Sample records for simplex virus icp0

  1. Glutamine Deprivation Causes Enhanced Plating Efficiency of a Herpes Simplex Virus Type 1 ICP0-Null Mutant ▿

    PubMed Central

    Bringhurst, Ryan M.; Dominguez, Antonia A.; Schaffer, Priscilla A.

    2008-01-01

    Isoleucine deprivation of cellular monolayers prior to infection has been reported to result in partial complementation of a herpes simplex virus type 1 (HSV-1) ICP0 null (ICP0−) mutant. We now report that glutamine deprivation alone is able to enhance the plating efficiency of an ICP0− virus and that isoleucine deprivation has little or no effect. Because a low glutamine level is associated with stress and because stress is known to induce reactivation, low levels of glutamine may be relevant to the reactivation of HSV-1 from latency. Additionally, we demonstrate that arginine and methionine deprivation result in partial complementation of the ICP0− virus. PMID:18768961

  2. Varicella-zoster virus complements herpes simplex virus type 1 temperature-sensitive mutants.

    PubMed Central

    Felser, J M; Straus, S E; Ostrove, J M

    1987-01-01

    Varicella-zoster virus (VZV) can complement temperature-sensitive mutants of herpes simplex virus. Of seven mutants tested, two, carrying mutations in the immediate-early ICP4 and ICP27 proteins, were complemented. This complementation was not seen in coinfections with adenovirus type 5 or cytomegalovirus. Following transfection into CV-1 cells, a DNA fragment containing the VZV short repeat sequence complemented the ICP4 mutant. These data demonstrate a functional relationship between VZV and herpes simplex virus and have allowed localization of a putative VZV immediate-early gene. PMID:3023701

  3. Identification of TRIM27 as a novel degradation target of herpes simplex virus 1 ICP0.

    PubMed

    Conwell, Sara E; White, Anne E; Harper, J Wade; Knipe, David M

    2015-01-01

    The herpes simplex virus 1 (HSV-1) immediate early protein ICP0 performs many functions during infection, including transactivation of viral gene expression, suppression of innate immune responses, and modification and eviction of histones from viral chromatin. Although these functions of ICP0 have been characterized, the detailed mechanisms underlying ICP0's complex role during infection warrant further investigation. We thus undertook an unbiased proteomic approach to identifying viral and cellular proteins that interact with ICP0 in the infected cell. Cellular candidates resulting from our analysis included the ubiquitin-specific protease USP7, the transcriptional repressor TRIM27, DNA repair proteins NBN and MRE11A, regulators of apoptosis, including BIRC6, and the proteasome. We also identified two HSV-1 early proteins involved in nucleotide metabolism, UL39 and UL50, as novel candidate interactors of ICP0. Because TRIM27 was the most statistically significant cellular candidate, we investigated the relationship between TRIM27 and ICP0. We observed rapid, ICP0-dependent loss of TRIM27 during HSV-1 infection. TRIM27 protein levels were restored by disrupting the RING domain of ICP0 or by inhibiting the proteasome, arguing that TRIM27 is a novel degradation target of ICP0. A mutant ICP0 lacking E3 ligase activity interacted with endogenous TRIM27 during infection as demonstrated by reciprocal coimmunoprecipitation and supported by immunofluorescence data. Surprisingly, ICP0-null mutant virus yields decreased upon TRIM27 depletion, arguing that TRIM27 has a positive effect on infection despite being targeted for degradation. These results illustrate a complex interaction between TRIM27 and viral infection with potential positive or negative effects of TRIM27 on HSV under different infection conditions. During productive infection, a virus must simultaneously redirect multiple cellular pathways to replicate itself while evading detection by the host's defenses. To orchestrate such complex regulation, viruses, including herpes simplex virus 1 (HSV-1), rely on multifunctional proteins such as the E3 ubiquitin ligase ICP0. This protein regulates various cellular pathways concurrently by targeting a diverse set of cellular factors for degradation. While some of these targets have been previously identified and characterized, we undertook a proteomic screen to identify additional targets of this activity to further characterize ICP0's role during infection. We describe a set of candidate interacting proteins of ICP0 identified through this approach and our characterization of the most statistically significant result, the cellular transcriptional repressor TRIM27. We present TRIM27 as a novel degradation target of ICP0 and describe the relationship of these two proteins during infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Identification of a novel higher molecular weight isoform of USP7/HAUSP that interacts with the Herpes simplex virus type-1 immediate early protein ICP0.

    PubMed

    Antrobus, Robin; Boutell, Chris

    2008-10-01

    The Herpes simplex virus type-1 (HSV-1) regulatory protein ICP0, a RING-finger E3 ubiquitin ligase, stimulates the onset of viral lytic replication and the reactivation of quiescent viral genomes from latency. Like many ubiquitin ligases ICP0 induces its own ubiquitination, a process that can lead to its proteasome-dependent degradation. ICP0 counteracts this activity by recruiting the cellular ubiquitin-specific protease USP7/HAUSP. Here we show that ICP0 can also interact with a previously unidentified isoform of USP7 (termed here USP7(beta)). This isoform is not a predominantly ubiquitinated, SUMO-modified, or phosphorylated species of USP7 but is constitutively expressed in a number of different cell types. Like USP7, USP7(beta) binds specifically to an electrophilic ubiquitin probe, indicating that it contains an accessible catalytic core with potential ubiquitin-protease activity. The interaction formed between ICP0 and USP7(beta) requires ICP0 to have an intact USP7-binding domain and results in its susceptibility to ICP0-mediated degradation during HSV-1 infection.

  5. Mutations Inactivating Herpes Simplex Virus 1 MicroRNA miR-H2 Do Not Detectably Increase ICP0 Gene Expression in Infected Cultured Cells or Mouse Trigeminal Ganglia.

    PubMed

    Pan, Dongli; Pesola, Jean M; Li, Gang; McCarron, Seamus; Coen, Donald M

    2017-01-15

    Herpes simplex virus 1 (HSV-1) latency entails the repression of productive ("lytic") gene expression. An attractive hypothesis to explain some of this repression involves inhibition of the expression of ICP0, a lytic gene activator, by a viral microRNA, miR-H2, which is completely complementary to ICP0 mRNA. To test this hypothesis, we engineered mutations that disrupt miR-H2 without affecting ICP0 in HSV-1. The mutant virus exhibited drastically reduced expression of miR-H2 but showed wild-type levels of infectious virus production and no increase in ICP0 expression in lytically infected cells, which is consistent with the weak expression of miR-H2 relative to the level of ICP0 mRNA in that setting. Following corneal inoculation of mice, the mutant was not significantly different from wild-type virus in terms of infectious virus production in the trigeminal ganglia during acute infection, mouse mortality, or the rate of reactivation from explanted latently infected ganglia. Critically, the mutant was indistinguishable from wild-type virus for the expression of ICP0 and other lytic genes in acutely and latently infected mouse trigeminal ganglia. The latter result may be related to miR-H2 being less effective in inhibiting ICP0 expression in transfection assays than a host microRNA, miR-138, which has previously been shown to inhibit lytic gene expression in infected ganglia by targeting ICP0 mRNA. Additionally, transfected miR-138 reduced lytic gene expression in infected cells more effectively than miR-H2. While this study provides little support for the hypothesis that miR-H2 promotes latency by inhibiting ICP0 expression, the possibility remains that miR-H2 might target other genes during latency. Herpes simplex virus 1 (HSV-1), which causes a variety of diseases, can establish lifelong latent infections from which virus can reactivate to cause recurrent disease. Latency is the most biologically interesting and clinically vexing feature of the virus. Ever since miR-H2's discovery as a viral microRNA bearing complete sequence complementarity to the mRNA for the important viral gene activator ICP0, inhibition of ICP0 expression by miR-H2 has been a major hypothesis to help explain the repression of lytic gene expression during latency. However, this hypothesis remained untested in latently infected animals. Using a miR-H2-deficient mutant virus, we found no evidence that miR-H2 represses the expression of ICP0 or other lytic genes in cells or mice infected with HSV-1. Although miR-H2 can repress ICP0 expression in transfection assays, such repression is weak. The results suggest that other mechanisms for miR-H2 activity and for the repression of lytic gene expression during latency deserve investigation. Copyright © 2017 American Society for Microbiology.

  6. Serine/Arginine-rich Splicing Factor 2 Modulates Herpes Simplex Virus Type 1 Replication via Regulating Viral Gene Transcriptional Activity and Pre-mRNA Splicing.

    PubMed

    Wang, Ziqiang; Liu, Qing; Lu, Jinhua; Fan, Ping; Xie, Weidong; Qiu, Wei; Wang, Fan; Hu, Guangnan; Zhang, Yaou

    2016-12-16

    Once it enters the host cell, herpes simplex virus type 1 (HSV-1) recruits a series of host cell factors to facilitate its life cycle. Here, we demonstrate that serine/arginine-rich splicing factor 2 (SRSF2), which is an important component of the splicing speckle, mediates HSV-1 replication by regulating viral gene expression at the transcriptional and posttranscriptional levels. Our results indicate that SRSF2 functions as a transcriptional activator by directly binding to infected cell polypeptide 0 (ICP0), infected cell polypeptide 27 (ICP27), and thymidine kinase promoters. Moreover, SRSF2 participates in ICP0 pre-mRNA splicing by recognizing binding sites in ICP0 exon 3. These findings provide insight into the functions of SRSF2 in HSV-1 replication and gene expression. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Recruitment of activated IRF-3 and CBP/p300 to herpes simplex virus ICP0 nuclear foci: Potential role in blocking IFN-{beta} induction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melroe, Gregory T.; Silva, Lindsey; Schaffer, Priscilla A.

    2007-04-10

    The host innate response to viral infection includes the production of interferons, which is dependent on the coordinated activity of multiple transcription factors. Herpes simplex virus 1 (HSV-1) has been shown to block efficient interferon expression by multiple mechanisms. We and others have demonstrated that HSV-1 can inhibit the transcription of genes promoted by interferon regulatory factor-3 (IRF-3), including interferon beta (IFN-{beta}), and that the immediate-early ICP0 protein is sufficient for this function. However, the exact mechanism by which ICP0 blocks IRF-3 activity has yet to be determined. Unlike some other viral proteins that inhibit IRF-3 activity, ICP0 does notmore » appear to affect phosphorylation and dimerization of IRF-3. Here, we show that a portion of activated IRF-3 co-localizes with nuclear foci containing ICP0 at early times after virus infection. Co-localization to ICP0-containing foci is also seen with the IRF-3-binding partners and transcriptional co-activators, CBP and p300. In addition, using immunoprecipitation of infected cell lysates, we can immunoprecipitate a complex containing ICP0, IRF-3, and CBP. Thus we hypothesize that ICP0 recruits activated IRF-3 and CBP/p300 to nuclear structures, away from the host chromatin. This leads to the inactivation and accelerated degradation of IRF-3, resulting in reduced transcription of IFN-{beta} and an inhibition of the host response. Therefore, ICP0 provides an example of how viruses can block IFN-{beta} induction by sequestration of important transcription factors essential for the host response.« less

  8. Identification of three redundant segments responsible for herpes simplex virus 1 ICP0 to fuse with ND10 nuclear bodies.

    PubMed

    Zheng, Yi; Gu, Haidong

    2015-04-01

    Infected cell protein 0 (ICP0) of herpes simplex virus 1 (HSV-1) is a key regulator in both lytic and latent infections. In lytic infection, an important early event is the colocalization of ICP0 to nuclear domain 10 (ND10), the discrete nuclear bodies that impose restrictions on viral expression. ICP0 contains an E3 ubiquitin ligase that degrades promyelocytic leukemia protein (PML) and Sp100, two major components of ND10, and disperses ND10 to alleviate repression. We previously reported that the association between ICP0 and ND10 is a dynamic process that includes three steps: adhesion, fusion, and retention. ICP0 residues 245 to 474, defined as ND10 entry signal (ND10-ES), is a region required for the fusion step. Without ND10-ES, ICP0 adheres at the ND10 surface but fails to enter. In the present study, we focus on characterizing ND10-ES. Here we report the following. (i) Fusion of ICP0 with ND10 relies on specific sequences located within ND10-ES. Replacement of ND10-ES by the corresponding region from ORF61 of varicella-zoster virus did not rescue ND10 fusion. (ii) Three tandem ND10 fusion segments (ND10-FS1, ND10-FS2, and ND10-FS3), encompassing 200 amino acids within ND10-ES, redundantly facilitate fusion. Each of the three segments is sufficient to independently drive the fusion process, but none of the segments by themselves are necessary for ND10 fusion. Only when all three segments are deleted is fusion blocked. (iii) The SUMO interaction motif located within ND10-FS2 is not required for ND10 fusion but is required for the complete degradation of PML, suggesting that PML degradation and ND10 fusion are regulated by different molecular mechanisms. ND10 nuclear bodies are part of the cell-intrinsic antiviral defenses that restrict viral gene expression upon virus infection. As a countermeasure, infected cell protein 0 (ICP0) of herpes simplex virus 1 (HSV-1) localizes to ND10s, degrades the ND10 organizer, and disperses ND10 components in order to alleviate repression. We studied the ICP0-ND10 association to delineate elements important for this dynamic interaction and to understand its role in viral replication and host defense. In this work, we show that ICP0 contains three redundant segments to ensure an effective mergence of ICP0 with ND10 nuclear bodies. This is the first study to systematically investigate ICP0 elements that are important for ICP0-ND10 fusion. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Impaired STING Pathway in Human Osteosarcoma U2OS Cells Contributes to the Growth of ICP0-Null Mutant Herpes Simplex Virus.

    PubMed

    Deschamps, Thibaut; Kalamvoki, Maria

    2017-05-01

    Human herpes simplex virus 1 (HSV-1) is a widespread pathogen, with 80% of the population being latently infected. To successfully evade the host, the virus has evolved strategies to counteract antiviral responses, including the gene-silencing and innate immunity machineries. The immediately early protein of the virus, infected cell protein 0 (ICP0), plays a central role in these processes. ICP0 blocks innate immunity, and one mechanism is by degrading hostile factors with its intrinsic E3 ligase activity. ICP0 also functions as a promiscuous transactivator, and it blocks repressor complexes to enable viral gene transcription. For these reasons, the growth of a ΔICP0 virus is impaired in most cells, except cells of the human osteosarcoma cell line U2OS, and it is only partially impaired in cells of the human osteosarcoma cell line Saos-2. We found that the two human osteosarcoma cell lines that supported the growth of the ΔICP0 virus failed to activate innate immune responses upon treatment with 2'3'-cyclic GAMP (2'3'-cGAMP), the natural agonist of STING (i.e., stimulator of interferon genes) or after infection with the ΔICP0 mutant virus. Innate immune responses were restored in these cells by transient expression of the STING protein but not after overexpression of interferon-inducible protein 16 (IFI16). Restoration of STING expression resulted in suppression of ΔICP0 virus gene expression and a decrease in viral yields. Overexpression of IFI16 also suppressed ΔICP0 virus gene expression, albeit to a lesser extent than STING. These data suggest that the susceptibility of U2OS and Saos-2 cells to the ΔICP0 HSV-1 is in part due to an impaired STING pathway. IMPORTANCE The DNA sensor STING plays pivotal role in controlling HSV-1 infection both in cell culture and in mice. The HSV-1 genome encodes numerous proteins that are dedicated to combat host antiviral responses. The immediate early protein of the virus ICP0 plays major role in this process as it targets hostile host proteins for degradation with its E3 ligase activity, and it disrupts repressor complexes via protein-protein interaction to enable viral gene transcription. Therefore, the ΔICP0 HSV-1 virus is defective for growth in most cells, except the human osteosarcoma cell lines U2OS and Saos-2. We found that both cell lines that support ΔICP0 virus infection have defects in the STING DNA-sensing pathway, which partially accounts for the rescue of the ΔICP0 virus growth. Restoration of STING expression in these cells rescued innate immunity and suppressed ΔICP0 virus infection. This study underscores the importance of STING in the control of HSV-1. Copyright © 2017 American Society for Microbiology.

  10. Impaired STING Pathway in Human Osteosarcoma U2OS Cells Contributes to the Growth of ICP0-Null Mutant Herpes Simplex Virus

    PubMed Central

    Deschamps, Thibaut

    2017-01-01

    ABSTRACT Human herpes simplex virus 1 (HSV-1) is a widespread pathogen, with 80% of the population being latently infected. To successfully evade the host, the virus has evolved strategies to counteract antiviral responses, including the gene-silencing and innate immunity machineries. The immediately early protein of the virus, infected cell protein 0 (ICP0), plays a central role in these processes. ICP0 blocks innate immunity, and one mechanism is by degrading hostile factors with its intrinsic E3 ligase activity. ICP0 also functions as a promiscuous transactivator, and it blocks repressor complexes to enable viral gene transcription. For these reasons, the growth of a ΔICP0 virus is impaired in most cells, except cells of the human osteosarcoma cell line U2OS, and it is only partially impaired in cells of the human osteosarcoma cell line Saos-2. We found that the two human osteosarcoma cell lines that supported the growth of the ΔICP0 virus failed to activate innate immune responses upon treatment with 2′3′-cyclic GAMP (2′3′-cGAMP), the natural agonist of STING (i.e., stimulator of interferon genes) or after infection with the ΔICP0 mutant virus. Innate immune responses were restored in these cells by transient expression of the STING protein but not after overexpression of interferon-inducible protein 16 (IFI16). Restoration of STING expression resulted in suppression of ΔICP0 virus gene expression and a decrease in viral yields. Overexpression of IFI16 also suppressed ΔICP0 virus gene expression, albeit to a lesser extent than STING. These data suggest that the susceptibility of U2OS and Saos-2 cells to the ΔICP0 HSV-1 is in part due to an impaired STING pathway. IMPORTANCE The DNA sensor STING plays pivotal role in controlling HSV-1 infection both in cell culture and in mice. The HSV-1 genome encodes numerous proteins that are dedicated to combat host antiviral responses. The immediate early protein of the virus ICP0 plays major role in this process as it targets hostile host proteins for degradation with its E3 ligase activity, and it disrupts repressor complexes via protein-protein interaction to enable viral gene transcription. Therefore, the ΔICP0 HSV-1 virus is defective for growth in most cells, except the human osteosarcoma cell lines U2OS and Saos-2. We found that both cell lines that support ΔICP0 virus infection have defects in the STING DNA-sensing pathway, which partially accounts for the rescue of the ΔICP0 virus growth. Restoration of STING expression in these cells rescued innate immunity and suppressed ΔICP0 virus infection. This study underscores the importance of STING in the control of HSV-1. PMID:28179534

  11. ICP27-dependent resistance of herpes simplex virus type 1 to leptomycin B is associated with enhanced nuclear localization of ICP4 and ICP0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lengyel, Joy; Strain, Anna K.; Perkins, Keith D.

    2006-09-01

    It was previously shown that herpes simplex virus type 1 (HSV-1) is sensitive to leptomycin B (LMB), an inhibitor of nuclear export factor CRM1, and that a single methionine to threonine change at residue 50 (M50T) of viral immediate-early (IE) protein ICP27 can confer LMB resistance. In this work, we show that deletion of residues 21-63 from ICP27 can also confer LMB resistance. We further show that neither the M50T mutation nor the presence of LMB affects the nuclear shuttling activity of ICP27, suggesting that another function of ICP27 determines LMB resistance. A possible clue to this function emerged whenmore » it was discovered that LMB treatment of HSV-1-infected cells dramatically enhances the cytoplasmic accumulation of two other IE proteins, ICP0 and ICP4. This effect is completely dependent on ICP27 and is reversed in cells infected with LMB-resistant mutants. Moreover, LMB-resistant mutations in ICP27 enhance the nuclear localization of ICP0 and ICP4 even in the absence of LMB, and this effect can be discerned in transfected cells. Thus, the same amino (N)-terminal region of ICP27 that determines sensitivity to LMB also enhances ICP27's previously documented ability to promote the cytoplasmic accumulation of ICP4 and ICP0. We speculate that ICP27's effects on ICP4 and ICP0 may contribute to HSV-1 LMB sensitivity.« less

  12. Alphaherpesvirus Proteins Related to Herpes Simplex Virus Type 1 ICP0 Affect Cellular Structures and Proteins

    PubMed Central

    Parkinson, Jane; Everett, Roger D.

    2000-01-01

    The herpes simplex virus type 1 (HSV-1) immediate-early protein ICP0 interacts with several cellular proteins and induces the proteasome-dependent degradation of others during infection. In this study we show that ICP0 is required for the proteasome-dependent degradation of the ND10 protein Sp100 and, as with the other target proteins, the ICP0 RING finger domain is essential. Further, comparison of the kinetics and ICP0 domain requirements for the degradation of PMI and Sp100 suggests that a common mechanism is involved. Homologues of ICP0 are encoded by other members of the alphaherpesvirus family. These proteins show strong sequence homology to ICP0 within the RING finger domain but limited similarity elsewhere. Using transfection assays, we have shown that all the ICP0 homologues that we tested have significant effects on the immunofluorescence staining character of at least one of the proteins destabilized by ICP0, and by using a recombinant virus, we found that the equine herpesvirus ICP0 homologue induced the proteasome-dependent degradation of endogenous CENP-C and modified forms of PML and Sp100. However, in contrast to ICP0, the homologue proteins had no effect on the distribution of the ubiquitin-specific protease USP7 within the cell, consistent with their lack of a USP7 binding domain. We also found that ICP0 by itself could induce the abrogation of SUMO-1 conjugation and then the proteasome-dependent degradation of unmodified exogenous PML in transfected cells, thus demonstrating that other HSV-1 proteins are not required. Surprisingly, the ICP0 homologues were unable to cause these effects. Overall, these data suggest that the members of the ICP0 family of proteins may act via a similar mechanism or pathway involving their RING finger domain but that their intrinsic activities and effects on endogenous and exogenous proteins differ in detail. PMID:11024129

  13. Structure of the transporter associated with antigen processing trapped by herpes simplex virus

    PubMed Central

    Oldham, Michael L; Grigorieff, Nikolaus; Chen, Jue

    2016-01-01

    The transporter associated with antigen processing (TAP) is an ATP-binding cassette (ABC) transporter essential to cellular immunity against viral infection. Some persistent viruses have evolved strategies to inhibit TAP so that they may go undetected by the immune system. The herpes simplex virus for example evades immune surveillance by blocking peptide transport with a small viral protein ICP47. In this study, we determined the structure of human TAP bound to ICP47 by electron cryo-microscopy (cryo-EM) to 4.0 Å. The structure shows that ICP47 traps TAP in an inactive conformation distinct from the normal transport cycle. The specificity and potency of ICP47 inhibition result from contacts between the tip of the helical hairpin and the apex of the transmembrane cavity. This work provides a clear molecular description of immune evasion by a persistent virus. It also establishes the molecular structure of TAP to facilitate mechanistic studies of the antigen presentation process. DOI: http://dx.doi.org/10.7554/eLife.21829.001 PMID:27935481

  14. A herpes simplex virus type 1 mutant disrupted for microRNA H2 with increased neurovirulence and rate of reactivation

    PubMed Central

    Jiang, Xianzhi; Brown, Don; Osorio, Nelson; Hsiang, Chinhui; Li, Lily; Chan, Lucas; BenMohamed, Lbachir; Wechsler, Steven L.

    2015-01-01

    The herpes simplex virus type 1 (HSV-1) latency associated transcript (LAT) encodes several microRNAs. One of these, miR-H2, overlaps and is antisense to the ICP0 gene, and appears to decrease expression of the ICP0 protein. To determine if miR-H2 plays a role in the HSV-1 latency-reactivation cycle, we constructed a mutant, McK-ΔH2, in which this microRNA has been disrupted without altering the predicted amino acid sequence of ICP0. McK-ΔH2 produced increased amounts of ICP0. Although replication of McK-ΔH2 was similar to that of its wt McKrae parental virus in RS cells and mouse eyes, McK-ΔH2 was more neurovirulent in Swiss Webster mice than McKrae based on the percent of mice that died from herpes encephalitis following ocular infection. In addition, using a mouse TG explant model of induced reactivation, we show here for the first time that miR-H2 appears to play a role in modulating HSV-1 reactivation. Although the percent of TG from which virus reactivated by day 10 after explant was similar for McK-ΔH2, wt McKrae, and the marker rescued virus McK-ΔH2Res, at earlier times significantly more reactivation was seen with McK-ΔH2. Our results suggest that in the context of the virus, miR-H2 downregulates ICP0 and this moderates both HSV-1 neurovirulence and reactivation. PMID:25645379

  15. CTCF Occupation of the Herpes Simplex Virus 1 Genome Is Disrupted at Early Times Postreactivation in a Transcription-Dependent Manner

    PubMed Central

    Ertel, Monica K.; Cammarata, Amy L.; Hron, Rebecca J.

    2012-01-01

    In herpes simplex virus 1 (HSV-1), binding clusters enriched in CTCF during latency have been previously identified. We hypothesized that CTCF binding to CTCF clusters in HSV-1 would be disrupted in a reactivation event. To investigate, CTCF occupation of three CTCF binding clusters in HSV-1 was analyzed following sodium butyrate (NaB)- and explant-induced reactivation in the mouse. Our data show that the CTCF domains positioned within the HSV-1 genome, specifically around the latency-associated transcript (LAT) and ICP0 and ICP4 regions of the genome, lose CTCF occupancy following the application of reactivation stimuli in wild-type virus. We also found that CTCF binding clusters upstream of the ICP0 and ICP4 promoters both function as classical insulators capable of acting as enhancer blockers of the LAT enhancer. Finally, our results suggest that CTCF occupation of domains in HSV-1 may be differentially regulated both during latency and at early times following reactivation by the presence of lytic transcripts and further implicate epigenetic regulation of HSV-1 as a critical component of the latency-reactivation transition. PMID:22973047

  16. Functional Interaction between Class II Histone Deacetylases and ICP0 of Herpes Simplex Virus Type 1

    PubMed Central

    Lomonte, Patrick; Thomas, Joëlle; Texier, Pascale; Caron, Cécile; Khochbin, Saadi; Epstein, Alberto L.

    2004-01-01

    This study describes the physical and functional interactions between ICP0 of herpes simplex virus type 1 and class II histone deacetylases (HDACs) 4, 5, and 7. Class II HDACs are mainly known for their participation in the control of cell differentiation through the regulation of the activity of the transcription factor MEF2 (myocyte enhancer factor 2), implicated in muscle development and neuronal survival. Immunofluorescence experiments performed on transfected cells showed that ICP0 colocalizes with and reorganizes the nuclear distribution of ectopically expressed class I and II HDACs. In addition, endogenous HDAC4 and at least one of its binding partners, the corepressor protein SMRT (for silencing mediator of retinoid and thyroid receptor), undergo changes in their nuclear distribution in ICP0-transfected cells. As a result, during infection endogenous HDAC4 colocalizes with ICP0. Coimmunoprecipitation and glutathione S-transferase pull-down assays confirmed that class II but not class I HDACs specifically interacted with ICP0 through their amino-terminal regions. This region, which is not conserved in class I HDACs but homologous to the MITR (MEF2-interacting transcription repressor) protein, is responsible for the repression, in a deacetylase-independent manner, of MEF2 by sequestering it under an inactive form in the nucleus. Consequently, we show that ICP0 is able to overcome the HDAC5 amino-terminal- and MITR-induced MEF2A repression in gene reporter assays. This is the first report of a viral protein interacting with and controlling the repressor activity of class II HDACs. We discuss the putative consequences of such an interaction for the biology of the virus both during lytic infection and reactivation from latency. PMID:15194749

  17. Immunogenic HSV-mediated oncolysis shapes the antitumor immune response and contributes to therapeutic efficacy.

    PubMed

    Workenhe, Samuel T; Simmons, Graydon; Pol, Jonathan G; Lichty, Brian D; Halford, William P; Mossman, Karen L

    2014-01-01

    Within the oncolytic virus field, the extent of virus replication that is essential for immune stimulation to control tumor growth remains unresolved. Using infected cell protein 0 (ICP0)-defective oncolytic Herpes simplex virus type 1 (HSV-1) and HSV-2 viruses (dICP0 and dNLS) that show differences in their in vitro replication and cytotoxicity, we investigated the inherent features of oncolytic HSV viruses that are required for potent antitumor activity. In vitro, the HSV-2 vectors showed rapid cytotoxicity despite lower viral burst sizes compared to HSV-1 vectors. In vivo, although both of the dICP0 vectors initially replicated to a similar level, HSV-1 dICP0 was rapidly cleared from the tumors. In spite of this rapid clearance, HSV-1 dICP0 treatment conferred significant survival benefit. HSV-1 dICP0-treated tumors showed significantly higher levels of danger-associated molecular patterns that correlated with higher numbers of antigen-presenting cells within the tumor and increased antigen-specific CD8+ T-cell levels in the peripheral blood. This study suggests that, at least in the context of oncolytic HSV, the initial stages of immunogenic virus replication leading to activation of antitumor immunity are more important than persistence of a replicating virus within the tumor. This knowledge provides important insight for the design of therapeutically successful oncolytic viruses.

  18. Infected cell protein 0 functional domains and their coordination in herpes simplex virus replication

    PubMed Central

    Gu, Haidong

    2016-01-01

    Herpes simplex virus 1 (HSV-1) is a ubiquitous human pathogen that establishes latent infection in ganglia neurons. Its unique life cycle requires a balanced “conquer and compromise” strategy to deal with the host anti-viral defenses. One of HSV-1 α (immediate early) gene products, infected cell protein 0 (ICP0), is a multifunctional protein that interacts with and modulates a wide range of cellular defensive pathways. These pathways may locate in different cell compartments, which then migrate or exchange factors upon stimulation, for the purpose of a concerted and effective defense. ICP0 is able to simultaneously attack multiple host pathways by either degrading key restrictive factors or modifying repressive complexes. This is a viral protein that contains an E3 ubiquitin ligase, translocates among different cell compartments and interacts with major defensive complexes. The multiple functional domains of ICP0 can work independently and at the same time coordinate with each other. Dissecting the functional domains of ICP0 and delineating the coordination of these domains will help us understand HSV-1 pathogenicity as well as host defense mechanisms. This article focuses on describing individual ICP0 domains, their biochemical properties and their implication in HSV-1 infection. By putting individual domain functions back into the picture of host anti-viral defense network, this review seeks to elaborate the complex interactions between HSV-1 and its host. PMID:26870669

  19. Cornea lymphatics drive the CD8+ T-cell response to herpes simplex virus-1.

    PubMed

    Gurung, Hem R; Carr, Meghan M; Carr, Daniel J J

    2017-01-01

    Herpes simplex virus-1 (HSV-1) infection of the cornea induces vascular endothelial growth factor A (VEGF-A)-dependent lymphangiogenesis. However, the extent to which HSV-1-induced corneal lymphangiogenesis impacts the adaptive immune response has not been characterized. Here, we used floxed VEGF-A mice to study the importance of newly created corneal lymphatic vessels in the host adaptive immune response to infection. Whereas the mice infected with the parental virus (strain SC16) exhibited robust corneal lymphangiogenesis, mice that received the recombinant virus (SC16 ICP0-Cre) that expresses Cre recombinase under the control of infected cell protein 0 (ICP0), an HSV-1 immediate-early gene, showed a significant reduction in lymphangiogenesis. There was no difference in virus recovered from the cornea of mice infected with SC16 vs SC16 ICP0-Cre. However, viral loads were significantly elevated in the trigeminal ganglia (TG) of mice with reduced corneal lymphangiogenesis. The increase in viral titer correlated with a significant loss of HSV-1-specific CD8 + T cells that traffic to the TG of mice infected with the recombinant virus. Intrastromal delivery of size-exclusion dye (fluorescein isothiocyanate-dextran) revealed a time-dependent defect in the ability of the lymphatic vessels in SC16 ICP0-Cre-infected mice to transport soluble antigen from the cornea to the draining lymph nodes. We interpret these results to suggest that the newly created lymphatic vessels in the cornea driven by HSV-1 infection are critical in the delivery of soluble viral antigen to the draining lymph node and subsequent development of the CD8 + T-cell response to HSV-1.

  20. An immunoassay for the study of DNA-binding activities of herpes simplex virus protein ICP8.

    PubMed

    Lee, C K; Knipe, D M

    1985-06-01

    An immunoassay was used to examine the interaction between a herpes simplex virus protein, ICP8, and various types of DNA. The advantage of this assay is that the protein is not subjected to harsh purification procedures. We characterized the binding of ICP8 to both single-stranded (ss) and double-stranded (ds) DNA. ICP8 bound ss DNA fivefold more efficiently than ds DNA, and both binding activities were most efficient in 150 mM NaCl. Two lines of evidence indicate that the binding activities were not identical: (i) ds DNA failed to complete with ss DNA binding even with a large excess of ds DNA; (ii) Scatchard plots of DNA binding with various amounts of DNA were fundamentally different for ss DNA and ds DNA. However, the two activities were related in that ss DNA efficiently competed with the binding of ds DNA. We conclude that the ds DNA-binding activity of ICP8 is probably distinct from the ss DNA-binding activity. No evidence for sequence-specific ds DNA binding was obtained for either the entire herpes simplex virus genome or cloned viral sequences.

  1. Herpes Simplex Virus Selectively Induces Expression of the CC Chemokine RANTES/CCL5 in Macrophages through a Mechanism Dependent on PKR and ICP0

    PubMed Central

    Melchjorsen, Jesper; Pedersen, Finn S.; Mogensen, Søren C.; Paludan, Søren R.

    2002-01-01

    Recruitment of leukocytes is essential for eventual control of virus infections. Macrophages represent a leukocyte population involved in the first line of defense against many infections, including herpes simplex virus (HSV) infection. Through presentation of antigens to T cells and production of cytokines and chemokines, macrophages also constitute an important link between the innate and adaptive immune systems. Here, we have investigated the chemokine expression profile of macrophages after HSV infection and the virus-cell interactions involved. By reverse transcription-PCR and cDNA arrays, we found that HSV type 1 (HSV-1) and HSV-2 induced expression of the CC chemokine RANTES/CCL5 in murine macrophage cell lines and peritoneal cells. The CXC chemokine BCA-1/CXCL13 was also induced in peritoneal cells. Twenty-six other chemokines tested were not affected. Accumulation of RANTES mRNA was detectable after 5 h of infection, was sensitive to UV irradiation of the virus, and was preceded by accumulation of viral immediate-early mRNA and proteins. The viral components responsible for initiation of RANTES expression were examined with virus mutants and RAW 264.7 macrophage-like cells expressing a dominant negative mutant of the double-stranded-RNA-activated protein kinase (PKR). The PKR mutant cell line displayed reduced constitutive and HSV-inducible RANTES expression compared to the control cell line. HSV-1 mutants deficient in genes encoding the immediate-early proteins ICP4, ICP22, and ICP27 remained fully capable of inducing RANTES expression in macrophages. By contrast, the ability of an ICP0-deficient HSV-1 mutant to induce RANTES expression was compromised. Thus, HSV selectively induces expression of RANTES in macrophages through a mechanism dependent on cellular PKR and viral ICP0. PMID:11861845

  2. Herpes Simplex Virus 1 Infection of Tree Shrews Differs from That of Mice in the Severity of Acute Infection and Viral Transcription in the Peripheral Nervous System

    PubMed Central

    Li, Lihong; Li, Zhuoran; Wang, Erlin; Yang, Rui; Xiao, Yu; Han, Hongbo; Lang, Fengchao; Li, Xin; Xia, Yujie; Gao, Feng; Li, Qihan; Fraser, Nigel W.

    2015-01-01

    ABSTRACT Studies of herpes simplex virus (HSV) infections of humans are limited by the use of rodent models such as mice, rabbits, and guinea pigs. Tree shrews (Tupaia belangeri chinensis) are small mammals indigenous to southwest Asia. At behavioral, anatomical, genomic, and evolutionary levels, tree shrews are much closer to primates than rodents are, and tree shrews are susceptible to HSV infection. Thus, we have studied herpes simplex virus 1 (HSV-1) infection in the tree shrew trigeminal ganglion (TG) following ocular inoculation. In situ hybridization, PCR, and quantitative reverse transcription-PCR (qRT-PCR) analyses confirm that HSV-1 latently infects neurons of the TG. When explant cocultivation of trigeminal ganglia was performed, the virus was recovered after 5 days of cocultivation with high efficiency. Swabbing the corneas of latently infected tree shrews revealed that tree shrews shed virus spontaneously at low frequencies. However, tree shrews differ significantly from mice in the expression of key HSV-1 genes, including ICP0, ICP4, and latency-associated transcript (LAT). In acutely infected tree shrew TGs, no level of ICP4 was observed, suggesting the absence of infection or a very weak, acute infection compared to that of the mouse. Immunofluorescence staining with ICP4 monoclonal antibody, and immunohistochemistry detection by HSV-1 polyclonal antibodies, showed a lack of viral proteins in tree shrew TGs during both acute and latent phases of infection. Cultivation of supernatant from homogenized, acutely infected TGs with RS1 cells also exhibited an absence of infectious HSV-1 from tree shrew TGs. We conclude that the tree shrew has an undetectable, or a much weaker, acute infection in the TGs. Interestingly, compared to mice, tree shrew TGs express high levels of ICP0 transcript in addition to LAT during latency. However, the ICP0 transcript remained nuclear, and no ICP0 protein could be seen during the course of mouse and tree shrew TG infections. Taken together, these observations suggest that the tree shrew TG infection differs significantly from the existing rodent models. IMPORTANCE Herpes simplex viruses (HSVs) establish lifelong infection in more than 80% of the human population, and their reactivation leads to oral and genital herpes. Currently, rodent models are the preferred models for latency studies. Rodents are distant from primates and may not fully represent human latency. The tree shrew is a small mammal, a prosimian primate, indigenous to southwest Asia. In an attempt to further develop the tree shrew as a useful model to study herpesvirus infection, we studied the establishment of latency and reactivation of HSV-1 in tree shrews following ocular inoculation. We found that the latent virus, which resides in the sensory neurons of the trigeminal ganglion, could be stress reactivated to produce infectious virus, following explant cocultivation and that spontaneous reactivation could be detected by cell culture of tears. Interestingly, the tree shrew model is quite different from the mouse model of HSV infection, in that the virus exhibited only a mild acute infection following inoculation with no detectable infectious virus from the sensory neurons. The mild infection may be more similar to human infection in that the sensory neurons continue to function after herpes reactivation and the affected skin tissue does not lose sensation. Our findings suggest that the tree shrew is a viable model to study HSV latency. PMID:26512084

  3. Herpes simplex virus VP16, but not ICP0, is required to reduce histone occupancy and enhance histone acetylation on viral genomes in U2OS osteosarcoma cells.

    PubMed

    Hancock, Meaghan H; Cliffe, Anna R; Knipe, David M; Smiley, James R

    2010-02-01

    The herpes simplex virus (HSV) genome rapidly becomes associated with histones after injection into the host cell nucleus. The viral proteins ICP0 and VP16 are required for efficient viral gene expression and have been implicated in reducing the levels of underacetylated histones on the viral genome, raising the possibility that high levels of underacetylated histones inhibit viral gene expression. The U2OS osteosarcoma cell line is permissive for replication of ICP0 and VP16 mutants and appears to lack an innate antiviral repression mechanism present in other cell types. We therefore used chromatin immunoprecipitation to determine whether U2OS cells are competent to load histones onto HSV DNA and, if so, whether ICP0 and/or VP16 are required to reduce histone occupancy and enhance acetylation in this cell type. High levels of underacetylated histone H3 accumulated at several locations on the viral genome in the absence of VP16 activation function; in contrast, an ICP0 mutant displayed markedly reduced histone levels and enhanced acetylation, similar to wild-type HSV. These results demonstrate that U2OS cells are competent to load underacetylated histones onto HSV DNA and uncover an unexpected role for VP16 in modulating chromatin structure at viral early and late loci. One interpretation of these findings is that ICP0 and VP16 affect viral chromatin structure through separate pathways, and the pathway targeted by ICP0 is defective in U2OS cells. We also show that HSV infection results in decreased histone levels on some actively transcribed genes within the cellular genome, demonstrating that viral infection alters cellular chromatin structure.

  4. Herpes Simplex Virus VP16, but Not ICP0, Is Required To Reduce Histone Occupancy and Enhance Histone Acetylation on Viral Genomes in U2OS Osteosarcoma Cells▿ †

    PubMed Central

    Hancock, Meaghan H.; Cliffe, Anna R.; Knipe, David M.; Smiley, James R.

    2010-01-01

    The herpes simplex virus (HSV) genome rapidly becomes associated with histones after injection into the host cell nucleus. The viral proteins ICP0 and VP16 are required for efficient viral gene expression and have been implicated in reducing the levels of underacetylated histones on the viral genome, raising the possibility that high levels of underacetylated histones inhibit viral gene expression. The U2OS osteosarcoma cell line is permissive for replication of ICP0 and VP16 mutants and appears to lack an innate antiviral repression mechanism present in other cell types. We therefore used chromatin immunoprecipitation to determine whether U2OS cells are competent to load histones onto HSV DNA and, if so, whether ICP0 and/or VP16 are required to reduce histone occupancy and enhance acetylation in this cell type. High levels of underacetylated histone H3 accumulated at several locations on the viral genome in the absence of VP16 activation function; in contrast, an ICP0 mutant displayed markedly reduced histone levels and enhanced acetylation, similar to wild-type HSV. These results demonstrate that U2OS cells are competent to load underacetylated histones onto HSV DNA and uncover an unexpected role for VP16 in modulating chromatin structure at viral early and late loci. One interpretation of these findings is that ICP0 and VP16 affect viral chromatin structure through separate pathways, and the pathway targeted by ICP0 is defective in U2OS cells. We also show that HSV infection results in decreased histone levels on some actively transcribed genes within the cellular genome, demonstrating that viral infection alters cellular chromatin structure. PMID:19939931

  5. Molecular Characterization of Prostate Cancer Cell Oncolysis by Herpes Simplex Virus ICP0 Mutants

    DTIC Science & Technology

    2006-04-01

    ble-stranded RNA binding proteins of vaccinia virus. J. Virol. 76:5251–5259. 54. Yokota, S., N. Yokosawa , T. Kubota, T. Suzutani, I. Yoshida, S...Janus kinases during an early infection stage. Virology 286:119–124. 55. Yokota, S.-I., N. Yokosawa , T. Okabayashi, T. Suzutani, S. Miura, K. Jimbow

  6. Characterization of Elements Regulating the Nuclear-to-Cytoplasmic Translocation of ICP0 in Late Herpes Simplex Virus 1 Infection.

    PubMed

    Samrat, Subodh Kumar; Ha, Binh L; Zheng, Yi; Gu, Haidong

    2018-01-15

    Infected cell protein 0 (ICP0) of herpes simplex virus 1 (HSV-1) is an immediate early protein containing a RING-type E3 ubiquitin ligase. It targets several host factors for proteasomal degradation and subsequently activates viral expression. ICP0 has a nuclear localization sequence and functions in the nucleus early during infection. However, later in infection, ICP0 is found solely in the cytoplasm. The molecular mechanism and biological function of the ICP0 nuclear-to-cytoplasmic translocation are not well understood. In this study, we sought to characterize elements important for this translocation. We found that (i) in human embryonic lung fibroblast (HEL) cells, ICP0 C-terminal residues 741 to 775 were necessary but not sufficient for the nuclear-to-cytoplasmic translocation; (ii) the loss of ICP0 E3 ubiquitin ligase activity, which led to defective viral replication in nonpermissive cells, also caused mutant ICP0 to be retained in the nucleus of HEL cells; (iii) in permissive U2OS cells, however, ICP0 lacking E3 ligase activity was translocated to the cytoplasm at a pace faster than that of wild-type ICP0, suggesting that nuclear retention of ICP0 occurs in an ICP0 E3 ligase-dependent manner; and (iv) the ICP0 C terminus and late viral proteins cooperate in order to overcome nuclear retention and stimulate ICP0 cytoplasmic translocation. Taken together, less ICP0 nuclear retention may contribute to the permissiveness of U2OS cells to HSV-1 in the absence of functional ICP0. IMPORTANCE A distinct characteristic for eukaryotes is the compartmentalization of cell metabolic pathways, which allows greater efficiency and specificity of cellular functions. ICP0 of HSV-1 is a multifunctional viral protein that travels through different compartments as infection progresses. Its main regulatory functions are carried out in the nucleus, but it is translocated to the cytoplasm late during HSV-1 infection. To understand the biological significance of cytoplasmic ICP0 in HSV-1 infection, we investigated the potential players involved in this nuclear-to-cytoplasmic translocation. We found that there is a nuclear retention force in an ICP0 E3 ubiquitin ligase-dependent manner. In addition, we identified the C terminus of ICP0 as a cis element cooperating with late viral proteins to overcome the nuclear retention and stimulate the nuclear-to-cytoplasmic translocation of ICP0. Copyright © 2018 American Society for Microbiology.

  7. p32 Is a Novel Target for Viral Protein ICP34.5 of Herpes Simplex Virus Type 1 and Facilitates Viral Nuclear Egress*

    PubMed Central

    Wang, Yu; Yang, Yin; Wu, Songfang; Pan, Shuang; Zhou, Chaodong; Ma, Yijie; Ru, Yongxin; Dong, Shuxu; He, Bin; Zhang, Cuizhu; Cao, Youjia

    2014-01-01

    As a large double-stranded DNA virus, herpes simplex virus type 1 (HSV-1) assembles capsids in the nucleus where the viral particles exit by budding through the inner nuclear membrane. Although a number of viral and host proteins are involved, the machinery of viral egress is not well understood. In a search for host interacting proteins of ICP34.5, which is a virulence factor of HSV-1, we identified a cellular protein, p32 (gC1qR/HABP1), by mass spectrophotometer analysis. When expressed, ICP34.5 associated with p32 in mammalian cells. Upon HSV-1 infection, p32 was recruited to the inner nuclear membrane by ICP34.5, which paralleled the phosphorylation and rearrangement of nuclear lamina. Knockdown of p32 in HSV-1-infected cells significantly reduced the production of cell-free viruses, suggesting that p32 is a mediator of HSV-1 nuclear egress. These observations suggest that the interaction between HSV-1 ICP34.5 and p32 leads to the disintegration of nuclear lamina and facilitates the nuclear egress of HSV-1 particles. PMID:25355318

  8. The replication defect of ICP0-null mutant herpes simplex virus 1 can be largely complemented by the combined activities of human cytomegalovirus proteins IE1 and pp71.

    PubMed

    Everett, Roger D; Bell, Adam J; Lu, Yongxu; Orr, Anne

    2013-01-01

    Herpes simplex virus 1 (HSV-1) immediate-early protein ICP0 is required for efficient lytic infection and productive reactivation from latency and induces derepression of quiescent viral genomes. Despite being unrelated at the sequence level, ICP0 and human cytomegalovirus proteins IE1 and pp71 share some functional similarities in their abilities to counteract antiviral restriction mediated by components of cellular nuclear structures known as ND10. To investigate the extent to which IE1 and pp71 might substitute for ICP0, cell lines were developed that express either IE1 or pp71, or both together, in an inducible manner. We found that pp71 dissociated the hDaxx-ATRX complex and inhibited accumulation of these proteins at sites juxtaposed to HSV-1 genomes but had no effect on the promyelocytic leukemia protein (PML) or Sp100. IE1 caused loss of the small ubiquitin-like modifier (SUMO)-conjugated forms of PML and Sp100 and inhibited the recruitment of these proteins to HSV-1 genome foci but had little effect on hDaxx or ATRX in these assays. Both IE1 and pp71 stimulated ICP0-null mutant plaque formation, but neither to the extent achieved by ICP0. The combination of IE1 and pp71, however, inhibited recruitment of all ND10 proteins to viral genome foci, stimulated ICP0-null mutant HSV-1 plaque formation to near wild-type levels, and efficiently induced derepression of quiescent HSV-1 genomes. These results suggest that ND10-related intrinsic resistance results from the additive effects of several ND10 components and that the effects of IE1 and pp71 on subsets of these components combine to mirror the overall activities of ICP0.

  9. The Replication Defect of ICP0-Null Mutant Herpes Simplex Virus 1 Can Be Largely Complemented by the Combined Activities of Human Cytomegalovirus Proteins IE1 and pp71

    PubMed Central

    Bell, Adam J.; Lu, Yongxu; Orr, Anne

    2013-01-01

    Herpes simplex virus 1 (HSV-1) immediate-early protein ICP0 is required for efficient lytic infection and productive reactivation from latency and induces derepression of quiescent viral genomes. Despite being unrelated at the sequence level, ICP0 and human cytomegalovirus proteins IE1 and pp71 share some functional similarities in their abilities to counteract antiviral restriction mediated by components of cellular nuclear structures known as ND10. To investigate the extent to which IE1 and pp71 might substitute for ICP0, cell lines were developed that express either IE1 or pp71, or both together, in an inducible manner. We found that pp71 dissociated the hDaxx-ATRX complex and inhibited accumulation of these proteins at sites juxtaposed to HSV-1 genomes but had no effect on the promyelocytic leukemia protein (PML) or Sp100. IE1 caused loss of the small ubiquitin-like modifier (SUMO)-conjugated forms of PML and Sp100 and inhibited the recruitment of these proteins to HSV-1 genome foci but had little effect on hDaxx or ATRX in these assays. Both IE1 and pp71 stimulated ICP0-null mutant plaque formation, but neither to the extent achieved by ICP0. The combination of IE1 and pp71, however, inhibited recruitment of all ND10 proteins to viral genome foci, stimulated ICP0-null mutant HSV-1 plaque formation to near wild-type levels, and efficiently induced derepression of quiescent HSV-1 genomes. These results suggest that ND10-related intrinsic resistance results from the additive effects of several ND10 components and that the effects of IE1 and pp71 on subsets of these components combine to mirror the overall activities of ICP0. PMID:23135716

  10. Role for herpes simplex virus 1 ICP27 in the inhibition of type I interferon signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Karen E.; Song, Byeongwoon; Knipe, David M.

    2008-05-10

    Host cells respond to viral infection by many mechanisms, including the production of type I interferons which act in a paracrine and autocrine manner to induce the expression of antiviral interferon-stimulated genes (ISGs). Viruses have evolved means to inhibit interferon signaling to avoid induction of the innate immune response. Herpes simplex virus 1 (HSV-1) has several mechanisms to inhibit type I interferon production, the activities of ISGs, and the interferon signaling pathway itself. We report that the inhibition of the Jak/STAT pathway by HSV-1 requires viral gene expression and that viral immediate-early protein ICP27 plays a role in downregulating STAT-1more » phosphorylation and in preventing the accumulation of STAT-1 in the nucleus. We also show that expression of ICP27 by transfection causes an inhibition of IFN-induced STAT-1 nuclear accumulation. Therefore, ICP27 is necessary and sufficient for at least some of the effects of HSV infection on STAT-1.« less

  11. Cellular Protein WDR11 Interacts with Specific Herpes Simplex Virus Proteins at the trans-Golgi Network To Promote Virus Replication

    PubMed Central

    Taylor, Kathryne E.

    2015-01-01

    ABSTRACT It has recently been proposed that the herpes simplex virus (HSV) protein ICP0 has cytoplasmic roles in blocking antiviral signaling and in promoting viral replication in addition to its well-known proteasome-dependent functions in the nucleus. However, the mechanisms through which it produces these effects remain unclear. While investigating this further, we identified a novel cytoplasmic interaction between ICP0 and the poorly characterized cellular protein WDR11. During an HSV infection, WDR11 undergoes a dramatic change in localization at late times in the viral replication cycle, moving from defined perinuclear structures to a dispersed cytoplasmic distribution. While this relocation was not observed during infection with viruses other than HSV-1 and correlated with efficient HSV-1 replication, the redistribution was found to occur independently of ICP0 expression, instead requiring viral late gene expression. We demonstrate for the first time that WDR11 is localized to the trans-Golgi network (TGN), where it interacts specifically with some, but not all, HSV virion components, in addition to ICP0. Knockdown of WDR11 in cultured human cells resulted in a modest but consistent decrease in yields of both wild-type and ICP0-null viruses, in the supernatant and cell-associated fractions, without affecting viral gene expression. Although further study is required, we propose that WDR11 participates in viral assembly and/or secondary envelopment. IMPORTANCE While the TGN has been proposed to be the major site of HSV-1 secondary envelopment, this process is incompletely understood, and in particular, the role of cellular TGN components in this pathway is unknown. Additionally, little is known about the cellular functions of WDR11, although the disruption of this protein has been implicated in multiple human diseases. Therefore, our finding that WDR11 is a TGN-resident protein that interacts with specific viral proteins to enhance viral yields improves both our understanding of basic cellular biology as well as how this protein is co-opted by HSV. PMID:26178983

  12. Increased neurovirulence and reactivation of the herpes simplex virus type 1 latency associated transcript (LAT) negative mutant dLAT2903 with a disrupted LAT miR-H2

    PubMed Central

    Jiang, Xianzhi; Brown, Don; Osorio, Nelson; Hsiang, Chinhui; BenMohamed, Lbachir; Wechsler, Steven L.

    2015-01-01

    At least six microRNAs (miRNAs) appear to be encoded by the latency associated transcript (LAT) of herpes simplex virus type 1 (HSV-1). The gene for ICP0, an important immediate early (IE) viral protein, is antisense to, and overlaps with, the region of LAT from which miRNA H2 (miR-H2) is derived. We recently reported that a mutant (McK-ΔH2) disrupted for miR-H2 on the wild type HSV-1 strain McKrae genomic background has increased ICP0 expression, increased neurovirulence, and slightly more rapid reactivation. We report here that HSV-1 mutants deleted for the LAT promoter nonetheless make significant amounts of miR-H2 during lytic tissue culture infection, presumably via readthrough transcription from an upstream promoter. To determine if miR-H2 might also play a role in the HSV-1 latency-reactivation cycle of a LAT negative mutant, we constructed dLAT-ΔH2, in which miR-H2 is disrupted in dLAT2903 without altering the predicted amino acid sequence of the overlapping ICP0 open reading frame. Similar to McK-ΔH2, dLAT-ΔH2 expressed more ICP0, was more neurovirulent, and had increased reactivation in the mouse TG explant induced reactivation model of HSV-1 compared to its parental virus. Interestingly, although the increased reactivation of McK-ΔH2 compared to its parental wt virus was subtle and only detected at very early times after explant TG induced reactivation, the increased reactivation of dLAT-ΔH2 compared to its dLAT2903 parental virus appeared more robust and was significantly increased even at late times after induction. These results confirm that miR-H2 plays a role in modulating the HSV-1 reactivation phenotype. PMID:26069184

  13. Molecular Characterization of Prostate Cancer Cell Oncolysis by Herpes Simplex Virus ICP0 Mutants

    DTIC Science & Technology

    2005-10-01

    action by the E3L double-stranded RNA 19 binding proteins of vaccinia virus. J Virol 76:5251-9. 20 54. Yokota, S., N. Yokosawa , T. Kubota, T. Suzutani, I...phosphorylation of STATs and janus kinases during an early 23 infection stage. Virology 286:119-124. 25 1 55. Yokota, S.-i., N. Yokosawa , T. Okabayashi, T

  14. Molecular mechanism and species specificity of TAP inhibition by herpes simplex virus ICP47.

    PubMed Central

    Ahn, K; Meyer, T H; Uebel, S; Sempé, P; Djaballah, H; Yang, Y; Peterson, P A; Früh, K; Tampé, R

    1996-01-01

    The immediate early protein ICP47 of herpes simplex virus (HSV) inhibits the transporter for antigen processing (TAP)-mediated translocation of antigen-derived peptides across the endoplasmic reticulum (ER) membrane. This interference prevents assembly of peptides with class I MHC molecules in the ER and ultimately recognition of HSV-infected cells by cytotoxic T-lymphocytes, potentially leading to immune evasion of the virus. Here, we demonstrate that recombinant, purified ICP47 containing a hexahistidine tag inhibits peptide import into microsomes of insect cells expressing human TAP, whereas inhibition of peptide transport by murine TAP was much less effective. This finding indicates an intrinsic species-specificity of ICP47 and suggests that no additional proteins interacting specifically with either ICP47 or TAP are required for inhibition of peptide transport. Since neither purified nor induced ICP47 inhibited photocrosslinking of 8-azido-ATP to TAP1 and TAP2 it seems that ICP47 does not prevent ATP from binding to TAP. By contrast, peptide binding was completely blocked by ICP47 as shown both by photoaffinity crosslinking of peptides to TAP and peptide binding to microsomes from TAP-transfected insect cells. Competition experiments indicated that ICP47 binds to human TAP with a higher affinity (50 nM) than peptides whereas the affinity to murine TAP was 100-fold lower. Our data suggest that ICP47 prevents peptides from being translocated by blocking their binding to the substrate-binding site of TAP. Images PMID:8670825

  15. Novel Role for Protein Inhibitor of Activated STAT 4 (PIAS4) in the Restriction of Herpes Simplex Virus 1 by the Cellular Intrinsic Antiviral Immune Response.

    PubMed

    Conn, Kristen L; Wasson, Peter; McFarlane, Steven; Tong, Lily; Brown, James R; Grant, Kyle G; Domingues, Patricia; Boutell, Chris

    2016-05-01

    Small ubiquitin-like modifier (SUMO) is used by the intrinsic antiviral immune response to restrict viral pathogens, such as herpes simplex virus 1 (HSV-1). Despite characterization of the host factors that rely on SUMOylation to exert their antiviral effects, the enzymes that mediate these SUMOylation events remain to be defined. We show that unconjugated SUMO levels are largely maintained throughout infection regardless of the presence of ICP0, the HSV-1 SUMO-targeted ubiquitin ligase. Moreover, in the absence of ICP0, high-molecular-weight SUMO-conjugated proteins do not accumulate if HSV-1 DNA does not replicate. These data highlight the continued importance for SUMO signaling throughout infection. We show that the SUMO ligase protein inhibitor of activated STAT 4 (PIAS4) is upregulated during HSV-1 infection and localizes to nuclear domains that contain viral DNA. PIAS4 is recruited to sites associated with HSV-1 genome entry through SUMO interaction motif (SIM)-dependent mechanisms that are destabilized by ICP0. In contrast, PIAS4 accumulates in replication compartments through SIM-independent mechanisms irrespective of ICP0 expression. Depletion of PIAS4 enhances the replication of ICP0-null mutant HSV-1, which is susceptible to restriction by the intrinsic antiviral immune response. The mechanisms of PIAS4-mediated restriction are synergistic with the restriction mechanisms of a characterized intrinsic antiviral factor, promyelocytic leukemia protein, and are antagonized by ICP0. We provide the first evidence that PIAS4 is an intrinsic antiviral factor. This novel role for PIAS4 in intrinsic antiviral immunity contrasts with the known roles of PIAS proteins as suppressors of innate immunity. Posttranslational modifications with small ubiquitin-like modifier (SUMO) proteins regulate multiple aspects of host immunity and viral replication. The protein inhibitor of activated STAT (PIAS) family of SUMO ligases is predominantly associated with the suppression of innate immune signaling. We now identify a unique and contrasting role for PIAS proteins as positive regulators of the intrinsic antiviral immune response to herpes simplex virus 1 (HSV-1) infection. We show that PIAS4 relocalizes to nuclear domains that contain viral DNA throughout infection. Depletion of PIAS4, either alone or in combination with the intrinsic antiviral factor promyelocytic leukemia protein, significantly impairs the intrinsic antiviral immune response to HSV-1 infection. Our data reveal a novel and dynamic role for PIAS4 in the cellular-mediated restriction of herpesviruses and establish a new functional role for the PIAS family of SUMO ligases in the intrinsic antiviral immune response to DNA virus infection. Copyright © 2016 Conn et al.

  16. Novel Role for Protein Inhibitor of Activated STAT 4 (PIAS4) in the Restriction of Herpes Simplex Virus 1 by the Cellular Intrinsic Antiviral Immune Response

    PubMed Central

    Conn, Kristen L.; Wasson, Peter; McFarlane, Steven; Tong, Lily; Brown, James R.; Grant, Kyle G.; Domingues, Patricia

    2016-01-01

    ABSTRACT Small ubiquitin-like modifier (SUMO) is used by the intrinsic antiviral immune response to restrict viral pathogens, such as herpes simplex virus 1 (HSV-1). Despite characterization of the host factors that rely on SUMOylation to exert their antiviral effects, the enzymes that mediate these SUMOylation events remain to be defined. We show that unconjugated SUMO levels are largely maintained throughout infection regardless of the presence of ICP0, the HSV-1 SUMO-targeted ubiquitin ligase. Moreover, in the absence of ICP0, high-molecular-weight SUMO-conjugated proteins do not accumulate if HSV-1 DNA does not replicate. These data highlight the continued importance for SUMO signaling throughout infection. We show that the SUMO ligase protein inhibitor of activated STAT 4 (PIAS4) is upregulated during HSV-1 infection and localizes to nuclear domains that contain viral DNA. PIAS4 is recruited to sites associated with HSV-1 genome entry through SUMO interaction motif (SIM)-dependent mechanisms that are destabilized by ICP0. In contrast, PIAS4 accumulates in replication compartments through SIM-independent mechanisms irrespective of ICP0 expression. Depletion of PIAS4 enhances the replication of ICP0-null mutant HSV-1, which is susceptible to restriction by the intrinsic antiviral immune response. The mechanisms of PIAS4-mediated restriction are synergistic with the restriction mechanisms of a characterized intrinsic antiviral factor, promyelocytic leukemia protein, and are antagonized by ICP0. We provide the first evidence that PIAS4 is an intrinsic antiviral factor. This novel role for PIAS4 in intrinsic antiviral immunity contrasts with the known roles of PIAS proteins as suppressors of innate immunity. IMPORTANCE Posttranslational modifications with small ubiquitin-like modifier (SUMO) proteins regulate multiple aspects of host immunity and viral replication. The protein inhibitor of activated STAT (PIAS) family of SUMO ligases is predominantly associated with the suppression of innate immune signaling. We now identify a unique and contrasting role for PIAS proteins as positive regulators of the intrinsic antiviral immune response to herpes simplex virus 1 (HSV-1) infection. We show that PIAS4 relocalizes to nuclear domains that contain viral DNA throughout infection. Depletion of PIAS4, either alone or in combination with the intrinsic antiviral factor promyelocytic leukemia protein, significantly impairs the intrinsic antiviral immune response to HSV-1 infection. Our data reveal a novel and dynamic role for PIAS4 in the cellular-mediated restriction of herpesviruses and establish a new functional role for the PIAS family of SUMO ligases in the intrinsic antiviral immune response to DNA virus infection. PMID:26937035

  17. Identification of sequences in herpes simplex virus type 1 ICP22 that influence RNA polymerase II modification and viral late gene expression.

    PubMed

    Bastian, Thomas W; Rice, Stephen A

    2009-01-01

    Previous studies have shown that the herpes simplex virus type 1 (HSV-1) immediate-early protein ICP22 alters the phosphorylation of the host cell RNA polymerase II (Pol II) during viral infection. In this study, we have engineered several ICP22 plasmid and virus mutants in order to map the ICP22 sequences that are involved in this function. We identify a region in the C-terminal half of ICP22 (residues 240 to 340) that is critical for Pol II modification and further show that the N-terminal half of the protein (residues 1 to 239) is not required. However, immunofluorescence analysis indicates that the N-terminal half of ICP22 is needed for its localization to nuclear body structures. These results demonstrate that ICP22's effects on Pol II do not require that it accumulate in nuclear bodies. As ICP22 is known to enhance viral late gene expression during infection of certain cultured cells, including human embryonic lung (HEL) cells, we used our engineered viral mutants to map this function of ICP22. It was found that mutations in both the N- and C-terminal halves of ICP22 result in similar defects in viral late gene expression and growth in HEL cells, despite having distinctly different effects on Pol II. Thus, our results genetically uncouple ICP22's effects on Pol II from its effects on viral late gene expression. This suggests that these two functions of ICP22 may be due to distinct activities of the protein.

  18. Identification of a divalent metal cation binding site in herpes simplex virus 1 (HSV-1) ICP8 required for HSV replication.

    PubMed

    Bryant, Kevin F; Yan, Zhipeng; Dreyfus, David H; Knipe, David M

    2012-06-01

    Herpes simplex virus 1 (HSV-1) ICP8 is a single-stranded DNA-binding protein that is necessary for viral DNA replication and exhibits recombinase activity in vitro. Alignment of the HSV-1 ICP8 amino acid sequence with ICP8 homologs from other herpesviruses revealed conserved aspartic acid (D) and glutamic acid (E) residues. Amino acid residue D1087 was conserved in every ICP8 homolog analyzed, indicating that it is likely critical for ICP8 function. We took a genetic approach to investigate the functions of the conserved ICP8 D and E residues in HSV-1 replication. The E1086A D1087A mutant form of ICP8 failed to support the replication of an ICP8 mutant virus in a complementation assay. E1086A D1087A mutant ICP8 bound DNA, albeit with reduced affinity, demonstrating that the protein is not globally misfolded. This mutant form of ICP8 was also recognized by a conformation-specific antibody, further indicating that its overall structure was intact. A recombinant virus expressing E1086A D1087A mutant ICP8 was defective in viral replication, viral DNA synthesis, and late gene expression in Vero cells. A class of enzymes called DDE recombinases utilize conserved D and E residues to coordinate divalent metal cations in their active sites. We investigated whether the conserved D and E residues in ICP8 were also required for binding metal cations and found that the E1086A D1087A mutant form of ICP8 exhibited altered divalent metal binding in an in vitro iron-induced cleavage assay. These results identify a novel divalent metal cation-binding site in ICP8 that is required for ICP8 functions during viral replication.

  19. [Study on the inhibition effect of siRNA on herpes simplex virus type 2 ICP4 gene].

    PubMed

    Liu, Ji-feng; Guan, Cui-ping; Tang, Xu; Xu, Ai-e

    2010-06-01

    To explore the inhibition effect of RNA interference on the ICP4 expression and DNA replication of herpes simplex virus type 2 (HSV2). Four pairs of siRNA targeted to HSV2 ICP4 gene and negative control siRNA were synthetized by chemical method, named as siRNA-1, siRNA-2, siRNA-3, siRNA-4 and siRNA-N respecticely. HSV2 HG52 was used to attack Vero cell after transfection overnight. Vero cell and supernatant were collected at 1d, 2d, 3d, 4d and 5d after virus attacking. Flurogenic quantitative reverse transcription polymerase chain reaction (FQ-RT-PCR)was used to detect the expression of HSV2 ICP4 mRNA, flurogenic quantitative polymerase chain reaction(FG-PCR) was used to detect the expression of HSV2 DNA and Western-Blot was used to detect the expression of HSV2 ICP4 protein. All the four pairs of siRNA could significantly inhibit the expression of HSV2 ICP4 mRNA and protein, especially siRNA-2. The above siRNAs could significantly decrease HSV2 DNA copy number,too. siRNAs targeted to HSV2 ICP4 gene could significantly inhibit expression of HSV2 ICP4 mRNA and protein, and decrease HSV2 DNA copy number, suggesting that siRNA can inhibit HSV2 DNA replication through silencing ICP4 gene.

  20. An acutely and latently expressed herpes simplex virus 2 viral microRNA inhibits expression of ICP34.5, a viral neurovirulence factor.

    PubMed

    Tang, Shuang; Bertke, Andrea S; Patel, Amita; Wang, Kening; Cohen, Jeffrey I; Krause, Philip R

    2008-08-05

    Latency-associated transcript (LAT) sequences regulate herpes simplex virus (HSV) latency and reactivation from sensory neurons. We found a HSV-2 LAT-related microRNA (miRNA) designated miR-I in transfected and infected cells in vitro and in acutely and latently infected ganglia of guinea pigs in vivo. miR-I is also expressed in human sacral dorsal root ganglia latently infected with HSV-2. miR-I is expressed under the LAT promoter in vivo in infected sensory ganglia. We also predicted and identified a HSV-1 LAT exon-2 viral miRNA in a location similar to miR-I, implying a conserved mechanism in these closely related viruses. In transfected and infected cells, miR-I reduces expression of ICP34.5, a key viral neurovirulence factor. We hypothesize that miR-I may modulate the outcome of viral infection in the peripheral nervous system by functioning as a molecular switch for ICP34.5 expression.

  1. Further Characterization of the UL37 Protein of Herpes Simplex Virus Type 1 and its Interaction with ICP8, the Major DNA-Binding Protein of Herpes Simplex Virus

    DTIC Science & Technology

    1994-01-01

    HSV envelopment and egress . Gross structures of the genomes of tbe buman herpesviruses . Layout of genes in the genome of HSV - 1 ........... . A... HSV - 1 capsid maturation . Seletion of recombinant vaccinia viruses Protein fusion and purification system . Generation of tbe recombinant plasmid...with purified HSV -I virions Effect of detergent treatment on the association of the UL37 protein with purified HSV - 1 vIrIons

  2. Herpes simplex virus 1 regulatory protein ICP22 interacts with a new cell cycle-regulated factor and accumulates in a cell cycle-dependent fashion in infected cells.

    PubMed

    Bruni, R; Roizman, B

    1998-11-01

    The herpes simplex virus 1 infected cell protein 22 (ICP22), the product of the alpha22 gene, is a nucleotidylylated and phosphorylated nuclear protein with properties of a transcriptional factor required for the expression of a subset of viral genes. Here, we report the following. (i) ICP22 interacts with a previously unknown cellular factor designated p78 in the yeast two-hybrid system. The p78 cDNA encodes a polypeptide with a distribution of leucines reminiscent of a leucine zipper. (ii) In uninfected and infected cells, antibody to p78 reacts with two major bands with an apparent Mr of 78,000 and two minor bands with apparent Mrs of 62, 000 and 55,000. (ii) p78 also interacts with ICP22 in vitro. (iii) In uninfected cells, p78 was dispersed largely in the nucleoplasm in HeLa cells and in the nucleoplasm and cytoplasm in HEp-2 cells. After infection, p78 formed large dense bodies which did not colocalize with the viral regulatory protein ICP0. (iv) Accumulation of p78 was cell cycle dependent, being highest very early in S phase. (v) The accumulation of ICP22 in synchronized cells was highest in early S phase, in contrast to the accumulation of another protein, ICP27, which was relatively independent of the cell cycle. (vi) In the course of the cell cycle, ICP22 was transiently modified in an aberrant fashion, and this modification coincided with expression of p78. The results suggest that ICP22 interacts with and may be stabilized by cell cycle-dependent proteins.

  3. The serum and glucocorticoid-regulated protein kinases (SGK) stimulate bovine herpesvirus 1 and herpes simplex virus 1 productive infection.

    PubMed

    Kook, Insun; Jones, Clinton

    2016-08-15

    Serum and glucocorticoid-regulated protein kinases (SGK) are serine/threonine protein kinases that contain a catalytic domain resembling other protein kinases: AKT/protein kinase B, protein kinase A, and protein kinase C-Zeta for example. Unlike these constitutively expressed protein kinases, SGK1 RNA and protein levels are increased by growth factors and corticosteroids. Stress can directly stimulate SGK1 levels as well as stimulate bovine herpesvirus 1 (BoHV-1) and herpes simplex virus 1 (HSV-1) productive infection and reactivation from latency suggesting SGK1 can stimulate productive infection. For the first time, we provide evidence that a specific SGK inhibitor (GSK650394) significantly reduced BoHV-1 and HSV-1 replication in cultured cells. Proteins encoded by the three BoHV-1 immediate early genes (bICP0, bICP4, and bICP22) and two late proteins (VP16 and gE) were consistently reduced by GSK650394 during early stages of productive infection. In summary, these studies suggest SGK may stimulate viral replication following stressful stimuli. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Herpes simplex virus regulatory proteins VP16 and ICP0 counteract an innate intranuclear barrier to viral gene expression.

    PubMed

    Hancock, Meaghan H; Corcoran, Jennifer A; Smiley, James R

    2006-08-15

    HSV regulatory proteins VP16 and ICP0 play key roles in launching the lytic program of viral gene expression in most cell types. However, these activation functions are dispensable in U2OS osteosarcoma cells, suggesting that this cell line either expresses an endogenous activator of HSV gene expression or lacks inhibitory mechanisms that are inactivated by VP16 and ICP0 in other cells. To distinguish between these possibilities, we examined the phenotypes of somatic cell hybrids formed between U2OS cells and highly restrictive HEL fibroblasts. The U2OS-HEL heterokarya were as non-permissive as HEL cells, a phenotype that could be overcome by providing either VP16 or ICP0 in trans. Our data indicate that human fibroblasts contain one or more inhibitory factors that act within the nucleus to limit HSV gene expression and argue that VP16 and ICP0 stimulate viral gene expression at least in part by counteracting this innate antiviral defence mechanism.

  5. An acutely and latently expressed herpes simplex virus 2 viral microRNA inhibits expression of ICP34.5, a viral neurovirulence factor

    PubMed Central

    Tang, Shuang; Bertke, Andrea S.; Patel, Amita; Wang, Kening; Cohen, Jeffrey I.; Krause, Philip R.

    2008-01-01

    Latency-associated transcript (LAT) sequences regulate herpes simplex virus (HSV) latency and reactivation from sensory neurons. We found a HSV-2 LAT-related microRNA (miRNA) designated miR-I in transfected and infected cells in vitro and in acutely and latently infected ganglia of guinea pigs in vivo. miR-I is also expressed in human sacral dorsal root ganglia latently infected with HSV-2. miR-I is expressed under the LAT promoter in vivo in infected sensory ganglia. We also predicted and identified a HSV-1 LAT exon-2 viral miRNA in a location similar to miR-I, implying a conserved mechanism in these closely related viruses. In transfected and infected cells, miR-I reduces expression of ICP34.5, a key viral neurovirulence factor. We hypothesize that miR-I may modulate the outcome of viral infection in the peripheral nervous system by functioning as a molecular switch for ICP34.5 expression. PMID:18678906

  6. Herpes simplex virus requires VP11/12 to induce phosphorylation of the activation loop tyrosine (Y394) of the Src family kinase Lck in T lymphocytes.

    PubMed

    Wagner, Melany J; Smiley, James R

    2009-12-01

    Herpes simplex virus (HSV) tegument proteins are released into the cytoplasm during viral entry and hence are among the first viral proteins encountered by an infected cell. Despite the implied importance of these proteins in the evasion of host defenses, the function of some, like virion protein 11/12 (VP11/12), have not been clearly defined. Previously, we reported that VP11/12 is strongly tyrosine phosphorylated during the infection of lymphocytes but not in fibroblasts or an epithelial cell line (G. Zahariadis, M. J. Wagner, R. C. Doepker, J. M. Maciejko, C. M. Crider, K. R. Jerome, and J. R. Smiley, J. Virol. 82:6098-6108, 2008). We also showed that tyrosine phosphorylation depends in part on the activity of the lymphocyte-specific Src family kinase (SFK) Lck in Jurkat T cells. These data suggested that VP11/12 is a substrate of Lck and that Lck is activated during HSV infection. Here, we show that HSV infection markedly increases the fraction of Lck phosphorylated on its activation loop tyrosine (Y394), a feature characteristic of activated Lck. A previous report implicated the immediate-early protein ICP0 and the viral serine/threonine kinases US3 and UL13 in the induction of a similar activated phenotype of SFKs other than Lck in fibroblasts and suggested that ICP0 interacts directly with SFKs through their SH3 domain. However, we were unable to detect an interaction between ICP0 and Lck in T lymphocytes, and we show that ICP0, US3, and UL13 are not strictly required for Lck activation. In contrast, VP11/12 interacted with Lck or Lck signaling complexes and was strictly required for Lck activation during HSV infection. Thus, VP11/12 likely modulates host cell signaling pathways for the benefit of the virus.

  7. Herpes Simplex Virus Requires VP11/12 To Induce Phosphorylation of the Activation Loop Tyrosine (Y394) of the Src Family Kinase Lck in T Lymphocytes ▿

    PubMed Central

    Wagner, Melany J.; Smiley, James R.

    2009-01-01

    Herpes simplex virus (HSV) tegument proteins are released into the cytoplasm during viral entry and hence are among the first viral proteins encountered by an infected cell. Despite the implied importance of these proteins in the evasion of host defenses, the function of some, like virion protein 11/12 (VP11/12), have not been clearly defined. Previously, we reported that VP11/12 is strongly tyrosine phosphorylated during the infection of lymphocytes but not in fibroblasts or an epithelial cell line (G. Zahariadis, M. J. Wagner, R. C. Doepker, J. M. Maciejko, C. M. Crider, K. R. Jerome, and J. R. Smiley, J. Virol. 82:6098-6108, 2008). We also showed that tyrosine phosphorylation depends in part on the activity of the lymphocyte-specific Src family kinase (SFK) Lck in Jurkat T cells. These data suggested that VP11/12 is a substrate of Lck and that Lck is activated during HSV infection. Here, we show that HSV infection markedly increases the fraction of Lck phosphorylated on its activation loop tyrosine (Y394), a feature characteristic of activated Lck. A previous report implicated the immediate-early protein ICP0 and the viral serine/threonine kinases US3 and UL13 in the induction of a similar activated phenotype of SFKs other than Lck in fibroblasts and suggested that ICP0 interacts directly with SFKs through their SH3 domain. However, we were unable to detect an interaction between ICP0 and Lck in T lymphocytes, and we show that ICP0, US3, and UL13 are not strictly required for Lck activation. In contrast, VP11/12 interacted with Lck or Lck signaling complexes and was strictly required for Lck activation during HSV infection. Thus, VP11/12 likely modulates host cell signaling pathways for the benefit of the virus. PMID:19776125

  8. Herpes simplex virus-1 infection causes the secretion of a type I interferon-antagonizing protein and inhibits signaling at or before Jak-1 activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Karen E.; Knipe, David M., E-mail: david_knipe@hms.harvard.ed

    2010-01-05

    Host cells respond to viral infection by the production of type I interferons (IFNs), which induce the expression of antiviral genes. Herpes simplex virus I (HSV-1) encodes many mechanisms that inhibit the type I IFN response, including the ICP27-dependent inhibition of type I IFN signaling. Here we show inhibition of Stat-1 nuclear accumulation in cells that express ICP27. ICP27 expression also induces the secretion of a small, heat-stable type I IFN antagonizing protein that inhibits Stat-1 nuclear accumulation. We show that the inhibition of IFN-induced Stat-1 phosphorylation occurs at or upstream of Jak-1 phosphorylation. Finally, we show that ISG15 expressionmore » is induced after IFNalpha treatment in mock-infected cells, but not cells infected with WT HSV-1 or ICP27{sup -} HSV-1. These data suggest that HSV-1 has evolved multiple mechanisms to inhibit IFN signaling not only in infected cells, but also in neighboring cells, thereby allowing for increased viral replication and spread.« less

  9. Transcriptional and translational dual-regulated oncolytic herpes simplex virus type 1 for targeting prostate tumors.

    PubMed

    Lee, Cleo Y F; Bu, Luke X X; DeBenedetti, Arrigo; Williams, B Jill; Rennie, Paul S; Jia, William W G

    2010-05-01

    The aim of this project was to demonstrate that an oncolytic herpes simplex virus type 1 (HSV-1) can replicate in a tissue- and tumor-specific fashion through both transcriptional (prostate-specific promoter, ARR(2)PB) and translational (5'-untranslated regions (5'UTRs) of rFGF-2) regulation of an essential viral gene, ICP27. We generated two recombinant viruses, ARR(2)PB-ICP27 (A27) and ARR(2)PB-5'UTR-ICP27 (AU27) and tested their efficacy and toxicity both in vitro and in vivo. The ARR(2)PB promoter caused overexpression of ICP27 gene in the presence of activated androgen receptors (ARs) and increased viral replication in prostate cells. However, this transcriptional upregulation was effectively constrained by the 5'UTR-mediated translational regulation. Mice bearing human prostate LNCaP tumors, treated with a single intravenous injection of 5 x 10(7) plaque-forming units (pfu) of AU27 virus exhibited a >85% reduction in tumor size at day 28 after viral injection. Although active viral replication was readily evident in the tumors, no viral DNA was detectable in normal organs as measured by real-time PCR analyses. In conclusion, a transcriptional and translational dual-regulated (TTDR) viral essential gene expression can increase both viral lytic activity and tumor specificity, and this provides a basis for the development of a novel tumor-specific oncolytic virus for systemic treatment of locally advanced and metastatic prostate cancers.

  10. Overexpression of Promyelocytic Leukemia Protein Precludes the Dispersal of ND10 Structures and Has No Effect on Accumulation of Infectious Herpes Simplex Virus 1 or Its Proteins

    PubMed Central

    Lopez, Pascal; Jacob, Robert J.; Roizman, Bernard

    2002-01-01

    A key early event in the replication of herpes simplex virus 1 (HSV-1) is the localization of infected-cell protein no. 0 (ICP0) in nuclear structures knows as ND10 or promyelocytic leukemia oncogenic domains (PODs). This is followed by dispersal of ND10 constituents such as the promyelocytic leukemia protein (PML), CREB-binding protein (CBP), and Daxx. Numerous experiments have shown that this dispersal is mediated by ICP0. PML is thought to be the organizing structural component of ND10. To determine whether the virus targets PML because it is inimical to viral replication, telomerase-immortalized human foreskin fibroblasts and HEp-2 cells were transduced with wild-type baculovirus or a baculovirus expressing the Mr 69,000 form of PML. The transduced cultures were examined for expression and localization of PML in mock-infected and HSV-1-infected cells. The results obtained from studies of cells overexpressing PML were as follows. (i) Transduced cells accumulate large amounts of unmodified and SUMO-I-modified PML. (ii) Mock-infected cells exhibited enlarged ND10 structures containing CBP and Daxx in addition to PML. (iii) In infected cells, ICP0 colocalized with PML in ND10 early in infection, but the two proteins did not overlap or were juxtaposed in orderly structures. (iv) The enlarged ND10 structures remained intact at least until 12 h after infection and retained CBP and Daxx in addition to PML. (v) Overexpression of PML had no effect on the accumulation of viral proteins representative of α, β, or γ groups and had no effect on the accumulation of infectious virus in cells infected with wild-type virus or a mutant (R7910) from which the α0 genes had been deleted. These results indicate the following: (i) PML overexpressed in transduced cells cannot be differentiated from endogenous PML with respect to sumoylation and localization in ND10 structures. (ii) PML does not affect viral replication or the changes in the localization of ICP0 through infection. (iii) Disaggregation of ND10 structures is not an obligatory event essential for viral replication. PMID:12186918

  11. Identification and Characterization of the UL37 Protein of Herpes Simplex Virus Type 1 and Demonstration that it Interacts with ICP8, the Major DNA Binding Protein of Herpes Simplex Virus

    DTIC Science & Technology

    1992-10-20

    Identification of ORFs HSV DNA binding proteins • 1 3 3 5 7 7 11 17 18 22 reps and its role in HSV replication 23 Biochemical properties . . 23...Figure 1 . 2. 3 • 4. 5. 6. 7. 8. Structural model of the herpesvirus virion Schematic diagram of HSV pathogenesis . Diagram of the main...vaccinia virus- 13. Autoradiogram of an immunoblot of HSV - 1 -infected cell proteins harvested at various times postinfec- 85 tioD probed with anti-UL42

  12. Properties of a herpes simplex virus multiple immediate-early gene-deleted recombinant as a vaccine vector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Daisuke; Brockman, Mark A.; Ndung'u, Thumbi

    2007-01-20

    Herpes simplex virus (HSV) recombinants induce durable immune responses in rhesus macaques and mice and have induced partial protection in rhesus macaques against mucosal challenge with virulent simian immunodeficiency virus (SIV). In this study, we evaluated the properties of a new generation HSV vaccine vector, an HSV-1 multiple immediate-early (IE) gene deletion mutant virus, d106, which contains deletions in the ICP4, ICP27, ICP22, and ICP47 genes. Because several of the HSV IE genes have been implicated in immune evasion, inactivation of the genes encoding these proteins was expected to result in enhanced immunogenicity. The d106 virus expresses few HSV genemore » products and shows minimal cytopathic effect in cultured cells. When d106 was inoculated into mice, viral DNA accumulated at high levels in draining lymph nodes, consistent with an ability to transduce dendritic cells and activate their maturation and movement to lymph nodes. A d106 recombinant expressing Escherichia coli {beta}-galactosidase induced durable {beta}-gal-specific IgG and CD8{sup +} T cell responses in naive and HSV-immune mice. Finally, d106-based recombinants have been constructed that express simian immunodeficiency virus (SIV) gag, env, or a rev-tat-nef fusion protein for several days in cultured cells. Thus, d106 shows many of the properties desirable in a vaccine vector: limited expression of HSV gene products and cytopathogenicity, high level expression of transgenes, ability to induce durable immune responses, and an ability to transduce dendritic cells and induce their maturation and migration to lymph nodes.« less

  13. Latency Entry of Herpes Simplex Virus 1 Is Determined by the Interaction of Its Genome with the Nuclear Environment

    PubMed Central

    Cohen, Camille; Streichenberger, Nathalie; Texier, Pascale; Takissian, Julie; Rousseau, Antoine; Poccardi, Nolwenn; Welsch, Jérémy; Corpet, Armelle; Schaeffer, Laurent; Labetoulle, Marc; Lomonte, Patrick

    2016-01-01

    Herpes simplex virus 1 (HSV-1) establishes latency in trigeminal ganglia (TG) sensory neurons of infected individuals. The commitment of infected neurons toward the viral lytic or latent transcriptional program is likely to depend on both viral and cellular factors, and to differ among individual neurons. In this study, we used a mouse model of HSV-1 infection to investigate the relationship between viral genomes and the nuclear environment in terms of the establishment of latency. During acute infection, viral genomes show two major patterns: replication compartments or multiple spots distributed in the nucleoplasm (namely “multiple-acute”). Viral genomes in the “multiple-acute” pattern are systematically associated with the promyelocytic leukemia (PML) protein in structures designated viral DNA-containing PML nuclear bodies (vDCP-NBs). To investigate the viral and cellular features that favor the acquisition of the latency-associated viral genome patterns, we infected mouse primary TG neurons from wild type (wt) mice or knock-out mice for type 1 interferon (IFN) receptor with wt or a mutant HSV-1, which is unable to replicate due to the synthesis of a non-functional ICP4, the major virus transactivator. We found that the inability of the virus to initiate the lytic program combined to its inability to synthesize a functional ICP0, are the two viral features leading to the formation of vDCP-NBs. The formation of the “multiple-latency” pattern is favored by the type 1 IFN signaling pathway in the context of neurons infected by a virus able to replicate through the expression of a functional ICP4 but unable to express functional VP16 and ICP0. Analyses of TGs harvested from HSV-1 latently infected humans showed that viral genomes and PML occupy similar nuclear areas in infected neurons, eventually forming vDCP-NB-like structures. Overall our study designates PML protein and PML-NBs to be major cellular components involved in the control of HSV-1 latency, probably during the entire life of an individual. PMID:27618691

  14. Importin α1 is required for nuclear import of herpes simplex virus proteins and capsid assembly in fibroblasts and neurons

    PubMed Central

    Anderson, Fenja; Rother, Franziska; Rudolph, Kathrin; Prank, Ute; Binz, Anne; Hügel, Stefanie; Hartmann, Enno; Bader, Michael; Bauerfeind, Rudolf; Sodeik, Beate

    2018-01-01

    Herpesviruses are large DNA viruses which depend on many nuclear functions, and therefore on host transport factors to ensure specific nuclear import of viral and host components. While some import cargoes bind directly to certain transport factors, most recruit importin β1 via importin α. We identified importin α1 in a small targeted siRNA screen to be important for herpes simplex virus (HSV-1) gene expression. Production of infectious virions was delayed in the absence of importin α1, but not in cells lacking importin α3 or importin α4. While nuclear targeting of the incoming capsids, of the HSV-1 transcription activator VP16, and of the viral genomes were not affected, the nuclear import of the HSV-1 proteins ICP4 and ICP0, required for efficient viral transcription, and of ICP8 and pUL42, necessary for DNA replication, were reduced. Furthermore, quantitative electron microscopy showed that fibroblasts lacking importin α1 contained overall fewer nuclear capsids, but an increased proportion of mature nuclear capsids indicating that capsid formation and capsid egress into the cytoplasm were impaired. In neurons, importin α1 was also not required for nuclear targeting of incoming capsids, but for nuclear import of ICP4 and for the formation of nuclear capsid assembly compartments. Our data suggest that importin α1 is specifically required for the nuclear localization of several important HSV1 proteins, capsid assembly, and capsid egress into the cytoplasm, and may become rate limiting in situ upon infection at low multiplicity or in terminally differentiated cells such as neurons. PMID:29304174

  15. Bcl-2 Blocks a Caspase-Dependent Pathway of Apoptosis Activated by Herpes Simplex Virus 1 Infection in HEp-2 Cells

    PubMed Central

    Galvan, Veronica; Brandimarti, Renato; Munger, Joshua; Roizman, Bernard

    2000-01-01

    Earlier reports have shown that herpes simplex virus 1 (HSV-1) mutants induce programmed cell death and that wild-type virus blocks the execution of the cell death program triggered by expression of viral genes, by the Fas and tumor necrosis factor pathways, or by nonspecific stress agents. In particular, an earlier report from this laboratory showed that the mutant virus d120 lacking the genes encoding infected cell protein 4 (ICP4), the major regulatory protein of the virus, induces a caspase-3-independent pathway of apoptosis in human SK-N-SH cells. Here we report that the pathway of apoptosis induced by the d120 mutant in human HEp-2 cells is caspase dependent. Specifically, in HEp-2 cells infected with d120, (i) a broad-range inhibitor of caspase activity, z-vad-FMK, efficiently blocked DNA fragmentation, (ii) cytochrome c was released into the cytoplasm, (iii) caspase-3 was activated inasmuch as poly(ADP-ribose) polymerase was cleaved, and (iv) chromatin condensation and fragmentation of cellular DNA were observed. In parallel studies, HEp-2 cells were transfected with a plasmid encoding human Bcl-2 and a clone (VAX-3) expressing high levels of Bcl-2 was selected. This report shows that Bcl-2 blocked all of the manifestations associated with programmed cell death caused by infection with the d120 mutant. Consistent with their resistance to programmed cell death, VAX-3 cells overproduced infected cell protein 0 (ICP0). An unexpected observation was that ICP0 encoded by the d120 mutant accumulated late in infection in small, quasi-uniform vesicle-like structures in all cell lines tested. Immunofluorescence-based colocalization studies indicated that these structures were not mitochondria or components of the endoplasmic reticulum or the late endosomal compartment. These studies affirm the conclusion that HSV can induce programmed cell death at multiple steps in the course of its replication, that the d120 mutant can induce both caspase-dependent and -independent pathways of programmed cell death, and that virus-induced stimuli of programmed cell death may differ with respect to the pathway that they activate. PMID:10644366

  16. Protein arginine methyltransferase 1 regulates herpes simplex virus replication through ICP27 RGG-box methylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Jungeun; Shin, Bongjin; Park, Eui-Soon

    2010-01-01

    Protein arginine methylation is involved in viral infection and replication through the modulation of diverse cellular processes including RNA metabolism, cytokine signaling, and subcellular localization. It has been suggested previously that the protein arginine methylation of the RGG-box of ICP27 is required for herpes simplex virus type-1 (HSV-1) viral replication and gene expression in vivo. However, a cellular mediator for this process has not yet been identified. In our current study, we show that the protein arginine methyltransferase 1 (PRMT1) is a cellular mediator of the arginine methylation of ICP27 RGG-box. We generated arginine substitution mutants in this domain andmore » examined which arginine residues are required for methylation by PRMT1. R138, R148 and R150 were found to be the major sites of this methylation but additional arginine residues serving as minor methylation sites are still required to sustain the fully methylated form of ICP27 RGG. We also demonstrate that the nuclear foci-like structure formation, SRPK interactions, and RNA-binding activity of ICP27 are modulated by the arginine methylation of the ICP27 RGG-box. Furthermore, HSV-1 replication is inhibited by hypomethylation of this domain resulting from the use of general PRMT inhibitors or arginine mutations. Our data thus suggest that the PRMT1 plays a key role as a cellular regulator of HSV-1 replication through ICP27 RGG-box methylation.« less

  17. A Live-Attenuated HSV-2 ICP0 − Virus Elicits 10 to 100 Times Greater Protection against Genital Herpes than a Glycoprotein D Subunit Vaccine

    PubMed Central

    Halford, William P.; Püschel, Ringo; Gershburg, Edward; Wilber, Andrew; Gershburg, Svetlana; Rakowski, Brandon

    2011-01-01

    Glycoprotein D (gD-2) is the entry receptor of herpes simplex virus 2 (HSV-2), and is the immunogen in the pharmaceutical industry's lead HSV-2 vaccine candidate. Efforts to prevent genital herpes using gD-2 subunit vaccines have been ongoing for 20 years at a cost in excess of $100 million. To date, gD-2 vaccines have yielded equivocal protection in clinical trials. Therefore, using a small animal model, we sought to determine if a live-attenuated HSV-2 ICP0 − virus would elicit better protection against genital herpes than a gD-2 subunit vaccine. Mice immunized with gD-2 and a potent adjuvant (alum+monophosphoryl lipid A) produced high titers of gD-2 antibody. While gD-2-immunized mice possessed significant resistance to HSV-2, only 3 of 45 gD-2-immunized mice survived an overwhelming challenge of the vagina or eyes with wild-type HSV-2 (MS strain). In contrast, 114 of 115 mice immunized with a live HSV-2 ICP0 − virus, 0ΔNLS, survived the same HSV-2 MS challenges. Likewise, 0ΔNLS-immunized mice shed an average 125-fold less HSV-2 MS challenge virus per vagina relative to gD-2-immunized mice. In vivo imaging demonstrated that a luciferase-expressing HSV-2 challenge virus failed to establish a detectable infection in 0ΔNLS-immunized mice, whereas the same virus readily infected naïve and gD-2-immunized mice. Collectively, these results suggest that a HSV-2 vaccine might be more likely to prevent genital herpes if it contained a live-attenuated HSV-2 virus rather than a single HSV-2 protein. PMID:21412438

  18. Characterization of herpes simplex virus 2 primary microRNA Transcript regulation.

    PubMed

    Tang, Shuang; Bosch-Marce, Marta; Patel, Amita; Margolis, Todd P; Krause, Philip R

    2015-05-01

    In order to understand factors that may influence latency-associated transcription and latency-associated transcript (LAT) phenotypes, we studied the expression of the herpes simplex virus 2 (HSV-2) LAT-associated microRNAs (miRNAs). We mapped the transcription initiation sites of all three primary miRNA transcripts and identified the ICP4-binding sequences at the transcription initiation sites of both HSV-2 LAT (pri-miRNA for miR-I and miR-II, which target ICP34.5, and miR-III, which targets ICP0) and L/ST (a pri-miRNA for miR-I and miR-II) but not at that of the primary miR-H6 (for which the target is unknown). We confirmed activity of the putative HSV-2 L/ST promoter and found that ICP4 trans-activates the L/ST promoter when the ICP4-binding site at its transcription initiation site is mutated, suggesting that ICP4 may play a dual role in regulating transcription of L/ST and, consequently, of miR-I and miR-II. LAT exon 1 (containing LAT enhancer sequences), together with the LAT promoter region, comprises a bidirectional promoter required for the expression of both LAT-encoded miRNAs and miR-H6 in latently infected mouse ganglia. The ability of ICP4 to suppress ICP34.5-targeting miRNAs and to activate lytic viral genes suggests that ICP4 could play a key role in the switch between latency and reactivation. The HSV-2 LAT and viral miRNAs expressed in the LAT region are the most abundant viral transcripts during HSV latency. The balance between the expression of LAT and LAT-associated miRNAs and the expression of lytic viral transcripts from the opposite strand appears to influence whether individual HSV-infected neurons will be latently or productively infected. The outcome of neuronal infection may thus depend on regulation of gene expression of the corresponding primary miRNAs. In the present study, we characterize promoter sequences responsible for miRNA expression, including identification of the primary miRNA 5' ends and evaluation of ICP4 response. These findings provide further insight into the virus' strategy to tightly control expression of lytic cycle genes (especially the neurovirulence factor, ICP34.5) and suggest a mechanism (via ICP4) for the transition from latency to reactivated productive infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Characterization of Herpes Simplex Virus 2 Primary MicroRNA Transcript Regulation

    PubMed Central

    Bosch-Marce, Marta; Patel, Amita; Margolis, Todd P.

    2015-01-01

    ABSTRACT In order to understand factors that may influence latency-associated transcription and latency-associated transcript (LAT) phenotypes, we studied the expression of the herpes simplex virus 2 (HSV-2) LAT-associated microRNAs (miRNAs). We mapped the transcription initiation sites of all three primary miRNA transcripts and identified the ICP4-binding sequences at the transcription initiation sites of both HSV-2 LAT (pri-miRNA for miR-I and miR-II, which target ICP34.5, and miR-III, which targets ICP0) and L/ST (a pri-miRNA for miR-I and miR-II) but not at that of the primary miR-H6 (for which the target is unknown). We confirmed activity of the putative HSV-2 L/ST promoter and found that ICP4 trans-activates the L/ST promoter when the ICP4-binding site at its transcription initiation site is mutated, suggesting that ICP4 may play a dual role in regulating transcription of L/ST and, consequently, of miR-I and miR-II. LAT exon 1 (containing LAT enhancer sequences), together with the LAT promoter region, comprises a bidirectional promoter required for the expression of both LAT-encoded miRNAs and miR-H6 in latently infected mouse ganglia. The ability of ICP4 to suppress ICP34.5-targeting miRNAs and to activate lytic viral genes suggests that ICP4 could play a key role in the switch between latency and reactivation. IMPORTANCE The HSV-2 LAT and viral miRNAs expressed in the LAT region are the most abundant viral transcripts during HSV latency. The balance between the expression of LAT and LAT-associated miRNAs and the expression of lytic viral transcripts from the opposite strand appears to influence whether individual HSV-infected neurons will be latently or productively infected. The outcome of neuronal infection may thus depend on regulation of gene expression of the corresponding primary miRNAs. In the present study, we characterize promoter sequences responsible for miRNA expression, including identification of the primary miRNA 5′ ends and evaluation of ICP4 response. These findings provide further insight into the virus' strategy to tightly control expression of lytic cycle genes (especially the neurovirulence factor, ICP34.5) and suggest a mechanism (via ICP4) for the transition from latency to reactivated productive infection. PMID:25673716

  20. Accumulation of Herpes Simplex Virus Type 1 Early and Leaky-Late Proteins Correlates with Apoptosis Prevention in Infected Human HEp-2 Cells

    PubMed Central

    Aubert, Martine; Rice, Stephen A.; Blaho, John A.

    2001-01-01

    We previously reported that a recombinant ICP27-null virus stimulated, but did not prevent, apoptosis in human HEp-2 cells during infection (M. Aubert and J. A. Blaho, J. Virol. 73:2803–2813, 1999). In the present study, we used a panel of 15 recombinant ICP27 mutant viruses to determine which features of herpes simplex virus type 1 (HSV-1) replication are required for the apoptosis-inhibitory activity. Each virus was defined experimentally as either apoptotic, partially apoptotic, or nonapoptotic based on infected HEp-2 cell morphologies, percentages of infected cells with condensed chromatin, and patterns of specific cellular death factor processing. Viruses d27-1, d1-5, d1-2, M11, M15, M16, n504R, n406R, n263R, and n59R are apoptotic or partially apoptotic in HEp-2 cells and severely defective for growth in Vero cells. Viruses d2-3, d3-4, d4-5, d5-6, and d6-7 are nonapoptotic, demonstrating that ICP27 contains a large amino-terminal region, including its RGG box RNA binding domain, which is not essential for apoptosis prevention. Accumulations of viral TK, VP16, and gD but not gC, ICP22, or ICP4 proteins correlated with prevention of apoptosis during the replication of these viruses. Of the nonapoptotic viruses, d4-5 did not produce gC, indicating that accumulation of true late gene products is not necessary for the prevention process. Analyses of viral DNA synthesis in HEp-2 cells indicated that apoptosis prevention by HSV-1 requires that the infection proceeds to the stage in which viral DNA replication takes place. Infections performed in the presence of the drug phosphonoacetic acid confirmed that the process of viral DNA synthesis and the accumulation of true late (γ2) proteins are not required for apoptosis prevention. Based on our results, we conclude that the accumulation of HSV-1 early (β) and leaky-late (γ1) proteins correlates with the prevention of apoptosis in infected HEp-2 cells. PMID:11134315

  1. The bipolar filaments formed by Herpes simplex virus type 1 SSB/recombination protein (ICP8) suggest a mechanism for DNA annealing

    PubMed Central

    Makhov, Alexander M.; Sen, Anindito; Yu, Xiong; Simon, Martha N.; Griffith, Jack D.; Egelman, Edward H.

    2009-01-01

    Herpes simplex virus type 1 encodes a multifunctional protein, ICP8, which serves both as a single strand binding protein and recombinase, catalyzing reactions involved in replication and recombination of the viral genome. In the presence of divalent ions and at low temperature, previous electron microscopic (EM) studies showed that ICP8 will form long left-handed helical filaments. Here EM image reconstruction reveals that the filaments are bipolar, with an asymmetric unit containing two subunits of ICP8 that constitute a symmetrical dimer. This organization of the filament has been confirmed using Scanning Transmission Electron Microscopy. The pitch of the filaments is ~ 250 Å, with ~ 6.2 dimers per turn. Docking of a crystal structure of ICP8 into the reconstructed filament shows that the C-terminal domain of ICP8, attached to the body of the subunit by a flexible linker containing ~ 10 residues, is packed into a pocket in the body of a neighboring subunit in the crystal in a similar manner as in the filament. However, the interactions between the large N-terminal domains are quite different in the filament from that observed in the crystal. A previously proposed model for ICP8 binding single-stranded DNA, based upon the crystal structure, leads to a model for a continuous strand of ssDNA near the filament axis. The bipolar nature of the ICP8 filaments means that a second strand of ssDNA would be running through this filament in the opposite orientation, and this provides a potential mechanism for how ICP8 anneals complementary single stranded DNA into double-stranded DNA, where each strand runs in opposite directions. PMID:19138689

  2. The bipolar filaments formed by herpes simplex virus type 1 SSB/recombination protein (ICP8) suggest a mechanism for DNA annealing.

    PubMed

    Makhov, Alexander M; Sen, Anindito; Yu, Xiong; Simon, Martha N; Griffith, Jack D; Egelman, Edward H

    2009-02-20

    Herpes simplex virus type 1 encodes a multifunctional protein, ICP8, which serves both as a single-strand binding protein and as a recombinase, catalyzing reactions involved in replication and recombination of the viral genome. In the presence of divalent ions and at low temperature, previous electron microscopic studies showed that ICP8 will form long left-handed helical filaments. Here, electron microscopic image reconstruction reveals that the filaments are bipolar, with an asymmetric unit containing two subunits of ICP8 that constitute a symmetrical dimer. This organization of the filament has been confirmed using scanning transmission electron microscopy. The pitch of the filaments is approximately 250 A, with approximately 6.2 dimers per turn. Docking of a crystal structure of ICP8 into the reconstructed filament shows that the C-terminal domain of ICP8, attached to the body of the subunit by a flexible linker containing approximately 10 residues, is packed into a pocket in the body of a neighboring subunit in the crystal in a similar manner as in the filament. However, the interactions between the large N-terminal domains are quite different in the filament from that observed in the crystal. A previously proposed model for ICP8 binding single-stranded DNA (ssDNA), based upon the crystal structure, leads to a model for a continuous strand of ssDNA near the filament axis. The bipolar nature of the ICP8 filaments means that a second strand of ssDNA would be running through this filament in the opposite orientation, and this provides a potential mechanism for how ICP8 anneals complementary ssDNA into double-stranded DNA, where each strand runs in opposite directions.

  3. The Bipolar Filaments Formed by Herpes Simplex Virus Type 1 SSB/Recombination Protein (ICP8) Suggest a Mechanism for DNA Annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makhov, A.M.; Simon, M.; Sen, A.

    2009-02-20

    Herpes simplex virus type 1 encodes a multifunctional protein, ICP8, which serves both as a single-strand binding protein and as a recombinase, catalyzing reactions involved in replication and recombination of the viral genome. In the presence of divalent ions and at low temperature, previous electron microscopic studies showed that ICP8 will form long left-handed helical filaments. Here, electron microscopic image reconstruction reveals that the filaments are bipolar, with an asymmetric unit containing two subunits of ICP8 that constitute a symmetrical dimer. This organization of the filament has been confirmed using scanning transmission electron microscopy. The pitch of the filaments ismore » {approx} 250 {angstrom}, with {approx} 6.2 dimers per turn. Docking of a crystal structure of ICP8 into the reconstructed filament shows that the C-terminal domain of ICP8, attached to the body of the subunit by a flexible linker containing {approx} 10 residues, is packed into a pocket in the body of a neighboring subunit in the crystal in a similar manner as in the filament. However, the interactions between the large N-terminal domains are quite different in the filament from that observed in the crystal. A previously proposed model for ICP8 binding single-stranded DNA (ssDNA), based upon the crystal structure, leads to a model for a continuous strand of ssDNA near the filament axis. The bipolar nature of the ICP8 filaments means that a second strand of ssDNA would be running through this filament in the opposite orientation, and this provides a potential mechanism for how ICP8 anneals complementary ssDNA into double-stranded DNA, where each strand runs in opposite directions.« less

  4. Up to Four Distinct Polypeptides Are Produced from the γ34.5 Open Reading Frame of Herpes Simplex Virus 2

    PubMed Central

    Korom, Maria; Davis, Katie L.

    2014-01-01

    ABSTRACT The herpes simplex virus 1 (HSV-1) ICP34.5 protein strongly influences neurovirulence and regulates several cellular antiviral responses. Despite the clinical importance of HSV-2, relatively little is known about its ICP34.5 ortholog. We found that HSV-2 produces up to four distinct forms of ICP34.5 in infected cells: a full-length protein, one shorter form sharing the N terminus, and two shorter forms sharing the C terminus. These forms appeared with similar kinetics and accumulated in cells over much of the replication cycle. We confirmed that the N-terminal form is translated from the primary unspliced transcript to a stop codon within the intron unique to HSV-2 γ34.5. We found that the N-terminal form was produced in a variety of cell types and by 9 of 10 clinical isolates. ICP27 influenced but was not required for expression of the N-terminal form. Western blotting and reverse transcription-PCR indicated the C-terminal forms did not contain the N terminus and were not products of alternative splicing or internal transcript initiation. Expression plasmids encoding methionine at amino acids 56 and 70 generated products that comigrated in SDS-PAGE with the C1 and C2 forms, respectively, and mutation of these sites abolished C1 and C2. Using a recombinant HSV-2 encoding hemagglutinin (HA)-tagged ICP34.5, we demonstrated that the C-terminal forms were also produced during infection of many human and mouse cell types but were not detectable in mouse primary neurons. The protein diversity generated from the HSV-2 γ34.5 open reading frame implies additional layers of cellular regulation through potential independent activities associated with the various forms of ICP34.5. IMPORTANCE The herpes simplex virus 1 (HSV-1) protein ICP34.5, encoded by the γ34.5 gene, interferes with several host defense mechanisms by binding cellular proteins that would otherwise stimulate the cell's autophagic, translational-arrest, and type I interferon responses to virus infection. ICP34.5 also plays a crucial role in determining the severity of nervous system infections with HSV-1 and HSV-2. The HSV-2 γ34.5 gene contains an intron not present in HSV-1 γ34.5. A shorter N-terminal form of HSV-2 ICP34.5 can be translated from the unspliced γ34.5 mRNA. Here, we show that two additional forms consisting of the C-terminal portion of ICP34.5 are generated in infected cells. Production of these N- and C-terminal forms is highly conserved among HSV-2 strains, including many clinical isolates, and they are broadly expressed in several cell types, but not mouse primary neurons. Multiple ICP34.5 polypeptides add additional complexity to potential functional interactions influencing HSV-2 neurovirulence. PMID:25031346

  5. Influence of Herpes Simplex Virus Latency-Associated Transcript (LAT) on the Distribution of Latently Infected Neurons

    DTIC Science & Technology

    2007-03-20

    part of my life, who knows more about herpesviruses than any 8-year-old should, for making me tea and snacks when I was studying or writing, for...of latency (2, 13, 36, 45, 76, 77, 81). However, HSV-2 LAT has not been shown to inhibit apoptosis of neuronal cells. HSV has several anti ...apoptotic genes, including ICP27, ICP22, US3, US5, ICP4, and HSV-1 LAT (4). Only LAT is expressed during latency, suggesting that its anti -apoptotic

  6. SR proteins SRp20 and 9G8 contribute to efficient export of herpes simplex virus 1 mRNAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escudero-Paunetto, Laurimar; Li Ling; Hernandez, Felicia P.

    2010-06-05

    Herpes simplex virus 1 (HSV-1) mRNAs are exported to the cytoplasm through the export receptor TAP/NFX1. HSV-1 multifunctional protein ICP27 interacts with TAP/NXF1, binds viral RNAs, and is required for efficient viral RNA export. In ICP27 mutant infections, viral RNA export is reduced but not ablated, indicating that other export adaptors can aid in viral RNA export. Export adaptor protein Aly/REF is recruited to viral replication compartments, however, Aly/REF knockdown has little effect on viral RNA export. SR proteins SRp20 and 9G8 interact with TAP/NXF1 and mediate export of some cellular RNAs. We report that siRNA knockdown of SRp20 ormore » 9G8 resulted in about a 10 fold decrease in virus yields and in nuclear accumulation of poly(A+) RNA. In infected cells depleted of SRp20, newly transcribed Bromouridine-labeled RNA also accumulated in the nucleus. We conclude that SRp20 and 9G8 contribute to HSV-1 RNA export.« less

  7. Association of herpes simplex virus regulatory protein ICP22 with transcriptional complexes containing EAP, ICP4, RNA polymerase II, and viral DNA requires posttranslational modification by the U(L)13 proteinkinase.

    PubMed Central

    Leopardi, R; Ward, P L; Ogle, W O; Roizman, B

    1997-01-01

    The expression of herpes simplex virus 1 gamma (late) genes requires functional alpha proteins (gamma1 genes) and the onset of viral DNA synthesis (gamma2 genes). We report that late in infection after the onset of viral DNA synthesis, cell nuclei exhibit defined structures which contain two viral regulatory proteins (infected cell proteins 4 and 22) required for gamma gene expression, RNA polymerase II, a host nucleolar protein (EAP or L22) known to be associated with ribosomes and to bind small RNAs, including the Epstein-Barr virus small nuclear RNAs, and newly synthesized progeny DNA. The formation of these complexes required the onset of viral DNA synthesis. The association of infected cell protein 22, a highly posttranslationally processed protein, with these structures did not occur in cells infected with a viral mutant deleted in the genes U(L)13 and U(S)3, each of which specifies a protein kinase known to phosphorylate the protein. PMID:8995634

  8. Direct activation of RIP3/MLKL-dependent necrosis by herpes simplex virus 1 (HSV-1) protein ICP6 triggers host antiviral defense

    PubMed Central

    Wang, Xing; Li, Yun; Liu, Shan; Yu, Xiaoliang; Li, Lin; Shi, Cuilin; He, Wenhui; Li, Jun; Xu, Lei; Hu, Zhilin; Yu, Lu; Yang, Zhongxu; Chen, Qin; Ge, Lin; Zhang, Zili; Zhou, Biqi; Jiang, Xuejun; Chen, She; He, Sudan

    2014-01-01

    The receptor-interacting kinase-3 (RIP3) and its downstream substrate mixed lineage kinase domain-like protein (MLKL) have emerged as the key cellular components in programmed necrotic cell death. Receptors for the cytokines of tumor necrosis factor (TNF) family and Toll-like receptors (TLR) 3 and 4 are able to activate RIP3 through receptor-interacting kinase-1 and Toll/IL-1 receptor domain-containing adapter inducing IFN-β, respectively. This form of cell death has been implicated in the host-defense system. However, the molecular mechanisms that drive the activation of RIP3 by a variety of pathogens, other than the above-mentioned receptors, are largely unknown. Here, we report that human herpes simplex virus 1 (HSV-1) infection triggers RIP3-dependent necrosis. This process requires MLKL but is independent of TNF receptor, TLR3, cylindromatosis, and host RIP homotypic interaction motif-containing protein DNA-dependent activator of IFN regulatory factor. After HSV-1 infection, the viral ribonucleotide reductase large subunit (ICP6) interacts with RIP3. The formation of the ICP6–RIP3 complex requires the RHIM domains of both proteins. An HSV-1 ICP6 deletion mutant failed to cause effective necrosis of HSV-1–infected cells. Furthermore, ectopic expression of ICP6, but not RHIM mutant ICP6, directly activated RIP3/MLKL-mediated necrosis. Mice lacking RIP3 exhibited severely impaired control of HSV-1 replication and pathogenesis. Therefore, this study reveals a previously uncharacterized host antipathogen mechanism. PMID:25316792

  9. Identification of an ICP27-responsive element in the coding region of a herpes simplex virus type 1 late gene.

    PubMed

    Sedlackova, Lenka; Perkins, Keith D; Meyer, Julia; Strain, Anna K; Goldman, Oksana; Rice, Stephen A

    2010-03-01

    During productive herpes simplex virus type 1 (HSV-1) infection, a subset of viral delayed-early (DE) and late (L) genes require the immediate-early (IE) protein ICP27 for their expression. However, the cis-acting regulatory sequences in DE and L genes that mediate their specific induction by ICP27 are unknown. One viral L gene that is highly dependent on ICP27 is that encoding glycoprotein C (gC). We previously demonstrated that this gene is posttranscriptionally transactivated by ICP27 in a plasmid cotransfection assay. Based on our past results, we hypothesized that the gC gene possesses a cis-acting inhibitory sequence and that ICP27 overcomes the effects of this sequence to enable efficient gC expression. To test this model, we systematically deleted sequences from the body of the gC gene and tested the resulting constructs for expression. In so doing, we identified a 258-bp "silencing element" (SE) in the 5' portion of the gC coding region. When present, the SE inhibits gC mRNA accumulation from a transiently transfected gC gene, unless ICP27 is present. Moreover, the SE can be transferred to another HSV-1 gene, where it inhibits mRNA accumulation in the absence of ICP27 and confers high-level expression in the presence of ICP27. Thus, for the first time, an ICP27-responsive sequence has been identified in a physiologically relevant ICP27 target gene. To see if the SE functions during viral infection, we engineered HSV-1 recombinants that lack the SE, either in a wild-type (WT) or ICP27-null genetic background. In an ICP27-null background, deletion of the SE led to ICP27-independent expression of the gC gene, demonstrating that the SE functions during viral infection. Surprisingly, the ICP27-independent gC expression seen with the mutant occurred even in the absence of viral DNA synthesis, indicating that the SE helps to regulate the tight DNA replication-dependent expression of gC.

  10. Herpes Simplex Virus 2 Latency-Associated Transcript (LAT) region mutations do not identify a role for LAT-Associated Micro RNAs in viral reactivation in the Guinea Pig Genital Model.

    PubMed

    Kawamura, Yoshiki; Bosch-Marce, Marta; Tang, Shuang; Patel, Amita; Krause, Philip R

    2018-05-02

    Despite the long-standing observation that herpes simplex virus (HSV) Latency-Associated Transcript (LAT) promoter-deletion viruses show impaired recurrence phenotypes in relevant animal models, the mechanism by which these sequences exert this phenotypic effect is unknown. We constructed and evaluated four mutant HSV-2 viruses with targeted mutations in the LAT promoter and LAT-associated miRNAs affecting (1) the LAT TATA box, (2) the LAT ICP4-binding site, (3) miR-I and miR-II (miR-I/II), which both target ICP34.5, and (4) miR-III, which targets ICP0. While the LAT-TATA box mutant caused milder acute infections than wild-type (WT), there was no difference in recurrence phenotype between these viruses. LAT and miRNA expression during latency were not impaired by this mutation, suggesting that other promoter elements may be more important for latent HSV-2 LAT expression. Mutation of the LAT ICP4-binding site also did not cause an in vivo phenotypic difference between mutant and WT viruses. Acute infection and reactivation from latency of the miR-I/II mutant was similar to that of its rescuant, although slightly reduced in severity relative to the wild-type virus. The miR-III mutant also exhibited WT phenotypes in acute and recurrent phases of infection. While not ruling out an effect of these elements in human latency or reactivation, these findings do not identify a specific role for LAT or LAT-associated miRNAs in the HSV-2 LAT promoter deletion phenotype in guinea pigs. Thus, other sequences in this region may play a more important role in the long-studied LAT-associated phenotype in animals. IMPORTANCE While it has been known for several decades that specific HSV-1 and HSV-2 sequences near the LAT promoter are required for efficient viral reactivation in animal models, the mechanism is still not known. We constructed four mutant viruses with the goal of identifying critical sequence elements and of specifically testing the hypothesis that microRNAs that are expressed during latency play a role. Determination that specific LAT promoter sequences and miRNA sequences do not influence viral reactivation of HSV-2 helps to narrow down the search for the mechanism by which the virus controls its latency and recurrence phenotype. This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.

  11. Herpes Simplex Virus 1 Mutant with Point Mutations in UL39 Is Impaired for Acute Viral Replication in Mice, Establishment of Latency, and Explant-Induced Reactivation.

    PubMed

    Mostafa, Heba H; Thompson, Thornton W; Konen, Adam J; Haenchen, Steve D; Hilliard, Joshua G; Macdonald, Stuart J; Morrison, Lynda A; Davido, David J

    2018-04-01

    In the process of generating herpes simplex virus 1 (HSV-1) mutations in the viral regulatory gene encoding infected cell protein 0 (ICP0), we isolated a viral mutant, termed KOS-NA, that was severely impaired for acute replication in the eyes and trigeminal ganglia (TG) of mice, defective in establishing a latent infection, and reactivated poorly from explanted TG. To identify the secondary mutation(s) responsible for the impaired phenotypes of this mutant, we sequenced the KOS-NA genome and noted that it contained two nonsynonymous mutations in UL39 , which encodes the large subunit of ribonucleotide reductase, ICP6. These mutations resulted in lysine-to-proline (residue 393) and arginine-to-histidine (residue 950) substitutions in ICP6. To determine whether alteration of these amino acids was responsible for the KOS-NA phenotypes in vivo , we recombined the wild-type UL39 gene into the KOS-NA genome and rescued its acute replication phenotypes in mice. To further establish the role of UL39 in KOS-NA's decreased pathogenicity, the UL39 mutations were recombined into HSV-1 (generating UL39 mut ), and this mutant virus showed reduced ocular and TG replication in mice comparable to that of KOS-NA. Interestingly, ICP6 protein levels were reduced in KOS-NA-infected cells relative to the wild-type protein. Moreover, we observed that KOS-NA does not counteract caspase 8-induced apoptosis, unlike wild-type strain KOS. Based on alignment studies with other HSV-1 ICP6 homologs, our data suggest that amino acid 950 of ICP6 likely plays an important role in ICP6 accumulation and inhibition of apoptosis, consequently impairing HSV-1 pathogenesis in a mouse model of HSV-1 infection. IMPORTANCE HSV-1 is a major human pathogen that infects ∼80% of the human population and can be life threatening to infected neonates or immunocompromised individuals. Effective therapies for treatment of recurrent HSV-1 infections are limited, which emphasizes a critical need to understand in greater detail the events that modulate HSV-1 replication and pathogenesis. In the current study, we identified a neuroattenuated HSV-1 mutant (i.e., KOS-NA) that contains novel mutations in the UL39 gene, which codes for the large subunit of ribonucleotide reductase (also known as ICP6). This mutant form of ICP6 was responsible for the attenuation of KOS-NA in vivo and resulted in diminished ICP6 protein levels and antiapoptotic effect. Thus, we have determined that subtle alteration of the UL39 gene regulates expression and functions of ICP6 and severely impacts HSV-1 pathogenesis, potentially making KOS-NA a promising vaccine candidate against HSV-1. Copyright © 2018 American Society for Microbiology.

  12. In vivo replication of an ICP34.5 second-site suppressor mutant following corneal infection correlates with in vitro regulation of eIF2 alpha phosphorylation.

    PubMed

    Ward, Stephen L; Scheuner, Donalyn; Poppers, Jeremy; Kaufman, Randal J; Mohr, Ian; Leib, David A

    2003-04-01

    In animal models of herpes simplex virus type 1 (HSV-1) infection, ICP34.5-null viruses are avirulent and also fail to grow in a variety of cultured cells due to their inability to prevent RNA-dependent protein kinase (PKR)-mediated inhibition of protein synthesis. We show here that the inability of ICP34.5 mutants to grow in vitro is due specifically to the accumulation of phosphorylated eIF2 alpha. Mutations suppressing the in vitro phenotype of ICP34.5-null mutants have been described which map to the unique short region of the HSV-1 genome, resulting in dysregulated expression of the US11 gene. Despite the inability of the suppressor mutation to suppress the avirulent phenotype of the ICP34.5-null parental virus following intracranial inoculation, the suppressor mutation enhanced virus growth in the cornea, trigeminal ganglia, and periocular skin following corneal infection compared to that with the ICP34.5-null virus. The phosphorylation state of eIF2 alpha following in vitro infection with the suppressor virus was examined to determine if in vivo differences could be attributed to differential regulation of eIF2 alpha phosphorylation. The suppressor virus prevented accumulation of phosphorylated eIF2 alpha, while the wild-type virus substantially reduced eIF2 alpha phosphorylation levels. These data suggest that US11 functions as a PKR antagonist in vivo, although its activity may be modulated by tissue-specific differences in translation regulation.

  13. In Vivo Replication of an ICP34.5 Second-Site Suppressor Mutant following Corneal Infection Correlates with In Vitro Regulation of eIF2α Phosphorylation

    PubMed Central

    Ward, Stephen L.; Scheuner, Donalyn; Poppers, Jeremy; Kaufman, Randal J.; Mohr, Ian; Leib, David A.

    2003-01-01

    In animal models of herpes simplex virus type 1 (HSV-1) infection, ICP34.5-null viruses are avirulent and also fail to grow in a variety of cultured cells due to their inability to prevent RNA-dependent protein kinase (PKR)-mediated inhibition of protein synthesis. We show here that the inability of ICP34.5 mutants to grow in vitro is due specifically to the accumulation of phosphorylated eIF2α. Mutations suppressing the in vitro phenotype of ICP34.5-null mutants have been described which map to the unique short region of the HSV-1 genome, resulting in dysregulated expression of the US11 gene. Despite the inability of the suppressor mutation to suppress the avirulent phenotype of the ICP34.5-null parental virus following intracranial inoculation, the suppressor mutation enhanced virus growth in the cornea, trigeminal ganglia, and periocular skin following corneal infection compared to that with the ICP34.5-null virus. The phosphorylation state of eIF2α following in vitro infection with the suppressor virus was examined to determine if in vivo differences could be attributed to differential regulation of eIF2α phosphorylation. The suppressor virus prevented accumulation of phosphorylated eIF2α, while the wild-type virus substantially reduced eIF2α phosphorylation levels. These data suggest that US11 functions as a PKR antagonist in vivo, although its activity may be modulated by tissue-specific differences in translation regulation. PMID:12663769

  14. Replication-Competent Controlled Herpes Simplex Virus

    PubMed Central

    Bloom, David C.; Feller, Joyce; McAnany, Peterjon; Vilaboa, Nuria

    2015-01-01

    ABSTRACT We present the development and characterization of a replication-competent controlled herpes simplex virus 1 (HSV-1). Replication-essential ICP4 and ICP8 genes of HSV-1 wild-type strain 17syn+ were brought under the control of a dually responsive gene switch. The gene switch comprises (i) a transactivator that is activated by a narrow class of antiprogestins, including mifepristone and ulipristal, and whose expression is mediated by a promoter cassette that comprises an HSP70B promoter and a transactivator-responsive promoter and (ii) transactivator-responsive promoters that drive the ICP4 and ICP8 genes. Single-step growth experiments in different cell lines demonstrated that replication of the recombinant virus, HSV-GS3, is strictly dependent on an activating treatment consisting of administration of a supraphysiological heat dose in the presence of an antiprogestin. The replication-competent controlled virus replicates with an efficiency approaching that of the wild-type virus from which it was derived. Essentially no replication occurs in the absence of activating treatment or if HSV-GS3-infected cells are exposed only to heat or antiprogestin. These findings were corroborated by measurements of amounts of viral DNA and transcripts of the regulated ICP4 gene and the glycoprotein C (gC) late gene, which was not regulated. Similar findings were made in experiments with a mouse footpad infection model. IMPORTANCE The alphaherpesviruses have long been considered vectors for recombinant vaccines and oncolytic therapies. The traditional approach uses vector backbones containing attenuating mutations that restrict replication to ensure safety. The shortcoming of this approach is that the attenuating mutations tend to limit both the immune presentation and oncolytic properties of these vectors. HSV-GS3 represents a novel type of vector that, when activated, replicates with the efficiency of a nonattenuated virus and whose safety is derived from deliberate, stringent regulation of multiple replication-essential genes. By directing activating heat to the region of virus administration, replication is strictly confined to infected cells within this region. The requirement for antiprogestin provides an additional level of safety, ensuring that virus replication cannot be triggered inadvertently. Replication-competent controlled vectors such as HSV-GS3 may have the potential to be superior to conventional attenuated HSV vaccine and oncolytic vectors without sacrificing safety. PMID:26269179

  15. Combination of a fusogenic glycoprotein, prodrug activation, and oncolytic herpes simplex virus for enhanced local tumor control.

    PubMed

    Simpson, Guy R; Han, Ziqun; Liu, Binlei; Wang, Yibing; Campbell, Gregor; Coffin, Robert S

    2006-05-01

    We have previously developed an oncolytic herpes simplex virus-1 based on a clinical virus isolate, which was deleted for ICP34.5 to provide tumor selected replication and ICP47 to increase antigen presentation as well as tumor selective virus replication. A phase I/II clinical trial using a version of this virus expressing granulocyte macrophage colony-stimulating factor has shown promising results. The work reported here aimed to develop a version of this virus in which local tumor control was further increased through the combined expression of a highly potent prodrug activating gene [yeast cytosine deaminase/uracil phospho-ribosyltransferase fusion (Fcy::Fur)] and the fusogenic glycoprotein from gibbon ape leukemia virus (GALV), which it was hoped would aid the spread of the activated prodrug through the tumor. Viruses expressing the two genes individually or in combination were constructed and tested, showing (a) GALV and/or Fcy::Fur expression did not affect virus growth; (b) GALV expression causes cell fusion and increases the tumor cell killing at least 30-fold in vitro and tumor shrinkage 5- to 10-fold in vivo; (c) additional expression of Fcy::Fur combined with 5-fluorocytosine administration improves tumor shrinkage further. These results indicate, therefore, that the combined expression of the GALV protein and Fcy::Fur provides a highly potent oncolytic virus with improved capabilities for local tumor control. It is intended to enter the GALV/Fcy::Fur expressing virus into clinical development for the treatment of tumor types, such as pancreatic or lung cancer, where local control would be anticipated to be clinically advantageous.

  16. A Cell Culture Model of Latent and Lytic Herpes Simplex Virus Type 1 Infection in Spiral Ganglion.

    PubMed

    Liu, Yuehong; Li, Shufeng

    2015-01-01

    Reactivation of latent herpes simplex virus type 1 (HSV-1) in spiral ganglion neurons (SGNs) is supposed to be one of the causes of idiopathic sudden sensorineural hearing loss. This study aims to establish a cell culture model of latent and lytic HSV-1 infection in spiral ganglia. In the presence of acyclovir, primary cultures of SGNs were latently infected with HSV-1 expressing green fluorescent protein. Four days later, these cells were treated with trichostatin A (TSA), a known chemical reactivator of HSV-1. TCID50 was used to measure the titers of virus in cultures on Vero cells. RNA from cultures was detected for the presence of transcripts of ICP27 and latency-associated transcript (LAT) using reverse transcription polymerase chain reaction. There is no detectable infectious HSV-1 in latently infected cultures, whereas they could be observed in both lytically infected and latently infected/TSA-treated cultures. LAT was the only detectable transcript during latent infection, whereas lytic ICP27 transcript was detected in lytically infected and latently infected/TSA-treated cultures. Cultured SGNs can be both latently and lytically infected with HSV-1. Furthermore, latently infected SGNs can be reactivated using TSA, yielding infectious virus.

  17. Identification of two novel functional p53 responsive elements in the Herpes Simplex Virus-1 genome

    PubMed Central

    Hsieh, Jui-Cheng; Kuta, Ryan; Armour, Courtney R.; Boehmer, Paul E.

    2014-01-01

    Analysis of the herpes simplex virus-1 (HSV-1) genome reveals two candidate p53 responsive elements (p53RE), located in proximity to the replication origins oriL and oriS, referred to as p53RE-L and p53RE-S, respectively. The sequences of p53RE-L and p53RE-S conform to the p53 consensus site and are present in HSV-1 strains KOS, 17, and F. p53 binds to both elements in vitro and in virus-infected cells. Both p53RE-L and p53RE-S are capable of conferring p53-dependent transcriptional activation onto a heterologous reporter gene. Importantly, expression of the essential immediate early viral transactivator ICP4 and the essential DNA replication protein ICP8, that are adjacent to p53RE-S and p53RE-L, are repressed in a p53-dependent manner. Taken together, this study identifies two novel functional p53RE in the HSV-1 genome and suggests a complex mechanism of viral gene regulation by p53 which may determine progression of the lytic viral replication cycle or the establishment of latency. PMID:25010269

  18. The ATM and Rad3-Related (ATR) Protein Kinase Pathway Is Activated by Herpes Simplex Virus 1 and Required for Efficient Viral Replication.

    PubMed

    Edwards, Terri G; Bloom, David C; Fisher, Chris

    2018-03-15

    The ATM and Rad3-related (ATR) protein kinase and its downstream effector Chk1 are key sensors and organizers of the DNA damage response (DDR) to a variety of insults. Previous studies of herpes simplex virus 1 (HSV-1) showed no evidence for activation of the ATR pathway. Here we demonstrate that both Chk1 and ATR were phosphorylated by 3 h postinfection (h.p.i.). Activation of ATR and Chk1 was observed using 4 different HSV-1 strains in multiple cell types, while a specific ATR inhibitor blocked activation. Mechanistic studies point to early viral gene expression as a key trigger for ATR activation. Both pATR and pChk1 localized to the nucleus within viral replication centers, or associated with their periphery, by 3 h.p.i. Significant levels of pATR and pChk1 were also detected in the cytoplasm, where they colocalized with ICP4 and ICP0. Proximity ligation assays confirmed that pATR and pChk1 were closely and specifically associated with ICP4 and ICP0 in both the nucleus and cytoplasm by 3 h.p.i., but not with ICP8 or ICP27, presumably in a multiprotein complex. Chemically distinct ATR and Chk1 inhibitors blocked HSV-1 replication and infectious virion production, while inhibitors of ATM, Chk2, and DNA-dependent protein kinase (DNA-PK) did not. Together our data show that HSV-1 activates the ATR pathway at early stages of infection and that ATR and Chk1 kinase activities play important roles in HSV-1 replication fitness. These findings indicate that the ATR pathway may provide insight for therapeutic approaches. IMPORTANCE Viruses have evolved complex associations with cellular DNA damage response (DDR) pathways, which sense troublesome DNA structures formed during infection. The first evidence for activation of the ATR pathway by HSV-1 is presented. ATR is activated, and its downstream target Chk1 is robustly phosphorylated, during early stages of infection. Both activated proteins are found in the nucleus associated with viral replication compartments and in the cytoplasm associated with viral proteins. We also demonstrate that both ATR and Chk1 kinase activities are important for viral replication. The findings suggest that HSV-1 activates ATR and Chk1 during early stages of infection and utilizes the enzymes to promote its own replication. The observation may be exploitable for antiviral approaches. Copyright © 2018 American Society for Microbiology.

  19. Identification of Viral MicroRNAs Expressed in Human Sacral Ganglia Latently Infected with Herpes Simplex Virus 2▿

    PubMed Central

    Umbach, Jennifer L.; Wang, Kening; Tang, Shuang; Krause, Philip R.; Mont, Erik K.; Cohen, Jeffrey I.; Cullen, Bryan R.

    2010-01-01

    Deep sequencing of small RNAs isolated from human sacral ganglia latently infected with herpes simplex virus 2 (HSV-2) was used to identify HSV-2 microRNAs (miRNAs) expressed during latent infection. This effort resulted in the identification of five distinct HSV-2 miRNA species, two of which, miR-H3/miR-I and miR-H4/miR-II, have been previously reported. Three novel HSV-2 miRNAs were also identified, and two of these, miR-H7 and miR-H9, are derived from the latency-associated transcript (LAT) and are located antisense to the viral transcript encoding transactivator ICP0. A third novel HSV-2 miRNA, miR-H10, is encoded within the unique long (UL) region of the genome, 3′ to the UL15 open reading frame, and is presumably excised from a novel, latent HSV-2 transcript distinct from LAT. PMID:19889786

  20. Identification of viral microRNAs expressed in human sacral ganglia latently infected with herpes simplex virus 2.

    PubMed

    Umbach, Jennifer L; Wang, Kening; Tang, Shuang; Krause, Philip R; Mont, Erik K; Cohen, Jeffrey I; Cullen, Bryan R

    2010-01-01

    Deep sequencing of small RNAs isolated from human sacral ganglia latently infected with herpes simplex virus 2 (HSV-2) was used to identify HSV-2 microRNAs (miRNAs) expressed during latent infection. This effort resulted in the identification of five distinct HSV-2 miRNA species, two of which, miR-H3/miR-I and miR-H4/miR-II, have been previously reported. Three novel HSV-2 miRNAs were also identified, and two of these, miR-H7 and miR-H9, are derived from the latency-associated transcript (LAT) and are located antisense to the viral transcript encoding transactivator ICP0. A third novel HSV-2 miRNA, miR-H10, is encoded within the unique long (U(L)) region of the genome, 3' to the U(L)15 open reading frame, and is presumably excised from a novel, latent HSV-2 transcript distinct from LAT.

  1. Elements in the transcriptional regulatory region flanking herpes simplex virus type 1 oriS stimulate origin function.

    PubMed

    Wong, S W; Schaffer, P A

    1991-05-01

    Like other DNA-containing viruses, the three origins of herpes simplex virus type 1 (HSV-1) DNA replication are flanked by sequences containing transcriptional regulatory elements. In a transient plasmid replication assay, deletion of sequences comprising the transcriptional regulatory elements of ICP4 and ICP22/47, which flank oriS, resulted in a greater than 80-fold decrease in origin function compared with a plasmid, pOS-822, which retains these sequences. In an effort to identify specific cis-acting elements responsible for this effect, we conducted systematic deletion analysis of the flanking region with plasmid pOS-822 and tested the resulting mutant plasmids for origin function. Stimulation by cis-acting elements was shown to be both distance and orientation dependent, as changes in either parameter resulted in a decrease in oriS function. Additional evidence for the stimulatory effect of flanking sequences on origin function was demonstrated by replacement of these sequences with the cytomegalovirus immediate-early promoter, resulting in nearly wild-type levels of oriS function. In competition experiments, cotransfection of cells with the test plasmid, pOS-822, and increasing molar concentrations of a competitor plasmid which contained the ICP4 and ICP22/47 transcriptional regulatory regions but lacked core origin sequences resulted in a significant reduction in the replication efficiency of pOS-822, demonstrating that factors which bind specifically to the oriS-flanking sequences are likely involved as auxiliary proteins in oriS function. Together, these studies demonstrate that trans-acting factors and the sites to which they bind play a critical role in the efficiency of HSV-1 DNA replication from oriS in transient-replication assays.

  2. Identification of two novel functional p53 responsive elements in the herpes simplex virus-1 genome.

    PubMed

    Hsieh, Jui-Cheng; Kuta, Ryan; Armour, Courtney R; Boehmer, Paul E

    2014-07-01

    Analysis of the herpes simplex virus-1 (HSV-1) genome reveals two candidate p53 responsive elements (p53RE), located in proximity to the replication origins oriL and oriS, referred to as p53RE-L and p53RE-S, respectively. The sequences of p53RE-L and p53RE-S conform to the p53 consensus site and are present in HSV-1 strains KOS, 17, and F. p53 binds to both elements in vitro and in virus-infected cells. Both p53RE-L and p53RE-S are capable of conferring p53-dependent transcriptional activation onto a heterologous reporter gene. Importantly, expression of the essential immediate early viral transactivator ICP4 and the essential DNA replication protein ICP8, that are adjacent to p53RE-S and p53RE-L, are repressed in a p53-dependent manner. Taken together, this study identifies two novel functional p53RE in the HSV-1 genome and suggests a complex mechanism of viral gene regulation by p53 which may determine progression of the lytic viral replication cycle or the establishment of latency. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. A Herpesviral Immediate Early Protein Promotes Transcription Elongation of Viral Transcripts.

    PubMed

    Fox, Hannah L; Dembowski, Jill A; DeLuca, Neal A

    2017-06-13

    Herpes simplex virus 1 (HSV-1) genes are transcribed by cellular RNA polymerase II (RNA Pol II). While four viral immediate early proteins (ICP4, ICP0, ICP27, and ICP22) function in some capacity in viral transcription, the mechanism by which ICP22 functions remains unclear. We observed that the FACT complex (comprised of SSRP1 and Spt16) was relocalized in infected cells as a function of ICP22. ICP22 was also required for the association of FACT and the transcription elongation factors SPT5 and SPT6 with viral genomes. We further demonstrated that the FACT complex interacts with ICP22 throughout infection. We therefore hypothesized that ICP22 recruits cellular transcription elongation factors to viral genomes for efficient transcription elongation of viral genes. We reevaluated the phenotype of an ICP22 mutant virus by determining the abundance of all viral mRNAs throughout infection by transcriptome sequencing (RNA-seq). The accumulation of almost all viral mRNAs late in infection was reduced compared to the wild type, regardless of kinetic class. Using chromatin immunoprecipitation sequencing (ChIP-seq), we mapped the location of RNA Pol II on viral genes and found that RNA Pol II levels on the bodies of viral genes were reduced in the ICP22 mutant compared to wild-type virus. In contrast, the association of RNA Pol II with transcription start sites in the mutant was not reduced. Taken together, our results indicate that ICP22 plays a role in recruiting elongation factors like the FACT complex to the HSV-1 genome to allow for efficient viral transcription elongation late in viral infection and ultimately infectious virion production. IMPORTANCE HSV-1 interacts with many cellular proteins throughout productive infection. Here, we demonstrate the interaction of a viral protein, ICP22, with a subset of cellular proteins known to be involved in transcription elongation. We determined that ICP22 is required to recruit the FACT complex and other transcription elongation factors to viral genomes and that in the absence of ICP22 viral transcription is globally reduced late in productive infection, due to an elongation defect. This insight defines a fundamental role of ICP22 in HSV-1 infection and elucidates the involvement of cellular factors in HSV-1 transcription. Copyright © 2017 Fox et al.

  4. Inhibition of herpes simplex virus 1 gene expression and replication by RNase P-associated external guide sequences.

    PubMed

    Liu, Jin; Shao, Luyao; Trang, Phong; Yang, Zhu; Reeves, Michael; Sun, Xu; Vu, Gia-Phong; Wang, Yu; Li, Hongjian; Zheng, Congyi; Lu, Sangwei; Liu, Fenyong

    2016-06-09

    An external guide sequence (EGS) is a RNA sequence which can interact with a target mRNA to form a tertiary structure like a pre-tRNA and recruit intracellular ribonuclease P (RNase P), a tRNA processing enzyme, to degrade target mRNA. Previously, an in vitro selection procedure has been used by us to engineer new EGSs that are more robust in inducing human RNase P to cleave their targeted mRNAs. In this study, we constructed EGSs from a variant to target the mRNA encoding herpes simplex virus 1 (HSV-1) major transcription regulator ICP4, which is essential for the expression of viral early and late genes and viral growth. The EGS variant induced human RNase P cleavage of ICP4 mRNA sequence 60 times better than the EGS generated from a natural pre-tRNA. A decrease of about 97% and 75% in the level of ICP4 gene expression and an inhibition of about 7,000- and 500-fold in viral growth were observed in HSV infected cells expressing the variant and the pre-tRNA-derived EGS, respectively. This study shows that engineered EGSs can inhibit HSV-1 gene expression and viral growth. Furthermore, these results demonstrate the potential for engineered EGS RNAs to be developed and used as anti-HSV therapeutics.

  5. Inhibition of herpes simplex virus 1 gene expression and replication by RNase P-associated external guide sequences

    PubMed Central

    Liu, Jin; Shao, Luyao; Trang, Phong; Yang, Zhu; Reeves, Michael; Sun, Xu; Vu, Gia-Phong; Wang, Yu; Li, Hongjian; Zheng, Congyi; Lu, Sangwei; Liu, Fenyong

    2016-01-01

    An external guide sequence (EGS) is a RNA sequence which can interact with a target mRNA to form a tertiary structure like a pre-tRNA and recruit intracellular ribonuclease P (RNase P), a tRNA processing enzyme, to degrade target mRNA. Previously, an in vitro selection procedure has been used by us to engineer new EGSs that are more robust in inducing human RNase P to cleave their targeted mRNAs. In this study, we constructed EGSs from a variant to target the mRNA encoding herpes simplex virus 1 (HSV-1) major transcription regulator ICP4, which is essential for the expression of viral early and late genes and viral growth. The EGS variant induced human RNase P cleavage of ICP4 mRNA sequence 60 times better than the EGS generated from a natural pre-tRNA. A decrease of about 97% and 75% in the level of ICP4 gene expression and an inhibition of about 7,000- and 500-fold in viral growth were observed in HSV infected cells expressing the variant and the pre-tRNA-derived EGS, respectively. This study shows that engineered EGSs can inhibit HSV-1 gene expression and viral growth. Furthermore, these results demonstrate the potential for engineered EGS RNAs to be developed and used as anti-HSV therapeutics. PMID:27279482

  6. Involvement of UL24 in herpes-simplex-virus-1-induced dispersal of nucleolin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lymberopoulos, Maria H.; Pearson, Angela

    2007-07-05

    UL24 of herpes simplex virus 1 is important for efficient viral replication, but its function is unknown. We generated a recombinant virus, vHA-UL24, encoding UL24 with an N-terminal hemagglutinin tag. By indirect immunofluorescence at 9 h post-infection (hpi), we detected HA-UL24 in nuclear foci and in cytoplasmic speckles. HA-UL24 partially co-localized with nucleolin, but not with ICP8 or coilin, markers for nucleoli, viral replication compartments, and Cajal bodies respectively. HA-UL24 staining was often juxtaposed to that of another nucleolar protein, fibrillarin. Analysis of HSV-1-induced nucleolar modifications revealed that by 18 hpi, nucleolin staining had dispersed, and fibrillarin staining went frommore » clusters of small spots to a few separate but prominent spots. Fibrillarin redistribution appeared to be independent of UL24. In contrast, cells infected with a UL24-deficient virus retained foci of nucleolin staining. Our results demonstrate involvement of UL24 in dispersal of nucleolin during infection.« less

  7. Herpes B Virus, Macacine Herpesvirus 1, Breaks Simplex Virus Tradition via Major Histocompatibility Complex Class I Expression in Cells from Human and Macaque Hosts

    PubMed Central

    Vasireddi, Mugdha

    2012-01-01

    B virus of the family Herpesviridae is endemic to rhesus macaques but results in 80% fatality in untreated humans who are zoonotically infected. Downregulation of major histocompatibility complex (MHC) class I in order to evade CD8+ T-cell activation is characteristic of most herpesviruses. Here we examined the cell surface presence and total protein expression of MHC class I molecules in B virus-infected human foreskin fibroblast cells and macaque kidney epithelial cells in culture, which are representative of foreign and natural host initial target cells of B virus. Our results show <20% downregulation of surface MHC class I molecules in either type of host cells infected with B virus, which is statistically insignificantly different from that observed in uninfected cells. We also examined the surface expression of MHC class Ib molecules, HLA-E and HLA-G, involved in NK cell inhibition. Our results showed significant upregulation of HLA-E and HLA-G in host cells infected with B virus relative to the amounts observed in other herpesvirus-infected cells. These results suggest that B virus-infected cell surfaces maintain normal levels of MHC class Ia molecules, a finding unique among simplex viruses. This is a unique divergence in immune evasion for B virus, which, unlike human simplex viruses, does not inhibit the transport of peptides for loading onto MHC class Ia molecules because B virus ICP47 lacks a transporter-associated protein binding domain. The fact that MHC class Ib molecules were significantly upregulated has additional implications for host-pathogen interactions. PMID:22973043

  8. Herpes Simplex Virus-based gene Therapy Enhances the Efficacy of Mitomycin-C in the Treatment of Human Bladder Transitional Cell Carcinoma

    PubMed Central

    Mullerad, Michael; Bochner, Bernard H.; Adusumilli, Prasad S.; Bhargava, Amit; Kikuchi, Eiji; Hui-Ni, Chen; Kattan, Michael W.; Chou, Ting-Chao; Fong, Yuman

    2005-01-01

    Purpose Oncolytic replication-competent herpes simplex virus type-1 (HSV) mutants have the ability to replicate in and kill malignant cells. We have previously demonstrated the ability of replication-competent HSV to control bladder cancer growth in an orthotopic murine model. We hypothesized that a combination of a chemotherapeutic agent used for intravesical treatment - mitomycin-C (MMC) - and oncolytic HSV would exert a synergistic effect in the treatment of human transitional cell carcinoma (TCC). Materials and Methods We used the mutant HSV NV1066, which is deleted for viral genes ICP0 and ICP4 and selectively infects cancer cells, to treat TCC lines, KU19-19 and SKUB. Cell survival was determined by lactate dehydrogenase (LDH) assay for each agent as well as for drug-viral combinations from days 1 to 5. The isobologram method and the combination index method of Chou-Talalay were used to assess for synergistic effect. Results NV1066 enhanced MMC mediated cytotoxicity at all combinations tested for both KU19-19 and SKUB. Combination of both agents demonstrated a synergistic effect and allowed dose reduction by 12 and 10.4 times (NV1066) and by 3 and 156 times (MMC) in the treatment of KU19-19 and SKUB respectively, while achieving an estimated 90% cell kill. Conclusion These data provide the cellular basis for the clinical investigation of combined mitomycin-C and oncolytic HSV therapy in the treatment of bladder cancer. PMID:16006968

  9. Proteomic analysis of the herpes simplex virus 1 virion protein 16 transactivator protein in infected cells.

    PubMed

    Suk, Hyung; Knipe, David M

    2015-06-01

    The herpes simplex virus 1 virion protein 16 (VP16) tegument protein forms a transactivation complex with the cellular proteins host cell factor 1 (HCF-1) and octamer-binding transcription factor 1 (Oct-1) upon entry into the host cell. VP16 has also been shown to interact with a number of virion tegument proteins and viral glycoprotein H to promote viral assembly, but no comprehensive study of the VP16 proteome has been performed at early times postinfection. We therefore performed a proteomic analysis of VP16-interacting proteins at 3 h postinfection. We confirmed the interaction of VP16 with HCF-1 and a large number of cellular Mediator complex proteins, but most surprisingly, we found that the major viral protein associating with VP16 is the infected cell protein 4 (ICP4) immediate-early (IE) transactivator protein. These results raise the potential for a new function for VP16 in associating with the IE ICP4 and playing a role in transactivation of early and late gene expression, in addition to its well-documented function in transactivation of IE gene expression. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Viral Ubiquitin Ligase Stimulates Selective Host MicroRNA Expression by Targeting ZEB Transcriptional Repressors

    PubMed Central

    Kim, Ju Youn; Leader, Andrew; Stoller, Michelle L.; Coen, Donald M.; Wilson, Angus C.

    2017-01-01

    Infection with herpes simplex virus-1 (HSV-1) brings numerous changes in cellular gene expression. Levels of most host mRNAs are reduced, limiting synthesis of host proteins, especially those involved in antiviral defenses. The impact of HSV-1 on host microRNAs (miRNAs), an extensive network of short non-coding RNAs that regulate mRNA stability/translation, remains largely unexplored. Here we show that transcription of the miR-183 cluster (miR-183, miR-96, and miR-182) is selectively induced by HSV-1 during productive infection of primary fibroblasts and neurons. ICP0, a viral E3 ubiquitin ligase expressed as an immediate-early protein, is both necessary and sufficient for this induction. Nuclear exclusion of ICP0 or removal of the RING (really interesting new gene) finger domain that is required for E3 ligase activity prevents induction. ICP0 promotes the degradation of numerous host proteins and for the most part, the downstream consequences are unknown. Induction of the miR-183 cluster can be mimicked by depletion of host transcriptional repressors zinc finger E-box binding homeobox 1 (ZEB1)/δ-crystallin enhancer binding factor 1 (δEF1) and zinc finger E-box binding homeobox 2 (ZEB2)/Smad-interacting protein 1 (SIP1), which we establish as new substrates for ICP0-mediated degradation. Thus, HSV-1 selectively stimulates expression of the miR-183 cluster by ICP0-mediated degradation of ZEB transcriptional repressors. PMID:28783105

  11. CTCF Binding Sites in the Herpes Simplex Virus 1 Genome Display Site-Specific CTCF Occupation, Protein Recruitment, and Insulator Function.

    PubMed

    Washington, Shannan D; Musarrat, Farhana; Ertel, Monica K; Backes, Gregory L; Neumann, Donna M

    2018-04-15

    There are seven conserved CTCF binding domains in the herpes simplex virus 1 (HSV-1) genome. These binding sites individually flank the latency-associated transcript (LAT) and the immediate early (IE) gene regions, suggesting that CTCF insulators differentially control transcriptional domains in HSV-1 latency. In this work, we show that two CTCF binding motifs in HSV-1 display enhancer blocking in a cell-type-specific manner. We found that CTCF binding to the latent HSV-1 genome was LAT dependent and that the quantity of bound CTCF was site specific. Following reactivation, CTCF eviction was dynamic, suggesting that each CTCF site was independently regulated. We explored whether CTCF sites recruit the polycomb-repressive complex 2 (PRC2) to establish repressive domains through a CTCF-Suz12 interaction and found that Suz12 colocalized to the CTCF insulators flanking the ICP0 and ICP4 regions and, conversely, was removed at early times postreactivation. Collectively, these data support the idea that CTCF sites in HSV-1 are independently regulated and may contribute to lytic-latent HSV-1 control in a site-specific manner. IMPORTANCE The role of chromatin insulators in DNA viruses is an area of interest. It has been shown in several beta- and gammaherpesviruses that insulators likely control the lytic transcriptional profile through protein recruitment and through the formation of three-dimensional (3D) chromatin loops. The ability of insulators to regulate alphaherpesviruses has been understudied to date. The alphaherpesvirus HSV-1 has seven conserved insulator binding motifs that flank regions of the genome known to contribute to the establishment of latency. Our work presented here contributes to the understanding of how insulators control transcription of HSV-1. Copyright © 2018 American Society for Microbiology.

  12. Spatial and Temporal Resolution of Global Protein Synthesis during HSV Infection Using Bioorthogonal Precursors and Click Chemistry

    PubMed Central

    Serwa, Remigiusz A.; O’Hare, Peter

    2016-01-01

    We used pulse-labeling with the methionine analogue homopropargylglycine (HPG) to investigate spatiotemporal aspects of protein synthesis during herpes simplex virus (HSV) infection. In vivo incorporation of HPG enables subsequent selective coupling of fluorochrome-capture reagents to newly synthesised proteins. We demonstrate that HPG labeling had no effect on cell viability, on accumulation of test early or late viral proteins, or on overall virus yields. HPG pulse-labeling followed by SDS-PAGE analysis confirmed incorporation into newly synthesised proteins, while parallel processing by in situ cycloaddition revealed new insight into spatiotemporal aspects of protein localisation during infection. A striking feature was the rapid accumulation of newly synthesised proteins not only in a general nuclear pattern but additionally in newly forming sub-compartments represented by small discrete foci. These newly synthesised protein domains (NPDs) were similar in size and morphology to PML domains but were more numerous, and whereas PML domains were progressively disrupted, NPDs were progressively induced and persisted. Immediate-early proteins ICP4 and ICP0 were excluded from NPDs, but using an ICP0 mutant defective in PML disruption, we show a clear spatial relationship between NPDs and PML domains with NPDs frequently forming immediately adjacent and co-joining persisting PML domains. Further analysis of location of the chaperone Hsc70 demonstrated that while NPDs formed early in infection without overt Hsc70 recruitment, later in infection Hsc70 showed pronounced recruitment frequently in a coat-like fashion around NPDs. Moreover, while ICP4 and ICP0 were excluded from NPDs, ICP22 showed selective recruitment. Our data indicate that NPDs represent early recruitment of host and viral de novo translated protein to distinct structural entities which are precursors to the previously described VICE domains involved in protein quality control in the nucleus, and reveal new features from which we propose spatially linked platforms of newly synthesised protein processing after nuclear import. PMID:27706239

  13. A proteomic perspective of inbuilt viral protein regulation: pUL46 tegument protein is targeted for degradation by ICP0 during herpes simplex virus type 1 infection.

    PubMed

    Lin, Aaron E; Greco, Todd M; Döhner, Katinka; Sodeik, Beate; Cristea, Ileana M

    2013-11-01

    Much like the host cells they infect, viruses must also regulate their life cycles. Herpes simples virus type 1 (HSV-1), a prominent human pathogen, uses a promoter-rich genome in conjunction with multiple viral trans-activating factors. Following entry into host cells, the virion-associated outer tegument proteins pUL46 and pUL47 act to increase expression of viral immediate-early (α) genes, thereby helping initiate the infection life cycle. Because pUL46 has gone largely unstudied, we employed a hybrid mass spectrometry-based approach to determine how pUL46 exerts its functions during early stages of infection. For a spatio-temporal characterization of pUL46, time-lapse microscopy was performed in live cells to define its dynamic localization from 2 to 24 h postinfection. Next, pUL46-containing protein complexes were immunoaffinity purified during infection of human fibroblasts and analyzed by mass spectrometry to investigate virus-virus and virus-host interactions, as well as post-translational modifications. We demonstrated that pUL46 is heavily phosphorylated in at least 23 sites. One phosphorylation site matched the consensus 14-3-3 phospho-binding motif, consistent with our identification of 14-3-3 proteins and host and viral kinases as specific pUL46 interactions. Moreover, we determined that pUL46 specifically interacts with the viral E3 ubiquitin ligase ICP0. We demonstrated that pUL46 is partially degraded in a proteasome-mediated manner during infection, and that the catalytic activity of ICP0 is responsible for this degradation. This is the first evidence of a viral protein being targeted for degradation by another viral protein during HSV-1 infection. Together, these data indicate that pUL46 levels are tightly controlled and important for the temporal regulation of viral gene expression throughout the virus life cycle. The concept of a structural virion protein, pUL46, performing nonstructural roles is likely to reflect a theme common to many viruses, and a better understanding of these functions will be important for developing therapeutics.

  14. A limited innate immune response is induced by a replication-defective herpes simplex virus vector following delivery to the murine central nervous system

    PubMed Central

    Zeier, Zane; Aguilar, J Santiago; Lopez, Cecilia M; Devi-Rao, G B; Watson, Zachary L; Baker, Henry V; Wagner, Edward K; Bloom, David C

    2010-01-01

    Herpes simplex virus type 1 (HSV-1)–based vectors readily transduce neurons and have a large payload capacity, making them particularly amenable to gene therapy applications within the central nervous system (CNS). Because aspects of the host responses to HSV-1 vectors in the CNS are largely unknown, we compared the host response of a nonreplicating HSV-1 vector to that of a replication-competent HSV-1 virus using microarray analysis. In parallel, HSV-1 gene expression was tracked using HSV-specific oligonucleotide-based arrays in order to correlate viral gene expression with observed changes in host response. Microarray analysis was performed following stereotactic injection into the right hippocampal formation of mice with either a replication-competent HSV-1 or a nonreplicating recombinant of HSV-1, lacking the ICP4 gene (ICP4−). Genes that demonstrated a significant change (P < .001) in expression in response to the replicating HSV-1 outnumbered those that changed in response to mock or nonreplicating vector by approximately 3-fold. Pathway analysis revealed that both the replicating and nonreplicating vectors induced robust antigen presentation but only mild interferon, chemokine, and cytokine signaling responses. The ICP4− vector was restricted in several of the Toll-like receptor-signaling pathways, indicating reduced stimulation of the innate immune response. These array analyses suggest that although the nonreplicating vector induces detectable activation of immune response pathways, the number and magnitude of the induced response is dramatically restricted compared to the replicating vector, and with the exception of antigen presentation, host gene expression induced by the non-replicating vector largely resembles mock infection. PMID:20095947

  15. Herpes simplex virus 1 microRNAs expressed abundantly during latent infection are not essential for latency in mouse trigeminal ganglia

    PubMed Central

    Kramer, Martha F.; Jurak, Igor; Pesola, Jean M.; Boissel, Sandrine; Knipe, David M.; Coen, Donald M.

    2013-01-01

    Several herpes simplex virus 1 microRNAs are encoded within or near the latency associated transcript (LAT) locus, and are expressed abundantly during latency. Some of these microRNAs can repress the expression of important viral proteins and are hypothesized to play important roles in establishing and/or maintaining latent infections. We found that in lytically infected cells and in acutely infected mouse ganglia, expression of LAT-encoded microRNAs was weak and unaffected by a deletion that includes the LAT promoter. In mouse ganglia latently infected with wild type virus, the microRNAs accumulated to high levels, but deletions of the LAT promoter markedly reduced expression of LAT-encoded microRNAs and also miR-H6, which is encoded upstream of LAT and can repress expression of ICP4. Because these LAT deletion mutants establish and maintain latent infections, these microRNAs are not essential for latency, at least in mouse trigeminal ganglia, but may help promote it. PMID:21782205

  16. Mutational Inactivation of Herpes Simplex Virus 1 MicroRNAs Identifies Viral mRNA Targets and Reveals Phenotypic Effects in Culture

    PubMed Central

    Flores, Omar; Nakayama, Sanae; Whisnant, Adam W.; Javanbakht, Hassan; Cullen, Bryan R.

    2013-01-01

    Herpes simplex virus 1 (HSV-1), a ubiquitous human pathogen, expresses several viral microRNAs (miRNAs). These, along with the latency-associated transcript, represent the only viral RNAs detectable in latently infected neuronal cells. Here, for the first time, we analyze which HSV-1 miRNAs are loaded into the RNA-induced silencing complex (RISC), the key effector of miRNA function. Only 9 of the 17 reported HSV-1 miRNAs, i.e., miR-H1 to miR-H8 plus miR-H11, were found to actually load into the RISC. Surprisingly, this analysis also revealed that HSV-1 miRNAs loaded into the RISC with efficiencies that differed widely; <1% of the miR-H1-3p miRNA detectable in HSV-1-infected cells was loaded into the RISC. Analysis of HSV-1 mutants individually lacking the viral miR-H2, miR-H3, or miR-H4 miRNA revealed that loss of these miRNAs affected the rate of replication of HSV-1 in neuronal cells but not in fibroblasts. Analysis of mRNA and protein expression, as well as assays mapping viral miRNA binding sites in infected cells, showed that endogenous HSV-1 miR-H2 binds to viral ICP0 mRNA and inhibits its expression, while endogenous miR-H4 inhibits the expression of the viral ICP34.5 gene. In contrast, no viral mRNA target for miR-H3 could be detected, even though miR-H3, like miR-H4, is perfectly complementary to ICP34.5 mRNA. Together, these data demonstrate that endogenous HSV-1 miRNA expression can significantly alter viral replication in culture, and they also identify two viral mRNA targets for miR-H2 and miR-H4 that can partially explain this phenotype. PMID:23536669

  17. Human cytomegalovirus and Herpes Simplex type I virus can engage RNA polymerase I for transcription of immediate early genes

    PubMed Central

    Kostopoulou, Ourania N.; Wilhelmi, Vanessa; Raiss, Sina; Ananthaseshan, Sharan; Lindström, Mikael S.; Bartek, Jiri; Söderberg-Naucler, Cecilia

    2017-01-01

    Human cytomegalovirus (HCMV) utilizes RNA polymerase II to transcribe viral genes and produce viral mRNAs. It can specifically target the nucleolus to facilitate viral transcription and translation. As RNA polymerase I (Pol I)-mediated transcription is active in the nucleolus, we investigated the role of Pol I, along with relative contributions of the human Pol II and Pol III, to early phases of viral transcription in HCMV infected cells, compared with Herpes Simplex Virus-1 (HSV-1) and Murine cytomegalovirus (MCMV). Inhibition of Pol I with siRNA or the Pol I inhibitors CX-5461 or Actinomycin D (5nM) resulted in significantly decreased IE and pp65 mRNA and protein levels in human fibroblasts at early times post infection. This initially delayed replication was compensated for later during the replication process, at which stage it didn’t significantly affect virus production. Pol I inhibition also reduced HSV-1 ICP0 and gB transcripts, suggesting that some herpesviruses engage Pol I for their early transcription. In contrast, inhibition of Pol I failed to affect MCMV transcription. Collectively, our results contribute to better understanding of the functional interplay between RNA Pol I-mediated nucleolar events and the Herpes viruses, particularly HCMV whose pathogenic impact ranges from congenital malformations and potentially deadly infections among immunosuppressed patients, up to HCMV’s emerging oncomodulatory role in human tumors. PMID:29228551

  18. Role of ND10 nuclear bodies in the chromatin repression of HSV-1.

    PubMed

    Gu, Haidong; Zheng, Yi

    2016-04-05

    Herpes simplex virus (HSV) is a neurotropic virus that establishes lifelong latent infection in human ganglion sensory neurons. This unique life cycle necessitates an intimate relation between the host defenses and virus counteractions over the long course of infection. Two important aspects of host anti-viral defense, nuclear substructure restriction and epigenetic chromatin regulation, have been intensively studied in the recent years. Upon viral DNA entering the nucleus, components of discrete nuclear bodies termed nuclear domain 10 (ND10), converge at viral DNA and place restrictions on viral gene expression. Meanwhile the infected cell mobilizes its histones and histone-associated repressors to force the viral DNA into nucleosome-like structures and also represses viral transcription. Both anti-viral strategies are negated by various HSV countermeasures. One HSV gene transactivator, infected cell protein 0 (ICP0), is a key player in antagonizing both the ND10 restriction and chromatin repression. On one hand, ICP0 uses its E3 ubiquitin ligase activity to target major ND10 components for proteasome-dependent degradation and thereafter disrupts the ND10 nuclear bodies. On the other hand, ICP0 participates in de-repressing the HSV chromatin by changing histone composition or modification and therefore activates viral transcription. Involvement of a single viral protein in two seemingly different pathways suggests that there is coordination in host anti-viral defense mechanisms and also cooperation in viral counteraction strategies. In this review, we summarize recent advances in understanding the role of chromatin regulation and ND10 dynamics in both lytic and latent HSV infection. We focus on the new observations showing that ND10 nuclear bodies play a critical role in cellular chromatin regulation. We intend to find the connections between the two major anti-viral defense pathways, chromatin remodeling and ND10 structure, in order to achieve a better understanding of how host orchestrates a concerted defense and how HSV adapts with and overcomes the host immunity.

  19. ICP22 and the UL13 Protein Kinase Are both Required for Herpes Simplex Virus-Induced Modification of the Large Subunit of RNA Polymerase II

    PubMed Central

    Long, Melissa C.; Leong, Vivian; Schaffer, Priscilla A.; Spencer, Charlotte A.; Rice, Stephen A.

    1999-01-01

    Herpes simplex virus type 1 (HSV-1) infection alters the phosphorylation of the large subunit of RNA polymerase II (RNAP II), resulting in the depletion of the hypophosphorylated and hyperphosphorylated forms of this polypeptide (known as IIa and IIo, respectively) and induction of a novel, alternatively phosphorylated form (designated IIi). We previously showed that the HSV-1 immediate-early protein ICP22 is involved in this phenomenon, since induction of IIi and depletion of IIa are deficient in cells infected with 22/n199, an HSV-1 ICP22 nonsense mutant (S. A. Rice, M. C. Long, V. Lam, P. A. Schaffer, and C. A. Spencer, J. Virol. 69:5550–5559, 1995). However, depletion of IIo still occurs in 22/n199-infected cells. This suggests either that another viral gene product affects the RNAP II large subunit or that the truncated ICP22 polypeptide encoded by 22/n199 retains residual activity which leads to IIo depletion. To distinguish between these possibilities, we engineered an HSV-1 ICP22 null mutant, d22-lacZ, and compared it to 22/n199. The two mutants are indistinguishable in their effects on the RNAP II large subunit, suggesting that an additional viral gene product is involved in altering RNAP II. Two candidates are UL13, a protein kinase which has been implicated in ICP22 phosphorylation, and the virion host shutoff (Vhs) factor, the expression of which is positively regulated by ICP22 and UL13. To test whether UL13 is involved, a UL13-deficient viral mutant, d13-lacZ, was engineered. This mutant was defective in IIi induction and IIa depletion, displaying a phenotype very similar to that of d22-lacZ. In contrast, a Vhs mutant had effects that were indistinguishable from wild-type HSV-1. Therefore, UL13 but not the Vhs function plays a role in modifying the RNAP II large subunit. To study the potential role of UL13 in viral transcription, we carried out nuclear run-on transcription analyses in infected human embryonic lung cells. Infections with either UL13 or ICP22 mutants led to significantly reduced amounts of viral genome transcription at late times after infection. Together, our results suggest that ICP22 and UL13 are involved in a common pathway that alters RNAP II phosphorylation and that in some cell lines this change promotes viral late transcription. PMID:10364308

  20. A Chromatin Insulator-Like Element in the Herpes Simplex Virus Type 1 Latency-Associated Transcript Region Binds CCCTC-Binding Factor and Displays Enhancer-Blocking and Silencing Activities

    PubMed Central

    Amelio, Antonio L.; McAnany, Peterjon K.; Bloom, David C.

    2006-01-01

    A previous study demonstrated that the latency-associated transcript (LAT) promoter and the LAT enhancer/reactivation critical region (rcr) are enriched in acetyl histone H3 (K9, K14) during herpes simplex virus type 1 (HSV-1) latency, whereas all lytic genes analyzed (ICP0, UL54, ICP4, and DNA polymerase) are not (N. J. Kubat, R. K. Tran, P. McAnany, and D. C. Bloom, J. Virol. 78:1139-1149, 2004). This suggests that the HSV-1 latent genome is organized into histone H3 (K9, K14) hyperacetylated and hypoacetylated regions corresponding to transcriptionally permissive and transcriptionally repressed chromatin domains, respectively. Such an organization implies that chromatin insulators, similar to those of cellular chromosomes, may separate distinct transcriptional domains of the HSV-1 latent genome. In the present study, we sought to identify cis elements that could partition the HSV-1 genome into distinct chromatin domains. Sequence analysis coupled with chromatin immunoprecipitation and luciferase reporter assays revealed that (i) the long and short repeats and the unique-short region of the HSV-1 genome contain clustered CTCF (CCCTC-binding factor) motifs, (ii) CTCF motif clusters similar to those in HSV-1 are conserved in other alphaherpesviruses, (iii) CTCF binds to these motifs on latent HSV-1 genomes in vivo, and (iv) a 1.5-kb region containing the CTCF motif cluster in the LAT region possesses insulator activities, specifically, enhancer blocking and silencing. The finding that CTCF, a cellular protein associated with chromatin insulators, binds to motifs on the latent genome and insulates the LAT enhancer suggests that CTCF may facilitate the formation of distinct chromatin boundaries during herpesvirus latency. PMID:16474142

  1. Laryngopharyngeal reflux and herpes simplex virus type 2 are possible risk factors for adult-onset recurrent respiratory papillomatosis (prospective case-control study).

    PubMed

    Formánek, M; Jančatová, D; Komínek, P; Matoušek, P; Zeleník, K

    2017-06-01

    The human papillomavirus (HPV) causes recurrent respiratory papillomatosis (RRP). Although HPV prevalence is high, the incidence of papillomatosis is low. Thus, factors other than HPV infection probably contribute to RRP. This study investigated whether patients with papillomatosis are more often infected with herpes simplex virus type 2 and chlamydia trachomatis (ChT) and whether laryngopharyngeal reflux (LPR) occurs in this group of patients more often. Prospective case-control study. Department of Otorhinolaryngology of University Hospital. The study included 20 patients with adult-onset RRP and 20 adult patients with vocal cord cyst and no pathology of laryngeal mucosa (control group). Immunohistochemical analysis of pepsin, HPV, herpes simplex virus type 2 and ChT was performed in biopsy specimens of laryngeal papillomas and of healthy laryngeal mucosa (control group) obtained from medial part of removed vocal cord cyst during microlaryngoscopy procedures. Pathologic LPR (pepsin in tissue) was diagnosed in 8/20 (40.0%) patients with papillomatosis and in 0/20 control patients (P = .003). Herpes simplex virus type 2 was present in 9/20 (45.0%) patients with papillomatosis and in 0/20 control patients (P = .001). Five specimens were positive for both pepsin and herpes simplex virus type 2. No samples were positive for ChT. There were no significant differences between groups for age, body mass index, diabetes mellitus and gastrooesophageal reflux disease. Tobacco exposure was not more frequent in RRP group either (P = .01). Results show that LPR and herpes simplex virus type 2 are significantly more often present in patients with RRP. LPR and herpes simplex virus type 2 might activate latent HPV infection and thereby be possible risk factors for RRP. © 2016 John Wiley & Sons Ltd.

  2. Preventing vaccinia virus class-I epitopes presentation by HSV-ICP47 enhances the immunogenicity of a TAP-independent cancer vaccine epitope.

    PubMed

    Raafat, Nermin; Sadowski-Cron, Charlotte; Mengus, Chantal; Heberer, Michael; Spagnoli, Giulio C; Zajac, Paul

    2012-09-01

    Herpes simplex virus protein ICP47, encoded by US12 gene, strongly downregulates major histocompatibility complex (MHC) class-I antigen restricted presentation by blocking transporter associated with antigen processing (TAP) protein. To decrease viral vector antigenic immunodominance and MHC class-I driven clearance, we engineered recombinant vaccinia viruses (rVV) expressing ICP47 alone (rVV-US12) or together with endoplasmic reticulum (ER)-targeted Melan-A/MART-1(27-35) model tumor epitope (rVV-MUS12). In this study, we show that antigen presenting cells (APC), infected with rVV-US12, display a decreased ability to present TAP dependent MHC class-I restricted viral antigens to CD8+ T-cells. While HLA class-I cell surface expression is strongly downregulated, other important immune related molecules such as CD80, CD44 and, most importantly, MHC class-II are unaffected. Characterization of rVV-MUS12 infected cells demonstrates that over-expression of a TAP-independent peptide, partially compensates for ICP47 induced surface MHC class-I downregulation (30% vs. 70% respectively). Most importantly, in conditions where clearance of infected APC by virus-specific CTL represents a limiting factor, a significant enhancement of CTL responses to the tumor epitope can be detected in cultures stimulated with rVV-MUS12, as compared to those stimulated by rVV-MART alone. Such reagents could become of high relevance in multiple boost protocols required for cancer immunotherapy, to limit vector-specific responsiveness. Copyright © 2011 UICC.

  3. Interplay between Herpesvirus Infection and Host Defense by PML Nuclear Bodies.

    PubMed

    Tavalai, Nina; Stamminger, Thomas

    2009-12-01

    In recent studies we and others have identified the cellular proteins PML, hDaxx, and Sp100, which form a subnuclear structure known as nuclear domain 10 (ND10) or PML nuclear bodies (PML-NBs), as host restriction factors that counteract herpesviral infections by inhibiting viral replication at different stages. The antiviral function of ND10, however, is antagonized by viral regulatory proteins (e.g., ICP0 of herpes simplex virus; IE1 of human cytomegalovirus) which induce either a modification or disruption of ND10. This review will summarize the current knowledge on how viral replication is inhibited by ND10 proteins. Furthermore, herpesviral strategies to defeat this host defense mechanism are discussed.

  4. Reactivation of latent herpes simplex virus infection by ultraviolet light: a human model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perna, J.J.; Mannix, M.L.; Rooney, J.F.

    1987-09-01

    Infection with herpes simplex virus often results in a latent infection of local sensory ganglia and a disease characterized by periodic viral reactivation and mucocutaneous lesions. The factors that trigger reactivation in humans are still poorly defined. In our study, five patients with documented histories of recurrent herpes simplex virus infection on the buttocks or sacrum were exposed to three times their minimal erythema dose of ultraviolet light. Site-specific cutaneous herpes simplex virus infection occurred at 4.4 +/- 0.4 days after exposure to ultraviolet light in 8 of 13 attempts at reactivation. We conclude that ultraviolet light can reactivate herpesmore » simplex virus under experimentally defined conditions. This model in humans should prove useful in evaluating the pathophysiology and prevention of viral reactivation.« less

  5. Reactivation of latent herpes simplex virus infection by ultraviolet light: a human model.

    PubMed

    Perna, J J; Mannix, M L; Rooney, J F; Notkins, A L; Straus, S E

    1987-09-01

    Infection with herpes simplex virus often results in a latent infection of local sensory ganglia and a disease characterized by periodic viral reactivation and mucocutaneous lesions. The factors that trigger reactivation in humans are still poorly defined. In our study, five patients with documented histories of recurrent herpes simplex virus infection on the buttocks or sacrum were exposed to three times their minimal erythema dose of ultraviolet light. Site-specific cutaneous herpes simplex virus infection occurred at 4.4 +/- 0.4 days after exposure to ultraviolet light in 8 of 13 attempts at reactivation. We conclude that ultraviolet light can reactivate herpes simplex virus under experimentally defined conditions. This model in humans should prove useful in evaluating the pathophysiology and prevention of viral reactivation.

  6. Identification of conserved amino acids in the herpes simplex virus type 1 UL8 protein required for DNA synthesis and UL52 primase interaction in the virus replisome.

    PubMed

    Muylaert, Isabella; Zhao, Zhiyuan; Andersson, Torbjörn; Elias, Per

    2012-09-28

    We have used oriS-dependent transient replication assays to search for species-specific interactions within the herpes simplex virus replisome. Hybrid replisomes derived from herpes simplex virus type 1 (HSV-1) and equine herpesvirus type 1 (EHV-1) failed to support DNA replication in cells. Moreover, the replisomes showed a preference for their cognate origin of replication. The results demonstrate that the herpesvirus replisome behaves as a molecular machine relying on functionally important interactions. We then searched for functional interactions in the replisome context by subjecting HSV-1 UL8 protein to extensive mutagenesis. 52 mutants were made by replacing single or clustered charged amino acids with alanines. Four mutants showed severe replication defects. Mutant A23 exhibited a lethal phenotype, and mutants A49, A52 and A53 had temperature-sensitive phenotypes. Mutants A49 and A53 did not interact with UL52 primase as determined by co-immunoprecipitation experiments. Using GFP-tagged UL8, we demonstrate that all mutants were unable to support formation of ICP8-containing nuclear replication foci. Extended mutagenesis suggested that a highly conserved motif corresponding to mutant A49 serves an important role for establishing a physical contact between UL8 and UL52. The replication-defective mutations affected conserved amino acids, and similar phenotypes were observed when the corresponding mutations were introduced into EHV-1 UL8.

  7. Medical Surveillance Monthly Report (MSMR). Volume 20, Number 2, February 2013

    DTIC Science & Technology

    2013-02-01

    have viral etiologies: infections with human papillomavirus (HPV) and genital herpes simplex virus (HSV). Sexually transmitted infections have...infertility No Genital herpes simplex virus (HSV) 3 Virus No Yes Genital sores, infection of newborn babies No Acute gonorrhea 4 Bacterium Yes . PID...796.79 Chlamydia 099.41, 099.5 Genital herpes simplex virus (HSV) 054.1 Acute gonorrhea 098.0x, 098.1x, 098.4x, 098.8x Syphilis, all types All of those

  8. Identification of the ENT1 antagonists dipyridamole and dilazep as amplifiers of oncolytic herpes simplex virus-1 replication.

    PubMed

    Passer, Brent J; Cheema, Tooba; Zhou, Bingsen; Wakimoto, Hiroaki; Zaupa, Cecile; Razmjoo, Mani; Sarte, Jason; Wu, Shulin; Wu, Chin-lee; Noah, James W; Li, Qianjun; Buolamwini, John K; Yen, Yun; Rabkin, Samuel D; Martuza, Robert L

    2010-05-15

    Oncolytic herpes simplex virus-1 (oHSV) vectors selectively replicate in tumor cells, where they kill through oncolysis while sparing normal cells. One of the drawbacks of oHSV vectors is their limited replication and spread to neighboring cancer cells. Here, we report the outcome of a high-throughput chemical library screen to identify small-molecule compounds that augment the replication of oHSV G47Delta. Of the 2,640-screened bioactives, 6 compounds were identified and subsequently validated for enhanced G47Delta replication. Two of these compounds, dipyridamole and dilazep, interfered with nucleotide metabolism by potently and directly inhibiting the equilibrative nucleoside transporter-1 (ENT1). Replicative amplification promoted by dipyridamole and dilazep were dependent on HSV mutations in ICP6, the large subunit of ribonucleotide reductase. Our results indicate that ENT1 antagonists augment oHSV replication in tumor cells by increasing cellular ribonucleoside activity. (c)2010 AACR.

  9. Quantitative Evaluation of Protein Heterogeneity within Herpes Simplex Virus 1 Particles.

    PubMed

    El Bilali, Nabil; Duron, Johanne; Gingras, Diane; Lippé, Roger

    2017-05-15

    Several virulence genes have been identified thus far in the herpes simplex virus 1 genome. It is also generally accepted that protein heterogeneity among virions further impacts viral fitness. However, linking this variability directly with infectivity has been challenging at the individual viral particle level. To address this issue, we resorted to flow cytometry (flow virometry), a powerful approach we recently employed to analyze individual viral particles, to identify which tegument proteins vary and directly address if such variability is biologically relevant. We found that the stoichiometry of the U L 37, ICP0, and VP11/12 tegument proteins in virions is more stable than the VP16 and VP22 tegument proteins, which varied significantly among viral particles. Most interestingly, viruses sorted for their high VP16 or VP22 content yielded modest but reproducible increases in infectivity compared to their corresponding counterparts containing low VP16 or VP22 content. These findings were corroborated for VP16 in short interfering RNA experiments but proved intriguingly more complex for VP22. An analysis by quantitative Western blotting revealed substantial alterations of virion composition upon manipulation of individual tegument proteins and suggests that VP22 protein levels acted indirectly on viral fitness. These findings reaffirm the interdependence of the virion components and corroborate that viral fitness is influenced not only by the genome of viruses but also by the stoichiometry of proteins within each virion. IMPORTANCE The ability of viruses to spread in animals has been mapped to several viral genes, but other factors are clearly involved, including virion heterogeneity. To directly probe whether the latter influences viral fitness, we analyzed the protein content of individual herpes simplex virus 1 particles using an innovative flow cytometry approach. The data confirm that some viral proteins are incorporated in more controlled amounts, while others vary substantially. Interestingly, this correlates with the VP16 trans -activating viral protein and indirectly with VP22, a second virion component whose modulation profoundly alters virion composition. This reaffirms that not only the presence but also the amount of specific tegument proteins is an important determinant of viral fitness. Copyright © 2017 American Society for Microbiology.

  10. Quantitative Evaluation of Protein Heterogeneity within Herpes Simplex Virus 1 Particles

    PubMed Central

    El Bilali, Nabil; Duron, Johanne; Gingras, Diane

    2017-01-01

    ABSTRACT Several virulence genes have been identified thus far in the herpes simplex virus 1 genome. It is also generally accepted that protein heterogeneity among virions further impacts viral fitness. However, linking this variability directly with infectivity has been challenging at the individual viral particle level. To address this issue, we resorted to flow cytometry (flow virometry), a powerful approach we recently employed to analyze individual viral particles, to identify which tegument proteins vary and directly address if such variability is biologically relevant. We found that the stoichiometry of the UL37, ICP0, and VP11/12 tegument proteins in virions is more stable than the VP16 and VP22 tegument proteins, which varied significantly among viral particles. Most interestingly, viruses sorted for their high VP16 or VP22 content yielded modest but reproducible increases in infectivity compared to their corresponding counterparts containing low VP16 or VP22 content. These findings were corroborated for VP16 in short interfering RNA experiments but proved intriguingly more complex for VP22. An analysis by quantitative Western blotting revealed substantial alterations of virion composition upon manipulation of individual tegument proteins and suggests that VP22 protein levels acted indirectly on viral fitness. These findings reaffirm the interdependence of the virion components and corroborate that viral fitness is influenced not only by the genome of viruses but also by the stoichiometry of proteins within each virion. IMPORTANCE The ability of viruses to spread in animals has been mapped to several viral genes, but other factors are clearly involved, including virion heterogeneity. To directly probe whether the latter influences viral fitness, we analyzed the protein content of individual herpes simplex virus 1 particles using an innovative flow cytometry approach. The data confirm that some viral proteins are incorporated in more controlled amounts, while others vary substantially. Interestingly, this correlates with the VP16 trans-activating viral protein and indirectly with VP22, a second virion component whose modulation profoundly alters virion composition. This reaffirms that not only the presence but also the amount of specific tegument proteins is an important determinant of viral fitness. PMID:28275191

  11. Database of Autotransplants for Breast Cancer.

    DTIC Science & Technology

    1997-12-01

    atypical bacteria; 301 Herpes Simplex (HSV1, HSV2) list bacterium for non-atypical bacteria.) 302 Herpes Zoster (Chicken pox, Varicella ) 100 Atypical...o 00 Varicella 500. 10 o0 Other, specify: 501. Documented viral infection: Virus involved: 1 U Yes Yes No o 0 No 502. 1 0 o0 Cytomegalovirus (CMV) 8 0...Unknown 503. 1 o 00 Human Herpes Virus Type 6 (HHV6) 504. 1 0o Herpes Simplex Virus (HSV) 505. 1 o 0 Varicella 506. 1 0 0 0 Other, specify: 507

  12. Disparities in herpes simplex virus type 2 infection between black and white men who have sex with men in Atlanta, GA.

    PubMed

    Okafor, Netochukwu; Rosenberg, Eli S; Luisi, Nicole; Sanchez, Travis; del Rio, Carlos; Sullivan, Patrick S; Kelley, Colleen F

    2015-09-01

    HIV disproportionately affects black men who have sex with men, and herpes simplex virus type 2 is known to increase acquisition of HIV. However, data on racial disparities in herpes simplex virus type 2 prevalence and risk factors are limited among men who have sex with men in the United States. InvolveMENt was a cohort study of black and white HIV-negative men who have sex with men in Atlanta, GA. Univariate and multivariate cross-sectional associations with herpes simplex virus type 2 seroprevalence were assessed among 455 HIV-negative men who have sex with men for demographic, behavioural and social determinant risk factors using logistic regression. Seroprevalence of herpes simplex virus type 2 was 23% (48/211) for black and 16% (38/244) for white men who have sex with men (p = 0.05). Education, poverty, drug/alcohol use, incarceration, circumcision, unprotected anal intercourse, and condom use were not associated with herpes simplex virus type 2. In multivariate analyses, black race for those ≤25 years, but not >25 years, and number of sexual partners were significantly associated. Young black men who have sex with men are disproportionately affected by herpes simplex virus type 2, which may contribute to disparities in HIV acquisition. An extensive assessment of risk factors did not explain this disparity in herpes simplex virus type 2 infection suggesting differences in susceptibility or partner characteristics. © The Author(s) 2014.

  13. [The lysate and recombinant antigens in ELISA-test-systems for diagnostic of herpes simplex].

    PubMed

    Ganova, L A; Kovtoniuk, G V; Korshun, L N; Kiseleva, E K; Tereshchenko, M I; Vudmaska, M I; Moĭsa, L N; Shevchuk, V A; Spivak, N Ia

    2014-08-01

    The lysate and recombinant antigens of various production included informula of ELISA-test-systems were analyzed. The ELISA-test-systems are used for detection of IgG to Herpes simplex virus type I and II. For testing the panel of serums PTH 201 (BBI Inc.) were used. The samples of this panel contain antibodies to Herpes simplex virus type I and II in mixed titers. The 69 serums of donors were used too (17 samples had IgG to Herpes simplex virus type I, 23 samples to Herpes simplex virus type II and 29 samples had no antibodies to Herpes simplex virus). The diagnostic capacity of mixture of recombinant antigens gG1 Herpes simplex virus type I and gG2 Herpes simplex virus type II (The research-and-production complex "DiaprofMed") was comparable with mixture of lysate antigen Herpes simplex virus type I and II (Membrane) EIE Antigen ("Virion Ltd."). In the test-systems for differentiation of IgG to Herpes simplex virus type I the recombinant antigen gG1 Herpes simplex virus type I proved to be comparable with commercial analogue Herpes simplex virus-1 gG1M ("Viral Therapeutics Inc."'). At the same time, capacity to detect IgG to Herpes simplex virus type II in recombinant protein gG2 Herpes simplex virus type II is significantly higher than in its analogue Herpes simplex virus-2 gG2c ("Viral Therapeutics Inc.").

  14. The potential application of a transcriptionally regulated oncolytic herpes simplex virus for human cancer therapy

    PubMed Central

    Miao, L; Fraefel, C; Sia, K C; Newman, J P; Mohamed-Bashir, S A; Ng, W H; Lam, P Y P

    2014-01-01

    Background: Emerging studies have shown the potential benefit of arming oncolytic viruses with therapeutic genes. However, most of these therapeutic genes are placed under the regulation of ubiquitous viral promoters. Our goal is to generate a safer yet potent oncolytic herpes simplex virus type-1 (HSV-1) for cancer therapy. Methods: Using bacterial artificial chromosome (BAC) recombineering, a cell cycle-regulatable luciferase transgene cassette was replaced with the infected cell protein 6 (ICP6) coding region (encoded for UL39 or large subunit of ribonucleotide reductase) of the HSV-1 genome. These recombinant viruses, YE-PC8, were further tested for its proliferation-dependent luciferase gene expression. Results: The ability of YE-PC8 to confer proliferation-dependent transgene expression was demonstrated by injecting similar amount of viruses into the tumour-bearing region of the brain and the contralateral normal brain parenchyma of the same mouse. The results showed enhanced levels of luciferase activities in the tumour region but not in the normal brain parenchyma. Similar findings were observed in YE-PC8-infected short-term human brain patient-derived glioma cells compared with normal human astrocytes. intratumoural injection of YE-PC8 viruses resulted in 77% and 80% of tumour regression in human glioma and human hepatocellular carcinoma xenografts, respectively. Conclusion: YE-PC8 viruses confer tumour selectivity in proliferating cells and may be developed further as a feasible approach to treat human cancers. PMID:24196790

  15. IL-12 Expressing oncolytic herpes simplex virus promotes anti-tumor activity and immunologic control of metastatic ovarian cancer in mice.

    PubMed

    Thomas, Eric D; Meza-Perez, Selene; Bevis, Kerri S; Randall, Troy D; Gillespie, G Yancey; Langford, Catherine; Alvarez, Ronald D

    2016-10-27

    Despite advances in surgical aggressiveness and conventional chemotherapy, ovarian cancer remains the most lethal cause of gynecologic cancer mortality; consequently there is a need for new therapeutic agents and innovative treatment paradigms for the treatment of ovarian cancer. Several studies have demonstrated that ovarian cancer is an immunogenic disease and immunotherapy represents a promising and novel approach that has not been completely evaluated in ovarian cancer. Our objective was to evaluate the anti-tumor activity of an oncolytic herpes simplex virus "armed" with murine interleukin-12 and its ability to elicit tumor-specific immune responses. We evaluated the ability of interleukin-12-expressing and control oncolytic herpes simplex virus to kill murine and human ovarian cancer cell lines in vitro. We also administered interleukin-12-expressing oncolytic herpes simplex virus to the peritoneal cavity of mice that had developed spontaneous, metastatic ovarian cancer and determined overall survival and tumor burden at 95 days. We used flow cytometry to quantify the tumor antigen-specific CD8 + T cell response in the omentum and peritoneal cavity. All ovarian cancer cell lines demonstrated susceptibility to oncolytic herpes simplex virus in vitro. Compared to controls, mice treated with interleukin-12-expressing oncolytic herpes simplex virus demonstrated a more robust tumor antigen-specific CD8 + T-cell immune response in the omentum (471.6 cells vs 33.1 cells; p = 0.02) and peritoneal cavity (962.3 cells vs 179.5 cells; p = 0.05). Compared to controls, mice treated with interleukin-12-expressing oncolytic herpes simplex virus were more likely to control ovarian cancer metastases (81.2 % vs 18.2 %; p = 0.008) and had a significantly longer overall survival (p = 0.02). Finally, five of 6 mice treated with interleukin-12-expressing oHSV had no evidence of metastatic tumor when euthanized at 6 months, compared to two of 4 mice treated with sterile phosphate buffer solution. Our pilot study demonstrates that an interleukin-12-expressing oncolytic herpes simplex virus effectively kills both murine and human ovarian cancer cell lines and promotes tumor antigen-specific CD8 + T-cell responses in the peritoneal cavity and omentum, leading to reduced peritoneal metastasis and improved survival in a mouse model.

  16. Impact of Type I Interferon on the Safety and Immunogenicity of an Experimental Live-Attenuated Herpes Simplex Virus 1 Vaccine in Mice

    PubMed Central

    Royer, Derek J.; Carr, Meghan M.; Chucair-Elliott, Ana J.; Halford, William P.

    2017-01-01

    ABSTRACT Viral fitness dictates virulence and capacity to evade host immune defenses. Understanding the biological underpinnings of such features is essential for rational vaccine development. We have previously shown that the live-attenuated herpes simplex virus 1 (HSV-1) mutant lacking the nuclear localization signal (NLS) on the ICP0 gene (0ΔNLS) is sensitive to inhibition by interferon beta (IFN-β) in vitro and functions as a highly efficacious experimental vaccine. Here, we characterize the host immune response and in vivo pathogenesis of HSV-1 0ΔNLS relative to its fully virulent parental strain in C57BL/6 mice. Additionally, we explore the role of type 1 interferon (IFN-α/β) signaling on virulence and immunogenicity of HSV-1 0ΔNLS and uncover a probable sex bias in the induction of IFN-α/β in the cornea during HSV-1 infection. Our data show that HSV-1 0ΔNLS lacks neurovirulence even in highly immunocompromised mice lacking the IFN-α/β receptor. These studies support the translational viability of the HSV-1 0ΔNLS vaccine strain by demonstrating that, while it is comparable to a virulent parental strain in terms of immunogenicity, HSV-1 0ΔNLS does not induce significant tissue pathology. IMPORTANCE HSV-1 is a common human pathogen associated with a variety of clinical presentations ranging in severity from periodic “cold sores” to lethal encephalitis. Despite the consistent failures of HSV subunit vaccines in clinical trials spanning the past 28 years, opposition to live-attenuated HSV vaccines predicated on unfounded safety concerns currently limits their widespread acceptance. Here, we demonstrate that a live-attenuated HSV-1 vaccine has great translational potential. PMID:28122977

  17. Herpes Simplex Virus Is Equipped with RNA- and Protein-Based Mechanisms To Repress Expression of ATRX, an Effector of Intrinsic Immunity

    PubMed Central

    Jurak, Igor; Silverstein, Leah B.; Sharma, Mayuri

    2012-01-01

    Intrinsic immunity is a first-line intracellular defense against virus infection, and viruses have evolved mechanisms to counteract it. During herpes simplex virus (HSV) infection, nuclear domain 10 (ND10) components localize adjacent to incoming viral genomes and generate a repressive environment for viral gene expression. Here, we found that the ND10 component, alpha-thalassemia/mental retardation syndrome X-linked (ATRX) protein, is predicted to be a target of HSV-1 miR-H1 and HSV-2 miR-H6. These microRNAs (miRNAs) share a seed sequence and are abundant during lytic infection. Mimics of both miRNAs could deplete endogenous ATRX, and an miR-H1 mimic could repress the expression of a reporter linked to the 3′ untranslated region of ATRX mRNA, identifying a cellular mRNA targeted by an HSV miRNA. Interestingly, ATRX protein and its mRNA were depleted in cells lytically infected with HSV, and ATRX protein was also depleted in cells infected with human cytomegalovirus. However, infection with an HSV-1 mutant lacking miR-H1 still resulted in ATRX depletion. This depletion was sensitive to a proteasome inhibitor and was largely ablated by a deletion of the gene encoding the immediate-early ICP0 protein. Additionally, a deletion of the gene encoding the tegument protein Vhs ablated most of the depletion of ATRX mRNA. Thus, HSV is equipped with multiple mechanisms to limit the expression of ATRX. As ATRX is implicated in repression of lytic viral gene expression, our results suggest roles for these different mechanisms during various phases of HSV infection. PMID:22787211

  18. Herpes simplex virus is equipped with RNA- and protein-based mechanisms to repress expression of ATRX, an effector of intrinsic immunity.

    PubMed

    Jurak, Igor; Silverstein, Leah B; Sharma, Mayuri; Coen, Donald M

    2012-09-01

    Intrinsic immunity is a first-line intracellular defense against virus infection, and viruses have evolved mechanisms to counteract it. During herpes simplex virus (HSV) infection, nuclear domain 10 (ND10) components localize adjacent to incoming viral genomes and generate a repressive environment for viral gene expression. Here, we found that the ND10 component, alpha-thalassemia/mental retardation syndrome X-linked (ATRX) protein, is predicted to be a target of HSV-1 miR-H1 and HSV-2 miR-H6. These microRNAs (miRNAs) share a seed sequence and are abundant during lytic infection. Mimics of both miRNAs could deplete endogenous ATRX, and an miR-H1 mimic could repress the expression of a reporter linked to the 3' untranslated region of ATRX mRNA, identifying a cellular mRNA targeted by an HSV miRNA. Interestingly, ATRX protein and its mRNA were depleted in cells lytically infected with HSV, and ATRX protein was also depleted in cells infected with human cytomegalovirus. However, infection with an HSV-1 mutant lacking miR-H1 still resulted in ATRX depletion. This depletion was sensitive to a proteasome inhibitor and was largely ablated by a deletion of the gene encoding the immediate-early ICP0 protein. Additionally, a deletion of the gene encoding the tegument protein Vhs ablated most of the depletion of ATRX mRNA. Thus, HSV is equipped with multiple mechanisms to limit the expression of ATRX. As ATRX is implicated in repression of lytic viral gene expression, our results suggest roles for these different mechanisms during various phases of HSV infection.

  19. Two open reading frames (ORF1 and ORF2) within the 2.0-kilobase latency-associated transcript of herpes simplex virus type 1 are not essential for reactivation from latency.

    PubMed Central

    Fareed, M U; Spivack, J G

    1994-01-01

    The herpes simplex virus type 1 (HSV-1) latency-associated transcripts (LATs) are dispensable for establishment and maintenance of latent infection. However, the LATs have been implicated in reactivation of the virus from its latent state. Since the reported LAT deletion and/or insertion variants that are reactivation impaired contain deletions in the putative LAT promoter, it is not known which LAT sequences are involved in reactivation. To examine the role of the 2.0-kb LAT in the process of reactivation and the functional importance of the putative open reading frames (ORF1 and ORF2) contained within the 2.0-kb LAT, we have constructed an HSV-1 variant that contains a precise deletion and insertion within the LAT-specific DNA sequences using site-directed mutagenesis. The HSV-1 variant FS1001K contains an 1,186-bp deletion starting precisely from the 5' end of the 2.0-kb LAT and, for identification, a XbaI restriction endonuclease site insertion. The FS1001K genome contains no other deletions and/or insertions as analyzed by a variety of restriction endonucleases. The deletion in FS1001K removes the entire 556-bp intron within the 2.0-kb LAT, the first 229 nucleotides of ORF1, and the first 159 nucleotides of ORF2 without having an affect on the RL2 (ICP0) gene. Explant cocultivation reactivation assays indicated that this deletion had a minimal effect on reactivation of the variant FS1001K compared with the parental wild-type virus using a mouse eye model. As expected, Northern (RNA) blot analyses have shown that the variant virus (FS1001K) does not produce the 2.0-kb LAT or the 1.45- to 1.5-kb LAT either in vitro or in vivo; however, FS1001K produces an intact RL2 transcript in tissue culture. These data suggest that the 2.0-kb LAT putative ORF1 and ORF2 (or the first 1,186 bp of the 2.0-kb LAT) are dispensable for explant reactivation of latent HSV-1. Images PMID:7966597

  20. Expression of Herpes Simplex Virus 1-Encoded MicroRNAs in Human Trigeminal Ganglia and Their Relation to Local T-Cell Infiltrates ▿

    PubMed Central

    Held, Kathrin; Junker, Andreas; Dornmair, Klaus; Meinl, Edgar; Sinicina, Inga; Brandt, Thomas; Theil, Diethilde; Derfuss, Tobias

    2011-01-01

    Herpes simplex type 1 (HSV-1) is a neurotropic virus which establishes lifelong latency in human trigeminal ganglia (TG). Currently, two nonexclusive control mechanisms of HSV-1 latency are discussed: antiviral CD8+ T cells and viral microRNAs (miRNAs) encoded by the latency associated transcript (LAT). We investigate here to what extent these mechanisms may contribute to the maintenance of HSV-1 latency. We show that only a small proportion of LAT+ neurons is surrounded by T cells in human TG. This indicates that viral latency in human TG might be controlled by other mechanisms such as viral miRNAs. Therefore, we assessed TG sections for the presence of HSV-1 miRNA, DNA, and mRNA by combining LAT in situ hybridization, T-cell immunohistochemistry, and single cell analysis of laser-microdissected sensory neurons. Quantitative reverse transcription-PCR (RT-PCR) revealed that LAT+ neurons with or without surrounding T cells were always positive for HSV-1 miRNAs and DNA. Furthermore, ICP0 mRNA could rarely be detected only in LAT+ neurons, as analyzed by single-cell RT-PCR. In contrast, in LAT− neurons that were surrounded by T cells, neither miRNAs nor the DNA of HSV-1, HSV-2, or varicella-zoster virus could be detected. These data indicate that the majority of LAT+ neurons is not directly controlled by T cells. However, miRNA expression in every latently infected neuron would provide an additional checkpoint before viral replication is initiated. PMID:21795359

  1. Identification of two small RNAs within the first 1.5-kb of the herpes simplex virus type 1-encoded latency-associated transcript.

    PubMed

    Peng, Weiping; Vitvitskaia, Olga; Carpenter, Dale; Wechsler, Steven L; Jones, Clinton

    2008-01-01

    The herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) is abundantly expressed in latently infected neurons. In the rabbit or mouse ocular models of infection, expression of the first 1.5 kb of LAT coding sequences is sufficient for and necessary for wild-type levels of spontaneous reactivation from latency. The antiapoptosis functions of LAT, which maps to the same 1.5 kb of LAT, are important for the latency-reactivation cycle because replacement of LAT with other antiapoptosis genes (the baculovirus IAP gene or the bovine herpesvirus type 1 latency-related gene) restores wild-type levels of reactivation to a LAT null mutant. A recent study identified a micro-RNA within LAT that can inhibit apoptosis (Gupta et al, Nature 442: 82-85). In this study, the authors analyzed the first 1.5 kb of LAT for additional small RNAs that may have regulatory functions. Two LAT-specific small RNAs were detected in productively infected human neuroblastoma cells within the first 1.5 kb of LAT, in a region that is important for inhibiting apoptosis. Although these small RNAs possess extensive secondary structure and a stem-loop structure, bands migrating near 23 bases were not detected suggesting these small RNAs are not true micro-RNAs. Both of the small LAT-specific RNAs have the potential to base pair with the ICP4 mRNA. These two small LAT RNAs may play a role in the latency-reactivation cycle by reducing apoptosis and/or by reducing ICP4 RNA expression.

  2. Latency-associated transcript (LAT) exon 1 controls herpes simplex virus species-specific phenotypes: reactivation in the guinea pig genital model and neuron subtype-specific latent expression of LAT.

    PubMed

    Bertke, Andrea S; Patel, Amita; Imai, Yumi; Apakupakul, Kathleen; Margolis, Todd P; Krause, Philip R

    2009-10-01

    Herpes simplex virus 1 (HSV-1) and HSV-2 cause similar acute infections but differ in their abilities to reactivate from trigeminal and lumbosacral dorsal root ganglia. During latency, HSV-1 and HSV-2 also preferentially express their latency-associated transcripts (LATs) in different sensory neuronal subtypes that are positive for A5 and KH10 markers, respectively. Chimeric virus studies showed that LAT region sequences influence both of these viral species-specific phenotypes. To further map the LAT region sequences responsible for these phenotypes, we constructed the chimeric virus HSV2-LAT-E1, in which exon 1 (from the LAT TATA to the intron splice site) was replaced by the corresponding sequence from HSV-1 LAT. In intravaginally infected guinea pigs, HSV2-LAT-E1 reactivated inefficiently relative to the efficiency of its rescuant and wild-type HSV-2, but it yielded similar levels of viral DNA, LAT, and ICP0 during acute and latent infection. HSV2-LAT-E1 preferentially expressed the LAT in A5+ neurons (as does HSV-1), while the chimeric viruses HSV2-LAT-P1 (LAT promoter swap) and HSV2-LAT-S1 (LAT sequence swap downstream of the promoter) exhibited neuron subtype-specific latent LAT expression phenotypes more similar to that of HSV-2 than that of HSV-1. Rescuant viruses displayed the wild-type HSV-2 phenotypes of efficient reactivation in the guinea pig genital model and a tendency to express LAT in KH10+ neurons. The region that is critical for HSV species-specific differences in latency and reactivation thus lies between the LAT TATA and the intron splice site, and minor differences in the 5' ends of chimeric sequences in HSV2-LAT-E1 and HSV2-LAT-S1 point to sequences immediately downstream of the LAT TATA.

  3. Latency-Associated Transcript (LAT) Exon 1 Controls Herpes Simplex Virus Species-Specific Phenotypes: Reactivation in the Guinea Pig Genital Model and Neuron Subtype-Specific Latent Expression of LAT▿

    PubMed Central

    Bertke, Andrea S.; Patel, Amita; Imai, Yumi; Apakupakul, Kathleen; Margolis, Todd P.; Krause, Philip R.

    2009-01-01

    Herpes simplex virus 1 (HSV-1) and HSV-2 cause similar acute infections but differ in their abilities to reactivate from trigeminal and lumbosacral dorsal root ganglia. During latency, HSV-1 and HSV-2 also preferentially express their latency-associated transcripts (LATs) in different sensory neuronal subtypes that are positive for A5 and KH10 markers, respectively. Chimeric virus studies showed that LAT region sequences influence both of these viral species-specific phenotypes. To further map the LAT region sequences responsible for these phenotypes, we constructed the chimeric virus HSV2-LAT-E1, in which exon 1 (from the LAT TATA to the intron splice site) was replaced by the corresponding sequence from HSV-1 LAT. In intravaginally infected guinea pigs, HSV2-LAT-E1 reactivated inefficiently relative to the efficiency of its rescuant and wild-type HSV-2, but it yielded similar levels of viral DNA, LAT, and ICP0 during acute and latent infection. HSV2-LAT-E1 preferentially expressed the LAT in A5+ neurons (as does HSV-1), while the chimeric viruses HSV2-LAT-P1 (LAT promoter swap) and HSV2-LAT-S1 (LAT sequence swap downstream of the promoter) exhibited neuron subtype-specific latent LAT expression phenotypes more similar to that of HSV-2 than that of HSV-1. Rescuant viruses displayed the wild-type HSV-2 phenotypes of efficient reactivation in the guinea pig genital model and a tendency to express LAT in KH10+ neurons. The region that is critical for HSV species-specific differences in latency and reactivation thus lies between the LAT TATA and the intron splice site, and minor differences in the 5′ ends of chimeric sequences in HSV2-LAT-E1 and HSV2-LAT-S1 point to sequences immediately downstream of the LAT TATA. PMID:19641003

  4. RNA interference inhibits herpes simplex virus type 1 isolated from saliva samples and mucocutaneous lesions.

    PubMed

    Silva, Amanda Perse da; Lopes, Juliana Freitas; Paula, Vanessa Salete de

    2014-01-01

    The aim of this study was to evaluate the use of RNA interference to inhibit herpes simplex virus type-1 replication in vitro. For herpes simplex virus type-1 gene silencing, three different small interfering RNAs (siRNAs) targeting the herpes simplex virus type-1 UL39 gene (sequence si-UL 39-1, si-UL 39-2, and si-UL 39-3) were used, which encode the large subunit of ribonucleotide reductase, an essential enzyme for DNA synthesis. Herpes simplex virus type-1 was isolated from saliva samples and mucocutaneous lesions from infected patients. All mucocutaneous lesions' samples were positive for herpes simplex virus type-1 by real-time PCR and by virus isolation; all herpes simplex virus type-1 from saliva samples were positive by real-time PCR and 50% were positive by virus isolation. The levels of herpes simplex virus type-1 DNA remaining after siRNA treatment were assessed by real-time PCR, whose results demonstrated that the effect of siRNAs on gene expression depends on siRNA concentration. The three siRNA sequences used were able to inhibit viral replication, assessed by real-time PCR and plaque assays and among them, the sequence si-UL 39-1 was the most effective. This sequence inhibited 99% of herpes simplex virus type-1 replication. The results demonstrate that silencing herpes simplex virus type-1 UL39 expression by siRNAs effectively inhibits herpes simplex virus type-1 replication, suggesting that siRNA based antiviral strategy may be a potential therapeutic alternative. Copyright © 2014. Published by Elsevier Editora Ltda.

  5. Coregulatory Interactions among CD8α Dendritic Cells, the Latency-Associated Transcript, and Programmed Death 1 Contribute to Higher Levels of Herpes Simplex Virus 1 Latency

    PubMed Central

    Mott, Kevin R.; Allen, Sariah J.; Zandian, Mandana

    2014-01-01

    ABSTRACT The latency-associated transcript (LAT) of herpes simplex virus 1 (HSV-1), CD8α+ dendritic cells (DCs), and programmed death 1 (PD-1) have all been implicated in the HSV-1 latency-reactivation cycle. It is not known, however, whether an interaction between LAT and CD8α+ DCs regulates latency and T-cell exhaustion. To address this question, we used LAT-expressing [LAT(+)] and LAT-negative [LAT(−)] viruses. Depletion of DCs in mice ocularly infected with LAT(+) virus resulted in a reduction in the number of T cells expressing PD-1 in the trigeminal ganglia (TG), whereas depletion of DCs in mice similarly infected with LAT(−) virus did not alter PD-1 expression. CD8α+ DCs, but not CD4+ DCs, infected with LAT(+) virus had higher levels of ICP0, ICP4, thymidine kinase (TK), and PD-1 ligand 1 (PD-L1) transcripts than those infected with LAT(−) virus. Coculture of infected bone marrow (BM)-derived DCs from wild-type (WT) mice, but not infected DCs from CD8α−/− mice, with WT naive T cells contributed to an increase in PD-1 expression. Transfer of bone marrow from WT mice but not CD8α−/− mice to recipient Rag1−/− mice increased the number of latent viral genomes in reconstituted mice infected with the LAT(+) virus. Collectively, these data indicated that a reduction in latency correlated with a decline in the levels of CD8α+ DCs and PD-1 expression. In summary, our results demonstrate an interaction among LAT, PD-1, and CD11c CD8α+ cells that regulates latency in the TG of HSV-1-infected mice. IMPORTANCE Very little is known regarding the interrelationship of LAT, PD-1, and CD8α+ DCs and how such interactions might contribute to relative numbers of latent viral genomes. We show here that (i) in both in vivo and in vitro studies, deficiency of CD8α+ DCs significantly reduced T-cell exhaustion in the presence of LAT(+) virus but not LAT(−) virus; (ii) HSV-1 infectivity was significantly lower in LAT(−)-infected DCs than in their LAT(+)-infected counterparts; and (iii) adoptive transfer of bone marrow (BM) from WT but not CD8α−/− mice to recipient Rag1−/− mice restored latency to the level in WT mice following infection with LAT(+) virus. These studies point to a key role for CD8α+ DCs in T-cell exhaustion in the presence of LAT, which leads to larger numbers of latent viral genomes. Thus, altering this negative function of CD8α+ DCs can potentially be used to generate a more effective vaccine against HSV infection. PMID:24672046

  6. Herpes simplex virus following stab phlebectomy.

    PubMed

    Hicks, Caitlin W; Lum, Ying Wei; Heller, Jennifer A

    2017-03-01

    Herpes simplex virus infection following surgery is an unusual postoperative phenomenon. Many mechanisms have been suggested, with the most likely explanation related to latent virus reactivation due to a proinflammatory response in the setting of local trauma. Here, we present a case of herpes simplex virus reactivation in an immunocompetent female following a conventional right lower extremity stab phlebectomy. Salient clinical and physical examination findings are described, and management strategies for herpes simplex virus reactivation are outlined. This is the first known case report of herpes simplex virus reactivation following lower extremity phlebectomy.

  7. Ligand induced stabilization of the melting temperature of the HSV-1 single-strand DNA binding protein using the thermal shift assay.

    PubMed

    Rupesh, Kanchi Ravi; Smith, Aaron; Boehmer, Paul E

    2014-11-28

    We have adapted the thermal shift assay to measure the ligand binding properties of the herpes simplex virus-1 single-strand DNA binding protein, ICP8. By measuring SYPRO Orange fluorescence in microtiter plates using a fluorescence-enabled thermal cycler, we have quantified the effects of oligonucleotide ligands on the melting temperature of ICP8. We found that single-stranded oligomers raise the melting temperature of ICP8 in a length- and concentration-dependent manner, ranging from 1°C for (dT)5 to a maximum of 9°C with oligomers ⩾10 nucleotides, with an apparent Kd of <1μM for (dT)20. Specifically, the results indicate that ICP8 is capable of interacting with oligomers as short as 5 nucleotides. Moreover, the observed increases in melting temperature of up to 9°C, indicates that single-strand DNA binding significantly stabilizes the structure of ICP8. This assay may be applied to investigate the ligand binding proteins of other single-strand DNA binding proteins and used as a high-throughput screen to identify compounds with therapeutic potential that inhibit single-strand DNA binding. As proof of concept, the single-strand DNA binding agent ciprofloxacin reduces the ligand induced stabilization of the melting temperature of ICP8 in a dose-dependent manner. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. 76 FR 48715 - Immunology and Microbiology Devices; Reclassification of the Herpes Simplex Virus Serological...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-09

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 866 [Docket No. FDA-2010-N-0429] Immunology and Microbiology Devices; Reclassification of the Herpes Simplex Virus... CFR part 866 is amended as follows: PART 866--IMMUNOLOGY AND MICROBIOLOGY DEVICES 0 1. The authority...

  9. HSV-mediated gene transfer of vascular endothelial growth factor to dorsal root ganglia prevents diabetic neuropathy

    PubMed Central

    Chattopadhyay, M; Krisky, D; Wolfe, D; Glorioso, JC; Mata, M; Fink, DJ

    2005-01-01

    We examined the utility of herpes simplex virus (HSV) vector-mediated gene transfer of vascular endothelial growth factor (VEGF) in a mouse model of diabetic neuropathy. A replication-incompetent HSV vector with VEGF under the control of the HSV ICP0 promoter (vector T0VEGF) was constructed. T0VEGF expressed and released VEGF from primary dorsal root ganglion (DRG) neurons in vitro, and following subcutaneous inoculation in the foot, expressed VEGF in DRG and nerve in vivo. At 2 weeks after induction of diabetes, subcutaneous inoculation of T0VEGF prevented the reduction in sensory nerve amplitude characteristic of diabetic neuropathy measured 4 weeks later, preserved autonomic function measured by pilocarpine-induced sweating, and prevented the loss of nerve fibers in the skin and reduction of neuropeptide calcitonin gene-related peptide and substance P in DRG neurons of the diabetic mice. HSV-mediated transfer of VEGF to DRG may prove useful in treatment of diabetic neuropathy. PMID:15843809

  10. HSV-I and the cellular DNA damage response.

    PubMed

    Smith, Samantha; Weller, Sandra K

    2015-04-01

    Peter Wildy first observed genetic recombination between strains of HSV in 1955. At the time, knowledge of DNA repair mechanisms was limited, and it has only been in the last decade that particular DNA damage response (DDR) pathways have been examined in the context of viral infections. One of the first reports addressing the interaction between a cellular DDR protein and HSV-1 was the observation by Lees-Miller et al . that DNA-dependent protein kinase catalytic subunit levels were depleted in an ICP0-dependent manner during Herpes simplex virus 1 infection. Since then, there have been numerous reports describing the interactions between HSV infection and cellular DDR pathways. Due to space limitations, this review will focus predominantly on the most recent observations regarding how HSV navigates a potentially hostile environment to replicate its genome.

  11. Inactivation of Herpes Simplex Viruses by Nonionic Surfactants

    PubMed Central

    Asculai, Samuel S.; Weis, Margaret T.; Rancourt, Martha W.; Kupferberg, A. B.

    1978-01-01

    Nonionic surface-active agents possessing ether or amide linkages between the hydrophillic and hydrophobic portions of the molecule rapidly inactivated the infectivity of herpes simplex viruses. The activity stemmed from the ability of nonionic surfactants to dissolve lipid-containing membranes. This was confirmed by observing surfactant destruction of mammalian cell plasma membranes and herpes simplex virus envelopes. Proprietary vaginal contraceptive formulations containing nonionic surfactants also inactivated herpes simplex virus infectivity. This observation suggests that nonionic surfactants in appropriate formulation could effectively prevent herpes simplex virus transmission. Images PMID:208460

  12. The "Knife-Cut Sign" Revisited: A Distinctive Presentation of Linear Erosive Herpes Simplex Virus Infection in Immunocompromised Patients.

    PubMed

    Cohen, Philip R

    2015-10-01

    The "knife-cut sign" is a distinctive presentation of linear erosive herpes simplex virus infection in immunocompromised patients. To describe a man whose herpes simplex virus infection-related skin lesions demonstrated the "knife-cut sign" and to review the characteristics of reported immunosuppressed individuals with "knife-cut" cutaneous herpes simplex virus lesions. A man with multiple myeloma and post-stem cell transplant cutaneous graft-versus-host disease managed with systemic prednisone and sirolimus developed disseminated cutaneous herpes simplex virus infection with virus-associated linear ulcers of the inguinal folds and the area between his ear and scalp; the lesions at both sites had a distinctive "knife-cut" appearance. Using the PubMed database, an extensive literature search was performed on herpes simplex virus, immunocompromised patient, and "knife-cut sign". Herpes simplex virus infection-associated skin lesions that demonstrate the "knife-cut sign" present in patients who are immunosuppressed secondary to either an underlying medical condition or a systemic therapy or both. The distinctive virus-related cutaneous lesions appear as linear ulcers and fissures in intertriginous areas, such as the folds in the inguinal area, the vulva, and the abdomen; in addition, other sites include beneath the breast, within the gluteal cleft, and the area between the ear and the scalp. Not only herpes simplex virus-2, but also herpes simplex virus-1 has been observed as the causative viral serotype; indeed, herpes simplex virus-1 has been associated with genital and inframammary lesions in addition to those above the neck. Direct fluorescent antibody testing is a rapid method for confirming the clinically suspected viral infection; however, since false-negative direct fluorescent antibody testing occurred in some of the patients, it may be prudent to also perform viral cultures and possibly lesional skin biopsies to establish the diagnosis. The herpes simplex virus infection-related skin lesions clinically improve once systemic antiviral therapy is initiated. In immunosuppressed individuals, the "knife-cut sign" is a distinctive presentation of cutaneous linear erosive herpes simplex virus infection. Recognition of the linear ulcers in intertriginous areas and body folds should prompt the clinician to consider herpes simplex virus infection-associated skin lesions in an immunocompromised patient and to initiate systemic antiviral treatment while awaiting the results of laboratory evaluation to confirm the suspected diagnosis.

  13. Dual silencing of Bcl-2 and Survivin by HSV-1 vector shows better antitumor efficacy in higher PKR phosphorylation tumor cells in vitro and in vivo.

    PubMed

    Chen, X; Zhou, Y; Wang, J; Wang, J; Yang, J; Zhai, Y; Li, B

    2015-08-01

    RNA interference (RNAi) is a promising tool for cancer therapy, but its delivery strategy is a major challenge for its application. Oncolytic herpes simplex virus type 1 (HSV-1) is not only an effective antitumor drug but also an excellent vector. Herein, RNAi of oncogenes Bcl-2 and Survivin was combined with oncolytic HSV-1 (ICP34.5-/ICP6-/ICP47-/CMV-GM-CSF) and a new vector HSV010-BS was constructed. Transfected cell viability assays and animal experiments revealed that the dual silencing of Bcl-2 and Survivin improved the antitumor effect of oncolytic HSV-1 in vitro and in vivo, while the antitumor effect was correlated with the phosphorylation levels of PKR of the tumor cells. The higher the phosphorylation levels of PKR of the tumor cells, the weaker the replication ability of oncolytic HSV-1, and the more powerful HSV010-BS was than its control vectors in inhibiting the growth of the tumor cells. The results provided direct supportive proofs for a new potential cancer therapy strategy.

  14. Expression of varicella-zoster virus and herpes simplex virus in normal human trigeminal ganglia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vafai, A.; Wellish, M.; Devlin, M.

    1988-04-01

    Lysates of radiolabeled explants from four human trigeminal ganglia were immunoprecipitated with antibodies to varicella-zoster virus (VZV) and to herpes simplex virus. Both herpes simplex virus- and VZV-specific proteins were detected in lysates of all four ganglia. Absence of reactivity in ganglion explants with monoclonal antibodies suggested that herpes simplex virus and VZV were not reactivated during the culture period. In situ hybridization studies demonstrated the presence of RNA transcripts from the VZV immediate early gene 63. This approach to the detection of herpes simplex virus and VZV expression in human ganglia should facilitate analysis of viral RNA and proteinsmore » in human sensory ganglia.« less

  15. Therapeutic Vaccine for Genital Herpes Simplex Virus-2 Infection: Findings From a Randomized Trial.

    PubMed

    Bernstein, David I; Wald, Anna; Warren, Terri; Fife, Kenneth; Tyring, Stephen; Lee, Patricia; Van Wagoner, Nick; Magaret, Amalia; Flechtner, Jessica B; Tasker, Sybil; Chan, Jason; Morris, Amy; Hetherington, Seth

    2017-03-15

    Genital herpes simplex virus type 2 (HSV-2) infection causes recurrent lesions and frequent viral shedding. GEN-003 is a candidate therapeutic vaccine containing HSV-2 gD2∆TMR and ICP4.2, and Matrix-M2 adjuvant. Persons with genital herpes were randomized into 3 dose cohorts to receive 3 intramuscular doses 21 days apart of 10 µg, 30 µg, or 100 µg of GEN-003, antigens without adjuvant, or placebo. Participants obtained genital swab specimens twice daily for HSV-2 detection and monitored genital lesions for 28-day periods at baseline and at intervals after the last dose. One hundred and thirty-four persons received all 3 doses. Reactogenicity was associated with adjuvant but not with antigen dose or dose number. No serious adverse events were attributed to GEN-003. Compared with baseline, genital HSV-2 shedding rates immediately after dosing were reduced with GEN-003 (from 13.4% to 6.4% for 30 μg [P < .001] and from 15.0% to 10.3% for 100 µg [P < .001]). Lesion rates were also significantly (P < .01) reduced immediately following immunization with 30 µg or 100 µg of GEN-003. GEN-003 elicited increases in antigen binding, virus neutralizing antibody, and T-cell responses. GEN-003 had an acceptable safety profile and stimulated humoral and cellular immune responses. GEN-003 at doses of 30 µg and 100 µg reduced genital HSV shedding and lesion rates. NCT01667341 (funded by Genocea). © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  16. Decline in Herpes Simplex Virus Type 2 Among Non-Injecting Heroin and Cocaine Users in New York City, 2005 to 2014: Prospects for Avoiding a Resurgence of Human Immunodeficiency Virus.

    PubMed

    Des Jarlais, Don C; Arasteh, Kamyar; Feelemyer, Jonathan; McKnight, Courtney; Tross, Susan; Perlman, David C; Campbell, Aimee N C; Hagan, Holly; Cooper, Hannah L F

    2017-02-01

    Herpes simplex virus type 2 (HSV-2) infection increases both susceptibility to and transmissibility of human immunodeficiency virus (HIV), and HSV-2 and HIV are often strongly associated in HIV epidemics. We assessed trends in HSV-2 prevalence among non-injecting drug users (NIDUs) when HIV prevalence declined from 16% to 8% among NIDUs in New York City. Subjects were current non-injecting users of heroin and/or cocaine and who had never injected illicit drugs. Three thousand one hundred fifty-seven NIDU subjects were recruited between 2005 and 2014 among persons entering Mount Sinai Beth Israel substance use treatment programs. Structured interviews, HIV, and HSV-2 testing were administered. Change over time was assessed by comparing 2005 to 2010 with 2011 to 2014 periods. Herpes simplex virus type 2 incidence was estimated among persons who participated in multiple years. Herpes simplex virus type 2 prevalence was strongly associated with HIV prevalence (odds ratio, 3.9; 95% confidence interval, 2.9-5.1) from 2005 to 2014. Herpes simplex virus type 2 prevalence declined from 60% to 56% (P = 0.01). The percentage of NIDUs with neither HSV-2 nor HIV infection increased from 37% to 43%, (P < 0.001); the percentage with HSV-2/HIV coinfection declined from 13% to 6% (P < 0.001). Estimated HSV-2 incidence was 1 to 2/100 person-years at risk. There were parallel declines in HIV and HSV-2 among NIDUs in New York City from 2005 to 2014. The increase in the percentage of NIDUs with neither HSV-2 nor HIV infection, the decrease in the percentage with HSV-2/HIV coinfection, and the low to moderate HSV-2 incidence suggest some population-level protection against resurgence of HIV. Prevention efforts should be strengthened to end the combined HIV/HSV-2 epidemic among NIDUs in New York City.

  17. Concomitant herpes simplex virus colitis and hepatitis in a man with ulcerative colitis: Case report and review of the literature.

    PubMed

    Phadke, Varun K; Friedman-Moraco, Rachel J; Quigley, Brian C; Farris, Alton B; Norvell, J P

    2016-10-01

    Herpesvirus infections often complicate the clinical course of patients with inflammatory bowel disease; however, invasive disease due to herpes simplex virus is distinctly uncommon. We present a case of herpes simplex virus colitis and hepatitis, review all the previously published cases of herpes simplex virus colitis, and discuss common clinical features and outcomes. We also discuss the epidemiology, clinical manifestations, diagnosis, and management of herpes simplex virus infections, focusing specifically on patients with inflammatory bowel disease. A 43-year-old man with ulcerative colitis, previously controlled with an oral 5-aminosalicylic agent, developed symptoms of a colitis flare that did not respond to treatment with systemic corticosteroid therapy. One week later he developed orolabial ulcers and progressive hepatic dysfunction, with markedly elevated transaminases and coagulopathy. He underwent emergent total colectomy when imaging suggested bowel micro-perforation. Pathology from both the colon and liver was consistent with herpes simplex virus infection, and a viral culture of his orolabial lesions and a serum polymerase chain reaction assay also identified herpes simplex virus. He was treated with systemic antiviral therapy and made a complete recovery. Disseminated herpes simplex virus infection with concomitant involvement of the colon and liver has been reported only 3 times in the published literature, and to our knowledge this is the first such case in a patient with inflammatory bowel disease. The risk of invasive herpes simplex virus infections increases with some, but not all immunomodulatory therapies. Optimal management of herpes simplex virus in patients with inflammatory bowel disease includes targeted prophylactic therapy for patients with evidence of latent infection, and timely initiation of antiviral therapy for those patients suspected to have invasive disease.

  18. Concomitant herpes simplex virus colitis and hepatitis in a man with ulcerative colitis

    PubMed Central

    Phadke, Varun K.; Friedman-Moraco, Rachel J.; Quigley, Brian C.; Farris, Alton B.; Norvell, J. P.

    2016-01-01

    Abstract Background: Herpesvirus infections often complicate the clinical course of patients with inflammatory bowel disease; however, invasive disease due to herpes simplex virus is distinctly uncommon. Methods: We present a case of herpes simplex virus colitis and hepatitis, review all the previously published cases of herpes simplex virus colitis, and discuss common clinical features and outcomes. We also discuss the epidemiology, clinical manifestations, diagnosis, and management of herpes simplex virus infections, focusing specifically on patients with inflammatory bowel disease. Results: A 43-year-old man with ulcerative colitis, previously controlled with an oral 5-aminosalicylic agent, developed symptoms of a colitis flare that did not respond to treatment with systemic corticosteroid therapy. One week later he developed orolabial ulcers and progressive hepatic dysfunction, with markedly elevated transaminases and coagulopathy. He underwent emergent total colectomy when imaging suggested bowel micro-perforation. Pathology from both the colon and liver was consistent with herpes simplex virus infection, and a viral culture of his orolabial lesions and a serum polymerase chain reaction assay also identified herpes simplex virus. He was treated with systemic antiviral therapy and made a complete recovery. Conclusions: Disseminated herpes simplex virus infection with concomitant involvement of the colon and liver has been reported only 3 times in the published literature, and to our knowledge this is the first such case in a patient with inflammatory bowel disease. The risk of invasive herpes simplex virus infections increases with some, but not all immunomodulatory therapies. Optimal management of herpes simplex virus in patients with inflammatory bowel disease includes targeted prophylactic therapy for patients with evidence of latent infection, and timely initiation of antiviral therapy for those patients suspected to have invasive disease. PMID:27759636

  19. The Significance of Herpes Simplex for School Nurses

    ERIC Educational Resources Information Center

    Ensor, Deirdre

    2005-01-01

    Herpes simplex is a common recurrent viral infection caused by the herpes simplex virus. The two closely related but distinct viruses that cause herpes simplex infections are herpes simplex 1 (HSV-1) and herpes simplex 2 (HSV-2). HSV-1 is commonly associated with infections around the oral mucosa and is the cause of herpes labialis, often referred…

  20. Granulomatous herpes simplex encephalitis in an infant with multicystic encephalopathy: a distinct clinicopathologic entity?

    PubMed

    Schutz, Peter W; Fauth, Clarissa T; Al-Rawahi, Ghada N; Pugash, Denise; White, Valerie A; Stockler, Sylvia; Dunham, Christopher P

    2014-04-01

    Herpes simplex virus encephalitis can manifest as a range of clinical presentations including classic adult, neonatal, and biphasic chronic-granulomatous herpes encephalitis. We report an infant with granulomatous herpes simplex virus type 2 encephalitis with a subacute course and multicystic encephalopathy. A 2-month-old girl presented with lethargy and hypothermia. Computed tomography scan of the head showed multicystic encephalopathy and calcifications. Cerebrospinal fluid analysis by polymerase chain reaction testing for herpes simplex virus 1 and 2, enterovirus, and cytomegalovirus was negative. Normal cerebrospinal fluid interferon-α levels argued against Aicardi-Goutières syndrome. The patient died 2 weeks after presentation. At autopsy, multicystic encephalopathy was confirmed with bilateral gliosis, granulomatous inflammation with multinucleated giant cells, and calcifications. Bilateral healing necrotizing retinitis suggested a viral etiology, but retina and brain were free of viral inclusions and immunohistochemically negative for herpes simplex virus-2 and cytomegalovirus. However, polymerase chain reaction analysis showed herpes simplex virus-2 DNA in four cerebral paraffin blocks. Subsequent repeat testing of the initial cerebrospinal fluid sample using a different polymerase chain reaction assay was weakly positive for herpes simplex virus-2 DNA. Granulomatous herpes simplex virus encephalitis in infants can present with subacute course and result in multicystic encephalopathy with mineralization and minimal cerebrospinal fluid herpes simplex virus DNA load. Infectious etiologies should be carefully investigated in the differential diagnosis of multicystic encephalopathy with mineralization, in particular if multinucleated giant cells are present. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Multiple viral/self immunological cross-reactivity in liver kidney microsomal antibody positive hepatitis C virus infected patients is associated with the possession of HLA B51.

    PubMed

    Bogdanos, D-P; Lenzi, M; Okamoto, M; Rigopoulou, E I; Muratori, P; Ma, Y; Muratori, L; Tsantoulas, D; Mieli- Vergani, G; Bianchi, F B; Vergani, D

    2004-01-01

    Liver Kidney Microsomal autoantibody type 1(LKM1) directed to cytochrome P4502D6 (CYP2D6) characterises autoimmune hepatitis type-2 (AIH-2), but is also found in a proportion of chronic hepatitis C virus (HCV) infected patients, CYP2D6252-271 being a major B- cell autoepitope. Molecular mimicry and immunological cross-reactivity between CYP2D6252-271, HCV polyprotein and the infected cell protein 4 (ICP4) of herpes simplex virus type 1 (HSV-1) have been suggested as triggers for the induction of LKM1, but reactivity and cross-reactivity to the relevant sequences have not been investigated experimentally. CYP2D6252-271 and its viral homologues were constructed and tested by ELISA in the sera of 46 chronically infected HCV patients, 23 of whom were LKM1 positive. Reactivity to the E1 HCV and ICP4 HSV1 mimics was frequently found in HCV infected patients irrespectively of their LKM1 status; viral/self cross-reactivity (as indicated by inhibition studies), however, was present in the only 2 of the 23 LKM1 seropositive HCV patients, who possessed the HLA allotype B51. Our results indicate that in HCV infected patients virus/self cross-reactivity is dependent on a specific immunogenetic background, a finding awaiting confirmation by studies in larger series of patients.

  2. Protection from genital herpes disease, seroconversion and latent infection in a non-lethal murine genital infection model by immunization with an HSV-2 replication-defective mutant virus.

    PubMed

    Diaz, Fernando M; Knipe, David M

    2016-01-15

    Viral vaccines have traditionally protected against disease, but for viruses that establish latent infection, it is desirable for the vaccine to reduce infection to reduce latent infection and reactivation. While seroconversion has been used in clinical trials of herpes simplex virus (HSV) vaccines to measure protection from infection, this has not been modeled in animal infection systems. To measure the ability of a genital herpes vaccine candidate to protect against various aspects of infection, we established a non-lethal murine model of genital HSV-2 infection, an ELISA assay to measure antibodies specific for infected cell protein 8 (ICP8), and a very sensitive qPCR assay. Using these assays, we observed that immunization with HSV-2 dl5-29 virus reduced disease, viral shedding, seroconversion, and latent infection by the HSV-2 challenge virus. Therefore, it may be feasible to obtain protection against genital disease, seroconversion and latent infection by immunization, even if sterilizing immunity is not achieved. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Clinical and biological differences between recurrent herpes simplex virus and varicella-zoster virus infections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Straus, S.E.

    1989-12-01

    The major features that distinguish recurrent herpes simplex virus infections from zoster are illustrated in this article by two case histories. The clinical and epidemiologic features that characterize recurrent herpes simplex virus and varicella-zoster virus infections are reviewed. It is noted that herpesvirus infections are more common and severe in patients with cellular immune deficiency. Each virus evokes both humoral and cellular immune response in the course of primary infection. DNA hybridization studies with RNA probes labelled with sulfur-35 indicate that herpes simplex viruses persist within neurons, and that varicella-zoster virus is found in the satellite cells that encircle themore » neurons.« less

  4. Prevalence of herpes simplex, Epstein Barr and human papilloma viruses in oral lichen planus.

    PubMed

    Yildirim, Benay; Sengüven, Burcu; Demir, Cem

    2011-03-01

    The aim of the present study was to assess the prevalence of Herpes Simplex virus, Epstein Barr virus and Human Papilloma virus -16 in oral lichen planus cases and to evaluate whether any clinical variant, histopathological or demographic feature correlates with these viruses. The study was conducted on 65 cases. Viruses were detected immunohistochemically. We evaluated the histopathological and demographic features and statistically analysed correlation of these features with Herpes Simplex virus, Epstein Barr virus and Human Papilloma virus-16 positivity. Herpes Simplex virus was positive in six (9%) cases and this was not statistically significant. The number of Epstein Barr virus positive cases was 23 (35%) and it was statistically significant. Human Papilloma virus positivity in 14 cases (21%) was statistically significant. Except basal cell degeneration in Herpes Simplex virus positive cases, we did not observe any significant correlation between virus positivity and demographic or histopathological features. However an increased risk of Epstein Barr virus and Human Papilloma virus infection was noted in oral lichen planus cases. Taking into account the oncogenic potential of both viruses, oral lichen planus cases should be detected for the presence of these viruses.

  5. Photodynamic treatment of herpes simplex virus during its replicative cycle.

    PubMed Central

    Khan, N C; Melnick, J L; Biswal, N

    1977-01-01

    Photodynamic treatment of herpes simplex virus type 1-infected hamster embryo fibroblasts (LSH strain) with a low concentration of proflavine (0.08 mug/10(5) cells per ml), a 3-9-diamine acridine dye, inhibited production not only of infectious progeny but also of virion particles. However, there was no appreciable inhibition of viral or cellular DNA synthesis, even when the infected cells were repeatedly exposed to this low concentration of dye and light during the replication cycle of the virus. It thus appears that photodynamic treatment of infected cells interferes with the processes involved in virus maturation. PMID:189063

  6. Neurological Consequences of Cytomegalovirus Infection

    MedlinePlus

    ... viruses that causes cold sores (herpes simplex virus), infectious mononucleosis (Epstein-Barr virus), and chickenpox/shingles (varicella zoster ... viruses that causes cold sores (herpes simplex virus), infectious mononucleosis (Epstein-Barr virus), and chickenpox/shingles (varicella zoster ...

  7. Prodrugs of herpes simplex thymidine kinase inhibitors.

    PubMed

    Yanachkova, Milka; Xu, Wei-Chu; Dvoskin, Sofya; Dix, Edward J; Yanachkov, Ivan B; Focher, Federico; Savi, Lida; Sanchez, M Dulfary; Foster, Timothy P; Wright, George E

    2015-04-01

    Because guanine-based herpes simplex virus thymidine kinase inhibitors are not orally available, we synthesized various 6-deoxy prodrugs of these compounds and evaluated them with regard to solubility in water, oral bioavailability, and efficacy to prevent herpes simplex virus-1 reactivation from latency in a mouse model. Organic synthesis was used to prepare compounds, High Performance Liquid Chromatography (HPLC) to analyze hydrolytic conversion, Mass Spectrometry (MS) to measure oral bioavailability, and mouse latent infection and induced reactivation to evaluate the efficacy of a specific prodrug. Aqueous solubilities of prodrugs were improved, oxidation of prodrugs by animal cytosols occurred in vitro, and oral absorption of the optimal prodrug sacrovir™ (6-deoxy-mCF3PG) in the presence of the aqueous adjuvant Soluplus® and conversion to active compound N(2)-[3-(trifluoromethyl)pheny])guanine (mCF3PG) were accomplished in mice. Treatment of herpes simplex virus-1 latent mice with sacrovir™ in 1% Soluplus in drinking water significantly suppressed herpes simplex virus-1 reactivation and viral genomic replication. Ad libitum oral delivery of sacrovir™ was effective in suppressing herpes simplex virus-1 reactivation in ocularly infected latent mice as measured by the numbers of mice shedding infectious virus at the ocular surface, numbers of trigeminal ganglia positive for infectious virus, number of corneas that had detectable infectious virus, and herpes simplex virus-1 genome copy numbers in trigeminal ganglia following reactivation. These results demonstrate the statistically significant effect of the prodrug on suppressing herpes simplex virus-1 reactivation in vivo. © The Author(s) 2015.

  8. A Fusogenic Oncolytic Herpes Simplex Virus for Therapy of Advanced Ovarian Cancer

    DTIC Science & Technology

    2006-06-01

    killer and NKT cells play a critical role in innate protection against genital herpes simplex virus type 2 infection. J Virol 2003;77:10168-71. 8...AD_________________ Award Number: DAMD17-03-1-0434 TITLE: A Fusogenic Oncolytic Herpes Simplex...CONTRACT NUMBER A Fusogenic Oncolytic Herpes Simplex Virus for Therapy of Advanced Ovarian Cancer 5b. GRANT NUMBER DAMD17-03-1-0434 5c

  9. Surgical excision for recurrent herpes simplex virus 2 (HSV-2) anogenital infection in a patient with human immunodeficiency virus (HIV).

    PubMed

    Arinze, Folasade; Shaver, Aaron; Raffanti, Stephen

    2017-10-01

    Recurrent anogenital herpes simplex virus infections are common in patients with human immunodeficiency virus (HIV), of whom approximately 5% develop resistance to acyclovir. We present a case of a 49-year-old man with HIV who had an 8-year history of recurrent left inguinal herpes simplex virus type 2 ulcerations. He initially responded to oral acyclovir, but developed resistance to acyclovir and eventually foscarnet. The lesion progressed to a large hypertrophic mass that required surgical excision, which led to resolution without recurrences. Our case highlights the importance of surgical excision as a treatment option in refractory herpes simplex virus anogenital infections.

  10. Interaction between Herpes Simplex Virus Type 1 IE63 Protein and Cellular Protein p32

    PubMed Central

    Bryant, Helen E.; Matthews, David A.; Wadd, Sarah; Scott, James E.; Kean, Joy; Graham, Susan; Russell, William C.; Clements, J. Barklie

    2000-01-01

    The herpes simplex virus type 1 (HSV-1) immediate-early gene IE63 (ICP27), the only HSV-1 regulatory gene with a homologue in every mammalian and avian herpesvirus sequenced so far, is a multifunctional protein which regulates transcriptional and posttranscriptional processes. One of its posttranscriptional effects is the inhibition of splicing of viral and cellular transcripts. We previously identified heterogeneous nuclear ribonucleoprotein (hnRNP) K and casein kinase 2 (CK2) as two protein partners of IE63 (H. Bryant et al., J. Biol. Chem. 274:28991–28998, 1999). Here, using a yeast two-hybrid assay, we identify another partner of IE63, the cellular protein p32. Confirmation of this interaction was provided by coimmunoprecipitation from virus-infected cells and recombinant p32 binding assays. A p32-hnRNP K-CK2 complex, which required IE63 to form, was isolated from HSV-1-infected cells, and coimmunoprecipitating p32 was phosphorylated by CK2. Expression of IE63 altered the cytoplasmic distribution of p32, with some now colocalizing with IE63 in the nuclei of infected and transfected cells. As p32 copurifies with splicing factors and can inhibit splicing, we propose that IE63 together with p32, possibly with other IE63 partner proteins, acts to disrupt or regulate pre-mRNA splicing. As well as contributing to host cell shutoff, this effect could facilitate splicing-independent nuclear export of viral transcripts. PMID:11070032

  11. Interaction between herpes simplex virus type 1 IE63 protein and cellular protein p32.

    PubMed

    Bryant, H E; Matthews, D A; Wadd, S; Scott, J E; Kean, J; Graham, S; Russell, W C; Clements, J B

    2000-12-01

    The herpes simplex virus type 1 (HSV-1) immediate-early gene IE63 (ICP27), the only HSV-1 regulatory gene with a homologue in every mammalian and avian herpesvirus sequenced so far, is a multifunctional protein which regulates transcriptional and posttranscriptional processes. One of its posttranscriptional effects is the inhibition of splicing of viral and cellular transcripts. We previously identified heterogeneous nuclear ribonucleoprotein (hnRNP) K and casein kinase 2 (CK2) as two protein partners of IE63 (H. Bryant et al., J. Biol. Chem. 274:28991-28998, 1999). Here, using a yeast two-hybrid assay, we identify another partner of IE63, the cellular protein p32. Confirmation of this interaction was provided by coimmunoprecipitation from virus-infected cells and recombinant p32 binding assays. A p32-hnRNP K-CK2 complex, which required IE63 to form, was isolated from HSV-1-infected cells, and coimmunoprecipitating p32 was phosphorylated by CK2. Expression of IE63 altered the cytoplasmic distribution of p32, with some now colocalizing with IE63 in the nuclei of infected and transfected cells. As p32 copurifies with splicing factors and can inhibit splicing, we propose that IE63 together with p32, possibly with other IE63 partner proteins, acts to disrupt or regulate pre-mRNA splicing. As well as contributing to host cell shutoff, this effect could facilitate splicing-independent nuclear export of viral transcripts.

  12. Detection of herpes simplex virus-specific DNA sequences in latently infected mice and in humans.

    PubMed

    Efstathiou, S; Minson, A C; Field, H J; Anderson, J R; Wildy, P

    1986-02-01

    Herpes simplex virus-specific DNA sequences have been detected by Southern hybridization analysis in both central and peripheral nervous system tissues of latently infected mice. We have detected virus-specific sequences corresponding to the junction fragment but not the genomic termini, an observation first made by Rock and Fraser (Nature [London] 302:523-525, 1983). This "endless" herpes simplex virus DNA is both qualitatively and quantitatively stable in mouse neural tissue analyzed over a 4-month period. In addition, examination of DNA extracted from human trigeminal ganglia has shown herpes simplex virus DNA to be present in an "endless" form similar to that found in the mouse model system. Further restriction enzyme analysis of latently infected mouse brainstem and human trigeminal DNA has shown that this "endless" herpes simplex virus DNA is present in all four isomeric configurations.

  13. Detection of herpes simplex virus-specific DNA sequences in latently infected mice and in humans.

    PubMed Central

    Efstathiou, S; Minson, A C; Field, H J; Anderson, J R; Wildy, P

    1986-01-01

    Herpes simplex virus-specific DNA sequences have been detected by Southern hybridization analysis in both central and peripheral nervous system tissues of latently infected mice. We have detected virus-specific sequences corresponding to the junction fragment but not the genomic termini, an observation first made by Rock and Fraser (Nature [London] 302:523-525, 1983). This "endless" herpes simplex virus DNA is both qualitatively and quantitatively stable in mouse neural tissue analyzed over a 4-month period. In addition, examination of DNA extracted from human trigeminal ganglia has shown herpes simplex virus DNA to be present in an "endless" form similar to that found in the mouse model system. Further restriction enzyme analysis of latently infected mouse brainstem and human trigeminal DNA has shown that this "endless" herpes simplex virus DNA is present in all four isomeric configurations. Images PMID:3003377

  14. Construction of Poxviruses as Cloning Vectors: Insertion of the Thymidine Kinase Gene from Herpes Simplex Virus into the DNA of Infectious Vaccinia Virus

    NASA Astrophysics Data System (ADS)

    Panicali, Dennis; Paoletti, Enzo

    1982-08-01

    We have constructed recombinant vaccinia viruses containing the thymidine kinase gene from herpes simplex virus. The gene was inserted into the genome of a variant of vaccinia virus that had undergone spontaneous deletion as well as into the 120-megadalton genome of the large prototypic vaccinia variant. This was accomplished via in vivo recombination by contransfection of eukaryotic tissue culture cells with cloned BamHI-digested thymidine kinase gene from herpes simplex virus containing flanking vaccinia virus DNA sequences and infectious rescuing vaccinia virus. Pure populations of the recombinant viruses were obtained by replica filter techniques or by growth of the recombinant virus in biochemically selective medium. The herpes simplex virus thymidine kinase gene, as an insert in vaccinia virus, is transcribed in vivo and in vitro, and the fidelity of in vivo transcription into a functional gene product was detected by the phosphorylation of 5-[125I]iodo-2'-deoxycytidine.

  15. Effect of Prior Immunization on Induction of Cervical Cancer in Mice by Herpes Simplex Virus Type 2

    NASA Astrophysics Data System (ADS)

    Budd Wentz, W.; Heggie, Alfred D.; Anthony, Donald D.; Reagan, James W.

    1983-12-01

    Previous studies at this laboratory showed that repeated application of inactivated herpes simplex virus type 2 to the mouse cervix produces premalignant and malignant lesions. In the present study mice were inoculated with inactivated herpes simplex virus type 2 or control solution and Freund's adjuvant by intraperitoneal and subcutaneous routes before exposure of the cervix to inactivated virus. It appears that immunization with inactivated virus conferred a protection against the induction of cervical carcinoma.

  16. Association between Psychopathic Disorder and Serum Antibody to Herpes Simplex Virus (Type 1)

    PubMed Central

    Cleobury, J. F.; Skinner, G. R. B.; Thouless, M. E.; Wildy, P.

    1971-01-01

    The sera of a small of patients has been examined for herpes simplex virus antibody. Three clinically-defined groups of patients were compared: (a) aggressive psychopaths, (b) psychiatric controls, and (c) general hospital patients. The first group had an unusually high average kinetic neutralization constant against type 1 herpes simplex virus. PMID:5543996

  17. Association between psychopathic disorder and serum antibody to herpes simplex virus (type 1).

    PubMed

    Cleobury, J F; Skinner, G R; Thouless, M E; Wildy, P

    1971-02-20

    The sera of a small of patients has been examined for herpes simplex virus antibody. Three clinically-defined groups of patients were compared: (a) aggressive psychopaths, (b) psychiatric controls, and (c) general hospital patients. The first group had an unusually high average kinetic neutralization constant against type 1 herpes simplex virus.

  18. Virus inactivation under the photodynamic effect of phthalocyanine zinc(II) complexes.

    PubMed

    Remichkova, Mimi; Mukova, Luchia; Nikolaeva-Glomb, Lubomira; Nikolova, Nadya; Doumanova, Lubka; Mantareva, Vanya; Angelov, Ivan; Kussovski, Veselin; Galabov, Angel S

    2017-03-01

    Various metal phthalocyanines have been studied for their capacity for photodynamic effects on viruses. Two newly synthesized water-soluble phthalocyanine Zn(II) complexes with different charges, cationic methylpyridyloxy-substituted Zn(II)- phthalocyanine (ZnPcMe) and anionic sulfophenoxy-substituted Zn(II)-phthalocyanine (ZnPcS), were used for photoinactivation of two DNA-containing enveloped viruses (herpes simplex virus type 1 and vaccinia virus), two RNA-containing enveloped viruses (bovine viral diarrhea virus and Newcastle disease virus) and two nude viruses (the enterovirus Coxsackie B1, a RNA-containing virus, and human adenovirus 5, a DNA virus). These two differently charged phthalocyanine complexes showed an identical marked virucidal effect against herpes simplex virus type 1, which was one and the same at an irradiation lasting 5 or 20 min (Δlog=3.0 and 4.0, respectively). Towards vaccinia virus this effect was lower, Δlog=1.8 under the effect of ZnPcMe and 2.0 for ZnPcS. Bovine viral diarrhea virus manifested a moderate sensitivity to ZnPcMe (Δlog=1.8) and a pronounced one to ZnPcS at 5- and 20-min irradiation (Δlog=5.8 and 5.3, respectively). The complexes were unable to inactivate Newcastle disease virus, Coxsackievirus B1 and human adenovirus type 5.

  19. Identification of B Cells as a Major Site for Cyprinid Herpesvirus 3 Latency

    PubMed Central

    Reed, Aimee N.; Izume, Satoko; Dolan, Brian P.; LaPatra, Scott; Kent, Michael; Dong, Jing

    2014-01-01

    ABSTRACT Cyprinid herpesvirus 3 (CyHV-3), commonly known as koi herpesvirus (KHV), is a member of the Alloherpesviridae, and is a recently discovered emerging herpesvirus that is highly pathogenic for koi and common carp. Our previous study demonstrated that CyHV-3 becomes latent in peripheral white blood cells (WBC). In this study, CyHV-3 latency was further investigated in IgM+ WBC. The presence of the CyHV-3 genome in IgM+ WBC was about 20-fold greater than in IgM− WBC. To determine whether CyHV-3 expressed genes during latency, transcription from all eight open reading frames (ORFs) in the terminal repeat was investigated in IgM+ WBC from koi with latent CyHV-3 infection. Only a spliced ORF6 transcript was found to be abundantly expressed in IgM+ WBC from CyHV-3 latently infected koi. The spliced ORF6 transcript was also detected in vitro during productive infection as early as 1 day postinfection. The ORF6 transcript from in vitro infection begins at −127 bp upstream of the ATG codon and ends +188 bp downstream of the stop codon, +20 bp downstream of the polyadenylation signal. The hypothetical protein of ORF6 contains a consensus sequence with homology to a conserved domain of EBNA-3B and ICP4 from Epstein-Barr virus and herpes simplex virus 1, respectively, both members of the Herpesviridae. This is the first report of latent CyHV-3 in B cells and identification of gene transcription during latency for a member of the Alloherpesviridae. IMPORTANCE This is the first demonstration that a member of the Alloherpesviridae, cyprinid herpesvirus 3 (CyHV-3), establishes a latent infection in the B cells of its host, Cyprinus carpio. In addition, this is the first report of identification of gene transcription during latency for a member of Herpesvirales outside Herpesviridae. This is also the first report that the hypothetical protein of latent transcript of CyHV-3 contains a consensus sequence with homology to a conserved domain of EBNA-3B from Epstein-Barr virus and ICP4 from herpes simplex virus 1, which are genes important for latency. These strongly suggest that latency is evolutionally conserved across vertebrates. PMID:24899202

  20. Identification of B cells as a major site for cyprinid herpesvirus 3 latency.

    PubMed

    Reed, Aimee N; Izume, Satoko; Dolan, Brian P; LaPatra, Scott; Kent, Michael; Dong, Jing; Jin, Ling

    2014-08-01

    Cyprinid herpesvirus 3 (CyHV-3), commonly known as koi herpesvirus (KHV), is a member of the Alloherpesviridae, and is a recently discovered emerging herpesvirus that is highly pathogenic for koi and common carp. Our previous study demonstrated that CyHV-3 becomes latent in peripheral white blood cells (WBC). In this study, CyHV-3 latency was further investigated in IgM(+) WBC. The presence of the CyHV-3 genome in IgM(+) WBC was about 20-fold greater than in IgM(-) WBC. To determine whether CyHV-3 expressed genes during latency, transcription from all eight open reading frames (ORFs) in the terminal repeat was investigated in IgM(+) WBC from koi with latent CyHV-3 infection. Only a spliced ORF6 transcript was found to be abundantly expressed in IgM(+) WBC from CyHV-3 latently infected koi. The spliced ORF6 transcript was also detected in vitro during productive infection as early as 1 day postinfection. The ORF6 transcript from in vitro infection begins at -127 bp upstream of the ATG codon and ends +188 bp downstream of the stop codon, +20 bp downstream of the polyadenylation signal. The hypothetical protein of ORF6 contains a consensus sequence with homology to a conserved domain of EBNA-3B and ICP4 from Epstein-Barr virus and herpes simplex virus 1, respectively, both members of the Herpesviridae. This is the first report of latent CyHV-3 in B cells and identification of gene transcription during latency for a member of the Alloherpesviridae. This is the first demonstration that a member of the Alloherpesviridae, cyprinid herpesvirus 3 (CyHV-3), establishes a latent infection in the B cells of its host, Cyprinus carpio. In addition, this is the first report of identification of gene transcription during latency for a member of Herpesvirales outside Herpesviridae. This is also the first report that the hypothetical protein of latent transcript of CyHV-3 contains a consensus sequence with homology to a conserved domain of EBNA-3B from Epstein-Barr virus and ICP4 from herpes simplex virus 1, which are genes important for latency. These strongly suggest that latency is evolutionally conserved across vertebrates. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  1. Smallpox Antiviral Drug

    DTIC Science & Technology

    2007-01-01

    viruses, herpes simplex virus (HSV), cytomegalovirus (CMV), varicella-zoster virus (VZV), influenza A and B viruses, and respiratory syncytial virus...Rouzioux C. 2004. Penetration of enfuvirtide, tenofovir, efavirenz, and protease inhibitors in the genital tract of HIV-1-infected men. Aids 18:1958...1968. Sensitivity of herpes simplex virus, vaccinia virus, and adenoviruses to deoxyribonucleic acid inhibitors and thiosemicarbazones in a plaque

  2. Medroxyprogesterone acetate inhibits CD8+ T cell viral specific effector function and induces herpes simplex virus type 1 reactivation

    PubMed Central

    Cherpes, Thomas L.; Busch, James L.; Sheridan, Brian S.; Harvey, Stephen A. K.; Hendricks, Robert L.

    2008-01-01

    Clinical research suggests hormonal contraceptive use is associated with increased frequencies of herpes simplex virus (HSV) reactivation and shedding. We examined the effects of medroxyprogesterone acetate (MPA), the compound most commonly used for injectable hormonal contraception, on HSV-1 reactivation and CD8+ T cell function in murine trigeminal ganglia (TG). In ex vivo TG cultures, MPA dramatically inhibited canonical CD8+ T cell effector functions, including IFN-γ production and lytic granule release, and increased HSV-1 reactivation from latency. In vivo, MPA treatment of latently infected ovariectomized mice inhibited IFN-γ production and lytic granule release by TG resident CD8+ T cells stimulated directly ex vivo. RNA specific for the essential immediate early viral gene ICP4 as well as viral genome DNA copy number were increased in mice that received MPA during latency, suggesting that treatment increased in vivo reactivation. The increase in HSV-1 copy number appeared to be the result of a two-tine effect, as MPA induced higher reactivation frequencies from latently infected explanted TG neurons in the presence or absence of CD45+ cells. Our data suggest hormonal contraceptives that contain MPA may promote increased frequency of HSV reactivation from latency through the combinatory effects of inhibiting protective CD8+ T cell responses and by a leukocyte-independent effect on infected neurons. PMID:18606648

  3. Distinct temporal roles for the promyelocytic leukaemia (PML) protein in the sequential regulation of intracellular host immunity to HSV-1 infection

    PubMed Central

    Alandijany, Thamir; Conn, Kristen L.; McFarlane, Steven; Orr, Anne

    2018-01-01

    Detection of viral nucleic acids plays a critical role in the induction of intracellular host immune defences. However, the temporal recruitment of immune regulators to infecting viral genomes remains poorly defined due to the technical difficulties associated with low genome copy-number detection. Here we utilize 5-Ethynyl-2’-deoxyuridine (EdU) labelling of herpes simplex virus 1 (HSV-1) DNA in combination with click chemistry to examine the sequential recruitment of host immune regulators to infecting viral genomes under low multiplicity of infection conditions. Following viral genome entry into the nucleus, PML-nuclear bodies (PML-NBs) rapidly entrapped viral DNA (vDNA) leading to a block in viral replication in the absence of the viral PML-NB antagonist ICP0. This pre-existing intrinsic host defence to infection occurred independently of the vDNA pathogen sensor IFI16 (Interferon Gamma Inducible Protein 16) and the induction of interferon stimulated gene (ISG) expression, demonstrating that vDNA entry into the nucleus alone is not sufficient to induce a robust innate immune response. Saturation of this pre-existing intrinsic host defence during HSV-1 ICP0-null mutant infection led to the stable recruitment of PML and IFI16 into vDNA complexes associated with ICP4, and led to the induction of ISG expression. This induced innate immune response occurred in a PML-, IFI16-, and Janus-Associated Kinase (JAK)-dependent manner and was restricted by phosphonoacetic acid, demonstrating that vDNA polymerase activity is required for the robust induction of ISG expression during HSV-1 infection. Our data identifies dual roles for PML in the sequential regulation of intrinsic and innate immunity to HSV-1 infection that are dependent on viral genome delivery to the nucleus and the onset of vDNA replication, respectively. These intracellular host defences are counteracted by ICP0, which targets PML for degradation from the outset of nuclear infection to promote vDNA release from PML-NBs and the onset of HSV-1 lytic replication. PMID:29309427

  4. Development of a Glycoprotein D-Expressing Dominant-Negative and Replication-Defective Herpes Simplex Virus 2 (HSV-2) Recombinant Viral Vaccine against HSV-2 Infection in Mice ▿

    PubMed Central

    Akhrameyeva, Natalie V.; Zhang, Pengwei; Sugiyama, Nao; Behar, Samuel M.; Yao, Feng

    2011-01-01

    Using the T-REx (Invitrogen, California) gene switch technology and a dominant-negative mutant polypeptide of herpes simplex virus 1 (HSV-1)-origin binding protein UL9, we previously constructed a glycoprotein D-expressing replication-defective and dominant-negative HSV-1 recombinant viral vaccine, CJ9-gD, for protection against HSV infection and disease. It was demonstrated that CJ9-gD is avirulent following intracerebral inoculation in mice, cannot establish detectable latent infection following different routes of infection, and offers highly effective protective immunity against primary HSV-1 and HSV-2 infection and disease in mouse and guinea pig models of HSV infections. Given these favorable safety and immunological profiles of CJ9-gD, aiming to maximize levels of HSV-2 glycoprotein D (gD2) expression, we have constructed an ICP0 null mutant-based dominant-negative and replication-defective HSV-2 recombinant, CJ2-gD2, that contains 2 copies of the gD2 gene driven by the tetracycline operator (tetO)-bearing HSV-1 major immediate-early ICP4 promoter. CJ2-gD2 expresses gD2 as efficiently as wild-type HSV-2 infection and can lead to a 150-fold reduction in wild-type HSV-2 viral replication in cells coinfected with CJ2-gD2 and wild-type HSV-2 at the same multiplicity of infection. CJ2-gD2 is avirulent following intracerebral injection and cannot establish a detectable latent infection following subcutaneous (s.c.) immunization. CJ2-gD2 is a more effective vaccine than HSV-1 CJ9-gD and a non-gD2-expressing dominant-negative and replication-defective HSV-2 recombinant in protection against wild-type HSV-2 genital disease. Using recall response, we showed that immunization with CJ2-gD2 elicited strong HSV-2-specific memory CD4+ and CD8+ T-cell responses. Collectively, given the demonstrated preclinical immunogenicity and its unique safety profiles, CJ2-gD2 represents a new class of HSV-2 replication-defective recombinant viral vaccines in protection against HSV-2 genital infection and disease. PMID:21389121

  5. Oncolytic Herpes Simplex Viral Therapy: A Stride toward Selective Targeting of Cancer Cells.

    PubMed

    Sanchala, Dhaval S; Bhatt, Lokesh K; Prabhavalkar, Kedar S

    2017-01-01

    Oncolytic viral therapy, which makes use of replication-competent lytic viruses, has emerged as a promising modality to treat malignancies. It has shown meaningful outcomes in both solid tumor and hematologic malignancies. Advancements during the last decade, mainly genetic engineering of oncolytic viruses have resulted in improved specificity and efficacy of oncolytic viruses in cancer therapeutics. Oncolytic viral therapy for treating cancer with herpes simplex virus-1 has been of particular interest owing to its range of benefits like: (a) large genome and power to infiltrate in the tumor, (b) easy access to manipulation with the flexibility to insert multiple transgenes, (c) infecting majority of the malignant cell types with quick replication in the infected cells and (d) as Anti-HSV agent to terminate HSV replication. This review provides an exhaustive list of oncolytic herpes simplex virus-1 along with their genetic alterations. It also encompasses the major developments in oncolytic herpes simplex-1 viral therapy and outlines the limitations and drawbacks of oncolytic herpes simplex viral therapy.

  6. Herpes simplex ulcerative esophagitis in healthy children.

    PubMed

    Al-Hussaini, Abdulrahman A; Fagih, Mosa A

    2011-01-01

    Herpes simplex virus is a common cause of ulcerative esophagitis in the immunocompromised or debilitated host. Despite a high prevalence of primary and recurrent Herpes simplex virus infection in the general population, Herpes simplex virus esophagitis (HSVE) appears to be rare in the immunocompetent host. We report three cases of endoscopically-diagnosed HSVE in apparently immunocompetent children; the presentation was characterized by acute onset of fever, odynophagia, and dysphagia. In two cases, the diagnosis was confirmed histologically by identification of herpes viral inclusions and culture of the virus in the presence of inflammation. The third case was considered to have probable HSVE based on the presence of typical cold sore on his lip, typical endoscopic finding, histopathological evidence of inflammation in esophageal biopsies and positive serologic evidence of acute Herpes simplex virus infection. Two cases received an intravenous course of acyclovir and one had self-limited recovery. All three cases had normal immunological workup and excellent health on long-term follow-up.

  7. Human Antiviral Protein IFIX Suppresses Viral Gene Expression during Herpes Simplex Virus 1 (HSV-1) Infection and Is Counteracted by Virus-induced Proteasomal Degradation.

    PubMed

    Crow, Marni S; Cristea, Ileana M

    2017-04-01

    The interferon-inducible protein X (IFIX), a member of the PYHIN family, was recently recognized as an antiviral factor against infection with herpes simplex virus 1 (HSV-1). IFIX binds viral DNA upon infection and promotes expression of antiviral cytokines. How IFIX exerts its host defense functions and whether it is inhibited by the virus remain unknown. Here, we integrated live cell microscopy, proteomics, IFIX domain characterization, and molecular virology to investigate IFIX regulation and antiviral functions during HSV-1 infection. We find that IFIX has a dynamic localization during infection that changes from diffuse nuclear and nucleoli distribution in uninfected cells to discrete nuclear puncta early in infection. This is rapidly followed by a reduction in IFIX protein levels. Indeed, using immunoaffinity purification and mass spectrometry, we define IFIX interactions during HSV-1 infection, finding an association with a proteasome subunit and proteins involved in ubiquitin-proteasome processes. Using synchronized HSV-1 infection, microscopy, and proteasome-inhibition experiments, we demonstrate that IFIX co-localizes with nuclear proteasome puncta shortly after 3 h of infection and that its pyrin domain is rapidly degraded in a proteasome-dependent manner. We further demonstrate that, in contrast to several other host defense factors, IFIX degradation is not dependent on the E3 ubiquitin ligase activity of the viral protein ICP0. However, we show IFIX degradation requires immediate-early viral gene expression, suggesting a viral host suppression mechanism. The IFIX interactome also demonstrated its association with transcriptional regulatory proteins, including the 5FMC complex. We validate this interaction using microscopy and reciprocal isolations and determine it is mediated by the IFIX HIN domain. Finally, we show IFIX suppresses immediate-early and early viral gene expression during infection. Altogether, our study demonstrates that IFIX antiviral functions work in part via viral transcriptional suppression and that HSV-1 has acquired mechanisms to block its functions via proteasome-dependent degradation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. A model of lytic, latent, and reactivating varicella-zoster virus infections in isolated enteric neurons.

    PubMed

    Gershon, Anne A; Chen, Jason; Gershon, Michael D

    2008-03-01

    Because human primary afferent neurons are not readily obtained, we sought to develop a model in which the lytic, latent, and reactivating phases of varicella-zoster virus (VZV) infection were recapitulated in neurons from an animal source. Enteric neurons were obtained from the small intestine of adult guinea pigs and from the bowel of fetal mice. Latency was established when these neurons were infected by cell-free VZV in the absence of fibroblasts or other cells of mesodermal origin. In contrast, lytic infection ensued when fibroblasts were present or when the enteric neurons were infected by cell-associated VZV. Latency was associated with the expression of a limited subset of viral genes, the products of which were restricted to the cytoplasm. Lysis was associated with the expression of viral glycoproteins, nuclear translocation of latency-associated gene products, and rapid cell death. Reactivation was accomplished by expressing VZV open reading frame (ORF) 61p or herpes simplex virus ICP0 in latently infected neurons. Isolated enteric neurons from guinea pigs and mice recapitulate latent gene expression in human cranial nerve and dorsal root ganglia. Expression of latency-associated VZV gene products was detected in 88% of samples of adult human intestine, suggesting that VZV not only infects enteric neurons but also is latent in the human enteric nervous system. This in vitro model should facilitate further understanding of latency and reactivation of VZV.

  9. Laboratory diagnosis and epidemiology of herpes simplex 1 and 2 genital infections.

    PubMed

    Glinšek Biškup, Urška; Uršič, Tina; Petrovec, Miroslav

    2015-01-01

    Herpes simplex virus types 1 and 2 are the main cause of genital ulcers worldwide. Although herpes simplex virus type 2 is the major cause of genital lesions, herpes simplex virus type 1 accounts for half of new cases in developed countries. Herpes simplex virus type 2 seroprevalence rises with sexual activity from adolescence through adulthood. Slovenian data in a high-risk population shows 16% seroprevalence of HSV-2. HSV-1 and HSV-2 DNA in genital swabs was detected in 19% and 20.7%, respectively. In most cases, genital herpes is asymptomatic. Primary genital infection with herpes simplex virus types 1 and 2 can be manifested by a severe clinical picture, involving the vesicular skin and mucosal changes and ulcerative lesions of the vulva, vagina, and cervix in women and in the genital region in men. Direct methods of viral genome detection are recommended in the acute stage of primary and recurrent infections when manifest ulcers or lesions are evident. Serological testing is recommended as an aid in diagnosing genital herpes in patients with reinfection in atypical or already healed lesions. When herpes lesions are present, all sexual activities should be avoided to prevent transmission of infection. Antiviral drugs can reduce viral shedding and thus reduce the risk of sexual transmission of the virus.

  10. T cell-macrophage interaction in arginase-mediated resistance to herpes simplex virus.

    PubMed

    Bonina, L; Nash, A A; Arena, A; Leung, K N; Wildy, P

    1984-09-01

    Peritoneal macrophages activated by-products derived from a herpes simplex virus-specific helper T cell clone were used to investigate intrinsic and extrinsic resistance mechanisms to herpes simplex virus type 1 infection in vitro. T cell-activated macrophages produced fewer infective centres, indicating enhanced intrinsic resistance, and markedly reduced the growth of virus in a permissive cell line. The reduction in virus growth correlated with the depletion of arginine in the support medium, presumably resulting from increased arginase production by activated macrophages. The significance of these findings for antiviral immunity in vivo is discussed.

  11. SUMO Ligase Protein Inhibitor of Activated STAT1 (PIAS1) Is a Constituent Promyelocytic Leukemia Nuclear Body Protein That Contributes to the Intrinsic Antiviral Immune Response to Herpes Simplex Virus 1

    PubMed Central

    Brown, James R.; Conn, Kristen L.; Wasson, Peter; Charman, Matthew; Tong, Lily; Grant, Kyle; McFarlane, Steven

    2016-01-01

    ABSTRACT Aspects of intrinsic antiviral immunity are mediated by promyelocytic leukemia nuclear body (PML-NB) constituent proteins. During herpesvirus infection, these antiviral proteins are independently recruited to nuclear domains that contain infecting viral genomes to cooperatively promote viral genome silencing. Central to the execution of this particular antiviral response is the small ubiquitin-like modifier (SUMO) signaling pathway. However, the participating SUMOylation enzymes are not fully characterized. We identify the SUMO ligase protein inhibitor of activated STAT1 (PIAS1) as a constituent PML-NB protein. We show that PIAS1 localizes at PML-NBs in a SUMO interaction motif (SIM)-dependent manner that requires SUMOylated or SUMOylation-competent PML. Following infection with herpes simplex virus 1 (HSV-1), PIAS1 is recruited to nuclear sites associated with viral genome entry in a SIM-dependent manner, consistent with the SIM-dependent recruitment mechanisms of other well-characterized PML-NB proteins. In contrast to that of Daxx and Sp100, however, the recruitment of PIAS1 is enhanced by PML. PIAS1 promotes the stable accumulation of SUMO1 at nuclear sites associated with HSV-1 genome entry, whereas the accumulation of other evaluated PML-NB proteins occurs independently of PIAS1. We show that PIAS1 cooperatively contributes to HSV-1 restriction through mechanisms that are additive to those of PML and cooperative with those of PIAS4. The antiviral mechanisms of PIAS1 are counteracted by ICP0, the HSV-1 SUMO-targeted ubiquitin ligase, which disrupts the recruitment of PIAS1 to nuclear domains that contain infecting HSV-1 genomes through mechanisms that do not directly result in PIAS1 degradation. IMPORTANCE Adaptive, innate, and intrinsic immunity cooperatively and efficiently restrict the propagation of viral pathogens. Intrinsic immunity mediated by constitutively expressed cellular proteins represents the first line of intracellular defense against infection. PML-NB constituent proteins mediate aspects of intrinsic immunity to restrict herpes simplex virus 1 (HSV-1) as well as other viruses. These proteins repress viral replication through mechanisms that rely on SUMO signaling. However, the participating SUMOylation enzymes are not known. We identify the SUMO ligase PIAS1 as a constituent PML-NB antiviral protein. This finding distinguishes a SUMO ligase that may mediate signaling events important in PML-NB-mediated intrinsic immunity. Moreover, this research complements the recent identification of PIAS4 as an intrinsic antiviral factor, supporting a role for PIAS proteins as both positive and negative regulators of host immunity to virus infection. PMID:27099310

  12. SUMO Ligase Protein Inhibitor of Activated STAT1 (PIAS1) Is a Constituent Promyelocytic Leukemia Nuclear Body Protein That Contributes to the Intrinsic Antiviral Immune Response to Herpes Simplex Virus 1.

    PubMed

    Brown, James R; Conn, Kristen L; Wasson, Peter; Charman, Matthew; Tong, Lily; Grant, Kyle; McFarlane, Steven; Boutell, Chris

    2016-07-01

    Aspects of intrinsic antiviral immunity are mediated by promyelocytic leukemia nuclear body (PML-NB) constituent proteins. During herpesvirus infection, these antiviral proteins are independently recruited to nuclear domains that contain infecting viral genomes to cooperatively promote viral genome silencing. Central to the execution of this particular antiviral response is the small ubiquitin-like modifier (SUMO) signaling pathway. However, the participating SUMOylation enzymes are not fully characterized. We identify the SUMO ligase protein inhibitor of activated STAT1 (PIAS1) as a constituent PML-NB protein. We show that PIAS1 localizes at PML-NBs in a SUMO interaction motif (SIM)-dependent manner that requires SUMOylated or SUMOylation-competent PML. Following infection with herpes simplex virus 1 (HSV-1), PIAS1 is recruited to nuclear sites associated with viral genome entry in a SIM-dependent manner, consistent with the SIM-dependent recruitment mechanisms of other well-characterized PML-NB proteins. In contrast to that of Daxx and Sp100, however, the recruitment of PIAS1 is enhanced by PML. PIAS1 promotes the stable accumulation of SUMO1 at nuclear sites associated with HSV-1 genome entry, whereas the accumulation of other evaluated PML-NB proteins occurs independently of PIAS1. We show that PIAS1 cooperatively contributes to HSV-1 restriction through mechanisms that are additive to those of PML and cooperative with those of PIAS4. The antiviral mechanisms of PIAS1 are counteracted by ICP0, the HSV-1 SUMO-targeted ubiquitin ligase, which disrupts the recruitment of PIAS1 to nuclear domains that contain infecting HSV-1 genomes through mechanisms that do not directly result in PIAS1 degradation. Adaptive, innate, and intrinsic immunity cooperatively and efficiently restrict the propagation of viral pathogens. Intrinsic immunity mediated by constitutively expressed cellular proteins represents the first line of intracellular defense against infection. PML-NB constituent proteins mediate aspects of intrinsic immunity to restrict herpes simplex virus 1 (HSV-1) as well as other viruses. These proteins repress viral replication through mechanisms that rely on SUMO signaling. However, the participating SUMOylation enzymes are not known. We identify the SUMO ligase PIAS1 as a constituent PML-NB antiviral protein. This finding distinguishes a SUMO ligase that may mediate signaling events important in PML-NB-mediated intrinsic immunity. Moreover, this research complements the recent identification of PIAS4 as an intrinsic antiviral factor, supporting a role for PIAS proteins as both positive and negative regulators of host immunity to virus infection. Copyright © 2016 Brown et al.

  13. CD8+ T Lymphocyte Epitopes From The Herpes Simplex Virus Type 2 ICP27, VP22 and VP13/14 Proteins To Facilitate Vaccine Design And Characterization

    PubMed Central

    Platt, Rebecca J.; Khodai, Tansi; Townend, Tim J.; Bright, Helen H.; Cockle, Paul; Perez-Tosar, Luis; Webster, Rob; Champion, Brian; Hickling, Timothy P.; Mirza, Fareed

    2013-01-01

    CD8+ T cells have the potential to control HSV-2 infection. However, limited information has been available on CD8+ T cell epitopes or the functionality of antigen specific T cells during infection or following immunization with experimental vaccines. Peptide panels from HSV-2 proteins ICP27, VP22 and VP13/14 were selected from in silico predictions of binding to human HLA-A*0201 and mouse H-2Kd, Ld and Dd molecules. Nine previously uncharacterized CD8+ T cell epitopes were identified from HSV-2 infected BALB/c mice. HSV-2 specific peptide sequences stabilized HLA-A*02 surface expression with intermediate or high affinity binding. Peptide specific CD8+ human T cell lines from peripheral blood lymphocytes were generated from a HLA-A*02+ donor. High frequencies of peptide specific CD8+ T cell responses were elicited in mice by DNA vaccination with ICP27, VP22 and VP13/14, as demonstrated by CD107a mobilization. Vaccine driven T cell responses displayed a more focused immune response than those induced by viral infection. Furthermore, vaccination with ICP27 reduced viral shedding and reduced the clinical impact of disease. In conclusion, this study describes novel HSV-2 epitopes eliciting strong CD8+ T cell responses that may facilitate epitope based vaccine design and aid immunomonitoring of antigen specific T cell frequencies in preclinical and clinical settings. PMID:24709642

  14. Expression of Herpes Simplex Virus 1 Glycoprotein B by a Recombinant Vaccinia Virus and Protection of Mice against Lethal Herpes Simplex Virus 1 Infection

    NASA Astrophysics Data System (ADS)

    Cantin, Edouard M.; Eberle, Richard; Baldick, Joseph L.; Moss, Bernard; Willey, Dru E.; Notkins, Abner L.; Openshaw, Harry

    1987-08-01

    The herpes simplex virus 1 (HSV-1) strain F gene encoding glycoprotein gB was isolated and modified at the 5' end by in vitro oligonucleotide-directed mutagenesis. The modified gB gene was inserted into the vaccinia virus genome and expressed under the control of a vaccinia virus promoter. The mature gB glycoprotein produced by the vaccinia virus recombinant was glycosylated, was expressed at the cell surface, and was indistinguishable from authentic HSV-1 gB in terms of electrophoretic mobility. Mice immunized intradermally with the recombinant vaccinia virus produced gB-specific neutralizing antibodies and were resistant to a lethal HSV-1 challenge.

  15. Vaccinia Virus Recombinant Expressing Herpes Simplex Virus Type 1 Glycoprotein D Prevents Latent Herpes in Mice

    NASA Astrophysics Data System (ADS)

    Cremer, Kenneth J.; Mackett, Michael; Wohlenberg, Charles; Notkins, Abner Louis; Moss, Bernard

    1985-05-01

    In humans, herpes simplex virus causes a primary infection and then often a latent ganglionic infection that persists for life. Because these latent infections can recur periodically, vaccines are needed that can protect against both primary and latent herpes simplex infections. Infectious vaccinia virus recombinants that contain the herpes simplex virus type 1 (HSV-1) glycoprotein D gene under control of defined early or late vaccinia virus promoters were constructed. Tissue culture cells infected with these recombinant viruses synthesized a glycosylated protein that had the same mass (60,000 daltons) as the glycoprotein D produced by HSV-1. Immunization of mice with one of these recombinant viruses by intradermal, subcutaneous, or intraperitoneal routes resulted in the production of antibodies that neutralized HSV-1 and protected the mice against subsequent lethal challenge with HSV-1 or HSV-2. Immunization with the recombinant virus also protected the majority of the mice against the development of a latent HSV-1 infection of the trigeminal ganglia. This is the first demonstration that a genetically engineered vaccine can prevent the development of latency.

  16. Latency of Herpes Simplex Virus in Absence of Neutralizing Antibody: Model for Reactivation

    NASA Astrophysics Data System (ADS)

    Sekizawa, Tsuyoshi; Openshaw, Harry; Wohlenberg, Charles; Notkins, Abner Louis

    1980-11-01

    Mice inoculated with herpes simplex virus (type 1) by the lip or corneal route and then passively immunized with rabbit antibody to herpes simplex virus developed a latent infection in the trigeminal ganglia within 96 hours. Neutralizing antibody to herpes simplex virus was cleared from the circulation and could not be detected in most of these mice after 2 months. Examination of ganglia from the antibody-negative mice revealed latent virus in over 90 percent of the animals, indicating that serum neutralizing antibody is not necessary to maintain the latent state. When the lips or corneas of these mice were traumatized, viral reactivation occurred in up to 90 percent of the mice, as demonstrated by the appearance of neutralizing antibody. This study provides a model for identifying factors that trigger viral reactivation.

  17. Latent virus reactivation in astronauts on the international space station.

    PubMed

    Mehta, Satish K; Laudenslager, Mark L; Stowe, Raymond P; Crucian, Brian E; Feiveson, Alan H; Sams, Clarence F; Pierson, Duane L

    2017-01-01

    Reactivation of latent herpes viruses was measured in 23 astronauts (18 male and 5 female) before, during, and after long-duration (up to 180 days) spaceflight onboard the international space station . Twenty age-matched and sex-matched healthy ground-based subjects were included as a control group. Blood, urine, and saliva samples were collected before, during, and after spaceflight. Saliva was analyzed for Epstein-Barr virus, varicella-zoster virus, and herpes simplex virus type 1. Urine was analyzed for cytomegalovirus. One astronaut did not shed any targeted virus in samples collected during the three mission phases. Shedding of Epstein-Barr virus, varicella-zoster virus, and cytomegalovirus was detected in 8 of the 23 astronauts. These viruses reactivated independently of each other. Reactivation of Epstein-Barr virus, varicella-zoster virus, and cytomegalovirus increased in frequency, duration, and amplitude (viral copy numbers) when compared to short duration (10 to 16 days) space shuttle missions. No evidence of reactivation of herpes simplex virus type 1, herpes simplex virus type 2, or human herpes virus 6 was found. The mean diurnal trajectory of salivary cortisol changed significantly during flight as compared to before flight ( P  = 0.010). There was no statistically significant difference in levels of plasma cortisol or dehydoepiandosterone concentrations among time points before, during, and after flight for these international space station crew members, although observed cortisol levels were lower at the mid and late-flight time points. The data confirm that astronauts undertaking long-duration spaceflight experience both increased latent viral reactivation and changes in diurnal trajectory of salivary cortisol concentrations.

  18. 2'-fluoro-5-iodo-aracytosine, a potent and selective anti-herpesvirus agent.

    PubMed

    Lopez, C; Watanabe, K A; Fox, J J

    1980-05-01

    A newly synthesized pyrimidine analog, 2'-fluoro-5-iodo-aracytosine (FIAC), suppressed by 90% the replication of various strains of herpes simplex virus types 1 and 2 at concentrations of 0.0025 to 0.0126 microM. Cytotoxicity was minimal, as determined by trypan blue dye exclusion with norman Vero, WI-38, and NC-37 cell proliferation; the 50% inhibitory dose was 4 to 10 microM in a 4-day assay. When compared with other antiviral drugs, FIAC was active at much lower concentrations than arabinosylcytosine, iododeoxyuridine, and arabinosyladenine. It was slightly more active against herpes simplex virus type 1 than acycloquanosine and slightly more toxic to normal cells. FIAC was about 8,000 times more active against the replication of wild-type herpes simplex virus type 1 than against a mutant strain lacking the expression of virus-specified thymidine kinase. Since FIAC appears to be preferentially phosphorylated by the viral enzyme, this is probably responsible, at least in part, for the selectivity of its antiviral actions. Although FIAC appears to be an arabinosylcytosine analog, its antiviral activity was not reversed by deoxycytidine. The minimal cytotoxicity exhibited by FIAC for normal cells, however, was reversed by equimolar concentrations of deoxycytidine. Thymidine, which reversed the antiviral activity, was effective only when used in great excess.

  19. 2'-fluoro-5-iodo-aracytosine, a potent and selective anti-herpesvirus agent.

    PubMed Central

    Lopez, C; Watanabe, K A; Fox, J J

    1980-01-01

    A newly synthesized pyrimidine analog, 2'-fluoro-5-iodo-aracytosine (FIAC), suppressed by 90% the replication of various strains of herpes simplex virus types 1 and 2 at concentrations of 0.0025 to 0.0126 microM. Cytotoxicity was minimal, as determined by trypan blue dye exclusion with norman Vero, WI-38, and NC-37 cell proliferation; the 50% inhibitory dose was 4 to 10 microM in a 4-day assay. When compared with other antiviral drugs, FIAC was active at much lower concentrations than arabinosylcytosine, iododeoxyuridine, and arabinosyladenine. It was slightly more active against herpes simplex virus type 1 than acycloquanosine and slightly more toxic to normal cells. FIAC was about 8,000 times more active against the replication of wild-type herpes simplex virus type 1 than against a mutant strain lacking the expression of virus-specified thymidine kinase. Since FIAC appears to be preferentially phosphorylated by the viral enzyme, this is probably responsible, at least in part, for the selectivity of its antiviral actions. Although FIAC appears to be an arabinosylcytosine analog, its antiviral activity was not reversed by deoxycytidine. The minimal cytotoxicity exhibited by FIAC for normal cells, however, was reversed by equimolar concentrations of deoxycytidine. Thymidine, which reversed the antiviral activity, was effective only when used in great excess. PMID:6249196

  20. Characterization of molecular determinants for nucleocytoplasmic shuttling of PRV UL54

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Meili; Wang Shuai; Cai Mingsheng

    2011-09-01

    The pseudorabies virus (PRV) early protein UL54 is a homologue of the herpes simplex virus 1 (HSV-1) immediate-early protein ICP27, which is a multifunctional protein and essential for HSV-1 infection. To determine if UL54 might shuttle between the nucleus and cytoplasm, as has been shown for its homologues in human herpesviruses, the molecular determinants for its nucleocytoplasmic shuttling were investigated. Heterokaryon assays demonstrated that UL54 was a nucleocytoplasmic shuttling protein and this property could not be blocked by leptomycin B, an inhibitor of chromosome region maintenance 1 (CRM1). However, TAP/NXF1 promoted the nuclear export of UL54 and interacted with UL54,more » suggesting that UL54 shuttles between the nucleus and the cytoplasm via a TAP/NXF1, but not CRM1, dependent nuclear export pathway. Furthermore, UL54 was demonstrated to target to the nucleus through a classic Ran-, importin {beta}1- and {alpha}5-dependent nuclear import mechanism.« less

  1. Helicase-primase inhibitors for herpes simplex virus: looking to the future of non-nucleoside inhibitors for treating herpes virus infections.

    PubMed

    Biswas, Subhajit; Sukla, Soumi; Field, Hugh J

    2014-01-01

    Helicase-primase inhibitors (HPIs) are the first new family of potent herpes virus (herpes simplex and varicella-zoster virus) inhibitors to go beyond the preliminary stages of investigation since the emergence of the original nucleoside analog inhibitors. To consider the clinical future of HPIs, this review puts the exciting new findings with two HPIs, amenamevir and pritelivir, into the historical context of antiviral development for the prevention and treatment of herpes simplex virus over the last century and, on this basis, the authors speculate on the potential evolution of these and other non-nucleoside inhibitors in the future.

  2. Herpes simplex virus type 2: Cluster of unrelated cases in an intensive care unit.

    PubMed

    Troché, Gilles; Marque Juillet, Stephanie; Burrel, Sonia; Boutolleau, David; Bédos, Jean-Pierre; Legriel, Stephane

    2016-10-01

    Herpes simplex viruses, which are associated with various clinical manifestations, can be transmitted to critically ill patients from other patients or health care staff. We report an apparent outbreak of mucocutaneous herpes simplex virus 2 infections (5 cases in 10 weeks). An epidemiologic investigation and genotype analysis showed no connections among the 5 cases. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  3. Herpes simplex encephalitis with thalamic, brainstem and cerebellar involvement.

    PubMed

    Garg, Meenal; Kulkarni, Shilpa; Udwadia Hegde, Anaita

    2018-04-01

    Herpes simplex virus encephalitis is a common and treatable cause of acute encephalitis in all age groups. Certain radiological features such as temporal parenchymal involvement facilitate the diagnosis. The use of herpes simplex virus polymerase chain reaction has expanded the clinical and imaging spectrum. We report the case of a young patient who presented with a movement disorder and predominant involvement of thalami, brainstem and cerebellum on magnetic resonance imaging, and was diagnosed with herpes simplex virus encephalitis. Differentiation from Japanese encephalitis may be difficult in these patients, especially in endemic areas, and may necessitate the use of relevant investigations in all patients.

  4. Genital herpes simplex virus infections.

    PubMed

    Rosenthal, M S

    1979-09-01

    In recent years, a great increase in interest in genital herpes has been stimulated partly by the rising prevalence of this disease and partly by observations suggesting that genital herpes is a cause of cervical cancer. The clinical pictures produced by genital herpes simplex virus infections are similar in men and women. In contrast to recurrent attacks, initial episodes of infection are generally more extensive, last longer, and are more often associated with regional lymphadenopathy and systemic symptoms. Genital herpes in pregnancy may pose a serious threat to the newborn infant. Although the data suggesting genital herpes simplex virus infection is a cause of cervical cancer are quite extensive, the evidence is largely circumstantial. In spite of these more serious aspects of genital herpes simplex virus infection, episodes of genital herpes are almost always self-limited and benign. Frequent recurrences pose the major therapeutic and management problem. At present, there is no satisfactory treatment for recurrent genital herpes simplex virus in fection. Many of the suggested therapies, although some sound very promising, are potentially dangerous and should be used only under carefully controlled conditions.

  5. Intrahepatic cholestasis of pregnancy with concomitant hepatitis C virus infection, Joan C. Edwards SOM, Marshall University.

    PubMed

    Belay, Tilahun; Woldegiorgis, Hailegiorgis; Gress, Todd; Rayyan, Yaser

    2015-04-01

    Intrahepatic cholestasis of pregnancy (ICP) is characterized by pruritus, otherwise unexplained deranged liver enzyme levels, and elevated levels of serum bile acid. ICP has been observed more commonly in hepatitis C virus (HCV) infected women than in women with no HCV infection, and some experts advocate testing for HCV infection in all patients with ICP. The aim of our study was to examine the clinical characteristics of pregnant women with ICP and HCV infection. We reviewed the records of pregnant women between 18 and 45 years of age over a period of 6 years with an International Classification of Diseases, Ninth Revision (ICD-9) diagnosis of HCV infection, ICP, or both. We collected demographic, clinical, and financial data on all the patients and compared them with and without a diagnosis of ICP. There were 91 pregnant women with a diagnosis of HCV, and 41 (45%) of these women were diagnosed with ICP. HCV-infected patients with ICP had a significantly higher median viral load compared with those without ICP (495,000 vs. 8000 copies/ml, P<0.001). The median total financial charges spent for the care of ICP patients with HCV infection was significantly higher than that spent on ICP patients without HCV infection ($12,753.00 vs. $8970.00, P=0.01). We found a high prevalence of ICP among pregnant women infected with HCV, and those with ICP had a higher HCV viral load. Women with suspected ICP should be tested for the presence of HCV.

  6. Pediatric herpes simplex virus infections: an evidence-based approach to treatment.

    PubMed

    Sanders, Jennifer E; Garcia, Sylvia E

    2014-01-01

    Herpes simplex virus is a common virus that causes a variety of clinical presentations ranging from mild to life-threatening. Orolabial and genital herpes are common disorders that can often be managed in an outpatient setting; however, some patients do present to the emergency department with those conditions, and emergency clinicians should be aware of possible complications in the pediatric population. Neonatal herpes is a rare disorder, but prompt recognition and initiation of antiviral therapy is imperative, as the morbidity and mortality of the disease is high. Herpes encephalitis is an emergency that also requires a high index of suspicion to diagnose. Herpes simplex virus is also responsible for a variety of other clinical presentations, including herpes gladiatorum, herpetic whitlow, eczema herpeticum, and ocular herpes. This issue reviews the common clinical presentations of the herpes simplex virus, the life-threatening infections that require expedient identification and management, and recommended treatment regimens.

  7. Antiviral Effects of Blackberry Extract Against Herpes Simplex Virus Type 1

    PubMed Central

    Danaher, Robert J.; Wang, Chunmei; Dai, Jin; Mumper, Russell J.; Miller, Craig S.

    2011-01-01

    Objective To evaluate antiviral properties of blackberry extract against herpes simplex virus type 1 (HSV-1) in vitro. Methods HSV-infected oral epithelial (OKF6) cells and cell-free virus suspensions were treated with blackberry extract (2.24 to 1400 μg/mL) and virus yield and infectivity were quantified by direct plaque assay. Results Blackberry extract ≥ 56 μg/ml inhibited HSV-1 replication in oral epithelial cells by > 99% (p < 0.005). Concentrations ≥ 280 μg/ml were antiviral when the extract was added after virus adsorption and entry. Exposure of cell-free virus to ≥ 280 μg/ml blackberry extract for 15 minutes at room temperature was virucidal (p = 0.0002). The virucidal effects were not due to pH changes at concentrations up to 1500 μg/ml. Conclusions Blackberry extract inhibited the early stages of HSV-1 replication and had potent virucidal activity. These properties suggest that this natural fruit extract could provide advantage as a topical prophylactic/therapeutic agent for HSV infections. PMID:21827957

  8. Amplification of Herpes Simplex Virus Types 1 and 2 and Human Herpes Virus Type 5 Polymerase Gene Segment From Formalin-Fixed Brain Tissue From Alzheimer’s Disease Patients

    DTIC Science & Technology

    2005-08-01

    The neuronal nitric oxide synthase (NOS1) gene target was amplified and sequenced in all samples tested, in addition to HSV1 , HSV2 , or Human Herpes...Triphosphate DNA Deoxyribonucleic acid GAPDH Glyceraldehyde-3 -phosphate dehydrogenase HSV Herpes Simplex Virus HSV1 Herpes Simplex Virus Type 1 HSV2 Herpes... HSV2 ) share 50-70 % homology. HSV1 is primarily associated with oral and ocular lesions, while HSV2 is primarily associated with genital and anal lesions

  9. Preparation of herpes simplex virus-infected primary neurons for transmission electron microscopy.

    PubMed

    Miranda-Saksena, Monica; Boadle, Ross; Cunningham, Anthony L

    2014-01-01

    Transmission electron microscopy (TEM) provides the resolution necessary to identify both viruses and subcellular components of cells infected with many types of viruses, including herpes simplex virus. Recognized as a powerful tool in both diagnostic and research-based virology laboratories, TEM has made possible the identification of new viruses and has contributed to the elucidation of virus life cycle and virus-host cell interaction. Whilst there are many sample preparation techniques for TEM, conventional processing using chemical fixation and resin embedding remains a useful technique, available in virtually all EM laboratories, for studying virus/cell ultrastructure. In this chapter, we describe the preparation of herpes simplex virus-infected primary neurons, grown on plastic cover slips, to allow sectioning of neurons and axons in their growth plane. This technique allows TEM examination of cell bodies, axons, growth cones, and varicosities, providing powerful insights into virus-cell interaction.

  10. An Adjuvanted Herpes Simplex Virus 2 Subunit Vaccine Elicits a T Cell Response in Mice and Is an Effective Therapeutic Vaccine in Guinea Pigs

    PubMed Central

    Skoberne, Mojca; Cardin, Rhonda; Lee, Alexander; Kazimirova, Ana; Zielinski, Veronica; Garvie, Danielle; Lundberg, Amy; Larson, Shane; Bravo, Fernando J.; Bernstein, David I.; Flechtner, Jessica B.

    2013-01-01

    Immunotherapeutic herpes simplex virus 2 (HSV-2) vaccine efficacy depends upon the promotion of antigen-specific immune responses that inhibit reactivation or reactivated virus, thus controlling both recurrent lesions and viral shedding. In the present study, a candidate subunit vaccine, GEN-003/MM-2, was evaluated for its ability to induce a broad-spectrum immune response in mice and therapeutic efficacy in HSV-2-infected guinea pigs. GEN-003 is comprised of HSV-2 glycoprotein D2 (gD2ΔTMR340-363) and a truncated form of infected cell polypeptide 4 (ICP4383-766), formulated with Matrix M-2 (MM-2) adjuvant (GEN-003/MM-2). In addition to eliciting humoral immune responses, CD4+ and CD8+ T cells characterized by the secretion of multiple cytokines and cytolytic antigen-specific T cell responses that were able to be recalled at least 44 days after the last immunization were induced in immunized mice. Furthermore, vaccination with either GEN-003 or GEN-003/MM-2 led to significant reductions in both the prevalence and severity of lesions in HSV-2-infected guinea pigs compared to those of phosphate-buffered saline (PBS) control-vaccinated animals. While vaccination with MM-2 adjuvant alone decreased recurrent disease symptoms compared to the PBS control group, the difference was not statistically significant. Importantly, the frequency of recurrent viral shedding was considerably reduced in GEN-003/MM-2-vaccinated animals but not in GEN-003- or MM-2-vaccinated animals. These findings suggest a possible role for immunotherapeutic GEN-003/MM-2 vaccination as a viable alternative to chronic antiviral drugs in the treatment and control of genital herpes disease. PMID:23365421

  11. Herpes simplex virus downregulation of secretory leukocyte protease inhibitor enhances human papillomavirus type 16 infection.

    PubMed

    Skeate, Joseph G; Porras, Tania B; Woodham, Andrew W; Jang, Julie K; Taylor, Julia R; Brand, Heike E; Kelly, Thomas J; Jung, Jae U; Da Silva, Diane M; Yuan, Weiming; Kast, W Martin

    2016-02-01

    Herpes simplex virus (HSV) was originally implicated in the aetiology of cervical cancer, and although high-risk human papillomavirus (HPV) is now the accepted causative agent, the epidemiological link between HSV and HPV-associated cancers persists. The annexin A2 heterotetramer (A2t) has been shown to mediate infectious HPV type 16 (HPV16) uptake by human keratinocytes, and secretory leukocyte protease inhibitor (SLPI), an endogenous A2t ligand, inhibits HPV16 uptake and infection. Interestingly, HSV infection induces a sustained downregulation of SLPI in epithelial cells, which we hypothesized promotes HPV16 infection through A2t. Here, we show that in vitro infection of human keratinocytes with HSV-1 or HSV-2, but not with an HSV-1 ICP4 deletion mutant that does not downregulate SLPI, leads to a >70% reduction of SLPI mRNA and a >60% decrease in secreted SLPI protein. Consequently, we observed a significant increase in the uptake of HPV16 virus-like particles and gene transduction by HPV16 pseudovirions (two- and 2.5-fold, respectively) in HSV-1- and HSV-2-infected human keratinocyte cell cultures compared with uninfected cells, whereas exogenously added SLPI reversed this effect. Using a SiMPull (single-molecule pulldown) assay, we demonstrated that endogenously secreted SLPI interacts with A2t on epithelial cells in an autocrine/paracrine manner. These results suggested that ongoing HSV infection and resultant downregulation of local levels of SLPI may impart a greater susceptibility for keratinocytes to HPV16 infection through the host cell receptor A2t, providing a mechanism that may, in part, provide an explanation for the aetiological link between HSV and HPV-associated cancers.

  12. Inflammatory and neurodegeneration markers during asymptomatic HSV-1 reactivation.

    PubMed

    Martin, Carolina; Aguila, Blanca; Araya, Paulina; Vio, Karin; Valdivia, Sharin; Zambrano, Angara; Concha, Margarita I; Otth, Carola

    2014-01-01

    Currently, it is unclear whether asymptomatic recurrent reactivations of herpes simplex virus type 1 (HSV-1) occur in the central nervous systems of infected people, and if these events could lead to a progressive deterioration of neuronal function. In this context, HSV-1 constitutes an important candidate to be included among the risk factors for the development of neuropathies associated with chronic neuroinflammation. The aim of this study was to assess in vivo inflammatory and neurodegenerative markers in the brain during productive and latent HSV-1 infection using a mouse model of herpes simplex encephalitis. Neuroinflammation and neurodegeneration markers were evaluated in mice trigeminal ganglia and cerebral cortex during HSV-1 infection, by immunohistochemistry, western blot, and RT-PCR. Neuronal ICP4 viral antigen expression indicative of a reactivation episode during asymptomatic latency of HSV-1 infection in mice was accompanied by upregulation of neuroinflammatory (toll-like receptor-4, interferon α/β, and p-IRF3) and early neurodegenerative markers (phospho-tau and TauC3). HSV-1 reactivation from latency induced neuroinflammatory and neurodegenerative markers in the brain of asymptomatic mice suggesting that recurrent reactivations could be associated with cumulative neuronal dysfunctions.

  13. Herpes Simplex Encephalitis during Treatment with Tumor Necrosis Factor-α Inhibitors

    PubMed Central

    Bradford, Russell D.; Pettit, April C.; Wright, Patty W.; Mulligan, Mark J.; Moreland, Larry W.; McLain, David A.; Gnann, John W.; Bloch, Karen C.

    2012-01-01

    We report 3 cases of herpes simplex virus encephalitis in patients receiving tumor necrosis factor-alpha (TNF-α) inhibitors for rheumatologic disorders. Although TNF-α inhibitors have been reported to increase the risk of other infectious diseases, to our knowledge, an association between anti–TNF-α drugs and herpes simplex virus encephalitis has not been previously described. PMID:19681709

  14. Herpes simplex virus type 2 (Mollaret's) meningitis: a case report.

    PubMed

    Abu Khattab, Mohammed; Al Soub, Hussam; Al Maslamani, Mona; Al Khuwaiter, Jameela; El Deeb, Yasser

    2009-11-01

    Mollaret's meningitis is an unusual and under-appreciated syndrome of benign, recurrent aseptic meningitis. The available literature indicates that the causative agent is herpes simplex virus type 2 (HSV-2) in the majority of cases and much less frequently herpes simplex virus type 1 (HSV-1). We report the case of a 49-year-old Indian female who had four attacks of recurrent lymphocytic meningitis (Mollaret's meningitis) occurring over a 7-year period. The diagnosis of herpes simplex meningitis was made at the time of the fourth episode by a positive PCR for herpes simplex virus infection in the cerebrospinal fluid. During the first three episodes, the patient was treated with anti-tuberculous drugs and antibiotics for bacterial meningitis; however for the last episode, once the diagnosis of herpes simplex meningitis was confirmed, only symptomatic treatment was given. No long-term suppressive therapy was given and no recurrence has been experienced so far. Mollaret's meningitis should be suspected in all cases of recurrent lymphocytic meningitis. Early diagnosis may prevent prolonged hospital admissions, unnecessary investigations, and exposure to unnecessary medications, with the associated considerable costs. Treatment with acyclovir may be beneficial in decreasing the severity and duration of attacks and in preventing further episodes. [Au?1].

  15. [The Spanish Society of Paediatric Infectious Diseases guidelines on the prevention, diagnosis and treatment of neonatal herpes simplex infections].

    PubMed

    2018-02-13

    Neonatal herpes simplex virus infections are rare, but are associated with significant morbidity and mortality. Most newborns acquire herpes simplex virus infection in the peripartum period. For peripartum transmission to occur, women must be shedding the virus in their genital tracts symptomatically or asymptomatically around the time of delivery. There are evidence-based interventions in pregnancy to prevent the transmission to the newborn. Caesarean section should be performed in the presence of herpetic lesions, and antiviral prophylaxis in the last weeks of pregnancy is recommended to suppress genital tract herpes simplex virus at the time of delivery. The diagnosis and early treatment of neonatal herpes simplex virus infections require a high index of suspicion, especially in the absence of skin lesions. It is recommended to rule out herpes simplex virus infections in those newborns with mucocutaneous lesions, central nervous system involvement, or septic appearance. The prognosis of newborns with skin, eye, and/or mouth disease in the high-dose acyclovir era is very good. Antiviral treatment not only improves mortality rates in disseminated and central nervous system disease, but also improves the rates of long-term neurodevelopmental impairment in the cases of disseminated disease. Interestingly, a 6-month suppressive course of oral acyclovir following the acute infection has improved the neurodevelopmental prognosis in patients with CNS involvement. Copyright © 2017 Asociación Española de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Prevalence of Herpes Simplex Virus Antibodies in Dental Students.

    ERIC Educational Resources Information Center

    Rodu, Brad; And Others

    1992-01-01

    A study of 125 sophomore preclinical dental students found that these young professionals, because of having a low prevalence of herpes simplex virus (HSV) antibodies, are at risk for acquiring a primary HSV infection when treating HSV positive patients and should take precautions to avoid virus transmission. (MSE)

  17. Herpes simplex type 1 pneumonitis and acute respiratory distress syndrome in a patient with chronic lymphatic leukemia: a case report.

    PubMed

    Luginbuehl, Miriam; Imhof, Alexander; Klarer, Alexander

    2017-11-23

    Pulmonary pathogenicity of herpes simplex virus type 1 in patients in intensive care without classic immunosuppression as well as the necessity of antiviral treatment in the case of herpes simplex virus detection in respiratory specimens in these patients is controversial. We present a case of acute respiratory distress syndrome in a patient with stable chronic lymphatic leukemia not requiring treatment, in whom we diagnosed herpes simplex virus type 1 bronchopneumonitis based on herpes simplex virus type 1 detection in bronchoalveolar lavage fluid and clinical response to antiviral treatment. A 72-year-old white man presented with symptoms of lower respiratory tract infection. His medical history was significant for chronic lymphatic leukemia, which had been stable without treatment, arterial hypertension, multiple squamous cell carcinomas of the scalp, and alcohol overuse. Community-acquired pneumonia was suspected and appropriate broad-spectrum antibacterial treatment was initiated. Within a few hours, rapid respiratory deterioration led to cardiac arrest. He was successfully resuscitated, but developed acute respiratory distress syndrome. Furthermore, he remained febrile and inflammation markers remained elevated despite antibacterial treatment. Polymerase chain reaction from bronchoalveolar lavage fluid and viral culture from tracheobronchial secretions tested positive for herpes simplex virus type 1. We initiated antiviral treatment with acyclovir. Concomitantly we further escalated the antibacterial treatment, although no bacterial pathogen had been isolated at any point. Defervescence occurred rapidly and his C-reactive protein and leukocyte levels decreased. He was successfully weaned from mechanical ventilation, transferred to the ward, and eventually discharged to home. Herpes simplex virus should be considered a cause for lower respiratory tract infection in critically ill patients, especially in the setting of an underlying disease.

  18. Functional Reorganization of Promyelocytic Leukemia Nuclear Bodies during BK Virus Infection

    PubMed Central

    Jiang, Mengxi; Entezami, Pouya; Gamez, Monica; Stamminger, Thomas; Imperiale, Michael J.

    2011-01-01

    BK virus (BKV) is the causative agent for polyomavirus-associated nephropathy, a severe disease found in renal transplant patients due to reactivation of a persistent BKV infection. BKV replication relies on the interactions of BKV with many nuclear components, and subnuclear structures such as promyelocytic leukemia nuclear bodies (PML-NBs) are known to play regulatory roles during a number of DNA virus infections. In this study, we investigated the relationship between PML-NBs and BKV during infection of primary human renal proximal tubule epithelial (RPTE) cells. While the levels of the major PML-NB protein components remained unchanged, BKV infection of RPTE cells resulted in dramatic alterations in both the number and the size of PML-NBs. Furthermore, two normally constitutive components of PML-NBs, Sp100 and hDaxx, became dispersed from PML-NBs. To define the viral factors responsible for this reorganization, we examined the cellular localization of the BKV large tumor antigen (TAg) and viral DNA. TAg colocalized with PML-NBs during early infection, while a number of BKV chromosomes were adjacent to PML-NBs during late infection. We demonstrated that TAg alone was not sufficient to reorganize PML-NBs and that active viral DNA replication is required. Knockdown of PML protein did not dramatically affect BKV growth in culture. BKV infection, however, was able to rescue the growth of an ICP0-null herpes simplex virus 1 mutant whose growth defect was partially due to its inability to disrupt PML-NBs. We hypothesize that the antiviral functions of PML-NBs are inactivated through reorganization during normal BKV infection. PMID:21304169

  19. Amino-terminal sequence of glycoprotein D of herpes simplex virus types 1 and 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisenberg, R.J.; Long, D.; Hogue-Angeletti, R.

    1984-01-01

    Glycoprotein D (gD) of herpes simplex virus is a structural component of the virion envelope which stimulates production of high titers of herpes simplex virus type-common neutralizing antibody. The authors caried out automated N-terminal amino acid sequencing studies on radiolabeled preparations of gD-1 (gD of herpes simplex virus type 1) and gD-2 (gD of herpes simplex virus type 2). Although some differences were noted, particularly in the methionine and alanine profiles for gD-1 and gD-2, the amino acid sequence of a number of the first 30 residues of the amino terminus of gD-1 and gD-2 appears to be quite similar.more » For both proteins, the first residue is a lysine. When we compared out sequence data for gD-1 with those predicted by nucleic acid sequencing, the two sequences could be aligned (with one exception) starting at residue 26 (lysine) of the predicted sequence. Thus, the first 25 amino acids of the predicted sequence are absent from the polypeptides isolated from infected cells.« less

  20. The biology of herpes simplex virus infection in humans.

    PubMed

    Baringer, J R

    1976-01-01

    Herpes simplex virus is a frequent cause of recurrent ocular, oral, genital or cutaneous eruptions in man. Lesions are highly localized and tend to recur at the same site. Among the most consistent factors provoking recurrence is root section of the trigeminal nerve. Clinical and experimental data suggest that herpes simplex virus is commonly resident within the trigeminal ganglia of man, where it may be responsible for recurrent oral or lip lesions, and is less frequently a resident of the second or third sacral ganglia where it might be responsible for genital eruptions. Generally, the trigeminal virus is type 1 and the sacral virus is type 2; the virus is only rarely recoverable from other sensory ganglia. Factors provoking the reactivation from the virus' latent site and the mechanism for reactivation remain largely unknown. Further study is needed to understand the behavior of HSV and other viruses in nervous system tissue.

  1. Ability of herpes simplex virus vectors to boost immune responses to DNA vectors and to protect against challenge by simian immunodeficiency virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, Amitinder; Sanford, Hannah B.; Garry, Deirdre

    2007-01-20

    The immunogenicity and protective capacity of replication-defective herpes simplex virus (HSV) vector-based vaccines were examined in rhesus macaques. Three macaques were inoculated with recombinant HSV vectors expressing Gag, Env, and a Tat-Rev-Nef fusion protein of simian immunodeficiency virus (SIV). Three other macaques were primed with recombinant DNA vectors expressing Gag, Env, and a Pol-Tat-Nef-Vif fusion protein prior to boosting with the HSV vectors. Robust anti-Gag and anti-Env cellular responses were detected in all six macaques. Following intravenous challenge with wild-type, cloned SIV239, peak and 12-week plasma viremia levels were significantly lower in vaccinated compared to control macaques. Plasma SIV RNAmore » in vaccinated macaques was inversely correlated with anti-Rev ELISPOT responses on the day of challenge (P value < 0.05), anti-Tat ELISPOT responses at 2 weeks post challenge (P value < 0.05) and peak neutralizing antibody titers pre-challenge (P value 0.06). These findings support continued study of recombinant herpesviruses as a vaccine approach for AIDS.« less

  2. Seroprevalence of human herpes simplex, hepatitis B and epstein-barr viruses in children with acute lymphoblastic leukemia in southern iran.

    PubMed

    Mahjour, Seyed Babak; Ghaffarpasand, Fariborz; Fattahi, Mohammad Javad; Ghaderi, Abbas; Fotouhi Ghiam, Alireza; Karimi, Mehran

    2010-12-01

    To investigate the seroprevalence of Herpes Simplex Viruses (HSV1 and HSV2), Ebstein-Barr Virus (EBV) and Hepatitis B Virus (HBV) in children with acute lymphoblastic leukemia (ALL) in southern Iran. 90 patients with ALL and 90 age-sex matched healthy participants were enrolled in this study. Antibodies (IgG) against HBsAg, HSV1, HSV2, EBV different antigens including Epstein-Barr nuclear antigen-1 (EBNA-1), viral capsid antigen (VCA) and early antigen (EA) were measured by enzyme-linked immunosorbent assay (ELISA). There were 54 (60%) male and 36 (40%) female in both study groups with mean age of 8.47 ± 3.61 and 8.61 ± 2.84 years in case and control group respectively (P = 0.812). The prevalence of antibodies against HBsAg (P = 0.002), HSV1 (P < 0.0001), VCA (P = 0.021) and EA (P < 0.0001) antigens of EBV were significantly higher in ALL patients. With the results of this study, we could not exclude a connection between these viral infections and later leukemogenesis in childhood ALL, although nor latent infection nor congenital infection cannot be excluded by this method.

  3. Immunity to herpes simplex virus type 2. Suppression of virus-induced immune responses in ultraviolet B-irradiated mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasumoto, S.; Hayashi, Y.; Aurelian, L.

    1987-10-15

    Ultraviolet B irradiation (280 to 320 nm) of mice at the site of intradermal infection with herpes simplex virus type 2 increased the severity of the herpes simplex virus type 2 disease and decreased delayed-type hypersensitivity (DTH) responses to viral antigen. Decrease in DTH resulted from the induction of suppressor T cells, as evidenced by the ability of spleen cells from UV-irradiated mice to inhibit DTH and proliferative responses after adoptive transfer. Lymph node cells from UV-irradiated animals did not transfer suppression. DTH was suppressed at the induction but not the expression phase. Suppressor T cells were Lyt-1+, L3T4+, andmore » their activity was antigen-specific. However, after in vitro culture of spleen cells from UV-irradiated mice with herpes simplex virus type 2 antigen, suppressor activity was mediated by Lyt-2+ cells. Culture supernatants contained soluble nonantigen-specific suppressive factors.« less

  4. Validity of the coding for herpes simplex encephalitis in the Danish National Patient Registry.

    PubMed

    Jørgensen, Laura Krogh; Dalgaard, Lars Skov; Østergaard, Lars Jørgen; Andersen, Nanna Skaarup; Nørgaard, Mette; Mogensen, Trine Hyrup

    2016-01-01

    Large health care databases are a valuable source of infectious disease epidemiology if diagnoses are valid. The aim of this study was to investigate the accuracy of the recorded diagnosis coding of herpes simplex encephalitis (HSE) in the Danish National Patient Registry (DNPR). The DNPR was used to identify all hospitalized patients, aged ≥15 years, with a first-time diagnosis of HSE according to the International Classification of Diseases, tenth revision (ICD-10), from 2004 to 2014. To validate the coding of HSE, we collected data from the Danish Microbiology Database, from departments of clinical microbiology, and from patient medical records. Cases were classified as confirmed, probable, or no evidence of HSE. We estimated the positive predictive value (PPV) of the HSE diagnosis coding stratified by diagnosis type, study period, and department type. Furthermore, we estimated the proportion of HSE cases coded with nonspecific ICD-10 codes of viral encephalitis and also the sensitivity of the HSE diagnosis coding. We were able to validate 398 (94.3%) of the 422 HSE diagnoses identified via the DNPR. Hereof, 202 (50.8%) were classified as confirmed cases and 29 (7.3%) as probable cases providing an overall PPV of 58.0% (95% confidence interval [CI]: 53.0-62.9). For "Encephalitis due to herpes simplex virus" (ICD-10 code B00.4), the PPV was 56.6% (95% CI: 51.1-62.0). Similarly, the PPV for "Meningoencephalitis due to herpes simplex virus" (ICD-10 code B00.4A) was 56.8% (95% CI: 39.5-72.9). "Herpes viral encephalitis" (ICD-10 code G05.1E) had a PPV of 75.9% (95% CI: 56.5-89.7), thereby representing the highest PPV. The estimated sensitivity was 95.5%. The PPVs of the ICD-10 diagnosis coding for adult HSE in the DNPR were relatively low. Hence, the DNPR should be used with caution when studying patients with encephalitis caused by herpes simplex virus.

  5. Mersalyl: a Diuretic with Antiviral Properties

    PubMed Central

    Kramer, M. J.; Cleeland, R.; Grunberg, E.

    1975-01-01

    Mersalyl (Salyrgan), an organic mercurial diuretic, was tested against human and animal viruses with in vivo model infections in mice and tissue culture systems. Mersalyl was active against coxsackieviruses A21 and B1 in mice if administered intraperitoneally immediately after infection. No effect was observed if intraperitoneal treatment was delayed 1 or 2 h postinfection, or if treatment was administered either subcutaneously or per os. Topical treatment with a 5% aqueous solution of mersalyl produced a statistically significant effect against herpes simplex dermatitis in mice but the substance was inactive against systemic infections in mice with herpes simplex as well as Columbia SK, influenza, Semliki Forest, and Sendai viruses. Contact inactivation of coxsackieviruses A21 and B1 and herpes simplex virus was observed, but mersalyl was inactive in tissue culture against coxackieviruses A21 and B1, herpes simplex, influenza, rhinovirus, Semliki Forest, Sendai, and vaccinia viruses. PMID:810082

  6. A 9 year-old girl with herpes simplex virus type 2 acute retinal necrosis treated with intravitreal foscarnet.

    PubMed

    King, John; Chung, Mina; DiLoreto, David A

    2007-01-01

    A 9-year-old girl presented with a 2-week history of redness in the left eye. Examination revealed vitritis, retinal whitening, vasculitis, and optic nerve head edema. Polymerase chain reaction testing of the aqueous fluid revealed herpes simplex virus type 2. The retinitis was controlled with intravenous acyclovir and intravitreal foscarnet. The clinical course was complicated by retinal neovascularization and vitreous hemorrhage, which was treated by pars plana vitrectomy and endolaser. While there are few case reports of herpes simplex virus type 2 retinitis in children, this one is unique for the following reasons: it is the first reported case of herpes simplex virus type 2 retinitis in a child less than 10 years old without a previous history of neonatal infection or central nervous system involvement; no other children have been reported to have been treated with intravitreal foscarnet; and retinal neovascularization complicated the recovery.

  7. Selection and Characterization of Drug-Resistant Variants of Human Immunodeficiency Virus (AIDS).

    DTIC Science & Technology

    1995-10-01

    on Antiviral Reserach, Santa Fe, New Mexico , 1995. Page 18 APPENDIX Page 19 p - FACTFILE Mutations in HIV-1 Reverse Transcriptase and Protease...including herpes simplex viruses, varicella -zoster Resistance of clinical HIV-1 isolates to foscarnet has not virus, cytomegalovirus (CMV), hepatitis B...This effect of the Tyr-208 substitution was not ob- reported previously for herpes simplex viruses, varicella -zoster served in MT-2 cells, however. virus

  8. A Novel Detection Platform for Shrimp White Spot Syndrome Virus Using an ICP11-Dependent Immunomagnetic Reduction (IMR) Assay.

    PubMed

    Liu, Bing-Hsien; Lin, Yu-Chen; Ho, Chia-Shin; Yang, Che-Chuan; Chang, Yun-Tsui; Chang, Jui-Feng; Li, Chun-Yuan; Cheng, Cheng-Shun; Huang, Jiun-Yan; Lee, Yen-Fu; Hsu, Ming-Hung; Lin, Feng-Chun; Wang, Hao-Ching; Lo, Chu-Fang; Yang, Shieh-Yueh; Wang, Han-Ching

    2015-01-01

    Shrimp white spot disease (WSD), which is caused by white spot syndrome virus (WSSV), is one of the world's most serious shrimp diseases. Our objective in this study was to use an immunomagnetic reduction (IMR) assay to develop a highly sensitive, automatic WSSV detection platform targeted against ICP11 (the most highly expressed WSSV protein). After characterizing the magnetic reagents (Fe3O4 magnetic nanoparticles coated with anti ICP11), the detection limit for ICP11 protein using IMR was approximately 2 x 10(-3) ng/ml, and the linear dynamic range of the assay was 0.1~1 x 10(6) ng/ml. In assays of ICP11 protein in pleopod protein lysates from healthy and WSSV-infected shrimp, IMR signals were successfully detected from shrimp with low WSSV genome copy numbers. We concluded that this IMR assay targeting ICP11 has potential for detecting the WSSV.

  9. NFκB-mediated activation of the cellular FUT3, 5 and 6 gene cluster by herpes simplex virus type 1.

    PubMed

    Nordén, Rickard; Samuelsson, Ebba; Nyström, Kristina

    2017-11-01

    Herpes simplex virus type 1 has the ability to induce expression of a human gene cluster located on chromosome 19 upon infection. This gene cluster contains three fucosyltransferases (encoded by FUT3, FUT5 and FUT6) with the ability to add a fucose to an N-acetylglucosamine residue. Little is known regarding the transcriptional activation of these three genes in human cells. Intriguingly, herpes simplex virus type 1 activates all three genes simultaneously during infection, a situation not observed in uninfected tissue, pointing towards a virus specific mechanism for transcriptional activation. The aim of this study was to define the underlying mechanism for the herpes simplex virus type 1 activation of FUT3, FUT5 and FUT6 transcription. The transcriptional activation of the FUT-gene cluster on chromosome 19 in fibroblasts was specific, not involving adjacent genes. Moreover, inhibition of NFκB signaling through panepoxydone treatment significantly decreased the induction of FUT3, FUT5 and FUT6 transcriptional activation, as did siRNA targeting of p65, in herpes simplex virus type 1 infected fibroblasts. NFκB and p65 signaling appears to play an important role in the regulation of FUT3, FUT5 and FUT6 transcriptional activation by herpes simplex virus type 1 although additional, unidentified, viral factors might account for part of the mechanism as direct interferon mediated stimulation of NFκB was not sufficient to induce the fucosyltransferase encoding gene cluster in uninfected cells. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. The molecular basis of herpes simplex virus latency

    PubMed Central

    Nicoll, Michael P; Proença, João T; Efstathiou, Stacey

    2012-01-01

    Herpes simplex virus type 1 is a neurotropic herpesvirus that establishes latency within sensory neurones. Following primary infection, the virus replicates productively within mucosal epithelial cells and enters sensory neurones via nerve termini. The virus is then transported to neuronal cell bodies where latency can be established. Periodically, the virus can reactivate to resume its normal lytic cycle gene expression programme and result in the generation of new virus progeny that are transported axonally back to the periphery. The ability to establish lifelong latency within the host and to periodically reactivate to facilitate dissemination is central to the survival strategy of this virus. Although incompletely understood, this review will focus on the mechanisms involved in the regulation of latency that centre on the functions of the virus-encoded latency-associated transcripts (LATs), epigenetic regulation of the latent virus genome and the molecular events that precipitate reactivation. This review considers current knowledge and hypotheses relating to the mechanisms involved in the establishment, maintenance and reactivation herpes simplex virus latency. PMID:22150699

  11. Anti HSV-1 Activity of Halistanol Sulfate and Halistanol Sulfate C Isolated from Brazilian Marine Sponge Petromica citrina (Demospongiae)

    PubMed Central

    da Rosa Guimarães, Tatiana; Quiroz, Carlos Guillermo; Rigotto, Caroline; de Oliveira, Simone Quintana; Rojo de Almeida, Maria Tereza; Bianco, Éverson Miguel; Moritz, Maria Izabel Goulart; Carraro, João Luís; Palermo, Jorge Alejandro; Cabrera, Gabriela; Schenkel, Eloir Paulo; Reginatto, Flávio Henrique; Oliveira Simões, Cláudia Maria

    2013-01-01

    The n-butanol fraction (BF) obtained from the crude extract of the marine sponge Petromica citrina, the halistanol-enriched fraction (TSH fraction), and the isolated compounds halistanol sulfate (1) and halistanol sulfate C (2), were evaluated for their inhibitory effects on the replication of the Herpes Simplex Virus type 1 (HSV-1, KOS strain) by the viral plaque number reduction assay. The TSH fraction was the most effective against HSV-1 replication (SI = 15.33), whereas compounds 1 (SI = 2.46) and 2 (SI = 1.95) were less active. The most active fraction and these compounds were also assayed to determine the viral multiplication step(s) upon which they act as well as their potential synergistic effects. The anti-HSV-1 activity detected was mediated by the inhibition of virus attachment and by the penetration into Vero cells, the virucidal effect on virus particles, and by the impairment in levels of ICP27 and gD proteins of HSV-1. In summary, these results suggest that the anti-HSV-1 activity of TSH fraction detected is possibly related to the synergic effects of compounds 1 and 2. PMID:24172213

  12. Regulation of Innate Immune Responses by Bovine Herpesvirus 1 and Infected Cell Protein 0 (bICP0)

    PubMed Central

    Jones, Clinton

    2009-01-01

    Bovine herpesvirus 1 (BoHV-1) infected cell protein 0 (bICP0) is an important transcriptional regulatory protein that stimulates productive infection. In transient transfection assays, bICP0 also inhibits interferon dependent transcription. bICP0 can induce degradation of interferon stimulatory factor 3 (IRF3), a cellular transcription factor that is crucial for activating beta interferon (IFN-β) promoter activity. Recent studies also concluded that interactions between bICP0 and IRF7 inhibit trans-activation of IFN-β promoter activity. The C3HC4 zinc RING (really important new gene) finger located near the amino terminus of bICP0 is important for all known functions of bICP0. A recombinant virus that contains a single amino acid change in a well conserved cysteine residue of the C3HC4 zinc RING finger of bICP0 grows poorly in cultured cells, and does not reactivate from latency in cattle confirming that the C3HC4 zinc RING finger is crucial for viral growth and pathogenesis. A bICP0 deletion mutant does not induce plaques in permissive cells, but induces autophagy in a cell type dependent manner. In summary, the ability of bICP0 to stimulate productive infection, and repress IFN dependent transcription plays a crucial role in the BoHV-1 infection cycle. PMID:21994549

  13. The herpes simplex virus 2 virion-associated ribonuclease vhs interferes with stress granule formation.

    PubMed

    Finnen, Renée L; Hay, Thomas J M; Dauber, Bianca; Smiley, James R; Banfield, Bruce W

    2014-11-01

    In a previous study, it was observed that cells infected with herpes simplex virus 2 (HSV-2) failed to accumulate stress granules (SGs) in response to oxidative stress induced by arsenite treatment. As a follow-up to this observation, we demonstrate here that disruption of arsenite-induced SG formation by HSV-2 is mediated by a virion component. Through studies on SG formation in cells infected with HSV-2 strains carrying defective forms of UL41, the gene that encodes vhs, we identify vhs as a virion component required for this disruption. Cells infected with HSV-2 strains producing defective forms of vhs form SGs spontaneously late in infection. In addition to core SG components, these spontaneous SGs contain the viral immediate early protein ICP27 as well as the viral serine/threonine kinase Us3. As part of these studies, we reexamined the frameshift mutation known to reside within the UL41 gene of HSV-2 strain HG52. We demonstrate that this mutation is unstable and can rapidly revert to restore wild-type UL41 following low-multiplicity passaging. Identification of the involvement of virion-associated vhs in the disruption of SG formation will enable mechanistic studies on how HSV-2 is able to counteract antiviral stress responses early in infection. In addition, the ability of Us3 to localize to stress granules may indicate novel roles for this viral kinase in the regulation of translation. Eukaryotic cells respond to stress by rapidly shutting down protein synthesis and storing mRNAs in cytoplasmic stress granules (SGs). Stoppages in protein synthesis are problematic for all viruses as they rely on host cell machinery to synthesize viral proteins. Thus, many viruses target SGs for disruption or modification. Infection by herpes simplex virus 2 (HSV-2) was previously observed to disrupt SG formation induced by oxidative stress. In this follow-up study, we identify virion host shutoff protein (vhs) as a viral protein involved in this disruption. The identification of a specific viral protein involved in disrupting SG formation is a key step toward understanding how HSV-2 interacts with these antiviral structures. Additionally, this understanding may provide insights into the biology of SGs that may find application in studies on human motor neuron degenerative diseases, like amyotrophic lateral sclerosis (ALS), which may arise as a result of dysregulation of SG formation. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  14. Dendritic cells in the cornea during Herpes simplex viral infection and inflammation.

    PubMed

    Kwon, Min S; Carnt, Nicole A; Truong, Naomi R; Pattamatta, Ushasree; White, Andrew J; Samarawickrama, Chameen; Cunningham, Anthony L

    Herpes simplex keratitis is commonly caused by Herpes simplex virus type 1, which primarily infects eyelids, corneas, or conjunctiva. Herpes simplex virus type 1-through sophisticated interactions with dendritic cells (DCs), a type of antigen-presenting cell)-initiates proinflammatory responses in the cornea. Corneas were once thought to be an immune-privileged region; however, with the recent discovery of DCs that reside in the cornea, this long-held conjecture has been overturned. Therefore, evaluating the clinical, preclinical, and cell-based studies that investigate the roles of DCs in corneas infected with Herpes simplex virus is critical. With in vivo confocal microscopy, animal models, and cell culture experiments, we may further the understanding of the sophisticated interactions of Herpes simplex virus with DCs in the cornea and the molecular mechanism associated with it. It has been shown that specific differentiation of DCs using immunohistochemistry, flow cytometry, and polymerase chain reaction analysis in both human and mice tissues and viral tissue infections are integral to increasing understanding. As for in vivo confocal microscopy, it holds promise as it is the least invasive and a real-time investigation. These tools will facilitate the discovery of various targets to develop new treatments. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. In vitro stimulation of rabbit T lymphocytes by cells expressing herpes simplex antigens.

    PubMed

    Kapoor, A K; Ling, N R; Nash, A A; Bachan, A; Wildy, P

    1982-04-01

    Lymphocyte stimulation responses to herpes antigens were studied using virus-infected X-irradiated cells. Rabbits were immunized with herpes simplex virus type 1 (strain HFEM) grown in RK 13 cells. For in vitro stimulation assay BHK21 cells were X-irradiated (15 000 rad) and infected with a high m.o.i. of a temperature-sensitive (ts) mutant (N102) of HFEM strain at the non-permissive temperature (38.5 degrees C) of virus. Virus antigens were expressed on the infected cells and there was no leakage of infectious virus into the medium at 38.5 degrees C. T lymphocytes from rabbits immunized with herpes simplex virus were specifically activated by herpesvirus-infected X-irradiated cells; lymph node cells from rabbits immunized with RK13 cells and from non-immune rabbits showed no proliferative response.

  16. Demonstration of the oncogenic potential of Herpes simplex viruses and human cytomegalovirus. [UV radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapp, F.; Li, J.L.H.

    1975-01-01

    The following topics are reviewed: transformation of hamster embryo cells by herpes simplex viruses and human cytomegalovirus; the use of uv radiation and photodynamic action to inactivate virus infectivity while retaining the transformation potential of the virus; detection of virus-specific antigens in transformed cells; oncogenicity of HSV- and CMV-transformed cells in vivo; immunological studies of metastases induced by herpes virus-transformed cells; resistance of transformed cells to superinfection; maintenance of the virus genome in the transformed state; and stimulation of cellular DNA synthesis by human cytomegalovirus. (HLW)

  17. Virus specific antigens in mammalian cells infected with herpes simplex virus

    PubMed Central

    Watson, D. H.; Shedden, W. I. H.; Elliot, A.; Tetsuka, T.; Wildy, P.; Bourgaux-Ramoisy, D.; Gold, E.

    1966-01-01

    Antisera to specific proteins in herpes simplex infected cells were produced by immunization of rabbits with infected rabbit kidney cells. These antisera were highly virus specific and produced up to twelve lines in immunodiffusion tests against infected cell extracts. Acrylamide electrophoresis and immunoelectrophoresis revealed up to ten virus specific proteins of varying size. ImagesFIG. 1FIG. 2FIG. 3FIG. 4FIG. 5 PMID:4288648

  18. Virus-specific DNA sequences present in cells which carry the herpes simplex virus thymidine kinase gene.

    PubMed

    Minson, A C; Darby, G K; Wildy, P

    1979-11-01

    Two independently derived cell lines which carry the herpes simplex type 2 thymidine kinase gene have been examined for the presence of HSV-2-specific DNA sequences. Both cell lines contained 1 to 3 copies per cell of a sequence lying within map co-ordinates 0.2 to 0.4 of the HSV-2 genome. Revertant cells, which contained no detectable thymidine kinase, did not contain this DNA sequence. The failure of EcoR1-restricted HSV-2 DNA to act as a donor of the thymidine kinase gene in transformation experiments suggests that the gene lies close to the EcoR1 restriction site within this sequence at a map position of approx. 0.3. The HSV-2 kinase gene is therefore approximately co-linear with the HSV-1 gene.

  19. Biochemical transformation of mouse cells by herpes simplex virus type 2: enhancement by means of low-level photodynamic treatment.

    PubMed Central

    Verwoerd, D W; Rapp, F

    1978-01-01

    The biochemical transformation of thymidine kinase-deficient cells by UV-inactivated herpes simplex virus is enhanced by low-level photodynamic treatment of the infected cells. At the concentration of proflavine used, the virus was not inactivated and both virus and cellular DNA syntheses were only marginally inhibited. The observed enhancement of the transfer of a virus gene to the cell genome suggests a possible cocarcinogenic role for photodynamically active dyes at very low concentrations. PMID:206727

  20. Recurrent lumbosacral herpes simplex virus infection

    PubMed Central

    Vassantachart, Janna M.

    2016-01-01

    We present the case of a 54-year-old white woman with episodic lumbosacral lesions that she had been treating as psoriasis. Evaluation revealed classic herpes simplex virus (HSV) infection. The discussion reviews the significance and potential complications of recurrent lumbosacral HSV infection. PMID:26722168

  1. Mediators and mechanisms of herpes simplex virus entry into ocular cells.

    PubMed

    Farooq, Asim V; Valyi-Nagy, Tibor; Shukla, Deepak

    2010-06-01

    The entry of herpes simplex virus into cells was once thought to be a general process. It is now understood that the virus is able to use multiple mechanisms for entry and spread, including the use of receptors and co-receptors that have been determined to be cell-type specific. This is certainly true for ocular cell types, which is important as the virus may use different mechanisms to gain access to multiple anatomic structures in close proximity, leading to various ocular diseases. There are some patterns that may be utilized by the virus in the eye and elsewhere, including surfing along filopodia in moving from cell to cell. There are common themes as well as intriguing differences in the entry mechanisms of herpes simplex virus into ocular cells. We discuss these issues in the context of conjunctivitis, keratitis, acute retinal necrosis, and other ocular diseases.

  2. Evasion of Early Antiviral Responses by Herpes Simplex Viruses

    PubMed Central

    Suazo, Paula A.; Ibañez, Francisco J.; Retamal-Díaz, Angello R.; Paz-Fiblas, Marysol V.; Bueno, Susan M.; Kalergis, Alexis M.; González, Pablo A.

    2015-01-01

    Besides overcoming physical constraints, such as extreme temperatures, reduced humidity, elevated pressure, and natural predators, human pathogens further need to overcome an arsenal of antimicrobial components evolved by the host to limit infection, replication and optimally, reinfection. Herpes simplex virus-1 (HSV-1) and herpes simplex virus-2 (HSV-2) infect humans at a high frequency and persist within the host for life by establishing latency in neurons. To gain access to these cells, herpes simplex viruses (HSVs) must replicate and block immediate host antiviral responses elicited by epithelial cells and innate immune components early after infection. During these processes, infected and noninfected neighboring cells, as well as tissue-resident and patrolling immune cells, will sense viral components and cell-associated danger signals and secrete soluble mediators. While type-I interferons aim at limiting virus spread, cytokines and chemokines will modulate resident and incoming immune cells. In this paper, we discuss recent findings relative to the early steps taking place during HSV infection and replication. Further, we discuss how HSVs evade detection by host cells and the molecular mechanisms evolved by these viruses to circumvent early antiviral mechanisms, ultimately leading to neuron infection and the establishment of latency. PMID:25918478

  3. USSR Report, Life Sciences, Biomedical and Behavioral Sciences

    DTIC Science & Technology

    1987-01-20

    Varnek, P. D. Brezhestovskiy; DOKLADY AKADEMII NAUK SSSR, No 6, Aug 86) 13 Effects of Selenomethionine on Proton Magnetic Relaxation in Hepatic ...Virus Expressing Surface Antigen of B Hepatitis Virus and Thymidinekinase of Herpes Simplex Virus (A. D. Altshteyn, 0. G. Andzhaparidze, et al...Influence of Dimetpramide and Metoclopramide on Catecholamine Turnover Rates in Rat Brain Subcortical-Brainstem Structures (V. I. Legeza, M. F. Kamynina

  4. Unique spectrum of activity of 9-[(1,3-dihydroxy-2-propoxy)methyl]-guanine against herpesviruses in vitro and its mode of action against herpes simplex virus type 1.

    PubMed Central

    Cheng, Y C; Huang, E S; Lin, J C; Mar, E C; Pagano, J S; Dutschman, G E; Grill, S P

    1983-01-01

    A guanosine analog, 9-[(1,3-dihydroxy-2-propoxy)methyl]guanine (DHPG), was found to inhibit herpes simplex virus type 1 (HSV-1), herpes simplex virus type 2, cytomegalovirus, and Epstein-Barr virus replication by greater than 50% at concentrations that do not inhibit cell growth in culture. The potency of the drug against all of these viruses is greater than that of 9-[(2-hydroxyethoxy)methyl]guanine (acyclovir). DHPG was active against HSV-1 growth during the early phase of virus replication and had no activity when added at a later time after infection. Its antiviral activity was irreversible. Thymidine partially neutralized its action. The anti-HSV-1 activity of DHPG was dependent on the induction and the properties of virus-induced thymidine kinase. Virus variants that induced altered virus thymidine kinase and became resistant to acyclovir were still as sensitive to DHPG as the parental virus. DHPG is active against five different HSV variants with induced altered DNA polymerase and resistance to acyclovir. PMID:6302704

  5. Chemical composition of Propolis Extract ACF® and activity against herpes simplex virus.

    PubMed

    Bankova, V; Galabov, A S; Antonova, D; Vilhelmova, N; Di Perri, B

    2014-09-25

    Propolis Extract ACF(®) (PPE) is a purified extract manufactured from propolis collected in a Canadian region rich in poplar trees, and it is the active substance of a topical ointment used against herpes labialis (cold sores or fever blisters). Aim of this study was to analyze the chemical composition of PPE in order to understand the plant origin and possible relations between compounds and antiviral activity, and to characterize the antiviral activity of the extract against herpes simplex virus in vitro. The analysis of the propolis extract samples was conducted by Gas Chromatography-Mass Spectrometry (GC-MS). The antiviral activity was tested against herpes simplex viruses type 1 and type 2 in MDBK cell cultures by treating the cells with PPE at the time of virus adsorption, and by incubating the virus with the extract before infection (virucidal assay). Results from the GC-MS analyses revealed a dual plant origin of PPE, with components derived from resins of two different species of poplar. The chemical composition appeared standardized between extract samples and was also reproduced in the sample of topical ointment. The antiviral studies showed that PPE had a pronounced virucidal effect against herpes simplex viruses type 1 and type 2, and also interfered with virus adsorption. Copyright © 2014 Elsevier GmbH. All rights reserved.

  6. Herpes Simplex Virus 2 MicroRNA miR-H6 Is a Novel Latency-Associated Transcript-Associated MicroRNA, but Reduction of Its Expression Does Not Influence the Establishment of Viral Latency or the Recurrence Phenotype▿

    PubMed Central

    Tang, Shuang; Bertke, Andrea S.; Patel, Amita; Margolis, Todd P.; Krause, Philip R.

    2011-01-01

    The herpes simplex virus 2 (HSV-2) viral microRNA (miRNA) designated miR-H6 is located upstream of the latency-associated transcript (LAT) promoter region on the strand opposite the LAT. Deletion of the LAT promoter and part of LAT exon 1 abolished HSV-2 miR-H6 expression in acutely and latently infected guinea pig dorsal root ganglia (DRG), suggesting that this region is needed both for the expression of LAT-encoded miRNAs and for miR-H6 expression in vivo. Relative to cells infected with a viral rescuant, miR-H6 expression was significantly reduced in cells infected with a mutant HSV-2 virus, NotPolyA, with an insertion of a simian virus (SV40) polyadenylation signal sequence between the LAT promoter and miR-H6 sequences. In addition, expression of miR-H6, but not LAT or viral DNA, was significantly reduced in both mouse trigeminal ganglia (TG) and guinea pig DRG latently infected with the NotPolyA mutant. Guinea pigs infected with NotPolyA experienced reduced neurological complications of acute infection relative to those infected with the rescuant, but the recurrence phenotype of the NotPolyA mutant was similar to those of its rescuant and wild-type HSV-2, indicating that reduction of miR-H6 expression is not by itself able to alter the establishment of latency for the wild-type virus or the recurrence phenotype. Furthermore, the mutation in NotPolyA did not affect the propensity of wild-type HSV-2 to establish latency in neurons positive for subtype marker KH10. In contrast to published reports regarding its HSV-1 homolog, HSV-2 miR-H6 did not affect ICP4 expression in transfected or infected cells. We hypothesize that viral miRNAs associated with LAT expression are likely to work collectively, contributing to the phenotype attributed to the LAT. PMID:21325410

  7. Prevalence of human herpes virus types 1-7 in the semen of men attending an infertility clinic and correlation with semen parameters.

    PubMed

    Neofytou, Eirini; Sourvinos, George; Asmarianaki, Maria; Spandidos, Demetrios A; Makrigiannakis, Antonios

    2009-06-01

    To determine the prevalence of herpes viruses in the semen of an asymptomatic male cohort with and without infertility problems and its association with altered semen parameters. A prospective randomized study. Medical school and IVF clinic. One hundred seventy-two male patients undergoing routine semen analysis: 80 with normal semen parameters (control group) and 92 with abnormal semen parameters. Semen samples were collected by masturbation. The DNA from the Herpesviridae family (herpes simplex virus 1 [HSV-1], herpes simplex virus 2 [HSV-2], Varicella zoster virus [VZV], Epstein-Barr virus [EBV], cytomegalovirus [CMV], human herpes virus type 6 [HHV-6], human herpes virus type 7 [HHV-7]) and routine semen parameters. Viral DNA was detected in 143/172 (83.1%) of the total samples for at least one herpes virus: HSV-1, 2.5%; VZV, 1.2%; EBV, 45%; CMV, 62.5%; HHV-6, 70%; HHV-7, 0% in the normal semen samples and HSV-1, 2.1%; VZV, 3.2%; EBV, 39.1%; CMV, 56.5%; HHV-6, 66.3%; HHV-7, 0% in the abnormal semen samples. No association was found between the presence of viral DNA and semen parameters. Interestingly, a statistical significance between leukocytospermia and the presence of EBV DNA was observed. The DNA of herpes viruses is frequently detected in the semen of asymptomatic fertile and infertile male patients. Further studies are required to investigate the role of herpes viruses in male factor infertility.

  8. Molecular requirement for sterols in herpes simplex virus entry and infectivity

    USDA-ARS?s Scientific Manuscript database

    Herpes simplex virus 1 (HSV-1) required cholesterol for virion-induced membrane fusion. HSV successfully entered DHCR24-/-cells, which lack a desmosterol-to-cholesterol conversion enzyme, indicating entry can occur independently of cholesterol. Depletion of desmosterol from these cells resulted in d...

  9. Herpes virus seroepidemiology in the adult Swedish population.

    PubMed

    Olsson, Jan; Kok, Eloise; Adolfsson, Rolf; Lövheim, Hugo; Elgh, Fredrik

    2017-01-01

    Herpes viruses establish a life-long latency and can cause symptoms during both first-time infection and later reactivation. The aim of the present study was to describe the seroepidemiology of Herpes simplex type 1 (HSV1), Herpes simplex type 2 (HSV2), Cytomegalovirus (CMV), Varicella Zoster virus (VZV) and Human herpes virus type 6 (HHV6) in an adult Swedish population (35-95 years of age). Presence of antibodies against the respective viruses in serum from individuals in the Betula study was determined with an enzyme-linked immunosorbent assay (ELISA). Singular samples from 535 persons (53.9% women, mean age at inclusion 62.7 ± 14.4 years) collected 2003-2005 were analyzed for the five HHVs mentioned above. In addition, samples including follow-up samples collected 1988-2010 from 3,444 persons were analyzed for HSV. Prevalence of HSV1 was 79.4%, HSV2 12.9%, CMV 83.2%, VZV 97.9%, and HHV6 97.5%. Herpes virus infections were more common among women ( p  = 0.010) and a lower age-adjusted HSV seroprevalence was found in later birth cohorts ( p  < 0.001). The yearly incidence of HSV infection was estimated at 14.0/1000. Women are more often seropositive for HHV, especially HSV2. Age-adjusted seroprevalence for HSV was lower in later birth cohorts indicating a decreasing childhood and adolescent risk of infection.

  10. Can Herpes Simplex Virus Encephalitis Cause Aphasia?

    ERIC Educational Resources Information Center

    Naude, H.; Pretorius, E.

    2003-01-01

    Aphasia implies the loss or impairment of language caused by brain damage. The key to understanding the nature of aphasic symptoms is the neuro-anatomical site of brain damage, and not the causative agent. However, because "Herpes simplex" virus (HSV) encephalitis infection usually affects the frontal and temporal lobes, subcortical…

  11. 21 CFR 866.3305 - Herpes simplex virus serological assays.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Herpes simplex virus serological assays. 866.3305 Section 866.3305 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3305 Herpes...

  12. 21 CFR 866.3305 - Herpes simplex virus serological assays.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Herpes simplex virus serological assays. 866.3305 Section 866.3305 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3305 Herpes...

  13. 21 CFR 866.3305 - Herpes simplex virus serological assays.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Herpes simplex virus serological assays. 866.3305 Section 866.3305 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3305 Herpes...

  14. 21 CFR 866.3305 - Herpes simplex virus serological assays.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Herpes simplex virus serological assays. 866.3305 Section 866.3305 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3305 Herpes...

  15. 21 CFR 866.3305 - Herpes simplex virus serological assays.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Herpes simplex virus serological assays. 866.3305 Section 866.3305 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3305 Herpes...

  16. Herpes simplex virus meningitis complicated by ascending paralysis

    PubMed Central

    Benjamin, Mina M.; Gummelt, Kyle L.; Zaki, Rabeea; Afzal, Aasim; Sloan, Louis

    2013-01-01

    A case of herpes simplex virus (HSV) meningitis complicated by ascending paralysis with almost complete recovery following antiviral treatment is reported. We present this case to illustrate the importance of including HSV-induced neuropathy in the differential diagnosis of acute neurologic symptoms following the viral illness. PMID:23814385

  17. Human Herpes Simplex Virus Type 1 in Confiscated Gorilla

    PubMed Central

    Oxford, Kristie L.; Gardner-Roberts, David; Kinani, Jean-Felix; Spelman, Lucy; Barry, Peter A.; Cranfield, Michael R.; Lowenstine, Linda J.

    2014-01-01

    In 2007, we detected human herpes simplex virus type 1, which caused stomatitis, in a juvenile confiscated eastern lowland gorilla (Gorilla beringei graueri) that had a high degree of direct contact with human caretakers. Our findings confirm that pathogens can transfer between nonhuman primate hosts and humans. PMID:25341185

  18. Human herpes simplex virus type 1 in confiscated gorilla.

    PubMed

    Gilardi, Kirsten V K; Oxford, Kristie L; Gardner-Roberts, David; Kinani, Jean-Felix; Spelman, Lucy; Barry, Peter A; Cranfield, Michael R; Lowenstine, Linda J

    2014-11-01

    In 2007, we detected human herpes simplex virus type 1, which caused stomatitis, in a juvenile confiscated eastern lowland gorilla (Gorilla beringei graueri) that had a high degree of direct contact with human caretakers. Our findings confirm that pathogens can transfer between nonhuman primate hosts and humans.

  19. Effect of Acycloguanosine Treatment on Acute and Latent Herpes Simplex Infections in Mice

    PubMed Central

    Field, Hugh J.; Bell, Susanne E.; Elion, Gertrude B.; Nash, Anthony A.; Wildy, Peter

    1979-01-01

    Systemic treatment of mice with the nucleoside analog 9-(2-hydroxyethoxymethyl)guanine (acycloguanosine [aciclovir]) was found to be highly effective against acute type 1 herpes simplex virus infection of the pinna. The drug ablated clinical signs and reduced virus replication both in tissue local to the inoculation site and within the nervous system. Provided that moderate-sized virus inocula were used, acycloguanosine treatment reduced or prevented the establishment of a latent infection in the dorsal root ganglia relating to the sensory nerve supply of the ear. However, although it aborted artificially produced infections in dorsal root ganglia, acycloguanosine was found not to be effective against the latent infection once established. This finding strongly indicated that latent herpes simplex virus in mice can exist in a nonreplicating form. PMID:464587

  20. Effect of acycloguanosine treatment of acute and latent herpes simplex infections in mice.

    PubMed

    Field, H J; Bell, S E; Elion, G B; Nash, A A; Wildy, P

    1979-04-01

    Systemic treatment of mice with the nucleoside analog 9-(2-hydroxyethoxymethyl)guanine (acycloguanosine [aciclovir]) was found to be highly effective against acute type 1 herpes simplex virus infection of the pinna. The drug ablated clinical signs and reduced virus replication both in tissue local to the inoculation site and within the nervous system. Provided that moderate-sized virus inocula were used, acycloguanosine treatment reduced or prevented the establishment of a latent infection in the dorsal root ganglia relating to the sensory nerve supply of the ear. However, although it aborted artificially produced infections in dorsal root ganglia, acycloguanosine was found not to be effective against the latent infection once established. This finding strongly indicated that latent herpes simplex virus in mice can exist in a nonreplicating form.

  1. Prevalence of HIV, human papillomavirus type 16 and herpes simplex virus type 2 among female sex workers in Guinea and associated factors.

    PubMed

    Aho, Joséphine; Koushik, Anita; Coutlée, François; Diakité, Soumaïla Laye; Rashed, Sélim

    2014-03-01

    Female sex workers are at high risk for HIV infection. Sexually transmitted infections are known to be co-factors for HIV infection. Our aims were (1) to assess the prevalence of HIV and other sexually transmitted infections in this population; (2) to determine the association between sociodemographic characteristics, behavioural variables, and variables related to HIV prevention and HIV infection. A cross-sectional study was conducted in Conakry, Guinea, among a convenience sample of 223 female sex workers. A questionnaire on sociodemographic characteristics, risk factors, and exposure to prevention was administered. Screening for HIV, herpes simplex virus type 2, human papillomavirus type 16, Neisseria gonorrhoeae, and Chlamydia trachomatis was performed. Prevalences of HIV, herpes simplex virus type 2, human papillomavirus type 16, N. gonorrhoeae, and C. trachomatis were 35.3%, 84.1%, 12.2%, 9.0%, and 13.6%, respectively. Having a child, lubricant use, and human papillomavirus type 16 infection were associated with HIV infection. Interventions that promote screening and treatment of sexually transmitted infections are needed in order to achieve successful interventions to prevent HIV among female sex workers in resource-limited settings.

  2. Mechanism of ribonucleotide reductase from Herpes simplex virus type 1. Evidence for 3' carbon-hydrogen bond cleavage and inactivation by nucleotide analogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ator, M.A.; Stubbe, J.; Spector, T.

    1986-03-15

    Isotope effects of 2.5, 2.1, and 1.0 were measured on the conversion of (3'-3H)ADP, (3'-H)UDP, and (5-3H) UDP to the corresponding 2'-deoxynucleotides by herpes simplex virus type 1 ribonucleotide reductase. These results indicate that the reduction of either purine or pyrimidine nucleotides requires cleavage of the 3' carbon-hydrogen bond of the substrate. The substrate analogs 2'-chloro-2'-deoxyuridine 5'-diphosphate (ClUDP), 2'-deoxy-2'-fluorouridine 5'-diphosphate, and 2'-azido-2'-deoxyuridine 5'-diphosphate were time-dependent inactivators of the herpes simplex virus type 1 ribonucleotide reductase. Incubation of (3'-3H)ClUDP with the enzyme was accompanied by time-dependent release of 3H to the solvent. Reaction of (beta-32P)ClUDP with the reductase resulted in themore » production of inorganic pyrophosphate. These results are consistent with the enzyme-mediated cleavage of the 3' carbon-hydrogen bond of ClUDP and the subsequent conversion of the nucleotide to 2-methylene-3(2H)furanone, as previously reported with the Escherichia coli ribonucleotide reductase.« less

  3. Tolerance and immunity in mice infected with herpes simplex virus: simultaneous induction of protective immunity and tolerance to delayed-type hypersensitivity.

    PubMed

    Nash, A A; Gell, P G; Wildy, P

    1981-05-01

    Unresponsiveness to delayed type hypersensitivity was induced in mice following an intravenous injection of herpes simplex virus. The principal tolerogens used were thymidine kinase-deficient virus mutants which grow poorly in vivo; u.v.-inactivated and to a lesser extent formalin-inactivated virus were also tolerogenic. The tolerance induced was specific for the virus type. Despite the tolerance to delayed hypersensitivity, anti-viral immunity is present as determined by the rapid inactivation of infectious virus. The mechanism of tolerance to herpes virus and the importance of these observations for the pathogenesis of viral disease is discussed.

  4. Tolerance and immunity in mice infected with herpes simplex virus: simultaneous induction of protective immunity and tolerance to delayed-type hypersensitivity.

    PubMed Central

    Nash, A A; Gell, P G; Wildy, P

    1981-01-01

    Unresponsiveness to delayed type hypersensitivity was induced in mice following an intravenous injection of herpes simplex virus. The principal tolerogens used were thymidine kinase-deficient virus mutants which grow poorly in vivo; u.v.-inactivated and to a lesser extent formalin-inactivated virus were also tolerogenic. The tolerance induced was specific for the virus type. Despite the tolerance to delayed hypersensitivity, anti-viral immunity is present as determined by the rapid inactivation of infectious virus. The mechanism of tolerance to herpes virus and the importance of these observations for the pathogenesis of viral disease is discussed. PMID:7251047

  5. Completely assembled virus particles detected by transmission electron microscopy in proximal and mid-axons of neurons infected with herpes simplex virus type 1, herpes simplex virus type 2 and pseudorabies virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang Jialing, E-mail: hjialing@mail.med.upenn.edu; Lazear, Helen M., E-mail: Hlazear@DOM.wustl.edu; Friedman, Harvey M., E-mail: hfriedma@mail.med.upenn.ed

    2011-01-05

    The morphology of alphaherpesviruses during anterograde axonal transport from the neuron cell body towards the axon terminus is controversial. Reports suggest that transport of herpes simplex virus type 1 (HSV-1) nucleocapsids and envelope proteins occurs in separate compartments and that complete virions form at varicosities or axon termini (subassembly transport model), while transport of a related alphaherpesvirus, pseudorabies virus (PRV) occurs as enveloped capsids in vesicles (assembled transport model). Transmission electron microscopy of proximal and mid-axons of primary superior cervical ganglion (SCG) neurons was used to compare anterograde axonal transport of HSV-1, HSV-2 and PRV. SCG cell bodies were infectedmore » with HSV-1 NS and 17, HSV-2 2.12 and PRV Becker. Fully assembled virus particles were detected intracellularly within vesicles in proximal and mid-axons adjacent to microtubules after infection with each virus, indicating that assembled virions are transported anterograde within axons for all three alphaherpesviruses.« less

  6. Transient neuropathic bladder following herpes simplex genitalis.

    PubMed

    Riehle, R A; Williams, J J

    1979-08-01

    A case of transient bladder dysfunction and urinary retention concomitant with herpes genitalis is presented. The protean manifestations of the herpes simplex virus, the similar neurotropic behavior of simplex and zoster, and the neurologic sequelae of the cutaneous simplex eruption are discussed. The possibility of sacral radiculopathy after herpes genitalis must be considered when evaluating acute or episodic neurogenic bladders.

  7. Herpes Simplex Virus Infections of the Central Nervous System.

    PubMed

    Whitley, Richard J

    2015-12-01

    This article summarizes knowledge of herpes simplex virus (HSV) infections of the central nervous system (CNS). Disease pathogenesis, detection of DNA polymerase chain reaction (PCR) for diagnosis and prognosis, and approaches to therapy warrant consideration. HSV infection of the CNS is one of few treatable viral diseases. Clinical trials indicate that outcome following neonatal herpes simplex virus type 2 (HSV-2) infections of the CNS is significantly improved when 6 months of suppressive oral acyclovir therapy follows IV antiviral therapy. In contrast, herpes simplex virus type 1 (HSV-1) infections of the brain do not benefit from extended oral antiviral therapy. This implies a difference in disease pathogenesis between HSV-2 and HSV-1 infections of the brain. PCR detection of viral DNA in the CSF is the gold standard for diagnosis. Use of PCR is now being adopted as a basis for determining the duration of therapy in the newborn. HSV infections are among the most common encountered by humans; seropositivity occurs in 50% to 90% of adult populations. Herpes simplex encephalitis, however, is an uncommon result of this infection. Since no new antiviral drugs have been introduced in nearly 3 decades, much effort has focused on learning how to better use acyclovir and how to use existing databases to establish earlier diagnosis.

  8. In vitro and in vivo antiviral activity of scopadulcic acid B from Scoparia dulcis, Scrophulariaceae, against herpes simplex virus type 1.

    PubMed

    Hayashi, K; Niwayama, S; Hayashi, T; Nago, R; Ochiai, H; Morita, N

    1988-09-01

    The antiviral activity of five diterpenoids isolated from Scoparia dulcis L., Scrophulariaceae, was examined in vitro against herpes simplex virus type 1. Among these compounds, only scopadulcic acid B was found to inhibit the viral replication with the in vitro therapeutic index of 16.7. The action of scopadulcic acid B was not due to a direct virucidal effect or inhibition of virus attachment to host cells. Single-cycle replication experiments indicated that the compound interfered with considerably early events of virus growth. The influence of scopadulcic acid B on the course of the primary corneal herpes simplex virus infection was investigated by means of a hamster test model. When the treatment was initiated immediately after virus inoculation, scopadulcic acid B, when applied orally or intraperitoneally, effectively prolonged both the appearance of herpetic lesions and the survival time at the dose of 100 and 200 mg/kg per day.

  9. New frontiers in oncolytic viruses: optimizing and selecting for virus strains with improved efficacy

    PubMed Central

    2018-01-01

    Oncolytic viruses have demonstrated selective replication and killing of tumor cells. Different types of oncolytic viruses – adenoviruses, alphaviruses, herpes simplex viruses, Newcastle disease viruses, rhabdoviruses, Coxsackie viruses, and vaccinia viruses – have been applied as either naturally occurring or engineered vectors. Numerous studies in animal-tumor models have demonstrated substantial tumor regression and prolonged survival rates. Moreover, clinical trials have confirmed good safety profiles and therapeutic efficacy for oncolytic viruses. Most encouragingly, the first cancer gene-therapy drug – Gendicine, based on oncolytic adenovirus type 5 – was approved in China. Likewise, a second-generation oncolytic herpes simplex virus-based drug for the treatment of melanoma has been registered in the US and Europe as talimogene laherparepvec. PMID:29445265

  10. The association of metabolic syndrome and Chlamydia pneumoniae, Helicobacter pylori, cytomegalovirus, and herpes simplex virus type 1: The Persian Gulf Healthy Heart Study

    PubMed Central

    Nabipour, Iraj; Vahdat, Katayon; Jafari, Seyed Mojtaba; Pazoki, Raha; Sanjdideh, Zahra

    2006-01-01

    Background The metabolic syndrome together with insulin resistance and their consequences are basic factors in pathogenesis of atherosclerosis. Chronic infections with herpes simplex virus type 1 (HSV-1), cytomegalovirus (CMV), and Chlamydia pneumoniae are associated with the development of atherosclerosis and coronary heart disease. The infectious aspects of metabolic syndrome have not been investigated. Methods In a cross-sectional, population-based study, we used National Cholesterol Education Program (NCEP)-Adult Treatment Panel (ATP)-III criteria in 1791 subjects, aged 25 years and over, selected by cluster random sampling in three Iranian ports in the northern Persian Gulf. Sera were analyzed for IgG antibodies to Chlamydia pneumoniae, HSV-1, Helicobacter pylori (H. pylori) and CMV using ELISA. Results In multiple logistic regression analysis, of the infectious agents, CMV [OR = 1.81 (1.05–3.10); p = 0.03], H. pylori [OR = 1.50 (1.12–2.00); p = 0.007] and Chlamydia pneumoniae [OR = 1.69 (1.27–2.25); p < 0.0001] showed a significant association with the metabolic syndrome in men and HSV-1 [OR = 1.95 (1.22–3.11); p = 0.005], H. pylori [OR = 1.45 (1.09–1.94); 0.01] and Chlamydia pneumoniae [OR = 1.65 (1.23–2.21); p = 0.001] in women. Conclusion The metabolic syndrome, which occurs very frequently in the general population, has a significant association with prior infection with Chlamydia pneumoniae, Helicobacter pylori, cytomegalovirus and herpes simplex virus type 1. Hypothesis about participation of infection in pathogenesis of metabolic syndrome should be investigated. PMID:17140429

  11. 75 FR 59670 - Immunology and Microbiology Devices; Reclassification of the Herpes Simplex Virus Serological...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 866 [Docket No. FDA-2010-N-0429] Immunology and Microbiology Devices; Reclassification of the Herpes Simplex Virus... proposed that 21 CFR part 866 be amended as follows: PART 866--IMMUNOLOGY AND MICROBIOLOGY DEVICES 1. The...

  12. 75 FR 59611 - Microbiology Devices; Reclassification of Herpes Simplex Virus Types 1 and 2 Serological Assays...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 866 [Docket No. FDA-2009-N-0344] Microbiology Devices; Reclassification of Herpes Simplex Virus Types 1 and 2 Serological Assays; Confirmation of Effective Date AGENCY: Food and Drug Administration, HHS. ACTION: Direct...

  13. Herpes Simplex Virus Infection in a University Health Population: Clinical Manifestations, Epidemiology, and Implications

    ERIC Educational Resources Information Center

    Horowitz, Robert; Aierstuck, Sara; Williams, Elizabeth A.; Melby, Bernette

    2010-01-01

    Objective: The authors described clinical presentations of oral and genital herpes simplex virus (HSV) infections in a university health population and implications of these findings. Participants and Methods: Using a standardized data collection tool, 215 records of patients with symptomatic culture-positive HSV infections were reviewed. Results:…

  14. Antiviral Activity of Crude Hydroethanolic Extract from Schinus terebinthifolia against Herpes simplex Virus Type 1.

    PubMed

    Nocchi, Samara Requena; Companhoni, Mychelle Vianna Pereira; de Mello, João Carlos Palazzo; Dias Filho, Benedito Prado; Nakamura, Celso Vataru; Carollo, Carlos Alexandre; Silva, Denise Brentan; Ueda-Nakamura, Tânia

    2017-04-01

    Herpes simplex virus infections persist throughout the lifetime of the host and affect more than 80 % of the humans worldwide. The intensive use of available therapeutic drugs has led to undesirable effects, such as drug-resistant strains, prompting the search for new antiherpetic agents. Although diverse bioactivities have been identified in Schinus terebinthifolia , its antiviral activity has not attracted much attention. The present study evaluated the antiherpetic effects of a crude hydroethanolic extract from the stem bark of S. terebinthifolia against Herpes simplex virus type 1 in vitro and in vivo as well as its genotoxicity in bone marrow in mammals and established the chemical composition of the crude hydroethanolic extract based on liquid chromatography-diode array detector-mass spectrometry and MS/MS. The crude hydroethanolic extract inhibited all of the tested Herpes simplex virus type 1 strains in vitro and was effective in the attachment and penetration stages, and showed virucidal activity, which was confirmed by transmission electron microscopy. The micronucleus test showed that the crude hydroethanolic extract had no genotoxic effect at the concentrations tested. The crude hydroethanolic extract afforded protection against lesions that were caused by Herpes simplex virus type 1 in vivo . Liquid chromatography-diode array detector-mass spectrometry and MS/MS identified 25 substances, which are condensed tannins mainly produced by a B-type linkage and prodelphinidin and procyanidin units. Georg Thieme Verlag KG Stuttgart · New York.

  15. Cloning of the active thymidine kinase gene of herpes simplex virus type 1 in Escherichia coli K-12.

    PubMed

    Colbere-Garapin, F; Chousterman, S; Horodniceanu, F; Kourilsky, P; Garapin, A C

    1979-08-01

    A herpes simplex virus DNA fragment that is produced by digestion with BamHI endonuclease and carries the thymidine kinase (TK; ATP:thymidine 5'-phosphotransferase, EC 2.7.1.21) gene has been cloned in Escherichia coli. A recombinat plasmid, pFG5, has been analyzed extensively and a detailed restriction map is presented. pFG5 DNA efficiently transforms TK- mouse L cells. The TK coding sequence in the cloned fragment has been localized and a smaller recombinant plasmid, pAG0, also carrying an active TK gene, has been constructed to serve as a more convenient vector for transfer, into TK- cells, of genes previously cloned in E. coli.

  16. Phytochemical screening and antiviral activity of some medicinal plants from the island Soqotra.

    PubMed

    Mothana, Ramzi A A; Mentel, Renate; Reiss, Christiane; Lindequist, Ulrike

    2006-04-01

    Methanol and hot-aqueous extracts of 25 different plant species, used in Yemeni traditional medicine and growing, partly as endemic plants, on the island Soqotra have been investigated for their antiviral activity. In addition, the phytochemical identification of the main chemical constituents was performed. The extracts were assayed in two in vitro viral systems, which used influenza virus type A/MDCK cells and herpes simplex virus type 1/Vero cells, at non-cytotoxic concentrations. The herpes simplex virus type 1 showed more sensitivity than the influenza virus type A against the extracts investigated. The methanol extracts of Boswellia ameero, Boswellia elongata, Buxus hildebrandtii, Cissus hamaderohensis, Cleome socotrana, Dracaena cinnabari, Exacum affine, Jatropha unicostata and Kalanchoe farinacea showed anti-influenza virus type A activity with 50% inhibition (IC50) concentrations ranging from 0.7 to 12.5 microg/mL. In addition, 17 plants of the 25 investigated exhibited anti-HSV-1 activity. The antiviral activity of some active extracts was also observed on a molecular level. Copyright 2006 John Wiley & Sons, Ltd.

  17. Radiation enhanced reactivation of herpes simplex virus: effect of caffeine.

    PubMed

    Hellman, K B; Lytle, C D; Bockstahler, L E

    1976-09-01

    Ultaviolet enhanced (Weigle) reactivation of UV-irradiated herpes simplex virus in UV-irradiated CV-1 monkey kidney cell monolayers was decreased by caffeine. X-ray enhanced reactivation of UV-irradiated virus in X-irradiated monolayers (X-ray reactivation) and UV- or X-ray-inactivated capacity of the cells to support unirradiated virus plaque formation were unaffected by caffeine. The results suggest that a caffeine-sensitive process is necessary for the expression of Weigle reactivation for herpes virus. Since cafeine did not significantly affect X-ray reactivation, different mechanisms may be responsible for the expression of Weigle reactivation and X-ray reactivation.

  18. Viral encephalitis after allogeneic stem cell transplantation: a rare complication with distinct characteristics of different causative agents

    PubMed Central

    Schmidt-Hieber, Martin; Schwender, Julie; Heinz, Werner J.; Zabelina, Tatjana; Kühl, Jörn S.; Mousset, Sabine; Schüttrumpf, Silke; Junghanss, Christian; Silling, Gerda; Basara, Nadezda; Neuburger, Stefan; Thiel, Eckhard; Blau, Igor W.

    2011-01-01

    Background Limited data are available on characteristics of viral encephalitis in patients after allogeneic stem cell transplantation. Design and Methods We analyzed 2,628 patients after allogeneic stem cell transplantation to identify risk factors and characteristics of viral encephalitis. Results Viral encephalitis occurred in 32 patients (1.2%, 95% confidence interval 0.8%–1.6%) and was associated with the use of OKT-3 or alemtuzumab for T-cell depletion (P<0.001) and an increased mortality (P=0.011) in comparison to patients without viral encephalitis. Detected viruses included human herpesvirus-6 (28%), Epstein-Barr virus (19%), herpes simplex virus (13%), JC virus (9%), varicella zoster virus (6%), cytomegalovirus (6%) and adenovirus (3%). More than one virus was identified in 16% of the patients. The median onset time was 106 days after allogeneic stem cell transplantation for the total group of 32 patients, but onset times were shortest in those with human herpesvirus-6 encephalitis and longest in those with JC virus-associated progressive multifocal leukoencephalopathy. The probability of a sustained response to treatment was 63% (95% confidence interval 44%–82%) with a median survival of 94 (95% confidence interval 36–152) days after onset, but significant variation was found when considering different causative viruses. Patients with herpes simplex virus encephalitis had the most favorable outcome with no encephalitis-related deaths. Conclusions The use of OKT-3 or alemtuzumab for in vivo T-cell depletion is associated with an increased risk of viral encephalitis after allogeneic stem cell transplantation. Different viruses are frequently associated with distinct characteristics such as onset time, response to treatment and outcome. PMID:20851868

  19. Nucleotide sequences of Herpes Simplex Virus type 1 (HSV-1) affecting virus entry, cell fusion, and production of glycoprotein gB (VP7)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeLuca, N.; Bzik, D.J.; Bond, V.C.

    1982-10-30

    The tsB5 strain of Herpes Simplex Virus type 1 (HSV-1) contains at least two mutations; one mutation specifies the syncytial phenotype and the other confers temperature sensitivity for virus growth. These functions are known to be located between the prototypic map coordinates 0.30 and 0.42. In this study it was demonstrated that tsB5 enters human embryonic lung (HEL) cells more rapidly than KOS, another strain of HSV-1. The EcoRI restriction fragment F from the KOS strain (map coordinates 0.315 to 0.421) was mapped with eight restriction endonucleases, and 16 recombinant plasmids were constructed which contained varying portions of the KOSmore » genome. Recombinant viruses were generated by marker-rescue and marker-transfer cotransfection procedures, using intact DNA from one strain and a recombinant plasmid containing DNA from the other strain. The region of the crossover between the two nonisogenic strains was inferred by the identification of restriction sites in the recombinants that were characteristic of the parental strains. The recombinants were subjected to phenotypic analysis. Syncytium formation, rate of virus entry, and the production of gB were all separable by the crossovers that produced the recombinants. The KOS sequences which rescue the syncytial phenotype of tsB5 were localized to 1.5 kb (map coordinates 0.345 to 0.355), and the temperature-sensitive mutation was localized to 1.2 kb (0.360 to 0.368), giving an average separation between the mutations of 2.5 kb on the 150-kb genome. DNA sequences that specify a functional domain for virus entry were localized to the nucleotide sequences between the two mutations. All three functions could be encoded by the virus gene specifying the gB glycoprotein.« less

  20. Serologic Screening for Herpes Simplex Virus among University Students: A Pilot Study

    ERIC Educational Resources Information Center

    Mark, Hayley; Nanda, Joy P.; Joffe, Alain; Roberts, Jessica; Rompalo, Anne; Melendez, Johan; Zenilman, Jonathan

    2008-01-01

    Objective: The authors examined the feasibility of conducting serologic testing for the herpes simplex virus 2 (HSV-2) among university students and assessed the psychosocial impact of an HSV-2 diagnosis. Methods: The authors recruited a convenience sample of 100 students (aged 18-39 years) without a history of genital herpes from 1 university…

  1. Identification of ribonucleotide reductase mutation causing temperature-sensitivity of herpes simplex virus isolates from whitlow by deep sequencing.

    PubMed

    Daikoku, Tohru; Oyama, Yukari; Yajima, Misako; Sekizuka, Tsuyoshi; Kuroda, Makoto; Shimada, Yuka; Takehara, Kazuhiko; Miwa, Naoko; Okuda, Tomoko; Sata, Tetsutaro; Shiraki, Kimiyasu

    2015-06-01

    Herpes simplex virus 2 caused a genital ulcer, and a secondary herpetic whitlow appeared during acyclovir therapy. The secondary and recurrent whitlow isolates were acyclovir-resistant and temperature-sensitive in contrast to a genital isolate. We identified the ribonucleotide reductase mutation responsible for temperature-sensitivity by deep-sequencing analysis.

  2. A case of urinary retention in the early stages of herpes simplex virus type-1 encephalitis.

    PubMed

    Fukuoka, Takuya; Nakazato, Yoshihiko; Miyake, Akifumi; Tamura, Naotoshi; Araki, Nobuo; Yamamoto, Toshimasa

    2017-06-01

    A 70-year-old man developed urinary retention in the early stages of herpes simplex virus (HSV) type-1 encephalitis. A nerve conduction study suggested latent myeloradiculitis. This is the first report of human herpes simplex virus-1 encephalitis followed by urinary retention at early stage from the onset like the Elsberg syndrome. Although relatively few similar cases have been reported, we consider that urinary retention is common in HSV-1 encephalitis, in which disturbances of consciousness usually require bladder catheterization from the onset. We further emphasize that urinary retention may occasionally occur in early stages of HSV-1 encephalitis, with a significant possibility of recovery. Copyright © 2017. Published by Elsevier B.V.

  3. Inhibition of Herpes Simplex Virus Strains Isolated from Herpetic Keratitis by Polyinosinic Acid-Polycytidylic Acid

    PubMed Central

    Smetana, Ofira; Eylan, Emanuel; Weinberg, Miriam

    1977-01-01

    Fifty strains of herpes simplex virus, isolated from patients with herpetic keratitis, were examined in vitro for susceptibility to polyinosinic acid-polycytidylic acid [poly(I:C)] in the presence of a constant concentration of diethylaminoethyl-dextran. The minimal inhibitory concentration of poly(I:C) for 44 of these strains ranged from 0.0001 to 0.1 μg/ml; for the remaining six strains, the minimal inhibitory concentration stood at 1 to 2 μg/ml. Fifteen isolates from primary infections were more susceptible to poly(I:C) than 35 isolates from recurrent infections. Isolates acquired at different points of a given clinical episode showed similar susceptibilities to poly(I:C). In two patients, isolates from consecutive recurrences of infection exhibited reduced susceptibilities. The implications of the above observations for the therapeutic use of poly(I:C) are discussed. PMID:195515

  4. Concurrent detection of herpes simplex and varicella-zoster viruses by polymerase chain reaction from the same anatomic location.

    PubMed

    Dhiman, Neelam; Wright, Patricia A; Espy, Mark J; Schneider, Susan K; Smith, Thomas F; Pritt, Bobbi S

    2011-08-01

    Herpes simplex virus (HSV) and varicella-zoster virus (VZV) may cause latent infection of the same peripheral nerve ganglia. However, there are no large studies addressing the frequency of concurrent HSV/VZV PCR positivity from the same anatomic location. In an eight-year retrospective study, we observed 1.3% dual positivity from dermal, genital, and oral mucosal sources. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. A Fusogenic Oncolytic Herpes Simplex Virus for Therapy of Advanced Ovarian Cancer

    DTIC Science & Technology

    2007-06-01

    to demonstrate that fusogenic oncolytic HSVs are a potent anti -tumor agent for advanced ovarian cancer; 2) to prove that fusogenic oncolytic HSVs...oncolytic herpes simplex virus (HSV) can significantly enhance the anti -tumor effect of the virus. Three specific aims have been proposed and they are: 1...have the same safety profile as their non-fusogenic counterparts; 3) to explore novel delivery strategies that can evade host’s anti -viral immunity

  6. Herpes simplex virus type 2 latency in the footpad of mice: effect of acycloguanosine on the recovery of virus.

    PubMed

    Al-Saadi, S A; Gross, P; Wildy, P

    1988-02-01

    Herpes simplex virus type 2 has been reactivated from the latent state in the footpad and dorsal root ganglia of acycloguanosine-treated BALB/c mice. Virus was also recovered from the footpad tissue but not from the ganglia of denervated, latently infected mice. Treatment in vitro of explanted footpad cultures with acycloguanosine or phosphonoacetic acid did not affect the rate of virus reactivation. In all the isolates examined the virus was found to be acycloguanosine-sensitive. Recovery of virus from footpad tissue of mice after a long period of acycloguanosine treatment supports the theory that virus had been truly latent in the footpad and not in a state of persistent infection.

  7. Herpes viruses and human papilloma virus in nasal polyposis and controls.

    PubMed

    Ioannidis, Dimitrios; Lachanas, Vasileios A; Florou, Zoe; Bizakis, John G; Petinaki, Efthymia; Skoulakis, Charalampos E

    2015-01-01

    Chronic rhinosinusitis with nasal polyps is a multifactorial disease entity with an unclear pathogenesis. Contradictory data exist in the literature on the potential implication of viral elements in adult patients with chronic rhinosinusitis. To compare the prevalence of human herpes viruses (1-6) and Human Papilloma Virus in adult patients with chronic rhinosinusitis with nasal polyps and healthy controls. Viral DNA presence was evaluated by real-time polymerase chain reaction application to nasal polyps specimens from 91 chronic rhinosinusitis with nasal polyps patients and nasal turbinate mucosa from 38 healthy controls. Epstein-Barr virus positivity was higher in nasal polyps (24/91; 26.4%) versus controls (4/38; 10.5%), but the difference did not reach significance (p=0.06). Human herpes virus-6 positivity was lower in nasal polyps (13/91; 14.29%) versus controls (10/38; 26.32%, p=0.13). In chronic rhinosinusitis with nasal polyps group, 1 sample was herpes simplex virus-1-positive (1/91; 1.1%), and another was cytomegalovirus-positive (1/91; 1.1%), versus none in controls. No sample was positive for herpes simplex virus-2, varicella-zoster virus, high-risk-human papilloma viruses (16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59) and low-risk-human papilloma viruses (6, 11). Differences in Epstein-Barr virus and human herpes virus-6 positivity among patients with chronic rhinosinusitis with nasal polyps and healthy controls are not statistically significant, weakening the likelihood of their implication in chronic rhinosinusitis with nasal polyps pathogenesis. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  8. Oral and Vaginal Tenofovir for Genital Herpes Simplex Virus Type 2 Shedding in Immunocompetent Women: A Double-Blind, Randomized, Cross-over Trial.

    PubMed

    Bender Ignacio, Rachel A; Perti, Tara; Magaret, Amalia S; Rajagopal, Sharanya; Stevens, Claire E; Huang, Meei-Li; Selke, Stacy; Johnston, Christine; Marrazzo, Jeanne; Wald, Anna

    2015-12-15

    Tenofovir is a potent anti-human immunodeficiency virus (HIV) agent that decreased risk of herpes simplex virus type 2 (HSV-2) acquisition in HIV pre-exposure prophylaxis trials. Whether tenofovir has utility in established HSV-2 disease is unclear. We randomized immunocompetent women with symptomatic HSV-2 infection to oral tenofovir disoproxil fumarate (TDF)/placebo vaginal gel, oral placebo/tenofovir (TFV) vaginal gel, or double placebo (ratio 2:2:1) in a one-way cross-over trial. Women collected genital swabs twice daily for HSV PCR during 4-week lead-in and 5-week treatment phases. The primary intent-to-treat end point was within-person comparison of genital HSV shedding and lesion rates. 64 women completed the lead-in phase and were randomized. Neither TDF nor TFV gel decreased overall shedding or lesion rate in the primary analysis; TFV gel decreased quantity of HSV DNA by -0.50 (-0.86-0.13) log10 copies/mL. In the per-protocol analysis, TDF reduced shedding (relative risk [RR] = 0.74, P = .006) and lesion rates (RR = 0.75, P = .032); quantity of virus shed decreased by 0.41 log10 copies/mL. Oral TDF modestly decreased HSV shedding and lesion rate, and quantity of virus shed when used consistently. Vaginal TFV gel decreased quantity of virus shed by 60%. In contrast to effects on HSV-2 acquisition, tenofovir is unlikely to provide clinically meaningful reductions in the frequency of HSV shedding or genital lesions. NCT01448616. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Herpes simplex virus-mediated human hypoxanthine-guanine phosphoribosyltransferase gene transfer into neuronal cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palella, T.D.; Silverman, L.J.; Schroll, C.T.

    1988-01-01

    The virtually complete deficiency of the purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT) results in a devastating neurological disease, Lesch-Nyhan syndrome. Transfer of the HPRT gene into fibroblasts and lymphoblasts in vitro and into hematopoietic cells in vivo has been accomplished by other groups with retroviral-derived vectors. It appears to be necessary, however, to transfer the HPRT gene into neuronal cells to correct the neurological dysfunction of this disorder. The neurotropic virus herpes simplex virus type 1 has features that make it suitable for use as a vector to transfer the HPRT gene into neuronal tissue. This report describes the isolationmore » of an HPRT-deficient rat neuroma cell line, designated B103-4C, and the construction of a recombinant herpes simplex virus type 1 that contained human HPRT cDNA. These recombinant viruses were used to infect B103-4C cells. Infected cells expressed HPRT activity which was human in origin.« less

  10. 99Tc atom counting by quadrupole ICP-MS. Optimisation of the instrumental response

    NASA Astrophysics Data System (ADS)

    Más, José L.; Garcia-León, Manuel; Bolívar, Juan P.

    2002-05-01

    In this paper, an extensive work is done on the specific tune of a conventional ICP-MS for 99Tc atom counting. For this, two methods have been used and compared: the partial variable control method and the 5D Simplex method. Instrumental limits of detection of 0.2 and 0.8 ppt, respectively, were obtained. They are noticeably lower than that found with the automatic tune method of the spectrometer, 47 ppt, which shows the need of a specific tune when very low levels of 99Tc have to be determined. A study is presented on the mass interferences for 99Tc. Our experiments show that the formation of polyatomic atoms or refractory oxides as well as 98Mo hydrides seem to be irrelevant for 99Tc atom counting. The opposite occurs with the presence of isobaric interferences, i.e. 99Ru, and the effect of abundance sensitivity, or low-mass resolution, which can modify the response at m/ z=99 to a non-negligible extent.

  11. Hydrocephalus in herpes simplex type 2 meningitis.

    PubMed

    Yap, Elaine; Ellis-Pegler, Rod

    2006-08-01

    A 34-year-old woman presented to hospital with symptoms of meningitis, later confirmed to be due to herpes simplex virus type 2. She developed hydrocephalus on day 2 of her admission. We describe the first case of hydrocephalus associated with herpes simplex type 2 meningitis in an adult.

  12. Determining the IgM and IgG antibodies titer against HSV1, HSV2 and CMV in the serum of schizophrenia patients.

    PubMed

    Mohagheghi, Masome; Eftekharian, Mohammad Mahdi; Taheri, Mohammad; Alikhani, Mohammad Yousef

    2018-02-05

    Schizophrenia is a destructive clinical syndrome with diverse mental pathologies. Different mechanisms and factors have a role in this disease. A possible mechanism is that teratogenic viruses cause brain changes and results in the disease appearance. The schizophrenia patients were diagnosed by psychologists and with the consent of patients, five CC of venous blood was drawn. Than Serum samples were isolated and immunoglobulin M (IgM) and immunoglobulin G (IgG) antibodies against herpes simplex virus-1 (HSV-1), herpes simplex virus-2 (HSV-2) and cytomegalovirus (CMV) were quantified by ELISA sandwich kit. The Results showed that anti-CMV and anti-HSV1 and anti-HSV2 IgG antibodies in schizophrenia patients were increased significantly (p< 0.05). The increasing of the anti-HSV2 IgM was also observed but increasing amount of the anti-HSV1 IgM was not statistically significant (p< 0.05). Therefore, as a result of this study CMV and HSV1 and HSV2 infection can probably intensify the symptoms in schizophrenia patients.

  13. Entry of Herpes Simplex Virus Type 1 (HSV-1) into the Distal Axons of Trigeminal Neurons Favors the Onset of Nonproductive, Silent Infection

    PubMed Central

    Eing, Bodo R.; Müller, Marcus; King, Nicholas J. C.; Klupp, Barbara; Mettenleiter, Thomas C.; Kühn, Joachim E.

    2012-01-01

    Following productive, lytic infection in epithelia, herpes simplex virus type 1 (HSV-1) establishes a lifelong latent infection in sensory neurons that is interrupted by episodes of reactivation. In order to better understand what triggers this lytic/latent decision in neurons, we set up an organotypic model based on chicken embryonic trigeminal ganglia explants (TGEs) in a double chamber system. Adding HSV-1 to the ganglion compartment (GC) resulted in a productive infection in the explants. By contrast, selective application of the virus to distal axons led to a largely nonproductive infection that was characterized by the poor expression of lytic genes and the presence of high levels of the 2.0-kb major latency-associated transcript (LAT) RNA. Treatment of the explants with the immediate-early (IE) gene transcriptional inducer hexamethylene bisacetamide, and simultaneous co-infection of the GC with HSV-1, herpes simplex virus type 2 (HSV-2) or pseudorabies virus (PrV) helper virus significantly enhanced the ability of HSV-1 to productively infect sensory neurons upon axonal entry. Helper-virus-induced transactivation of HSV-1 IE gene expression in axonally-infected TGEs in the absence of de novo protein synthesis was dependent on the presence of functional tegument protein VP16 in HSV-1 helper virus particles. After the establishment of a LAT-positive silent infection in TGEs, HSV-1 was refractory to transactivation by superinfection of the GC with HSV-1 but not with HSV-2 and PrV helper virus. In conclusion, the site of entry appears to be a critical determinant in the lytic/latent decision in sensory neurons. HSV-1 entry into distal axons results in an insufficient transactivation of IE gene expression and favors the establishment of a nonproductive, silent infection in trigeminal neurons. PMID:22589716

  14. Photoinactivation of Latent Herpes Simplex Virus in Rabbit Kidney Cells

    PubMed Central

    Kelleher, J. J.; Varani, J.

    1976-01-01

    The photoinactivation of actively and nonactively growing herpes simplex virus by neutral red and proflavine was studied in rabbit kidney cells. Active virus growth was inhibited by both dyes under conditions which did not destroy the cells. Neutral red caused a much greater inhibition than proflavine. Neutral red also caused a reduction in the reactivation rate of latent virus when the infected cells were treated during the latent period. In the treated cultures that did reactivate virus, the average length of the latent period was increased over the control value. Proflavine treatment did not reduce the rate of reactivation of latent virus and did not increase the average latent period of the treated cultures. PMID:185948

  15. Antiviral activity of sandalwood oil against herpes simplex viruses-1 and -2.

    PubMed

    Benencia, F; Courrèges, M C

    1999-05-01

    Sandalwood oil, the essential oil of Santalum album L., was tested for in vitro antiviral activity against Herpes simplex viruses-1 and -2. It was found that the replication of these viruses was inhibited in the presence of the oil. This effect was dose-dependent and more pronounced against HSV-1. A slight diminution of the effect was observed at higher multiplicity of infections. The oil was not virucidal and showed no cytotoxicity at the concentrations tested.

  16. Contributions of herpes simplex virus type 1 envelope proteins to entry by endocytosis

    USDA-ARS?s Scientific Manuscript database

    Herpes simplex virus (HSV) proteins specifically required for endocytic entry but not direct penetration have not been identified. HSVs deleted of gE, gG, gI, gJ, gM, UL45, or Us9 entered cells via either pH-dependent or pH-independent endocytosis and were inactivated by mildly acidic pH. Thus, the ...

  17. Atypical presentations of genital herpes simplex virus in HIV-1 and HIV-2 effectively treated by imiquimod.

    PubMed

    McKendry, Anna; Narayana, Srinivasulu; Browne, Rita

    2015-05-01

    Atypical presentations of genital herpes simplex virus have been described in HIV. We report two cases with hypertrophic presentations which were effectively treated with imiquimod, one of which is the first reported case occurring in a patient with HIV-2. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  18. Enhanced replication of herpes simplex virus type 1 in human cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, C.S.; Smith, K.O.

    1991-02-01

    The effects of DNA-damaging agents on the replication of herpes simplex virus type 1 (HSV-1) were assessed in vitro. Monolayers of human lung fibroblast cell lines were exposed to DNA-damaging agents (methyl methanesulfonate (MMS), methyl methanethiosulfonate (MMTS), ultraviolet light (UV), or gamma radiation (GR)) at specific intervals, before or after inoculation with low levels of HSV-1. The ability of cell monolayers to support HSV-1 replication was measured by direct plaque assay and was compared with that of untreated control samples. In this system, monolayers of different cell lines infected with identical HSV-1 strains demonstrated dissimilar levels of recovery of themore » infectious virus. Exposure of DNA-repair-competent cell cultures to DNA-damaging agents produced time-dependent enhanced virus replication. Treatment with agent before virus inoculation significantly (p less than 0.025) increased the number of plaques by 10 to 68%, compared with untreated control cultures, while treatment with agent after virus adsorption significantly increased (p less than 0.025) the number of plaques by 7 to 15%. In a parallel series of experiments, cells deficient in DNA repair (xeroderma pigmentosum) failed to support enhanced virus replication. These results suggest that after exposure to DNA-damaging agents, fibroblasts competent in DNA repair amplify the replication of HSV-1, and that DNA-repair mechanisms that act on a variety of chromosomal lesions may be involved in the repair and biological activation of HSV-1 genomes.« less

  19. Antiviral Activities of Honey, Royal Jelly, and Acyclovir Against HSV-1.

    PubMed

    Hashemipour, Maryam Alsadat; Tavakolineghad, Zahra; Arabzadeh, Sayed Ali Mohammad; Iranmanesh, Zahra; Nassab, Sayed Amir Hossein Gandjalikhan

    2014-02-01

    Herpes simplex virus type 1 (HSV-1) belongs to the Herpesviridae family and genus simplex virus. This virus is usually acquired during childhood and is transmitted through direct mucocutaneous contact or droplet infection from infected secretions. The aim of the present study was to compare antiviral effects of honey, royal jelly, and acyclovir on herpes simplex virus-1 in an extra-somatic environment. Vero cells were cultured in the Dulbecco's Modified Eagle's Medium (DMEM) along with 10% fetal bovine serum (FBS) in 12-welled microplates. Various dilutions of honey, royal jelly, and acyclovir (5, 10, 50, 100, 2500, 500, and 800 μg/mL) were added to the Vero cells along with a 100-virus concentration of TCID50. The plaque assay technique was used to evaluate the antiviral activities. The results showed that honey, royal jelly, and acyclovir have the highest inhibitory effects on HSV-1 at concentrations of 500, 250, and 100 μg/mL, respectively. In addition, honey, royal jelly, and acyclovir decreased the viral load from 70 795 to 43.3, 30, and 0 PFU/mL at a concentration of 100 μg/mL, respectively. The results of the present study showed that honey and royal jelly, which are natural products with no reports about their deleterious effect at least in laboratory conditions, can be considered alternatives to acyclovir in the treatment of herpetic lesions. However, it should be pointed out that further studies are necessary to substantiate their efficacy because hard evidence on their effectiveness is not available at present.

  20. Indirect micro-immunofluorescence test for detecting type-specific antibodies to herpes simplex virus.

    PubMed

    Forsey, T; Darougar, S

    1980-02-01

    A rapid indirect micro-immunofluorescence test capable of detecting and differentiating type-specific antibodies to herpes simplex virus is described. The test proved highly sensitive and, in 80 patients with active herpes ocular infection, antibody was detected in 94%. No anti-herpes antibody was detected in a control group of 20 patients with adenovirus infections. Testing of animal sera prepared against herpes simplex virus types 1 and 2 and of human sera from cases of ocular and genital herpes infections showed that the test can differentiate antibodies to the infecting serotypes. Specimens of whole blood, taken by fingerprick, and eye secretions, both collected on cellulose sponges, could be tested by indirect micro-immunofluorescence. Anti-herpes IgG, IgM, and IgA can also be detected.

  1. A new nucleoside analog, 9-[[2-hydroxy-1-(hydroxymethyl)ethoxyl]methyl]guanine, highly active in vitro against herpes simplex virus types 1 and 2.

    PubMed Central

    Smith, K O; Galloway, K S; Kennell, W L; Ogilvie, K K; Radatus, B K

    1982-01-01

    A novel nucleoside analog, 9-[[2-hydroxy-1-(hydroxymethyl)ethoxy]methyl]-guanine (BIOLF-62), was found to have potent antiviral activity against herpes simplex virus types 1 and 2 at concentrations well below cytotoxic levels. For example, the Patton strain of herpes simplex virus type 1 was susceptible at concentrations 140- to 2,900-fold below that which inhibited cell division by 50%, depending upon the cell line used for assay. Different herpesvirus strains varied considerably in their susceptibility to the drug, as did results obtained with the same virus strain in different cell lines. BIOLF-62 compared favorably with 5-iodo-2'-deoxyuridine and acyclovir with respect to ratios of viral to cell inhibitory drug concentrations. Patterns of drug resistance to herpesvirus mutants suggested that the primary mode of action of BIOLF-62 is different from that of known antiviral compounds. Human adenovirus type 2, varicella-zoster virus, and Epstein-Barr virus were inhibited by this drug but at concentrations within the cell inhibitory range. Vaccinia virus and human cytomegalovirus were not inhibited at high drug concentrations. PMID:6289741

  2. Herpes Simplex Vaccines: Prospects of Live-attenuated HSV Vaccines to Combat Genital and Ocular infections

    PubMed Central

    Stanfield, Brent; Kousoulas, Konstantin Gus

    2015-01-01

    Herpes simplex virus type-1 (HSV-1) and its closely related type-2 (HSV-2) viruses cause important clinical manifestations in humans including acute ocular disease and genital infections. These viruses establish latency in the trigeminal ganglionic and dorsal root neurons, respectively. Both viruses are widespread among humans and can frequently reactivate from latency causing disease. Currently, there are no vaccines available against herpes simplex viral infections. However, a number of promising vaccine approaches are being explored in pre-clinical investigations with few progressing to early phase clinical trials. Consensus research findings suggest that robust humoral and cellular immune responses may partially control the frequency of reactivation episodes and reduce clinical symptoms. Live-attenuated viral vaccines have long been considered as a viable option for generating robust and protective immune responses against viral pathogens. Varicella zoster virus (VZV) belongs to the same alphaherpesvirus subfamily with herpes simplex viruses. A live-attenuated VZV vaccine has been extensively used in a prophylactic and therapeutic approach to combat primary and recurrent VZV infection indicating that a similar vaccine approach may be feasible for HSVs. In this review, we summarize pre-clinical approaches to HSV vaccine development and current efforts to test certain vaccine approaches in human clinical trials. Also, we discuss the potential advantages of using a safe, live-attenuated HSV-1 vaccine strain to protect against both HSV-1 and HSV-2 infections. PMID:27114893

  3. A VP26-mNeonGreen Capsid Fusion HSV-2 Mutant Reactivates from Viral Latency in the Guinea Pig Genital Model with Normal Kinetics

    PubMed Central

    Pieknik, Julianna R.; Tang, Shuang

    2018-01-01

    Fluorescent herpes simplex viruses (HSV) are invaluable tools for localizing virus in cells, permitting visualization of capsid trafficking and enhancing neuroanatomical research. Fluorescent viruses can also be used to study virus kinetics and reactivation in vivo. Such studies would be facilitated by fluorescent herpes simplex virus recombinants that exhibit wild-type kinetics of replication and reactivation and that are genetically stable. We engineered an HSV-2 strain expressing the fluorescent mNeonGreen protein as a fusion with the VP26 capsid protein. This virus has normal replication and in vivo recurrence phenotypes, providing an essential improved tool for further study of HSV-2 infection. PMID:29738431

  4. The Function of Herpes Simplex Virus Genes: A Primer for Genetic Engineering of Novel Vectors

    NASA Astrophysics Data System (ADS)

    Roizman, Bernard

    1996-10-01

    Herpes simplex virus vectors are being developed for delivery and expression of human genes to the central nervous system, selective destruction of cancer cells, and as carriers for genes encoding antigens that induce protective immunity against infectious agents. Vectors constructed to meet these objectives must differ from wild-type virus with respect to host range, reactivation from latency, and expression of viral genes. The vectors currently being developed are (i) helper free amplicons, (ii) replication defective viruses, and (iii) genetically engineered replication competent viruses with restricted host range. Whereas the former two types of vectors require stable, continuous cell lines expressing viral genes for their replication, the replication competent viruses will replicate on approved primary human cell strains.

  5. Functional Characterization of the Serine-Rich Tract of Varicella-Zoster Virus IE62.

    PubMed

    Kim, Seong K; Shakya, Akhalesh K; Kim, Seongman; O'Callaghan, Dennis J

    2016-01-15

    The immediate early 62 protein (IE62) of varicella-zoster virus (VZV), a major viral trans-activator, initiates the virus life cycle and is a key component of pathogenesis. The IE62 possesses several domains essential for trans-activation, including an acidic trans-activation domain (TAD), a serine-rich tract (SRT), and binding domains for USF, TFIIB, and TATA box binding protein (TBP). Transient-transfection assays showed that the VZV IE62 lacking the SRT trans-activated the early VZV ORF61 promoter at only 16% of the level of the full-length IE62. When the SRT of IE62 was replaced with the SRT of equine herpesvirus 1 (EHV-1) IEP, its trans-activation activity was completely restored. Herpes simplex virus 1 (HSV-1) ICP4 that lacks a TAD very weakly (1.5-fold) trans-activated the ORF61 promoter. An IE62 TAD-ICP4 chimeric protein exhibited trans-activation ability (10.2-fold), indicating that the IE62 TAD functions with the SRT of HSV-1 ICP4 to trans-activate viral promoters. When the serine and acidic residues of the SRT were replaced with Ala, Leu, and Gly, trans-activation activities of the modified IE62 proteins IE62-SRTΔSe and IE62-SRTΔAc were reduced to 46% and 29% of wild-type activity, respectively. Bimolecular complementation assays showed that the TAD of IE62, EHV-1 IEP, and HSV-1 VP16 interacted with Mediator 25 in human melanoma MeWo cells. The SRT of IE62 interacted with the nucleolar-ribosomal protein EAP, which resulted in the formation of globular structures within the nucleus. These results suggest that the SRT plays an important role in VZV viral gene expression and replication. The immediate early 62 protein (IE62) of varicella-zoster virus (VZV) is a major viral trans-activator and is essential for viral growth. Our data show that the serine-rich tract (SRT) of VZV IE62, which is well conserved within the alphaherpesviruses, is needed for trans-activation mediated by the acidic trans-activation domain (TAD). The TADs of IE62, EHV-1 IEP, and HSV-1 VP16 interacted with cellular Mediator 25 in bimolecular complementation assays. The interaction of the IE62 SRT with nucleolar-ribosomal protein EAP resulted in the formation of globular structures within the nucleus. Understanding the mechanisms by which the TAD and SRT of IE62 contribute to the function of this essential regulatory protein is important in understanding the gene program of this human pathogen. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Functional Characterization of the Serine-Rich Tract of Varicella-Zoster Virus IE62

    PubMed Central

    Shakya, Akhalesh K.; Kim, Seongman; O'Callaghan, Dennis J.

    2015-01-01

    ABSTRACT The immediate early 62 protein (IE62) of varicella-zoster virus (VZV), a major viral trans-activator, initiates the virus life cycle and is a key component of pathogenesis. The IE62 possesses several domains essential for trans-activation, including an acidic trans-activation domain (TAD), a serine-rich tract (SRT), and binding domains for USF, TFIIB, and TATA box binding protein (TBP). Transient-transfection assays showed that the VZV IE62 lacking the SRT trans-activated the early VZV ORF61 promoter at only 16% of the level of the full-length IE62. When the SRT of IE62 was replaced with the SRT of equine herpesvirus 1 (EHV-1) IEP, its trans-activation activity was completely restored. Herpes simplex virus 1 (HSV-1) ICP4 that lacks a TAD very weakly (1.5-fold) trans-activated the ORF61 promoter. An IE62 TAD-ICP4 chimeric protein exhibited trans-activation ability (10.2-fold), indicating that the IE62 TAD functions with the SRT of HSV-1 ICP4 to trans-activate viral promoters. When the serine and acidic residues of the SRT were replaced with Ala, Leu, and Gly, trans-activation activities of the modified IE62 proteins IE62-SRTΔSe and IE62-SRTΔAc were reduced to 46% and 29% of wild-type activity, respectively. Bimolecular complementation assays showed that the TAD of IE62, EHV-1 IEP, and HSV-1 VP16 interacted with Mediator 25 in human melanoma MeWo cells. The SRT of IE62 interacted with the nucleolar-ribosomal protein EAP, which resulted in the formation of globular structures within the nucleus. These results suggest that the SRT plays an important role in VZV viral gene expression and replication. IMPORTANCE The immediate early 62 protein (IE62) of varicella-zoster virus (VZV) is a major viral trans-activator and is essential for viral growth. Our data show that the serine-rich tract (SRT) of VZV IE62, which is well conserved within the alphaherpesviruses, is needed for trans-activation mediated by the acidic trans-activation domain (TAD). The TADs of IE62, EHV-1 IEP, and HSV-1 VP16 interacted with cellular Mediator 25 in bimolecular complementation assays. The interaction of the IE62 SRT with nucleolar-ribosomal protein EAP resulted in the formation of globular structures within the nucleus. Understanding the mechanisms by which the TAD and SRT of IE62 contribute to the function of this essential regulatory protein is important in understanding the gene program of this human pathogen. PMID:26537679

  7. Drug-resistant herpes simplex virus in HIV infected patients.

    PubMed

    Lolis, Margarita S; González, Lenis; Cohen, Philip J; Schwartz, Robert A

    2008-01-01

    Herpes simplex virus type 2 (HSV2) infection is a major source of morbidity in human immunodeficiency virus (HIV)-infected patients, since reactivations - whether symptomatic or asymptomatic - are associated with increased HIV viral load and viral shedding. Acyclovir, valacyclovir and famcyclovir are indicated for the treatment of HSV2 in HIV patients. This class of drugs has been shown to enhance survival in HIV-infected individuals. However, with the emergence of drug-resistant strains of HSV2, the rates of resistance among HIV patients are almost ten-fold those in immunocompetent individuals, comparing 0.6% to 6%. These HSV2 infections tend to be more severe and to recur. More ominously, disease progression of HIV is promoted by concurrent infection with HSV2. Intravenous foscarnet and cidofovir may be used for acyclovir-resistant HSV; however, resistance to these drugs has been documented. Newer therapies such as the toll-like receptor agonist imiquimod and immunomodulating dipeptides offer promise for the treatment of HSV2 in HIV-infected individuals.

  8. Coping strategies and behavioural changes following a genital herpes diagnosis among an urban sample of underserved Midwestern women.

    PubMed

    Davis, Alissa; Roth, Alexis; Brand, Juanita Ebert; Zimet, Gregory D; Van Der Pol, Barbara

    2016-03-01

    This study focused on understanding the coping strategies and related behavioural changes of women who were recently diagnosed with herpes simplex virus type 2. In particular, we were interested in how coping strategies, condom use, and acyclovir uptake evolve over time. Twenty-eight women screening positive for herpes simplex virus type 2 were recruited through a public health STD clinic and the Indianapolis Community Court. Participants completed three semi-structured interviews with a woman researcher over a six-month period. The interviews focused on coping strategies for dealing with a diagnosis, frequency of condom use, suppressive and episodic acyclovir use, and the utilisation of herpes simplex virus type 2 support groups. Interview data were analysed using content analysis to identify and interpret concepts and themes that emerged from the interviews. Women employed a variety of coping strategies following an herpes simplex virus type 2 diagnosis. Of the women, 32% reported an increase in religious activities, 20% of women reported an increase in substance use, and 56% of women reported engaging in other coping activities. A total of 80% of women reported abstaining from sex immediately following the diagnosis, but 76% of women reported engaging in sex again by the six-month interview. Condom and medication use did not increase and herpes simplex virus type 2 support groups were not utilised by participants. All participants reported engaging in at least one coping mechanism after receiving their diagnosis. A positive diagnosis did not seem to result in increased use of condoms for the majority of participants and the use of acyclovir was low overall. © The Author(s) 2015.

  9. Autophagic flux without a block differentiates varicella-zoster virus infection from herpes simplex virus infection.

    PubMed

    Buckingham, Erin M; Carpenter, John E; Jackson, Wallen; Zerboni, Leigh; Arvin, Ann M; Grose, Charles

    2015-01-06

    Autophagy is a process by which misfolded and damaged proteins are sequestered into autophagosomes, before degradation in and recycling from lysosomes. We have extensively studied the role of autophagy in varicella-zoster virus (VZV) infection, and have observed that vesicular cells are filled with >100 autophagosomes that are easily detectable after immunolabeling for the LC3 protein. To confirm our hypothesis that increased autophagosome formation was not secondary to a block, we examined all conditions of VZV infection as well as carrying out two assessments of autophagic flux. We first investigated autophagy in human skin xenografts in the severe combined immunodeficiency (SCID) mouse model of VZV pathogenesis, and observed that autophagosomes were abundant in infected human skin tissues. We next investigated autophagy following infection with sonically prepared cell-free virus in cultured cells. Under these conditions, autophagy was detected in a majority of infected cells, but was much less than that seen after an infected-cell inoculum. In other words, inoculation with lower-titered cell-free virus did not reflect the level of stress to the VZV-infected cell that was seen after inoculation of human skin in the SCID mouse model or monolayers with higher-titered infected cells. Finally, we investigated VZV-induced autophagic flux by two different methods (radiolabeling proteins and a dual-colored LC3 plasmid); both showed no evidence of a block in autophagy. Overall, therefore, autophagy within a VZV-infected cell was remarkably different from autophagy within an HSV-infected cell, whose genome contains two modifiers of autophagy, ICP34.5 and US11, not present in VZV.

  10. Trans activation of plasmid-borne promoters by adenovirus and several herpes group viruses.

    PubMed Central

    Everett, R D; Dunlop, M

    1984-01-01

    This paper describes experiments to test the ability of a number of viruses of the Herpes group, and also Adenovirus-2 and SV40, to activate transcription from the Herpes simplex virus-1 glycoprotein D and the rabbit beta-globin promoters. Plasmids containing these genes were transfected into HeLa cells which were then infected with various viruses. Transcriptional activation in trans of the plasmid-borne promoters was monitored by quantitative S1 nuclease analysis of total cytoplasmic RNA isolated after infection. The results showed that Herpes simplex viruses 1 and 2, Pseudorabies virus, Variella Zoster virus, Human Cytomegalovirus, Equine herpes virus-1 and Adenovirus-2 activate transcription from both promoters tested. In contrast, SV40 did not activate transcription in trans in this assay. The possible mechanisms of this activation are discussed. Images PMID:6089105

  11. Affinity purification combined with mass spectrometry to identify herpes simplex virus protein-protein interactions.

    PubMed

    Meckes, David G

    2014-01-01

    The identification and characterization of herpes simplex virus protein interaction complexes are fundamental to understanding the molecular mechanisms governing the replication and pathogenesis of the virus. Recent advances in affinity-based methods, mass spectrometry configurations, and bioinformatics tools have greatly increased the quantity and quality of protein-protein interaction datasets. In this chapter, detailed and reliable methods that can easily be implemented are presented for the identification of protein-protein interactions using cryogenic cell lysis, affinity purification, trypsin digestion, and mass spectrometry.

  12. Cell-mediated immunity in herpes simplex virus-infected mice: H-2 mapping of the delayed-type hypersensitivity response and the antiviral T cell response.

    PubMed

    Nash, A A; Phelan, J; Wildy, P

    1981-04-01

    An adoptive transfer system was used to investigate the H-2 restriction of delayed-type hypersensitivity (DTH) to herpes simplex virus. A successful DTH transfer was achieved when donor and recipient were compatible at the I-A region, with K and D region compatibility unnecessary. However, the rapid clearance of infectious virus from the inoculation site was found only when the donor and recipients were compatible at H-2K (and presumably D) and I-A regions.

  13. Serum herpes simplex antibodies

    MedlinePlus

    ... causes cold sores (oral herpes). HSV-2 causes genital herpes. How the Test is Performed A blood sample ... person has ever been infected with oral or genital herpes . It looks for antibodies to herpes simplex virus ...

  14. Role of Autoantibodies to N-Methyl-d-Aspartate (NMDA) Receptor in Relapsing Herpes Simplex Encephalitis: A Retrospective, One-Center Experience.

    PubMed

    Sutcu, Murat; Akturk, Hacer; Somer, Ayper; Tatli, Burak; Torun, Selda Hancerli; Yıldız, Edibe Pembegul; Şık, Guntulu; Citak, Agop; Agacfidan, Ali; Salman, Nuran

    2016-03-01

    Post-herpes simplex virus encephalitis relapses have been recently associated with autoimmunity driven by autoantibodies against N-methyl-d-aspartate (NMDA) receptors. Because it offers different treatment options, determination of this condition is important. Between 2011 and 2014, 7 children with proven diagnosis of herpes simplex virus encephalitis were identified in a university hospital of Istanbul. Two patients had neurologic relapse characterized mainly by movement disorders 2 to 3 weeks after initial encephalitis. The first patient received a second 14 days of acyclovir treatment together with antiepileptic drugs and left with severe neurologic sequelae. The second patient was found to be NMDA receptors antibody positive in the cerebrospinal fluid. She was treated with intravenous immunoglobulin and prednisolone. She showed substantial improvement, gradually regaining lost neurologic abilities. Post-herpes simplex virus encephalitis relapses may frequently be immune-mediated rather than a viral reactivation, particularly in children displaying movement disorders like choreoathetosis. Immunotherapy may provide benefit for this potentially devastating condition, like the case described in this report. © The Author(s) 2015.

  15. The Type I Interferon Response and Age-Dependent Susceptibility to Herpes Simplex Virus Infection.

    PubMed

    Giraldo, Daniel; Wilcox, Douglas R; Longnecker, Richard

    2017-05-01

    Herpes simplex virus type 1 (HSV-1) is a highly prevalent human neurotropic pathogen. HSV-1 infection is associated with a variety of diseases ranging from benign orolabial lesions to more serious and even life-threatening conditions such as herpes simplex keratitis and herpes simplex encephalitis (HSE). HSE is a rare occurrence among healthy adult individuals, but newborns are a particularly susceptible population. Type I IFN signaling has been identified as a crucial component of the innate immune response to the control of HSV-1 infection. In this study, we review the contribution of the type I IFN response to controlling HSV-1 infection, and differences in the early host response between adults and newborns that may contribute to the increased susceptibility to infection and central nervous system disease in newborns.

  16. Oncolytic virotherapy using herpes simplex virus: how far have we come?

    PubMed Central

    Sokolowski, Nicolas AS; Rizos, Helen; Diefenbach, Russell J

    2015-01-01

    Oncolytic virotherapy exploits the properties of human viruses to naturally cytolysis of cancer cells. The human pathogen herpes simplex virus (HSV) has proven particularly amenable for use in oncolytic virotherapy. The relative safety of HSV coupled with extensive knowledge on how HSV interacts with the host has provided a platform for manipulating HSV to enhance the targeting and killing of human cancer cells. This has culminated in the approval of talimogene laherparepvec for the treatment of melanoma. This review focuses on the development of HSV as an oncolytic virus and where the field is likely to head in the future. PMID:27512683

  17. Challenges in designing a Taqman-based multiplex assay for the simultaneous detection of Herpes simplex virus types 1 and 2 and Varicella-zoster virus.

    PubMed

    Weidmann, Manfred; Armbruster, Katrin; Hufert, Frank T

    2008-08-01

    To optimise molecular detection of herpesviruses an internally controlled multiplex Taqman-PCR for the detection of Herpes simplex virus 1 (HSV1), Herpes simplex virus 2 (HSV2) and Varicella-zoster virus (VZV) was developed. The selection of the dye combination working on the ABI 7700 cycler for this multiplex PCR revealed crosstalk phenomena between several combinations of reference dyes and reporter dyes. A final dye combination with CY5 as reference dye and FAM/JOE/TXR as reporter dyes was selected. The influence of the concentration of the internal positive control (IPC) concentration on the quantitative results of HSV1, HSV2 and VZV positive patient samples was analysed. The results indicate that high IPC concentrations are detrimental for the sensitivity of the multiplex assay and that the presence of the IPC molecule narrows the dynamic range of the duplex PCRs between any of the virus PCRs and the IPC-PCR. The optimised multiplex assay detecting HSV1, HSV2 and VZV using 10(3) IPC molecules showed a performance and sensitivity comparable to that of the individual assays.

  18. Relationship between community-level alcohol outlet accessibility and individual-level herpes simplex virus type 2 infection among young women in South Africa.

    PubMed

    Rosenberg, Molly; Pettifor, Audrey; Lippman, Sheri A; Thirumurthy, Harsha; Emch, Michael; Miller, William C; Selin, Amanda; Gómez-Olivé, Francesc Xavier; Hughes, James P; Laeyendecker, Oliver; Tollman, Stephen; Kahn, Kathleen

    2015-05-01

    Exposure to alcohol outlets may influence sexual health outcomes at the individual and community levels. Visiting alcohol outlets facilitates alcohol consumption and exposes patrons to a risky environment and network of potential partners, whereas the presence of alcohol outlets in the community may shift social acceptance of riskier behavior. We hypothesize that living in communities with more alcohol outlets is associated with increased sexual risk. We performed a cross-sectional analysis in a sample of 2174 South African schoolgirls (ages 13-21 years) living across 24 villages in the rural Agincourt subdistrict, underpinned by long-term health and sociodemographic surveillance. To examine the association between number of alcohol outlets in village of residence and individual-level prevalent herpes simplex virus type 2 (HSV-2) infection, we used generalized estimating equations with logit links, adjusting for individual- and village-level covariates. The median number of alcohol outlets per village was 3 (range, 0-7). Herpes simplex virus type 2 prevalence increased from villages with no outlets (1.4% [95% confidence interval, 0.2-12.1]), to villages with 1 to 4 outlets (4.5% [3.7-5.5]), and to villages with more than 4 outlets (6.3% [5.6, 7.1]). An increase of 1 alcohol outlet per village was associated with an 11% increase in the odds of HSV-2 infection (adjusted odds ratio [95% confidence interval], 1.11 [0.98-1.25]). Living in villages with more alcohol outlets was associated with increased prevalence of HSV-2 infection in young women. Structural interventions and sexual health screenings targeting villages with extensive alcohol outlet environments could help prevent the spread of sexually transmitted infections.

  19. Selective recruitment of nuclear factors to productively replicating herpes simplex virus genomes.

    PubMed

    Dembowski, Jill A; DeLuca, Neal A

    2015-05-01

    Much of the HSV-1 life cycle is carried out in the cell nucleus, including the expression, replication, repair, and packaging of viral genomes. Viral proteins, as well as cellular factors, play essential roles in these processes. Isolation of proteins on nascent DNA (iPOND) was developed to label and purify cellular replication forks. We adapted aspects of this method to label viral genomes to both image, and purify replicating HSV-1 genomes for the identification of associated proteins. Many viral and cellular factors were enriched on viral genomes, including factors that mediate DNA replication, repair, chromatin remodeling, transcription, and RNA processing. As infection proceeded, packaging and structural components were enriched to a greater extent. Among the more abundant proteins that copurified with genomes were the viral transcription factor ICP4 and the replication protein ICP8. Furthermore, all seven viral replication proteins were enriched on viral genomes, along with cellular PCNA and topoisomerases, while other cellular replication proteins were not detected. The chromatin-remodeling complexes present on viral genomes included the INO80, SWI/SNF, NURD, and FACT complexes, which may prevent chromatinization of the genome. Consistent with this conclusion, histones were not readily recovered with purified viral genomes, and imaging studies revealed an underrepresentation of histones on viral genomes. RNA polymerase II, the mediator complex, TFIID, TFIIH, and several other transcriptional activators and repressors were also affinity purified with viral DNA. The presence of INO80, NURD, SWI/SNF, mediator, TFIID, and TFIIH components is consistent with previous studies in which these complexes copurified with ICP4. Therefore, ICP4 is likely involved in the recruitment of these key cellular chromatin remodeling and transcription factors to viral genomes. Taken together, iPOND is a valuable method for the study of viral genome dynamics during infection and provides a comprehensive view of how HSV-1 selectively utilizes cellular resources.

  20. Susceptibility of Drug-Resistant Clinical Herpes Simplex Virus Type 1 Strains to Essential Oils of Ginger, Thyme, Hyssop, and Sandalwood▿

    PubMed Central

    Schnitzler, Paul; Koch, Christine; Reichling, Jürgen

    2007-01-01

    Acyclovir-resistant clinical isolates of herpes simplex virus type 1 (HSV-1) were analyzed in vitro for their susceptibilities to essential oils of ginger, thyme, hyssop, and sandalwood. All essential oils exhibited high levels of virucidal activity against acyclovir-sensitive strain KOS and acyclovir-resistant HSV-1 clinical isolates and reduced plaque formation significantly. PMID:17353250

  1. Differential stability of host mRNAs in Friend erythroleukemia cells infected with herpes simplex virus type 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayman, B.A.; Nishioka, Y.

    1985-01-01

    The consequences of herpes simplex virus type 1 infection on cellular macromolecules were investigated in Friend erythroleukemia cells. The patterns of protein synthesis, examined by polyacrylamide gel electrophoresis, demonstrated that by 4 h postinfection the synthesis of many host proteins, with the exception of histones, was inhibited. Examination of the steady-state level of histone H3 mRNA by molecular hybridization of total RNA to a cloned mouse histone H3 complementary DNA probe demonstrated that the ratio of histone H3 mRNA to total RNA remained unchanged for the first 4 h postinfection. In contrast, the steady-state levels of globin and actin mRNAsmore » decreased progressively at early intervals postinfection. Studies on RNA synthesis in isolated nuclei demonstrated that the transcription of the histone H3 gene was inhibited to approximately the same extent as that of actin gene. It was concluded that the stabilization of preexisting histone H3 mRNA was responsible for the persistence of H3 mRNA and histone protein synthesis in herpes simplex virus type 1-infected Friend erythroleukemia cells. The possible mechanisms influencing the differential stability of host mRNAs during the course of productive infection with herpes simplex virus type 1 are discussed.« less

  2. Mathematical Modeling of Herpes Simplex Virus Distribution in Solid Tumors: Implications for Cancer Gene Therapy

    PubMed Central

    Mok, Wilson; Stylianopoulos, Triantafyllos; Boucher, Yves; Jain, Rakesh K.

    2010-01-01

    Purpose Although oncolytic viral vectors show promise for the treatment of various cancers, ineffective initial distribution and propagation throughout the tumor mass often limit the therapeutic response. A mathematical model is developed to describe the spread of herpes simplex virus from the initial injection site. Experimental Design The tumor is modeled as a sphere of radius R. The model incorporates reversible binding, interstitial diffusion, viral degradation, and internalization and physiologic parameters. Three species are considered as follows: free interstitial virus, virus bound to cell surfaces, and internalized virus. Results This analysis reveals that both rapid binding and internalization as well as hindered diffusion contain the virus to the initial injection volume, with negligible spread to the surrounding tissue. Unfortunately, increasing the dose to saturate receptors and promote diffusion throughout the tumor is not a viable option: the concentration necessary would likely compromise safety. However, targeted modifications to the virus that decrease the binding affinity have the potential to increase the number of infected cells by 1.5-fold or more. An increase in the effective diffusion coefficient can result in similar gains. Conclusions This analysis suggests criteria by which the potential response of a tumor to oncolytic herpes simplex virus therapy can be assessed. Furthermore, it reveals the potential of modifications to the vector delivery method, physicochemical properties of the virus, and tumor extracellular matrix composition to enhance efficacy. PMID:19318482

  3. Targeted entry of enveloped viruses: measles and herpes simplex virus I.

    PubMed

    Navaratnarajah, Chanakha K; Miest, Tanner S; Carfi, Andrea; Cattaneo, Roberto

    2012-02-01

    We compare the receptor-based mechanisms that a small RNA virus and a larger DNA virus have evolved to drive the fusion of viral and cellular membranes. Both systems rely on tight control over triggering the concerted refolding of a trimeric fusion protein. While measles virus entry depends on a receptor-binding protein and a fusion protein only, the herpes simplex virus (HSV) is more complex and requires four viral proteins. Nevertheless, in both viruses a receptor-binding protein is required for triggering the membrane fusion process. Moreover, specificity domains can be appended to these receptor-binding proteins to target virus entry to cells expressing a designated receptor. We discuss how principles established with measles and HSV can be applied to targeting other enveloped viruses, and alternatively how retargeted envelopes can be fitted on foreign capsids. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Expression of IFN-Inducible Genes with Antiviral Function OAS1 and MX1 in Health and under Conditions of Recurrent Herpes Simplex Infection.

    PubMed

    Karaulov, A V; Shulzhenko, A E; Karsonova, A V

    2017-07-01

    We studied the expression of IFN-inducible genes OAS1 and Mx1 in lysates of peripheral blood mononuclear cells from patients suffering from recurrent Herpes simplex infections in comparison with healthy people. To induce the expression of the studied genes, blood mononuclears were incubated with recombinant IFN-α2b in concentrations of 1, 10, and 100 U/ml for 3 h and then the content of the studied transcripts was evaluated. Relative expression of OAS1 and Mx1 in patients with recurrent forms of Herpes simplex both during the acute stage and clinical remission did not differ significantly from that in healthy people after stimulation with IFN-α2b in a concentration of 1 U/ml and in higher concentrations (10 and 100 U/ml). It was concluded that intracellular signal transduction in IFN-α-activated cells in vitro was not disturbed in patients with recurrent forms of Herpes simplex infection. Thus, the reported phenomenon of IFN-signalling distortion by Herpes simplex virus proteins observed in experiments on model cell lines infected with Herpes simplex virus was not confirmed in our experiments on peripheral blood mononuclear cells from patients with Herpes simplex infection.

  5. Psychosis in a 15-Year-Old Female with Herpes Simplex Encephalitis in a Background of Mannose-Binding Lecithin Deficiency.

    PubMed

    Asogwa, Kenneth; Buabeng, Kwame; Kaur, Amarjit

    2017-01-01

    Historically, psychotic disorder has been associated with viral infection. Herpes simplex infections and Epstein-Barr virus (EBV) among other viral infections have been implicated in psychotic disorder. Of note in this case report is psychotic disorder that occurred following reactivation of herpes simplex infection in a background of mannose-binding lecithin (MBL) deficiency, childhood EBV infection, and severe psychosocial stress. Herpes simplex encephalitis (HSE) remains a significant cause of morbidity and mortality despite advancement in its treatment with intravenous acyclovir. Many studies have reported psychiatric and neurological manifestation of herpes simplex infection following primary or reactivated infection, while others suggest milder clinical course of herpes simplex encephalitis in a background of immunosuppression. Another contributory factor to psychotic disorder in this case is childhood EBV exposure which has been reported to increase the risk of psychosis in adolescence and adulthood. This case report describes a 15-year-old female with MBL deficiency who presented with psychosis caused by reactivated herpes simplex infection and had good clinical recovery. Based on childhood Epstein-Barr virus exposure and psychosis in adolescence (current case), she is at increased risk of psychotic disorder in adulthood, which underscores the importance of long-term monitoring.

  6. Esophagitis - infectious

    MedlinePlus

    ... include fungi, yeast, and viruses. Common organisms include: Candida albicans Cytomegalovirus (CMV) Herpes simplex virus (HSV) Human papillomavirus (HPV) Tuberculosis bacteria ( Mycobacterium tuberculosis )

  7. Spectrum of Viral Pathogens in Blood of Malaria-Free Ill Travelers Returning to Canada.

    PubMed

    Kariyawasam, Ruwandi; Lau, Rachel; Eshaghi, Alireza; Patel, Samir N; Sider, Doug; Gubbay, Jonathan B; Boggild, Andrea K

    2016-05-01

    Malaria is the most common specific cause of fever in returning travelers, but many other vectorborne infections and viral infections are emerging and increasingly encountered by travelers. We documented common and emerging viral pathogens in malaria-negative specimens from ill travelers returning to Canada. Anonymized, malaria-negative specimens were examined for various viral pathogens by real-time PCR. Samples were positive for herpes simplex viruses 1 or 2 (n = 21, 1.6%), cytomegalovirus (n = 4, 0.3%), Epstein-Barr virus (n = 194, 14.9%), dengue virus types 1-4 (n = 27, 2.1%), chikungunya virus (n = 5, 0.4%), and hepatitis A virus (n = 12, 0.9%). Travel-acquired viral pathogens were documented in >20% of malaria-negative specimens, of which 2.5% were infected with dengue and chikungunya viruses. Our findings support the anecdotal impression that these vectorborne pathogens are emerging among persons who travel from Canada to other countries.

  8. Association of interferon lambda-1 with herpes simplex viruses-1 and -2, Epstein-Barr virus, and human cytomegalovirus in chronic periodontitis.

    PubMed

    Muzammil; Jayanthi, D; Faizuddin, Mohamed; Noor Ahamadi, H M

    2017-05-01

    Periodontal tissues facilitate the homing of herpes viruses that elicit the immune-inflammatory response releasing the interferons (IFN). IFN lambda-1 (λ1) can suppress the replication of viruses, and induces the antiviral mechanism. The aim of the present study was to evaluate the association between IFN-λ1 and periodontal herpes viruses in the immunoregulation of chronic periodontal disease. The cross-sectional study design included 30 chronic periodontitis patients with a mean age of 42.30 ± 8.63 years. Gingival crevicular fluid collected was assessed for IFN-λ1 using enzyme-linked immunosorbent assay and four herpes viruses were detected using multiplex polymerase chain reaction technique. IFN-λ1 levels were compared between virus-positive and -negative patients for individual and total viruses. Fifty per cent (n = 15) of patients were positive for the four herpes viruses together; 50% (n = 15), 30% (n = 9), 26.7% (n = 8), and 40% (n = 12) were positive for herpes simplex virus (HSV)-1, Epstein-Barr virus, HSV-2, and human cytomegalovirus, respectively. The mean concentrations of IFN-λ1 in virus-positive patients (14.38 ± 13.95) were lower than those of virus-negative patients (228.26 ± 215.35). INF-λ1 levels in individual virus groups were also lower in virus-positive patients compared to virus-negative patients, with P < 0.001. These results suggest that IFN-λ1 could have antiviral and therapeutic value against the viruses in the pathogenesis of chronic periodontitis. © 2015 Wiley Publishing Asia Pty Ltd.

  9. HIV-associated hypertrophic herpes simplex genitalis with concomitant early invasive squamous cell carcinoma mimicking advanced genital cancer: case report and literature review.

    PubMed

    Strehl, Johanna D; Mehlhorn, Grit; Koch, Martin C; Harrer, Ellen G; Harrer, Thomas; Beckmann, Matthias W; Agaimy, Abbas

    2012-05-01

    Hypertrophic herpes simplex genitalis (HHSG) is an uncommon anogenital manifestation of herpes simplex virus (HSV) infection in immunocompromised patients. To date, 24 cases of HHSG have been reported; 23 of them were affected human immune deficiency virus (HIV) type 1-positive patients. We describe the case of a 44-year-old African HIV-1-positive woman who presented with painful ulcerated nodular lesions of the vulva and perianal area measuring up to 7 cm in diameter. Macroscopically, the lesions were highly suspicious of widely invasive cancer. The histologic workup of the resection specimen revealed patchy high-grade vulvar intraepithelial neoplasia Grade 3 (VIN 3) and 2 microscopic foci of superficially invasive squamous cell carcinoma. The nodular lesions were caused by massive tumefactive plasma cell-rich inflammatory infiltrates extending into the subcutis. Multinucleated herpes simplex virus 1 and herpes simplex virus 2-positive epithelial cells with glassy intranuclear inclusions were detected at the borders of the ulcerations, consistent with HHSG. Despite repeated surgery and medical treatment, the patient had 3 recurrences of HHSG within 18 months. The presence of intraepithelial neoplasia in HHSG lesions is relatively rare and has been described in 6 of 18 resected HHSG lesions in the literature so far. With regard to invasive malignancy, the present case is the first report of a superficially invasive squamous cell carcinoma associated with HHSG. Awareness of this condition is necessary to avoid misinterpretation of HHSG as widely invasive squamous cell carcinoma with the hazard of surgical and oncological overtreatment.

  10. Properties of Cells Carrying the Herpes Simplex Virus Type 2 Thymidine Kinase Gene: Mechanisms of Reversion to a Thymidine Kinase-Negative Phenotype

    PubMed Central

    Bastow, K. F.; Darby, G.; Wildy, P.; Minson, A. C.

    1980-01-01

    We have isolated cells with a thymidine kinase-negative (tk−) phenotype from cells which carry the herpes simplex virus type 2 tk gene by selection in 5-bromodeoxyuridine or 9-(2-hydroxyethoxymethyl)guanine. Both selection routines generated revertants with a frequency of 10−3 to 10−4, and resistance to either compound conferred simultaneous resistance to the other. tk− revertants fell into three classes: (i) cells that arose by deletion of all virus sequences, (ii) cells that had lost the virus tk gene but retained a nonselected virus-specific function and arose by deletion of part of the virus-specific sequence, and (iii) cells that retained the potential to express all of the virus-specific functions of the parental cells and retained all of the virus-specific DNA sequences. Images PMID:16789205

  11. Cognitive and Learning Strategies for Longstanding Temporal Lobe Lesions in a Child Who Suffered from "Herpes Simplex" Virus Encephalitis: A Case Study over 10 Years

    ERIC Educational Resources Information Center

    van Schoor, A. N.; Naude, H.; van Rensburg, M.; Pretorius, E.; Boon, J. M.

    2005-01-01

    This article presents a case study indicating that "Herpes simplex" virus (HSV) encephalitis may cause permanent learning disabilities due to damage to the temporal lobes as it discusses the results of a case study extending over 10 years to determine the long-term effects on both the anatomy of the brain and the intellectual functioning of the…

  12. Houttuynoids A-E, anti-herpes simplex virus active flavonoids with novel skeletons from Houttuynia cordata.

    PubMed

    Chen, Shao-Dan; Gao, Hao; Zhu, Qin-Chang; Wang, Ya-Qi; Li, Ting; Mu, Zhen-Qiang; Wu, Hong-Ling; Peng, Tao; Yao, Xin-Sheng

    2012-04-06

    Houttuynoids A-E (1-5), a new type of flavonoid with houttuynin tethered to hyperoside, and their presumed biosynthetic precursor hyperoside (6) were isolated from the whole plant of Houttuynia cordata. Their structures were elucidated by analysis of 1D and 2D NMR. A hypothetical biogenetic pathway for houttuynoids A-E was proposed. Compounds 1-5 exhibited potent anti-HSV (herpes simplex viruses) activity.

  13. Cognitive and Learning Strategies for Longstanding Temporal Lobe Lesions in a Child Who Suffered from "Herpes Simplex" Virus Encephalitis: A Case Study over 10 Years

    ERIC Educational Resources Information Center

    van Schoor, A. N.; Naude, H.; van Rensburg, M.; Pretorius, E.; Boon, J. M.

    2004-01-01

    This article presents a case study indicating that "Herpes simplex" virus (HSV) encephalitis may cause permanent learning disabilities due to damage to the temporal lobes, as it discusses the results of a case study extending over 10 years to determine the long-term effects on both the anatomy of the brain and the intellectual functioning of the…

  14. Mimicking herpes simplex virus 1 and herpes simplex virus 2 mucosal behavior in a well-characterized human genital organ culture.

    PubMed

    Steukers, Lennert; Weyers, Steven; Yang, Xiaoyun; Vandekerckhove, Annelies P; Glorieux, Sarah; Cornelissen, Maria; Van den Broeck, Wim; Temmerman, Marleen; Nauwynck, Hans J

    2014-07-15

    We developed and morphologically characterized a human genital mucosa explant model (endocervix and ectocervix/vagina) to mimic genital herpes infections caused by herpes simplex virus types 1 (HSV-1) and 2 (HSV-2). Subsequent analysis of HSV entry receptor expression throughout the menstrual cycle in genital tissues was performed, and the evolution of HSV-1/-2 mucosal spread over time was assessed. Nectin-1 and -2 were expressed in all tissues during the entire menstrual cycle. Herpesvirus entry mediator expression was limited mainly to some connective tissue cells. Both HSV-1 and HSV-2 exhibited a plaque-wise mucosal spread across the basement membrane and induced prominent epithelial syncytia. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Split T-cell tolerance in herpes simplex virus-infected mice and its implication for anti-viral immunity.

    PubMed Central

    Nash, A A; Ashford, N P

    1982-01-01

    Mice simultaneously injected intravenously and subcutaneously with herpes simplex virus fail to adoptively transfer delayed hypersensitivity (DH) to syngeneic recipients. The transferred lymph node cells also failed to rapidly eliminate infectious herpes from the pinna, despite the presence of cytotoxic T cells in the transferred suspension. Both primary and secondary cytotoxic cell responses in the draining lymph node were unaffected by the inhibition of DH. The lymph nodes from DH tolerized mice also contain lymphocytes capable of undergoing a proliferative response in vitro to herpes antigens. In addition, a neutralizing antibody response with IgG antibodies against herpes are also present in DH tolerized mice. These data suggest a form of split T-cell tolerance in which only DH responses are directly compromised. The implication of these findings for the pathogenesis of herpes simplex virus is discussed. PMID:6279490

  16. A herpes simplex viral vector expressing green fluorescent protein can be used to visualize morphological changes in high-density neuronal culture

    PubMed Central

    Falk, Torsten; Strazdas, Lori A.; Borders, Rebecca S.; Kilani, Ramsey K.; Yool, Andrea J.

    2010-01-01

    High-density cultures of mammalian neurons offer a model system for studies of brain development, but the morphological features of individual neurons is difficult to ascertain. We show that a herpes virus vector expressing a bioluminescent protein allows detailed morphometric analyses of living neurons in complex culture environments. Expression of enhanced green fluorescent protein (eGFP) was constitutively driven in neurons using the herpes simplex virus amplicon system. This system allowed us to make novel observations regarding development in high-density cultures from rat hippocampus and cerebellum. After the phase of initial neurite outgrowth, maturing neurons continue to show rapid remodeling of the neurite branches (0.79 ± 0.11 μm/h per neurite; mean ± SEM, n=8), and displacement of the soma within the neurite arbor (1.35 ± 0.74 μm/h). These results demonstrate that a substantial capacity for morphological plasticity persists in maturing mammalian CNS neurons after cessation of net neurite outgrowth in early development. PMID:20811504

  17. Virus inactivation by grapes and wines.

    PubMed Central

    Konowalchuk, J; Speirs, J I

    1976-01-01

    Infusions and extracts of different grapes inactivated poliovirus; agents responsible for this property resided in the skin of the grape. Commercial grape juice at both natural and neutral pH inactivate various enteric viruses and herpes simplex virus; a 1,000-fold reduction in poliovirus infectivity occurred after incubation with grape juice, pH 7.0, for 24 h at 4 degrees C. A variety of wines were antiviral but to a lesser extent than grape juice; red wines were more antiviral than white. Antiviral activity was demonstrable in fractions of grape juice varying in molecular weight from less than 1,000 to greater than 30,000 as determined by membrane filtration. Some restoration of poliovirus infectivity from virus-grape juice complexes was achieved with 1% gelatin, 0.1% Tween 80, 0.5% polyvinyl pyrrolidone, and 0.5% polyethylene glycol. PMID:12719

  18. Analytical performance of a low-gas-flow torch optimized for inductively coupled plasma atomic emission spectrometry

    USGS Publications Warehouse

    Montaser, A.; Huse, G.R.; Wax, R.A.; Chan, S.-K.; Golightly, D.W.; Kane, J.S.; Dorrzapf, A.F.

    1984-01-01

    An inductively coupled Ar plasma (ICP), generated in a lowflow torch, was investigated by the simplex optimization technique for simultaneous, multielement, atomic emission spectrometry (AES). The variables studied included forward power, observation height, gas flow (outer, intermediate, and nebulizer carrier) and sample uptake rate. When the ICP was operated at 720-W forward power with a total gas flow of 5 L/min, the signal-to-background ratios (S/B) of spectral lines from 20 elements were either comparable or inferior, by a factor ranging from 1.5 to 2, to the results obtained from a conventional Ar ICP. Matrix effect studies on the Ca-PO4 system revealed that the plasma generated in the low-flow torch was as free of vaporizatton-atomizatton interferences as the conventional ICP, but easily ionizable elements produced a greater level of suppression or enhancement effects which could be reduced at higher forward powers. Electron number densities, as determined via the series until line merging technique, were tower ht the plasma sustained in the low-flow torch as compared with the conventional ICP. ?? 1984 American Chemical Society.

  19. Antiviral Drug-Resistance Typing Reveals Compartmentalization and Dynamics of Acyclovir-Resistant Herpes Simplex Virus Type-2 (HSV-2) in a Case of Neonatal Herpes.

    PubMed

    Bache, Manon; Andrei, Graciela; Bindl, Lutz; Bofferding, Léon; Bottu, Jean; Géron, Christine; Neuhäuser, Christoph; Gillemot, Sarah; Fiten, Pierre; Opdenakker, Ghislain; Snoeck, Robert

    2014-06-01

    A neonate suffering from herpes simplex virus type 2 disease with central nervous system involvement developed an early recurrence under acyclovir therapy. Isolates from the cerebrospinal fluid and skin lesions were acyclovir resistant, while viruses from blood and trachea were not. Acyclovir combined with foscavir followed by long-term suppressive acyclovir therapy supported normal neurological development. © The Author 2013. Published by Oxford University Press on behalf of the Pediatric Infectious Diseases Society. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. The fusion loops and membrane proximal region of Epstein-Barr virus glycoprotein B (gB) can function in the context of herpes simplex virus 1 gB when substituted individually but not in combination.

    PubMed

    Zago, Anna; Connolly, Sarah A; Spear, Patricia G; Longnecker, Richard

    2013-01-01

    Among the herpesvirus glycoprotein B (gB) fusion proteins, the hydrophobic content of fusion loops and membrane proximal regions (MPRs) are inversely correlated with each other. We examined the functional importance of the hydrophobicity of these regions by replacing them in herpes simplex virus type 1 gB with corresponding regions from Epstein-Barr virus gB. We show that fusion activity is dependent on the structural context in which the specific loops and MPR sequences exist, rather than a simple hydrophobic relationship. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. The pathogenicity of thymidine kinase-deficient mutants of herpes simplex virus in mice.

    PubMed Central

    Field, H. J.; Wildy, P.

    1978-01-01

    The pathogenicity for mice of two mutants of herpes simplex virus (type 1 and type 2), which fail to induce thymidine kinase, were compared with their respective parent strains. The mutants were much less virulent than the parents following either intracerebral or peripheral inoculation. The replication of the virus at the site of inoculation and its progression into the nervous system were studied. Following a very large inoculum in the ear, the type 1 mutant was found to establish a latent infection in the cervical dorsal root ganglia. Mice inoculated intracerebrally with small doses of the mutant viruses were solidly immune to challenge with lethal doses of the parent strain. PMID:212476

  2. The pathogenicity of thymidine kinase-deficient mutants of herpes simplex virus in mice.

    PubMed

    Field, H J; Wildy, P

    1978-10-01

    The pathogenicity for mice of two mutants of herpes simplex virus (type 1 and type 2), which fail to induce thymidine kinase, were compared with their respective parent strains. The mutants were much less virulent than the parents following either intracerebral or peripheral inoculation. The replication of the virus at the site of inoculation and its progression into the nervous system were studied. Following a very large inoculum in the ear, the type 1 mutant was found to establish a latent infection in the cervical dorsal root ganglia. Mice inoculated intracerebrally with small doses of the mutant viruses were solidly immune to challenge with lethal doses of the parent strain.

  3. Genital herpes simplex.

    PubMed

    Tummon, I S; Dudley, D K; Walters, J H

    1981-07-01

    Genital herpes is a sexually transmitted disease caused by the herpes simplex virus. Following the initial infection the virus becomes latent in the sacral ganglia. Approximately 80% of patients are then subject to milder but unpredictable recurrences and may shed the virus even when they are asymptomatic. The disorder causes concern because genital herpes in the mother can result in rare but catastrophic neonatal infection and because of a possible association between genital herpes and cancer of the cervix. No effective treatment is as yet available. Weekly monitoring for virus by cervical culture from 32 weeks' gestation is recommended for women with a history of genital herpes and for those whose sexual partner has such a history.

  4. The effect of DNA priming-protein boosting on enhancing humoral immunity and protecting mice against lethal HSV infections.

    PubMed

    Soleimanjahi, Hoorieh; Roostaee, Mohammad Hassan; Rasaee, Mohammad Javad; Mahboudi, Fereidoon; Kazemnejad, Anooshirvan; Bamdad, Taravat; Zandi, Keivan

    2006-02-01

    Herpes simplex virus produces primary and latent infections with periodic recurrency. The prime-boost immunization strategies were studied using a DNA vaccine carrying the full-length glycoprotein D-1 gene and a baculovirus-derived recombinant glycoprotein D, both expressing herpes simplex virus glycoprotein D-1 protein. Immunization with recombinant DNAs encoding antigenic proteins could induce cellular and humoral responses by providing antigen expression in vivo. Higher immune response, however, occurred when the recombinant proteins followed DNA inoculation. While all groups of the immunized mice and positive control group could resist virus challenge, a higher virus neutralizing antibody level was detected in the animals receiving recombinant protein following DNA vaccination.

  5. The prevalence of human immunodeficiency virus and sexually transmitted infections among female sex workers in Shiraz, South of Iran: by respondent-driven sampling.

    PubMed

    Kazerooni, Parvin Afsar; Motazedian, Nasrin; Motamedifar, Mohammad; Sayadi, Mehrab; Sabet, Mojghan; Lari, Mahmood Amini; Kamali, Kianoush

    2014-02-01

    As a concentrated epidemic, human immunodeficiency virus (HIV) is spreading rapidly in one or more groups in Iran, but in the general population its prevalence is relatively low. Female sex workers (FSWs) and their partners are at greater risk for HIV infection. To determine the prevalence of HIV and sexually transmitted infections (STIs) including gonorrhoea, Chlamydia, herpes simplex type 2 and syphilis among FSWs. We conducted a cross-sectional study of 278 FSWs in Shiraz, by using respondent-driven sampling, from June to March 2010. The recruitment chain started with 14 seeds, and FSWs were tested for HIV, syphilis, herpes simplex type 2, gonorrhoea and Chlamydia. HIV prevalence was 4.7% (13/278); the most prevalent STI was herpes simplex type 2, 9.7% (27/278), followed by Chlamydia 9% (25/278), gonorrhoea 1.4% (4/278) and syphilis (0/278). The FSWs reported drug use (69.9%) of which 16.4% had history of injecting drug use. Unprotected sex in the past month was reported by 24.4% of FSWs. Urgent education and risk reduction programmes are needed in this population.

  6. Protective hybrid coating containing silver, copper and zinc cations effective against human immunodeficiency virus and other enveloped viruses.

    PubMed

    Hodek, Jan; Zajícová, Veronika; Lovětinská-Šlamborová, Irena; Stibor, Ivan; Müllerová, Jana; Weber, Jan

    2016-04-01

    Healthcare-acquired infections by pathogenic microorganisms including viruses represent significant health concern worldwide. Next to direct transmission from person-to-person also indirect transmission from contaminated surfaces is well documented and important route of infections. Here, we tested antiviral properties of hybrid coating containing silver, copper and zinc cations that was previously shown to be effective against pathogenic bacteria including methicillin-resistant Staphylococcus aureus. Hybrid coatings containing silver, copper and zinc cations were prepared through radical polymerization via sol-gel method and applied on glass slides or into the wells of polymethylmethacrylate plates. A 10 μl droplet of several viruses such as human immunodeficiency virus type 1 (HIV-1), influenza, dengue virus, herpes simplex virus, and coxsackievirus was added to coated and uncoated slides or plates, incubated usually from 5 to 240 min and followed by titer determination of recovered virus. Scanning electron microscopy analysis showed better adhesion of coatings on glass surfaces, which resulted in 99.5-100 % HIV-1 titer reduction (3.1 ± 0.8 log10TCID50, n = 3) already after 20 min of exposure to coatings, than on coated polymethylmethacrylate plates with 75-100 % (1.7 ± 1.1 log10TCID50, n = 3) and 98-100 % (2.3 ± 0.5 log10TCID50, n = 3) HIV-1 titer reduction after 20 and 120 min of exposure, respectively. Slower virucidal kinetics was observed with other enveloped viruses, where 240 min exposure to coated slides lead to 97 % (dengue), 100 % (herpes simplex) and 77 % (influenza) reduction in virus titers. Interestingly, only marginal reduction in viral titer after 240 min of exposure was noticed for non-enveloped coxsackie B3 virus. Our hybrid coatings showed virucidal activity against HIV and other enveloped viruses thus providing further findings towards development of broad-spectrum antimicrobial coating suitable for surfaces in healthcare settings.

  7. Worldwide occurrence of virus-infections in filamentous marine brown algae

    NASA Astrophysics Data System (ADS)

    Müller, D. G.; Stache, B.

    1992-03-01

    Virus infections were detected in Ectocarpus siliculosus and Ectocarpus fasciculatus on the coasts of Ireland, California, Peru, southern South America, Australia and New Zealand; in three Feldmannia species on the coasts of Ireland, continental Chile and Archipelago Juan Fernandez (Chile); and in Leptonematella from Antarctica. Natural populations on the Irish coast contained 3% infected plants in E. fasciculatus, and less than 1% in Feldmannia simplex. On the Californian coast, 15 to 25% of Ectocarpus isolates were infected. Virus symptoms were absent in E. siliculosus from Peru, but appeared after meiosis in laboratory cultures. The virus particles in E. fasciculatus are identical in size and capsid structure to those reported for E. siliculosus, while the virus in F. simplex is smaller and has a different envelope. Our findings suggest that virus infections are a common and worldwide phenomenon in filamentous brown algae.

  8. Topical SMIP-7.7, a toll-like receptor 7 agonist, protects against genital herpes simplex virus type-2 disease in the guinea pig model of genital herpes.

    PubMed

    Bernstein, David I; Cardin, Rhonda D; Bravo, Fernando J; Earwood, Julie; Clark, Jennifer R; Li, Yongkai; Mishra, Pranab; Li, Chun; Nayak, Bishnu P; Miller, Andrew T; Wu, Tom Y-H; Cooke, Michael P; Valiante, Nicholas M

    2014-04-11

    Development of more effective therapies for genital herpes simplex virus type-2 (HSV-2) infections remains a priority. The toll-like receptors (TLR) are attractive targets for the immunomodulation of primary and recurrent genital herpes infection. The guinea pig model of genital HSV-2 disease was therefore used to evaluate the efficacy of a new TLR-7 agonist, SMIP-7.7. The effects of SMIP-7.7 at concentrations between 0.90% and 0.09% were compared to the vehicle control or Aldara(®) (3M Health Care Limited, Northridge, CA, USA) as treatment for genital HSV-2 infections. Following intravaginal inoculation of Hartley guinea pigs with 10(6) pfu HSV-2 (MS strain), animals were treated intravaginally beginning at 36 h post-infection. Animals were evaluated for acute disease, acute virus replication, recurrent disease and shedding, as well as infection of the dorsal root ganglia. Treatment with SMIP-7.7 significantly decreased mean total lesion scores during primary infection (all doses, P<0.01 compared with vehicle control, and similar to Aldara(®)). Vaginal virus titres were reduced in treated animals compared with vehicle control (P<0.001 for each treatment versus vehicle control on day 4). Treatment with SMIP-7.7 also significantly decreased the number of recurrent lesion days, the number of days with recurrent virus shedding and the infection of the dorsal root ganglia compared to the vehicle control, and was similar to Aldara(®). As opposed to Aldara(®), SMIP-7.7 did not induce fever or weight loss during treatment. SMIP-7.7 improves the outcome of primary and recurrent HSV-2 disease comparable to Aldara(®) but without some of the side effects associated with Aldara(®).

  9. In vitro antiviral activity of aqueous extract of Phaleria macrocarpa fruit against herpes simplex virus type 1

    NASA Astrophysics Data System (ADS)

    Ismaeel, Mahmud Yusef Yusef; Dyari, Herryawan Ryadi Eziwar; Yaacob, Wan Ahmad; Ibrahim, Nazlina

    2018-04-01

    Phaleria macrocarpa fruits have been used as herbal medicine for several diseases. This study aims to determine the cytotoxicity and antiviral activity of aqueous extract of P. macrocarpa fruit (AEPMF). Phytochemical analysis showed the presence of steroids, tannins, flavones aglycones, saponins, terpenoids and alkaloids. AEPMF was found to contain protein with the concentration of 740 µg/mL. The cytotoxicity towards Vero cell was evaluated using MTT assay with 50% cytotoxic concentration (CC50) value of AEPMF 5 mg/mL. The finding indicates that AEPMF is safe and not toxic towards Vero cells. Screening by plaque reduction assay showed that AEPMF have antiviral activity against herpes simplex virus type 1 (HSV-1) with effective concentration (EC50) was 0.28 mg/mL. The selective index (SI=CC50/EC50) of AEPMF is 17.9 indicating AEPMF have potential for further evaluation in antiviral activity.

  10. In vitro virucidal activity of a styrylpyrone derivative against herpes simplex virus strain KOS-1

    NASA Astrophysics Data System (ADS)

    Moses, Micheal; Nor, Norefrina Shafinaz Md.; Ibrahim, Nazlina

    2014-09-01

    In this study, styrylpyrone derivative (SPD) extracted from Goniothalamus umbrosus root was tested against herpes simplex virus (HSV) strain KOS-1. Firstly, the cytotoxicity of SPD on Vero cells was tested and the value of cytotoxic concentration, CC50, was 44 μM (8.88 μg/mL), and the 50% Effective Concentration, EC50, was 3.35 μM (0.67 μg/mL). Selectivity index of SPD against HSV Kos-1 was more than 13 indicating potential as antiviral agent. Three treatments were used in the antiviral test; 1) post-treatment, 2) pre-treatment, and 3) virucidal. The results revealed that the post-treatment was more effective in inhibiting viral replication compared to pre-treatment. The findings indicated that the SPD from G. umbrosus has good potential for prospective nature-based antiviral drug.

  11. Isolation of pyropheophorbide a from the leaves of Atalantia monophylla (ROXB.) CORR. (Rutaceae) as a possible antiviral active principle against herpes simplex virus type 2.

    PubMed

    Chansakaow, S; Ruangrungsi, N; Ishikawa, T

    1996-07-01

    Antiviral activity-guided isolation studies on the leaves of Atalantia monophylla (ROXB.) CORR. (Rutaceae) led to the identification of pyropheophorbide a (1), a simple chlorin derivative, from the chloroform extract (fr. B) as a possible antiviral active principle against herpes simplex virus type 2 (HSV-2). Pyropheophorbide a methyl ester (2) was also isolated from the hexane extract (fr. A).

  12. Polyhydroxylated sulfated steroids derived from 5α-cholestanes as antiviral agents against herpes simplex virus.

    PubMed

    Pujol, Carlos A; Sepúlveda, Claudia S; Richmond, Victoria; Maier, Marta S; Damonte, Elsa B

    2016-07-01

    Twelve polyhydroxylated sulfated steroids synthesized from a 5α-cholestane skeleton with different substitutions in C-2, C-3 and C-6 were evaluated for cytotoxicity and antiviral activity against herpes simplex virus (HSV) by a virus plaque reduction assay. Four compounds elicited a selective inhibitory effect against HSV. The disodium salt of 2β,3α-dihydroxy-6E-hydroximine-5α-cholestane-2,3-disulfate, named compound 7, was the most effective inhibitor of HSV-1, HSV-2 and pseudorabies virus (PrV) strains, including acyclovir-resistant variants, in human and monkey cell lines. Preliminary mechanistic studies demonstrated that compound 7 did not affect the initial steps of virus entry but inhibited a subsequent event in the infection process of HSV.

  13. Antiviral activity of Basidiomycete mycelia against influenza type A (serotype H1N1) and herpes simplex virus type 2 in cell culture.

    PubMed

    Krupodorova, Tetiana; Rybalko, Svetlana; Barshteyn, Victor

    2014-10-01

    In this study, we investigated the in vitro antiviral activity of the mycelia of higher mushrooms against influenza virus type A (serotype H1N1) and herpes simplex virus type 2 (HSV-2), strain BH. All 10 investigated mushroom species inhibited the reproduction of influenza virus strain A/FM/1/47 (H1N1) in MDCK cells reducing the infectious titer by 2.0-6.0 lg ID50. Four species, Pleurotus ostreatus, Fomes fomentarius, Auriporia aurea, and Trametes versicolor, were also determined to be effective against HSV-2 strain BH in RK-13 cells, with similar levels of inhibition as for influenza. For some of the investigated mushroom species-Pleurotus eryngii, Lyophyllum shimeji, and Flammulina velutipes-this is the first report of an anti-influenza effect. This study also reports the first data on the medicinal properties of A. aurea, including anti-influenza and antiherpetic activities. T. versicolor 353 mycelium was found to have a high therapeutic index (324.67), and may be a promising material for the pharmaceutical industry as an anti-influenza and antiherpetic agent with low toxicity. Mycelia with antiviral activity were obtained in our investigation by bioconversion of agricultural wastes (amaranth flour after CO2 extraction), which would reduce the cost of the final product and solve some ecological problems.

  14. Patient recognition of recrudescent herpes labialis: a clinical and virological assessment.

    PubMed

    Lamey, P J; Biagioni, P A

    1996-09-01

    The purpose of this study was to ascertain how accurate the general public was at diagnosing the condition of recrudescent herpes labialis. An advertisement was placed in a local newspaper inviting patients to attend the Oral Medicine Clinic as soon as they thought they developed the clinically evident stage of herpes labialis. At the clinic, patients were examined to confirm the clinical presence of herpes labialis and also had a swab of the lesion(s) taken for virus culture. Virus culture was by the HEP-2 culture technique capable of detecting both herpes simplex Type 1 and herpes simplex Type 2. Patients also completed a detailed questionnaire concerning their knowledge of herpes labialis. In total, 41 patients attended for screening. The findings were that all patients had clinical herpes labialis, and herpes simplex virus was isolated in 96% of cases. In contrast, in only about 50% of cases were patients aware that their herpes labialis was caused by a virus. The general public are very good at recognizing herpes labialis lesions but need to be given more information about their infectivity.

  15. Sequential detection of different antigens induced by Epstein-Barr virus and herpes simplex virus in the same Western blot by using dual antibody probes.

    PubMed

    Lin, J C; Pagano, J S

    1986-08-01

    A dual antibody probing technique that permitted a color-coded identification of polypeptides representing different classes of Epstein-Barr virus (EBV) antigens as well as differentiation of the polypeptides induced by different herpesviruses in the same Western blot was developed. When the nitrocellulose sheet was probed first with monoclonal antibody against EBV early antigen diffuse component (EA-D) and then stained with 4-chloro-1-naphthol, four polypeptides specific for EA-D were identified by purple bands. Subsequently, the same nitrocellulose sheet was reprobed with human serum containing antibodies against EBV early antigen, viral capsid antigen, and nuclear antigen and stained with 3,3'-diaminobenzidine. Several brown bands corresponding to early, viral capsid, and nuclear antigen polypeptides were detected. The dual antibody probing technique was used in an analysis to differentiate polypeptides resulting from either EBV or herpes simplex virus infection, either in cells infected by individual virus or in a cell line dually infected by both viruses. On the basis of different colored bands in different lanes of the same gel, 20 polypeptides with molecular weights ranging from 31,000 to 165,000 were identified as herpes simplex virus-specific proteins. These results suggested that the dual antibody probing technique may be applicable in clinical diagnosis for detecting antigens and antibodies derived from different pathogens.

  16. Antigenic Relationships Among Four Herpesviruses

    PubMed Central

    Blue, W. T.; Plummer, G.

    1973-01-01

    Common viral antigens were detected, by fluorescent-antibody studies, in cells infected with herpes simplex virus 1, squirrel monkey herpesvirus 1, bovine rhinotracheitis, and equine abortion viruses. The two primate viruses showed slight cross-neutralization. PMID:4351969

  17. Etiology of Genital Ulcer Disease in Male Patients Attending a Sexually Transmitted Diseases Clinic: First Assessment in Cuba.

    PubMed

    Noda, Angel A; Blanco, Orestes; Correa, Consuelo; Pérez, Lissette; Kourí, Vivian; Rodríguez, Islay

    2016-08-01

    Sexually transmitted diseases (STDs) and in particular genital ulcer disease (GUD) have a major impact on morbidity and mortality in developing countries. The World Health Organization recommends the use of syndromic guidelines for the treatment of sexually transmitted infections (STIs) in resource-constrained countries. Surveillance of autochthonous etiologies provides epidemiological information contributing to the prevention and treatment of STIs. We investigated the etiology and factors associated with GUD among male patients attending a STD clinic in Havana, Cuba. Swabs from genital ulcers of 113 male patients, collected from May 2012 to June 2015, were analyzed using PCR for herpes simplex virus types 1 and 2, Treponema pallidum, Haemophilus ducreyi, and Chlamydia trachomatis. We also investigated the clinical and epidemiological characteristics associated with the presence of these pathogens in GUD. At least one of the pathogens was detected in 70% of patients. The occurrence of the pathogens was herpes simplex virus type 2 (HSV-2) (51.3%), T. pallidum (29.2%), and C. trachomatis (1.8%). Co-infections occurred as follows: T. pallidum-HSV-2 (10.6%), C. trachomatis-HSV-2 (0.9%) and C. trachomatis-T. pallidum (0.9%). Herpes simplex virus type 1 and H. ducreyi were not detected. Ages 15 to 40 years, HIV-positive serostatus, and no condom use were significant risk factors for the presence of HSV-2 in genital ulcers. Our preliminary results highlight the predominance of HSV-2 and T. pallidum as the leading GUD etiologies in the study population and identified risk factors associated with HSV-2. This information should help to inform guidelines for better management of GUD in Havana, Cuba.

  18. Burning mouth syndrome due to herpes simplex virus type 1.

    PubMed

    Nagel, Maria A; Choe, Alexander; Traktinskiy, Igor; Gilden, Don

    2015-04-01

    Burning mouth syndrome is characterised by chronic orofacial burning pain. No dental or medical cause has been found. We present a case of burning mouth syndrome of 6 months duration in a healthy 65-year-old woman, which was associated with high copy numbers of herpes simplex virus type 1 (HSV-1) DNA in the saliva. Her pain resolved completely after antiviral treatment with a corresponding absence of salivary HSV-1 DNA 4 weeks and 6 months later. 2015 BMJ Publishing Group Ltd.

  19. N-alpha-Cocoyl-L-arginine ethyl ester, DL-pyroglutamic acid salt, as an inactivator of hepatitis B surface antigen.

    PubMed Central

    Sugimoto, Y; Toyoshima, S

    1979-01-01

    N-alpha-Cocoyl-L-arginine ethyl ester, DL-pyroglutamic acid salt (CAE), exhibited a strong inactivating effect on hepatitis B surface antigen. Concentrations of CAE required for 50 and 100% inactivation of the antigen were 0.01 to 0.025% and 0.025 to 0.05% respectively. CAE completely inactivated hepatitis B surface antigen at the lowest concentration compared with various compounds including about 500 amino acid derivatives, sodium hypochlorite, 2,4,4'-trichloro-2'-hydroxydiphenyl ether, and some detergents. Furthermore, CAE inactivated vaccinia virus, herpes simplex virus, and influenza virus, whereas poliovirus was not inactivated at all. The results suggest that the inactivating effects of CAE are related to interaction with lipid-containing viral envelopes. PMID:228595

  20. Non-nucleosidic inhibition of Herpes simplex virus DNA polymerase: mechanistic insights into the anti-herpetic mode of action of herbal drug withaferin A.

    PubMed

    Grover, Abhinav; Agrawal, Vibhuti; Shandilya, Ashutosh; Bisaria, Virendra S; Sundar, Durai

    2011-01-01

    Herpes Simplex Virus 1 and 2 causes several infections in humans including cold sores and encephalitis. Previous antiviral studies on herpes viruses have focussed on developing nucleoside analogues that can inhibit viral polymerase and terminate the replicating viral DNA. However, these drugs bear an intrinsic non-specificity as they can also inhibit cellular polymerase apart from the viral one. The present study is an attempt to elucidate the action mechanism of naturally occurring withaferin A in inhibiting viral DNA polymerase, thus providing an evidence for its development as a novel anti-herpetic drug. Withaferin A was found to bind very similarly to that of the previously reported 4-oxo-DHQ inhibitor. Withaferin A was observed binding to the residues Gln 617, Gln 618, Asn 815 and Tyr 818, all of which are crucial to the proper functioning of the polymerase. A comparison of the conformation obtained from docking and the molecular dynamics simulations shows that substantial changes in the binding conformations have occurred. These results indicate that the initial receptor-ligand interaction observed after docking can be limited due to the receptor rigid docking algorithm and that the conformations and interactions observed after simulation runs are more energetically favoured. We have performed docking and molecular dynamics simulation studies to elucidate the binding mechanism of prospective herbal drug withaferin A onto the structure of DNA polymerase of Herpes simplex virus. Our docking simulations results give high binding affinity of the ligand to the receptor. Long de novo MD simulations for 10 ns performed allowed us to evaluate the dynamic behaviour of the system studied and corroborate the docking results, as well as identify key residues in the enzyme-inhibitor interactions. The present MD simulations support the hypothesis that withaferin A is a potential ligand to target/inhibit DNA polymerase of the Herpes simplex virus. Results of these studies will also guide the design of selective inhibitors of DNA POL with high specificity and potent activity in order to strengthen the therapeutic arsenal available today against the dangerous biological warfare agent represented by Herpes Simplex Virus.

  1. Non-nucleosidic inhibition of Herpes simplex virus DNA polymerase: mechanistic insights into the anti-herpetic mode of action of herbal drug withaferin A

    PubMed Central

    2011-01-01

    Background Herpes Simplex Virus 1 and 2 causes several infections in humans including cold sores and encephalitis. Previous antiviral studies on herpes viruses have focussed on developing nucleoside analogues that can inhibit viral polymerase and terminate the replicating viral DNA. However, these drugs bear an intrinsic non-specificity as they can also inhibit cellular polymerase apart from the viral one. The present study is an attempt to elucidate the action mechanism of naturally occurring withaferin A in inhibiting viral DNA polymerase, thus providing an evidence for its development as a novel anti-herpetic drug. Results Withaferin A was found to bind very similarly to that of the previously reported 4-oxo-DHQ inhibitor. Withaferin A was observed binding to the residues Gln 617, Gln 618, Asn 815 and Tyr 818, all of which are crucial to the proper functioning of the polymerase. A comparison of the conformation obtained from docking and the molecular dynamics simulations shows that substantial changes in the binding conformations have occurred. These results indicate that the initial receptor-ligand interaction observed after docking can be limited due to the receptor rigid docking algorithm and that the conformations and interactions observed after simulation runs are more energetically favoured. Conclusions We have performed docking and molecular dynamics simulation studies to elucidate the binding mechanism of prospective herbal drug withaferin A onto the structure of DNA polymerase of Herpes simplex virus. Our docking simulations results give high binding affinity of the ligand to the receptor. Long de novo MD simulations for 10 ns performed allowed us to evaluate the dynamic behaviour of the system studied and corroborate the docking results, as well as identify key residues in the enzyme-inhibitor interactions. The present MD simulations support the hypothesis that withaferin A is a potential ligand to target/inhibit DNA polymerase of the Herpes simplex virus. Results of these studies will also guide the design of selective inhibitors of DNA POL with high specificity and potent activity in order to strengthen the therapeutic arsenal available today against the dangerous biological warfare agent represented by Herpes Simplex Virus. PMID:22373101

  2. Persistence in herpes simplex virus infections.

    PubMed Central

    Longson, M.

    1978-01-01

    Diseases of man caused by the virus of herpes simplex fall into two broad categories. The primary disease occurs only once in any individual's life and is caused by transmission of virus from an already infected human. Thereafter, the individual may be subject to recurrent herpetic disease, the manifestations of which are different from the primary disease. Recurrent disease varies in severity from trivial, to incapacitating and frankly lethal (as in diseases resulting from the virus's neurotropic and oncogenic properties). The source of the virus in recurrent herpetic disease has never been conclusively resolved, but is almost certainly endogenous to the patient. Theories, case reports and experiments exist to show that endogenous virus may, in periods of clinical quiescence, be latent (or persistent) at the site of the recurrent lesions itself, or more remotely in nerve tissues related to the site of recurrence. Images Fig. 1 PMID:214773

  3. Immunization against Genital Herpes with a Vaccine Virus That has Defects in Productive and Latent Infection

    NASA Astrophysics Data System (ADS)

    da Costa, Xavier J.; Jones, Cheryl A.; Knipe, David M.

    1999-06-01

    An effective vaccine for genital herpes has been difficult to achieve because of the limited efficacy of subunit vaccines and the safety concerns about live viruses. As an alternative approach, mutant herpes simplex virus strains that are replication-defective can induce protective immunity. To increase the level of safety and to prove that replication was not needed for immunization, we constructed a mutant herpes simplex virus 2 strain containing two deletion mutations, each of which eliminated viral replication. The double-mutant virus induces protective immunity that can reduce acute viral shedding and latent infection in a mouse genital model, but importantly, the double-mutant virus shows a phenotypic defect in latent infection. This herpes vaccine strain, which is immunogenic but has defects in both productive and latent infection, provides a paradigm for the design of vaccines and vaccine vectors for other sexually transmitted diseases, such as AIDS.

  4. The Us3 Protein of Herpes Simplex Virus 1 Inhibits T Cell Signaling by Confining Linker for Activation of T Cells (LAT) Activation via TRAF6 Protein*

    PubMed Central

    Yang, Yin; Wu, Songfang; Wang, Yu; Pan, Shuang; Lan, Bei; Liu, Yaohui; Zhang, Liming; Leng, Qianli; Chen, Da; Zhang, Cuizhu; He, Bin; Cao, Youjia

    2015-01-01

    Herpes simplex virus 1 (HSV-1) is the most prevalent human virus and causes global morbidity because the virus is able to infect multiple cell types. Remarkably, HSV infection switches between lytic and latent cycles, where T cells play a critical role. However, the precise way of virus-host interactions is incompletely understood. Here we report that HSV-1 productively infected Jurkat T-cells and inhibited antigen-induced T cell receptor activation. We discovered that HSV-1-encoded Us3 protein interrupted TCR signaling and interleukin-2 production by inactivation of the linker for activation of T cells. This study unveils a mechanism by which HSV-1 intrudes into early events of TCR-mediated cell signaling and may provide novel insights into HSV infection, during which the virus escapes from host immune surveillance. PMID:25907557

  5. Ultraviolet irradiation of herpes simplex virus (type 1): delayed transcription and comparative sensitivites of virus functions.

    PubMed

    Eglin, R P; Gugerli, P; Wildy, P

    1980-07-01

    The delay in the replication of herpes simplex virus surviving u.v. irradiation occurs after the uncoating of virus, as judged by sensitivity to DNase. It occurs before translation, judged by the kinetics of appearance of various virus-specific proteins, and before transcription, judged by the detection of virus-specific RNA by in situ hybridization. Since the delays in both transcription and translation are reversed by photoreactivation, the simplest hypothesis is that pyrimidine dimers directly obstruct transcription;unless these are broken by photoreactivating enzymes, there will be transcriptional delay until reactivating processes have repaired the lesion. The u.v. sensitivities of the abilities to induce various enzymes (thymidine kinase, DNase and DNA polymerase) were only about four times less than that of infectivity. The The ability to induce the three enzymes was three times less sensitive than that of the structural antigen (Band II).

  6. Social Stress and the Reactivation of Latent Herpes Simplex Virus Type 1

    NASA Astrophysics Data System (ADS)

    Padgett, David A.; Sheridan, John F.; Dorne, Julianne; Berntson, Gary G.; Candelora, Jessica; Glaser, Ronald

    1998-06-01

    Psychological stress is thought to contribute to reactivation of latent herpes simplex virus (HSV). Although several animal models have been developed in an effort to reproduce different pathogenic aspects of HSV keratitis or labialis, until now, no good animal model existed in which application of a psychological laboratory stressor results in reliable reactivation of the virus. Reported herein, disruption of the social hierarchy within colonies of mice increased aggression among cohorts, activated the hypothalamic-pituitary-adrenal axis, and caused reactivation of latent HSV type 1 in greater than 40% of latently infected animals. However, activation of the hypothalamic-pituitary-adrenal axis using restraint stress did not activate the latent virus. Thus, the use of social stress in mice provides a good model in which to investigate the neuroendocrine mechanisms that underlie behaviorally mediated reactivation of latent herpes-viruses.

  7. Recombination Promoted by DNA Viruses: Phage λ to Herpes Simplex Virus

    PubMed Central

    Weller, Sandra K.; Sawitzke, James A.

    2015-01-01

    The purpose of this review is to explore recombination strategies in DNA viruses. Homologous recombination is a universal genetic process that plays multiple roles in the biology of all organisms, including viruses. Recombination and DNA replication are interconnected, with recombination being essential for repairing DNA damage and supporting replication of the viral genome. Recombination also creates genetic diversity, and viral recombination mechanisms have important implications for understanding viral origins as well as the dynamic nature of viral-host interactions. Both bacteriophage λ and herpes simplex virus (HSV) display high rates of recombination, both utilizing their own proteins and commandeering cellular proteins to promote recombination reactions. We focus primarily on λ and HSV, as they have proven amenable to both genetic and biochemical analysis and have recently been shown to exhibit some surprising similarities that will guide future studies. PMID:25002096

  8. Incidence of herpes simplex virus type 2 infection in 5 sexually transmitted disease (STD) clinics and the effect of HIV/STD risk-reduction counseling.

    PubMed

    Gottlieb, Sami L; Douglas, John M; Foster, Mark; Schmid, D Scott; Newman, Daniel R; Baron, Anna E; Bolan, Gail; Iatesta, Michael; Malotte, C Kevin; Zenilman, Jonathan; Fishbein, Martin; Peterman, Thomas A; Kamb, Mary L

    2004-09-15

    The seroincidence of herpes simplex virus type 2 (HSV-2) infection was determined among 1766 patients attending sexually transmitted disease (STD) clinics and enrolled in a randomized, controlled trial of human immunodeficiency virus (HIV)/STD risk-reduction counseling (RRC). Arm 1 received enhanced RRC (4 sessions); arm 2, brief RRC (2 sessions); and arm 3, the control arm, brief informational messages. The overall incidence rate was 11.7 cases/100 person-years (py). Independent predictors of incidence of HSV-2 infection included female sex; black race; residence in Newark, New Jersey; <50% condom use with an occasional partner; and, in females, incident trichomoniasis and bacterial vaginosis. Only 10.8% of new HSV-2 infections were diagnosed clinically. Incidence rates were 12.9 cases/100 py in the control arm, 11.8 cases/100 py in arm 2, and 10.3 cases/100 py in arm 1 (hazard ratio, 0.8 [95% confidence interval, 0.6-1.1], vs. controls). The possible benefit of RRC in preventing acquisition of HSV-2 infection offers encouragement that interventions more specifically tailored to genital herpes may be useful and should be an important focus of future studies.

  9. Nuclear Localization of the C1 Factor (Host Cell Factor) in Sensory Neurons Correlates with Reactivation of Herpes Simplex Virus from Latency

    NASA Astrophysics Data System (ADS)

    Kristie, Thomas M.; Vogel, Jodi L.; Sears, Amy E.

    1999-02-01

    After a primary infection, herpes simplex virus is maintained in a latent state in neurons of sensory ganglia until complex stimuli reactivate viral lytic replication. Although the mechanisms governing reactivation from the latent state remain unknown, the regulated expression of the viral immediate early genes represents a critical point in this process. These genes are controlled by transcription enhancer complexes whose assembly requires and is coordinated by the cellular C1 factor (host cell factor). In contrast to other tissues, the C1 factor is not detected in the nuclei of sensory neurons. Experimental conditions that induce the reactivation of herpes simplex virus in mouse model systems result in rapid nuclear localization of the protein, indicating that the C1 factor is sequestered in these cells until reactivation signals induce a redistribution of the protein. The regulated localization suggests that C1 is a critical switch determinant of the viral lytic-latent cycle.

  10. Prevalence of herpes simplex virus 1 and 2 antibodies in patients with autism spectrum disorders.

    PubMed

    Gentile, Ivan; Zappulo, Emanuela; Bonavolta, Raffaele; Maresca, Roberta; Riccio, Maria Pia; Buonomo, Antonio Riccardo; Portella, Giuseppe; Vallefuoco, Luca; Settimi, Alessandro; Pascotto, Antonio; Borgia, Guglielmo; Bravaccio, Carmela

    2014-01-01

    The etiology of autism spectrum disorder (ASD) is unknown, even though it is hypothesized that a viral infection could trigger this disorder. The aim of this study was to evaluate the seropositivity rate and antibody level of Herpes Simplex Virus 1 (HSV1) and Herpes Simplex Virus 2 (HSV2) in children with ASD compared to same-aged healthy controls. We compared seropositivity rate and levels of antibodies to HSV1/2 in 54 children with ASD (19 with autistic disorder and 35 with non-autistic ASD) and in 46 controls. Seropositivity rate and levels of anti-HSV1/2 were not dissimilar between cases and controls. Exposure to HSV2 was minimal. Rate of contact with HSV1 and HSV2 assessed by the mean of detection of specific antibodies was similar between children with ASD and healthy controls. Copyright © 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  11. [Neonatal facial palsy: identification of herpes simplex virus 1 in cerebrospinal fluid. Case report].

    PubMed

    Lubián López, Simón; Pérez Guerrero, Juan J; Salazar Oliva, Patricia; Benavente Fernández, Isabel

    2018-06-01

    Neonatal facial palsy is very uncommon and is generally diagnosed at birth. We present the first published case of neonatal facial palsy with identification of herpes simplex virus 1 in cerebrospinal fluid. A 35-day-old male was presented at the Emergency Department with mouth deviation to the left and impossibility of full closure of the right eye. There were no symptoms of infection or relevant medical history. Physical examination was compatible with peripheral facial palsy. Studies performed at admission were normal (blood count, biochemical analysis and coagulation blood tests and cerebrospinal fluid analysis). The patient was admitted on oral prednisolone and intravenous aciclovir. Cranial magnetic resonance was normal. Polymerase chain reaction test for herpes simplex virus 1 in cerebrospinal fluid was reported positive after 48 hours of admission. Patient followed good evolution and received prednisolone for 7 days and acyclovir for 21 days. At discharge, neurological examination was normal. Sociedad Argentina de Pediatría.

  12. Management of Developmentally Disabled Children with Chronic Infections.

    ERIC Educational Resources Information Center

    Andersen, Richard D.

    1988-01-01

    The nature of chronic infections in developmentally disabled children is reviewed, along with appropriate management strategies for care providers and implications for other children. Discussed are herpes simplex virus, cytomegalovirus, hepatitis B virus, and human immunodeficiency virus. (Author/JDD)

  13. US9, a stable lysine-less herpes simplex virus 1 protein, is ubiquitinated before packaging into virions and associates with proteasomes

    PubMed Central

    Brandimarti, Renato; Roizman, Bernard

    1997-01-01

    The US9 gene of herpes simplex virus 1 encodes a virion tegument protein with a predicted Mr of 10,000. Earlier studies have shown that the gene is not essential for viral replication in cells in culture. We report that (i) US9 forms in denaturing polyacrylamide gels multiple overlapping bands ranging in Mr from 12,000 to 25,000; (ii) the protein recovered from infected cells or purified virions reacts with anti-ubiquitin antibodies; (iii) autoradiographic images of US9 protein immunoprecipitated from cells infected with [35S]methionine-labeled virus indicate that the protein is stable for at least 4 h after entry into cells (the protein was also stable for at least 4 h after a 1-h labeling interval 12 h after infection); (iv) antibody to subunit 12 of proteasomes pulls down US9 protein from herpes simplex virus-infected cell lysates; and (v) the US9 gene is highly conserved among the members of the alpha subfamily of herpes viruses, and the US9 gene product lacks lysines. We conclude that US9 is a lysine-less, ubiquitinated protein that interacts with the ubiquitin-dependent pathway for degradation of proteins and that this function may be initiated at the time of entry of the virus into the cell. PMID:9391137

  14. Herpes Simplex Virus Suppressive Therapy in Herpes Simplex Virus-2/Human Immunodeficiency Virus-1 Coinfected Women Is Associated With Reduced Systemic CXCL10 But Not Genital Cytokines.

    PubMed

    Andersen-Nissen, Erica; Chang, Joanne T; Thomas, Katherine K; Adams, Devin; Celum, Connie; Sanchez, Jorge; Coombs, Robert W; McElrath, M Juliana; Baeten, Jared M

    2016-12-01

    Herpes simplex virus type-2 (HSV-2) may heighten immune activation and increase human immunodeficiency virus 1 (HIV-1) replication, resulting in greater infectivity and faster HIV-1 disease progression. An 18-week randomized, placebo-controlled crossover trial of 500 mg valacyclovir twice daily in 20 antiretroviral-naive women coinfected with HSV-2 and HIV-1 was conducted and HSV-2 suppression was found to significantly reduce both HSV-2 and HIV-1 viral loads both systemically and the endocervical compartment. To determine the effect of HSV-2 suppression on systemic and genital mucosal inflammation, plasma specimens, and endocervical swabs were collected weekly from volunteers in the trial and cryopreserved. Plasma was assessed for concentrations of 31 cytokines and chemokines; endocervical fluid was eluted from swabs and assayed for 14 cytokines and chemokines. Valacyclovir significantly reduced plasma CXCL10 but did not significantly alter other cytokine concentrations in either compartment. These data suggest genital tract inflammation in women persists despite HSV-2 suppression, supporting the lack of effect on transmission seen in large scale efficacy trials. Alternative therapies are needed to reduce persistent mucosal inflammation that may enhance transmission of HSV-2 and HIV-1.

  15. Recurrent herpes simplex virus type 2 meningitis in elderly persons.

    PubMed

    Davis, Larry E; Guerre, Jenny; Gerstein, Wendy H

    2010-06-01

    To review the ages of patients with recurrent herpes simplex virus type 2 (HSV-2) meningitis. Case report and literature review back to 1970. Referral Veterans Affairs hospital. Our patient developed his first episode of recurrent HSV-2 meningitis at 78 years of age, 57 years after his only episode of genital herpes simplex infection. Of 223 patients in the literature with recurrent HSV-2 meningitis, 5% occurred in patients older than 60 years and 19% in patients older than 50 years. Although recurrent meningitis due to HSV is primarily seen in young, sexually active adults, a surprising number of episodes of HSV meningitis can develop in older age. Meningitis due to HSV-2 should be in the differential diagnosis of aseptic meningitis in older patients.

  16. Recombinant Vaccinia Virus: Immunization against Multiple Pathogens

    NASA Astrophysics Data System (ADS)

    Perkus, Marion E.; Piccini, Antonia; Lipinskas, Bernard R.; Paoletti, Enzo

    1985-09-01

    The coding sequences for the hepatitis B virus surface antigen, the herpes simplex virus glycoprotein D, and the influenza virus hemagglutinin were inserted into a single vaccinia virus genome. Rabbits inoculated intravenously or intradermally with this polyvalent vaccinia virus recombinant produced antibodies reactive to all three authentic foreign antigens. In addition, the feasibility of multiple rounds of vaccination with recombinant vaccinia virus was demonstrated.

  17. HIV-1 and herpes simplex virus type-2 genital shedding among co-infected women using self-collected swabs in Chiang Rai, Thailand.

    PubMed

    Forhan, S E; Dunne, E F; Sternberg, M R; Whitehead, S J; Leelawiwat, W; Thepamnuay, S; Chen, C; Evans-Strickfaden, Tt; McNicholl, J M; Markowitz, L E

    2012-08-01

    We analysed 528 genital self-collected swabs (SCS) from 67 HIV-1 and herpes simplex virus type-2 (HSV-2) co-infected women collected during the placebo month of a randomized crossover clinical trial of suppressive acyclovir in Chiang Rai, Thailand. In this first longitudinal study of HIV-1 and HSV-2 co-infected women using genital SCS specimens, we found frequent mucosal HIV-1 shedding. Overall, 372 (70%) swabs had detectable HIV-1 RNA with median HIV-1 viral load of 2.61 log(10) copies/swab. We found no statistically significant association between detectable HIV-1 RNA and HSV-2 DNA in the same SCS specimen (adjusted odds ratio [aOR] 1.40; 95% confidence intervals [CI], 0.78-2.60, P = 0.25). Only baseline HIV-1 plasma viral load was independently associated with genital HIV-1 RNA shedding (aOR, 7.6; 95% CI, 3.3-17.2, P < 0.0001). SCS may be useful for future HIV-1 and HSV-2 studies because this method allows for frequent genital sampling, and inclusion of genital sites other than the cervix.

  18. Utility of Lumbar Puncture in Children Presenting With Status Epilepticus.

    PubMed

    Michelson, Kenneth A; Lyons, Todd W; Johnson, Kara B; Nigrovic, Lise E; Harper, Marvin B; Kimia, Amir A

    2017-08-01

    Because meningitis may trigger seizures, we sought to determine its frequency in children with first-time status epilepticus (SE). We performed a retrospective cross-sectional study of children aged 1 month to 21 years who presented to a single pediatric emergency department between 1995 and 2012 with SE and who had a lumbar puncture (LP) performed as part of the diagnostic evaluation. We defined bacterial meningitis as a cerebrospinal fluid (CSF) culture positive for a bacterial pathogen or CSF pleocytosis (CSF white blood cells ≥10 cells/mm) with a blood culture positive for a bacterial pathogen. We defined viral meningitis or encephalitis using a positive enterovirus or herpes simplex virus polymerase chain reaction test. Among 126 children with SE who had an LP performed, 8 (6%) had CSF pleocytosis. Of these, 5 had received antibiotics before performance of a diagnostic LP. One child in the cohort was proven to have bacterial meningitis (0.8%; 95% confidence interval [CI], 0%-6%). Two other children had enteroviral meningitis (2/13 tested, 15%; 95% CI, 3%-51%), and 1 had a herpes simplex virus infection (1/47, 2%; 95% CI, 0%-15%). Bacterial meningitis is an uncommon cause of SE.

  19. Identification of Novel 5,6-Dimethoxyindan-1-one Derivatives as Antiviral Agents.

    PubMed

    Patil, Siddappa A; Patil, Vikrant; Patil, Renukadevi; Beaman, Kenneth; Patil, Shivaputra A

    2017-01-01

    Discovery of novel antiviral agents is essential because viral infection continues to threaten human life globally. Various heterocyclic small molecules have been developed as antiviral agents. The 5,6-dimethoxyindan-1-on nucleus is of considerable interest as this ring is the key constituent in a range of bioactive compounds, both naturally occurring and synthetic, and often of considerable complexity. The main purpose of this research was to discover and develop small molecule heterocycles as broad-spectrum of antiviral agents. A focused small set of 5,6-dimethoxyindan-1-one analogs (6-8) along with a thiopene derivative (9) was screened for selected viruses (Vaccinia virus - VACA, Human papillomavirus - HPV, Zika virus - ZIKV, Dengue virus - DENV, Measles virus - MV, Poliovirus 3 - PV, Rift Valley fever virus - RVFV, Tacaribe virus - TCRV, Venezuelan equine encephalitis virus - VEEV, Herpes simplex virus 1 -HSV-1 and Human cytomegalovirus - HCMV) using the National Institute of Allergy and Infectious Diseases (NIAID)'s Division of Microbiology and Infectious Diseases (DMID) antiviral screening program. These molecules demonstrated moderate to excellent antiviral activity towards variety of viruses. The 5,6-dimethoxyindan-1-one analog (7) demonstrated high efficacy towards vaccinia virus (EC50: <0.05 µM) and was nearly 232 times more potent than the standard drug Cidofovir (EC50: 11.59 µM) in primary assay whereas it demonstrated moderate activity (EC50: >30.00 µM) in secondary plaque reduction assay. The thiophene analog (9) has shown very good viral inhibition towards several viruses such as Human papillomavirus, Measles virus, Rift Valley fever virus, Tacaribe virus and Herpes simplex virus 1. Our research identified a novel 5,6-dimethoxyindan-1-one analog (compound 7), as a potent antiviral agent for vaccinia virus, and heterocyclic chalcone analog (compound 9) as a broad spectrum antiviral agent. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Friendly fire: redirecting herpes simplex virus-1 for therapeutic applications.

    PubMed

    Advani, S J; Weichselbaum, R R; Whitley, R J; Roizman, B

    2002-09-01

    Herpes simplex virus-1 (HSV-1) is a relatively large double-stranded DNA virus encoding at least 89 proteins with well characterized disease pathology. An understanding of the functions of viral proteins together with the ability to genetically engineer specific viral mutants has led to the development of attenuated HSV-1 for gene therapy. This review highlights the progress in creating attenuated genetically engineered HSV-1 mutants that are either replication competent (viral non-essential gene deleted) or replication defective (viral essential gene deleted). The choice between a replication-competent or -defective virus is based on the end-goal of the therapeutic intervention. Replication-competent HSV-1 mutants have primarily been employed as antitumor oncolytic viruses, with the lytic nature of the virus harnessed to destroy tumor cells selectively. In replacement gene therapy, replication-defective viruses have been utilized as delivery vectors. The advantages of HSV-1 vectors are that they infect quiescent and dividing cells efficiently and can encode for relatively large transgenes.

  1. RNA binding properties of the US11 protein from four primate simplexviruses.

    PubMed

    Tohme, Sarah; Cukier, Cyprian D; Severini, Alberto

    2011-11-03

    The protein encoded by the Us11 gene of herpes simplex viruses is a dsRNA binding protein which inhibits protein kinase R activity, thereby preventing the interferon-induced shut down of protein synthesis following viral infection. Us11 protein is not essential for infectivity in vitro and in mice in herpes simplex virus type 1 (HSV1), however this virus has a second, and apparently more important, inhibitor of PKR activity, the γ134.5 protein. Recently sequenced simian simplexviruses SA8, HVP2 and B virus do not have an ORF corresponding to the γ134.5 protein, yet they have similar, or greater, infectivity as HSV1 and HSV2. We have expressed the US11 proteins of the simplexviruses HSV1, HSV2, HVP2 and B virus and measured their abilities to bind dsRNA, in order to investigate possible differences that could complement the absence of the γ134.5 protein. We employed a filter binding technique that allows binding of the Us11 protein under condition of excess dsRNA substrate and therefore a measurement of the true Kd value of Us11-dsRNA binding. The results show a Kd of binding in the range of 0.89 nM to 1.82 nM, with no significant difference among the four Us11 proteins.

  2. RNA binding properties of the US11 protein from four primate simplexviruses

    PubMed Central

    2011-01-01

    Background The protein encoded by the Us11 gene of herpes simplex viruses is a dsRNA binding protein which inhibits protein kinase R activity, thereby preventing the interferon-induced shut down of protein synthesis following viral infection. Us11 protein is not essential for infectivity in vitro and in mice in herpes simplex virus type 1 (HSV1), however this virus has a second, and apparently more important, inhibitor of PKR activity, the γ134.5 protein. Recently sequenced simian simplexviruses SA8, HVP2 and B virus do not have an ORF corresponding to the γ134.5 protein, yet they have similar, or greater, infectivity as HSV1 and HSV2. Methods We have expressed the US11 proteins of the simplexviruses HSV1, HSV2, HVP2 and B virus and measured their abilities to bind dsRNA, in order to investigate possible differences that could complement the absence of the γ134.5 protein. We employed a filter binding technique that allows binding of the Us11 protein under condition of excess dsRNA substrate and therefore a measurement of the true Kd value of Us11-dsRNA binding. Results and Conclusions The results show a Kd of binding in the range of 0.89 nM to 1.82 nM, with no significant difference among the four Us11 proteins. PMID:22054255

  3. Update On Emerging Antivirals For The Management Of Herpes Simplex Virus Infections: A Patenting Perspective

    PubMed Central

    Vadlapudi, Aswani D.; Vadlapatla, Ramya K.; Mitra, Ashim K.

    2015-01-01

    Herpes simplex virus (HSV) infections can be treated efficiently by the application of antiviral drugs. The herpes family of viruses is responsible for causing a wide variety of diseases in humans. The standard therapy for the management of such infections includes acyclovir (ACV) and penciclovir (PCV) with their respective prodrugs valaciclovir and famciclovir. Though effective, long term prophylaxis with the current drugs leads to development of drug-resistant viral isolates, particularly in immunocompromised patients. Moreover, some drugs are associated with dose-limiting toxicities which limit their further utility. Therefore, there is a need to develop new antiherpetic compounds with different mechanisms of action which will be safe and effective against emerging drug resistant viral isolates. Significant advances have been made towards the design and development of novel antiviral therapeutics during the last decade. As evident by their excellent antiviral activities, pharmaceutical companies are moving forward with several new compounds into various phases of clinical trials. This review provides an overview of structure and life cycle of HSV, progress in the development of new therapies, update on the advances in emerging therapeutics under clinical development and related recent patents for the treatment of Herpes simplex virus infections. PMID:23331181

  4. Neonatal herpes simplex virus infection: epidemiology and treatment.

    PubMed

    James, Scott H; Kimberlin, David W

    2015-03-01

    Herpes simplex virus types 1 (HSV-1) and 2 (HSV-2) are highly prevalent viruses capable of establishing lifelong infection. Genital herpes in women of childbearing age represents a major risk for mother-to-child transmission (MTCT) of HSV infection, with primary and first-episode genital HSV infections posing the highest risk. The advent of antiviral therapy with parenteral acyclovir has led to significant improvement in neonatal HSV disease mortality. Further studies are needed to improve the clinician's ability to identify infants at increased risk for HSV infection and prevent MTCT, and to develop novel antiviral agents with increased efficacy in infants with HSV infection. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Performance of the Epstein-Barr Virus and Herpes Simplex Virus Immunoglobulin M Assays on the Liaison Platform with Sera from Patients Displaying Acute Parvovirus B19 Infection▿

    PubMed Central

    Costa, Elisa; Tormo, Nuria; Clari, María Ángeles; Bravo, Dayana; Muñoz-Cobo, Beatriz; Navarro, David

    2009-01-01

    Acute parvovirus B19 infection has been reported to cause false-positive results frequently in the Epstein-Barr (EBV) and herpes simplex virus (HSV) immunoglobulin M (IgM) assays from DiaSorin performed on the Liaison platform. We tested 65 sera from patients with a presumptive or conclusive diagnosis of acute parvovirus B19 infection in both assays and obtained no false-positive results in the EBV IgM test and 10.4% nonspecific reactivities in the HSV IgM assay. Our data support the specificity of both assays in this clinical setting. PMID:19571110

  6. Tolerance and immunity in mice infected with herpes simplex virus: studies on the mechanism of tolerance to delayed-type hypersensitivity.

    PubMed

    Nash, A A; Phelan, J; Gell, P G; Wildy, P

    1981-06-01

    Tolerance to delayed-type hypersensitivity is produced in mice following an intravenous injection of herpes simplex virus. This form of tolerance is produced early on, following simultaneous injections of virus subcutaneously and intravenously, and is long lasting (greater than 100 days). The early tolerance mechanism is resistant to high doses of cyclophosphamide and is not transferable by serum or spleen cells taken after 7 days. However, spleen cells taken at 14 days onwards inhibit the induction of delayed hypersensitivity when transferred to normal syngeneic recipients. These cells are T lymphocytes and are specific for the herpes type used in the induction.

  7. Tolerance and immunity in mice infected with herpes simplex virus: studies on the mechanism of tolerance to delayed-type hypersensitivity.

    PubMed Central

    Nash, A A; Phelan, J; Gell, P G; Wildy, P

    1981-01-01

    Tolerance to delayed-type hypersensitivity is produced in mice following an intravenous injection of herpes simplex virus. This form of tolerance is produced early on, following simultaneous injections of virus subcutaneously and intravenously, and is long lasting (greater than 100 days). The early tolerance mechanism is resistant to high doses of cyclophosphamide and is not transferable by serum or spleen cells taken after 7 days. However, spleen cells taken at 14 days onwards inhibit the induction of delayed hypersensitivity when transferred to normal syngeneic recipients. These cells are T lymphocytes and are specific for the herpes type used in the induction. PMID:6265348

  8. Infection of endothelial cells by common human viruses.

    PubMed

    Friedman, H M

    1989-01-01

    Common human viruses were evaluated for their ability to replicate in the endothelial cells of human umbilical vein and bovine thoracic aorta in vitro. Infection occurred with most viruses. The susceptibilities of endothelial cells derived from bovine aorta, pulmonary artery, and vena cava were compared. Among the viruses studied, no differences were noted in the ability to grow in endothelial cells from these three large vessels. One virus, herpes simplex virus type 1, was evaluated for its ability to produce persistent infection of endothelial cells. Infection developed and persisted for up to 3 months. After the first week, productive infection was found in less than 1% of cells. Nevertheless, the infection markedly affected the growth and morphology of the endothelial monolayer. Infection with any of several different viruses was noted to alter endothelial cell functions, including adherence of granulocytes, production of colony-stimulating factor, and synthesis of matrix protein. In addition, herpes simplex virus type 1 induced receptors for the Fc portion of IgG and for complement component C3b. These findings indicate that common human viruses can profoundly affect the biology of the endothelium.

  9. Quantitative autoradiographic mapping of focal herpes simplex virus encephalitis using a radiolabeled antiviral drug

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, R.

    1984-12-18

    A method of mapping herpes simplex viral infection comprising administering a radiolabeled antiviral active 5-substituted 1-(2'-deoxy-2'-substituted-D-arabinofuranosyl) pyrimidine nucleoside to the infected subject, and scanning the area in which the infection is to be mapped for the radiolabel.

  10. Genome-wide genetic investigation of serological measures of common infections

    PubMed Central

    Rubicz, Rohina; Yolken, Robert; Drigalenko, Eugene; Carless, Melanie A; Dyer, Thomas D; Kent Jr, Jack; Curran, Joanne E; Johnson, Matthew P; Cole, Shelley A; Fowler, Sharon P; Arya, Rector; Puppala, Sobha; Almasy, Laura; Moses, Eric K; Kraig, Ellen; Duggirala, Ravindranath; Blangero, John; Leach, Charles T; Göring, Harald HH

    2015-01-01

    Populations and individuals differ in susceptibility to infections because of a number of factors, including host genetic variation. We previously demonstrated that differences in antibody titer, which reflect infection history, are significantly heritable. Here we attempt to identify the genetic factors influencing variation in these serological phenotypes. Blood samples from >1300 Mexican Americans were quantified for IgG antibody level against 12 common infections, selected on the basis of their reported role in cardiovascular disease risk: Chlamydia pneumoniae; Helicobacter pylori; Toxoplasma gondii; cytomegalovirus; herpes simplex I virus; herpes simplex II virus; human herpesvirus 6 (HHV6); human herpesvirus 8 (HHV8); varicella zoster virus; hepatitis A virus (HAV); influenza A virus; and influenza B virus. Pathogen-specific quantitative antibody levels were analyzed, as were three measures of pathogen burden. Genome-wide linkage and joint linkage and association analyses were performed using ~1 million SNPs. Significant linkage (lod scores >3.0) was obtained for HHV6 (on chromosome 7), HHV8 (on chromosome 6), and HAV (on chromosome 13). SNP rs4812712 on chromosome 20 was significantly associated with C. pneumoniae (P=5.3 × 10−8). However, no genome-wide significant loci were obtained for the other investigated antibodies. We conclude that it is possible to localize host genetic factors influencing some of these antibody traits, but that further larger-scale investigations will be required to elucidate the genetic mechanisms contributing to variation in antibody levels. PMID:25758998

  11. Mediators and Mechanisms of Herpes Simplex Virus Entry into Ocular Cells

    PubMed Central

    Farooq, Asim V.; Valyi-Nagy, Tibor; Shukla, Deepak

    2010-01-01

    The entry of herpes simplex virus (HSV) into cells was once thought to be a general process. It is now understood that the virus is able to use multiple mechanisms for entry and spread, including the use of receptors and co-receptors that have been determined to be cell-type specific. This is certainly true for ocular cell types, which is important as the virus may use different mechanisms to gain access to multiple anatomic structures in close proximity, leading to various ocular diseases. There are some patterns that may be utilized by the virus in the eye and elsewhere, including surfing along filopodia in moving from cell to cell. There are common themes as well as intriguing differences in the entry mechanisms of HSV into ocular cells. We discuss these issues in the context of conjunctivitis, keratitis, acute retinal necrosis and other ocular diseases. PMID:20465436

  12. Characterization of soluble glycoprotein D-mediated herpes simplex virus type 1 infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsvitov, Marianna; Frampton, Arthur R.; Shah, Waris A.

    2007-04-10

    Herpes simplex virus type 1 (HSV-1) entry into permissive cells involves attachment to cell-surface glycosaminoglycans (GAGs) and fusion of the virus envelope with the cell membrane triggered by the binding of glycoprotein D (gD) to cognate receptors. In this study, we characterized the observation that soluble forms of the gD ectodomain (sgD) can mediate entry of gD-deficient HSV-1. We examined the efficiency and receptor specificity of this activity and used sequential incubation protocols to determine the order and stability of the initial interactions required for entry. Surprisingly, virus binding to GAGs did not increase the efficiency of sgD-mediated entry andmore » gD-deficient virus was capable of attaching to GAG-deficient cells in the absence of sgD. These observations suggested a novel binding interaction that may play a role in normal HSV infection.« less

  13. Evaluation of an edible blue-green alga, Aphanothece sacrum, for its inhibitory effect on replication of herpes simplex virus type 2 and influenza virus type A.

    PubMed

    Ogura, Fumie; Hayashi, Kyoko; Lee, Jung-Bum; Kanekiyo, Kenji; Hayashi, Toshimitsu

    2010-01-01

    A hot-water extract of Aphanothece sacrum, an edible aquacultured blue-green alga, was found to show a remarkable inhibitory effect on the replication of enveloped viruses including herpes simplex virus type 2 (HSV-2) and influenza virus type A (IFV-A, H1N1) in vitro. The main active components were suggested to be sulfated polysaccharides in non-dialyzable portion (ASWPH). ASWPH was found to inhibit the viral adsorption to the receptor of the host cells involved in the replication process of HSV-2 and IFV-A. In addition, while the penetration stage of HSV-2 was also significantly suppressed with ASWPH, no such effect was observed in the replication of IFV-A. These results suggest that ASWPH might be useful in the prevention of infectious diseases caused by HSV-2 as well as IFV-A.

  14. The Splicing History of an mRNA Affects Its Level of Translation and Sensitivity to Cleavage by the Virion Host Shutoff Endonuclease during Herpes Simplex Virus Infections

    PubMed Central

    Sadek, Jouliana

    2016-01-01

    ABSTRACT During lytic herpes simplex virus (HSV) infections, the virion host shutoff (Vhs) (UL41) endoribonuclease degrades many cellular and viral mRNAs. In uninfected cells, spliced mRNAs emerge into the cytoplasm bound by exon junction complexes (EJCs) and are translated several times more efficiently than unspliced mRNAs that have the same sequence but lack EJCs. Notably, most cellular mRNAs are spliced, whereas most HSV mRNAs are not. To examine the effect of splicing on gene expression during HSV infection, cells were transfected with plasmids harboring an unspliced renilla luciferase (RLuc) reporter mRNA or RLuc constructs with introns near the 5′ or 3′ end of the gene. After splicing of intron-containing transcripts, all three RLuc mRNAs had the same primary sequence. Upon infection in the presence of actinomycin D, spliced mRNAs were much less sensitive to degradation by copies of Vhs from infecting virions than were unspliced mRNAs. During productive infections (in the absence of drugs), RLuc was expressed at substantially higher levels from spliced than from unspliced mRNAs. Interestingly, the stimulatory effect of splicing on RLuc expression was significantly greater in infected than in uninfected cells. The translational stimulatory effect of an intron during HSV-1 infections could be replicated by artificially tethering various EJC components to an unspliced RLuc transcript. Thus, the splicing history of an mRNA, and the consequent presence or absence of EJCs, affects its level of translation and sensitivity to Vhs cleavage during lytic HSV infections. IMPORTANCE Most mammalian mRNAs are spliced. In contrast, of the more than 80 mRNAs harbored by herpes simplex virus 1 (HSV-1), only 5 are spliced. In addition, synthesis of the immediate early protein ICP27 causes partial inhibition of pre-mRNA splicing, with the resultant accumulation of both spliced and unspliced versions of some mRNAs in the cytoplasm. A common perception is that HSV-1 infection necessarily inhibits the expression of spliced mRNAs. In contrast, this study demonstrates two instances in which pre-mRNA splicing actually enhances the synthesis of proteins from mRNAs during HSV-1 infections. Specifically, splicing stabilized an mRNA against degradation by copies of the Vhs endoribonuclease from infecting virions and greatly enhanced the amount of protein synthesized from spliced mRNAs at late times after infection. The data suggest that splicing, and the resultant presence of exon junction complexes on an mRNA, may play an important role in gene expression during HSV-1 infections. PMID:27681125

  15. Protection From Varicella Zoster in Solid Organ Transplant Recipients Carrying Killer Cell Immunoglobulin-Like Receptor B Haplotypes.

    PubMed

    Schmied, Laurent; Terszowski, Grzegorz; Gonzalez, Asensio; Schmitter, Karin; Hirsch, Hans H; Garzoni, Christian; van Delden, Christian; Boggian, Katia; Mueller, Nicolas J; Berger, Christoph; Villard, Jean; Manuel, Oriol; Meylan, Pascal; Hess, Christoph; Stern, Martin

    2015-12-01

    Natural killer cell function is regulated by inhibitory and activating killer cell immunoglobulin-like receptors (KIR). Previous studies have documented associations of KIR genotype with the risk of cytomegalovirus (CMV) replication after solid organ transplantation. In this study of 649 solid organ transplant recipients, followed prospectively for infectious disease events within the Swiss Transplant Cohort Study, we were interested to see if KIR genotype associated with virus infections other than CMV. We found that KIR B haplotypes (which have previously been linked to protection from CMV replication) were associated with protection from varicella zoster virus infection (hazard ratio, 0.43; 95% confidence interval, 0.21-0.91; P = 0.03). No significant associations were detected regarding the risk of herpes simplex, Epstein-Barr virus or BK polyomavirus infections. In conclusion, these data provide evidence that the relative protection of KIR haplotype B from viral replication after solid organ transplantation may extend beyond CMV to other herpes viruses, such as varicella zoster virus and possibly Epstein-Barr virus.

  16. Recurrences after oral and genital herpes simplex virus infection. Influence of site of infection and viral type.

    PubMed

    Lafferty, W E; Coombs, R W; Benedetti, J; Critchlow, C; Corey, L

    1987-06-04

    We prospectively followed 39 adults with concurrent primary herpes simplex virus (HSV) infection (12 with HSV type 1 and 27 with HSV type 2) of the oropharynx and genitalia, caused by the same virus in each person, to evaluate the influence of viral type (HSV-1 vs. HSV-2) and site of infection (oropharyngeal vs. genital) on the frequency of recurrence. The subsequent recurrence patterns of HSV infection differed markedly according to viral type and anatomical site. Oral-labial recurrences developed in 5 of 12 patients with HSV-1 and 1 of 27 patients with HSV-2 (P less than 0.001). Conversely, genital recurrences developed in 24 of 27 patients with HSV-2 and 3 of 12 patients with HSV-1 (P less than 0.01). The mean rate of subsequent genital recurrences (due to HSV-1 and HSV-2) was 0.23 per month, whereas the mean rate of oral-labial recurrences was only 0.04 per month (P less than 0.001). The mean monthly frequencies of recurrence were, in order, genital HSV-2 infections, 0.33 per month; oral-labial HSV-1 infections, 0.12 per month; genital HSV-1 infections, 0.020 per month; and oral HSV-2 infections, 0.001 per month (P less than 0.01 for each comparison). We conclude that the likelihood of reactivation of HSV infection differs between HSV-1 and HSV-2 infections and between the sacral and trigeminal anatomical sites. The sixfold more frequent clinical recurrence rate of genital HSV infections as compared with oral-labial HSV infections may account for the relatively rapid increase in the prevalence of clinically recognized genital herpes in recent years.

  17. Vaccinia virus, herpes simplex virus, and carcinogens induce DNA amplification in a human cell line and support replication of a helpervirus dependent parvovirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlehofer, J.R.; Ehrbar, M.; zur Hausen, H.

    1986-07-15

    The SV40-transformed human kidney cell line, NB-E, amplifies integrated as well as episomal SV40 DNA upon treatment with chemical (DMBA) or physical (uv irradiation) carcinogens (initiators) as well as after infection with herpes simplex virus (HSV) type 1 or with vaccinia virus. In addition it is shown that vaccinia virus induces SV40 DNA amplification also in the SV40-transformed Chinese hamster embryo cell line, CO631. These findings demonstrate that human cells similar to Chinese hamster cells amplify integrated DNA sequences after treatment with carcinogens or infection with specific viruses. Furthermore, a poxvirus--vaccinia virus--similar to herpes group viruses induces DNA amplification. Asmore » reported for other systems, the vaccinia virus-induced DNA amplification in NB-E cells is inhibited by coinfection with adeno-associated virus (AAV) type 5. This is in line with previous studies on inhibition of carcinogen- or HSV-induced DNA amplification in CO631 cells. The experiments also demonstrate that vaccinia virus, in addition to herpes and adenoviruses acts as a helper virus for replication and structural antigen synthesis of AAV-5 in NB-E cells.« less

  18. Elimination of mitochondrial DNA is not required for herpes simplex virus 1 replication.

    PubMed

    Duguay, Brett A; Saffran, Holly A; Ponomarev, Alina; Duley, Shayla A; Eaton, Heather E; Smiley, James R

    2014-03-01

    Infection with herpes simplex virus type 1 (HSV-1) results in the rapid elimination of mitochondrial DNA (mtDNA) from host cells. It is known that a mitochondrial isoform of the viral alkaline nuclease (UL12) called UL12.5 triggers this process. However, very little is known about the impact of mtDNA depletion on viral replication or the biology of HSV-1 infections. These questions have been difficult to address because UL12.5 and UL12 are encoded by overlapping transcripts that share the same open reading frame. As a result, mutations that alter UL12.5 also affect UL12, and UL12 null mutations severely impair viral growth by interfering with the intranuclear processing of progeny viral genomes. Therefore, to specifically assess the impact of mtDNA depletion on viral replication, it is necessary to eliminate the activity of UL12.5 while preserving the nuclear functions of UL12. Previous work has shown that the human cytomegalovirus alkaline nuclease UL98 can functionally substitute for UL12 during HSV-1 replication. We found that UL98 is unable to deplete mtDNA in transfected cells and therefore generated an HSV-1 variant in which UL98 coding sequences replace the UL12/UL12.5 open reading frame. The resulting virus was severely impaired in its ability to trigger mtDNA loss but reached titers comparable to those of wild-type HSV-1 in one-step and multistep growth experiments. Together, these observations demonstrate that the elimination of mtDNA is not required for HSV-1 replication in cell culture. Herpes simplex virus types 1 and 2 destroy the DNA of host cell mitochondria, the powerhouses of cells. Epstein-Barr virus, a distantly related herpesvirus, has a similar effect, indicating that mitochondrial DNA destruction is under positive selection and thus confers a benefit to the virus. The present work shows that mitochondrial DNA destruction is not required for efficient replication of herpes simplex virus type 1 in cultured Vero kidney epithelial cells, suggesting that this activity likely benefits the virus in other cell types or in the intact human host.

  19. The nervous system in genital herpes simplex virus type 2 infections in mice. Lethal panmyelitis or nonlethal demyelinative myelitis or meningitis.

    PubMed

    Martin, J R; Stoner, G L

    1984-11-01

    Female mice were inoculated vaginally with the MS strain of herpes simplex virus type 2, and serially positive vaginal cultures were used to confirm infection. The proportion of mice infected and the mortality rate in infected mice decreased with increasing age. In mice 12 weeks old, clinical, neuropathologic, and virologic criteria defined four patterns of disease. Moribund mice had severe genital lesions, hindleg paralysis, and urinary and fecal retention, and most died during the second week of infection. These mice had a panmyelitis with a decreasing gradient of both viral antigen and lesions extending rostrally from the lumbosacral cord into the brain stem. Lesions were about equally distributed in gray and white matter and were characterized by neuronal loss and axonal demyelination, respectively. By contrast, mice with nonfatal infections had mild or no evident genital lesions and a small proportion had mild hindleg weakness. Of these, some mice had demyelinative lesions, particularly in the lower spinal cord but also at higher cord and brain stem levels, whereas others had leptomeningitis. Both of these groups had sacral sensory root abnormalities. A third group of survivors lacked both sensory root and central nervous system abnormalities. This report defines a broader spectrum of disease patterns following infection by a natural route than has been previously appreciated. It provides the first evidence that nonfatal herpes simplex virus type 2 infection by a peripheral route can produce central nervous system demyelination. It indicates that in aseptic meningitis with this agent, the route of virus spread to the central nervous system is neural and not hematogenous. Finally, the antigenic and pathologic observations presented here complement and confirm the virus isolation data and pathologic findings of others that genital herpes simplex virus type 2 infection causes ascending infection in the peripheral and central nervous system.

  20. Novel Composite Efficacy Measure To Demonstrate the Rationale and Efficacy of Combination Antiviral–Anti-Inflammatory Treatment for Recurrent Herpes Simplex Labialis

    PubMed Central

    Levin, Myron J.; Tyring, Stephen K.; Spruance, Spotswood L.

    2014-01-01

    Historically, the primary target for research and treatment of recurrent herpes simplex labialis (HSL) has been limited to inhibiting herpes simplex virus (HSV) replication. Antiviral monotherapy, however, has proven only marginally effective in curtailing the duration and severity of recurrent lesions. Recently, the role of inflammation in the progression and resolution of recurrences has been identified as an additional target. This was evaluated in a randomized study comparing combination topical 5% acyclovir-1% hydrocortisone cream (AHC) with 5% acyclovir alone (AC; in the AHC vehicle) and the vehicle. The efficacy of each topical therapy was evaluated for cumulative lesion size—a novel composite efficacy endpoint incorporating episode duration, lesion area, and proportion of nonulcerative lesions. In that study, cumulative lesion area was significantly decreased with AHC compared with AC (25% decrease; P < 0.05) and the vehicle (50% decrease; P < 0.0001). As research continues in this arena, cumulative lesion area should be included as a measure of efficacy in clinical trials of recurrent HSL therapies. PMID:24342632

  1. Seroprevalence of herpes simplex virus 2 among Hispanics in the USA: National Health and Nutrition Examination Survey, 2007-2008.

    PubMed

    Molina, M; Romaguera, R A; Valentine, J; Tao, G

    2011-07-01

    To examine the seroprevalence of herpes simplex virus type 2 (HSV-2) among Hispanics in the USA, we used the cross-sectional, nationally representative National Health and Nutrition Examination Survey to compare the seroprevalence of HSV-2 between Hispanic persons of Mexican heritage and non-Mexican heritage aged 14-44 years, from survey years 2007-2008. The overall HSV-2 seroprevalence among Hispanics aged 14-44 years was 17.5% (95% confidence interval [CI], 15.2, 20.1) in the USA. HSV-2 seroprevalence was significantly lower among Mexican Americans than among other Hispanics (11.7% vs. 27.8%, P < 0.01). Prevalence of HSV-2 was also significantly associated with gender and age. The significant difference in HSV-2 seroprevalence between Hispanic persons of Mexican heritage and non-Mexican heritage suggested that targeting specific subgroups of Hispanics for preventive interventions may be a strategy to reduce the transmission of HSV-2 and HIV among Hispanics in the USA.

  2. The early UL31 gene of equine herpesvirus 1 encodes a single-stranded DNA-binding protein that has a nuclear localization signal sequence at the C-terminus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Seongman; Chul Ahn, Byung; O'Callaghan, Dennis J.

    2012-10-25

    The amino acid sequence of the UL31 protein (UL31P) of equine herpesvirus 1 (EHV-1) has homology to that of the ICP8 of herpes simplex virus type 1 (HSV-1). Here we show that the UL31 gene is synergistically trans-activated by the IEP and the UL5P (EICP27). Detection of the UL31 RNA transcript and the UL31P in EHV-1-infected cells at 6 h post-infection (hpi) as well as metabolic inhibition assays indicated that UL31 is an early gene. The UL31P preferentially bound to single-stranded DNA over double-stranded DNA in gel shift assays. Subcellular localization of the green fluorescent protein (GFP)-UL31 fusion proteins revealedmore » that the C-terminal 32 amino acid residues of the UL31P are responsible for the nuclear localization. These findings may contribute to defining the role of the UL31P single-stranded DNA-binding protein in EHV-1 DNA replication.« less

  3. Infection of Polarized MDCK Cells with Herpes Simplex Virus 1: Two Asymmetrically Distributed Cell Receptors Interact with Different Viral Proteins

    NASA Astrophysics Data System (ADS)

    Sears, Amy E.; McGwire, Bradford S.; Roizman, Bernard

    1991-06-01

    Herpes simplex virus 1 attaches to at least two cell surface receptors. In polarized epithelial (Madin-Darby canine kidney; MDCK) cells one receptor is located in the apical surface and attachment to the cells requires the presence of glycoprotein C in the virus. The second receptor is located in the basal surface and does not require the presence of glycoprotein C. Exposure of MDCK cells at either the apical or basal surface to wild-type virus yields plaques and viral products whereas infection by a glycoprotein C-negative mutant yields identical results only after exposure of MDCK cells to virus at the basal surface. Multiple receptors for viral entry into cells expand the host range of the virus. The observation that glycoprotein C-negative mutants are infectious in many nonpolarized cell lines suggests that cells in culture may express more than one receptor and explains why genes that specify the viral proteins that recognize redundant receptors, like glycoprotein C, are expendable.

  4. Herpes Simplex [corrected] Virus Type 2 Shedding From Male Circumcision Wounds in Rakai, Uganda.

    PubMed

    Grabowski, Mary K; Kigozi, Godfrey; Gray, Ronald H; Armour, Benjamin; Manucci, Jordyn; Serwadda, David; Redd, Andrew D; Nalugoda, Fred; Patel, Eshan U; Wawer, Maria J; Quinn, Thomas C; Tobian, Aaron A R

    2015-11-15

    A prospective observational study of 176 men coinfected with human immunodeficiency virus and herpes simplex virus type 2 (HSV-2) was conducted to assess whether their sexual partners may be at an increased risk of HSV-2 from male circumcision (MC) wounds. Preoperative and weekly penile lavage samples were tested for penile HSV-2 shedding. Prevalence risk ratios (PRRs) were estimated using Poisson regression. Detectable penile HSV-2 shedding was present in 9.7% of men (17 of 176) before MC, compared with 12.9% (22 of 170) at 1 week (PRR, 1.33; 95% confidence interval [CI], .74-2.38) and 14.8% (23 of 155) at 2 weeks (PRR, 1.50; 95% CI, .86-2.62) after MC. HSV-2 shedding was lower among men with healed MC wounds (adjusted PRR, 0.62; 95% CI, .35-1.08). Men undergoing MC should be counseled on sexual abstinence and condom use. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  5. A Combination Microbicide Gel Protects Macaques Against Vaginal Simian Human Immunodeficiency Virus-Reverse Transcriptase Infection, But Only Partially Reduces Herpes Simplex Virus-2 Infection After a Single High-Dose Cochallenge

    PubMed Central

    Hsu, Mayla; Aravantinou, Meropi; Menon, Radhika; Seidor, Samantha; Goldman, Daniel; Kenney, Jessica; Derby, Nina; Gettie, Agegnehu; Blanchard, James; Piatak, Michael; Lifson, Jeffrey D.; Fernández-Romero, Jose A.; Zydowsky, Thomas M.

    2014-01-01

    Abstract Herpes simplex virus-2 (HSV-2) infection increases HIV susceptibility. We previously established a rhesus macaque model of vaginal HSV-2 preexposure followed by cochallenge with HSV-2 and simian/human immunodeficiency virus-reverse transcriptase (SHIV-RT). Using this model, we showed that a gel containing the nonnucleoside reverse transcriptase inhibitor (NNRTI) MIV-150 in carrageenan (CG) reduced SHIV-RT infection. To evaluate the efficacy of new generation microbicides against both viruses, we first established dual infection after single vaginal cochallenge with SHIV-RT and HSV-2 in HSV-2-naive macaques. All animals (6/6) became HSV-2 infected, with 4/6 coinfected with SHIV-RT. In a control group cochallenged with SHIV-RT and UV-inactivated HSV-2, 2/4 became SHIV-RT infected, and none had detectable HSV-2. Low-level HSV-2-specific antibody and T cell responses were detected in some HSV-2-infected animals. To test a CG gel containing MIV-150 and zinc acetate (MZC), which provided naive animals full protection from SHIV-RT for at least 8 h, MZC (vs. CG) was applied daily for 14 days followed by cochallenge 8 h later. MZC prevented SHIV-RT infection (0/9 infected, p=0.04 vs. 3/6 in CG controls), but only reduced HSV-2 infection by 20% (6/9 infected vs. 5/6 in CG, p=0.6). In HSV-2-infected animals, none of the gel-treated animals seroconverted, and only the CG controls had measurable HSV-2-specific T cell responses. This study shows the promise of MZC to prevent immunodeficiency virus infection (even in the presence of HSV-2) and reduce HSV-2 infection after exposure to a high-dose inoculum. Additionally, it demonstrates the potential of a macaque coinfection model to evaluate broad-spectrum microbicides. PMID:24117013

  6. A combination microbicide gel protects macaques against vaginal simian human immunodeficiency virus-reverse transcriptase infection, but only partially reduces herpes simplex virus-2 infection after a single high-dose cochallenge.

    PubMed

    Hsu, Mayla; Aravantinou, Meropi; Menon, Radhika; Seidor, Samantha; Goldman, Daniel; Kenney, Jessica; Derby, Nina; Gettie, Agegnehu; Blanchard, James; Piatak, Michael; Lifson, Jeffrey D; Fernández-Romero, Jose A; Zydowsky, Thomas M; Robbiani, Melissa

    2014-02-01

    Herpes simplex virus-2 (HSV-2) infection increases HIV susceptibility. We previously established a rhesus macaque model of vaginal HSV-2 preexposure followed by cochallenge with HSV-2 and simian/human immunodeficiency virus-reverse transcriptase (SHIV-RT). Using this model, we showed that a gel containing the nonnucleoside reverse transcriptase inhibitor (NNRTI) MIV-150 in carrageenan (CG) reduced SHIV-RT infection. To evaluate the efficacy of new generation microbicides against both viruses, we first established dual infection after single vaginal cochallenge with SHIV-RT and HSV-2 in HSV-2-naive macaques. All animals (6/6) became HSV-2 infected, with 4/6 coinfected with SHIV-RT. In a control group cochallenged with SHIV-RT and UV-inactivated HSV-2, 2/4 became SHIV-RT infected, and none had detectable HSV-2. Low-level HSV-2-specific antibody and T cell responses were detected in some HSV-2-infected animals. To test a CG gel containing MIV-150 and zinc acetate (MZC), which provided naive animals full protection from SHIV-RT for at least 8 h, MZC (vs. CG) was applied daily for 14 days followed by cochallenge 8 h later. MZC prevented SHIV-RT infection (0/9 infected, p=0.04 vs. 3/6 in CG controls), but only reduced HSV-2 infection by 20% (6/9 infected vs. 5/6 in CG, p=0.6). In HSV-2-infected animals, none of the gel-treated animals seroconverted, and only the CG controls had measurable HSV-2-specific T cell responses. This study shows the promise of MZC to prevent immunodeficiency virus infection (even in the presence of HSV-2) and reduce HSV-2 infection after exposure to a high-dose inoculum. Additionally, it demonstrates the potential of a macaque coinfection model to evaluate broad-spectrum microbicides.

  7. Facial nerve palsy after reactivation of herpes simplex virus type 1 in diabetic mice.

    PubMed

    Esaki, Shinichi; Yamano, Koji; Katsumi, Sachiyo; Minakata, Toshiya; Murakami, Shingo

    2015-04-01

    Bell's palsy is highly associated with diabetes mellitus (DM). Either the reactivation of herpes simplex virus type 1 (HSV-1) or diabetic mononeuropathy has been proposed to cause the facial paralysis observed in DM patients. However, distinguishing whether the facial palsy is caused by herpetic neuritis or diabetic mononeuropathy is difficult. We previously reported that facial paralysis was aggravated in DM mice after HSV-1 inoculation of the murine auricle. In the current study, we induced HSV-1 reactivation by an auricular scratch following DM induction with streptozotocin (STZ). Controlled animal study. Diabetes mellitus was induced with streptozotocin injection in only mice that developed transient facial nerve paralysis with HSV-1. Recurrent facial palsy was induced after HSV-1 reactivation by auricular scratch. After DM induction, the number of cluster of differentiation 3 (CD3)(+) T cells decreased by 70% in the DM mice, and facial nerve palsy recurred in 13% of the DM mice. Herpes simplex virus type 1 deoxyribonucleic acid (DNA) was detected in the facial nerve of all of the DM mice with palsy, and HSV-1 capsids were found in the geniculate ganglion using electron microscopy. Herpes simplex virus type 1 DNA was also found in some of the DM mice without palsy, which suggested the subclinical reactivation of HSV-1. These results suggested that HSV-1 reactivation in the geniculate ganglion may be the main causative factor of the increased incidence of facial paralysis in DM patients. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  8. Synergism of herpes simplex virus and tobacco-specific N'-nitrosamines in cell transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, N.H.; Dokko, H.; Li, S.L.

    1991-03-01

    Previous studies indicate that herpes simplex virus (HSV) enhances the carcinogenic activity of smokeless tobacco and tobacco-related chemical carcinogens in animals. Since tobacco-specific N'-nitrosamines (TSNAs) such as N'-nitrosonornicotine (NNN) and 4-(N-methyl-N'-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK) are major chemical carcinogens of smokeless tobacco and are known to be responsible for the development of oral cancers in smokeless tobacco users, the combined effects of TSNAs and HSV in cell transformation were investigated. Exposure of cells to NNN or NNK followed by virus infection resulted in a significant enhancement of transformation frequency when compared with that observed with chemical carcinogens or virus alone. This study suggestsmore » that TSNAs and HSV can interact together and show synergism in cell transformation.« less

  9. Neurons versus herpes simplex virus: the innate immune interactions that contribute to a host–pathogen standoff

    PubMed Central

    Rosato, Pamela C; Leib, David A

    2015-01-01

    Herpes simplex virus (HSV) is a prevalent neurotropic virus, which establishes lifelong latent infections in the neurons of sensory ganglia. Despite our long-standing knowledge that HSV predominately infects sensory neurons during its life cycle, little is known about the neuronal antiviral response to HSV infection. Recent studies show that while sensory neurons have impaired intrinsic immunity to HSV infection, paracrine IFN signaling can potentiate a potent antiviral response. Additionally, antiviral autophagy plays an important role in neuronal control of HSV infection. Here we review the literature of antiviral signaling and autophagy in neurons, the mechanisms by which HSV can counteract these responses, and postulate how these two pathways may synergize to mediate neuronal control of HSV infection and yet result in lifelong persistence of the virus. PMID:26213562

  10. Isolation and characterization of acyclovir-resistant mutants of herpes simplex virus.

    PubMed

    Field, H J; Darby, G; Wildy, P

    1980-07-01

    Mutants of HSV which are resistant to acyclovir (acycloguanosine) have been isolated following serial passages of several herpes simplex virus (HSV) strains in the presence of the drug. The majority of the mutants isolated are defective in induction of thymidine kinase (TK) and this is consistent with the observation that independently isolated TK- viruses are naturally resistant to ACV. One mutant is described (SC16 R9C2) which is resistant in biochemically transformed cells which express HSV TK. This suggests that its resistance resides at a level other than TK. It is also resistant to phosphonoacetic acid, suggesting that the DNA polymerase locus may be involved. A further mutant is described [Cl (101) P2C5] which induces normal levels of TK, although the nature of resistance of this virus is not yet elucidated.

  11. Inhibition of herpes simplex virus multiplication by activated macrophages: a role for arginase?

    PubMed Central

    Wildy, P; Gell, P G; Rhodes, J; Newton, A

    1982-01-01

    Proteose-peptone-activated mouse macrophages can prevent productive infection by herpes simplex virus in neighboring cells in vitro whether or not those cells belong to the same animal species. The effect does not require contact between the macrophages and the infected cells, may be prevented by adding extra arginine to the medium, and may be reversed when extra arginine is added 24 h after the macrophages. Arginase activity was found both intracellularly and released from the macrophages. The extracellular enzyme is quite stable; 64% activity was found after 48 h of incubation at 37 degrees C in tissue culture medium. No evidence was found that the inefficiency of virus replication in macrophages was due to self-starvation by arginase. As might be predicted macrophages can, by the same mechanism, limit productive infection by vaccinia virus. PMID:6286497

  12. Inhibition of herpes simplex virus multiplication by activated macrophages: a role for arginase?

    PubMed

    Wildy, P; Gell, P G; Rhodes, J; Newton, A

    1982-07-01

    Proteose-peptone-activated mouse macrophages can prevent productive infection by herpes simplex virus in neighboring cells in vitro whether or not those cells belong to the same animal species. The effect does not require contact between the macrophages and the infected cells, may be prevented by adding extra arginine to the medium, and may be reversed when extra arginine is added 24 h after the macrophages. Arginase activity was found both intracellularly and released from the macrophages. The extracellular enzyme is quite stable; 64% activity was found after 48 h of incubation at 37 degrees C in tissue culture medium. No evidence was found that the inefficiency of virus replication in macrophages was due to self-starvation by arginase. As might be predicted macrophages can, by the same mechanism, limit productive infection by vaccinia virus.

  13. A Herpes Simplex Virus Type 2 Deleted for Glycoprotein D Enables Dendritic Cells to Activate CD4+ and CD8+ T Cells

    PubMed Central

    Retamal-Díaz, Angello R.; Kalergis, Alexis M.; Bueno, Susan M.; González, Pablo A.

    2017-01-01

    Herpes simplex virus type 2 (HSV-2) is highly prevalent in the human population producing significant morbidity, mainly because of the generation of genital ulcers and neonatal encephalitis. Additionally, HSV-2 infection significantly increases the susceptibility of the host to acquire HIV and promotes the shedding of the latter in the coinfected. Despite numerous efforts to create a vaccine against HSV-2, no licensed vaccines are currently available. A long-standing strategy, based on few viral glycoproteins combined with adjuvants, recently displayed poor results in a Phase III clinical study fueling exploration on the development of mutant HSV viruses that are attenuated in vivo and elicit protective adaptive immune components, such as antiviral antibodies and T cells. Importantly, such specialized antiviral immune components are likely induced and modulated by dendritic cells, professional antigen presenting cells that process viral antigens and present them to T cells. However, HSV interferes with several functions of DCs and ultimately induces their death. Here, we propose that for an attenuated mutant virus to confer protective immunity against HSV in vivo based on adaptive immune components, such virus should also be attenuated in dendritic cells to promote a robust and effective antiviral response. We provide a background framework for this idea, considerations, as well as the means to assess this hypothesis. Addressing this hypothesis may provide valuable insights for the development of novel, safe, and effective vaccines against herpes simplex viruses. PMID:28848543

  14. Gene transfer to brain using herpes simplex virus vectors.

    PubMed

    Glorioso, J C; Goins, W F; Meaney, C A; Fink, D J; DeLuca, N A

    1994-01-01

    Herpes simplex virus type 1 represents an ideal candidate for development as a vehicle for gene transfer to postmitotic neurons of the central nervous system. The natural biology of this virus makes it well suited for this purpose as it is capable of infecting a variety of neuronal cell types in the brain where the viral genome can persist indefinitely in a latent state. In latency, the viral lytic genes are transcriptionally silent and a unique set of latency-associated transcripts are expressed. Two impediments to using herpes simplex virus vectors must be overcome: (1) A noncytotoxic mutant virus backbone must be engineered, and (2) a suitable promoter-regulator that stably expresses foreign genes from the vector genome during latency must be constructed. Deletion of specific immediate early genes from the vector can render the virus nontoxic to neurons in culture and in vivo following stereotactic inoculation into specific regions of the brain. Because these viruses cannot replicate, they enter latency on infection of central nervous system neurons. A number of viral and cellular promoters have been tested for their ability to express genes during latency. Strong viral promoters and neurospecific promoters display transient activity. Although the promoter regions for the latency-associated transcripts are highly active in the peripheral nervous system, they show low-level but persistent activity in the brain. Experiments are in progress to exploit RNA polymerase III gene promoters or novel recombinant promoters capable of auto-inducing their own expression in order to increase gene expression during latency in brain neurons.

  15. Improving immunogenicity and efficacy of vaccines for genital herpes containing herpes simplex virus glycoprotein D.

    PubMed

    Awasthi, Sita; Shaw, Carolyn; Friedman, Harvey

    2014-12-01

    No vaccines are approved for prevention or treatment of genital herpes. The focus of genital herpes vaccine trials has been on prevention using herpes simplex virus type 2 (HSV-2) glycoprotein D (gD2) alone or combined with glycoprotein B. These prevention trials did not achieve their primary end points. However, subset analyses reported some positive outcomes in each study. The most recent trial was the Herpevac Trial for Women that used gD2 with monophosphoryl lipid A and alum as adjuvants in herpes simplex virus type 1 (HSV-1) and HSV-2 seronegative women. Unexpectedly, the vaccine prevented genital disease by HSV-1 but not HSV-2. Currently, HSV-1 causes more first episodes of genital herpes than HSV-2, highlighting the importance of protecting against HSV-1. The scientific community is conflicted between abandoning vaccine efforts that include gD2 and building upon the partial successes of previous trials. We favor building upon success and present approaches to improve outcomes of gD2-based subunit antigen vaccines.

  16. Acute Morphine Administration Reduces Cell-Mediated Immunity and Induces Reactivation of Latent Herpes Simplex Virus Type 1 in BALB/c Mice

    PubMed Central

    Mojadadi, Shafi; Jamali, Abbas; Khansarinejad, Behzad; Soleimanjahi, Hoorieh; Bamdad, Taravat

    2009-01-01

    Acute morphine administration is known to alter the course of herpes simplex virus infection. In this study, the effect of acute morphine administration on the reactivation of latent herpes was investigated in a mouse model. Because of the important role of cytolytic T lymphocyte (CTL) activity in the inhibition of herpes simplex virus type 1 (HSV-1) reactivation, the effect of acute morphine administration on CTL responses was also evaluated. Furthermore, lymphocyte proliferation and IFN-γ production were evaluated for their roles in the induction of the CTL response. The findings showed that acute morphine administration significantly reduced CTL responses, lymphocyte proliferation, and IFN-γ production. Furthermore, acute morphine administration has been shown to reactivate latent HSV-1. Previous studies have shown that cellular immune responses have important roles in the inhibition of HSV reactivation. These findings suggest that suppression of a portion of the cellular immune response after acute morphine administration may constitute one part of the mechanism that induces HSV reactivation. PMID:19403060

  17. Hydroxyurea enhances the activity of acyclovir and cidofovir against herpes simplex virus type 1 resistant strains harboring mutations in the thymidine kinase and/or the DNA polymerase genes.

    PubMed

    Sergerie, Yan; Boivin, Guy

    2008-01-01

    Drug-resistant herpes simplex virus type 1 (HSV-1) recombinant strains harboring mutations in the thymidine kinase and/or the DNA polymerase genes were evaluated for their susceptibility to various antivirals in the presence of 25 microg/ml of hydroxyurea (HyU). The latter compound decreased the 50% inhibitory concentrations of acyclovir by 1.5-3.8-fold and that of cidofovir by 2.7-14.4-fold. However, HyU did not affect the susceptibilities of the various recombinant mutants to foscarnet. Hydroxyurea, a ribonucleotide reductase inhibitor, can increase the activity of nucleoside/nucleotide analogues against drug-resistant viruses.

  18. Identification of a novel NLS of herpes simplex virus type 1 (HSV-1) VP19C and its nuclear localization is required for efficient production of HSV-1.

    PubMed

    Li, You; Zhao, Lei; Wang, Shuai; Xing, Junji; Zheng, Chunfu

    2012-09-01

    Herpes simplex virus type 1 (HSV-1) triplex is a complex of three protein subunits, consisting of two copies of VP23 and one copy of VP19C. Here, we identified a non-classical NLS of VP19C between aa 50 and 61, and the nuclear import of VP19C was mediated by RanGTP and importin β1-, but not importin α5-, dependent pathway. Additionally, recombinant virus harbouring this NLS mutation (NLSm) replicates less efficiently as wild-type. These data strongly suggested that the nuclear import of VP19C is required for efficient HSV-1 production.

  19. Identification of herpes simplex virus type 1 proteins encoded within the first 1.5 kb of the latency-associated transcript.

    PubMed

    Henderson, Gail; Jaber, Tareq; Carpenter, Dale; Wechsler, Steven L; Jones, Clinton

    2009-09-01

    Expression of the first 1.5 kb of the latency-associated transcript (LAT) that is encoded by herpes simplex virus type 1 (HSV-1) is sufficient for wild-type (wt) levels of reactivation from latency in small animal models. Peptide-specific immunoglobulin G (IgG) was generated against open reading frames (ORFs) that are located within the first 1.5 kb of LAT coding sequences. Cells stably transfected with LAT or trigeminal ganglionic neurons of mice infected with a LAT expressing virus appeared to express the L2 or L8 ORF. Only L2 ORF expression was readily detected in trigeminal ganglionic neurons of latently infected mice.

  20. Summaries of Research 1983.

    DTIC Science & Technology

    1983-01-01

    LAKE F LAMB JR, jCIHNSflN AH SH-AW S WOODY JN I-APTZMAN PJ SP-PFSTAICTEC PkESFNTATIGN OF II4FLUENZA ANC HERPES SIMPLEX VIRUS ANTIGENS TO HUMAN f-LYM...at Aj cL a CL zC w > 2. j t . 4 4 2j -a 4t =4 U. - aaI e- a C - C a OP C Li j P V.. IAV C- L u Li LL. L C L CL a, CL VLC C-’.r 0 0 0 0 0 0 0 0 0 0

  1. Mechanism of herpes simplex virus type 2 suppression by propolis extracts.

    PubMed

    Nolkemper, Silke; Reichling, Jürgen; Sensch, Karl Heinz; Schnitzler, Paul

    2010-02-01

    Genital herpes caused by herpes simplex virus type 2 (HSV-2) is a chronic, persistent infection spreading efficiently and silently as sexually transmitted disease through the population. Antiviral agents currently applied for the treatment of herpesvirus infections include acyclovir and derivatives. Aqueous and ethanolic extracts of propolis were phytochemically analysed, different polyphenols, flavonoids and phenylcarboxylic acids were identified as major constituents. The aqueous propolis extract revealed a relatively high amount of phenylcarboxylic acids and low concentrations flavonoids when compared to the ethanolic special extract GH 2002. The cytotoxic and antiherpetic effect of propolis extracts against HSV-2 was analysed in cell culture, and revealed a moderate cytotoxicity on RC-37 cells. The 50% inhibitory concentration (IC(50)) of aqueous and ethanolic GH 2002 propolis extracts for HSV-2 plaque formation was determined at 0.0005% and 0.0004%, respectively. Both propolis extracts exhibited high levels of antiviral activity against HSV-2 in viral suspension tests, infectivity was significantly reduced by >99% and a direct concentration- and time-dependent antiherpetic activity could be demonstrated for both extracts. In order to determine the mode of virus suppression by propolis, the extracts were added at different times during the viral infection cycle. Addition of these drugs to uninfected cells prior to infection or to herpesvirus-infected cells during intracellular replication had no effect on virus multiplication. However both propolis extracts exhibited high anti-herpetic activity when viruses were pretreated with these drugs prior to infection. Selectivity indices were determined at 80 and 42.5 for the aqueous and ethanolic extract, respectively, thus propolis extracts might be suitable for topical therapy in recurrent herpetic infection. Copyright 2009 Elsevier GmbH. All rights reserved.

  2. Herpes simplex virus type 1 encephalitis and unusual retinitis in a patient with systemic lupus erythematosus.

    PubMed

    Zhang, L; Liu, J J; Li, M T

    2013-11-01

    In this report we discuss a case of a patient with systemic lupus erythematosus who developed herpes simplex virus type 1(HSV-1) infection presenting with encephalitis as well as necrotic and non-necrotic retinitis. The patient presented with typical clinical symptoms and radiologic abnormalities consistent with HSV-1 encephalitis and HSV-1 retinitis in patients with HIV infection, but lacked cerebrospinal fluid pleocytosis and had bilateral retinitis with poor visual acuity. To the best of our knowledge, this is the first such case reported in the literature.

  3. Powassan virus encephalitis resembling herpes simplex encephalitis.

    PubMed

    Embil, J A; Camfield, P; Artsob, H; Chase, D P

    1983-02-01

    A boy from New York traveling in Nova Scotia had olfactory hallucinations and other signs of temporal lobe involvement, leading to a diagnosis of herpes simplex encephalitis. The patient was treated with vidarabine and made a complete recovery. However, hemagglutination inhibition, complement fixation, and neutralization tests identified Powassan virus (POW) as the pathogen. Shortly before his trip to Nova Scotia, the patient had traveled in an area where POW encephalitis had occurred in humans (the eastern part of the state of New York), and he also came in contact with a known reservoir of POW infection (a groundhog) at home.

  4. Preventing herpes simplex virus in the newborn.

    PubMed

    Pinninti, Swetha G; Kimberlin, David W

    2014-12-01

    Genital herpes simplex virus (HSV) infections are very common worldwide. Approximately 22% of pregnant women are infected genitally with HSV, and most of them are unaware of this. The most devastating consequence of maternal genital herpes is HSV disease in the newborn. Although neonatal HSV infections remain uncommon, due to the significant morbidity and mortality associated with the infection, HSV infection in the newborn is often considered in the differential diagnosis of ill neonates. This review summarizes the epidemiology and management of neonatal HSV infections and discusses strategies to prevent HSV infection in the newborn. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Neonatal Herpes Simplex Virus Infection.

    PubMed

    James, Scott H; Kimberlin, David W

    2015-09-01

    Herpes simplex virus (HSV) 1 and HSV-2 infections are highly prevalent worldwide and are characterized by establishing lifelong infection with periods of latency interspersed with periodic episodes of reactivation. Acquisition of HSV by an infant during the peripartum or postpartum period results in neonatal HSV disease, a rare but significant infection that can be associated with severe morbidity and mortality, especially if there is dissemination or central nervous system involvement. Diagnostic and therapeutic advances have led to improvements in mortality and, to a lesser extent, neurodevelopmental outcomes, but room exists for further improvement. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Acute Liver Failure from Herpes Simplex Virus in an Immunocompetent Patient Due to Direct Inoculation of the Peritoneum.

    PubMed

    Chaudhary, Dhruv; Ahmed, Shifat; Liu, Nanlong; Marsano-Obando, Luis

    2017-01-01

    Herpes simplex virus (HSV) hepatitis is a rare cause of acute liver failure (ALF). It carries a mortality rate of 80% if untreated, thus early identification and treatment are critical. Without high clinical suspicion, HSV hepatitis is difficult to diagnose. A 48-year-old Hispanic female presented with a 4-day history of abdominal pain and a vaginal cuff tear requiring laparoscopic repair. She subsequently developed postsurgical disseminated HSV, resulting in ALF. Acyclovir was initiated, but she was resistant to treatment. She was given additional foscarnet and responded without requiring a liver transplant.

  7. Management of Herpes Simplex Virus Keratitis in the Pediatric Population.

    PubMed

    Vadoothker, Saujanya; Andrews, Laura; Jeng, Bennie H; Levin, Moran Roni

    2018-05-14

    Herpes simplex virus (HSV) keratitis is a highly prevalent and visually-disabling disease in both the pediatric and adult population. While many studies have investigated the treatment of HSV keratitis in adult patients, few have focused on managing this condition in children. Children are at particularly high risk for visual morbidity due to unique challenges in diagnosis and treatment, and the often more aggressive disease course that results in corneal scarring, and subsequently amblyopia. This review presents the pathogenesis and most current recommendations for the medical and surgical management of HSV keratitis in the pediatric population.

  8. 2,3-Dihydroxy-quinoxaline induces ATPase activity of Herpes Simplex Virus thymidine kinase.

    PubMed

    Zeifman, Alexey A; Novikov, Fedor N; Stroylov, Victor S; Stroganov, Oleg V; Chilov, Ghermes G; Skoblov, Alexander Y; Miroshnikov, Anatoly I; Skoblov, Yuri S

    2014-01-31

    2,3-Dihydroxy-quinoxaline, a small molecule that promotes ATPase catalytic activity of Herpes Simplex Virus thymidine kinase (HSV-TK), was identified by virtual screening. This compound competitively inhibited HSV-TK catalyzed phosphorylation of acyclovir with Ki=250 μM (95% CI: 106-405 μM) and dose-dependently increased the rate of the ATP hydrolysis with KM=112 μM (95% CI: 28-195 μM). The kinetic scheme consistent with this experimental data is proposed. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  9. Acute retinal necrosis results in low vision in a young patient with a history of herpes simplex virus encephalitis.

    PubMed

    Shahi, Sanjeet K

    2017-05-01

    Acute retinal necrosis (ARN), secondary to herpes simplex encephalitis, is a rare syndrome that can present in healthy individuals, as well as immuno-compromised patients. Most cases are caused by a secondary infection from the herpes virus family, with varicella zoster virus being the leading cause of this syndrome. Potential symptoms include blurry vision, floaters, ocular pain and photophobia. Ocular findings may consist of severe uveitis, retinal vasculitis, retinal necrosis, papillitis and retinal detachment. Clinical manifestations of this disease may include increased intraocular pressure, optic disc oedema, optic neuropathy and sheathed retinal arterioles. A complete work up is essential to rule out cytomegalovirus retinitis, herpes simplex encephalitis, herpes virus, syphilis, posterior uveitis and other conditions. Depending on the severity of the disease, the treatment options consist of anticoagulation therapy, cycloplegia, intravenous acyclovir, systemic steroids, prophylactic laser photocoagulation and pars plana vitrectomy with silicon oil for retinal detachment. An extensive history and clinical examination is crucial in making the correct diagnosis. Also, it is very important to be aware of low vision needs and refer the patients, if expressing any sort of functional issues with completing daily living skills, especially reading. In this article, we report one case of unilateral ARN 20 years after herpetic encephalitis. © 2016 Optometry Australia.

  10. Specific Inhibition of Herpes Simplex Virus DNA Polymerase by Helical Peptides Corresponding to the Subunit Interface

    NASA Astrophysics Data System (ADS)

    Digard, Paul; Williams, Kevin P.; Hensley, Preston; Brooks, Ian S.; Dahl, Charles E.; Coen, Donald M.

    1995-02-01

    The herpes simplex virus DNA polymerase consists of two subunits-a catalytic subunit and an accessory subunit, UL42, that increases processivity. Mutations affecting the extreme C terminus of the catalytic subunit specifically disrupt subunit interactions and ablate virus replication, suggesting that new antiviral drugs could be rationally designed to interfere with polymerase heterodimerization. To aid design, we performed circular dichroism (CD) spectroscopy and analytical ultracentrifugation studies, which revealed that a 36-residue peptide corresponding to the C terminus of the catalytic subunit folds into a monomeric structure with partial α-helical character. CD studies of shorter peptides were consistent with a model where two separate regions of α-helix interact to form a hairpin-like structure. The 36-residue peptide and a shorter peptide corresponding to the C-terminal 18 residues blocked UL42-dependent long-chain DNA synthesis at concentrations that had no effect on synthesis by the catalytic subunit alone or by calf thymus DNA polymerase δ and its processivity factor. These peptides, therefore, represent a class of specific inhibitors of herpes simplex virus DNA polymerase that act by blocking accessory-subunit-dependent synthesis. These peptides or their structures may form the basis for the synthesis of clinically effective drugs.

  11. Production of recombinant gG-1 protein of herpes simplex virus type 1 in a prokaryotic system in order to develop a type-specific enzyme-linked immunosorbent assay kit.

    PubMed

    Zandi, Keivan; Roostaee, Mohammad Hassan; Sadeghizadeh, Majid; Rasaee, Mohammad Javad; Sajedi, Reza Hassan; Soleimanjahi, Hoorieh

    2007-08-01

    The herpes simplex viruses are important causes of disease worldwide. Herpes simplex virus type 1 (HSV-1) is the primary cause of oral-facial and pharyngeal infections and may cause herpetic whitlow, eye infections as well as severe and sometimes dangerous infections of the eyes and brain. HSV-1 also accounts for 10-15% of all genital herpetic infections. Therefore, laboratory diagnosis of this virus and development of diagnostic serological techniques for HSV-1 is of particular importance. In the present study, pTrc His2A-gG1 plasmid, containing the full-length glycoprotein G (gG) protein, was produced in a prokaryotic system for the first time. Upon confirmation of a 37-kDa gG-1 protein production in a prokaryotic system based on western blotting and monoclonal antibodies, the protein was produced at a large scale and purified by ion-exchange chromatography using DEAE-sepharose. An HSV-1 type-specific diagnostic kit was designed and developed and the specificity and sensitivity of this kit were demonstrated to be 89.5% and 100%, respectively, as compared with a commercially available kit. A significant correlation was shown between the developed kit and the commercial kit.

  12. An escalating dose study to assess the safety, tolerability and immunogenicity of a Herpes Simplex Virus DNA vaccine, COR-1.

    PubMed

    Dutton, Julie L; Woo, Wai-Ping; Chandra, Janin; Xu, Yan; Li, Bo; Finlayson, Neil; Griffin, Paul; Frazer, Ian H

    2016-12-01

    This paper describes a single site, open-label Phase I clinical trial evaluating the safety, tolerability and immunogenicity in healthy volunteers of a herpes simplex polynucleotide vaccine that has previously been shown to enhance immunogenicity and protect against lethal herpes simplex virus type 2 (HSV-2) challenge in mice. Five escalating doses of the vaccine, COR-1, were given by intradermal injection to HSV-1 and 2 seronegative healthy individuals. COR-1 was found to be safe and well-tolerated; the only vaccine-related adverse events were mild. While vaccine-induced antibody responses were not detectable, cell-mediated immune responses to HSV-specific peptide groups were identified in 19 of the 20 subjects who completed the study, and local inflammation at the immunisation site was observed. This study indicates COR-1 has potential to be used as a therapeutic vaccine for HSV-2 infection.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Americo, Jeffrey L.; Sood, Cindy L.; Cotter, Catherine A.

    Classical inbred mice are extensively used for virus research. However, we recently found that some wild-derived inbred mouse strains are more susceptible than classical strains to monkeypox virus. Experiments described here indicated that the 50% lethal dose of vaccinia virus (VACV) and cowpox virus (CPXV) were two logs lower in wild-derived inbred CAST/Ei mice than classical inbred BALB/c mice, whereas there was little difference in the susceptibility of the mouse strains to herpes simplex virus. Live bioluminescence imaging was used to follow spread of pathogenic and attenuated VACV strains and CPXV virus from nasal passages to organs in the chestmore » and abdomen of CAST/Ei mice. Luminescence increased first in the head and then simultaneously in the chest and abdomen in a dose-dependent manner. The spreading kinetics was more rapid with VACV than CPXV although the peak photon flux was similar. These data suggest advantages of CAST/Ei mice for orthopoxvirus studies. - Highlights: • Wild-derived inbred CAST/Ei mice are susceptible to vaccinia virus and cowpox virus. • Morbidity and mortality from orthopoxviruses are greater in CAST/Ei than BALB/c mice. • Morbidity and mortality from herpes simplex virus type 1 are similar in both mice. • Imaging shows virus spread from nose to lungs, abdominal organs and brain. • Vaccinia virus spreads more rapidly than cowpox virus.« less

  14. Stabilising the Herpes Simplex Virus capsid by DNA packaging

    NASA Astrophysics Data System (ADS)

    Wuite, Gijs; Radtke, Kerstin; Sodeik, Beate; Roos, Wouter

    2009-03-01

    Three different types of Herpes Simplex Virus type 1 (HSV-1) nuclear capsids can be distinguished, A, B and C capsids. These capsids types are, respectively, empty, contain scaffold proteins, or hold DNA. We investigate the physical properties of these three capsids by combining biochemical and nanoindentation techniques. Atomic Force Microscopy (AFM) experiments show that A and C capsids are mechanically indistinguishable whereas B capsids already break at much lower forces. By extracting the pentamers with 2.0 M GuHCl or 6.0 M Urea we demonstrate an increased flexibility of all three capsid types. Remarkably, the breaking force of the B capsids without pentamers does not change, while the modified A and C capsids show a large drop in their breaking force to approximately the value of the B capsids. This result indicates that upon DNA packaging a structural change at or near the pentamers occurs which mechanically reinforces the capsids structure. The reported binding of proteins UL17/UL25 to the pentamers of the A and C capsids seems the most likely candidate for such capsids strengthening. Finally, the data supports the view that initiation of DNA packaging triggers the maturation of HSV-1 capsids.

  15. Theaflavin-3,3′-Digallate and Lactic Acid Combinations Reduce Herpes Simplex Virus Infectivity

    PubMed Central

    Xu, Weimin

    2013-01-01

    The present study examined the efficacy of using multiple mechanisms as part of a topical microbicide to inactivate herpes simplex virus (HSV) by combining theaflavin-3,3′-digallate (TF-3) and lactic acid (LA) over the pH range of 4.0 to 5.7 to mimic conditions in the female reproductive tract. Six clinical isolates of HSV-2 and two clinical isolates of HSV-1 were almost completely inactivated when TF-3 (100 μM) was present with LA over the pH range of 4.5 to 5.7, whereas four additional HSV-1 clinical isolates required TF-3 concentrations of 250 to 500 μM for comparable virus titer reduction. LA (1%) alone at pH 4.0 reduced the titers of laboratory and clinical isolates of HSV-1 and HSV-2 by ≥5 log10, but most LA-dependent antiviral activity was lost at a pH of ≥4.5. When HSV-1 and HSV-2 were incubated at pH 4.0 without LA virus titers were not reduced. At pH 4.0, HSV-1 and HSV-2 titers were reduced 5 log10 in 20 min by LA alone. TF-3 reduced HSV-2 titers by 5 log10 in 20 to 30 min at pH 4.5, whereas HSV-1 required 60 min for comparable inactivation. Mixtures of TF-3 and LA stored at 37°C for 1 month at pH 4.0 to 5.7 maintained antiviral activity. Semen, but not cervical vaginal fluid, decreased LA-dependent antiviral activity at pH 4.0, but adding TF-3 to the mixture reduced HSV titers by 4 to 5 log10. These results indicate that a combination microbicide containing TF-3 and LA could reduce HSV transmission. PMID:23716050

  16. Recurrent herpetic keratitis: failure to detect herpes simplex virus infection using the Syva MicroTrak HSV1/HSV2 direct specimen identification/typing test.

    PubMed

    Kumano, Y; Yamamoto, M; Inomata, H; Sakuma, S; Hidaka, Y; Minagawa, H; Mori, R

    1990-01-01

    A 35-year-old man had developed recurrent herpetic keratitis characterized by dendritic keratitis at intervals of a year. We were able to culture cytopathic agents repeatedly from his lesions by inoculating Vero cells. The cultures yielded definitive evidence of a virus that caused a cytopathic effect within 3 days. However, these virus strains could not be identified as herpes simplex virus (HSV) in immunofluorescence assays using the Syva MicroTrak HSV1/HSV2 direct specimen identification/typing test. Rather they were identified as strains of HSV type 1 (HSV-1) on the basis of plaque morphology, neutralization tests, electron-microscopic examination and DNA restriction endonuclease analysis. Our results allow us to assume the existence of HSV-1 strains isolated clinically that are negative to analysis using the Syva Micro-Trak HSV1/HSV2 direct specimen identification/typing test.

  17. Herpes simplex virus 1 induces egress channels through marginalized host chromatin

    DOE PAGES

    Myllys, Markko; Ruokolainen, Visa; Aho, Vesa; ...

    2016-06-28

    Lytic infection with herpes simplex virus type 1 (HSV-1) induces profound modification of the cell nucleus including formation of a viral replication compartment and chromatin marginalization into the nuclear periphery. Here, we used three-dimensional soft X-ray tomography, combined with cryogenic fluorescence, confocal and electron microscopy, to analyse the transformation of peripheral chromatin during HSV-1 infection. Our data showed an increased presence of low-density gaps in the marginalized chromatin at late infection. Advanced data analysis indicated the formation of virus-nucleocapsid-sized (or wider) channels extending through the compacted chromatin of the host. Importantly, confocal and electron microscopy analysis showed that these gapsmore » frequently contained viral nucleocapsids. Our results demonstrated that HSV-1 infection induces the formation of channels penetrating the compacted layer of cellular chromatin and allowing for the passage of progeny viruses to the nuclear envelope, their site of nuclear egress.« less

  18. Bovine lactoferrin and lactoferricin interfere with intracellular trafficking of Herpes simplex virus-1.

    PubMed

    Marr, A K; Jenssen, H; Moniri, M Roshan; Hancock, R E W; Panté, N

    2009-01-01

    Although both lactoferrin (Lf), a component of the innate immune system of living organisms, and its N-terminal pepsin cleavage product lactoferricin (Lfcin) have anti-herpes activity, the precise mechanisms by which Lf and Lfcin bring about inhibition of herpes infections are not fully understood. In the present study, experiments were carried out to characterize the activity of bovine Lf and Lfcin (BLf and BLfcin) against the Herpes simplex virus-1 (HSV-1). HSV-1 cellular uptake and intracellular trafficking were studied by immunofluorescence microscopy. In comparison to the untreated infected control cells, both the BLf- and BLfcin-treated cells showed a significant reduction in HSV-1 cellular uptake. The few virus particles that were internalized appeared to have a delayed intracellular trafficking. Thus, in addition to their interference with the uptake of the virus into host cells, Lf and Lfcin also exert their antiviral effect intracellularly.

  19. [Clinical, epidemiological, and etiological studies of adult aseptic meningitis: a report of 12 cases of herpes simplex meningitis, and a comparison with cases of herpes simplex encephalitis].

    PubMed

    Himeno, Takahiro; Shiga, Yuji; Takeshima, Shinichi; Tachiyama, Keisuke; Kamimura, Teppei; Kono, Ryuhei; Takemaru, Makoto; Takeshita, Jun; Shimoe, Yutaka; Kuriyama, Masaru

    2018-01-26

    We treated 437 cases of adult aseptic meningitis and 12 cases (including 2 recurrent patients; age, 31.8 ± 8.9 years; 7 females) of herpes simplex meningitis from 2004 to 2016. The incidence rate of adult herpes simplex meningitis in the cases with aseptic meningitis was 2.7%. One patient was admitted during treatment of genital herpes, but no association was observed between genital herpes and herpes simplex meningitis in the other cases. The diagnoses were confirmed in all cases as the cerebrospinal fluid (CSF) was positive for herpes simplex virus (HSV)-DNA. For diagnosis confirmation, the DNA test was useful after 2-7 days following initial disease onset. Among other types of aseptic meningitis, the patients with herpes simplex meningitis showed relatively high white blood cell counts and relatively high CSF protein and high CSF cell counts. CSF cells showed mononuclear cell dominance from the initial stage of the disease. During same period, we also experienced 12 cases of herpes simplex encephalitis and 21 cases of non-hepatic acute limbic encephalitis. Notably, the patients with herpes simplex meningitis were younger and their CSF protein and cells counts were higher than those of the patients with herpes simplex encephalitis.

  20. In vitro inactivation of Chlamydia trachomatis and of a panel of DNA (HSV-2, CMV, adenovirus, BK virus) and RNA (RSV, enterovirus) viruses by the spermicide benzalkonium chloride.

    PubMed

    Bélec, L; Tevi-Benissan, C; Bianchi, A; Cotigny, S; Beumont-Mauviel, M; Si-Mohamed, A; Malkin, J E

    2000-11-01

    Kinetics of inactivation by the detergent spermicide benzalkonium chloride (BZK) of Chlamydia trachomatis and of a panel of DNA viruses [herpes simplex virus hominis type 2 (HSV-2), cytomegalovirus (CMV), adenovirus (ADV) and BK virus (BKV)] and RNA [respiratory syncytial virus (RSV) and enterovirus (ENV)] were established in accordance with a standardized in vitro protocol. After a 5 min incubation, inactivation of >95% of HSV-2 and CMV was obtained at a concentration of 0.0025% (w/v) (25 Ig/L); concentrations as low as 0.0005%, 0.0050% and 0.0125%, induced a 3.0 log10 reduction in infectivity of HSV-2 and CMV, RSV and ADV, respectively. After a 60 min incubation, concentrations of 0.0125% and 0.050% provided a 3.0 log10 reduction in infectivity of ENV and BKV, respectively. These features indicate that sensitivity to BZK was very high (HSV-2 and CMV) or high (RSV) for enveloped viruses, intermediate (ADV) or low (ENV and BKV) for non-enveloped viruses. Furthermore, BZK had marked antichlamydial activity, showing >99% killing after only a 1 min incubation at a concentration of 0.00125%. BZK demonstrates potent in vitro activity against the majority of microorganisms causing sexually transmitted infectious diseases, including those acting as major genital cofactors of human immunodeficiency virus transmission. These attributes qualify BZK as a particularly attractive candidate for microbicide development.

  1. Herpes simplex virus type 1 (HSV-1)-derived recombinant vectors for gene transfer and gene therapy.

    PubMed

    Marconi, Peggy; Fraefel, Cornel; Epstein, Alberto L

    2015-01-01

    Herpes simplex virus type 1 (HSV-1 ) is a human pathogen whose lifestyle is based on a long-term dual interaction with the infected host, being able to establish both lytic and latent infections. The virus genome is a 153-kilobase pair (kbp) double-stranded DNA molecule encoding more than 80 genes. The interest of HSV-1 as gene transfer vector stems from its ability to infect many different cell types, both quiescent and proliferating cells, the very high packaging capacity of the virus capsid, the outstanding neurotropic adaptations that this virus has evolved, and the fact that it never integrates into the cellular chromosomes, thus avoiding the risk of insertional mutagenesis. Two types of vectors can be derived from HSV-1, recombinant vectors and amplicon vectors, and different methodologies have been developed to prepare large stocks of each type of vector. This chapter summarizes the approach most commonly used to prepare recombinant HSV-1 vectors through homologous recombination, either in eukaryotic cells or in bacteria.

  2. Glutamine supplementation suppresses herpes simplex virus reactivation.

    PubMed

    Wang, Kening; Hoshino, Yo; Dowdell, Kennichi; Bosch-Marce, Marta; Myers, Timothy G; Sarmiento, Mayra; Pesnicak, Lesley; Krause, Philip R; Cohen, Jeffrey I

    2017-06-30

    Chronic viral infections are difficult to treat, and new approaches are needed, particularly those aimed at reducing reactivation by enhancing immune responses. Herpes simplex virus (HSV) establishes latency and reactivates frequently, and breakthrough reactivation can occur despite suppressive antiviral therapy. Virus-specific T cells are important to control HSV, and proliferation of activated T cells requires increased metabolism of glutamine. Here, we found that supplementation with oral glutamine reduced virus reactivation in latently HSV-1-infected mice and HSV-2-infected guinea pigs. Transcriptome analysis of trigeminal ganglia from latently HSV-1-infected, glutamine-treated WT mice showed upregulation of several IFN-γ-inducible genes. In contrast to WT mice, supplemental glutamine was ineffective in reducing the rate of HSV-1 reactivation in latently HSV-1-infected IFN-γ-KO mice. Mice treated with glutamine also had higher numbers of HSV-specific IFN-γ-producing CD8 T cells in latently infected ganglia. Thus, glutamine may enhance the IFN-γ-associated immune response and reduce the rate of reactivation of latent virus infection.

  3. High Efficiency Latency and Activation of Herpes Simplex Virus in Human Cells

    NASA Astrophysics Data System (ADS)

    Wigdahl, Brian L.; Scheck, Adrienne C.; de Clercq, Erik; Rapp, Fred

    1982-09-01

    Herpes simplex virus (HSV) exists in humans in a latent form that can be activated. To characterize the molecular basis of the cell-virus interactions and to analyze the state of the latent HSV genome, an in vitro model system was established. In this system a large fraction of the latently infected cells contain an HSV genome that can be activated. Cell survival was reduced minimally after repression of high multiplicity HSV type 1 (HSV-1) infection of human fibroblast cells with (E)-5-(2-bromovinyl)-2'-deoxyuridine in combination with human leukocyte interferon (IFN-α ). A minimum of 1 to 3 percent of the surviving cells contained an HSV genome that could be activated either by human cytomegalovirus superinfection or reduction in incubation temperature.

  4. Mapping of herpes simplex virus-1 neurovirulence to. gamma. sub 1 34. 5, a gene nonessential for growth in culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, J.; Roizman, B.; Kern, E.R.

    1990-11-30

    The gene designated {gamma}{sub 1}34.5 maps in the inverted repeats flanking the long unique sequence of herpes simplex virus-1 (HSV-1) DNA, and therefore it is present in two copies per genome. This gene is not essential for viral growth in cell culture. Four recombinant viruses were genetically engineered to test the function of this gene. These were (i) a virus from which both copies of the gene were deleted, (ii) a virus containing a stop codon in both copies of the gene, (iii) a virus containing after the first codon an insert encoding a 16-amino acid epitope known to reactmore » with a specific monoclonal antibody, and (iv) a virus in which the deleted sequences were restored. The viruses from which the gene was deleted or which carried stop codons were avirulent on intracerebral inoculation of mice. The virus with the gene tagged by the sequence encoding the epitope was moderately virulent, whereas the restored virus reacquired the phenotype of the parent virus. Significant amounts of virus were recovered only from brains of animals inoculated with virulent viruses. Inasmuch as the product of the {gamma}{sub 1}34.5 gene extended the host range of the virus by enabling it to replicate and destroy brain cells, it is a viral neurovirulence factor.« less

  5. [Investigation of Epstein-Barr virus and herpes simplex virus markers by serological and molecular methods in patients with rheumatoid arthritis and systemic lupus erythematosus].

    PubMed

    Us, Tercan; Cetin, Esin; Kaşifoğlu, Nilgün; Kaşifoğlu, Timuçin; Akgün, Yurdanur

    2011-10-01

    Rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) which are autoimmune diseases usually questioned for their association with many infectious agents have etiopathogenesis related to genetic, immunologic, hormonal and even environmental factors. The most commonly attributed etiologic agents are herpes group viruses. The aim of this study was to investigate the role of Epstein-Barr virus (EBV) and herpes simplex (HSV) viruses in the etiology of RA and SLE. A total of 137 patients (87 RA and 50 SLE; mean age: 33 ± 12 years) who were admitted to Eskisehir Osmangazi University Medical Faculty Rheumatology Department between January 2007-January 2008 and diagnosed according to 1987 ACR (American College of Rheumatology) criteria have been included in the study, together with 50 healthy blood donors (mean age: 35 ± 14 years) as control group. Serum samples obtained from all of the cases were tested for EBV VCA-IgG, VCA-IgM, EA/D-IgG and EBNA-IgG (Trinity Biotech, USA); IgM and IgG antibodies against HSV-1 and HSV-2 by ELISA method (Dia-Pro Diagnostic, Italy), and the presence of viral nucleic acids in blood samples were investigated by real-time quantitative polymerase chain reaction (RTPCR; Qiagen, USA). EBV VCA-IgM was negative in all of the RA, SLE and control group patients. VCA-IgG positivity were 98% and 96%, and for EBNA-IgG 98.5% and 100%, in patient and control groups, respectively. There was no statistically significant difference between the groups regarding VCA-IgG and EBNA- IgG positivity (p> 0.05). On the other hand, EBV EA/D-IgG positivity rate found in the SLE group (34%) was significantly higher than RA (7%) and control (12%) groups (p< 0.001 and p< 0.05, respectively). There was no significant difference between RA and control groups in terms of EA/D-IgG positivity (p> 0.05). Regarding herpes simplex virus serology, HSV1-IgG seropositivity were 99% and 94% and HSV2-IgG positivity were 8% and 12% in the patient and control groups, respectively. There was no statistically significant difference between the groups according to the positivity rates of IgM and IgG specific for HSV-1 and HSV-2 (p> 0.05). All of the cases were found negative in terms of EBV, HSV-1 and HSV- 2 DNAs according to double-checked RT-PCR results. In conclusion, no significant difference was determined for EBV and HSV serologic markers in RA and SLE patients compared to the control group. However, significantly higher rate of EBV EA/D-IgG positivity in SLE patients might have indicated a possible association between SLE and EBV infection. Larger scale, prospective studies including examination of the synovial fluid/tissue samples are required to enlighten the association between SLE and EBV.

  6. Antiviral Effect of Pyran Against Systemic Infection of Mice with Herpes Simplex Virus Type 2

    PubMed Central

    McCord, Ronald S.; Breinig, Mary K.; Morahan, Page S.

    1976-01-01

    The immunomodulator pyran markedly protected 5-week-old mice from lethal intravenous infection with herpes simplex virus type 2. The 50% lethal dose was increased almost 100-fold in pyran-treated mice as compared with controls. Although the protection was not as marked in older mice (10 and 16 weeks old), there was a significant increase in mean survival time. When the pathogenesis of herpesvirus disease was monitored in control and drug-treated mice, the effect of pyran was most evident in the spinal cord, where virus was recovered from 20 of 25 control mice and from only 6 of 25 pyran-treated mice. There was also a significant reduction in the titer of virus present, and virus appeared later in the spinal cord of pyran-treated mice than in control mice. The protective effect of pyran was observed only when the drug was administered 24 h before viral challenge, was seen after both intraperitoneal and intravenous injection, and was not due to direct inactivation of the virus. PMID:185945

  7. Association of anti-herpes simplex virus IgG in tears and serum with clinical presentation in patients with presumed herpetic simplex keratitis.

    PubMed

    Borderie, Vincent M; Gineys, Raquel; Goldschmidt, Pablo; Batellier, Laurence; Laroche, Laurent; Chaumeil, Christine

    2012-11-01

    To assess the clinical relevance of tear anti-herpes simplex virus (HSV) antibody measurement for the diagnosis of herpes simplex keratitis. Records of 364 patients clinically suspect of HSV-related keratitis who had tear anti-HSV IgG assessment (tear-quantified anti-HSV IgG/filtrated IgG ratio) in our institution between January 2000 and August 2008 were retrospectively analyzed. Patients were classified into 4 groups as follows: group 1, anti-HSV IgG negative in serum and tears; group 2, anti-HSV IgG negative in tears and positive in serum; group 3, anti-HSV IgG nonsignificantly positive in tears and positive in serum; and group 4, anti-HSV IgG significantly positive in serum and tears. Randomly selected patient charts from each group were reviewed for clinical data. The prevalence of anti-HSV IgG in blood increased with age from >70% before 20 years to 95% after 70 years. The prevalence of anti-HSV IgG in tears increased with age from 20% before 20 years to >50% after 70 years. The presence (either significant or not) of anti-HSV IgG in tears was significantly associated with decreased corneal sensation, presence of stromal opacities, and with neurotrophic keratitis. Logistic regression showed no significant association between age and clinical signs except for herpetic ulcers and herpetic necrotizing keratitis. Tear production of anti-HSV IgG increases with age, and it is associated with sequelae of herpes simplex keratitis. Conversely, it is poorly associated with clinical signs of acute herpes simplex keratitis.

  8. Characterization of a major late herpes simplex virus type 1 mRNA.

    PubMed

    Costa, R H; Devi, B G; Anderson, K P; Gaylord, B H; Wagner, E K

    1981-05-01

    A major, late 6-kilobase (6-kb) mRNa mapping in the large unique region of herpes simplex virus type 1 (HSV-1) was characterized by using two recombinant DNA clones, one containing EcoRI fragment G (0.190 to 0.30 map units) in lambda. WES.B (L. Enquist, M. Madden, P. Schiop-Stansly, and G. Vandl Woude, Science 203:541-544, 1979) and one containing HindIII fragment J (0.181 to 0.259 map units) in pBR322. This 6-kb mRNA had its 3' end to the left of 0.231 on the prototypical arrangement of the HSV-1 genome and was transcribed from right to left. It was bounded on both sides by regions containing a large number of distinct mRNA species, and its 3' end was partially colinear with a 1.5-kb mRNA which encoded a 35,000-dalton polypeptide. The 6-kb mRNA encoded a 155,000-dalton polypeptide which was shown to be the only one of this size detectable by hybrid-arrested translation encoded by late polyadenylated polyribosomal RNA. The S1 nuclease mapping experiments indicated that there were no introns in the coding sequence for this mRNA and that its 3' end mapped approximately 800 nucleotides to the left of the BglII site at 0.231, whereas its 5' end extended very close to the BamHI site at 0.266.

  9. Identification of a herpes simplex labialis susceptibility region on human chromosome 21.

    PubMed

    Hobbs, Maurine R; Jones, Brandt B; Otterud, Brith E; Leppert, Mark; Kriesel, John D

    2008-02-01

    Most of the United States population is infected with either herpes simplex virus type 1 (HSV-1), herpes simplex virus type 2, or both. Reactivations of HSV-1 infection cause herpes simplex labialis (HSL; cold sores or fever blisters), which is the most common recurring viral infection in humans. To investigate the possibility of a human genetic component conferring resistance or susceptibility to cold sores (i.e., a HSL susceptibility gene), we conducted a genetic linkage analysis that included serotyping and phenotyping 421 individuals from 39 families enrolled in the Utah Genetic Reference Project. Linkage analysis identified a 2.5-Mb nonrecombinant region of interest on the long arm of human chromosome 21, with a multipoint logarithm of odds score of 3.9 noted near marker abmc65 (D21S409). Nonparametric linkage analysis of the data also provided strong evidence for linkage (P = .0005). This region of human chromosome 21 contains 6 candidate genes for herpes susceptibility. The development of frequent cold sores is associated with a region on the long arm of human chromosome 21. This region contains several candidate genes that could influence the frequency of outbreaks of HSL.

  10. In vivo production of cytokines and beta (C-C) chemokines in human recurrent herpes simplex lesions--do herpes simplex virus-infected keratinocytes contribute to their production?

    PubMed

    Mikloska, Z; Danis, V A; Adams, S; Lloyd, A R; Adrian, D L; Cunningham, A L

    1998-04-01

    Recurrent human herpes simplex lesions are infiltrated by macrophages and CD4 and CD8 lymphocytes, which secrete cytokines and chemokines. Vesicle fluid was examined by ELISA for the presence of cytokines and beta (C-C) chemokines. On the first day of the lesion, high concentrations of interleukin (IL)-1beta, and IL-6, moderate concentrations of IL-1alpha and IL-10, and low concentrations of IL-12 and beta chemokines were found; levels of macrophage inflammatory protein (MIP)-1beta were significantly higher than levels of MIP-1alpha and RANTES. At day 3, the concentrations of IL-1beta, IL-6, and MIP-1beta were lower, whereas the levels of IL-10, IL-12, and MIP-1alpha remained similar, and the level of tumor necrosis factor-alpha was now detectable. Herpes simplex virus infection of keratinocytes in vitro stimulated production of beta chemokines followed by IL-12 and then IL-10, IL-1alpha, IL-1beta, and IL-6, indicating a potential role for these events in early recruitment, activation, and interferon-gamma production of CD4 cells in herpetic lesions.

  11. Comparison of the Host Immune Response to Herpes Simplex Virus 1 (HSV-1) and HSV-2 at Two Different Mucosal Sites

    PubMed Central

    Zheng, Min; Conrady, Christopher D.; Ward, Julie M.; Bryant-Hudson, Katie M.

    2012-01-01

    A study was undertaken to compare the host immune responses to herpes simplex virus 1 (HSV-1) and HSV-2 infection by the ocular or genital route in mice. Titers of HSV-2 from tissue samples were elevated regardless of the route of infection. The elevation in titers of HSV-2, including cell infiltration and cytokine/chemokine levels in the central nervous system relative to those found following HSV-1 infection, was correlative with inflammation. These results underscore a dichotomy between the host immune responses to closely related alphaherpesviruses. PMID:22532684

  12. Prospects and perspectives for development of a vaccine against herpes simplex virus infections.

    PubMed

    McAllister, Shane C; Schleiss, Mark R

    2014-11-01

    Herpes simplex viruses 1 and 2 are human pathogens that lead to significant morbidity and mortality in certain clinical settings. The development of effective antiviral medications, however, has had little discernible impact on the epidemiology of these pathogens, largely because the majority of infections are clinically silent. Decades of work have gone into various candidate HSV vaccines, but to date none has demonstrated sufficient efficacy to warrant licensure. This review examines developments in HSV immunology and vaccine development published since 2010, and assesses the prospects for improved immunization strategies that may result in an effective, licensed vaccine in the near future.

  13. Prospects and Perspectives for Development of a Vaccine Against Herpes Simplex Virus Infections

    PubMed Central

    McAllister, Shane C.; Schleiss, Mark R.

    2014-01-01

    Herpes simplex viruses 1 and -2 are human pathogens that lead to significant morbidity and mortality in certain clinical settings. The development of effective antiviral medications, however, has had little discernible impact on the epidemiology of these pathogens, largely because the majority of infections are clinically silent. Decades of work have gone into various candidate HSV vaccines, but to date none has demonstrated sufficient efficacy to warrant licensure. This review examines developments in HSV immunology and vaccine development published since 2010, and assesses the prospects for improved immunization strategies that may result in an effective, licensed vaccine in the near future. PMID:25077372

  14. Neonatal herpes simplex virus infections.

    PubMed

    Pinninti, Swetha G; Kimberlin, David W

    2018-04-01

    Neonatal herpes simplex virus (HSV) is an uncommon but devastating infection in the newborn, associated with significant morbidity and mortality. The use of PCR for identification of infected infants and acyclovir for treatment has significantly improved the prognosis for affected infants. The subsequent use of suppressive therapy with oral acyclovir following completion of parenteral treatment of acute disease has further enhanced the long-term prognosis for these infants. This review article will discuss the epidemiology, risk factors and routes of acquisition, clinical presentation, and evaluation of an infant suspected to have the infection, and treatment of proven neonatal HSV disease. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Different Mechanisms Regulate Productive Herpes Simplex Virus 1 (HSV-1) and HSV-2 Infections in Adult Trigeminal Neurons

    PubMed Central

    Ma, AyeAye; Margolis, Mathew S.

    2013-01-01

    Herpes simplex virus 1 (HSV-1) and HSV-2 establish latency in different neuronal subtypes (A5+ and KH10+) in murine trigeminal ganglia, results which correlate with restricted productive infection in these neurons in vitro. HSV-2 latency-associated transcript (LAT) contains a cis-acting regulatory element near the transcription start site that promotes productive infection in A5+ neurons and a second element in exon 1 that inhibits productive infection in KH10+ neurons. HSV-1 contains no such regulatory sequences, demonstrating different mechanisms for regulating productive HSV infection in neurons. PMID:23514893

  16. Latent Herpes Simplex Virus 1 Infection Does Not Induce Apoptosis in Human Trigeminal Ganglia

    PubMed Central

    Lindemann, Anja; Sinicina, Inga; Strupp, Michael; Brandt, Thomas; Hüfner, Katharina

    2015-01-01

    Herpes simplex virus 1 (HSV-1) can establish lifelong latency in human trigeminal ganglia. Latently infected ganglia contain CD8+ T cells, which secrete granzyme B and are thus capable of inducing neuronal apoptosis. Using immunohistochemistry and single-cell reverse transcription-quantitative PCR (RT-qPCR), higher frequency and transcript levels of caspase-3 were found in HSV-1-negative compared to HSV-1-positive ganglia and neurons, respectively. No terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) assay-positive neurons were detected. The infiltrating T cells do not induce apoptosis in latently infected neurons. PMID:25762734

  17. Autophagy is involved in anti-viral activity of pentagalloylglucose (PGG) against Herpes simplex virus type 1 infection in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, Ying, E-mail: peiying-19802@163.com; Chen, Zhen-Ping, E-mail: 530670663@qq.com; Ju, Huai-Qiang, E-mail: 344464448@qq.com

    2011-02-11

    Research highlights: {yields} We showed PGG has anti-viral activity against Herpes simplex virus type 1 (HSV-1) and can induce autophgy. {yields} Autophagy may be a novel and important mechanism mediating PGG anti-viral activities. {yields} Inhibition of mTOR pathway is an important mechanism of induction of autophagy by PGG. -- Abstract: Pentagalloylglucose (PGG) is a natural polyphenolic compound with broad-spectrum anti-viral activity, however, the mechanisms underlying anti-viral activity remain undefined. In this study, we investigated the effects of PGG on anti-viral activity against Herpes simplex virus type 1 (HSV-1) associated with autophagy. We found that the PGG anti-HSV-1 activity was impairedmore » significantly in MEF-atg7{sup -/-} cells (autophagy-defective cells) derived from an atg7{sup -/-} knockout mouse. Transmission electron microscopy revealed that PGG-induced autophagosomes engulfed HSV-1 virions. The mTOR signaling pathway, an essential pathway for the regulation of autophagy, was found to be suppressed following PGG treatment. Data presented in this report demonstrated for the first time that autophagy induced following PGG treatment contributed to its anti-HSV activity in vitro.« less

  18. Identification of structural protein-protein interactions of herpes simplex virus type 1.

    PubMed

    Lee, Jin H; Vittone, Valerio; Diefenbach, Eve; Cunningham, Anthony L; Diefenbach, Russell J

    2008-09-01

    In this study we have defined protein-protein interactions between the structural proteins of herpes simplex virus type 1 (HSV-1) using a LexA yeast two-hybrid system. The majority of the capsid, tegument and envelope proteins of HSV-1 were screened in a matrix approach. A total of 40 binary interactions were detected including 9 out of 10 previously identified tegument-tegument interactions (Vittone, V., Diefenbach, E., Triffett, D., Douglas, M.W., Cunningham, A.L., and Diefenbach, R.J., 2005. Determination of interactions between tegument proteins of herpes simplex virus type 1. J. Virol. 79, 9566-9571). A total of 12 interactions involving the capsid protein pUL35 (VP26) and 11 interactions involving the tegument protein pUL46 (VP11/12) were identified. The most significant novel interactions detected in this study, which are likely to play a role in viral assembly, include pUL35-pUL37 (capsid-tegument), pUL46-pUL37 (tegument-tegument) and pUL49 (VP22)-pUS9 (tegument-envelope). This information will provide further insights into the pathways of HSV-1 assembly and the identified interactions are potential targets for new antiviral drugs.

  19. Treatment of colon cancer with oncolytic herpes simplex virus in preclinical models.

    PubMed

    Yang, H; Peng, T; Li, J; Wang, Y; Zhang, W; Zhang, P; Peng, S; Du, T; Li, Y; Yan, Q; Liu, B

    2016-05-01

    Cancer stem cells (CSCs), which are a rare population in any type of cancer, including colon cancer, are tumorigenic and responsible for cancer recurrence and metastasis. CSCs have been isolated from a number of different solid tumors recently, although the isolation of CSCs in colon cancer is still challenging. We cultured colon cancer cells in stem cell medium to obtain colonosphere cells. These cells possessed the characteristics of CSCs, with a high capacity of tumorigenicity, migration and invasion in vitro and in vivo. The isolation and identification of CSCs have provided new targets for the therapeutics. Oncolytic herpes simplex viruses (oHSV) are an effective strategy for killing colon cancer cells in preclinical models. Here, we examined the efficacy of an oncolytic herpes simplex virus type 2 (oHSV2) in killing colon cancer cells and colon cancer stem-like cells (CSLCs). oHSV2 was found to be highly cytotoxic to the adherent and sphere cells in vitro, and oHSV2 treatment in vivo significantly inhibited tumor growth. This study demonstrates that oHSV2 is effective against colon cancer cells and colon CSLCs and could be a promising strategy for treating colon cancer patients.

  20. Herpes simplex virus: 'to disclose or not to disclose.' An exploration of the multi-disciplinary team's role in advising patients about disclosure when diagnosed with genital herpes simplex virus.

    PubMed

    Caulfield, Pauline; Willis, Diane

    2017-07-01

    The first UK prosecution for genital herpes simplex virus (HSV) transmission in 2011 attracted strong criticism from medical experts. To address the dearth of research on the topic, this study aimed to explore the nature of advice given to patients by the multidisciplinary team (MDT) in the West of Scotland on HSV disclosure to partners. Ten semi-structured interviews with members of the MDT were conducted and the interviews were analysed using Burnard's Thematic Content Analysis. Four themes emerged which explored practitioners' knowledge of HSV and their feelings regarding the emotional aspects of the diagnosis on clients including the challenges of discussing disclosure. Within this framework, participants' attitudes to the legal prosecution were also surveyed. This study revealed that participants had good knowledge about HSV. Furthermore, participants believed disclosure to be the patient's choice and had not altered their practice to advise disclosure to all partners in accordance with local protocol. However, there was a general consensus that disclosure was not required due to the prevalence of HSV and prevalence was used to dissipate emotional reactions to HSV diagnosis.

  1. Lack of evidence for intertypic recombinants in the pathogenesis of recurrent genital infections with herpes simplex virus type 1.

    PubMed

    Fife, K H; Boggs, D

    1986-01-01

    Clinical observations indicate that herpes simplex virus type 1 (HSV-1) is significantly less likely than herpes simplex virus type 2 (HSV-2) to establish latency in (or reactivate from) sacral ganglionic tissue. In an effort to identify viral functions associated with latency, we analyzed HSV-1 isolates from three patients with established recurrent genital herpes and sought evidence of DNA sequences and proteins similar to those found in HSV-2. By restriction endonuclease cleavage patterns and by DNA hybridization analysis using either whole HSV-2 DNA or several cloned segments of HSV-2 DNA as probes, we found that the three HSV-1 isolates from patients with recurrent genital herpes showed no unusual homology to HSV-2 as compared with other HSV-1 isolates. Similarly, the proteins of these isolates could not be distinguished from those of other HSV-1 isolates and were distinct from those of HSV-2. At this level of resolution, there was no evidence to suggest that these recurrent genital HSV-1 isolates were intertypic recombinants, nor did they show any other unusual similarity to HSV-2.

  2. Selective enhancement of radiation response of herpes simplex virus thymidine kinase transduced 9L gliosarcoma cells in vitro and in vivo by antiviral agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jae Ho; Kim, Sang Hie; Kolozsvary, A.

    1995-11-01

    The purpose of this investigation was to demonstrate in a well-characterized tumor model that the radiosensitivity of tumor cells transduced with a herpes simplex virus thymidine kinase gene (HS-tk) would be selectively enhanced by antiviral agents. Rat 9L gliosarcoma cells transduced with a retroviral vector containing an HS-tk gene, 9L-tk cells were exposed to various doses or irradiation under either in vitro or in vivo conditions. The radiation sensitizing potential of two antiviral drugs, bromovinyl deoxyuridine (BVdU) and dihydroxymethyl ethyl methyl guanine (acyclovir), was evaluated in vitro. The radiosensitizing ability of BVdU was also evaluated with a 9L-tk tumor growingmore » in the rat brain. Tumors growing in the right hemisphere of rat brains were irradiated stereotactically with single-dose irradiation. The radiation response of 9L-tk cells was selectively enhanced by antiviral agents relative to nontransduced cells. In the cell culture, when a 24-h drug exposure (20 {mu}g/ml) preceded radiation, the sensitizer enhancement ratio (SER) for BVdU and acyclovir was 1.4 {plus_minus} 0.1 and 1.3 {plus_minus} 0.1, respectively. Exposure of cells to 10 {mu}g/ml acyclovir for two 24-h periods both pre- and postirradiation resulted in a SER of 1.6 {plus_minus} 0.1. In vivo, a significant increase in median survival time of rats with 9L-tk tumors was found when BVdU was administered prior to single-dose irradiation relative to the survival time of similar rats receiving radiation alone. An antiviral agent can enhance cell killing by radiation with selective action in cells transduced with the herpes simplex virus thymidine kinase gene. The results suggest that the three-pronged therapy of HS-tk gene transduction, systemically administered antiviral drug, and stereotactically targeted radiation therapy will improve the effectiveness of radiation therapy for the treatment of radioresistant tumors. 25 refs., 6 figs.« less

  3. Maternal Immunoreactivity to Herpes Simplex Virus 2 and Risk of Autism Spectrum Disorder in Male Offspring

    PubMed Central

    Mahic, Milada; Mjaaland, Siri; Bøvelstad, Hege Marie; Gunnes, Nina; Susser, Ezra; Bresnahan, Michaeline; Øyen, Anne-Siri; Levin, Bruce; Che, Xiaoyu; Hirtz, Deborah; Reichborn-Kjennerud, Ted; Schjølberg, Synnve; Roth, Christine; Magnus, Per; Stoltenberg, Camilla; Surén, Pål; Hornig, Mady

    2017-01-01

    ABSTRACT Maternal infections during pregnancy are associated with risk of neurodevelopmental disorders, including autism spectrum disorders (ASDs). Proposed pathogenetic mechanisms include fetal infection, placental inflammation, and maternal cytokines or antibodies that cross the placenta. The Autism Birth Cohort comprises mothers, fathers, and offspring recruited in Norway in 1999 to 2008. Through questionnaire screening, referrals, and linkages to a national patient registry, 442 mothers of children with ASD were identified, and 464 frequency-matched controls were selected. Immunoglobulin G (IgG) antibodies to Toxoplasma gondii, rubella virus, cytomegalovirus (CMV), herpes simplex virus 1 (HSV-1), and HSV-2 in plasma collected at midpregnancy and after delivery were measured by multiplexed immunoassays. High levels of HSV-2 IgG antibodies in maternal midpregnancy plasma were associated with increased risk of ASD in male offspring (an increase in HSV-2 IgG levels from 240 to 640 arbitrary units/ml was associated with an odds ratio of 2.07; 95% confidence interval, 1.06 to 4.06; P = 0.03) when adjusted for parity and child’s birth year. No association was found between ASD and the presence of IgG antibodies to Toxoplasma gondii, rubella virus, CMV, or HSV-1. Additional studies are needed to test for replicability of risk and specificity of the sex effect and to examine risk associated with other infections. IMPORTANCE The cause (or causes) of most cases of autism spectrum disorder is unknown. Evidence from epidemiological studies and work in animal models of neurodevelopmental disorders suggest that both genetic and environmental factors may be implicated. The latter include gestational infection and immune activation. In our cohort, high levels of antibodies to herpes simplex virus 2 at midpregnancy were associated with an elevated risk of autism spectrum disorder in male offspring. These findings provide support for the hypothesis that gestational infection may contribute to the pathogenesis of autism spectrum disorder and have the potential to drive new efforts to monitor women more closely for cryptic gestational infection and to implement suppressive therapy during pregnancy. PMID:28251181

  4. Maternal Immunoreactivity to Herpes Simplex Virus 2 and Risk of Autism Spectrum Disorder in Male Offspring.

    PubMed

    Mahic, Milada; Mjaaland, Siri; Bøvelstad, Hege Marie; Gunnes, Nina; Susser, Ezra; Bresnahan, Michaeline; Øyen, Anne-Siri; Levin, Bruce; Che, Xiaoyu; Hirtz, Deborah; Reichborn-Kjennerud, Ted; Schjølberg, Synnve; Roth, Christine; Magnus, Per; Stoltenberg, Camilla; Surén, Pål; Hornig, Mady; Lipkin, W Ian

    2017-01-01

    Maternal infections during pregnancy are associated with risk of neurodevelopmental disorders, including autism spectrum disorders (ASDs). Proposed pathogenetic mechanisms include fetal infection, placental inflammation, and maternal cytokines or antibodies that cross the placenta. The Autism Birth Cohort comprises mothers, fathers, and offspring recruited in Norway in 1999 to 2008. Through questionnaire screening, referrals, and linkages to a national patient registry, 442 mothers of children with ASD were identified, and 464 frequency-matched controls were selected. Immunoglobulin G (IgG) antibodies to Toxoplasma gondii , rubella virus, cytomegalovirus (CMV), herpes simplex virus 1 (HSV-1), and HSV-2 in plasma collected at midpregnancy and after delivery were measured by multiplexed immunoassays. High levels of HSV-2 IgG antibodies in maternal midpregnancy plasma were associated with increased risk of ASD in male offspring (an increase in HSV-2 IgG levels from 240 to 640 arbitrary units/ml was associated with an odds ratio of 2.07; 95% confidence interval, 1.06 to 4.06; P = 0.03) when adjusted for parity and child's birth year. No association was found between ASD and the presence of IgG antibodies to Toxoplasma gondii , rubella virus, CMV, or HSV-1. Additional studies are needed to test for replicability of risk and specificity of the sex effect and to examine risk associated with other infections. IMPORTANCE The cause (or causes) of most cases of autism spectrum disorder is unknown. Evidence from epidemiological studies and work in animal models of neurodevelopmental disorders suggest that both genetic and environmental factors may be implicated. The latter include gestational infection and immune activation. In our cohort, high levels of antibodies to herpes simplex virus 2 at midpregnancy were associated with an elevated risk of autism spectrum disorder in male offspring. These findings provide support for the hypothesis that gestational infection may contribute to the pathogenesis of autism spectrum disorder and have the potential to drive new efforts to monitor women more closely for cryptic gestational infection and to implement suppressive therapy during pregnancy.

  5. Polyploidization on SK-N-MC human neuroblastoma cells infected with herpes simplex virus 1.

    PubMed

    Karalyan, Zaven; Izmailyan, Roza; Karalova, Elena; Abroyan, Liana; Hakobyan, Lina; Avetisyan, Aida; Semerjyan, Zara

    2016-01-01

    Polyploidization is one of the most dramatic changes occurring within cell genome owing to various reasons including under many viral infections. We examined the impact of herpes simplex virus-1 (HSV-1) on SK-N-MC human neuroblastoma cell line. The infected cells were followed from 6 hours up to 96 hours post infection (hpi). A large number of polyploid cells with giant nuclei was observed under the influence of HSV-1 at 24 hpi with the DNA content of 32c to 64c or more, in comparison with control SK-N-MC cells that were characterized by relatively moderate values of ploidy, i.e. 8с to 16с (where 1c is the haploid amount of nuclear DNA found in normal diploid populations in G0/G1). After 48-96 hpi, the population of polyploid cells with giant nuclei decreased to the benchmark level. The SK-NMC cells infected with HSV-1 for 24 hours were stained with gallocyanine and monitored for cytological features. The infected cells underwent virus induced cellcell and nuclei fusion with the formation of dense nuclei syncytium. The metabolic activity of HSV-1 infected cells was higher in both nuclei and nucleoli when compared to control cells.

  6. Short communication: a repeated simian human immunodeficiency virus reverse transcriptase/herpes simplex virus type 2 cochallenge macaque model for the evaluation of microbicides.

    PubMed

    Kenney, Jessica; Derby, Nina; Aravantinou, Meropi; Kleinbeck, Kyle; Frank, Ines; Gettie, Agegnehu; Grasperge, Brooke; Blanchard, James; Piatak, Michael; Lifson, Jeffrey D; Zydowsky, Thomas M; Robbiani, Melissa

    2014-11-01

    Epidemiological studies suggest that prevalent herpes simplex virus type 2 (HSV-2) infection increases the risk of HIV acquisition, underscoring the need to develop coinfection models to evaluate promising prevention strategies. We previously established a single high-dose vaginal coinfection model of simian human immunodeficiency virus (SHIV)/HSV-2 in Depo-Provera (DP)-treated macaques. However, this model does not appropriately mimic women's exposure. Repeated limiting dose SHIV challenge models are now used routinely to test prevention strategies, yet, at present, there are no reports of a repeated limiting dose cochallenge model in which to evaluate products targeting HIV and HSV-2. Herein, we show that 20 weekly cochallenges with 2-50 TCID50 simian human immunodeficiency virus reverse transcriptase (SHIV-RT) and 10(7) pfu HSV-2 results in infection with both viruses (4/6 SHIV-RT, 6/6 HSV-2). The frequency and level of vaginal HSV-2 shedding were significantly greater in the repeated exposure model compared to the single high-dose model (p<0.0001). We used this new model to test the Council's on-demand microbicide gel, MZC, which is active against SHIV-RT in DP-treated macaques and HSV-2 and human papillomavirus (HPV) in mice. While MZC reduced SHIV and HSV-2 infections in our repeated limiting dose model when cochallenging 8 h after each gel application, a barrier effect of carrageenan (CG) that was not seen in DP-treated animals precluded evaluation of the significance of the antiviral activity of MZC. Both MZC and CG significantly (p<0.0001) reduced the frequency and level of vaginal HSV-2 shedding compared to no gel treatment. This validates the use of this repeated limiting dose cochallenge model for testing products targeting HIV and HSV-2.

  7. Clinical and Laboratory Findings That Differentiate Herpes Simplex Virus Central Nervous System Disease from Enteroviral Meningitis

    PubMed Central

    Sanaee, Layli; Karnauchow, Tim

    2016-01-01

    Background. It can be difficult for clinicians to distinguish between the relatively benign enteroviral (EnV) meningitis and potentially lethal herpes simplex virus (HSV) central nervous system (CNS) disease. Very limited evidence currently exists to guide them. Objective. This study sought to identify clinical features and cerebrospinal fluid (CSF) findings associated with HSV CNS disease. Methods. Given that PCR testing often is not immediately available, this chart review study sought to identify clinical and cerebrospinal fluid (CSF) findings associated with HSV meningitis over a 6-year period. In cases where PCR was not performed, HSV and EnV were assigned based on clinical criteria. Results. We enrolled 166 consecutive patients: 40 HSV and 126 EnV patients. HSV patients had a mean 40.4 versus 31.3 years for EnV, p = 0.005, seizures 21.1% versus 1.6% for EnV, p < 0.001, altered mental status 46.2% versus 3.2% for EnV, p < 0.001, or neurological deficits 44.7% versus 3.9% for EnV, p < 0.001. CSF neutrophils were lower in HSV (median 3.0% versus 9.5%, p = 0.0002); median lymphocytes (87.0% versus 67.0%, p = 0.0004) and protein (0.9 g/L versus 0.6 g/L, p = 0.0005) were elevated. Conclusion. Our study found that HSV patients were older and more likely to have seizure, altered mental status, or neurological deficits than patients with benign EnV meningitis. HSV cases had lower CSF neutrophils, higher lymphocytes, and higher protein levels. PMID:27563314

  8. Herpes simplex virus proctitis in homosexual men. Clinical, sigmoidoscopic, and histopathological features.

    PubMed

    Goodell, S E; Quinn, T C; Mkrtichian, E; Schuffler, M D; Holmes, K K; Corey, L

    1983-04-14

    Acute herpes simplex virus (HSV) infection was detected in 23 of 102 consecutively examined, sexually active male homosexuals who presented with anorectal pain, discharge, tenesmus, or hematochezia, as compared with 3 of 75 homosexual men without gastrointestinal symptoms (P less than 0.01). Findings that were significantly more frequent in men with HSV proctitis than in men with proctitis due to other infectious causes included fever (48 per cent), difficulty in urinating (48 per cent), sacral paresthesias (26 per cent), inguinal lymphadenopathy (57 per cent), severe anorectal pain (100 per cent), tenesmus (100 per cent), constipation (78 per cent), perianal ulcerations (70 per cent), and the presence of diffuse ulcerative or discrete vesicular or pustular lesions in the distal 5 cm of the rectum (50 per cent). Serologic evidence indicated that 85 per cent of the men with symptomatic HSV proctitis were having their first episode of HSV-2 infection. The diagnosis of HSV proctitis is suggested by the presence of severe anorectal pain, difficulty in urinating, sacral paresthesias or pain, and diffuse ulceration of the distal rectal mucosa.

  9. Genital herpes simplex virus infections: clinical manifestations, course, and complications.

    PubMed

    Corey, L; Adams, H G; Brown, Z A; Holmes, K K

    1983-06-01

    The clinical course and complications of 268 patients with first episodes and 362 with recurrent episodes of genital herpes infection were reviewed. Symptoms of genital herpes were more severe in women than in men. Primary first-episode genital herpes was accompanied by systemic symptoms (67%), local pain and itching (98%), dysuria (63%), and tender adenopathy (80%). Patients presented with several bilaterally distributed postular ulcerative lesions that lasted a mean of 19.0 days. Herpes simplex virus was isolated from the urethra, cervix, and pharynx of 82%, 88%, and 13% of women with first-episode primary genital herpes, and the urethra and pharynx of 28% and 7% of men. Complications included aseptic meningitis (8%), sacral autonomic nervous system dysfunction (2%), development of extragenital lesions (20%), and secondary yeast infections (11%). Recurrent episodes were characterized by small vesicular or ulcerative unilaterally distributed lesions that lasted a mean of 10.1 days. Systemic symptoms were uncommon and 25% of recurrent episodes were asymptomatic. The major concerns of patients were the frequency of recurrences and fear of transmitting infection to partners or infants.

  10. Inhibitory effect of essential oils against herpes simplex virus type 2.

    PubMed

    Koch, C; Reichling, J; Schneele, J; Schnitzler, P

    2008-01-01

    Essential oils from anise, hyssop, thyme, ginger, camomile and sandalwood were screened for their inhibitory effect against herpes simplex virus type 2 (HSV-2) in vitro on RC-37 cells using a plaque reduction assay. Genital herpes is a chronic, persistent infection spreading efficiently and silently as sexually transmitted disease through the population. Antiviral agents currently applied for the treatment of herpesvirus infections include acyclovir and its derivatives. The inhibitory concentrations (IC50) were determined at 0.016%, 0.0075%, 0.007%, 0.004%, 0.003% and 0.0015% for anise oil, hyssop oil, thyme oil, ginger oil, camomile oil and sandalwood oil, respectively. A clearly dose-dependent virucidal activity against HSV-2 could be demonstrated for all essential oils tested. In order to determine the mode of the inhibitory effect, essential oils were added at different stages during the viral infection cycle. At maximum noncytotoxic concentrations of the essential oils, plaque formation was significantly reduced by more than 90% when HSV-2 was preincubated with hyssop oil, thyme oil or ginger oil. However, no inhibitory effect could be observed when the essential oils were added to the cells prior to infection with HSV-2 or after the adsorption period. These results indicate that essential oils affected HSV-2 mainly before adsorption probably by interacting with the viral envelope. Camomile oil exhibited a high selectivity index and seems to be a promising candidate for topical therapeutic application as virucidal agents for treatment of herpes genitalis.

  11. The use of FTIR microscopy for evaluation of herpes viruses infection development kinetics

    NASA Astrophysics Data System (ADS)

    Erukhimovitch, Vitaly; Mukmanov, Igor; Talyshinsky, Marina; Souprun, Yelena; Huleihel, Mahmoud

    2004-08-01

    The kinetics of Herpes simplex infection development was studied using an FTIR microscopy (FTIR-M) method. The family of herpes viruses includes several members like H. simplex types I and II (HSV I, II), Varicella zoster (VZV) viruses which are involved in various human and animal infections of different parts of the body. In our previous study, we found significant spectral differences between normal uninfected cells in cultures and cells infected with herpes viruses at early stages of the infection. In the present study, cells in cultures were infected with either HSV-I or VZV and at various times post-infection they were examined either by optical microscopy or by advanced FTIR-M. Spectroscopic measurements show a consistent decrease in the intensity of the carbohydrate peak in correlation with the viral infection development, observed by optical microscopy. This decrease in cellular carbohydrate level was used as indicator for herpes viruses infection kinetics. This parameter could be used as a basis for applying a spectroscopic method for the evaluation of herpes virus infection development. Our results show also that the development kinetics of viral infection has an exponential character for these viruses.

  12. Pathogenicity in mice of strains of herpes simplex virus which are resistant to acyclovir in vitro and in vivo.

    PubMed Central

    Field, H J; Darby, G

    1980-01-01

    Mice infected with three different isolates of herpes simplex virus (HSV) and treated with acyclovir (acycloguanosine; ACV) showed low levels of virus replication during the acute phase of infection. However, virus isolated from such treated mice did not show increased resistance to ACV. In contrast, resistant virus was readily isolated in vitro by passaging HSV in the presence of the drug. The degree of resistance was determined, in part, by the nature of the cells used to test the virus. The majority of ACV-resistant strains induced low or undetectable levels of HSV-specified thymidine kinase (TK), the enzyme responsible for phosphorylating ACV in infected cells. The TK-resistant strains were attenuated when injected into mice as indicated by reductions in virus replication, inflammation, and establishment of latent infections in sensory ganglia. The reduced virulence of the TK- strains was most marked after intracerebral inoculation, where the lethal dose was increased more than 100-fold compared with the parental isolates. However, one mutant is described which induced high levels of TK but was highly resistant to ACV and retained virulence for mice. PMID:6247969

  13. Antiviral activity of an extract of Cordia salicifolia on herpes simplex virus type 1.

    PubMed

    Hayashi, K; Hayashi, T; Morita, N; Niwayama, S

    1990-10-01

    A partially purified extract (COL 1-6) from whole plant of Cordia salicifolia showed an inhibitory effect on herpes simplex virus type 1 (HSV-1). The activity of COL 1-6 on different steps of HSV-1 replication in HeLa cells was investigated. Under single-cycle replication conditions, COL 1-6 exerted a greater than 99.9% inhibition in virus yield when added to the cells 3 h or 1.5 h before infection, and even when added 8 h after infection the extract still caused a greater than 99% inhibition. The extract has been shown to have a direct virucidal activity. And also, analysis of early events following infection showed that COL 1-6 affected viral penetration in HeLa cells but did not interfere with adsorption to the cells.

  14. Infection and Transport of Herpes Simplex Virus Type 1 in Neurons: Role of the Cytoskeleton

    PubMed Central

    2018-01-01

    Herpes simplex virus type 1 (HSV-1) is a neuroinvasive human pathogen that has the ability to infect and replicate within epithelial cells and neurons and establish a life-long latent infection in sensory neurons. HSV-1 depends on the host cellular cytoskeleton for entry, replication, and exit. Therefore, HSV-1 has adapted mechanisms to promote its survival by exploiting the microtubule and actin cytoskeletons to direct its active transport, infection, and spread between neurons and epithelial cells during primary and recurrent infections. This review will focus on the currently known mechanisms utilized by HSV-1 to harness the neuronal cytoskeleton, molecular motors, and the secretory and exocytic pathways for efficient virus entry, axonal transport, replication, assembly, and exit from the distinct functional compartments (cell body and axon) of the highly polarized sensory neurons. PMID:29473915

  15. Herpes Simplex Virus: Beyond the Basics.

    PubMed

    Kobty, Magidah

    2015-01-01

    One of the most common sexually transmitted infections is the herpes simplex virus (HSV) Type 2. Although the incidence of newborn infection is not as common as in adults, approximately 1,500 neonates are diagnosed annually with HSV infection. HSV can be detrimental to the life of a newborn, with morbidity and mortality rates of up to 65 percent. This article addresses the maternal and fetal complications of HSV and the impact of HSV on the newborn along with diagnostic evaluation methods. In addition, treatment options and evidence-based practices regarding HSV are defined. Despite growing technology and medical treatment for early identification of HSV, this virus remains challenging and can deeply impact the life of an infant and his or her family. Early diagnosis, treatment, and intervention of an infant with HSV are crucial to ensure the livelihood of the newborn.

  16. A diagnostic method for herpes simplex keratitis by simultaneous measurement of viral DNA and virus-specific secretory IgA in tears: an evaluation.

    PubMed

    Shoji, Jun; Sakimoto, Tohru; Inada, Noriko; Kamei, Yuko; Matsubara, Masao; Takamura, Etsuko; Sawa, Mitsuru

    2016-07-01

    We performed simultaneous measurement of herpes simplex virus (HSV) DNA by real-time polymerase chain reaction (real-time PCR) and of HSV-specific secretory IgA antibody (HSV-sIgA) by enzyme-linked immunosorbent assay (ELISA) in tears obtained using Schirmer strips in order to investigate its diagnostic efficacy for herpes simplex keratitis (HSK). A total of 59 affected eyes from 59 patients with clinically suspected HSK (HSK group) and 23 eyes from 23 healthy volunteers (control group) were enrolled in this study. The HSK group was divided into five subgroups: dendritic/geographic keratitis, disciform keratitis, necrotizing keratitis, atypical keratitis, and others. The tear samples were taken using Schirmer strips to determine the HSV DNA and HSV-sIgA levels. The overall sensitivity and specificity were 55.8 and 100 % for HSV DNA and 49.2 and 82.6 % for HSV-sIgA. The HSV DNA levels in the disciform keratitis subgroup (median, 3.1 × 10(2) copies/sample) were significantly lower than those in the dendritic/geographic keratitis subgroup (median, 2.3 × 10(4) copies/sample) (P < 0.05, Mann-Whitney test). The HSV-sIgA levels in the disciform keratitis subgroup (median, 50.0 NU/ml) were significantly higher than those in the control group (median, 18.0 NU/ml) (P < 0.05, Steel test). The positive and negative predictive values obtained by simultaneous measurement of HSV DNA and sIgA were 90.9 and 61.3 %, respectively. The combination of laboratory detection of HSV DNA by real-time PCR and of HSV-sIgA by ELISA using tear samples enables higher reliability in diagnosing the subgroups of HSK, although the HSV DNA value is relatively lower in disciform HSK than in dendritic/geographic HSK.

  17. Variability of human immunodeficiency virus-1 in the female genital reservoir during genital reactivation of herpes simplex virus type 2.

    PubMed

    LeGoff, J; Roques, P; Jenabian, M-A; Charpentier, C; Brochier, C; Bouhlal, H; Gresenguet, G; Frost, E; Pepin, J; Mayaud, P; Belec, L

    2015-09-01

    Clinical and subclinical genital herpes simplex virus type 2 (HSV-2) reactivations have been associated with increases in human immunodeficiency virus (HIV)-1 genital shedding. Whether HSV-2 shedding contributes to the selection of specific genital HIV-1 variants remains unknown. We evaluated the genetic diversity of genital and blood HIV-1 RNA and DNA in 14 HIV-1/HSV-2-co-infected women, including seven with HSV-2 genital reactivation, and seven without as controls. HIV-1 DNA and HIV-1 RNA env V1-V3 sequences in paired blood and genital samples were compared. The HSV-2 selection pressure on HIV was estimated according to the number of synonymous substitutions (dS), the number of non-synonymous substitutions (dN) and the dS/dN ratio within HIV quasi-species. HIV-1 RNA levels in cervicovaginal secretions were higher in women with HSV-2 replication than in controls (p0.02). Plasma HIV-1 RNA and genital HIV-1 RNA and DNA were genetically compartmentalized. No differences in dS, dN and the dS/dN ratio were observed between the study groups for either genital HIV-1 RNA or plasma HIV-1 RNA. In contrast, dS and dN in genital HIV-1 DNA were significantly higher in patients with HSV-2 genital reactivation (p <0.01 and p <0.05, respectively). The mean of the dS/dN ratio in genital HIV-1 DNA was slightly higher in patients with HSV-2 genital replication, indicating a trend for purifying selection (p 0.056). HSV-2 increased the genetic diversity of genital HIV-1 DNA. These observations confirm molecular interactions between HSV-2 and HIV-1 at the genital tract level. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  18. Comparison of rubella virus- and herpes virus-associated anterior uveitis: clinical manifestations and visual prognosis.

    PubMed

    Wensing, Barbara; Relvas, Lia M; Caspers, Laure E; Valentincic, Natasa Vidovic; Stunf, Spela; de Groot-Mijnes, Jolanda D F; Rothova, Aniki

    2011-10-01

    To compare the clinical characteristics and visual prognosis of patients with anterior uveitis (AU) and intraocular fluid analysis positive for rubella virus (RV), herpes simplex virus (HSV), or varicella zoster virus (VZV). Retrospective, observational study. The study included 106 patients with AU and positive polymerase chain reaction (PCR) results, Goldmann-Witmer coefficients (GWCs), or both, for RV (n = 57), HSV (n = 39), or VZV (n = 10). Clinical records of the included patients were analyzed retrospectively; demographic constitution, ophthalmologic characteristics, and visual prognosis were compared. Age, gender, and diverse clinical and laboratory characteristics, including course and laterality of AU; prevalence of positive results for PCR, GWC, or both; conjunctival redness; corneal edema; history of keratitis; presence of keratic precipitates; synechiae; heterochromia; and grade of inflammation. In addition, complications and visual acuity at 1 and 3 years of follow-up were recorded. All 3 types of viral AU were characterized by unilateral involvement (80%-97%). Rubella virus AU was characterized by younger age at onset and chronic course and typically was associated with cataract at presentation. Heterochromia was present in 23% of RV AU patients. Anterior uveitis associated with HSV or VZV occurred characteristically in older patients and frequently followed an acute course. Clinical features associated with herpetic AU included conjunctival redness, corneal edema, history of keratitis, and development of posterior synechiae. Herpes simplex virus AU often had severe anterior chamber inflammation, whereas the presence of vitritis was more common in RV AU and VZV AU. The prevalence of documented intraocular pressure (IOP) of more than 30 mmHg (25%-50%; P = 0.06) and development of glaucoma (18%-30%; P = 0.686) were similar in all 3 groups. Focal chorioretinal scars were seen in 22% of RV AU eyes, in 0% of HSV AU eyes, and in 11% of VZV AU eyes (P = 0.003). Visual prognosis was favorable for all 3 groups. These observations identify clinical differences between RV AU, HSV AU, and VZV AU and may be of particular value to ophthalmologists who are unable to carry out intraocular fluid analysis to discriminate between these types of viral AU. The author(s) have no proprietary or commercial interest in any materials discussed in this article. Copyright © 2011 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  19. Use of Clinical and Neuroimaging Characteristics to Distinguish Temporal Lobe Herpes Simplex Encephalitis From Its Mimics

    PubMed Central

    Chow, Felicia C.; Glaser, Carol A.; Sheriff, Heather; Xia, Dongxiang; Messenger, Sharon; Whitley, Richard; Venkatesan, Arun

    2015-01-01

    Background. We describe the spectrum of etiologies associated with temporal lobe (TL) encephalitis and identify clinical and radiologic features that distinguish herpes simplex encephalitis (HSE) from its mimics. Methods. We reviewed all adult cases of encephalitis with TL abnormalities on magnetic resonance imaging (MRI) from the California Encephalitis Project. We evaluated the association between specific clinical and MRI characteristics and HSE compared with other causes of TL encephalitis and used multivariate logistic modeling to identify radiologic predictors of HSE. Results. Of 251 cases of TL encephalitis, 43% had an infectious etiology compared with 16% with a noninfectious etiology. Of infectious etiologies, herpes simplex virus was the most commonly identified agent (n = 60), followed by tuberculosis (n = 8) and varicella zoster virus (n = 7). Of noninfectious etiologies, more than half (n = 21) were due to autoimmune disease. Patients with HSE were older (56.8 vs 50.2 years; P = .012), more likely to be white (53% vs 35%; P = .013), more likely to present acutely (88% vs 64%; P = .001) and with a fever (80% vs 49%; P < .001), and less likely to present with a rash (2% vs 15%; P = .010). In a multivariate model, bilateral TL involvement (odds ratio [OR], 0.38; 95% confidence interval [CI], .18–.79; P = .010) and lesions outside the TL, insula, or cingulate (OR, 0.37; 95% CI, .18–.74; P = .005) were associated with lower odds of HSE. Conclusions. In addition to HSE, other infectious and noninfectious etiologies should be considered in the differential diagnosis for TL encephalitis, depending on the presentation. Specific clinical and imaging features may aid in distinguishing HSE from non-HSE causes of TL encephalitis. PMID:25637586

  20. Diagnostic imaging of herpes simplex virus encephalitis using a radiolabeled antiviral drug: autoradiographic assessment in an animal model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, Y.; Rubenstein, R.; Price, R.W.

    1984-06-01

    To develop a new approach to the diagnosis of herpes simplex encephalitis, we used a radiolabeled antiviral drug, 2'-fluoro-5-methyl-1-beta-D-arabinosyluracil labeled with carbon 14 ((14C)FMAU), as a probe for selectively imaging brain infection in a rat model by quantitative autoradiography. A high correlation was found between focal infection, as defined by immunoperoxidase viral antigen staining, and increased regional (14C)FMAU uptake in brain sections. Two potential sources of false-positive imaging were defined: high concentrations of drug in the choroid plexus because of its higher permeability compared with brain, and drug sequestration by proliferating uninfected cell populations. Our results support the soundness ofmore » the proposed strategy of using a labeled antiviral drug that is selectively phosphorylated by herpes simplex virus type 1 thymidine kinase in conjunction with scanning methods for human diagnosis, and also define some of the factors that must be taken into account when planning clinical application.« less

  1. Chronic herpes simplex type-1 encephalitis with intractable epilepsy in an immunosuppressed patient.

    PubMed

    Laohathai, Christopher; Weber, Daniel J; Hayat, Ghazala; Thomas, Florian P

    2016-02-01

    Chronic herpes simplex virus type-1 encephalitis (HSE-1) is uncommon. Past reports focused on its association with prior documented acute infection. Here, we describe a patient with increasingly intractable epilepsy from chronic HSE-1 reactivation without history of acute central nervous system infection. A 49-year-old liver transplant patient with 4-year history of epilepsy after initiation of cyclosporine developed increasingly frequent seizures over 3 months. Serial brain magnetic resonance imaging showed left temporoparietal cortical edema that gradually improved despite clinical decline. Herpes simplex virus type-1 (HSV-1) DNA was detected in cerebrospinal fluid by polymerase chain reaction. Cerebrospinal fluid HSV-1&2 IgM was negative. Seizures were controlled after acyclovir treatment, and the patient remained seizure free at 1-year follow-up. Chronic HSE is a cause of intractable epilepsy, can occur without a recognized preceding acute phase, and the clinical course of infection may not directly correlate with neuroimaging changes.

  2. Prevalence and Determinants of Herpes Simplex Virus Type 2 (HSV-2)/Syphilis Co-Infection and HSV-2 Mono-Infection among Human Immunodeficiency Virus Positive Men Who Have Sex with Men: a Cross-Sectional Study in Northeast China.

    PubMed

    Hu, Qing-Hai; Xu, Jun-Jie; Chu, Zhen-Xing; Zhang, Jing; Yu, Yan-Qiu; Yu, Huan; Ding, Hai-Bo; Jiang, Yong-Jun; Geng, Wen-Qing; Wang, Ning; Shang, Hong

    2017-05-24

    This study assessed the prevalence and determinants of herpes simplex virus type 2 (HSV-2)/syphilis co-infection and HSV-2 mono-infection in human immunodeficiency virus (HIV)-positive men who have sex with men (MSM) in China. A cross-sectional study was conducted of 545 HIV-positive MSM in Shenyang between February 2009 and October 2014. Participants underwent physical examinations and serological tests for HSV-2 and syphilis. A multinomial logistic regression was used to identify the risk factors associated with HSV-2/syphilis co-infection and HSV-2 mono-infection. The prevalence of HSV-2 mono-infection, syphilis mono-infection, and HSV-2/syphilis co-infection (95% confidence interval) was 48.6% (44.4-52.8%), 34.3% (30.3-38.3%), and 22.9% (19.4-26.5%), respectively. After controlling within HSV-2/syphilis-seropositive cases, regression analysis revealed that the related factors for HSV-2/syphilis co-infection included age (25-50 vs. ≤ 24 years: adjusted odds ratio [aOR], 4.55; > 50 vs. ≤ 24 years: aOR, 43.02), having regular female sexual partner(s) in the past 6 months (aOR, 0.43), and age at first MSM experience (≤ 18 vs. > 18 years: aOR, 2.59) (all P < 0.05). The high prevalence of HSV-2 mono infection and HSV-2/syphilis co-infection in HIV-positive MSM indicates a high secondary HIV transmission risk. A campaign for detection and treatment of HSV-2 and syphilis is urgently required for HIV-positive MSM in China.

  3. Genital tract shedding of herpes simplex virus type 2 in women: effects of hormonal contraception, bacterial vaginosis, and vaginal group B Streptococcus colonization.

    PubMed

    Cherpes, Thomas L; Melan, Melissa A; Kant, Jeffrey A; Cosentino, Lisa A; Meyn, Leslie A; Hillier, Sharon L

    2005-05-15

    Genital infections due to herpes simplex virus type 2 (HSV-2) are characterized by frequent reactivation and shedding of the virus and by the attendant risk of transmission to sexual partners. We investigated the effects of vaginal coinfections and hormonal contraceptive use on genital tract shedding of HSV-2 in women. A total of 330 HSV-2-seropositive women were followed every 4 months for a year. At each visit, one vaginal swab specimen was obtained for detection of HSV-2 by polymerase chain reaction, a second vaginal swab specimen was obtained for detection of group B Streptococcus (GBS) organisms and yeast by culture, and a vaginal smear was obtained for the diagnosis of bacterial vaginosis by Gram staining. HSV-2 DNA was detected in 88 (9%) of 956 vaginal swab specimens. Independent predictors of genital tract shedding of HSV-2 were HSV-2 seroconversion during the previous 4 months (adjusted odds ratio [aOR], 3.0; 95% confidence interval [CI], 1.3-6.8), bacterial vaginosis (aOR, 2.3; 95% CI, 1.3-4.0), high-density vaginal GBS colonization (aOR, 2.2; 95% CI, 1.3-3.8), and use of hormonal contraceptives (aOR, 1.8; 95% CI, 1.1-2.8). The present study identifies hormonal contraceptive use, bacterial vaginosis, and high-density vaginal GBS colonization as risk factors for genital tract shedding of HSV-2 in women. Because hormonal contraceptives are used by millions of women worldwide and because bacterial vaginosis and vaginal GBS colonization are common vaginal conditions, even modest associations with HSV-2 shedding would result in substantial attributable risks for transmission of the virus.

  4. Triple retinal infection with human immunodeficiency virus type 1, cytomegalovirus, and herpes simplex virus type 1. Light and electron microscopy, immunohistochemistry, and in situ hybridization.

    PubMed

    Rummelt, V; Rummelt, C; Jahn, G; Wenkel, H; Sinzger, C; Mayer, U M; Naumann, G O

    1994-02-01

    This report describes the histopathologic and virologic findings of the retina from a 55-year-old bisexual patient with the acquired immune deficiency syndrome (AIDS), who had concurrent human immunodeficiency virus type 1 (HIV-1), cytomegalovirus (CMV), and herpes simplex virus type 1 (HSV-1) retinitis, and was treated with ganciclovir. The eyes were obtained at autopsy and processed for light microscopy and transmission electron microscopy. Immunohistochemical stains for HSV-1, CMV, HIV-1, varicella zoster virus, and glial fibrillary acidic protein were carried out using the peroxidase-antiperoxidase and streptavidin-biotin-alkaline phosphatase techniques. For in situ hybridization, a radiolabeled CMV DNA probe (Eco-RI-Y fragment of strain AD 169) was used. Results of histopathologic examination showed a full-thickness necrotizing retinitis with cytomegalic and herpes viral intranuclear inclusions in cells of the neurosensory retina, retinal vascular endothelium, and the retinal pigment epithelium. Some areas of the retina were replaced by glial tissue. The choroid contained only a few chronic inflammatory cells. Immunoperoxidase studies disclosed CMV antigens diffusely distributed throughout all layers of the retina and the retinal pigment epithelium. Herpes simplex virus type 1 antigens were present in retinal cells and the retinal vascular endothelium. Human immunodeficiency virus type 1 antigens were found in mononuclear cells in all layers of the sensory retina. Dual infections with HIV-1 and CMV of individual multinucleated giant cells of glial origin were demonstrated immunohistochemically. Transmission electron microscopy showed herpes viral particles in the vascular endothelium of the retinal vessels and the choriocapillaris. Human immunodeficiency virus particles were identified in the endothelium of the choriocapillaris. The possibility of multiple viral infections of the retina, mimicking classic CMV retinitis, should be considered in the clinical and histologic differential diagnosis of necrotizing retinitis in patients with AIDS.

  5. Herpes simplex virus-induced anti-N-methyl-d-aspartate receptor encephalitis: a systematic literature review with analysis of 43 cases.

    PubMed

    Nosadini, Margherita; Mohammad, Shekeeb S; Corazza, Francesco; Ruga, Ezia Maria; Kothur, Kavitha; Perilongo, Giorgio; Frigo, Anna Chiara; Toldo, Irene; Dale, Russell C; Sartori, Stefano

    2017-08-01

    To conduct a systematic literature review on patients with biphasic disease with herpes simplex virus (HSV) encephalitis followed by anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis. We conducted a case report and systematic literature review (up to 10 December 2016), focused on differences between herpes simplex encephalitis (HSE) and anti-NMDAR encephalitis phases, age-related characteristics of HSV-induced anti-NMDAR encephalitis, and therapy. For statistical analyses, McNemar's test, Fisher's test, and Wilcoxon rank sum test were used (two-tailed significance level set at 5%). Forty-three patients with biphasic disease were identified (31 children). Latency between HSE and anti-NMDAR encephalitis was significantly shorter in children than adults (median 24 vs 40.5d; p=0.006). Compared with HSE, anti-NMDAR encephalitis was characterized by significantly higher frequency of movement disorder (2.5% vs 75% respectively; p<0.001), and significantly lower rate of seizures (70% vs 30% respectively; p=0.001). Compared with adults, during anti-NMDAR encephalitis children had significantly more movement disorders (86.7% children vs 40% adults; p=0.006), fewer psychiatric symptoms (41.9% children vs 90.0% adults; p=0.025), and a slightly higher median modified Rankin Scale score (5 in children vs 4 in adults; p=0.015). During anti-NMDAR encephalitis, 84.6 per cent of patients received aciclovir (for ≤7d in 22.7%; long-term antivirals in 18.0% only), and 92.7 per cent immune therapy, but none had recurrence of HSE clinically or using cerebrospinal fluid HSV polymerase chain reaction (median follow-up 7mo). Our review suggests that movement disorder may help differentiate clinically an episode of HSV-induced anti-NMDAR encephalitis from HSE relapse. Compared with adults, children have shorter latency between HSE and anti-NMDAR encephalitis and, during anti-NMDAR encephalitis, more movement disorder, fewer psychiatric symptoms, and slightly more severe disease. According to our results, immune therapy given for HSV-induced anti-NMDAR encephalitis does not predispose patients to HSE recurrence. © 2017 Mac Keith Press.

  6. Protease-deficient herpes simplex virus protects mice from lethal herpesvirus infection.

    PubMed Central

    Hippenmeyer, P J; Rankin, A M; Luckow, V A; Neises, G R

    1997-01-01

    Null mutants and attenuated mutants of herpes simplex virus (HSV) have been shown to induce immunity against challenge from wild-type virus. Null viruses with a defect in late gene products would be expected to express more viral genes than viruses with defects in essential early gene products and thus induce a better immune response. Herpesviruses encode a late gene product (serine protease) that is autocatalytic and cleaves the capsid assembly protein during viral replication. To determine whether a virus with a mutation in this gene could induce immunity, we constructed a recombinant virus containing the gusA reporter gene in the protease domain of the HSV type 1 UL26 open reading frame (ORF). Consistent with previous results (M. Gao, L. Matusick-Kumar, W. Hurlburt, S. F. DiTusa, W. W. Newcomb, J. C. Brown, P. J. McCann, I. Deckman, and R. J. Colonno, J. Virol. 68:3702-3712, 1994), recombinant virus could be isolated only from helper cell lines expressing the product of the UL26 ORF. Mice inoculated with the recombinant virus were unaffected by doses of virus that were lethal to mice infected with wild-type virus. Mice which were previously inoculated with the recombinant virus were also protected by a subsequent challenge with wild-type virus in a dose-dependent manner. These results indicate that recombinant viruses lacking the protease gene are avirulent but render protection from subsequent challenge. PMID:8995617

  7. Human papilloma virus, herpes simplex virus and epstein barr virus in oral squamous cell carcinoma from eight different countries.

    PubMed

    Jalouli, Jamshid; Jalouli, Miranda M; Sapkota, Dipak; Ibrahim, Salah O; Larsson, Per-Anders; Sand, Lars

    2012-02-01

    Oral squamous cell carcinoma (OSCC) is a major health problem in many parts of the world, and the major causative agents are thought to be the use of alcohol and tobacco. Oncogenic viruses have also been suggested to be involved in OSCC development. This study investigated the prevalence of human papillomaviruses (HPV), herpes simplex virus (HSV) and Epstein-Barr virus (EBV) in 155 OSCC from eight different countries from different ethnic groups, continents and with different socioeconomic backgrounds. 41 A total of OSCCs were diagnosed in the tongue (26%) and 23 in the floor of the mouth (15%); the other 91 OSCCs were diagnosed in other locations (59%). The patients were also investigated regarding the use of alcohol and smoking and smokeless tobacco habits. Tissue samples were obtained from formalin-fixed, paraffin-embedded samples of the OSCC. DNA was extracted and the viral genome was examined by single, nested and semi-nested PCR assays. Sequencing of double-stranded DNA from the PCR product was carried out. Following sequencing of the HPV-, HSV- and EBV-positive PCR products, 100% homology between the sampels was found. Of all the 155 OSCCs examined, 85 (55%) were positive for EBV, 54 (35%) for HPV and 24 (15%) for HSV. The highest prevalence of HPV was seen in Sudan (65%), while HSV (55%) and EBV (80%) were most prevalent in the UK. In 34% (52/155) of all the samples examined, co-infection by two (46/155=30%) or three (6/155=4%) virus specimens was detected. The most frequent double infection was HPV with EBV in 21% (32/155) of all OSCCs. There was a statistically significant higher proportion of samples with HSV (p=0.026) and EBV (p=0.015) in industrialized countries (Sweden, Norway, UK and USA) as compared to developing countries (Sudan, India, Sri Lanka and Yemen). Furthermore, there was a statistically significant higher co-infection of HSV and EBV in samples from industrialized countries (p=0.00031). No firm conclusions could be drawn regarding the relationship between alcohol, tobacco and virus infections. The significance of our findings must be put in relation to other risk factors and these observations warrant further studies to determine the possible role of viral infections and co-infections with HPV, EBV and HSV as risk markers for the development of OSCC.

  8. Exposure to herpes simplex virus type 1 and cognitive impairments in individuals with schizophrenia.

    PubMed

    Prasad, Konasale M; Watson, Annie M M; Dickerson, Faith B; Yolken, Robert H; Nimgaonkar, Vishwajit L

    2012-11-01

    Latent infection with neurotropic herpes viruses, such as herpes simplex virus, type 1 (HSV1), has been generally considered benign in most immunocompetent individuals except for rare cases of encephalitis. However, several recent studies have shown impaired cognitive functions among individuals with schizophrenia exposed to HSV1 compared with schizophrenia patients not exposed to HSV1. Such impairments are robust and are prominently observed in working memory, verbal memory, and executive functions. Brain regions that play a key role in the regulation of these domains have shown smaller volumes, along with correlation between these morphometric changes and cognitive impairments in schizophrenia. One study noted temporal decline in executive function and gray matter loss among HSV1-exposed first-episode antipsychotic-naïve schizophrenia patients. Furthermore, a proof-of-concept double-blind placebo-controlled trial indicated improvement in cognitive performance following supplemental anti-herpes-specific medication among HSV1 seropositive schizophrenia patients. Cross-sectional studies have also identified an association between HSV1 exposure and lesser degrees of cognitive impairment among healthy control individuals and patients with bipolar disorder. These studies fulfill several Bradford-Hill criteria, suggesting etiological links between HSV1 exposure and cognitive impairment. Exposure to other human herpes viruses such as cytomegalovirus and herpes simplex virus type 2 (HSV2) may also be associated with cognitive impairment, but the data are less consistent. These studies are reviewed critically and further lines of enquiry recommended. The results are important from a public health perspective, as HSV1 exposure is highly prevalent in many populations.

  9. Exposure to Herpes Simplex Virus Type 1 and Cognitive Impairments in Individuals With Schizophrenia

    PubMed Central

    Prasad, Konasale M.; Watson, Annie M. M.; Dickerson, Faith B.; Yolken, Robert H.; Nimgaonkar, Vishwajit L.

    2012-01-01

    Latent infection with neurotropic herpes viruses, such as herpes simplex virus, type 1 (HSV1), has been generally considered benign in most immunocompetent individuals except for rare cases of encephalitis. However, several recent studies have shown impaired cognitive functions among individuals with schizophrenia exposed to HSV1 compared with schizophrenia patients not exposed to HSV1. Such impairments are robust and are prominently observed in working memory, verbal memory, and executive functions. Brain regions that play a key role in the regulation of these domains have shown smaller volumes, along with correlation between these morphometric changes and cognitive impairments in schizophrenia. One study noted temporal decline in executive function and gray matter loss among HSV1-exposed first-episode antipsychotic-naïve schizophrenia patients. Furthermore, a proof-of-concept double-blind placebo-controlled trial indicated improvement in cognitive performance following supplemental anti-herpes–specific medication among HSV1 seropositive schizophrenia patients. Cross-sectional studies have also identified an association between HSV1 exposure and lesser degrees of cognitive impairment among healthy control individuals and patients with bipolar disorder. These studies fulfill several Bradford-Hill criteria, suggesting etiological links between HSV1 exposure and cognitive impairment. Exposure to other human herpes viruses such as cytomegalovirus and herpes simplex virus type 2 (HSV2) may also be associated with cognitive impairment, but the data are less consistent. These studies are reviewed critically and further lines of enquiry recommended. The results are important from a public health perspective, as HSV1 exposure is highly prevalent in many populations. PMID:22490995

  10. Inactivation of Viruses by Benzalkonium Chloride

    PubMed Central

    Armstrong, J. A.; Froelich, E. J.

    1964-01-01

    Benzalkonium chloride (as Roccal or Zephiran) was found to inactivate influenza, measles, canine distemper, rabies, fowl laryngotracheitis, vaccinia, Semliki Forest, feline pneumonitis, meningopneumonitis, and herpes simplex viruses after 10 min of exposure at 30 C or at room temperature. Poliovirus and encephalomyocarditis virus were not inactivated under the same conditions. It was concluded that all viruses tested were sensitive except members of the picorna group. The literature was reviewed. PMID:4288740

  11. Structural analysis of herpes simplex virus by optical super-resolution imaging

    NASA Astrophysics Data System (ADS)

    Laine, Romain F.; Albecka, Anna; van de Linde, Sebastian; Rees, Eric J.; Crump, Colin M.; Kaminski, Clemens F.

    2015-01-01

    Herpes simplex virus type-1 (HSV-1) is one of the most widespread pathogens among humans. Although the structure of HSV-1 has been extensively investigated, the precise organization of tegument and envelope proteins remains elusive. Here we use super-resolution imaging by direct stochastic optical reconstruction microscopy (dSTORM) in combination with a model-based analysis of single-molecule localization data, to determine the position of protein layers within virus particles. We resolve different protein layers within individual HSV-1 particles using multi-colour dSTORM imaging and discriminate envelope-anchored glycoproteins from tegument proteins, both in purified virions and in virions present in infected cells. Precise characterization of HSV-1 structure was achieved by particle averaging of purified viruses and model-based analysis of the radial distribution of the tegument proteins VP16, VP1/2 and pUL37, and envelope protein gD. From this data, we propose a model of the protein organization inside the tegument.

  12. Localization of the herpes simplex virus type 1 major capsid protein VP5 to the cell nucleus requires the abundant scaffolding protein VP22a.

    PubMed

    Nicholson, P; Addison, C; Cross, A M; Kennard, J; Preston, V G; Rixon, F J

    1994-05-01

    The intracellular distributions of three herpes simplex virus type 1 (HSV-1) capsid proteins, VP23, VP5 and VP22a, were examined using vaccinia virus and plasmid expression systems. During infection of cells with HSV-1 wild-type virus, all three proteins were predominantly located in the nucleus, which is the site of capsid assembly. However, when expressed in the absence of any other HSV-1 proteins, although VP22a was found exclusively in the nucleus as expected, VP5 and VP23 were distributed throughout the cell. Thus nuclear localization is not an intrinsic property of these proteins but must be mediated by one or more HSV-1-induced proteins. Co-expression experiments demonstrated that VP5 was efficiently transported to the nucleus in the presence of VP22a, but the distribution of VP23 was unaffected by the presence of either or both of the other two proteins.

  13. Ancient Recombination Events between Human Herpes Simplex Viruses

    PubMed Central

    Burrel, Sonia; Boutolleau, David; Ryu, Diane; Agut, Henri; Merkel, Kevin; Leendertz, Fabian H.

    2017-01-01

    Abstract Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) are seen as close relatives but also unambiguously considered as evolutionary independent units. Here, we sequenced the genomes of 18 HSV-2 isolates characterized by divergent UL30 gene sequences to further elucidate the evolutionary history of this virus. Surprisingly, genome-wide recombination analyses showed that all HSV-2 genomes sequenced to date contain HSV-1 fragments. Using phylogenomic analyses, we could also show that two main HSV-2 lineages exist. One lineage is mostly restricted to subSaharan Africa whereas the other has reached a global distribution. Interestingly, only the worldwide lineage is characterized by ancient recombination events with HSV-1. Our findings highlight the complexity of HSV-2 evolution, a virus of putative zoonotic origin which later recombined with its human-adapted relative. They also suggest that coinfections with HSV-1 and 2 may have genomic and potentially functional consequences and should therefore be monitored more closely. PMID:28369565

  14. Glycoprotein Targeted Therapeutics: A New Era of Anti-Herpes Simplex Virus-1 Therapeutics

    PubMed Central

    Antoine, Thessicar; Park, Paul J.; Shukla, Deepak

    2013-01-01

    Herpes simplex virus type-1 (HSV-1) is among the most common human pathogens worldwide. Its entry into host cells is an intricate process that relies heavily on the ability of the viral glycoproteins to bind host cellular proteins and to efficiently mediate fusion of the virus envelope with the cell membrane. Acquisition of HSV-1 results in a lifelong latent infection. Due to the cycles of reactivation from a latent state, much emphasis has been placed on the management of infection through the use of DNA synthesis inhibitors. However, new methods are needed to provide more effective treatment at earlier phases of the viral infection and to prevent the development of drug resistance by the virus. This review outlines the infection process and the common therapeutics currently used against the fundamental stages of HSV-1 replication and fusion. The remainder of this article will focus on a new approach for HSV-1 infection control and management, the concept of glycoprotein-receptor targeting. PMID:23440920

  15. Sulfated polysaccharide of Caesalpinia ferrea inhibits herpes simplex virus and poliovirus.

    PubMed

    Lopes, Nayara; Faccin-Galhardi, Lígia Carla; Espada, Samantha Fernandes; Pacheco, Arcelina Cunha; Ricardo, Nágila Maria Pontes Silva; Linhares, Rosa Elisa Carvalho; Nozawa, Carlos

    2013-09-01

    Herpes simplex virus (HSV) is one of the most regular human pathogens, being a public health problem, and causal agent of several diseases. Poliovirus (PV) is an enteric virus and about 1% of infected individuals develop paralytic poliomyelitis due to viral invasion of the central nervous system and destruction of motor neurons. This work evaluated the activity of a sulfated polysaccharide of Caesalpinia ferrea (SPLCf) in HSV and PV replication. The antiviral effect of SPLCf at varying concentrations was tested by plaque assay under several protocols, such as time-of-addition, adsorption and penetration inhibition and virucidal. Syntheses of viral protein and nucleic acid were also monitored by the immunofluorescence assay and PCR. The SPLCf inhibited virus adsorption and steps after penetration, and inhibited the synthesis of viral protein. Virucidal effect was also shown and nucleic acid synthesis was concurrent with positive results. Our findings suggested that the substance with low toxicity represent a potential viral inhibitor. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Detection of herpes simplex virus and varicella-zoster virus in clinical swabs: frequent inhibition of PCR as determined by internal controls.

    PubMed

    Bezold, G; Volkenandt, M; Gottlöber, P; Peter, R U

    2000-12-01

    PCR-based detection of microorganisms is widely used for diagnostic purposes. Most routine PCR applications do not control for inhibition of PCR, thus leading to false-negative results. One hundred eighteen swab samples obtained from skin and mucosa were investigated for the presence of herpes simplex virus (HSV), varicella-zoster virus (VZV), and the control gene betaglobin by internally controlled PCR with purified and unpurified DNA in parallel. With unpurified DNA, inhibition of PCR was detected in 23% of betaglobin PCRs, 25% of VZV PCRs, and 16% of HSV PCRs versus 3% each for purified DNA. Approximately 20% of the samples with positive results for HSV or VZV had negative or inhibited results using unpurified DNA. These results indicate that PCR from clinical swab specimens should be performed exclusively with internal controls because the positive control alone cannot exclude PCR inhibition in individual samples. Purification of DNA will decrease, but not exclude, PCR inhibition.

  17. Tranylcypromine Reduces Herpes Simplex Virus 1 Infection in Mice

    PubMed Central

    Yao, Hui-Wen; Lin, Pin-Hung; Shen, Fang-Hsiu; Perng, Guey-Chuen; Tung, Yuk-Ying

    2014-01-01

    Herpes simplex virus 1 (HSV-1) infects the majority of the human population and establishes latency by maintaining viral genomes in neurons of sensory ganglia. Latent virus can undergo reactivation to cause recurrent infection. Both primary and recurrent infections can cause devastating diseases, including encephalitis and corneal blindness. Acyclovir is used to treat patients, but virus resistance to acyclovir is frequently reported. Recent in vitro findings reveal that pretreatment of cells with tranylcypromine (TCP), a drug widely used in the clinic to treat neurological disorders, restrains HSV-1 gene transcription by inhibiting the histone-modifying enzyme lysine-specific demethylase 1. The present study was designed to examine the anti-HSV-1 efficacy of TCP in vivo because of the paucity of reports on this issue. Using the murine model, we found that TCP decreased the severity of wild-type-virus-induced encephalitis and corneal blindness, infection with the acyclovir-resistant (thymidine kinase-negative) HSV-1 mutant, and tissue viral loads. Additionally, TCP blocked in vivo viral reactivation in trigeminal ganglia. These results support the therapeutic potential of TCP for controlling HSV-1 infection. PMID:24590478

  18. Current Concepts for Genital Herpes Simplex Virus Infection: Diagnostics and Pathogenesis of Genital Tract Shedding

    PubMed Central

    Corey, Lawrence

    2015-01-01

    SUMMARY Herpes simplex virus 2 (HSV-2) is a DNA virus that is efficiently transmitted through intimate genital tract contact and causes persistent infection that cannot be eliminated. HSV-2 may cause frequent, symptomatic self-limited genital ulcers, but in most persons infection is subclinical. However, recent studies have demonstrated that the virus is frequently shed from genital surfaces even in the absence of signs or symptoms of clinical disease and that the virus can be transmitted during these periods of shedding. Furthermore, HSV-2 shedding is detected throughout the genital tract and may be associated with genital tract inflammation, which likely contributes to increased risk of HIV acquisition. This review focuses on HSV diagnostics, as well as what we have learned about the importance of frequent genital HSV shedding for (i) HSV transmission and (ii) genital tract inflammation, as well as (iii) the impact of HSV-2 infection on HIV acquisition and transmission. We conclude with discussion of future areas of research to push the field forward. PMID:26561565

  19. Current Concepts for Genital Herpes Simplex Virus Infection: Diagnostics and Pathogenesis of Genital Tract Shedding.

    PubMed

    Johnston, Christine; Corey, Lawrence

    2016-01-01

    Herpes simplex virus 2 (HSV-2) is a DNA virus that is efficiently transmitted through intimate genital tract contact and causes persistent infection that cannot be eliminated. HSV-2 may cause frequent, symptomatic self-limited genital ulcers, but in most persons infection is subclinical. However, recent studies have demonstrated that the virus is frequently shed from genital surfaces even in the absence of signs or symptoms of clinical disease and that the virus can be transmitted during these periods of shedding. Furthermore, HSV-2 shedding is detected throughout the genital tract and may be associated with genital tract inflammation, which likely contributes to increased risk of HIV acquisition. This review focuses on HSV diagnostics, as well as what we have learned about the importance of frequent genital HSV shedding for (i) HSV transmission and (ii) genital tract inflammation, as well as (iii) the impact of HSV-2 infection on HIV acquisition and transmission. We conclude with discussion of future areas of research to push the field forward. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. The Quantity of Latent Viral DNA Correlates with the Relative Rates at Which Herpes Simplex Virus Types 1 and 2 Cause Recurrent Genital Herpes Outbreaks

    PubMed Central

    Lekstrom-Himes, Julie A.; Pesnicak, Lesley; Straus, Stephen E.

    1998-01-01

    Herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) have evolved specific anatomic tropisms and site-dependent rates of reactivation. To determine whether reactivation rates depend on distinct abilities of HSV-1 and -2 to establish latency and to express latency-associated transcripts (LATs), virulent strains of each virus were studied in the guinea pig genital model. Following infection with equivalent titers of virus, the quantities of latent HSV-2 genomes and LATs were higher in lumbosacral ganglia, and HSV-2 infections recurred more frequently and lasted longer than HSV-1 infections. In contrast, if the inoculum of HSV-1 was 10 times that of HSV-2, the quantity of HSV-1 DNA and LATs increased correspondingly and HSV-1 infections were as likely to recur as those with HSV-2. The quantity of latent virus DNA correlates with and may be a major determinant of the site-specific patterns and rates of reactivation of HSV-1 and -2. PMID:9525595

  1. Diagnosis of herpes simplex virus infection by immunofluorescence.

    PubMed Central

    Taber, L H; Brasier, F; Couch, R B; Greenberg, S B; Jones, D; Knight, V

    1976-01-01

    The utility of the indirect immunofluorescent antibody (IFA) technique for diagnosis of herpes simplex virus (HSV) infection was examined by testing specimens for this agent from 31 patients with encephalitis or meningitis, 17 with conjunctivitis, 19 with genital disease, and 1 with genital disease and meningitis. Brain biopsy tissue from four patients with encephalitis was positive by IFA and virus culture for HSV. Leukocytes in cerebrospinal fluid from these four patients and one with HSV meningitis were also positive by IFA, but virus isolation attempts on the fluid were all negative. Conjunctival scrapings from two patients with conjunctivitis were positive for HSV by both IFA and virus culture. Eleven of 12 culture-positive lesions of herpes progenitalis were positive by IFA, and 1 dark field-positive syphilitic chancre was also positive for HSV by both IFA and culture. Evidence for specificity of the results was provided by internal controls in each test and negative results from patients with other diagnoses. Thus, the IFA technique constituted a rapid, sensitive, and specific diagnostic method for the diagnosis of HSV infections. PMID:178689

  2. The impact of oral herpes simplex virus infection and candidiasis on chemotherapy-induced oral mucositis among patients with hematological malignancies.

    PubMed

    Chen, Y-K; Hou, H-A; Chow, J-M; Chen, Y-C; Hsueh, P-R; Tien, H-F

    2011-06-01

    The aim of this study was to evaluate the influences of oral candidiasis and herpes simplex virus 1 (HSV-1) infections in chemotherapy-induced oral mucositis (OM). The medical records of 424 consecutive patients with hematological malignancies who had received chemotherapy at a medical center in Taiwan from January 2006 to November 2007 were retrospectively reviewed. The results of swab cultures of fungus and HSV-1 for OM were correlated with associated clinical features. Younger age, myeloid malignancies, and disease status other than complete remission before chemotherapy were significantly correlated with the development of OM. Risks of fever (p < 0.001) and bacteremia were higher in patients with OM. Among 467 episodes of OM with both swab cultures available, 221 were non-infection (47.3%) and 246 were related to either fungal infections, HSV-1 infections, or both (52.7%); of the 246 episodes, 102 were associated with fungal infections alone (21.8%), 98 with HSV-1 infections alone (21%), and 46 with both infections (9.9%). Patients who had received antifungal agents prior to OM occurrence tended to have HSV-1 infection (p < 0.001). Our results suggest that Candida albicans and HSV-1 play an important role in chemotherapy-induced OM in patients with hematological malignancies.

  3. Efficacy of Thai medicinal plant extracts against herpes simplex virus type 1 infection in vitro and in vivo.

    PubMed

    Lipipun, Vimolmas; Kurokawa, Masahiko; Suttisri, Rutt; Taweechotipatr, Pagorn; Pramyothin, Pornpen; Hattori, Masao; Shiraki, Kimiyasu

    2003-11-01

    Twenty Thai medicinal plant extracts were evaluated for anti-herpes simplex virus type 1 (HSV-1) activity. Eleven of them inhibited plaque formation of HSV-1 more than 50% at 100microg/ml in a plaque reduction assay. Aglaia odorata, Moringa oleifera, and Ventilago denticulata among the 11 were also effective against thymidine kinase-deficient HSV-1 and phosphonoacetate-resistant HSV-1 strains. These therapeutic efficacies were characterized using a cutaneous HSV-1 infection in mice. The extract of M. oleifera at a dose of 750mg/kg per day significantly delayed the development of skin lesions, prolonged the mean survival times and reduced the mortality of HSV-1 infected mice as compared with 2% DMSO in distilled water (P<0.05). The extracts of A. odorata and V. denticulata were also significantly effective in limiting the development of skin lesions (P<0.05). There were no significant difference between acyclovir and these three plant extracts in the delay of the development of skin lesions and no significant difference between acyclovir and M. oleifera in mean survival times. Toxicity of these plant extracts were not observed in treated mice. Thus, these three plant extracts may be possible candidates of anti-HSV-1 agents.

  4. Identification of a Lytic-Cycle Epstein-Barr Virus Gene Product That Can Regulate PKR Activation

    PubMed Central

    Poppers, Jeremy; Mulvey, Matthew; Perez, Cesar; Khoo, David; Mohr, Ian

    2003-01-01

    The Epstein-Barr virus (EBV) SM protein is a posttranscriptional regulator of viral gene expression. Like many transactivators encoded by herpesviruses, SM transports predominantly unspliced viral mRNA cargo from the nucleus to the cytosol, where it is subsequently translated. This activity likely involves a region of the protein that has homology to the herpes simplex virus type 1 (HSV-1) ICP27 gene product, the first member of this class of regulators to be discovered. However, SM also contains a repetitive segment rich in arginine and proline residues that is dispensable for its effects on RNA transport and splicing. This portion of SM, comprised of RXP triplet repeats, shows homology to the carboxyl-terminal domain of Us11, a double-stranded RNA (dsRNA) binding protein encoded by HSV-1 that inhibits activation of the cellular PKR kinase. To evaluate the intrinsic ability of SM to regulate PKR, we expressed and purified several SM protein derivatives and examined their activity in a variety of biochemical assays. The full-length SM protein bound dsRNA, associated physically with PKR, and prevented PKR activation. Removal of the 37-residue RXP domain significantly compromised all of these activities. Furthermore, the SM RXP domain was itself sufficient to inhibit PKR activation and interact with the kinase. Relative to its Us11 counterpart, the SM RXP segment bound dsRNA with reduced affinity and responded differently to single-stranded competitor polynucleotides. Thus, SM represents the first EBV gene product expressed during the lytic cycle that can prevent PKR activation. In addition, the RXP repeat segment appears to be a conserved herpesvirus motif capable of associating with dsRNA and modulating activation of the PKR kinase, a molecule important for the control of translation and the cellular antiviral response. PMID:12477828

  5. Identification of a lytic-cycle Epstein-Barr virus gene product that can regulate PKR activation.

    PubMed

    Poppers, Jeremy; Mulvey, Matthew; Perez, Cesar; Khoo, David; Mohr, Ian

    2003-01-01

    The Epstein-Barr virus (EBV) SM protein is a posttranscriptional regulator of viral gene expression. Like many transactivators encoded by herpesviruses, SM transports predominantly unspliced viral mRNA cargo from the nucleus to the cytosol, where it is subsequently translated. This activity likely involves a region of the protein that has homology to the herpes simplex virus type 1 (HSV-1) ICP27 gene product, the first member of this class of regulators to be discovered. However, SM also contains a repetitive segment rich in arginine and proline residues that is dispensable for its effects on RNA transport and splicing. This portion of SM, comprised of RXP triplet repeats, shows homology to the carboxyl-terminal domain of Us11, a double-stranded RNA (dsRNA) binding protein encoded by HSV-1 that inhibits activation of the cellular PKR kinase. To evaluate the intrinsic ability of SM to regulate PKR, we expressed and purified several SM protein derivatives and examined their activity in a variety of biochemical assays. The full-length SM protein bound dsRNA, associated physically with PKR, and prevented PKR activation. Removal of the 37-residue RXP domain significantly compromised all of these activities. Furthermore, the SM RXP domain was itself sufficient to inhibit PKR activation and interact with the kinase. Relative to its Us11 counterpart, the SM RXP segment bound dsRNA with reduced affinity and responded differently to single-stranded competitor polynucleotides. Thus, SM represents the first EBV gene product expressed during the lytic cycle that can prevent PKR activation. In addition, the RXP repeat segment appears to be a conserved herpesvirus motif capable of associating with dsRNA and modulating activation of the PKR kinase, a molecule important for the control of translation and the cellular antiviral response.

  6. Identification of an immunodominant epitope in glycoproteins B and G of herpes simplex viruses (HSVs) using synthetic peptides as antigens in assay of antibodies to HSV in herpes simplex encephalitis patients.

    PubMed

    Bhullar, S S; Chandak, N H; Baheti, N N; Purohit, H J; Taori, G M; Daginawala, H F; Kashyap, R S

    2014-01-01

    Herpes simplex encephalitis (HSE) is a severe viral infection of the central nervous system (CNS). Assay of antibody response is widely used in diagnostics of HSE. The aim of this study was to identify an immunodominant epitope determining the antibody response to herpes simplex viruses (HSVs) in cerebrospinal fluid (CSF) of HSE patients. The synthetic peptides that resembled type-common as well as type-specific domains of glycoproteins B (gB) and G (gG) of these viruses were evaluated for binding with IgM and IgG antibodies in CSF samples from HSE and non-HSE patients in ELISA. The QLHDLRF peptide, derived from gB of HSV was found to be an immunodominant epitope in the IgM and IgG antibody response. The patients with confirmed and suspected HSE showed in ELISA against this peptide 26% and 23% positivities for IgM, 43% and 37% positivities for IgG and 17% and 15% for both IgM and IgG antibodies, respectively. The total positivities of 86% and 75% for both IgM and IgG antibodies were obtained in the patients with confirmed and suspected HSE, respectively. These results demonstrate that a synthetic peptide-based diagnostics of HSE can be an efficient and easily accessible alternative. This is the first report describing the use of synthetic peptides derived from HSVs in diagnostics of HSE using patientsʹ CSF samples.

  7. Association Between Unprotected Ultraviolet Radiation Exposure and Recurrence of Ocular Herpes Simplex Virus

    PubMed Central

    Ludema, Christina; Cole, Stephen R.; Poole, Charles; Smith, Jennifer S.; Schoenbach, Victor J.; Wilhelmus, Kirk R.

    2014-01-01

    Studies have suggested that exposure to ultraviolet (UV) light may increase risk of herpes simplex virus (HSV) recurrence. Between 1993 and 1997, the Herpetic Eye Disease Study (HEDS) randomized 703 participants with ocular HSV to receipt of acyclovir or placebo for prevention of ocular HSV recurrence. Of these, 308 HEDS participants (48% female and 85% white; median age, 49 years) were included in a nested study of exposures thought to cause recurrence and were followed for up to 15 months. We matched weekly UV index values from the National Oceanic and Atmospheric Administration to each participant's study center and used marginal structural Cox models to account for time-varying psychological stress and contact lens use and selection bias from dropout. There were 44 recurrences of ocular HSV, yielding an incidence of 4.3 events per 1,000 person-weeks. Weighted hazard ratios comparing persons with ≥8 hours of time outdoors to those with less exposure were 0.84 (95% confidence interval (CI): 0.27, 2.63) and 3.10 (95% CI: 1.14, 8.48) for weeks with a UV index of <4 and ≥4, respectively (ratio of hazard ratios = 3.68, 95% CI: 0.43, 31.4). Though results were imprecise, when the UV index was higher (i.e., ≥4), spending 8 or more hours per week outdoors was associated with increased risk of ocular HSV recurrence. PMID:24142918

  8. Evaluation of scopadulciol-related molecules for their stimulatory effect on the cytotoxicity of acyclovir and ganciclovir against Herpes simplex virus type 1 thymidine kinase gene-transfected HeLa cells.

    PubMed

    Hayashi, Kyoko; Rahman, S M Abdur; Ohno, Hiroaki; Tanaka, Tetsuaki; Toyooka, Naoki; Nemoto, Hideo; Hayashi, Toshimitsu

    2004-08-01

    Herpes simplex virus type 1 thymidine kinase (HSV TK) is involved in both antiherpetic therapy and cancer gene therapy with acyclovir (ACV) and ganciclovir (GCV). Enhanced sensitivity to these drugs is advantageous in their clinical use. In the present study, scopadulciol (SDC) and its related compounds were evaluated for their stimulatory effect on the cytotoxicity of ACV and GCV by determination of selective toxicities against HSV TK-expressing HeLa cells. Although SDC remarkably potenciated the cytotoxicity of ACV and GCV, the other tested compounds showed only weak selectivity, except for compound 34.

  9. Studies on the constituents of seeds of Pachyrrhizus erosus and their anti herpes simplex virus (HSV) activities.

    PubMed

    Phrutivorapongkul, Ampai; Lipipun, Vimolmas; Ruangrungsi, Nijsiri; Watanabe, Toshiko; Ishikawa, Tsutomu

    2002-04-01

    Studies on the chemical constituents of the seeds of Pachyrrhizus erosus (Leguminosae) resulted in the isolation of nine known components: five rotenoids [dolineone (3), pachyrrhizone (5), 12a-hydroxydolineone (7), 12a-hydroxypachyrrhizone (9), and 12a-hydroxyrotenone (2)], two isoflavonoids [neotenone (4) and dehydroneotenone (8)], one phenylfuranocoumarin [pachyrrhizine (6)], and a monosaccharide (dulcitol). The full 1H- and 13C-NMR assignments for the isolated products except a sugar, including revision of previous assignments in the literature, are reported. Moderate anti herpes simplex virus (HSV) activity was observed in 12a-hydroxydolineone (7) and 12a-hydroxypachyrrhizone (9) among the isolated products.

  10. Herpes simplex virus type 2 recurrent meningitis (Mollaret's meningitis): a consideration for the recurrent pathogenesis.

    PubMed

    Sato, Rumi; Ayabe, Mitsuyoshi; Shoji, Hiroshi; Ichiyama, Takashi; Saito, Yumiko; Hondo, Ryo; Eizuru, Yoshito

    2005-11-01

    We report a 44-year-old Japanese woman with herpes simplex virus (HSV) type 2 recurrent meningitis (Mollaret's meningitis). The diagnosis was confirmed by nested polymerase chain reaction in her cerebrospinal fluid, but the patient's conventional HSV antibodies by complement fixation, neutralizing test or enzyme immunoassay showed low titres with low lymphoproliferative response. Several similar cases are discussed. Although the reason for the recurrent pathogenesis is uncertain, our report suggests that the low immune response including immune evasion may be involved in the pathogenesis of HSV type 2 recurrent meningitis. For this patient, long-term suppressive and patient-initiated therapies were conducted to prevent the recurrence of meningitis.

  11. A case of recurrent benign lymphocytic (Mollaret's) meningitis and review of the literature.

    PubMed

    Poulikakos, P J; Sergi, E E; Margaritis, A S; Kioumourtzis, A G; Kanellopoulos, G D; Mallios, P K; Dimitrakis, D J; Poulikakos, D J; Aspiotis, A A; Deliousis, A D; Flevaris, C P; Zacharof, A K

    2010-12-01

    Mollaret's meningitis is a rare form of benign recurrent aseptic meningitis first described in 1944. We report a case of Mollaret's meningitis due to Herpes Simplex Virus type 2 (HSV2), diagnosed with Polymerase Chain Reaction (PCR) implementation in the Cerebrospinal fluid (CSF) of the patient and treated successfully with acyclovir. To our knowledge, this is the first case of Mollaret's meningitis reported in Greece. We reviewed the literature since PCR has become widely available. Herpes Simplex Virus type 2 has been the most commonly identified causative agent of Mollaret's meningitis. Copyright © 2010 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  12. Latent herpes simplex virus 1 infection does not induce apoptosis in human trigeminal Ganglia.

    PubMed

    Himmelein, Susanne; Lindemann, Anja; Sinicina, Inga; Strupp, Michael; Brandt, Thomas; Hüfner, Katharina

    2015-05-01

    Herpes simplex virus 1 (HSV-1) can establish lifelong latency in human trigeminal ganglia. Latently infected ganglia contain CD8(+) T cells, which secrete granzyme B and are thus capable of inducing neuronal apoptosis. Using immunohistochemistry and single-cell reverse transcription-quantitative PCR (RT-qPCR), higher frequency and transcript levels of caspase-3 were found in HSV-1-negative compared to HSV-1-positive ganglia and neurons, respectively. No terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) assay-positive neurons were detected. The infiltrating T cells do not induce apoptosis in latently infected neurons. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Clonal analysis of T-cell responses to herpes simplex virus: isolation, characterization and antiviral properties of an antigen-specific helper T-cell clone.

    PubMed

    Leung, K N; Nash, A A; Sia, D Y; Wildy, P

    1984-12-01

    A herpes simplex virus (HSV)-specific long-term T-cell clone has been established from the draining lymph node cells of BALB/c mice; the cells required repeated in vitro restimulation with UV-irradiated virus. The established T-cell clone expresses the Thy-1 and Lyt-1+2,3- surface antigens. For optimal proliferation of the cloned cells, both the presence of specific antigen and an exogenous source of T-cell growth factor are required. The proliferative response of the cloned T cells was found to be virus-specific but it did not distinguish between HSV-1 and HSV-2. Adoptive cell transfer of the cloned T cells helped primed B cells to produce anti-herpes antibodies: the response was antigen-specific and cell dose-dependent. The clone failed to produce a significant DTH reaction in vivo, but did produce high levels of macrophage-activating factor. Furthermore, the T-cell clone could protect from HSV infection, as measured by a reduction in local virus growth, and by enhanced survival following the challenge of mice with a lethal dose of virus. The mechanism(s) whereby this clone protects in vivo is discussed.

  14. Analytical validation of viral CNS Flow Chip kit for detection of acute meningitis and encephalitis.

    PubMed

    Pérez-Ruiz, Mercedes; Pedrosa-Corral, Irene; Sanbonmatsu-Gámez, Sara; Gómez-Camarasa, Cristina; Navarro-Marí, José María

    2018-06-12

    A new molecular assay (Viral CNS Flow Chip kit, Master Diagnóstica, Spain) has been developed for the detection of eight viruses causing acute meningitis and encephalitis, i.e. herpes simplex viruses 1-2, varicella zoster virus, human enterovirus, human parechovirus, Toscana virus, human cytomegalovirus and Epstein Barr virus. The new assay is a multiplex one-step RT-PCR followed by automatic flow-through hybridization, colorimetric detection and image analysis. The limit of detection was 50 copies/reaction, and 10 copies/reaction for human enterovirus and the other seven viruses, respectively. The analytical validation was performed with nucleic acids extracted from 268 cerebrospinal fluid samples and the results were compared with routine molecular assays. An excellent coefficient of agreement was observed between V-CNS and routine assays [kappa index: 0.948 (95%CI: 0.928-0.968)]. The overall sensitivity and specificity was 95.9% (95%CI: 91.2-98.3%) and 99.9% (95%CI: 99.6-100%), respectively. Viral CNS Flow Chip kit is an efficient multiplex platform for the detection of the main viruses involved in acute meningitis and encephalitis. The inclusion of a TOSV genome target may improve the laboratory diagnosis of viral neurological infections in endemic areas. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Recurrent Cutaneous Herpes Simplex in Hairless Mice

    PubMed Central

    Underwood, Gerald E.; Weed, Sheldon D.

    1974-01-01

    Passively immunized hairless mice were inoculated cutaneously with herpes simplex virus. Thirty-nine days later, when the primary cutaneous lesions had completely healed, the mice were treated subcutaneously with prednisone. Within 12 to 30 days after starting prednisone treatment, herpesvirus was recovered by skin swabs from 12 of 71 (17%) of the treated mice. This new model has potential application for understanding and treating recurrent cutaneous herpes infections. PMID:4372171

  16. Medical Surveillance Monthly Report (MSMR). Volume 17, Number 08, August 2010

    DTIC Science & Technology

    2010-08-01

    notifi able medical event reports that included diagnostic codes (ICD-9-CM) indicative of chlamydia, gonorrhea, syphilis, herpes simplex virus (HSV...infections of interest for this report Results: Condition Diagnostic codes Chlamydia 099.41, 099.5 Gonorrhea 098 Herpes simplex (HSV) 054 Human...housing arrangements may also play roles and off er opportunities for targeted prevention.6 Human papillomavirus (HPV), the cause of genital warts

  17. Does natalizumab treatment increase the risk of herpes simplex encephalitis in multiple sclerosis? Case and discussion.

    PubMed

    Sharma, Kanchan; Ballham, Samantha A; Inglis, Kirsty E A; Renowden, Shelley; Cottrell, David A

    2013-10-01

    This report presents the 4th documented case worldwide of herpes simplex encephalitis in multiple sclerosis (MS) patients treated with natalizumab and the first case in the UK. Natalizumab is licensed for relapsing remitting multiple sclerosis in patients with high disease activity despite treatment with interferon-beta and patients with rapidly evolving severe, multiple sclerosis. Natalizumab is a monoclonal antibody targeted against alpha-4 integrin. Its proposed mechanism is attenuation of the migration of immune cells into the central nervous system. Reactivation of the JC virus causing progressive multifocal leucoencephalopathy (PML) and its association with natalizumab is well documented. This case adds support to the suggestion that natalizumab also increases the reactivation risk of CNS herpes simplex infection. A 34 year old woman was admitted with a generalized tonic-clonic seizure, fever and confusion following her 40th infusion of natalizumab. MRI demonstrated increased signal in the medial temporal lobes and EEG showed focal sharp waves over the temporal lobe. CSF PCR later confirmed herpes simplex virus. The patient made an eventual excellent recovery following 21 days of intravenous acyclovir therapy followed by 14 days of oral treatment. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  18. Diagnosis of Herpes Simplex Encephalitis by ELISA Using Antipeptide Antibodies Against Type-Common Epitopes of Glycoprotein B of Herpes Simplex Viruses.

    PubMed

    Bhullar, Shradha S; Chandak, Nitin H; Baheti, Neeraj N; Purohit, Hemant J; Taori, Girdhar M; Daginawala, Hatim F; Kashyap, Rajpal S

    2016-01-01

    Herpes simplex encephalitis (HSE) represents one of the most severe infectious diseases of the central nervous system (CNS). As effective antiviral drugs are available, an early, rapid, and reliable diagnosis has become important. The objective of this article was to develop a sensitive ELISA protocol for herpes simplex viruses (HSV) antigen detection and quantitation by assessing the usefulness of antipeptide antibodies against potential peptides of HSV glycoprotein B (gB). A total of 180 cerebrospinal fluid (CSF) samples of HSE and non-HSE patients were analyzed using a panel of antipeptide antibodies against synthetic peptides of HSV glycoprotein gB. The cases of confirmed and suspected HSE showed 80% and 51% positivity for antipeptide against synthetic peptide QLHDLRF and 77% and 53% positivity for antipeptide against synthetic peptide MKALYPLTT, respectively for the detection of HSV antigen in CSF. The concentration of HSV antigen was found to be higher in confirmed HSE as compared to suspected HSE group and the viral load correlated well with antigen concentration obtained using the two antipeptides in CSF of confirmed HSE group. This is the first article describing the use of antibodies obtained against synthetic peptides derived from HSV in diagnostics of HSE using patients' CSF samples.

  19. Journal of Virology

    Science.gov Websites

    Herpes Simplex Virus 1 Improved Control of Simian/Human Immunodeficiency Virus in Macaques following Hemisphere Analysis of cis and trans Requirements for DNA Replication at the Right-End Hairpin of the Human -associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. Temporal

  20. [Laboratory diagnosis of genital herpes--direct immunofluorescence method].

    PubMed

    Majewska, Anna; Romejko-Wolniewicz, Ewa; Zareba-Szczudlik, Julia; Kilijańczyk, Marek; Gajewska, Małgorzata; Młynarczyk, Grazyna

    2013-07-01

    Aim of the study was to determine clinical usefulness of direct immunofluorescence method in the laboratory diagnosis of genital herpes in women. Overall 187 anogenital swabs were collected from 120 women. Using a dacron-tipped applicator 83 swabs were collected from women suspected of genital herpes and 104 from patients with no signs of genital infection. All samples were tested using cell culture (Vero cell line) and then direct immunofluorescence method (DIF) for the identification of antigens of herpes simplex viruses: HSV-1 and HSV-2. Characteristic cytopathic effect (CPE), indicative of alphaherpesvirus infection, was observed in 43.4% of cultures with clinical specimens collected from women with suspected genital herpes and in 29.8% of cultures of clinical specimens taken from patients with no clinical symptoms of genital herpes. Herpes simplex viruses were determined in 73 samples by direct immunofluorescence method after amplification of the virus in cell culture. The DIF test confirmed the diagnosis based on the microscopic CPE observation in 85%. In 15% of samples (taken from pregnant women without clinical signs of infection) we reported positive immunofluorescence in the absence of CPE. The frequency of antigen detection was statistically significantly higher in samples that were positive by culture study (chi-square test with Yates's correction, p < 0.01). This method proved to be highly sensitive (97%) in women with clinically suspected infection. High negative predictive value (99%) proves the clinical utility of the DIF in these group of patients. In asymptomatic infections, viral antigens were detected most frequently in the swabs from the cervical canal, and in cases of suspected genital herpes in swabs taken from the vestibule of the vagina and the vulva. However, there was no statistically significant difference in the frequency of detection of Herpes Simplex Virus antigens in specimens from different parts of the genital tract in both groups of women (chi-square test, p > 0.05). In our study HHV-1 was the main causative agent of genital herpes. The growing worldwide prevalence of genital herpes, challenges with the clinical diagnosis, and availability of effective antiviral therapy are the main reasons for a growing interest in rapid, proper laboratory diagnosis of infected patients. Optimal testing diagnostic algorithm depends on patient population, clinical circumstances and availability. Our results indicated that combination of laboratory tests may help to establish the diagnosis if genital herpes is suspected but there are no typical signs.

Top