar, E C; Pagano, J S; Dutschman, G E; Grill, S P

    1983-01-01

    A guanosine analog, 9-[(1,3-dihydroxy-2-propoxy)methyl]guanine (DHPG), was found to inhibit herpes simplex virus type 1 (HSV-1), herpes simplex virus type 2, cytomegalovirus, and Epstein-Barr virus replication by greater than 50% at concentrations that do not inhibit cell growth in culture. The potency of the drug against all of these viruses is greater than that of 9-[(2-hydroxyethoxy)methyl]guanine (acyclovir). DHPG was active against HSV-1 growth during the early phase of virus replication and had no activity when added at a later time after infection. Its antiviral activity was irreversible. Thymidine partially neutralized its action. The anti-HSV-1 activity of DHPG was dependent on the induction and the properties of virus-induced thymidine kinase. Virus variants that induced altered virus thymidine kinase and became resistant to acyclovir were still as sensitive to DHPG as the parental virus. DHPG is active against five different HSV variants with induced altered DNA polymerase and resistance to acyclovir. PMID:6302704

  19. Chemical composition of Propolis Extract ACF® and activity against herpes simplex virus.

    PubMed

    Bankova, V; Galabov, A S; Antonova, D; Vilhelmova, N; Di Perri, B

    2014-09-25

    Propolis Extract ACF(®) (PPE) is a purified extract manufactured from propolis collected in a Canadian region rich in poplar trees, and it is the active substance of a topical ointment used against herpes labialis (cold sores or fever blisters). Aim of this study was to analyze the chemical composition of PPE in order to understand the plant origin and possible relations between compounds and antiviral activity, and to characterize the antiviral activity of the extract against herpes simplex virus in vitro. The analysis of the propolis extract samples was conducted by Gas Chromatography-Mass Spectrometry (GC-MS). The antiviral activity was tested against herpes simplex viruses type 1 and type 2 in MDBK cell cultures by treating the cells with PPE at the time of virus adsorption, and by incubating the virus with the extract before infection (virucidal assay). Results from the GC-MS analyses revealed a dual plant origin of PPE, with components derived from resins of two different species of poplar. The chemical composition appeared standardized between extract samples and was also reproduced in the sample of topical ointment. The antiviral studies showed that PPE had a pronounced virucidal effect against herpes simplex viruses type 1 and type 2, and also interfered with virus adsorption. Copyright © 2014 Elsevier GmbH. All rights reserved.

  20. Poxvirus-induced alteration of arachidonate metabolism.

    PubMed Central

    Palumbo, G J; Glasgow, W C; Buller, R M

    1993-01-01

    Recent evidence suggests that orthopoxviruses have an obligate requirement for arachidonic acid metabolites during replication in vivo and in vitro. Our report indicates that a virus family (Poxviridae) possesses multiple genes that function to regulate arachidonate metabolism. Analyses of BS-C-1 cells infected with cowpox virus or vaccinia virus detected enhanced arachidonate product formation from both the cyclooxygenase (specifically prostaglandins E2 and F2 alpha) and lipoxygenase (specifically 15-hydroxyeicosatetraenoic acid and 12-hydroxyeicosatetraenoic acid) pathways. In contrast, human parainfluenza type 3 or herpes simplex virus type 1 infections did not increase arachidonate metabolism. Results were consistent with a virus early-gene product either directly mediating or inducing a host factor that mediated the up-regulation of arachidonate metabolism, although vaccinia growth factor was not responsible. In addition, the cowpox virus 38-kDa protein-encoding gene, which is associated with inhibition of an inflammatory response, correlated with inhibition of formation of a product biochemically characteristic of (14R,15S)-dihydroxyeicosatetraenoic acid. We propose that orthopoxvirus-induced up-regulation of arachidonic acid metabolism during infection renders the infected cells susceptible to generation of inflammatory mediators from both the cyclooxygenase and the lipoxygenase pathways, and poxviruses, therefore, possess at least one gene (38K) that can alter the lipoxygenase-metabolite spectrum. PMID:8383332

  1. High-efficiency targeted editing of large viral genomes by RNA-guided nucleases.

    PubMed

    Bi, Yanwei; Sun, Le; Gao, Dandan; Ding, Chen; Li, Zhihua; Li, Yadong; Cun, Wei; Li, Qihan

    2014-05-01

    A facile and efficient method for the precise editing of large viral genomes is required for the selection of attenuated vaccine strains and the construction of gene therapy vectors. The type II prokaryotic CRISPR-Cas (clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas)) RNA-guided nuclease system can be introduced into host cells during viral replication. The CRISPR-Cas9 system robustly stimulates targeted double-stranded breaks in the genomes of DNA viruses, where the non-homologous end joining (NHEJ) and homology-directed repair (HDR) pathways can be exploited to introduce site-specific indels or insert heterologous genes with high frequency. Furthermore, CRISPR-Cas9 can specifically inhibit the replication of the original virus, thereby significantly increasing the abundance of the recombinant virus among progeny virus. As a result, purified recombinant virus can be obtained with only a single round of selection. In this study, we used recombinant adenovirus and type I herpes simplex virus as examples to demonstrate that the CRISPR-Cas9 system is a valuable tool for editing the genomes of large DNA viruses.

  2. High-Efficiency Targeted Editing of Large Viral Genomes by RNA-Guided Nucleases

    PubMed Central

    Gao, Dandan; Ding, Chen; Li, Zhihua; Li, Yadong; Cun, Wei; Li, Qihan

    2014-01-01

    A facile and efficient method for the precise editing of large viral genomes is required for the selection of attenuated vaccine strains and the construction of gene therapy vectors. The type II prokaryotic CRISPR-Cas (clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas)) RNA-guided nuclease system can be introduced into host cells during viral replication. The CRISPR-Cas9 system robustly stimulates targeted double-stranded breaks in the genomes of DNA viruses, where the non-homologous end joining (NHEJ) and homology-directed repair (HDR) pathways can be exploited to introduce site-specific indels or insert heterologous genes with high frequency. Furthermore, CRISPR-Cas9 can specifically inhibit the replication of the original virus, thereby significantly increasing the abundance of the recombinant virus among progeny virus. As a result, purified recombinant virus can be obtained with only a single round of selection. In this study, we used recombinant adenovirus and type I herpes simplex virus as examples to demonstrate that the CRISPR-Cas9 system is a valuable tool for editing the genomes of large DNA viruses. PMID:24788700

  3. Syncytial Mutations Do Not Impair the Specificity of Entry and Spread of a Glycoprotein D Receptor-Retargeted Herpes Simplex Virus

    PubMed Central

    Okubo, Yu; Wakata, Aika; Suzuki, Takuma; Shibata, Tomoko; Ikeda, Hitomi; Yamaguchi, Miki; Cohen, Justus B.; Glorioso, Joseph C.; Tagaya, Mitsuo; Hamada, Hirofumi; Tahara, Hideaki

    2016-01-01

    ABSTRACT Membrane fusion, which is the key process for both initial cell entry and subsequent lateral spread of herpes simplex virus (HSV), requires the four envelope glycoproteins gB, gD, gH, and gL. Syncytial mutations, predominantly mapped to the gB and gK genes, confer hyperfusogenicity on HSV and cause multinucleated giant cells, termed syncytia. Here we asked whether interaction of gD with a cognate entry receptor remains indispensable for initiating membrane fusion of syncytial strains. To address this question, we took advantage of mutant viruses whose viral entry into cells relies on the uniquely specific interaction of an engineered gD with epidermal growth factor receptor (EGFR). We introduced selected syncytial mutations into gB and/or gK of the EGFR-retargeted HSV and found that these mutations, especially when combined, enabled formation of extensive syncytia by human cancer cell lines that express the target receptor; these syncytia were substantially larger than the plaques formed by the parental retargeted HSV strain. We assessed the EGFR dependence of entry and spread separately by using direct entry and infectious center assays, respectively, and we found that the syncytial mutations did not override the receptor specificity of the retargeted viruses at either stage. We discuss the implications of these results for the development of more effective targeted oncolytic HSV vectors. IMPORTANCE Herpes simplex virus (HSV) is investigated not only as a human pathogen but also as a promising agent for oncolytic virotherapy. We previously showed that both the initial entry and subsequent lateral spread of HSV can be retargeted to cells expressing tumor-associated antigens by single-chain antibodies fused to a receptor-binding-deficient envelope glycoprotein D (gD). Here we introduced syncytial mutations into the gB and/or gK gene of gD-retargeted HSVs to determine whether viral tropism remained dependent on the interaction of gD with the target receptor. Entry and spread profiles of the recombinant viruses indicated that gD retargeting does not abolish the hyperfusogenic activity of syncytial mutations and that these mutations do not eliminate the dependence of HSV entry and spread on a specific gD-receptor interaction. These observations suggest that syncytial mutations may be valuable for increasing the tumor-specific spreading of retargeted oncolytic HSV vectors. PMID:27707922

  4. A dual function fusion protein of Herpes simplex virus type 1 thymidine kinase and firefly luciferase for noninvasive in vivo imaging of gene therapy in malignant glioma.

    PubMed

    Söling, Ariane; Theiss, Christian; Jungmichel, Stephanie; Rainov, Nikolai G

    2004-08-04

    BACKGROUND: Suicide gene therapy employing the prodrug activating system Herpes simplex virus type 1 thymidine kinase (HSV-TK)/ ganciclovir (GCV) has proven to be effective in killing experimental brain tumors. In contrast, glioma patients treated with HSV-TK/ GCV did not show significant treatment benefit, most likely due to insufficient transgene delivery to tumor cells. Therefore, this study aimed at developing a strategy for real-time noninvasive in vivo monitoring of the activity of a therapeutic gene in brain tumor cells. METHODS: The HSV-TK gene was fused to the firefly luciferase (Luc) gene and the fusion construct HSV-TK-Luc was expressed in U87MG human malignant glioma cells. Nude mice with subcutaneous gliomas stably expressing HSV-TK-Luc were subjected to GCV treatment and tumor response to therapy was monitored in vivo by serial bioluminescence imaging. Bioluminescent signals over time were compared with tumor volumes determined by caliper. RESULTS: Transient and stable expression of the HSV-TK-Luc fusion protein in U87MG glioma cells demonstrated close correlation of both enzyme activities. Serial optical imaging of tumor bearing mice detected in all cases GCV induced death of tumor cells expressing the fusion protein and proved that bioluminescence can be reliably used for repetitive and noninvasive quantification of HSV-TK/ GCV mediated cell kill in vivo. CONCLUSION: This approach may represent a valuable tool for the in vivo evaluation of gene therapy strategies for treatment of malignant disease.

  5. Genetic Diversity within Alphaherpesviruses: Characterization of a Novel Variant of Herpes Simplex Virus 2.

    PubMed

    Burrel, Sonia; Désiré, Nathalie; Marlet, Julien; Dacheux, Laurent; Seang, Sophie; Caumes, Eric; Bourhy, Hervé; Agut, Henri; Boutolleau, David

    2015-12-01

    Very low levels of variability have been reported for the herpes simplex virus 2 (HSV-2) genome. We recently described a new genetic variant of HSV-2 (HSV-2v) characterized by a much higher degree of variability for the UL30 gene (DNA polymerase) than observed for the HG52 reference strain. Retrospective screening of 505 clinical isolates of HSV-2 by a specific real-time PCR assay targeting the UL30 gene led to the identification of 13 additional HSV-2v isolates, resulting in an overall prevalence of 2.8%. Phylogenetic analyses on the basis of microsatellite markers and gene sequences showed clear differences between HSV-2v and classical HSV-2. Thirteen of the 14 patients infected with HSV-2v originated from West or Central Africa, and 9 of these patients were coinfected with HIV. These results raise questions about the origin of this new virus. Preliminary results suggest that HSV-2v may have acquired genomic segments from chimpanzee alphaherpesvirus (ChHV) by recombination. This article deals with the highly topical question of the origin of this new HSV-2 variant identified in patients with HIV coinfection originating mostly from West or Central Africa. HSV-2v clearly differed from classical HSV-2 isolates in phylogenetic analyses and may be linked to simian ChHV. This new HSV-2 variant highlights the possible occurrence of recombination between human and simian herpesviruses under natural conditions, potentially presenting greater challenges for the future. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Genetic Diversity within Alphaherpesviruses: Characterization of a Novel Variant of Herpes Simplex Virus 2

    PubMed Central

    Désiré, Nathalie; Marlet, Julien; Dacheux, Laurent; Seang, Sophie; Caumes, Eric; Bourhy, Hervé; Agut, Henri; Boutolleau, David

    2015-01-01

    ABSTRACT Very low levels of variability have been reported for the herpes simplex virus 2 (HSV-2) genome. We recently described a new genetic variant of HSV-2 (HSV-2v) characterized by a much higher degree of variability for the UL30 gene (DNA polymerase) than observed for the HG52 reference strain. Retrospective screening of 505 clinical isolates of HSV-2 by a specific real-time PCR assay targeting the UL30 gene led to the identification of 13 additional HSV-2v isolates, resulting in an overall prevalence of 2.8%. Phylogenetic analyses on the basis of microsatellite markers and gene sequences showed clear differences between HSV-2v and classical HSV-2. Thirteen of the 14 patients infected with HSV-2v originated from West or Central Africa, and 9 of these patients were coinfected with HIV. These results raise questions about the origin of this new virus. Preliminary results suggest that HSV-2v may have acquired genomic segments from chimpanzee alphaherpesvirus (ChHV) by recombination. IMPORTANCE This article deals with the highly topical question of the origin of this new HSV-2 variant identified in patients with HIV coinfection originating mostly from West or Central Africa. HSV-2v clearly differed from classical HSV-2 isolates in phylogenetic analyses and may be linked to simian ChHV. This new HSV-2 variant highlights the possible occurrence of recombination between human and simian herpesviruses under natural conditions, potentially presenting greater challenges for the future. PMID:26401046

  7. Transcription of the herpes simplex virus 1 genome during productive and quiescent infection of neuronal and nonneuronal cells.

    PubMed

    Harkness, Justine M; Kader, Muhamuda; DeLuca, Neal A

    2014-06-01

    Herpes simplex virus 1 (HSV-1) can undergo a productive infection in nonneuronal and neuronal cells such that the genes of the virus are transcribed in an ordered cascade. HSV-1 can also establish a more quiescent or latent infection in peripheral neurons, where gene expression is substantially reduced relative to that in productive infection. HSV mutants defective in multiple immediate early (IE) gene functions are highly defective for later gene expression and model some aspects of latency in vivo. We compared the expression of wild-type (wt) virus and IE gene mutants in nonneuronal cells (MRC5) and adult murine trigeminal ganglion (TG) neurons using the Illumina platform for cDNA sequencing (RNA-seq). RNA-seq analysis of wild-type virus revealed that expression of the genome mostly followed the previously established kinetics, validating the method, while highlighting variations in gene expression within individual kinetic classes. The accumulation of immediate early transcripts differed between MRC5 cells and neurons, with a greater abundance in neurons. Analysis of a mutant defective in all five IE genes (d109) showed dysregulated genome-wide low-level transcription that was more highly attenuated in MRC5 cells than in TG neurons. Furthermore, a subset of genes in d109 was more abundantly expressed over time in neurons. While the majority of the viral genome became relatively quiescent, the latency-associated transcript was specifically upregulated. Unexpectedly, other genes within repeat regions of the genome, as well as the unique genes just adjacent the repeat regions, also remained relatively active in neurons. The relative permissiveness of TG neurons to viral gene expression near the joint region is likely significant during the establishment and reactivation of latency. During productive infection, the genes of HSV-1 are transcribed in an ordered cascade. HSV can also establish a more quiescent or latent infection in peripheral neurons. HSV mutants defective in multiple immediate early (IE) genes establish a quiescent infection that models aspects of latency in vivo. We simultaneously quantified the expression of all the HSV genes in nonneuronal and neuronal cells by RNA-seq analysis. The results for productive infection shed further light on the nature of genes and promoters of different kinetic classes. In quiescent infection, there was greater transcription across the genome in neurons than in nonneuronal cells. In particular, the transcription of the latency-associated transcript (LAT), IE genes, and genes in the unique regions adjacent to the repeats persisted in neurons. The relative activity of this region of the genome in the absence of viral activators suggests a more dynamic state for quiescent genomes persisting in neurons. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  8. Deletion of the S component inverted repeat sequence c' and the nonessential genes U(S)1 through U(S)5 from the herpes simplex virus type 1 genome substantially impairs productive viral infection in cell culture and pathogenesis in the rat central nervous system.

    PubMed

    Rasty, S; Poliani, P L; Fink, D J; Glorioso, J C

    1997-08-01

    A distinctive feature of the genetic make-up of herpes simplex virus type 1 (HSV-1), a human neurotropic virus, is that approximately half of the 81 known viral genes are not absolutely required for productive infection in Vero cells, and most can be individually deleted without substantially impairing viral replication in cell culture. If large blocks of contiguous viral genes could be replaced with foreign DNA sequences, it would be possible to engineer highly attenuated recombinant HSV-1 gene transfer vectors capable of carrying large cellular genes or multiple genes having related functions. We report the isolation and characterization of an HSV-1 mutant, designated d311, containing a 12 kb deletion of viral DNA located between the L-S Junction a sequence and the U(S)6 gene, spanning the S component inverted repeat sequence c' and the nonessential genes U(S)1 through U(S)5. Replication of d311 was totally inhibited in rat B103 and mouse Neuro-2A neuroblastoma cell lines, and was reduced by over three orders of magnitude in human SK-N-SH neuroblastoma cells compared to wild-type (wt) HSV-1 KOS. This suggested that the deleted genes, while nonessential for replication in Vero cells, play an important role in HSV replication in neuronal cells, particularly those of rodent origin. Unlike wt KOS which replicated locally and spread to other regions of brain following stereotactic inoculation into rat hippocampus, d311 was unable to replicate and spread within the brain, and did not cause any apparent local neuronal cell damage. These results demonstrate that d311 is highly attenuated for the rat central nervous system. d311 and other mutants of HSV containing major deletions of the nonessential genes within U(S) have the potential to serve as useful tools for gene transfer applications to brain.

  9. Molecular requirement for sterols in herpes simplex virus entry and infectivity

    USDA-ARS?s Scientific Manuscript database

    Herpes simplex virus 1 (HSV-1) required cholesterol for virion-induced membrane fusion. HSV successfully entered DHCR24-/-cells, which lack a desmosterol-to-cholesterol conversion enzyme, indicating entry can occur independently of cholesterol. Depletion of desmosterol from these cells resulted in d...

  10. Functional genomics reveals an essential and specific role for Stat1 in protection of the central nervous system following herpes simplex virus corneal infection.

    PubMed

    Pasieka, Tracy Jo; Cilloniz, Cristian; Carter, Victoria S; Rosato, Pamela; Katze, Michael G; Leib, David A

    2011-12-01

    Innate immune deficiencies result in a spectrum of severe clinical outcomes following infection. In particular, there is a strong association between loss of the signal transducer and activator of transcription (Stat) pathway, breach of the blood-brain barrier (BBB), and virus-induced neuropathology. The gene signatures that characterize resistance, disease, and mortality in the virus-infected nervous system have not been defined. Herpes simplex virus type 1 (HSV-1) is commonly associated with encephalitis in humans, and humans and mice lacking Stat1 display increased susceptibility to HSV central nervous system (CNS) infections. In this study, two HSV-1 strains were used, KOS (wild type [WT]), and Δvhs, an avirulent recombinant lacking the virion host shutoff (vhs) function. In addition, two mouse strains were used: strain 129 (control) and a Stat1-deficient (Stat1(-/-)) strain. Using combinations of these virus and mouse strains, we established a model of infection resulting in three different outcomes: viral clearance without neurological disease (Δvhs infection of control mice), neurological disease followed by viral clearance (Δvhs infection of Stat1(-/-) mice and WT infection of control mice), or neurological disease followed by death (WT infection of Stat1(-/-) mice). Through the use of functional genomics on the infected brain stems, we determined gene signatures that were representative of the three infection outcomes. We demonstrated a pathological signature in the brain stem of Stat1-deficient mice characterized by upregulation of transcripts encoding chemokine receptors, inflammatory markers, neutrophil chemoattractants, leukocyte adhesion proteins, and matrix metalloproteases. Additionally, there was a greater than 100-fold increase in the inflammatory markers interleukin 1β (IL-1β) and IL-6. Consistent with this gene signature, we demonstrated profound CNS inflammation with a concomitant lethal breach of the BBB. Taken together, our results indicated an essential role for normal Stat1-dependent signaling in mediating a nonpathological immune response to viral CNS infection.

  11. Can Herpes Simplex Virus Encephalitis Cause Aphasia?

    ERIC Educational Resources Information Center

    Naude, H.; Pretorius, E.

    2003-01-01

    Aphasia implies the loss or impairment of language caused by brain damage. The key to understanding the nature of aphasic symptoms is the neuro-anatomical site of brain damage, and not the causative agent. However, because "Herpes simplex" virus (HSV) encephalitis infection usually affects the frontal and temporal lobes, subcortical…

  12. 21 CFR 866.3305 - Herpes simplex virus serological assays.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Herpes simplex virus serological assays. 866.3305 Section 866.3305 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3305 Herpes...

  13. 21 CFR 866.3305 - Herpes simplex virus serological assays.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Herpes simplex virus serological assays. 866.3305 Section 866.3305 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3305 Herpes...

  14. 21 CFR 866.3305 - Herpes simplex virus serological assays.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Herpes simplex virus serological assays. 866.3305 Section 866.3305 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3305 Herpes...

  15. 21 CFR 866.3305 - Herpes simplex virus serological assays.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Herpes simplex virus serological assays. 866.3305 Section 866.3305 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3305 Herpes...

  16. 21 CFR 866.3305 - Herpes simplex virus serological assays.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Herpes simplex virus serological assays. 866.3305 Section 866.3305 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3305 Herpes...

  17. Herpes simplex virus meningitis complicated by ascending paralysis

    PubMed Central

    Benjamin, Mina M.; Gummelt, Kyle L.; Zaki, Rabeea; Afzal, Aasim; Sloan, Louis

    2013-01-01

    A case of herpes simplex virus (HSV) meningitis complicated by ascending paralysis with almost complete recovery following antiviral treatment is reported. We present this case to illustrate the importance of including HSV-induced neuropathy in the differential diagnosis of acute neurologic symptoms following the viral illness. PMID:23814385

  18. Human Herpes Simplex Virus Type 1 in Confiscated Gorilla

    PubMed Central

    Oxford, Kristie L.; Gardner-Roberts, David; Kinani, Jean-Felix; Spelman, Lucy; Barry, Peter A.; Cranfield, Michael R.; Lowenstine, Linda J.

    2014-01-01

    In 2007, we detected human herpes simplex virus type 1, which caused stomatitis, in a juvenile confiscated eastern lowland gorilla (Gorilla beringei graueri) that had a high degree of direct contact with human caretakers. Our findings confirm that pathogens can transfer between nonhuman primate hosts and humans. PMID:25341185

  19. Human herpes simplex virus type 1 in confiscated gorilla.

    PubMed

    Gilardi, Kirsten V K; Oxford, Kristie L; Gardner-Roberts, David; Kinani, Jean-Felix; Spelman, Lucy; Barry, Peter A; Cranfield, Michael R; Lowenstine, Linda J

    2014-11-01

    In 2007, we detected human herpes simplex virus type 1, which caused stomatitis, in a juvenile confiscated eastern lowland gorilla (Gorilla beringei graueri) that had a high degree of direct contact with human caretakers. Our findings confirm that pathogens can transfer between nonhuman primate hosts and humans.

  20. Effect of Acycloguanosine Treatment on Acute and Latent Herpes Simplex Infections in Mice

    PubMed Central

    Field, Hugh J.; Bell, Susanne E.; Elion, Gertrude B.; Nash, Anthony A.; Wildy, Peter

    1979-01-01

    Systemic treatment of mice with the nucleoside analog 9-(2-hydroxyethoxymethyl)guanine (acycloguanosine [aciclovir]) was found to be highly effective against acute type 1 herpes simplex virus infection of the pinna. The drug ablated clinical signs and reduced virus replication both in tissue local to the inoculation site and within the nervous system. Provided that moderate-sized virus inocula were used, acycloguanosine treatment reduced or prevented the establishment of a latent infection in the dorsal root ganglia relating to the sensory nerve supply of the ear. However, although it aborted artificially produced infections in dorsal root ganglia, acycloguanosine was found not to be effective against the latent infection once established. This finding strongly indicated that latent herpes simplex virus in mice can exist in a nonreplicating form. PMID:464587

  1. Effect of acycloguanosine treatment of acute and latent herpes simplex infections in mice.

    PubMed

    Field, H J; Bell, S E; Elion, G B; Nash, A A; Wildy, P

    1979-04-01

    Systemic treatment of mice with the nucleoside analog 9-(2-hydroxyethoxymethyl)guanine (acycloguanosine [aciclovir]) was found to be highly effective against acute type 1 herpes simplex virus infection of the pinna. The drug ablated clinical signs and reduced virus replication both in tissue local to the inoculation site and within the nervous system. Provided that moderate-sized virus inocula were used, acycloguanosine treatment reduced or prevented the establishment of a latent infection in the dorsal root ganglia relating to the sensory nerve supply of the ear. However, although it aborted artificially produced infections in dorsal root ganglia, acycloguanosine was found not to be effective against the latent infection once established. This finding strongly indicated that latent herpes simplex virus in mice can exist in a nonreplicating form.

  2. Topical treatment of herpes simplex virus infection with enzymatically created siRNA swarm.

    PubMed

    Paavilainen, Henrik; Lehtinen, Jenni; Romanovskaya, Alesia; Nygårdas, Michaela; Bamford, Dennis H; Poranen, Minna M; Hukkanen, Veijo

    2017-01-01

    Herpes simplex virus (HSV) is a common human pathogen. Despite current antivirals, it causes a significant medical burden. Drug resistant strains exist and they are especially prevalent in immunocompromised patients and in HSV eye infections. New treatment modalities are needed. BALB/c mice were corneally infected with HSV and subsequently treated with a swarm of enzymatically created, Dicer-substrate small interfering RNA (siRNA) molecules that targeted the HSV gene UL29. Two infection models were used, one in which the infection was predominantly peripheral and another in which it spread to the central nervous system. Mouse survival, as well as viral spread, load, latency and peripheral shedding, was studied. The anti-HSV-UL29 siRNA swarm alleviated HSV infection symptoms, inhibited viral shedding and replication and had a favourable effect on mouse survival. Treatment with anti-HSV-UL29 siRNA swarm reduced symptoms and viral spread in HSV infection of mice and also inhibited local viral replication in mouse corneas.

  3. Antiviral effects of herpes simplex virus specific anti-sense nucleic acids.

    PubMed

    Cantin, E M; Podsakoff, G; Willey, D E; Openshaw, H

    1992-01-01

    We have targeted mRNA sequences encompassing the translation initiation codon of the essential herpes simplex virus type 1 (HSV-1) IE3 gene with three kinds of anti-sense molecule. Addition of a 15mer oligodeoxyribonucleoside methylphosphonate to tissue culture cells resulted in suppression of viral replication. HSV-1 replication was also inhibited in cultured cells containing anti-sense vectors expressing transcripts complementary to the IE3 mRNA. We have also constructed a ribozyme which upon base pairing with the target IE3 mRNA induces cleavage at the predicted GUC site. A major obstacle to anti-sense studies in animals is drug delivery of preformed antisense molecules to ganglionic neurons, the site of HSV latency and reactivation. We speculate as to how this may be accomplished through carrier compounds which are taken up by nerve terminals and transported by retrograde axoplasmic flow. By the same route, HSV itself may be used as an anti-sense vector.

  4. Recent advances in vaccine development for herpes simplex virus types I and II.

    PubMed

    Coleman, Jeffrey L; Shukla, Deepak

    2013-04-01

    Despite recent advances in vaccine design and strategies, latent infection with herpes simplex virus (HSV) remains a formidable challenge. Approaches involving live-attenuated viruses and inactivated viral preparations were popular throughout the twentieth century. In the past ten years, many vaccine types, both prophylactic or therapeutic, have contained a replication-defective HSV, viral DNA or glycoproteins. New research focused on the mechanism of immune evasion by the virus has involved developing vaccines with various gene deletions and manipulations combined with the use of new and more specific adjuvants. In addition, new "prime-boost" methods of strengthening the vaccine efficacy have proven effective, but there have also been flaws with some recent strategies that appear to have compromised vaccine efficacy in humans. Given the complicated lifecycle of HSV and its unique way of spreading from cell-to-cell, it can be concluded that the development of an ideal vaccine needs new focus on cell-mediated immunity, better understanding of the latent viral genome and serious consideration of gender-based differences in immunity development among humans. This review summarizes recent developments made in the field and sheds light on some potentially new ways to conquer the problem including development of dual-action prophylactic microbicides that prohibit viral entry and, in addition, induce a strong antigen response.

  5. Tolerance and immunity in mice infected with herpes simplex virus: simultaneous induction of protective immunity and tolerance to delayed-type hypersensitivity.

    PubMed

    Nash, A A; Gell, P G; Wildy, P

    1981-05-01

    Unresponsiveness to delayed type hypersensitivity was induced in mice following an intravenous injection of herpes simplex virus. The principal tolerogens used were thymidine kinase-deficient virus mutants which grow poorly in vivo; u.v.-inactivated and to a lesser extent formalin-inactivated virus were also tolerogenic. The tolerance induced was specific for the virus type. Despite the tolerance to delayed hypersensitivity, anti-viral immunity is present as determined by the rapid inactivation of infectious virus. The mechanism of tolerance to herpes virus and the importance of these observations for the pathogenesis of viral disease is discussed.

  6. Tolerance and immunity in mice infected with herpes simplex virus: simultaneous induction of protective immunity and tolerance to delayed-type hypersensitivity.

    PubMed Central

    Nash, A A; Gell, P G; Wildy, P

    1981-01-01

    Unresponsiveness to delayed type hypersensitivity was induced in mice following an intravenous injection of herpes simplex virus. The principal tolerogens used were thymidine kinase-deficient virus mutants which grow poorly in vivo; u.v.-inactivated and to a lesser extent formalin-inactivated virus were also tolerogenic. The tolerance induced was specific for the virus type. Despite the tolerance to delayed hypersensitivity, anti-viral immunity is present as determined by the rapid inactivation of infectious virus. The mechanism of tolerance to herpes virus and the importance of these observations for the pathogenesis of viral disease is discussed. PMID:7251047

  7. RNA binding properties of the US11 protein from four primate simplexviruses.

    PubMed

    Tohme, Sarah; Cukier, Cyprian D; Severini, Alberto

    2011-11-03

    The protein encoded by the Us11 gene of herpes simplex viruses is a dsRNA binding protein which inhibits protein kinase R activity, thereby preventing the interferon-induced shut down of protein synthesis following viral infection. Us11 protein is not essential for infectivity in vitro and in mice in herpes simplex virus type 1 (HSV1), however this virus has a second, and apparently more important, inhibitor of PKR activity, the γ134.5 protein. Recently sequenced simian simplexviruses SA8, HVP2 and B virus do not have an ORF corresponding to the γ134.5 protein, yet they have similar, or greater, infectivity as HSV1 and HSV2. We have expressed the US11 proteins of the simplexviruses HSV1, HSV2, HVP2 and B virus and measured their abilities to bind dsRNA, in order to investigate possible differences that could complement the absence of the γ134.5 protein. We employed a filter binding technique that allows binding of the Us11 protein under condition of excess dsRNA substrate and therefore a measurement of the true Kd value of Us11-dsRNA binding. The results show a Kd of binding in the range of 0.89 nM to 1.82 nM, with no significant difference among the four Us11 proteins.

  8. RNA binding properties of the US11 protein from four primate simplexviruses

    PubMed Central

    2011-01-01

    Background The protein encoded by the Us11 gene of herpes simplex viruses is a dsRNA binding protein which inhibits protein kinase R activity, thereby preventing the interferon-induced shut down of protein synthesis following viral infection. Us11 protein is not essential for infectivity in vitro and in mice in herpes simplex virus type 1 (HSV1), however this virus has a second, and apparently more important, inhibitor of PKR activity, the γ134.5 protein. Recently sequenced simian simplexviruses SA8, HVP2 and B virus do not have an ORF corresponding to the γ134.5 protein, yet they have similar, or greater, infectivity as HSV1 and HSV2. Methods We have expressed the US11 proteins of the simplexviruses HSV1, HSV2, HVP2 and B virus and measured their abilities to bind dsRNA, in order to investigate possible differences that could complement the absence of the γ134.5 protein. We employed a filter binding technique that allows binding of the Us11 protein under condition of excess dsRNA substrate and therefore a measurement of the true Kd value of Us11-dsRNA binding. Results and Conclusions The results show a Kd of binding in the range of 0.89 nM to 1.82 nM, with no significant difference among the four Us11 proteins. PMID:22054255

  9. Completely assembled virus particles detected by transmission electron microscopy in proximal and mid-axons of neurons infected with herpes simplex virus type 1, herpes simplex virus type 2 and pseudorabies virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang Jialing, E-mail: hjialing@mail.med.upenn.edu; Lazear, Helen M., E-mail: Hlazear@DOM.wustl.edu; Friedman, Harvey M., E-mail: hfriedma@mail.med.upenn.ed

    2011-01-05

    The morphology of alphaherpesviruses during anterograde axonal transport from the neuron cell body towards the axon terminus is controversial. Reports suggest that transport of herpes simplex virus type 1 (HSV-1) nucleocapsids and envelope proteins occurs in separate compartments and that complete virions form at varicosities or axon termini (subassembly transport model), while transport of a related alphaherpesvirus, pseudorabies virus (PRV) occurs as enveloped capsids in vesicles (assembled transport model). Transmission electron microscopy of proximal and mid-axons of primary superior cervical ganglion (SCG) neurons was used to compare anterograde axonal transport of HSV-1, HSV-2 and PRV. SCG cell bodies were infectedmore » with HSV-1 NS and 17, HSV-2 2.12 and PRV Becker. Fully assembled virus particles were detected intracellularly within vesicles in proximal and mid-axons adjacent to microtubules after infection with each virus, indicating that assembled virions are transported anterograde within axons for all three alphaherpesviruses.« less

  10. The HSV-1 Latency-Associated Transcript Functions to Repress Latent Phase Lytic Gene Expression and Suppress Virus Reactivation from Latently Infected Neurons

    PubMed Central

    Nicoll, Michael P.; Hann, William; Shivkumar, Maitreyi; Harman, Laura E. R.; Connor, Viv; Coleman, Heather M.; Proença, João T.; Efstathiou, Stacey

    2016-01-01

    Herpes simplex virus 1 (HSV-1) establishes life-long latent infection within sensory neurons, during which viral lytic gene expression is silenced. The only highly expressed viral gene product during latent infection is the latency-associated transcript (LAT), a non-protein coding RNA that has been strongly implicated in the epigenetic regulation of HSV-1 gene expression. We have investigated LAT-mediated control of latent gene expression using chromatin immunoprecipitation analyses and LAT-negative viruses engineered to express firefly luciferase or β-galactosidase from a heterologous lytic promoter. Whilst we were unable to determine a significant effect of LAT expression upon heterochromatin enrichment on latent HSV-1 genomes, we show that reporter gene expression from latent HSV-1 genomes occurs at a greater frequency in the absence of LAT. Furthermore, using luciferase reporter viruses we have observed that HSV-1 gene expression decreases during long-term latent infection, with a most marked effect during LAT-negative virus infection. Finally, using a fluorescent mouse model of infection to isolate and culture single latently infected neurons, we also show that reactivation occurs at a greater frequency from cultures harbouring LAT-negative HSV-1. Together, our data suggest that the HSV-1 LAT RNA represses HSV-1 gene expression in small populations of neurons within the mouse TG, a phenomenon that directly impacts upon the frequency of reactivation and the maintenance of the transcriptionally active latent reservoir. PMID:27055281

  11. Transient neuropathic bladder following herpes simplex genitalis.

    PubMed

    Riehle, R A; Williams, J J

    1979-08-01

    A case of transient bladder dysfunction and urinary retention concomitant with herpes genitalis is presented. The protean manifestations of the herpes simplex virus, the similar neurotropic behavior of simplex and zoster, and the neurologic sequelae of the cutaneous simplex eruption are discussed. The possibility of sacral radiculopathy after herpes genitalis must be considered when evaluating acute or episodic neurogenic bladders.

  12. Herpes Simplex Virus Infections of the Central Nervous System.

    PubMed

    Whitley, Richard J

    2015-12-01

    This article summarizes knowledge of herpes simplex virus (HSV) infections of the central nervous system (CNS). Disease pathogenesis, detection of DNA polymerase chain reaction (PCR) for diagnosis and prognosis, and approaches to therapy warrant consideration. HSV infection of the CNS is one of few treatable viral diseases. Clinical trials indicate that outcome following neonatal herpes simplex virus type 2 (HSV-2) infections of the CNS is significantly improved when 6 months of suppressive oral acyclovir therapy follows IV antiviral therapy. In contrast, herpes simplex virus type 1 (HSV-1) infections of the brain do not benefit from extended oral antiviral therapy. This implies a difference in disease pathogenesis between HSV-2 and HSV-1 infections of the brain. PCR detection of viral DNA in the CSF is the gold standard for diagnosis. Use of PCR is now being adopted as a basis for determining the duration of therapy in the newborn. HSV infections are among the most common encountered by humans; seropositivity occurs in 50% to 90% of adult populations. Herpes simplex encephalitis, however, is an uncommon result of this infection. Since no new antiviral drugs have been introduced in nearly 3 decades, much effort has focused on learning how to better use acyclovir and how to use existing databases to establish earlier diagnosis.

  13. In vitro and in vivo antiviral activity of scopadulcic acid B from Scoparia dulcis, Scrophulariaceae, against herpes simplex virus type 1.

    PubMed

    Hayashi, K; Niwayama, S; Hayashi, T; Nago, R; Ochiai, H; Morita, N

    1988-09-01

    The antiviral activity of five diterpenoids isolated from Scoparia dulcis L., Scrophulariaceae, was examined in vitro against herpes simplex virus type 1. Among these compounds, only scopadulcic acid B was found to inhibit the viral replication with the in vitro therapeutic index of 16.7. The action of scopadulcic acid B was not due to a direct virucidal effect or inhibition of virus attachment to host cells. Single-cycle replication experiments indicated that the compound interfered with considerably early events of virus growth. The influence of scopadulcic acid B on the course of the primary corneal herpes simplex virus infection was investigated by means of a hamster test model. When the treatment was initiated immediately after virus inoculation, scopadulcic acid B, when applied orally or intraperitoneally, effectively prolonged both the appearance of herpetic lesions and the survival time at the dose of 100 and 200 mg/kg per day.

  14. A herpes simplex virus type 2-encoded microRNA promotes tumor cell metastasis by targeting suppressor of cytokine signaling 2 in lung cancer.

    PubMed

    Wang, Xudong; Liu, Shupeng; Zhou, Zhenhua; Yan, Hongli; Xiao, Jianru

    2017-05-01

    Certain viruses use microRNAs to regulate the expression of their own genes, host genes, or both. A number of microRNAs expressed by herpes simplex virus type 2 have been confirmed by previous studies. However, whether these microRNAs play a role in the metastasis of lung cancers and how these viral microRNAs precisely regulated the tumor biological process in lung cancer bone metastasis remain obscure. We recently identified the high expression of an acutely and latently expressed viral microRNA, Hsv2-miR-H9-5p, encoded by herpes simplex virus type 2 latency-associated transcript through microarray and quantitative polymerase chain reaction analyses which compared the expression of microRNAs in bone metastasis from lung cancer with primary lung cancers. We now reported that Hsv2-miR-H9-5p was highly expressed in bone metastasis and closely associated with pathological and metastatic processes of lung cancers. The functions of Hsv2-miR-H9-5p were determined by overexpression which results in an increase in survival, migration, and invasion of lung cancer cells in vitro. We determined that Hsv2-miR-H9-5p directly targeted SOCS2 mechanistically by dual-luciferase reporter assay. Then, we investigated the functions of SOCS2 in the progress of lung cancers. Reduction of SOCS2 dosage by hsv2-miR-H9-5p induced increased migration and invasion of lung cancer cells. Overexpression of SOCS2 inverted these phenotypes generated by hsv2-miR-H9-5p, indicating the potential roles of SOCS2 in Hsv2-miR-H9-5p-driven metastasis in lung cancers. The results highlighted that Hsv2-miR-H9-5p regulated and contributed to bone metastasis of lung cancers. We proposed that Hsv2-miR-H9-5p could be used as a potential target in lung cancer therapy.

  15. Activation of caspase-3 noninvolved in the bystander effect of the herpes simplex virus thymidine kinase gene/ganciclovir (HSV-tk/GCV) system.

    PubMed

    Zhang, Zhihong; Lin, Juqiang; Chu, Jun; Ma, Yan; Zeng, Shaoqun; Luo, Qingming

    2008-01-01

    Use of the herpes simplex virus thymidine kinase gene/ganciclovir (HSV-tk/GCV) system is one of the promising approaches in the rapidly growing area of gene therapy. The "bystander effect," a phenomenon in which HSV-tk+ cells exposed to GCV are toxic to adjacent HSV-tk- cells, was reported to play an important role in suicide gene therapy. However, the mechanism by which HSV-tk/GCV induces the bystander effect is poorly understood. We monitored the activation of caspase-3 in living cells induced by the HSV-tk/GCV system using a genetically encoded fluorescence resonance energy transfer (FRET) probe CD3, , a caspase-3 recognition site fused with a cyan fluorescent protien (CFP) and a red fluorescent protein (DsRed) which we reported and named in a previous paper. Fluorescence protein (FP)-based multicolor cellular labeling, combined with the multichannel fluorescence imaging and FRET imaging techniques, provides a novel and improved approach to directly determine whether the activation of caspase-3 involved in the HSV-tk/GCV system induces cell apoptosis in tk gene-expressing cells and their neighboring cells. FRET ratio images of CD3, and fluorescence images of the fusion protein of thymidine kinase linked with green fluorescent protein (TK-GFP), indicated that HSV-tk/GCV system-induced apoptosis in human adenoid cystic carcinoma (ACC-M) cells was via a caspase-3 pathway, and the activation of caspase-3 was not involved in the bystander effect of HSV-tk/GCV system.

  16. Combination effect of oncolytic adenovirus therapy and herpes simplex virus thymidine kinase/ganciclovir in hepatic carcinoma animal models

    PubMed Central

    Zheng, Fei-qun; Xu, Yin; Yang, Ren-jie; Wu, Bin; Tan, Xiao-hua; Qin, Yi-de; Zhang, Qun-wei

    2009-01-01

    Aim: Oncolytic adenovirus, also called conditionally replicating adenovirus (CRAD), can selectively propagate in tumor cells and cause cell lysis. The released viral progeny can infect neighboring cancer cells, initiating a cascade that can lead to the ultimate destruction of the tumor. Suicide gene therapy using herpes simplex virus thymidine kinase (HSV-TK) and ganciclovir (GCV) offers a potential treatment strategy for cancer and is undergoing preclinical trials for a variety of tumors. We hypothesized that HSV-TK gene therapy combined with oncolytic adenoviral therapy would have an enhanced effect compared with the individual effects of the therapies and is a potential novel therapeutic strategy to treat liver cancer. Methods: To address our hypothesis, a novel CRAD was created, which consisted of a telomerase-dependent oncolytic adenovirus engineered to express E1A and HSV-TK genes (Ad-ETK). The combined effect of Ad-ETK and GCV was assessed both in vitro and in vivo in nude mice bearing HepG2 cell-derived tumors. Expression of the therapeutic genes by the transduced tumor cells was analyzed by RT-PCR and Western blotting. Results: We confirmed that Ad-ETK had antitumorigenic effects on human hepatocellular carcinoma (HCC) both in vitro and in vivo, and the TK/GCV system enhanced oncolytic adenoviral therapy. We confirmed that both E1A and HSV-TK genes were expressed in vivo. Conclusion: The Ad-ETK construct should provide a relatively safe and selective approach to killing cancer cells and should be investigated as an adjuvant therapy for hepatocellular carcinoma. PMID:19363518

  17. An interferon regulatory factor binding site in the U5 region of the bovine leukemia virus long terminal repeat stimulates Tax-independent gene expression.

    PubMed

    Kiermer, V; Van Lint, C; Briclet, D; Vanhulle, C; Kettmann, R; Verdin, E; Burny, A; Droogmans, L

    1998-07-01

    Bovine leukemia virus (BLV) replication is controlled by both cis- and trans-acting elements. The virus-encoded transactivator, Tax, is necessary for efficient transcription from the BLV promoter, although it is not present during the early stages of infection. Therefore, sequences that control Tax-independent transcription must play an important role in the initiation of viral gene expression. This study demonstrates that the R-U5 sequence of BLV stimulates Tax-independent reporter gene expression directed by the BLV promoter. R-U5 was also stimulatory when inserted immediately downstream from the transcription initiation site of a heterologous promoter. Progressive deletion analysis of this region revealed that a 46-bp element corresponding to the 5' half of U5 is principally responsible for the stimulation. This element exhibited enhancer activity when inserted upstream or downstream from the herpes simplex virus thymidine kinase promoter. This enhancer contains a binding site for the interferon regulatory factors IRF-1 and IRF-2. A 3-bp mutation that destroys the IRF recognition site caused a twofold decrease in Tax-independent BLV long terminal repeat-driven gene expression. These observations suggest that the IRF binding site in the U5 region of BLV plays a role in the initiation of virus replication.

  18. 75 FR 59670 - Immunology and Microbiology Devices; Reclassification of the Herpes Simplex Virus Serological...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 866 [Docket No. FDA-2010-N-0429] Immunology and Microbiology Devices; Reclassification of the Herpes Simplex Virus... proposed that 21 CFR part 866 be amended as follows: PART 866--IMMUNOLOGY AND MICROBIOLOGY DEVICES 1. The...

  19. 75 FR 59611 - Microbiology Devices; Reclassification of Herpes Simplex Virus Types 1 and 2 Serological Assays...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 866 [Docket No. FDA-2009-N-0344] Microbiology Devices; Reclassification of Herpes Simplex Virus Types 1 and 2 Serological Assays; Confirmation of Effective Date AGENCY: Food and Drug Administration, HHS. ACTION: Direct...

  20. 76 FR 48715 - Immunology and Microbiology Devices; Reclassification of the Herpes Simplex Virus Serological...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-09

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 866 [Docket No. FDA-2010-N-0429] Immunology and Microbiology Devices; Reclassification of the Herpes Simplex Virus... CFR part 866 is amended as follows: PART 866--IMMUNOLOGY AND MICROBIOLOGY DEVICES 0 1. The authority...

  1. Herpes Simplex Virus Infection in a University Health Population: Clinical Manifestations, Epidemiology, and Implications

    ERIC Educational Resources Information Center

    Horowitz, Robert; Aierstuck, Sara; Williams, Elizabeth A.; Melby, Bernette

    2010-01-01

    Objective: The authors described clinical presentations of oral and genital herpes simplex virus (HSV) infections in a university health population and implications of these findings. Participants and Methods: Using a standardized data collection tool, 215 records of patients with symptomatic culture-positive HSV infections were reviewed. Results:…

  2. Houttuynia cordata Targets the Beginning Stage of Herpes Simplex Virus Infection

    PubMed Central

    Hung, Pei-Yun; Ho, Bing-Ching; Lee, Szu-Yuan; Chang, Sui-Yuan; Kao, Chuan-Liang; Lee, Shoei-Sheng; Lee, Chun-Nan

    2015-01-01

    Herpes simplex virus (HSV), a common latent virus in humans, causes certain severe diseases. Extensive use of acyclovir (ACV) results in the development of drug-resistant HSV strains, hence, there is an urgent need to develop new drugs to treat HSV infection. Houttuynia cordata (H. cordata), a natural herbal medicine, has been reported to exhibit anti-HSV effects which is partly NF-κB-dependent. However, the molecular mechanisms by which H. cordata inhibits HSV infection are not elucidated thoroughly. Here, we report that H. cordata water extracts (HCWEs) inhibit the infection of HSV-1, HSV-2, and acyclovir-resistant HSV-1 mainly via blocking viral binding and penetration in the beginning of infection. HCWEs also suppress HSV replication. Furthermore, HCWEs attenuate the first-wave of NF-κB activation, which is essential for viral gene expressions. Further analysis of six compounds in HCWEs revealed that quercetin and isoquercitrin inhibit NF-κB activation and additionally, quercetin also has an inhibitory effect on viral entry. These results indicate that HCWEs can inhibit HSV infection through multiple mechanisms and could be a potential lead for development of new drugs for treating HSV. PMID:25643242

  3. Houttuynia cordata targets the beginning stage of herpes simplex virus infection.

    PubMed

    Hung, Pei-Yun; Ho, Bing-Ching; Lee, Szu-Yuan; Chang, Sui-Yuan; Kao, Chuan-Liang; Lee, Shoei-Sheng; Lee, Chun-Nan

    2015-01-01

    Herpes simplex virus (HSV), a common latent virus in humans, causes certain severe diseases. Extensive use of acyclovir (ACV) results in the development of drug-resistant HSV strains, hence, there is an urgent need to develop new drugs to treat HSV infection. Houttuynia cordata (H. cordata), a natural herbal medicine, has been reported to exhibit anti-HSV effects which is partly NF-κB-dependent. However, the molecular mechanisms by which H. cordata inhibits HSV infection are not elucidated thoroughly. Here, we report that H. cordata water extracts (HCWEs) inhibit the infection of HSV-1, HSV-2, and acyclovir-resistant HSV-1 mainly via blocking viral binding and penetration in the beginning of infection. HCWEs also suppress HSV replication. Furthermore, HCWEs attenuate the first-wave of NF-κB activation, which is essential for viral gene expressions. Further analysis of six compounds in HCWEs revealed that quercetin and isoquercitrin inhibit NF-κB activation and additionally, quercetin also has an inhibitory effect on viral entry. These results indicate that HCWEs can inhibit HSV infection through multiple mechanisms and could be a potential lead for development of new drugs for treating HSV.

  4. Analysis of HSV viral reactivation in explants of sensory neurons

    PubMed Central

    Turner, Anne-Marie W.; Kristie, Thomas M.

    2014-01-01

    As with all Herpesviruses, Herpes simplex virus (HSV) has both a lytic replication phase and a latency-reactivation cycle. During lytic replication, there is an ordered cascade of viral gene expression that leads to the synthesis of infectious viral progeny. In contrast, latency is characterized by the lack of significant lytic gene expression and the absence of infectious virus. Reactivation from latency is characterized by the re-entry of the virus into the lytic replication cycle and the production of recurrent disease. This unit describes the establishment of the mouse sensory neuron model of HSV-1 latency-reactivation as a useful in vivo system for the analysis of mechanisms involved in latency and reactivation. Assays including the determination of viral yields, immunohistochemical/immunofluorescent detection of viral antigens, and mRNA quantitation are used in experiments designed to investigate the network of cellular and viral proteins regulating HSV-1 lytic infection, latency, and reactivation. PMID:25367271

  5. Antiviral Activity of Crude Hydroethanolic Extract from Schinus terebinthifolia against Herpes simplex Virus Type 1.

    PubMed

    Nocchi, Samara Requena; Companhoni, Mychelle Vianna Pereira; de Mello, João Carlos Palazzo; Dias Filho, Benedito Prado; Nakamura, Celso Vataru; Carollo, Carlos Alexandre; Silva, Denise Brentan; Ueda-Nakamura, Tânia

    2017-04-01

    Herpes simplex virus infections persist throughout the lifetime of the host and affect more than 80 % of the humans worldwide. The intensive use of available therapeutic drugs has led to undesirable effects, such as drug-resistant strains, prompting the search for new antiherpetic agents. Although diverse bioactivities have been identified in Schinus terebinthifolia , its antiviral activity has not attracted much attention. The present study evaluated the antiherpetic effects of a crude hydroethanolic extract from the stem bark of S. terebinthifolia against Herpes simplex virus type 1 in vitro and in vivo as well as its genotoxicity in bone marrow in mammals and established the chemical composition of the crude hydroethanolic extract based on liquid chromatography-diode array detector-mass spectrometry and MS/MS. The crude hydroethanolic extract inhibited all of the tested Herpes simplex virus type 1 strains in vitro and was effective in the attachment and penetration stages, and showed virucidal activity, which was confirmed by transmission electron microscopy. The micronucleus test showed that the crude hydroethanolic extract had no genotoxic effect at the concentrations tested. The crude hydroethanolic extract afforded protection against lesions that were caused by Herpes simplex virus type 1 in vivo . Liquid chromatography-diode array detector-mass spectrometry and MS/MS identified 25 substances, which are condensed tannins mainly produced by a B-type linkage and prodelphinidin and procyanidin units. Georg Thieme Verlag KG Stuttgart · New York.

  6. Herpesvirus papio 2 encodes a virion host shutoff function.

    PubMed

    Bigger, John E; Martin, David W

    2002-12-05

    Infection of baboons with herpesvirus papio 2 (HVP-2) produces a disease that is similar to human infection with herpes simplex viruses (HSV). Molecular characterization of HVP-2 has demonstrated that the virion contains a factor which rapidly shuts off host cell protein synthesis after infection. Reduction of host cell protein synthesis occurs in parallel with the degradation of mRNA species. A homolog of the HSV virion host shutoff (vhs) gene was identified by Southern and DNA sequence analysis. The sequence of the HVP-2 vhs gene homolog had greater than 70% identity with the vhs genes of HSV 1 and 2. Disruption of the HVP-2 vhs open reading frame diminished the ability of the virus to shut off protein synthesis and degrade cellular mRNA, indicating that this gene was responsible for the vhs activity. The HVP-2 model system provides the opportunity to study the biological role of vhs in the context of a natural primate host. Further development of this system will provide a platform for proof-of-concept studies that will test the efficacy of vaccines that utilize vhs-deficient viruses.

  7. The Product of the Herpes Simplex Virus Type 1 UL25 Gene Is Required for Encapsidation but Not for Cleavage of Replicated Viral DNA

    PubMed Central

    McNab, Alistair R.; Desai, Prashant; Person, Stan; Roof, Lori L.; Thomsen, Darrell R.; Newcomb, William W.; Brown, Jay C.; Homa, Fred L.

    1998-01-01

    The herpes simplex virus type 1 (HSV-1) UL25 gene contains a 580-amino-acid open reading frame that codes for an essential protein. Previous studies have shown that the UL25 gene product is a virion component (M. A. Ali et al., Virology 216:278–283, 1996) involved in virus penetration and capsid assembly (C. Addison et al., Virology 138:246–259, 1984). In this study, we describe the isolation of a UL25 mutant (KUL25NS) that was constructed by insertion of an in-frame stop codon in the UL25 open reading frame and propagated on a complementing cell line. Although the mutant was capable of synthesis of viral DNA, it did not form plaques or produce infectious virus in noncomplementing cells. Antibodies specific for the UL25 protein were used to demonstrate that KUL25NS-infected Vero cells did not express the UL25 protein. Western immunoblotting showed that the UL25 protein was associated with purified, wild-type HSV A, B, and C capsids. Transmission electron microscopy indicated that the nucleus of Vero cells infected with KUL25NS contained large numbers of both A and B capsids but no C capsids. Analysis of infected cells by sucrose gradient sedimentation analysis confirmed that the ratio of A to B capsids was elevated in KUL25NS-infected Vero cells. Following restriction enzyme digestion, specific terminal fragments were observed in DNA isolated from KUL25NS-infected Vero cells, indicating that the UL25 gene was not required for cleavage of replicated viral DNA. The latter result was confirmed by pulsed-field gel electrophoresis (PFGE), which showed the presence of genome-size viral DNA in KUL25NS-infected Vero cells. DNase I treatment prior to PFGE demonstrated that monomeric HSV DNA was not packaged in the absence of the UL25 protein. Our results indicate that the product of the UL25 gene is required for packaging but not cleavage of replicated viral DNA. PMID:9445000

  8. Radiation enhanced reactivation of herpes simplex virus: effect of caffeine.

    PubMed

    Hellman, K B; Lytle, C D; Bockstahler, L E

    1976-09-01

    Ultaviolet enhanced (Weigle) reactivation of UV-irradiated herpes simplex virus in UV-irradiated CV-1 monkey kidney cell monolayers was decreased by caffeine. X-ray enhanced reactivation of UV-irradiated virus in X-irradiated monolayers (X-ray reactivation) and UV- or X-ray-inactivated capacity of the cells to support unirradiated virus plaque formation were unaffected by caffeine. The results suggest that a caffeine-sensitive process is necessary for the expression of Weigle reactivation for herpes virus. Since cafeine did not significantly affect X-ray reactivation, different mechanisms may be responsible for the expression of Weigle reactivation and X-ray reactivation.

  9. In vivo Knock-down of the HSV-1 Latency-Associated Transcript Reduces Reactivation from Latency.

    PubMed

    Watson, Zachary L; Washington, Shannan D; Phelan, Dane M; Lewin, Alfred S; Tuli, Sonal S; Schultz, Gregory S; Neumann, Donna M; Bloom, David C

    2018-06-06

    During Herpes Simplex Virus (HSV) latency, most viral genes are silenced with the exception of one region of the genome encoding the latency-associated transcript (LAT). This long non-coding RNA was originally described as having a role in enhancing HSV-1 reactivation. However, subsequent evidence showing that the LAT blocked apoptosis and promoted efficient establishment of latency suggested that its effects on reactivation were secondary to establishment. Here, we utilize an Adeno-associated Virus (AAV) vector to deliver a LAT-targeting hammerhead ribozyme to HSV-1-infected neurons of rabbits after the establishment of HSV-1 latency. The rabbits were then induced to reactivate latent HSV-1. Using this model, we show that decreasing LAT levels in neurons following the establishment of latency reduced the ability of the virus to reactivate. This demonstrates that the HSV-1 LAT RNA has a role in reactivation that is independent of its function in establishment of latency. In addition these results suggest the potential of AAV vectors expressing LAT-targeting ribozymes as a potential therapy for recurrent HSV disease such as herpes stromal keratitis, a leading cause of infectious blindness. Importance Herpes Simplex Virus (HSV) establishes a life long infection and remains dormant (latent) in our nerve cells. Occasionally HSV reactivates to cause disease, with HSV-1 typically causing cold sores whereas HSV-2 is the most common cause of genital herpes. The details of how HSV reactivates are largely unknown. Most of HSV's genes are silent during latency with the exception of RNAs made from the latency-associated transcript (LAT) region. While viruses that make less LAT do not reactivate efficiently, these viruses also do not establish latency as efficiently. Here we deliver a ribozyme that can degrade the LAT to the nerve cells of latently infected rabbits using a gene therapy vector. We show that this treatment blocks reactivation in the majority of the rabbits. This work shows that the LAT RNA is important for reactivation and the suggests the potential of this treatment as a therapy for treating HSV infections. Copyright © 2018 American Society for Microbiology.

  10. Interaction between Herpes Simplex Virus Type 1 IE63 Protein and Cellular Protein p32

    PubMed Central

    Bryant, Helen E.; Matthews, David A.; Wadd, Sarah; Scott, James E.; Kean, Joy; Graham, Susan; Russell, William C.; Clements, J. Barklie

    2000-01-01

    The herpes simplex virus type 1 (HSV-1) immediate-early gene IE63 (ICP27), the only HSV-1 regulatory gene with a homologue in every mammalian and avian herpesvirus sequenced so far, is a multifunctional protein which regulates transcriptional and posttranscriptional processes. One of its posttranscriptional effects is the inhibition of splicing of viral and cellular transcripts. We previously identified heterogeneous nuclear ribonucleoprotein (hnRNP) K and casein kinase 2 (CK2) as two protein partners of IE63 (H. Bryant et al., J. Biol. Chem. 274:28991–28998, 1999). Here, using a yeast two-hybrid assay, we identify another partner of IE63, the cellular protein p32. Confirmation of this interaction was provided by coimmunoprecipitation from virus-infected cells and recombinant p32 binding assays. A p32-hnRNP K-CK2 complex, which required IE63 to form, was isolated from HSV-1-infected cells, and coimmunoprecipitating p32 was phosphorylated by CK2. Expression of IE63 altered the cytoplasmic distribution of p32, with some now colocalizing with IE63 in the nuclei of infected and transfected cells. As p32 copurifies with splicing factors and can inhibit splicing, we propose that IE63 together with p32, possibly with other IE63 partner proteins, acts to disrupt or regulate pre-mRNA splicing. As well as contributing to host cell shutoff, this effect could facilitate splicing-independent nuclear export of viral transcripts. PMID:11070032

  11. Interaction between herpes simplex virus type 1 IE63 protein and cellular protein p32.

    PubMed

    Bryant, H E; Matthews, D A; Wadd, S; Scott, J E; Kean, J; Graham, S; Russell, W C; Clements, J B

    2000-12-01

    The herpes simplex virus type 1 (HSV-1) immediate-early gene IE63 (ICP27), the only HSV-1 regulatory gene with a homologue in every mammalian and avian herpesvirus sequenced so far, is a multifunctional protein which regulates transcriptional and posttranscriptional processes. One of its posttranscriptional effects is the inhibition of splicing of viral and cellular transcripts. We previously identified heterogeneous nuclear ribonucleoprotein (hnRNP) K and casein kinase 2 (CK2) as two protein partners of IE63 (H. Bryant et al., J. Biol. Chem. 274:28991-28998, 1999). Here, using a yeast two-hybrid assay, we identify another partner of IE63, the cellular protein p32. Confirmation of this interaction was provided by coimmunoprecipitation from virus-infected cells and recombinant p32 binding assays. A p32-hnRNP K-CK2 complex, which required IE63 to form, was isolated from HSV-1-infected cells, and coimmunoprecipitating p32 was phosphorylated by CK2. Expression of IE63 altered the cytoplasmic distribution of p32, with some now colocalizing with IE63 in the nuclei of infected and transfected cells. As p32 copurifies with splicing factors and can inhibit splicing, we propose that IE63 together with p32, possibly with other IE63 partner proteins, acts to disrupt or regulate pre-mRNA splicing. As well as contributing to host cell shutoff, this effect could facilitate splicing-independent nuclear export of viral transcripts.

  12. Expression of RNA interference triggers from an oncolytic herpes simplex virus results in specific silencing in tumour cells in vitro and tumours in vivo

    PubMed Central

    2010-01-01

    Background Delivery of small interfering RNA (siRNA) to tumours remains a major obstacle for the development of RNA interference (RNAi)-based therapeutics. Following the promising pre-clinical and clinical results with the oncolytic herpes simplex virus (HSV) OncoVEXGM-CSF, we aimed to express RNAi triggers from oncolytic HSV, which although has the potential to improve treatment by silencing tumour-related genes, was not considered possible due to the highly oncolytic properties of HSV. Methods To evaluate RNAi-mediated silencing from an oncolytic HSV backbone, we developed novel replicating HSV vectors expressing short-hairpin RNA (shRNA) or artificial microRNA (miRNA) against the reporter genes green fluorescent protein (eGFP) and β-galactosidase (lacZ). These vectors were tested in non-tumour cell lines in vitro and tumour cells that are moderately susceptible to HSV infection both in vitro and in mice xenografts in vivo. Silencing was assessed at the protein level by fluorescent microscopy, x-gal staining, enzyme activity assay, and western blotting. Results Our results demonstrate that it is possible to express shRNA and artificial miRNA from an oncolytic HSV backbone, which had not been previously investigated. Furthermore, oncolytic HSV-mediated delivery of RNAi triggers resulted in effective and specific silencing of targeted genes in tumour cells in vitro and tumours in vivo, with the viruses expressing artificial miRNA being comprehensibly more effective. Conclusions This preliminary data provide the first demonstration of oncolytic HSV-mediated expression of shRNA or artificial miRNA and silencing of targeted genes in tumour cells in vitro and in vivo. The vectors developed in this study are being adapted to silence tumour-related genes in an ongoing study that aims to improve the effectiveness of oncolytic HSV treatment in tumours that are moderately susceptible to HSV infection and thus, potentially improve response rates seen in human clinical trials. PMID:20836854

  13. Von Willebrand Factor Gene Variants Associate with Herpes simplex Encephalitis.

    PubMed

    Abdelmagid, Nada; Bereczky-Veress, Biborka; Atanur, Santosh; Musilová, Alena; Zídek, Václav; Saba, Laura; Warnecke, Andreas; Khademi, Mohsen; Studahl, Marie; Aurelius, Elisabeth; Hjalmarsson, Anders; Garcia-Diaz, Ana; Denis, Cécile V; Bergström, Tomas; Sköldenberg, Birgit; Kockum, Ingrid; Aitman, Timothy; Hübner, Norbert; Olsson, Tomas; Pravenec, Michal; Diez, Margarita

    2016-01-01

    Herpes simplex encephalitis (HSE) is a rare complication of Herpes simplex virus type-1 infection. It results in severe parenchymal damage in the brain. Although viral latency in neurons is very common in the population, it remains unclear why certain individuals develop HSE. Here we explore potential host genetic variants predisposing to HSE. In order to investigate this we used a rat HSE model comparing the HSE susceptible SHR (Spontaneously Hypertensive Rats) with the asymptomatic infection of BN (Brown Norway). Notably, both strains have HSV-1 spread to the CNS at four days after infection. A genome wide linkage analysis of 29 infected HXB/BXH RILs (recombinant inbred lines-generated from the prior two strains), displayed variable susceptibility to HSE enabling the definition of a significant QTL (quantitative trait locus) named Hse6 towards the end of chromosome 4 (160.89-174Mb) containing the Vwf (von Willebrand factor) gene. This was the only gene in the QTL with both cis-regulation in the brain and included several non-synonymous SNPs (single nucleotide polymorphism). Intriguingly, in human chromosome 12 several SNPs within the intronic region between exon 43 and 44 of the VWF gene were associated with human HSE pathogenesis. In particular, rs917859 is nominally associated with an odds ratio of 1.5 (95% CI 1.11-2.02; p-value = 0.008) after genotyping in 115 HSE cases and 428 controls. Although there are possibly several genetic and environmental factors involved in development of HSE, our study identifies variants of the VWF gene as candidates for susceptibility in experimental and human HSE.

  14. Von Willebrand Factor Gene Variants Associate with Herpes simplex Encephalitis

    PubMed Central

    Atanur, Santosh; Musilová, Alena; Zídek, Václav; Saba, Laura; Warnecke, Andreas; Khademi, Mohsen; Studahl, Marie; Aurelius, Elisabeth; Hjalmarsson, Anders; Garcia-Diaz, Ana; Denis, Cécile V.; Bergström, Tomas; Sköldenberg, Birgit; Kockum, Ingrid; Aitman, Timothy; Hübner, Norbert; Olsson, Tomas; Pravenec, Michal; Diez, Margarita

    2016-01-01

    Herpes simplex encephalitis (HSE) is a rare complication of Herpes simplex virus type-1 infection. It results in severe parenchymal damage in the brain. Although viral latency in neurons is very common in the population, it remains unclear why certain individuals develop HSE. Here we explore potential host genetic variants predisposing to HSE. In order to investigate this we used a rat HSE model comparing the HSE susceptible SHR (Spontaneously Hypertensive Rats) with the asymptomatic infection of BN (Brown Norway). Notably, both strains have HSV-1 spread to the CNS at four days after infection. A genome wide linkage analysis of 29 infected HXB/BXH RILs (recombinant inbred lines—generated from the prior two strains), displayed variable susceptibility to HSE enabling the definition of a significant QTL (quantitative trait locus) named Hse6 towards the end of chromosome 4 (160.89–174Mb) containing the Vwf (von Willebrand factor) gene. This was the only gene in the QTL with both cis-regulation in the brain and included several non-synonymous SNPs (single nucleotide polymorphism). Intriguingly, in human chromosome 12 several SNPs within the intronic region between exon 43 and 44 of the VWF gene were associated with human HSE pathogenesis. In particular, rs917859 is nominally associated with an odds ratio of 1.5 (95% CI 1.11–2.02; p-value = 0.008) after genotyping in 115 HSE cases and 428 controls. Although there are possibly several genetic and environmental factors involved in development of HSE, our study identifies variants of the VWF gene as candidates for susceptibility in experimental and human HSE. PMID:27224245

  15. Designing herpes viruses as oncolytics

    PubMed Central

    Peters, Cole; Rabkin, Samuel D

    2015-01-01

    Oncolytic herpes simplex virus (oHSV) was one of the first genetically-engineered oncolytic viruses. Because HSV is a natural human pathogen that can cause serious disease, it is incumbent that it can be genetically-engineered or significantly attenuated for safety. Here, we present a detailed explanation of the functions of HSV-1 genes frequently mutated to endow oncolytic activity. These genes are nonessential for growth in tissue culture cells but are important for growth in postmitotic cells, interfering with intrinsic antiviral and innate immune responses or causing pathology, functions dispensable for replication in cancer cells. Understanding the function of these genes leads to informed creation of new oHSVs with better therapeutic efficacy. Virus infection and replication can also be directed to cancer cells through tumor-selective receptor binding and transcriptional- or post-transcriptional miRNA-targeting, respectively. In addition to the direct effects of oHSV on infected cancer cells and tumors, oHSV can be “armed” with transgenes that are: reporters, to track virus replication and spread; cytotoxic, to kill uninfected tumor cells; immune modulatory, to stimulate antitumor immunity; or tumor microenvironment altering, to enhance virus spread or to inhibit tumor growth. In addition to HSV-1, other alphaherpesviruses are also discussed for their oncolytic activity. PMID:26462293

  16. A dual reporter cell assay for identifying serotype and drug susceptibility of herpes simplex virus.

    PubMed

    Lu, Wen-Wen; Sun, Jun-Ren; Wu, Szu-Sian; Lin, Wan-Hsuan; Kung, Szu-Hao

    2011-08-15

    A dual reporter cell assay (DRCA) that allows real-time detection of herpes simplex virus (HSV) infection was developed. This was achieved by stable transfection of cells with an expression cassette that contains the dual reporter genes, secreted alkaline phosphatase (SEAP) and enhanced green fluorescent protein (EGFP), under the control of an HSV early gene promoter. Baby hamster kidney (BHK) and Chinese hamster ovary (CHO) cell lines were used as parental cell lines because the former is permissive for both HSV serotypes, HSV-1 and HSV-2, whereas the latter is susceptible to infection only by HSV-2. The DRCA permitted differential detection of HSV-1 and HSV-2 by observation of EGFP-positive cells, as substantiated by screening a total of 35 samples. The BHK-based cell line is sensitive to a viral titer as low as a single plaque-forming unit with a robust assay window as measured by a chemiluminescent assay. Evaluations of the DRCA with representative acyclovir-sensitive and acyclovir-resistant HSV strains demonstrated that their drug susceptibilities were accurately determined by a 48-h format. In summary, this novel DRCA is a useful means for serotyping of HSV in real time as well as a rapid screening method for determining anti-HSV susceptibilities. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Computational modeling and functional analysis of Herpes simplex virus type-1 thymidine kinase and Escherichia coli cytosine deaminase fusion protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jufeng; Wang, Zhanli; Wei, Fang

    2007-08-17

    Herpes simplex virus type-1 thymidine kinase (HSV-1TK) and Escherichia coli cytosine deaminase (CD) fusion protein was designed using InsightII software. The structural rationality of the fusion proteins incorporating a series of flexible linker peptide was analyzed, and a suitable linker peptide was chosen for further investigated. The recombinant plasmid containing the coding regions of HSV-1TK and CD cDNA connected by this linker peptide coding sequence was generated and subsequently transfected into the human embryonic kidney 293 cells (HEK293). The Western blotting indicated that the recombinant fusion protein existed as a dimer with a molecular weight of approximately 90 kDa. Themore » toxicity of the prodrug on the recombinant plasmid-transfected human lung cancer cell line NCIH460 was evaluated, which showed that TKglyCD-expressing cells conferred upon cells prodrug sensitivities equivalent to that observed for each enzyme independently. Most noteworthy, cytotoxicity could be enhanced by concurrently treating TKglyCD-expressing cells with prodrugs GCV and 5-FC. The results indicate that we have successfully constructed a HSV-1TKglyCD fusion gene which might have a potential application for cancer gene therapy.« less

  18. A5-positive primary sensory neurons are nonpermissive for productive infection with herpes simplex virus 1 in vitro.

    PubMed

    Bertke, Andrea S; Swanson, Sophia M; Chen, Jenny; Imai, Yumi; Kinchington, Paul R; Margolis, Todd P

    2011-07-01

    Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) establish latency and express the latency-associated transcript (LAT) preferentially in different murine sensory neuron populations, with most HSV-1 LAT expression in A5(+) neurons and most HSV-2 LAT expression in KH10(+) neurons. To study the mechanisms regulating the establishment of HSV latency in specific subtypes of neurons, cultured dissociated adult murine trigeminal ganglion (TG) neurons were assessed for relative permissiveness for productive infection. In contrast to that for neonatal TG, the relative distribution of A5(+) and KH10(+) neurons in cultured adult TG was similar to that seen in vivo. Productive infection with HSV was restricted, and only 45% of cultured neurons could be productively infected with either HSV-1 or HSV-2. A5(+) neurons supported productive infection with HSV-2 but were selectively nonpermissive for productive infection with HSV-1, a phenomenon that was not due to restricted viral entry or DNA uncoating, since HSV-1 expressing β-galactosidase under the control of the neurofilament promoter was detected in ∼90% of cultured neurons, with no preference for any neuronal subtype. Infection with HSV-1 reporter viruses expressing enhanced green fluorescent protein (EGFP) from immediate early (IE), early, and late gene promoters indicated that the block to productive infection occurred before IE gene expression. Trichostatin A treatment of quiescently infected neurons induced productive infection preferentially from non-A5(+) neurons, demonstrating that the nonpermissive neuronal subtype is also nonpermissive for reactivation. Thus, HSV-1 is capable of entering the majority of sensory neurons in vitro; productive infection occurs within a subset of these neurons; and this differential distribution of productive infection is determined at or before the expression of the viral IE genes.

  19. A5-Positive Primary Sensory Neurons Are Nonpermissive for Productive Infection with Herpes Simplex Virus 1 In Vitro▿

    PubMed Central

    Bertke, Andrea S.; Swanson, Sophia M.; Chen, Jenny; Imai, Yumi; Kinchington, Paul R.; Margolis, Todd P.

    2011-01-01

    Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) establish latency and express the latency-associated transcript (LAT) preferentially in different murine sensory neuron populations, with most HSV-1 LAT expression in A5+ neurons and most HSV-2 LAT expression in KH10+ neurons. To study the mechanisms regulating the establishment of HSV latency in specific subtypes of neurons, cultured dissociated adult murine trigeminal ganglion (TG) neurons were assessed for relative permissiveness for productive infection. In contrast to that for neonatal TG, the relative distribution of A5+ and KH10+ neurons in cultured adult TG was similar to that seen in vivo. Productive infection with HSV was restricted, and only 45% of cultured neurons could be productively infected with either HSV-1 or HSV-2. A5+ neurons supported productive infection with HSV-2 but were selectively nonpermissive for productive infection with HSV-1, a phenomenon that was not due to restricted viral entry or DNA uncoating, since HSV-1 expressing β-galactosidase under the control of the neurofilament promoter was detected in ∼90% of cultured neurons, with no preference for any neuronal subtype. Infection with HSV-1 reporter viruses expressing enhanced green fluorescent protein (EGFP) from immediate early (IE), early, and late gene promoters indicated that the block to productive infection occurred before IE gene expression. Trichostatin A treatment of quiescently infected neurons induced productive infection preferentially from non-A5+ neurons, demonstrating that the nonpermissive neuronal subtype is also nonpermissive for reactivation. Thus, HSV-1 is capable of entering the majority of sensory neurons in vitro; productive infection occurs within a subset of these neurons; and this differential distribution of productive infection is determined at or before the expression of the viral IE genes. PMID:21507969

  20. Serologic Screening for Herpes Simplex Virus among University Students: A Pilot Study

    ERIC Educational Resources Information Center

    Mark, Hayley; Nanda, Joy P.; Joffe, Alain; Roberts, Jessica; Rompalo, Anne; Melendez, Johan; Zenilman, Jonathan

    2008-01-01

    Objective: The authors examined the feasibility of conducting serologic testing for the herpes simplex virus 2 (HSV-2) among university students and assessed the psychosocial impact of an HSV-2 diagnosis. Methods: The authors recruited a convenience sample of 100 students (aged 18-39 years) without a history of genital herpes from 1 university…

  1. Identification of ribonucleotide reductase mutation causing temperature-sensitivity of herpes simplex virus isolates from whitlow by deep sequencing.

    PubMed

    Daikoku, Tohru; Oyama, Yukari; Yajima, Misako; Sekizuka, Tsuyoshi; Kuroda, Makoto; Shimada, Yuka; Takehara, Kazuhiko; Miwa, Naoko; Okuda, Tomoko; Sata, Tetsutaro; Shiraki, Kimiyasu

    2015-06-01

    Herpes simplex virus 2 caused a genital ulcer, and a secondary herpetic whitlow appeared during acyclovir therapy. The secondary and recurrent whitlow isolates were acyclovir-resistant and temperature-sensitive in contrast to a genital isolate. We identified the ribonucleotide reductase mutation responsible for temperature-sensitivity by deep-sequencing analysis.

  2. A case of urinary retention in the early stages of herpes simplex virus type-1 encephalitis.

    PubMed

    Fukuoka, Takuya; Nakazato, Yoshihiko; Miyake, Akifumi; Tamura, Naotoshi; Araki, Nobuo; Yamamoto, Toshimasa

    2017-06-01

    A 70-year-old man developed urinary retention in the early stages of herpes simplex virus (HSV) type-1 encephalitis. A nerve conduction study suggested latent myeloradiculitis. This is the first report of human herpes simplex virus-1 encephalitis followed by urinary retention at early stage from the onset like the Elsberg syndrome. Although relatively few similar cases have been reported, we consider that urinary retention is common in HSV-1 encephalitis, in which disturbances of consciousness usually require bladder catheterization from the onset. We further emphasize that urinary retention may occasionally occur in early stages of HSV-1 encephalitis, with a significant possibility of recovery. Copyright © 2017. Published by Elsevier B.V.

  3. Concurrent detection of herpes simplex and varicella-zoster viruses by polymerase chain reaction from the same anatomic location.

    PubMed

    Dhiman, Neelam; Wright, Patricia A; Espy, Mark J; Schneider, Susan K; Smith, Thomas F; Pritt, Bobbi S

    2011-08-01

    Herpes simplex virus (HSV) and varicella-zoster virus (VZV) may cause latent infection of the same peripheral nerve ganglia. However, there are no large studies addressing the frequency of concurrent HSV/VZV PCR positivity from the same anatomic location. In an eight-year retrospective study, we observed 1.3% dual positivity from dermal, genital, and oral mucosal sources. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. A Fusogenic Oncolytic Herpes Simplex Virus for Therapy of Advanced Ovarian Cancer

    DTIC Science & Technology

    2007-06-01

    to demonstrate that fusogenic oncolytic HSVs are a potent anti -tumor agent for advanced ovarian cancer; 2) to prove that fusogenic oncolytic HSVs...oncolytic herpes simplex virus (HSV) can significantly enhance the anti -tumor effect of the virus. Three specific aims have been proposed and they are: 1...have the same safety profile as their non-fusogenic counterparts; 3) to explore novel delivery strategies that can evade host’s anti -viral immunity

  5. Herpes simplex virus type 2 latency in the footpad of mice: effect of acycloguanosine on the recovery of virus.

    PubMed

    Al-Saadi, S A; Gross, P; Wildy, P

    1988-02-01

    Herpes simplex virus type 2 has been reactivated from the latent state in the footpad and dorsal root ganglia of acycloguanosine-treated BALB/c mice. Virus was also recovered from the footpad tissue but not from the ganglia of denervated, latently infected mice. Treatment in vitro of explanted footpad cultures with acycloguanosine or phosphonoacetic acid did not affect the rate of virus reactivation. In all the isolates examined the virus was found to be acycloguanosine-sensitive. Recovery of virus from footpad tissue of mice after a long period of acycloguanosine treatment supports the theory that virus had been truly latent in the footpad and not in a state of persistent infection.

  6. Construction of Various γ34.5 Deleted Fluorescent-Expressing Oncolytic herpes Simplex type 1 (oHSV) for Generation and Isolation of HSV-Based Vectors

    PubMed

    Abdoli, Shahriyar; Roohvand, Farzin; Teimoori-Toolabi, Ladan; Shokrgozar, Mohammad Ali; Bahrololoumi, Mina; Azadmanesh, Kayhan

    2017-07-01

    Oncolytic herpes simplex virus (oHSV)-based vectors lacking γ34.5 gene, are considered as ideal templates to construct efficient vectors for (targeted) cancer gene therapy. Herein, we reported the construction of three single/dually-flourescence labeled and γ34.5-deleted, recombinant HSV-1 vectors for rapid generation and easy selection/isolation of different HSV-Based vectors. Generation of recombinant viruses was performed with conventional homologous recombination methods using green fluorescent protein (GFP) and BleCherry harboring shuttle vectors. Viruses were isolated by direct fluorescence observation and standard plaque purifying methods and confirmed by PCR and sequencing and flow cytometry. XTT and plaque assay titration were performed on Vero, U87MG, and T98 GBM cell lines. We generated three recombinant viruses, HSV-GFP, HSV-GR (Green-Red), and HSV-Red. The HSV-GFP showed two log higher titer (1010 PFU) than wild type (108 PFU). In contrast, HSV-GR and HSV-Red showed one log lower titer (107 PFU) than parental HSV. Cytotoxicity analysis showed that HSV-GR and HSV-Red can lyse target tumor cells at multiplicity of infection of 10 and 1 (P<0.001). Moreover, HSV-GFP showed higher infection potency (98%) in comparison with HSV-GR (82%). Our oHSVs provide a simple and an efficient platform for construction and rapid isolation of 2nd and 3rd generation oHSVs by replacing the inserted dyes with transgenes and also for rapid identification via fluorescence activated cell sorting. These vectors can also be used for tracing the efficacy of therapeutic agents on target cells, imaging of neural or tumoral cells in vitro/in vivo and as oncolytic agents in cancer therapy.

  7. Hydrocephalus in herpes simplex type 2 meningitis.

    PubMed

    Yap, Elaine; Ellis-Pegler, Rod

    2006-08-01

    A 34-year-old woman presented to hospital with symptoms of meningitis, later confirmed to be due to herpes simplex virus type 2. She developed hydrocephalus on day 2 of her admission. We describe the first case of hydrocephalus associated with herpes simplex type 2 meningitis in an adult.

  8. Viral Vectors for In Vivo Gene Transfer in Parkinson’s disease: Properties and Clinical Grade Production

    PubMed Central

    Burger, Corinna; Snyder, Richard O.

    2009-01-01

    Because Parkinson’s disease is a progressive degenerative disorder that is mainly confined to the basal ganglia, gene transfer to deliver therapeutic molecules is an attractive treatment avenue. The present review focuses on direct in vivo gene transfer vectors that have been developed to a degree that they have been successfully used in animal model of Parkinson’s disease. Accordingly, the properties of recombinant adenovirus, recombinant adeno-associated virus, herpes simplex virus, and lentivirus are described and contrasted. In order for viral vectors to be developed into clinical grade reagents, they must be manufactured and tested to precise regulatory standards. Indeed, clinical lots of viral vectors can be produced in compliance with current Good Manufacturing Practices (cGMPs) regulations using industry accepted manufacturing methodologies, manufacturing controls, and quality systems. The viral vector properties themselves combined with physiological product formulations facilitate long-term storage and direct in vivo administration. PMID:17916354

  9. Intrinsic Innate Immunity Fails To Control Herpes Simplex Virus and Vesicular Stomatitis Virus Replication in Sensory Neurons and Fibroblasts

    PubMed Central

    Rosato, Pamela C.

    2014-01-01

    ABSTRACT Herpes simplex virus 1 (HSV-1) establishes lifelong latent infections in the sensory neurons of the trigeminal ganglia (TG), wherein it retains the capacity to reactivate. The interferon (IFN)-driven antiviral response is critical for the control of HSV-1 acute replication. We therefore sought to further investigate this response in TG neurons cultured from adult mice deficient in a variety of IFN signaling components. Parallel experiments were also performed in fibroblasts isolated concurrently. We showed that HSV-1 replication was comparable in wild-type (WT) and IFN signaling-deficient neurons and fibroblasts. Unexpectedly, a similar pattern was observed for the IFN-sensitive vesicular stomatitis virus (VSV). Despite these findings, TG neurons responded to IFN-β pretreatment with STAT1 nuclear localization and restricted replication of both VSV and an HSV-1 strain deficient in γ34.5, while wild-type HSV-1 replication was unaffected. This was in contrast to fibroblasts in which all viruses were restricted by the addition of IFN-β. Taken together, these data show that adult TG neurons can mount an effective antiviral response only if provided with an exogenous source of IFN-β, and HSV-1 combats this response through γ34.5. These results further our understanding of the antiviral response of neurons and highlight the importance of paracrine IFN-β signaling in establishing an antiviral state. IMPORTANCE Herpes simplex virus 1 (HSV-1) is a ubiquitous virus that establishes a lifelong latent infection in neurons. Reactivation from latency can cause cold sores, blindness, and death from encephalitis. Humans with deficiencies in innate immunity have significant problems controlling HSV infections. In this study, we therefore sought to elucidate the role of neuronal innate immunity in the control of viral infection. Using neurons isolated from mice, we found that the intrinsic capacity of neurons to restrict virus replication was unaffected by the presence or absence of innate immunity. In contrast, neurons were able to mount a robust antiviral response when provided with beta interferon, a molecule that strongly stimulates innate immunity, and that HSV-1 can combat this response through the γ34.5 viral gene. Our results have important implications for understanding how the nervous system defends itself against virus infections. PMID:24942587

  10. Photoinactivation of Latent Herpes Simplex Virus in Rabbit Kidney Cells

    PubMed Central

    Kelleher, J. J.; Varani, J.

    1976-01-01

    The photoinactivation of actively and nonactively growing herpes simplex virus by neutral red and proflavine was studied in rabbit kidney cells. Active virus growth was inhibited by both dyes under conditions which did not destroy the cells. Neutral red caused a much greater inhibition than proflavine. Neutral red also caused a reduction in the reactivation rate of latent virus when the infected cells were treated during the latent period. In the treated cultures that did reactivate virus, the average length of the latent period was increased over the control value. Proflavine treatment did not reduce the rate of reactivation of latent virus and did not increase the average latent period of the treated cultures. PMID:185948

  11. Disabled infectious single cycle herpes simplex virus (DISC-HSV) is a candidate vector system for gene delivery/expression of GM-CSF in human prostate cancer therapy.

    PubMed

    Parkinson, Richard J; Mian, Shahid; Bishop, Michael C; Gray, Trevor; Li, Geng; McArdle, Stephanie E B; Ali, Selman; Rees, Robert C

    2003-06-15

    DISC-HSV is a replication incompetent herpes simplex virus that is a highly efficient vector for the transduction of genes in vivo and in vitro. We examine the ability of DISC-HSV to infect human prostate cancer cell-lines and xenograft tumor models, and induce expression of reporter and therapeutic cytokine genes. Infection was confirmed by cellular staining for the beta-galactosidase reporter gene product, and by EM. Human GM-CSF production following DISC-hGMCSF infection was measured using ELISA. The metabolic activity of infected cells was determined by NADP/NADPH assay. Cell death was estimated by cell-cycle analysis using flow cytometry with propidium iodide staining. Infection of DU145, PC3 and LNCaP cells with DISC-HSV was dose dependent. Cells infected with DISC-hGM-CSF released significant levels of hGM-CSF for 3 days. NADP/NADPH assay suggested that infected cells continued to be metabolically active for 3 days post-infection, which was consistent with flow cytometry findings that cell death did not occur within 7 days of infection. Tumor xenografts injected with DISC-HSV expressed beta-galactosidase, and intracellular viral particles were demonstrated using EM. We have previously reported the rejection of established tumors following intra-tumoral injection of DISC-GMCSF. This study demonstrates the ability of DISC-HSV to infect prostate cancer and express GMCSF at significant levels. We suggest that prostate cancer is a potential target for therapy using DISC-HSV containing GM-CSF. Copyright 2003 Wiley-Liss, Inc.

  12. Database of Autotransplants for Breast Cancer.

    DTIC Science & Technology

    1997-12-01

    atypical bacteria; 301 Herpes Simplex (HSV1, HSV2) list bacterium for non-atypical bacteria.) 302 Herpes Zoster (Chicken pox, Varicella ) 100 Atypical...o 00 Varicella 500. 10 o0 Other, specify: 501. Documented viral infection: Virus involved: 1 U Yes Yes No o 0 No 502. 1 0 o0 Cytomegalovirus (CMV) 8 0...Unknown 503. 1 o 00 Human Herpes Virus Type 6 (HHV6) 504. 1 0o Herpes Simplex Virus (HSV) 505. 1 o 0 Varicella 506. 1 0 0 0 Other, specify: 507

  13. Antiviral activity of sandalwood oil against herpes simplex viruses-1 and -2.

    PubMed

    Benencia, F; Courrèges, M C

    1999-05-01

    Sandalwood oil, the essential oil of Santalum album L., was tested for in vitro antiviral activity against Herpes simplex viruses-1 and -2. It was found that the replication of these viruses was inhibited in the presence of the oil. This effect was dose-dependent and more pronounced against HSV-1. A slight diminution of the effect was observed at higher multiplicity of infections. The oil was not virucidal and showed no cytotoxicity at the concentrations tested.

  14. Contributions of herpes simplex virus type 1 envelope proteins to entry by endocytosis

    USDA-ARS?s Scientific Manuscript database

    Herpes simplex virus (HSV) proteins specifically required for endocytic entry but not direct penetration have not been identified. HSVs deleted of gE, gG, gI, gJ, gM, UL45, or Us9 entered cells via either pH-dependent or pH-independent endocytosis and were inactivated by mildly acidic pH. Thus, the ...

  15. Atypical presentations of genital herpes simplex virus in HIV-1 and HIV-2 effectively treated by imiquimod.

    PubMed

    McKendry, Anna; Narayana, Srinivasulu; Browne, Rita

    2015-05-01

    Atypical presentations of genital herpes simplex virus have been described in HIV. We report two cases with hypertrophic presentations which were effectively treated with imiquimod, one of which is the first reported case occurring in a patient with HIV-2. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  16. Influence of Herpes Simplex Virus 1 Latency-Associated Transcripts on the Establishment and Maintenance of Latency in the ROSA26R Reporter Mouse Model

    PubMed Central

    Nicoll, M. P.; Proença, J. T.; Connor, V.

    2012-01-01

    Herpes simplex virus 1 (HSV-1) can establish life-long latent infection in sensory neurons, from which periodic reactivation can occur. During latency, viral gene expression is largely restricted to the latency-associated transcripts (LATs). While not essential for any phase of latency, to date the LATs have been shown to increase the efficiency of both establishment and reactivation of latency in small-animal models. We sought to investigate the role of LAT expression in the frequency of latency establishment within the ROSA26R reporter mouse model utilizing Cre recombinase-encoding recombinant viruses harboring deletions of the core LAT promoter (LAP) region. HSV-1 LAT expression was observed to influence the number of latently infected neurons in trigeminal but not dorsal root ganglia. Furthermore, the relative frequencies of latency establishment of LAT-positive and LAT-negative viruses are influenced by the inoculum dose following infection of the mouse whisker pads. Finally, analysis of the infected cell population at two latent time points revealed a relative loss of latently infected cells in the absence of LAT expression. We conclude that the HSV-1 LATs facilitate the long-term stability of the latent cell population within the infected host and that interpretation of LAT establishment phenotypes is influenced by infection methodology. PMID:22696655

  17. Use of Transcriptional Profiling to Delineate the Initial Response of Mice to Intravaginal Herpes Simplex Virus Type 2 Infection

    PubMed Central

    Harvey, Stephen A. K.; Phillips, Jaclyn M.; Vicetti Miguel, Rodolfo D.; Melan, Melissa A.; Quispe Calla, Nirk E.; Hendricks, Robert L.

    2013-01-01

    Abstract Intravaginal (ivag) infection of mice with herpes simplex virus type 2 (HSV-2) causes genital tissue damage, quickly followed by development of fatal encephalopathy. To delineate initial host responses generated by HSV-2 infection, here oligonucleotide microarrays compared gene expression in vaginal tissue from uninfected mice and mice 1, 2, 3, 4, 5, 6, or 7 days after ivag infection with 104 pfu HSV-2. While comparison of mRNA expression in uninfected and HSV-infected vaginal tissue detected few changes during the first 2 days post infection (dpi), there were 156 genes whose expression was first significantly altered 3 dpi that remained significantly modified at all later time points examined. These 156 genes were significantly enriched in canonical pathways associated with interferon (IFN) signaling, activation of IFN elements by intracellular pattern recognition receptors, and antiviral immunity induced by cytosolic RIG-like receptors. Evaluation of this gene set with the National Center for Biotechnology Information Gene and INTERFEROME databases corroborated pathway analysis, as function of most (53%) were linked to IFN-mediated host immunity. In the final set of experiments, ivag administration of the Toll-like receptor 3 agonist polyinosinic: polycytidylic acid (poly I:C) 24 h before ivag HSV-2 infection reduced the incidence of genital pathology and encephalopathy, while these poly I:C-treated mice were subsequently protected from ocular HSV-2 challenge lethal to uninfected controls. The latter results imply that the exuberant antiviral immunity produced in our experimental model is simply formed too late to prevent viral replication and dissemination, and that poly I:C-induced formation of an antiviral state protecting against primary ivag infection also permits development of HSV-specific protective immunity. PMID:23638732

  18. Herpes simplex virus vector-mediated gene delivery of glutamic acid decarboxylase reduces detrusor overactivity in spinal cord injured rats

    PubMed Central

    Miyazato, Minoru; Sugaya, Kimio; Goins, William F.; Goss, James R.; Chancellor, Michael B.; de Groat, William C.; Glorioso, Joseph C.; Yoshimura, Naoki

    2010-01-01

    We examined whether replication-defective herpes simplex virus (HSV) vectors encoding the 67 Kd form of the glutamic acid decarboxylase (GAD67) gene product, the gamma-aminobutyric acid (GABA) synthesis enzyme, can suppress detrusor overactivity (DO) in spinal cord injury (SCI) rats. One week after spinalization, HSV vectors expressing GAD and green fluorescent protein (GFP) (HSV-GAD) were injected into the bladder wall. SCI rats without HSV injection (HSV-untreated) and those injected with lacZ-encoding reporter gene HSV vectors (HSV-LacZ) were used as controls. Three weeks after viral injection, continuous cystometry was performed under awake conditions in all three groups. In the HSV-GAD group, the number and amplitude of non-voiding contractions (NVCs) were significantly decreased (40–45% and 38–40%, respectively) along with an increase in voiding efficiency, compared with HSV-untreated and HSV-LacZ groups, but micturition pressure was not different among the three groups. Intrathecal application of bicuculline partly reversed the decreased number and amplitude of NVCs, and decreased voiding efficiency in the HSV-GAD group. In the HSV-GAD group, GAD67 mRNA and protein levels were significantly increased in L6-S1 dorsal root ganglia (DRG) compared with the HSV-LacZ group while 57% of DRG cells were GFP-positive, and these neurons showed increased GAD67-like immunoreactivity compared with the HSV-LacZ group. These results indicate that GAD gene therapy effectively suppresses DO following SCI predominantly via activation of spinal GABAA receptors. Thus, HSV-based GAD gene transfer to bladder afferent pathways may represent a novel approach for the treatment of neurogenic DO. PMID:19225548

  19. Photodynamic treatment of herpes simplex virus during its replicative cycle.

    PubMed Central

    Khan, N C; Melnick, J L; Biswal, N

    1977-01-01

    Photodynamic treatment of herpes simplex virus type 1-infected hamster embryo fibroblasts (LSH strain) with a low concentration of proflavine (0.08 mug/10(5) cells per ml), a 3-9-diamine acridine dye, inhibited production not only of infectious progeny but also of virion particles. However, there was no appreciable inhibition of viral or cellular DNA synthesis, even when the infected cells were repeatedly exposed to this low concentration of dye and light during the replication cycle of the virus. It thus appears that photodynamic treatment of infected cells interferes with the processes involved in virus maturation. PMID:189063

  20. Indirect micro-immunofluorescence test for detecting type-specific antibodies to herpes simplex virus.

    PubMed

    Forsey, T; Darougar, S

    1980-02-01

    A rapid indirect micro-immunofluorescence test capable of detecting and differentiating type-specific antibodies to herpes simplex virus is described. The test proved highly sensitive and, in 80 patients with active herpes ocular infection, antibody was detected in 94%. No anti-herpes antibody was detected in a control group of 20 patients with adenovirus infections. Testing of animal sera prepared against herpes simplex virus types 1 and 2 and of human sera from cases of ocular and genital herpes infections showed that the test can differentiate antibodies to the infecting serotypes. Specimens of whole blood, taken by fingerprick, and eye secretions, both collected on cellulose sponges, could be tested by indirect micro-immunofluorescence. Anti-herpes IgG, IgM, and IgA can also be detected.

  1. Decline in Herpes Simplex Virus Type 2 Among Non-Injecting Heroin and Cocaine Users in New York City, 2005 to 2014: Prospects for Avoiding a Resurgence of Human Immunodeficiency Virus.

    PubMed

    Des Jarlais, Don C; Arasteh, Kamyar; Feelemyer, Jonathan; McKnight, Courtney; Tross, Susan; Perlman, David C; Campbell, Aimee N C; Hagan, Holly; Cooper, Hannah L F

    2017-02-01

    Herpes simplex virus type 2 (HSV-2) infection increases both susceptibility to and transmissibility of human immunodeficiency virus (HIV), and HSV-2 and HIV are often strongly associated in HIV epidemics. We assessed trends in HSV-2 prevalence among non-injecting drug users (NIDUs) when HIV prevalence declined from 16% to 8% among NIDUs in New York City. Subjects were current non-injecting users of heroin and/or cocaine and who had never injected illicit drugs. Three thousand one hundred fifty-seven NIDU subjects were recruited between 2005 and 2014 among persons entering Mount Sinai Beth Israel substance use treatment programs. Structured interviews, HIV, and HSV-2 testing were administered. Change over time was assessed by comparing 2005 to 2010 with 2011 to 2014 periods. Herpes simplex virus type 2 incidence was estimated among persons who participated in multiple years. Herpes simplex virus type 2 prevalence was strongly associated with HIV prevalence (odds ratio, 3.9; 95% confidence interval, 2.9-5.1) from 2005 to 2014. Herpes simplex virus type 2 prevalence declined from 60% to 56% (P = 0.01). The percentage of NIDUs with neither HSV-2 nor HIV infection increased from 37% to 43%, (P < 0.001); the percentage with HSV-2/HIV coinfection declined from 13% to 6% (P < 0.001). Estimated HSV-2 incidence was 1 to 2/100 person-years at risk. There were parallel declines in HIV and HSV-2 among NIDUs in New York City from 2005 to 2014. The increase in the percentage of NIDUs with neither HSV-2 nor HIV infection, the decrease in the percentage with HSV-2/HIV coinfection, and the low to moderate HSV-2 incidence suggest some population-level protection against resurgence of HIV. Prevention efforts should be strengthened to end the combined HIV/HSV-2 epidemic among NIDUs in New York City.

  2. Genetics Home Reference: epidermolysis bullosa simplex

    MedlinePlus

    ... of epidermolysis bullosa simplex . Mutations in another gene, PLEC , have been associated with the rare Ogna type of epidermolysis bullosa simplex . The PLEC gene provides instructions for making a protein called ...

  3. A new nucleoside analog, 9-[[2-hydroxy-1-(hydroxymethyl)ethoxyl]methyl]guanine, highly active in vitro against herpes simplex virus types 1 and 2.

    PubMed Central

    Smith, K O; Galloway, K S; Kennell, W L; Ogilvie, K K; Radatus, B K

    1982-01-01

    A novel nucleoside analog, 9-[[2-hydroxy-1-(hydroxymethyl)ethoxy]methyl]-guanine (BIOLF-62), was found to have potent antiviral activity against herpes simplex virus types 1 and 2 at concentrations well below cytotoxic levels. For example, the Patton strain of herpes simplex virus type 1 was susceptible at concentrations 140- to 2,900-fold below that which inhibited cell division by 50%, depending upon the cell line used for assay. Different herpesvirus strains varied considerably in their susceptibility to the drug, as did results obtained with the same virus strain in different cell lines. BIOLF-62 compared favorably with 5-iodo-2'-deoxyuridine and acyclovir with respect to ratios of viral to cell inhibitory drug concentrations. Patterns of drug resistance to herpesvirus mutants suggested that the primary mode of action of BIOLF-62 is different from that of known antiviral compounds. Human adenovirus type 2, varicella-zoster virus, and Epstein-Barr virus were inhibited by this drug but at concentrations within the cell inhibitory range. Vaccinia virus and human cytomegalovirus were not inhibited at high drug concentrations. PMID:6289741

  4. Oncolytic herpes simplex virus-based strategies: toward a breakthrough in glioblastoma therapy

    PubMed Central

    Ning, Jianfang; Wakimoto, Hiroaki

    2014-01-01

    Oncolytic viruses (OV) are a class of antitumor agents that selectively kill tumor cells while sparing normal cells. Oncolytic herpes simplex virus (oHSV) has been investigated in clinical trials for patients with the malignant brain tumor glioblastoma for more than a decade. These clinical studies have shown the safety of oHSV administration to the human brain, however, therapeutic efficacy of oHSV as a single treatment remains unsatisfactory. Factors that could hamper the anti-glioblastoma efficacy of oHSV include: attenuated potency of oHSV due to deletion or mutation of viral genes involved in virulence, restricting viral replication and spread within the tumor; suboptimal oHSV delivery associated with intratumoral injection; virus infection-induced inflammatory and cellular immune responses which could inhibit oHSV replication and promote its clearance; lack of effective incorporation of oHSV into standard-of-care, and poor knowledge about the ability of oHSV to target glioblastoma stem cells (GSCs). In an attempt to address these issues, recent research efforts have been directed at: (1) design of new engineered viruses to enhance potency, (2) better understanding of the role of the cellular immunity elicited by oHSV infection of tumors, (3) combinatorial strategies with different antitumor agents with a mechanistic rationale, (4) “armed” viruses expressing therapeutic transgenes, (5) use of GSC-derived models in oHSV evaluation, and (6) combinations of these. In this review, we will describe the current status of oHSV clinical trials for glioblastoma, and discuss recent research advances and future directions toward successful oHSV-based therapy of glioblastoma. PMID:24999342

  5. Nuclear envelope breakdown induced by herpes simplex virus type 1 involves the activity of viral fusion proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maric, Martina; Haugo, Alison C.; Dauer, William

    2014-07-15

    Herpesvirus infection reorganizes components of the nuclear lamina usually without loss of integrity of the nuclear membranes. We report that wild-type HSV infection can cause dissolution of the nuclear envelope in transformed mouse embryonic fibroblasts that do not express torsinA. Nuclear envelope breakdown is accompanied by an eight-fold inhibition of virus replication. Breakdown of the membrane is much more limited during infection with viruses that lack the gB and gH genes, suggesting that breakdown involves factors that promote fusion at the nuclear membrane. Nuclear envelope breakdown is also inhibited during infection with virus that does not express UL34, but ismore » enhanced when the US3 gene is deleted, suggesting that envelope breakdown may be enhanced by nuclear lamina disruption. Nuclear envelope breakdown cannot compensate for deletion of the UL34 gene suggesting that mixing of nuclear and cytoplasmic contents is insufficient to bypass loss of the normal nuclear egress pathway. - Highlights: • We show that wild-type HSV can induce breakdown of the nuclear envelope in a specific cell system. • The viral fusion proteins gB and gH are required for induction of nuclear envelope breakdown. • Nuclear envelope breakdown cannot compensate for deletion of the HSV UL34 gene.« less

  6. Aberrant intracellular localization of Varicella-Zoster virus regulatory proteins during latency

    PubMed Central

    Lungu, Octavian; Panagiotidis, Christos A.; Annunziato, Paula W.; Gershon, Anne A.; Silverstein, Saul J.

    1998-01-01

    Varicella-Zoster virus (VZV) is a herpesvirus that becomes latent in sensory neurons after primary infection (chickenpox) and subsequently may reactivate to cause zoster. The mechanism by which this virus maintains latency, and the factors involved, are poorly understood. Here we demonstrate, by immunohistochemical analysis of ganglia obtained at autopsy from seropositive patients without clinical symptoms of VZV infection that viral regulatory proteins are present in latently infected neurons. These proteins, which localize to the nucleus of cells during lytic infection, predominantly are detected in the cytoplasm of latently infected neurons. The restriction of regulatory proteins from the nucleus of latently infected neurons might interrupt the cascade of virus gene expression that leads to a productive infection. Our findings raise the possibility that VZV has developed a novel mechanism for maintenance of latency that contrasts with the transcriptional repression that is associated with latency of herpes simplex virus, the prototypic alpha herpesvirus. PMID:9618542

  7. Herpes simplex virus-1 infection causes the secretion of a type I interferon-antagonizing protein and inhibits signaling at or before Jak-1 activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Karen E.; Knipe, David M., E-mail: david_knipe@hms.harvard.ed

    2010-01-05

    Host cells respond to viral infection by the production of type I interferons (IFNs), which induce the expression of antiviral genes. Herpes simplex virus I (HSV-1) encodes many mechanisms that inhibit the type I IFN response, including the ICP27-dependent inhibition of type I IFN signaling. Here we show inhibition of Stat-1 nuclear accumulation in cells that express ICP27. ICP27 expression also induces the secretion of a small, heat-stable type I IFN antagonizing protein that inhibits Stat-1 nuclear accumulation. We show that the inhibition of IFN-induced Stat-1 phosphorylation occurs at or upstream of Jak-1 phosphorylation. Finally, we show that ISG15 expressionmore » is induced after IFNalpha treatment in mock-infected cells, but not cells infected with WT HSV-1 or ICP27{sup -} HSV-1. These data suggest that HSV-1 has evolved multiple mechanisms to inhibit IFN signaling not only in infected cells, but also in neighboring cells, thereby allowing for increased viral replication and spread.« less

  8. Proteomic Analysis of Secretomes of Oncolytic Herpes Simplex Virus-Infected Squamous Cell Carcinoma Cells

    PubMed Central

    Tada, Shinya; Hamada, Masakazu; Yura, Yoshiaki

    2018-01-01

    Oncolytic herpes simplex virus type 1 (HSV-1) strain RH2 induced immunogenic cell death (ICD) with the release and surface exposure of damage-associated molecular patterns (DAMPs) in squamous cell carcinoma (SCC) SCCVII cells. The supernatants of RH2-infected SCCVII cells also exhibited antitumor ability by intratumoral administration in SCCVII tumor-bearing mice. The supernatants of RH2-infected cells and mock-infected cells were concentrated to produce Med24 and MedC for proteomic analyses. In Med24, the up- and down-regulated proteins were observed. Proteins including filamin, tubulin, t-complex protein 1 (TCP-1), and heat shock proteins (HSPs), were up-regulated, while extracellular matrix (ECM) proteins were markedly down-regulated. Viral proteins were detected in Med 24. These results indicate that HSV-1 RH2 infection increases the release of danger signal proteins and viral gene products, but decreases the release of ECM components. These changes may alter the tumor microenvironment (TME) and contribute to enhancement of anti-tumor immunity against SCC. PMID:29360750

  9. Characterization of herpes simplex virus type 2 latency-associated transcription in human sacral ganglia and in cell culture.

    PubMed

    Croen, K D; Ostrove, J M; Dragovic, L; Straus, S E

    1991-01-01

    The ability of herpes simplex virus type 2 (HSV-2) to establish latency in and reactivate from sacral dorsal root sensory ganglia is the basis for recurrent genital herpes. The expression of HSV-2 genes in latently infected human sacral ganglia was investigated by in situ hybridization. Hybridizations with a probe from the long repeat region of HSV-2 revealed strong nuclear signals overlying neurons in sacral ganglia from five of nine individuals. The RNA detected overlaps with the transcript for infected cell protein O but in the opposite, or "anti-sense," orientation. These observations mimic those made previously with HSV-1 in human trigeminal ganglia and confirm the recent findings during latency in HSV-2-infected mice and guinea pigs. Northern hybridization of RNA from infected Vero cells showed that an HSV-2 latency-associated transcript was similar in size to the larger (1.85 kb) latency transcript of HSV-1. Thus, HSV-1 and HSV-2 latency in human sensory ganglia are similar, if not identical, in terms of their cellular localization and pattern of transcription.

  10. Herpes Simplex Vaccines: Prospects of Live-attenuated HSV Vaccines to Combat Genital and Ocular infections

    PubMed Central

    Stanfield, Brent; Kousoulas, Konstantin Gus

    2015-01-01

    Herpes simplex virus type-1 (HSV-1) and its closely related type-2 (HSV-2) viruses cause important clinical manifestations in humans including acute ocular disease and genital infections. These viruses establish latency in the trigeminal ganglionic and dorsal root neurons, respectively. Both viruses are widespread among humans and can frequently reactivate from latency causing disease. Currently, there are no vaccines available against herpes simplex viral infections. However, a number of promising vaccine approaches are being explored in pre-clinical investigations with few progressing to early phase clinical trials. Consensus research findings suggest that robust humoral and cellular immune responses may partially control the frequency of reactivation episodes and reduce clinical symptoms. Live-attenuated viral vaccines have long been considered as a viable option for generating robust and protective immune responses against viral pathogens. Varicella zoster virus (VZV) belongs to the same alphaherpesvirus subfamily with herpes simplex viruses. A live-attenuated VZV vaccine has been extensively used in a prophylactic and therapeutic approach to combat primary and recurrent VZV infection indicating that a similar vaccine approach may be feasible for HSVs. In this review, we summarize pre-clinical approaches to HSV vaccine development and current efforts to test certain vaccine approaches in human clinical trials. Also, we discuss the potential advantages of using a safe, live-attenuated HSV-1 vaccine strain to protect against both HSV-1 and HSV-2 infections. PMID:27114893

  11. Identification of multiple sites suitable for insertion of foreign genes in herpes simplex virus genomes.

    PubMed

    Morimoto, Tomomi; Arii, Jun; Akashi, Hiroomi; Kawaguchi, Yasushi

    2009-03-01

    Information on sites in HSV genomes at which foreign gene(s) can be inserted without disrupting viral genes or affecting properties of the parental virus are important for basic research on HSV and development of HSV-based vectors for human therapy. The intergenic region between HSV-1 UL3 and UL4 genes has been reported to satisfy the requirements for such an insertion site. The UL3 and UL4 genes are oriented toward the intergenic region and, therefore, insertion of a foreign gene(s) into the region between the UL3 and UL4 polyadenylation signals should not disrupt any viral genes or transcriptional units. HSV-1 and HSV-2 each have more than 10 additional regions structurally similar to the intergenic region between UL3 and UL4. In the studies reported here, it has been demonstrated that insertion of a reporter gene expression cassette into several of the HSV-1 and HSV-2 intergenic regions has no effect on viral growth in cell culture or virulence in mice, suggesting that these multiple intergenic regions may be suitable HSV sites for insertion of foreign genes.

  12. A Sporadic Neonatal Case of Epidermolysis Bullosa Simplex Generalized Intermediate with KRT5 and KRT14 Gene Mutations

    PubMed Central

    Wakiguchi, Hiroyuki; Hasegawa, Shunji; Maeba, Shinji; Kimura, Sasagu; Ito, Satoko; Tateishi, Hiroshi; Ueda, Kazuhiro; Ohga, Shouichi

    2016-01-01

    Background Epidermolysis bullosa simplex (EBS) is a rare genodermatosis resulting from multiple gene mutations, including KRT5 and KRT14. The clinical expression of the mechanobullous skin fragility disease has not been fully explained by the genotype. Case Description An 11-day-old Japanese newborn infant was hospitalized because of herpetiform skin blistering on the feet, which expanded systemically after birth. There was no evidence of virus infection. The biopsied skin lesion showed a blister on the lamina densa without keratin clumps, indicating a diagnosis of EBS-generalized intermediate. We punctured the blisters to remove the contents daily, which led to no exacerbation or infection. The genetic study determined that the patient carried double substitutions of KRT5 c.1424A > G (p.E475G) and KRT14 c.1237G > A (p.A413T). The asymptomatic mother and sister carried the KRT14 substitution, but the healthy father had no substitution of the KRT gene. Conclusion This is the first report of EBS-generalized intermediate in a newborn with de novo KRT5 gene mutation and KRT14 gene polymorphism, and no familial history of epidermolysis. Neonatal blistering due to EBS requires optimal skin management after excluding infectious and immunobullous diseases. PMID:26929861

  13. Interactions between Herpesvirus Entry Mediator (TNFRSF14) and Latency-Associated Transcript during Herpes Simplex Virus 1 Latency

    PubMed Central

    Allen, Sariah J.; Rhode-Kurnow, Antje; Mott, Kevin R.; Jiang, Xianzhi; Carpenter, Dale; Rodriguez-Barbosa, J. Ignacio; Jones, Clinton; Wechsler, Steven L.; Ware, Carl F.

    2014-01-01

    Herpesvirus entry mediator (HVEM) is one of several cell surface proteins herpes simplex virus (HSV) uses for attachment/entry. HVEM regulates cellular immune responses and can also increase cell survival. Interestingly, latency-associated transcript (LAT), the only viral gene consistently expressed during neuronal latency, enhances latency and reactivation by promoting cell survival and by helping the virus evade the host immune response. However, the mechanisms of these LAT activities are not well understood. We show here for the first time that one mechanism by which LAT enhances latency and reactivation appears to be by upregulating HVEM expression. HSV-1 latency/reactivation was significantly reduced in Hvem−/− mice, indicating that HVEM plays a significant role in HSV-1 latency/reactivation. Furthermore, LAT upregulated HVEM expression during latency in vivo and also when expressed in vitro in the absence of other viral factors. This study suggests a mechanism whereby LAT upregulates HVEM expression potentially through binding of two LAT small noncoding RNAs to the HVEM promoter and that the increased HVEM then leads to downregulation of immune responses in the latent microenvironment and increased survival of latently infected cells. Thus, one of the mechanisms by which LAT enhances latency/reactivation appears to be through increasing expression of HVEM. PMID:24307582

  14. Prognostic utility of gene therapy with herpes simplex virus thymidine kinase for patients with high-grade malignant gliomas: a systematic review and meta analysis.

    PubMed

    Zhao, Fei; Tian, Jinhui; An, Lifeng; Yang, Kehu

    2014-06-01

    The aim of this study was to assess the effectiveness of adding viral vector-mediated gene therapy with herpes simplex virus thymidine kinase (HSV-tk) to standard treatment, in comparison with standard treatment alone to treat patients with high-grade gliomas (HGGs). A literature search of the databases PubMed, Embase, the Cochrane Library, Web of Science, and Chinese biomedicine was performed to identify eligible studies. Three randomized controlled trials (involving a total of 532 patients) were included in this systematic review. A meta-analysis of included studies demonstrated a significant increase in median survival time (MST) in patients who were treated with HSV-tk gene therapy (mean deviation 0.59, 95% CI: 0.41-0.76, p < 0.0001). The results of pooled analysis for different patient groups show that overall survival (OS) for all HGG patients was improved by adding gene therapy [hazard ratio (HR) = 0.91, 95% CI: 0.74-1.13, p = 0.42], while a different result was seen for glioblastoma multiforme (GBM) patients (HR = 1.06, 95% CI: 0.80-1.41, p = 0.70). Furthermore, the combined results for tumor progression implied that standard therapy was superior to gene therapy [odds ratio (OR) = 1.31, p = 0.09]; yet differences in HR and OR between experimental groups and control groups had no statistical significance (p > 0.05). Based on the best available evidence, it appears that adding gene therapy with HSV-tk has some effect in treating HGG patients, especially with respect to MST. However, neither the pooled analysis of OS, nor the combined analysis of tumor progress indicates any significant advantage to adding gene therapy compared with standard treatment alone. More prospective studies are needed to draw solid conclusions about whether gene therapy has significant prognostic advantage.

  15. A VP26-mNeonGreen Capsid Fusion HSV-2 Mutant Reactivates from Viral Latency in the Guinea Pig Genital Model with Normal Kinetics

    PubMed Central

    Pieknik, Julianna R.; Tang, Shuang

    2018-01-01

    Fluorescent herpes simplex viruses (HSV) are invaluable tools for localizing virus in cells, permitting visualization of capsid trafficking and enhancing neuroanatomical research. Fluorescent viruses can also be used to study virus kinetics and reactivation in vivo. Such studies would be facilitated by fluorescent herpes simplex virus recombinants that exhibit wild-type kinetics of replication and reactivation and that are genetically stable. We engineered an HSV-2 strain expressing the fluorescent mNeonGreen protein as a fusion with the VP26 capsid protein. This virus has normal replication and in vivo recurrence phenotypes, providing an essential improved tool for further study of HSV-2 infection. PMID:29738431

  16. Novel radiosynthesis of PET HSV-tk gene reporter probes [18F]FHPG and [18F]FHBG employing dual Sep-Pak SPE techniques.

    PubMed

    Wang, Ji-Quan; Zheng, Qi-Huang; Fei, Xiangshu; Mock, Bruce H; Hutchins, Gary D

    2003-11-17

    Positron emission tomography (PET) herpes simplex virus thymidine kinase (HSV-tk) gene reporter probes 9-[(3-[(18)F]fluoro-1-hydroxy-2-propoxy)methyl]guanine ([(18)F]FHPG) and 9-(4-[(18)F]fluoro-3-hydroxymethylbutyl)guanine ([(18)F]FHBG) were prepared by nucleophilic substitution of the appropriate tosylated precursors with [(18)F]KF/Kryptofix 2.2.2 followed by a quick deprotection reaction and purification with a simplified dual Silica Sep-Pak solid-phase extraction (SPE) method in 15-30% radiochemical yield.

  17. Single-Step Conversion of Cells to Retrovirus Vector Producers with Herpes Simplex Virus–Epstein-Barr Virus Hybrid Amplicons

    PubMed Central

    Sena-Esteves, Miguel; Saeki, Yoshinaga; Camp, Sara M.; Chiocca, E. Antonio; Breakefield, Xandra O.

    1999-01-01

    We report here on the development and characterization of a novel herpes simplex virus type 1 (HSV-1) amplicon-based vector system which takes advantage of the host range and retention properties of HSV–Epstein-Barr virus (EBV) hybrid amplicons to efficiently convert cells to retrovirus vector producer cells after single-step transduction. The retrovirus genes gag-pol and env (GPE) and retroviral vector sequences were modified to minimize sequence overlap and cloned into an HSV-EBV hybrid amplicon. Retrovirus expression cassettes were used to generate the HSV-EBV-retrovirus hybrid vectors, HERE and HERA, which code for the ecotropic and the amphotropic envelopes, respectively. Retrovirus vector sequences encoding lacZ were cloned downstream from the GPE expression unit. Transfection of 293T/17 cells with amplicon plasmids yielded retrovirus titers between 106 and 107 transducing units/ml, while infection of the same cells with amplicon vectors generated maximum titers 1 order of magnitude lower. Retrovirus titers were dependent on the extent of transduction by amplicon vectors for the same cell line, but different cell lines displayed varying capacities to produce retrovirus vectors even at the same transduction efficiencies. Infection of human and dog primary gliomas with this system resulted in the production of retrovirus vectors for more than 1 week and the long-term retention and increase in transgene activity over time in these cell populations. Although the efficiency of this system still has to be determined in vivo, many applications are foreseeable for this approach to gene delivery. PMID:10559361

  18. Ostreid herpesvirus type 1 replication and host response in adult Pacific oysters, Crassostrea gigas.

    PubMed

    Segarra, Amélie; Baillon, Laury; Tourbiez, Delphine; Benabdelmouna, Abdellah; Faury, Nicole; Bourgougnon, Nathalie; Renault, Tristan

    2014-10-08

    Since 2008, massive mortality outbreaks associated with OsHV-1 detection have been reported in Crassostrea gigas spat and juveniles in several countries. Nevertheless, adult oysters do not demonstrate mortality in the field related to OsHV-1 detection and were thus assumed to be more resistant to viral infection. Determining how virus and adult oyster interact is a major goal in understanding why mortality events are not reported among adult Pacific oysters. Dual transcriptomics of virus-host interactions were explored by real-time PCR in adult oysters after a virus injection. Thirty-nine viral genes and five host genes including MyD88, IFI44, IkB2, IAP and Gly were measured at 0.5, 10, 26, 72 and 144 hours post infection (hpi). No viral RNA among the 39 genes was detected at 144 hpi suggesting the adult oysters are able to inhibit viral replication. Moreover, the IAP gene (oyster gene) shows significant up-regulation in infected adults compared to control adults. This result suggests that over-expression of IAP could be a reaction to OsHV-1 infection, which may induce the apoptotic process. Apoptosis could be a main mechanism involved in disease resistance in adults. Antiviral activity of haemolymph against herpes simplex virus (HSV-1) was not significantly different between infected adults versus control.

  19. Herpes Simplex Virus Type 2 Glycoprotein G Is Targeted by the Sulfated Oligo- and Polysaccharide Inhibitors of Virus Attachment to Cells▿

    PubMed Central

    Adamiak, Beata; Ekblad, Maria; Bergström, Tomas; Ferro, Vito; Trybala, Edward

    2007-01-01

    Variants of herpes simplex virus type 2 (HSV-2) generated by virus passage in GMK-AH1 cells in the presence of the sulfated oligosaccharide PI-88 were analyzed. Many of these variants were substantially resistant to PI-88 in their initial infection of cells and/or their cell-to-cell spread. The major alteration detected in all variants resistant to PI-88 in the initial infection of cells was a frameshift mutation(s) in the glycoprotein G (gG) gene that resulted in the lack of protein expression. Molecular transfer of the altered gG gene into the wild-type background confirmed that the gG-deficient recombinants were resistant to PI-88. In addition to PI-88, all gG-deficient variants of HSV-2 were resistant to the sulfated polysaccharide heparin. The gG-deficient virions were capable of attaching to cells, and this activity was relatively resistant to PI-88. In addition to having a drug-resistant phenotype, the gG-deficient variants were inefficiently released from infected cells. Purified gG bound to heparin and showed the cell-binding activity which was inhibited by PI-88. Many PI-88 variants produced syncytia in cultured cells and contained alterations in gB, including the syncytium-inducing L792P amino acid substitution. Although this phenotype can enhance the lateral spread of HSV in cells, it conferred no virus resistance to PI-88. Some PI-88 variants also contained occasional alterations in gC, gD, gE, gK, and UL24. In conclusion, we found that glycoprotein gG, a mucin-like component of the HSV-2 envelope, was targeted by sulfated oligo- and polysaccharides. This is a novel finding that suggests the involvement of HSV-2 gG in interactions with sulfated polysaccharides, including cell surface glycosaminoglycans. PMID:17928351

  20. Coping strategies and behavioural changes following a genital herpes diagnosis among an urban sample of underserved Midwestern women.

    PubMed

    Davis, Alissa; Roth, Alexis; Brand, Juanita Ebert; Zimet, Gregory D; Van Der Pol, Barbara

    2016-03-01

    This study focused on understanding the coping strategies and related behavioural changes of women who were recently diagnosed with herpes simplex virus type 2. In particular, we were interested in how coping strategies, condom use, and acyclovir uptake evolve over time. Twenty-eight women screening positive for herpes simplex virus type 2 were recruited through a public health STD clinic and the Indianapolis Community Court. Participants completed three semi-structured interviews with a woman researcher over a six-month period. The interviews focused on coping strategies for dealing with a diagnosis, frequency of condom use, suppressive and episodic acyclovir use, and the utilisation of herpes simplex virus type 2 support groups. Interview data were analysed using content analysis to identify and interpret concepts and themes that emerged from the interviews. Women employed a variety of coping strategies following an herpes simplex virus type 2 diagnosis. Of the women, 32% reported an increase in religious activities, 20% of women reported an increase in substance use, and 56% of women reported engaging in other coping activities. A total of 80% of women reported abstaining from sex immediately following the diagnosis, but 76% of women reported engaging in sex again by the six-month interview. Condom and medication use did not increase and herpes simplex virus type 2 support groups were not utilised by participants. All participants reported engaging in at least one coping mechanism after receiving their diagnosis. A positive diagnosis did not seem to result in increased use of condoms for the majority of participants and the use of acyclovir was low overall. © The Author(s) 2015.

  1. Affinity purification combined with mass spectrometry to identify herpes simplex virus protein-protein interactions.

    PubMed

    Meckes, David G

    2014-01-01

    The identification and characterization of herpes simplex virus protein interaction complexes are fundamental to understanding the molecular mechanisms governing the replication and pathogenesis of the virus. Recent advances in affinity-based methods, mass spectrometry configurations, and bioinformatics tools have greatly increased the quantity and quality of protein-protein interaction datasets. In this chapter, detailed and reliable methods that can easily be implemented are presented for the identification of protein-protein interactions using cryogenic cell lysis, affinity purification, trypsin digestion, and mass spectrometry.

  2. Cell-mediated immunity in herpes simplex virus-infected mice: H-2 mapping of the delayed-type hypersensitivity response and the antiviral T cell response.

    PubMed

    Nash, A A; Phelan, J; Wildy, P

    1981-04-01

    An adoptive transfer system was used to investigate the H-2 restriction of delayed-type hypersensitivity (DTH) to herpes simplex virus. A successful DTH transfer was achieved when donor and recipient were compatible at the I-A region, with K and D region compatibility unnecessary. However, the rapid clearance of infectious virus from the inoculation site was found only when the donor and recipients were compatible at H-2K (and presumably D) and I-A regions.

  3. Serum herpes simplex antibodies

    MedlinePlus

    ... causes cold sores (oral herpes). HSV-2 causes genital herpes. How the Test is Performed A blood sample ... person has ever been infected with oral or genital herpes . It looks for antibodies to herpes simplex virus ...

  4. Role of Autoantibodies to N-Methyl-d-Aspartate (NMDA) Receptor in Relapsing Herpes Simplex Encephalitis: A Retrospective, One-Center Experience.

    PubMed

    Sutcu, Murat; Akturk, Hacer; Somer, Ayper; Tatli, Burak; Torun, Selda Hancerli; Yıldız, Edibe Pembegul; Şık, Guntulu; Citak, Agop; Agacfidan, Ali; Salman, Nuran

    2016-03-01

    Post-herpes simplex virus encephalitis relapses have been recently associated with autoimmunity driven by autoantibodies against N-methyl-d-aspartate (NMDA) receptors. Because it offers different treatment options, determination of this condition is important. Between 2011 and 2014, 7 children with proven diagnosis of herpes simplex virus encephalitis were identified in a university hospital of Istanbul. Two patients had neurologic relapse characterized mainly by movement disorders 2 to 3 weeks after initial encephalitis. The first patient received a second 14 days of acyclovir treatment together with antiepileptic drugs and left with severe neurologic sequelae. The second patient was found to be NMDA receptors antibody positive in the cerebrospinal fluid. She was treated with intravenous immunoglobulin and prednisolone. She showed substantial improvement, gradually regaining lost neurologic abilities. Post-herpes simplex virus encephalitis relapses may frequently be immune-mediated rather than a viral reactivation, particularly in children displaying movement disorders like choreoathetosis. Immunotherapy may provide benefit for this potentially devastating condition, like the case described in this report. © The Author(s) 2015.

  5. The Type I Interferon Response and Age-Dependent Susceptibility to Herpes Simplex Virus Infection.

    PubMed

    Giraldo, Daniel; Wilcox, Douglas R; Longnecker, Richard

    2017-05-01

    Herpes simplex virus type 1 (HSV-1) is a highly prevalent human neurotropic pathogen. HSV-1 infection is associated with a variety of diseases ranging from benign orolabial lesions to more serious and even life-threatening conditions such as herpes simplex keratitis and herpes simplex encephalitis (HSE). HSE is a rare occurrence among healthy adult individuals, but newborns are a particularly susceptible population. Type I IFN signaling has been identified as a crucial component of the innate immune response to the control of HSV-1 infection. In this study, we review the contribution of the type I IFN response to controlling HSV-1 infection, and differences in the early host response between adults and newborns that may contribute to the increased susceptibility to infection and central nervous system disease in newborns.

  6. Roles of the nuclear lamina in stable nuclear association and assembly of a herpesviral transactivator complex on viral immediate-early genes.

    PubMed

    Silva, Lindsey; Oh, Hyung Suk; Chang, Lynne; Yan, Zhipeng; Triezenberg, Steven J; Knipe, David M

    2012-01-01

    Little is known about the mechanisms of gene targeting within the nucleus and its effect on gene expression, but most studies have concluded that genes located near the nuclear periphery are silenced by heterochromatin. In contrast, we found that early herpes simplex virus (HSV) genome complexes localize near the nuclear lamina and that this localization is associated with reduced heterochromatin on the viral genome and increased viral immediate-early (IE) gene transcription. In this study, we examined the mechanism of this effect and found that input virion transactivator protein, virion protein 16 (VP16), targets sites adjacent to the nuclear lamina and is required for targeting of the HSV genome to the nuclear lamina, exclusion of heterochromatin from viral replication compartments, and reduction of heterochromatin on the viral genome. Because cells infected with the VP16 mutant virus in1814 showed a phenotype similar to that of lamin A/C(-/-) cells infected with wild-type virus, we hypothesized that the nuclear lamina is required for VP16 activator complex formation. In lamin A/C(-/-) mouse embryo fibroblasts, VP16 and Oct-1 showed reduced association with the viral IE gene promoters, the levels of VP16 and HCF-1 stably associated with the nucleus were lower than in wild-type cells, and the association of VP16 with HCF-1 was also greatly reduced. These results show that the nuclear lamina is required for stable nuclear localization and formation of the VP16 activator complex and provide evidence for the nuclear lamina being the site of assembly of the VP16 activator complex. The targeting of chromosomes in the cell nucleus is thought to be important in the regulation of expression of genes on the chromosomes. The major documented effect of intranuclear targeting has been silencing of chromosomes at sites near the nuclear periphery. In this study, we show that targeting of the herpes simplex virus DNA genome to the nuclear periphery promotes formation of transcriptional activator complexes on the viral genome, demonstrating that the nuclear periphery also has sites for activation of transcription. These results highlight the importance of the nuclear lamina, the structure that lines the inner nuclear membrane, in both transcriptional activation and repression. Future studies defining the molecular structures of these two types of nuclear sites should define new levels of gene regulation.

  7. The C Terminus of the Large Tegument Protein pUL36 Contains Multiple Capsid Binding Sites That Function Differently during Assembly and Cell Entry of Herpes Simplex Virus

    PubMed Central

    Schipke, Julia; Pohlmann, Anja; Diestel, Randi; Binz, Anne; Rudolph, Kathrin; Nagel, Claus-Henning; Bauerfeind, Rudolf

    2012-01-01

    The largest tegument protein of herpes simplex virus type 1 (HSV1), pUL36, is a multivalent cross-linker between the viral capsids and the tegument and associated membrane proteins during assembly that upon subsequent cell entry releases the incoming capsids from the outer tegument and viral envelope. Here we show that pUL36 was recruited to cytosolic progeny capsids that later colocalized with membrane proteins of herpes simplex virus type 1 (HSV1) and the trans-Golgi network. During cell entry, pUL36 dissociated from viral membrane proteins but remained associated with cytosolic capsids until arrival at the nucleus. HSV1 UL36 mutants lacking C-terminal portions of increasing size expressed truncated pUL36 but could not form plaques. Cytosolic capsids of mutants lacking the C-terminal 735 of the 3,164 amino acid residues accumulated in the cytosol but did not recruit pUL36 or associate with membranes. In contrast, pUL36 lacking only the 167 C-terminal residues bound to cytosolic capsids and subsequently colocalized with viral and host membrane proteins. Progeny virions fused with neighboring cells, but incoming capsids did not retain pUL36, nor could they target the nucleus or initiate HSV1 gene expression. Our data suggest that residues 2430 to 2893 of HSV1 pUL36, containing one binding site for the capsid protein pUL25, are sufficient to recruit pUL36 onto cytosolic capsids during assembly for secondary envelopment, whereas the 167 residues of the very C terminus with the second pUL25 binding site are crucial to maintain pUL36 on incoming capsids during cell entry. Capsids lacking pUL36 are targeted neither to membranes for virus assembly nor to nuclear pores for genome uncoating. PMID:22258258

  8. Oncolytic virotherapy using herpes simplex virus: how far have we come?

    PubMed Central

    Sokolowski, Nicolas AS; Rizos, Helen; Diefenbach, Russell J

    2015-01-01

    Oncolytic virotherapy exploits the properties of human viruses to naturally cytolysis of cancer cells. The human pathogen herpes simplex virus (HSV) has proven particularly amenable for use in oncolytic virotherapy. The relative safety of HSV coupled with extensive knowledge on how HSV interacts with the host has provided a platform for manipulating HSV to enhance the targeting and killing of human cancer cells. This has culminated in the approval of talimogene laherparepvec for the treatment of melanoma. This review focuses on the development of HSV as an oncolytic virus and where the field is likely to head in the future. PMID:27512683

  9. Challenges in designing a Taqman-based multiplex assay for the simultaneous detection of Herpes simplex virus types 1 and 2 and Varicella-zoster virus.

    PubMed

    Weidmann, Manfred; Armbruster, Katrin; Hufert, Frank T

    2008-08-01

    To optimise molecular detection of herpesviruses an internally controlled multiplex Taqman-PCR for the detection of Herpes simplex virus 1 (HSV1), Herpes simplex virus 2 (HSV2) and Varicella-zoster virus (VZV) was developed. The selection of the dye combination working on the ABI 7700 cycler for this multiplex PCR revealed crosstalk phenomena between several combinations of reference dyes and reporter dyes. A final dye combination with CY5 as reference dye and FAM/JOE/TXR as reporter dyes was selected. The influence of the concentration of the internal positive control (IPC) concentration on the quantitative results of HSV1, HSV2 and VZV positive patient samples was analysed. The results indicate that high IPC concentrations are detrimental for the sensitivity of the multiplex assay and that the presence of the IPC molecule narrows the dynamic range of the duplex PCRs between any of the virus PCRs and the IPC-PCR. The optimised multiplex assay detecting HSV1, HSV2 and VZV using 10(3) IPC molecules showed a performance and sensitivity comparable to that of the individual assays.

  10. A heterotypic bystander effect for tumor cell killing after adeno-associated virus/phage-mediated, vascular-targeted suicide gene transfer.

    PubMed

    Trepel, Martin; Stoneham, Charlotte A; Eleftherohorinou, Hariklia; Mazarakis, Nicholas D; Pasqualini, Renata; Arap, Wadih; Hajitou, Amin

    2009-08-01

    Suicide gene transfer is the most commonly used cytotoxic approach in cancer gene therapy; however, a successful suicide gene therapy depends on the generation of efficient targeted systemic gene delivery vectors. We recently reported that selective systemic delivery of suicide genes such as herpes simplex virus thymidine kinase (HSVtk) to tumor endothelial cells through a novel targeted adeno-associated virus/phage vector leads to suppression of tumor growth. This marked effect has been postulated to result primarily from the death of cancer cells by hypoxia following the targeted disruption of tumor blood vessels. Here, we investigated whether an additional mechanism of action is involved. We show that there is a heterotypic "bystander" effect between endothelial cells expressing the HSVtk suicide gene and tumor cells. Treatment of cocultures of HSVtk-transduced endothelial cells and non-HSVtk-transduced tumor cells with ganciclovir results in the death of both endothelial and tumor cells. Blocking of this effect by 18alpha-glycyrrhetinic acid indicates that gap junctions between endothelial and tumor cells are largely responsible for this phenomenon. Moreover, the observed bystander killing is mediated by connexins 43 and 26, which are expressed in endothelial and tumor cell types. Finally, this heterotypic bystander effect is accompanied by a suppression of tumor growth in vivo that is independent of primary gene transfer into host-derived tumor vascular endothelium. These findings add an alternative nonmutually exclusive and potentially synergistic cytotoxic mechanism to cancer gene therapy based on targeted adeno-associated virus/phage and further support the promising role of nonmalignant tumor stromal cells as therapeutic targets.

  11. Herpes simplex virus vector-mediated gene delivery for the treatment of lower urinary tract pain

    PubMed Central

    Goins, WF; Goss, JR; Chancellor, MB; de Groat, WC; Glorioso, JC; Yoshimura, N

    2009-01-01

    Interstitial cystitis (IC)/painful bladder syndrome (PBS) is a painful debilitating chronic visceral pain disorder of unknown etiology that affects an estimated 1 million people in the, United States alone. It is characterized by inflammation of the bladder that results in chronic pelvic pain associated with bladder symptoms of urinary frequency and urgency. Regardless of the etiology, IC/PBS involves either increased and/or abnormal activity in afferent nociceptive sensory neurons. Pain-related symptoms in patients with IC/PBS are often very difficult to treat. Both medical and surgical therapies have had limited clinical utility in this debilitating disease and numerous drug treatments, such as heparin, dimethylsulfoxide and amitriptyline, have proven to be palliative at best, and in some IC/PBS patients provide no relief whatsoever. Although opiate narcotics have been employed to help alleviate IC/PBS pain, this strategy is fraught with problems as systemic narcotic administration causes multiple unwanted side effects including mental status change and constipation. Moreover, chronic systemic narcotic use leads to dependency and need for dose escalation due to tolerance: therefore, new therapies are desperately needed to treat refractory IC/PBS. This has led our group to develop a gene therapy strategy that could potentially alleviate chronic pelvic pain using the herpes simplex virus-directed delivery of analgesic proteins to the bladder. PMID:19242523

  12. Nuclear sensing of viral DNA, epigenetic regulation of herpes simplex virus infection, and innate immunity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knipe, David M., E-mail: david_knipe@hms.harvard.edu

    Herpes simplex virus (HSV) undergoes a lytic infection in epithelial cells and a latent infection in neuronal cells, and epigenetic mechanisms play a major role in the differential gene expression under the two conditions. HSV viron DNA is not associated with histones but is rapidly loaded with heterochromatin upon entry into the cell. Viral proteins promote reversal of the epigenetic silencing in epithelial cells while the viral latency-associated transcript promotes additional heterochromatin in neuronal cells. The cellular sensors that initiate the chromatinization of foreign DNA have not been fully defined. IFI16 and cGAS are both essential for innate sensing ofmore » HSV DNA, and new evidence shows how they work together to initiate innate signaling. IFI16 also plays a role in the heterochromatinization of HSV DNA, and this review will examine how IFI16 integrates epigenetic regulation and innate sensing of foreign viral DNA to show how these two responses are related. - Highlights: • HSV lytic and latent gene expression is regulated differentially by epigenetic processes. • The sensors of foreign DNA have not been defined fully. • IFI16 and cGAS cooperate to sense viral DNA in HSV-infected cells. • IFI16 plays a role in both innate sensing of HSV DNA and in restricting its expression.« less

  13. Susceptibility of Drug-Resistant Clinical Herpes Simplex Virus Type 1 Strains to Essential Oils of Ginger, Thyme, Hyssop, and Sandalwood▿

    PubMed Central

    Schnitzler, Paul; Koch, Christine; Reichling, Jürgen

    2007-01-01

    Acyclovir-resistant clinical isolates of herpes simplex virus type 1 (HSV-1) were analyzed in vitro for their susceptibilities to essential oils of ginger, thyme, hyssop, and sandalwood. All essential oils exhibited high levels of virucidal activity against acyclovir-sensitive strain KOS and acyclovir-resistant HSV-1 clinical isolates and reduced plaque formation significantly. PMID:17353250

  14. Targeted entry of enveloped viruses: measles and herpes simplex virus I.

    PubMed

    Navaratnarajah, Chanakha K; Miest, Tanner S; Carfi, Andrea; Cattaneo, Roberto

    2012-02-01

    We compare the receptor-based mechanisms that a small RNA virus and a larger DNA virus have evolved to drive the fusion of viral and cellular membranes. Both systems rely on tight control over triggering the concerted refolding of a trimeric fusion protein. While measles virus entry depends on a receptor-binding protein and a fusion protein only, the herpes simplex virus (HSV) is more complex and requires four viral proteins. Nevertheless, in both viruses a receptor-binding protein is required for triggering the membrane fusion process. Moreover, specificity domains can be appended to these receptor-binding proteins to target virus entry to cells expressing a designated receptor. We discuss how principles established with measles and HSV can be applied to targeting other enveloped viruses, and alternatively how retargeted envelopes can be fitted on foreign capsids. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Psychosis in a 15-Year-Old Female with Herpes Simplex Encephalitis in a Background of Mannose-Binding Lecithin Deficiency.

    PubMed

    Asogwa, Kenneth; Buabeng, Kwame; Kaur, Amarjit

    2017-01-01

    Historically, psychotic disorder has been associated with viral infection. Herpes simplex infections and Epstein-Barr virus (EBV) among other viral infections have been implicated in psychotic disorder. Of note in this case report is psychotic disorder that occurred following reactivation of herpes simplex infection in a background of mannose-binding lecithin (MBL) deficiency, childhood EBV infection, and severe psychosocial stress. Herpes simplex encephalitis (HSE) remains a significant cause of morbidity and mortality despite advancement in its treatment with intravenous acyclovir. Many studies have reported psychiatric and neurological manifestation of herpes simplex infection following primary or reactivated infection, while others suggest milder clinical course of herpes simplex encephalitis in a background of immunosuppression. Another contributory factor to psychotic disorder in this case is childhood EBV exposure which has been reported to increase the risk of psychosis in adolescence and adulthood. This case report describes a 15-year-old female with MBL deficiency who presented with psychosis caused by reactivated herpes simplex infection and had good clinical recovery. Based on childhood Epstein-Barr virus exposure and psychosis in adolescence (current case), she is at increased risk of psychotic disorder in adulthood, which underscores the importance of long-term monitoring.

  16. Esophagitis - infectious

    MedlinePlus

    ... include fungi, yeast, and viruses. Common organisms include: Candida albicans Cytomegalovirus (CMV) Herpes simplex virus (HSV) Human papillomavirus (HPV) Tuberculosis bacteria ( Mycobacterium tuberculosis )

  17. Latent virus reactivation in astronauts on the international space station.

    PubMed

    Mehta, Satish K; Laudenslager, Mark L; Stowe, Raymond P; Crucian, Brian E; Feiveson, Alan H; Sams, Clarence F; Pierson, Duane L

    2017-01-01

    Reactivation of latent herpes viruses was measured in 23 astronauts (18 male and 5 female) before, during, and after long-duration (up to 180 days) spaceflight onboard the international space station . Twenty age-matched and sex-matched healthy ground-based subjects were included as a control group. Blood, urine, and saliva samples were collected before, during, and after spaceflight. Saliva was analyzed for Epstein-Barr virus, varicella-zoster virus, and herpes simplex virus type 1. Urine was analyzed for cytomegalovirus. One astronaut did not shed any targeted virus in samples collected during the three mission phases. Shedding of Epstein-Barr virus, varicella-zoster virus, and cytomegalovirus was detected in 8 of the 23 astronauts. These viruses reactivated independently of each other. Reactivation of Epstein-Barr virus, varicella-zoster virus, and cytomegalovirus increased in frequency, duration, and amplitude (viral copy numbers) when compared to short duration (10 to 16 days) space shuttle missions. No evidence of reactivation of herpes simplex virus type 1, herpes simplex virus type 2, or human herpes virus 6 was found. The mean diurnal trajectory of salivary cortisol changed significantly during flight as compared to before flight ( P  = 0.010). There was no statistically significant difference in levels of plasma cortisol or dehydoepiandosterone concentrations among time points before, during, and after flight for these international space station crew members, although observed cortisol levels were lower at the mid and late-flight time points. The data confirm that astronauts undertaking long-duration spaceflight experience both increased latent viral reactivation and changes in diurnal trajectory of salivary cortisol concentrations.

  18. The herpes simplex virus 2 virion-associated ribonuclease vhs interferes with stress granule formation.

    PubMed

    Finnen, Renée L; Hay, Thomas J M; Dauber, Bianca; Smiley, James R; Banfield, Bruce W

    2014-11-01

    In a previous study, it was observed that cells infected with herpes simplex virus 2 (HSV-2) failed to accumulate stress granules (SGs) in response to oxidative stress induced by arsenite treatment. As a follow-up to this observation, we demonstrate here that disruption of arsenite-induced SG formation by HSV-2 is mediated by a virion component. Through studies on SG formation in cells infected with HSV-2 strains carrying defective forms of UL41, the gene that encodes vhs, we identify vhs as a virion component required for this disruption. Cells infected with HSV-2 strains producing defective forms of vhs form SGs spontaneously late in infection. In addition to core SG components, these spontaneous SGs contain the viral immediate early protein ICP27 as well as the viral serine/threonine kinase Us3. As part of these studies, we reexamined the frameshift mutation known to reside within the UL41 gene of HSV-2 strain HG52. We demonstrate that this mutation is unstable and can rapidly revert to restore wild-type UL41 following low-multiplicity passaging. Identification of the involvement of virion-associated vhs in the disruption of SG formation will enable mechanistic studies on how HSV-2 is able to counteract antiviral stress responses early in infection. In addition, the ability of Us3 to localize to stress granules may indicate novel roles for this viral kinase in the regulation of translation. Eukaryotic cells respond to stress by rapidly shutting down protein synthesis and storing mRNAs in cytoplasmic stress granules (SGs). Stoppages in protein synthesis are problematic for all viruses as they rely on host cell machinery to synthesize viral proteins. Thus, many viruses target SGs for disruption or modification. Infection by herpes simplex virus 2 (HSV-2) was previously observed to disrupt SG formation induced by oxidative stress. In this follow-up study, we identify virion host shutoff protein (vhs) as a viral protein involved in this disruption. The identification of a specific viral protein involved in disrupting SG formation is a key step toward understanding how HSV-2 interacts with these antiviral structures. Additionally, this understanding may provide insights into the biology of SGs that may find application in studies on human motor neuron degenerative diseases, like amyotrophic lateral sclerosis (ALS), which may arise as a result of dysregulation of SG formation. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  19. Gene therapy of uterine leiomyoma: adenovirus-mediated herpes simplex virus thymidine kinase/ganciclovir treatment inhibits growth of human and rat leiomyoma cells in vitro and in a nude mouse model.

    PubMed

    Salama, S A; Kamel, M; Christman, G; Wang, H Q; Fouad, H M; Al-Hendy, A

    2007-01-01

    Uterine leiomyomas (LM) affect a high percentage of reproductive-age women. They develop as discrete, well-defined tumors that are easily accessible with imaging techniques--making this disease ideal for localized gene therapy approaches. In this study, we determined the efficacy of adenovirus-mediated herpes simplex virus thymidine kinase gene transfer in combination with ganciclovir (Ad-TK/GCV) as a potential therapy for LM. Rat ELT-3 LM cells and human LM cells were transfected with different multiplicity of infections (10-100 plaque forming units [PFU]/cell) of Ad-TK and treated with GCV (5, 10, or 20 microg/ml) for 5 days. To test the bystander effect, Ad-TK-transfected ELT-3 cells (100 PFU/cell) or LM cells (10 PFU/cell) were cocultured with corresponding nontransfected cells at increasing percentages and treated with GCV followed by cell counting. In ELT-3 cells transfected with Ad-TK/GCV (10, 20, 50, or 100 PFU/cell), the cell count was reduced by 24, 42, 77, and 87%, respectively, compared with the control cells (transfected with Ad-Lac Z/GCV). Similarly, in LM cells transfected with Ad-TK/GCV (10, 50, or 100 PFU/cell), the cell count was reduced by 31, 62, and 82%, respectively, compared with the control. A strong bystander effect was noted in both ELT-3 and LM cells with significant killing (p = 0.001) at a ratio of infected:uninfected cells of only 1:99 and maximal killing at 1:4. This study demonstrates the potential efficacy of the Ad-TK/GCV gene therapy approach as a viable nonsurgical alternative treatment for uterine LM.

  20. A Herpes Simplex Virus-Derived Replicative Vector Expressing LIF Limits Experimental Demyelinating Disease and Modulates Autoimmunity

    PubMed Central

    Nygårdas, Michaela; Paavilainen, Henrik; Müther, Nadine; Nagel, Claus-Henning; Röyttä, Matias; Sodeik, Beate; Hukkanen, Veijo

    2013-01-01

    Herpes simplex virus type 1 (HSV-1) has properties that can be exploited for the development of gene therapy vectors. The neurotropism of HSV enables delivery of therapeutic genes to the nervous system. Using a bacterial artificial chromosome (BAC), we constructed an HSV-1(17+)-based replicative vector deleted of the neurovirulence gene γ134.5, and expressing leukemia inhibitory factor (LIF) as a transgene for treatment of experimental autoimmune encephalomyelitis (EAE). EAE is an inducible T-cell mediated autoimmune disease of the central nervous system (CNS) and is used as an animal model for multiple sclerosis. Demyelination and inflammation are hallmarks of both diseases. LIF is a cytokine that has the potential to limit demyelination and oligodendrocyte loss in CNS autoimmune diseases and to affect the T-cell mediated autoimmune response. In this study SJL/J mice, induced for EAE, were treated with a HSV-LIF vector intracranially and the subsequent changes in disease parameters and immune responses during the acute disease were investigated. Replicating HSV-LIF and its DNA were detected in the CNS during the acute infection, and the vector spread to the spinal cord but was non-virulent. The HSV-LIF significantly ameliorated the EAE and contributed to a higher number of oligodendrocytes in the brains when compared to untreated mice. The HSV-LIF therapy also induced favorable changes in the expression of immunoregulatory cytokines and T-cell population markers in the CNS during the acute disease. These data suggest that BAC-derived HSV vectors are suitable for gene therapy of CNS disease and can be used to test the therapeutic potential of immunomodulatory factors for treatment of EAE. PMID:23700462

  1. IFN-stimulated gene 15 functions as a critical antiviral molecule against influenza, herpes, and Sindbis viruses

    PubMed Central

    Lenschow, Deborah J.; Lai, Caroline; Frias-Staheli, Natalia; Giannakopoulos, Nadia V.; Lutz, Andrew; Wolff, Thorsten; Osiak, Anna; Levine, Beth; Schmidt, Robert E.; García-Sastre, Adolfo; Leib, David A.; Pekosz, Andrew; Knobeloch, Klaus-Peter; Horak, Ivan; Virgin, Herbert Whiting

    2007-01-01

    Type I interferons (IFNs) play an essential role in the host response to viral infection through the induction of numerous IFN-stimulated genes (ISGs), including important antiviral molecules such as PKR, RNase L, Mx, and iNOS. Yet, additional antiviral ISGs likely exist. IFN-stimulated gene 15 (ISG15) is a ubiquitin homolog that is rapidly up-regulated after viral infection, and it conjugates to a wide array of host proteins. Although it has been hypothesized that ISG15 functions as an antiviral molecule, the initial evaluation of ISG15-deficient mice revealed no defects in their responses to vesicular stomatitis virus or lymphocytic choriomeningitis virus, leaving open the important question of whether ISG15 is an antiviral molecule in vivo. Here we demonstrate that ISG15 is critical for the host response to viral infection. ISG15−/− mice are more susceptible to influenza A/WSN/33 and influenza B/Lee/40 virus infections. ISG15−/− mice also exhibited increased susceptibility to both herpes simplex virus type 1 and murine gammaherpesvirus 68 infection and to Sindbis virus infection. The increased susceptibility of ISG15−/− mice to Sindbis virus infection was rescued by expressing wild-type ISG15, but not a mutant form of ISG15 that cannot form conjugates, from the Sindbis virus genome. The demonstration of ISG15 as a novel antiviral molecule with activity against both RNA and DNA viruses provides a target for the development of therapies against important human pathogens. PMID:17227866

  2. The natural dietary genistein boosts bacteriophage-mediated cancer cell killing by improving phage-targeted tumor cell transduction.

    PubMed

    Tsafa, Effrosyni; Al-Bahrani, Mariam; Bentayebi, Kaoutar; Przystal, Justyna; Suwan, Keittisak; Hajitou, Amin

    2016-08-09

    Gene therapy has long been regarded as a promising treatment for cancer. However, cancer gene therapy is still facing the challenge of targeting gene delivery vectors specifically to tumors when administered via clinically acceptable non-invasive systemic routes (i.e. intravenous). The bacteria virus, bacteriophage (phage), represents a new generation of promising vectors in systemic gene delivery since their targeting can be achieved through phage capsid display ligands, which enable them to home to specific tumor receptors without the need to ablate any native eukaryotic tropism. We have previously reported a tumor specific bacteriophage vector named adeno-associated virus/phage, or AAVP, in which gene expression is under a recombinant human rAAV2 virus genome targeted to tumors via a ligand-directed phage capsid. However, cancer gene therapy with this tumor-targeted vector achieved variable outcomes ranging from tumor regression to no effect in both experimental and natural preclinical models. Herein, we hypothesized that combining the natural dietary genistein, with proven anticancer activity, would improve bacteriophage anticancer safe therapy. We show that combination treatment with genistein and AAVP increased targeted cancer cell killing by AAVP carrying the gene for Herpes simplex virus thymidine kinase (HSVtk) in 2D tissue cultures and 3D tumor spheroids. We found this increased tumor cell killing was associated with enhanced AAVP-mediated gene expression. Next, we established that genistein protects AAVP against proteasome degradation and enhances vector genome accumulation in the nucleus. Combination of genistein and phage-guided virotherapy is a safe and promising strategy that should be considered in anticancer therapy with AAVP.

  3. HIV-associated hypertrophic herpes simplex genitalis with concomitant early invasive squamous cell carcinoma mimicking advanced genital cancer: case report and literature review.

    PubMed

    Strehl, Johanna D; Mehlhorn, Grit; Koch, Martin C; Harrer, Ellen G; Harrer, Thomas; Beckmann, Matthias W; Agaimy, Abbas

    2012-05-01

    Hypertrophic herpes simplex genitalis (HHSG) is an uncommon anogenital manifestation of herpes simplex virus (HSV) infection in immunocompromised patients. To date, 24 cases of HHSG have been reported; 23 of them were affected human immune deficiency virus (HIV) type 1-positive patients. We describe the case of a 44-year-old African HIV-1-positive woman who presented with painful ulcerated nodular lesions of the vulva and perianal area measuring up to 7 cm in diameter. Macroscopically, the lesions were highly suspicious of widely invasive cancer. The histologic workup of the resection specimen revealed patchy high-grade vulvar intraepithelial neoplasia Grade 3 (VIN 3) and 2 microscopic foci of superficially invasive squamous cell carcinoma. The nodular lesions were caused by massive tumefactive plasma cell-rich inflammatory infiltrates extending into the subcutis. Multinucleated herpes simplex virus 1 and herpes simplex virus 2-positive epithelial cells with glassy intranuclear inclusions were detected at the borders of the ulcerations, consistent with HHSG. Despite repeated surgery and medical treatment, the patient had 3 recurrences of HHSG within 18 months. The presence of intraepithelial neoplasia in HHSG lesions is relatively rare and has been described in 6 of 18 resected HHSG lesions in the literature so far. With regard to invasive malignancy, the present case is the first report of a superficially invasive squamous cell carcinoma associated with HHSG. Awareness of this condition is necessary to avoid misinterpretation of HHSG as widely invasive squamous cell carcinoma with the hazard of surgical and oncological overtreatment.

  4. Optical imaging of reporter gene expression using a positron-emission-tomography probe

    NASA Astrophysics Data System (ADS)

    Liu, Hongguang; Ren, Gang; Liu, Shuanglong; Zhang, Xiaofen; Chen, Luxi; Han, Peizhen; Cheng, Zhen

    2010-11-01

    Reporter gene/reporter probe technology is one of the most important techniques in molecular imaging. Lately, many reporter gene/reporter probe systems have been coupled to different imaging modalities such as positron emission tomography (PET) and optical imaging (OI). It has been recently found that OI techniques could be used to monitor radioactive tracers in vitro and in living subjects. In this study, we further demonstrate that a reporter gene/nuclear reporter probe system [herpes simplex virus type-1 thymidine kinase (HSV1-tk) and 9-(4-18F-fluoro-3-[hydroxymethyl] butyl) guanine ([18F]FHBG)] could be successfully imaged by OI in vitro and in vivo. OI with radioactive reporter probes will facilitate and broaden the applications of reporter gene/reporter probe techniques in medical research.

  5. Mouse superkiller‐2‐like helicase DDX60 is dispensable for type I IFN induction and immunity to multiple viruses

    PubMed Central

    Goubau, Delphine; van der Veen, Annemarthe G.; Chakravarty, Probir; Lin, Rongtuan; Rogers, Neil; Rehwinkel, Jan; Deddouche, Safia; Rosewell, Ian; Hiscott, John

    2015-01-01

    Abstract IFN‐α/β allow cells to fight virus infection by inducing the expression of many genes that encode effectors of antiviral defense. One of these, the Ski2‐like DExH‐box helicase DDX60, was recently implicated in resistance of human cells to hepatitis C virus, as well as in induction of IFN‐α/β by retinoic acid inducible gene 1‐like receptors (RLRs) that detect the presence of RNA viruses in a cell‐intrinsic manner. Here, we sought to investigate the role of DDX60 in IFN‐α/β induction and in resistance to virus infection. Analysis of fibroblasts and myeloid cells from Ddx60‐deficient mice revealed no impairment in IFN‐α/β production in response to RLR agonists, RNA viruses, or other stimuli. Moreover, overexpression of DDX60 did not potentiate IFN induction and DDX60 did not interact with RLRs or capture RLR agonists from virally infected cells. We also failed to identify any impairment in Ddx60‐deficient murine cells or mice in resistance to infection with influenza A virus, encephalomyocarditis virus, Sindbis virus, vaccinia virus, or herpes simplex virus‐1. These results put in question the reported role of DDX60 as a broad‐acting positive regulator of RLR responses and hint at the possibility that it may function as a restriction factor highly specific for a particular virus or class of viruses. PMID:26457795

  6. Cognitive and Learning Strategies for Longstanding Temporal Lobe Lesions in a Child Who Suffered from "Herpes Simplex" Virus Encephalitis: A Case Study over 10 Years

    ERIC Educational Resources Information Center

    van Schoor, A. N.; Naude, H.; van Rensburg, M.; Pretorius, E.; Boon, J. M.

    2005-01-01

    This article presents a case study indicating that "Herpes simplex" virus (HSV) encephalitis may cause permanent learning disabilities due to damage to the temporal lobes as it discusses the results of a case study extending over 10 years to determine the long-term effects on both the anatomy of the brain and the intellectual functioning of the…

  7. Houttuynoids A-E, anti-herpes simplex virus active flavonoids with novel skeletons from Houttuynia cordata.

    PubMed

    Chen, Shao-Dan; Gao, Hao; Zhu, Qin-Chang; Wang, Ya-Qi; Li, Ting; Mu, Zhen-Qiang; Wu, Hong-Ling; Peng, Tao; Yao, Xin-Sheng

    2012-04-06

    Houttuynoids A-E (1-5), a new type of flavonoid with houttuynin tethered to hyperoside, and their presumed biosynthetic precursor hyperoside (6) were isolated from the whole plant of Houttuynia cordata. Their structures were elucidated by analysis of 1D and 2D NMR. A hypothetical biogenetic pathway for houttuynoids A-E was proposed. Compounds 1-5 exhibited potent anti-HSV (herpes simplex viruses) activity.

  8. Cognitive and Learning Strategies for Longstanding Temporal Lobe Lesions in a Child Who Suffered from "Herpes Simplex" Virus Encephalitis: A Case Study over 10 Years

    ERIC Educational Resources Information Center

    van Schoor, A. N.; Naude, H.; van Rensburg, M.; Pretorius, E.; Boon, J. M.

    2004-01-01

    This article presents a case study indicating that "Herpes simplex" virus (HSV) encephalitis may cause permanent learning disabilities due to damage to the temporal lobes, as it discusses the results of a case study extending over 10 years to determine the long-term effects on both the anatomy of the brain and the intellectual functioning of the…

  9. Mimicking herpes simplex virus 1 and herpes simplex virus 2 mucosal behavior in a well-characterized human genital organ culture.

    PubMed

    Steukers, Lennert; Weyers, Steven; Yang, Xiaoyun; Vandekerckhove, Annelies P; Glorieux, Sarah; Cornelissen, Maria; Van den Broeck, Wim; Temmerman, Marleen; Nauwynck, Hans J

    2014-07-15

    We developed and morphologically characterized a human genital mucosa explant model (endocervix and ectocervix/vagina) to mimic genital herpes infections caused by herpes simplex virus types 1 (HSV-1) and 2 (HSV-2). Subsequent analysis of HSV entry receptor expression throughout the menstrual cycle in genital tissues was performed, and the evolution of HSV-1/-2 mucosal spread over time was assessed. Nectin-1 and -2 were expressed in all tissues during the entire menstrual cycle. Herpesvirus entry mediator expression was limited mainly to some connective tissue cells. Both HSV-1 and HSV-2 exhibited a plaque-wise mucosal spread across the basement membrane and induced prominent epithelial syncytia. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Split T-cell tolerance in herpes simplex virus-infected mice and its implication for anti-viral immunity.

    PubMed Central

    Nash, A A; Ashford, N P

    1982-01-01

    Mice simultaneously injected intravenously and subcutaneously with herpes simplex virus fail to adoptively transfer delayed hypersensitivity (DH) to syngeneic recipients. The transferred lymph node cells also failed to rapidly eliminate infectious herpes from the pinna, despite the presence of cytotoxic T cells in the transferred suspension. Both primary and secondary cytotoxic cell responses in the draining lymph node were unaffected by the inhibition of DH. The lymph nodes from DH tolerized mice also contain lymphocytes capable of undergoing a proliferative response in vitro to herpes antigens. In addition, a neutralizing antibody response with IgG antibodies against herpes are also present in DH tolerized mice. These data suggest a form of split T-cell tolerance in which only DH responses are directly compromised. The implication of these findings for the pathogenesis of herpes simplex virus is discussed. PMID:6279490

  11. Identification of two small RNAs within the first 1.5-kb of the herpes simplex virus type 1-encoded latency-associated transcript.

    PubMed

    Peng, Weiping; Vitvitskaia, Olga; Carpenter, Dale; Wechsler, Steven L; Jones, Clinton

    2008-01-01

    The herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) is abundantly expressed in latently infected neurons. In the rabbit or mouse ocular models of infection, expression of the first 1.5 kb of LAT coding sequences is sufficient for and necessary for wild-type levels of spontaneous reactivation from latency. The antiapoptosis functions of LAT, which maps to the same 1.5 kb of LAT, are important for the latency-reactivation cycle because replacement of LAT with other antiapoptosis genes (the baculovirus IAP gene or the bovine herpesvirus type 1 latency-related gene) restores wild-type levels of reactivation to a LAT null mutant. A recent study identified a micro-RNA within LAT that can inhibit apoptosis (Gupta et al, Nature 442: 82-85). In this study, the authors analyzed the first 1.5 kb of LAT for additional small RNAs that may have regulatory functions. Two LAT-specific small RNAs were detected in productively infected human neuroblastoma cells within the first 1.5 kb of LAT, in a region that is important for inhibiting apoptosis. Although these small RNAs possess extensive secondary structure and a stem-loop structure, bands migrating near 23 bases were not detected suggesting these small RNAs are not true micro-RNAs. Both of the small LAT-specific RNAs have the potential to base pair with the ICP4 mRNA. These two small LAT RNAs may play a role in the latency-reactivation cycle by reducing apoptosis and/or by reducing ICP4 RNA expression.

  12. Cornea lymphatics drive the CD8+ T-cell response to herpes simplex virus-1.

    PubMed

    Gurung, Hem R; Carr, Meghan M; Carr, Daniel J J

    2017-01-01

    Herpes simplex virus-1 (HSV-1) infection of the cornea induces vascular endothelial growth factor A (VEGF-A)-dependent lymphangiogenesis. However, the extent to which HSV-1-induced corneal lymphangiogenesis impacts the adaptive immune response has not been characterized. Here, we used floxed VEGF-A mice to study the importance of newly created corneal lymphatic vessels in the host adaptive immune response to infection. Whereas the mice infected with the parental virus (strain SC16) exhibited robust corneal lymphangiogenesis, mice that received the recombinant virus (SC16 ICP0-Cre) that expresses Cre recombinase under the control of infected cell protein 0 (ICP0), an HSV-1 immediate-early gene, showed a significant reduction in lymphangiogenesis. There was no difference in virus recovered from the cornea of mice infected with SC16 vs SC16 ICP0-Cre. However, viral loads were significantly elevated in the trigeminal ganglia (TG) of mice with reduced corneal lymphangiogenesis. The increase in viral titer correlated with a significant loss of HSV-1-specific CD8 + T cells that traffic to the TG of mice infected with the recombinant virus. Intrastromal delivery of size-exclusion dye (fluorescein isothiocyanate-dextran) revealed a time-dependent defect in the ability of the lymphatic vessels in SC16 ICP0-Cre-infected mice to transport soluble antigen from the cornea to the draining lymph nodes. We interpret these results to suggest that the newly created lymphatic vessels in the cornea driven by HSV-1 infection are critical in the delivery of soluble viral antigen to the draining lymph node and subsequent development of the CD8 + T-cell response to HSV-1.

  13. The Anti-Human Immunodeficiency Virus Drug Tenofovir, a Reverse Transcriptase Inhibitor, Also Targets the Herpes Simplex Virus DNA Polymerase.

    PubMed

    Andrei, Graciela; Gillemot, Sarah; Topalis, Dimitrios; Snoeck, Robert

    2018-02-14

    Genital herpes is an important cofactor for acquisition of human immunodeficiency virus (HIV) infection, and effective prophylaxis is a helpful strategy to halt both HIV and herpes simplex virus (HSV) transmission. The antiretroviral agent tenofovir, formulated as a vaginal microbicide gel, was shown to reduce the risk of HIV and HSV type 2 (HSV-2) acquisition. HSV type 1 (HSV-1) and HSV-2 mutants were selected for resistance to tenofovir and PMEO-DAPy (6-phosphonylmethoxyethoxy-2,4-diaminopyrimidine, an acyclic nucleoside phosphonate with dual anti-HSV and anti-HIV activity) by stepwise dose escalation. Several plaque-purified viruses were characterized phenotypically (drug resistance profiling) and genotypically (sequencing of the viral DNA polymerase gene). Tenofovir resistant and PMEO-DAPy-resistant viruses harbored specific amino acid substitutions associated with resistance not only to tenofovir and PMEO-DAPy but also to acyclovir and foscarnet. These amino acid changes (A719V, S724N, and L802F [HSV-1] and M789T and A724V [HSV-2]) were also found in clinical isolates recovered from patients refractory to acyclovir and/or foscarnet therapy or in laboratory-derived strains. A total of 10 (HSV-1) and 18 (HSV-2) well-characterized DNA polymerase mutants had decreased susceptibility to tenofovir and PMEO-DAPy. Tenofovir and PMEO-DAPy target the HSV DNA polymerase, and clinical isolates with DNA polymerase mutations emerging under acyclovir and/or foscarnet therapy showed cross-resistance to tenofovir and PMEO-DAPy. © The Author(s) 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  14. Identification of rep-associated factors in herpes simplex virus type 1-induced adeno-associated virus type 2 replication compartments.

    PubMed

    Nicolas, Armel; Alazard-Dany, Nathalie; Biollay, Coline; Arata, Loredana; Jolinon, Nelly; Kuhn, Lauriane; Ferro, Myriam; Weller, Sandra K; Epstein, Alberto L; Salvetti, Anna; Greco, Anna

    2010-09-01

    Adeno-associated virus (AAV) is a human parvovirus that replicates only in cells coinfected with a helper virus, such as adenovirus or herpes simplex virus type 1 (HSV-1). We previously showed that nine HSV-1 factors are able to support AAV rep gene expression and genome replication. To elucidate the strategy of AAV replication in the presence of HSV-1, we undertook a proteomic analysis of cellular and HSV-1 factors associated with Rep proteins and thus potentially recruited within AAV replication compartments (AAV RCs). This study resulted in the identification of approximately 60 cellular proteins, among which factors involved in DNA and RNA metabolism represented the largest functional categories. Validation analyses indicated that the cellular DNA replication enzymes RPA, RFC, and PCNA were recruited within HSV-1-induced AAV RCs. Polymerase delta was not identified but subsequently was shown to colocalize with Rep within AAV RCs even in the presence of the HSV-1 polymerase complex. In addition, we found that AAV replication is associated with the recruitment of components of the Mre11/Rad50/Nbs1 complex, Ku70 and -86, and the mismatch repair proteins MSH2, -3, and -6. Finally, several HSV-1 factors were also found to be associated with Rep, including UL12. We demonstrated for the first time that this protein plays a role during AAV replication by enhancing the resolution of AAV replicative forms and AAV particle production. Altogether, these analyses provide the basis to understand how AAV adapts its replication strategy to the nuclear environment induced by the helper virus.

  15. A herpes simplex virus type 1 mutant disrupted for microRNA H2 with increased neurovirulence and rate of reactivation

    PubMed Central

    Jiang, Xianzhi; Brown, Don; Osorio, Nelson; Hsiang, Chinhui; Li, Lily; Chan, Lucas; BenMohamed, Lbachir; Wechsler, Steven L.

    2015-01-01

    The herpes simplex virus type 1 (HSV-1) latency associated transcript (LAT) encodes several microRNAs. One of these, miR-H2, overlaps and is antisense to the ICP0 gene, and appears to decrease expression of the ICP0 protein. To determine if miR-H2 plays a role in the HSV-1 latency-reactivation cycle, we constructed a mutant, McK-ΔH2, in which this microRNA has been disrupted without altering the predicted amino acid sequence of ICP0. McK-ΔH2 produced increased amounts of ICP0. Although replication of McK-ΔH2 was similar to that of its wt McKrae parental virus in RS cells and mouse eyes, McK-ΔH2 was more neurovirulent in Swiss Webster mice than McKrae based on the percent of mice that died from herpes encephalitis following ocular infection. In addition, using a mouse TG explant model of induced reactivation, we show here for the first time that miR-H2 appears to play a role in modulating HSV-1 reactivation. Although the percent of TG from which virus reactivated by day 10 after explant was similar for McK-ΔH2, wt McKrae, and the marker rescued virus McK-ΔH2Res, at earlier times significantly more reactivation was seen with McK-ΔH2. Our results suggest that in the context of the virus, miR-H2 downregulates ICP0 and this moderates both HSV-1 neurovirulence and reactivation. PMID:25645379

  16. Identification of an ICP27-responsive element in the coding region of a herpes simplex virus type 1 late gene.

    PubMed

    Sedlackova, Lenka; Perkins, Keith D; Meyer, Julia; Strain, Anna K; Goldman, Oksana; Rice, Stephen A

    2010-03-01

    During productive herpes simplex virus type 1 (HSV-1) infection, a subset of viral delayed-early (DE) and late (L) genes require the immediate-early (IE) protein ICP27 for their expression. However, the cis-acting regulatory sequences in DE and L genes that mediate their specific induction by ICP27 are unknown. One viral L gene that is highly dependent on ICP27 is that encoding glycoprotein C (gC). We previously demonstrated that this gene is posttranscriptionally transactivated by ICP27 in a plasmid cotransfection assay. Based on our past results, we hypothesized that the gC gene possesses a cis-acting inhibitory sequence and that ICP27 overcomes the effects of this sequence to enable efficient gC expression. To test this model, we systematically deleted sequences from the body of the gC gene and tested the resulting constructs for expression. In so doing, we identified a 258-bp "silencing element" (SE) in the 5' portion of the gC coding region. When present, the SE inhibits gC mRNA accumulation from a transiently transfected gC gene, unless ICP27 is present. Moreover, the SE can be transferred to another HSV-1 gene, where it inhibits mRNA accumulation in the absence of ICP27 and confers high-level expression in the presence of ICP27. Thus, for the first time, an ICP27-responsive sequence has been identified in a physiologically relevant ICP27 target gene. To see if the SE functions during viral infection, we engineered HSV-1 recombinants that lack the SE, either in a wild-type (WT) or ICP27-null genetic background. In an ICP27-null background, deletion of the SE led to ICP27-independent expression of the gC gene, demonstrating that the SE functions during viral infection. Surprisingly, the ICP27-independent gC expression seen with the mutant occurred even in the absence of viral DNA synthesis, indicating that the SE helps to regulate the tight DNA replication-dependent expression of gC.

  17. Herpes B Virus, Macacine Herpesvirus 1, Breaks Simplex Virus Tradition via Major Histocompatibility Complex Class I Expression in Cells from Human and Macaque Hosts

    PubMed Central

    Vasireddi, Mugdha

    2012-01-01

    B virus of the family Herpesviridae is endemic to rhesus macaques but results in 80% fatality in untreated humans who are zoonotically infected. Downregulation of major histocompatibility complex (MHC) class I in order to evade CD8+ T-cell activation is characteristic of most herpesviruses. Here we examined the cell surface presence and total protein expression of MHC class I molecules in B virus-infected human foreskin fibroblast cells and macaque kidney epithelial cells in culture, which are representative of foreign and natural host initial target cells of B virus. Our results show <20% downregulation of surface MHC class I molecules in either type of host cells infected with B virus, which is statistically insignificantly different from that observed in uninfected cells. We also examined the surface expression of MHC class Ib molecules, HLA-E and HLA-G, involved in NK cell inhibition. Our results showed significant upregulation of HLA-E and HLA-G in host cells infected with B virus relative to the amounts observed in other herpesvirus-infected cells. These results suggest that B virus-infected cell surfaces maintain normal levels of MHC class Ia molecules, a finding unique among simplex viruses. This is a unique divergence in immune evasion for B virus, which, unlike human simplex viruses, does not inhibit the transport of peptides for loading onto MHC class Ia molecules because B virus ICP47 lacks a transporter-associated protein binding domain. The fact that MHC class Ib molecules were significantly upregulated has additional implications for host-pathogen interactions. PMID:22973043

  18. Anatomic viral detection is automated: the application of a robotic molecular pathology system for the detection of DNA viruses in anatomic pathology substrates, using immunocytochemical and nucleic acid hybridization techniques.

    PubMed Central

    Montone, K. T.; Brigati, D. J.; Budgeon, L. R.

    1989-01-01

    This paper presents the first automated system for simultaneously detecting human papilloma, herpes simplex, adenovirus, or cytomegalovirus viral antigens and gene sequences in standard formalin-fixed, paraffin-embedded tissue substrates and tissue culture. These viruses can be detected by colorimetric in situ nucleic acid hybridization, using biotinylated DNA probes, or by indirect immunoperoxidase techniques, using polyclonal or monoclonal antibodies, in a 2.0-hour assay performed at a single automated robotic workstation. Images FIG. 1 FIG. 4 FIG. 5 FIG. 6 FIG. 7 FIG. 8 FIG. 9 FIG. 10 FIG. 11 PMID:2773514

  19. Antiviral Drug-Resistance Typing Reveals Compartmentalization and Dynamics of Acyclovir-Resistant Herpes Simplex Virus Type-2 (HSV-2) in a Case of Neonatal Herpes.

    PubMed

    Bache, Manon; Andrei, Graciela; Bindl, Lutz; Bofferding, Léon; Bottu, Jean; Géron, Christine; Neuhäuser, Christoph; Gillemot, Sarah; Fiten, Pierre; Opdenakker, Ghislain; Snoeck, Robert

    2014-06-01

    A neonate suffering from herpes simplex virus type 2 disease with central nervous system involvement developed an early recurrence under acyclovir therapy. Isolates from the cerebrospinal fluid and skin lesions were acyclovir resistant, while viruses from blood and trachea were not. Acyclovir combined with foscavir followed by long-term suppressive acyclovir therapy supported normal neurological development. © The Author 2013. Published by Oxford University Press on behalf of the Pediatric Infectious Diseases Society. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Identification and Characterization of the UL37 Protein of Herpes Simplex Virus Type 1 and Demonstration that it Interacts with ICP8, the Major DNA Binding Protein of Herpes Simplex Virus

    DTIC Science & Technology

    1992-10-20

    Identification of ORFs HSV DNA binding proteins • 1 3 3 5 7 7 11 17 18 22 reps and its role in HSV replication 23 Biochemical properties . . 23...Figure 1 . 2. 3 • 4. 5. 6. 7. 8. Structural model of the herpesvirus virion Schematic diagram of HSV pathogenesis . Diagram of the main...vaccinia virus- 13. Autoradiogram of an immunoblot of HSV - 1 -infected cell proteins harvested at various times postinfec- 85 tioD probed with anti-UL42

  1. The fusion loops and membrane proximal region of Epstein-Barr virus glycoprotein B (gB) can function in the context of herpes simplex virus 1 gB when substituted individually but not in combination.

    PubMed

    Zago, Anna; Connolly, Sarah A; Spear, Patricia G; Longnecker, Richard

    2013-01-01

    Among the herpesvirus glycoprotein B (gB) fusion proteins, the hydrophobic content of fusion loops and membrane proximal regions (MPRs) are inversely correlated with each other. We examined the functional importance of the hydrophobicity of these regions by replacing them in herpes simplex virus type 1 gB with corresponding regions from Epstein-Barr virus gB. We show that fusion activity is dependent on the structural context in which the specific loops and MPR sequences exist, rather than a simple hydrophobic relationship. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. The pathogenicity of thymidine kinase-deficient mutants of herpes simplex virus in mice.

    PubMed Central

    Field, H. J.; Wildy, P.

    1978-01-01

    The pathogenicity for mice of two mutants of herpes simplex virus (type 1 and type 2), which fail to induce thymidine kinase, were compared with their respective parent strains. The mutants were much less virulent than the parents following either intracerebral or peripheral inoculation. The replication of the virus at the site of inoculation and its progression into the nervous system were studied. Following a very large inoculum in the ear, the type 1 mutant was found to establish a latent infection in the cervical dorsal root ganglia. Mice inoculated intracerebrally with small doses of the mutant viruses were solidly immune to challenge with lethal doses of the parent strain. PMID:212476

  3. The pathogenicity of thymidine kinase-deficient mutants of herpes simplex virus in mice.

    PubMed

    Field, H J; Wildy, P

    1978-10-01

    The pathogenicity for mice of two mutants of herpes simplex virus (type 1 and type 2), which fail to induce thymidine kinase, were compared with their respective parent strains. The mutants were much less virulent than the parents following either intracerebral or peripheral inoculation. The replication of the virus at the site of inoculation and its progression into the nervous system were studied. Following a very large inoculum in the ear, the type 1 mutant was found to establish a latent infection in the cervical dorsal root ganglia. Mice inoculated intracerebrally with small doses of the mutant viruses were solidly immune to challenge with lethal doses of the parent strain.

  4. Genital herpes simplex.

    PubMed

    Tummon, I S; Dudley, D K; Walters, J H

    1981-07-01

    Genital herpes is a sexually transmitted disease caused by the herpes simplex virus. Following the initial infection the virus becomes latent in the sacral ganglia. Approximately 80% of patients are then subject to milder but unpredictable recurrences and may shed the virus even when they are asymptomatic. The disorder causes concern because genital herpes in the mother can result in rare but catastrophic neonatal infection and because of a possible association between genital herpes and cancer of the cervix. No effective treatment is as yet available. Weekly monitoring for virus by cervical culture from 32 weeks' gestation is recommended for women with a history of genital herpes and for those whose sexual partner has such a history.

  5. Bcl-2 Blocks a Caspase-Dependent Pathway of Apoptosis Activated by Herpes Simplex Virus 1 Infection in HEp-2 Cells

    PubMed Central

    Galvan, Veronica; Brandimarti, Renato; Munger, Joshua; Roizman, Bernard

    2000-01-01

    Earlier reports have shown that herpes simplex virus 1 (HSV-1) mutants induce programmed cell death and that wild-type virus blocks the execution of the cell death program triggered by expression of viral genes, by the Fas and tumor necrosis factor pathways, or by nonspecific stress agents. In particular, an earlier report from this laboratory showed that the mutant virus d120 lacking the genes encoding infected cell protein 4 (ICP4), the major regulatory protein of the virus, induces a caspase-3-independent pathway of apoptosis in human SK-N-SH cells. Here we report that the pathway of apoptosis induced by the d120 mutant in human HEp-2 cells is caspase dependent. Specifically, in HEp-2 cells infected with d120, (i) a broad-range inhibitor of caspase activity, z-vad-FMK, efficiently blocked DNA fragmentation, (ii) cytochrome c was released into the cytoplasm, (iii) caspase-3 was activated inasmuch as poly(ADP-ribose) polymerase was cleaved, and (iv) chromatin condensation and fragmentation of cellular DNA were observed. In parallel studies, HEp-2 cells were transfected with a plasmid encoding human Bcl-2 and a clone (VAX-3) expressing high levels of Bcl-2 was selected. This report shows that Bcl-2 blocked all of the manifestations associated with programmed cell death caused by infection with the d120 mutant. Consistent with their resistance to programmed cell death, VAX-3 cells overproduced infected cell protein 0 (ICP0). An unexpected observation was that ICP0 encoded by the d120 mutant accumulated late in infection in small, quasi-uniform vesicle-like structures in all cell lines tested. Immunofluorescence-based colocalization studies indicated that these structures were not mitochondria or components of the endoplasmic reticulum or the late endosomal compartment. These studies affirm the conclusion that HSV can induce programmed cell death at multiple steps in the course of its replication, that the d120 mutant can induce both caspase-dependent and -independent pathways of programmed cell death, and that virus-induced stimuli of programmed cell death may differ with respect to the pathway that they activate. PMID:10644366

  6. Herpes simplex virus mutant generation and dual-detection methods for gaining insight into latent/lytic cycles in vivo.

    PubMed

    Sawtell, Nancy M; Thompson, Richard L

    2014-01-01

    Two important components to a useful strategy to examine viral gene regulation in vivo are (1) a highly efficient protocol to generate viral mutants that limits undesired mutation and retains full replication competency in vivo and (2) an efficient system to detect and quantify viral promoter activity in rare cells in vivo. Our strategy and protocols for generating, characterizing, and employing HSV viral promoter/reporter mutants in vivo are provided in this two-part chapter.

  7. Worldwide occurrence of virus-infections in filamentous marine brown algae

    NASA Astrophysics Data System (ADS)

    Müller, D. G.; Stache, B.

    1992-03-01

    Virus infections were detected in Ectocarpus siliculosus and Ectocarpus fasciculatus on the coasts of Ireland, California, Peru, southern South America, Australia and New Zealand; in three Feldmannia species on the coasts of Ireland, continental Chile and Archipelago Juan Fernandez (Chile); and in Leptonematella from Antarctica. Natural populations on the Irish coast contained 3% infected plants in E. fasciculatus, and less than 1% in Feldmannia simplex. On the Californian coast, 15 to 25% of Ectocarpus isolates were infected. Virus symptoms were absent in E. siliculosus from Peru, but appeared after meiosis in laboratory cultures. The virus particles in E. fasciculatus are identical in size and capsid structure to those reported for E. siliculosus, while the virus in F. simplex is smaller and has a different envelope. Our findings suggest that virus infections are a common and worldwide phenomenon in filamentous brown algae.

  8. Isolation of pyropheophorbide a from the leaves of Atalantia monophylla (ROXB.) CORR. (Rutaceae) as a possible antiviral active principle against herpes simplex virus type 2.

    PubMed

    Chansakaow, S; Ruangrungsi, N; Ishikawa, T

    1996-07-01

    Antiviral activity-guided isolation studies on the leaves of Atalantia monophylla (ROXB.) CORR. (Rutaceae) led to the identification of pyropheophorbide a (1), a simple chlorin derivative, from the chloroform extract (fr. B) as a possible antiviral active principle against herpes simplex virus type 2 (HSV-2). Pyropheophorbide a methyl ester (2) was also isolated from the hexane extract (fr. A).

  9. A comparison of herpes simplex virus type 1 and varicella-zoster virus latency and reactivation.

    PubMed

    Kennedy, Peter G E; Rovnak, Joel; Badani, Hussain; Cohrs, Randall J

    2015-07-01

    Herpes simplex virus type 1 (HSV-1; human herpesvirus 1) and varicella-zoster virus (VZV; human herpesvirus 3) are human neurotropic alphaherpesviruses that cause lifelong infections in ganglia. Following primary infection and establishment of latency, HSV-1 reactivation typically results in herpes labialis (cold sores), but can occur frequently elsewhere on the body at the site of primary infection (e.g. whitlow), particularly at the genitals. Rarely, HSV-1 reactivation can cause encephalitis; however, a third of the cases of HSV-1 encephalitis are associated with HSV-1 primary infection. Primary VZV infection causes varicella (chickenpox) following which latent virus may reactivate decades later to produce herpes zoster (shingles), as well as an increasingly recognized number of subacute, acute and chronic neurological conditions. Following primary infection, both viruses establish a latent infection in neuronal cells in human peripheral ganglia. However, the detailed mechanisms of viral latency and reactivation have yet to be unravelled. In both cases latent viral DNA exists in an 'end-less' state where the ends of the virus genome are joined to form structures consistent with unit length episomes and concatemers, from which viral gene transcription is restricted. In latently infected ganglia, the most abundantly detected HSV-1 RNAs are the spliced products originating from the primary latency associated transcript (LAT). This primary LAT is an 8.3 kb unstable transcript from which two stable (1.5 and 2.0 kb) introns are spliced. Transcripts mapping to 12 VZV genes have been detected in human ganglia removed at autopsy; however, it is difficult to ascribe these as transcripts present during latent infection as early-stage virus reactivation may have transpired in the post-mortem time period in the ganglia. Nonetheless, low-level transcription of VZV ORF63 has been repeatedly detected in multiple ganglia removed as close to death as possible. There is increasing evidence that HSV-1 and VZV latency is epigenetically regulated. In vitro models that permit pathway analysis and identification of both epigenetic modulations and global transcriptional mechanisms of HSV-1 and VZV latency hold much promise for our future understanding in this complex area. This review summarizes the molecular biology of HSV-1 and VZV latency and reactivation, and also presents future directions for study.

  10. A comparison of herpes simplex virus type 1 and varicella-zoster virus latency and reactivation

    PubMed Central

    Kennedy, Peter G. E.; Rovnak, Joel; Badani, Hussain

    2015-01-01

    Herpes simplex virus type 1 (HSV-1; human herpesvirus 1) and varicella-zoster virus (VZV; human herpesvirus 3) are human neurotropic alphaherpesviruses that cause lifelong infections in ganglia. Following primary infection and establishment of latency, HSV-1 reactivation typically results in herpes labialis (cold sores), but can occur frequently elsewhere on the body at the site of primary infection (e.g. whitlow), particularly at the genitals. Rarely, HSV-1 reactivation can cause encephalitis; however, a third of the cases of HSV-1 encephalitis are associated with HSV-1 primary infection. Primary VZV infection causes varicella (chickenpox) following which latent virus may reactivate decades later to produce herpes zoster (shingles), as well as an increasingly recognized number of subacute, acute and chronic neurological conditions. Following primary infection, both viruses establish a latent infection in neuronal cells in human peripheral ganglia. However, the detailed mechanisms of viral latency and reactivation have yet to be unravelled. In both cases latent viral DNA exists in an ‘end-less’ state where the ends of the virus genome are joined to form structures consistent with unit length episomes and concatemers, from which viral gene transcription is restricted. In latently infected ganglia, the most abundantly detected HSV-1 RNAs are the spliced products originating from the primary latency associated transcript (LAT). This primary LAT is an 8.3 kb unstable transcript from which two stable (1.5 and 2.0 kb) introns are spliced. Transcripts mapping to 12 VZV genes have been detected in human ganglia removed at autopsy; however, it is difficult to ascribe these as transcripts present during latent infection as early-stage virus reactivation may have transpired in the post-mortem time period in the ganglia. Nonetheless, low-level transcription of VZV ORF63 has been repeatedly detected in multiple ganglia removed as close to death as possible. There is increasing evidence that HSV-1 and VZV latency is epigenetically regulated. In vitro models that permit pathway analysis and identification of both epigenetic modulations and global transcriptional mechanisms of HSV-1 and VZV latency hold much promise for our future understanding in this complex area. This review summarizes the molecular biology of HSV-1 and VZV latency and reactivation, and also presents future directions for study. PMID:25794504

  11. Human Antiviral Protein IFIX Suppresses Viral Gene Expression during Herpes Simplex Virus 1 (HSV-1) Infection and Is Counteracted by Virus-induced Proteasomal Degradation.

    PubMed

    Crow, Marni S; Cristea, Ileana M

    2017-04-01

    The interferon-inducible protein X (IFIX), a member of the PYHIN family, was recently recognized as an antiviral factor against infection with herpes simplex virus 1 (HSV-1). IFIX binds viral DNA upon infection and promotes expression of antiviral cytokines. How IFIX exerts its host defense functions and whether it is inhibited by the virus remain unknown. Here, we integrated live cell microscopy, proteomics, IFIX domain characterization, and molecular virology to investigate IFIX regulation and antiviral functions during HSV-1 infection. We find that IFIX has a dynamic localization during infection that changes from diffuse nuclear and nucleoli distribution in uninfected cells to discrete nuclear puncta early in infection. This is rapidly followed by a reduction in IFIX protein levels. Indeed, using immunoaffinity purification and mass spectrometry, we define IFIX interactions during HSV-1 infection, finding an association with a proteasome subunit and proteins involved in ubiquitin-proteasome processes. Using synchronized HSV-1 infection, microscopy, and proteasome-inhibition experiments, we demonstrate that IFIX co-localizes with nuclear proteasome puncta shortly after 3 h of infection and that its pyrin domain is rapidly degraded in a proteasome-dependent manner. We further demonstrate that, in contrast to several other host defense factors, IFIX degradation is not dependent on the E3 ubiquitin ligase activity of the viral protein ICP0. However, we show IFIX degradation requires immediate-early viral gene expression, suggesting a viral host suppression mechanism. The IFIX interactome also demonstrated its association with transcriptional regulatory proteins, including the 5FMC complex. We validate this interaction using microscopy and reciprocal isolations and determine it is mediated by the IFIX HIN domain. Finally, we show IFIX suppresses immediate-early and early viral gene expression during infection. Altogether, our study demonstrates that IFIX antiviral functions work in part via viral transcriptional suppression and that HSV-1 has acquired mechanisms to block its functions via proteasome-dependent degradation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Polyhydroxylated sulfated steroids derived from 5α-cholestanes as antiviral agents against herpes simplex virus.

    PubMed

    Pujol, Carlos A; Sepúlveda, Claudia S; Richmond, Victoria; Maier, Marta S; Damonte, Elsa B

    2016-07-01

    Twelve polyhydroxylated sulfated steroids synthesized from a 5α-cholestane skeleton with different substitutions in C-2, C-3 and C-6 were evaluated for cytotoxicity and antiviral activity against herpes simplex virus (HSV) by a virus plaque reduction assay. Four compounds elicited a selective inhibitory effect against HSV. The disodium salt of 2β,3α-dihydroxy-6E-hydroximine-5α-cholestane-2,3-disulfate, named compound 7, was the most effective inhibitor of HSV-1, HSV-2 and pseudorabies virus (PrV) strains, including acyclovir-resistant variants, in human and monkey cell lines. Preliminary mechanistic studies demonstrated that compound 7 did not affect the initial steps of virus entry but inhibited a subsequent event in the infection process of HSV.

  13. Patient recognition of recrudescent herpes labialis: a clinical and virological assessment.

    PubMed

    Lamey, P J; Biagioni, P A

    1996-09-01

    The purpose of this study was to ascertain how accurate the general public was at diagnosing the condition of recrudescent herpes labialis. An advertisement was placed in a local newspaper inviting patients to attend the Oral Medicine Clinic as soon as they thought they developed the clinically evident stage of herpes labialis. At the clinic, patients were examined to confirm the clinical presence of herpes labialis and also had a swab of the lesion(s) taken for virus culture. Virus culture was by the HEP-2 culture technique capable of detecting both herpes simplex Type 1 and herpes simplex Type 2. Patients also completed a detailed questionnaire concerning their knowledge of herpes labialis. In total, 41 patients attended for screening. The findings were that all patients had clinical herpes labialis, and herpes simplex virus was isolated in 96% of cases. In contrast, in only about 50% of cases were patients aware that their herpes labialis was caused by a virus. The general public are very good at recognizing herpes labialis lesions but need to be given more information about their infectivity.

  14. Long term persistence of herpes simplex virus-specific CD8+ CTL in persons with frequently recurring genital herpes.

    PubMed

    Posavad, C M; Huang, M L; Barcy, S; Koelle, D M; Corey, L

    2000-07-15

    Herpes simplex virus (HSV) establishes a lifelong infection in humans. Reactivation of latent virus occurs intermittently so that the immune system is frequently exposed to viral Ag, providing an opportunity to evaluate memory T cells to a persistent human pathogen. We studied the persistence of genital herpes lesion-derived HSV-specific CD8+ CTL from three immunocompetent individuals with frequently recurring genital HSV-2 infection. All CTL clones were HSV-2 type specific and only one to three unique clonotypes were identified from any single biopsy specimen. The TCRBV genes utilized by these clonotypes were sequenced, and clonotype-specific probes were used to longitudinally track these clonotypes in PBMC and genital lesions. CTL clonotypes were consistently detected in PBMC and lesions for at least 2 and up to 7 years, and identical clonotypes infiltrated herpes lesions spaced as long as 7.5 years apart. Moreover, these clones were functionally lytic in vivo over these time periods. Additionally, CTL clones killed target cells infected with autologous viral isolates obtained 6.5 years after CTL clones were established, suggesting that selective pressure by these CTL did not result in the mutation of CTL epitopes. Thus, HSV recurs in the face of persistent CD8+ CTL with no evidence of clonal exhaustion or mutation of CTL epitopes as mechanisms of viral persistence.

  15. Preclinical Evaluation of Engineered Oncolytic Herpes Simplex Virus for the Treatment of Neuroblastoma

    PubMed Central

    Gillory, Lauren A.; Megison, Michael L.; Stewart, Jerry E.; Mroczek-Musulman, Elizabeth; Nabers, Hugh C.; Waters, Alicia M.; Kelly, Virginia; Coleman, Jennifer M.; Markert, James M.; Gillespie, G. Yancey; Friedman, Gregory K.; Beierle, Elizabeth A.

    2013-01-01

    Despite intensive research efforts and therapeutic advances over the last few decades, the pediatric neural crest tumor, neuroblastoma, continues to be responsible for over 15% of pediatric cancer deaths. Novel therapeutic options are needed for this tumor. Recently, investigators have shown that mice with syngeneic murine gliomas treated with an engineered, neuroattenuated oncolytic herpes simplex virus-1 (oHSV), M002, had a significant increase in survival. M002 has deletions in both copies of the γ134.5 gene, enabling replication in tumor cells but precluding infection of normal neural cells. We hypothesized that M002 would also be effective in the neural crest tumor, neuroblastoma. We showed that M002 infected, replicated, and decreased survival in neuroblastoma cell lines. In addition, we showed that in murine xenografts, treatment with M002 significantly decreased tumor growth, and that this effect was augmented with the addition of ionizing radiation. Importantly, survival could be increased by subsequent doses of radiation without re-dosing of the virus. Finally, these studies showed that the primary entry protein for oHSV, CD111 was expressed by numerous neuroblastoma cell lines and was also present in human neuroblastoma specimens. We concluded that M002 effectively targeted neuroblastoma and that this oHSV may have potential for use in children with unresponsive or relapsed neuroblastoma. PMID:24130898

  16. The serum and glucocorticoid-regulated protein kinases (SGK) stimulate bovine herpesvirus 1 and herpes simplex virus 1 productive infection.

    PubMed

    Kook, Insun; Jones, Clinton

    2016-08-15

    Serum and glucocorticoid-regulated protein kinases (SGK) are serine/threonine protein kinases that contain a catalytic domain resembling other protein kinases: AKT/protein kinase B, protein kinase A, and protein kinase C-Zeta for example. Unlike these constitutively expressed protein kinases, SGK1 RNA and protein levels are increased by growth factors and corticosteroids. Stress can directly stimulate SGK1 levels as well as stimulate bovine herpesvirus 1 (BoHV-1) and herpes simplex virus 1 (HSV-1) productive infection and reactivation from latency suggesting SGK1 can stimulate productive infection. For the first time, we provide evidence that a specific SGK inhibitor (GSK650394) significantly reduced BoHV-1 and HSV-1 replication in cultured cells. Proteins encoded by the three BoHV-1 immediate early genes (bICP0, bICP4, and bICP22) and two late proteins (VP16 and gE) were consistently reduced by GSK650394 during early stages of productive infection. In summary, these studies suggest SGK may stimulate viral replication following stressful stimuli. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Herpes Simplex Virus DNA Packaging without Measurable DNA Synthesis

    PubMed Central

    Church, Geoffrey A.; Dasgupta, Anindya; Wilson, Duncan W.

    1998-01-01

    Herpes simplex virus (HSV) type 1 DNA synthesis and packaging occur within the nuclei of infected cells; however, the extent to which the two processes are coupled remains unclear. Correct packaging is thought to be dependent upon DNA debranching or other repair processes, and such events commonly involve new DNA synthesis. Furthermore, the HSV UL15 gene product, essential for packaging, nevertheless localizes to sites of active DNA replication and may link the two events. It has previously been difficult to determine whether packaging requires concomitant DNA synthesis due to the complexity of these processes and of the viral life cycle; however, we have recently described a model system which simplifies the study of HSV assembly. Cells infected with HSV strain tsProt.A accumulate unpackaged capsids at the nonpermissive temperature of 39°C. Following release of the temperature block, these capsids proceed to package viral DNA in a single, synchronous wave. Here we report that, when DNA replication was inhibited prior to release of the temperature block, DNA packaging and later events in viral assembly nevertheless occurred at near-normal levels. We conclude that, under our conditions, HSV DNA packaging does not require detectable levels of DNA synthesis. PMID:9525593

  18. Sequential detection of different antigens induced by Epstein-Barr virus and herpes simplex virus in the same Western blot by using dual antibody probes.

    PubMed

    Lin, J C; Pagano, J S

    1986-08-01

    A dual antibody probing technique that permitted a color-coded identification of polypeptides representing different classes of Epstein-Barr virus (EBV) antigens as well as differentiation of the polypeptides induced by different herpesviruses in the same Western blot was developed. When the nitrocellulose sheet was probed first with monoclonal antibody against EBV early antigen diffuse component (EA-D) and then stained with 4-chloro-1-naphthol, four polypeptides specific for EA-D were identified by purple bands. Subsequently, the same nitrocellulose sheet was reprobed with human serum containing antibodies against EBV early antigen, viral capsid antigen, and nuclear antigen and stained with 3,3'-diaminobenzidine. Several brown bands corresponding to early, viral capsid, and nuclear antigen polypeptides were detected. The dual antibody probing technique was used in an analysis to differentiate polypeptides resulting from either EBV or herpes simplex virus infection, either in cells infected by individual virus or in a cell line dually infected by both viruses. On the basis of different colored bands in different lanes of the same gel, 20 polypeptides with molecular weights ranging from 31,000 to 165,000 were identified as herpes simplex virus-specific proteins. These results suggested that the dual antibody probing technique may be applicable in clinical diagnosis for detecting antigens and antibodies derived from different pathogens.

  19. Nucleotide sequences of Herpes Simplex Virus type 1 (HSV-1) affecting virus entry, cell fusion, and production of glycoprotein gB (VP7)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeLuca, N.; Bzik, D.J.; Bond, V.C.

    1982-10-30

    The tsB5 strain of Herpes Simplex Virus type 1 (HSV-1) contains at least two mutations; one mutation specifies the syncytial phenotype and the other confers temperature sensitivity for virus growth. These functions are known to be located between the prototypic map coordinates 0.30 and 0.42. In this study it was demonstrated that tsB5 enters human embryonic lung (HEL) cells more rapidly than KOS, another strain of HSV-1. The EcoRI restriction fragment F from the KOS strain (map coordinates 0.315 to 0.421) was mapped with eight restriction endonucleases, and 16 recombinant plasmids were constructed which contained varying portions of the KOSmore » genome. Recombinant viruses were generated by marker-rescue and marker-transfer cotransfection procedures, using intact DNA from one strain and a recombinant plasmid containing DNA from the other strain. The region of the crossover between the two nonisogenic strains was inferred by the identification of restriction sites in the recombinants that were characteristic of the parental strains. The recombinants were subjected to phenotypic analysis. Syncytium formation, rate of virus entry, and the production of gB were all separable by the crossovers that produced the recombinants. The KOS sequences which rescue the syncytial phenotype of tsB5 were localized to 1.5 kb (map coordinates 0.345 to 0.355), and the temperature-sensitive mutation was localized to 1.2 kb (0.360 to 0.368), giving an average separation between the mutations of 2.5 kb on the 150-kb genome. DNA sequences that specify a functional domain for virus entry were localized to the nucleotide sequences between the two mutations. All three functions could be encoded by the virus gene specifying the gB glycoprotein.« less

  20. Antigenic Relationships Among Four Herpesviruses

    PubMed Central

    Blue, W. T.; Plummer, G.

    1973-01-01

    Common viral antigens were detected, by fluorescent-antibody studies, in cells infected with herpes simplex virus 1, squirrel monkey herpesvirus 1, bovine rhinotracheitis, and equine abortion viruses. The two primate viruses showed slight cross-neutralization. PMID:4351969

  1. Mouse superkiller-2-like helicase DDX60 is dispensable for type I IFN induction and immunity to multiple viruses.

    PubMed

    Goubau, Delphine; van der Veen, Annemarthe G; Chakravarty, Probir; Lin, Rongtuan; Rogers, Neil; Rehwinkel, Jan; Deddouche, Safia; Rosewell, Ian; Hiscott, John; Reis E Sousa, Caetano

    2015-12-01

    IFN-α/β allow cells to fight virus infection by inducing the expression of many genes that encode effectors of antiviral defense. One of these, the Ski2-like DExH-box helicase DDX60, was recently implicated in resistance of human cells to hepatitis C virus, as well as in induction of IFN-α/β by retinoic acid inducible gene 1-like receptors (RLRs) that detect the presence of RNA viruses in a cell-intrinsic manner. Here, we sought to investigate the role of DDX60 in IFN-α/β induction and in resistance to virus infection. Analysis of fibroblasts and myeloid cells from Ddx60-deficient mice revealed no impairment in IFN-α/β production in response to RLR agonists, RNA viruses, or other stimuli. Moreover, overexpression of DDX60 did not potentiate IFN induction and DDX60 did not interact with RLRs or capture RLR agonists from virally infected cells. We also failed to identify any impairment in Ddx60-deficient murine cells or mice in resistance to infection with influenza A virus, encephalomyocarditis virus, Sindbis virus, vaccinia virus, or herpes simplex virus-1. These results put in question the reported role of DDX60 as a broad-acting positive regulator of RLR responses and hint at the possibility that it may function as a restriction factor highly specific for a particular virus or class of viruses. © 2015 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Glutamine Deprivation Causes Enhanced Plating Efficiency of a Herpes Simplex Virus Type 1 ICP0-Null Mutant ▿

    PubMed Central

    Bringhurst, Ryan M.; Dominguez, Antonia A.; Schaffer, Priscilla A.

    2008-01-01

    Isoleucine deprivation of cellular monolayers prior to infection has been reported to result in partial complementation of a herpes simplex virus type 1 (HSV-1) ICP0 null (ICP0−) mutant. We now report that glutamine deprivation alone is able to enhance the plating efficiency of an ICP0− virus and that isoleucine deprivation has little or no effect. Because a low glutamine level is associated with stress and because stress is known to induce reactivation, low levels of glutamine may be relevant to the reactivation of HSV-1 from latency. Additionally, we demonstrate that arginine and methionine deprivation result in partial complementation of the ICP0− virus. PMID:18768961

  3. Burning mouth syndrome due to herpes simplex virus type 1.

    PubMed

    Nagel, Maria A; Choe, Alexander; Traktinskiy, Igor; Gilden, Don

    2015-04-01

    Burning mouth syndrome is characterised by chronic orofacial burning pain. No dental or medical cause has been found. We present a case of burning mouth syndrome of 6 months duration in a healthy 65-year-old woman, which was associated with high copy numbers of herpes simplex virus type 1 (HSV-1) DNA in the saliva. Her pain resolved completely after antiviral treatment with a corresponding absence of salivary HSV-1 DNA 4 weeks and 6 months later. 2015 BMJ Publishing Group Ltd.

  4. Identification of B Cells as a Major Site for Cyprinid Herpesvirus 3 Latency

    PubMed Central

    Reed, Aimee N.; Izume, Satoko; Dolan, Brian P.; LaPatra, Scott; Kent, Michael; Dong, Jing

    2014-01-01

    ABSTRACT Cyprinid herpesvirus 3 (CyHV-3), commonly known as koi herpesvirus (KHV), is a member of the Alloherpesviridae, and is a recently discovered emerging herpesvirus that is highly pathogenic for koi and common carp. Our previous study demonstrated that CyHV-3 becomes latent in peripheral white blood cells (WBC). In this study, CyHV-3 latency was further investigated in IgM+ WBC. The presence of the CyHV-3 genome in IgM+ WBC was about 20-fold greater than in IgM− WBC. To determine whether CyHV-3 expressed genes during latency, transcription from all eight open reading frames (ORFs) in the terminal repeat was investigated in IgM+ WBC from koi with latent CyHV-3 infection. Only a spliced ORF6 transcript was found to be abundantly expressed in IgM+ WBC from CyHV-3 latently infected koi. The spliced ORF6 transcript was also detected in vitro during productive infection as early as 1 day postinfection. The ORF6 transcript from in vitro infection begins at −127 bp upstream of the ATG codon and ends +188 bp downstream of the stop codon, +20 bp downstream of the polyadenylation signal. The hypothetical protein of ORF6 contains a consensus sequence with homology to a conserved domain of EBNA-3B and ICP4 from Epstein-Barr virus and herpes simplex virus 1, respectively, both members of the Herpesviridae. This is the first report of latent CyHV-3 in B cells and identification of gene transcription during latency for a member of the Alloherpesviridae. IMPORTANCE This is the first demonstration that a member of the Alloherpesviridae, cyprinid herpesvirus 3 (CyHV-3), establishes a latent infection in the B cells of its host, Cyprinus carpio. In addition, this is the first report of identification of gene transcription during latency for a member of Herpesvirales outside Herpesviridae. This is also the first report that the hypothetical protein of latent transcript of CyHV-3 contains a consensus sequence with homology to a conserved domain of EBNA-3B from Epstein-Barr virus and ICP4 from herpes simplex virus 1, which are genes important for latency. These strongly suggest that latency is evolutionally conserved across vertebrates. PMID:24899202

  5. Identification of B cells as a major site for cyprinid herpesvirus 3 latency.

    PubMed

    Reed, Aimee N; Izume, Satoko; Dolan, Brian P; LaPatra, Scott; Kent, Michael; Dong, Jing; Jin, Ling

    2014-08-01

    Cyprinid herpesvirus 3 (CyHV-3), commonly known as koi herpesvirus (KHV), is a member of the Alloherpesviridae, and is a recently discovered emerging herpesvirus that is highly pathogenic for koi and common carp. Our previous study demonstrated that CyHV-3 becomes latent in peripheral white blood cells (WBC). In this study, CyHV-3 latency was further investigated in IgM(+) WBC. The presence of the CyHV-3 genome in IgM(+) WBC was about 20-fold greater than in IgM(-) WBC. To determine whether CyHV-3 expressed genes during latency, transcription from all eight open reading frames (ORFs) in the terminal repeat was investigated in IgM(+) WBC from koi with latent CyHV-3 infection. Only a spliced ORF6 transcript was found to be abundantly expressed in IgM(+) WBC from CyHV-3 latently infected koi. The spliced ORF6 transcript was also detected in vitro during productive infection as early as 1 day postinfection. The ORF6 transcript from in vitro infection begins at -127 bp upstream of the ATG codon and ends +188 bp downstream of the stop codon, +20 bp downstream of the polyadenylation signal. The hypothetical protein of ORF6 contains a consensus sequence with homology to a conserved domain of EBNA-3B and ICP4 from Epstein-Barr virus and herpes simplex virus 1, respectively, both members of the Herpesviridae. This is the first report of latent CyHV-3 in B cells and identification of gene transcription during latency for a member of the Alloherpesviridae. This is the first demonstration that a member of the Alloherpesviridae, cyprinid herpesvirus 3 (CyHV-3), establishes a latent infection in the B cells of its host, Cyprinus carpio. In addition, this is the first report of identification of gene transcription during latency for a member of Herpesvirales outside Herpesviridae. This is also the first report that the hypothetical protein of latent transcript of CyHV-3 contains a consensus sequence with homology to a conserved domain of EBNA-3B from Epstein-Barr virus and ICP4 from herpes simplex virus 1, which are genes important for latency. These strongly suggest that latency is evolutionally conserved across vertebrates. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  6. Herpes Simplex Virus-based gene Therapy Enhances the Efficacy of Mitomycin-C in the Treatment of Human Bladder Transitional Cell Carcinoma

    PubMed Central

    Mullerad, Michael; Bochner, Bernard H.; Adusumilli, Prasad S.; Bhargava, Amit; Kikuchi, Eiji; Hui-Ni, Chen; Kattan, Michael W.; Chou, Ting-Chao; Fong, Yuman

    2005-01-01

    Purpose Oncolytic replication-competent herpes simplex virus type-1 (HSV) mutants have the ability to replicate in and kill malignant cells. We have previously demonstrated the ability of replication-competent HSV to control bladder cancer growth in an orthotopic murine model. We hypothesized that a combination of a chemotherapeutic agent used for intravesical treatment - mitomycin-C (MMC) - and oncolytic HSV would exert a synergistic effect in the treatment of human transitional cell carcinoma (TCC). Materials and Methods We used the mutant HSV NV1066, which is deleted for viral genes ICP0 and ICP4 and selectively infects cancer cells, to treat TCC lines, KU19-19 and SKUB. Cell survival was determined by lactate dehydrogenase (LDH) assay for each agent as well as for drug-viral combinations from days 1 to 5. The isobologram method and the combination index method of Chou-Talalay were used to assess for synergistic effect. Results NV1066 enhanced MMC mediated cytotoxicity at all combinations tested for both KU19-19 and SKUB. Combination of both agents demonstrated a synergistic effect and allowed dose reduction by 12 and 10.4 times (NV1066) and by 3 and 156 times (MMC) in the treatment of KU19-19 and SKUB respectively, while achieving an estimated 90% cell kill. Conclusion These data provide the cellular basis for the clinical investigation of combined mitomycin-C and oncolytic HSV therapy in the treatment of bladder cancer. PMID:16006968

  7. A conserved carboxy-terminal domain in the major tegument structural protein VP22 facilitates virion packaging of a chimeric protein during productive herpes simplex virus 1 infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlegel, Elisabeth F.M.; Blaho, John A., E-mail: john.blaho@mssm.ed

    2009-05-10

    Recombinant virus HSV-1(RF177) was previously generated to examine tegument protein VP22 function by inserting the GFP gene into the gene encoding VP22. During a detailed analysis of this virus, we discovered that RF177 produces a novel fusion protein between the last 15 amino acids of VP22 and GFP, termed GCT-VP22. Thus, the VP22 carboxy-terminal specific antibody 22-3 and two anti-GFP antibodies reacted with an approximately 28 kDa protein from RF177-infected Vero cells. GCT-VP22 was detected at 1 and 3 hpi. Examination of purified virions indicated that GCT-VP22 was incorporated into RF177 virus particles. These observations imply that at least amore » portion of the information required for virion targeting is located in this domain of VP22. Indirect immunofluorescence analyses showed that GCT-VP22 also localized to areas of marginalized chromatin during RF177 infection. These results indicate that the last fifteen amino acids of VP22 participate in virion targeting during HSV-1 infection.« less

  8. The natural dietary genistein boosts bacteriophage-mediated cancer cell killing by improving phage-targeted tumor cell transduction

    PubMed Central

    Tsafa, Effrosyni; Al-Bahrani, Mariam; Bentayebi, Kaoutar; Przystal, Justyna; Suwan, Keittisak; Hajitou, Amin

    2016-01-01

    Gene therapy has long been regarded as a promising treatment for cancer. However, cancer gene therapy is still facing the challenge of targeting gene delivery vectors specifically to tumors when administered via clinically acceptable non-invasive systemic routes (i.e. intravenous). The bacteria virus, bacteriophage (phage), represents a new generation of promising vectors in systemic gene delivery since their targeting can be achieved through phage capsid display ligands, which enable them to home to specific tumor receptors without the need to ablate any native eukaryotic tropism. We have previously reported a tumor specific bacteriophage vector named adeno-associated virus/phage, or AAVP, in which gene expression is under a recombinant human rAAV2 virus genome targeted to tumors via a ligand-directed phage capsid. However, cancer gene therapy with this tumor-targeted vector achieved variable outcomes ranging from tumor regression to no effect in both experimental and natural preclinical models. Herein, we hypothesized that combining the natural dietary genistein, with proven anticancer activity, would improve bacteriophage anticancer safe therapy. We show that combination treatment with genistein and AAVP increased targeted cancer cell killing by AAVP carrying the gene for Herpes simplex virus thymidine kinase (HSVtk) in 2D tissue cultures and 3D tumor spheroids. We found this increased tumor cell killing was associated with enhanced AAVP-mediated gene expression. Next, we established that genistein protects AAVP against proteasome degradation and enhances vector genome accumulation in the nucleus. Combination of genistein and phage-guided virotherapy is a safe and promising strategy that should be considered in anticancer therapy with AAVP. PMID:27437775

  9. Non-nucleosidic inhibition of Herpes simplex virus DNA polymerase: mechanistic insights into the anti-herpetic mode of action of herbal drug withaferin A.

    PubMed

    Grover, Abhinav; Agrawal, Vibhuti; Shandilya, Ashutosh; Bisaria, Virendra S; Sundar, Durai

    2011-01-01

    Herpes Simplex Virus 1 and 2 causes several infections in humans including cold sores and encephalitis. Previous antiviral studies on herpes viruses have focussed on developing nucleoside analogues that can inhibit viral polymerase and terminate the replicating viral DNA. However, these drugs bear an intrinsic non-specificity as they can also inhibit cellular polymerase apart from the viral one. The present study is an attempt to elucidate the action mechanism of naturally occurring withaferin A in inhibiting viral DNA polymerase, thus providing an evidence for its development as a novel anti-herpetic drug. Withaferin A was found to bind very similarly to that of the previously reported 4-oxo-DHQ inhibitor. Withaferin A was observed binding to the residues Gln 617, Gln 618, Asn 815 and Tyr 818, all of which are crucial to the proper functioning of the polymerase. A comparison of the conformation obtained from docking and the molecular dynamics simulations shows that substantial changes in the binding conformations have occurred. These results indicate that the initial receptor-ligand interaction observed after docking can be limited due to the receptor rigid docking algorithm and that the conformations and interactions observed after simulation runs are more energetically favoured. We have performed docking and molecular dynamics simulation studies to elucidate the binding mechanism of prospective herbal drug withaferin A onto the structure of DNA polymerase of Herpes simplex virus. Our docking simulations results give high binding affinity of the ligand to the receptor. Long de novo MD simulations for 10 ns performed allowed us to evaluate the dynamic behaviour of the system studied and corroborate the docking results, as well as identify key residues in the enzyme-inhibitor interactions. The present MD simulations support the hypothesis that withaferin A is a potential ligand to target/inhibit DNA polymerase of the Herpes simplex virus. Results of these studies will also guide the design of selective inhibitors of DNA POL with high specificity and potent activity in order to strengthen the therapeutic arsenal available today against the dangerous biological warfare agent represented by Herpes Simplex Virus.

  10. Non-nucleosidic inhibition of Herpes simplex virus DNA polymerase: mechanistic insights into the anti-herpetic mode of action of herbal drug withaferin A

    PubMed Central

    2011-01-01

    Background Herpes Simplex Virus 1 and 2 causes several infections in humans including cold sores and encephalitis. Previous antiviral studies on herpes viruses have focussed on developing nucleoside analogues that can inhibit viral polymerase and terminate the replicating viral DNA. However, these drugs bear an intrinsic non-specificity as they can also inhibit cellular polymerase apart from the viral one. The present study is an attempt to elucidate the action mechanism of naturally occurring withaferin A in inhibiting viral DNA polymerase, thus providing an evidence for its development as a novel anti-herpetic drug. Results Withaferin A was found to bind very similarly to that of the previously reported 4-oxo-DHQ inhibitor. Withaferin A was observed binding to the residues Gln 617, Gln 618, Asn 815 and Tyr 818, all of which are crucial to the proper functioning of the polymerase. A comparison of the conformation obtained from docking and the molecular dynamics simulations shows that substantial changes in the binding conformations have occurred. These results indicate that the initial receptor-ligand interaction observed after docking can be limited due to the receptor rigid docking algorithm and that the conformations and interactions observed after simulation runs are more energetically favoured. Conclusions We have performed docking and molecular dynamics simulation studies to elucidate the binding mechanism of prospective herbal drug withaferin A onto the structure of DNA polymerase of Herpes simplex virus. Our docking simulations results give high binding affinity of the ligand to the receptor. Long de novo MD simulations for 10 ns performed allowed us to evaluate the dynamic behaviour of the system studied and corroborate the docking results, as well as identify key residues in the enzyme-inhibitor interactions. The present MD simulations support the hypothesis that withaferin A is a potential ligand to target/inhibit DNA polymerase of the Herpes simplex virus. Results of these studies will also guide the design of selective inhibitors of DNA POL with high specificity and potent activity in order to strengthen the therapeutic arsenal available today against the dangerous biological warfare agent represented by Herpes Simplex Virus. PMID:22373101

  11. Persistence in herpes simplex virus infections.

    PubMed Central

    Longson, M.

    1978-01-01

    Diseases of man caused by the virus of herpes simplex fall into two broad categories. The primary disease occurs only once in any individual's life and is caused by transmission of virus from an already infected human. Thereafter, the individual may be subject to recurrent herpetic disease, the manifestations of which are different from the primary disease. Recurrent disease varies in severity from trivial, to incapacitating and frankly lethal (as in diseases resulting from the virus's neurotropic and oncogenic properties). The source of the virus in recurrent herpetic disease has never been conclusively resolved, but is almost certainly endogenous to the patient. Theories, case reports and experiments exist to show that endogenous virus may, in periods of clinical quiescence, be latent (or persistent) at the site of the recurrent lesions itself, or more remotely in nerve tissues related to the site of recurrence. Images Fig. 1 PMID:214773

  12. Immunization against Genital Herpes with a Vaccine Virus That has Defects in Productive and Latent Infection

    NASA Astrophysics Data System (ADS)

    da Costa, Xavier J.; Jones, Cheryl A.; Knipe, David M.

    1999-06-01

    An effective vaccine for genital herpes has been difficult to achieve because of the limited efficacy of subunit vaccines and the safety concerns about live viruses. As an alternative approach, mutant herpes simplex virus strains that are replication-defective can induce protective immunity. To increase the level of safety and to prove that replication was not needed for immunization, we constructed a mutant herpes simplex virus 2 strain containing two deletion mutations, each of which eliminated viral replication. The double-mutant virus induces protective immunity that can reduce acute viral shedding and latent infection in a mouse genital model, but importantly, the double-mutant virus shows a phenotypic defect in latent infection. This herpes vaccine strain, which is immunogenic but has defects in both productive and latent infection, provides a paradigm for the design of vaccines and vaccine vectors for other sexually transmitted diseases, such as AIDS.

  13. The Us3 Protein of Herpes Simplex Virus 1 Inhibits T Cell Signaling by Confining Linker for Activation of T Cells (LAT) Activation via TRAF6 Protein*

    PubMed Central

    Yang, Yin; Wu, Songfang; Wang, Yu; Pan, Shuang; Lan, Bei; Liu, Yaohui; Zhang, Liming; Leng, Qianli; Chen, Da; Zhang, Cuizhu; He, Bin; Cao, Youjia

    2015-01-01

    Herpes simplex virus 1 (HSV-1) is the most prevalent human virus and causes global morbidity because the virus is able to infect multiple cell types. Remarkably, HSV infection switches between lytic and latent cycles, where T cells play a critical role. However, the precise way of virus-host interactions is incompletely understood. Here we report that HSV-1 productively infected Jurkat T-cells and inhibited antigen-induced T cell receptor activation. We discovered that HSV-1-encoded Us3 protein interrupted TCR signaling and interleukin-2 production by inactivation of the linker for activation of T cells. This study unveils a mechanism by which HSV-1 intrudes into early events of TCR-mediated cell signaling and may provide novel insights into HSV infection, during which the virus escapes from host immune surveillance. PMID:25907557

  14. Ultraviolet irradiation of herpes simplex virus (type 1): delayed transcription and comparative sensitivites of virus functions.

    PubMed

    Eglin, R P; Gugerli, P; Wildy, P

    1980-07-01

    The delay in the replication of herpes simplex virus surviving u.v. irradiation occurs after the uncoating of virus, as judged by sensitivity to DNase. It occurs before translation, judged by the kinetics of appearance of various virus-specific proteins, and before transcription, judged by the detection of virus-specific RNA by in situ hybridization. Since the delays in both transcription and translation are reversed by photoreactivation, the simplest hypothesis is that pyrimidine dimers directly obstruct transcription;unless these are broken by photoreactivating enzymes, there will be transcriptional delay until reactivating processes have repaired the lesion. The u.v. sensitivities of the abilities to induce various enzymes (thymidine kinase, DNase and DNA polymerase) were only about four times less than that of infectivity. The The ability to induce the three enzymes was three times less sensitive than that of the structural antigen (Band II).

  15. Longitudinal Study on Oral Shedding of Herpes Simplex Virus 1 and Varicella-Zoster Virus in Individuals Infected with HIV

    PubMed Central

    van Velzen, Monique; Ouwendijk, Werner J.D.; Selke, Stacy; Pas, Suzan D.; van Loenen, Freek B.; Osterhaus, Albert D.M.E.; Wald, Anna; Verjans, Georges M.G.M.

    2014-01-01

    Primary herpes simplex virus 1 (HSV-1) and varicella-zoster virus (VZV) infection leads to a life-long latent infection of ganglia innervating the oral mucosa. HSV-1 and VZV reactivation is more common in immunocompromised individuals and may result in viral shedding in saliva. We determined the kinetics and quantity of oral HSV-1 and VZV shedding in HSV-1 and VZV seropositive individuals infected with HIV and to assess whether HSV-1 shedding involves reactivation of the same strain intra-individually. HSV-1 and VZV shedding was determined by real-time PCR of sequential daily oral swabs (n=715) collected for a median period of 31 days from 22 individuals infected with HIV. HSV-1 was genotyped by sequencing the viral thymidine kinase gene. Herpesvirus shedding was detected in 18 of 22 participants. Shedding of HSV-1 occurred frequently, on 14.3% of days, whereas solely VZV shedding was very rare. Two participants shed VZV. The median HSV-1 load was higher compared to VZV. HSV-1 DNA positive swabs clustered into 34 shedding episodes with a median duration of 2 days. The prevalence, duration and viral load of herpesvirus shedding did not correlate with CD4 counts and HIV load. The genotypes of the HSV-1 viruses shed were identical between and within shedding episodes of the same person, but were different between individuals. One-third of the individuals shed an HSV-1 strain potentially refractory to acyclovir therapy. Compared to HSV-1, oral VZV shedding is rare in individuals infected with HIV. Recurrent oral HSV-1 shedding is likely due to reactivation of the same latent HSV-1 strain. PMID:23780621

  16. Herpes simplex virus interferes with amyloid precursor protein processing.

    PubMed

    Shipley, Suzanne J; Parkin, Edward T; Itzhaki, Ruth F; Dobson, Curtis B

    2005-08-18

    The early events underlying Alzheimer's disease (AD) remain uncertain, although environmental factors may be involved. Work in this laboratory has shown that the combination of herpes simplex virus type 1 (HSV1) in brain and carriage of the APOE-epsilon4 allele of the APOE gene strongly increases the risk of developing AD. The development of AD is thought to involve abnormal aggregation or deposition of a 39-43 amino acid protein--beta amyloid (Abeta)--within the brain. This is cleaved from the much larger transmembranal protein 'amyloid precursor protein' (APP). Any agent able to interfere directly with Abeta or APP metabolism may therefore have the capacity to contribute towards AD. One recent report showed that certain HSV1 glycoprotein peptides may aggregate like Abeta; a second study described a role for APP in transport of virus in squid axons. However to date the effects of acute herpesvirus infection on metabolism of APP in human neuronal-type cells have not been investigated. In order to find if HSV1 directly affects APP and its degradation, we have examined this protein from human neuroblastoma cells (normal and transfected with APP 695) infected with the virus, using Western blotting. We have found that acute HSV1 (and also HSV2) infection rapidly reduces full length APP levels--as might be expected--yet surprisingly markedly increases levels of a novel C-terminal fragment of APP of about 55 kDa. This band was not increased in cells treated with the protein synthesis inhibitor cycloheximide Herpes virus infection leads to rapid loss of full length APP from cells, yet also causes increased levels of a novel 55 kDa C-terminal APP fragment. These data suggest that infection can directly alter the processing of a transmembranal protein intimately linked to the aetiology of AD.

  17. A herpes simplex virus 2 glycoprotein D mutant generated by bacterial artificial chromosome mutagenesis is severely impaired for infecting neuronal cells and infects only Vero cells expressing exogenous HVEM.

    PubMed

    Wang, Kening; Kappel, Justin D; Canders, Caleb; Davila, Wilmer F; Sayre, Dean; Chavez, Mayra; Pesnicak, Lesley; Cohen, Jeffrey I

    2012-12-01

    We constructed a herpes simplex virus 2 (HSV-2) bacterial artificial chromosome (BAC) clone, bHSV2-BAC38, which contains full-length HSV-2 inserted into a BAC vector. Unlike previously reported HSV-2 BAC clones, the virus genome inserted into this BAC clone has no known gene disruptions. Virus derived from the BAC clone had a wild-type phenotype for growth in vitro and for acute infection, latency, and reactivation in mice. HVEM, expressed on epithelial cells and lymphocytes, and nectin-1, expressed on neurons and epithelial cells, are the two principal receptors used by HSV to enter cells. We used the HSV-2 BAC clone to construct an HSV-2 glycoprotein D mutant (HSV2-gD27) with point mutations in amino acids 215, 222, and 223, which are critical for the interaction of gD with nectin-1. HSV2-gD27 infected cells expressing HVEM, including a human epithelial cell line. However, the virus lost the ability to infect cells expressing only nectin-1, including neuronal cell lines, and did not infect ganglia in mice. Surprisingly, we found that HSV2-gD27 could not infect Vero cells unless we transduced the cells with a retrovirus expressing HVEM. High-level expression of HVEM in Vero cells also resulted in increased syncytia and enhanced cell-to-cell spread in cells infected with wild-type HSV-2. The inability of the HSV2-gD27 mutant to infect neuronal cells in vitro or sensory ganglia in mice after intramuscular inoculation suggests that this HSV-2 mutant might be an attractive candidate for a live attenuated HSV-2 vaccine.

  18. A Herpes Simplex Virus 2 Glycoprotein D Mutant Generated by Bacterial Artificial Chromosome Mutagenesis Is Severely Impaired for Infecting Neuronal Cells and Infects Only Vero Cells Expressing Exogenous HVEM

    PubMed Central

    Kappel, Justin D.; Canders, Caleb; Davila, Wilmer F.; Sayre, Dean; Chavez, Mayra; Pesnicak, Lesley; Cohen, Jeffrey I.

    2012-01-01

    We constructed a herpes simplex virus 2 (HSV-2) bacterial artificial chromosome (BAC) clone, bHSV2-BAC38, which contains full-length HSV-2 inserted into a BAC vector. Unlike previously reported HSV-2 BAC clones, the virus genome inserted into this BAC clone has no known gene disruptions. Virus derived from the BAC clone had a wild-type phenotype for growth in vitro and for acute infection, latency, and reactivation in mice. HVEM, expressed on epithelial cells and lymphocytes, and nectin-1, expressed on neurons and epithelial cells, are the two principal receptors used by HSV to enter cells. We used the HSV-2 BAC clone to construct an HSV-2 glycoprotein D mutant (HSV2-gD27) with point mutations in amino acids 215, 222, and 223, which are critical for the interaction of gD with nectin-1. HSV2-gD27 infected cells expressing HVEM, including a human epithelial cell line. However, the virus lost the ability to infect cells expressing only nectin-1, including neuronal cell lines, and did not infect ganglia in mice. Surprisingly, we found that HSV2-gD27 could not infect Vero cells unless we transduced the cells with a retrovirus expressing HVEM. High-level expression of HVEM in Vero cells also resulted in increased syncytia and enhanced cell-to-cell spread in cells infected with wild-type HSV-2. The inability of the HSV2-gD27 mutant to infect neuronal cells in vitro or sensory ganglia in mice after intramuscular inoculation suggests that this HSV-2 mutant might be an attractive candidate for a live attenuated HSV-2 vaccine. PMID:22993162

  19. Comparative Efficacy and Immunogenicity of Replication-Defective, Recombinant Glycoprotein, and DNA Vaccines for Herpes Simplex Virus 2 Infections in Mice and Guinea Pigs

    PubMed Central

    Hoshino, Yo; Dalai, Sarat K.; Wang, Kening; Pesnicak, Lesley; Lau, Tsz Y.; Knipe, David M.; Cohen, Jeffrey I.; Straus, Stephen E.

    2005-01-01

    Many candidate vaccines are effective in animal models of genital herpes simplex virus type 2 (HSV-2) infection. Among them, clinical trials showed moderate protection from genital disease with recombinant HSV-2 glycoprotein D (gD2) in alum-monophosphoryl lipid A adjuvant only in HSV women seronegative for both HSV-1 and HSV-2, encouraging development of additional vaccine options. Therefore, we undertook direct comparative studies of the prophylactic and therapeutic efficacies and immunogenicities of three different classes of candidate vaccines given in four regimens to two species of animals: recombinant gD2, a plasmid expressing gD2, and dl5-29, a replication-defective strain of HSV-2 with the essential genes UL5 and UL29 deleted. Both dl5-29 and gD2 were highly effective in attenuating acute and recurrent disease and reducing latent viral load, and both were superior to the plasmid vaccine alone or the plasmid vaccine followed by one dose of dl5-29. dl5-29 was also effective in treating established infections. Moreover, latent dl5-29 virus could not be detected by PCR in sacral ganglia from guinea pigs vaccinated intravaginally. Finally, dl5-29 was superior to gD2 in inducing higher neutralizing antibody titers and the more rapid accumulation of HSV-2-specific CD8+ T cells in trigeminal ganglia after challenge with wild-type virus. Given its efficacy, its defectiveness for latency, and its ability to induce rapid, virus-specific CD8+-T-cell responses, the dl5-29 vaccine may be a good candidate for early-phase human trials. PMID:15596834

  20. Comparative efficacy and immunogenicity of replication-defective, recombinant glycoprotein, and DNA vaccines for herpes simplex virus 2 infections in mice and guinea pigs.

    PubMed

    Hoshino, Yo; Dalai, Sarat K; Wang, Kening; Pesnicak, Lesley; Lau, Tsz Y; Knipe, David M; Cohen, Jeffrey I; Straus, Stephen E

    2005-01-01

    Many candidate vaccines are effective in animal models of genital herpes simplex virus type 2 (HSV-2) infection. Among them, clinical trials showed moderate protection from genital disease with recombinant HSV-2 glycoprotein D (gD2) in alum-monophosphoryl lipid A adjuvant only in HSV women seronegative for both HSV-1 and HSV-2, encouraging development of additional vaccine options. Therefore, we undertook direct comparative studies of the prophylactic and therapeutic efficacies and immunogenicities of three different classes of candidate vaccines given in four regimens to two species of animals: recombinant gD2, a plasmid expressing gD2, and dl5-29, a replication-defective strain of HSV-2 with the essential genes UL5 and UL29 deleted. Both dl5-29 and gD2 were highly effective in attenuating acute and recurrent disease and reducing latent viral load, and both were superior to the plasmid vaccine alone or the plasmid vaccine followed by one dose of dl5-29. dl5-29 was also effective in treating established infections. Moreover, latent dl5-29 virus could not be detected by PCR in sacral ganglia from guinea pigs vaccinated intravaginally. Finally, dl5-29 was superior to gD2 in inducing higher neutralizing antibody titers and the more rapid accumulation of HSV-2-specific CD8+ T cells in trigeminal ganglia after challenge with wild-type virus. Given its efficacy, its defectiveness for latency, and its ability to induce rapid, virus-specific CD8(+)-T-cell responses, the dl5-29 vaccine may be a good candidate for early-phase human trials.

  1. Social Stress and the Reactivation of Latent Herpes Simplex Virus Type 1

    NASA Astrophysics Data System (ADS)

    Padgett, David A.; Sheridan, John F.; Dorne, Julianne; Berntson, Gary G.; Candelora, Jessica; Glaser, Ronald

    1998-06-01

    Psychological stress is thought to contribute to reactivation of latent herpes simplex virus (HSV). Although several animal models have been developed in an effort to reproduce different pathogenic aspects of HSV keratitis or labialis, until now, no good animal model existed in which application of a psychological laboratory stressor results in reliable reactivation of the virus. Reported herein, disruption of the social hierarchy within colonies of mice increased aggression among cohorts, activated the hypothalamic-pituitary-adrenal axis, and caused reactivation of latent HSV type 1 in greater than 40% of latently infected animals. However, activation of the hypothalamic-pituitary-adrenal axis using restraint stress did not activate the latent virus. Thus, the use of social stress in mice provides a good model in which to investigate the neuroendocrine mechanisms that underlie behaviorally mediated reactivation of latent herpes-viruses.

  2. Recombination Promoted by DNA Viruses: Phage λ to Herpes Simplex Virus

    PubMed Central

    Weller, Sandra K.; Sawitzke, James A.

    2015-01-01

    The purpose of this review is to explore recombination strategies in DNA viruses. Homologous recombination is a universal genetic process that plays multiple roles in the biology of all organisms, including viruses. Recombination and DNA replication are interconnected, with recombination being essential for repairing DNA damage and supporting replication of the viral genome. Recombination also creates genetic diversity, and viral recombination mechanisms have important implications for understanding viral origins as well as the dynamic nature of viral-host interactions. Both bacteriophage λ and herpes simplex virus (HSV) display high rates of recombination, both utilizing their own proteins and commandeering cellular proteins to promote recombination reactions. We focus primarily on λ and HSV, as they have proven amenable to both genetic and biochemical analysis and have recently been shown to exhibit some surprising similarities that will guide future studies. PMID:25002096

  3. Genomic variation of the fibropapilloma-associated marine turtle herpes virus across seven geographic areas and three host species

    USGS Publications Warehouse

    Greenblatt, R.J.; Quackenbush, S.L.; Casey, R.N.; Rovnak, J.; Balazs, G.H.; Work, Thierry M.; Casey, J.W.; Sutton, C.A.

    2005-01-01

    Fibropapillomatosis (FP) of marine turtles is an emerging neoplastic disease associated with infection by a novel turtle herpesvirus, fibropapilloma-associated turtle herpesvirus (FPTHV). This report presents 23 kb of the genome of an FPTHV infecting a Hawaiian green turtle (Chelonia mydas). By sequence homology, the open reading frames in this contig correspond to herpes simplex virus genes UL23 through UL36. The order, orientation, and homology of these putative genes indicate that FPTHV is a member of the Alphaherpesvirinae. The UL27-, UL30-, and UL34-homologous open reading frames from FPTHVs infecting nine FP-affected marine turtles from seven geographic areas and three turtle species (C. mydas, Caretta caretta, and Lepidochelys olivacea) were compared. A high degree of nucleotide sequence conservation was found among these virus variants. However, geographic variations were also found: the FPTHVs examined here form four groups, corresponding to the Atlantic Ocean, West pacific, mid-Pacific, and east Pacific. Our results indicate that FPTHV was established in marine turtle populations prior to the emergence of FP as it is currently known.

  4. Prevalence of herpes simplex virus 1 and 2 antibodies in patients with autism spectrum disorders.

    PubMed

    Gentile, Ivan; Zappulo, Emanuela; Bonavolta, Raffaele; Maresca, Roberta; Riccio, Maria Pia; Buonomo, Antonio Riccardo; Portella, Giuseppe; Vallefuoco, Luca; Settimi, Alessandro; Pascotto, Antonio; Borgia, Guglielmo; Bravaccio, Carmela

    2014-01-01

    The etiology of autism spectrum disorder (ASD) is unknown, even though it is hypothesized that a viral infection could trigger this disorder. The aim of this study was to evaluate the seropositivity rate and antibody level of Herpes Simplex Virus 1 (HSV1) and Herpes Simplex Virus 2 (HSV2) in children with ASD compared to same-aged healthy controls. We compared seropositivity rate and levels of antibodies to HSV1/2 in 54 children with ASD (19 with autistic disorder and 35 with non-autistic ASD) and in 46 controls. Seropositivity rate and levels of anti-HSV1/2 were not dissimilar between cases and controls. Exposure to HSV2 was minimal. Rate of contact with HSV1 and HSV2 assessed by the mean of detection of specific antibodies was similar between children with ASD and healthy controls. Copyright © 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  5. [Neonatal facial palsy: identification of herpes simplex virus 1 in cerebrospinal fluid. Case report].

    PubMed

    Lubián López, Simón; Pérez Guerrero, Juan J; Salazar Oliva, Patricia; Benavente Fernández, Isabel

    2018-06-01

    Neonatal facial palsy is very uncommon and is generally diagnosed at birth. We present the first published case of neonatal facial palsy with identification of herpes simplex virus 1 in cerebrospinal fluid. A 35-day-old male was presented at the Emergency Department with mouth deviation to the left and impossibility of full closure of the right eye. There were no symptoms of infection or relevant medical history. Physical examination was compatible with peripheral facial palsy. Studies performed at admission were normal (blood count, biochemical analysis and coagulation blood tests and cerebrospinal fluid analysis). The patient was admitted on oral prednisolone and intravenous aciclovir. Cranial magnetic resonance was normal. Polymerase chain reaction test for herpes simplex virus 1 in cerebrospinal fluid was reported positive after 48 hours of admission. Patient followed good evolution and received prednisolone for 7 days and acyclovir for 21 days. At discharge, neurological examination was normal. Sociedad Argentina de Pediatría.

  6. Construction and properties of a cell line constitutively expressing the herpes simplex virus glycoprotein B dependent on functional alpha 4 protein synthesis.

    PubMed Central

    Arsenakis, M; Hubenthal-Voss, J; Campadelli-Fiume, G; Pereira, L; Roizman, B

    1986-01-01

    We report the construction of a cell line constitutively expressing the glycoprotein B (gB) of herpes simplex virus (HSV) 1. The cell line was constructed in two steps. In the first, a baby hamster kidney cell line was transfected with the DNA of a plasmid containing the neomycin phosphotransferase gene that confers resistance to the antibiotic G418 and the gene specifying a temperature-sensitive (ts-) alpha 4 protein of HSV-1, the major viral regulatory protein. A clonal cell line, alpha 4/c113, selected for resistance to the antibiotic G418, expressed high levels of alpha 4 protein constitutively. Superinfection of these cells with HSV-2 resulted in twofold induction of the resident HSV-1 alpha 4 gene. In the second step, alpha 4/c113 cells were transfected with the DNA of a plasmid carrying the gB gene and the mouse methotrexate resistance dihydrofolate reductase gene. A clonal cell line, alpha 4/c113/gB, selected for methotrexate resistance expressed gB constitutively. Expression of both gB and alpha 4 continued unabated for at least 32 serial passages. Cells passaged serially in medium containing both methotrexate and G418 after passage 10 contained a higher copy number of the alpha 4 gene and produced larger amounts of both gB and alpha 4 proteins than did cells maintained in medium containing methotrexate alone. Expression of gB was dependent on the presence of functional alpha 4 protein inasmuch as expression of gB ceased on shift up to nonpermissive temperatures, when shifted to permissive temperatures, the cell line reinitiated expression of gB after a delay commensurate with the length of incubation at the nonpermissive temperature, and the cell-resident HSV-1 gB gene was expressed at the nonpermissive temperature in cells infected with a recombinant expressing a ts+ alpha 4 protein and an HSV-2 gB. The properties of the alpha 4/c113 cell line suggest that it may express other viral genes induced by alpha 4 protein constitutively, provided that the product is not toxic to the cells. Images PMID:3022001

  7. Primate Neural Retina Upregulates IL-6 and IL-10 in Response to a Herpes Simplex Vector Suggesting the Presence of a Pro-/Anti-inflammatory Axis

    PubMed Central

    Sauter, Monica M.; Brandt, Curtis R.

    2016-01-01

    Injection of herpes simplex virus vectors into the vitreous of primate eyes induces an acute, transient uveitis. The purpose of this study was to characterize innate immune responses of macaque neural retina tissue to the herpes simplex virus type 1-based gene delivery vector hrR3. PCR array analysis demonstrated the induction of the pro-inflammatory cytokine IL-6, as well as the anti-inflammatory cytokine IL-10, following hrR3 exposure. Secretion of IL-6 was detected by ELISA and cone photoreceptors and Muller cells were the predominant IL-6 positive cell types. RNA in situ hybridization confirmed that IL-6 was expressed in photoreceptor and Muller cells. The IL-10 positive cells in the inner nuclear layer were identified as amacrine cells by immunofluorescence staining with calretinin antibody. hrR3 challenge resulted in activation of NFκB (p65) in Muller glial cells, but not in cone photoreceptors, suggesting a novel regulatory mechanism for IL-6 expression in cone cells. hrR3 replication was not required for IL-6 induction or NFκB (p65) activation. These data suggest a pro-inflammatory (IL-6)/anti-inflammatory (IL-10) axis exists in neural retina and the severity of acute posterior uveitis may be determined by this interaction. Further studies are needed to identify the trigger for IL-6 and IL-10 induction and the mechanism of IL-6 induction in cone cells. PMID:27170050

  8. Efficacy of anise oil, dwarf-pine oil and chamomile oil against thymidine-kinase-positive and thymidine-kinase-negative herpesviruses.

    PubMed

    Koch, Christine; Reichling, Jürgen; Kehm, Roland; Sharaf, Mona M; Zentgraf, Hanswalter; Schneele, Jürgen; Schnitzler, Paul

    2008-11-01

    The effect of anise oil, dwarf-pine oil and chamomile oil against different thymidine-kinase-positive (aciclovir-sensitive) and thymidine-kinase-negative (aciclovir-resistant) herpes simplex virus type 1 (HSV-1) strains was examined. Clinical HSV-1 isolates containing frameshift mutations in the thymidine kinase (TK) gene, an insertion or a deletion, yield a non-functional thymidine kinase enzyme resulting in phenotypical resistance against aciclovir. The inhibitory activity of three different essential oils against herpes simplex virus isolates was tested in-vitro using a plaque reduction assay. All essential oils exhibited high levels of antiviral activity against aciclovir-sensitive HSV strain KOS and aciclovir-resistant clinical HSV isolates as well as aciclovir-resistant strain Angelotti. At maximum noncytotoxic concentrations of the plant oils, plaque formation was significantly reduced by 96.6-99.9%, when herpesviruses were preincubated with drugs before attachment to host cells. No significant effect on viral infectivity could be achieved by adding these compounds during the replication phase. These results indicate that anise oil, dwarf-pine oil and chamomile oil affected the virus by interrupting adsorption of herpesviruses and in a different manner than aciclovir, which is effective after attachment inside the infected cells. Thus the investigated essential oils are capable of exerting a direct effect on HSV and might be useful in the treatment of drug-resistant viruses. Chamomile oil did not reveal any irritating potential on hen's egg chorioallantoic membrane, demonstrated the highest selectivity index among the oils tested and was highly active against clinically relevant aciclovir-resistant HSV-1 strains.

  9. Resident T Cells are Unable to Control HSV-1 Activity in the Brain Ependymal Region During Latency1

    PubMed Central

    Menendez, Chandra M.; Jinkins, Jeremy K.; Carr, Daniel J.J.

    2016-01-01

    Herpes simplex virus type 1 (HSV-1) is one of the leading etiologies of sporadic viral encephalitis. Early anti-viral intervention is crucial to the survival of herpes simplex encephalitis patients; however, many survivors suffer from long-term neurological deficits. It is currently understood that HSV-1 establishes a latent infection within sensory peripheral neurons throughout the life of the host. However, the tissue residence of latent virus, other than in sensory neurons, and the potential pathogenic consequences of latency remain enigmatic. In the present study, we characterized the lytic and latent infection of HSV-1 in the central nervous system in comparison to the peripheral nervous system following ocular infection in mice. We utilized RT-PCR to detect latency associated transcripts and HSV-1 lytic cycle genes within the brain stem, the ependyma (EP), containing the limbic and cortical areas which also harbor neural progenitor cells, in comparison to the trigeminal ganglia. Unexpectedly, HSV-1 lytic genes, usually identified during acute infection, are uniquely expressed in the EP 60 days post infection when animals are no longer suffering from encephalitis. An inflammatory response was also mounted in the EP by the maintenance of resident memory T cells. However, EP T cells were incapable of controlling HSV-1 infection ex-vivo and secreted less IFN-γ which correlated with expression of a variety of exhaustion-related inhibitory markers. Collectively our data suggest that the persistent viral lytic gene expression during latency is the cause of the chronic inflammatory response leading to the exhaustion of the resident T cells in the EP. PMID:27357149

  10. Herpes simplex virus VP16, but not ICP0, is required to reduce histone occupancy and enhance histone acetylation on viral genomes in U2OS osteosarcoma cells.

    PubMed

    Hancock, Meaghan H; Cliffe, Anna R; Knipe, David M; Smiley, James R

    2010-02-01

    The herpes simplex virus (HSV) genome rapidly becomes associated with histones after injection into the host cell nucleus. The viral proteins ICP0 and VP16 are required for efficient viral gene expression and have been implicated in reducing the levels of underacetylated histones on the viral genome, raising the possibility that high levels of underacetylated histones inhibit viral gene expression. The U2OS osteosarcoma cell line is permissive for replication of ICP0 and VP16 mutants and appears to lack an innate antiviral repression mechanism present in other cell types. We therefore used chromatin immunoprecipitation to determine whether U2OS cells are competent to load histones onto HSV DNA and, if so, whether ICP0 and/or VP16 are required to reduce histone occupancy and enhance acetylation in this cell type. High levels of underacetylated histone H3 accumulated at several locations on the viral genome in the absence of VP16 activation function; in contrast, an ICP0 mutant displayed markedly reduced histone levels and enhanced acetylation, similar to wild-type HSV. These results demonstrate that U2OS cells are competent to load underacetylated histones onto HSV DNA and uncover an unexpected role for VP16 in modulating chromatin structure at viral early and late loci. One interpretation of these findings is that ICP0 and VP16 affect viral chromatin structure through separate pathways, and the pathway targeted by ICP0 is defective in U2OS cells. We also show that HSV infection results in decreased histone levels on some actively transcribed genes within the cellular genome, demonstrating that viral infection alters cellular chromatin structure.

  11. Herpes Simplex Virus VP16, but Not ICP0, Is Required To Reduce Histone Occupancy and Enhance Histone Acetylation on Viral Genomes in U2OS Osteosarcoma Cells▿ †

    PubMed Central

    Hancock, Meaghan H.; Cliffe, Anna R.; Knipe, David M.; Smiley, James R.

    2010-01-01

    The herpes simplex virus (HSV) genome rapidly becomes associated with histones after injection into the host cell nucleus. The viral proteins ICP0 and VP16 are required for efficient viral gene expression and have been implicated in reducing the levels of underacetylated histones on the viral genome, raising the possibility that high levels of underacetylated histones inhibit viral gene expression. The U2OS osteosarcoma cell line is permissive for replication of ICP0 and VP16 mutants and appears to lack an innate antiviral repression mechanism present in other cell types. We therefore used chromatin immunoprecipitation to determine whether U2OS cells are competent to load histones onto HSV DNA and, if so, whether ICP0 and/or VP16 are required to reduce histone occupancy and enhance acetylation in this cell type. High levels of underacetylated histone H3 accumulated at several locations on the viral genome in the absence of VP16 activation function; in contrast, an ICP0 mutant displayed markedly reduced histone levels and enhanced acetylation, similar to wild-type HSV. These results demonstrate that U2OS cells are competent to load underacetylated histones onto HSV DNA and uncover an unexpected role for VP16 in modulating chromatin structure at viral early and late loci. One interpretation of these findings is that ICP0 and VP16 affect viral chromatin structure through separate pathways, and the pathway targeted by ICP0 is defective in U2OS cells. We also show that HSV infection results in decreased histone levels on some actively transcribed genes within the cellular genome, demonstrating that viral infection alters cellular chromatin structure. PMID:19939931

  12. Management of Developmentally Disabled Children with Chronic Infections.

    ERIC Educational Resources Information Center

    Andersen, Richard D.

    1988-01-01

    The nature of chronic infections in developmentally disabled children is reviewed, along with appropriate management strategies for care providers and implications for other children. Discussed are herpes simplex virus, cytomegalovirus, hepatitis B virus, and human immunodeficiency virus. (Author/JDD)

  13. Herpes Simplex Virus 1 Infection of Tree Shrews Differs from That of Mice in the Severity of Acute Infection and Viral Transcription in the Peripheral Nervous System

    PubMed Central

    Li, Lihong; Li, Zhuoran; Wang, Erlin; Yang, Rui; Xiao, Yu; Han, Hongbo; Lang, Fengchao; Li, Xin; Xia, Yujie; Gao, Feng; Li, Qihan; Fraser, Nigel W.

    2015-01-01

    ABSTRACT Studies of herpes simplex virus (HSV) infections of humans are limited by the use of rodent models such as mice, rabbits, and guinea pigs. Tree shrews (Tupaia belangeri chinensis) are small mammals indigenous to southwest Asia. At behavioral, anatomical, genomic, and evolutionary levels, tree shrews are much closer to primates than rodents are, and tree shrews are susceptible to HSV infection. Thus, we have studied herpes simplex virus 1 (HSV-1) infection in the tree shrew trigeminal ganglion (TG) following ocular inoculation. In situ hybridization, PCR, and quantitative reverse transcription-PCR (qRT-PCR) analyses confirm that HSV-1 latently infects neurons of the TG. When explant cocultivation of trigeminal ganglia was performed, the virus was recovered after 5 days of cocultivation with high efficiency. Swabbing the corneas of latently infected tree shrews revealed that tree shrews shed virus spontaneously at low frequencies. However, tree shrews differ significantly from mice in the expression of key HSV-1 genes, including ICP0, ICP4, and latency-associated transcript (LAT). In acutely infected tree shrew TGs, no level of ICP4 was observed, suggesting the absence of infection or a very weak, acute infection compared to that of the mouse. Immunofluorescence staining with ICP4 monoclonal antibody, and immunohistochemistry detection by HSV-1 polyclonal antibodies, showed a lack of viral proteins in tree shrew TGs during both acute and latent phases of infection. Cultivation of supernatant from homogenized, acutely infected TGs with RS1 cells also exhibited an absence of infectious HSV-1 from tree shrew TGs. We conclude that the tree shrew has an undetectable, or a much weaker, acute infection in the TGs. Interestingly, compared to mice, tree shrew TGs express high levels of ICP0 transcript in addition to LAT during latency. However, the ICP0 transcript remained nuclear, and no ICP0 protein could be seen during the course of mouse and tree shrew TG infections. Taken together, these observations suggest that the tree shrew TG infection differs significantly from the existing rodent models. IMPORTANCE Herpes simplex viruses (HSVs) establish lifelong infection in more than 80% of the human population, and their reactivation leads to oral and genital herpes. Currently, rodent models are the preferred models for latency studies. Rodents are distant from primates and may not fully represent human latency. The tree shrew is a small mammal, a prosimian primate, indigenous to southwest Asia. In an attempt to further develop the tree shrew as a useful model to study herpesvirus infection, we studied the establishment of latency and reactivation of HSV-1 in tree shrews following ocular inoculation. We found that the latent virus, which resides in the sensory neurons of the trigeminal ganglion, could be stress reactivated to produce infectious virus, following explant cocultivation and that spontaneous reactivation could be detected by cell culture of tears. Interestingly, the tree shrew model is quite different from the mouse model of HSV infection, in that the virus exhibited only a mild acute infection following inoculation with no detectable infectious virus from the sensory neurons. The mild infection may be more similar to human infection in that the sensory neurons continue to function after herpes reactivation and the affected skin tissue does not lose sensation. Our findings suggest that the tree shrew is a viable model to study HSV latency. PMID:26512084

  14. The Complete Genome Sequence of Herpesvirus Papio 2 (Cercopithecine Herpesvirus 16) Shows Evidence of Recombination Events among Various Progenitor Herpesviruses†

    PubMed Central

    Tyler, Shaun D.; Severini, Alberto

    2006-01-01

    We have sequenced the entire genome of herpesvirus papio 2 (HVP-2; Cercopithecine herpesvirus 16) strain X313, a baboon herpesvirus with close homology to other primate alphaherpesviruses, such as SA8, monkey B virus, and herpes simplex virus (HSV) type 1 and type 2. The genome of HVP-2 is 156,487 bp in length, with an overall GC content of 76.5%. The genome organization is identical to that of the other members of the genus Simplexvirus, with a long and a short unique region, each bordered by inverted repeats which end with an “a” sequence. All of the open reading frames detected in this genome were homologous and colinear with those of SA8 and B virus. The HSV gene RL1 (γ134.5; neurovirulence factor) is not present in HVP-2, as is the case for SA8 and B virus. The HVP-2 genome is 85% homologous to its closest relative, SA8. However, segment-by-segment bootstrap analysis of the genome revealed at least two regions that display closer homology to the corresponding sequences of B virus. The first region comprises the UL41 to UL44 genes, and the second region is located within the UL36 gene. We hypothesize that this localized and defined shift in homology is due to recombination events between an SA8-like progenitor of HVP-2 and a herpesvirus species more closely related to the B virus. Since some of the genes involved in these putative recombination events are determinants of virulence, a comparative analysis of their function may provide insight into the pathogenic mechanism of simplexviruses. PMID:16414998

  15. The complete genome sequence of herpesvirus papio 2 (Cercopithecine herpesvirus 16) shows evidence of recombination events among various progenitor herpesviruses.

    PubMed

    Tyler, Shaun D; Severini, Alberto

    2006-02-01

    We have sequenced the entire genome of herpesvirus papio 2 (HVP-2; Cercopithecine herpesvirus 16) strain X313, a baboon herpesvirus with close homology to other primate alphaherpesviruses, such as SA8, monkey B virus, and herpes simplex virus (HSV) type 1 and type 2. The genome of HVP-2 is 156,487 bp in length, with an overall GC content of 76.5%. The genome organization is identical to that of the other members of the genus Simplexvirus, with a long and a short unique region, each bordered by inverted repeats which end with an "a" sequence. All of the open reading frames detected in this genome were homologous and colinear with those of SA8 and B virus. The HSV gene RL1 (gamma(1)34.5; neurovirulence factor) is not present in HVP-2, as is the case for SA8 and B virus. The HVP-2 genome is 85% homologous to its closest relative, SA8. However, segment-by-segment bootstrap analysis of the genome revealed at least two regions that display closer homology to the corresponding sequences of B virus. The first region comprises the UL41 to UL44 genes, and the second region is located within the UL36 gene. We hypothesize that this localized and defined shift in homology is due to recombination events between an SA8-like progenitor of HVP-2 and a herpesvirus species more closely related to the B virus. Since some of the genes involved in these putative recombination events are determinants of virulence, a comparative analysis of their function may provide insight into the pathogenic mechanism of simplexviruses.

  16. Herpes Simplex Virus Suppressive Therapy in Herpes Simplex Virus-2/Human Immunodeficiency Virus-1 Coinfected Women Is Associated With Reduced Systemic CXCL10 But Not Genital Cytokines.

    PubMed

    Andersen-Nissen, Erica; Chang, Joanne T; Thomas, Katherine K; Adams, Devin; Celum, Connie; Sanchez, Jorge; Coombs, Robert W; McElrath, M Juliana; Baeten, Jared M

    2016-12-01

    Herpes simplex virus type-2 (HSV-2) may heighten immune activation and increase human immunodeficiency virus 1 (HIV-1) replication, resulting in greater infectivity and faster HIV-1 disease progression. An 18-week randomized, placebo-controlled crossover trial of 500 mg valacyclovir twice daily in 20 antiretroviral-naive women coinfected with HSV-2 and HIV-1 was conducted and HSV-2 suppression was found to significantly reduce both HSV-2 and HIV-1 viral loads both systemically and the endocervical compartment. To determine the effect of HSV-2 suppression on systemic and genital mucosal inflammation, plasma specimens, and endocervical swabs were collected weekly from volunteers in the trial and cryopreserved. Plasma was assessed for concentrations of 31 cytokines and chemokines; endocervical fluid was eluted from swabs and assayed for 14 cytokines and chemokines. Valacyclovir significantly reduced plasma CXCL10 but did not significantly alter other cytokine concentrations in either compartment. These data suggest genital tract inflammation in women persists despite HSV-2 suppression, supporting the lack of effect on transmission seen in large scale efficacy trials. Alternative therapies are needed to reduce persistent mucosal inflammation that may enhance transmission of HSV-2 and HIV-1.

  17. Cellular Protein WDR11 Interacts with Specific Herpes Simplex Virus Proteins at the trans-Golgi Network To Promote Virus Replication

    PubMed Central

    Taylor, Kathryne E.

    2015-01-01

    ABSTRACT It has recently been proposed that the herpes simplex virus (HSV) protein ICP0 has cytoplasmic roles in blocking antiviral signaling and in promoting viral replication in addition to its well-known proteasome-dependent functions in the nucleus. However, the mechanisms through which it produces these effects remain unclear. While investigating this further, we identified a novel cytoplasmic interaction between ICP0 and the poorly characterized cellular protein WDR11. During an HSV infection, WDR11 undergoes a dramatic change in localization at late times in the viral replication cycle, moving from defined perinuclear structures to a dispersed cytoplasmic distribution. While this relocation was not observed during infection with viruses other than HSV-1 and correlated with efficient HSV-1 replication, the redistribution was found to occur independently of ICP0 expression, instead requiring viral late gene expression. We demonstrate for the first time that WDR11 is localized to the trans-Golgi network (TGN), where it interacts specifically with some, but not all, HSV virion components, in addition to ICP0. Knockdown of WDR11 in cultured human cells resulted in a modest but consistent decrease in yields of both wild-type and ICP0-null viruses, in the supernatant and cell-associated fractions, without affecting viral gene expression. Although further study is required, we propose that WDR11 participates in viral assembly and/or secondary envelopment. IMPORTANCE While the TGN has been proposed to be the major site of HSV-1 secondary envelopment, this process is incompletely understood, and in particular, the role of cellular TGN components in this pathway is unknown. Additionally, little is known about the cellular functions of WDR11, although the disruption of this protein has been implicated in multiple human diseases. Therefore, our finding that WDR11 is a TGN-resident protein that interacts with specific viral proteins to enhance viral yields improves both our understanding of basic cellular biology as well as how this protein is co-opted by HSV. PMID:26178983

  18. Conditional Cytotoxic Anti-HIV Gene Therapy for Selectable Cell Modification

    PubMed Central

    Garg, Himanshu; Joshi, Anjali

    2016-01-01

    Gene therapy remains one of the potential strategies to achieve a cure for HIV infection. One of the major limitations of anti-HIV gene therapy concerns recovering an adequate number of modified cells to generate an HIV-proof immune system. Our study addresses this issue by developing a methodology that can mark conditional vector-transformed cells for selection and subsequently target HIV-infected cells for elimination by treatment with ganciclovir (GCV). We used the herpes simplex virus thymidine kinase (TK) mutant SR39, which is highly potent at killing cells at low GCV concentrations. This gene was cloned into a conditional HIV vector, pNL-GFPRRESA, which expresses the gene of interest as well as green fluorescent protein (GFP) in the presence of HIV Tat protein. We show here that TK-SR39 was more potent that wild-type TK (TK-WT) at eliminating infected cells at lower concentrations of GCV. As the vector expresses GFP in the presence of Tat, transient expression of Tat either by Tat RNA transfection or transduction by a nonintegrating lentiviral (NIL) vector marked the cells with GFP for selection. In cells selected by this strategy, TK-SR39 was more potent at limiting virus replication than TK-WT. Finally, in Jurkat cells modified and selected by this approach, infection with CXCR4-tropic Lai virus could be suppressed by treatment with GCV. GCV treatment limited the number of HIV-infected cells, virus production, as well as virus-induced cytopathic effects in this model. We provide proof of principle that TK-SR39 in a conditional HIV vector can provide a safe and effective anti-HIV strategy. PMID:26800572

  19. Conditional Cytotoxic Anti-HIV Gene Therapy for Selectable Cell Modification.

    PubMed

    Garg, Himanshu; Joshi, Anjali

    2016-05-01

    Gene therapy remains one of the potential strategies to achieve a cure for HIV infection. One of the major limitations of anti-HIV gene therapy concerns recovering an adequate number of modified cells to generate an HIV-proof immune system. Our study addresses this issue by developing a methodology that can mark conditional vector-transformed cells for selection and subsequently target HIV-infected cells for elimination by treatment with ganciclovir (GCV). We used the herpes simplex virus thymidine kinase (TK) mutant SR39, which is highly potent at killing cells at low GCV concentrations. This gene was cloned into a conditional HIV vector, pNL-GFPRRESA, which expresses the gene of interest as well as green fluorescent protein (GFP) in the presence of HIV Tat protein. We show here that TK-SR39 was more potent that wild-type TK (TK-WT) at eliminating infected cells at lower concentrations of GCV. As the vector expresses GFP in the presence of Tat, transient expression of Tat either by Tat RNA transfection or transduction by a nonintegrating lentiviral (NIL) vector marked the cells with GFP for selection. In cells selected by this strategy, TK-SR39 was more potent at limiting virus replication than TK-WT. Finally, in Jurkat cells modified and selected by this approach, infection with CXCR4-tropic Lai virus could be suppressed by treatment with GCV. GCV treatment limited the number of HIV-infected cells, virus production, as well as virus-induced cytopathic effects in this model. We provide proof of principle that TK-SR39 in a conditional HIV vector can provide a safe and effective anti-HIV strategy.

  20. Recurrent herpes simplex virus type 2 meningitis in elderly persons.

    PubMed

    Davis, Larry E; Guerre, Jenny; Gerstein, Wendy H

    2010-06-01

    To review the ages of patients with recurrent herpes simplex virus type 2 (HSV-2) meningitis. Case report and literature review back to 1970. Referral Veterans Affairs hospital. Our patient developed his first episode of recurrent HSV-2 meningitis at 78 years of age, 57 years after his only episode of genital herpes simplex infection. Of 223 patients in the literature with recurrent HSV-2 meningitis, 5% occurred in patients older than 60 years and 19% in patients older than 50 years. Although recurrent meningitis due to HSV is primarily seen in young, sexually active adults, a surprising number of episodes of HSV meningitis can develop in older age. Meningitis due to HSV-2 should be in the differential diagnosis of aseptic meningitis in older patients.

  1. Recombinant Vaccinia Virus: Immunization against Multiple Pathogens

    NASA Astrophysics Data System (ADS)

    Perkus, Marion E.; Piccini, Antonia; Lipinskas, Bernard R.; Paoletti, Enzo

    1985-09-01

    The coding sequences for the hepatitis B virus surface antigen, the herpes simplex virus glycoprotein D, and the influenza virus hemagglutinin were inserted into a single vaccinia virus genome. Rabbits inoculated intravenously or intradermally with this polyvalent vaccinia virus recombinant produced antibodies reactive to all three authentic foreign antigens. In addition, the feasibility of multiple rounds of vaccination with recombinant vaccinia virus was demonstrated.

  2. In vivo evaluation of a cancer therapy strategy combining HSV1716-mediated oncolysis with gene transfer and targeted radiotherapy.

    PubMed

    Sorensen, Annette; Mairs, Robert J; Braidwood, Lynne; Joyce, Craig; Conner, Joe; Pimlott, Sally; Brown, Moira; Boyd, Marie

    2012-04-01

    Oncolytic herpes viruses show promise for cancer treatment. However, it is unlikely that they will fulfill their therapeutic potential when used as monotherapies. An alternative strategy is to use these viruses not only as oncolytic agents but also as a delivery mechanism of therapeutic transgenes to enhance tumor cell killing. The herpes simplex virus 1 deletion mutant HSV1716 is a conditionally replicating oncolytic virus that selectively replicates in and lyses dividing tumor cells. It has a proven safety profile in clinical trials and has demonstrated efficacy as a gene-delivery vehicle. To enhance its therapeutic potential, we have engineered HSV1716 to convey the noradrenaline transporter (NAT) gene (HSV1716/NAT), whose expression endows infected cells with the capacity to accumulate the noradrenaline analog metaiodobenzylguanidine (MIBG). Thus, the NAT gene-infected cells are susceptible to targeted radiotherapy using radiolabeled (131)I-MIBG, a strategy that has already shown promise for combined targeted radiotherapy-gene therapy in cancer cells after plasmid-mediated transfection. We used HSV1716/NAT as a dual cell lysis-gene delivery vehicle for targeting the NAT transgene to human tumor xenografts in vivo. In tumor xenografts that did not express NAT, intratumoral or intravenous injection of HSV1716/NAT induced the capacity for active uptake of (131)I-MIBG. Administration of HSV1716/NAT and (131)I-MIBG resulted in decreased tumor growth and enhanced survival relative to injection of either agent alone. Efficacy was dependent on the scheduling of delivery of the 2 agents. These findings support a role for combination radiotherapy-gene therapy for cancer using HSV1716 expressing the NAT transgene and targeted radionuclide therapy.

  3. Herpes Simplex Virus 1 Reactivates from Autonomic Ciliary Ganglia Independently from Sensory Trigeminal Ganglia To Cause Recurrent Ocular Disease

    PubMed Central

    Lee, Sungseok; Ives, Angela M.

    2015-01-01

    ABSTRACT Herpes simplex virus 1 (HSV-1) and HSV-2 establish latency in sensory and autonomic neurons after ocular or genital infection, but their recurrence patterns differ. HSV-1 reactivates from latency to cause recurrent orofacial disease, and while HSV-1 also causes genital lesions, HSV-2 recurs more efficiently in the genital region and rarely causes ocular disease. The mechanisms regulating these anatomical preferences are unclear. To determine whether differences in latent infection and reactivation in autonomic ganglia contribute to differences in HSV-1 and HSV-2 anatomical preferences for recurrent disease, we compared HSV-1 and HSV-2 clinical disease, acute and latent viral loads, and viral gene expression in sensory trigeminal and autonomic superior cervical and ciliary ganglia in a guinea pig ocular infection model. HSV-2 produced more severe acute disease, correlating with higher viral DNA loads in sensory and autonomic ganglia, as well as higher levels of thymidine kinase expression, a marker of productive infection, in autonomic ganglia. HSV-1 reactivated in ciliary ganglia, independently from trigeminal ganglia, to cause more frequent recurrent symptoms, while HSV-2 replicated simultaneously in autonomic and sensory ganglia to cause more persistent disease. While both HSV-1 and HSV-2 expressed the latency-associated transcript (LAT) in the trigeminal and superior cervical ganglia, only HSV-1 expressed LAT in ciliary ganglia, suggesting that HSV-2 is not reactivation competent or does not fully establish latency in ciliary ganglia. Thus, differences in replication and viral gene expression in autonomic ganglia may contribute to differences in HSV-1 and HSV-2 acute and recurrent clinical disease. IMPORTANCE Herpes simplex virus 1 (HSV-1) and HSV-2 establish latent infections, from which the viruses reactivate to cause recurrent disease throughout the life of the host. However, the viruses exhibit different manifestations and frequencies of recurrent disease. HSV-1 and HSV-2 establish latency in both sensory and autonomic ganglia. Autonomic ganglia are more responsive than sensory ganglia to stimuli associated with recurrent disease in humans, such as stress and hormone fluctuations, suggesting that autonomic ganglia may play an important role in recurrent disease. We show that HSV-1 can reactivate from autonomic ganglia, independently from sensory ganglia, to cause recurrent ocular disease. We found no evidence that HSV-2 could reactivate from autonomic ganglia independently from sensory ganglia after ocular infection, but HSV-2 did replicate in both ganglia simultaneously to cause persistent disease. Thus, viral replication and reactivation in autonomic ganglia contribute to different clinical disease manifestations of HSV-1 and HSV-2 after ocular infection. PMID:26041294

  4. Current status of non-viral gene therapy for CNS disorders

    PubMed Central

    Jayant, Rahul Dev; Sosa, Daniela; Kaushik, Ajeet; Atluri, Venkata; Vashist, Arti; Tomitaka, Asahi; Nair, Madhavan

    2017-01-01

    Introduction Viral and non-viral vectors have been used as methods of delivery in gene therapy for many CNS diseases. Currently, viral vectors such as adeno-associated viruses (AAV), retroviruses, lentiviruses, adenoviruses and herpes simplex viruses (HHV) are being used as successful vectors in gene therapy at clinical trial levels. However, many disadvantages have risen from their usage. Non-viral vectors like cationic polymers, cationic lipids, engineered polymers, nanoparticles, and naked DNA offer a much safer option and can therefore be explored for therapeutic purposes. Areas covered This review discusses different types of viral and non-viral vectors for gene therapy and explores clinical trials for CNS diseases that have used these types of vectors for gene delivery. Highlights include non-viral gene delivery and its challenges, possible strategies to improve transfection, regulatory issues concerning vector usage, and future prospects for clinical applications. Expert opinion Transfection efficiency of cationic lipids and polymers can be improved through manipulation of molecules used. Efficacy of cationic lipids is dependent on cationic charge, saturation levels, and stability of linkers. Factors determining efficacy of cationic polymers are total charge density, molecular weights, and complexity of molecule. All of the above mentioned parameters must be taken care for efficient gene delivery. PMID:27249310

  5. Influence of Herpes Simplex Virus Latency-Associated Transcript (LAT) on the Distribution of Latently Infected Neurons

    DTIC Science & Technology

    2007-03-20

    part of my life, who knows more about herpesviruses than any 8-year-old should, for making me tea and snacks when I was studying or writing, for...of latency (2, 13, 36, 45, 76, 77, 81). However, HSV-2 LAT has not been shown to inhibit apoptosis of neuronal cells. HSV has several anti ...apoptotic genes, including ICP27, ICP22, US3, US5, ICP4, and HSV-1 LAT (4). Only LAT is expressed during latency, suggesting that its anti -apoptotic

  6. Expression of Genes Encoding the Enzymes for Glycogen and Trehalose Metabolism in L3 and L4 Larvae of Anisakis simplex.

    PubMed

    Łopieńska-Biernat, E; Zaobidna, E A; Dmitryjuk, M

    2015-01-01

    Trehalose and glycogen metabolism plays an important role in supporting life processes in many nematodes, including Anisakis simplex. Nematodes, cosmopolitan helminths parasitizing sea mammals and humans, cause a disease known as anisakiasis. The aim of this study was to investigate the expression of genes encoding the enzymes involved in the metabolism of trehalose and glycogen-trehalose-6-phosphate synthase (TPS), trehalose-6-phosphate phosphatase (TPP), glycogen synthase (GS), and glycogen phosphorylase (GP)-in stage L3 and stage L4 larvae of A. simplex. The expression of mRNA all four genes, tps, tpp, gs, and gp, was examined by real-time polymerase chain reaction. The A. simplex ribosomal gene (18S) was used as a reference gene. Enzymatic activity was determined. The expression of trehalose enzyme genes was higher in L3 than in L4 larvae, but an inverse relationship was noted for the expression of gs and gp genes.

  7. Expression of Genes Encoding the Enzymes for Glycogen and Trehalose Metabolism in L3 and L4 Larvae of Anisakis simplex

    PubMed Central

    Łopieńska-Biernat, E.; Zaobidna, E. A.; Dmitryjuk, M.

    2015-01-01

    Trehalose and glycogen metabolism plays an important role in supporting life processes in many nematodes, including Anisakis simplex. Nematodes, cosmopolitan helminths parasitizing sea mammals and humans, cause a disease known as anisakiasis. The aim of this study was to investigate the expression of genes encoding the enzymes involved in the metabolism of trehalose and glycogen—trehalose-6-phosphate synthase (TPS), trehalose-6-phosphate phosphatase (TPP), glycogen synthase (GS), and glycogen phosphorylase (GP)—in stage L3 and stage L4 larvae of A. simplex. The expression of mRNA all four genes, tps, tpp, gs, and gp, was examined by real-time polymerase chain reaction. The A. simplex ribosomal gene (18S) was used as a reference gene. Enzymatic activity was determined. The expression of trehalose enzyme genes was higher in L3 than in L4 larvae, but an inverse relationship was noted for the expression of gs and gp genes. PMID:26783451

  8. Update On Emerging Antivirals For The Management Of Herpes Simplex Virus Infections: A Patenting Perspective

    PubMed Central

    Vadlapudi, Aswani D.; Vadlapatla, Ramya K.; Mitra, Ashim K.

    2015-01-01

    Herpes simplex virus (HSV) infections can be treated efficiently by the application of antiviral drugs. The herpes family of viruses is responsible for causing a wide variety of diseases in humans. The standard therapy for the management of such infections includes acyclovir (ACV) and penciclovir (PCV) with their respective prodrugs valaciclovir and famciclovir. Though effective, long term prophylaxis with the current drugs leads to development of drug-resistant viral isolates, particularly in immunocompromised patients. Moreover, some drugs are associated with dose-limiting toxicities which limit their further utility. Therefore, there is a need to develop new antiherpetic compounds with different mechanisms of action which will be safe and effective against emerging drug resistant viral isolates. Significant advances have been made towards the design and development of novel antiviral therapeutics during the last decade. As evident by their excellent antiviral activities, pharmaceutical companies are moving forward with several new compounds into various phases of clinical trials. This review provides an overview of structure and life cycle of HSV, progress in the development of new therapies, update on the advances in emerging therapeutics under clinical development and related recent patents for the treatment of Herpes simplex virus infections. PMID:23331181

  9. Marek's disease virus protein kinase gene identified within the short unique region of the viral genome is not essential for viral replication in cell culture and vaccine-induced immunity in chickens.

    PubMed

    Sakaguchi, M; Urakawa, T; Hirayama, Y; Miki, N; Yamamoto, M; Zhu, G S; Hirai, K

    1993-07-01

    The open reading frame (ORF) of 1206 bp within the short unique region (Us) of Marek's disease virus type 1 (MDV1) shows significant homology with the herpes simplex virus type 1 US3 gene encoding protein kinase (PK). The lacZ gene of Escherichia coli was inserted within the ORF, designated MDV1-US3, of MDV1 K544 strain DNA by homologous recombination. The plaque-purified recombinant MDV1 stably expressed the beta-galactosidase encoded by the inserted lacZ gene in infected cells and replicated well as the parental K544 strain. Antibodies against both MDV1 antigen and beta-galactosidase were detected in the sera of chickens immunized with recombinant MDV1. Chickens vaccinated with the recombinant MDV1 were protected from challenge with virulent MDV1. The MDV1 US3 gene expressed by a baculovirus vector encoded a 44-kDa protein. Mouse antisera against the 44-kDa protein reacted with two proteins of 44 and 45 kDa in extracts of cells infected with MDV1 but not with MDV types 2 or 3. The PK activity was detected in immune complexes of the anti-44-kDa sera with extracts of cells infected with MDV1 but not with the recombinant MDV1. Thus, PK encoded from the MDV1-US3 is not essential for virus replication in cell culture and vaccine-induced immunity.

  10. Neonatal herpes simplex virus infection: epidemiology and treatment.

    PubMed

    James, Scott H; Kimberlin, David W

    2015-03-01

    Herpes simplex virus types 1 (HSV-1) and 2 (HSV-2) are highly prevalent viruses capable of establishing lifelong infection. Genital herpes in women of childbearing age represents a major risk for mother-to-child transmission (MTCT) of HSV infection, with primary and first-episode genital HSV infections posing the highest risk. The advent of antiviral therapy with parenteral acyclovir has led to significant improvement in neonatal HSV disease mortality. Further studies are needed to improve the clinician's ability to identify infants at increased risk for HSV infection and prevent MTCT, and to develop novel antiviral agents with increased efficacy in infants with HSV infection. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Performance of the Epstein-Barr Virus and Herpes Simplex Virus Immunoglobulin M Assays on the Liaison Platform with Sera from Patients Displaying Acute Parvovirus B19 Infection▿

    PubMed Central

    Costa, Elisa; Tormo, Nuria; Clari, María Ángeles; Bravo, Dayana; Muñoz-Cobo, Beatriz; Navarro, David

    2009-01-01

    Acute parvovirus B19 infection has been reported to cause false-positive results frequently in the Epstein-Barr (EBV) and herpes simplex virus (HSV) immunoglobulin M (IgM) assays from DiaSorin performed on the Liaison platform. We tested 65 sera from patients with a presumptive or conclusive diagnosis of acute parvovirus B19 infection in both assays and obtained no false-positive results in the EBV IgM test and 10.4% nonspecific reactivities in the HSV IgM assay. Our data support the specificity of both assays in this clinical setting. PMID:19571110

  12. Tolerance and immunity in mice infected with herpes simplex virus: studies on the mechanism of tolerance to delayed-type hypersensitivity.

    PubMed

    Nash, A A; Phelan, J; Gell, P G; Wildy, P

    1981-06-01

    Tolerance to delayed-type hypersensitivity is produced in mice following an intravenous injection of herpes simplex virus. This form of tolerance is produced early on, following simultaneous injections of virus subcutaneously and intravenously, and is long lasting (greater than 100 days). The early tolerance mechanism is resistant to high doses of cyclophosphamide and is not transferable by serum or spleen cells taken after 7 days. However, spleen cells taken at 14 days onwards inhibit the induction of delayed hypersensitivity when transferred to normal syngeneic recipients. These cells are T lymphocytes and are specific for the herpes type used in the induction.

  13. Tolerance and immunity in mice infected with herpes simplex virus: studies on the mechanism of tolerance to delayed-type hypersensitivity.

    PubMed Central

    Nash, A A; Phelan, J; Gell, P G; Wildy, P

    1981-01-01

    Tolerance to delayed-type hypersensitivity is produced in mice following an intravenous injection of herpes simplex virus. This form of tolerance is produced early on, following simultaneous injections of virus subcutaneously and intravenously, and is long lasting (greater than 100 days). The early tolerance mechanism is resistant to high doses of cyclophosphamide and is not transferable by serum or spleen cells taken after 7 days. However, spleen cells taken at 14 days onwards inhibit the induction of delayed hypersensitivity when transferred to normal syngeneic recipients. These cells are T lymphocytes and are specific for the herpes type used in the induction. PMID:6265348

  14. A new paradigm for transcription factor TFIIB functionality

    PubMed Central

    Gelev, Vladimir; Zabolotny, Janice M.; Lange, Martin; Hiromura, Makoto; Yoo, Sang Wook; Orlando, Joseph S.; Kushnir, Anna; Horikoshi, Nobuo; Paquet, Eric; Bachvarov, Dimcho; Schaffer, Priscilla A.; Usheva, Anny

    2014-01-01

    Experimental and bioinformatic studies of transcription initiation by RNA polymerase II (RNAP2) have revealed a mechanism of RNAP2 transcription initiation less uniform across gene promoters than initially thought. However, the general transcription factor TFIIB is presumed to be universally required for RNAP2 transcription initiation. Based on bioinformatic analysis of data and effects of TFIIB knockdown in primary and transformed cell lines on cellular functionality and global gene expression, we report that TFIIB is dispensable for transcription of many human promoters, but is essential for herpes simplex virus-1 (HSV-1) gene transcription and replication. We report a novel cell cycle TFIIB regulation and localization of the acetylated TFIIB variant on the transcriptionally silent mitotic chromatids. Taken together, these results establish a new paradigm for TFIIB functionality in human gene expression, which when downregulated has potent anti-viral effects. PMID:24441171

  15. Infection of endothelial cells by common human viruses.

    PubMed

    Friedman, H M

    1989-01-01

    Common human viruses were evaluated for their ability to replicate in the endothelial cells of human umbilical vein and bovine thoracic aorta in vitro. Infection occurred with most viruses. The susceptibilities of endothelial cells derived from bovine aorta, pulmonary artery, and vena cava were compared. Among the viruses studied, no differences were noted in the ability to grow in endothelial cells from these three large vessels. One virus, herpes simplex virus type 1, was evaluated for its ability to produce persistent infection of endothelial cells. Infection developed and persisted for up to 3 months. After the first week, productive infection was found in less than 1% of cells. Nevertheless, the infection markedly affected the growth and morphology of the endothelial monolayer. Infection with any of several different viruses was noted to alter endothelial cell functions, including adherence of granulocytes, production of colony-stimulating factor, and synthesis of matrix protein. In addition, herpes simplex virus type 1 induced receptors for the Fc portion of IgG and for complement component C3b. These findings indicate that common human viruses can profoundly affect the biology of the endothelium.

  16. Quantitative autoradiographic mapping of focal herpes simplex virus encephalitis using a radiolabeled antiviral drug

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, R.

    1984-12-18

    A method of mapping herpes simplex viral infection comprising administering a radiolabeled antiviral active 5-substituted 1-(2'-deoxy-2'-substituted-D-arabinofuranosyl) pyrimidine nucleoside to the infected subject, and scanning the area in which the infection is to be mapped for the radiolabel.

  17. Mediators and Mechanisms of Herpes Simplex Virus Entry into Ocular Cells

    PubMed Central

    Farooq, Asim V.; Valyi-Nagy, Tibor; Shukla, Deepak

    2010-01-01

    The entry of herpes simplex virus (HSV) into cells was once thought to be a general process. It is now understood that the virus is able to use multiple mechanisms for entry and spread, including the use of receptors and co-receptors that have been determined to be cell-type specific. This is certainly true for ocular cell types, which is important as the virus may use different mechanisms to gain access to multiple anatomic structures in close proximity, leading to various ocular diseases. There are some patterns that may be utilized by the virus in the eye and elsewhere, including surfing along filopodia in moving from cell to cell. There are common themes as well as intriguing differences in the entry mechanisms of HSV into ocular cells. We discuss these issues in the context of conjunctivitis, keratitis, acute retinal necrosis and other ocular diseases. PMID:20465436

  18. Characterization of soluble glycoprotein D-mediated herpes simplex virus type 1 infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsvitov, Marianna; Frampton, Arthur R.; Shah, Waris A.

    2007-04-10

    Herpes simplex virus type 1 (HSV-1) entry into permissive cells involves attachment to cell-surface glycosaminoglycans (GAGs) and fusion of the virus envelope with the cell membrane triggered by the binding of glycoprotein D (gD) to cognate receptors. In this study, we characterized the observation that soluble forms of the gD ectodomain (sgD) can mediate entry of gD-deficient HSV-1. We examined the efficiency and receptor specificity of this activity and used sequential incubation protocols to determine the order and stability of the initial interactions required for entry. Surprisingly, virus binding to GAGs did not increase the efficiency of sgD-mediated entry andmore » gD-deficient virus was capable of attaching to GAG-deficient cells in the absence of sgD. These observations suggested a novel binding interaction that may play a role in normal HSV infection.« less

  19. Evaluation of an edible blue-green alga, Aphanothece sacrum, for its inhibitory effect on replication of herpes simplex virus type 2 and influenza virus type A.

    PubMed

    Ogura, Fumie; Hayashi, Kyoko; Lee, Jung-Bum; Kanekiyo, Kenji; Hayashi, Toshimitsu

    2010-01-01

    A hot-water extract of Aphanothece sacrum, an edible aquacultured blue-green alga, was found to show a remarkable inhibitory effect on the replication of enveloped viruses including herpes simplex virus type 2 (HSV-2) and influenza virus type A (IFV-A, H1N1) in vitro. The main active components were suggested to be sulfated polysaccharides in non-dialyzable portion (ASWPH). ASWPH was found to inhibit the viral adsorption to the receptor of the host cells involved in the replication process of HSV-2 and IFV-A. In addition, while the penetration stage of HSV-2 was also significantly suppressed with ASWPH, no such effect was observed in the replication of IFV-A. These results suggest that ASWPH might be useful in the prevention of infectious diseases caused by HSV-2 as well as IFV-A.

  20. Vaccinia virus, herpes simplex virus, and carcinogens induce DNA amplification in a human cell line and support replication of a helpervirus dependent parvovirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlehofer, J.R.; Ehrbar, M.; zur Hausen, H.

    1986-07-15

    The SV40-transformed human kidney cell line, NB-E, amplifies integrated as well as episomal SV40 DNA upon treatment with chemical (DMBA) or physical (uv irradiation) carcinogens (initiators) as well as after infection with herpes simplex virus (HSV) type 1 or with vaccinia virus. In addition it is shown that vaccinia virus induces SV40 DNA amplification also in the SV40-transformed Chinese hamster embryo cell line, CO631. These findings demonstrate that human cells similar to Chinese hamster cells amplify integrated DNA sequences after treatment with carcinogens or infection with specific viruses. Furthermore, a poxvirus--vaccinia virus--similar to herpes group viruses induces DNA amplification. Asmore » reported for other systems, the vaccinia virus-induced DNA amplification in NB-E cells is inhibited by coinfection with adeno-associated virus (AAV) type 5. This is in line with previous studies on inhibition of carcinogen- or HSV-induced DNA amplification in CO631 cells. The experiments also demonstrate that vaccinia virus, in addition to herpes and adenoviruses acts as a helper virus for replication and structural antigen synthesis of AAV-5 in NB-E cells.« less

  1. Elimination of mitochondrial DNA is not required for herpes simplex virus 1 replication.

    PubMed

    Duguay, Brett A; Saffran, Holly A; Ponomarev, Alina; Duley, Shayla A; Eaton, Heather E; Smiley, James R

    2014-03-01

    Infection with herpes simplex virus type 1 (HSV-1) results in the rapid elimination of mitochondrial DNA (mtDNA) from host cells. It is known that a mitochondrial isoform of the viral alkaline nuclease (UL12) called UL12.5 triggers this process. However, very little is known about the impact of mtDNA depletion on viral replication or the biology of HSV-1 infections. These questions have been difficult to address because UL12.5 and UL12 are encoded by overlapping transcripts that share the same open reading frame. As a result, mutations that alter UL12.5 also affect UL12, and UL12 null mutations severely impair viral growth by interfering with the intranuclear processing of progeny viral genomes. Therefore, to specifically assess the impact of mtDNA depletion on viral replication, it is necessary to eliminate the activity of UL12.5 while preserving the nuclear functions of UL12. Previous work has shown that the human cytomegalovirus alkaline nuclease UL98 can functionally substitute for UL12 during HSV-1 replication. We found that UL98 is unable to deplete mtDNA in transfected cells and therefore generated an HSV-1 variant in which UL98 coding sequences replace the UL12/UL12.5 open reading frame. The resulting virus was severely impaired in its ability to trigger mtDNA loss but reached titers comparable to those of wild-type HSV-1 in one-step and multistep growth experiments. Together, these observations demonstrate that the elimination of mtDNA is not required for HSV-1 replication in cell culture. Herpes simplex virus types 1 and 2 destroy the DNA of host cell mitochondria, the powerhouses of cells. Epstein-Barr virus, a distantly related herpesvirus, has a similar effect, indicating that mitochondrial DNA destruction is under positive selection and thus confers a benefit to the virus. The present work shows that mitochondrial DNA destruction is not required for efficient replication of herpes simplex virus type 1 in cultured Vero kidney epithelial cells, suggesting that this activity likely benefits the virus in other cell types or in the intact human host.

  2. Development of Gene Therapeutics for Head and Neck Cancer in China: From Bench to Bedside.

    PubMed

    Guo, Wei; Song, Hao

    2018-02-01

    Head and neck cancer represents the seventh most common cancer worldwide. Although multidisciplinary sequential treatments have been used, there is still an urgent need for new treatment approaches that can effectively improve the outcomes of patients with advanced stages of head and neck cancer. Gene therapy is a rapidly evolving field in cancer therapy that has been shown to improve the efficacy of antitumor treatment. China is at the forefront in clinical trials and practice of gene therapy. Chinese researchers have mainly focused on gene therapeutics based on oncolytic virus and recombinant adenovirus expressing p53, antiangiogenesis factor or herpes simplex virus-thymidine kinase. Currently, two gene therapy drugs, Gendicine and Oncorine, have been marketed in China, and a number of upcoming gene therapy agents are under development for the treatment of head and neck cancer. Most gene therapy agents have demonstrated excellent tolerance. However, the therapeutic effects need further improvement. With current innovations in tumor biology and knowledge, gene therapy has great potential as a safe and effective anticancer treatment. In recent years, new gene therapy agents with promising effects have been incorporated into clinical trials in China. Thus, gene therapy may become an important part of anticancer therapy and is expected to improve the therapeutic effect of head and neck cancers in the near future.

  3. Accumulation of Herpes Simplex Virus Type 1 Early and Leaky-Late Proteins Correlates with Apoptosis Prevention in Infected Human HEp-2 Cells

    PubMed Central

    Aubert, Martine; Rice, Stephen A.; Blaho, John A.

    2001-01-01

    We previously reported that a recombinant ICP27-null virus stimulated, but did not prevent, apoptosis in human HEp-2 cells during infection (M. Aubert and J. A. Blaho, J. Virol. 73:2803–2813, 1999). In the present study, we used a panel of 15 recombinant ICP27 mutant viruses to determine which features of herpes simplex virus type 1 (HSV-1) replication are required for the apoptosis-inhibitory activity. Each virus was defined experimentally as either apoptotic, partially apoptotic, or nonapoptotic based on infected HEp-2 cell morphologies, percentages of infected cells with condensed chromatin, and patterns of specific cellular death factor processing. Viruses d27-1, d1-5, d1-2, M11, M15, M16, n504R, n406R, n263R, and n59R are apoptotic or partially apoptotic in HEp-2 cells and severely defective for growth in Vero cells. Viruses d2-3, d3-4, d4-5, d5-6, and d6-7 are nonapoptotic, demonstrating that ICP27 contains a large amino-terminal region, including its RGG box RNA binding domain, which is not essential for apoptosis prevention. Accumulations of viral TK, VP16, and gD but not gC, ICP22, or ICP4 proteins correlated with prevention of apoptosis during the replication of these viruses. Of the nonapoptotic viruses, d4-5 did not produce gC, indicating that accumulation of true late gene products is not necessary for the prevention process. Analyses of viral DNA synthesis in HEp-2 cells indicated that apoptosis prevention by HSV-1 requires that the infection proceeds to the stage in which viral DNA replication takes place. Infections performed in the presence of the drug phosphonoacetic acid confirmed that the process of viral DNA synthesis and the accumulation of true late (γ2) proteins are not required for apoptosis prevention. Based on our results, we conclude that the accumulation of HSV-1 early (β) and leaky-late (γ1) proteins correlates with the prevention of apoptosis in infected HEp-2 cells. PMID:11134315

  4. The nervous system in genital herpes simplex virus type 2 infections in mice. Lethal panmyelitis or nonlethal demyelinative myelitis or meningitis.

    PubMed

    Martin, J R; Stoner, G L

    1984-11-01

    Female mice were inoculated vaginally with the MS strain of herpes simplex virus type 2, and serially positive vaginal cultures were used to confirm infection. The proportion of mice infected and the mortality rate in infected mice decreased with increasing age. In mice 12 weeks old, clinical, neuropathologic, and virologic criteria defined four patterns of disease. Moribund mice had severe genital lesions, hindleg paralysis, and urinary and fecal retention, and most died during the second week of infection. These mice had a panmyelitis with a decreasing gradient of both viral antigen and lesions extending rostrally from the lumbosacral cord into the brain stem. Lesions were about equally distributed in gray and white matter and were characterized by neuronal loss and axonal demyelination, respectively. By contrast, mice with nonfatal infections had mild or no evident genital lesions and a small proportion had mild hindleg weakness. Of these, some mice had demyelinative lesions, particularly in the lower spinal cord but also at higher cord and brain stem levels, whereas others had leptomeningitis. Both of these groups had sacral sensory root abnormalities. A third group of survivors lacked both sensory root and central nervous system abnormalities. This report defines a broader spectrum of disease patterns following infection by a natural route than has been previously appreciated. It provides the first evidence that nonfatal herpes simplex virus type 2 infection by a peripheral route can produce central nervous system demyelination. It indicates that in aseptic meningitis with this agent, the route of virus spread to the central nervous system is neural and not hematogenous. Finally, the antigenic and pathologic observations presented here complement and confirm the virus isolation data and pathologic findings of others that genital herpes simplex virus type 2 infection causes ascending infection in the peripheral and central nervous system.

  5. A model of lytic, latent, and reactivating varicella-zoster virus infections in isolated enteric neurons.

    PubMed

    Gershon, Anne A; Chen, Jason; Gershon, Michael D

    2008-03-01

    Because human primary afferent neurons are not readily obtained, we sought to develop a model in which the lytic, latent, and reactivating phases of varicella-zoster virus (VZV) infection were recapitulated in neurons from an animal source. Enteric neurons were obtained from the small intestine of adult guinea pigs and from the bowel of fetal mice. Latency was established when these neurons were infected by cell-free VZV in the absence of fibroblasts or other cells of mesodermal origin. In contrast, lytic infection ensued when fibroblasts were present or when the enteric neurons were infected by cell-associated VZV. Latency was associated with the expression of a limited subset of viral genes, the products of which were restricted to the cytoplasm. Lysis was associated with the expression of viral glycoproteins, nuclear translocation of latency-associated gene products, and rapid cell death. Reactivation was accomplished by expressing VZV open reading frame (ORF) 61p or herpes simplex virus ICP0 in latently infected neurons. Isolated enteric neurons from guinea pigs and mice recapitulate latent gene expression in human cranial nerve and dorsal root ganglia. Expression of latency-associated VZV gene products was detected in 88% of samples of adult human intestine, suggesting that VZV not only infects enteric neurons but also is latent in the human enteric nervous system. This in vitro model should facilitate further understanding of latency and reactivation of VZV.

  6. Evolution and Diversity in Human Herpes Simplex Virus Genomes

    PubMed Central

    Gatherer, Derek; Ochoa, Alejandro; Greenbaum, Benjamin; Dolan, Aidan; Bowden, Rory J.; Enquist, Lynn W.; Legendre, Matthieu; Davison, Andrew J.

    2014-01-01

    Herpes simplex virus 1 (HSV-1) causes a chronic, lifelong infection in >60% of adults. Multiple recent vaccine trials have failed, with viral diversity likely contributing to these failures. To understand HSV-1 diversity better, we comprehensively compared 20 newly sequenced viral genomes from China, Japan, Kenya, and South Korea with six previously sequenced genomes from the United States, Europe, and Japan. In this diverse collection of passaged strains, we found that one-fifth of the newly sequenced members share a gene deletion and one-third exhibit homopolymeric frameshift mutations (HFMs). Individual strains exhibit genotypic and potential phenotypic variation via HFMs, deletions, short sequence repeats, and single-nucleotide polymorphisms, although the protein sequence identity between strains exceeds 90% on average. In the first genome-scale analysis of positive selection in HSV-1, we found signs of selection in specific proteins and residues, including the fusion protein glycoprotein H. We also confirmed previous results suggesting that recombination has occurred with high frequency throughout the HSV-1 genome. Despite this, the HSV-1 strains analyzed clustered by geographic origin during whole-genome distance analysis. These data shed light on likely routes of HSV-1 adaptation to changing environments and will aid in the selection of vaccine antigens that are invariant worldwide. PMID:24227835

  7. Preclinical Evaluation of Engineered Oncolytic Herpes Simplex Virus for the Treatment of Pediatric Solid Tumors

    PubMed Central

    Megison, Michael L.; Gillory, Lauren A.; Stewart, Jerry E.; Nabers, Hugh C.; Mroczek-Musulman, Elizabeth; Waters, Alicia M.; Coleman, Jennifer M.; Kelly, Virginia; Markert, James M.; Gillespie, G. Yancey; Friedman, Gregory K.; Beierle, Elizabeth A.

    2014-01-01

    Recently, investigators showed that mice with syngeneic murine gliomas that were treated with a neuroattenuated oncolytic herpes simplex virus-1 (oHSV), M002, had a significant increase in survival. M002 has deletions in both copies of the γ134.5 gene, enabling replication in tumor cells but precluding infection of normal cells. Previous studies have shown antitumor effects of other oHSV against a number of adult tumors including hepatocellular carcinoma and renal cell carcinoma. The purpose of the current study was to investigate the oncolytic potential of M002 against difficult to treat pediatric liver and kidney tumors. We showed that the oHSV, M002, infected, replicated, and decreased cell survival in hepatoblastoma, malignant rhabdoid kidney tumor, and renal sarcoma cell lines. In addition, we showed that in murine xenografts, treatment with M002 significantly increased survival and decreased tumor growth. Finally, these studies showed that the primary entry protein for oHSV, CD111 (nectin-1) was present in human hepatoblastoma and malignant rhabdoid kidney tumor specimens. We concluded that M002 effectively targeted these rare aggressive tumor types and that M002 may have potential for use in children with unresponsive or relapsed pediatric solid tumors. PMID:24497984

  8. Molecular Mechanisms for Herpes Simplex Virus Type 1 Pathogenesis in Alzheimer’s Disease

    PubMed Central

    Harris, Steven A.; Harris, Elizabeth A.

    2018-01-01

    This review focuses on research in the areas of epidemiology, neuropathology, molecular biology and genetics that implicates herpes simplex virus type 1 (HSV-1) as a causative agent in the pathogenesis of sporadic Alzheimer’s disease (AD). Molecular mechanisms whereby HSV-1 induces AD-related pathophysiology and pathology, including neuronal production and accumulation of amyloid beta (Aβ), hyperphosphorylation of tau proteins, dysregulation of calcium homeostasis, and impaired autophagy, are discussed. HSV-1 causes additional AD pathologies through mechanisms that promote neuroinflammation, oxidative stress, mitochondrial damage, synaptic dysfunction, and neuronal apoptosis. The AD susceptibility genes apolipoprotein E (APOE), phosphatidylinositol binding clathrin assembly protein (PICALM), complement receptor 1 (CR1) and clusterin (CLU) are involved in the HSV lifecycle. Polymorphisms in these genes may affect brain susceptibility to HSV-1 infection. APOE, for example, influences susceptibility to certain viral infections, HSV-1 viral load in the brain, and the innate immune response. The AD susceptibility gene cholesterol 25-hydroxylase (CH25H) is upregulated in the AD brain and is involved in the antiviral immune response. HSV-1 interacts with additional genes to affect cognition-related pathways and key enzymes involved in Aβ production, Aβ clearance, and hyperphosphorylation of tau proteins. Aβ itself functions as an antimicrobial peptide (AMP) against various pathogens including HSV-1. Evidence is presented supporting the hypothesis that Aβ is produced as an AMP in response to HSV-1 and other brain infections, leading to Aβ deposition and plaque formation in AD. Epidemiologic studies associating HSV-1 infection with AD and cognitive impairment are discussed. Studies are reviewed supporting subclinical chronic reactivation of latent HSV-1 in the brain as significant in the pathogenesis of AD. Finally, the rationale for and importance of clinical trials treating HSV-1-infected MCI and AD patients with antiviral medication is discussed. PMID:29559905

  9. Virus inactivation under the photodynamic effect of phthalocyanine zinc(II) complexes.

    PubMed

    Remichkova, Mimi; Mukova, Luchia; Nikolaeva-Glomb, Lubomira; Nikolova, Nadya; Doumanova, Lubka; Mantareva, Vanya; Angelov, Ivan; Kussovski, Veselin; Galabov, Angel S

    2017-03-01

    Various metal phthalocyanines have been studied for their capacity for photodynamic effects on viruses. Two newly synthesized water-soluble phthalocyanine Zn(II) complexes with different charges, cationic methylpyridyloxy-substituted Zn(II)- phthalocyanine (ZnPcMe) and anionic sulfophenoxy-substituted Zn(II)-phthalocyanine (ZnPcS), were used for photoinactivation of two DNA-containing enveloped viruses (herpes simplex virus type 1 and vaccinia virus), two RNA-containing enveloped viruses (bovine viral diarrhea virus and Newcastle disease virus) and two nude viruses (the enterovirus Coxsackie B1, a RNA-containing virus, and human adenovirus 5, a DNA virus). These two differently charged phthalocyanine complexes showed an identical marked virucidal effect against herpes simplex virus type 1, which was one and the same at an irradiation lasting 5 or 20 min (Δlog=3.0 and 4.0, respectively). Towards vaccinia virus this effect was lower, Δlog=1.8 under the effect of ZnPcMe and 2.0 for ZnPcS. Bovine viral diarrhea virus manifested a moderate sensitivity to ZnPcMe (Δlog=1.8) and a pronounced one to ZnPcS at 5- and 20-min irradiation (Δlog=5.8 and 5.3, respectively). The complexes were unable to inactivate Newcastle disease virus, Coxsackievirus B1 and human adenovirus type 5.

  10. Facial nerve palsy after reactivation of herpes simplex virus type 1 in diabetic mice.

    PubMed

    Esaki, Shinichi; Yamano, Koji; Katsumi, Sachiyo; Minakata, Toshiya; Murakami, Shingo

    2015-04-01

    Bell's palsy is highly associated with diabetes mellitus (DM). Either the reactivation of herpes simplex virus type 1 (HSV-1) or diabetic mononeuropathy has been proposed to cause the facial paralysis observed in DM patients. However, distinguishing whether the facial palsy is caused by herpetic neuritis or diabetic mononeuropathy is difficult. We previously reported that facial paralysis was aggravated in DM mice after HSV-1 inoculation of the murine auricle. In the current study, we induced HSV-1 reactivation by an auricular scratch following DM induction with streptozotocin (STZ). Controlled animal study. Diabetes mellitus was induced with streptozotocin injection in only mice that developed transient facial nerve paralysis with HSV-1. Recurrent facial palsy was induced after HSV-1 reactivation by auricular scratch. After DM induction, the number of cluster of differentiation 3 (CD3)(+) T cells decreased by 70% in the DM mice, and facial nerve palsy recurred in 13% of the DM mice. Herpes simplex virus type 1 deoxyribonucleic acid (DNA) was detected in the facial nerve of all of the DM mice with palsy, and HSV-1 capsids were found in the geniculate ganglion using electron microscopy. Herpes simplex virus type 1 DNA was also found in some of the DM mice without palsy, which suggested the subclinical reactivation of HSV-1. These results suggested that HSV-1 reactivation in the geniculate ganglion may be the main causative factor of the increased incidence of facial paralysis in DM patients. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  11. Herpes Simplex Virus Selectively Induces Expression of the CC Chemokine RANTES/CCL5 in Macrophages through a Mechanism Dependent on PKR and ICP0

    PubMed Central

    Melchjorsen, Jesper; Pedersen, Finn S.; Mogensen, Søren C.; Paludan, Søren R.

    2002-01-01

    Recruitment of leukocytes is essential for eventual control of virus infections. Macrophages represent a leukocyte population involved in the first line of defense against many infections, including herpes simplex virus (HSV) infection. Through presentation of antigens to T cells and production of cytokines and chemokines, macrophages also constitute an important link between the innate and adaptive immune systems. Here, we have investigated the chemokine expression profile of macrophages after HSV infection and the virus-cell interactions involved. By reverse transcription-PCR and cDNA arrays, we found that HSV type 1 (HSV-1) and HSV-2 induced expression of the CC chemokine RANTES/CCL5 in murine macrophage cell lines and peritoneal cells. The CXC chemokine BCA-1/CXCL13 was also induced in peritoneal cells. Twenty-six other chemokines tested were not affected. Accumulation of RANTES mRNA was detectable after 5 h of infection, was sensitive to UV irradiation of the virus, and was preceded by accumulation of viral immediate-early mRNA and proteins. The viral components responsible for initiation of RANTES expression were examined with virus mutants and RAW 264.7 macrophage-like cells expressing a dominant negative mutant of the double-stranded-RNA-activated protein kinase (PKR). The PKR mutant cell line displayed reduced constitutive and HSV-inducible RANTES expression compared to the control cell line. HSV-1 mutants deficient in genes encoding the immediate-early proteins ICP4, ICP22, and ICP27 remained fully capable of inducing RANTES expression in macrophages. By contrast, the ability of an ICP0-deficient HSV-1 mutant to induce RANTES expression was compromised. Thus, HSV selectively induces expression of RANTES in macrophages through a mechanism dependent on cellular PKR and viral ICP0. PMID:11861845

  12. Synergism of herpes simplex virus and tobacco-specific N'-nitrosamines in cell transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, N.H.; Dokko, H.; Li, S.L.

    1991-03-01

    Previous studies indicate that herpes simplex virus (HSV) enhances the carcinogenic activity of smokeless tobacco and tobacco-related chemical carcinogens in animals. Since tobacco-specific N'-nitrosamines (TSNAs) such as N'-nitrosonornicotine (NNN) and 4-(N-methyl-N'-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK) are major chemical carcinogens of smokeless tobacco and are known to be responsible for the development of oral cancers in smokeless tobacco users, the combined effects of TSNAs and HSV in cell transformation were investigated. Exposure of cells to NNN or NNK followed by virus infection resulted in a significant enhancement of transformation frequency when compared with that observed with chemical carcinogens or virus alone. This study suggestsmore » that TSNAs and HSV can interact together and show synergism in cell transformation.« less

  13. Neurons versus herpes simplex virus: the innate immune interactions that contribute to a host–pathogen standoff

    PubMed Central

    Rosato, Pamela C; Leib, David A

    2015-01-01

    Herpes simplex virus (HSV) is a prevalent neurotropic virus, which establishes lifelong latent infections in the neurons of sensory ganglia. Despite our long-standing knowledge that HSV predominately infects sensory neurons during its life cycle, little is known about the neuronal antiviral response to HSV infection. Recent studies show that while sensory neurons have impaired intrinsic immunity to HSV infection, paracrine IFN signaling can potentiate a potent antiviral response. Additionally, antiviral autophagy plays an important role in neuronal control of HSV infection. Here we review the literature of antiviral signaling and autophagy in neurons, the mechanisms by which HSV can counteract these responses, and postulate how these two pathways may synergize to mediate neuronal control of HSV infection and yet result in lifelong persistence of the virus. PMID:26213562

  14. Isolation and characterization of acyclovir-resistant mutants of herpes simplex virus.

    PubMed

    Field, H J; Darby, G; Wildy, P

    1980-07-01

    Mutants of HSV which are resistant to acyclovir (acycloguanosine) have been isolated following serial passages of several herpes simplex virus (HSV) strains in the presence of the drug. The majority of the mutants isolated are defective in induction of thymidine kinase (TK) and this is consistent with the observation that independently isolated TK- viruses are naturally resistant to ACV. One mutant is described (SC16 R9C2) which is resistant in biochemically transformed cells which express HSV TK. This suggests that its resistance resides at a level other than TK. It is also resistant to phosphonoacetic acid, suggesting that the DNA polymerase locus may be involved. A further mutant is described [Cl (101) P2C5] which induces normal levels of TK, although the nature of resistance of this virus is not yet elucidated.

  15. Inhibition of herpes simplex virus multiplication by activated macrophages: a role for arginase?

    PubMed Central

    Wildy, P; Gell, P G; Rhodes, J; Newton, A

    1982-01-01

    Proteose-peptone-activated mouse macrophages can prevent productive infection by herpes simplex virus in neighboring cells in vitro whether or not those cells belong to the same animal species. The effect does not require contact between the macrophages and the infected cells, may be prevented by adding extra arginine to the medium, and may be reversed when extra arginine is added 24 h after the macrophages. Arginase activity was found both intracellularly and released from the macrophages. The extracellular enzyme is quite stable; 64% activity was found after 48 h of incubation at 37 degrees C in tissue culture medium. No evidence was found that the inefficiency of virus replication in macrophages was due to self-starvation by arginase. As might be predicted macrophages can, by the same mechanism, limit productive infection by vaccinia virus. PMID:6286497

  16. Inhibition of herpes simplex virus multiplication by activated macrophages: a role for arginase?

    PubMed

    Wildy, P; Gell, P G; Rhodes, J; Newton, A

    1982-07-01

    Proteose-peptone-activated mouse macrophages can prevent productive infection by herpes simplex virus in neighboring cells in vitro whether or not those cells belong to the same animal species. The effect does not require contact between the macrophages and the infected cells, may be prevented by adding extra arginine to the medium, and may be reversed when extra arginine is added 24 h after the macrophages. Arginase activity was found both intracellularly and released from the macrophages. The extracellular enzyme is quite stable; 64% activity was found after 48 h of incubation at 37 degrees C in tissue culture medium. No evidence was found that the inefficiency of virus replication in macrophages was due to self-starvation by arginase. As might be predicted macrophages can, by the same mechanism, limit productive infection by vaccinia virus.

  17. A Herpes Simplex Virus Type 2 Deleted for Glycoprotein D Enables Dendritic Cells to Activate CD4+ and CD8+ T Cells

    PubMed Central

    Retamal-Díaz, Angello R.; Kalergis, Alexis M.; Bueno, Susan M.; González, Pablo A.

    2017-01-01

    Herpes simplex virus type 2 (HSV-2) is highly prevalent in the human population producing significant morbidity, mainly because of the generation of genital ulcers and neonatal encephalitis. Additionally, HSV-2 infection significantly increases the susceptibility of the host to acquire HIV and promotes the shedding of the latter in the coinfected. Despite numerous efforts to create a vaccine against HSV-2, no licensed vaccines are currently available. A long-standing strategy, based on few viral glycoproteins combined with adjuvants, recently displayed poor results in a Phase III clinical study fueling exploration on the development of mutant HSV viruses that are attenuated in vivo and elicit protective adaptive immune components, such as antiviral antibodies and T cells. Importantly, such specialized antiviral immune components are likely induced and modulated by dendritic cells, professional antigen presenting cells that process viral antigens and present them to T cells. However, HSV interferes with several functions of DCs and ultimately induces their death. Here, we propose that for an attenuated mutant virus to confer protective immunity against HSV in vivo based on adaptive immune components, such virus should also be attenuated in dendritic cells to promote a robust and effective antiviral response. We provide a background framework for this idea, considerations, as well as the means to assess this hypothesis. Addressing this hypothesis may provide valuable insights for the development of novel, safe, and effective vaccines against herpes simplex viruses. PMID:28848543

  18. [Herpes simplex virus vaccine studies: from past to present].

    PubMed

    Us, Dürdal

    2006-10-01

    The dramatical increase in the prevalence of Herpes simplex virus (HSV) infections and the significant physical and psychosocial morbidity of HSV type 2 infections, generate the need for an efficacious HSV vaccine. The most important properties of HSVs that should be targeted for a successful vaccine are neuronal invasion, latency and reactivation in spite of specific host immune responses. The major expectation for an ideal HSV vaccine candidate is to induce sterilizing immunity, which must be effective at all portals of HSV entry; to prevent or reduce the symptomatic disease and to eliminate or at least to limit the asymptomatic viral shedding. The first vaccine studies have began in the 1920s and in the intervening eight decades there have been many attempts to develop an effective one. Although encouraging findings came from experiments in various animal models, human studies have been disappointing, unfortunately. The vaccine strategies that have undergone clinical evaluation until today included autoinoculation of live HSV, whole inactivated vaccines, attenuated live virus vaccines, modified live virus subunit vaccines, cell culture-derived subunit vaccines, recombinant subunit (glycoprotein) vaccines, DISC (Disabled Infectious Single Cycle) virus vaccines, viral vectors and naked DNA vaccines. In most of the clinical studies the failure of HSV vaccines in spite of inducing very high levels of specific neutralizing antibodies have emphasized that cell-mediated immune response, especially Thl type immunity is important in preventing both primary disease and recurrences with HSV, rather than humoral response. The most hopeful result was obtained with HSV-2 gD and alum/MPL vaccine in clinical studies. This vaccine was found 74% effective in preventing genital disease in HSV seronegative women but was not effective in men or seropositive women. In recent years it is possible to genetically engineer HSV to produce a vaccine strain that is protective without causing human disease. An example for this strategy was the development of a live attenuated vaccine from which neurovirulence gene (gamma1 34.5) has been removed. Another promising one was the replication-defective DISC virus HSV vaccine which is derived from a virus with an essential gene (e.g. gH gene) deleted, so the replication has been limited only to a single cycle. As a result, intensive HSV vaccine trials are currently underway, although all the previous attempts to produce an effective vaccine for the prophylaxis and immunotherapy against HSV have been largely unsuccessful. In this review the history of HSV vaccine development together with the preclinical and clinical studies from past to present has been summarized and recent progress for an effective HSV vaccine together with the further improvements required for an immunogenic vaccine have been discussed.

  19. A 12-year molecular survey of clinical herpes simplex virus type 2 isolates demonstrates the circulation of clade A and B strains in Germany.

    PubMed

    Schmidt-Chanasit, Jonas; Bialonski, Alexandra; Heinemann, Patrick; Ulrich, Rainer G; Günther, Stephan; Rabenau, Holger F; Doerr, Hans Wilhelm

    2010-07-01

    Recently two different herpes simplex virus type 2 (HSV-2) clades (A and B) were described on DNA sequence data of the glycoprotein E (gE), G (gG) and I (gI) genes. To type the circulating HSV-2 wild-type strains in Germany by a novel approach and to monitor potential changes in the molecular epidemiology between 1997 and 2008. A total of 64 clinical HSV-2 isolates were analyzed by a novel approach using the DNA sequences of the complete open reading frames of glycoprotein B (gB) and gG. Recombination analysis of the gB and gG gene sequences was performed to reveal intragenic recombinants. Based on the phylogenetic analysis of the gB coding DNA sequence 8 of 64 (12%) isolates were classified as clade A strains and 56 of 64 (88%) isolates were classified as clade B strains. Analysis of the gG coding DNA sequence classified 4 (6%) isolates as clade A strains and 60 (94%) isolates as clade B strains. In comparison, the 8 isolates classified as clade A strains using the gB sequence data were classified as clade B strains when using the gG coding DNA sequence, suggesting intergenic recombination events. Intragenic recombination events were not detected. The first molecular survey of clinical HSV-2 isolates from Germany demonstrated the circulation of clade A and B strains and of intergenic recombinants over a period of 12 years. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  20. Improving immunogenicity and efficacy of vaccines for genital herpes containing herpes simplex virus glycoprotein D.

    PubMed

    Awasthi, Sita; Shaw, Carolyn; Friedman, Harvey

    2014-12-01

    No vaccines are approved for prevention or treatment of genital herpes. The focus of genital herpes vaccine trials has been on prevention using herpes simplex virus type 2 (HSV-2) glycoprotein D (gD2) alone or combined with glycoprotein B. These prevention trials did not achieve their primary end points. However, subset analyses reported some positive outcomes in each study. The most recent trial was the Herpevac Trial for Women that used gD2 with monophosphoryl lipid A and alum as adjuvants in herpes simplex virus type 1 (HSV-1) and HSV-2 seronegative women. Unexpectedly, the vaccine prevented genital disease by HSV-1 but not HSV-2. Currently, HSV-1 causes more first episodes of genital herpes than HSV-2, highlighting the importance of protecting against HSV-1. The scientific community is conflicted between abandoning vaccine efforts that include gD2 and building upon the partial successes of previous trials. We favor building upon success and present approaches to improve outcomes of gD2-based subunit antigen vaccines.

  1. Acute Morphine Administration Reduces Cell-Mediated Immunity and Induces Reactivation of Latent Herpes Simplex Virus Type 1 in BALB/c Mice

    PubMed Central

    Mojadadi, Shafi; Jamali, Abbas; Khansarinejad, Behzad; Soleimanjahi, Hoorieh; Bamdad, Taravat

    2009-01-01

    Acute morphine administration is known to alter the course of herpes simplex virus infection. In this study, the effect of acute morphine administration on the reactivation of latent herpes was investigated in a mouse model. Because of the important role of cytolytic T lymphocyte (CTL) activity in the inhibition of herpes simplex virus type 1 (HSV-1) reactivation, the effect of acute morphine administration on CTL responses was also evaluated. Furthermore, lymphocyte proliferation and IFN-γ production were evaluated for their roles in the induction of the CTL response. The findings showed that acute morphine administration significantly reduced CTL responses, lymphocyte proliferation, and IFN-γ production. Furthermore, acute morphine administration has been shown to reactivate latent HSV-1. Previous studies have shown that cellular immune responses have important roles in the inhibition of HSV reactivation. These findings suggest that suppression of a portion of the cellular immune response after acute morphine administration may constitute one part of the mechanism that induces HSV reactivation. PMID:19403060

  2. Using HSV-TK/GCV suicide gene therapy to inhibit lens epithelial cell proliferation for treatment of posterior capsular opacification

    PubMed Central

    Jiang, Yong-Xiang; Liu, Tian-Jing; Yang, Jin; Chen, Yan; Fang, Yan-Wen

    2011-01-01

    Purpose To establish a novel, targeted lentivirus-based HSV-tk (herpes simplex virus thymidine kinase)/GCV (ganciclovir) gene therapy system to inhibit lens epithelial cell proliferation for treatment of posterior capsular opacification (PCO) after cataract surgery. Methods An enhanced Cre recombinase (Cre/loxP) system with a lentiviral vector expressing Cre under the control of the lens-specific promoter LEP503 (Lenti-LEP503-HSVtk-Cre [LTKCRE]) was constructed, as well as another lentiviral vector containing a switching unit. The latter vector contains a stuffer sequence encoding EGFP (Lenti-hPGK-Loxp-EGFP-pA-Loxp-HSVtk [PGFPTK]) with a functional polyadenylation signal between two loxP sites, followed by the herpes simplex virus thymidine kinase (HSV-tk) gene, both under the control of the human posphoglycerate kinase (hPGK) promoter. Expression of the downstream gene (HSV-tk) is activated by co-expression of Cre. Human lens epithelial cells (HLECs) or retinal pigmental epithelial cells (RPECs) were co-infected with LTKCRE and PGFPTK. The inhibitory effects on HLECs and RPECs infected by the enhanced specific lentiviral vector combination at the concentration of 20 µg/ml GCV were assayed and compared. Results The specific gene expression of Cre and HSV-tk in HLECs is activated by the LEP503 promoter. LTKCRE and PGFPTK co-infected HLECs, but not RPECs, expressed high levels of the HSV-tk protein. After 96 h of GCV treatment, the percentage of apoptotic HLECs infected by the enhanced specific lentiviral vector combination was 87.23%, whereas that of apoptotic RPECs was only 10.12%. Electron microscopy showed that GCV induced apoptosis and necrosis of the infected HLECs. Conclusions The enhanced specific lentiviral vector combination selectively and effectively expressed HSV-tk in HLECs. A concentration of 20 µg/ml, GCV is effective against the proliferation of HLECs in vitro. This cell-type-specific gene therapy using a Cre/loxP lentivirus system may be a feasible treatment strategy to prevent PCO. PMID:21283526

  3. Identification of a novel NLS of herpes simplex virus type 1 (HSV-1) VP19C and its nuclear localization is required for efficient production of HSV-1.

    PubMed

    Li, You; Zhao, Lei; Wang, Shuai; Xing, Junji; Zheng, Chunfu

    2012-09-01

    Herpes simplex virus type 1 (HSV-1) triplex is a complex of three protein subunits, consisting of two copies of VP23 and one copy of VP19C. Here, we identified a non-classical NLS of VP19C between aa 50 and 61, and the nuclear import of VP19C was mediated by RanGTP and importin β1-, but not importin α5-, dependent pathway. Additionally, recombinant virus harbouring this NLS mutation (NLSm) replicates less efficiently as wild-type. These data strongly suggested that the nuclear import of VP19C is required for efficient HSV-1 production.

  4. Identification of herpes simplex virus type 1 proteins encoded within the first 1.5 kb of the latency-associated transcript.

    PubMed

    Henderson, Gail; Jaber, Tareq; Carpenter, Dale; Wechsler, Steven L; Jones, Clinton

    2009-09-01

    Expression of the first 1.5 kb of the latency-associated transcript (LAT) that is encoded by herpes simplex virus type 1 (HSV-1) is sufficient for wild-type (wt) levels of reactivation from latency in small animal models. Peptide-specific immunoglobulin G (IgG) was generated against open reading frames (ORFs) that are located within the first 1.5 kb of LAT coding sequences. Cells stably transfected with LAT or trigeminal ganglionic neurons of mice infected with a LAT expressing virus appeared to express the L2 or L8 ORF. Only L2 ORF expression was readily detected in trigeminal ganglionic neurons of latently infected mice.

  5. Identification and genotyping of molluscum contagiosum virus from genital swab samples by real-time PCR and Pyrosequencing.

    PubMed

    Trama, Jason P; Adelson, Martin E; Mordechai, Eli

    2007-12-01

    Laboratory diagnosis of molluscum contagiosum virus (MCV) is important as lesions can be confused with those caused by Cryptococcus neoformans, herpes simplex virus, human papillomavirus, and varicella-zoster virus. To develop a rapid method for identifying patients infected with MCV via swab sampling. Two dual-labeled probe real-time PCR assays, one homologous to the p43K gene and one to the MC080R gene, were designed. The p43K PCR was designed to be used in conjunction with Pyrosequencing for confirmation of PCR products and discrimination between MCV1 and MCV2. Both PCR assays were optimized with respect to reaction components, thermocycling parameters, and primer and probe concentrations. The specificities of both PCR assays were confirmed by non-amplification of 38 known human pathogens. Sensitivity assays demonstrated detection of as few as 10 copies per reaction. Testing 703 swabs, concordance between the two real-time PCR assays was 99.9%. Under the developed conditions, Pyrosequencing of the p43K PCR product was capable of providing enough nucleotide sequence to definitively differentiate MCV1 and MCV2. These real-time PCR assays can be used for the rapid, sensitive, and specific detection of MCV and, when combined with Pyrosequencing, can further discriminate between MCV1 and MCV2.

  6. Recruitment of activated IRF-3 and CBP/p300 to herpes simplex virus ICP0 nuclear foci: Potential role in blocking IFN-{beta} induction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melroe, Gregory T.; Silva, Lindsey; Schaffer, Priscilla A.

    2007-04-10

    The host innate response to viral infection includes the production of interferons, which is dependent on the coordinated activity of multiple transcription factors. Herpes simplex virus 1 (HSV-1) has been shown to block efficient interferon expression by multiple mechanisms. We and others have demonstrated that HSV-1 can inhibit the transcription of genes promoted by interferon regulatory factor-3 (IRF-3), including interferon beta (IFN-{beta}), and that the immediate-early ICP0 protein is sufficient for this function. However, the exact mechanism by which ICP0 blocks IRF-3 activity has yet to be determined. Unlike some other viral proteins that inhibit IRF-3 activity, ICP0 does notmore » appear to affect phosphorylation and dimerization of IRF-3. Here, we show that a portion of activated IRF-3 co-localizes with nuclear foci containing ICP0 at early times after virus infection. Co-localization to ICP0-containing foci is also seen with the IRF-3-binding partners and transcriptional co-activators, CBP and p300. In addition, using immunoprecipitation of infected cell lysates, we can immunoprecipitate a complex containing ICP0, IRF-3, and CBP. Thus we hypothesize that ICP0 recruits activated IRF-3 and CBP/p300 to nuclear structures, away from the host chromatin. This leads to the inactivation and accelerated degradation of IRF-3, resulting in reduced transcription of IFN-{beta} and an inhibition of the host response. Therefore, ICP0 provides an example of how viruses can block IFN-{beta} induction by sequestration of important transcription factors essential for the host response.« less

  7. Herpes simplex virus type 1 encephalitis and unusual retinitis in a patient with systemic lupus erythematosus.

    PubMed

    Zhang, L; Liu, J J; Li, M T

    2013-11-01

    In this report we discuss a case of a patient with systemic lupus erythematosus who developed herpes simplex virus type 1(HSV-1) infection presenting with encephalitis as well as necrotic and non-necrotic retinitis. The patient presented with typical clinical symptoms and radiologic abnormalities consistent with HSV-1 encephalitis and HSV-1 retinitis in patients with HIV infection, but lacked cerebrospinal fluid pleocytosis and had bilateral retinitis with poor visual acuity. To the best of our knowledge, this is the first such case reported in the literature.

  8. Powassan virus encephalitis resembling herpes simplex encephalitis.

    PubMed

    Embil, J A; Camfield, P; Artsob, H; Chase, D P

    1983-02-01

    A boy from New York traveling in Nova Scotia had olfactory hallucinations and other signs of temporal lobe involvement, leading to a diagnosis of herpes simplex encephalitis. The patient was treated with vidarabine and made a complete recovery. However, hemagglutination inhibition, complement fixation, and neutralization tests identified Powassan virus (POW) as the pathogen. Shortly before his trip to Nova Scotia, the patient had traveled in an area where POW encephalitis had occurred in humans (the eastern part of the state of New York), and he also came in contact with a known reservoir of POW infection (a groundhog) at home.

  9. Preventing herpes simplex virus in the newborn.

    PubMed

    Pinninti, Swetha G; Kimberlin, David W

    2014-12-01

    Genital herpes simplex virus (HSV) infections are very common worldwide. Approximately 22% of pregnant women are infected genitally with HSV, and most of them are unaware of this. The most devastating consequence of maternal genital herpes is HSV disease in the newborn. Although neonatal HSV infections remain uncommon, due to the significant morbidity and mortality associated with the infection, HSV infection in the newborn is often considered in the differential diagnosis of ill neonates. This review summarizes the epidemiology and management of neonatal HSV infections and discusses strategies to prevent HSV infection in the newborn. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Neonatal Herpes Simplex Virus Infection.

    PubMed

    James, Scott H; Kimberlin, David W

    2015-09-01

    Herpes simplex virus (HSV) 1 and HSV-2 infections are highly prevalent worldwide and are characterized by establishing lifelong infection with periods of latency interspersed with periodic episodes of reactivation. Acquisition of HSV by an infant during the peripartum or postpartum period results in neonatal HSV disease, a rare but significant infection that can be associated with severe morbidity and mortality, especially if there is dissemination or central nervous system involvement. Diagnostic and therapeutic advances have led to improvements in mortality and, to a lesser extent, neurodevelopmental outcomes, but room exists for further improvement. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Acute Liver Failure from Herpes Simplex Virus in an Immunocompetent Patient Due to Direct Inoculation of the Peritoneum.

    PubMed

    Chaudhary, Dhruv; Ahmed, Shifat; Liu, Nanlong; Marsano-Obando, Luis

    2017-01-01

    Herpes simplex virus (HSV) hepatitis is a rare cause of acute liver failure (ALF). It carries a mortality rate of 80% if untreated, thus early identification and treatment are critical. Without high clinical suspicion, HSV hepatitis is difficult to diagnose. A 48-year-old Hispanic female presented with a 4-day history of abdominal pain and a vaginal cuff tear requiring laparoscopic repair. She subsequently developed postsurgical disseminated HSV, resulting in ALF. Acyclovir was initiated, but she was resistant to treatment. She was given additional foscarnet and responded without requiring a liver transplant.

  12. Management of Herpes Simplex Virus Keratitis in the Pediatric Population.

    PubMed

    Vadoothker, Saujanya; Andrews, Laura; Jeng, Bennie H; Levin, Moran Roni

    2018-05-14

    Herpes simplex virus (HSV) keratitis is a highly prevalent and visually-disabling disease in both the pediatric and adult population. While many studies have investigated the treatment of HSV keratitis in adult patients, few have focused on managing this condition in children. Children are at particularly high risk for visual morbidity due to unique challenges in diagnosis and treatment, and the often more aggressive disease course that results in corneal scarring, and subsequently amblyopia. This review presents the pathogenesis and most current recommendations for the medical and surgical management of HSV keratitis in the pediatric population.

  13. 2,3-Dihydroxy-quinoxaline induces ATPase activity of Herpes Simplex Virus thymidine kinase.

    PubMed

    Zeifman, Alexey A; Novikov, Fedor N; Stroylov, Victor S; Stroganov, Oleg V; Chilov, Ghermes G; Skoblov, Alexander Y; Miroshnikov, Anatoly I; Skoblov, Yuri S

    2014-01-31

    2,3-Dihydroxy-quinoxaline, a small molecule that promotes ATPase catalytic activity of Herpes Simplex Virus thymidine kinase (HSV-TK), was identified by virtual screening. This compound competitively inhibited HSV-TK catalyzed phosphorylation of acyclovir with Ki=250 μM (95% CI: 106-405 μM) and dose-dependently increased the rate of the ATP hydrolysis with KM=112 μM (95% CI: 28-195 μM). The kinetic scheme consistent with this experimental data is proposed. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  14. Acute retinal necrosis results in low vision in a young patient with a history of herpes simplex virus encephalitis.

    PubMed

    Shahi, Sanjeet K

    2017-05-01

    Acute retinal necrosis (ARN), secondary to herpes simplex encephalitis, is a rare syndrome that can present in healthy individuals, as well as immuno-compromised patients. Most cases are caused by a secondary infection from the herpes virus family, with varicella zoster virus being the leading cause of this syndrome. Potential symptoms include blurry vision, floaters, ocular pain and photophobia. Ocular findings may consist of severe uveitis, retinal vasculitis, retinal necrosis, papillitis and retinal detachment. Clinical manifestations of this disease may include increased intraocular pressure, optic disc oedema, optic neuropathy and sheathed retinal arterioles. A complete work up is essential to rule out cytomegalovirus retinitis, herpes simplex encephalitis, herpes virus, syphilis, posterior uveitis and other conditions. Depending on the severity of the disease, the treatment options consist of anticoagulation therapy, cycloplegia, intravenous acyclovir, systemic steroids, prophylactic laser photocoagulation and pars plana vitrectomy with silicon oil for retinal detachment. An extensive history and clinical examination is crucial in making the correct diagnosis. Also, it is very important to be aware of low vision needs and refer the patients, if expressing any sort of functional issues with completing daily living skills, especially reading. In this article, we report one case of unilateral ARN 20 years after herpetic encephalitis. © 2016 Optometry Australia.

  15. 2'-fluoro-5-iodo-aracytosine, a potent and selective anti-herpesvirus agent.

    PubMed

    Lopez, C; Watanabe, K A; Fox, J J

    1980-05-01

    A newly synthesized pyrimidine analog, 2'-fluoro-5-iodo-aracytosine (FIAC), suppressed by 90% the replication of various strains of herpes simplex virus types 1 and 2 at concentrations of 0.0025 to 0.0126 microM. Cytotoxicity was minimal, as determined by trypan blue dye exclusion with norman Vero, WI-38, and NC-37 cell proliferation; the 50% inhibitory dose was 4 to 10 microM in a 4-day assay. When compared with other antiviral drugs, FIAC was active at much lower concentrations than arabinosylcytosine, iododeoxyuridine, and arabinosyladenine. It was slightly more active against herpes simplex virus type 1 than acycloquanosine and slightly more toxic to normal cells. FIAC was about 8,000 times more active against the replication of wild-type herpes simplex virus type 1 than against a mutant strain lacking the expression of virus-specified thymidine kinase. Since FIAC appears to be preferentially phosphorylated by the viral enzyme, this is probably responsible, at least in part, for the selectivity of its antiviral actions. Although FIAC appears to be an arabinosylcytosine analog, its antiviral activity was not reversed by deoxycytidine. The minimal cytotoxicity exhibited by FIAC for normal cells, however, was reversed by equimolar concentrations of deoxycytidine. Thymidine, which reversed the antiviral activity, was effective only when used in great excess.

  16. 2'-fluoro-5-iodo-aracytosine, a potent and selective anti-herpesvirus agent.

    PubMed Central

    Lopez, C; Watanabe, K A; Fox, J J

    1980-01-01

    A newly synthesized pyrimidine analog, 2'-fluoro-5-iodo-aracytosine (FIAC), suppressed by 90% the replication of various strains of herpes simplex virus types 1 and 2 at concentrations of 0.0025 to 0.0126 microM. Cytotoxicity was minimal, as determined by trypan blue dye exclusion with norman Vero, WI-38, and NC-37 cell proliferation; the 50% inhibitory dose was 4 to 10 microM in a 4-day assay. When compared with other antiviral drugs, FIAC was active at much lower concentrations than arabinosylcytosine, iododeoxyuridine, and arabinosyladenine. It was slightly more active against herpes simplex virus type 1 than acycloquanosine and slightly more toxic to normal cells. FIAC was about 8,000 times more active against the replication of wild-type herpes simplex virus type 1 than against a mutant strain lacking the expression of virus-specified thymidine kinase. Since FIAC appears to be preferentially phosphorylated by the viral enzyme, this is probably responsible, at least in part, for the selectivity of its antiviral actions. Although FIAC appears to be an arabinosylcytosine analog, its antiviral activity was not reversed by deoxycytidine. The minimal cytotoxicity exhibited by FIAC for normal cells, however, was reversed by equimolar concentrations of deoxycytidine. Thymidine, which reversed the antiviral activity, was effective only when used in great excess. PMID:6249196

  17. Specific Inhibition of Herpes Simplex Virus DNA Polymerase by Helical Peptides Corresponding to the Subunit Interface

    NASA Astrophysics Data System (ADS)

    Digard, Paul; Williams, Kevin P.; Hensley, Preston; Brooks, Ian S.; Dahl, Charles E.; Coen, Donald M.

    1995-02-01

    The herpes simplex virus DNA polymerase consists of two subunits-a catalytic subunit and an accessory subunit, UL42, that increases processivity. Mutations affecting the extreme C terminus of the catalytic subunit specifically disrupt subunit interactions and ablate virus replication, suggesting that new antiviral drugs could be rationally designed to interfere with polymerase heterodimerization. To aid design, we performed circular dichroism (CD) spectroscopy and analytical ultracentrifugation studies, which revealed that a 36-residue peptide corresponding to the C terminus of the catalytic subunit folds into a monomeric structure with partial α-helical character. CD studies of shorter peptides were consistent with a model where two separate regions of α-helix interact to form a hairpin-like structure. The 36-residue peptide and a shorter peptide corresponding to the C-terminal 18 residues blocked UL42-dependent long-chain DNA synthesis at concentrations that had no effect on synthesis by the catalytic subunit alone or by calf thymus DNA polymerase δ and its processivity factor. These peptides, therefore, represent a class of specific inhibitors of herpes simplex virus DNA polymerase that act by blocking accessory-subunit-dependent synthesis. These peptides or their structures may form the basis for the synthesis of clinically effective drugs.

  18. Production of recombinant gG-1 protein of herpes simplex virus type 1 in a prokaryotic system in order to develop a type-specific enzyme-linked immunosorbent assay kit.

    PubMed

    Zandi, Keivan; Roostaee, Mohammad Hassan; Sadeghizadeh, Majid; Rasaee, Mohammad Javad; Sajedi, Reza Hassan; Soleimanjahi, Hoorieh

    2007-08-01

    The herpes simplex viruses are important causes of disease worldwide. Herpes simplex virus type 1 (HSV-1) is the primary cause of oral-facial and pharyngeal infections and may cause herpetic whitlow, eye infections as well as severe and sometimes dangerous infections of the eyes and brain. HSV-1 also accounts for 10-15% of all genital herpetic infections. Therefore, laboratory diagnosis of this virus and development of diagnostic serological techniques for HSV-1 is of particular importance. In the present study, pTrc His2A-gG1 plasmid, containing the full-length glycoprotein G (gG) protein, was produced in a prokaryotic system for the first time. Upon confirmation of a 37-kDa gG-1 protein production in a prokaryotic system based on western blotting and monoclonal antibodies, the protein was produced at a large scale and purified by ion-exchange chromatography using DEAE-sepharose. An HSV-1 type-specific diagnostic kit was designed and developed and the specificity and sensitivity of this kit were demonstrated to be 89.5% and 100%, respectively, as compared with a commercially available kit. A significant correlation was shown between the developed kit and the commercial kit.

  19. An escalating dose study to assess the safety, tolerability and immunogenicity of a Herpes Simplex Virus DNA vaccine, COR-1.

    PubMed

    Dutton, Julie L; Woo, Wai-Ping; Chandra, Janin; Xu, Yan; Li, Bo; Finlayson, Neil; Griffin, Paul; Frazer, Ian H

    2016-12-01

    This paper describes a single site, open-label Phase I clinical trial evaluating the safety, tolerability and immunogenicity in healthy volunteers of a herpes simplex polynucleotide vaccine that has previously been shown to enhance immunogenicity and protect against lethal herpes simplex virus type 2 (HSV-2) challenge in mice. Five escalating doses of the vaccine, COR-1, were given by intradermal injection to HSV-1 and 2 seronegative healthy individuals. COR-1 was found to be safe and well-tolerated; the only vaccine-related adverse events were mild. While vaccine-induced antibody responses were not detectable, cell-mediated immune responses to HSV-specific peptide groups were identified in 19 of the 20 subjects who completed the study, and local inflammation at the immunisation site was observed. This study indicates COR-1 has potential to be used as a therapeutic vaccine for HSV-2 infection.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Americo, Jeffrey L.; Sood, Cindy L.; Cotter, Catherine A.

    Classical inbred mice are extensively used for virus research. However, we recently found that some wild-derived inbred mouse strains are more susceptible than classical strains to monkeypox virus. Experiments described here indicated that the 50% lethal dose of vaccinia virus (VACV) and cowpox virus (CPXV) were two logs lower in wild-derived inbred CAST/Ei mice than classical inbred BALB/c mice, whereas there was little difference in the susceptibility of the mouse strains to herpes simplex virus. Live bioluminescence imaging was used to follow spread of pathogenic and attenuated VACV strains and CPXV virus from nasal passages to organs in the chestmore » and abdomen of CAST/Ei mice. Luminescence increased first in the head and then simultaneously in the chest and abdomen in a dose-dependent manner. The spreading kinetics was more rapid with VACV than CPXV although the peak photon flux was similar. These data suggest advantages of CAST/Ei mice for orthopoxvirus studies. - Highlights: • Wild-derived inbred CAST/Ei mice are susceptible to vaccinia virus and cowpox virus. • Morbidity and mortality from orthopoxviruses are greater in CAST/Ei than BALB/c mice. • Morbidity and mortality from herpes simplex virus type 1 are similar in both mice. • Imaging shows virus spread from nose to lungs, abdominal organs and brain. • Vaccinia virus spreads more rapidly than cowpox virus.« less

  1. Leucine-rich repeat-containing G protein-coupled receptor 4 facilitates vesicular stomatitis virus infection by binding vesicular stomatitis virus glycoprotein.

    PubMed

    Zhang, Na; Huang, Hongjun; Tan, Binghe; Wei, Yinglei; Xiong, Qingqing; Yan, Yan; Hou, Lili; Wu, Nannan; Siwko, Stefan; Cimarelli, Andrea; Xu, Jianrong; Han, Honghui; Qian, Min; Liu, Mingyao; Du, Bing

    2017-10-06

    Vesicular stomatitis virus (VSV) and rabies and Chandipura viruses belong to the Rhabdovirus family. VSV is a common laboratory virus to study viral evolution and host immune responses to viral infection, and recombinant VSV-based vectors have been widely used for viral oncolysis, vaccination, and gene therapy. Although the tropism of VSV is broad, and its envelope glycoprotein G is often used for pseudotyping other viruses, the host cellular components involved in VSV infection remain unclear. Here, we demonstrate that the host protein leucine-rich repeat-containing G protein-coupled receptor 4 (Lgr4) is essential for VSV and VSV-G pseudotyped lentivirus (VSVG-LV) to infect susceptible cells. Accordingly, Lgr4-deficient mice had dramatically decreased VSV levels in the olfactory bulb. Furthermore, Lgr4 knockdown in RAW 264.7 cells also significantly suppressed VSV infection, and Lgr4 overexpression in RAW 264.7 cells enhanced VSV infection. Interestingly, only VSV infection relied on Lgr4, whereas infections with Newcastle disease virus, influenza A virus (A/WSN/33), and herpes simplex virus were unaffected by Lgr4 status. Of note, assays of virus entry, cell ELISA, immunoprecipitation, and surface plasmon resonance indicated that VSV bound susceptible cells via the Lgr4 extracellular domain. Pretreating cells with an Lgr4 antibody, soluble LGR4 extracellular domain, or R-spondin 1 blocked VSV infection by competitively inhibiting VSV binding to Lgr4. Taken together, the identification of Lgr4 as a VSV-specific host factor provides important insights into understanding VSV entry and its pathogenesis and lays the foundation for VSV-based gene therapy and viral oncolytic therapeutics. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Bovine papilloma virus contains an activator of gene expression at the distal end of the early transcription unit.

    PubMed Central

    Lusky, M; Berg, L; Weiher, H; Botchan, M

    1983-01-01

    Bovine papilloma virus (BPV) contains a cis-acting DNA element which can enhance transcription of distal promoters. Utilizing both direct and indirect transient transfection assays, we showed that a 59-base-pair DNA sequence from the BPV genome could activate the simian virus 40 promoter from distances exceeding 2.5 kilobases and in an orientation-independent manner. In contrast to the promoter 5'-proximal localization of other known viral activators, this element was located immediately 3' to the early polyadenylation signal in the BPV genome. Deletion of these sequences from the BPV genome inactivated the transforming ability of BPV recombinant plasmids. Orientation-independent reinsertion of this 59-base-pair sequence, or alternatively of activator DNA sequences from simian virus 40 or polyoma virus, restored the transforming activity of the BPV recombinant plasmids. Furthermore, the stable transformation frequency of the herpes simplex virus type 1 thymidine kinase gene was enhanced when linked to restriction fragments of BPV DNA which included the defined activator element. This enhancement was orientation independent with respect to the thymidine kinase promoter. The enhancement also appeared to be unrelated to the establishment of the recombinant plasmids as episomes, since in transformed cells these sequences are found linked to high-molecular-weight DNA. We propose that the enhancement of stable transformation frequencies and the activation of transcription units are in this case alternate manifestations of the same biochemical events. Images PMID:6308425

  3. Herpes simplex virus amplicon delivery of a hypoxia-inducible soluble vascular endothelial growth factor receptor (sFlk-1) inhibits angiogenesis and tumor growth in pancreatic adenocarcinoma.

    PubMed

    Reinblatt, Maura; Pin, Richard H; Bowers, William J; Federoff, Howard J; Fong, Yuman

    2005-12-01

    Tumor hypoxia induces vascular endothelial growth factor (VEGF) expression, which stimulates angiogenesis and tumor proliferation. The VEGF signaling pathway is inhibited by soluble VEGF receptors (soluble fetal liver kinase 1; sFlk-1), which bind VEGF and block its interaction with endothelial cells. Herpes simplex virus (HSV) amplicons are replication-incompetent viruses used for gene delivery. We attempted to attenuate angiogenesis and inhibit pancreatic tumor growth through HSV amplicon-mediated expression of sFlk-1 under hypoxic control. A multimerized hypoxia-responsive enhancer (10 x HRE) was cloned upstream of the sFlk-1 gene (10 x HRE/sFlk-1). A novel HSV amplicon expressing 10 x HRE/sFlk-1 was genetically engineered (HSV10 x HRE/sFlk-1).Human pancreatic adenocarcinoma cells (AsPC1) were transduced with HSV10 x HRE/sFlk-1 and incubated in normoxia (21% oxygen) or hypoxia (1% oxygen). Capillary inhibition was evaluated by human umbilical vein endothelial cell assay. Western blot assessed sFlk-1 expression. AsPC1 flank tumor xenografts (n = 24) were transduced with HSV10 x HRE/sFlk-1. Media from normoxic AsPC1 transduced with HSV10 x HRE/sFlk-1 yielded a 36% reduction in capillary formation versus controls (P < .05), whereas hypoxic AsPC1 yielded a 76% reduction (P < .005). Western blot of AsPC1 transduced with HSV10 x HRE/sFlk-1 demonstrated greater sFlk-1 expression in hypoxia versus normoxia. AsPC1 flank tumors treated with HSV10 x HRE/sFlk-1 exhibited a 59% reduction in volume versus controls (P < .000001). HSV amplicon delivery of a hypoxia-inducible soluble VEGF receptor significantly reduces new vessel formation and tumor growth. Tumor hypoxia can thus be used to direct antiangiogenic therapy to pancreatic adenocarcinoma.

  4. UL31 and UL34 Proteins of Herpes Simplex Virus Type 1 Form a Complex That Accumulates at the Nuclear Rim and Is Required for Envelopment of Nucleocapsids

    PubMed Central

    Reynolds, Ashley E.; Ryckman, Brent J.; Baines, Joel D.; Zhou, Yuping; Liang, Li; Roller, Richard J.

    2001-01-01

    The herpes simplex virus type 1 (HSV-1) UL34 protein is likely a type II membrane protein that localizes within the nuclear membrane and is required for efficient envelopment of progeny virions at the nuclear envelope, whereas the UL31 gene product of HSV-1 is a nuclear matrix-associated phosphoprotein previously shown to interact with UL34 protein in HSV-1-infected cell lysates. For these studies, polyclonal antisera directed against purified fusion proteins containing UL31 protein fused to glutathione-S-transferase (UL31-GST) and UL34 protein fused to GST (UL34-GST) were demonstrated to specifically recognize the UL31 and UL34 proteins of approximately 34,000 and 30,000 Da, respectively. The UL31 and UL34 gene products colocalized in a smooth pattern throughout the nuclear rim of infected cells by 10 h postinfection. UL34 protein also accumulated in pleiomorphic cytoplasmic structures at early times and associated with an altered nuclear envelope late in infection. Localization of UL31 protein at the nuclear rim required the presence of UL34 protein, inasmuch as cells infected with a UL34 null mutant virus contained UL31 protein primarily in central intranuclear domains separate from the nuclear rim, and to a lesser extent in the cytoplasm. Conversely, localization of UL34 protein exclusively at the nuclear rim required the presence of the UL31 gene product, inasmuch as UL34 protein was detectable at the nuclear rim, in replication compartments, and in the cytoplasm of cells infected with a UL31 null virus. When transiently expressed in the absence of other viral factors, UL31 protein localized diffusely in the nucleoplasm, whereas UL34 protein localized primarily in the cytoplasm and at the nuclear rim. In contrast, coexpression of the UL31 and UL34 proteins was sufficient to target both proteins exclusively to the nuclear rim. The proteins were also shown to directly interact in vitro in the absence of other viral proteins. In cells infected with a virus lacking the US3-encoded protein kinase, previously shown to phosphorylate the UL34 gene product, UL31 and UL34 proteins colocalized in small punctate areas that accumulated on the nuclear rim. Thus, US3 kinase is required for even distribution of UL31 and UL34 proteins throughout the nuclear rim. Taken together with the similar phenotypes of the UL31 and UL34 deletion mutants, these data strongly suggest that the UL31 and UL34 proteins form a complex that accumulates at the nuclear membrane and plays an important role in nucleocapsid envelopment at the inner nuclear membrane. PMID:11507225

  5. Recurrent herpetic keratitis: failure to detect herpes simplex virus infection using the Syva MicroTrak HSV1/HSV2 direct specimen identification/typing test.

    PubMed

    Kumano, Y; Yamamoto, M; Inomata, H; Sakuma, S; Hidaka, Y; Minagawa, H; Mori, R

    1990-01-01

    A 35-year-old man had developed recurrent herpetic keratitis characterized by dendritic keratitis at intervals of a year. We were able to culture cytopathic agents repeatedly from his lesions by inoculating Vero cells. The cultures yielded definitive evidence of a virus that caused a cytopathic effect within 3 days. However, these virus strains could not be identified as herpes simplex virus (HSV) in immunofluorescence assays using the Syva MicroTrak HSV1/HSV2 direct specimen identification/typing test. Rather they were identified as strains of HSV type 1 (HSV-1) on the basis of plaque morphology, neutralization tests, electron-microscopic examination and DNA restriction endonuclease analysis. Our results allow us to assume the existence of HSV-1 strains isolated clinically that are negative to analysis using the Syva Micro-Trak HSV1/HSV2 direct specimen identification/typing test.

  6. Herpes simplex virus 1 induces egress channels through marginalized host chromatin

    DOE PAGES

    Myllys, Markko; Ruokolainen, Visa; Aho, Vesa; ...

    2016-06-28

    Lytic infection with herpes simplex virus type 1 (HSV-1) induces profound modification of the cell nucleus including formation of a viral replication compartment and chromatin marginalization into the nuclear periphery. Here, we used three-dimensional soft X-ray tomography, combined with cryogenic fluorescence, confocal and electron microscopy, to analyse the transformation of peripheral chromatin during HSV-1 infection. Our data showed an increased presence of low-density gaps in the marginalized chromatin at late infection. Advanced data analysis indicated the formation of virus-nucleocapsid-sized (or wider) channels extending through the compacted chromatin of the host. Importantly, confocal and electron microscopy analysis showed that these gapsmore » frequently contained viral nucleocapsids. Our results demonstrated that HSV-1 infection induces the formation of channels penetrating the compacted layer of cellular chromatin and allowing for the passage of progeny viruses to the nuclear envelope, their site of nuclear egress.« less

  7. Bovine lactoferrin and lactoferricin interfere with intracellular trafficking of Herpes simplex virus-1.

    PubMed

    Marr, A K; Jenssen, H; Moniri, M Roshan; Hancock, R E W; Panté, N

    2009-01-01

    Although both lactoferrin (Lf), a component of the innate immune system of living organisms, and its N-terminal pepsin cleavage product lactoferricin (Lfcin) have anti-herpes activity, the precise mechanisms by which Lf and Lfcin bring about inhibition of herpes infections are not fully understood. In the present study, experiments were carried out to characterize the activity of bovine Lf and Lfcin (BLf and BLfcin) against the Herpes simplex virus-1 (HSV-1). HSV-1 cellular uptake and intracellular trafficking were studied by immunofluorescence microscopy. In comparison to the untreated infected control cells, both the BLf- and BLfcin-treated cells showed a significant reduction in HSV-1 cellular uptake. The few virus particles that were internalized appeared to have a delayed intracellular trafficking. Thus, in addition to their interference with the uptake of the virus into host cells, Lf and Lfcin also exert their antiviral effect intracellularly.

  8. [Clinical, epidemiological, and etiological studies of adult aseptic meningitis: a report of 12 cases of herpes simplex meningitis, and a comparison with cases of herpes simplex encephalitis].

    PubMed

    Himeno, Takahiro; Shiga, Yuji; Takeshima, Shinichi; Tachiyama, Keisuke; Kamimura, Teppei; Kono, Ryuhei; Takemaru, Makoto; Takeshita, Jun; Shimoe, Yutaka; Kuriyama, Masaru

    2018-01-26

    We treated 437 cases of adult aseptic meningitis and 12 cases (including 2 recurrent patients; age, 31.8 ± 8.9 years; 7 females) of herpes simplex meningitis from 2004 to 2016. The incidence rate of adult herpes simplex meningitis in the cases with aseptic meningitis was 2.7%. One patient was admitted during treatment of genital herpes, but no association was observed between genital herpes and herpes simplex meningitis in the other cases. The diagnoses were confirmed in all cases as the cerebrospinal fluid (CSF) was positive for herpes simplex virus (HSV)-DNA. For diagnosis confirmation, the DNA test was useful after 2-7 days following initial disease onset. Among other types of aseptic meningitis, the patients with herpes simplex meningitis showed relatively high white blood cell counts and relatively high CSF protein and high CSF cell counts. CSF cells showed mononuclear cell dominance from the initial stage of the disease. During same period, we also experienced 12 cases of herpes simplex encephalitis and 21 cases of non-hepatic acute limbic encephalitis. Notably, the patients with herpes simplex meningitis were younger and their CSF protein and cells counts were higher than those of the patients with herpes simplex encephalitis.

  9. The Splicing History of an mRNA Affects Its Level of Translation and Sensitivity to Cleavage by the Virion Host Shutoff Endonuclease during Herpes Simplex Virus Infections

    PubMed Central

    Sadek, Jouliana

    2016-01-01

    ABSTRACT During lytic herpes simplex virus (HSV) infections, the virion host shutoff (Vhs) (UL41) endoribonuclease degrades many cellular and viral mRNAs. In uninfected cells, spliced mRNAs emerge into the cytoplasm bound by exon junction complexes (EJCs) and are translated several times more efficiently than unspliced mRNAs that have the same sequence but lack EJCs. Notably, most cellular mRNAs are spliced, whereas most HSV mRNAs are not. To examine the effect of splicing on gene expression during HSV infection, cells were transfected with plasmids harboring an unspliced renilla luciferase (RLuc) reporter mRNA or RLuc constructs with introns near the 5′ or 3′ end of the gene. After splicing of intron-containing transcripts, all three RLuc mRNAs had the same primary sequence. Upon infection in the presence of actinomycin D, spliced mRNAs were much less sensitive to degradation by copies of Vhs from infecting virions than were unspliced mRNAs. During productive infections (in the absence of drugs), RLuc was expressed at substantially higher levels from spliced than from unspliced mRNAs. Interestingly, the stimulatory effect of splicing on RLuc expression was significantly greater in infected than in uninfected cells. The translational stimulatory effect of an intron during HSV-1 infections could be replicated by artificially tethering various EJC components to an unspliced RLuc transcript. Thus, the splicing history of an mRNA, and the consequent presence or absence of EJCs, affects its level of translation and sensitivity to Vhs cleavage during lytic HSV infections. IMPORTANCE Most mammalian mRNAs are spliced. In contrast, of the more than 80 mRNAs harbored by herpes simplex virus 1 (HSV-1), only 5 are spliced. In addition, synthesis of the immediate early protein ICP27 causes partial inhibition of pre-mRNA splicing, with the resultant accumulation of both spliced and unspliced versions of some mRNAs in the cytoplasm. A common perception is that HSV-1 infection necessarily inhibits the expression of spliced mRNAs. In contrast, this study demonstrates two instances in which pre-mRNA splicing actually enhances the synthesis of proteins from mRNAs during HSV-1 infections. Specifically, splicing stabilized an mRNA against degradation by copies of the Vhs endoribonuclease from infecting virions and greatly enhanced the amount of protein synthesized from spliced mRNAs at late times after infection. The data suggest that splicing, and the resultant presence of exon junction complexes on an mRNA, may play an important role in gene expression during HSV-1 infections. PMID:27681125

  10. High Efficiency Latency and Activation of Herpes Simplex Virus in Human Cells

    NASA Astrophysics Data System (ADS)

    Wigdahl, Brian L.; Scheck, Adrienne C.; de Clercq, Erik; Rapp, Fred

    1982-09-01

    Herpes simplex virus (HSV) exists in humans in a latent form that can be activated. To characterize the molecular basis of the cell-virus interactions and to analyze the state of the latent HSV genome, an in vitro model system was established. In this system a large fraction of the latently infected cells contain an HSV genome that can be activated. Cell survival was reduced minimally after repression of high multiplicity HSV type 1 (HSV-1) infection of human fibroblast cells with (E)-5-(2-bromovinyl)-2'-deoxyuridine in combination with human leukocyte interferon (IFN-α ). A minimum of 1 to 3 percent of the surviving cells contained an HSV genome that could be activated either by human cytomegalovirus superinfection or reduction in incubation temperature.

  11. Downregulation of Cellular c-Jun N-Terminal Protein Kinase and NF-κB Activation by Berberine May Result in Inhibition of Herpes Simplex Virus Replication

    PubMed Central

    Song, Siwei; Qiu, Min; Chu, Ying; Chen, Deyan; Wang, Xiaohui; Su, Airong

    2014-01-01

    Berberine is a quaternary ammonium salt from the protoberberine group of isoquinoline alkaloids. Some reports show that berberine exhibits anti-inflammatory, antitumor, and antiviral properties by modulating multiple cellular signaling pathways, including p53, nuclear factor κB (NF-κB), and mitogen-activated protein kinase. In the present study, we investigated the antiviral effect of berberine against herpes simplex virus (HSV) infection. Current antiherpes medicines such as acyclovir can lessen the recurring activation when used early at infection but are unable to prevent or cure infections where treatment has selected for resistant mutants. In searching for new antiviral agents against herpesvirus infection, we found that berberine reduced viral RNA transcription, protein synthesis, and virus titers in a dose-dependent manner. To elucidate the mechanism of its antiviral activity, the effect of berberine on the individual steps of viral replication cycle of HSV was investigated via time-of-drug addition assay. We found that berberine acted at the early stage of HSV replication cycle, between viral attachment/entry and genomic DNA replication, probably at the immediate-early gene expression stage. We further demonstrated that berberine significantly reduced HSV-induced NF-κB activation, as well as IκB-α degradation and p65 nuclear translocation. Moreover, we found that berberine also depressed HSV-induced c-Jun N-terminal kinase (JNK) phosphorylation but had little effect on p38 phosphorylation. Our results suggest that the berberine inhibition of HSV infection may be mediated through modulating cellular JNK and NF-κB pathways. PMID:24913175

  12. Antiviral Effect of Pyran Against Systemic Infection of Mice with Herpes Simplex Virus Type 2

    PubMed Central

    McCord, Ronald S.; Breinig, Mary K.; Morahan, Page S.

    1976-01-01

    The immunomodulator pyran markedly protected 5-week-old mice from lethal intravenous infection with herpes simplex virus type 2. The 50% lethal dose was increased almost 100-fold in pyran-treated mice as compared with controls. Although the protection was not as marked in older mice (10 and 16 weeks old), there was a significant increase in mean survival time. When the pathogenesis of herpesvirus disease was monitored in control and drug-treated mice, the effect of pyran was most evident in the spinal cord, where virus was recovered from 20 of 25 control mice and from only 6 of 25 pyran-treated mice. There was also a significant reduction in the titer of virus present, and virus appeared later in the spinal cord of pyran-treated mice than in control mice. The protective effect of pyran was observed only when the drug was administered 24 h before viral challenge, was seen after both intraperitoneal and intravenous injection, and was not due to direct inactivation of the virus. PMID:185945

  13. Antiviral Effects of Blackberry Extract Against Herpes Simplex Virus Type 1

    PubMed Central

    Danaher, Robert J.; Wang, Chunmei; Dai, Jin; Mumper, Russell J.; Miller, Craig S.

    2011-01-01

    Objective To evaluate antiviral properties of blackberry extract against herpes simplex virus type 1 (HSV-1) in vitro. Methods HSV-infected oral epithelial (OKF6) cells and cell-free virus suspensions were treated with blackberry extract (2.24 to 1400 μg/mL) and virus yield and infectivity were quantified by direct plaque assay. Results Blackberry extract ≥ 56 μg/ml inhibited HSV-1 replication in oral epithelial cells by > 99% (p < 0.005). Concentrations ≥ 280 μg/ml were antiviral when the extract was added after virus adsorption and entry. Exposure of cell-free virus to ≥ 280 μg/ml blackberry extract for 15 minutes at room temperature was virucidal (p = 0.0002). The virucidal effects were not due to pH changes at concentrations up to 1500 μg/ml. Conclusions Blackberry extract inhibited the early stages of HSV-1 replication and had potent virucidal activity. These properties suggest that this natural fruit extract could provide advantage as a topical prophylactic/therapeutic agent for HSV infections. PMID:21827957

  14. Herpesviruses in brain and Alzheimer's disease.

    PubMed

    Lin, Woan-Ru; Wozniak, Matthew A; Cooper, Robert J; Wilcock, Gordon K; Itzhaki, Ruth F

    2002-07-01

    It has been established, using polymerase chain reaction (PCR), that herpes simplex virus type 1 (HSV1) is present in a high proportion of brains of elderly normal subjects and Alzheimer's disease (AD) patients. It was subsequently discovered that the virus confers a strong risk of AD when in brain of carriers of the type 4 allele of the apolipoprotein E gene (apoE-epsilon4). This study has now sought, using PCR, the presence of three other herpesviruses in brain: human herpesvirus 6 (HHV6)-types A and B, herpes simplex virus type 2 (HSV2) and cytomegalovirus (CMV). HHV6 is present in a much higher proportion of the AD than of age-matched normal brains (70% vs. 40%, p=0.003) and there is extensive overlap with the presence of HSV1 in AD brains, but HHV6, unlike HSV1, is not directly associated in AD with apoE-epsilon4. In 59% of the AD patients' brains harbouring HHV6, type B is present while 38% harbour both type A and type B, and 3% type A. HSV2 is present at relatively low frequency in brains of both AD patients and normals (13% and 20%), and CMV at rather higher frequencies in the two groups (36% and 35%); in neither case is the difference between the groups statistically significant. It is suggested that the striking difference in the proportion of elderly brains harbouring HSV1 and HSV2 might reflect the lower proportion of people infected with the latter, or the difference in susceptibility of the frontotemporal regions to the two viruses. In the case of HHV6, it is not possible to exclude its presence as an opportunist, but alternatively, it might enhance the damage caused by HSV1 and apoE-epsilon4 in AD; in some viral diseases it is associated with characteristic brain lesions and it also augments the damage caused by certain viruses in cell culture and in animals. Copyright 2002 John Wiley & Sons, Ltd.

  15. Herpes simplex virus interferes with amyloid precursor protein processing

    PubMed Central

    Shipley, Suzanne J; Parkin, Edward T; Itzhaki, Ruth F; Dobson, Curtis B

    2005-01-01

    Background The early events underlying Alzheimer's disease (AD) remain uncertain, although environmental factors may be involved. Work in this laboratory has shown that the combination of herpes simplex virus type 1 (HSV1) in brain and carriage of the APOE-ε4 allele of the APOE gene strongly increases the risk of developing AD. The development of AD is thought to involve abnormal aggregation or deposition of a 39–43 amino acid protein – β amyloid (Aβ) – within the brain. This is cleaved from the much larger transmembranal protein 'amyloid precursor protein' (APP). Any agent able to interfere directly with Aβ or APP metabolism may therefore have the capacity to contribute towards AD. One recent report showed that certain HSV1 glycoprotein peptides may aggregate like Aβ; a second study described a role for APP in transport of virus in squid axons. However to date the effects of acute herpesvirus infection on metabolism of APP in human neuronal-type cells have not been investigated. In order to find if HSV1 directly affects APP and its degradation, we have examined this protein from human neuroblastoma cells (normal and transfected with APP 695) infected with the virus, using Western blotting. Results We have found that acute HSV1 (and also HSV2) infection rapidly reduces full length APP levels – as might be expected – yet surprisingly markedly increases levels of a novel C-terminal fragment of APP of about 55 kDa. This band was not increased in cells treated with the protein synthesis inhibitor cycloheximide Conclusion Herpes virus infection leads to rapid loss of full length APP from cells, yet also causes increased levels of a novel 55 kDa C-terminal APP fragment. These data suggest that infection can directly alter the processing of a transmembranal protein intimately linked to the aetiology of AD. PMID:16109164

  16. Increased neurovirulence and reactivation of the herpes simplex virus type 1 latency associated transcript (LAT) negative mutant dLAT2903 with a disrupted LAT miR-H2

    PubMed Central

    Jiang, Xianzhi; Brown, Don; Osorio, Nelson; Hsiang, Chinhui; BenMohamed, Lbachir; Wechsler, Steven L.

    2015-01-01

    At least six microRNAs (miRNAs) appear to be encoded by the latency associated transcript (LAT) of herpes simplex virus type 1 (HSV-1). The gene for ICP0, an important immediate early (IE) viral protein, is antisense to, and overlaps with, the region of LAT from which miRNA H2 (miR-H2) is derived. We recently reported that a mutant (McK-ΔH2) disrupted for miR-H2 on the wild type HSV-1 strain McKrae genomic background has increased ICP0 expression, increased neurovirulence, and slightly more rapid reactivation. We report here that HSV-1 mutants deleted for the LAT promoter nonetheless make significant amounts of miR-H2 during lytic tissue culture infection, presumably via readthrough transcription from an upstream promoter. To determine if miR-H2 might also play a role in the HSV-1 latency-reactivation cycle of a LAT negative mutant, we constructed dLAT-ΔH2, in which miR-H2 is disrupted in dLAT2903 without altering the predicted amino acid sequence of the overlapping ICP0 open reading frame. Similar to McK-ΔH2, dLAT-ΔH2 expressed more ICP0, was more neurovirulent, and had increased reactivation in the mouse TG explant induced reactivation model of HSV-1 compared to its parental virus. Interestingly, although the increased reactivation of McK-ΔH2 compared to its parental wt virus was subtle and only detected at very early times after explant TG induced reactivation, the increased reactivation of dLAT-ΔH2 compared to its dLAT2903 parental virus appeared more robust and was significantly increased even at late times after induction. These results confirm that miR-H2 plays a role in modulating the HSV-1 reactivation phenotype. PMID:26069184

  17. Association of anti-herpes simplex virus IgG in tears and serum with clinical presentation in patients with presumed herpetic simplex keratitis.

    PubMed

    Borderie, Vincent M; Gineys, Raquel; Goldschmidt, Pablo; Batellier, Laurence; Laroche, Laurent; Chaumeil, Christine

    2012-11-01

    To assess the clinical relevance of tear anti-herpes simplex virus (HSV) antibody measurement for the diagnosis of herpes simplex keratitis. Records of 364 patients clinically suspect of HSV-related keratitis who had tear anti-HSV IgG assessment (tear-quantified anti-HSV IgG/filtrated IgG ratio) in our institution between January 2000 and August 2008 were retrospectively analyzed. Patients were classified into 4 groups as follows: group 1, anti-HSV IgG negative in serum and tears; group 2, anti-HSV IgG negative in tears and positive in serum; group 3, anti-HSV IgG nonsignificantly positive in tears and positive in serum; and group 4, anti-HSV IgG significantly positive in serum and tears. Randomly selected patient charts from each group were reviewed for clinical data. The prevalence of anti-HSV IgG in blood increased with age from >70% before 20 years to 95% after 70 years. The prevalence of anti-HSV IgG in tears increased with age from 20% before 20 years to >50% after 70 years. The presence (either significant or not) of anti-HSV IgG in tears was significantly associated with decreased corneal sensation, presence of stromal opacities, and with neurotrophic keratitis. Logistic regression showed no significant association between age and clinical signs except for herpetic ulcers and herpetic necrotizing keratitis. Tear production of anti-HSV IgG increases with age, and it is associated with sequelae of herpes simplex keratitis. Conversely, it is poorly associated with clinical signs of acute herpes simplex keratitis.

  18. Herpes Simplex Virus 1 UL37 Protein Tyrosine Residues Conserved among All Alphaherpesviruses Are Required for Interactions with Glycoprotein K, Cytoplasmic Virion Envelopment, and Infectious Virus Production

    PubMed Central

    Chouljenko, Dmitry V.; Jambunathan, Nithya; Chouljenko, Vladimir N.; Naderi, Misagh; Brylinski, Michal; Caskey, John R.

    2016-01-01

    ABSTRACT The herpes simplex virus 1 (HSV-1) UL37 protein functions in virion envelopment at trans-Golgi membranes, as well as in retrograde and anterograde transport of virion capsids. Recently, we reported that UL37 interacts with glycoprotein K (gK) and its interacting partner protein UL20 (N. Jambunathan, D. Chouljenko, P. Desai, A. S. Charles, R. Subramanian, V. N. Chouljenko, and K. G. Kousoulas, J Virol 88:5927–5935, 2014, http://dx.doi.org/10.1128/JVI.00278-14), facilitating cytoplasmic virion envelopment. Alignment of UL37 homologs encoded by alphaherpesviruses revealed the presence of highly conserved residues in the central portion of the UL37 protein. A cadre of nine UL37 site-specific mutations were produced and tested for their ability to inhibit virion envelopment and infectious virus production. Complementation analysis revealed that replacement of tyrosines 474 and 480 with alanine failed to complement the UL37-null virus, while all other mutated UL37 genes complemented the virus efficiently. The recombinant virus DC474-480 constructed with tyrosines 474, 476, 477, and 480 mutated to alanine residues produced a gK-null-like phenotype characterized by the production of very small plaques and accumulation of capsids in the cytoplasm of infected cells. Recombinant viruses having either tyrosine 476 or 477 replaced with alanine produced a wild-type phenotype. Immunoprecipitation assays revealed that replacement of all four tyrosines with alanines substantially reduced the ability of gK to interact with UL37. Alignment of HSV UL37 with the human cytomegalovirus and Epstein-Barr virus UL37 homologs revealed that Y480 was conserved only for alphaherpesviruses. Collectively, these results suggest that the UL37 conserved tyrosine 480 residue plays a crucial role in interactions with gK to facilitate cytoplasmic virion envelopment and infectious virus production. IMPORTANCE The HSV-1 UL37 protein is conserved among all herpesviruses, functions in both retrograde and anterograde transport of virion capsids, and plays critical roles in cytoplasmic virion envelopment by interacting with gK. We show here that UL37 tyrosine residues conserved among all alphaherpesviruses serve critical roles in cytoplasmic virion envelopment and interactions with gK. PMID:27630233

  19. A systematic analysis of host factors reveals a Med23-interferon-λ regulatory axis against herpes simplex virus type 1 replication.

    PubMed

    Griffiths, Samantha J; Koegl, Manfred; Boutell, Chris; Zenner, Helen L; Crump, Colin M; Pica, Francesca; Gonzalez, Orland; Friedel, Caroline C; Barry, Gerald; Martin, Kim; Craigon, Marie H; Chen, Rui; Kaza, Lakshmi N; Fossum, Even; Fazakerley, John K; Efstathiou, Stacey; Volpi, Antonio; Zimmer, Ralf; Ghazal, Peter; Haas, Jürgen

    2013-01-01

    Herpes simplex virus type 1 (HSV-1) is a neurotropic virus causing vesicular oral or genital skin lesions, meningitis and other diseases particularly harmful in immunocompromised individuals. To comprehensively investigate the complex interaction between HSV-1 and its host we combined two genome-scale screens for host factors (HFs) involved in virus replication. A yeast two-hybrid screen for protein interactions and a RNA interference (RNAi) screen with a druggable genome small interfering RNA (siRNA) library confirmed existing and identified novel HFs which functionally influence HSV-1 infection. Bioinformatic analyses found the 358 HFs were enriched for several pathways and multi-protein complexes. Of particular interest was the identification of Med23 as a strongly anti-viral component of the largely pro-viral Mediator complex, which links specific transcription factors to RNA polymerase II. The anti-viral effect of Med23 on HSV-1 replication was confirmed in gain-of-function gene overexpression experiments, and this inhibitory effect was specific to HSV-1, as a range of other viruses including Vaccinia virus and Semliki Forest virus were unaffected by Med23 depletion. We found Med23 significantly upregulated expression of the type III interferon family (IFN-λ) at the mRNA and protein level by directly interacting with the transcription factor IRF7. The synergistic effect of Med23 and IRF7 on IFN-λ induction suggests this is the major transcription factor for IFN-λ expression. Genotypic analysis of patients suffering recurrent orofacial HSV-1 outbreaks, previously shown to be deficient in IFN-λ secretion, found a significant correlation with a single nucleotide polymorphism in the IFN-λ3 (IL28b) promoter strongly linked to Hepatitis C disease and treatment outcome. This paper describes a link between Med23 and IFN-λ, provides evidence for the crucial role of IFN-λ in HSV-1 immune control, and highlights the power of integrative genome-scale approaches to identify HFs critical for disease progression and outcome.

  20. In vivo production of cytokines and beta (C-C) chemokines in human recurrent herpes simplex lesions--do herpes simplex virus-infected keratinocytes contribute to their production?

    PubMed

    Mikloska, Z; Danis, V A; Adams, S; Lloyd, A R; Adrian, D L; Cunningham, A L

    1998-04-01

    Recurrent human herpes simplex lesions are infiltrated by macrophages and CD4 and CD8 lymphocytes, which secrete cytokines and chemokines. Vesicle fluid was examined by ELISA for the presence of cytokines and beta (C-C) chemokines. On the first day of the lesion, high concentrations of interleukin (IL)-1beta, and IL-6, moderate concentrations of IL-1alpha and IL-10, and low concentrations of IL-12 and beta chemokines were found; levels of macrophage inflammatory protein (MIP)-1beta were significantly higher than levels of MIP-1alpha and RANTES. At day 3, the concentrations of IL-1beta, IL-6, and MIP-1beta were lower, whereas the levels of IL-10, IL-12, and MIP-1alpha remained similar, and the level of tumor necrosis factor-alpha was now detectable. Herpes simplex virus infection of keratinocytes in vitro stimulated production of beta chemokines followed by IL-12 and then IL-10, IL-1alpha, IL-1beta, and IL-6, indicating a potential role for these events in early recruitment, activation, and interferon-gamma production of CD4 cells in herpetic lesions.

  1. Comparison of the Host Immune Response to Herpes Simplex Virus 1 (HSV-1) and HSV-2 at Two Different Mucosal Sites

    PubMed Central

    Zheng, Min; Conrady, Christopher D.; Ward, Julie M.; Bryant-Hudson, Katie M.

    2012-01-01

    A study was undertaken to compare the host immune responses to herpes simplex virus 1 (HSV-1) and HSV-2 infection by the ocular or genital route in mice. Titers of HSV-2 from tissue samples were elevated regardless of the route of infection. The elevation in titers of HSV-2, including cell infiltration and cytokine/chemokine levels in the central nervous system relative to those found following HSV-1 infection, was correlative with inflammation. These results underscore a dichotomy between the host immune responses to closely related alphaherpesviruses. PMID:22532684

  2. Prospects and perspectives for development of a vaccine against herpes simplex virus infections.

    PubMed

    McAllister, Shane C; Schleiss, Mark R

    2014-11-01

    Herpes simplex viruses 1 and 2 are human pathogens that lead to significant morbidity and mortality in certain clinical settings. The development of effective antiviral medications, however, has had little discernible impact on the epidemiology of these pathogens, largely because the majority of infections are clinically silent. Decades of work have gone into various candidate HSV vaccines, but to date none has demonstrated sufficient efficacy to warrant licensure. This review examines developments in HSV immunology and vaccine development published since 2010, and assesses the prospects for improved immunization strategies that may result in an effective, licensed vaccine in the near future.

  3. Prospects and Perspectives for Development of a Vaccine Against Herpes Simplex Virus Infections

    PubMed Central

    McAllister, Shane C.; Schleiss, Mark R.

    2014-01-01

    Herpes simplex viruses 1 and -2 are human pathogens that lead to significant morbidity and mortality in certain clinical settings. The development of effective antiviral medications, however, has had little discernible impact on the epidemiology of these pathogens, largely because the majority of infections are clinically silent. Decades of work have gone into various candidate HSV vaccines, but to date none has demonstrated sufficient efficacy to warrant licensure. This review examines developments in HSV immunology and vaccine development published since 2010, and assesses the prospects for improved immunization strategies that may result in an effective, licensed vaccine in the near future. PMID:25077372

  4. Neonatal herpes simplex virus infections.

    PubMed

    Pinninti, Swetha G; Kimberlin, David W

    2018-04-01

    Neonatal herpes simplex virus (HSV) is an uncommon but devastating infection in the newborn, associated with significant morbidity and mortality. The use of PCR for identification of infected infants and acyclovir for treatment has significantly improved the prognosis for affected infants. The subsequent use of suppressive therapy with oral acyclovir following completion of parenteral treatment of acute disease has further enhanced the long-term prognosis for these infants. This review article will discuss the epidemiology, risk factors and routes of acquisition, clinical presentation, and evaluation of an infant suspected to have the infection, and treatment of proven neonatal HSV disease. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Different Mechanisms Regulate Productive Herpes Simplex Virus 1 (HSV-1) and HSV-2 Infections in Adult Trigeminal Neurons

    PubMed Central

    Ma, AyeAye; Margolis, Mathew S.

    2013-01-01

    Herpes simplex virus 1 (HSV-1) and HSV-2 establish latency in different neuronal subtypes (A5+ and KH10+) in murine trigeminal ganglia, results which correlate with restricted productive infection in these neurons in vitro. HSV-2 latency-associated transcript (LAT) contains a cis-acting regulatory element near the transcription start site that promotes productive infection in A5+ neurons and a second element in exon 1 that inhibits productive infection in KH10+ neurons. HSV-1 contains no such regulatory sequences, demonstrating different mechanisms for regulating productive HSV infection in neurons. PMID:23514893

  6. Latent Herpes Simplex Virus 1 Infection Does Not Induce Apoptosis in Human Trigeminal Ganglia

    PubMed Central

    Lindemann, Anja; Sinicina, Inga; Strupp, Michael; Brandt, Thomas; Hüfner, Katharina

    2015-01-01

    Herpes simplex virus 1 (HSV-1) can establish lifelong latency in human trigeminal ganglia. Latently infected ganglia contain CD8+ T cells, which secrete granzyme B and are thus capable of inducing neuronal apoptosis. Using immunohistochemistry and single-cell reverse transcription-quantitative PCR (RT-qPCR), higher frequency and transcript levels of caspase-3 were found in HSV-1-negative compared to HSV-1-positive ganglia and neurons, respectively. No terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) assay-positive neurons were detected. The infiltrating T cells do not induce apoptosis in latently infected neurons. PMID:25762734

  7. Prevalence of HIV, human papillomavirus type 16 and herpes simplex virus type 2 among female sex workers in Guinea and associated factors.

    PubMed

    Aho, Joséphine; Koushik, Anita; Coutlée, François; Diakité, Soumaïla Laye; Rashed, Sélim

    2014-03-01

    Female sex workers are at high risk for HIV infection. Sexually transmitted infections are known to be co-factors for HIV infection. Our aims were (1) to assess the prevalence of HIV and other sexually transmitted infections in this population; (2) to determine the association between sociodemographic characteristics, behavioural variables, and variables related to HIV prevention and HIV infection. A cross-sectional study was conducted in Conakry, Guinea, among a convenience sample of 223 female sex workers. A questionnaire on sociodemographic characteristics, risk factors, and exposure to prevention was administered. Screening for HIV, herpes simplex virus type 2, human papillomavirus type 16, Neisseria gonorrhoeae, and Chlamydia trachomatis was performed. Prevalences of HIV, herpes simplex virus type 2, human papillomavirus type 16, N. gonorrhoeae, and C. trachomatis were 35.3%, 84.1%, 12.2%, 9.0%, and 13.6%, respectively. Having a child, lubricant use, and human papillomavirus type 16 infection were associated with HIV infection. Interventions that promote screening and treatment of sexually transmitted infections are needed in order to achieve successful interventions to prevent HIV among female sex workers in resource-limited settings.

  8. Autophagy is involved in anti-viral activity of pentagalloylglucose (PGG) against Herpes simplex virus type 1 infection in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, Ying, E-mail: peiying-19802@163.com; Chen, Zhen-Ping, E-mail: 530670663@qq.com; Ju, Huai-Qiang, E-mail: 344464448@qq.com

    2011-02-11

    Research highlights: {yields} We showed PGG has anti-viral activity against Herpes simplex virus type 1 (HSV-1) and can induce autophgy. {yields} Autophagy may be a novel and important mechanism mediating PGG anti-viral activities. {yields} Inhibition of mTOR pathway is an important mechanism of induction of autophagy by PGG. -- Abstract: Pentagalloylglucose (PGG) is a natural polyphenolic compound with broad-spectrum anti-viral activity, however, the mechanisms underlying anti-viral activity remain undefined. In this study, we investigated the effects of PGG on anti-viral activity against Herpes simplex virus type 1 (HSV-1) associated with autophagy. We found that the PGG anti-HSV-1 activity was impairedmore » significantly in MEF-atg7{sup -/-} cells (autophagy-defective cells) derived from an atg7{sup -/-} knockout mouse. Transmission electron microscopy revealed that PGG-induced autophagosomes engulfed HSV-1 virions. The mTOR signaling pathway, an essential pathway for the regulation of autophagy, was found to be suppressed following PGG treatment. Data presented in this report demonstrated for the first time that autophagy induced following PGG treatment contributed to its anti-HSV activity in vitro.« less

  9. Mechanism of ribonucleotide reductase from Herpes simplex virus type 1. Evidence for 3' carbon-hydrogen bond cleavage and inactivation by nucleotide analogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ator, M.A.; Stubbe, J.; Spector, T.

    1986-03-15

    Isotope effects of 2.5, 2.1, and 1.0 were measured on the conversion of (3'-3H)ADP, (3'-H)UDP, and (5-3H) UDP to the corresponding 2'-deoxynucleotides by herpes simplex virus type 1 ribonucleotide reductase. These results indicate that the reduction of either purine or pyrimidine nucleotides requires cleavage of the 3' carbon-hydrogen bond of the substrate. The substrate analogs 2'-chloro-2'-deoxyuridine 5'-diphosphate (ClUDP), 2'-deoxy-2'-fluorouridine 5'-diphosphate, and 2'-azido-2'-deoxyuridine 5'-diphosphate were time-dependent inactivators of the herpes simplex virus type 1 ribonucleotide reductase. Incubation of (3'-3H)ClUDP with the enzyme was accompanied by time-dependent release of 3H to the solvent. Reaction of (beta-32P)ClUDP with the reductase resulted in themore » production of inorganic pyrophosphate. These results are consistent with the enzyme-mediated cleavage of the 3' carbon-hydrogen bond of ClUDP and the subsequent conversion of the nucleotide to 2-methylene-3(2H)furanone, as previously reported with the Escherichia coli ribonucleotide reductase.« less

  10. An immunoassay for the study of DNA-binding activities of herpes simplex virus protein ICP8.

    PubMed

    Lee, C K; Knipe, D M

    1985-06-01

    An immunoassay was used to examine the interaction between a herpes simplex virus protein, ICP8, and various types of DNA. The advantage of this assay is that the protein is not subjected to harsh purification procedures. We characterized the binding of ICP8 to both single-stranded (ss) and double-stranded (ds) DNA. ICP8 bound ss DNA fivefold more efficiently than ds DNA, and both binding activities were most efficient in 150 mM NaCl. Two lines of evidence indicate that the binding activities were not identical: (i) ds DNA failed to complete with ss DNA binding even with a large excess of ds DNA; (ii) Scatchard plots of DNA binding with various amounts of DNA were fundamentally different for ss DNA and ds DNA. However, the two activities were related in that ss DNA efficiently competed with the binding of ds DNA. We conclude that the ds DNA-binding activity of ICP8 is probably distinct from the ss DNA-binding activity. No evidence for sequence-specific ds DNA binding was obtained for either the entire herpes simplex virus genome or cloned viral sequences.

  11. Identification of structural protein-protein interactions of herpes simplex virus type 1.

    PubMed

    Lee, Jin H; Vittone, Valerio; Diefenbach, Eve; Cunningham, Anthony L; Diefenbach, Russell J

    2008-09-01

    In this study we have defined protein-protein interactions between the structural proteins of herpes simplex virus type 1 (HSV-1) using a LexA yeast two-hybrid system. The majority of the capsid, tegument and envelope proteins of HSV-1 were screened in a matrix approach. A total of 40 binary interactions were detected including 9 out of 10 previously identified tegument-tegument interactions (Vittone, V., Diefenbach, E., Triffett, D., Douglas, M.W., Cunningham, A.L., and Diefenbach, R.J., 2005. Determination of interactions between tegument proteins of herpes simplex virus type 1. J. Virol. 79, 9566-9571). A total of 12 interactions involving the capsid protein pUL35 (VP26) and 11 interactions involving the tegument protein pUL46 (VP11/12) were identified. The most significant novel interactions detected in this study, which are likely to play a role in viral assembly, include pUL35-pUL37 (capsid-tegument), pUL46-pUL37 (tegument-tegument) and pUL49 (VP22)-pUS9 (tegument-envelope). This information will provide further insights into the pathways of HSV-1 assembly and the identified interactions are potential targets for new antiviral drugs.

  12. Treatment of colon cancer with oncolytic herpes simplex virus in preclinical models.

    PubMed

    Yang, H; Peng, T; Li, J; Wang, Y; Zhang, W; Zhang, P; Peng, S; Du, T; Li, Y; Yan, Q; Liu, B

    2016-05-01

    Cancer stem cells (CSCs), which are a rare population in any type of cancer, including colon cancer, are tumorigenic and responsible for cancer recurrence and metastasis. CSCs have been isolated from a number of different solid tumors recently, although the isolation of CSCs in colon cancer is still challenging. We cultured colon cancer cells in stem cell medium to obtain colonosphere cells. These cells possessed the characteristics of CSCs, with a high capacity of tumorigenicity, migration and invasion in vitro and in vivo. The isolation and identification of CSCs have provided new targets for the therapeutics. Oncolytic herpes simplex viruses (oHSV) are an effective strategy for killing colon cancer cells in preclinical models. Here, we examined the efficacy of an oncolytic herpes simplex virus type 2 (oHSV2) in killing colon cancer cells and colon cancer stem-like cells (CSLCs). oHSV2 was found to be highly cytotoxic to the adherent and sphere cells in vitro, and oHSV2 treatment in vivo significantly inhibited tumor growth. This study demonstrates that oHSV2 is effective against colon cancer cells and colon CSLCs and could be a promising strategy for treating colon cancer patients.

  13. Herpes simplex virus: 'to disclose or not to disclose.' An exploration of the multi-disciplinary team's role in advising patients about disclosure when diagnosed with genital herpes simplex virus.

    PubMed

    Caulfield, Pauline; Willis, Diane

    2017-07-01

    The first UK prosecution for genital herpes simplex virus (HSV) transmission in 2011 attracted strong criticism from medical experts. To address the dearth of research on the topic, this study aimed to explore the nature of advice given to patients by the multidisciplinary team (MDT) in the West of Scotland on HSV disclosure to partners. Ten semi-structured interviews with members of the MDT were conducted and the interviews were analysed using Burnard's Thematic Content Analysis. Four themes emerged which explored practitioners' knowledge of HSV and their feelings regarding the emotional aspects of the diagnosis on clients including the challenges of discussing disclosure. Within this framework, participants' attitudes to the legal prosecution were also surveyed. This study revealed that participants had good knowledge about HSV. Furthermore, participants believed disclosure to be the patient's choice and had not altered their practice to advise disclosure to all partners in accordance with local protocol. However, there was a general consensus that disclosure was not required due to the prevalence of HSV and prevalence was used to dissipate emotional reactions to HSV diagnosis.

  14. Lack of evidence for intertypic recombinants in the pathogenesis of recurrent genital infections with herpes simplex virus type 1.

    PubMed

    Fife, K H; Boggs, D

    1986-01-01

    Clinical observations indicate that herpes simplex virus type 1 (HSV-1) is significantly less likely than herpes simplex virus type 2 (HSV-2) to establish latency in (or reactivate from) sacral ganglionic tissue. In an effort to identify viral functions associated with latency, we analyzed HSV-1 isolates from three patients with established recurrent genital herpes and sought evidence of DNA sequences and proteins similar to those found in HSV-2. By restriction endonuclease cleavage patterns and by DNA hybridization analysis using either whole HSV-2 DNA or several cloned segments of HSV-2 DNA as probes, we found that the three HSV-1 isolates from patients with recurrent genital herpes showed no unusual homology to HSV-2 as compared with other HSV-1 isolates. Similarly, the proteins of these isolates could not be distinguished from those of other HSV-1 isolates and were distinct from those of HSV-2. At this level of resolution, there was no evidence to suggest that these recurrent genital HSV-1 isolates were intertypic recombinants, nor did they show any other unusual similarity to HSV-2.

  15. Application of shRNA-containing herpes simplex virus type 1 (HSV-1)-based gene therapy for HSV-2-induced genital herpes.

    PubMed

    Liu, Zhihong; Xiang, Yang; Wei, Zhun; Yu, Bo; Shao, Yong; Zhang, Jie; Yang, Hong; Li, Manmei; Guan, Ming; Wan, Jun; Zhang, Wei

    2013-11-01

    HSV-1-based vectors have been widely used to achieve targeted delivery of genes into the nervous system. In the current study, we aim to use shRNA-containing HSV-1-based gene delivery system for the therapy of HSV-2 infection. Guinea pigs were infected intravaginally with HSV-2 and scored daily for 100 days for the severity of vaginal disease. HSV-2 shRNA-containing HSV-1 was applied intravaginally daily between 8 and 14 days after HSV-2 challenge. Delivery of HSV-2 shRNA-containing HSV-1 had no effect on the onset of disease and acute virus shedding in animals, but resulted in a significant reduction in both the cumulative recurrent lesion days and the number of days with recurrent disease. Around half of the animals in the HSV-2 shRNA group did not develop recurrent disease 100 days post HSV-2 infection. In conclusion, HSV-2 shRNA-containing HSV-1 particles are effective in reducing the recurrence of genital herpes caused by HSV-2. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Herpes simplex virus 1 regulatory protein ICP22 interacts with a new cell cycle-regulated factor and accumulates in a cell cycle-dependent fashion in infected cells.

    PubMed

    Bruni, R; Roizman, B

    1998-11-01

    The herpes simplex virus 1 infected cell protein 22 (ICP22), the product of the alpha22 gene, is a nucleotidylylated and phosphorylated nuclear protein with properties of a transcriptional factor required for the expression of a subset of viral genes. Here, we report the following. (i) ICP22 interacts with a previously unknown cellular factor designated p78 in the yeast two-hybrid system. The p78 cDNA encodes a polypeptide with a distribution of leucines reminiscent of a leucine zipper. (ii) In uninfected and infected cells, antibody to p78 reacts with two major bands with an apparent Mr of 78,000 and two minor bands with apparent Mrs of 62, 000 and 55,000. (ii) p78 also interacts with ICP22 in vitro. (iii) In uninfected cells, p78 was dispersed largely in the nucleoplasm in HeLa cells and in the nucleoplasm and cytoplasm in HEp-2 cells. After infection, p78 formed large dense bodies which did not colocalize with the viral regulatory protein ICP0. (iv) Accumulation of p78 was cell cycle dependent, being highest very early in S phase. (v) The accumulation of ICP22 in synchronized cells was highest in early S phase, in contrast to the accumulation of another protein, ICP27, which was relatively independent of the cell cycle. (vi) In the course of the cell cycle, ICP22 was transiently modified in an aberrant fashion, and this modification coincided with expression of p78. The results suggest that ICP22 interacts with and may be stabilized by cell cycle-dependent proteins.

  17. Distinct Effects of the Cervicovaginal Microbiota and Herpes Simplex Type 2 Infection on Female Genital Tract Immunology

    PubMed Central

    Gajer, P.; Yi, T. J.; Ma, B.; Humphrys, M. S.; Thomas-Pavanel, J.; Chieza, L.; Janakiram, P.; Saunders, M.; Tharao, W.; Huibner, S.; Shahabi, K.; Ravel, J.; Kaul, R.

    2017-01-01

    Abstract Background. Genital inflammation is a key determinant of human immunodeficiency virus (HIV) transmission, and may increase HIV-susceptible target cells and alter epithelial integrity. Several genital conditions that increase HIV risk are more prevalent in African, Caribbean, and other black (ACB) women, including bacterial vaginosis and herpes simplex virus type-2 (HSV-2) infection. Therefore, we assessed the impact of the genital microbiota on mucosal immunology in ACB women and microbiome-HSV-2 interactions. Methods. Cervicovaginal secretions and endocervical cells were collected by cytobrush and Instead Softcup, respectively. T cells and dendritic cells were assessed by flow cytometry, cytokines by multiplex enzyme-linked immunosorbent assay (ELISA), and the microbiota by 16S ribosomal ribonucleic acid gene sequencing. Results. The cervicovaginal microbiota of 51 participants were composed of community state types (CSTs) showing diversity (20/51; 39%) or predominated by Lactobacillus iners (22/51; 42%), L. crispatus (7/51; 14%), or L. gasseri (2/51; 4%). High-diversity CSTs and specific bacterial phyla (Gardnerella vaginalis and Prevotella bivia) were strongly associated with cervicovaginal inflammatory cytokines, but not with altered endocervical immune cells. However, cervical CD4+ T-cell number was associated with HSV-2 infection and a distinct cytokine profile. Conclusions. This suggests that the genital microbiota and HSV-2 infection may influence HIV susceptibility through independent biological mechanisms. PMID:28201724

  18. Infected cell protein 0 functional domains and their coordination in herpes simplex virus replication

    PubMed Central

    Gu, Haidong

    2016-01-01

    Herpes simplex virus 1 (HSV-1) is a ubiquitous human pathogen that establishes latent infection in ganglia neurons. Its unique life cycle requires a balanced “conquer and compromise” strategy to deal with the host anti-viral defenses. One of HSV-1 α (immediate early) gene products, infected cell protein 0 (ICP0), is a multifunctional protein that interacts with and modulates a wide range of cellular defensive pathways. These pathways may locate in different cell compartments, which then migrate or exchange factors upon stimulation, for the purpose of a concerted and effective defense. ICP0 is able to simultaneously attack multiple host pathways by either degrading key restrictive factors or modifying repressive complexes. This is a viral protein that contains an E3 ubiquitin ligase, translocates among different cell compartments and interacts with major defensive complexes. The multiple functional domains of ICP0 can work independently and at the same time coordinate with each other. Dissecting the functional domains of ICP0 and delineating the coordination of these domains will help us understand HSV-1 pathogenicity as well as host defense mechanisms. This article focuses on describing individual ICP0 domains, their biochemical properties and their implication in HSV-1 infection. By putting individual domain functions back into the picture of host anti-viral defense network, this review seeks to elaborate the complex interactions between HSV-1 and its host. PMID:26870669

  19. Medroxyprogesterone acetate inhibits CD8+ T cell viral specific effector function and induces herpes simplex virus type 1 reactivation

    PubMed Central

    Cherpes, Thomas L.; Busch, James L.; Sheridan, Brian S.; Harvey, Stephen A. K.; Hendricks, Robert L.

    2008-01-01

    Clinical research suggests hormonal contraceptive use is associated with increased frequencies of herpes simplex virus (HSV) reactivation and shedding. We examined the effects of medroxyprogesterone acetate (MPA), the compound most commonly used for injectable hormonal contraception, on HSV-1 reactivation and CD8+ T cell function in murine trigeminal ganglia (TG). In ex vivo TG cultures, MPA dramatically inhibited canonical CD8+ T cell effector functions, including IFN-γ production and lytic granule release, and increased HSV-1 reactivation from latency. In vivo, MPA treatment of latently infected ovariectomized mice inhibited IFN-γ production and lytic granule release by TG resident CD8+ T cells stimulated directly ex vivo. RNA specific for the essential immediate early viral gene ICP4 as well as viral genome DNA copy number were increased in mice that received MPA during latency, suggesting that treatment increased in vivo reactivation. The increase in HSV-1 copy number appeared to be the result of a two-tine effect, as MPA induced higher reactivation frequencies from latently infected explanted TG neurons in the presence or absence of CD45+ cells. Our data suggest hormonal contraceptives that contain MPA may promote increased frequency of HSV reactivation from latency through the combinatory effects of inhibiting protective CD8+ T cell responses and by a leukocyte-independent effect on infected neurons. PMID:18606648

  20. Herpes simplex virus internalization into epithelial cells requires Na+/H+ exchangers and p21-activated kinases but neither clathrin- nor caveolin-mediated endocytosis.

    PubMed

    Devadas, Deepika; Koithan, Thalea; Diestel, Randi; Prank, Ute; Sodeik, Beate; Döhner, Katinka

    2014-11-01

    Herpes simplex virus 1 (HSV-1) is an alphaherpesvirus that has been reported to infect some epithelial cell types by fusion at the plasma membrane but others by endocytosis. To determine the molecular mechanisms of productive HSV-1 cell entry, we perturbed key endocytosis host factors using specific inhibitors, RNA interference (RNAi), or overexpression of dominant negative proteins and investigated their effects on HSV-1 infection in the permissive epithelial cell lines Vero, HeLa, HEp-2, and PtK2. HSV-1 internalization required neither endosomal acidification nor clathrin- or caveolin-mediated endocytosis. In contrast, HSV-1 gene expression and internalization were significantly reduced after treatment with 5-(N-ethyl-N-isopropyl)amiloride (EIPA). EIPA blocks the activity of Na(+)/H(+) exchangers, which are plasma membrane proteins implicated in all forms of macropinocytosis. HSV-1 internalization furthermore required the function of p21-activated kinases that contribute to macropinosome formation. However, in contrast to some forms of macropinocytosis, HSV-1 did not enlist the activities of protein kinase C (PKC), tyrosine kinases, C-terminal binding protein 1, or dynamin to activate its internalization. These data suggest that HSV-1 depends on Na(+)/H(+) exchangers and p21-activated kinases either for macropinocytosis or for local actin rearrangements required for fusion at the plasma membrane or subsequent passage through the actin cortex underneath the plasma membrane. After initial replication in epithelial cells, herpes simplex viruses (HSVs) establish latent infections in neurons innervating these regions. Upon primary infection and reactivation from latency, HSVs cause many human skin and neurological diseases, particularly in immunocompromised hosts, despite the availability of effective antiviral drugs. Many viruses use macropinocytosis for virus internalization, and many host factors mediating this entry route have been identified, although the specific perturbation profiles vary for different host and viral cargo. In addition to an established entry pathway via acidic endosomes, we show here that HSV-1 internalization depended on sodium-proton exchangers at the plasma membrane and p21-activated kinases. These results suggest that HSV-1 requires a reorganization of the cortical actin cytoskeleton, either for productive cell entry via pH-independent fusion from macropinosomes or for fusion at the plasma membrane, and subsequent cytosolic passage to microtubules that mediate capsid transport to the nucleus for genome uncoating and replication. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  1. Herpes simplex virus regulatory proteins VP16 and ICP0 counteract an innate intranuclear barrier to viral gene expression.

    PubMed

    Hancock, Meaghan H; Corcoran, Jennifer A; Smiley, James R

    2006-08-15

    HSV regulatory proteins VP16 and ICP0 play key roles in launching the lytic program of viral gene expression in most cell types. However, these activation functions are dispensable in U2OS osteosarcoma cells, suggesting that this cell line either expresses an endogenous activator of HSV gene expression or lacks inhibitory mechanisms that are inactivated by VP16 and ICP0 in other cells. To distinguish between these possibilities, we examined the phenotypes of somatic cell hybrids formed between U2OS cells and highly restrictive HEL fibroblasts. The U2OS-HEL heterokarya were as non-permissive as HEL cells, a phenotype that could be overcome by providing either VP16 or ICP0 in trans. Our data indicate that human fibroblasts contain one or more inhibitory factors that act within the nucleus to limit HSV gene expression and argue that VP16 and ICP0 stimulate viral gene expression at least in part by counteracting this innate antiviral defence mechanism.

  2. Design and evaluation of a multi-epitope assembly Peptide (MEAP) against herpes simplex virus type 2 infection in BALB/c mice

    PubMed Central

    2011-01-01

    Background Human herpes simplex virus (HSV) 1 and 2 causes oral, ocular, or genital infections, which remains a significant health problem worldwide. HSV-1 and -2 infections in humans range from localized skin infections of the oral, ocular, and genital regions to severe and often disseminated infections in immunocompromised hosts. Epitope based vaccination is a promising mean to achieve protective immunity and to avoid infections with Human herpes simplex virus type 2 (HSV-2). Methods The twelve selected epitopes, six B cell epitopes from different glycoprotein of HSV-2 (amino acid residues 466-473 (EQDRKPRN) from envelope glycoprotein B, 216-223 (GRTDRPSA) from C, 6-18 (DPSLKMADPNRFR) from D, 483-491 (DPPERPDSP) from E, 572-579 (EPPDDDDS) from G and 286-295 (CRRRYRRPRG) from I glycoprotein of HSV-2), four CD4+ T cell epitopes (amino acid residues 21-28 (NLPVLDQL) from D, 162-177 (KDVTVSQVWFGHRYSQ) from B, 205-224 (KAYQQGVTVDSIGMLPRFIP) from D and 245-259 (KPPYTSTLLPPELSD) from D) and two CD8+ T cell epitopes (amino acid residues 10-20 (KMADPNRFRGK) from D and 268-276 (ALLEDPAGT) from D), are responsible for the elicitation of the neutralizing antibodies and cytotoxic T lymphocytes (CTLs) that impart protective immunity to the host. In this study, all above epitopes were inserted into the extracellular fragment (amino acid residues 1-290) of HSV-2 glycoprotein D to construct multi-epitope assembly peptides (MEAPs) by replacing some non-epitope amino acid sequences. The epitope independency of the MEAPs was predicted by three-dimensional software algorithms. The gene of the selected MEAP was expressed in E.coli BL21(DE3), and its protective efficacy against HSV-2 infection was assessed in BALB/c mice. Results The MEAP, with each inserted epitopes independently displayed on the molecule surface, was selected as candidate proteins. The results showed that the MEAP was highly immunogenic and could elicit high titer neutralizing antibodies and cell-mediated immune responses. Conclusions The MEAP provided complete protection against infection with HSV-2 in mice, which indicates that it might be a potential candidate vaccine against HSV-2. PMID:21575169

  3. The use of FTIR microscopy for evaluation of herpes viruses infection development kinetics

    NASA Astrophysics Data System (ADS)

    Erukhimovitch, Vitaly; Mukmanov, Igor; Talyshinsky, Marina; Souprun, Yelena; Huleihel, Mahmoud

    2004-08-01

    The kinetics of Herpes simplex infection development was studied using an FTIR microscopy (FTIR-M) method. The family of herpes viruses includes several members like H. simplex types I and II (HSV I, II), Varicella zoster (VZV) viruses which are involved in various human and animal infections of different parts of the body. In our previous study, we found significant spectral differences between normal uninfected cells in cultures and cells infected with herpes viruses at early stages of the infection. In the present study, cells in cultures were infected with either HSV-I or VZV and at various times post-infection they were examined either by optical microscopy or by advanced FTIR-M. Spectroscopic measurements show a consistent decrease in the intensity of the carbohydrate peak in correlation with the viral infection development, observed by optical microscopy. This decrease in cellular carbohydrate level was used as indicator for herpes viruses infection kinetics. This parameter could be used as a basis for applying a spectroscopic method for the evaluation of herpes virus infection development. Our results show also that the development kinetics of viral infection has an exponential character for these viruses.

  4. Pathogenicity in mice of strains of herpes simplex virus which are resistant to acyclovir in vitro and in vivo.

    PubMed Central

    Field, H J; Darby, G

    1980-01-01

    Mice infected with three different isolates of herpes simplex virus (HSV) and treated with acyclovir (acycloguanosine; ACV) showed low levels of virus replication during the acute phase of infection. However, virus isolated from such treated mice did not show increased resistance to ACV. In contrast, resistant virus was readily isolated in vitro by passaging HSV in the presence of the drug. The degree of resistance was determined, in part, by the nature of the cells used to test the virus. The majority of ACV-resistant strains induced low or undetectable levels of HSV-specified thymidine kinase (TK), the enzyme responsible for phosphorylating ACV in infected cells. The TK-resistant strains were attenuated when injected into mice as indicated by reductions in virus replication, inflammation, and establishment of latent infections in sensory ganglia. The reduced virulence of the TK- strains was most marked after intracerebral inoculation, where the lethal dose was increased more than 100-fold compared with the parental isolates. However, one mutant is described which induced high levels of TK but was highly resistant to ACV and retained virulence for mice. PMID:6247969

  5. Cooperative therapeutic effects of herpes simplex virus thymidine kinase gene/ganciclovir system and chemotherapeutic agents on prostate cancer in vitro.

    PubMed

    Xing, Yifei; Xiao, Yajun; Lu, Gongcheng; Zeng, Fuqing; Zhao, Jun; Xiong, Ping; Feng, Wei

    2006-01-01

    The killing effects of herpes simplex virus thymidine kinase gene/ganciclovir (HSV-tk/GCV) approach by the addition of several commonly clinical chemotherapeutic agents on hormone refractory prostate cancer (HRPC) cells PC-3m were investigated. After transferring of the HSV-tk gene into PC-3m cells, mRNA and protein expression of HSV-tk was detected by reverse-transcript polymerase chain reaction (RT-PCR) and strept avidin-biotin complex (SABC) immunohistochemical method. The killing effect of GCV, cisplatin (CDDP), etoposide (VP-16), vincristine (VCR), methotrexate (MTX), 5-fluorouracil (5-Fu), and suramin on PC-3m cells was evaluated by morphological assessment analysis, trypan blue exclusion assay and MTT assay respectively. Additionally, the cooperative effect of HSV-tk/GCV system combined with the above agents on the target cancer cells was determined by MTT. Furthermore, apoptosis and necrosis induced by GCV plus 5-Fu or suramin was analyzed by flow cytometry (FCM). The results showed that that there was HSV-tk mRNA and protein expression in pDR2-tk plasmid transduced PC-3m cell. Combination of GCV with VP-16, VCR, 5-Fu or suramin led to an enhanced cellular killing effect, but with CDDP resulted in a reduced one and with MTX in an approximate one. FCM revealed that synergistic use of GCV and 5-fu or suramin resulted in a rather large proportion of apoptosis and necrosis with the apoptosis index being 36.38% and 35.51%, and the proportion of necrosis being 33.05% and 28.87%, respectively. In conclusion, HSV-tk/CGV approach by addition of certain clinical available chemotherapeutic drugs brings on statistically significant enhanced cell killing over single-agent treatment. Our results highlight the potential for such new combination therapies for future treatments of HRPC.

  6. The combined effects of irradiation and herpes simplex virus type 1 infection on an immortal gingival cell line.

    PubMed

    Turunen, Aaro; Hukkanen, Veijo; Nygårdas, Michaela; Kulmala, Jarmo; Syrjänen, Stina

    2014-07-08

    Oral mucosa is frequently exposed to Herpes simplex virus type 1 (HSV-1) infection and irradiation due to dental radiography. During radiotherapy for oral cancer, the surrounding clinically normal tissues are also irradiated. This prompted us to study the effects of HSV-1 infection and irradiation on viability and apoptosis of oral epithelial cells. Immortal gingival keratinocyte (HMK) cells were infected with HSV-1 at a low multiplicity of infection (MOI) and irradiated with 2 Gy 24 hours post infection. The cells were then harvested at 24, 72 and 144 hours post irradiation for viability assays and qRT-PCR analyses for the apoptosis-related genes caspases 3, 8, and 9, bcl-2, NFκB1, and viral gene VP16. Mann-Whitney U-test was used for statistical calculations. Irradiation improved the cell viability at 144 hours post irradiation (P = 0.05), which was further improved by HSV-1 infection at MOI of 0.00001 (P = 0.05). Simultaneously, the combined effects of infection at MOI of 0.0001 and irradiation resulted in upregulation in NFκB1 (P = 0.05). The combined effects of irradiation and HSV infection also significantly downregulated the expression of caspases 3, 8, and 9 at 144 hours (P = 0.05) whereas caspase 3 and 8 significantly upregulated in non-irradiated, HSV-infected cells as compared to uninfected controls (P = 0.05). Infection with 0.0001 MOI downregulated bcl-2 in non-irradiated cells but was upregulated by 27% after irradiation when compared to non-irradiated infected cells (P = 0.05). Irradiation had no effect on HSV-1 shedding or HSV gene expression at 144 hours. HSV-1 infection may improve the viability of immortal cells after irradiation. The effect might be related to inhibition of apoptosis.

  7. The combined effects of irradiation and herpes simplex virus type 1 infection on an immortal gingival cell line

    PubMed Central

    2014-01-01

    Background Oral mucosa is frequently exposed to Herpes simplex virus type 1 (HSV-1) infection and irradiation due to dental radiography. During radiotherapy for oral cancer, the surrounding clinically normal tissues are also irradiated. This prompted us to study the effects of HSV-1 infection and irradiation on viability and apoptosis of oral epithelial cells. Methods Immortal gingival keratinocyte (HMK) cells were infected with HSV-1 at a low multiplicity of infection (MOI) and irradiated with 2 Gy 24 hours post infection. The cells were then harvested at 24, 72 and 144 hours post irradiation for viability assays and qRT-PCR analyses for the apoptosis-related genes caspases 3, 8, and 9, bcl-2, NFκB1, and viral gene VP16. Mann–Whitney U-test was used for statistical calculations. Results Irradiation improved the cell viability at 144 hours post irradiation (P = 0.05), which was further improved by HSV-1 infection at MOI of 0.00001 (P = 0.05). Simultaneously, the combined effects of infection at MOI of 0.0001 and irradiation resulted in upregulation in NFκB1 (P = 0.05). The combined effects of irradiation and HSV infection also significantly downregulated the expression of caspases 3, 8, and 9 at 144 hours (P = 0.05) whereas caspase 3 and 8 significantly upregulated in non-irradiated, HSV-infected cells as compared to uninfected controls (P = 0.05). Infection with 0.0001 MOI downregulated bcl-2 in non-irradiated cells but was upregulated by 27% after irradiation when compared to non-irradiated infected cells (P = 0.05). Irradiation had no effect on HSV-1 shedding or HSV gene expression at 144 hours. Conclusions HSV-1 infection may improve the viability of immortal cells after irradiation. The effect might be related to inhibition of apoptosis. PMID:25005804

  8. High-sensitivity virus and mycoplasma screening test reveals high prevalence of parvovirus B19 infection in human synovial tissues and bone marrow.

    PubMed

    Watanabe, Ken; Otabe, Koji; Shimizu, Norio; Komori, Keiichirou; Mizuno, Mitsuru; Katano, Hisako; Koga, Hideyuki; Sekiya, Ichiro

    2018-03-27

    Latent microorganism infection is a safety concern for the clinical application of mesenchymal stem cells (MSCs). The aim of this study is to investigate the frequencies and sensitivities of the latent virus and mycoplasma infections in synovium, bone marrow, peripheral blood cells, and blood plasma and cultured synovial MSCs. Total DNA and RNA of the synovium (n = 124), bone marrow (n = 123), peripheral blood cells (n = 121), plasma (n = 121), and 14-day cultured synovial MSCs (n = 63) were collected from patients who underwent total knee arthroplasty or anterior ligament reconstruction after written informed consents were obtained. The multiplex polymerase chain reaction (PCR) primers were designed to quantitatively measure the representative genomes of 13 DNA viruses, 6 RNA viruses, and 9 mycoplasmas. Multi-spliced mRNA detection and virus spike test were also performed to demonstrate the sensitivity of synovial MSCs to the candidate pathogens. In synovium and bone marrow, the positive rates of parvovirus B19 genome were significantly higher than in peripheral blood cells (18.7% and 22% vs. 0.8%, respectively). Multi-alignment analysis of amplified and sequenced viral target genes showed the proximity of the parvovirus B19 gene from different tissue in the same patients. Synovial MSCs cultured for 14 days were positive for virus infection only in two patients (2/62 = 3%). Parvovirus B19 multi-spliced mRNAs were not detected in these two samples. Virus spike test demonstrated the sensitivity of synovial MSCs to herpes simplex virus (HSV)1 and cytomegalovirus (CMV), but not to parvovirus B19. This study revealed a relatively high incidence of latent parvovirus B19 in synovium and bone marrow tissue.

  9. Preparation of BFV Gag antiserum and preliminary study on cellular distribution of BFV.

    PubMed

    Wang, Jian; Guo, Hong-yan; Jia, Rui; Xu, Xuan; Tan, Juan; Geng, Yun-qi; Qiao, Wen-tao

    2010-04-01

    Viruses (e.g. Human immunodeficiency virus, Human simplex virus and Prototype foamy virus) are obligate intracellular parasites and therefore depend on the cellular machinery for cellular trafficking. Bovine foamy virus (BFV) is a member of the Spumaretrovirinae subfamily of Retroviruses, however, details of its cellular trafficking remain unknown. In this study, we cloned the BFV gag gene into prokaryotic expression vector pET28a and purified the denaturalized Gag protein. The protein was used to immunize BALB/c mouse to produce antiserum, which could specifically recognize the BFV Gag protein in BFV-infected cells through western blot assay. Additionally, these results demonstrated that both the optimal and suboptimal cleavage of Gag protein occur in BFV-infected cells. Subsequently, the Gag antiserum was used to investigate subcellular localization of BFV. In immunofluorescence microscopy assays, colocalization microtubules (MTs) and assembling viral particles were clearly observed, which implied that BFV may transport along cellular MTs in host cells. Furthermore, MTs-depolymerizing assay indicated MTs were required for the efficient replication of BFV. In conclusion, our study suggests that BFV has evolved the mechanism to hijack the cellular cytoskeleton for its replication.

  10. Antiviral activity of an extract of Cordia salicifolia on herpes simplex virus type 1.

    PubMed

    Hayashi, K; Hayashi, T; Morita, N; Niwayama, S

    1990-10-01

    A partially purified extract (COL 1-6) from whole plant of Cordia salicifolia showed an inhibitory effect on herpes simplex virus type 1 (HSV-1). The activity of COL 1-6 on different steps of HSV-1 replication in HeLa cells was investigated. Under single-cycle replication conditions, COL 1-6 exerted a greater than 99.9% inhibition in virus yield when added to the cells 3 h or 1.5 h before infection, and even when added 8 h after infection the extract still caused a greater than 99% inhibition. The extract has been shown to have a direct virucidal activity. And also, analysis of early events following infection showed that COL 1-6 affected viral penetration in HeLa cells but did not interfere with adsorption to the cells.

  11. Infection and Transport of Herpes Simplex Virus Type 1 in Neurons: Role of the Cytoskeleton

    PubMed Central

    2018-01-01

    Herpes simplex virus type 1 (HSV-1) is a neuroinvasive human pathogen that has the ability to infect and replicate within epithelial cells and neurons and establish a life-long latent infection in sensory neurons. HSV-1 depends on the host cellular cytoskeleton for entry, replication, and exit. Therefore, HSV-1 has adapted mechanisms to promote its survival by exploiting the microtubule and actin cytoskeletons to direct its active transport, infection, and spread between neurons and epithelial cells during primary and recurrent infections. This review will focus on the currently known mechanisms utilized by HSV-1 to harness the neuronal cytoskeleton, molecular motors, and the secretory and exocytic pathways for efficient virus entry, axonal transport, replication, assembly, and exit from the distinct functional compartments (cell body and axon) of the highly polarized sensory neurons. PMID:29473915

  12. Herpes Simplex Virus: Beyond the Basics.

    PubMed

    Kobty, Magidah

    2015-01-01

    One of the most common sexually transmitted infections is the herpes simplex virus (HSV) Type 2. Although the incidence of newborn infection is not as common as in adults, approximately 1,500 neonates are diagnosed annually with HSV infection. HSV can be detrimental to the life of a newborn, with morbidity and mortality rates of up to 65 percent. This article addresses the maternal and fetal complications of HSV and the impact of HSV on the newborn along with diagnostic evaluation methods. In addition, treatment options and evidence-based practices regarding HSV are defined. Despite growing technology and medical treatment for early identification of HSV, this virus remains challenging and can deeply impact the life of an infant and his or her family. Early diagnosis, treatment, and intervention of an infant with HSV are crucial to ensure the livelihood of the newborn.

  13. Diagnostic imaging of herpes simplex virus encephalitis using a radiolabeled antiviral drug: autoradiographic assessment in an animal model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, Y.; Rubenstein, R.; Price, R.W.

    1984-06-01

    To develop a new approach to the diagnosis of herpes simplex encephalitis, we used a radiolabeled antiviral drug, 2'-fluoro-5-methyl-1-beta-D-arabinosyluracil labeled with carbon 14 ((14C)FMAU), as a probe for selectively imaging brain infection in a rat model by quantitative autoradiography. A high correlation was found between focal infection, as defined by immunoperoxidase viral antigen staining, and increased regional (14C)FMAU uptake in brain sections. Two potential sources of false-positive imaging were defined: high concentrations of drug in the choroid plexus because of its higher permeability compared with brain, and drug sequestration by proliferating uninfected cell populations. Our results support the soundness ofmore » the proposed strategy of using a labeled antiviral drug that is selectively phosphorylated by herpes simplex virus type 1 thymidine kinase in conjunction with scanning methods for human diagnosis, and also define some of the factors that must be taken into account when planning clinical application.« less

  14. Chronic herpes simplex type-1 encephalitis with intractable epilepsy in an immunosuppressed patient.

    PubMed

    Laohathai, Christopher; Weber, Daniel J; Hayat, Ghazala; Thomas, Florian P

    2016-02-01

    Chronic herpes simplex virus type-1 encephalitis (HSE-1) is uncommon. Past reports focused on its association with prior documented acute infection. Here, we describe a patient with increasingly intractable epilepsy from chronic HSE-1 reactivation without history of acute central nervous system infection. A 49-year-old liver transplant patient with 4-year history of epilepsy after initiation of cyclosporine developed increasingly frequent seizures over 3 months. Serial brain magnetic resonance imaging showed left temporoparietal cortical edema that gradually improved despite clinical decline. Herpes simplex virus type-1 (HSV-1) DNA was detected in cerebrospinal fluid by polymerase chain reaction. Cerebrospinal fluid HSV-1&2 IgM was negative. Seizures were controlled after acyclovir treatment, and the patient remained seizure free at 1-year follow-up. Chronic HSE is a cause of intractable epilepsy, can occur without a recognized preceding acute phase, and the clinical course of infection may not directly correlate with neuroimaging changes.

  15. Triple retinal infection with human immunodeficiency virus type 1, cytomegalovirus, and herpes simplex virus type 1. Light and electron microscopy, immunohistochemistry, and in situ hybridization.

    PubMed

    Rummelt, V; Rummelt, C; Jahn, G; Wenkel, H; Sinzger, C; Mayer, U M; Naumann, G O

    1994-02-01

    This report describes the histopathologic and virologic findings of the retina from a 55-year-old bisexual patient with the acquired immune deficiency syndrome (AIDS), who had concurrent human immunodeficiency virus type 1 (HIV-1), cytomegalovirus (CMV), and herpes simplex virus type 1 (HSV-1) retinitis, and was treated with ganciclovir. The eyes were obtained at autopsy and processed for light microscopy and transmission electron microscopy. Immunohistochemical stains for HSV-1, CMV, HIV-1, varicella zoster virus, and glial fibrillary acidic protein were carried out using the peroxidase-antiperoxidase and streptavidin-biotin-alkaline phosphatase techniques. For in situ hybridization, a radiolabeled CMV DNA probe (Eco-RI-Y fragment of strain AD 169) was used. Results of histopathologic examination showed a full-thickness necrotizing retinitis with cytomegalic and herpes viral intranuclear inclusions in cells of the neurosensory retina, retinal vascular endothelium, and the retinal pigment epithelium. Some areas of the retina were replaced by glial tissue. The choroid contained only a few chronic inflammatory cells. Immunoperoxidase studies disclosed CMV antigens diffusely distributed throughout all layers of the retina and the retinal pigment epithelium. Herpes simplex virus type 1 antigens were present in retinal cells and the retinal vascular endothelium. Human immunodeficiency virus type 1 antigens were found in mononuclear cells in all layers of the sensory retina. Dual infections with HIV-1 and CMV of individual multinucleated giant cells of glial origin were demonstrated immunohistochemically. Transmission electron microscopy showed herpes viral particles in the vascular endothelium of the retinal vessels and the choriocapillaris. Human immunodeficiency virus particles were identified in the endothelium of the choriocapillaris. The possibility of multiple viral infections of the retina, mimicking classic CMV retinitis, should be considered in the clinical and histologic differential diagnosis of necrotizing retinitis in patients with AIDS.

  16. Roles of the Nuclear Lamina in Stable Nuclear Association and Assembly of a Herpesviral Transactivator Complex on Viral Immediate-Early Genes

    PubMed Central

    Silva, Lindsey; Oh, Hyung Suk; Chang, Lynne; Yan, Zhipeng; Triezenberg, Steven J.; Knipe, David M.

    2012-01-01

    ABSTRACT Little is known about the mechanisms of gene targeting within the nucleus and its effect on gene expression, but most studies have concluded that genes located near the nuclear periphery are silenced by heterochromatin. In contrast, we found that early herpes simplex virus (HSV) genome complexes localize near the nuclear lamina and that this localization is associated with reduced heterochromatin on the viral genome and increased viral immediate-early (IE) gene transcription. In this study, we examined the mechanism of this effect and found that input virion transactivator protein, virion protein 16 (VP16), targets sites adjacent to the nuclear lamina and is required for targeting of the HSV genome to the nuclear lamina, exclusion of heterochromatin from viral replication compartments, and reduction of heterochromatin on the viral genome. Because cells infected with the VP16 mutant virus in1814 showed a phenotype similar to that of lamin A/C−/− cells infected with wild-type virus, we hypothesized that the nuclear lamina is required for VP16 activator complex formation. In lamin A/C−/− mouse embryo fibroblasts, VP16 and Oct-1 showed reduced association with the viral IE gene promoters, the levels of VP16 and HCF-1 stably associated with the nucleus were lower than in wild-type cells, and the association of VP16 with HCF-1 was also greatly reduced. These results show that the nuclear lamina is required for stable nuclear localization and formation of the VP16 activator complex and provide evidence for the nuclear lamina being the site of assembly of the VP16 activator complex. PMID:22251972

  17. Identification of TRIM27 as a novel degradation target of herpes simplex virus 1 ICP0.

    PubMed

    Conwell, Sara E; White, Anne E; Harper, J Wade; Knipe, David M

    2015-01-01

    The herpes simplex virus 1 (HSV-1) immediate early protein ICP0 performs many functions during infection, including transactivation of viral gene expression, suppression of innate immune responses, and modification and eviction of histones from viral chromatin. Although these functions of ICP0 have been characterized, the detailed mechanisms underlying ICP0's complex role during infection warrant further investigation. We thus undertook an unbiased proteomic approach to identifying viral and cellular proteins that interact with ICP0 in the infected cell. Cellular candidates resulting from our analysis included the ubiquitin-specific protease USP7, the transcriptional repressor TRIM27, DNA repair proteins NBN and MRE11A, regulators of apoptosis, including BIRC6, and the proteasome. We also identified two HSV-1 early proteins involved in nucleotide metabolism, UL39 and UL50, as novel candidate interactors of ICP0. Because TRIM27 was the most statistically significant cellular candidate, we investigated the relationship between TRIM27 and ICP0. We observed rapid, ICP0-dependent loss of TRIM27 during HSV-1 infection. TRIM27 protein levels were restored by disrupting the RING domain of ICP0 or by inhibiting the proteasome, arguing that TRIM27 is a novel degradation target of ICP0. A mutant ICP0 lacking E3 ligase activity interacted with endogenous TRIM27 during infection as demonstrated by reciprocal coimmunoprecipitation and supported by immunofluorescence data. Surprisingly, ICP0-null mutant virus yields decreased upon TRIM27 depletion, arguing that TRIM27 has a positive effect on infection despite being targeted for degradation. These results illustrate a complex interaction between TRIM27 and viral infection with potential positive or negative effects of TRIM27 on HSV under different infection conditions. During productive infection, a virus must simultaneously redirect multiple cellular pathways to replicate itself while evading detection by the host's defenses. To orchestrate such complex regulation, viruses, including herpes simplex virus 1 (HSV-1), rely on multifunctional proteins such as the E3 ubiquitin ligase ICP0. This protein regulates various cellular pathways concurrently by targeting a diverse set of cellular factors for degradation. While some of these targets have been previously identified and characterized, we undertook a proteomic screen to identify additional targets of this activity to further characterize ICP0's role during infection. We describe a set of candidate interacting proteins of ICP0 identified through this approach and our characterization of the most statistically significant result, the cellular transcriptional repressor TRIM27. We present TRIM27 as a novel degradation target of ICP0 and describe the relationship of these two proteins during infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Antiviral Activities of Honey, Royal Jelly, and Acyclovir Against HSV-1.

    PubMed

    Hashemipour, Maryam Alsadat; Tavakolineghad, Zahra; Arabzadeh, Sayed Ali Mohammad; Iranmanesh, Zahra; Nassab, Sayed Amir Hossein Gandjalikhan

    2014-02-01

    Herpes simplex virus type 1 (HSV-1) belongs to the Herpesviridae family and genus simplex virus. This virus is usually acquired during childhood and is transmitted through direct mucocutaneous contact or droplet infection from infected secretions. The aim of the present study was to compare antiviral effects of honey, royal jelly, and acyclovir on herpes simplex virus-1 in an extra-somatic environment. Vero cells were cultured in the Dulbecco's Modified Eagle's Medium (DMEM) along with 10% fetal bovine serum (FBS) in 12-welled microplates. Various dilutions of honey, royal jelly, and acyclovir (5, 10, 50, 100, 2500, 500, and 800 μg/mL) were added to the Vero cells along with a 100-virus concentration of TCID50. The plaque assay technique was used to evaluate the antiviral activities. The results showed that honey, royal jelly, and acyclovir have the highest inhibitory effects on HSV-1 at concentrations of 500, 250, and 100 μg/mL, respectively. In addition, honey, royal jelly, and acyclovir decreased the viral load from 70 795 to 43.3, 30, and 0 PFU/mL at a concentration of 100 μg/mL, respectively. The results of the present study showed that honey and royal jelly, which are natural products with no reports about their deleterious effect at least in laboratory conditions, can be considered alternatives to acyclovir in the treatment of herpetic lesions. However, it should be pointed out that further studies are necessary to substantiate their efficacy because hard evidence on their effectiveness is not available at present.

  19. Exposure to herpes simplex virus type 1 and cognitive impairments in individuals with schizophrenia.

    PubMed

    Prasad, Konasale M; Watson, Annie M M; Dickerson, Faith B; Yolken, Robert H; Nimgaonkar, Vishwajit L

    2012-11-01

    Latent infection with neurotropic herpes viruses, such as herpes simplex virus, type 1 (HSV1), has been generally considered benign in most immunocompetent individuals except for rare cases of encephalitis. However, several recent studies have shown impaired cognitive functions among individuals with schizophrenia exposed to HSV1 compared with schizophrenia patients not exposed to HSV1. Such impairments are robust and are prominently observed in working memory, verbal memory, and executive functions. Brain regions that play a key role in the regulation of these domains have shown smaller volumes, along with correlation between these morphometric changes and cognitive impairments in schizophrenia. One study noted temporal decline in executive function and gray matter loss among HSV1-exposed first-episode antipsychotic-naïve schizophrenia patients. Furthermore, a proof-of-concept double-blind placebo-controlled trial indicated improvement in cognitive performance following supplemental anti-herpes-specific medication among HSV1 seropositive schizophrenia patients. Cross-sectional studies have also identified an association between HSV1 exposure and lesser degrees of cognitive impairment among healthy control individuals and patients with bipolar disorder. These studies fulfill several Bradford-Hill criteria, suggesting etiological links between HSV1 exposure and cognitive impairment. Exposure to other human herpes viruses such as cytomegalovirus and herpes simplex virus type 2 (HSV2) may also be associated with cognitive impairment, but the data are less consistent. These studies are reviewed critically and further lines of enquiry recommended. The results are important from a public health perspective, as HSV1 exposure is highly prevalent in many populations.

  20. Exposure to Herpes Simplex Virus Type 1 and Cognitive Impairments in Individuals With Schizophrenia

    PubMed Central

    Prasad, Konasale M.; Watson, Annie M. M.; Dickerson, Faith B.; Yolken, Robert H.; Nimgaonkar, Vishwajit L.

    2012-01-01

    Latent infection with neurotropic herpes viruses, such as herpes simplex virus, type 1 (HSV1), has been generally considered benign in most immunocompetent individuals except for rare cases of encephalitis. However, several recent studies have shown impaired cognitive functions among individuals with schizophrenia exposed to HSV1 compared with schizophrenia patients not exposed to HSV1. Such impairments are robust and are prominently observed in working memory, verbal memory, and executive functions. Brain regions that play a key role in the regulation of these domains have shown smaller volumes, along with correlation between these morphometric changes and cognitive impairments in schizophrenia. One study noted temporal decline in executive function and gray matter loss among HSV1-exposed first-episode antipsychotic-naïve schizophrenia patients. Furthermore, a proof-of-concept double-blind placebo-controlled trial indicated improvement in cognitive performance following supplemental anti-herpes–specific medication among HSV1 seropositive schizophrenia patients. Cross-sectional studies have also identified an association between HSV1 exposure and lesser degrees of cognitive impairment among healthy control individuals and patients with bipolar disorder. These studies fulfill several Bradford-Hill criteria, suggesting etiological links between HSV1 exposure and cognitive impairment. Exposure to other human herpes viruses such as cytomegalovirus and herpes simplex virus type 2 (HSV2) may also be associated with cognitive impairment, but the data are less consistent. These studies are reviewed critically and further lines of enquiry recommended. The results are important from a public health perspective, as HSV1 exposure is highly prevalent in many populations. PMID:22490995

Top