Hypersonic Vehicle Propulsion System Simplified Model Development
NASA Technical Reports Server (NTRS)
Stueber, Thomas J.; Raitano, Paul; Le, Dzu K.; Ouzts, Peter
2007-01-01
This document addresses the modeling task plan for the hypersonic GN&C GRC team members. The overall propulsion system modeling task plan is a multi-step process and the task plan identified in this document addresses the first steps (short term modeling goals). The procedures and tools produced from this effort will be useful for creating simplified dynamic models applicable to a hypersonic vehicle propulsion system. The document continues with the GRC short term modeling goal. Next, a general description of the desired simplified model is presented along with simulations that are available to varying degrees. The simulations may be available in electronic form (FORTRAN, CFD, MatLab,...) or in paper form in published documents. Finally, roadmaps outlining possible avenues towards realizing simplified model are presented.
NASA Astrophysics Data System (ADS)
van Daal-Rombouts, Petra; Sun, Siao; Langeveld, Jeroen; Bertrand-Krajewski, Jean-Luc; Clemens, François
2016-07-01
Optimisation or real time control (RTC) studies in wastewater systems increasingly require rapid simulations of sewer systems in extensive catchments. To reduce the simulation time calibrated simplified models are applied, with the performance generally based on the goodness of fit of the calibration. In this research the performance of three simplified and a full hydrodynamic (FH) model for two catchments are compared based on the correct determination of CSO event occurrences and of the total discharged volumes to the surface water. Simplified model M1 consists of a rainfall runoff outflow (RRO) model only. M2 combines the RRO model with a static reservoir model for the sewer behaviour. M3 comprises the RRO model and a dynamic reservoir model. The dynamic reservoir characteristics were derived from FH model simulations. It was found that M2 and M3 are able to describe the sewer behaviour of the catchments, contrary to M1. The preferred model structure depends on the quality of the information (geometrical database and monitoring data) available for the design and calibration of the model. Finally, calibrated simplified models are shown to be preferable to uncalibrated FH models when performing optimisation or RTC studies.
Order Matters: Sequencing Scale-Realistic Versus Simplified Models to Improve Science Learning
NASA Astrophysics Data System (ADS)
Chen, Chen; Schneps, Matthew H.; Sonnert, Gerhard
2016-10-01
Teachers choosing between different models to facilitate students' understanding of an abstract system must decide whether to adopt a model that is simplified and striking or one that is realistic and complex. Only recently have instructional technologies enabled teachers and learners to change presentations swiftly and to provide for learning based on multiple models, thus giving rise to questions about the order of presentation. Using disjoint individual growth modeling to examine the learning of astronomical concepts using a simulation of the solar system on tablets for 152 high school students (age 15), the authors detect both a model effect and an order effect in the use of the Orrery, a simplified model that exaggerates the scale relationships, and the True-to-scale, a proportional model that more accurately represents the realistic scale relationships. Specifically, earlier exposure to the simplified model resulted in diminution of the conceptual gain from the subsequent realistic model, but the realistic model did not impede learning from the following simplified model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honrubia-Escribano, A.; Jimenez-Buendia, F.; Molina-Garcia, A.
This paper presents the current status of simplified wind turbine models used for power system stability analysis. This work is based on the ongoing work being developed in IEC 61400-27. This international standard, for which a technical committee was convened in October 2009, is focused on defining generic (also known as simplified) simulation models for both wind turbines and wind power plants. The results of the paper provide an improved understanding of the usability of generic models to conduct power system simulations.
Comparison between a typical and a simplified model for blast load-induced structural response
NASA Astrophysics Data System (ADS)
Abd-Elhamed, A.; Mahmoud, S.
2017-02-01
As explosive blasts continue to cause severe damage as well as victims in both civil and military environments. There is a bad need for understanding the behavior of structural elements to such extremely short duration dynamic loads where it is of great concern nowadays. Due to the complexity of the typical blast pressure profile model and in order to reduce the modelling and computational efforts, the simplified triangle model for blast loads profile is used to analyze structural response. This simplified model considers only the positive phase and ignores the suction phase which characterizes the typical one in simulating blast loads. The closed from solution for the equation of motion under blast load as a forcing term modelled either typical or simplified models has been derived. The considered herein two approaches have been compared using the obtained results from simulation response analysis of a building structure under an applied blast load. The computed error in simulating response using the simplified model with respect to the typical one has been computed. In general, both simplified and typical models can perform the dynamic blast-load induced response of building structures. However, the simplified one shows a remarkably different response behavior as compared to the typical one despite its simplicity and the use of only positive phase for simulating the explosive loads. The prediction of the dynamic system responses using the simplified model is not satisfactory due to the obtained larger errors as compared to the system responses obtained using the typical one.
Electric Power Distribution System Model Simplification Using Segment Substitution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reiman, Andrew P.; McDermott, Thomas E.; Akcakaya, Murat
Quasi-static time-series (QSTS) simulation is used to simulate the behavior of distribution systems over long periods of time (typically hours to years). The technique involves repeatedly solving the load-flow problem for a distribution system model and is useful for distributed energy resource (DER) planning. When a QSTS simulation has a small time step and a long duration, the computational burden of the simulation can be a barrier to integration into utility workflows. One way to relieve the computational burden is to simplify the system model. The segment substitution method of simplifying distribution system models introduced in this paper offers modelmore » bus reduction of up to 98% with a simplification error as low as 0.2% (0.002 pu voltage). In contrast to existing methods of distribution system model simplification, which rely on topological inspection and linearization, the segment substitution method uses black-box segment data and an assumed simplified topology.« less
Simplified method for numerical modeling of fiber lasers.
Shtyrina, O V; Yarutkina, I A; Fedoruk, M P
2014-12-29
A simplified numerical approach to modeling of dissipative dispersion-managed fiber lasers is examined. We present a new numerical iteration algorithm for finding the periodic solutions of the system of nonlinear ordinary differential equations describing the intra-cavity dynamics of the dissipative soliton characteristics in dispersion-managed fiber lasers. We demonstrate that results obtained using simplified model are in good agreement with full numerical modeling based on the corresponding partial differential equations.
NASA Technical Reports Server (NTRS)
Malekpour, Mahyar R.
2007-01-01
This report presents the mechanical verification of a simplified model of a rapid Byzantine-fault-tolerant self-stabilizing protocol for distributed clock synchronization systems. This protocol does not rely on any assumptions about the initial state of the system. This protocol tolerates bursts of transient failures, and deterministically converges within a time bound that is a linear function of the self-stabilization period. A simplified model of the protocol is verified using the Symbolic Model Verifier (SMV) [SMV]. The system under study consists of 4 nodes, where at most one of the nodes is assumed to be Byzantine faulty. The model checking effort is focused on verifying correctness of the simplified model of the protocol in the presence of a permanent Byzantine fault as well as confirmation of claims of determinism and linear convergence with respect to the self-stabilization period. Although model checking results of the simplified model of the protocol confirm the theoretical predictions, these results do not necessarily confirm that the protocol solves the general case of this problem. Modeling challenges of the protocol and the system are addressed. A number of abstractions are utilized in order to reduce the state space. Also, additional innovative state space reduction techniques are introduced that can be used in future verification efforts applied to this and other protocols.
Simplified Analytical Model of a Six-Degree-of-Freedom Large-Gap Magnetic Suspension System
NASA Technical Reports Server (NTRS)
Groom, Nelson J.
1997-01-01
A simplified analytical model of a six-degree-of-freedom large-gap magnetic suspension system is presented. The suspended element is a cylindrical permanent magnet that is magnetized in a direction which is perpendicular to its axis of symmetry. The actuators are air core electromagnets mounted in a planar array. The analytical model consists of an open-loop representation of the magnetic suspension system with electromagnet currents as inputs.
Verification of a Byzantine-Fault-Tolerant Self-stabilizing Protocol for Clock Synchronization
NASA Technical Reports Server (NTRS)
Malekpour, Mahyar R.
2008-01-01
This paper presents the mechanical verification of a simplified model of a rapid Byzantine-fault-tolerant self-stabilizing protocol for distributed clock synchronization systems. This protocol does not rely on any assumptions about the initial state of the system except for the presence of sufficient good nodes, thus making the weakest possible assumptions and producing the strongest results. This protocol tolerates bursts of transient failures, and deterministically converges within a time bound that is a linear function of the self-stabilization period. A simplified model of the protocol is verified using the Symbolic Model Verifier (SMV). The system under study consists of 4 nodes, where at most one of the nodes is assumed to be Byzantine faulty. The model checking effort is focused on verifying correctness of the simplified model of the protocol in the presence of a permanent Byzantine fault as well as confirmation of claims of determinism and linear convergence with respect to the self-stabilization period. Although model checking results of the simplified model of the protocol confirm the theoretical predictions, these results do not necessarily confirm that the protocol solves the general case of this problem. Modeling challenges of the protocol and the system are addressed. A number of abstractions are utilized in order to reduce the state space.
Electric Power Distribution System Model Simplification Using Segment Substitution
Reiman, Andrew P.; McDermott, Thomas E.; Akcakaya, Murat; ...
2017-09-20
Quasi-static time-series (QSTS) simulation is used to simulate the behavior of distribution systems over long periods of time (typically hours to years). The technique involves repeatedly solving the load-flow problem for a distribution system model and is useful for distributed energy resource (DER) planning. When a QSTS simulation has a small time step and a long duration, the computational burden of the simulation can be a barrier to integration into utility workflows. One way to relieve the computational burden is to simplify the system model. The segment substitution method of simplifying distribution system models introduced in this paper offers modelmore » bus reduction of up to 98% with a simplification error as low as 0.2% (0.002 pu voltage). Finally, in contrast to existing methods of distribution system model simplification, which rely on topological inspection and linearization, the segment substitution method uses black-box segment data and an assumed simplified topology.« less
Electric Power Distribution System Model Simplification Using Segment Substitution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reiman, Andrew P.; McDermott, Thomas E.; Akcakaya, Murat
Quasi-static time-series (QSTS) simulation is used to simulate the behavior of distribution systems over long periods of time (typically hours to years). The technique involves repeatedly solving the load-flow problem for a distribution system model and is useful for distributed energy resource (DER) planning. When a QSTS simulation has a small time step and a long duration, the computational burden of the simulation can be a barrier to integration into utility workflows. One way to relieve the computational burden is to simplify the system model. The segment substitution method of simplifying distribution system models introduced in this paper offers modelmore » bus reduction of up to 98% with a simplification error as low as 0.2% (0.002 pu voltage). Finally, in contrast to existing methods of distribution system model simplification, which rely on topological inspection and linearization, the segment substitution method uses black-box segment data and an assumed simplified topology.« less
A New Strategy in Observer Modeling for Greenhouse Cucumber Seedling Growth
Qiu, Quan; Zheng, Chenfei; Wang, Wenping; Qiao, Xiaojun; Bai, He; Yu, Jingquan; Shi, Kai
2017-01-01
State observer is an essential component in computerized control loops for greenhouse-crop systems. However, the current accomplishments of observer modeling for greenhouse-crop systems mainly focus on mass/energy balance, ignoring physiological responses of crops. As a result, state observers for crop physiological responses are rarely developed, and control operations are typically made based on experience rather than actual crop requirements. In addition, existing observer models require a large number of parameters, leading to heavy computational load and poor application feasibility. To address these problems, we present a new state observer modeling strategy that takes both environmental information and crop physiological responses into consideration during the observer modeling process. Using greenhouse cucumber seedlings as an instance, we sample 10 physiological parameters of cucumber seedlings at different time point during the exponential growth stage, and employ them to build growth state observers together with 8 environmental parameters. Support vector machine (SVM) acts as the mathematical tool for observer modeling. Canonical correlation analysis (CCA) is used to select the dominant environmental and physiological parameters in the modeling process. With the dominant parameters, simplified observer models are built and tested. We conduct contrast experiments with different input parameter combinations on simplified and un-simplified observers. Experimental results indicate that physiological information can improve the prediction accuracies of the growth state observers. Furthermore, the simplified observer models can give equivalent or even better performance than the un-simplified ones, which verifies the feasibility of CCA. The current study can enable state observers to reflect crop requirements and make them feasible for applications with simplified shapes, which is significant for developing intelligent greenhouse control systems for modern greenhouse production. PMID:28848565
A New Strategy in Observer Modeling for Greenhouse Cucumber Seedling Growth.
Qiu, Quan; Zheng, Chenfei; Wang, Wenping; Qiao, Xiaojun; Bai, He; Yu, Jingquan; Shi, Kai
2017-01-01
State observer is an essential component in computerized control loops for greenhouse-crop systems. However, the current accomplishments of observer modeling for greenhouse-crop systems mainly focus on mass/energy balance, ignoring physiological responses of crops. As a result, state observers for crop physiological responses are rarely developed, and control operations are typically made based on experience rather than actual crop requirements. In addition, existing observer models require a large number of parameters, leading to heavy computational load and poor application feasibility. To address these problems, we present a new state observer modeling strategy that takes both environmental information and crop physiological responses into consideration during the observer modeling process. Using greenhouse cucumber seedlings as an instance, we sample 10 physiological parameters of cucumber seedlings at different time point during the exponential growth stage, and employ them to build growth state observers together with 8 environmental parameters. Support vector machine (SVM) acts as the mathematical tool for observer modeling. Canonical correlation analysis (CCA) is used to select the dominant environmental and physiological parameters in the modeling process. With the dominant parameters, simplified observer models are built and tested. We conduct contrast experiments with different input parameter combinations on simplified and un-simplified observers. Experimental results indicate that physiological information can improve the prediction accuracies of the growth state observers. Furthermore, the simplified observer models can give equivalent or even better performance than the un-simplified ones, which verifies the feasibility of CCA. The current study can enable state observers to reflect crop requirements and make them feasible for applications with simplified shapes, which is significant for developing intelligent greenhouse control systems for modern greenhouse production.
Hope, Ryan M; Schoelles, Michael J; Gray, Wayne D
2014-12-01
Process models of cognition, written in architectures such as ACT-R and EPIC, should be able to interact with the same software with which human subjects interact. By eliminating the need to simulate the experiment, this approach would simplify the modeler's effort, while ensuring that all steps required of the human are also required by the model. In practice, the difficulties of allowing one software system to interact with another present a significant barrier to any modeler who is not also skilled at this type of programming. The barrier increases if the programming language used by the modeling software differs from that used by the experimental software. The JSON Network Interface simplifies this problem for ACT-R modelers, and potentially, modelers using other systems.
Unimolecular decomposition reactions at low-pressure: A comparison of competitive methods
NASA Technical Reports Server (NTRS)
Adams, G. F.
1980-01-01
The lack of a simple rate coefficient expression to describe the pressure and temperature dependence hampers chemical modeling of flame systems. Recently developed simplified models to describe unimolecular processes include the calculation of rate constants for thermal unimolecular reactions and recombinations at the low pressure limit, at the high pressure limit and in the intermediate fall-off region. Comparison between two different applications of Troe's simplified model and a comparison between the simplified model and the classic RRKM theory are described.
Practical modeling approaches for geological storage of carbon dioxide.
Celia, Michael A; Nordbotten, Jan M
2009-01-01
The relentless increase of anthropogenic carbon dioxide emissions and the associated concerns about climate change have motivated new ideas about carbon-constrained energy production. One technological approach to control carbon dioxide emissions is carbon capture and storage, or CCS. The underlying idea of CCS is to capture the carbon before it emitted to the atmosphere and store it somewhere other than the atmosphere. Currently, the most attractive option for large-scale storage is in deep geological formations, including deep saline aquifers. Many physical and chemical processes can affect the fate of the injected CO2, with the overall mathematical description of the complete system becoming very complex. Our approach to the problem has been to reduce complexity as much as possible, so that we can focus on the few truly important questions about the injected CO2, most of which involve leakage out of the injection formation. Toward this end, we have established a set of simplifying assumptions that allow us to derive simplified models, which can be solved numerically or, for the most simplified cases, analytically. These simplified models allow calculation of solutions to large-scale injection and leakage problems in ways that traditional multicomponent multiphase simulators cannot. Such simplified models provide important tools for system analysis, screening calculations, and overall risk-assessment calculations. We believe this is a practical and important approach to model geological storage of carbon dioxide. It also serves as an example of how complex systems can be simplified while retaining the essential physics of the problem.
A simplified dynamic model of the T700 turboshaft engine
NASA Technical Reports Server (NTRS)
Duyar, Ahmet; Gu, Zhen; Litt, Jonathan S.
1992-01-01
A simplified open-loop dynamic model of the T700 turboshaft engine, valid within the normal operating range of the engine, is developed. This model is obtained by linking linear state space models obtained at different engine operating points. Each linear model is developed from a detailed nonlinear engine simulation using a multivariable system identification and realization method. The simplified model may be used with a model-based real time diagnostic scheme for fault detection and diagnostics, as well as for open loop engine dynamics studies and closed loop control analysis utilizing a user generated control law.
Mannina, Giorgio; Viviani, Gaspare
2010-01-01
Urban water quality management often requires use of numerical models allowing the evaluation of the cause-effect relationship between the input(s) (i.e. rainfall, pollutant concentrations on catchment surface and in sewer system) and the resulting water quality response. The conventional approach to the system (i.e. sewer system, wastewater treatment plant and receiving water body), considering each component separately, does not enable optimisation of the whole system. However, recent gains in understanding and modelling make it possible to represent the system as a whole and optimise its overall performance. Indeed, integrated urban drainage modelling is of growing interest for tools to cope with Water Framework Directive requirements. Two different approaches can be employed for modelling the whole urban drainage system: detailed and simplified. Each has its advantages and disadvantages. Specifically, detailed approaches can offer a higher level of reliability in the model results, but can be very time consuming from the computational point of view. Simplified approaches are faster but may lead to greater model uncertainty due to an over-simplification. To gain insight into the above problem, two different modelling approaches have been compared with respect to their uncertainty. The first urban drainage integrated model approach uses the Saint-Venant equations and the 1D advection-dispersion equations, for the quantity and for the quality aspects, respectively. The second model approach consists of the simplified reservoir model. The analysis used a parsimonious bespoke model developed in previous studies. For the uncertainty analysis, the Generalised Likelihood Uncertainty Estimation (GLUE) procedure was used. Model reliability was evaluated on the basis of capacity of globally limiting the uncertainty. Both models have a good capability to fit the experimental data, suggesting that all adopted approaches are equivalent both for quantity and quality. The detailed model approach is more robust and presents less uncertainty in terms of uncertainty bands. On the other hand, the simplified river water quality model approach shows higher uncertainty and may be unsuitable for receiving water body quality assessment.
ERIC Educational Resources Information Center
Yang, Allen H. J.; Dimiduk, Kathryn; Daniel, Susan
2011-01-01
We present a simplified human alcohol metabolism model for a mass balance team project. Students explore aspects of engineering in biotechnology: designing/modeling biological systems, testing the design/model, evaluating new conditions, and exploring cutting-edge "lab-on-a-chip" research. This project highlights chemical engineering's impact on…
Order Matters: Sequencing Scale-Realistic versus Simplified Models to Improve Science Learning
ERIC Educational Resources Information Center
Chen, Chen; Schneps, Matthew H.; Sonnert, Gerhard
2016-01-01
Teachers choosing between different models to facilitate students' understanding of an abstract system must decide whether to adopt a model that is simplified and striking or one that is realistic and complex. Only recently have instructional technologies enabled teachers and learners to change presentations swiftly and to provide for learning…
Guidelines and Metrics for Assessing Space System Cost Estimates
2008-01-01
analysis time, reuse tooling, models , mechanical ground-support equipment [MGSE]) High mass margin ( simplifying assumptions used to bound solution...engineering environment changes High reuse of architecture, design , tools, code, test scripts, and commercial real- time operating systems Simplified life...Coronal Explorer TWTA traveling wave tube amplifier USAF U.S. Air Force USCM Unmanned Space Vehicle Cost Model USN U.S. Navy UV ultraviolet UVOT UV
Modeling the Earth System, volume 3
NASA Technical Reports Server (NTRS)
Ojima, Dennis (Editor)
1992-01-01
The topics covered fall under the following headings: critical gaps in the Earth system conceptual framework; development needs for simplified models; and validating Earth system models and their subcomponents.
NASA Astrophysics Data System (ADS)
Tang, Xiaolin; Yang, Wei; Hu, Xiaosong; Zhang, Dejiu
2017-02-01
In this study, based on our previous work, a novel simplified torsional vibration dynamic model is established to study the torsional vibration characteristics of a compound planetary hybrid propulsion system. The main frequencies of the hybrid driveline are determined. In contrast to vibration characteristics of the previous 16-degree of freedom model, the simplified model can be used to accurately describe the low-frequency vibration property of this hybrid powertrain. This study provides a basis for further vibration control of the hybrid powertrain during the process of engine start/stop.
A Mathematical Model for the Bee Hive of Apis Mellifera
NASA Astrophysics Data System (ADS)
Antonioni, Alberto; Bellom, Fabio Enrici; Montabone, Andrea; Venturino, Ezio
2010-09-01
In this work we introduce and discuss a model for the bee hive, in which only adult bees and drones are modeled. The role that the latter have in the system is interesting, their population can retrieve even if they are totally absent from the bee hive. The feasibility and stability of the equilibria is studied numerically. A simplified version of the model shows the importance of the drones' role, in spite of the fact that it allows only a trivial equilibrium. For this simplified system, no Hopf bifurcations are shown to arise.
Simplified and advanced modelling of traction control systems of heavy-haul locomotives
NASA Astrophysics Data System (ADS)
Spiryagin, Maksym; Wolfs, Peter; Szanto, Frank; Cole, Colin
2015-05-01
Improving tractive effort is a very complex task in locomotive design. It requires the development of not only mechanical systems but also power systems, traction machines and traction algorithms. At the initial design stage, traction algorithms can be verified by means of a simulation approach. A simple single wheelset simulation approach is not sufficient because all locomotive dynamics are not fully taken into consideration. Given that many traction control strategies exist, the best solution is to use more advanced approaches for such studies. This paper describes the modelling of a locomotive with a bogie traction control strategy based on a co-simulation approach in order to deliver more accurate results. The simplified and advanced modelling approaches of a locomotive electric power system are compared in this paper in order to answer a fundamental question. What level of modelling complexity is necessary for the investigation of the dynamic behaviours of a heavy-haul locomotive running under traction? The simulation results obtained provide some recommendations on simulation processes and the further implementation of advanced and simplified modelling approaches.
NASA Technical Reports Server (NTRS)
Kandelman, A.; Nelson, D. J.
1977-01-01
Simplified mathematical model simulates large hydraulic systems on either analog or digital computers. Models of pumps, servoactuators, reservoirs, accumulators, and valves are connected generating systems containing six hundred elements.
The effects of atmospheric chemistry on radiation budget in the Community Earth Systems Model
NASA Astrophysics Data System (ADS)
Choi, Y.; Czader, B.; Diao, L.; Rodriguez, J.; Jeong, G.
2013-12-01
The Community Earth Systems Model (CESM)-Whole Atmosphere Community Climate Model (WACCM) simulations were performed to study the impact of atmospheric chemistry on the radiation budget over the surface within a weather prediction time scale. The secondary goal is to get a simplified and optimized chemistry module for the short time period. Three different chemistry modules were utilized to represent tropospheric and stratospheric chemistry, which differ in how their reactions and species are represented: (1) simplified tropospheric and stratospheric chemistry (approximately 30 species), (2) simplified tropospheric chemistry and comprehensive stratospheric chemistry from the Model of Ozone and Related Chemical Tracers, version 3 (MOZART-3, approximately 60 species), and (3) comprehensive tropospheric and stratospheric chemistry (MOZART-4, approximately 120 species). Our results indicate the different details in chemistry treatment from these model components affect the surface temperature and impact the radiation budget.
NASA Technical Reports Server (NTRS)
Kuo, B. C.; Singh, G.
1974-01-01
The dynamics of the Large Space Telescope (LST) control system were studied in order to arrive at a simplified model for computer simulation without loss of accuracy. The frictional nonlinearity of the Control Moment Gyroscope (CMG) Control Loop was analyzed in a model to obtain data for the following: (1) a continuous describing function for the gimbal friction nonlinearity; (2) a describing function of the CMG nonlinearity using an analytical torque equation; and (3) the discrete describing function and function plots for CMG functional linearity. Preliminary computer simulations are shown for the simplified LST system, first without, and then with analytical torque expressions. Transfer functions of the sampled-data LST system are also described. A final computer simulation is presented which uses elements of the simplified sampled-data LST system with analytical CMG frictional torque expressions.
Simplifications in modelling of dynamical response of coupled electro-mechanical system
NASA Astrophysics Data System (ADS)
Darula, Radoslav; Sorokin, Sergey
2016-12-01
The choice of a most suitable model of an electro-mechanical system depends on many variables, such as a scale of the system, type and frequency range of its operation, or power requirements. The article focuses on the model of the electromagnetic element used in passive regime (no feedback loops are assumed) and a general lumped parameter model (a conventional mass-spring-damper system coupled to an electric circuit consisting of a resistance, an inductance and a capacitance) is compared with its simplified version, where the full RLC circuit is replaced with its RL simplification, i.e. the capacitance of the electric system is neglected and just its inductance and the resistance are considered. From the comparison of dynamical responses of these systems, the range of applicability of a simplified model is assessed for free as well as forced vibration.
Luo, Yong; Wu, Wenqi; Babu, Ravindra; Tang, Kanghua; Luo, Bing
2012-01-01
COMPASS is an indigenously developed Chinese global navigation satellite system and will share many features in common with GPS (Global Positioning System). Since the ultra-tight GPS/INS (Inertial Navigation System) integration shows its advantage over independent GPS receivers in many scenarios, the federated ultra-tight COMPASS/INS integration has been investigated in this paper, particularly, by proposing a simplified prefilter model. Compared with a traditional prefilter model, the state space of this simplified system contains only carrier phase, carrier frequency and carrier frequency rate tracking errors. A two-quadrant arctangent discriminator output is used as a measurement. Since the code tracking error related parameters were excluded from the state space of traditional prefilter models, the code/carrier divergence would destroy the carrier tracking process, and therefore an adaptive Kalman filter algorithm tuning process noise covariance matrix based on state correction sequence was incorporated to compensate for the divergence. The federated ultra-tight COMPASS/INS integration was implemented with a hardware COMPASS intermediate frequency (IF), and INS's accelerometers and gyroscopes signal sampling system. Field and simulation test results showed almost similar tracking and navigation performances for both the traditional prefilter model and the proposed system; however, the latter largely decreased the computational load. PMID:23012564
On the joint inversion of geophysical data for models of the coupled core-mantle system
NASA Technical Reports Server (NTRS)
Voorhies, Coerte V.
1991-01-01
Joint inversion of magnetic, earth rotation, geoid, and seismic data for a unified model of the coupled core-mantle system is proposed and shown to be possible. A sample objective function is offered and simplified by targeting results from independent inversions and summary travel time residuals instead of original observations. These data are parameterized in terms of a very simple, closed model of the topographically coupled core-mantle system. Minimization of the simplified objective function leads to a nonlinear inverse problem; an iterative method for solution is presented. Parameterization and method are emphasized; numerical results are not presented.
A simplified solar cell array modelling program
NASA Technical Reports Server (NTRS)
Hughes, R. D.
1982-01-01
As part of the energy conversion/self sufficiency efforts of DSN engineering, it was necessary to have a simplified computer model of a solar photovoltaic (PV) system. This article describes the analysis and simplifications employed in the development of a PV cell array computer model. The analysis of the incident solar radiation, steady state cell temperature and the current-voltage characteristics of a cell array are discussed. A sample cell array was modelled and the results are presented.
A Simplified Approach to Risk Assessment Based on System Dynamics: An Industrial Case Study.
Garbolino, Emmanuel; Chery, Jean-Pierre; Guarnieri, Franck
2016-01-01
Seveso plants are complex sociotechnical systems, which makes it appropriate to support any risk assessment with a model of the system. However, more often than not, this step is only partially addressed, simplified, or avoided in safety reports. At the same time, investigations have shown that the complexity of industrial systems is frequently a factor in accidents, due to interactions between their technical, human, and organizational dimensions. In order to handle both this complexity and changes in the system over time, this article proposes an original and simplified qualitative risk evaluation method based on the system dynamics theory developed by Forrester in the early 1960s. The methodology supports the development of a dynamic risk assessment framework dedicated to industrial activities. It consists of 10 complementary steps grouped into two main activities: system dynamics modeling of the sociotechnical system and risk analysis. This system dynamics risk analysis is applied to a case study of a chemical plant and provides a way to assess the technological and organizational components of safety. © 2016 Society for Risk Analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Y.; Edwards, R.M.; Lee, K.Y.
1997-03-01
In this paper, a simplified model with a lower order is first developed for a nuclear steam generator system and verified against some realistic environments. Based on this simplified model, a hybrid multi-input and multi-out (MIMO) control system, consisting of feedforward control (FFC) and feedback control (FBC), is designed for wide range conditions by using the genetic algorithm (GA) technique. The FFC control, obtained by the GA optimization method, injects an a priori command input into the system to achieve an optimal performance for the designed system, while the GA-based FBC control provides the necessary compensation for any disturbances ormore » uncertainties in a real steam generator. The FBC control is an optimal design of a PI-based control system which would be more acceptable for industrial practices and power plant control system upgrades. The designed hybrid MIMO FFC/FBC control system is first applied to the simplified model and then to a more complicated model with a higher order which is used as a substitute of the real system to test the efficacy of the designed control system. Results from computer simulations show that the designed GA-based hybrid MIMO FFC/FBC control can achieve good responses and robust performances. Hence, it can be considered as a viable alternative to the current control system upgrade.« less
NASA Technical Reports Server (NTRS)
Daniele, C. J.; Lorenzo, C. F.
1979-01-01
Lumped volume dynamic equations are derived using an energy state formulation. This technique requires that kinetic and potential energy state functions be written for the physical system being investigated. To account for losses in the system, a Rayleigh dissipation function is formed. Using these functions, a Lagrangian is formed and using Lagrange's equation, the equations of motion for the system are derived. The results of the application of this technique to a lumped volume are used to derive a model for the free piston Stirling engine. The model was simplified and programmed on an analog computer. Results are given comparing the model response with experimental data.
NASA Technical Reports Server (NTRS)
Daniele, C. J.; Lorenzo, C. F.
1979-01-01
Lumped volume dynamic equations are derived using an energy-state formulation. This technique requires that kinetic and potential energy state functions be written for the physical system being investigated. To account for losses in the system, a Rayleigh dissipation function is also formed. Using these functions, a Lagrangian is formed and using Lagrange's equation, the equations of motion for the system are derived. The results of the application of this technique to a lumped volume are used to derive a model for the free-piston Stirling engine. The model was simplified and programmed on an analog computer. Results are given comparing the model response with experimental data.
Field-aligned currents and large-scale magnetospheric electric fields
NASA Technical Reports Server (NTRS)
Dangelo, N.
1979-01-01
The existence of field-aligned currents (FAC) at northern and southern high latitudes was confirmed by a number of observations, most clearly by experiments on the TRIAD and ISIS 2 satellites. The high-latitude FAC system is used to relate what is presently known about the large-scale pattern of high-latitude ionospheric electric fields and their relation to solar wind parameters. Recently a simplified model was presented for polar cap electric fields. The model is of considerable help in visualizing the large-scale features of FAC systems. A summary of the FAC observations is given. The simplified model is used to visualize how the FAC systems are driven by their generators.
NASA Astrophysics Data System (ADS)
Yuan, Shifei; Jiang, Lei; Yin, Chengliang; Wu, Hongjie; Zhang, Xi
2017-06-01
To guarantee the safety, high efficiency and long lifetime for lithium-ion battery, an advanced battery management system requires a physics-meaningful yet computationally efficient battery model. The pseudo-two dimensional (P2D) electrochemical model can provide physical information about the lithium concentration and potential distributions across the cell dimension. However, the extensive computation burden caused by the temporal and spatial discretization limits its real-time application. In this research, we propose a new simplified electrochemical model (SEM) by modifying the boundary conditions for electrolyte diffusion equations, which significantly facilitates the analytical solving process. Then to obtain a reduced order transfer function, the Padé approximation method is adopted to simplify the derived transcendental impedance solution. The proposed model with the reduced order transfer function can be briefly computable and preserve physical meanings through the presence of parameters such as the solid/electrolyte diffusion coefficients (Ds&De) and particle radius. The simulation illustrates that the proposed simplified model maintains high accuracy for electrolyte phase concentration (Ce) predictions, saying 0.8% and 0.24% modeling error respectively, when compared to the rigorous model under 1C-rate pulse charge/discharge and urban dynamometer driving schedule (UDDS) profiles. Meanwhile, this simplified model yields significantly reduced computational burden, which benefits its real-time application.
A Fast Proceduere for Optimizing Thermal Protection Systems of Re-Entry Vehicles
NASA Astrophysics Data System (ADS)
Ferraiuolo, M.; Riccio, A.; Tescione, D.; Gigliotti, M.
The aim of the present work is to introduce a fast procedure to optimize thermal protection systems for re-entry vehicles subjected to high thermal loads. A simplified one-dimensional optimization process, performed in order to find the optimum design variables (lengths, sections etc.), is the first step of the proposed design procedure. Simultaneously, the most suitable materials able to sustain high temperatures and meeting the weight requirements are selected and positioned within the design layout. In this stage of the design procedure, simplified (generalized plane strain) FEM models are used when boundary and geometrical conditions allow the reduction of the degrees of freedom. Those simplified local FEM models can be useful because they are time-saving and very simple to build; they are essentially one dimensional and can be used for optimization processes in order to determine the optimum configuration with regard to weight, temperature and stresses. A triple-layer and a double-layer body, subjected to the same aero-thermal loads, have been optimized to minimize the overall weight. Full two and three-dimensional analyses are performed in order to validate those simplified models. Thermal-structural analyses and optimizations are executed by adopting the Ansys FEM code.
Artificial cell mimics as simplified models for the study of cell biology.
Salehi-Reyhani, Ali; Ces, Oscar; Elani, Yuval
2017-07-01
Living cells are hugely complex chemical systems composed of a milieu of distinct chemical species (including DNA, proteins, lipids, and metabolites) interconnected with one another through a vast web of interactions: this complexity renders the study of cell biology in a quantitative and systematic manner a difficult task. There has been an increasing drive towards the utilization of artificial cells as cell mimics to alleviate this, a development that has been aided by recent advances in artificial cell construction. Cell mimics are simplified cell-like structures, composed from the bottom-up with precisely defined and tunable compositions. They allow specific facets of cell biology to be studied in isolation, in a simplified environment where control of variables can be achieved without interference from a living and responsive cell. This mini-review outlines the core principles of this approach and surveys recent key investigations that use cell mimics to address a wide range of biological questions. It will also place the field in the context of emerging trends, discuss the associated limitations, and outline future directions of the field. Impact statement Recent years have seen an increasing drive to construct cell mimics and use them as simplified experimental models to replicate and understand biological phenomena in a well-defined and controlled system. By summarizing the advances in this burgeoning field, and using case studies as a basis for discussion on the limitations and future directions of this approach, it is hoped that this minireview will spur others in the experimental biology community to use artificial cells as simplified models with which to probe biological systems.
The complexity of air quality modeling systems, air quality monitoring data make ad-hoc systems for model evaluation important aids to the modeling community. Among those are the ENSEMBLE system developed by the EC-Joint Research Center, and the AMET software developed by the US-...
Models-3 is a flexible software system designed to simplify the development and use of environmental assessment and other decision support tools. It is designed for applications ranging from regulatory and policy analysis to understanding the complex interactions of atmospheri...
Analyzing Power Supply and Demand on the ISS
NASA Technical Reports Server (NTRS)
Thomas, Justin; Pham, Tho; Halyard, Raymond; Conwell, Steve
2006-01-01
Station Power and Energy Evaluation Determiner (SPEED) is a Java application program for analyzing the supply and demand aspects of the electrical power system of the International Space Station (ISS). SPEED can be executed on any computer that supports version 1.4 or a subsequent version of the Java Runtime Environment. SPEED includes an analysis module, denoted the Simplified Battery Solar Array Model, which is a simplified engineering model of the ISS primary power system. This simplified model makes it possible to perform analyses quickly. SPEED also includes a user-friendly graphical-interface module, an input file system, a parameter-configuration module, an analysis-configuration-management subsystem, and an output subsystem. SPEED responds to input information on trajectory, shadowing, attitude, and pointing in either a state-of-charge mode or a power-availability mode. In the state-of-charge mode, SPEED calculates battery state-of-charge profiles, given a time-varying power-load profile. In the power-availability mode, SPEED determines the time-varying total available solar array and/or battery power output, given a minimum allowable battery state of charge.
Simplified hydraulic model of French vertical-flow constructed wetlands.
Arias, Luis; Bertrand-Krajewski, Jean-Luc; Molle, Pascal
2014-01-01
Designing vertical-flow constructed wetlands (VFCWs) to treat both rain events and dry weather flow is a complex task due to the stochastic nature of rain events. Dynamic models can help to improve design, but they usually prove difficult to handle for designers. This study focuses on the development of a simplified hydraulic model of French VFCWs using an empirical infiltration coefficient--infiltration capacity parameter (ICP). The model was fitted using 60-second-step data collected on two experimental French VFCW systems and compared with Hydrus 1D software. The model revealed a season-by-season evolution of the ICP that could be explained by the mechanical role of reeds. This simplified model makes it possible to define time-course shifts in ponding time and outlet flows. As ponding time hinders oxygen renewal, thus impacting nitrification and organic matter degradation, ponding time limits can be used to fix a reliable design when treating both dry and rain events.
Definition of ground test for verification of large space structure control
NASA Technical Reports Server (NTRS)
Doane, G. B., III; Glaese, J. R.; Tollison, D. K.; Howsman, T. G.; Curtis, S. (Editor); Banks, B.
1984-01-01
Control theory and design, dynamic system modelling, and simulation of test scenarios are the main ideas discussed. The overall effort is the achievement at Marshall Space Flight Center of a successful ground test experiment of a large space structure. A simplified planar model of ground test experiment of a large space structure. A simplified planar model of ground test verification was developed. The elimination from that model of the uncontrollable rigid body modes was also examined. Also studied was the hardware/software of computation speed.
NASA Astrophysics Data System (ADS)
McIntyre, N.; Keir, G.
2014-12-01
Water supply systems typically encompass components of both natural systems (e.g. catchment runoff, aquifer interception) and engineered systems (e.g. process equipment, water storages and transfers). Many physical processes of varying spatial and temporal scales are contained within these hybrid systems models. The need to aggregate and simplify system components has been recognised for reasons of parsimony and comprehensibility; and the use of probabilistic methods for modelling water-related risks also prompts the need to seek computationally efficient up-scaled conceptualisations. How to manage the up-scaling errors in such hybrid systems models has not been well-explored, compared to research in the hydrological process domain. Particular challenges include the non-linearity introduced by decision thresholds and non-linear relations between water use, water quality, and discharge strategies. Using a case study of a mining region, we explore the nature of up-scaling errors in water use, water quality and discharge, and we illustrate an approach to identification of a scale-adjusted model including an error model. Ways forward for efficient modelling of such complex, hybrid systems are discussed, including interactions with human, energy and carbon systems models.
Uas for Archaeology - New Perspectives on Aerial Documentation
NASA Astrophysics Data System (ADS)
Fallavollita, P.; Balsi, M.; Esposito, S.; Melis, M. G.; Milanese, M.; Zappino, L.
2013-08-01
In this work some Unmanned Aerial Systems applications are discussed and applied to archaeological sites survey and 3D model reconstructions. Interesting results are shown for three important and different aged sites on north Sardinia (Italy). An easy and simplified procedure has proposed permitting the adoption of multi-rotor aircrafts for daily archaeological survey during excavation and documentation, involving state of art in UAS design, flight control systems, high definition sensor cameras and innovative photogrammetric software tools. Very high quality 3D models results are shown and discussed and how they have been simplified the archaeologist work and decisions.
From LCAs to simplified models: a generic methodology applied to wind power electricity.
Padey, Pierryves; Girard, Robin; le Boulch, Denis; Blanc, Isabelle
2013-02-05
This study presents a generic methodology to produce simplified models able to provide a comprehensive life cycle impact assessment of energy pathways. The methodology relies on the application of global sensitivity analysis to identify key parameters explaining the impact variability of systems over their life cycle. Simplified models are built upon the identification of such key parameters. The methodology is applied to one energy pathway: onshore wind turbines of medium size considering a large sample of possible configurations representative of European conditions. Among several technological, geographical, and methodological parameters, we identified the turbine load factor and the wind turbine lifetime as the most influent parameters. Greenhouse Gas (GHG) performances have been plotted as a function of these key parameters identified. Using these curves, GHG performances of a specific wind turbine can be estimated, thus avoiding the undertaking of an extensive Life Cycle Assessment (LCA). This methodology should be useful for decisions makers, providing them a robust but simple support tool for assessing the environmental performance of energy systems.
Simplified Physics Based Models Research Topical Report on Task #2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, Srikanta; Ganesh, Priya
We present a simplified-physics based approach, where only the most important physical processes are modeled, to develop and validate simplified predictive models of CO2 sequestration in deep saline formation. The system of interest is a single vertical well injecting supercritical CO2 into a 2-D layered reservoir-caprock system with variable layer permeabilities. We use a set of well-designed full-physics compositional simulations to understand key processes and parameters affecting pressure propagation and buoyant plume migration. Based on these simulations, we have developed correlations for dimensionless injectivity as a function of the slope of fractional-flow curve, variance of layer permeability values, and themore » nature of vertical permeability arrangement. The same variables, along with a modified gravity number, can be used to develop a correlation for the total storage efficiency within the CO2 plume footprint. Similar correlations are also developed to predict the average pressure within the injection reservoir, and the pressure buildup within the caprock.« less
Evaluation of Models of the Reading Process.
ERIC Educational Resources Information Center
Balajthy, Ernest
A variety of reading process models have been proposed and evaluated in reading research. Traditional approaches to model evaluation specify the workings of a system in a simplified fashion to enable organized, systematic study of the system's components. Following are several statistical methods of model evaluation: (1) empirical research on…
MODELS-3 INSTALLATION PROCEDURES FOR A PC WITH AN NT OPERATING SYSTEM (MODELS-3 VERSION 4.0)
Models-3 is a flexible software system designed to simplify the development and use of air quality models and other environmental decision support tools. It is designed for applications ranging from regulatory and policy analysis to understanding the complex interactions of at...
Models-3 is a flexible system designed to simplify the development and use of air quality models and other environmental decision support tools. It is designed for applications ranging from regulatory and policy analysis to understanding the complex interactions of atmospheric...
Simplified Model and Response Analysis for Crankshaft of Air Compressor
NASA Astrophysics Data System (ADS)
Chao-bo, Li; Jing-jun, Lou; Zhen-hai, Zhang
2017-11-01
The original model of crankshaft is simplified to the appropriateness to balance the calculation precision and calculation speed, and then the finite element method is used to analyse the vibration response of the structure. In order to study the simplification and stress concentration for crankshaft of air compressor, this paper compares calculative mode frequency and experimental mode frequency of the air compressor crankshaft before and after the simplification, the vibration response of reference point constraint conditions is calculated by using the simplified model, and the stress distribution of the original model is calculated. The results show that the error between calculative mode frequency and experimental mode frequency is controlled in less than 7%, the constraint will change the model density of the system, the position between the crank arm and the shaft appeared stress concentration, so the part of the crankshaft should be treated in the process of manufacture.
Simplified planar model of a car steering system with rack and pinion and McPherson suspension
NASA Astrophysics Data System (ADS)
Knapczyk, J.; Kucybała, P.
2016-09-01
The paper presents the analysis and optimization of steering system with rack and pinion and McPherson suspension using spatial model and equivalent simplified planar model. The dimension of the steering linkage that give minimum steering error can be estimated using planar model. The steering error is defined as the difference between the actual angle made by the outer front wheel during steering manoeuvers and the calculated angle for the same wheel based on the Ackerman principle. For a given linear rack displacement, a specified steering arms angular displacements are determined while simultaneously ensuring best transmission angle characteristics (i) without and (ii) with imposing linear correlation between input and output. Numerical examples are used to illustrate the proposed method.
NASA Astrophysics Data System (ADS)
Liu, Yuan; Wang, Mingqiang; Ning, Xingyao
2018-02-01
Spinning reserve (SR) should be scheduled considering the balance between economy and reliability. To address the computational intractability cursed by the computation of loss of load probability (LOLP), many probabilistic methods use simplified formulations of LOLP to improve the computational efficiency. Two tradeoffs embedded in the SR optimization model are not explicitly analyzed in these methods. In this paper, two tradeoffs including primary tradeoff and secondary tradeoff between economy and reliability in the maximum LOLP constrained unit commitment (UC) model are explored and analyzed in a small system and in IEEE-RTS System. The analysis on the two tradeoffs can help in establishing new efficient simplified LOLP formulations and new SR optimization models.
APPLICATION OF EPANET TO UNDERSTAND LEAD RELEASE IN PREMISE PLUMBING
This presentation describes the factors affecting lead concentration in tap water using an EPANET hydraulic model for a simplified home model, a realistic home model, and EPA's experimental home plumbing system.
NASA Astrophysics Data System (ADS)
Yuan, Shifei; Jiang, Lei; Yin, Chengliang; Wu, Hongjie; Zhang, Xi
2017-06-01
The electrochemistry-based battery model can provide physics-meaningful knowledge about the lithium-ion battery system with extensive computation burdens. To motivate the development of reduced order battery model, three major contributions have been made throughout this paper: (1) the transfer function type of simplified electrochemical model is proposed to address the current-voltage relationship with Padé approximation method and modified boundary conditions for electrolyte diffusion equations. The model performance has been verified under pulse charge/discharge and dynamic stress test (DST) profiles with the standard derivation less than 0.021 V and the runtime 50 times faster. (2) the parametric relationship between the equivalent circuit model and simplified electrochemical model has been established, which will enhance the comprehension level of two models with more in-depth physical significance and provide new methods for electrochemical model parameter estimation. (3) four simplified electrochemical model parameters: equivalent resistance Req, effective diffusion coefficient in electrolyte phase Deeff, electrolyte phase volume fraction ε and open circuit voltage (OCV), have been identified by the recursive least square (RLS) algorithm with the modified DST profiles under 45, 25 and 0 °C. The simulation results indicate that the proposed model coupled with RLS algorithm can achieve high accuracy for electrochemical parameter identification in dynamic scenarios.
Simple models for rope substructure mechanics: application to electro-mechanical lifts
NASA Astrophysics Data System (ADS)
Herrera, I.; Kaczmarczyk, S.
2016-05-01
Mechanical systems modelled as rigid mass elements connected by tensioned slender structural members such as ropes and cables represent quite common substructures used in lift engineering and hoisting applications. Special interest is devoted by engineers and researchers to the vibratory response of such systems for optimum performance and durability. This paper presents simplified models that can be employed to determine the natural frequencies of systems having substructures of two rigid masses constrained by tensioned rope/cable elements. The exact solution for free un-damped longitudinal displacement response is discussed in the context of simple two-degree-of-freedom models. The results are compared and the influence of characteristics parameters such as the ratio of the average mass of the two rigid masses with respect to the rope mass and the deviation ratio of the two rigid masses with respect to the average mass is analyzed. This analysis gives criteria for the application of such simplified models in complex elevator and hoisting system configurations.
Modeling and Assessment of GPS/BDS Combined Precise Point Positioning.
Chen, Junping; Wang, Jungang; Zhang, Yize; Yang, Sainan; Chen, Qian; Gong, Xiuqiang
2016-07-22
Precise Point Positioning (PPP) technique enables stand-alone receivers to obtain cm-level positioning accuracy. Observations from multi-GNSS systems can augment users with improved positioning accuracy, reliability and availability. In this paper, we present and evaluate the GPS/BDS combined PPP models, including the traditional model and a simplified model, where the inter-system bias (ISB) is treated in different way. To evaluate the performance of combined GPS/BDS PPP, kinematic and static PPP positions are compared to the IGS daily estimates, where 1 month GPS/BDS data of 11 IGS Multi-GNSS Experiment (MGEX) stations are used. The results indicate apparent improvement of GPS/BDS combined PPP solutions in both static and kinematic cases, where much smaller standard deviations are presented in the magnitude distribution of coordinates RMS statistics. Comparisons between the traditional and simplified combined PPP models show no difference in coordinate estimations, and the inter system biases between the GPS/BDS system are assimilated into receiver clock, ambiguities and pseudo-range residuals accordingly.
Research study on IPS digital controller design
NASA Technical Reports Server (NTRS)
Kuo, B. C.; Folkerts, C.
1976-01-01
The performance is investigated of the simplified continuous-data model of the Instrument Pointing System (IPS). Although the ultimate objective is to study the digital model of the system, knowledge on the performance of the continuous-data model is important in the sense that the characteristics of the digital system should approach those of the continuous-data system as the sampling period approaches zero.
Analytical investigation of the faster-is-slower effect with a simplified phenomenological model
NASA Astrophysics Data System (ADS)
Suzuno, K.; Tomoeda, A.; Ueyama, D.
2013-11-01
We investigate the mechanism of the phenomenon called the “faster-is-slower”effect in pedestrian flow studies analytically with a simplified phenomenological model. It is well known that the flow rate is maximized at a certain strength of the driving force in simulations using the social force model when we consider the discharge of self-driven particles through a bottleneck. In this study, we propose a phenomenological and analytical model based on a mechanics-based modeling to reveal the mechanism of the phenomenon. We show that our reduced system, with only a few degrees of freedom, still has similar properties to the original many-particle system and that the effect comes from the competition between the driving force and the nonlinear friction from the model. Moreover, we predict the parameter dependences on the effect from our model qualitatively, and they are confirmed numerically by using the social force model.
Modeling Students' Memory for Application in Adaptive Educational Systems
ERIC Educational Resources Information Center
Pelánek, Radek
2015-01-01
Human memory has been thoroughly studied and modeled in psychology, but mainly in laboratory setting under simplified conditions. For application in practical adaptive educational systems we need simple and robust models which can cope with aspects like varied prior knowledge or multiple-choice questions. We discuss and evaluate several models of…
Models-3 is a flexible system designed to simplify the development and use of air quality models and other environmental decision support tools. It is designed for applications ranging from regulatory and policy analysis to understanding the complex interactions of atmospheric...
USER MANUAL FOR THE EPA THIRD-GENERATION AIR QUALITY MODELING SYSTEM (MODELS-3 VERSION 3.0)
Models-3 is a flexible software system designed to simplify the development and use of environmental assessment and other decision support tools. It is designed for applications ranging from regulatory and policy analysis to understanding the complex interactions of atmospheri...
SMOKE TOOL FOR MODELS-3 VERSION 4.1 STRUCTURE AND OPERATION DOCUMENTATION
The SMOKE Tool is a part of the Models-3 system, a flexible software system designed to simplify the development and use of air quality models and other environmental decision support tools. The SMOKE Tool is an input processor for SMOKE, (Sparse Matrix Operator Kernel Emissio...
ERIC Educational Resources Information Center
Haugwitz, Marion; Sandmann, Angela
2010-01-01
Understanding biological structures and functions is often difficult because of their complexity and micro-structure. For example, the vascular system is a complex and only partly visible system. Constructing models to better understand biological functions is seen as a suitable learning method. Models function as simplified versions of real…
The SRFR 5 modeling system for surface irrigation
USDA-ARS?s Scientific Manuscript database
The SRFR program is a modeling system for surface irrigation. It is a central component of WinSRFR, a software package for the hydraulic analysis of surface irrigation systems. SRFR solves simplified versions of the equations of unsteady open channel flow coupled to a user selected infiltration mod...
Fault Diagnostics for Turbo-Shaft Engine Sensors Based on a Simplified On-Board Model
Lu, Feng; Huang, Jinquan; Xing, Yaodong
2012-01-01
Combining a simplified on-board turbo-shaft model with sensor fault diagnostic logic, a model-based sensor fault diagnosis method is proposed. The existing fault diagnosis method for turbo-shaft engine key sensors is mainly based on a double redundancies technique, and this can't be satisfied in some occasions as lack of judgment. The simplified on-board model provides the analytical third channel against which the dual channel measurements are compared, while the hardware redundancy will increase the structure complexity and weight. The simplified turbo-shaft model contains the gas generator model and the power turbine model with loads, this is built up via dynamic parameters method. Sensor fault detection, diagnosis (FDD) logic is designed, and two types of sensor failures, such as the step faults and the drift faults, are simulated. When the discrepancy among the triplex channels exceeds a tolerance level, the fault diagnosis logic determines the cause of the difference. Through this approach, the sensor fault diagnosis system achieves the objectives of anomaly detection, sensor fault diagnosis and redundancy recovery. Finally, experiments on this method are carried out on a turbo-shaft engine, and two types of faults under different channel combinations are presented. The experimental results show that the proposed method for sensor fault diagnostics is efficient. PMID:23112645
Fault diagnostics for turbo-shaft engine sensors based on a simplified on-board model.
Lu, Feng; Huang, Jinquan; Xing, Yaodong
2012-01-01
Combining a simplified on-board turbo-shaft model with sensor fault diagnostic logic, a model-based sensor fault diagnosis method is proposed. The existing fault diagnosis method for turbo-shaft engine key sensors is mainly based on a double redundancies technique, and this can't be satisfied in some occasions as lack of judgment. The simplified on-board model provides the analytical third channel against which the dual channel measurements are compared, while the hardware redundancy will increase the structure complexity and weight. The simplified turbo-shaft model contains the gas generator model and the power turbine model with loads, this is built up via dynamic parameters method. Sensor fault detection, diagnosis (FDD) logic is designed, and two types of sensor failures, such as the step faults and the drift faults, are simulated. When the discrepancy among the triplex channels exceeds a tolerance level, the fault diagnosis logic determines the cause of the difference. Through this approach, the sensor fault diagnosis system achieves the objectives of anomaly detection, sensor fault diagnosis and redundancy recovery. Finally, experiments on this method are carried out on a turbo-shaft engine, and two types of faults under different channel combinations are presented. The experimental results show that the proposed method for sensor fault diagnostics is efficient.
A High Resolution Ammunition Resupply Model.
1982-03-01
LOU ............... 104 3. Requests for Resupply . . ........ 108 a. Weapon Systems . . . . . . . . . . . . 108 b. Platoon . ... 109 c. Company...essence, the fundamental question, "Can it be done?", is never adequately answered. B. LOGISTICS MODELS Current logistics models then, although...19 .._ " Development of a detailed model that responds to requests for ammunition resupply, maintains a simplified stockage system , and models the
Hetherington, James P J; Warner, Anne; Seymour, Robert M
2006-04-22
Systems Biology requires that biological modelling is scaled up from small components to system level. This can produce exceedingly complex models, which obscure understanding rather than facilitate it. The successful use of highly simplified models would resolve many of the current problems faced in Systems Biology. This paper questions whether the conclusions of simple mathematical models of biological systems are trustworthy. The simplification of a specific model of calcium oscillations in hepatocytes is examined in detail, and the conclusions drawn from this scrutiny generalized. We formalize our choice of simplification approach through the use of functional 'building blocks'. A collection of models is constructed, each a progressively more simplified version of a well-understood model. The limiting model is a piecewise linear model that can be solved analytically. We find that, as expected, in many cases the simpler models produce incorrect results. However, when we make a sensitivity analysis, examining which aspects of the behaviour of the system are controlled by which parameters, the conclusions of the simple model often agree with those of the richer model. The hypothesis that the simplified model retains no information about the real sensitivities of the unsimplified model can be very strongly ruled out by treating the simplification process as a pseudo-random perturbation on the true sensitivity data. We conclude that sensitivity analysis is, therefore, of great importance to the analysis of simple mathematical models in biology. Our comparisons reveal which results of the sensitivity analysis regarding calcium oscillations in hepatocytes are robust to the simplifications necessarily involved in mathematical modelling. For example, we find that if a treatment is observed to strongly decrease the period of the oscillations while increasing the proportion of the cycle during which cellular calcium concentrations are rising, without affecting the inter-spike or maximum calcium concentrations, then it is likely that the treatment is acting on the plasma membrane calcium pump.
ON SOME MATHEMATICAL PROBLEMS SUGGESTED BY BIOLOGICAL SCHEMES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luehr, C.
1958-08-01
A simplified model of a population which reproduces asexually and is subject to random mututions implying improvement in chances of survival and procreation is treated by a numerical calculation. The behavior of such a system is then summarized by an analytical formula. The paper is intended as the first one of a series devoted to mathematical studies of simplified genetic situations. (auth)
1991-12-30
York, 1985. [ Serway 86]: Raymond Serway , Physics for Scientists and Engineers. 2nd Edition, Saunders College Publishing, Philadelphia, 1986. pp. 200... Physical Modeling System 3.4 Realtime Hydrology 3.5 Soil Dynamics and Kinematics 4. Database Issues 4.1 Goals 4.2 Object Oriented Databases 4.3 Distributed...Animation System F. Constraints and Physical Modeling G. The PM Physical Modeling System H. Realtime Hydrology I. A Simplified Model of Soil Slumping
On the slow dynamics of near-field acoustically levitated objects under High excitation frequencies
NASA Astrophysics Data System (ADS)
Ilssar, Dotan; Bucher, Izhak
2015-10-01
This paper introduces a simplified analytical model describing the governing dynamics of near-field acoustically levitated objects. The simplification converts the equation of motion coupled with the partial differential equation of a compressible fluid, into a compact, second order ordinary differential equation, where the local stiffness and damping are transparent. The simplified model allows one to more easily analyse and design near-field acoustic levitation based systems, and it also helps to devise closed-loop controller algorithms for such systems. Near-field acoustic levitation employs fast ultrasonic vibrations of a driving surface and exploits the viscosity and the compressibility of a gaseous medium to achieve average, load carrying pressure. It is demonstrated that the slow dynamics dominates the transient behaviour, while the time-scale associated with the fast, ultrasonic excitation has a small presence in the oscillations of the levitated object. Indeed, the present paper formulates the slow dynamics under an ultrasonic excitation without the need to explicitly consider the latter. The simplified model is compared with a numerical scheme based on Reynolds equation and with experiments, both showing reasonably good results.
The Mathematics of High School Physics: Models, Symbols, Algorithmic Operations and Meaning
ERIC Educational Resources Information Center
Kanderakis, Nikos
2016-01-01
In the seventeenth and eighteenth centuries, mathematicians and physical philosophers managed to study, via mathematics, various physical systems of the sublunar world through idealized and simplified models of these systems, constructed with the help of geometry. By analyzing these models, they were able to formulate new concepts, laws and…
The Money-Creation Model: Another Pedagogy.
ERIC Educational Resources Information Center
Gamble, Ralph C., Jr.
1991-01-01
Describes graphical techniques to help explain the multiple creation of deposits that accompany lending in a fractional reserve banking system. Presents a model that emphasizes the banking system, the interaction of total permitted, required, and excess reserves and deposits. Argues that the approach simplifies information to examining a slope…
Bacchi, Romana; Veneri, L; Ghini, P; Caso, Maria Alessandra; Baldassarri, Giovanna; Renzetti, F; Santarelli, R
2009-01-01
Occupational Health and Safety Management Systems (OHSMS) are known to be effective in improving safety at work. Unfortunately they are often too resource-heavy for small businesses. The aim of this project was to develop and test a simplified model of OHSMS suitable for small enterprises. The model consists of 7 procedures and various operating forms and check lists, that guide the enterprise in managing safety at work. The model was tested in 15 volunteer enterprises. In most of the enterprises two audits showed increased awareness and participation of workers; better definition and formalisation of respon sibilities in 8 firms; election of Union Safety Representatives in over one quarter of the enterprises; improvement of safety equipment. The study also helped identify areas where the model could be improved by simplification of unnecessarily complex and redundant procedures.
A simplified building airflow model for agent concentration prediction.
Jacques, David R; Smith, David A
2010-11-01
A simplified building airflow model is presented that can be used to predict the spread of a contaminant agent from a chemical or biological attack. If the dominant means of agent transport throughout the building is an air-handling system operating at steady-state, a linear time-invariant (LTI) model can be constructed to predict the concentration in any room of the building as a result of either an internal or external release. While the model does not capture weather-driven and other temperature-driven effects, it is suitable for concentration predictions under average daily conditions. The model is easily constructed using information that should be accessible to a building manager, supplemented with assumptions based on building codes and standard air-handling system design practices. The results of the model are compared with a popular multi-zone model for a simple building and are demonstrated for building examples containing one or more air-handling systems. The model can be used for rapid concentration prediction to support low-cost placement strategies for chemical and biological detection sensors.
NASA Technical Reports Server (NTRS)
Nigro, N. J.; Elkouh, A. F.; Shen, K. S.; Nimityongskul, P.; Jhaveri, V. N.; Sethi, A.
1975-01-01
A mathematical model for predicting the three dimensional motion of the balloon system is developed, which includes the effects of bounce, pendulation and spin of each subsystem. Boundary layer effects are also examined, along with the aerodynamic forces acting on the balloon. Various simplified forms of the system mathematical model were developed, based on an order of magnitude analysis.
AUTOMATIC CALIBRATION OF A STOCHASTIC-LAGRANGIAN TRANSPORT MODEL (SLAM)
Numerical models are a useful tool in evaluating and designing NAPL remediation systems. Traditional constitutive finite difference and finite element models are complex and expensive to apply. For this reason, this paper presents the application of a simplified stochastic-Lagran...
Topological Principles of Control in Dynamical Networks
NASA Astrophysics Data System (ADS)
Kim, Jason; Pasqualetti, Fabio; Bassett, Danielle
Networked biological systems, such as the brain, feature complex patterns of interactions. To predict and correct the dynamic behavior of such systems, it is imperative to understand how the underlying topological structure affects and limits the function of the system. Here, we use network control theory to extract topological features that favor or prevent network controllability, and to understand the network-wide effect of external stimuli on large-scale brain systems. Specifically, we treat each brain region as a dynamic entity with real-valued state, and model the time evolution of all interconnected regions using linear, time-invariant dynamics. We propose a simplified feed-forward scheme where the effect of upstream regions (drivers) on the connected downstream regions (non-drivers) is characterized in closed-form. Leveraging this characterization of the simplified model, we derive topological features that predict the controllability properties of non-simplified networks. We show analytically and numerically that these predictors are accurate across a large range of parameters. Among other contributions, our analysis shows that heterogeneity in the network weights facilitate controllability, and allows us to implement targeted interventions that profoundly improve controllability. By assuming an underlying dynamical mechanism, we are able to understand the complex topology of networked biological systems in a functionally meaningful way.
APPLICATION OF EPANET TO UNDERSTAND LEAD ...
This presentation describes the factors affecting lead concentration in tap water using an EPANET hydraulic model for a simplified home model, a realistic home model, and EPA's experimental home plumbing system. This presentation describes the factors affecting lead concentration in tap water using an EPANET hydraulic model.
On equivalent parameter learning in simplified feature space based on Bayesian asymptotic analysis.
Yamazaki, Keisuke
2012-07-01
Parametric models for sequential data, such as hidden Markov models, stochastic context-free grammars, and linear dynamical systems, are widely used in time-series analysis and structural data analysis. Computation of the likelihood function is one of primary considerations in many learning methods. Iterative calculation of the likelihood such as the model selection is still time-consuming though there are effective algorithms based on dynamic programming. The present paper studies parameter learning in a simplified feature space to reduce the computational cost. Simplifying data is a common technique seen in feature selection and dimension reduction though an oversimplified space causes adverse learning results. Therefore, we mathematically investigate a condition of the feature map to have an asymptotically equivalent convergence point of estimated parameters, referred to as the vicarious map. As a demonstration to find vicarious maps, we consider the feature space, which limits the length of data, and derive a necessary length for parameter learning in hidden Markov models. Copyright © 2012 Elsevier Ltd. All rights reserved.
Simplified predictive models for CO 2 sequestration performance assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, Srikanta; Ganesh, Priya; Schuetter, Jared
CO2 sequestration in deep saline formations is increasingly being considered as a viable strategy for the mitigation of greenhouse gas emissions from anthropogenic sources. In this context, detailed numerical simulation based models are routinely used to understand key processes and parameters affecting pressure propagation and buoyant plume migration following CO2 injection into the subsurface. As these models are data and computation intensive, the development of computationally-efficient alternatives to conventional numerical simulators has become an active area of research. Such simplified models can be valuable assets during preliminary CO2 injection project screening, serve as a key element of probabilistic system assessmentmore » modeling tools, and assist regulators in quickly evaluating geological storage projects. We present three strategies for the development and validation of simplified modeling approaches for CO2 sequestration in deep saline formations: (1) simplified physics-based modeling, (2) statisticallearning based modeling, and (3) reduced-order method based modeling. In the first category, a set of full-physics compositional simulations is used to develop correlations for dimensionless injectivity as a function of the slope of the CO2 fractional-flow curve, variance of layer permeability values, and the nature of vertical permeability arrangement. The same variables, along with a modified gravity number, can be used to develop a correlation for the total storage efficiency within the CO2 plume footprint. Furthermore, the dimensionless average pressure buildup after the onset of boundary effects can be correlated to dimensionless time, CO2 plume footprint, and storativity contrast between the reservoir and caprock. In the second category, statistical “proxy models” are developed using the simulation domain described previously with two approaches: (a) classical Box-Behnken experimental design with a quadratic response surface, and (b) maximin Latin Hypercube sampling (LHS) based design with a multidimensional kriging metamodel fit. For roughly the same number of simulations, the LHS-based metamodel yields a more robust predictive model, as verified by a k-fold cross-validation approach (with data split into training and test sets) as well by validation with an independent dataset. In the third category, a reduced-order modeling procedure is utilized that combines proper orthogonal decomposition (POD) for reducing problem dimensionality with trajectory-piecewise linearization (TPWL) in order to represent system response at new control settings from a limited number of training runs. Significant savings in computational time are observed with reasonable accuracy from the PODTPWL reduced-order model for both vertical and horizontal well problems – which could be important in the context of history matching, uncertainty quantification and optimization problems. The simplified physics and statistical learning based models are also validated using an uncertainty analysis framework. Reference cumulative distribution functions of key model outcomes (i.e., plume radius and reservoir pressure buildup) generated using a 97-run full-physics simulation are successfully validated against the CDF from 10,000 sample probabilistic simulations using the simplified models. The main contribution of this research project is the development and validation of a portfolio of simplified modeling approaches that will enable rapid feasibility and risk assessment for CO2 sequestration in deep saline formations.« less
Dynamic Analysis and Test Results for an STC Stirling Generator
NASA Astrophysics Data System (ADS)
Qiu, Songgang; Peterson, Allen A.
2004-02-01
Long-life, high-efficiency generators based on free-piston Stirling machines are a future energy-conversion solution for both space and commercial applications. To aid in design and system integration efforts, Stirling Technology Company (STC) has developed dynamic simulation models for the internal moving subassemblies and for complete Stirling convertor assemblies. These dynamic models have been validated using test data from operating prototypes. Simplified versions of these models are presented to help explain the operating characteristics of the Stirling convertor. Power spectrum analysis is presented for the test data for casing acceleration, piston motion, displacer motion, and controller current/voltage during full power operation. The harmonics of a Stirling convertor and its moving components are identified for the STC zener-diode control scheme. The dynamic behavior of each moving component and its contribution to the system dynamics and resultant vibration forces are discussed. Additionally, the effects of a passive balancer and external suspension are predicted by another simplified system model.
Comparison of an Agent-based Model of Disease Propagation with the Generalised SIR Epidemic Model
2009-08-01
has become a practical method for conducting Epidemiological Modelling. In the agent- based approach the whole township can be modelled as a system of...SIR system was initially developed based on a very simplified model of social interaction. For instance an assumption of uniform population mixing was...simulating the progress of a disease within a host and of transmission between hosts is based upon Transportation Analysis and Simulation System
Modified optimal control pilot model for computer-aided design and analysis
NASA Technical Reports Server (NTRS)
Davidson, John B.; Schmidt, David K.
1992-01-01
This paper presents the theoretical development of a modified optimal control pilot model based upon the optimal control model (OCM) of the human operator developed by Kleinman, Baron, and Levison. This model is input compatible with the OCM and retains other key aspects of the OCM, such as a linear quadratic solution for the pilot gains with inclusion of control rate in the cost function, a Kalman estimator, and the ability to account for attention allocation and perception threshold effects. An algorithm designed for each implementation in current dynamic systems analysis and design software is presented. Example results based upon the analysis of a tracking task using three basic dynamic systems are compared with measured results and with similar analyses performed with the OCM and two previously proposed simplified optimal pilot models. The pilot frequency responses and error statistics obtained with this modified optimal control model are shown to compare more favorably to the measured experimental results than the other previously proposed simplified models evaluated.
Multi-phase CFD modeling of solid sorbent carbon capture system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, E. M.; DeCroix, D.; Breault, R.
2013-07-01
Computational fluid dynamics (CFD) simulations are used to investigate a low temperature post-combustion carbon capture reactor. The CFD models are based on a small scale solid sorbent carbon capture reactor design from ADA-ES and Southern Company. The reactor is a fluidized bed design based on a silica-supported amine sorbent. CFD models using both Eulerian–Eulerian and Eulerian–Lagrangian multi-phase modeling methods are developed to investigate the hydrodynamics and adsorption of carbon dioxide in the reactor. Models developed in both FLUENT® and BARRACUDA are presented to explore the strengths and weaknesses of state of the art CFD codes for modeling multi-phase carbon capturemore » reactors. The results of the simulations show that the FLUENT® Eulerian–Lagrangian simulations (DDPM) are unstable for the given reactor design; while the BARRACUDA Eulerian–Lagrangian model is able to simulate the system given appropriate simplifying assumptions. FLUENT® Eulerian–Eulerian simulations also provide a stable solution for the carbon capture reactor given the appropriate simplifying assumptions.« less
Multi-Phase CFD Modeling of Solid Sorbent Carbon Capture System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, Emily M.; DeCroix, David; Breault, Ronald W.
2013-07-30
Computational fluid dynamics (CFD) simulations are used to investigate a low temperature post-combustion carbon capture reactor. The CFD models are based on a small scale solid sorbent carbon capture reactor design from ADA-ES and Southern Company. The reactor is a fluidized bed design based on a silica-supported amine sorbent. CFD models using both Eulerian-Eulerian and Eulerian-Lagrangian multi-phase modeling methods are developed to investigate the hydrodynamics and adsorption of carbon dioxide in the reactor. Models developed in both FLUENT® and BARRACUDA are presented to explore the strengths and weaknesses of state of the art CFD codes for modeling multi-phase carbon capturemore » reactors. The results of the simulations show that the FLUENT® Eulerian-Lagrangian simulations (DDPM) are unstable for the given reactor design; while the BARRACUDA Eulerian-Lagrangian model is able to simulate the system given appropriate simplifying assumptions. FLUENT® Eulerian-Eulerian simulations also provide a stable solution for the carbon capture reactor given the appropriate simplifying assumptions.« less
The cost of simplifying air travel when modeling disease spread.
Lessler, Justin; Kaufman, James H; Ford, Daniel A; Douglas, Judith V
2009-01-01
Air travel plays a key role in the spread of many pathogens. Modeling the long distance spread of infectious disease in these cases requires an air travel model. Highly detailed air transportation models can be over determined and computationally problematic. We compared the predictions of a simplified air transport model with those of a model of all routes and assessed the impact of differences on models of infectious disease. Using U.S. ticket data from 2007, we compared a simplified "pipe" model, in which individuals flow in and out of the air transport system based on the number of arrivals and departures from a given airport, to a fully saturated model where all routes are modeled individually. We also compared the pipe model to a "gravity" model where the probability of travel is scaled by physical distance; the gravity model did not differ significantly from the pipe model. The pipe model roughly approximated actual air travel, but tended to overestimate the number of trips between small airports and underestimate travel between major east and west coast airports. For most routes, the maximum number of false (or missed) introductions of disease is small (<1 per day) but for a few routes this rate is greatly underestimated by the pipe model. If our interest is in large scale regional and national effects of disease, the simplified pipe model may be adequate. If we are interested in specific effects of interventions on particular air routes or the time for the disease to reach a particular location, a more complex point-to-point model will be more accurate. For many problems a hybrid model that independently models some frequently traveled routes may be the best choice. Regardless of the model used, the effect of simplifications and sensitivity to errors in parameter estimation should be analyzed.
Yang, Qingxia; Xu, Jun; Cao, Binggang; Li, Xiuqing
2017-01-01
Identification of internal parameters of lithium-ion batteries is a useful tool to evaluate battery performance, and requires an effective model and algorithm. Based on the least square genetic algorithm, a simplified fractional order impedance model for lithium-ion batteries and the corresponding parameter identification method were developed. The simplified model was derived from the analysis of the electrochemical impedance spectroscopy data and the transient response of lithium-ion batteries with different states of charge. In order to identify the parameters of the model, an equivalent tracking system was established, and the method of least square genetic algorithm was applied using the time-domain test data. Experiments and computer simulations were carried out to verify the effectiveness and accuracy of the proposed model and parameter identification method. Compared with a second-order resistance-capacitance (2-RC) model and recursive least squares method, small tracing voltage fluctuations were observed. The maximum battery voltage tracing error for the proposed model and parameter identification method is within 0.5%; this demonstrates the good performance of the model and the efficiency of the least square genetic algorithm to estimate the internal parameters of lithium-ion batteries. PMID:28212405
A Simplified Land Model (SLM) for use in cloud-resolving models: Formulation and evaluation
NASA Astrophysics Data System (ADS)
Lee, Jungmin M.; Khairoutdinov, Marat
2015-09-01
A Simplified Land Model (SLM) that uses a minimalist set of parameters with a single-layer vegetation and multilevel soil structure has been developed distinguishing canopy and undercanopy energy budgets. The primary motivation has been to design a land model for use in the System for Atmospheric Modeling (SAM) cloud-resolving model to study land-atmosphere interactions with a sufficient level of realism. SLM uses simplified expressions for the transport of heat, moisture, momentum, and radiation in soil-vegetation system. The SLM performance has been evaluated over several land surface types using summertime tower observations of micrometeorological and biophysical data from three AmeriFlux sites, which include grassland, cropland, and deciduous-broadleaf forest. In general, the SLM captures the observed diurnal cycle of surface energy budget and soil temperature reasonably well, although reproducing the evolution of soil moisture, especially after rain events, has been challenging. The SLM coupled to SAM has been applied to the case of summertime shallow cumulus convection over land based on the Atmospheric Radiation Measurements (ARM) Southern Great Plain (SGP) observations. The simulated surface latent and sensible heat fluxes as well as the evolution of thermodynamic profiles in convective boundary layer agree well with the estimates based on the observations. Sensitivity of atmospheric boundary layer development to the soil moisture and different land cover types has been also examined.
Simulating Supercapacitors: Can We Model Electrodes As Constant Charge Surfaces?
Merlet, Céline; Péan, Clarisse; Rotenberg, Benjamin; Madden, Paul A; Simon, Patrice; Salanne, Mathieu
2013-01-17
Supercapacitors based on an ionic liquid electrolyte and graphite or nanoporous carbon electrodes are simulated using molecular dynamics. We compare a simplified electrode model in which a constant, uniform charge is assigned to each carbon atom with a realistic model in which a constant potential is applied between the electrodes (the carbon charges are allowed to fluctuate). We show that the simulations performed with the simplified model do not provide a correct description of the properties of the system. First, the structure of the adsorbed electrolyte is partly modified. Second, dramatic differences are observed for the dynamics of the system during transient regimes. In particular, upon application of a constant applied potential difference, the increase in the temperature, due to the Joule effect, associated with the creation of an electric current across the cell follows Ohm's law, while unphysically high temperatures are rapidly observed when constant charges are assigned to each carbon atom.
NASA Astrophysics Data System (ADS)
Behroozi-Toosi, A. B.; Booker, H. G.
1980-12-01
The simplified theory of ELF wave propagation in the earth-ionosphere transmission lines developed by Booker (1980) is applied to a simplified worldwide model of the ionosphere. The theory, which involves the comparison of the local vertical refractive index gradient with the local wavelength in order to classify the altitude into regions of low and high gradient, is used for a model of electron and negative ion profiles in the D and E regions below 150 km. Attention is given to the frequency dependence of ELF propagation at a middle latitude under daytime conditions, the daytime latitude dependence of ELF propagation at the equinox, the effects of sunspot, seasonal and diurnal variations on propagation, nighttime propagation neglecting and including propagation above 100 km, and the effect on daytime ELF propagation of a sudden ionospheric disturbance. The numerical values obtained by the method for the propagation velocity and attenuation rate are shown to be in general agreement with the analytic Naval Ocean Systems Center computer program. It is concluded that the method employed gives more physical insights into propagation processes than any other method, while requiring less effort and providing maximal accuracy.
A user-oriented and computerized model for estimating vehicle ride quality
NASA Technical Reports Server (NTRS)
Leatherwood, J. D.; Barker, L. M.
1984-01-01
A simplified empirical model and computer program for estimating passenger ride comfort within air and surface transportation systems are described. The model is based on subjective ratings from more than 3000 persons who were exposed to controlled combinations of noise and vibration in the passenger ride quality apparatus. This model has the capability of transforming individual elements of a vehicle's noise and vibration environment into subjective discomfort units and then combining the subjective units to produce a single discomfort index typifying passenger acceptance of the environment. The computational procedures required to obtain discomfort estimates are discussed, and a user oriented ride comfort computer program is described. Examples illustrating application of the simplified model to helicopter and automobile ride environments are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gayeski, N.; Armstrong, Peter; Alvira, M.
2011-11-30
KGS Buildings LLC (KGS) and Pacific Northwest National Laboratory (PNNL) have developed a simplified control algorithm and prototype low-lift chiller controller suitable for model-predictive control in a demonstration project of low-lift cooling. Low-lift cooling is a highly efficient cooling strategy conceived to enable low or net-zero energy buildings. A low-lift cooling system consists of a high efficiency low-lift chiller, radiant cooling, thermal storage, and model-predictive control to pre-cool thermal storage overnight on an optimal cooling rate trajectory. We call the properly integrated and controlled combination of these elements a low-lift cooling system (LLCS). This document is the final report formore » that project.« less
A Model for Administrative Evaluation by Subordinates.
ERIC Educational Resources Information Center
Budig, Jeanne E.
Under the administrator evaluation program adopted at Vincennes University, all faculty and professional staff are invited to evaluate each administrator above them in the chain of command. Originally based on the Purdue University "cafeteria" system, this evaluation model has been used biannually for 10 years. In an effort to simplify the system,…
Morishita, Y
2001-05-01
The subject matters concerned with use of so-called simplified analytical systems for the purpose of useful utilizing are mentioned from the perspective of a laboratory technician. 1. The data from simplified analytical systems should to be agreed with those of particular reference methods not to occur the discrepancy of the data from different laboratories. 2. Accuracy of the measured results using simplified analytical systems is hard to be scrutinized thoroughly and correctly with the quality control surveillance procedure on the stored pooled serum or partly-processed blood. 3. It is necessary to present the guide line to follow about the contents of evaluation to guarantee on quality of simplified analytical systems. 4. Maintenance and manual performance of simplified analytical systems have to be standardized by a laboratory technician and a selling agent technician. 5. It calls attention, further that the cost of simplified analytical systems is much expensive compared to that of routine method with liquid reagents. 6. Various substances in human serum, like cytokine, hormone, tumor marker, and vitamin, etc. are also hoped to be measured by simplified analytical systems.
Computational reacting gas dynamics
NASA Technical Reports Server (NTRS)
Lam, S. H.
1993-01-01
In the study of high speed flows at high altitudes, such as that encountered by re-entry spacecrafts, the interaction of chemical reactions and other non-equilibrium processes in the flow field with the gas dynamics is crucial. Generally speaking, problems of this level of complexity must resort to numerical methods for solutions, using sophisticated computational fluid dynamics (CFD) codes. The difficulties introduced by reacting gas dynamics can be classified into three distinct headings: (1) the usually inadequate knowledge of the reaction rate coefficients in the non-equilibrium reaction system; (2) the vastly larger number of unknowns involved in the computation and the expected stiffness of the equations; and (3) the interpretation of the detailed reacting CFD numerical results. The research performed accepts the premise that reacting flows of practical interest in the future will in general be too complex or 'untractable' for traditional analytical developments. The power of modern computers must be exploited. However, instead of focusing solely on the construction of numerical solutions of full-model equations, attention is also directed to the 'derivation' of the simplified model from the given full-model. In other words, the present research aims to utilize computations to do tasks which have traditionally been done by skilled theoreticians: to reduce an originally complex full-model system into an approximate but otherwise equivalent simplified model system. The tacit assumption is that once the appropriate simplified model is derived, the interpretation of the detailed numerical reacting CFD numerical results will become much easier. The approach of the research is called computational singular perturbation (CSP).
A comparison study of one-and two-dimensional hydraulic models for river environments.
DOT National Transportation Integrated Search
2017-05-01
Computer models are used every day to analyze river systems for a wide variety of reasons vital to : the public interest. For decades most hydraulic engineers have been limited to models that simplify the fluid : mechanics to the unidirectional case....
Computer models for economic and silvicultural decisions
Rosalie J. Ingram
1989-01-01
Computer systems can help simplify decisionmaking to manage forest ecosystems. We now have computer models to help make forest management decisions by predicting changes associated with a particular management action. Models also help you evaluate alternatives. To be effective, the computer models must be reliable and appropriate for your situation.
2012-02-01
use of polar gas species. While current simplified models have adequately predicted CRS and CRBS line shapes for a wide variety of cases, multiple ...published simplified models are presented for argon, molecular nitrogen, and methane at 300 & 500 K and 1 atm. The simplified models require uncertain gas... models are presented for argon, molecular nitrogen, and methane at 300 & 500 K and 1 atm. The simplified models require uncertain gas properties
Quantifying and Disaggregating Consumer Purchasing Behavior for Energy Systems Modeling
Consumer behaviors such as energy conservation, adoption of more efficient technologies, and fuel switching represent significant potential for greenhouse gas mitigation. Current efforts to model future energy outcomes have tended to use simplified economic assumptions ...
The Value of SysML Modeling During System Operations: A Case Study
NASA Technical Reports Server (NTRS)
Dutenhoffer, Chelsea; Tirona, Joseph
2013-01-01
System models are often touted as engineering tools that promote better understanding of systems, but these models are typically created during system design. The Ground Data System (GDS) team for the Dawn spacecraft took on a case study to see if benefits could be achieved by starting a model of a system already in operations. This paper focuses on the four steps the team undertook in modeling the Dawn GDS: defining a model structure, populating model elements, verifying that the model represented reality, and using the model to answer system-level questions and simplify day-to-day tasks. Throughout this paper the team outlines our thought processes and the system insights the model provided.
The value of SysML modeling during system operations: A case study
NASA Astrophysics Data System (ADS)
Dutenhoffer, C.; Tirona, J.
System models are often touted as engineering tools that promote better understanding of systems, but these models are typically created during system design. The Ground Data System (GDS) team for the Dawn spacecraft took on a case study to see if benefits could be achieved by starting a model of a system already in operations. This paper focuses on the four steps the team undertook in modeling the Dawn GDS: defining a model structure, populating model elements, verifying that the model represented reality, and using the model to answer system-level questions and simplify day-to-day tasks. Throughout this paper the team outlines our thought processes and the system insights the model provided.
A SQL-Database Based Meta-CASE System and its Query Subsystem
NASA Astrophysics Data System (ADS)
Eessaar, Erki; Sgirka, Rünno
Meta-CASE systems simplify the creation of CASE (Computer Aided System Engineering) systems. In this paper, we present a meta-CASE system that provides a web-based user interface and uses an object-relational database system (ORDBMS) as its basis. The use of ORDBMSs allows us to integrate different parts of the system and simplify the creation of meta-CASE and CASE systems. ORDBMSs provide powerful query mechanism. The proposed system allows developers to use queries to evaluate and gradually improve artifacts and calculate values of software measures. We illustrate the use of the systems by using SimpleM modeling language and discuss the use of SQL in the context of queries about artifacts. We have created a prototype of the meta-CASE system by using PostgreSQL™ ORDBMS and PHP scripting language.
Research on simplified parametric finite element model of automobile frontal crash
NASA Astrophysics Data System (ADS)
Wu, Linan; Zhang, Xin; Yang, Changhai
2018-05-01
The modeling method and key technologies of the automobile frontal crash simplified parametric finite element model is studied in this paper. By establishing the auto body topological structure, extracting and parameterizing the stiffness properties of substructures, choosing appropriate material models for substructures, the simplified parametric FE model of M6 car is built. The comparison of the results indicates that the simplified parametric FE model can accurately calculate the automobile crash responses and the deformation of the key substructures, and the simulation time is reduced from 6 hours to 2 minutes.
iGen: An automated generator of simplified models with provable error bounds.
NASA Astrophysics Data System (ADS)
Tang, D.; Dobbie, S.
2009-04-01
Climate models employ various simplifying assumptions and parameterisations in order to increase execution speed. However, in order to draw conclusions about the Earths climate from the results of a climate simulation it is necessary to have information about the error that these assumptions and parameterisations introduce. A novel computer program, called iGen, is being developed which automatically generates fast, simplified models by analysing the source code of a slower, high resolution model. The resulting simplified models have provable bounds on error compared to the high resolution model and execute at speeds that are typically orders of magnitude faster. iGen's input is a definition of the prognostic variables of the simplified model, a set of bounds on acceptable error and the source code of a model that captures the behaviour of interest. In the case of an atmospheric model, for example, this would be a global cloud resolving model with very high resolution. Although such a model would execute far too slowly to be used directly in a climate model, iGen never executes it. Instead, it converts the code of the resolving model into a mathematical expression which is then symbolically manipulated and approximated to form a simplified expression. This expression is then converted back into a computer program and output as a simplified model. iGen also derives and reports formal bounds on the error of the simplified model compared to the resolving model. These error bounds are always maintained below the user-specified acceptable error. Results will be presented illustrating the success of iGen's analysis of a number of example models. These extremely encouraging results have lead on to work which is currently underway to analyse a cloud resolving model and so produce an efficient parameterisation of moist convection with formally bounded error.
Mathematical Description of Complex Chemical Kinetics and Application to CFD Modeling Codes
NASA Technical Reports Server (NTRS)
Bittker, D. A.
1993-01-01
A major effort in combustion research at the present time is devoted to the theoretical modeling of practical combustion systems. These include turbojet and ramjet air-breathing engines as well as ground-based gas-turbine power generating systems. The ability to use computational modeling extensively in designing these products not only saves time and money, but also helps designers meet the quite rigorous environmental standards that have been imposed on all combustion devices. The goal is to combine the very complex solution of the Navier-Stokes flow equations with realistic turbulence and heat-release models into a single computer code. Such a computational fluid-dynamic (CFD) code simulates the coupling of fluid mechanics with the chemistry of combustion to describe the practical devices. This paper will focus on the task of developing a simplified chemical model which can predict realistic heat-release rates as well as species composition profiles, and is also computationally rapid. We first discuss the mathematical techniques used to describe a complex, multistep fuel oxidation chemical reaction and develop a detailed mechanism for the process. We then show how this mechanism may be reduced and simplified to give an approximate model which adequately predicts heat release rates and a limited number of species composition profiles, but is computationally much faster than the original one. Only such a model can be incorporated into a CFD code without adding significantly to long computation times. Finally, we present some of the recent advances in the development of these simplified chemical mechanisms.
Mathematical description of complex chemical kinetics and application to CFD modeling codes
NASA Technical Reports Server (NTRS)
Bittker, D. A.
1993-01-01
A major effort in combustion research at the present time is devoted to the theoretical modeling of practical combustion systems. These include turbojet and ramjet air-breathing engines as well as ground-based gas-turbine power generating systems. The ability to use computational modeling extensively in designing these products not only saves time and money, but also helps designers meet the quite rigorous environmental standards that have been imposed on all combustion devices. The goal is to combine the very complex solution of the Navier-Stokes flow equations with realistic turbulence and heat-release models into a single computer code. Such a computational fluid-dynamic (CFD) code simulates the coupling of fluid mechanics with the chemistry of combustion to describe the practical devices. This paper will focus on the task of developing a simplified chemical model which can predict realistic heat-release rates as well as species composition profiles, and is also computationally rapid. We first discuss the mathematical techniques used to describe a complex, multistep fuel oxidation chemical reaction and develop a detailed mechanism for the process. We then show how this mechanism may be reduced and simplified to give an approximate model which adequately predicts heat release rates and a limited number of species composition profiles, but is computationally much faster than the original one. Only such a model can be incorporated into a CFD code without adding significantly to long computation times. Finally, we present some of the recent advances in the development of these simplified chemical mechanisms.
Better Water Demand and Pipe Description Improve the Distribution Network Modeling Results
Distribution system modeling simplifies pipe network in skeletonization and simulates the flow and water quality by using generalized water demand patterns. While widely used, the approach has not been examined fully on how it impacts the modeling fidelity. This study intends to ...
[Influence of trabecular microstructure modeling on finite element analysis of dental implant].
Shen, M J; Wang, G G; Zhu, X H; Ding, X
2016-09-01
To analyze the influence of trabecular microstructure modeling on the biomechanical distribution of implant-bone interface with a three-dimensional finite element mandible model of trabecular structure. Dental implants were embeded in the mandibles of a beagle dog. After three months of the implant installation, the mandibles with dental implants were harvested and scaned by micro-CT and cone-beam CT. Two three-dimensional finite element mandible models, trabecular microstructure(precise model) and macrostructure(simplified model), were built. The values of stress and strain of implant-bone interface were calculated using the software of Ansys 14.0. Compared with the simplified model, the precise models' average values of the implant bone interface stress increased obviously and its maximum values did not change greatly. The maximum values of quivalent stress of the precise models were 80% and 110% of the simplified model and the average values were 170% and 290% of simplified model. The maximum and average values of equivalent strain of precise models were obviously decreased, and the maximum values of the equivalent effect strain were 17% and 26% of simplified model and the average ones were 21% and 16% of simplified model respectively. Stress and strain concentrations at implant-bone interface were obvious in the simplified model. However, the distributions of stress and strain were uniform in the precise model. The precise model has significant effect on the distribution of stress and strain at implant-bone interface.
Thermal induced flow oscillations in heat exchangers for supercritical fluids
NASA Technical Reports Server (NTRS)
Friedly, J. C.; Manganaro, J. L.; Krueger, P. G.
1972-01-01
Analytical model has been developed to predict possible unstable behavior in supercritical heat exchangers. From complete model, greatly simplified stability criterion is derived. As result of this criterion, stability of heat exchanger system can be predicted in advance.
The Expansion of National Educational Systems: Tests of a Population Ecology Model
ERIC Educational Resources Information Center
Nielsen, Francois; Hannan, Michael T.
1977-01-01
This paper investigates the expansion of enrollments in national systems of education during the 1950-1970 period from the point of view of the population ecology of organizations. A simplified dynamic model of the growth of a population of educational organizations is estimated using various techniques for pooling time series of data. (Author/JM)
NASA Technical Reports Server (NTRS)
Ferguson, R. E.
1985-01-01
The data base verification of the ECLS Systems Assessment Program (ESAP) was documented and changes made to enhance the flexibility of the water recovery subsystem simulations are given. All changes which were made to the data base values are described and the software enhancements performed. The refined model documented herein constitutes the submittal of the General Cluster Systems Model. A source listing of the current version of ESAP is provided in Appendix A.
Feynman's and Ohta's Models of a Josephson Junction
ERIC Educational Resources Information Center
De Luca, R.
2012-01-01
The Josephson equations are derived by means of the weakly coupled two-level quantum system model given by Feynman. Adopting a simplified version of Ohta's model, starting from Feynman's model, the strict voltage-frequency Josephson relation is derived. The contribution of Ohta's approach to the comprehension of the additional term given by the…
Pedagogical View of Model Metabolic Cycles
ERIC Educational Resources Information Center
García-Herrero, Victor; Sillero, Antonio
2015-01-01
The main purpose of this study was to present a simplified view of model metabolic cycles. Although the models have been elaborated with the "Mathematica" Program, and using a system of differential equations, the main conclusions were presented in a rather intuitive way, easily understandable by students of general courses of…
USDA-ARS?s Scientific Manuscript database
Advanced Land Surface Models (LSM) offer a powerful tool for studying hydrological variability. Highly managed systems, however, present a challenge for these models, which typically have simplified or incomplete representations of human water use. Here we examine recent groundwater declines in the ...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-23
...-02] RIN 0694-AE98 Simplified Network Application Processing System, On-Line Registration and Account...'') electronically via BIS's Simplified Network Application Processing (SNAP-R) system. Currently, parties must... Network Applications Processing System (SNAP-R) in October 2006. The SNAP-R system provides a Web based...
MODELING NITROGEN-CARBON CYCLING AND OXYGEN CONSUMPTION IN BOTTOM SEDIMENTS
A model framework is presented for simulating nitrogen and carbon cycling at the sediment–water interface, and predicting oxygen consumption by oxidation reactions inside the sediments. Based on conservation of mass and invoking simplifying assumptions, a coupled system of diffus...
The development and evaluation of a nursing information system for caring clinical in-patient.
Fang, Yu-Wen; Li, Chih-Ping; Wang, Mei-Hua
2015-01-01
The research aimed to develop a nursing information system in order to simplify the admission procedure for caring clinical in-patient, enhance the efficiency of medical information documentation. Therefore, by correctly delivering patients’ health records, and providing continues care, patient safety and care quality would be effectively improved. The study method was to apply Spiral Model development system to compose a nursing information team. By using strategies of data collection, working environment observation, applying use-case modeling, and conferences of Joint Application Design (JAD) to complete the system requirement analysis and design. The Admission Care Management Information System (ACMIS) mainly included: (1) Admission nursing management information system. (2) Inter-shift meeting information management system. (3) The linkage of drug management system and physical examination record system. The framework contained qualitative and quantitative components that provided both formative and summative elements of the evaluation. System evaluation was to apply information success model, and developed questionnaire of consisting nurses’ acceptance and satisfaction. The results of questionnaires were users’ satisfaction, the perceived self-involvement, age and information quality were positively to personal and organizational effectiveness. According to the results of this study, the Admission Care Management Information System was practical to simplifying clinic working procedure and effective in communicating and documenting admission medical information.
NASA Astrophysics Data System (ADS)
Visser, Philip W.; Kooi, Henk; Stuyfzand, Pieter J.
2015-05-01
Results are presented of a comprehensive thermal impact study on an aquifer thermal energy storage (ATES) system in Bilthoven, the Netherlands. The study involved monitoring of the thermal impact and modeling of the three-dimensional temperature evolution of the storage aquifer and over- and underlying units. Special attention was paid to non-uniformity of the background temperature, which varies laterally and vertically in the aquifer. Two models were applied with different levels of detail regarding initial conditions and heterogeneity of hydraulic and thermal properties: a fine-scale heterogeneity model which construed the lateral and vertical temperature distribution more realistically, and a simplified model which represented the aquifer system with only a limited number of homogeneous layers. Fine-scale heterogeneity was shown to be important to accurately model the ATES-impacted vertical temperature distribution and the maximum and minimum temperatures in the storage aquifer, and the spatial extent of the thermal plumes. The fine-scale heterogeneity model resulted in larger thermally impacted areas and larger temperature anomalies than the simplified model. The models showed that scattered and scarce monitoring data of ATES-induced temperatures can be interpreted in a useful way by groundwater and heat transport modeling, resulting in a realistic assessment of the thermal impact.
NASA Astrophysics Data System (ADS)
Yasuda, Hiromi; Pratt, Riley; Yang, Jinkyu
2017-04-01
We investigate wave dynamics in origami-based mechanical metamaterials composed of bellows-like origami structures, specifically the Tachi-Miura Polyhedron (TMP). One of the unique features of the TMP is that its structural deformations take place only along the crease lines, therefore the structure can be made of rigid plates and hinges. By utilizing this feature, we introduce linear torsional springs to model the crease lines and derive the force and displacement relationship of the TMP structure along the longitudinal direction. Our analysis shows strain softening/hardening behaviors in compression/tensile regions respectively, and the force-displacement curve can be manipulated by altering the initial configuration of the TMP (e.g., the initial folding angle). We also fabricate physical prototypes and measure the force-displacement behavior to verify our analytical model. Based on this static analysis on the TMP, we simplify the TMP structure into a linkage model, preserving the tunable strain softening/hardening behaviors. Dynamic analysis is also conducted numerically to analyze the frequency response of the simplified TMP unit cell under harmonic excitations. The simplified TMP exhibits a transition between linear and nonlinear behaviors, which depends on the amplitude of the excitation and the initial configuration. In addition, we design a 1D system composed of simplified TMP unit cells and analyze the relationship between frequency and wave number. If two different configurations of the unit cell (e.g., different initial folding angles) are connected in an alternating arrangement, the system develops frequency bandgaps. These unique static/dynamic behaviors can be exploited to design engineering devices which can handle vibrations and impact in an efficient manner.
Large Angle Transient Dynamics (LATDYN) user's manual
NASA Technical Reports Server (NTRS)
Abrahamson, A. Louis; Chang, Che-Wei; Powell, Michael G.; Wu, Shih-Chin; Bingel, Bradford D.; Theophilos, Paula M.
1991-01-01
A computer code for modeling the large angle transient dynamics (LATDYN) of structures was developed to investigate techniques for analyzing flexible deformation and control/structure interaction problems associated with large angular motions of spacecraft. This type of analysis is beyond the routine capability of conventional analytical tools without simplifying assumptions. In some instances, the motion may be sufficiently slow and the spacecraft (or component) sufficiently rigid to simplify analyses of dynamics and controls by making pseudo-static and/or rigid body assumptions. The LATDYN introduces a new approach to the problem by combining finite element structural analysis, multi-body dynamics, and control system analysis in a single tool. It includes a type of finite element that can deform and rotate through large angles at the same time, and which can be connected to other finite elements either rigidly or through mechanical joints. The LATDYN also provides symbolic capabilities for modeling control systems which are interfaced directly with the finite element structural model. Thus, the nonlinear equations representing the structural model are integrated along with the equations representing sensors, processing, and controls as a coupled system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Udhay Ravishankar; Milos manic
2013-08-01
This paper presents a micro-grid simulator tool useful for implementing and testing multi-agent controllers (SGridSim). As a common engineering practice it is important to have a tool that simplifies the modeling of the salient features of a desired system. In electric micro-grids, these salient features are the voltage and power distributions within the micro-grid. Current simplified electric power grid simulator tools such as PowerWorld, PowerSim, Gridlab, etc, model only the power distribution features of a desired micro-grid. Other power grid simulators such as Simulink, Modelica, etc, use detailed modeling to accommodate the voltage distribution features. This paper presents a SGridSimmore » micro-grid simulator tool that simplifies the modeling of both the voltage and power distribution features in a desired micro-grid. The SGridSim tool accomplishes this simplified modeling by using Effective Node-to-Node Complex Impedance (EN2NCI) models of components that typically make-up a micro-grid. The term EN2NCI models means that the impedance based components of a micro-grid are modeled as single impedances tied between their respective voltage nodes on the micro-grid. Hence the benefit of the presented SGridSim tool are 1) simulation of a micro-grid is performed strictly in the complex-domain; 2) faster simulation of a micro-grid by avoiding the simulation of detailed transients. An example micro-grid model was built using the SGridSim tool and tested to simulate both the voltage and power distribution features with a total absolute relative error of less than 6%.« less
Nagashino, Hirofumi; Kinouchi, Yohsuke; Danesh, Ali A; Pandya, Abhijit S
2013-01-01
Tinnitus is the perception of sound in the ears or in the head where no external source is present. Sound therapy is one of the most effective techniques for tinnitus treatment that have been proposed. In order to investigate mechanisms of tinnitus generation and the clinical effects of sound therapy, we have proposed conceptual and computational models with plasticity using a neural oscillator or a neuronal network model. In the present paper, we propose a neuronal network model with simplified tonotopicity of the auditory system as more detailed structure. In this model an integrate-and-fire neuron model is employed and homeostatic plasticity is incorporated. The computer simulation results show that the present model can show the generation of oscillation and its cessation by external input. It suggests that the present framework is promising as a modeling for the tinnitus generation and the effects of sound therapy.
NASA Technical Reports Server (NTRS)
Cuthbert, Peter
2010-01-01
DTV-SIM is a computer program that implements a mathematical model of the flight dynamics of a missile-shaped drop test vehicle (DTV) equipped with a multistage parachute system that includes two simultaneously deployed drogue parachutes and three main parachutes deployed subsequently and simultaneously by use of pilot parachutes. DTV-SIM was written to support air-drop tests of the DTV/parachute system, which serves a simplified prototype of a proposed crew capsule/parachute landing system.
Simplified models for dark matter searches at the LHC
NASA Astrophysics Data System (ADS)
Abdallah, Jalal; Araujo, Henrique; Arbey, Alexandre; Ashkenazi, Adi; Belyaev, Alexander; Berger, Joshua; Boehm, Celine; Boveia, Antonio; Brennan, Amelia; Brooke, Jim; Buchmueller, Oliver; Buckley, Matthew; Busoni, Giorgio; Calibbi, Lorenzo; Chauhan, Sushil; Daci, Nadir; Davies, Gavin; De Bruyn, Isabelle; De Jong, Paul; De Roeck, Albert; de Vries, Kees; Del Re, Daniele; De Simone, Andrea; Di Simone, Andrea; Doglioni, Caterina; Dolan, Matthew; Dreiner, Herbi K.; Ellis, John; Eno, Sarah; Etzion, Erez; Fairbairn, Malcolm; Feldstein, Brian; Flaecher, Henning; Feng, Eric; Fox, Patrick; Genest, Marie-Hélène; Gouskos, Loukas; Gramling, Johanna; Haisch, Ulrich; Harnik, Roni; Hibbs, Anthony; Hoh, Siewyan; Hopkins, Walter; Ippolito, Valerio; Jacques, Thomas; Kahlhoefer, Felix; Khoze, Valentin V.; Kirk, Russell; Korn, Andreas; Kotov, Khristian; Kunori, Shuichi; Landsberg, Greg; Liem, Sebastian; Lin, Tongyan; Lowette, Steven; Lucas, Robyn; Malgeri, Luca; Malik, Sarah; McCabe, Christopher; Mete, Alaettin Serhan; Morgante, Enrico; Mrenna, Stephen; Nakahama, Yu; Newbold, Dave; Nordstrom, Karl; Pani, Priscilla; Papucci, Michele; Pataraia, Sophio; Penning, Bjoern; Pinna, Deborah; Polesello, Giacomo; Racco, Davide; Re, Emanuele; Riotto, Antonio Walter; Rizzo, Thomas; Salek, David; Sarkar, Subir; Schramm, Steven; Skubic, Patrick; Slone, Oren; Smirnov, Juri; Soreq, Yotam; Sumner, Timothy; Tait, Tim M. P.; Thomas, Marc; Tomalin, Ian; Tunnell, Christopher; Vichi, Alessandro; Volansky, Tomer; Weiner, Neal; West, Stephen M.; Wielers, Monika; Worm, Steven; Yavin, Itay; Zaldivar, Bryan; Zhou, Ning; Zurek, Kathryn
2015-09-01
This document outlines a set of simplified models for dark matter and its interactions with Standard Model particles. It is intended to summarize the main characteristics that these simplified models have when applied to dark matter searches at the LHC, and to provide a number of useful expressions for reference. The list of models includes both ss-channel and tt-channel scenarios. For ss-channel, spin-0 and spin-1 mediations are discussed, and also realizations where the Higgs particle provides a portal between the dark and visible sectors. The guiding principles underpinning the proposed simplified models are spelled out, and some suggestions for implementation are presented.
Simplified subsurface modelling: data assimilation and violated model assumptions
NASA Astrophysics Data System (ADS)
Erdal, Daniel; Lange, Natascha; Neuweiler, Insa
2017-04-01
Integrated models are gaining more and more attention in hydrological modelling as they can better represent the interaction between different compartments. Naturally, these models come along with larger numbers of unknowns and requirements on computational resources compared to stand-alone models. If large model domains are to be represented, e.g. on catchment scale, the resolution of the numerical grid needs to be reduced or the model itself needs to be simplified. Both approaches lead to a reduced ability to reproduce the present processes. This lack of model accuracy may be compensated by using data assimilation methods. In these methods observations are used to update the model states, and optionally model parameters as well, in order to reduce the model error induced by the imposed simplifications. What is unclear is whether these methods combined with strongly simplified models result in completely data-driven models or if they can even be used to make adequate predictions of the model state for times when no observations are available. In the current work we consider the combined groundwater and unsaturated zone, which can be modelled in a physically consistent way using 3D-models solving the Richards equation. For use in simple predictions, however, simpler approaches may be considered. The question investigated here is whether a simpler model, in which the groundwater is modelled as a horizontal 2D-model and the unsaturated zones as a few sparse 1D-columns, can be used within an Ensemble Kalman filter to give predictions of groundwater levels and unsaturated fluxes. This is tested under conditions where the feedback between the two model-compartments are large (e.g. shallow groundwater table) and the simplification assumptions are clearly violated. Such a case may be a steep hill-slope or pumping wells, creating lateral fluxes in the unsaturated zone, or strong heterogeneous structures creating unaccounted flows in both the saturated and unsaturated compartments. Under such circumstances, direct modelling using a simplified model will not provide good results. However, a more data driven (e.g. grey box) approach, driven by the filter, may still provide an improved understanding of the system. Comparisons between full 3D simulations and simplified filter driven models will be shown and the resulting benefits and drawbacks will be discussed.
NASA Astrophysics Data System (ADS)
Vimmr, Jan; Bublík, Ondřej; Prausová, Helena; Hála, Jindřich; Pešek, Luděk
2018-06-01
This paper deals with a numerical simulation of compressible viscous fluid flow around three flat plates with prescribed harmonic motion. This arrangement presents a simplified blade cascade with forward wave motion. The aim of this simulation is to determine the aerodynamic forces acting on the flat plates. The mathematical model describing this problem is formed by Favre-averaged system of Navier-Stokes equations in arbitrary Lagrangian-Eulerian (ALE) formulation completed by one-equation Spalart-Allmaras turbulence model. The simulation was performed using the developed in-house CFD software based on discontinuous Galerkin method, which offers high order of accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Haihua; Zhang, Hongbin; Zou, Ling
2014-10-01
The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). The RELAP-7 code develop-ment effort started in October of 2011 and by the end of the second development year, a number of physical components with simplified two phase flow capability have been de-veloped to support the simplified boiling water reactor (BWR) extended station blackout (SBO) analyses. The demonstration case includes the major components for the primary system of a BWR, as well as the safety system components for the safety relief valve (SRV), the reactor core isolation cooling (RCIC)more » system, and the wet well. Three scenar-ios for the SBO simulations have been considered. Since RELAP-7 is not a severe acci-dent analysis code, the simulation stops when fuel clad temperature reaches damage point. Scenario I represents an extreme station blackout accident without any external cooling and cooling water injection. The system pressure is controlled by automatically releasing steam through SRVs. Scenario II includes the RCIC system but without SRV. The RCIC system is fully coupled with the reactor primary system and all the major components are dynamically simulated. The third scenario includes both the RCIC system and the SRV to provide a more realistic simulation. This paper will describe the major models and dis-cuss the results for the three scenarios. The RELAP-7 simulations for the three simplified SBO scenarios show the importance of dynamically simulating the SRVs, the RCIC sys-tem, and the wet well system to the reactor safety during extended SBO accidents.« less
NASA Astrophysics Data System (ADS)
Xiong, Yan; Reichenbach, Stephen E.
1999-01-01
Understanding of hand-written Chinese characters is at such a primitive stage that models include some assumptions about hand-written Chinese characters that are simply false. So Maximum Likelihood Estimation (MLE) may not be an optimal method for hand-written Chinese characters recognition. This concern motivates the research effort to consider alternative criteria. Maximum Mutual Information Estimation (MMIE) is an alternative method for parameter estimation that does not derive its rationale from presumed model correctness, but instead examines the pattern-modeling problem in automatic recognition system from an information- theoretic point of view. The objective of MMIE is to find a set of parameters in such that the resultant model allows the system to derive from the observed data as much information as possible about the class. We consider MMIE for recognition of hand-written Chinese characters using on a simplified hidden Markov Random Field. MMIE provides improved performance improvement over MLE in this application.
Ramp - Metering Algorithms Evaluated within Simplified Conditions
NASA Astrophysics Data System (ADS)
Janota, Aleš; Holečko, Peter; Gregor, Michal; Hruboš, Marián
2017-12-01
Freeway networks reach their limits, since it is usually impossible to increase traffic volumes by indefinitely extending transport infrastructure through adding new traffic lanes. One of the possible solutions is to use advanced intelligent transport systems, particularly ramp metering systems. The paper shows how two particular algorithms of local and traffic-responsive control (Zone, ALINEA) can be adapted to simplified conditions corresponding to Slovak freeways. Both control strategies are modelled and simulated using PTV Vissim software, including the module VisVAP. Presented results demonstrate the properties of both control strategies, which are compared mutually as well as with the initial situation in which no control strategy is applied
NASA Astrophysics Data System (ADS)
Nucci, M. C.; Leach, P. G. L.
2007-09-01
We apply the techniques of Lie's symmetry analysis to a caricature of the simplified multistrain model of Castillo-Chavez and Feng [C. Castillo-Chavez, Z. Feng, To treat or not to treat: The case of tuberculosis, J. Math. Biol. 35 (1997) 629-656] for the transmission of tuberculosis and the coupled two-stream vector-based model of Feng and Velasco-Hernandez [Z. Feng, J.X. Velasco-Hernandez, Competitive exclusion in a vector-host model for the dengue fever, J. Math. Biol. 35 (1997) 523-544] to identify the combinations of parameters which lead to the existence of nontrivial symmetries. In particular we identify those combinations which lead to the possibility of the linearization of the system and provide the corresponding solutions. Many instances of additional symmetry are analyzed.
On Mechanical Transitions in Biologically Motivated Soft Matter Systems
NASA Astrophysics Data System (ADS)
Fogle, Craig
The notion of phase transitions as a characterization of a change in physical properties pervades modern physics. Such abrupt and fundamental changes in the behavior of physical systems are evident in condensed matter system and also occur in nuclear and subatomic settings. While this concept is less prevalent in the field of biology, recent advances have pointed to its relevance in a number of settings. Recent studies have modeled both the cell cycle and cancer as phase transition in physical systems. In this dissertation we construct simplified models for two biological systems. As described by those models, both systems exhibit phase transitions. The first model is inspired by the shape transition in the nuclei of neutrophils during differentiation. During differentiation the nucleus transitions from spherical to a shape often described as "beads on a string." As a simplified model of this system, we investigate the spherical-to-wrinkled transition in an elastic core bounded to a fluid shell system. We find that this model exhibits a first-order phase transition, and the shape that minimizes the energy of the system scales as (micror3/kappa). . The second system studied is motivated by the dynamics of globular proteins. These proteins may undergoes conformational changes with large displacements relative to their size. Transitions between conformational states are not possible if the dynamics are governed strictly by linear elasticity. We construct a model consisting of an predominantly elastic region near the energetic minimum of the system and a non-linear softening of the system at a critical displacement. We find that this simple model displays very rich dynamics include a sharp dynamical phase transition and driving-force-dependent symmetry breaking.
NASA Astrophysics Data System (ADS)
de La Bernardie, Jérôme; de Dreuzy, Jean-Raynald; Bour, Olivier; Thierion, Charlotte; Ausseur, Jean-Yves; Lesuer, Hervé; Le Borgne, Tanguy
2016-04-01
Geothermal energy is a renewable energy source particularly attractive due to associated low greenhouse gas emission rates. Crystalline rocks are in general considered of poor interest for geothermal applications at shallow depths (< 100m), because of the low permeability of the medium. In some cases, fractures may enhance permeability, but thermal energy storage at these shallow depths is still remaining very challenging because of the complexity of fractured media. The purpose of this study is to test the possibility of efficient thermal energy storage in shallow fractured rocks with a single well semi open loop heat exchanger (standing column well). For doing so, a simplified numerical model of fractured media is considered with few fractures. Here we present the different steps for building the model and for achieving the sensitivity analysis. First, an analytical and dimensional study on the equations has been achieved to highlight the main parameters that control the optimization of the system. In a second step, multiphysics software COMSOL was used to achieve numerical simulations in a very simplified model of fractured media. The objective was to test the efficiency of such a system to store and recover thermal energy depending on i) the few parameters controlling fracture network geometry (size and number of fractures) and ii) the frequency of cycles used to store and recover thermal energy. The results have then been compared to reference shallow geothermal systems already set up for porous media. Through this study, relationships between structure, heat exchanges and storage may be highlighted.
NASA Astrophysics Data System (ADS)
Chang, Chia-Ming; Keefe, Andrew; Carter, William B.; Henry, Christopher P.; McKnight, Geoff P.
2014-04-01
Structural assemblies incorporating negative stiffness elements have been shown to provide both tunable damping properties and simultaneous high stiffness and damping over prescribed displacement regions. In this paper we explore the design space for negative stiffness based assemblies using analytical modeling combined with finite element analysis. A simplified spring model demonstrates the effects of element stiffness, geometry, and preloads on the damping and stiffness performance. Simplified analytical models were validated for realistic structural implementations through finite element analysis. A series of complementary experiments was conducted to compare with modeling and determine the effects of each element on the system response. The measured damping performance follows the theoretical predictions obtained by analytical modeling. We applied these concepts to a novel sandwich core structure that exhibited combined stiffness and damping properties 8 times greater than existing foam core technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuzmina, L.K.
The research deals with different aspects of mathematical modelling and the analysis of complex dynamic non-linear systems as a consequence of applied problems in mechanics (in particular those for gyrosystems, for stabilization and orientation systems, control systems of movable objects, including the aviation and aerospace systems) Non-linearity, multi-connectedness and high dimensionness of dynamical problems, that occur at the initial full statement lead to the need of the problem narrowing, and of the decomposition of the full model, but with safe-keeping of main properties and of qualitative equivalence. The elaboration of regular methods for modelling problems in dynamics, the generalization ofmore » reduction principle are the main aims of the investigations. Here, uniform methodology, based on Lyapunov`s methods, founded by N.G.Ohetayev, is developed. The objects of the investigations are considered with exclusive positions, as systems of singularly perturbed class, treated as ones with singular parametrical perturbations. It is the natural extension of the statements of N.G.Chetayev and P.A.Kuzmin for parametrical stability. In paper the systematical procedures for construction of correct simplified models (comparison ones) are developed, the validity conditions of the transition are determined the appraisals are received, the regular algorithms of engineering level are obtained. Applicabilitelly to the stabilization and orientation systems with the gyroscopic controlling subsystems, these methods enable to build the hierarchical sequence of admissible simplified models; to determine the conditions of their correctness.« less
Emerald: an object-based language for distributed programming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutchinson, N.C.
1987-01-01
Distributed systems have become more common, however constructing distributed applications remains a very difficult task. Numerous operating systems and programming languages have been proposed that attempt to simplify the programming of distributed applications. Here a programing language called Emerald is presented that simplifies distributed programming by extending the concepts of object-based languages to the distributed environment. Emerald supports a single model of computation: the object. Emerald objects include private entities such as integers and Booleans, as well as shared, distributed entities such as compilers, directories, and entire file systems. Emerald objects may move between machines in the system, but objectmore » invocation is location independent. The uniform semantic model used for describing all Emerald objects makes the construction of distributed applications in Emerald much simpler than in systems where the differences in implementation between local and remote entities are visible in the language semantics. Emerald incorporates a type system that deals only with the specification of objects - ignoring differences in implementation. Thus, two different implementations of the same abstraction may be freely mixed.« less
Using stable isotopes and models to explore estuarine linkages at multiple scales
Estuarine managers need tools to respond to dynamic stressors that occur in three linked environments – coastal ocean, estuaries and watersheds. Models have been the tool of choice for examining these dynamic systems because they simplify processes and integrate over multiple sc...
CYP2E1 MEDIATED EXTRAHEPATIC METABOLISM IN PBPK MODELING OF LIPOPHILIC VOLATILE ORGANIC COMPOUNDS
Physiologically based pharmacokinetic (PBPK) models increasingly are available for environmental chemicals and applied in risk assessments. Often a simplified representation of a real biological system is used in order to reduce uncertainties in the PBPK predictions caused by unc...
Simplified models for dark matter searches at the LHC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdallah, Jalal; Araujo, Henrique; Arbey, Alexandre
This document a outlines a set of simplified models for dark matter and its interactions with Standard Model particles. It is intended to summarize the main characteristics that these simplified models have when applied to dark matter searches at the LHC, and to provide a number of useful expressions for reference. The list of models includes both s-channel and t-channel scenarios. For s-channel, spin-0 and spin-1 mediations are discussed, and also realizations where the Higgs particle provides a portal between the dark and visible sectors. The guiding principles underpinning the proposed simplified models are spelled out, and some suggestions formore » implementation are presented.« less
Simplified Models for Dark Matter Searches at the LHC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdallah, Jalal
This document outlines a set of simplified models for dark matter and its interactions with Standard Model particles. It is intended to summarize the main characteristics that these simplified models have when applied to dark matter searches at the LHC, and to provide a number of useful expressions for reference. The list of models includes both s-channel and t-channel scenarios. For s-channel, spin-0 and spin-1 mediations are discussed, and also realizations where the Higgs particle provides a portal between the dark and visible sectors. The guiding principles underpinning the proposed simplified models are spelled out, and some suggestions for implementationmore » are presented.« less
Simplified Models for Dark Matter Searches at the LHC
Abdallah, Jalal
2015-08-11
This document outlines a set of simplified models for dark matter and its interactions with Standard Model particles. It is intended to summarize the main characteristics that these simplified models have when applied to dark matter searches at the LHC, and to provide a number of useful expressions for reference. The list of models includes both s-channel and t-channel scenarios. For s-channel, spin-0 and spin-1 mediations are discussed, and also realizations where the Higgs particle provides a portal between the dark and visible sectors. The guiding principles underpinning the proposed simplified models are spelled out, and some suggestions for implementationmore » are presented.« less
Control of Stirling engine. Simplified, compressible model
NASA Astrophysics Data System (ADS)
Plotnikov, P. I.; Sokołowski, J.; Żochowski, A.
2016-06-01
A one-dimensional free boundary problem on a motion of a heavy piston in a tube filled with viscous gas is considered. The system of governing equations and boundary conditions is derived. The obtained system of differential equations can be regarded as a mathematical model of an exterior combustion engine. The existence of a weak solution to this model is proved. The problem of maximization of the total work of the engine is considered.
The financial viability of an SOFC cogeneration system in single-family dwellings
NASA Astrophysics Data System (ADS)
Alanne, Kari; Saari, Arto; Ugursal, V. Ismet; Good, Joel
In the near future, fuel cell-based residential micro-CHP systems will compete with traditional methods of energy supply. A micro-CHP system may be considered viable if its incremental capital cost compared to its competitors equals to cumulated savings during a given period of time. A simplified model is developed in this study to estimate the operation of a residential solid oxide fuel cell (SOFC) system. A comparative assessment of the SOFC system vis-à-vis heating systems based on gas, oil and electricity is conducted using the simplified model for a single-family house located in Ottawa and Vancouver. The energy consumption of the house is estimated using the HOT2000 building simulation program. A financial analysis is carried out to evaluate the sensitivity of the maximum allowable capital cost with respect to system sizing, acceptable payback period, energy price and the electricity buyback strategy of an energy utility. Based on the financial analysis, small (1-2 kW e) SOFC systems seem to be feasible in the considered case. The present study shows also that an SOFC system is especially an alternative to heating systems based on oil and electrical furnaces.
A Hierarchy of Models for Two-Phase Flows
NASA Astrophysics Data System (ADS)
Bouchut, F.; Brenier, Y.; Cortes, J.; Ripoll, J.-F.
2000-12-01
We derive a hierarchy of models for gas-liquid two-phase flows in the limit of infinite density ratio, when the liquid is assumed to be incompressible. The starting model is a system of nonconservative conservation laws with relaxation. At first order in the density ratio, we get a simplified system with viscosity, while at the limit we obtain a system of two conservation laws, the system of pressureless gases with constraint and undetermined pressure. Formal properties of this constraint model are provided, and sticky blocks solutions are introduced. We propose numerical methods for this last model, and the results are compared with the two previous models.
A practical nonlocal model for heat transport in magnetized laser plasmas
NASA Astrophysics Data System (ADS)
Nicolaï, Ph. D.; Feugeas, J.-L. A.; Schurtz, G. P.
2006-03-01
A model of nonlocal transport for multidimensional radiation magnetohydrodynamics codes is presented. In laser produced plasmas, it is now believed that the heat transport can be strongly modified by the nonlocal nature of the electron conduction. Other mechanisms, such as self-generated magnetic fields, may also affect the heat transport. The model described in this work, based on simplified Fokker-Planck equations aims at extending the model of G. Schurtz, Ph. Nicolaï, and M. Busquet [Phys. Plasmas 7, 4238 (2000)] to magnetized plasmas. A complete system of nonlocal equations is derived from kinetic equations with self-consistent electric and magnetic fields. These equations are analyzed and simplified in order to be implemented into large laser fusion codes and coupled to other relevant physics. The model is applied to two laser configurations that demonstrate the main features of the model and point out the nonlocal Righi-Leduc effect in a multidimensional case.
Chen, Yi- Ping Phoebe; Hanan, Jim
2002-01-01
Models of plant architecture allow us to explore how genotype environment interactions effect the development of plant phenotypes. Such models generate masses of data organised in complex hierarchies. This paper presents a generic system for creating and automatically populating a relational database from data generated by the widely used L-system approach to modelling plant morphogenesis. Techniques from compiler technology are applied to generate attributes (new fields) in the database, to simplify query development for the recursively-structured branching relationship. Use of biological terminology in an interactive query builder contributes towards making the system biologist-friendly.
Robert E. Keane; Jason M. Herynk; Chris Toney; Shawn P. Urbanski; Duncan C. Lutes; Roger D. Ottmar
2013-01-01
Fuel Loading Models (FLMs) and Fuel Characteristic Classification System (FCCSs) fuelbeds are used throughout wildland fire science and management to simplify fuel inputs into fire behavior and effects models, but they have yet to be thoroughly evaluated with field data. In this study, we used a large dataset of Forest Inventory and Analysis (FIA) surface fuel...
Steady flow model user's guide
NASA Astrophysics Data System (ADS)
Doughty, C.; Hellstrom, G.; Tsang, C. F.; Claesson, J.
1984-07-01
Sophisticated numerical models that solve the coupled mass and energy transport equations for nonisothermal fluid flow in a porous medium were used to match analytical results and field data for aquifer thermal energy storage (ATES) systems. As an alternative to the ATES problem the Steady Flow Model (SFM), a simplified but fast numerical model was developed. A steady purely radial flow field is prescribed in the aquifer, and incorporated into the heat transport equation which is then solved numerically. While the radial flow assumption limits the range of ATES systems that can be studied using the SFM, it greatly simplifies use of this code. The preparation of input is quite simple compared to that for a sophisticated coupled mass and energy model, and the cost of running the SFM is far cheaper. The simple flow field allows use of a special calculational mesh that eliminates the numerical dispersion usually associated with the numerical solution of convection problems. The problem is defined, the algorithm used to solve it are outllined, and the input and output for the SFM is described.
Quasi 3D modeling of water flow in vadose zone and groundwater
USDA-ARS?s Scientific Manuscript database
The complexity of subsurface flow systems calls for a variety of concepts leading to the multiplicity of simplified flow models. One habitual simplification is based on the assumption that lateral flow and transport in unsaturated zone are not significant unless the capillary fringe is involved. In ...
MODELING AIR FLOW DYNAMICS IN RADON MITIGATION SYSTEMS: A SIMPLIFIED APPROACH
The paper refines and extends an earlier study--relating to the design of optimal radon mitigation systems based on subslab depressurization-- that suggested that subslab air flow induced by a central suction point be treated as radial air flow through a porous bed contained betw...
A moist Boussinesq shallow water equations set for testing atmospheric models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zerroukat, M., E-mail: mohamed.zerroukat@metoffice.gov.uk; Allen, T.
The shallow water equations have long been used as an initial test for numerical methods applied to atmospheric models with the test suite of Williamson et al. being used extensively for validating new schemes and assessing their accuracy. However the lack of physics forcing within this simplified framework often requires numerical techniques to be reworked when applied to fully three dimensional models. In this paper a novel two-dimensional shallow water equations system that retains moist processes is derived. This system is derived from three-dimensional Boussinesq approximation of the hydrostatic Euler equations where, unlike the classical shallow water set, we allowmore » the density to vary slightly with temperature. This results in extra (or buoyancy) terms for the momentum equations, through which a two-way moist-physics dynamics feedback is achieved. The temperature and moisture variables are advected as separate tracers with sources that interact with the mean-flow through a simplified yet realistic bulk moist-thermodynamic phase-change model. This moist shallow water system provides a unique tool to assess the usually complex and highly non-linear dynamics–physics interactions in atmospheric models in a simple yet realistic way. The full non-linear shallow water equations are solved numerically on several case studies and the results suggest quite realistic interaction between the dynamics and physics and in particular the generation of cloud and rain. - Highlights: • Novel shallow water equations which retains moist processes are derived from the three-dimensional hydrostatic Boussinesq equations. • The new shallow water set can be seen as a more general one, where the classical equations are a special case of these equations. • This moist shallow water system naturally allows a feedback mechanism from the moist physics increments to the momentum via buoyancy. • Like full models, temperature and moistures are advected as tracers that interact through a simplified yet realistic phase-change model. • This model is a unique tool to test numerical methods for atmospheric models, and physics–dynamics coupling, in a very realistic and simple way.« less
Modeling of Radiative Heat Transfer in an Electric Arc Furnace
NASA Astrophysics Data System (ADS)
Opitz, Florian; Treffinger, Peter; Wöllenstein, Jürgen
2017-12-01
Radiation is an important means of heat transfer inside an electric arc furnace (EAF). To gain insight into the complex processes of heat transfer inside the EAF vessel, not only radiation from the surfaces but also emission and absorption of the gas phase and the dust cloud need to be considered. Furthermore, the radiative heat exchange depends on the geometrical configuration which is continuously changing throughout the process. The present paper introduces a system model of the EAF which takes into account the radiative heat transfer between the surfaces and the participating medium. This is attained by the development of a simplified geometrical model, the use of a weighted-sum-of-gray-gases model, and a simplified consideration of dust radiation. The simulation results were compared with the data of real EAF plants available in literature.
Simplified models for dark matter face their consistent completions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonçalves, Dorival; Machado, Pedro A. N.; No, Jose Miguel
Simplified dark matter models have been recently advocated as a powerful tool to exploit the complementarity between dark matter direct detection, indirect detection and LHC experimental probes. Focusing on pseudoscalar mediators between the dark and visible sectors, we show that the simplified dark matter model phenomenology departs significantly from that of consistentmore » $${SU(2)_{\\mathrm{L}} \\times U(1)_{\\mathrm{Y}}}$$ gauge invariant completions. We discuss the key physics simplified models fail to capture, and its impact on LHC searches. Notably, we show that resonant mono-Z searches provide competitive sensitivities to standard mono-jet analyses at $13$ TeV LHC.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dana, Scott; Van Dam, Jeroen J; Damiani, Rick R
As part of an ongoing effort to improve the modeling and prediction of small wind turbine dynamics, the National Renewable Energy Laboratory (NREL) tested a small horizontal-axis wind turbine in the field at the National Wind Technology Center. The test turbine was a 2.1-kW downwind machine mounted on an 18-m multi-section fiberglass composite tower. The tower was instrumented and monitored for approximately 6 months. The collected data were analyzed to assess the turbine and tower loads and further validate the simplified loads equations from the International Electrotechnical Commission (IEC) 61400-2 design standards. Field-measured loads were also compared to the outputmore » of an aeroelastic model of the turbine. In particular, we compared fatigue loads as measured in the field, predicted by the aeroelastic model, and calculated using the simplified design equations. Ultimate loads at the tower base were assessed using both the simplified design equations and the aeroelastic model output. The simplified design equations in IEC 61400-2 do not accurately model fatigue loads and a discussion about the simplified design equations is discussed.« less
ALC: automated reduction of rule-based models
Koschorreck, Markus; Gilles, Ernst Dieter
2008-01-01
Background Combinatorial complexity is a challenging problem for the modeling of cellular signal transduction since the association of a few proteins can give rise to an enormous amount of feasible protein complexes. The layer-based approach is an approximative, but accurate method for the mathematical modeling of signaling systems with inherent combinatorial complexity. The number of variables in the simulation equations is highly reduced and the resulting dynamic models show a pronounced modularity. Layer-based modeling allows for the modeling of systems not accessible previously. Results ALC (Automated Layer Construction) is a computer program that highly simplifies the building of reduced modular models, according to the layer-based approach. The model is defined using a simple but powerful rule-based syntax that supports the concepts of modularity and macrostates. ALC performs consistency checks on the model definition and provides the model output in different formats (C MEX, MATLAB, Mathematica and SBML) as ready-to-run simulation files. ALC also provides additional documentation files that simplify the publication or presentation of the models. The tool can be used offline or via a form on the ALC website. Conclusion ALC allows for a simple rule-based generation of layer-based reduced models. The model files are given in different formats as ready-to-run simulation files. PMID:18973705
Mathematical neuroscience: from neurons to circuits to systems.
Gutkin, Boris; Pinto, David; Ermentrout, Bard
2003-01-01
Applications of mathematics and computational techniques to our understanding of neuronal systems are provided. Reduction of membrane models to simplified canonical models demonstrates how neuronal spike-time statistics follow from simple properties of neurons. Averaging over space allows one to derive a simple model for the whisker barrel circuit and use this to explain and suggest several experiments. Spatio-temporal pattern formation methods are applied to explain the patterns seen in the early stages of drug-induced visual hallucinations.
Simplified aerosol modeling for variational data assimilation
NASA Astrophysics Data System (ADS)
Huneeus, N.; Boucher, O.; Chevallier, F.
2009-11-01
We have developed a simplified aerosol model together with its tangent linear and adjoint versions for the ultimate aim of optimizing global aerosol and aerosol precursor emission using variational data assimilation. The model was derived from the general circulation model LMDz; it groups together the 24 aerosol species simulated in LMDz into 4 species, namely gaseous precursors, fine mode aerosols, coarse mode desert dust and coarse mode sea salt. The emissions have been kept as in the original model. Modifications, however, were introduced in the computation of aerosol optical depth and in the processes of sedimentation, dry and wet deposition and sulphur chemistry to ensure consistency with the new set of species and their composition. The simplified model successfully manages to reproduce the main features of the aerosol distribution in LMDz. The largest differences in aerosol load are observed for fine mode aerosols and gaseous precursors. Differences between the original and simplified models are mainly associated to the new deposition and sedimentation velocities consistent with the definition of species in the simplified model and the simplification of the sulphur chemistry. Furthermore, simulated aerosol optical depth remains within the variability of monthly AERONET observations for all aerosol types and all sites throughout most of the year. Largest differences are observed over sites with strong desert dust influence. In terms of the daily aerosol variability, the model is less able to reproduce the observed variability from the AERONET data with larger discrepancies in stations affected by industrial aerosols. The simplified model however, closely follows the daily simulation from LMDz. Sensitivity analyses with the tangent linear version show that the simplified sulphur chemistry is the dominant process responsible for the strong non-linearity of the model.
On the coverage of the pMSSM by simplified model results
NASA Astrophysics Data System (ADS)
Ambrogi, Federico; Kraml, Sabine; Kulkarni, Suchita; Laa, Ursula; Lessa, Andre; Waltenberger, Wolfgang
2018-03-01
We investigate to which extent the SUSY search results published by ATLAS and CMS in the context of simplified models actually cover the more realistic scenarios of a full model. Concretely, we work within the phenomenological MSSM (pMSSM) with 19 free parameters and compare the constraints obtained from SModelS v1.1.1 with those from the ATLAS pMSSM study in arXiv:1508.06608. We find that about 40-45% of the points excluded by ATLAS escape the currently available simplified model constraints. For these points we identify the most relevant topologies which are not tested by the current simplified model results. In particular, we find that topologies with asymmetric branches, including 3-jet signatures from gluino-squark associated production, could be important for improving the current constraining power of simplified models results. Furthermore, for a better coverage of light stops and sbottoms, constraints for decays via heavier neutralinos and charginos, which subsequently decay visibly to the lightest neutralino are also needed.
The Dipole Segment Model for Axisymmetrical Elongated Asteroids
NASA Astrophysics Data System (ADS)
Zeng, Xiangyuan; Zhang, Yonglong; Yu, Yang; Liu, Xiangdong
2018-02-01
Various simplified models have been investigated as a way to understand the complex dynamical environment near irregular asteroids. A dipole segment model is explored in this paper, one that is composed of a massive straight segment and two point masses at the extremities of the segment. Given an explicitly simple form of the potential function that is associated with the dipole segment model, five topological cases are identified with different sets of system parameters. Locations, stabilities, and variation trends of the system equilibrium points are investigated in a parametric way. The exterior potential distribution of nearly axisymmetrical elongated asteroids is approximated by minimizing the acceleration error in a test zone. The acceleration error minimization process determines the parameters of the dipole segment. The near-Earth asteroid (8567) 1996 HW1 is chosen as an example to evaluate the effectiveness of the approximation method for the exterior potential distribution. The advantages of the dipole segment model over the classical dipole and the traditional segment are also discussed. Percent error of acceleration and the degree of approximation are illustrated by using the dipole segment model to approximate four more asteroids. The high efficiency of the simplified model over the polyhedron is clearly demonstrated by comparing the CPU time.
Mathematical Model of the Jet Engine Fuel System
NASA Astrophysics Data System (ADS)
Klimko, Marek
2015-05-01
The paper discusses the design of a simplified mathematical model of the jet (turbo-compressor) engine fuel system. The solution will be based on the regulation law, where the control parameter is a fuel mass flow rate and the regulated parameter is the rotational speed. A differential equation of the jet engine and also differential equations of other fuel system components (fuel pump, throttle valve, pressure regulator) will be described, with respect to advanced predetermined simplifications.
Maximized Gust Loads of a Closed-Loop, Nonlinear Aeroelastic System Using Nonlinear Systems Theory
NASA Technical Reports Server (NTRS)
Silva, Walter A.
1999-01-01
The problem of computing the maximized gust load for a nonlinear, closed-loop aeroelastic aircraft is discusses. The Volterra theory of nonlinear systems is applied in order to define a linearized system that provides a bounds on the response of the nonlinear system of interest. The method is applied to a simplified model of an Airbus A310.
Modeling of Solid State Transformer for the FREEDM System Demonstration
NASA Astrophysics Data System (ADS)
Jiang, Youyuan
The Solid State Transformer (SST) is an essential component in the FREEDM system. This research focuses on the modeling of the SST and the controller hardware in the loop (CHIL) implementation of the SST for the support of the FREEDM system demonstration. The energy based control strategy for a three-stage SST is analyzed and applied. A simplified average model of the three-stage SST that is suitable for simulation in real time digital simulator (RTDS) has been developed in this study. The model is also useful for general time-domain power system analysis and simulation. The proposed simplified av-erage model has been validated in MATLAB and PLECS. The accuracy of the model has been verified through comparison with the cycle-by-cycle average (CCA) model and de-tailed switching model. These models are also implemented in PSCAD, and a special strategy to implement the phase shift modulation has been proposed to enable the switching model simulation in PSCAD. The implementation of the CHIL test environment of the SST in RTDS is described in this report. The parameter setup of the model has been discussed in detail. One of the dif-ficulties is the choice of the damping factor, which is revealed in this paper. Also the grounding of the system has large impact on the RTDS simulation. Another problem is that the performance of the system is highly dependent on the switch parameters such as voltage and current ratings. Finally, the functionalities of the SST have been realized on the platform. The distributed energy storage interface power injection and reverse power flow have been validated. Some limitations are noticed and discussed through the simulation on RTDS.
NASA Astrophysics Data System (ADS)
Ohmori, Shuichi; Narabayashi, Tadashi; Mori, Michitsugu
A steam injector (SI) is a simple, compact and passive pump and also acts as a high-performance direct-contact compact heater. This provides SI with capability to serve also as a direct-contact feed-water heater that heats up feed-water by using extracted steam from turbine. Our technology development aims to significantly simplify equipment and reduce physical quantities by applying "high-efficiency SI", which are applicable to a wide range of operation regimes beyond the performance and applicable range of existing SIs and enables unprecedented multistage and parallel operation, to the low-pressure feed-water heaters and emergency core cooling system of nuclear power plants, as well as achieve high inherent safety to prevent severe accidents by keeping the core covered with water (a severe accident-free concept). This paper describes the results of the scale model test, and the transient analysis of SI-driven passive core injection system (PCIS).
NASA Technical Reports Server (NTRS)
Pankine, A. A.; Ingersoll, Andrew P.
2002-01-01
We present simulations of the interannual variability of martian global dust storms (GDSs) with a simplified low-order model (LOM) of the general circulation. The simplified model allows one to conduct computationally fast long-term simulations of the martian climate system. The LOM is constructed by Galerkin projection of a 2D (zonally averaged) general circulation model (GCM) onto a truncated set of basis functions. The resulting LOM consists of 12 coupled nonlinear ordinary differential equations describing atmospheric dynamics and dust transport within the Hadley cell. The forcing of the model is described by simplified physics based on Newtonian cooling and Rayleigh friction. The atmosphere and surface are coupled: atmospheric heating depends on the dustiness of the atmosphere, and the surface dust source depends on the strength of the atmospheric winds. Parameters of the model are tuned to fit the output of the NASA AMES GCM and the fit is generally very good. Interannual variability of GDSs is possible in the IBM, but only when stochastic forcing is added to the model. The stochastic forcing could be provided by transient weather systems or some surface process such as redistribution of the sand particles in storm generating zones on the surface. The results are sensitive to the value of the saltation threshold, which hints at a possible feedback between saltation threshold and dust storm activity. According to this hypothesis, erodable material builds up its a result of a local process, whose effect is to lower the saltation threshold until a GDS occurs. The saltation threshold adjusts its value so that dust storms are barely able to occur.
48 CFR 3032.003 - Simplified acquisition procedures financing.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Simplified acquisition procedures financing. 3032.003 Section 3032.003 Federal Acquisition Regulations System DEPARTMENT OF HOMELAND... FINANCING Scope of Part 3032.003 Simplified acquisition procedures financing. Contract financing may be...
NREL's System Advisor Model Simplifies Complex Energy Analysis (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2015-01-01
NREL has developed a tool -- the System Advisor Model (SAM) -- that can help decision makers analyze cost, performance, and financing of any size grid-connected solar, wind, or geothermal power project. Manufacturers, engineering and consulting firms, research and development firms, utilities, developers, venture capital firms, and international organizations use SAM for end-to-end analysis that helps determine whether and how to make investments in renewable energy projects.
A Fast Method for Embattling Optimization of Ground-Based Radar Surveillance Network
NASA Astrophysics Data System (ADS)
Jiang, H.; Cheng, H.; Zhang, Y.; Liu, J.
A growing number of space activities have created an orbital debris environment that poses increasing impact risks to existing space systems and human space flight. For the safety of in-orbit spacecraft, a lot of observation facilities are needed to catalog space objects, especially in low earth orbit. Surveillance of Low earth orbit objects are mainly rely on ground-based radar, due to the ability limitation of exist radar facilities, a large number of ground-based radar need to build in the next few years in order to meet the current space surveillance demands. How to optimize the embattling of ground-based radar surveillance network is a problem to need to be solved. The traditional method for embattling optimization of ground-based radar surveillance network is mainly through to the detection simulation of all possible stations with cataloged data, and makes a comprehensive comparative analysis of various simulation results with the combinational method, and then selects an optimal result as station layout scheme. This method is time consuming for single simulation and high computational complexity for the combinational analysis, when the number of stations increases, the complexity of optimization problem will be increased exponentially, and cannot be solved with traditional method. There is no better way to solve this problem till now. In this paper, target detection procedure was simplified. Firstly, the space coverage of ground-based radar was simplified, a space coverage projection model of radar facilities in different orbit altitudes was built; then a simplified objects cross the radar coverage model was established according to the characteristics of space objects orbit motion; after two steps simplification, the computational complexity of the target detection was greatly simplified, and simulation results shown the correctness of the simplified results. In addition, the detection areas of ground-based radar network can be easily computed with the simplified model, and then optimized the embattling of ground-based radar surveillance network with the artificial intelligent algorithm, which can greatly simplifies the computational complexities. Comparing with the traditional method, the proposed method greatly improved the computational efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hobbs, Michael L.
We previously developed a PETN thermal decomposition model that accurately predicts thermal ignition and detonator failure [1]. This model was originally developed for CALORE [2] and required several complex user subroutines. Recently, a simplified version of the PETN decomposition model was implemented into ARIA [3] using a general chemistry framework without need for user subroutines. Detonator failure was also predicted with this new model using ENCORE. The model was simplified by 1) basing the model on moles rather than mass, 2) simplifying the thermal conductivity model, and 3) implementing ARIA’s new phase change model. This memo briefly describes the model,more » implementation, and validation.« less
Distribution-Connected PV's Response to Voltage Sags at Transmission-Scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mather, Barry; Ding, Fei
The ever increasing amount of residential- and commercial-scale distribution-connected PV generation being installed and operated on the U.S.'s electric power system necessitates the use of increased fidelity representative distribution system models for transmission stability studies in order to ensure the continued safe and reliable operation of the grid. This paper describes a distribution model-based analysis that determines the amount of distribution-connected PV that trips off-line for a given voltage sag seen at the distribution circuit's substation. Such sags are what could potentially be experienced over a wide area of an interconnection during a transmission-level line fault. The results of thismore » analysis show that the voltage diversity of the distribution system does cause different amounts of PV generation to be lost for differing severity of voltage sags. The variation of the response is most directly a function of the loading of the distribution system. At low load levels the inversion of the circuit's voltage profile results in considerable differences in the aggregated response of distribution-connected PV Less variation is seen in the response to specific PV deployment scenarios, unless pushed to extremes, and in the total amount of PV penetration attained. A simplified version of the combined CMPLDW and PVD1 models is compared to the results from the model-based analysis. Furthermore, the parameters of the simplified model are tuned to better match the determined response. The resulting tuning parameters do not match the expected physical model of the distribution system and PV systems and thus may indicate that another modeling approach would be warranted.« less
Li-SF(6) Combustion in Stored Chemical Energy Propulsion Systems
1990-07-01
S 3. STRUCTURE OF SF6 3ETS IN MOLTEN LI ........... ................. 8 3.1 Mathematical Model ...ill - ABSTRACT Appropriate thermodynamic models and thermo-chemical data for multicompo- nents and immiscible phases have been Incorporated into a code...by a simplified integral model which was improved9 by the use of the local homogeneous flow approximation, equilibrium combustion model and Kc-C-g
NASA Technical Reports Server (NTRS)
1971-01-01
Technical models and analytical approaches used to develop the weight data for vehicle system concepts using advanced technology are reported. Weight data are supplied for the following major system elements: engine, pressurization, propellant containers, structural shells and secondary structure, and environmental protection shields for the meteoroid and thermal design requirements. Scaling laws, improved and a simplified set, are developed from the system weight data. The laws consider the implications of the major design parameters and mission requirements on the stage inert mass.
Sharp Truncation of an Electric Field: An Idealized Model That Warrants Caution
ERIC Educational Resources Information Center
Tu, Hong; Zhu, Jiongming
2016-01-01
In physics, idealized models are often used to simplify complex situations. The motivation of the idealization is to make the real complex system tractable by adopting certain simplifications. In this treatment some unnecessary, negligible aspects are stripped away (so-called Aristotelian idealization), or some deliberate distortions are involved…
Scripting human animations in a virtual environment
NASA Technical Reports Server (NTRS)
Goldsby, Michael E.; Pandya, Abhilash K.; Maida, James C.
1994-01-01
The current deficiencies of virtual environment (VE) are well known: annoying lag time in drawing the current view, drastically simplified environments to reduce that time lag, low resolution and narrow field of view. Animation scripting is an application of VE technology which can be carried out successfully despite these deficiencies. The final product is a smoothly moving high resolution animation displaying detailed models. In this system, the user is represented by a human computer model with the same body proportions. Using magnetic tracking, the motions of the model's upper torso, head and arms are controlled by the user's movements (18 degrees of freedom). The model's lower torso and global position and orientation are controlled by a spaceball and keypad (12 degrees of freedom). Using this system human motion scripts can be extracted from the user's movements while immersed in a simplified virtual environment. Recorded data is used to define key frames; motion is interpolated between them and post processing adds a more detailed environment. The result is a considerable savings in time and a much more natural-looking movement of a human figure in a smooth and seamless animation.
Begum, S; Achary, P Ganga Raju
2015-01-01
Quantitative structure-activity relationship (QSAR) models were built for the prediction of inhibition (pIC50, i.e. negative logarithm of the 50% effective concentration) of MAP kinase-interacting protein kinase (MNK1) by 43 potent inhibitors. The pIC50 values were modelled with five random splits, with the representations of the molecular structures by simplified molecular input line entry system (SMILES). QSAR model building was performed by the Monte Carlo optimisation using three methods: classic scheme; balance of correlations; and balance correlation with ideal slopes. The robustness of these models were checked by parameters as rm(2), r(*)m(2), [Formula: see text] and randomisation technique. The best QSAR model based on single optimal descriptors was applied to study in vitro structure-activity relationships of 6-(4-(2-(piperidin-1-yl) ethoxy) phenyl)-3-(pyridin-4-yl) pyrazolo [1,5-a] pyrimidine derivatives as a screening tool for the development of novel potent MNK1 inhibitors. The effects of alkyl group, -OH, -NO2, F, Cl, Br, I, etc. on the IC50 values towards the inhibition of MNK1 were also reported.
Structure, function, and control of the human musculoskeletal network
Murphy, Andrew C.; Muldoon, Sarah F.; Baker, David; Lastowka, Adam; Bennett, Brittany; Yang, Muzhi
2018-01-01
The human body is a complex organism, the gross mechanical properties of which are enabled by an interconnected musculoskeletal network controlled by the nervous system. The nature of musculoskeletal interconnection facilitates stability, voluntary movement, and robustness to injury. However, a fundamental understanding of this network and its control by neural systems has remained elusive. Here we address this gap in knowledge by utilizing medical databases and mathematical modeling to reveal the organizational structure, predicted function, and neural control of the musculoskeletal system. We constructed a highly simplified whole-body musculoskeletal network in which single muscles connect to multiple bones via both origin and insertion points. We demonstrated that, using this simplified model, a muscle’s role in this network could offer a theoretical prediction of the susceptibility of surrounding components to secondary injury. Finally, we illustrated that sets of muscles cluster into network communities that mimic the organization of control modules in primary motor cortex. This novel formalism for describing interactions between the muscular and skeletal systems serves as a foundation to develop and test therapeutic responses to injury, inspiring future advances in clinical treatments. PMID:29346370
NASA Technical Reports Server (NTRS)
Bibel, George; Lewicki, David G. (Technical Monitor)
2002-01-01
A procedure was developed to perform tooth contact analysis between a face gear meshing with a spur pinion using finite element analysis. The face gear surface points from a previous analysis were used to create a connected tooth solid model without gaps or overlaps. The face gear surface points were used to create a five tooth face gear Patran model (with rim) using Patran PCL commands. These commands were saved in a series of session files suitable for Patran input. A four tooth spur gear that meshes with the face gear was designed and constructed with Patran PCL commands. These commands were also saved in a session files suitable for Patran input. The orientation of the spur gear required for meshing with the face gear was determined. The required rotations and translations are described and built into the session file for the spur gear. The Abaqus commands for three-dimensional meshing were determined and verified for a simplified model containing one spur tooth and one face gear tooth. The boundary conditions, loads, and weak spring constraints were determined to make the simplified model work. The load steps and load increments to establish contact and obtain a realistic load was determined for the simplified two tooth model. Contact patterns give some insight into required mesh density. Building the two gears in two different local coordinate systems and rotating the local coordinate systems was verified as an easy way to roll the gearset through mesh. Due to limitation of swap space, disk space and time constraints of the summer period, the larger model was not completed.
Cost effective management of space venture risks
NASA Technical Reports Server (NTRS)
Giuntini, Ronald E.; Storm, Richard E.
1986-01-01
The development of a model for the cost-effective management of space venture risks is discussed. The risk assessment and control program of insurance companies is examined. A simplified system development cycle which consists of a conceptual design phase, a preliminary design phase, a final design phase, a construction phase, and a system operations and maintenance phase is described. The model incorporates insurance safety risk methods and reliability engineering, and testing practices used in the development of large aerospace and defense systems.
Some properties of correlations of quantum lattice systems in thermal equilibrium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fröhlich, Jürg, E-mail: juerg@phys.ethz.ch; Ueltschi, Daniel, E-mail: daniel@ueltschi.org
Simple proofs of uniqueness of the thermodynamic limit of KMS states and of the decay of equilibrium correlations are presented for a large class of quantum lattice systems at high temperatures. New quantum correlation inequalities for general Heisenberg models are described. Finally, a simplified derivation of a general result on power-law decay of correlations in 2D quantum lattice systems with continuous symmetries is given, extending results of McBryan and Spencer for the 2D classical XY model.
NASA Astrophysics Data System (ADS)
Dawson, Nathan J.; Andrews, James H.; Crescimanno, Michael
2013-12-01
A model for off-resonant microscopic cascading of (hyper)polarizabilities is developed using a self-consistent field approach to study mesoscopic systems of nonlinear polarizable atoms and molecules. We find enhancements in the higher-order susceptibilities resulting from geometrical and boundary orientation effects. We include an example of the dependence on excitation beam cross sectional structure and a simplified derivation of the microscopic cascading of the nonlinear-optical response in guest-host systems.
On defense strategies for system of systems using aggregated correlations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Nageswara S.; Imam, Neena; Ma, Chris Y. T.
2017-04-01
We consider a System of Systems (SoS) wherein each system Si, i = 1; 2; ... ;N, is composed of discrete cyber and physical components which can be attacked and reinforced. We characterize the disruptions using aggregate failure correlation functions given by the conditional failure probability of SoS given the failure of an individual system. We formulate the problem of ensuring the survival of SoS as a game between an attacker and a provider, each with a utility function composed of asurvival probability term and a cost term, both expressed in terms of the number of components attacked and reinforced.more » The survival probabilities of systems satisfy simple product-form, first-order differential conditions, which simplify the Nash Equilibrium (NE) conditions. We derive the sensitivity functions that highlight the dependence of SoS survival probability at NE on cost terms, correlation functions, and individual system survival probabilities.We apply these results to a simplified model of distributed cloud computing infrastructure.« less
48 CFR 1552.232-74 - Payments-simplified acquisition procedures financing.
Code of Federal Regulations, 2010 CFR
2010-10-01
... acquisition procedures financing. 1552.232-74 Section 1552.232-74 Federal Acquisition Regulations System... Provisions and Clauses 1552.232-74 Payments—simplified acquisition procedures financing. As prescribed in... acquisition procedures financing. Payments—Simplified Acquisition Procedures Financing (JUN 2006) Simplified...
A mass action model of a Fibroblast Growth Factor signaling pathway and its simplification.
Gaffney, E A; Heath, J K; Kwiatkowska, M Z
2008-11-01
We consider a kinetic law of mass action model for Fibroblast Growth Factor (FGF) signaling, focusing on the induction of the RAS-MAP kinase pathway via GRB2 binding. Our biologically simple model suffers a combinatorial explosion in the number of differential equations required to simulate the system. In addition to numerically solving the full model, we show that it can be accurately simplified. This requires combining matched asymptotics, the quasi-steady state hypothesis, and the fact subsets of the equations decouple asymptotically. Both the full and simplified models reproduce the qualitative dynamics observed experimentally and in previous stochastic models. The simplified model also elucidates both the qualitative features of GRB2 binding and the complex relationship between SHP2 levels, the rate SHP2 induces dephosphorylation and levels of bound GRB2. In addition to providing insight into the important and redundant features of FGF signaling, such work further highlights the usefulness of numerous simplification techniques in the study of mass action models of signal transduction, as also illustrated recently by Borisov and co-workers (Borisov et al. in Biophys. J. 89, 951-966, 2005, Biosystems 83, 152-166, 2006; Kiyatkin et al. in J. Biol. Chem. 281, 19925-19938, 2006). These developments will facilitate the construction of tractable models of FGF signaling, incorporating further biological realism, such as spatial effects or realistic binding stoichiometries, despite a more severe combinatorial explosion associated with the latter.
Development and Validation of a Disease Severity Scoring Model for Pediatric Sepsis.
Hu, Li; Zhu, Yimin; Chen, Mengshi; Li, Xun; Lu, Xiulan; Liang, Ying; Tan, Hongzhuan
2016-07-01
Multiple severity scoring systems have been devised and evaluated in adult sepsis, but a simplified scoring model for pediatric sepsis has not yet been developed. This study aimed to develop and validate a new scoring model to stratify the severity of pediatric sepsis, thus assisting the treatment of sepsis in children. Data from 634 consecutive patients who presented with sepsis at Children's hospital of Hunan province in China in 2011-2013 were analyzed, with 476 patients placed in training group and 158 patients in validation group. Stepwise discriminant analysis was used to develop the accurate discriminate model. A simplified scoring model was generated using weightings defined by the discriminate coefficients. The discriminant ability of the model was tested by receiver operating characteristic curves (ROC). The discriminant analysis showed that prothrombin time, D-dimer, total bilirubin, serum total protein, uric acid, PaO2/FiO2 ratio, myoglobin were associated with severity of sepsis. These seven variables were assigned with values of 4, 3, 3, 4, 3, 3, 3 respectively based on the standardized discriminant coefficients. Patients with higher scores had higher risk of severe sepsis. The areas under ROC (AROC) were 0.836 for accurate discriminate model, and 0.825 for simplified scoring model in validation group. The proposed disease severity scoring model for pediatric sepsis showed adequate discriminatory capacity and sufficient accuracy, which has important clinical significance in evaluating the severity of pediatric sepsis and predicting its progress.
48 CFR 2953.102 - Quotation for Simplified Acquisitions DL 1-2078.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Quotation for Simplified Acquisitions DL 1-2078. 2953.102 Section 2953.102 Federal Acquisition Regulations System DEPARTMENT OF LABOR CLAUSE AND FORMS FORMS General 2953.102 Quotation for Simplified Acquisitions DL 1-2078. The following...
Simplified Discontinuous Galerkin Methods for Systems of Conservation Laws with Convex Extension
NASA Technical Reports Server (NTRS)
Barth, Timothy J.
1999-01-01
Simplified forms of the space-time discontinuous Galerkin (DG) and discontinuous Galerkin least-squares (DGLS) finite element method are developed and analyzed. The new formulations exploit simplifying properties of entropy endowed conservation law systems while retaining the favorable energy properties associated with symmetric variable formulations.
Improvement on a simplified model for protein folding simulation.
Zhang, Ming; Chen, Changjun; He, Yi; Xiao, Yi
2005-11-01
Improvements were made on a simplified protein model--the Ramachandran model-to achieve better computer simulation of protein folding. To check the validity of such improvements, we chose the ultrafast folding protein Engrailed Homeodomain as an example and explored several aspects of its folding. The engrailed homeodomain is a mainly alpha-helical protein of 61 residues from Drosophila melanogaster. We found that the simplified model of Engrailed Homeodomain can fold into a global minimum state with a tertiary structure in good agreement with its native structure.
We developed a simplified spreadsheet modeling approach for characterizing and prioritizing sources of sediment loadings from watersheds in the United States. A simplified modeling approach was developed to evaluate sediment loadings from watersheds and selected land segments. ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dana, S.; Damiani, R.; vanDam, J.
As part of an ongoing effort to improve the modeling and prediction of small wind turbine dynamics, NREL tested a small horizontal axis wind turbine in the field at the National Wind Technology Center (NWTC). The test turbine was a 2.1-kW downwind machine mounted on an 18-meter multi-section fiberglass composite tower. The tower was instrumented and monitored for approximately 6 months. The collected data were analyzed to assess the turbine and tower loads and further validate the simplified loads equations from the International Electrotechnical Commission (IEC) 61400-2 design standards. Field-measured loads were also compared to the output of an aeroelasticmore » model of the turbine. Ultimate loads at the tower base were assessed using both the simplified design equations and the aeroelastic model output. The simplified design equations in IEC 61400-2 do not accurately model fatigue loads. In this project, we compared fatigue loads as measured in the field, as predicted by the aeroelastic model, and as calculated using the simplified design equations.« less
Towards a first design of a Newtonian-noise cancellation system for Advanced LIGO
NASA Astrophysics Data System (ADS)
Coughlin, M.; Mukund, N.; Harms, J.; Driggers, J.; Adhikari, R.; Mitra, S.
2016-12-01
Newtonian gravitational noise from seismic fields is predicted to be a limiting noise source at low frequency for second generation gravitational-wave detectors. Mitigation of this noise will be achieved by Wiener filtering using arrays of seismometers deployed in the vicinity of all test masses. In this work, we present optimized configurations of seismometer arrays using a variety of simplified models of the seismic field based on seismic observations at LIGO Hanford. The model that best fits the seismic measurements leads to noise reduction limited predominantly by seismometer self-noise. A first simplified design of seismic arrays for Newtonian-noise cancellation at the LIGO sites is presented, which suggests that it will be sufficient to monitor surface displacement inside the buildings.
Using a bias aware EnKF to account for unresolved structure in an unsaturated zone model
NASA Astrophysics Data System (ADS)
Erdal, D.; Neuweiler, I.; Wollschläger, U.
2014-01-01
When predicting flow in the unsaturated zone, any method for modeling the flow will have to define how, and to what level, the subsurface structure is resolved. In this paper, we use the Ensemble Kalman Filter to assimilate local soil water content observations from both a synthetic layered lysimeter and a real field experiment in layered soil in an unsaturated water flow model. We investigate the use of colored noise bias corrections to account for unresolved subsurface layering in a homogeneous model and compare this approach with a fully resolved model. In both models, we use a simplified model parameterization in the Ensemble Kalman Filter. The results show that the use of bias corrections can increase the predictive capability of a simplified homogeneous flow model if the bias corrections are applied to the model states. If correct knowledge of the layering structure is available, the fully resolved model performs best. However, if no, or erroneous, layering is used in the model, the use of a homogeneous model with bias corrections can be the better choice for modeling the behavior of the system.
NASA Astrophysics Data System (ADS)
Mitchell, Noah; Koning, Vinzenz; Vitelli, Vincenzo; Irvine, William T. M.
2014-03-01
When an elastic film conforms to a surface with Gaussian curvature, stresses arise in the film. As a result, cracks--typically studied in flat materials--interact with curvature when propagating through the system. Using silicone elastomer sheets that conform to the surface of a Gaussian bump, we find experimental evidence for the deflection of a crack propagating through the material. We interpret our experiments with reference to analytical modeling and simulations of a simplified model system.
Progress in Earth System Modeling since the ENIAC Calculation
NASA Astrophysics Data System (ADS)
Fung, I.
2009-05-01
The success of the first numerical weather prediction experiment on the ENIAC computer in 1950 was hinged on the expansion of the meteorological observing network, which led to theoretical advances in atmospheric dynamics and subsequently the implementation of the simplified equations on the computer. This paper briefly reviews the progress in Earth System Modeling and climate observations, and suggests a strategy to sustain and expand the observations needed to advance climate science and prediction.
Advanced Suspension and Control Algorithm for U.S. Army Ground Vehicles
2013-04-01
Army Materiel Systems Analysis Activity (AMSAA), for his assistance and guidance in building a multibody vehicle dynamics model of a typical light...Mobility Multipurpose Wheeled Vehicle [HMMWV] model) that was developed in collaboration with the U.S. Army Materiel Systems Analysis Activity (5) is...control weight for GPC With Explicit Disturbance was R = 1.0e-7 over the entire speed range. To simplify analysis , the control weights for the other two
Simplified Predictive Models for CO2 Sequestration Performance Assessment
NASA Astrophysics Data System (ADS)
Mishra, Srikanta; RaviGanesh, Priya; Schuetter, Jared; Mooney, Douglas; He, Jincong; Durlofsky, Louis
2014-05-01
We present results from an ongoing research project that seeks to develop and validate a portfolio of simplified modeling approaches that will enable rapid feasibility and risk assessment for CO2 sequestration in deep saline formation. The overall research goal is to provide tools for predicting: (a) injection well and formation pressure buildup, and (b) lateral and vertical CO2 plume migration. Simplified modeling approaches that are being developed in this research fall under three categories: (1) Simplified physics-based modeling (SPM), where only the most relevant physical processes are modeled, (2) Statistical-learning based modeling (SLM), where the simulator is replaced with a "response surface", and (3) Reduced-order method based modeling (RMM), where mathematical approximations reduce the computational burden. The system of interest is a single vertical well injecting supercritical CO2 into a 2-D layered reservoir-caprock system with variable layer permeabilities. In the first category (SPM), we use a set of well-designed full-physics compositional simulations to understand key processes and parameters affecting pressure propagation and buoyant plume migration. Based on these simulations, we have developed correlations for dimensionless injectivity as a function of the slope of fractional-flow curve, variance of layer permeability values, and the nature of vertical permeability arrangement. The same variables, along with a modified gravity number, can be used to develop a correlation for the total storage efficiency within the CO2 plume footprint. In the second category (SLM), we develop statistical "proxy models" using the simulation domain described previously with two different approaches: (a) classical Box-Behnken experimental design with a quadratic response surface fit, and (b) maximin Latin Hypercube sampling (LHS) based design with a Kriging metamodel fit using a quadratic trend and Gaussian correlation structure. For roughly the same number of simulations, the LHS-based meta-model yields a more robust predictive model, as verified by a k-fold cross-validation approach. In the third category (RMM), we use a reduced-order modeling procedure that combines proper orthogonal decomposition (POD) for reducing problem dimensionality with trajectory-piecewise linearization (TPWL) for extrapolating system response at new control points from a limited number of trial runs ("snapshots"). We observe significant savings in computational time with very good accuracy from the POD-TPWL reduced order model - which could be important in the context of history matching, uncertainty quantification and optimization problems. The paper will present results from our ongoing investigations, and also discuss future research directions and likely outcomes. This work was supported by U.S. Department of Energy National Energy Technology Laboratory award DE-FE0009051 and Ohio Department of Development grant D-13-02.
Hua, Xijin; Wang, Ling; Al-Hajjar, Mazen; Jin, Zhongmin; Wilcox, Ruth K; Fisher, John
2014-07-01
Finite element models are becoming increasingly useful tools to conduct parametric analysis, design optimisation and pre-clinical testing for hip joint replacements. However, the verification of the finite element model is critically important. The purposes of this study were to develop a three-dimensional anatomic finite element model for a modular metal-on-polyethylene total hip replacement for predicting its contact mechanics and to conduct experimental validation for a simple finite element model which was simplified from the anatomic finite element model. An anatomic modular metal-on-polyethylene total hip replacement model (anatomic model) was first developed and then simplified with reasonable accuracy to a simple modular total hip replacement model (simplified model) for validation. The contact areas on the articulating surface of three polyethylene liners of modular metal-on-polyethylene total hip replacement bearings with different clearances were measured experimentally in the Leeds ProSim hip joint simulator under a series of loading conditions and different cup inclination angles. The contact areas predicted from the simplified model were then compared with that measured experimentally under the same conditions. The results showed that the simplification made for the anatomic model did not change the predictions of contact mechanics of the modular metal-on-polyethylene total hip replacement substantially (less than 12% for contact stresses and contact areas). Good agreements of contact areas between the finite element predictions from the simplified model and experimental measurements were obtained, with maximum difference of 14% across all conditions considered. This indicated that the simplification and assumptions made in the anatomic model were reasonable and the finite element predictions from the simplified model were valid. © IMechE 2014.
Surrogates for numerical simulations; optimization of eddy-promoter heat exchangers
NASA Technical Reports Server (NTRS)
Patera, Anthony T.; Patera, Anthony
1993-01-01
Although the advent of fast and inexpensive parallel computers has rendered numerous previously intractable calculations feasible, many numerical simulations remain too resource-intensive to be directly inserted in engineering optimization efforts. An attractive alternative to direct insertion considers models for computational systems: the expensive simulation is evoked only to construct and validate a simplified, input-output model; this simplified input-output model then serves as a simulation surrogate in subsequent engineering optimization studies. A simple 'Bayesian-validated' statistical framework for the construction, validation, and purposive application of static computer simulation surrogates is presented. As an example, dissipation-transport optimization of laminar-flow eddy-promoter heat exchangers are considered: parallel spectral element Navier-Stokes calculations serve to construct and validate surrogates for the flowrate and Nusselt number; these surrogates then represent the originating Navier-Stokes equations in the ensuing design process.
NASA Astrophysics Data System (ADS)
Osiac, E.; Sokólska, I.; Kück, S.
2002-06-01
The paper compares the mechanisms that enable the upconverted green emission (5S2-->5I8) of the Ho3+ ion under infrared excitation (700-920 nm) in several crystalline hosts (YAlO3, YLiF4, Y3Sc2Ga3O12, and BaY2F8). Parameters involved in the upconversion such as excited-state absorption and cross-relaxation rates were determined from spectroscopic measurements. A system of differential equation (rate equations) was used to describe the upconversion mechanism and was numerically solved. The results were compared with experimental data. A reduction of this system to a three-level ``simplified system'' is presented, which includes only the ground level, the emitting level, and the intermediate level. The differences between the photon-avalanche mechanism and the looping mechanism are discussed and analyzed according to this simplified system.
Alternative Method to Simulate a Sub-idle Engine Operation in Order to Synthesize Its Control System
NASA Astrophysics Data System (ADS)
Sukhovii, Sergii I.; Sirenko, Feliks F.; Yepifanov, Sergiy V.; Loboda, Igor
2016-09-01
The steady-state and transient engine performances in control systems are usually evaluated by applying thermodynamic engine models. Most models operate between the idle and maximum power points, only recently, they sometimes address a sub-idle operating range. The lack of information about the component maps at the sub-idle modes presents a challenging problem. A common method to cope with the problem is to extrapolate the component performances to the sub-idle range. Precise extrapolation is also a challenge. As a rule, many scientists concern only particular aspects of the problem such as the lighting combustion chamber or the turbine operation under the turned-off conditions of the combustion chamber. However, there are no reports about a model that considers all of these aspects and simulates the engine starting. The proposed paper addresses a new method to simulate the starting. The method substitutes the non-linear thermodynamic model with a linear dynamic model, which is supplemented with a simplified static model. The latter model is the set of direct relations between parameters that are used in the control algorithms instead of commonly used component performances. Specifically, this model consists of simplified relations between the gas path parameters and the corrected rotational speed.
Simplified Models for the Study of Postbuckled Hat-Stiffened Composite Panels
NASA Technical Reports Server (NTRS)
Vescovini, Riccardo; Davila, Carlos G.; Bisagni, Chiara
2012-01-01
The postbuckling response and failure of multistringer stiffened panels is analyzed using models with three levels of approximation. The first model uses a relatively coarse mesh to capture the global postbuckling response of a five-stringer panel. The second model can predict the nonlinear response as well as the debonding and crippling failure mechanisms in a single stringer compression specimen (SSCS). The third model consists of a simplified version of the SSCS that is designed to minimize the computational effort. The simplified model is well-suited to perform sensitivity analyses for studying the phenomena that lead to structural collapse. In particular, the simplified model is used to obtain a deeper understanding of the role played by geometric and material modeling parameters such as mesh size, inter-laminar strength, fracture toughness, and fracture mode mixity. Finally, a global/local damage analysis method is proposed in which a detailed local model is used to scan the global model to identify the locations that are most critical for damage tolerance.
Initial Coupling of the RELAP-7 and PRONGHORN Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Ortensi; D. Andrs; A.A. Bingham
2012-10-01
Modern nuclear reactor safety codes require the ability to solve detailed coupled neutronic- thermal fluids problems. For larger cores, this implies fully coupled higher dimensionality spatial dynamics with appropriate feedback models that can provide enough resolution to accurately compute core heat generation and removal during steady and unsteady conditions. The reactor analysis code PRONGHORN is being coupled to RELAP-7 as a first step to extend RELAP’s current capabilities. This report details the mathematical models, the type of coupling, and the testing results from the integrated system. RELAP-7 is a MOOSE-based application that solves the continuity, momentum, and energy equations inmore » 1-D for a compressible fluid. The pipe and joint capabilities enable it to model parts of the power conversion unit. The PRONGHORN application, also developed on the MOOSE infrastructure, solves the coupled equations that define the neutron diffusion, fluid flow, and heat transfer in a full core model. The two systems are loosely coupled to simplify the transition towards a more complex infrastructure. The integration is tested on a simplified version of the OECD/NEA MHTGR-350 Coupled Neutronics-Thermal Fluids benchmark model.« less
NASA Astrophysics Data System (ADS)
Yousefvand, H. R.
2017-12-01
We report a study of the effects of hot-electron and hot-phonon dynamics on the output characteristics of quantum cascade lasers (QCLs) using an equivalent circuit-level model. The model is developed from the energy balance equation to adopt the electron temperature in the active region levels, the heat transfer equation to include the lattice temperature, the nonequilibrium phonon rate to account for the hot phonon dynamics and simplified two-level rate equations to incorporate the carrier and photon dynamics in the active region. This technique simplifies the description of the electron-phonon interaction in QCLs far from the equilibrium condition. Using the presented model, the steady and transient responses of the QCLs for a wide range of sink temperatures (80 to 320 K) are investigated and analysed. The model enables us to explain the operating characteristics found in QCLs. This predictive model is expected to be applicable to all QCL material systems operating in pulsed and cw regimes.
Variable structure control of nonlinear systems through simplified uncertain models
NASA Technical Reports Server (NTRS)
Sira-Ramirez, Hebertt
1986-01-01
A variable structure control approach is presented for the robust stabilization of feedback equivalent nonlinear systems whose proposed model lies in the same structural orbit of a linear system in Brunovsky's canonical form. An attempt to linearize exactly the nonlinear plant on the basis of the feedback control law derived for the available model results in a nonlinearly perturbed canonical system for the expanded class of possible equivalent control functions. Conservatism tends to grow as modeling errors become larger. In order to preserve the internal controllability structure of the plant, it is proposed that model simplification be carried out on the open-loop-transformed system. As an example, a controller is developed for a single link manipulator with an elastic joint.
Julius Gy Fabos; Kimball H. Ferris
1977-01-01
This paper justifies and illustrates (in simplified form) a landscape planning approach to the environmental management of the metropolitan landscape. The model utilizes a computerized assessment and mapping system, which exhibits a recent advancement in computer technology that allows for greater accuracy and the weighting of different values when mapping at the...
Sea King Mk. 50 Helicopter Sonar Dynamics Study. A Simplified Control Systems Mathematical Model
1979-02-01
cable mode signal (CAB P) comprises: (i) The propotional . trimmed, longitudinal cable angle error signal, THE ERT. THE ERT itself comprises: (a) The...used for body axes in the aircraft. (vi) Because the model has not yet been validated, the behaviour shown still has to be confirmed as an accurate
NASA Technical Reports Server (NTRS)
Newman, C. M.
1976-01-01
The constraints and limitations for STS Consumables Management are studied. Variables imposing constraints on the consumables related subsystems are identified, and a method determining constraint violations with the simplified consumables model in the Mission Planning Processor is presented.
Systems Engineering Model for ART Energy Conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendez Cruz, Carmen Margarita; Rochau, Gary E.; Wilson, Mollye C.
The near-term objective of the EC team is to establish an operating, commercially scalable Recompression Closed Brayton Cycle (RCBC) to be constructed for the NE - STEP demonstration system (demo) with the lowest risk possible. A systems engineering approach is recommended to ensure adequate requirements gathering, documentation, and mode ling that supports technology development relevant to advanced reactors while supporting crosscut interests in potential applications. A holistic systems engineering model was designed for the ART Energy Conversion program by leveraging Concurrent Engineering, Balance Model, Simplified V Model, and Project Management principles. The resulting model supports the identification and validation ofmore » lifecycle Brayton systems requirements, and allows designers to detail system-specific components relevant to the current stage in the lifecycle, while maintaining a holistic view of all system elements.« less
Building Efficiency Evaluation and Uncertainty Analysis with DOE's Asset Score Preview
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-08-12
Building Energy Asset Score Tool, developed by the U.S. Department of Energy (DOE), is a program to encourage energy efficiency improvement by helping building owners and managers assess a building's energy-related systems independent of operations and maintenance. Asset Score Tool uses a simplified EnergyPlus model to provide an assessment of building systems, through minimum user inputs of basic building characteristics. Asset Score Preview is a newly developed option that allows users to assess their building's systems and the potential value of a more in-depth analysis via an even more simplified approach. This methodology provides a preliminary approach to estimating amore » building's energy efficiency and potential for improvement. This paper provides an overview of the methodology used for the development of Asset Score Preview and the scoring methodology.« less
Knowledge bases built on web languages from the point of view of predicate logics
NASA Astrophysics Data System (ADS)
Vajgl, Marek; Lukasová, Alena; Žáček, Martin
2017-06-01
The article undergoes evaluation of formal systems created on the base of web (ontology/concept) languages by simplifying the usual approach of knowledge representation within the FOPL, but sharing its expressiveness, semantic correct-ness, completeness and decidability. Evaluation of two of them - that one based on description logic and that one built on RDF model principles - identifies some of the lacks of those formal systems and presents, if possible, corrections of them. Possibilities to build an inference system capable to obtain new further knowledge over given knowledge bases including those describing domains by giant linked domain databases has been taken into account. Moreover, the directions towards simplifying FOPL language discussed here has been evaluated from the point of view of a possibility to become a web language for fulfilling an idea of semantic web.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogenschutz, Peter; Moeng, Chin-Hoh
2015-10-13
The PI’s at the National Center for Atmospheric Research (NCAR), Chin-Hoh Moeng and Peter Bogenschutz, have primarily focused their time on the implementation of the Simplified-Higher Order Turbulence Closure (SHOC; Bogenschutz and Krueger 2013) to the Multi-scale Modeling Framework (MMF) global model and testing of SHOC on deep convective cloud regimes.
Less-simplified models of dark matter for direct detection and the LHC
NASA Astrophysics Data System (ADS)
Choudhury, Arghya; Kowalska, Kamila; Roszkowski, Leszek; Sessolo, Enrico Maria; Williams, Andrew J.
2016-04-01
We construct models of dark matter with suppressed spin-independent scattering cross section utilizing the existing simplified model framework. Even simple combinations of simplified models can exhibit interference effects that cause the tree level contribution to the scattering cross section to vanish, thus demonstrating that direct detection limits on simplified models are not robust when embedded in a more complicated and realistic framework. In general for fermionic WIMP masses ≳ 10 GeV direct detection limits on the spin-independent scattering cross section are much stronger than those coming from the LHC. However these model combinations, which we call less-simplified models, represent situations where LHC searches become more competitive than direct detection experiments even for moderate dark matter mass. We show that a complementary use of several searches at the LHC can strongly constrain the direct detection blind spots by setting limits on the coupling constants and mediators' mass. We derive the strongest limits for combinations of vector + scalar, vector + "squark", and "squark" + scalar mediator, and present the corresponding projections for the LHC 14 TeV for a number of searches: mono-jet, jets + missing energy, and searches for heavy vector resonances.
NASA Technical Reports Server (NTRS)
Goussis, D. A.; Lam, S. H.; Gnoffo, P. A.
1990-01-01
The Computational Singular Perturbation CSP methods is employed (1) in the modeling of a homogeneous isothermal reacting system and (2) in the numerical simulation of the chemical reactions in a hypersonic flowfield. Reduced and simplified mechanisms are constructed. The solutions obtained on the basis of these approximate mechanisms are shown to be in very good agreement with the exact solution based on the full mechanism. Physically meaningful approximations are derived. It is demonstrated that the deduction of these approximations from CSP is independent of the complexity of the problem and requires no intuition or experience in chemical kinetics.
Tree-Level Hydrodynamic Approach for Improved Stomatal Conductance Parameterization
NASA Astrophysics Data System (ADS)
Mirfenderesgi, G.; Bohrer, G.; Matheny, A. M.; Ivanov, V. Y.
2014-12-01
The land-surface models do not mechanistically resolve hydrodynamic processes within the tree. The Finite-Elements Tree-Crown Hydrodynamics model version 2 (FETCH2) is based on the pervious FETCH model approach, but with finite difference numerics, and simplified single-beam conduit system. FETCH2 simulates water flow through the tree as a simplified system of porous media conduits. It explicitly resolves spatiotemporal hydraulic stresses throughout the tree's vertical extent that cannot be easily represented using other stomatal-conductance models. Empirical equations relate water potential at the stem to stomata conductance at leaves connected to the stem (through unresolved branches) at that height. While highly simplified, this approach bring some realism to the simulation of stomata conductance because the stomata can respond to stem water potential, rather than an assumed direct relationship with soil moisture, as is currently the case in almost all models. By enabling mechanistic simulation of hydrological traits, such as xylem conductivity, conductive area per DBH, vertical distribution of leaf area and maximal and minimal water content in the xylem, and their effect of the dynamics of water flow in the tree system, the FETCH2 modeling system enhanced our understanding of the role of hydraulic limitations on an experimental forest plot short-term water stresses that lead to tradeoffs between water and light availability for transpiring leaves in forest ecosystems. FETCH2 is particularly suitable to resolve the effects of structural differences between tree and species and size groups, and the consequences of differences in hydraulic strategies of different species. We leverage on a large dataset of sap flow from 60 trees of 4 species at our experimental plot at the University of Michigan Biological Station. Comparison of the sap flow and transpiration patterns in this site and an undisturbed control site shows significant difference in hydraulic strategies between species which affect their response to the disturbance. We used FETCH2 to conduct a sensitivity analysis of the total stand-level transpiration to the inter-specific differences in hydraulic strategies and used the results to reflect on the future trajectory of the forest, in terms of species composition and transpiration.
Reduction method with system analysis for multiobjective optimization-based design
NASA Technical Reports Server (NTRS)
Azarm, S.; Sobieszczanski-Sobieski, J.
1993-01-01
An approach for reducing the number of variables and constraints, which is combined with System Analysis Equations (SAE), for multiobjective optimization-based design is presented. In order to develop a simplified analysis model, the SAE is computed outside an optimization loop and then approximated for use by an operator. Two examples are presented to demonstrate the approach.
Environmental analysis Waste Isolation Pilot Plant (WIPP) cost reduction proposals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Waste Isolation Pilot Plant (WIPP) is a research and development facility to demonstrate the safe disposal of radioactive wastes resulting from the defense activities and programs of the United States government. The facility is planned to be developed in bedded salt at the Los Medanos site in southeastern New Mexico. The environmental consequences of contruction and operation of the WIPP facility are documented in ''Final Environmental Impact Statement, Waste Isolation Pilot Plant''. The proposed action addressed by this environmental analysis is to simplify and reduce the scope of the WIPP facility as it is currently designed. The proposed changesmore » to the existing WIPP design are: limit the waste storage rate to 500,000 cubic feet per year; eliminate one shaft and revise the underground ventilation system; eliminate the underground conveyor system; combine the Administration Building, the Underground Personnel Building and the Waste Handling Building office area; simplify the central monitoring system; simplify the security control systems; modify the Waste Handling Building; simplify the storage exhaust system; modify the above ground salt handling logistics; simplify the power system; reduce overall site features; simplify the Warehouse/Shops Building and eliminate the Vehicle Maintenance Building; and allow resource recovery in Control Zone IV.« less
Creating Security System Models Using SNAP-PC.
1987-05-01
Submodel ATTGRD Prompts ............ 228 x ACKNOWLEDGEMENTS SNAP was originally developed in the late 1970’s by Pritsker & Associates, Inc., for Sandia...systems. The other was to simplify the simulation process so that a person knowledgeable in security planning and who had little experience in ...simulation techniques could use simulation in his evaluation of security systems. SNAP-PC was developed by Pritsker & Associates, Inc., for Sandia with
Guo, Doudou; Juan, Jiaxiang; Chang, Liying; Zhang, Jingjin; Huang, Danfeng
2017-08-15
Plant-based sensing on water stress can provide sensitive and direct reference for precision irrigation system in greenhouse. However, plant information acquisition, interpretation, and systematical application remain insufficient. This study developed a discrimination method for plant root zone water status in greenhouse by integrating phenotyping and machine learning techniques. Pakchoi plants were used and treated by three root zone moisture levels, 40%, 60%, and 80% relative water content. Three classification models, Random Forest (RF), Neural Network (NN), and Support Vector Machine (SVM) were developed and validated in different scenarios with overall accuracy over 90% for all. SVM model had the highest value, but it required the longest training time. All models had accuracy over 85% in all scenarios, and more stable performance was observed in RF model. Simplified SVM model developed by the top five most contributing traits had the largest accuracy reduction as 29.5%, while simplified RF and NN model still maintained approximately 80%. For real case application, factors such as operation cost, precision requirement, and system reaction time should be synthetically considered in model selection. Our work shows it is promising to discriminate plant root zone water status by implementing phenotyping and machine learning techniques for precision irrigation management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maccarthy, Jonathan K.
2016-07-28
PyGeoTess is a Python interface module to the GeoTess gridding and earth model library from Sandia National Laboratories. It provides simplified access to a subset of the GeoTess C++ library, and takes advantage of Python's interactive interpreter and inline documentation system.
Finite element coiled cochlea model
NASA Astrophysics Data System (ADS)
Isailovic, Velibor; Nikolic, Milica; Milosevic, Zarko; Saveljic, Igor; Nikolic, Dalibor; Radovic, Milos; Filipović, Nenad
2015-12-01
Cochlea is important part of the hearing system, and thanks to special structure converts external sound waves into neural impulses which go to the brain. Shape of the cochlea is like snail, so geometry of the cochlea model is complex. The simplified cochlea coiled model was developed using finite element method inside SIFEM FP7 project. Software application is created on the way that user can prescribe set of the parameters for spiral cochlea, as well as material properties and boundary conditions to the model. Several mathematical models were tested. The acoustic wave equation for describing fluid in the cochlea chambers - scala vestibuli and scala timpani, and Newtonian dynamics for describing vibrations of the basilar membrane are used. The mechanical behavior of the coiled cochlea was analyzed and the third chamber, scala media, was not modeled because it does not have a significant impact on the mechanical vibrations of the basilar membrane. The obtained results are in good agreement with experimental measurements. Future work is needed for more realistic geometry model. Coiled model of the cochlea was created and results are compared with initial simplified coiled model of the cochlea.
48 CFR 529.401-70 - Purchases at or under the simplified acquisition threshold.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 4 2013-10-01 2013-10-01 false Purchases at or under the simplified acquisition threshold. 529.401-70 Section 529.401-70 Federal Acquisition Regulations System GENERAL SERVICES ADMINISTRATION GENERAL CONTRACTING REQUIREMENTS TAXES Contract Clauses 529.401-70 Purchases at or under the simplified acquisitio...
48 CFR 529.401-70 - Purchases at or under the simplified acquisition threshold.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 4 2011-10-01 2011-10-01 false Purchases at or under the simplified acquisition threshold. 529.401-70 Section 529.401-70 Federal Acquisition Regulations System GENERAL SERVICES ADMINISTRATION GENERAL CONTRACTING REQUIREMENTS TAXES Contract Clauses 529.401-70 Purchases at or under the simplified acquisitio...
48 CFR 529.401-70 - Purchases at or under the simplified acquisition threshold.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Purchases at or under the simplified acquisition threshold. 529.401-70 Section 529.401-70 Federal Acquisition Regulations System GENERAL SERVICES ADMINISTRATION GENERAL CONTRACTING REQUIREMENTS TAXES Contract Clauses 529.401-70 Purchases at or under the simplified acquisitio...
48 CFR 529.401-70 - Purchases at or under the simplified acquisition threshold.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 4 2014-10-01 2014-10-01 false Purchases at or under the simplified acquisition threshold. 529.401-70 Section 529.401-70 Federal Acquisition Regulations System GENERAL SERVICES ADMINISTRATION GENERAL CONTRACTING REQUIREMENTS TAXES Contract Clauses 529.401-70 Purchases at or under the simplified acquisitio...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false List of laws inapplicable to contracts and subcontracts at or below the simplified acquisition threshold. 13.005 Section 13.005 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACTING METHODS AND CONTRACT TYPES SIMPLIFIED ACQUISITION PROCEDURES...
Analysis of Multivariate Experimental Data Using A Simplified Regression Model Search Algorithm
NASA Technical Reports Server (NTRS)
Ulbrich, Norbert M.
2013-01-01
A new regression model search algorithm was developed that may be applied to both general multivariate experimental data sets and wind tunnel strain-gage balance calibration data. The algorithm is a simplified version of a more complex algorithm that was originally developed for the NASA Ames Balance Calibration Laboratory. The new algorithm performs regression model term reduction to prevent overfitting of data. It has the advantage that it needs only about one tenth of the original algorithm's CPU time for the completion of a regression model search. In addition, extensive testing showed that the prediction accuracy of math models obtained from the simplified algorithm is similar to the prediction accuracy of math models obtained from the original algorithm. The simplified algorithm, however, cannot guarantee that search constraints related to a set of statistical quality requirements are always satisfied in the optimized regression model. Therefore, the simplified algorithm is not intended to replace the original algorithm. Instead, it may be used to generate an alternate optimized regression model of experimental data whenever the application of the original search algorithm fails or requires too much CPU time. Data from a machine calibration of NASA's MK40 force balance is used to illustrate the application of the new search algorithm.
Coupling of TRAC-PF1/MOD2, Version 5.4.25, with NESTLE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knepper, P.L.; Hochreiter, L.E.; Ivanov, K.N.
1999-09-01
A three-dimensional (3-D) spatial kinetics capability within a thermal-hydraulics system code provides a more correct description of the core physics during reactor transients that involve significant variations in the neutron flux distribution. Coupled codes provide the ability to forecast safety margins in a best-estimate manner. The behavior of a reactor core and the feedback to the plant dynamics can be accurately simulated. For each time step, coupled codes are capable of resolving system interaction effects on neutronics feedback and are capable of describing local neutronics effects caused by the thermal hydraulics and neutronics coupling. With the improvements in computational technology,more » modeling complex reactor behaviors with coupled thermal hydraulics and spatial kinetics is feasible. Previously, reactor analysis codes were limited to either a detailed thermal-hydraulics model with simplified kinetics or multidimensional neutron kinetics with a simplified thermal-hydraulics model. The authors discuss the coupling of the Transient Reactor Analysis Code (TRAC)-PF1/MOD2, Version 5.4.25, with the NESTLE code.« less
2-3D nonlocal transport model in magnetized laser plasmas.
NASA Astrophysics Data System (ADS)
Nicolaï, Philippe; Feugeas, Jean-Luc; Schurtz, Guy
2004-11-01
We present a model of nonlocal transport for multidimensional radiation magneto-hydrodynamics codes. This model, based on simplified Fokker-Planck equations, aims at extending the formulae of G Schurtz,Ph.Nicolaï and M. Busquet [Phys. Plasmas,7,4238 (2000)] to magnetized plasmas.The improvements concern various points as the electric field effects on nonlocal transport or conversely the kinetic effects on E field. However the main purpose of this work is to generalize the previous model by including magnetic field effects. A complete system of nonlocal equations is derived from kinetic equations with self-consistent E and B fields. These equations are analyzed and simplified in order to be implemented into large laser fusion codes and coupled to other relevent physics. Finally, our model allows to obtain the deformation of the electron distribution function due to nonlocal effects. This deformation leads to a non-maxwellian function which could be used to compute the influence on other physical processes.
Evaluating performances of simplified physically based landslide susceptibility models.
NASA Astrophysics Data System (ADS)
Capparelli, Giovanna; Formetta, Giuseppe; Versace, Pasquale
2015-04-01
Rainfall induced shallow landslides cause significant damages involving loss of life and properties. Prediction of shallow landslides susceptible locations is a complex task that involves many disciplines: hydrology, geotechnical science, geomorphology, and statistics. Usually to accomplish this task two main approaches are used: statistical or physically based model. This paper presents a package of GIS based models for landslide susceptibility analysis. It was integrated in the NewAge-JGrass hydrological model using the Object Modeling System (OMS) modeling framework. The package includes three simplified physically based models for landslides susceptibility analysis (M1, M2, and M3) and a component for models verifications. It computes eight goodness of fit indices (GOF) by comparing pixel-by-pixel model results and measurements data. Moreover, the package integration in NewAge-JGrass allows the use of other components such as geographic information system tools to manage inputs-output processes, and automatic calibration algorithms to estimate model parameters. The system offers the possibility to investigate and fairly compare the quality and the robustness of models and models parameters, according a procedure that includes: i) model parameters estimation by optimizing each of the GOF index separately, ii) models evaluation in the ROC plane by using each of the optimal parameter set, and iii) GOF robustness evaluation by assessing their sensitivity to the input parameter variation. This procedure was repeated for all three models. The system was applied for a case study in Calabria (Italy) along the Salerno-Reggio Calabria highway, between Cosenza and Altilia municipality. The analysis provided that among all the optimized indices and all the three models, Average Index (AI) optimization coupled with model M3 is the best modeling solution for our test case. This research was funded by PON Project No. 01_01503 "Integrated Systems for Hydrogeological Risk Monitoring, Early Warning and Mitigation Along the Main Lifelines", CUP B31H11000370005, in the framework of the National Operational Program for "Research and Competitiveness" 2007-2013.
Code of Federal Regulations, 2010 CFR
2010-07-01
... employee pensions-IRS Form 5305-SEP. 2520.104-48 Section 2520.104-48 Labor Regulations Relating to Labor... compliance for model simplified employee pensions—IRS Form 5305-SEP. Under the authority of section 110 of... Security Act of 1974 in the case of a simplified employee pension (SEP) described in section 408(k) of the...
NASA Astrophysics Data System (ADS)
Shi, Zhaoyao; Song, Huixu; Chen, Hongfang; Sun, Yanqiang
2018-02-01
This paper presents a novel experimental approach for confirming that spherical mirror of a laser tracking system can reduce the influences of rotation errors of gimbal mount axes on the measurement accuracy. By simplifying the optical system model of laser tracking system based on spherical mirror, we can easily extract the laser ranging measurement error caused by rotation errors of gimbal mount axes with the positions of spherical mirror, biconvex lens, cat's eye reflector, and measuring beam. The motions of polarization beam splitter and biconvex lens along the optical axis and vertical direction of optical axis are driven by error motions of gimbal mount axes. In order to simplify the experimental process, the motion of biconvex lens is substituted by the motion of spherical mirror according to the principle of relative motion. The laser ranging measurement error caused by the rotation errors of gimbal mount axes could be recorded in the readings of laser interferometer. The experimental results showed that the laser ranging measurement error caused by rotation errors was less than 0.1 μm if radial error motion and axial error motion were within ±10 μm. The experimental method simplified the experimental procedure and the spherical mirror could reduce the influences of rotation errors of gimbal mount axes on the measurement accuracy of the laser tracking system.
A Simplified GCS-DCSK Modulation and Its Performance Optimization
NASA Astrophysics Data System (ADS)
Xu, Weikai; Wang, Lin; Chi, Chong-Yung
2016-12-01
In this paper, a simplified Generalized Code-Shifted Differential Chaos Shift Keying (GCS-DCSK) whose transmitter never needs any delay circuits, is proposed. However, its performance is deteriorated because the orthogonality between substreams cannot be guaranteed. In order to optimize its performance, the system model of the proposed GCS-DCSK with power allocations on substreams is presented. An approximate bit error rate (BER) expression of the proposed model, which is a function of substreams’ power, is derived using Gaussian Approximation. Based on the BER expression, an optimal power allocation strategy between information substreams and reference substream is obtained. Simulation results show that the BER performance of the proposed GCS-DCSK with the optimal power allocation can be significantly improved when the number of substreams M is large.
Systemic risk in banking ecosystems.
Haldane, Andrew G; May, Robert M
2011-01-20
In the run-up to the recent financial crisis, an increasingly elaborate set of financial instruments emerged, intended to optimize returns to individual institutions with seemingly minimal risk. Essentially no attention was given to their possible effects on the stability of the system as a whole. Drawing analogies with the dynamics of ecological food webs and with networks within which infectious diseases spread, we explore the interplay between complexity and stability in deliberately simplified models of financial networks. We suggest some policy lessons that can be drawn from such models, with the explicit aim of minimizing systemic risk.
Figures of merit for self-beating filtered microwave photonic systems.
Pérez, Daniel; Gasulla, Ivana; Capmany, José; Fandiño, Javier S; Muñoz, Pascual; Alavi, Hossein
2016-05-02
We present a model to compute the figures of merit of self-beating Microwave Photonic systems, a novel class of systems that work on a self-homodyne fashion by sharing the same laser source for information bearing and local oscillator tasks. General and simplified expressions are given and, as an example, we have considered their application to the design of a tunable RF MWP BS/UE front end for band selection, based on a Chebyshev Type-II optical filter. The applicability and usefulness of the model are also discussed.
Model and experiments to optimize co-adaptation in a simplified myoelectric control system.
Couraud, M; Cattaert, D; Paclet, F; Oudeyer, P Y; de Rugy, A
2018-04-01
To compensate for a limb lost in an amputation, myoelectric prostheses use surface electromyography (EMG) from the remaining muscles to control the prosthesis. Despite considerable progress, myoelectric controls remain markedly different from the way we normally control movements, and require intense user adaptation. To overcome this, our goal is to explore concurrent machine co-adaptation techniques that are developed in the field of brain-machine interface, and that are beginning to be used in myoelectric controls. We combined a simplified myoelectric control with a perturbation for which human adaptation is well characterized and modeled, in order to explore co-adaptation settings in a principled manner. First, we reproduced results obtained in a classical visuomotor rotation paradigm in our simplified myoelectric context, where we rotate the muscle pulling vectors used to reconstruct wrist force from EMG. Then, a model of human adaptation in response to directional error was used to simulate various co-adaptation settings, where perturbations and machine co-adaptation are both applied on muscle pulling vectors. These simulations established that a relatively low gain of machine co-adaptation that minimizes final errors generates slow and incomplete adaptation, while higher gains increase adaptation rate but also errors by amplifying noise. After experimental verification on real subjects, we tested a variable gain that cumulates the advantages of both, and implemented it with directionally tuned neurons similar to those used to model human adaptation. This enables machine co-adaptation to locally improve myoelectric control, and to absorb more challenging perturbations. The simplified context used here enabled to explore co-adaptation settings in both simulations and experiments, and to raise important considerations such as the need for a variable gain encoded locally. The benefits and limits of extending this approach to more complex and functional myoelectric contexts are discussed.
A simplified parsimonious higher order multivariate Markov chain model
NASA Astrophysics Data System (ADS)
Wang, Chao; Yang, Chuan-sheng
2017-09-01
In this paper, a simplified parsimonious higher-order multivariate Markov chain model (SPHOMMCM) is presented. Moreover, parameter estimation method of TPHOMMCM is give. Numerical experiments shows the effectiveness of TPHOMMCM.
Deconstructing the core dynamics from a complex time-lagged regulatory biological circuit.
Eriksson, O; Brinne, B; Zhou, Y; Björkegren, J; Tegnér, J
2009-03-01
Complex regulatory dynamics is ubiquitous in molecular networks composed of genes and proteins. Recent progress in computational biology and its application to molecular data generate a growing number of complex networks. Yet, it has been difficult to understand the governing principles of these networks beyond graphical analysis or extensive numerical simulations. Here the authors exploit several simplifying biological circumstances which thereby enable to directly detect the underlying dynamical regularities driving periodic oscillations in a dynamical nonlinear computational model of a protein-protein network. System analysis is performed using the cell cycle, a mathematically well-described complex regulatory circuit driven by external signals. By introducing an explicit time delay and using a 'tearing-and-zooming' approach the authors reduce the system to a piecewise linear system with two variables that capture the dynamics of this complex network. A key step in the analysis is the identification of functional subsystems by identifying the relations between state-variables within the model. These functional subsystems are referred to as dynamical modules operating as sensitive switches in the original complex model. By using reduced mathematical representations of the subsystems the authors derive explicit conditions on how the cell cycle dynamics depends on system parameters, and can, for the first time, analyse and prove global conditions for system stability. The approach which includes utilising biological simplifying conditions, identification of dynamical modules and mathematical reduction of the model complexity may be applicable to other well-characterised biological regulatory circuits. [Includes supplementary material].
Eysbouts, Y K; Ottevanger, P B; Massuger, L F A G; IntHout, J; Short, D; Harvey, R; Kaur, B; Sebire, N J; Sarwar, N; Sweep, F C G J; Seckl, M J
2017-08-01
Worldwide introduction of the International Fedaration of Gynaecology and Obstetrics (FIGO) 2000 scoring system has provided an effective means to stratify patients with gestational trophoblastic neoplasia to single- or multi-agent chemotherapy. However, the system is quite elaborate with an extensive set of risk factors. In this study, we re-evaluate all prognostic risk factors involved in the FIGO 2000 scoring system and examine if simplification is feasible. Between January 2003 and December 2012, 813 patients diagnosed with gestational trophoblastic neoplasia were identified at the Trophoblastic Disease Centre in London and scored using the FIGO 2000. Multivariable analysis and stepwise logistic regression were carried out to evaluate whether the FIGO 2000 scoring system could be simplified. Of the eight FIGO risk factors only pre-treatment serum human chorionic gonadotropin (hCG) levels exceeding 10 000 IU/l (OR = 5.0; 95% CI 2.5-10.4) and 100 000 IU/l (OR = 14.3; 95% CI 4.7-44.1), interval exceeding 7 months since antecedent pregnancy (OR = 4.1; 95% CI 1.0-16.2), and tumor size of over 5 cm (OR = 2.2; 95% CI 1.3-3.6) were identified as independently predictive for single-agent resistance. In addition, increased risk was apparent for antecedent term pregnancy (OR = 3.4; 95% CI 0.9-12.7) and the presence of five or more metastases (OR = 3.5; 95% CI 0.4-30.4), but patient numbers in these categories were relatively small. Stepwise logistic regression identified a simplified risk scoring model comprising age, pretreatment serum hCG, number of metastases, antecedent pregnancy, and interval but omitting tumor size, previous failed chemotherapy, and site of metastases. With this model only 1 out 725 patients was classified different from the FIGO 2000 system. Our simplified alternative using only five of the FIGO prognostic factors appears to be an accurate system for discriminating patients requiring single as opposed to multi-agent chemotherapy. Further work is urgently needed to validate these findings. © The Author 2017. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
High fidelity simulations of infrared imagery with animated characters
NASA Astrophysics Data System (ADS)
Näsström, F.; Persson, A.; Bergström, D.; Berggren, J.; Hedström, J.; Allvar, J.; Karlsson, M.
2012-06-01
High fidelity simulations of IR signatures and imagery tend to be slow and do not have effective support for animation of characters. Simplified rendering methods based on computer graphics methods can be used to overcome these limitations. This paper presents a method to combine these tools and produce simulated high fidelity thermal IR data of animated people in terrain. Infrared signatures for human characters have been calculated using RadThermIR. To handle multiple character models, these calculations use a simplified material model for the anatomy and clothing. Weather and temperature conditions match the IR-texture used in the terrain model. The calculated signatures are applied to the animated 3D characters that, together with the terrain model, are used to produce high fidelity IR imagery of people or crowds. For high level animation control and crowd simulations, HLAS (High Level Animation System) has been developed. There are tools available to create and visualize skeleton based animations, but tools that allow control of the animated characters on a higher level, e.g. for crowd simulation, are usually expensive and closed source. We need the flexibility of HLAS to add animation into an HLA enabled sensor system simulation framework.
Probabilistic Structures Analysis Methods (PSAM) for select space propulsion system components
NASA Technical Reports Server (NTRS)
1991-01-01
The basic formulation for probabilistic finite element analysis is described and demonstrated on a few sample problems. This formulation is based on iterative perturbation that uses the factorized stiffness on the unperturbed system as the iteration preconditioner for obtaining the solution to the perturbed problem. This approach eliminates the need to compute, store and manipulate explicit partial derivatives of the element matrices and force vector, which not only reduces memory usage considerably, but also greatly simplifies the coding and validation tasks. All aspects for the proposed formulation were combined in a demonstration problem using a simplified model of a curved turbine blade discretized with 48 shell elements, and having random pressure and temperature fields with partial correlation, random uniform thickness, and random stiffness at the root.
Analysis of Multivariate Experimental Data Using A Simplified Regression Model Search Algorithm
NASA Technical Reports Server (NTRS)
Ulbrich, Norbert Manfred
2013-01-01
A new regression model search algorithm was developed in 2011 that may be used to analyze both general multivariate experimental data sets and wind tunnel strain-gage balance calibration data. The new algorithm is a simplified version of a more complex search algorithm that was originally developed at the NASA Ames Balance Calibration Laboratory. The new algorithm has the advantage that it needs only about one tenth of the original algorithm's CPU time for the completion of a search. In addition, extensive testing showed that the prediction accuracy of math models obtained from the simplified algorithm is similar to the prediction accuracy of math models obtained from the original algorithm. The simplified algorithm, however, cannot guarantee that search constraints related to a set of statistical quality requirements are always satisfied in the optimized regression models. Therefore, the simplified search algorithm is not intended to replace the original search algorithm. Instead, it may be used to generate an alternate optimized regression model of experimental data whenever the application of the original search algorithm either fails or requires too much CPU time. Data from a machine calibration of NASA's MK40 force balance is used to illustrate the application of the new regression model search algorithm.
2013-04-26
versions of the self-etch adhesives on the market are one-step systems where the acidified primer and adhesive monomer are mixed together and placed in a...Figure 3 - Adhesive Classification B. Effects of Simplification at the Microscopic level Using restorative systems with simplified...bonding failures when self-cured “build-up” composites were bonded with simplified adhesive systems (Swift, 1999). They were alerted to potential
Two-phase/two-phase heat exchanger analysis
NASA Technical Reports Server (NTRS)
Kim, Rhyn H.
1992-01-01
A capillary pumped loop (CPL) system with a condenser linked to a double two-phase heat exchanger is analyzed numerically to simulate the performance of the system from different starting conditions to a steady state condition based on a simplified model. Results of the investigation are compared with those of similar apparatus available in the Space Station applications of the CPL system with a double two-phase heat exchanger.
Sverdlova, Nina S; Lambertz, Markus; Witzel, Ulrich; Perry, Steven F
2012-01-01
Various parts of the respiratory system play an important role in temperature control in birds. We create a simplified computational fluid dynamics (CFD) model of heat exchange in the trachea and air sacs of the domestic fowl (Gallus domesticus) in order to investigate the boundary conditions for the convective and evaporative cooling in these parts of the respiratory system. The model is based upon published values for respiratory times, pressures and volumes and upon anatomical data for this species, and the calculated heat exchange is compared with experimentally determined values for the domestic fowl and a closely related, wild species. In addition, we studied the trachea histologically to estimate the thickness of the heat transfer barrier and determine the structure and function of moisture-producing glands. In the transient CFD simulation, the airflow in the trachea of a 2-dimensional model is evoked by changing the volume of the simplified air sac. The heat exchange between the respiratory system and the environment is simulated for different ambient temperatures and humidities, and using two different models of evaporation: constant water vapour concentration model and the droplet injection model. According to the histological results, small mucous glands are numerous but discrete serous glands are lacking on the tracheal surface. The amount of water and heat loss in the simulation is comparable with measured respiratory values previously reported. Tracheal temperature control in the avian respiratory system may be used as a model for extinct or rare animals and could have high relevance for explaining how gigantic, long-necked dinosaurs such as sauropoda might have maintained a high metabolic rate.
Compact energy dispersive X-ray microdiffractometer for diagnosis of neoplastic tissues
NASA Astrophysics Data System (ADS)
Sosa, C.; Malezan, A.; Poletti, M. E.; Perez, R. D.
2017-08-01
An energy dispersive X-ray microdiffractometer with capillary optics has been developed for characterizing breast cancer. The employment of low divergence capillary optics helps to reduce the setup size to a few centimeters, while providing a lateral spatial resolution of 100 μm. The system angular calibration and momentum transfer resolution were assessed by a detailed study of a polycrystalline reference material. The performance of the system was tested by means of the analysis of tissue-equivalent samples previously characterized by conventional X-ray diffraction. In addition, a simplified correction model for an appropriate comparison of the diffraction spectra was developed and validated. Finally, the system was employed to evaluate normal and neoplastic human breast samples, in order to determine their X-ray scatter signatures. The initial results indicate that the use of this compact energy dispersive X-ray microdiffractometer combined with a simplified correction procedure is able to provide additional information to breast cancer diagnosis.
Wang, Ning; Chen, Jiajun; Zhang, Kun; Chen, Mingming; Jia, Hongzhi
2017-11-21
As thermoelectric coolers (TECs) have become highly integrated in high-heat-flux chips and high-power devices, the parasitic effect between component layers has become increasingly obvious. In this paper, a cyclic correction method for the TEC model is proposed using the equivalent parameters of the proposed simplified model, which were refined from the intrinsic parameters and parasitic thermal conductance. The results show that the simplified model agrees well with the data of a commercial TEC under different heat loads. Furthermore, the temperature difference of the simplified model is closer to the experimental data than the conventional model and the model containing parasitic thermal conductance at large heat loads. The average errors in the temperature difference between the proposed simplified model and the experimental data are no more than 1.6 K, and the error is only 0.13 K when the absorbed heat power Q c is equal to 80% of the maximum achievable absorbed heat power Q max . The proposed method and model provide a more accurate solution for integrated TECs that are small in size.
Quantifying uncertainty in high-resolution coupled hydrodynamic-ecosystem models
NASA Astrophysics Data System (ADS)
Allen, J. I.; Somerfield, P. J.; Gilbert, F. J.
2007-01-01
Marine ecosystem models are becoming increasingly complex and sophisticated, and are being used to estimate the effects of future changes in the earth system with a view to informing important policy decisions. Despite their potential importance, far too little attention has been, and is generally, paid to model errors and the extent to which model outputs actually relate to real-world processes. With the increasing complexity of the models themselves comes an increasing complexity among model results. If we are to develop useful modelling tools for the marine environment we need to be able to understand and quantify the uncertainties inherent in the simulations. Analysing errors within highly multivariate model outputs, and relating them to even more complex and multivariate observational data, are not trivial tasks. Here we describe the application of a series of techniques, including a 2-stage self-organising map (SOM), non-parametric multivariate analysis, and error statistics, to a complex spatio-temporal model run for the period 1988-1989 in the Southern North Sea, coinciding with the North Sea Project which collected a wealth of observational data. We use model output, large spatio-temporally resolved data sets and a combination of methodologies (SOM, MDS, uncertainty metrics) to simplify the problem and to provide tractable information on model performance. The use of a SOM as a clustering tool allows us to simplify the dimensions of the problem while the use of MDS on independent data grouped according to the SOM classification allows us to validate the SOM. The combination of classification and uncertainty metrics allows us to pinpoint the variables and associated processes which require attention in each region. We recommend the use of this combination of techniques for simplifying complex comparisons of model outputs with real data, and analysis of error distributions.
ERIC Educational Resources Information Center
Stump, William P.
1983-01-01
An integrated electronic system combines individual monitoring and control functions into one economical unit that earns a rapid payback by automatically managing and controlling energy usage, building systems, and security and maintenance tasks. (MLF)
A simplified model of the source channel of the Leksell GammaKnife tested with PENELOPE.
Al-Dweri, Feras M O; Lallena, Antonio M; Vilches, Manuel
2004-06-21
Monte Carlo simulations using the code PENELOPE have been performed to test a simplified model of the source channel geometry of the Leksell GammaKnife. The characteristics of the radiation passing through the treatment helmets are analysed in detail. We have found that only primary particles emitted from the source with polar angles smaller than 3 degrees with respect to the beam axis are relevant for the dosimetry of the Gamma Knife. The photon trajectories reaching the output helmet collimators at (x, v, z = 236 mm) show strong correlations between rho = (x2 + y2)(1/2) and their polar angle theta, on one side, and between tan(-1)(y/x) and their azimuthal angle phi, on the other. This enables us to propose a simplified model which treats the full source channel as a mathematical collimator. This simplified model produces doses in good agreement with those found for the full geometry. In the region of maximal dose, the relative differences between both calculations are within 3%, for the 18 and 14 mm helmets, and 10%, for the 8 and 4 mm ones. Besides, the simplified model permits a strong reduction (larger than a factor 15) in the computational time.
Bosman, Lisa B; Darling, Seth B
2018-06-01
The advent of modern solar energy technologies can improve the costs of energy consumption on a global, national, and regional level, ultimately spanning stakeholders from governmental entities to utility companies, corporations, and residential homeowners. For those stakeholders experiencing the four seasons, accurately accounting for snow-related energy losses is important for effectively predicting photovoltaic performance energy generation and valuation. This paper provides an examination of a new, simplified approach to decrease snow-related forecasting error, in comparison to current solar energy performance models. A new method is proposed to allow model designers, and ultimately users, the opportunity to better understand the return on investment for solar energy systems located in snowy environments. The new method is validated using two different sets of solar energy systems located near Green Bay, WI, USA: a 3.0-kW micro inverter system and a 13.2-kW central inverter system. Both systems were unobstructed, facing south, and set at a tilt of 26.56°. Data were collected beginning in May 2014 (micro inverter system) and October 2014 (central inverter system), through January 2018. In comparison to reference industry standard solar energy prediction applications (PVWatts and PVsyst), the new method results in lower mean absolute percent errors per kilowatt hour of 0.039 and 0.055%, respectively, for the micro inverter system and central inverter system. The statistical analysis provides support for incorporating this new method into freely available, online, up-to-date prediction applications, such as PVWatts and PVsyst.
DOT National Transportation Integrated Search
2013-08-01
Oregon is one of the few states that currently charge a commercial truck weight-mile tax (WMT). The Oregon Department of : Transportation (ODOT) has developed a data-collection system Truck Road Use Electronics (TRUE) to simplify WMT : collec...
NASA Astrophysics Data System (ADS)
Neumeister, Jonas M.
1993-08-01
THE TENSILE BEHAVIOR of a brittle matrix composite is studied for post matrix crack saturation conditions. Scatter of fiber strength following the Weibull distribution as well as the influence of the major microstructural variables is considered. The stress in a fiber is assumed to recover linearly around a failure due to a fiber-matrix interface behavior mainly ruled by friction. The constitutive behavior for such a composite is analysed. Results are given for a simplified and a refined approximate description and compared with an analysis resulting from the exact analytical theory of fiber fragmentation. It is shown that the stress-strain relation for the refined model excellently follows the exact solution and gives the location of the maximum to within 1% in both stress and strain; for most materials the agreement is even better. Also it is shown that all relations can be normalized to depend on only two variables; a stress reference and the Weibull exponent. For systems with low scatter in fiber strength the simplified model is sufficient to determine the stress maximum but not the postcritical behavior. In addition, the simplified model gives explicit analytical expressions for the maximum stress and corresponding strain. None of the models contain any volume dependence or statistical scatter, but the maximum stress given by the stress-strain relation constitutes an upper bound for the ultimate tensile strength of the composite.
Application of optimization technique for flood damage modeling in river system
NASA Astrophysics Data System (ADS)
Barman, Sangita Deb; Choudhury, Parthasarathi
2018-04-01
A river system is defined as a network of channels that drains different parts of a basin uniting downstream to form a common outflow. An application of various models found in literatures, to a river system having multiple upstream flows is not always straight forward, involves a lengthy procedure; and with non-availability of data sets model calibration and applications may become difficult. In the case of a river system the flow modeling can be simplified to a large extent if the channel network is replaced by an equivalent single channel. In the present work optimization model formulations based on equivalent flow and applications of the mixed integer programming based pre-emptive goal programming model in evaluating flood control alternatives for a real life river system in India are proposed to be covered in the study.
Influence of mass transfer resistance on overall nitrate removal rate in upflow sludge bed reactors.
Ting, Wen-Huei; Huang, Ju-Sheng
2006-09-01
A kinetic model with intrinsic reaction kinetics and a simplified model with apparent reaction kinetics for denitrification in upflow sludge bed (USB) reactors were proposed. USB-reactor performance data with and without sludge wasting were also obtained for model verification. An independent batch study showed that the apparent kinetic constants k' did not differ from the intrinsic k but the apparent Ks' was significantly larger than the intrinsic Ks suggesting that the intra-granule mass transfer resistance can be modeled by changes in Ks. Calculations of the overall effectiveness factor, Thiele modulus, and Biot number combined with parametric sensitivity analysis showed that the influence of internal mass transfer resistance on the overall nitrate removal rate in USB reactors is more significant than the external mass transfer resistance. The simulated residual nitrate concentrations using the simplified model were in good agreement with the experimental data; the simulated results using the simplified model were also close to those using the kinetic model. Accordingly, the simplified model adequately described the overall nitrate removal rate and can be used for process design.
Fast intersection detection algorithm for PC-based robot off-line programming
NASA Astrophysics Data System (ADS)
Fedrowitz, Christian H.
1994-11-01
This paper presents a method for fast and reliable collision detection in complex production cells. The algorithm is part of the PC-based robot off-line programming system of the University of Siegen (Ropsus). The method is based on a solid model which is managed by a simplified constructive solid geometry model (CSG-model). The collision detection problem is divided in two steps. In the first step the complexity of the problem is reduced in linear time. In the second step the remaining solids are tested for intersection. For this the Simplex algorithm, which is known from linear optimization, is used. It computes a point which is common to two convex polyhedra. The polyhedra intersect, if such a point exists. Regarding the simplified geometrical model of Ropsus the algorithm runs also in linear time. In conjunction with the first step a resultant collision detection algorithm is found which requires linear time in all. Moreover it computes the resultant intersection polyhedron using the dual transformation.
Characterization of impulse noise and analysis of its effect upon correlation receivers
NASA Technical Reports Server (NTRS)
Houts, R. C.; Moore, J. D.
1971-01-01
A noise model is formulated to describe the impulse noise in many digital systems. A simplified model, which assumes that each noise burst contains a randomly weighted version of the same basic waveform, is used to derive the performance equations for a correlation receiver. The expected number of bit errors per noise burst is expressed as a function of the average signal energy, signal-set correlation coefficient, bit time, noise-weighting-factor variance and probability density function, and a time range function which depends on the crosscorrelation of the signal-set basis functions and the noise waveform. A procedure is established for extending the results for the simplified noise model to the general model. Unlike the performance results for Gaussian noise, it is shown that for impulse noise the error performance is affected by the choice of signal-set basis functions and that Orthogonal signaling is not equivalent to On-Off signaling with the same average energy.
NASA Technical Reports Server (NTRS)
Arnold, William R.
2015-01-01
Since last year, a number of expanded capabilities have been added to the modeler. The support the integration with thermal modeling, the program can now produce simplified thermal models with the same geometric parameters as the more detailed dynamic and even more refined stress models. The local mesh refinement and mesh improvement tools have been expanded and more user friendly. The goal is to provide a means of evaluating both monolithic and segmented mirrors to the same level of fidelity and loading conditions at reasonable man-power efforts. The paper will demonstrate most of these new capabilities.
NASA Technical Reports Server (NTRS)
Arnold, William R., Sr.
2015-01-01
Since last year, a number of expanded capabilities have been added to the modeler. The support the integration with thermal modeling, the program can now produce simplified thermal models with the same geometric parameters as the more detailed dynamic and even more refined stress models. The local mesh refinement and mesh improvement tools have been expanded and more user friendly. The goal is to provide a means of evaluating both monolithic and segmented mirrors to the same level of fidelity and loading conditions at reasonable man-power efforts. The paper will demonstrate most of these new capabilities.
Investigation of Transmission Warming Technologies at Various Ambient Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jehlik, Forrest; Iliev, Simeon; Wood, Eric
This work details two approaches for evaluating transmission warming technology: experimental dynamometer testing and development of a simplified transmission efficiency model to quantify effects under varied real world ambient and driving conditions. Two vehicles were used for this investigation: a 2013 Ford Taurus and a 2011 Ford Fusion. The Taurus included a production transmission warming system and was tested over hot and cold ambient temperatures with the transmission warming system enabled and disabled. A robot driver was used to minimize driver variability and increase repeatability. Additionally the Fusion was tested cold and with the transmission pre-heated prior to completing themore » test cycles. These data were used to develop a simplified thermally responsive transmission model to estimate effects of transmission warming in real world conditions. For the Taurus, the fuel consumption variability within one standard deviation was shown to be under 0.5% for eight repeat Urban Dynamometer Driving Cycles (UDDS). These results were valid with the transmission warming system active or passive. Using the transmission warming system under 22 degrees C ambient temperature, fuel consumption reduction was shown to be 1.4%. For the Fusion, pre-warming the transmission reduced fuel consumption 2.5% for an urban drive cycle at -7 degrees C ambient temperature, with 1.5% of the 2.5% gain associated with the transmission, while consumption for the US06 test was shown to be reduced by 7% with 5.5% of the 7% gain associated with the transmission. It was found that engine warming due to conduction between the pre-heated transmission and the engine resulted in the remainder of the benefit. For +22 degrees C ambient tests, the pre-heated transmission was shown to reduce fuel consumption approximately 1% on an urban cycle, while no benefit was seen for the US06 cycle. The simplified modeling results showed gains in efficiency ranging from 0-1.5% depending on the ambient temperature and drive cycle.« less
A challenge in PBPK model development is estimating the parameters for absorption, distribution, metabolism, and excretion of the parent compound and metabolites of interest. One approach to reduce the number of parameters has been to simplify pharmacokinetic models by lumping p...
Boomsma, Martijn F; Edens, Mireille A; Van Lingen, Christiaan P; Warringa, Niek; Ettema, Harmen B; Verheyen, Cees C P M; Maas, Mario
2015-08-01
After implantation of a metal-on-metal total hip arthroplasty (MoM THA), a large incidence of pseudotumor formation has been described recently. Several centers have invited patients for follow-up in order to screen for pseudotumor formation. The spectrum of abnormalities found by CT in MoM THA patients can be unfamiliar to radiologists and orthopedic surgeons. Previously, a CT five-point grading scale has been published. In this paper, a simplification into a three-point classification system gives insight in the morphological distinction of abnormalities of the postoperative hip capsule in MoM implants in relation to the decision for revision. The reliability of this simplified classification regarding intra- and interrater reliability and its association with revision rate is investigated and discussed. All patients who underwent MoM THA in our hospital were invited for screening. Various clinical measures and CT scan were obtained in a cross-sectional fashion. A decision on revision surgery was made shortly after screening. CT scans were read in 582 patients, of which 82 patients were treated bilaterally. CT scans were independently single read by two board-certified radiologists and classified into categories I-V. In a second meeting, consensus was obtained. Categories were subsequently rubricated in class A (categories I and II), B (category III), and C (categories IV and V). Intra- and inter-radiologist agreement on MoM pathology was assessed by means of the weighted Cohen's kappa. Categorical data were presented as n (%), and tested by means of Fisher's exact test. Continuous data were presented as median (min-max) and tested by means of Mann-Whitney U test (two group comparison) or Kruskal-Wallis test (three group comparison). Logistic regression analysis was performed in order to study independence of CT class for association with revision surgery. Univariate statistically significant variables were entered in a multiple model. All statistical analysis was performed two-tailed using alpha 5% as the significance level. In total, 664 scores from 664 MoM hips obtained by two observers were available for analyses. Interobserver reliability for the non-simplified version (I-V) was κw = 0.71 (95% CI: 0.62-0.79), which indicates good agreement between the two musculoskeletal radiologists. Intra- and interobserver reliability for the simplified version (A-C) were respectively κw 0.78 (95% CI: 0.68-0.87), and κw = 0.71 (95% CI: 0.65-0.76). This indicates good agreement within and between the two observers. The simplified A-C version is significantly associated with revision exclusively due to MoM pathology, in both patients with unilateral MoM THA (p < 0.001) and patients with bilateral MoM THA (p < 0.044). The simplified A-C version is associated with several clinical measures. In patients with unilateral MoM THA, with or without contralateral THA, in situ time (p < 0.008), cobalt and chromium (p < 0.001) were statistically significant. In patients with bilateral MoM, cobalt (p < 0.001) and chromium (p < 0.027) were statistically significant. Revision is significantly associated with cup size (p < 0.001), anteversion of the cup (p < 0.004), serum ion levels of cobalt and chromium (p < 0.001) and the adapted classification system (p < 0.001). In univariate logistic regression analysis on revision, cup, anteversion of the cup, cobalt-chromium ion serum levels, and the simplified (A-C) CT category system were statistically significant. The simplified (A-C) CT category system was an independent associate of revision, in several multiple logistic regression models. The presented simplified CT grading system (A-C) in its first clinical validation on 48- and 64-multislice systems is reliable, showing good intra- and interrater reliability and is independently associated with revision surgery.
NASA Technical Reports Server (NTRS)
Kascak, Peter E.; Kenny, Barbara H.; Dever, Timothy P.; Santiago, Walter; Jansen, Ralph H.
2001-01-01
An experimental flywheel energy storage system is described. This system is being used to develop a flywheel based replacement for the batteries on the International Space Station (ISS). Motor control algorithms which allow the flywheel to interface with a simplified model of the ISS power bus, and function similarly to the existing ISS battery system, are described. Results of controller experimental verification on a 300 W-hr flywheel are presented.
First flight test results of the Simplified Aid For EVA Rescue (SAFER) propulsion unit
NASA Technical Reports Server (NTRS)
Meade, Carl J.
1995-01-01
The Simplified Aid for EVA Rescue (SAFER) is a small, self-contained, propulsive-backpack system that provides free-flying mobility for an astronaut engaged in a space walk, also known as extravehicular activity (EVA.) SAFER contains no redundant systems and is intended for contingency use only. In essence, it is a small, simplified version of the Manned Maneuvering Unit (MMU) last flown aboard the Space Shuttle in 1985. The operational SAFER unit will only be used to return an adrift EVA astronaut to the spacecraft. Currently, if an EVA crew member inadvertently becomes separated from the Space Shuttle, the Orbiter will maneuver to within the crew member's reach envelope, allowing the astronaut to regain contact with the Orbiter. However, with the advent of operations aboard the Russian MIR Space Station and the International Space Station, the Space Shuttle will not be available to effect a timely rescue. Under these conditions, a SAFER unit would be worn by each EVA crew member. Flight test of the pre-production model of SAFER occurred in September 1994. The crew of Space Shuttle Mission STS-64 flew a 6.9 hour test flight which included performance, flying qualities, systems, and operational utility evaluations. We found that the unit offers adequate propellant and control authority to stabilize and enable the return of a tumbling/separating crew member. With certain modifications, production model of SAFER can provide self-rescue capability to a separated crew member. This paper will present the program background, explain the flight test results and provide some insight into the complex operations of flight test in space.
NASA Astrophysics Data System (ADS)
Henine, Hocine; Julien, Tournebize; Jaan, Pärn; Ülo, Mander
2017-04-01
In agricultural areas, nitrogen (N) pollution load to surface waters depends on land use, agricultural practices, harvested N output, as well as the hydrology and climate of the catchment. Most of N transfer models need to use large complex data sets, which are generally difficult to collect at larger scale (>km2). The main objective of this study is to carry out a hydrological and a geochemistry modeling by using a simplified data set (land use/crop, fertilizer input, N losses from plots). The modelling approach was tested in the subsurface-drained Orgeval catchment (Paris Basin, France) based on following assumptions: Subsurface tile drains are considered as a giant lysimeter system. N concentration in drain outlets is representative for agricultural practices upstream. Analysis of observed N load (90% of total N) shows 62% of export during the winter. We considered prewinter nitrate (NO3) pool (PWNP) in soils at the beginning of hydrological drainage season as a driving factor for N losses. PWNP results from the part of NO3 not used by crops or the mineralization part of organic matter during the preceding summer and autumn. Considering these assumptions, we used PWNP as simplified input data for the modelling of N transport. Thus, NO3 losses are mainly influenced by the denitrification capacity of soils and stream water. The well-known HYPE model was used to perform water and N losses modelling. The hydrological simulation was calibrated with the observation data at different sub-catchments. We performed a hydrograph separation validated on the thermal and isotopic tracer studies and the general knowledge of the behavior of Orgeval catchment. Our results show a good correlation between the model and the observations (a Nash-Sutcliffe coefficient of 0.75 for water discharge and 0.7 for N flux). Likewise, comparison of calibrated PWNP values with the results from a field survey (annual PWNP campaign) showed significant positive correlation. One can conclude that the simplified modeling approach using PWNP as a driving factor for the evaluation of N losses from drained agricultural catchments gave satisfactory results and we can propose this approach for a wider use.
Modular chassis simplifies packaging and interconnecting of circuit boards
NASA Technical Reports Server (NTRS)
Arens, W. E.; Boline, K. G.
1964-01-01
A system of modular chassis structures has simplified the design for mounting a number of printed circuit boards. This design is structurally adaptable to computer and industrial control system applications.
2000-12-01
Numerical Simulations ..... ................. .... 42 1.4.1. Impact of a rod on a rigid wall ..... ................. .... 42 1.4.2. Impact of two...dissipative properties of the proposed scheme . . . . 81 II.4. Representative Numerical Simulations ...... ................. ... 84 11.4.1. Forging of...Representative numerical simulations ...... ............. .. 123 111.3. Model Problem II: a Simplified Model of Thin Beams ... ......... ... 127 III
Kinematic analysis and simulation of a substation inspection robot guided by magnetic sensor
NASA Astrophysics Data System (ADS)
Xiao, Peng; Luan, Yiqing; Wang, Haipeng; Li, Li; Li, Jianxiang
2017-01-01
In order to improve the performance of the magnetic navigation system used by substation inspection robot, the kinematic characteristics is analyzed based on a simplified magnetic guiding system model, and then the simulation process is executed to verify the reasonability of the whole analysis procedure. Finally, some suggestions are extracted out, which will be helpful to guide the design of the inspection robot system in the future.
The Effect of Operating Temperature on Open, Multimegawatt Space Power Systems
1988-04-01
Chemical and Nuclear Engineering Department Albuquerque, NM 87131 Attn: M. El-Genk University of Wisconsin Fussion Technology Institute 1500...Space Power Systems: A Simplified Axial Flow Gas Turbine Model," 5th Symposium on Space Nuclear Power Systems, January 1988, Albuquerque, New Mexico... Nuclear Power Division 3315 Old Forest Road P.O. Box 10935 Lynchburg, VA 24506-0935 Attn: B. J. Short Battelle Pacific Northwest Lab. P. 0. BOX 999
ParentLink: A Model of Integration and Support for Parents.
ERIC Educational Resources Information Center
Mertensmeyer, Carol; Fine, Mark
2000-01-01
Discusses ParentLink, a collective of Missouri organizations and agencies striving to simplify parents' access to research-based information, services, and problem-solving support pertaining to parenting. It is based on systems theory, specifically the ecology of human development. A comprehensive array of technologies augments ParentLink…
USDA-ARS?s Scientific Manuscript database
The system of governing equations of a simplified slab model of the uniformly-mixed, purely convective, diurnal atmospheric boundary layer (ABL) is shown to allow immediate solutions for the potential temperature and specific humidity as functions of the ABL height and net radiation when expressed i...
An Integration and Evaluation Framework for ESPC Coupled Models
2014-09-30
the CESM-HYCOM coupled system under the OI for ESPC award. This should be simplified by the use of the MCT datatype in ESMF. Make it available to...ESPC Testbed: Basic optimization Implement MCT datatype in ESMF and include in ESMF release. This was not yet started. 5 ESPC Testbed
A Contextual Model for Identity Management (IdM) Interfaces
ERIC Educational Resources Information Center
Fuller, Nathaniel J.
2014-01-01
The usability of Identity Management (IdM) systems is highly dependent upon design that simplifies the processes of identification, authentication, and authorization. Recent findings reveal two critical problems that degrade IdM usability: (1) unfeasible techniques for managing various digital identifiers, and (2) ambiguous security interfaces.…
Revisiting the direct detection of dark matter in simplified models
NASA Astrophysics Data System (ADS)
Li, Tong
2018-07-01
In this work we numerically re-examine the loop-induced WIMP-nucleon scattering cross section for the simplified dark matter models and the constraint set by the latest direct detection experiment. We consider a fermion, scalar or vector dark matter component from five simplified models with leptophobic spin-0 mediators coupled only to Standard Model quarks and dark matter particles. The tree-level WIMP-nucleon cross sections in these models are all momentum-suppressed. We calculate the non-suppressed spin-independent WIMP-nucleon cross sections from loop diagrams and investigate the constrained space of dark matter mass and mediator mass by Xenon1T. The constraints from indirect detection and collider search are also discussed.
The influence of a wind tunnel on helicopter rotational noise: Formulation of analysis
NASA Technical Reports Server (NTRS)
Mosher, M.
1984-01-01
An analytical model is discussed that can be used to examine the effects of wind tunnel walls on helicopter rotational noise. A complete physical model of an acoustic source in a wind tunnel is described and a simplified version is then developed. This simplified model retains the important physical processes involved, yet it is more amenable to analysis. The simplified physical model is then modeled as a mathematical problem. An inhomogeneous partial differential equation with mixed boundary conditions is set up and then transformed into an integral equation. Details of generating a suitable Green's function and integral equation are included and the equation is discussed and also given for a two-dimensional case.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majda, Andrew J.; Xing, Yulong; Mohammadian, Majid
Determining the finite-amplitude preconditioned states in the hurricane embryo, which lead to tropical cyclogenesis, is a central issue in contemporary meteorology. In the embryo there is competition between different preconditioning mechanisms involving hydrodynamics and moist thermodynamics, which can lead to cyclogenesis. Here systematic asymptotic methods from applied mathematics are utilized to develop new simplified moist multi-scale models starting from the moist anelastic equations. Three interesting multi-scale models emerge in the analysis. The balanced mesoscale vortex (BMV) dynamics and the microscale balanced hot tower (BHT) dynamics involve simplified balanced equations without gravity waves for vertical vorticity amplification due to moist heatmore » sources and incorporate nonlinear advective fluxes across scales. The BMV model is the central one for tropical cyclogenesis in the embryo. The moist mesoscale wave (MMW) dynamics involves simplified equations for mesoscale moisture fluctuations, as well as linear hydrostatic waves driven by heat sources from moisture and eddy flux divergences. A simplified cloud physics model for deep convection is introduced here and used to study moist axisymmetric plumes in the BHT model. A simple application in periodic geometry involving the effects of mesoscale vertical shear and moist microscale hot towers on vortex amplification is developed here to illustrate features of the coupled multi-scale models. These results illustrate the use of these models in isolating key mechanisms in the embryo in a simplified content.« less
NASA Technical Reports Server (NTRS)
McCloud, Peter L.
2010-01-01
Thermal Protection System (TPS) Cavity Heating is predicted using Computational Fluid Dynamics (CFD) on unstructured grids for both simplified cavities and actual cavity geometries. Validation was performed using comparisons to wind tunnel experimental results and CFD predictions using structured grids. Full-scale predictions were made for simplified and actual geometry configurations on the Space Shuttle Orbiter in a mission support timeframe.
Alpha-canonical form representation of the open loop dynamics of the Space Shuttle main engine
NASA Technical Reports Server (NTRS)
Duyar, Almet; Eldem, Vasfi; Merrill, Walter C.; Guo, Ten-Huei
1991-01-01
A parameter and structure estimation technique for multivariable systems is used to obtain a state space representation of open loop dynamics of the space shuttle main engine in alpha-canonical form. The parameterization being used is both minimal and unique. The simplified linear model may be used for fault detection studies and control system design and development.
Earth observing system instrument pointing control modeling for polar orbiting platforms
NASA Technical Reports Server (NTRS)
Briggs, H. C.; Kia, T.; Mccabe, S. A.; Bell, C. E.
1987-01-01
An approach to instrument pointing control performance assessment for large multi-instrument platforms is described. First, instrument pointing requirements and reference platform control systems for the Eos Polar Platforms are reviewed. Performance modeling tools including NASTRAN models of two large platforms, a modal selection procedure utilizing a balanced realization method, and reduced order platform models with core and instrument pointing control loops added are then described. Time history simulations of instrument pointing and stability performance in response to commanded slewing of adjacent instruments demonstrates the limits of tolerable slew activity. Simplified models of rigid body responses are also developed for comparison. Instrument pointing control methods required in addition to the core platform control system to meet instrument pointing requirements are considered.
Effects of distributed database modeling on evaluation of transaction rollbacks
NASA Technical Reports Server (NTRS)
Mukkamala, Ravi
1991-01-01
Data distribution, degree of data replication, and transaction access patterns are key factors in determining the performance of distributed database systems. In order to simplify the evaluation of performance measures, database designers and researchers tend to make simplistic assumptions about the system. The effect is studied of modeling assumptions on the evaluation of one such measure, the number of transaction rollbacks, in a partitioned distributed database system. Six probabilistic models and expressions are developed for the numbers of rollbacks under each of these models. Essentially, the models differ in terms of the available system information. The analytical results so obtained are compared to results from simulation. From here, it is concluded that most of the probabilistic models yield overly conservative estimates of the number of rollbacks. The effect of transaction commutativity on system throughout is also grossly undermined when such models are employed.
Effects of distributed database modeling on evaluation of transaction rollbacks
NASA Technical Reports Server (NTRS)
Mukkamala, Ravi
1991-01-01
Data distribution, degree of data replication, and transaction access patterns are key factors in determining the performance of distributed database systems. In order to simplify the evaluation of performance measures, database designers and researchers tend to make simplistic assumptions about the system. Here, researchers investigate the effect of modeling assumptions on the evaluation of one such measure, the number of transaction rollbacks in a partitioned distributed database system. The researchers developed six probabilistic models and expressions for the number of rollbacks under each of these models. Essentially, the models differ in terms of the available system information. The analytical results obtained are compared to results from simulation. It was concluded that most of the probabilistic models yield overly conservative estimates of the number of rollbacks. The effect of transaction commutativity on system throughput is also grossly undermined when such models are employed.
Richardson, G
2009-09-01
By application of matched asymptotic expansions, a simplified partial differential equation (PDE) model for the dynamic electrochemical processes occurring in the vicinity of a membrane, as ions selectively permeate across it, is formally derived from the Poisson-Nernst-Planck equations of electrochemistry. It is demonstrated that this simplified model reduces itself, in the limit of a long thin axon, to the cable equation used by Hodgkin and Huxley to describe the propagation of action potentials in the unmyelinated squid giant axon. The asymptotic reduction from the simplified PDE model to the cable equation leads to insights that are not otherwise apparent; these include an explanation of why the squid giant axon attains a diameter in the region of 1 mm. The simplified PDE model has more general application than the Hodgkin-Huxley cable equation and can, e.g. be used to describe action potential propagation in myelinated axons and neuronal cell bodies.
Examination of simplified travel demand model. [Internal volume forecasting model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, R.L. Jr.; McFarlane, W.J.
1978-01-01
A simplified travel demand model, the Internal Volume Forecasting (IVF) model, proposed by Low in 1972 is evaluated as an alternative to the conventional urban travel demand modeling process. The calibration of the IVF model for a county-level study area in Central Wisconsin results in what appears to be a reasonable model; however, analysis of the structure of the model reveals two primary mis-specifications. Correction of the mis-specifications leads to a simplified gravity model version of the conventional urban travel demand models. Application of the original IVF model to ''forecast'' 1960 traffic volumes based on the model calibrated for 1970more » produces accurate estimates. Shortcut and ad hoc models may appear to provide reasonable results in both the base and horizon years; however, as shown by the IVF mode, such models will not always provide a reliable basis for transportation planning and investment decisions.« less
Wolf, P A; Bridges, J R; Wicklund, R
2010-03-01
The agonist-receptor-transducer model of D. Ennis is applied to beverage formulations sweetened with high fructose corn syrup, sucralose, and other high-potency sweeteners, confirming the utility of the model, and supports the growing volume of evidence for multiple binding sites on the sweetness receptor. The model is further simplified to require less parameters for other sweetener blend systems whenever potency information is available for the single sweeteners.
OMV: A simplified mathematical model of the orbital maneuvering vehicle
NASA Technical Reports Server (NTRS)
Teoh, W.
1984-01-01
A model of the orbital maneuvering vehicle (OMV) is presented which contains several simplications. A set of hand controller signals may be used to control the motion of the OMV. Model verification is carried out using a sequence of tests. The dynamic variables generated by the model are compared, whenever possible, with the corresponding analytical variables. The results of the tests show conclusively that the present model is behaving correctly. Further, this model interfaces properly with the state vector transformation module (SVX) developed previously. Correct command sentence sequences are generated by the OMV and and SVX system, and these command sequences can be used to drive the flat floor simulation system at MSFC.
Modelling Root Systems Using Oriented Density Distributions
NASA Astrophysics Data System (ADS)
Dupuy, Lionel X.
2011-09-01
Root architectural models are essential tools to understand how plants access and utilize soil resources during their development. However, root architectural models use complex geometrical descriptions of the root system and this has limitations to model interactions with the soil. This paper presents the development of continuous models based on the concept of oriented density distribution function. The growth of the root system is built as a hierarchical system of partial differential equations (PDEs) that incorporate single root growth parameters such as elongation rate, gravitropism and branching rate which appear explicitly as coefficients of the PDE. Acquisition and transport of nutrients are then modelled by extending Darcy's law to oriented density distribution functions. This framework was applied to build a model of the growth and water uptake of barley root system. This study shows that simplified and computer effective continuous models of the root system development can be constructed. Such models will allow application of root growth models at field scale.
Temperature distribution of a simplified rotor due to a uniform heat source
NASA Astrophysics Data System (ADS)
Welzenbach, Sarah; Fischer, Tim; Meier, Felix; Werner, Ewald; kyzy, Sonun Ulan; Munz, Oliver
2018-03-01
In gas turbines, high combustion efficiency as well as operational safety are required. Thus, labyrinth seal systems with honeycomb liners are commonly used. In the case of rubbing events in the seal system, the components can be damaged due to cyclic thermal and mechanical loads. Temperature differences occurring at labyrinth seal fins during rubbing events can be determined by considering a single heat source acting periodically on the surface of a rotating cylinder. Existing literature analysing the temperature distribution on rotating cylindrical bodies due to a stationary heat source is reviewed. The temperature distribution on the circumference of a simplified labyrinth seal fin is calculated using an available and easy to implement analytical approach. A finite element model of the simplified labyrinth seal fin is created and the numerical results are compared to the analytical results. The temperature distributions calculated by the analytical and the numerical approaches coincide for low sliding velocities, while there are discrepancies of the calculated maximum temperatures for higher sliding velocities. The use of the analytical approach allows the conservative estimation of the maximum temperatures arising in labyrinth seal fins during rubbing events. At the same time, high calculation costs can be avoided.
Simplified Metadata Curation via the Metadata Management Tool
NASA Astrophysics Data System (ADS)
Shum, D.; Pilone, D.
2015-12-01
The Metadata Management Tool (MMT) is the newest capability developed as part of NASA Earth Observing System Data and Information System's (EOSDIS) efforts to simplify metadata creation and improve metadata quality. The MMT was developed via an agile methodology, taking into account inputs from GCMD's science coordinators and other end-users. In its initial release, the MMT uses the Unified Metadata Model for Collections (UMM-C) to allow metadata providers to easily create and update collection records in the ISO-19115 format. Through a simplified UI experience, metadata curators can create and edit collections without full knowledge of the NASA Best Practices implementation of ISO-19115 format, while still generating compliant metadata. More experienced users are also able to access raw metadata to build more complex records as needed. In future releases, the MMT will build upon recent work done in the community to assess metadata quality and compliance with a variety of standards through application of metadata rubrics. The tool will provide users with clear guidance as to how to easily change their metadata in order to improve their quality and compliance. Through these features, the MMT allows data providers to create and maintain compliant and high quality metadata in a short amount of time.
Image segmentation algorithm based on improved PCNN
NASA Astrophysics Data System (ADS)
Chen, Hong; Wu, Chengdong; Yu, Xiaosheng; Wu, Jiahui
2017-11-01
A modified simplified Pulse Coupled Neural Network (PCNN) model is proposed in this article based on simplified PCNN. Some work have done to enrich this model, such as imposing restrictions items of the inputs, improving linking inputs and internal activity of PCNN. A self-adaptive parameter setting method of linking coefficient and threshold value decay time constant is proposed here, too. At last, we realized image segmentation algorithm for five pictures based on this proposed simplified PCNN model and PSO. Experimental results demonstrate that this image segmentation algorithm is much better than method of SPCNN and OTSU.
Applications of the hybrid coordinate method to the TOPS autopilot
NASA Technical Reports Server (NTRS)
Fleischer, G. E.
1978-01-01
Preliminary results are presented from the application of the hybrid coordinate method to modeling TOPS (thermoelectric outer planet spacecraft) structural dynamics. Computer simulated responses of the vehicle are included which illustrate the interaction of relatively flexible appendages with an autopilot control system. Comparisons were made between simplified single-axis models of the control loop, with spacecraft flexibility represented by hinged rigid bodies, and a very detailed three-axis spacecraft model whose flexible portions are described by modal coordinates. While single-axis system, root loci provided reasonable qualitative indications of stability margins in this case, they were quantitatively optimistic when matched against responses of the detailed model.
A simplified model of the source channel of the Leksell GammaKnife® tested with PENELOPE
NASA Astrophysics Data System (ADS)
Al-Dweri, Feras M. O.; Lallena, Antonio M.; Vilches, Manuel
2004-06-01
Monte Carlo simulations using the code PENELOPE have been performed to test a simplified model of the source channel geometry of the Leksell GammaKnife®. The characteristics of the radiation passing through the treatment helmets are analysed in detail. We have found that only primary particles emitted from the source with polar angles smaller than 3° with respect to the beam axis are relevant for the dosimetry of the Gamma Knife. The photon trajectories reaching the output helmet collimators at (x, y, z = 236 mm) show strong correlations between rgr = (x2 + y2)1/2 and their polar angle thgr, on one side, and between tan-1(y/x) and their azimuthal angle phgr, on the other. This enables us to propose a simplified model which treats the full source channel as a mathematical collimator. This simplified model produces doses in good agreement with those found for the full geometry. In the region of maximal dose, the relative differences between both calculations are within 3%, for the 18 and 14 mm helmets, and 10%, for the 8 and 4 mm ones. Besides, the simplified model permits a strong reduction (larger than a factor 15) in the computational time.
Dynamic response of a collidant impacting a low pressure airbag
NASA Astrophysics Data System (ADS)
Dreher, Peter A.
There are many uses of low pressure airbags, both military and commercial. Many of these applications have been hampered by inadequate and inaccurate modeling tools. This dissertation contains the derivation of a four degree-of-freedom system of differential equations from physical laws of mass and energy conservation, force equilibrium, and the Ideal Gas Law. Kinematic equations were derived to model a cylindrical airbag as a single control volume impacted by a parallelepiped collidant. An efficient numerical procedure was devised to solve the simplified system of equations in a manner amenable to discovering design trends. The largest public airbag experiment, both in scale and scope, was designed and built to collect data on low-pressure airbag responses, otherwise unavailable in the literature. The experimental results were compared to computational simulations to validate the simplified numerical model. Experimental response trends are presented that will aid airbag designers. The two objectives of using a low pressure airbag to demonstrate the feasibility to (1) accelerate a munition to 15 feet per second velocity from a bomb bay, and (2) decelerate humans hitting trucks below the human tolerance level of 50 G's, were both met.
Similarity theory of the buoyantly interactive planetary boundary layer with entrainment
NASA Technical Reports Server (NTRS)
Hoffert, M. I.; Sud, Y. C.
1976-01-01
A similarity model is developed for the vertical profiles of turbulent flow variables in an entraining turbulent boundary layer of arbitrary buoyant stability. In the general formulation the vertical profiles, internal rotation of the velocity vector, discontinuities or jumps at a capping inversion and bulk aerodynamic coefficients of the boundary layer are given by solutions to a system of ordinary differential equations in the similarity variable. To close the system, a formulation for buoyantly interactive eddy diffusivity in the boundary layer is introduced which recovers Monin-Obukhov similarity near the surface and incorporates a hypothesis accounting for the observed variation of mixing length throughout the boundary layer. The model is tested in simplified versions which depend only on roughness, surface buoyancy, and Coriolis effects by comparison with planetary-boundary-layer wind- and temperature-profile observations, measurements of flat-plate boundary layers in a thermally stratified wind tunnel and observations of profiles of terms in the turbulent kinetic-energy budget of convective planetary boundary layers. On balance, the simplified model reproduced the trend of these various observations and experiments reasonably well, suggesting that the full similarity formulation be pursued further.
Design of Linear Control System for Wind Turbine Blade Fatigue Testing
NASA Astrophysics Data System (ADS)
Toft, Anders; Roe-Poulsen, Bjarke; Christiansen, Rasmus; Knudsen, Torben
2016-09-01
This paper proposes a linear method for wind turbine blade fatigue testing at Siemens Wind Power. The setup consists of a blade, an actuator (motor and load mass) that acts on the blade with a sinusoidal moment, and a distribution of strain gauges to measure the blade flexure. Based on the frequency of the sinusoidal input, the blade will start oscillating with a given gain, hence the objective of the fatigue test is to make the blade oscillate with a controlled amplitude. The system currently in use is based on frequency control, which involves some non-linearities that make the system difficult to control. To make a linear controller, a different approach has been chosen, namely making a controller which is not regulating on the input frequency, but on the input amplitude. A non-linear mechanical model for the blade and the motor has been constructed. This model has been simplified based on the desired output, namely the amplitude of the blade. Furthermore, the model has been linearised to make it suitable for linear analysis and control design methods. The controller is designed based on a simplified and linearised model, and its gain parameter determined using pole placement. The model variants have been simulated in the MATLAB toolbox Simulink, which shows that the controller design based on the simple model performs adequately with the non-linear model. Moreover, the developed controller solves the robustness issue found in the existent solution and also reduces the needed energy for actuation as it always operates at the blade eigenfrequency.
Activity Diagrams for DEVS Models: A Case Study Modeling Health Care Behavior
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozmen, Ozgur; Nutaro, James J
Discrete Event Systems Specification (DEVS) is a widely used formalism for modeling and simulation of discrete and continuous systems. While DEVS provides a sound mathematical representation of discrete systems, its practical use can suffer when models become complex. Five main functions, which construct the core of atomic modules in DEVS, can realize the behaviors that modelers want to represent. The integration of these functions is handled by the simulation routine, however modelers can implement each function in various ways. Therefore, there is a need for graphical representations of complex models to simplify their implementation and facilitate their reproduction. In thismore » work, we illustrate the use of activity diagrams for this purpose in the context of a health care behavior model, which is developed with an agent-based modeling paradigm.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rasmussen, Martin; Hastings, Alan; Smith, Matthew J.
We develop a theory for residence times and mean ages for nonautonomous compartmental systems. Using the McKendrick–von Forster equation, we show that the mean ages of mass in a compartmental system satisfy a linear nonautonomous ordinary differential equation that is exponentially stable. We then define a nonautonomous version of residence time as the mean age of mass leaving the compartmental system at a particular time and show that our nonautonomous theory is consistent with the autonomous case. We apply these results to study a nine-dimensional nonautonomous compartmental system modeling the carbon cycle, which is a simplified version of the Carnegie–Ames–Stanfordmore » approach (CASA) model.« less
8760-Based Method for Representing Variable Generation Capacity Value in Capacity Expansion Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frew, Bethany A
Capacity expansion models (CEMs) are widely used to evaluate the least-cost portfolio of electricity generators, transmission, and storage needed to reliably serve load over many years or decades. CEMs can be computationally complex and are often forced to estimate key parameters using simplified methods to achieve acceptable solve times or for other reasons. In this paper, we discuss one of these parameters -- capacity value (CV). We first provide a high-level motivation for and overview of CV. We next describe existing modeling simplifications and an alternate approach for estimating CV that utilizes hourly '8760' data of load and VG resources.more » We then apply this 8760 method to an established CEM, the National Renewable Energy Laboratory's (NREL's) Regional Energy Deployment System (ReEDS) model (Eurek et al. 2016). While this alternative approach for CV is not itself novel, it contributes to the broader CEM community by (1) demonstrating how a simplified 8760 hourly method, which can be easily implemented in other power sector models when data is available, more accurately captures CV trends than a statistical method within the ReEDS CEM, and (2) providing a flexible modeling framework from which other 8760-based system elements (e.g., demand response, storage, and transmission) can be added to further capture important dynamic interactions, such as curtailment.« less
On the torsional loading of elastoplastic spheres in contact
NASA Astrophysics Data System (ADS)
Nadimi, Sadegh; Fonseca, Joana
2017-06-01
The mechanical interaction between two bodies involves normal loading in combination with tangential, torsional and rotational loading. This paper focuses on the torsional loading of two spherical bodies which leads to twisting moment. The theoretical approach for calculating twisting moment between two spherical bodies has been proposed by Lubkin [1]. Due to the complexity of the solution, this has been simplified by Deresiewicz for discrete element modelling [2]. Here, the application of a simplified model for elastoplastic spheres is verified using computational modelling. The single grain interaction is simulated in a combined finite discrete element domain. In this domain a grain can deform using a finite element formulation and can interact with other objects based on discrete element principles. For an elastoplastic model, the contact area is larger in comparison with the elastic model, under a given normal force. Therefore, the plastic twisting moment is stiffer. The results presented here are important for describing any granular system involving torsional loading of elastoplastic grains. In particular, recent research on the behaviour of soil has clearly shown the importance of plasticity on grain interaction and rearrangement.
Dynamics of vortex dipoles in anisotropic Bose-Einstein condensates
Goodman, Roy H.; Kevrekidis, P. G.; Carretero-González, R.
2015-04-14
We study the motion of a vortex dipole in a Bose-Einstein condensate confined to an anisotropic trap. We focus on a system of ODEs describing the vortices' motion, which is in turn a reduced model of the Gross-Pitaevskii equation describing the condensate's motion. Using a sequence of canonical changes of variables, we reduce the dimension and simplify the equations of motion. In this study, we uncover two interesting regimes. Near a family of periodic orbits known as guiding centers, we find that the dynamics is essentially that of a pendulum coupled to a linear oscillator, leading to stochastic reversals inmore » the overall direction of rotation of the dipole. Near the separatrix orbit in the isotropic system, we find other families of periodic, quasi-periodic, and chaotic trajectories. In a neighborhood of the guiding center orbits, we derive an explicit iterated map that simplifies the problem further. Numerical calculations are used to illustrate the phenomena discovered through the analysis. Using the results from the reduced system, we are able to construct complex periodic orbits in the original, PDE, mean-field model for Bose-Einstein condensates, which corroborates the phenomenology observed in the reduced dynamical equations.« less
Dynamics of vortex dipoles in anisotropic Bose-Einstein condensates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodman, Roy H.; Kevrekidis, P. G.; Carretero-González, R.
We study the motion of a vortex dipole in a Bose-Einstein condensate confined to an anisotropic trap. We focus on a system of ODEs describing the vortices' motion, which is in turn a reduced model of the Gross-Pitaevskii equation describing the condensate's motion. Using a sequence of canonical changes of variables, we reduce the dimension and simplify the equations of motion. In this study, we uncover two interesting regimes. Near a family of periodic orbits known as guiding centers, we find that the dynamics is essentially that of a pendulum coupled to a linear oscillator, leading to stochastic reversals inmore » the overall direction of rotation of the dipole. Near the separatrix orbit in the isotropic system, we find other families of periodic, quasi-periodic, and chaotic trajectories. In a neighborhood of the guiding center orbits, we derive an explicit iterated map that simplifies the problem further. Numerical calculations are used to illustrate the phenomena discovered through the analysis. Using the results from the reduced system, we are able to construct complex periodic orbits in the original, PDE, mean-field model for Bose-Einstein condensates, which corroborates the phenomenology observed in the reduced dynamical equations.« less
Monojet searches for MSSM simplified models
Arbey, Alexandre; Battaglia, Marco; Mahmoudi, Farvah
2016-09-12
We explore the implications of monojet searches at hadron colliders in the minimal supersymmetric extension of the Standard Model (MSSM). To quantify the impact of monojet searches, we consider simplified MSSM scenarios with neutralino dark matter. The monojet results of the LHC Run 1 are reinterpreted in the context of several MSSM simplified scenarios, and the complementarity with direct supersymmetry search results is highlighted. We also investigate the reach of monojet searches for the Run 2, as well as for future higher energy hadron colliders.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false [Reserved] 13.304 Section 13.304 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACTING METHODS AND CONTRACT TYPES SIMPLIFIED ACQUISITION PROCEDURES Simplified Acquisition Methods 13.304 [Reserved] ...
Modeling Infrared Signal Reflections to Characterize Indoor Multipath Propagation
De-La-Llana-Calvo, Álvaro; Lázaro-Galilea, José Luis; Gardel-Vicente, Alfredo; Rodríguez-Navarro, David; Bravo-Muñoz, Ignacio; Tsirigotis, Georgios; Iglesias-Miguel, Juan
2017-01-01
In this paper, we propose a model to characterize Infrared (IR) signal reflections on any kind of surface material, together with a simplified procedure to compute the model parameters. The model works within the framework of Local Positioning Systems (LPS) based on IR signals (IR-LPS) to evaluate the behavior of transmitted signal Multipaths (MP), which are the main cause of error in IR-LPS, and makes several contributions to mitigation methods. Current methods are based on physics, optics, geometry and empirical methods, but these do not meet our requirements because of the need to apply several different restrictions and employ complex tools. We propose a simplified model based on only two reflection components, together with a method for determining the model parameters based on 12 empirical measurements that are easily performed in the real environment where the IR-LPS is being applied. Our experimental results show that the model provides a comprehensive solution to the real behavior of IR MP, yielding small errors when comparing real and modeled data (the mean error ranges from 1% to 4% depending on the environment surface materials). Other state-of-the-art methods yielded mean errors ranging from 15% to 40% in test measurements. PMID:28406436
Jinghao Li; John F. Hunt; Shaoqin Gong; Zhiyong Cai
2016-01-01
This paper presents a simplified analytical model and balanced design approach for modeling lightweight wood-based structural panels in bending. Because many design parameters are required to input for the model of finite element analysis (FEA) during the preliminary design process and optimization, the equivalent method was developed to analyze the mechanical...
Rearchitecting IT: Simplify. Simplify
ERIC Educational Resources Information Center
Panettieri, Joseph C.
2006-01-01
Simplifying and securing an IT infrastructure is not easy. It frequently requires rethinking years of hardware and software investments, and a gradual migration to modern systems. Even so, writes the author, universities can take six practical steps to success: (1) Audit software infrastructure; (2) Evaluate current applications; (3) Centralize…
Simplifying the complexity of a coupled carbon turnover and pesticide degradation model
NASA Astrophysics Data System (ADS)
Marschmann, Gianna; Erhardt, André H.; Pagel, Holger; Kügler, Philipp; Streck, Thilo
2016-04-01
The mechanistic one-dimensional model PECCAD (PEsticide degradation Coupled to CArbon turnover in the Detritusphere; Pagel et al. 2014, Biogeochemistry 117, 185-204) has been developed as a tool to elucidate regulation mechanisms of pesticide degradation in soil. A feature of this model is that it integrates functional traits of microorganisms, identifiable by molecular tools, and physicochemical processes such as transport and sorption that control substrate availability. Predicting the behavior of microbially active interfaces demands a fundamental understanding of factors controlling their dynamics. Concepts from dynamical systems theory allow us to study general properties of the model such as its qualitative behavior, intrinsic timescales and dynamic stability: Using a Latin hypercube method we sampled the parameter space for physically realistic steady states of the PECCAD ODE system and set up a numerical continuation and bifurcation problem with the open-source toolbox MatCont in order to obtain a complete classification of the dynamical system's behaviour. Bifurcation analysis reveals an equilibrium state of the system entirely controlled by fungal kinetic parameters. The equilibrium is generally unstable in response to small perturbations except for a small band in parameter space where the pesticide pool is stable. Time scale separation is a phenomenon that occurs in almost every complex open physical system. Motivated by the notion of "initial-stage" and "late-stage" decomposers and the concept of r-, K- or L-selected microbial life strategies, we test the applicability of geometric singular perturbation theory to identify fast and slow time scales of PECCAD. Revealing a generic fast-slow structure would greatly simplify the analysis of complex models of organic matter turnover by reducing the number of unknowns and parameters and providing a systematic mathematical framework for studying their properties.
The influence of wind-tunnel walls on discrete frequency noise
NASA Technical Reports Server (NTRS)
Mosher, M.
1984-01-01
This paper describes an analytical model that can be used to examine the effects of wind-tunnel walls on discrete frequency noise. First, a complete physical model of an acoustic source in a wind tunnel is described, and a simplified version is then developed. This simplified model retains the important physical processes involved, yet it is more amenable to analysis. Second, the simplified physical model is formulated as a mathematical problem. An inhomogeneous partial differential equation with mixed boundary conditions is set up and then transformed into an integral equation. The integral equation has been solved with a panel program on a computer. Preliminary results from a simple model problem will be shown and compared with the approximate analytic solution.
NASA Astrophysics Data System (ADS)
Feng, Yefeng; Wu, Qin; Hu, Jianbing; Xu, Zhichao; Peng, Cheng; Xia, Zexu
2018-03-01
Interface induced polarization has a significant impact on permittivity of 0–3 type polymer composites with Si based semi-conducting fillers. Polarity of Si based filler, polarity of polymer matrix and grain size of filler are closely connected with induced polarization and permittivity of composites. However, unlike 2–2 type composites, the real permittivity of Si based fillers in 0–3 type composites could be not directly measured. Therefore, achieving the theoretical permittivity of fillers in 0–3 composites through effective medium approximation (EMA) models should be very necessary. In this work, the real permittivity results of Si based semi-conducting fillers in ten different 0–3 polymer composite systems were calculated by linear fitting of simplified EMA models, based on particularity of reported parameters in those composites. The results further confirmed the proposed interface induced polarization. The results further verified significant influences of filler polarity, polymer polarity and filler size on induced polarization and permittivity of composites as well. High self-consistency was gained between present modelling and prior measuring. This work might offer a facile and effective route to achieve the difficultly measured dielectric performances of discrete filler phase in some special polymer based composite systems.
Aggarwal, Vinod
2002-10-01
This paper concerns itself with the beneficial effects of the Unified Modeling Language (UML), a nonproprietary object modeling standard, in specifying, visualizing, constructing, documenting, and communicating the model of a healthcare information system from the user's perspective. The author outlines the process of object-oriented analysis (OOA) using the UML and illustrates this with healthcare examples to demonstrate the practicality of application of the UML by healthcare personnel to real-world information system problems. The UML will accelerate advanced uses of object-orientation such as reuse technology, resulting in significantly higher software productivity. The UML is also applicable in the context of a component paradigm that promises to enhance the capabilities of healthcare information systems and simplify their management and maintenance.
Biped Robot Gait Planning Based on 3D Linear Inverted Pendulum Model
NASA Astrophysics Data System (ADS)
Yu, Guochen; Zhang, Jiapeng; Bo, Wu
2018-01-01
In order to optimize the biped robot’s gait, the biped robot’s walking motion is simplify to the 3D linear inverted pendulum motion mode. The Center of Mass (CoM) locus is determined from the relationship between CoM and the Zero Moment Point (ZMP) locus. The ZMP locus is planned in advance. Then, the forward gait and lateral gait are simplified as connecting rod structure. Swing leg trajectory using B-spline interpolation. And the stability of the walking process is discussed in conjunction with the ZMP equation. Finally the system simulation is carried out under the given conditions to verify the validity of the proposed planning method.
On the coupling of fluid dynamics and electromagnetism at the top of the earth's core
NASA Technical Reports Server (NTRS)
Benton, E. R.
1985-01-01
A kinematic approach to short-term geomagnetism has recently been based upon pre-Maxwell frozen-flux electromagnetism. A complete dynamic theory requires coupling fluid dynamics to electromagnetism. A geophysically plausible simplifying assumption for the vertical vorticity balance, namely that the vertical Lorentz torque is negligible, is introduced and its consequences are developed. The simplified coupled magnetohydrodynamic system is shown to conserve a variety of magnetic and vorticity flux integrals. These provide constraints on eligible models for the geomagnetic main field, its secular variation, and the horizontal fluid motions at the top of the core, and so permit a number of tests of the underlying assumptions.
Bite force measurement system using pressure-sensitive sheet and silicone impression material.
Ando, Katsuya; Fuwa, Yuji; Kurosawa, Masahiro; Kondo, Takamasa; Goto, Shigemi
2009-03-01
This study was conducted to reduce the bias in measured values caused by the thickness of materials used in occlusal examinations. To this end, a silicone impression material for bite force measurement and an experimental model of a simplified stomatognathic system were employed in this study. By means of this experimental model, results showed that the effect of bias toward the posterior arch could be reduced in the anterior-posterior distribution of bite forces and in the occlusal contact areas due to the thickness of the materials used in occlusal examinations.
NASA Astrophysics Data System (ADS)
Frenkel, Daan
2007-03-01
During the past decade there has been a unique synergy between theory, experiment and simulation in Soft Matter Physics. In colloid science, computer simulations that started out as studies of highly simplified model systems, have acquired direct experimental relevance because experimental realizations of these simple models can now be synthesized. Whilst many numerical predictions concerning the phase behavior of colloidal systems have been vindicated by experiments, the jury is still out on others. In my talk I will discuss some of the recent technical developments, new findings and open questions in computational soft-matter science.
A Risk Score Model for Evaluation and Management of Patients with Thyroid Nodules.
Zhang, Yongwen; Meng, Fanrong; Hong, Lianqing; Chu, Lanfang
2018-06-12
The study is aimed to establish a simplified and practical tool for analyzing thyroid nodules. A novel risk score model was designed, risk factors including patient history, patient characteristics, physical examination, symptoms of compression, thyroid function, ultrasonography (US) of thyroid and cervical lymph nodes were evaluated and classified into high risk factors, intermediate risk factors, and low risk factors. A total of 243 thyroid nodules in 162 patients were assessed with risk score system and Thyroid Imaging-Reporting and Data System (TI-RADS). The diagnostic performance of risk score system and TI-RADS was compared. The accuracy in the diagnosis of thyroid nodules was 89.3% for risk score system, 74.9% for TI-RADS respectively. The specificity, accuracy and positive predictive value (PPV) of risk score system were significantly higher than the TI-RADS system (χ 2 =26.287, 17.151, 11.983; p <0.05), statistically significant differences were not observed in the sensitivity and negative predictive value (NPV) between the risk score system and TI-RADS (χ 2 =1.276, 0.290; p>0.05). The area under the curve (AUC) for risk score diagnosis system was 0.963, standard error 0.014, 95% confidence interval (CI)=0.934-0.991, the AUC for TI-RADS diagnosis system was 0.912 with standard error 0.021, 95% CI=0.871-0.953, the AUC for risk score system was significantly different from that of TI-RADS (Z=2.02; p <0.05). Risk score model is a reliable, simplified and cost-effective diagnostic tool used in diagnosis of thyroid cancer. The higher the score is, the higher the risk of malignancy will be. © Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Zhioua, M.; El Aroudi, A.; Belghith, S.; Bosque-Moncusí, J. M.; Giral, R.; Al Hosani, K.; Al-Numay, M.
A study of a DC-DC boost converter fed by a photovoltaic (PV) generator and supplying a constant voltage load is presented. The input port of the converter is controlled using fixed frequency pulse width modulation (PWM) based on the loss-free resistor (LFR) concept whose parameter is selected with the aim to force the PV generator to work at its maximum power point. Under this control strategy, it is shown that the system can exhibit complex nonlinear behaviors for certain ranges of parameter values. First, using the nonlinear models of the converter and the PV source, the dynamics of the system are explored in terms of some of its parameters such as the proportional gain of the controller and the output DC bus voltage. To present a comprehensive approach to the overall system behavior under parameter changes, a series of bifurcation diagrams are computed from the circuit-level switched model and from a simplified model both implemented in PSIM© software showing a remarkable agreement. These diagrams show that the first instability that takes place in the system period-1 orbit when a primary parameter is varied is a smooth period-doubling bifurcation and that the nonlinearity of the PV generator is irrelevant for predicting this phenomenon. Different bifurcation scenarios can take place for the resulting period-2 subharmonic regime depending on a secondary bifurcation parameter. The boundary between the desired period-1 orbit and subharmonic oscillation resulting from period-doubling in the parameter space is obtained by calculating the eigenvalues of the monodromy matrix of the simplified model. The results from this model have been validated with time-domain numerical simulation using the circuit-level switched model and also experimentally from a laboratory prototype. This study can help in selecting the parameter values of the circuit in order to delimit the region of period-1 operation of the converter which is of practical interest in PV systems.
Mass and power modeling of communication satellites
NASA Technical Reports Server (NTRS)
Price, Kent M.; Pidgeon, David; Tsao, Alex
1991-01-01
Analytic estimating relationships for the mass and power requirements for major satellite subsystems are described. The model for each subsystem is keyed to the performance drivers and system requirements that influence their selection and use. Guidelines are also given for choosing among alternative technologies which accounts for other significant variables such as cost, risk, schedule, operations, heritage, and life requirements. These models are intended for application to first order systems analyses, where resources do not warrant detailed development of a communications system scenario. Given this ground rule, the models are simplified to 'smoothed' representation of reality. Therefore, the user is cautioned that cost, schedule, and risk may be significantly impacted where interpolations are sufficiently different from existing hardware as to warrant development of new devices.
Simplified Load-Following Control for a Fuel Cell System
NASA Technical Reports Server (NTRS)
Vasquez, Arturo
2010-01-01
A simplified load-following control scheme has been proposed for a fuel cell power system. The scheme could be used to control devices that are important parts of a fuel cell system but are sometimes characterized as parasitic because they consume some of the power generated by the fuel cells.
Categorical Perception of Chinese Characters by Simplified and Traditional Chinese Readers
ERIC Educational Resources Information Center
Yang, Ruoxiao; Wang, William Shi Yuan
2018-01-01
Recent research has shown that the visual complexity of orthographies across writing systems influences the development of orthographic representations. Simplified and traditional Chinese characters are usually regarded as the most visually complicated writing systems currently in use, with the traditional system showing a higher level of…
Multimedia-modeling integration development environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pelton, Mitchell A.; Hoopes, Bonnie L.
2002-09-02
There are many framework systems available; however, the purpose of the framework presented here is to capitalize on the successes of the Framework for Risk Analysis in Multimedia Environmental Systems (FRAMES) and Multi-media Multi-pathway Multi-receptor Risk Assessment (3MRA) methodology as applied to the Hazardous Waste Identification Rule (HWIR) while focusing on the development of software tools to simplify the module developer?s effort of integrating a module into the framework.
Research study on stabilization and control: Modern sampled data control theory
NASA Technical Reports Server (NTRS)
Kuo, B. C.; Singh, G.; Yackel, R. A.
1973-01-01
A numerical analysis of spacecraft stability parameters was conducted. The analysis is based on a digital approximation by point by point state comparison. The technique used is that of approximating a continuous data system by a sampled data model by comparison of the states of the two systems. Application of the method to the digital redesign of the simplified one axis dynamics of the Skylab is presented.
Aspects of Coulomb damping in rotors supported on hydrodynamic bearings
NASA Technical Reports Server (NTRS)
Morton, P. G.
1982-01-01
The paper is concerned with the effect of friction in drive couplings on the non-sychronous whirling of a shaft. A simplified model is used to demonstrate the effect of large coupling misalignments on the stability of the system. It is concluded that provided these misalignments are large enough, the system becomes totally stable provided the shaft is supported on bearings exhibiting a viscous damping capacity.
Interim reliability evaluation program, Browns Ferry fault trees
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, M.E.
1981-01-01
An abbreviated fault tree method is used to evaluate and model Browns Ferry systems in the Interim Reliability Evaluation programs, simplifying the recording and displaying of events, yet maintaining the system of identifying faults. The level of investigation is not changed. The analytical thought process inherent in the conventional method is not compromised. But the abbreviated method takes less time, and the fault modes are much more visible.
Nonlinear transient analysis of multi-mass flexible rotors - theory and applications
NASA Technical Reports Server (NTRS)
Kirk, R. G.; Gunter, E. J.
1973-01-01
The equations of motion necessary to compute the transient response of multi-mass flexible rotors are formulated to include unbalance, rotor acceleration, and flexible damped nonlinear bearing stations. A method of calculating the unbalance response of flexible rotors from a modified Myklestad-Prohl technique is discussed in connection with the method of solution for the transient response. Several special cases of simplified rotor-bearing systems are presented and analyzed for steady-state response, stability, and transient behavior. These simplified rotor models produce extensive design information necessary to insure stable performance to elastic mounted rotor-bearing systems under varying levels and forms of excitation. The nonlinear journal bearing force expressions derived from the short bearing approximation are utilized in the study of the stability and transient response of the floating bush squeeze damper support system. Both rigid and flexible rotor models are studied, and results indicate that the stability of flexible rotors supported by journal bearings can be greatly improved by the use of squeeze damper supports. Results from linearized stability studies of flexible rotors indicate that a tuned support system can greatly improve the performance of the units from the standpoint of unbalanced response and impact loading. Extensive stability and design charts may be readily produced for given rotor specifications by the computer codes presented in this analysis.
Mathematical analysis of frontal affinity chromatography in particle and membrane configurations.
Tejeda-Mansir, A; Montesinos, R M; Guzmán, R
2001-10-30
The scaleup and optimization of large-scale affinity-chromatographic operations in the recovery, separation and purification of biochemical components is of major industrial importance. The development of mathematical models to describe affinity-chromatographic processes, and the use of these models in computer programs to predict column performance is an engineering approach that can help to attain these bioprocess engineering tasks successfully. Most affinity-chromatographic separations are operated in the frontal mode, using fixed-bed columns. Purely diffusive and perfusion particles and membrane-based affinity chromatography are among the main commercially available technologies for these separations. For a particular application, a basic understanding of the main similarities and differences between particle and membrane frontal affinity chromatography and how these characteristics are reflected in the transport models is of fundamental relevance. This review presents the basic theoretical considerations used in the development of particle and membrane affinity chromatography models that can be applied in the design and operation of large-scale affinity separations in fixed-bed columns. A transport model for column affinity chromatography that considers column dispersion, particle internal convection, external film resistance, finite kinetic rate, plus macropore and micropore resistances is analyzed as a framework for exploring further the mathematical analysis. Such models provide a general realistic description of almost all practical systems. Specific mathematical models that take into account geometric considerations and transport effects have been developed for both particle and membrane affinity chromatography systems. Some of the most common simplified models, based on linear driving-force (LDF) and equilibrium assumptions, are emphasized. Analytical solutions of the corresponding simplified dimensionless affinity models are presented. Particular methods for estimating the parameters that characterize the mass-transfer and adsorption mechanisms in affinity systems are described.
48 CFR 13.302 - Purchase orders.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Purchase orders. 13.302 Section 13.302 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACTING METHODS AND CONTRACT TYPES SIMPLIFIED ACQUISITION PROCEDURES Simplified Acquisition Methods 13.302 Purchase...
48 CFR 1532.003 - Simplified acquisition procedures financing.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 6 2012-10-01 2012-10-01 false Simplified acquisition procedures financing. 1532.003 Section 1532.003 Federal Acquisition Regulations System ENVIRONMENTAL.... (c) Procedures for purchases exceeding micropurchase threshold. Contracting officers must secure...
48 CFR 1532.003 - Simplified acquisition procedures financing.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false Simplified acquisition procedures financing. 1532.003 Section 1532.003 Federal Acquisition Regulations System ENVIRONMENTAL.... (c) Procedures for purchases exceeding micropurchase threshold. Contracting officers must secure...
48 CFR 1532.003 - Simplified acquisition procedures financing.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 6 2013-10-01 2013-10-01 false Simplified acquisition procedures financing. 1532.003 Section 1532.003 Federal Acquisition Regulations System ENVIRONMENTAL.... (c) Procedures for purchases exceeding micropurchase threshold. Contracting officers must secure...
48 CFR 1532.003 - Simplified acquisition procedures financing.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Simplified acquisition procedures financing. 1532.003 Section 1532.003 Federal Acquisition Regulations System ENVIRONMENTAL.... (c) Procedures for purchases exceeding micropurchase threshold. Contracting officers must secure...
48 CFR 3409.570 - Certification at or below the simplified acquisition threshold.
Code of Federal Regulations, 2013 CFR
2013-10-01
... the simplified acquisition threshold. 3409.570 Section 3409.570 Federal Acquisition Regulations System... threshold. By accepting any contract, including orders against any Schedule or Government-wide Acquisition Contract (GWAC), with the Department at or below the simplified acquisition threshold: (a) The contractor...
Experimental modeling of crown fire initiation in open and closed shrubland systems
W. Tachajapong; S. Lozano; S. Mahalingam; D.R. Weise
2014-01-01
The transition of surface fire to live shrub crown fuels was studied through a simplified laboratory experiment using an open-topped wind tunnel. Respective surface and crown fuels used were excelsior (shredded Populus tremuloides wood) and live chamise (Adenostoma fasciculatum, including branches and foliage). A high crown fuel...
Causes of power broadening in EIT intensity noise spectroscopy
NASA Astrophysics Data System (ADS)
Crescimanno, Michael; Snider, Charles; O'Leary, Shannon
2011-05-01
EIT noise spectroscopy is a potentially promising way to simplify magnetometer design. One technically fortuitous characteristic of this intensity noise spectroscopy is the non-power broadening behaviour. We describe quantum optics theory applied to more realistic models of EIT systems that explain the existence and range of this power broadening-free regime.
In an attempt to better understand the dynamics of subslab air flow, the report suggests that subslab air flow induced by a central suction point be treated as radial air flow through a porous bed contained between two impermeable disks. (NOTE: Many subslab depressurization syste...
Multipath Very-Simplified Estimate of Adversary Sequence Interruption v. 2.1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snell, Mark K.
2017-10-10
MP VEASI is a training tool that models physical protection systems for fixed sites using Adversary Sequence Diagrams (ASDs) and then uses the ASD to find most-vulnerable adversary paths through the ASD. The identified paths have the lowest Probability of Interruption among all the paths through the ASD.
NASA Astrophysics Data System (ADS)
DiPirro, M.; Fantano, L.; Canavan, E.; Leisawitz, D.; Carter, R.; Florez, A.; Amatucci, E.
2017-09-01
The Origins Space Telescope (OST) concept is one of four NASA Science Mission Directorate, Astrophysics Division, observatory concepts being studied for launch in the mid 2030's. OST's wavelength coverage will be from the midinfrared to the sub-millimeter, 6-600 microns. To enable observations at the zodiacal background limit the telescope must be cooled to about 4 K. Combined with the telescope size (currently the primary is 9 m in diameter) this appears to be a daunting task. However, simple calculations and thermal modeling have shown the cooling power required is met with several currently developed cryocoolers. Further, the telescope thermal architecture is greatly simplified, allowing simpler models, more thermal margin, and higher confidence in the final performance values than previous cold observatories. We will describe design principles to simplify modeling and verification. We will argue that the OST architecture and design principles lower its integration and test time and reduce its ultimate cost.
NASA Technical Reports Server (NTRS)
DiPirro, M.; Fantano, L.; Canavan, E.; Leisawitz, D.; Carter, R.; Florez, A.; Amatucci, E.
2014-01-01
The Origins Space Telescope (OST) concept is one of four NASA Science Mission Directorate, Astrophysics Division, observatory concepts being studied for launch in the mid 2030's. OST's wavelength coverage will be from the midinfrared to the sub-millimeter, 6-600 microns. To enable observations at the zodiacal background limit the telescope must be cooled to about 4 K. Combined with the telescope size (currently the primary is 9 m in diameter) this appears to be a daunting task. However, simple calculations and thermal modeling have shown the cooling power required is met with several currently developed cryocoolers. Further, the telescope thermal architecture is greatly simplified, allowing simpler models, more thermal margin, and higher confidence in the final performance values than previous cold observatories. We will describe design principles to simplify modeling and verification. We will argue that the OST architecture and design principles lower its integration and test time and reduce its ultimate cost.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boveia, Antonio; Buchmueller, Oliver; Busoni, Giorgio
2016-03-14
This document summarises the proposal of the LHC Dark Matter Working Group on how to present LHC results on s-channel simplified dark matter models and to compare them to direct (indirect) detection experiments.
NASA Astrophysics Data System (ADS)
Wang, Chao; Yang, Chuan-sheng
2017-09-01
In this paper, we present a simplified parsimonious higher-order multivariate Markov chain model with new convergence condition. (TPHOMMCM-NCC). Moreover, estimation method of the parameters in TPHOMMCM-NCC is give. Numerical experiments illustrate the effectiveness of TPHOMMCM-NCC.
Dissipation models for central difference schemes
NASA Astrophysics Data System (ADS)
Eliasson, Peter
1992-12-01
In this paper different flux limiters are used to construct dissipation models. The flux limiters are usually of Total Variation Diminishing (TVD type and are applied to the characteristic variables for the hyperbolic Euler equations in one, two or three dimensions. A number of simplified dissipation models with a reduced number of limiters are considered to reduce the computational effort. The most simplified methods use only one limiter, the dissipation model by Jameson belongs to this class since the Jameson pressure switch is considered as a limiter, not TVD though. Other one-limiter models with TVD limiters are also investigated. Models in between the most simplified one-limiter models and the full model with limiters on all the different characteristics are considered where different dissipation models are applied to the linear and non-linear characteristcs. In this paper the theory by Yee is extended to a general explicit Runge-Kutta type of schemes.
Simulating physiological interactions in a hybrid system of mathematical models.
Kretschmer, Jörn; Haunsberger, Thomas; Drost, Erick; Koch, Edmund; Möller, Knut
2014-12-01
Mathematical models can be deployed to simulate physiological processes of the human organism. Exploiting these simulations, reactions of a patient to changes in the therapy regime can be predicted. Based on these predictions, medical decision support systems (MDSS) can help in optimizing medical therapy. An MDSS designed to support mechanical ventilation in critically ill patients should not only consider respiratory mechanics but should also consider other systems of the human organism such as gas exchange or blood circulation. A specially designed framework allows combining three model families (respiratory mechanics, cardiovascular dynamics and gas exchange) to predict the outcome of a therapy setting. Elements of the three model families are dynamically combined to form a complex model system with interacting submodels. Tests revealed that complex model combinations are not computationally feasible. In most patients, cardiovascular physiology could be simulated by simplified models decreasing computational costs. Thus, a simplified cardiovascular model that is able to reproduce basic physiological behavior is introduced. This model purely consists of difference equations and does not require special algorithms to be solved numerically. The model is based on a beat-to-beat model which has been extended to react to intrathoracic pressure levels that are present during mechanical ventilation. The introduced reaction to intrathoracic pressure levels as found during mechanical ventilation has been tuned to mimic the behavior of a complex 19-compartment model. Tests revealed that the model is able to represent general system behavior comparable to the 19-compartment model closely. Blood pressures were calculated with a maximum deviation of 1.8 % in systolic pressure and 3.5 % in diastolic pressure, leading to a simulation error of 0.3 % in cardiac output. The gas exchange submodel being reactive to changes in cardiac output showed a resulting deviation of less than 0.1 %. Therefore, the proposed model is usable in combinations where cardiovascular simulation does not have to be detailed. Computing costs have been decreased dramatically by a factor 186 compared to a model combination employing the 19-compartment model.
Photovoltaic performance models - A report card
NASA Technical Reports Server (NTRS)
Smith, J. H.; Reiter, L. R.
1985-01-01
Models for the analysis of photovoltaic (PV) systems' designs, implementation policies, and economic performance, have proliferated while keeping pace with rapid changes in basic PV technology and extensive empirical data compiled for such systems' performance. Attention is presently given to the results of a comparative assessment of ten well documented and widely used models, which range in complexity from first-order approximations of PV system performance to in-depth, circuit-level characterizations. The comparisons were made on the basis of the performance of their subsystem, as well as system, elements. The models fall into three categories in light of their degree of aggregation into subsystems: (1) simplified models for first-order calculation of system performance, with easily met input requirements but limited capability to address more than a small variety of design considerations; (2) models simulating PV systems in greater detail, encompassing types primarily intended for either concentrator-incorporating or flat plate collector PV systems; and (3) models not specifically designed for PV system performance modeling, but applicable to aspects of electrical system design. Models ignoring subsystem failure or degradation are noted to exclude operating and maintenance characteristics as well.
Zhou, Xiao; Yang, Gongliu; Wang, Jing; Wen, Zeyang
2018-05-14
In recent decades, gravity compensation has become an important way to reduce the position error of an inertial navigation system (INS), especially for a high-precision INS, because of the extensive application of high precision inertial sensors (accelerometers and gyros). This paper first deducts the INS's solution error considering gravity disturbance and simulates the results. Meanwhile, this paper proposes a combined gravity compensation method using a simplified gravity model and gravity database. This new combined method consists of two steps all together. Step 1 subtracts the normal gravity using a simplified gravity model. Step 2 first obtains the gravity disturbance on the trajectory of the carrier with the help of ELM training based on the measured gravity data (provided by Institute of Geodesy and Geophysics; Chinese Academy of sciences), and then compensates it into the error equations of the INS, considering the gravity disturbance, to further improve the navigation accuracy. The effectiveness and feasibility of this new gravity compensation method for the INS are verified through vehicle tests in two different regions; one is in flat terrain with mild gravity variation and the other is in complex terrain with fierce gravity variation. During 2 h vehicle tests, the positioning accuracy of two tests can improve by 20% and 38% respectively, after the gravity is compensated by the proposed method.
Zhou, Xiao; Yang, Gongliu; Wang, Jing; Wen, Zeyang
2018-01-01
In recent decades, gravity compensation has become an important way to reduce the position error of an inertial navigation system (INS), especially for a high-precision INS, because of the extensive application of high precision inertial sensors (accelerometers and gyros). This paper first deducts the INS’s solution error considering gravity disturbance and simulates the results. Meanwhile, this paper proposes a combined gravity compensation method using a simplified gravity model and gravity database. This new combined method consists of two steps all together. Step 1 subtracts the normal gravity using a simplified gravity model. Step 2 first obtains the gravity disturbance on the trajectory of the carrier with the help of ELM training based on the measured gravity data (provided by Institute of Geodesy and Geophysics; Chinese Academy of sciences), and then compensates it into the error equations of the INS, considering the gravity disturbance, to further improve the navigation accuracy. The effectiveness and feasibility of this new gravity compensation method for the INS are verified through vehicle tests in two different regions; one is in flat terrain with mild gravity variation and the other is in complex terrain with fierce gravity variation. During 2 h vehicle tests, the positioning accuracy of two tests can improve by 20% and 38% respectively, after the gravity is compensated by the proposed method. PMID:29757983
Ye, Linqi; Zong, Qun; Tian, Bailing; Zhang, Xiuyun; Wang, Fang
2017-09-01
In this paper, the nonminimum phase problem of a flexible hypersonic vehicle is investigated. The main challenge of nonminimum phase is the prevention of dynamic inversion methods to nonlinear control design. To solve this problem, we make research on the relationship between nonminimum phase and backstepping control, finding that a stable nonlinear controller can be obtained by changing the control loop on the basis of backstepping control. By extending the control loop to cover the internal dynamics in it, the internal states are directly controlled by the inputs and simultaneously serve as virtual control for the external states, making it possible to guarantee output tracking as well as internal stability. Then, based on the extended control loop, a simplified control-oriented model is developed to enable the applicability of adaptive backstepping method. It simplifies the design process and releases some limitations caused by direct use of the no simplified control-oriented model. Next, under proper assumptions, asymptotic stability is proved for constant commands, while bounded stability is proved for varying commands. The proposed method is compared with approximate backstepping control and dynamic surface control and is shown to have superior tracking accuracy as well as robustness from the simulation results. This paper may also provide a beneficial guidance for control design of other complex systems. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Incompressible Navier-Stokes Computations with Heat Transfer
NASA Technical Reports Server (NTRS)
Kiris, Cetin; Kwak, Dochan; Rogers, Stuart; Kutler, Paul (Technical Monitor)
1994-01-01
The existing pseudocompressibility method for the system of incompressible Navier-Stokes equations is extended to heat transfer problems by including the energy equation. The solution method is based on the pseudo compressibility approach and uses an implicit-upwind differencing scheme together with the Gauss-Seidel line relaxation method. Current computations use one-equation Baldwin-Barth turbulence model which is derived from a simplified form of the standard k-epsilon model equations. Both forced and natural convection problems are examined. Numerical results from turbulent reattaching flow behind a backward-facing step will be compared against experimental measurements for the forced convection case. The validity of Boussinesq approximation to simplify the buoyancy force term will be investigated. The natural convective flow structure generated by heat transfer in a vertical rectangular cavity will be studied. The numerical results will be compared by experimental measurements by Morrison and Tran.
NASA Astrophysics Data System (ADS)
Buchholz, Max; Grossmann, Frank; Ceotto, Michele
2018-03-01
We present and test an approximate method for the semiclassical calculation of vibrational spectra. The approach is based on the mixed time-averaging semiclassical initial value representation method, which is simplified to a form that contains a filter to remove contributions from approximately harmonic environmental degrees of freedom. This filter comes at no additional numerical cost, and it has no negative effect on the accuracy of peaks from the anharmonic system of interest. The method is successfully tested for a model Hamiltonian and then applied to the study of the frequency shift of iodine in a krypton matrix. Using a hierarchic model with up to 108 normal modes included in the calculation, we show how the dynamical interaction between iodine and krypton yields results for the lowest excited iodine peaks that reproduce experimental findings to a high degree of accuracy.
Pressure distribution under flexible polishing tools. II - Cylindrical (conical) optics
NASA Astrophysics Data System (ADS)
Mehta, Pravin K.
1990-10-01
A previously developed eigenvalue model is extended to determine polishing pressure distribution by rectangular tools with unequal stiffness in two directions on cylindrical optics. Tool misfit is divided into two simplified one-dimensional problems and one simplified two-dimensional problem. Tools with nonuniform cross-sections are treated with a new one-dimensional eigenvalue algorithm, permitting evaluation of tool designs where the edge is more flexible than the interior. This maintains edge pressure variations within acceptable parameters. Finite element modeling is employed to resolve upper bounds, which handle pressure changes in the two-dimensional misfit element. Paraboloids and hyperboloids from the NASA AXAF system are treated with the AXAFPOD software for this method, and are verified with NASTRAN finite element analyses. The maximum deviation from the one-dimensional azimuthal pressure variation is predicted to be 10 percent and 20 percent for paraboloids and hyperboloids, respectively.
NASA Technical Reports Server (NTRS)
Sicard, Pierre; Wen, John T.
1992-01-01
A passivity approach for the control design of flexible joint robots is applied to the rate control of a three-link arm modeled after the shoulder yaw joint of the Space Shuttle Remote Manipulator System (RMS). The system model includes friction and elastic joint couplings modeled as nonlinear springs. The basic structure of the proposed controller is the sum of a model-based feedforward and a model-independent feedback. A regulator approach with link state feedback is employed to define the desired motor state. Passivity theory is used to design a motor state-based controller to stabilize the error system formed by the feedforward. Simulation results show that greatly improved performance was obtained by using the proposed controller over the existing RMS controller.
Simulation modelling for new gas turbine fuel controller creation.
NASA Astrophysics Data System (ADS)
Vendland, L. E.; Pribylov, V. G.; Borisov, Yu A.; Arzamastsev, M. A.; Kosoy, A. A.
2017-11-01
State of the art gas turbine fuel flow control systems are based on throttle principle. Major disadvantage of such systems is that they require high pressure fuel intake. Different approach to fuel flow control is to use regulating compressor. And for this approach because of controller and gas turbine interaction a specific regulating compressor is required. Difficulties emerge as early as the requirement definition stage. To define requirements for new object, his properties must be known. Simulation modelling helps to overcome these difficulties. At the requirement definition stage the most simplified mathematical model is used. Mathematical models will get more complex and detailed as we advance in planned work. If future adjusting of regulating compressor physical model to work with virtual gas turbine and physical control system is planned.
Analysis, simulation and visualization of 1D tapping via reduced dynamical models
NASA Astrophysics Data System (ADS)
Blackmore, Denis; Rosato, Anthony; Tricoche, Xavier; Urban, Kevin; Zou, Luo
2014-04-01
A low-dimensional center-of-mass dynamical model is devised as a simplified means of approximately predicting some important aspects of the motion of a vertical column comprised of a large number of particles subjected to gravity and periodic vertical tapping. This model is investigated first as a continuous dynamical system using analytical, simulation and visualization techniques. Then, by employing an approach analogous to that used to approximate the dynamics of a bouncing ball on an oscillating flat plate, it is modeled as a discrete dynamical system and analyzed to determine bifurcations and transitions to chaotic motion along with other properties. The predictions of the analysis are then compared-primarily qualitatively-with visualization and simulation results of the reduced continuous model, and ultimately with simulations of the complete system dynamics.
A geographic data model for representing ground water systems.
Strassberg, Gil; Maidment, David R; Jones, Norm L
2007-01-01
The Arc Hydro ground water data model is a geographic data model for representing spatial and temporal ground water information within a geographic information system (GIS). The data model is a standardized representation of ground water systems within a spatial database that provides a public domain template for GIS users to store, document, and analyze commonly used spatial and temporal ground water data sets. This paper describes the data model framework, a simplified version of the complete ground water data model that includes two-dimensional and three-dimensional (3D) object classes for representing aquifers, wells, and borehole data, and the 3D geospatial context in which these data exist. The framework data model also includes tabular objects for representing temporal information such as water levels and water quality samples that are related with spatial features.
A simplified model for glass formation
NASA Technical Reports Server (NTRS)
Uhlmann, D. R.; Onorato, P. I. K.; Scherer, G. W.
1979-01-01
A simplified model of glass formation based on the formal theory of transformation kinetics is presented, which describes the critical cooling rates implied by the occurrence of glassy or partly crystalline bodies. In addition, an approach based on the nose of the time-temperature-transformation (TTT) curve as an extremum in temperature and time has provided a relatively simple relation between the activation energy for viscous flow in the undercooled region and the temperature of the nose of the TTT curve. Using this relation together with the simplified model, it now seems possible to predict cooling rates using only the liquidus temperature, glass transition temperature, and heat of fusion.
Simplified models vs. effective field theory approaches in dark matter searches
NASA Astrophysics Data System (ADS)
De Simone, Andrea; Jacques, Thomas
2016-07-01
In this review we discuss and compare the usage of simplified models and Effective Field Theory (EFT) approaches in dark matter searches. We provide a state of the art description on the subject of EFTs and simplified models, especially in the context of collider searches for dark matter, but also with implications for direct and indirect detection searches, with the aim of constituting a common language for future comparisons between different strategies. The material is presented in a form that is as self-contained as possible, so that it may serve as an introductory review for the newcomer as well as a reference guide for the practitioner.
48 CFR 529.401-70 - Purchases at or under the simplified acquisition threshold.
Code of Federal Regulations, 2012 CFR
2012-10-01
... simplified acquisition threshold. 529.401-70 Section 529.401-70 Federal Acquisition Regulations System... Purchases at or under the simplified acquisition threshold. Insert 552.229-70, Federal, State, and Local Taxes, in purchases and contracts estimated to exceed the micropurchase threshold, but not the...
48 CFR 1313.302 - Purchase orders.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Purchase orders. 1313.302 Section 1313.302 Federal Acquisition Regulations System DEPARTMENT OF COMMERCE CONTRACTING METHODS AND CONTRACT TYPES SIMPLIFIED ACQUISITION PROCEDURES Simplified Acquisitions Methods 1313.302 Purchase orders. ...
48 CFR 813.302 - Purchase orders.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Purchase orders. 813.302 Section 813.302 Federal Acquisition Regulations System DEPARTMENT OF VETERANS AFFAIRS CONTRACTING METHODS AND CONTRACT TYPES SIMPLIFIED ACQUISITION PROCEDURES Simplified Acquisition Methods 813.302 Purchase...
48 CFR 1413.305 - Imprest fund.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Imprest fund. 1413.305 Section 1413.305 Federal Acquisition Regulations System DEPARTMENT OF THE INTERIOR CONTRACTING METHODS AND CONTRACT TYPES SIMPLIFIED ACQUISITION PROCEDURES Simplified Acquisition Methods 1413.305 Imprest fund. ...
48 CFR 1413.305 - Imprest fund.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Imprest fund. 1413.305 Section 1413.305 Federal Acquisition Regulations System DEPARTMENT OF THE INTERIOR CONTRACTING METHODS AND CONTRACT TYPES SIMPLIFIED ACQUISITION PROCEDURES Simplified Acquisition Methods 1413.305 Imprest fund. ...
SModelS v1.1 user manual: Improving simplified model constraints with efficiency maps
NASA Astrophysics Data System (ADS)
Ambrogi, Federico; Kraml, Sabine; Kulkarni, Suchita; Laa, Ursula; Lessa, Andre; Magerl, Veronika; Sonneveld, Jory; Traub, Michael; Waltenberger, Wolfgang
2018-06-01
SModelS is an automatized tool for the interpretation of simplified model results from the LHC. It allows to decompose models of new physics obeying a Z2 symmetry into simplified model components, and to compare these against a large database of experimental results. The first release of SModelS, v1.0, used only cross section upper limit maps provided by the experimental collaborations. In this new release, v1.1, we extend the functionality of SModelS to efficiency maps. This increases the constraining power of the software, as efficiency maps allow to combine contributions to the same signal region from different simplified models. Other new features of version 1.1 include likelihood and χ2 calculations, extended information on the topology coverage, an extended database of experimental results as well as major speed upgrades for both the code and the database. We describe in detail the concepts and procedures used in SModelS v1.1, explaining in particular how upper limits and efficiency map results are dealt with in parallel. Detailed instructions for code usage are also provided.
MARMOT Phase-Field Model for the U-Si System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aagesen, Larry Kenneth; Schwen, Daniel
2016-09-01
A phase-field model for the U-Si system has been implemented in MARMOT. The free energies for the phases relevant to accident-tolerant fuel applications (U 3Si 2, USi, U 3Si, and liquid) were implemented as free energy materials within MARMOT. A new three-phase phase-field model based on the concepts of the Kim-Kim-Suzuki two-phase model was developed and implemented in the MOOSE phase-field module. Key features of this model are that two-phase interfaces are stable with respect to formation of the third phase, and that arbitrary phase free energies can be used. The model was validated using a simplified three-phase system andmore » the U-Si system. In the U-Si system, the model correctly reproduced three-phase coexistence in a U 3Si 2-liquid-USi system at the eutectic temperature, solidification of a three-phase mixture below the eutectic temperature, and complete melting of a three-phase mixture above the eutectic temperature.« less
Population modeling and its role in toxicological studies
Sauer, John R.; Pendleton, Grey W.; Hoffman, David J.; Rattner, Barnett A.; Burton, G. Allen; Cairns, John
1995-01-01
A model could be defined as any abstraction from reality that is used to provide some insight into the real system. In this discussion, we will use a more specific definition that a model is a set of rules or assumptions, expressed as mathematical equations, that describe how animals survive and reproduce, including the external factors that affect these characteristics. A model simplifies a system, retaining essential components while eliminating parts that are not of interest. ecology has a rich history of using models to gain insight into populations, often borrowing both model structures and analysis methods from demographers and engineers. Much of the development of the models has been a consequence of mathematicians and physicists seeing simple analogies between their models and patterns in natural systems. Consequently, one major application of ecological modeling has been to emphasize the analysis of dynamics of often complex models to provide insight into theoretical aspects of ecology.1
Towards the next generation of simplified Dark Matter models
NASA Astrophysics Data System (ADS)
Albert, Andreas; Bauer, Martin; Brooke, Jim; Buchmueller, Oliver; Cerdeño, David G.; Citron, Matthew; Davies, Gavin; de Cosa, Annapaola; De Roeck, Albert; De Simone, Andrea; Du Pree, Tristan; Flaecher, Henning; Fairbairn, Malcolm; Ellis, John; Grohsjean, Alexander; Hahn, Kristian; Haisch, Ulrich; Harris, Philip C.; Khoze, Valentin V.; Landsberg, Greg; McCabe, Christopher; Penning, Bjoern; Sanz, Veronica; Schwanenberger, Christian; Scott, Pat; Wardle, Nicholas
2017-06-01
This White Paper is an input to the ongoing discussion about the extension and refinement of simplified Dark Matter (DM) models. It is not intended as a comprehensive review of the discussed subjects, but instead summarises ideas and concepts arising from a brainstorming workshop that can be useful when defining the next generation of simplified DM models (SDMM). In this spirit, based on two concrete examples, we show how existing SDMM can be extended to provide a more accurate and comprehensive framework to interpret and characterise collider searches. In the first example we extend the canonical SDMM with a scalar mediator to include mixing with the Higgs boson. We show that this approach not only provides a better description of the underlying kinematic properties that a complete model would possess, but also offers the option of using this more realistic class of scalar mixing models to compare and combine consistently searches based on different experimental signatures. The second example outlines how a new physics signal observed in a visible channel can be connected to DM by extending a simplified model including effective couplings. In the next part of the White Paper we outline other interesting options for SDMM that could be studied in more detail in the future. Finally, we review important aspects of supersymmetric models for DM and use them to propose how to develop more complete SDMMs. This White Paper is a summary of the brainstorming meeting "Next generation of simplified Dark Matter models" that took place at Imperial College, London on May 6, 2016, and corresponding follow-up studies on selected subjects.
Simplified analysis and optimization of space base and space shuttle heat rejection systems
NASA Technical Reports Server (NTRS)
Wulff, W.
1972-01-01
A simplified radiator system analysis was performed to predict steady state radiator system performance. The system performance was found to be describable in terms of five non-dimensional system parameters. The governing differential equations are integrated numerically to yield the enthalpy rejection for the coolant fluid. The simplified analysis was extended to produce the derivatives of the coolant exit temperature with respect to the governing system parameters. A procedure was developed to find the optimum set of system parameters which yields the lowest possible coolant exit temperature for either a given projected area or a given total mass. The process can be inverted to yield either the minimum area or the minimum mass, together with the optimum geometry, for a specified heat rejection rate.
A Global 3D P-Velocity Model of the Earth’s Crust and Mantle for Improved Event Location
2011-09-01
starting model, we use a simplified layer crustal model derived from the NNSA Unified model in Eurasia and Crust 2.0 model everywhere else, over a...geographic and radial dimensions. For our starting model, we use a simplified layer crustal model derived from the NNSA Unified model in Eurasia and...tessellation with 4° triangles to the transition zone and upper mantle, and a third tessellation with variable resolution to all crustal layers. The
Liu, Longxiao; Wang, Jinchao; Zhu, Suyan
2007-04-01
The preparation of an osmotic pump tablet was simplified by elimination of laser drilling using prazosin hydrochloride as the model drug. The osmotic pump system was obtained by coating the indented core tablet compressed by the punch with a needle. A multiple regression equation was achieved with the experimental data of core tablet formulations, and then the formulation was optimized. The influences of the indentation size of the core tablet, environmental media, and agitation rate on drug release profile were investigated. The optimal osmotic pump tablet was found to deliver prazosin hydrochloride at an approximately constant rate up to 24 hr, and independent on both release media and agitation rate. Indentation size of core tablet hardly affected drug release in the range of 0.80-1.15 mm. The method that is simplified by elimination of laser drilling may be promising for preparation of an osmotic pump tablet.
A New Relationship Between Soft X-Rays and EUV Flare Light Curves
NASA Astrophysics Data System (ADS)
Thiemann, Edward
2016-05-01
Solar flares are the result of magnetic reconnection in the solar corona which converts magnetic energy into kinetic energy resulting in the rapid heating of solar plasma. As this plasma cools, it emits radiation at different EUV wavelengths when the dropping temperature passes a line’s temperature of formation. This results in a delay in the emissions from cooler EUV lines relative to hotter EUV lines. Therefore, characterizing how this hot plasma cools is important for understanding how the corresponding geo-effective extreme ultraviolet (EUV) irradiance evolves in time. I present a simple new framework in which to study flare cooling by using a Lumped Element Thermal Model (LETM). LETM is frequently used in science and engineering to simplify a complex multi-dimensional thermal system by reducing it to a 0-D thermal circuit. For example, a structure that conducts heat out of a system is simplified with a resistive element and a structure that allows a system to store heat is simplified with a capacitive element. A major advantage of LETM is that the specific geometry of a system can be ignored, allowing for an intuitive analysis of the major thermal processes. I show that LETM is able to accurately reproduce the temporal evolution of cooler flare emission lines based on hotter emission line evolution. In particular, it can be used to predict the evolution of EUV flare light curves using the NOAA X-Ray Sensor (XRS).
Fulton, John W.; Koerkle, Edward H.; McAuley, Steven D.; Hoffman, Scott A.; Zarr, Linda F.
2005-01-01
The Spring Creek Basin, Centre County, Pa., is experiencing some of the most rapid growth and development within the Commonwealth. This trend has resulted in land-use changes and increased water use, which will affect the quantity and quality of stormwater runoff, surface water, ground water, and aquatic resources within the basin. The U.S. Geological Survey (USGS), in cooperation with the ClearWater Conservancy (CWC), Spring Creek Watershed Community (SCWC), and Spring Creek Watershed Commission (SCWCm), has developed a Watershed Plan (Plan) to assist decision makers in water-resources planning. One element of the Plan is to provide a summary of the basin characteristics and a conceptual model that incorporates the hydrogeologic characteristics of the basin. The report presents hydrogeologic data for the basin and presents a conceptual model that can be used as the basis for simulating surface-water and ground-water flow within the basin. Basin characteristics; sources of data referenced in this text; physical characteristics such as climate, physiography, topography, and land use; hydrogeologic characteristics; and water-quality characteristics are discussed. A conceptual model is a simplified description of the physical components and interaction of the surface- and ground-water systems. The purpose for constructing a conceptual model is to simplify the problem and to organize the available data so that the system can be analyzed accurately. Simplification is necessary, because a complete accounting of a system, such as Spring Creek, is not possible. The data and the conceptual model could be used in development of a fully coupled numerical model that dynamically links surface water, ground water, and land-use changes. The model could be used by decision makers to manage water resources within the basin and as a prototype that is transferable to other watersheds.
Telfer, Scott; Erdemir, Ahmet; Woodburn, James; Cavanagh, Peter R
2016-01-25
Integration of patient-specific biomechanical measurements into the design of therapeutic footwear has been shown to improve clinical outcomes in patients with diabetic foot disease. The addition of numerical simulations intended to optimise intervention design may help to build on these advances, however at present the time and labour required to generate and run personalised models of foot anatomy restrict their routine clinical utility. In this study we developed second-generation personalised simple finite element (FE) models of the forefoot with varying geometric fidelities. Plantar pressure predictions from barefoot, shod, and shod with insole simulations using simplified models were compared to those obtained from CT-based FE models incorporating more detailed representations of bone and tissue geometry. A simplified model including representations of metatarsals based on simple geometric shapes, embedded within a contoured soft tissue block with outer geometry acquired from a 3D surface scan was found to provide pressure predictions closest to the more complex model, with mean differences of 13.3kPa (SD 13.4), 12.52kPa (SD 11.9) and 9.6kPa (SD 9.3) for barefoot, shod, and insole conditions respectively. The simplified model design could be produced in <1h compared to >3h in the case of the more detailed model, and solved on average 24% faster. FE models of the forefoot based on simplified geometric representations of the metatarsal bones and soft tissue surface geometry from 3D surface scans may potentially provide a simulation approach with improved clinical utility, however further validity testing around a range of therapeutic footwear types is required. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nelson, Hunter Barton
A simplified second-order transfer function actuator model used in most flight dynamics applications cannot easily capture the effects of different actuator parameters. The present work integrates a nonlinear actuator model into a nonlinear state space rotorcraft model to determine the effect of actuator parameters on key flight dynamics. The completed actuator model was integrated with a swashplate kinematics where step responses were generated over a range of key hydraulic parameters. The actuator-swashplate system was then introduced into a nonlinear state space rotorcraft simulation where flight dynamics quantities such as bandwidth and phase delay analyzed. Frequency sweeps were simulated for unique actuator configurations using the coupled nonlinear actuator-rotorcraft system. The software package CIFER was used for system identification and compared directly to the linearized models. As the actuator became rate saturated, the effects on bandwidth and phase delay were apparent on the predicted handling qualities specifications.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Government contract quality assurance for acquisitions at or below the simplified acquisition threshold. 246.404 Section 246.404 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE CONTRACT MANAGEMENT QUALITY ASSURANCE...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Government contract quality assurance for acquisitions at or below the simplified acquisition threshold. 246.404 Section 246.404 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE CONTRACT MANAGEMENT QUALITY ASSURANCE...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Government contract quality assurance for acquisitions at or below the simplified acquisition threshold. 246.404 Section 246.404 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE CONTRACT MANAGEMENT QUALITY ASSURANCE...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Government contract quality assurance for acquisitions at or below the simplified acquisition threshold. 246.404 Section 246.404 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE CONTRACT MANAGEMENT QUALITY ASSURANCE...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false Government contract quality assurance for acquisitions at or below the simplified acquisition threshold. 246.404 Section 246.404 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE CONTRACT MANAGEMENT QUALITY ASSURANCE...
Precession and circularization of elliptical space-tether motion
NASA Technical Reports Server (NTRS)
Chapel, Jim D.; Grosserode, Patrick
1993-01-01
In this paper, we present a simplified analytic model for predicting motion of long space tethers. The perturbation model developed here addresses skip rope motion, where each end of the tether is held in place and the middle of the tether swings with a motion similar to that of a child's skip rope. If the motion of the tether midpoint is elliptical rather than circular, precession of the ellipse complicates the procedures required to damp this motion. The simplified analytic model developed in this paper parametrically predicts the precession of elliptical skip rope motion. Furthermore, the model shows that elliptic skip rope motion will circularize when damping is present in the longitudinal direction. Compared with high-fidelity simulation results, this simplified model provides excellent predictions of these phenomena.
Model and experiments to optimize co-adaptation in a simplified myoelectric control system
NASA Astrophysics Data System (ADS)
Couraud, M.; Cattaert, D.; Paclet, F.; Oudeyer, P. Y.; de Rugy, A.
2018-04-01
Objective. To compensate for a limb lost in an amputation, myoelectric prostheses use surface electromyography (EMG) from the remaining muscles to control the prosthesis. Despite considerable progress, myoelectric controls remain markedly different from the way we normally control movements, and require intense user adaptation. To overcome this, our goal is to explore concurrent machine co-adaptation techniques that are developed in the field of brain-machine interface, and that are beginning to be used in myoelectric controls. Approach. We combined a simplified myoelectric control with a perturbation for which human adaptation is well characterized and modeled, in order to explore co-adaptation settings in a principled manner. Results. First, we reproduced results obtained in a classical visuomotor rotation paradigm in our simplified myoelectric context, where we rotate the muscle pulling vectors used to reconstruct wrist force from EMG. Then, a model of human adaptation in response to directional error was used to simulate various co-adaptation settings, where perturbations and machine co-adaptation are both applied on muscle pulling vectors. These simulations established that a relatively low gain of machine co-adaptation that minimizes final errors generates slow and incomplete adaptation, while higher gains increase adaptation rate but also errors by amplifying noise. After experimental verification on real subjects, we tested a variable gain that cumulates the advantages of both, and implemented it with directionally tuned neurons similar to those used to model human adaptation. This enables machine co-adaptation to locally improve myoelectric control, and to absorb more challenging perturbations. Significance. The simplified context used here enabled to explore co-adaptation settings in both simulations and experiments, and to raise important considerations such as the need for a variable gain encoded locally. The benefits and limits of extending this approach to more complex and functional myoelectric contexts are discussed.
NASA Astrophysics Data System (ADS)
Burton, Sharon P.; Chemyakin, Eduard; Liu, Xu; Knobelspiesse, Kirk; Stamnes, Snorre; Sawamura, Patricia; Moore, Richard H.; Hostetler, Chris A.; Ferrare, Richard A.
2016-11-01
There is considerable interest in retrieving profiles of aerosol effective radius, total number concentration, and complex refractive index from lidar measurements of extinction and backscatter at several wavelengths. The combination of three backscatter channels plus two extinction channels (3β + 2α) is particularly important since it is believed to be the minimum configuration necessary for the retrieval of aerosol microphysical properties and because the technological readiness of lidar systems permits this configuration on both an airborne and future spaceborne instrument. The second-generation NASA Langley airborne High Spectral Resolution Lidar (HSRL-2) has been making 3β + 2α measurements since 2012. The planned NASA Aerosol/Clouds/Ecosystems (ACE) satellite mission also recommends the 3β + 2α combination.Here we develop a deeper understanding of the information content and sensitivities of the 3β + 2α system in terms of aerosol microphysical parameters of interest. We use a retrieval-free methodology to determine the basic sensitivities of the measurements independent of retrieval assumptions and constraints. We calculate information content and uncertainty metrics using tools borrowed from the optimal estimation methodology based on Bayes' theorem, using a simplified forward model look-up table, with no explicit inversion. The forward model is simplified to represent spherical particles, monomodal log-normal size distributions, and wavelength-independent refractive indices. Since we only use the forward model with no retrieval, the given simplified aerosol scenario is applicable as a best case for all existing retrievals in the absence of additional constraints. Retrieval-dependent errors due to mismatch between retrieval assumptions and true atmospheric aerosols are not included in this sensitivity study, and neither are retrieval errors that may be introduced in the inversion process. The choice of a simplified model adds clarity to the understanding of the uncertainties in such retrievals, since it allows for separately assessing the sensitivities and uncertainties of the measurements alone that cannot be corrected by any potential or theoretical improvements to retrieval methodology but must instead be addressed by adding information content.The sensitivity metrics allow for identifying (1) information content of the measurements vs. a priori information; (2) error bars on the retrieved parameters; and (3) potential sources of cross-talk or "compensating" errors wherein different retrieval parameters are not independently captured by the measurements. The results suggest that the 3β + 2α measurement system is underdetermined with respect to the full suite of microphysical parameters considered in this study and that additional information is required, in the form of additional coincident measurements (e.g., sun-photometer or polarimeter) or a priori retrieval constraints. A specific recommendation is given for addressing cross-talk between effective radius and total number concentration.
Improved heat transfer modeling of the eye for electromagnetic wave exposures.
Hirata, Akimasa
2007-05-01
This study proposed an improved heat transfer model of the eye for exposure to electromagnetic (EM) waves. Particular attention was paid to the difference from the simplified heat transfer model commonly used in this field. From our computational results, the temperature elevation in the eye calculated with the simplified heat transfer model was largely influenced by the EM absorption outside the eyeball, but not when we used our improved model.
Simplified models for Higgs physics: singlet scalar and vector-like quark phenomenology
Dolan, Matthew J.; Hewett, J. L.; Krämer, M.; ...
2016-07-08
Simplified models provide a useful tool to conduct the search and exploration of physics beyond the Standard Model in a model-independent fashion. In this study, we consider the complementarity of indirect searches for new physics in Higgs couplings and distributions with direct searches for new particles, using a simplified model which includes a new singlet scalar resonance and vector-like fermions that can mix with the SM top-quark. We fit this model to the combined ATLAS and CMS 125 GeV Higgs production and coupling measurements and other precision electroweak constraints, and explore in detail the effects of the new matter contentmore » upon Higgs production and kinematics. Finally, we highlight some novel features and decay modes of the top partner phenomenology, and discuss prospects for Run II.« less
Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models
NASA Astrophysics Data System (ADS)
Labuhn, Henning; Barredo, Daniel; Ravets, Sylvain; de Léséleuc, Sylvain; Macrì, Tommaso; Lahaye, Thierry; Browaeys, Antoine
2016-06-01
Spin models are the prime example of simplified many-body Hamiltonians used to model complex, strongly correlated real-world materials. However, despite the simplified character of such models, their dynamics often cannot be simulated exactly on classical computers when the number of particles exceeds a few tens. For this reason, quantum simulation of spin Hamiltonians using the tools of atomic and molecular physics has become a very active field over the past years, using ultracold atoms or molecules in optical lattices, or trapped ions. All of these approaches have their own strengths and limitations. Here we report an alternative platform for the study of spin systems, using individual atoms trapped in tunable two-dimensional arrays of optical microtraps with arbitrary geometries, where filling fractions range from 60 to 100 per cent. When excited to high-energy Rydberg D states, the atoms undergo strong interactions whose anisotropic character opens the way to simulating exotic matter. We illustrate the versatility of our system by studying the dynamics of a quantum Ising-like spin-1/2 system in a transverse field with up to 30 spins, for a variety of geometries in one and two dimensions, and for a wide range of interaction strengths. For geometries where the anisotropy is expected to have small effects on the dynamics, we find excellent agreement with ab initio simulations of the spin-1/2 system, while for strongly anisotropic situations the multilevel structure of the D states has a measurable influence. Our findings establish arrays of single Rydberg atoms as a versatile platform for the study of quantum magnetism.
Recent advances in QM/MM free energy calculations using reference potentials.
Duarte, Fernanda; Amrein, Beat A; Blaha-Nelson, David; Kamerlin, Shina C L
2015-05-01
Recent years have seen enormous progress in the development of methods for modeling (bio)molecular systems. This has allowed for the simulation of ever larger and more complex systems. However, as such complexity increases, the requirements needed for these models to be accurate and physically meaningful become more and more difficult to fulfill. The use of simplified models to describe complex biological systems has long been shown to be an effective way to overcome some of the limitations associated with this computational cost in a rational way. Hybrid QM/MM approaches have rapidly become one of the most popular computational tools for studying chemical reactivity in biomolecular systems. However, the high cost involved in performing high-level QM calculations has limited the applicability of these approaches when calculating free energies of chemical processes. In this review, we present some of the advances in using reference potentials and mean field approximations to accelerate high-level QM/MM calculations. We present illustrative applications of these approaches and discuss challenges and future perspectives for the field. The use of physically-based simplifications has shown to effectively reduce the cost of high-level QM/MM calculations. In particular, lower-level reference potentials enable one to reduce the cost of expensive free energy calculations, thus expanding the scope of problems that can be addressed. As was already demonstrated 40 years ago, the usage of simplified models still allows one to obtain cutting edge results with substantially reduced computational cost. This article is part of a Special Issue entitled Recent developments of molecular dynamics. Copyright © 2014. Published by Elsevier B.V.
Simplified Phase Diversity algorithm based on a first-order Taylor expansion.
Zhang, Dong; Zhang, Xiaobin; Xu, Shuyan; Liu, Nannan; Zhao, Luoxin
2016-10-01
We present a simplified solution to phase diversity when the observed object is a point source. It utilizes an iterative linearization of the point spread function (PSF) at two or more diverse planes by first-order Taylor expansion to reconstruct the initial wavefront. To enhance the influence of the PSF in the defocal plane which is usually very dim compared to that in the focal plane, we build a new model with the Tikhonov regularization function. The new model cannot only increase the computational speed, but also reduce the influence of the noise. By using the PSFs obtained from Zemax, we reconstruct the wavefront of the Hubble Space Telescope (HST) at the edge of the field of view (FOV) when the telescope is in either the nominal state or the misaligned state. We also set up an experiment, which consists of an imaging system and a deformable mirror, to validate the correctness of the presented model. The result shows that the new model can improve the computational speed with high wavefront detection accuracy.
Interpretation of searches for supersymmetry with simplified models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.
The results of searches for supersymmetry by the CMS experiment are interpreted in the framework of simplified models. The results are based on data corresponding to an integrated luminosity of 4.73 to 4.98 inverse femtobarns. The data were collected at the LHC in proton-proton collisions at a center-of-mass energy of 7 TeV. This paper describes the method of interpretation and provides upper limits on the product of the production cross section and branching fraction as a function of new particle masses for a number of simplified models. These limits and the corresponding experimental acceptance calculations can be used to constrainmore » other theoretical models and to compare different supersymmetry-inspired analyses.« less
48 CFR 713.000 - Scope of part.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Scope of part. 713.000 Section 713.000 Federal Acquisition Regulations System AGENCY FOR INTERNATIONAL DEVELOPMENT CONTRACTING METHODS AND CONTRACT TYPES SIMPLIFIED ACQUISITION PROCEDURES 713.000 Scope of part. The simplified...
48 CFR 713.000 - Scope of part.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Scope of part. 713.000 Section 713.000 Federal Acquisition Regulations System AGENCY FOR INTERNATIONAL DEVELOPMENT CONTRACTING METHODS AND CONTRACT TYPES SIMPLIFIED ACQUISITION PROCEDURES 713.000 Scope of part. The simplified...
Turbofan engine control system design using the LQG/LTR methodology
NASA Technical Reports Server (NTRS)
Garg, Sanjay
1989-01-01
Application of the linear-quadratic-Gaussian with loop-transfer-recovery methodology to design of a control system for a simplified turbofan engine model is considered. The importance of properly scaling the plant to achieve the desired target feedback loop is emphasized. The steps involved in the application of the methodology are discussed via an example, and evaluation results are presented for a reduced-order compensator. The effect of scaling the plant on the stability robustness evaluation of the closed-loop system is studied in detail.
Turbofan engine control system design using the LQG/LTR methodology
NASA Technical Reports Server (NTRS)
Garg, Sanjay
1989-01-01
Application of the Linear-Quadratic-Gaussian with Loop-Transfer-Recovery methodology to design of a control system for a simplified turbofan engine model is considered. The importance of properly scaling the plant to achieve the desired Target-Feedback-Loop is emphasized. The steps involved in the application of the methodology are discussed via an example, and evaluation results are presented for a reduced-order compensator. The effect of scaling the plant on the stability robustness evaluation of the closed-loop system is studied in detail.
Process membership in asynchronous environments
NASA Technical Reports Server (NTRS)
Ricciardi, Aleta M.; Birman, Kenneth P.
1993-01-01
The development of reliable distributed software is simplified by the ability to assume a fail-stop failure model. The emulation of such a model in an asynchronous distributed environment is discussed. The solution proposed, called Strong-GMP, can be supported through a highly efficient protocol, and was implemented as part of a distributed systems software project at Cornell University. The precise definition of the problem, the protocol, correctness proofs, and an analysis of costs are addressed.
Feedback linearization for control of air breathing engines
NASA Technical Reports Server (NTRS)
Phillips, Stephen; Mattern, Duane
1991-01-01
The method of feedback linearization for control of the nonlinear nozzle and compressor components of an air breathing engine is presented. This method overcomes the need for a large number of scheduling variables and operating points to accurately model highly nonlinear plants. Feedback linearization also results in linear closed loop system performance simplifying subsequent control design. Feedback linearization is used for the nonlinear partial engine model and performance is verified through simulation.
NASA Astrophysics Data System (ADS)
Li, Xiaoyu; Fan, Guodong; Pan, Ke; Wei, Guo; Zhu, Chunbo; Rizzoni, Giorgio; Canova, Marcello
2017-11-01
The design of a lumped parameter battery model preserving physical meaning is especially desired by the automotive researchers and engineers due to the strong demand for battery system control, estimation, diagnosis and prognostics. In light of this, a novel simplified fractional order electrochemical model is developed for electric vehicle (EV) applications in this paper. In the model, a general fractional order transfer function is designed for the solid phase lithium ion diffusion approximation. The dynamic characteristics of the electrolyte concentration overpotential are approximated by a first-order resistance-capacitor transfer function in the electrolyte phase. The Ohmic resistances and electrochemical reaction kinetics resistance are simplified to a lumped Ohmic resistance parameter. Overall, the number of model parameters is reduced from 30 to 9, yet the accuracy of the model is still guaranteed. In order to address the dynamics of phase-change phenomenon in the active particle during charging and discharging, variable solid-state diffusivity is taken into consideration in the model. Also, the observability of the model is analyzed on two types of lithium ion batteries subsequently. Results show the fractional order model with variable solid-state diffusivity agrees very well with experimental data at various current input conditions and is suitable for electric vehicle applications.
Putting proteins back into water
NASA Astrophysics Data System (ADS)
de Los Rios, Paolo; Caldarelli, Guido
2000-12-01
We introduce a simplified protein model where the solvent (water) degrees of freedom appear explicitly (although in an extremely simplified fashion). Using this model we are able to recover the thermodynamic phenomenology of proteins over a wide range of temperatures. In particular we describe both the warm and the cold protein denaturation within a single framework, while addressing important issues about the structure of model proteins.
NASA Astrophysics Data System (ADS)
Nguyen, Tien M.; Guillen, Andy T.; Hant, James J.; Kizer, Justin R.; Min, Inki A.; Siedlak, Dennis J. L.; Yoh, James
2017-05-01
The U.S. Air Force (USAF) has recognized the needs for owning the program and technical knowledge within the Air Force concerning the systems being acquired to ensure success. This paper extends the previous work done by the authors [1-2] on the "Resilient Program Technical Baseline Framework for Future Space Systems" and "Portfolio Decision Support Tool (PDST)" to the development and implementation of the Program and Technical Baseline (PTB) Tracking Tool (PTBTL) for the DOD acquisition life cycle. The paper describes the "simplified" PTB tracking model with a focus on the preaward phases and discusses how to implement this model in PDST.
Multi-objective optimization in quantum parameter estimation
NASA Astrophysics Data System (ADS)
Gong, BeiLi; Cui, Wei
2018-04-01
We investigate quantum parameter estimation based on linear and Kerr-type nonlinear controls in an open quantum system, and consider the dissipation rate as an unknown parameter. We show that while the precision of parameter estimation is improved, it usually introduces a significant deformation to the system state. Moreover, we propose a multi-objective model to optimize the two conflicting objectives: (1) maximizing the Fisher information, improving the parameter estimation precision, and (2) minimizing the deformation of the system state, which maintains its fidelity. Finally, simulations of a simplified ɛ-constrained model demonstrate the feasibility of the Hamiltonian control in improving the precision of the quantum parameter estimation.
Neuron Bifurcations in an Analog Electronic Burster
NASA Astrophysics Data System (ADS)
Savino, Guillermo V.; Formigli, Carlos M.
2007-05-01
Although bursting electrical activity is typical in some brain neurons and biological excitable systems, its functions and mechanisms of generation are yet unknown. In modeling such complex oscillations, analog electronic models are faster than mathematical ones, whether phenomenologically or theoretically based. We show experimentally that bursting oscillator circuits can be greatly simplified by using the nonlinear characteristics of two bipolar transistors. Since our circuit qualitatively mimics Hodgkin and Huxley model neurons bursting activity, and bifurcations originating neuro-computational properties, it is not only a caricature but a realistic model.
The Hubbard Model and Piezoresistivity
NASA Astrophysics Data System (ADS)
Celebonovic, V.; Nikolic, M. G.
2018-02-01
Piezoresistivity was discovered in the nineteenth century. Numerous applications of this phenomenon exist nowadays. The aim of the present paper is to explore the possibility of applying the Hubbard model to theoretical work on piezoresistivity. Results are encouraging, in the sense that numerical values of the strain gauge obtained by using the Hubbard model agree with results obtained by other methods. The calculation is simplified by the fact that it uses results for the electrical conductivity of 1D systems previously obtained within the Hubbard model by one of the present authors.
A Novel Perfusion System for Damage Control of Hyperkalemia in Swine (Sus scrofa)
2018-03-20
randomized to the control or treatment group . In both groups , blood was pumped through an extracorporeal circuit (EC) with an in-line hemodialyzer. In...Results:Serum potassium concentration was significantly lower in the treatment than in the control group over time (P = 0.02). There was no difference...environments. We hypothesized that a simplified hemoperfusion system could control serum potassium concentration in a swine model of acute
A Novel Perfusion System for Damage Control of Hyperkalemia in Swine (Sus scrofa)
2018-03-20
randomized to the control or treatment group . In both groups , blood was pumped through an extracorporeal circuit (EC) with an in-line hemodialyzer. In...Results: Serum potassium concentration was significantly lower in the treatment than in the control group over time (P = 0.02). There was no...austere environments. We hypothesized that a simplified hemoperfusion system could control serum potassium concentration in a swine model of acute
Xu, Haiyang; Wang, Ping
2016-01-01
In order to verify the real-time reliability of unmanned aerial vehicle (UAV) flight control system and comply with the airworthiness certification standard, we proposed a model-based integration framework for modeling and verification of time property. Combining with the advantages of MARTE, this framework uses class diagram to create the static model of software system, and utilizes state chart to create the dynamic model. In term of the defined transformation rules, the MARTE model could be transformed to formal integrated model, and the different part of the model could also be verified by using existing formal tools. For the real-time specifications of software system, we also proposed a generating algorithm for temporal logic formula, which could automatically extract real-time property from time-sensitive live sequence chart (TLSC). Finally, we modeled the simplified flight control system of UAV to check its real-time property. The results showed that the framework could be used to create the system model, as well as precisely analyze and verify the real-time reliability of UAV flight control system.
Xu, Haiyang; Wang, Ping
2016-01-01
In order to verify the real-time reliability of unmanned aerial vehicle (UAV) flight control system and comply with the airworthiness certification standard, we proposed a model-based integration framework for modeling and verification of time property. Combining with the advantages of MARTE, this framework uses class diagram to create the static model of software system, and utilizes state chart to create the dynamic model. In term of the defined transformation rules, the MARTE model could be transformed to formal integrated model, and the different part of the model could also be verified by using existing formal tools. For the real-time specifications of software system, we also proposed a generating algorithm for temporal logic formula, which could automatically extract real-time property from time-sensitive live sequence chart (TLSC). Finally, we modeled the simplified flight control system of UAV to check its real-time property. The results showed that the framework could be used to create the system model, as well as precisely analyze and verify the real-time reliability of UAV flight control system. PMID:27918594
Code of Federal Regulations, 2010 CFR
2010-10-01
... submitting quotations under the simplified acquisition threshold-non-commercial. 1352.213-71 Section 1352.213... quotations under the simplified acquisition threshold—non-commercial. As prescribed in 48 CFR 1313.302-1-70... Threshold—Non-Commercial (APR 2010) (a) North American Industry Classification System (NAICS) code and small...
SF-FDTD analysis of a predictive physical model for parallel aligned liquid crystal devices
NASA Astrophysics Data System (ADS)
Márquez, Andrés.; Francés, Jorge; Martínez, Francisco J.; Gallego, Sergi; Alvarez, Mariela L.; Calzado, Eva M.; Pascual, Inmaculada; Beléndez, Augusto
2017-08-01
Recently we demonstrated a novel and simplified model enabling to calculate the voltage dependent retardance provided by parallel aligned liquid crystal devices (PA-LCoS) for a very wide range of incidence angles and any wavelength in the visible. To our knowledge it represents the most simplified approach still showing predictive capability. Deeper insight into the physics behind the simplified model is necessary to understand if the parameters in the model are physically meaningful. Since the PA-LCoS is a black-box where we do not have information about the physical parameters of the device, we cannot perform this kind of analysis using the experimental retardance measurements. In this work we develop realistic simulations for the non-linear tilt of the liquid crystal director across the thickness of the liquid crystal layer in the PA devices. We consider these profiles to have a sine-like shape, which is a good approximation for typical ranges of applied voltage in commercial PA-LCoS microdisplays. For these simulations we develop a rigorous method based on the split-field finite difference time domain (SF-FDTD) technique which provides realistic retardance values. These values are used as the experimental measurements to which the simplified model is fitted. From this analysis we learn that the simplified model is very robust, providing unambiguous solutions when fitting its parameters. We also learn that two of the parameters in the model are physically meaningful, proving a useful reverse-engineering approach, with predictive capability, to probe into internal characteristics of the PA-LCoS device.
Wind tunnel investigation of a high lift system with pneumatic flow control
NASA Astrophysics Data System (ADS)
Victor, Pricop Mihai; Mircea, Boscoianu; Daniel-Eugeniu, Crunteanu
2016-06-01
Next generation passenger aircrafts require more efficient high lift systems under size and mass constraints, to achieve more fuel efficiency. This can be obtained in various ways: to improve/maintain aerodynamic performance while simplifying the mechanical design of the high lift system going to a single slotted flap, to maintain complexity and improve the aerodynamics even more, etc. Laminar wings have less efficient leading edge high lift systems if any, requiring more performance from the trailing edge flap. Pulsed blowing active flow control (AFC) in the gap of single element flap is investigated for a relatively large model. A wind tunnel model, test campaign and results and conclusion are presented.
Behavior systems and reinforcement: an integrative approach.
Timberlake, W
1993-01-01
Most traditional conceptions of reinforcement are based on a simple causal model in which responding is strengthened by the presentation of a reinforcer. I argue that reinforcement is better viewed as the outcome of constraint of a functioning causal system comprised of multiple interrelated causal sequences, complex linkages between causes and effects, and a set of initial conditions. Using a simplified system conception of the reinforcement situation, I review the similarities and drawbacks of traditional reinforcement models and analyze the recent contributions of cognitive, regulatory, and ecological approaches. Finally, I show how the concept of behavior systems can begin to incorporate both traditional and recent conceptions of reinforcement in an integrative approach. PMID:8354963
Parachute dynamics and stability analysis. [using nonlinear differential equations of motion
NASA Technical Reports Server (NTRS)
Ibrahim, S. K.; Engdahl, R. A.
1974-01-01
The nonlinear differential equations of motion for a general parachute-riser-payload system are developed. The resulting math model is then applied for analyzing the descent dynamics and stability characteristics of both the drogue stabilization phase and the main descent phase of the space shuttle solid rocket booster (SRB) recovery system. The formulation of the problem is characterized by a minimum number of simplifying assumptions and full application of state-of-the-art parachute technology. The parachute suspension lines and the parachute risers can be modeled as elastic elements, and the whole system may be subjected to specified wind and gust profiles in order to assess their effects on the stability of the recovery system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kydonieos, M; Folgueras, A; Florescu, L
2016-06-15
Purpose: Elekta recently developed a solution for in-vivo EPID dosimetry (iViewDose, Elekta AB, Stockholm, Sweden) in conjunction with the Netherlands Cancer Institute (NKI). This uses a simplified commissioning approach via Template Commissioning Models (TCMs), consisting of a subset of linac-independent pre-defined parameters. This work compares the performance of iViewDose using a TCM commissioning approach with that corresponding to full commissioning. Additionally, the dose reconstruction based on the simplified commissioning approach is validated via independent dose measurements. Methods: Measurements were performed at the NKI on a VersaHD™ (Elekta AB, Stockholm, Sweden). Treatment plans were generated with Pinnacle 9.8 (Philips Medical Systems,more » Eindhoven, The Netherlands). A farmer chamber dose measurement and two EPID images were used to create a linac-specific commissioning model based on a TCM. A complete set of commissioning measurements was collected and a full commissioning model was created.The performance of iViewDose based on the two commissioning approaches was compared via a series of set-to-work tests in a slab phantom. In these tests, iViewDose reconstructs and compares EPID to TPS dose for square fields, IMRT and VMAT plans via global gamma analysis and isocentre dose difference. A clinical VMAT plan was delivered to a homogeneous Octavius 4D phantom (PTW, Freiburg, Germany). Dose was measured with the Octavius 1500 array and VeriSoft software was used for 3D dose reconstruction. EPID images were acquired. TCM-based iViewDose and 3D Octavius dose distributions were compared against the TPS. Results: For both the TCM-based and the full commissioning approaches, the pass rate, mean γ and dose difference were >97%, <0.5 and <2.5%, respectively. Equivalent gamma analysis results were obtained for iViewDose (TCM approach) and Octavius for a VMAT plan. Conclusion: iViewDose produces similar results with the simplified and full commissioning approaches. Good agreement is obtained between iViewDose (simplified approach) and the independent measurement tool. This research is funded by Elekta Limited.« less
Integrating the social sciences to understand human-water dynamics
NASA Astrophysics Data System (ADS)
Carr, G.; Kuil, L., Jr.
2017-12-01
Many interesting and exciting socio-hydrological models have been developed in recent years. Such models often aim to capture the dynamic interplay between people and water for a variety of hydrological settings. As such, peoples' behaviours and decisions are brought into the models as drivers of and/or respondents to the hydrological system. To develop and run such models over a sufficiently long time duration to observe how the water-human system evolves the human component is often simplified according to one or two key behaviours, characteristics or decisions (e.g. a decision to move away from a drought or flood area; a decision to pump groundwater, or a decision to plant a less water demanding crop). To simplify the social component, socio-hydrological modellers often pull knowledge and understanding from existing social science theories. This requires them to negotiate complex territory, where social theories may be underdeveloped, contested, dynamically evolving, or case specific and difficult to generalise or upscale. A key question is therefore, how can this process be supported so that the resulting socio-hydrological models adequately describe the system and lead to meaningful understanding of how and why it behaves as it does? Collaborative interdisciplinary research teams that bring together social and natural scientists are likely to be critical. Joint development of the model framework requires specific attention to clarification to expose all underlying assumptions, constructive discussion and negotiation to reach agreement on the modelled system and its boundaries. Mutual benefits to social scientists can be highlighted, i.e. socio-hydrological work can provide insights for further exploring and testing social theories. Collaborative work will also help ensure underlying social theory is made explicit, and may identify ways to include and compare multiple theories. As socio-hydrology progresses towards supporting policy development, approaches that brings in stakeholders and non-scientist participants to develop the conceptual modelling framework will become essential. They are also critical for fully understanding human-water dynamics.
NASA Astrophysics Data System (ADS)
Al-Rabadi, Anas N.
2009-10-01
This research introduces a new method of intelligent control for the control of the Buck converter using newly developed small signal model of the pulse width modulation (PWM) switch. The new method uses supervised neural network to estimate certain parameters of the transformed system matrix [Ã]. Then, a numerical algorithm used in robust control called linear matrix inequality (LMI) optimization technique is used to determine the permutation matrix [P] so that a complete system transformation {[B˜], [C˜], [Ẽ]} is possible. The transformed model is then reduced using the method of singular perturbation, and state feedback control is applied to enhance system performance. The experimental results show that the new control methodology simplifies the model in the Buck converter and thus uses a simpler controller that produces the desired system response for performance enhancement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marinov, N.M.; Westbrook, C.K.; Cloutman, L.D.
Work being carried out at LLNL has concentrated on studies of the role of chemical kinetics in a variety of problems related to hydrogen combustion in practical combustion systems, with an emphasis on vehicle propulsion. Use of hydrogen offers significant advantages over fossil fuels, and computer modeling provides advantages when used in concert with experimental studies. Many numerical {open_quotes}experiments{close_quotes} can be carried out quickly and efficiently, reducing the cost and time of system development, and many new and speculative concepts can be screened to identify those with sufficient promise to pursue experimentally. This project uses chemical kinetic and fluid dynamicmore » computational modeling to examine the combustion characteristics of systems burning hydrogen, either as the only fuel or mixed with natural gas. Oxidation kinetics are combined with pollutant formation kinetics, including formation of oxides of nitrogen but also including air toxics in natural gas combustion. We have refined many of the elementary kinetic reaction steps in the detailed reaction mechanism for hydrogen oxidation. To extend the model to pressures characteristic of internal combustion engines, it was necessary to apply theoretical pressure falloff formalisms for several key steps in the reaction mechanism. We have continued development of simplified reaction mechanisms for hydrogen oxidation, we have implemented those mechanisms into multidimensional computational fluid dynamics models, and we have used models of chemistry and fluid dynamics to address selected application problems. At the present time, we are using computed high pressure flame, and auto-ignition data to further refine the simplified kinetics models that are then to be used in multidimensional fluid mechanics models. Detailed kinetics studies have investigated hydrogen flames and ignition of hydrogen behind shock waves, intended to refine the detailed reactions mechanisms.« less
NASA Astrophysics Data System (ADS)
De Lucia, Marco; Kempka, Thomas; Kühn, Michael
2014-05-01
Fully-coupled reactive transport simulations involving multiphase hydrodynamics and chemical reactions in heterogeneous settings are extremely challenging from a computational point of view. This often leads to oversimplification of the investigated system: coarse spatial discretization, to keep the number of elements in the order of few thousands; simplified chemistry, disregarding many potentially important reactions. A novel approach for coupling non-reactive hydrodynamic simulations with the outcome of single batch geochemical simulations was therefore introduced to assess the potential long-term mineral trapping at the Ketzin pilot site for underground CO2 storage in Germany [1],[2]. The advantage of the coupling is the ability to use multi-million grid non-reactive hydrodynamics simulations on one side and few batch 0D geochemical simulations on the other, so that the complexity of both systems does not need to be reduced. This contribution shows the approach which was taken to validate this simplified coupling scheme. The procedure involved batch simulations of the reference geochemical model, then performing both non-reactive and fully coupled 1D and 3D reactive transport simulations and finally applying the simplified coupling scheme based on the non-reactive and geochemical batch model. The TOUGHREACT/ECO2N [3] simulator was adopted for the validation. The degree of refinement of the spatial grid and the complexity and velocity of the mineral reactions, along with a cut-off value for the minimum concentration of dissolved CO2 allowed to originate precipitates in the simplified approach were found out to be the governing parameters for the convergence of the two schemes. Systematic discrepancies between the approaches are not reducible, simply because there is no feedback between chemistry and hydrodynamics, and can reach 20 % - 30 % in unfavourable cases. However, even such discrepancy is completely acceptable, in our opinion, given the amount of uncertainty underlying the geochemical models. References [1] Klein, E., De Lucia, M., Kempka, T. Kühn, M. 2013. Evaluation of longterm mineral trapping at the Ketzin pilot site for CO2 storage: an integrative approach using geochemical modelling and reservoir simulation. International Journal of Greenhouse Gas Control 19: 720-730, doi:10.1016/j.ijggc.2013.05.014 [2] Kempka, T., Klein, E., De Lucia, M., Tillner, E. Kühn, M. 2013. Assessment of Long-term CO2 Trapping Mechanisms at the Ketzin Pilot Site (Germany) by Coupled Numerical Modelling. Energy Procedia 37: 5419-5426, doi:10.1016/j.egypro.2013.06.460 [3] Xu, T., Spycher, N., Sonnenthal, E., Zhang, G., Zheng, L., Pruess, K. 2010. TOUGHREACT Version 2.0: A simulator for subsurface reactive transport under non-isothermal multiphase flow conditions, Computers & Geosciences 37(6), doi:10.1016/j.cageo.2010.10.007
ERIC Educational Resources Information Center
Wahid, Wazira Ali Abdul; Ahmed, Eqbal Sulaiman; Wahid, Muntaha Ali Abdul
2015-01-01
This issue expresses a research study based on the online interactions of English teaching specially conversation through utilizing VOIP (Voice over Internet Protocol) and cosmopolitan online theme. Data has been achieved by interviews. Simplifiers indicate how oral tasks require to be planned upon to facilitate engagement models propitious to…
Scalable problems and memory bounded speedup
NASA Technical Reports Server (NTRS)
Sun, Xian-He; Ni, Lionel M.
1992-01-01
In this paper three models of parallel speedup are studied. They are fixed-size speedup, fixed-time speedup and memory-bounded speedup. The latter two consider the relationship between speedup and problem scalability. Two sets of speedup formulations are derived for these three models. One set considers uneven workload allocation and communication overhead and gives more accurate estimation. Another set considers a simplified case and provides a clear picture on the impact of the sequential portion of an application on the possible performance gain from parallel processing. The simplified fixed-size speedup is Amdahl's law. The simplified fixed-time speedup is Gustafson's scaled speedup. The simplified memory-bounded speedup contains both Amdahl's law and Gustafson's scaled speedup as special cases. This study leads to a better understanding of parallel processing.
NASA Astrophysics Data System (ADS)
Kim, Han Sung; Yeom, Yeon Soo; Tat Nguyen, Thang; Choi, Chansoo; Han, Min Cheol; Lee, Jai Ki; Kim, Chan Hyeong; Zankl, Maria; Petoussi-Henss, Nina; Bolch, Wesley E.; Lee, Choonsik; Qiu, Rui; Eckerman, Keith; Chung, Beom Sun
2017-03-01
It is not feasible to define very small or complex organs and tissues in the current voxel-type adult reference computational phantoms of the International Commission on Radiological Protection (ICRP), which limit dose coefficients for weakly penetrating radiations. To address the problem, the ICRP is converting the voxel-type reference phantoms into mesh-type phantoms. In the present study, as a part of the conversion project, the micrometer-thick target and source regions in the alimentary and respiratory tract systems as described in ICRP Publications 100 and 66 were included in the mesh-type ICRP reference adult male and female phantoms. In addition, realistic lung airway models were simulated to represent the bronchial (BB) and bronchiolar (bb) regions. The electron specific absorbed fraction (SAF) values for the alimentary and respiratory tract systems were then calculated and compared with the values calculated with the stylized models of ICRP Publications 100 and 66. The comparisons show generally good agreement for the oral cavity, oesophagus, and BB, whereas for the stomach, small intestine, large intestine, extrathoracic region, and bb, there are some differences (e.g. up to ~9 times in the large intestine). The difference is mainly due to anatomical difference in these organs between the realistic mesh-type phantoms and the simplified stylized models. The new alimentary and respiratory tract models in the mesh-type ICRP reference phantoms preserve the topology and dimensions of the voxel-type ICRP phantoms and provide more reliable SAF values than the simplified models adopted in previous ICRP Publications.
Simplified models of dark matter with a long-lived co-annihilation partner
NASA Astrophysics Data System (ADS)
Khoze, Valentin V.; Plascencia, Alexis D.; Sakurai, Kazuki
2017-06-01
We introduce a new set of simplified models to address the effects of 3-point interactions between the dark matter particle, its dark co-annihilation partner, and the Standard Model degree of freedom, which we take to be the tau lepton. The contributions from dark matter co-annihilation channels are highly relevant for a determination of the correct relic abundance. We investigate these effects as well as the discovery potential for dark matter co-annihilation partners at the LHC. A small mass splitting between the dark matter and its partner is preferred by the co-annihilation mechanism and suggests that the co-annihilation partners may be long-lived (stable or meta-stable) at collider scales. It is argued that such long-lived electrically charged particles can be looked for at the LHC in searches of anomalous charged tracks. This approach and the underlying models provide an alternative/complementarity to the mono-jet and multi-jet based dark matter searches widely used in the context of simplified models with s-channel mediators. We consider four types of simplified models with different particle spins and coupling structures. Some of these models are manifestly gauge invariant and renormalizable, others would ultimately require a UV completion. These can be realised in terms of supersymmetric models in the neutralino-stau co-annihilation regime, as well as models with extra dimensions or composite models.
Solar dynamic heat receiver thermal characteristics in low earth orbit
NASA Technical Reports Server (NTRS)
Wu, Y. C.; Roschke, E. J.; Birur, G. C.
1988-01-01
A simplified system model is under development for evaluating the thermal characteristics and thermal performance of a solar dynamic spacecraft energy system's heat receiver. Results based on baseline orbit, power system configuration, and operational conditions, are generated for three basic receiver concepts and three concentrator surface slope errors. Receiver thermal characteristics and thermal behavior in LEO conditions are presented. The configuration in which heat is directly transferred to the working fluid is noted to generate the best system and thermal characteristics. as well as the lowest performance degradation with increasing slope error.
Reproducing Phenomenology of Peroxidation Kinetics via Model Optimization
NASA Astrophysics Data System (ADS)
Ruslanov, Anatole D.; Bashylau, Anton V.
2010-06-01
We studied mathematical modeling of lipid peroxidation using a biochemical model system of iron (II)-ascorbate-dependent lipid peroxidation of rat hepatocyte mitochondrial fractions. We found that antioxidants extracted from plants demonstrate a high intensity of peroxidation inhibition. We simplified the system of differential equations that describes the kinetics of the mathematical model to a first order equation, which can be solved analytically. Moreover, we endeavor to algorithmically and heuristically recreate the processes and construct an environment that closely resembles the corresponding natural system. Our results demonstrate that it is possible to theoretically predict both the kinetics of oxidation and the intensity of inhibition without resorting to analytical and biochemical research, which is important for cost-effective discovery and development of medical agents with antioxidant action from the medicinal plants.
Universal block diagram based modeling and simulation schemes for fractional-order control systems.
Bai, Lu; Xue, Dingyü
2017-05-08
Universal block diagram based schemes are proposed for modeling and simulating the fractional-order control systems in this paper. A fractional operator block in Simulink is designed to evaluate the fractional-order derivative and integral. Based on the block, the fractional-order control systems with zero initial conditions can be modeled conveniently. For modeling the system with nonzero initial conditions, the auxiliary signal is constructed in the compensation scheme. Since the compensation scheme is very complicated, therefore the integrator chain scheme is further proposed to simplify the modeling procedures. The accuracy and effectiveness of the schemes are assessed in the examples, the computation results testify the block diagram scheme is efficient for all Caputo fractional-order ordinary differential equations (FODEs) of any complexity, including the implicit Caputo FODEs. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
A model for the Space Shuttle Main Engine High Pressure Oxidizer Turbopump shaft seal system
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.
1990-01-01
A model of the High Pressure Oxidizer Turbopump (HPOTP) shaft seal system on the Space Shuttle Main Engine (SSME) is described. The model predicts the fluid properties and flow rates throughout this system for a number of conditions simulating failed seals. The results agree well with qualitative expectations and redline values but cannot be verified with actual data due to the lack thereof. The results indicate that each failure mode results in a unique distribution of properties throughout the seal system and can therefore be individually identified given the proper instrumentation. Furthermore, the detection process can be built on the principle of qualitative reasoning without the use of exact fluid property values. A simplified implementation of the model which does not include the slinger/labyrinth seal combination has been developed and will be useful for inclusion in a real-time diagnostic system.
A continuum theory for multicomponent chromatography modeling.
Pfister, David; Morbidelli, Massimo; Nicoud, Roger-Marc
2016-05-13
A continuum theory is proposed for modeling multicomponent chromatographic systems under linear conditions. The model is based on the description of complex mixtures, possibly involving tens or hundreds of solutes, by a continuum. The present approach is shown to be very efficient when dealing with a large number of similar components presenting close elution behaviors and whose individual analytical characterization is impossible. Moreover, approximating complex mixtures by continuous distributions of solutes reduces the required number of model parameters to the few ones specific to the characterization of the selected continuous distributions. Therefore, in the frame of the continuum theory, the simulation of large multicomponent systems gets simplified and the computational effectiveness of the chromatographic model is thus dramatically improved. Copyright © 2016 Elsevier B.V. All rights reserved.
Fiia: A Model-Based Approach to Engineering Collaborative Augmented Reality
NASA Astrophysics Data System (ADS)
Wolfe, Christopher; Smith, J. David; Phillips, W. Greg; Graham, T. C. Nicholas
Augmented reality systems often involve collaboration among groups of people. While there are numerous toolkits that aid the development of such augmented reality groupware systems (e.g., ARToolkit and Groupkit), there remains an enormous gap between the specification of an AR groupware application and its implementation. In this chapter, we present Fiia, a toolkit which simplifies the development of collaborative AR applications. Developers specify the structure of their applications using the Fiia modeling language, which abstracts details of networking and provides high-level support for specifying adapters between the physical and virtual world. The Fiia.Net runtime system then maps this conceptual model to a runtime implementation. We illustrate Fiia via Raptor, an augmented reality application used to help small groups collaboratively prototype video games.
NASA Astrophysics Data System (ADS)
Márquez, Andrés; Francés, Jorge; Martínez, Francisco J.; Gallego, Sergi; Álvarez, Mariela L.; Calzado, Eva M.; Pascual, Inmaculada; Beléndez, Augusto
2018-03-01
Simplified analytical models with predictive capability enable simpler and faster optimization of the performance in applications of complex photonic devices. We recently demonstrated the most simplified analytical model still showing predictive capability for parallel-aligned liquid crystal on silicon (PA-LCoS) devices, which provides the voltage-dependent retardance for a very wide range of incidence angles and any wavelength in the visible. We further show that the proposed model is not only phenomenological but also physically meaningful, since two of its parameters provide the correct values for important internal properties of these devices related to the birefringence, cell gap, and director profile. Therefore, the proposed model can be used as a means to inspect internal physical properties of the cell. As an innovation, we also show the applicability of the split-field finite-difference time-domain (SF-FDTD) technique for phase-shift and retardance evaluation of PA-LCoS devices under oblique incidence. As a simplified model for PA-LCoS devices, we also consider the exact description of homogeneous birefringent slabs. However, we show that, despite its higher degree of simplification, the proposed model is more robust, providing unambiguous and physically meaningful solutions when fitting its parameters.
Determining stressor-response relationships in reef building corals is a critical need for researchers because of global declines in coral reef ecosystems. A simplified recirculating coral exposure system for laboratory testing of a diversity of species and morphologies of reef b...
Multi-Fidelity Framework for Modeling Combustion Instability
2016-07-27
generated from the reduced-domain dataset. Evaluations of the framework are performed based on simplified test problems for a model rocket combustor showing...generated from the reduced-domain dataset. Evaluations of the framework are performed based on simplified test problems for a model rocket combustor...of Aeronautics and Astronautics and Associate Fellow AIAA. ‡ Professor Emeritus. § Senior Scientist, Rocket Propulsion Division and Senior Member
Dynamic modeling method for infrared smoke based on enhanced discrete phase model
NASA Astrophysics Data System (ADS)
Zhang, Zhendong; Yang, Chunling; Zhang, Yan; Zhu, Hongbo
2018-03-01
The dynamic modeling of infrared (IR) smoke plays an important role in IR scene simulation systems and its accuracy directly influences the system veracity. However, current IR smoke models cannot provide high veracity, because certain physical characteristics are frequently ignored in fluid simulation; simplifying the discrete phase as a continuous phase and ignoring the IR decoy missile-body spinning. To address this defect, this paper proposes a dynamic modeling method for IR smoke, based on an enhanced discrete phase model (DPM). A mathematical simulation model based on an enhanced DPM is built and a dynamic computing fluid mesh is generated. The dynamic model of IR smoke is then established using an extended equivalent-blackbody-molecule model. Experiments demonstrate that this model realizes a dynamic method for modeling IR smoke with higher veracity.
Ferrofluids: Modeling, numerical analysis, and scientific computation
NASA Astrophysics Data System (ADS)
Tomas, Ignacio
This dissertation presents some developments in the Numerical Analysis of Partial Differential Equations (PDEs) describing the behavior of ferrofluids. The most widely accepted PDE model for ferrofluids is the Micropolar model proposed by R.E. Rosensweig. The Micropolar Navier-Stokes Equations (MNSE) is a subsystem of PDEs within the Rosensweig model. Being a simplified version of the much bigger system of PDEs proposed by Rosensweig, the MNSE are a natural starting point of this thesis. The MNSE couple linear velocity u, angular velocity w, and pressure p. We propose and analyze a first-order semi-implicit fully-discrete scheme for the MNSE, which decouples the computation of the linear and angular velocities, is unconditionally stable and delivers optimal convergence rates under assumptions analogous to those used for the Navier-Stokes equations. Moving onto the much more complex Rosensweig's model, we provide a definition (approximation) for the effective magnetizing field h, and explain the assumptions behind this definition. Unlike previous definitions available in the literature, this new definition is able to accommodate the effect of external magnetic fields. Using this definition we setup the system of PDEs coupling linear velocity u, pressure p, angular velocity w, magnetization m, and magnetic potential ϕ We show that this system is energy-stable and devise a numerical scheme that mimics the same stability property. We prove that solutions of the numerical scheme always exist and, under certain simplifying assumptions, that the discrete solutions converge. A notable outcome of the analysis of the numerical scheme for the Rosensweig's model is the choice of finite element spaces that allow the construction of an energy-stable scheme. Finally, with the lessons learned from Rosensweig's model, we develop a diffuse-interface model describing the behavior of two-phase ferrofluid flows and present an energy-stable numerical scheme for this model. For a simplified version of this model and the corresponding numerical scheme we prove (in addition to stability) convergence and existence of solutions as by-product . Throughout this dissertation, we will provide numerical experiments, not only to validate mathematical results, but also to help the reader gain a qualitative understanding of the PDE models analyzed in this dissertation (the MNSE, the Rosenweig's model, and the Two-phase model). In addition, we also provide computational experiments to illustrate the potential of these simple models and their ability to capture basic phenomenological features of ferrofluids, such as the Rosensweig instability for the case of the two-phase model. In this respect, we highlight the incisive numerical experiments with the two-phase model illustrating the critical role of the demagnetizing field to reproduce physically realistic behavior of ferrofluids.
Modeling transport kinetics in clinoptilolite-phosphate rock systems
NASA Technical Reports Server (NTRS)
Allen, E. R.; Ming, D. W.; Hossner, L. R.; Henninger, D. L.
1995-01-01
Nutrient release in clinoptilolite-phosphate rock (Cp-PR) systems occurs through dissolution and cation-exchange reactions. Investigating the kinetics of these reactions expands our understanding of nutrient release processes. Research was conducted to model transport kinetics of nutrient release in Cp-PR systems. The objectives were to identify empirical models that best describe NH4, K, and P release and define diffusion-controlling processes. Materials included a Texas clinoptilolite (Cp) and North Carolina phosphate rock (PR). A continuous-flow thin-disk technique was used. Models evaluated included zero order, first order, second order, parabolic diffusion, simplified Elovich, Elovich, and power function. The power-function, Elovich, and parabolic-diffusion models adequately described NH4, K, and P release. The power-function model was preferred because of its simplicity. Models indicated nutrient release was diffusion controlled. Primary transport processes controlling nutrient release for the time span observed were probably the result of a combination of several interacting transport mechanisms.
Glistening-region model for multipath studies
NASA Astrophysics Data System (ADS)
Groves, Gordon W.; Chow, Winston C.
1998-07-01
The goal is to achieve a model of radar sea reflection with improved fidelity that is amenable to practical implementation. The geometry of reflection from a wavy surface is formulated. The sea surface is divided into two components: the smooth `chop' consisting of the longer wavelengths, and the `roughness' of the short wavelengths. Ordinary geometric reflection from the chop surface is broadened by the roughness. This same representation serves both for forward scatter and backscatter (sea clutter). The `Road-to-Happiness' approximation, in which the mean sea surface is assumed cylindrical, simplifies the reflection geometry for low-elevation targets. The effect of surface roughness is assumed to make the sea reflection coefficient depending on the `Deviation Angle' between the specular and the scattering directions. The `specular' direction is that into which energy would be reflected by a perfectly smooth facet. Assuming that the ocean waves are linear and random allows use of Gaussian statistics, greatly simplifying the formulation by allowing representation of the sea chop by three parameters. An approximation of `low waves' and retention of the sea-chop slope components only through second order provides further simplification. The simplifying assumptions make it possible to take the predicted 2D ocean wave spectrum into account in the calculation of sea-surface radar reflectivity, to provide algorithms for support of an operational system for dealing with target tracking in the presence of multipath. The product will be of use in simulated studies to evaluate different trade-offs in alternative tracking schemes, and will form the basis of a tactical system for ship defense against low flyers.
The design and analysis of mooring system
NASA Astrophysics Data System (ADS)
Li, Yixuan
2017-05-01
In this paper, the force status and a design method of single chain mooring system for shallow sea observation network are studied. With treating the link of a chain, steel drum and steel pipe as a rigid body, the recurrence model is established by using Newton's first law and the law of Moment equilibrium theorem. Via the simplified calculation of dichotomy searching, we determine the design parameters of mooring system, such as anchor model, anchor chain length, heavy ball quality under different water flow and wind conditions. We apply MATLAB to simulate the internal steady state of the system in the fixed scheme, water depth of buoy and swimming area to meet the decision-making needs, providing an idea for the actual scheme design of mooring system.
From the SAIN,LIM system to the SENS algorithm: a review of a French approach of nutrient profiling.
Tharrey, Marion; Maillot, Matthieu; Azaïs-Braesco, Véronique; Darmon, Nicole
2017-08-01
Nutrient profiling aims to classify or rank foods according to their nutritional composition to assist policies aimed at improving the nutritional quality of foods and diets. The present paper reviews a French approach of nutrient profiling by describing the SAIN,LIM system and its evolution from its early draft to the simplified nutrition labelling system (SENS) algorithm. Considered in 2010 by WHO as the 'French model' of nutrient profiling, SAIN,LIM classifies foods into four classes based on two scores: a nutrient density score (NDS) called SAIN and a score of nutrients to limit called LIM, and one threshold on each score. The system was first developed by the French Food Standard Agency in 2008 in response to the European regulation on nutrition and health claims (European Commission (EC) 1924/2006) to determine foods that may be eligible for bearing claims. Recently, the European regulation (EC 1169/2011) on the provision of food information to consumers allowed simplified nutrition labelling to facilitate consumer information and help them make fully informed choices. In that context, the SAIN,LIM was adapted to obtain the SENS algorithm, a system able to rank foods for simplified nutrition labelling. The implementation of the algorithm followed a step-by-step, systematic, transparent and logical process where shortcomings of the SAIN,LIM were addressed by integrating specificities of food categories in the SENS, reducing the number of nutrients, ordering the four classes and introducing European reference intakes. Through the French example, this review shows how an existing nutrient profiling system can be specifically adapted to support public health nutrition policies.
NASA Technical Reports Server (NTRS)
Barth, Timothy; Saini, Subhash (Technical Monitor)
1999-01-01
This talk considers simplified finite element discretization techniques for first-order systems of conservation laws equipped with a convex (entropy) extension. Using newly developed techniques in entropy symmetrization theory, simplified forms of the Galerkin least-squares (GLS) and the discontinuous Galerkin (DG) finite element method have been developed and analyzed. The use of symmetrization variables yields numerical schemes which inherit global entropy stability properties of the POE system. Central to the development of the simplified GLS and DG methods is the Degenerative Scaling Theorem which characterizes right symmetrizes of an arbitrary first-order hyperbolic system in terms of scaled eigenvectors of the corresponding flux Jacobean matrices. A constructive proof is provided for the Eigenvalue Scaling Theorem with detailed consideration given to the Euler, Navier-Stokes, and magnetohydrodynamic (MHD) equations. Linear and nonlinear energy stability is proven for the simplified GLS and DG methods. Spatial convergence properties of the simplified GLS and DO methods are numerical evaluated via the computation of Ringleb flow on a sequence of successively refined triangulations. Finally, we consider a posteriori error estimates for the GLS and DG demoralization assuming error functionals related to the integrated lift and drag of a body. Sample calculations in 20 are shown to validate the theory and implementation.
NASA Astrophysics Data System (ADS)
Patrone, Paul N.; Einstein, T. L.; Margetis, Dionisios
2010-12-01
We study analytically and numerically a one-dimensional model of interacting line defects (steps) fluctuating on a vicinal crystal. Our goal is to formulate and validate analytical techniques for approximately solving systems of coupled nonlinear stochastic differential equations (SDEs) governing fluctuations in surface motion. In our analytical approach, the starting point is the Burton-Cabrera-Frank (BCF) model by which step motion is driven by diffusion of adsorbed atoms on terraces and atom attachment-detachment at steps. The step energy accounts for entropic and nearest-neighbor elastic-dipole interactions. By including Gaussian white noise to the equations of motion for terrace widths, we formulate large systems of SDEs under different choices of diffusion coefficients for the noise. We simplify this description via (i) perturbation theory and linearization of the step interactions and, alternatively, (ii) a mean-field (MF) approximation whereby widths of adjacent terraces are replaced by a self-consistent field but nonlinearities in step interactions are retained. We derive simplified formulas for the time-dependent terrace-width distribution (TWD) and its steady-state limit. Our MF analytical predictions for the TWD compare favorably with kinetic Monte Carlo simulations under the addition of a suitably conservative white noise in the BCF equations.
Anatomical and spiral wave reentry in a simplified model for atrial electrophysiology.
Richter, Yvonne; Lind, Pedro G; Seemann, Gunnar; Maass, Philipp
2017-04-21
For modeling the propagation of action potentials in the human atria, various models have been developed in the past, which take into account in detail the influence of the numerous ionic currents flowing through the cell membrane. Aiming at a simplified description, the Bueno-Orovio-Cherry-Fenton (BOCF) model for electric wave propagation in the ventricle has been adapted recently to atrial physiology. Here, we study this adapted BOCF (aBOCF) model with respect to its capability to accurately generate spatio-temporal excitation patterns found in anatomical and spiral wave reentry. To this end, we compare results of the aBOCF model with the more detailed one proposed by Courtemanche, Ramirez and Nattel (CRN model). We find that characteristic features of the reentrant excitation patterns seen in the CRN model are well captured by the aBOCF model. This opens the possibility to study origins of atrial fibrillation based on a simplified but still reliable description. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mono-X versus direct searches: simplified models for dark matter at the LHC
Liew, Seng Pei; Papucci, Michele; Vichi, Alessandro; ...
2017-06-15
We consider simplified models for dark matter (DM) at the LHC, focused on mono-Higgs, -Z or -b produced in the final state. Our primary purpose is to study the LHC reach of a relatively complete set of simplified models for these final states, while comparing the reach of the mono-X DM search against direct searches for the mediating particle. We find that direct searches for the mediating particle, whether in di-jets, jets+E T, multi-b+E T, or di-boson+E T, are usually stronger. We draw attention to the cases that the mono-X search is strongest, which include regions of parameter space inmore » inelastic DM, two Higgs doublet, and squark mediated production models with a compressed spectrum.« less
Mono-X versus direct searches: simplified models for dark matter at the LHC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liew, Seng Pei; Papucci, Michele; Vichi, Alessandro
We consider simplified models for dark matter (DM) at the LHC, focused on mono-Higgs, -Z or -b produced in the final state. Our primary purpose is to study the LHC reach of a relatively complete set of simplified models for these final states, while comparing the reach of the mono-X DM search against direct searches for the mediating particle. We find that direct searches for the mediating particle, whether in di-jets, jets+E T, multi-b+E T, or di-boson+E T, are usually stronger. We draw attention to the cases that the mono-X search is strongest, which include regions of parameter space inmore » inelastic DM, two Higgs doublet, and squark mediated production models with a compressed spectrum.« less
Senay, Gabriel B.; Budde, Michael E.; Verdin, James P.
2011-01-01
Evapotranspiration (ET) can be derived from satellite data using surface energy balance principles. METRIC (Mapping EvapoTranspiration at high Resolution with Internalized Calibration) is one of the most widely used models available in the literature to estimate ET from satellite imagery. The Simplified Surface Energy Balance (SSEB) model is much easier and less expensive to implement. The main purpose of this research was to present an enhanced version of the Simplified Surface Energy Balance (SSEB) model and to evaluate its performance using the established METRIC model. In this study, SSEB and METRIC ET fractions were compared using 7 Landsat images acquired for south central Idaho during the 2003 growing season. The enhanced SSEB model compared well with the METRIC model output exhibiting an r2 improvement from 0.83 to 0.90 in less complex topography (elevation less than 2000 m) and with an improvement of r2 from 0.27 to 0.38 in more complex (mountain) areas with elevation greater than 2000 m. Independent evaluation showed that both models exhibited higher variation in complex topographic regions, although more with SSEB than with METRIC. The higher ET fraction variation in the complex mountainous regions highlighted the difficulty of capturing the radiation and heat transfer physics on steep slopes having variable aspect with the simple index model, and the need to conduct more research. However, the temporal consistency of the results suggests that the SSEB model can be used on a wide range of elevation (more successfully up 2000 m) to detect anomalies in space and time for water resources management and monitoring such as for drought early warning systems in data scarce regions. SSEB has a potential for operational agro-hydrologic applications to estimate ET with inputs of surface temperature, NDVI, DEM and reference ET.
Senay, G.B.; Budde, M.E.; Verdin, J.P.
2011-01-01
Evapotranspiration (ET) can be derived from satellite data using surface energy balance principles. METRIC (Mapping EvapoTranspiration at high Resolution with Internalized Calibration) is one of the most widely used models available in the literature to estimate ET from satellite imagery. The Simplified Surface Energy Balance (SSEB) model is much easier and less expensive to implement. The main purpose of this research was to present an enhanced version of the Simplified Surface Energy Balance (SSEB) model and to evaluate its performance using the established METRIC model. In this study, SSEB and METRIC ET fractions were compared using 7 Landsat images acquired for south central Idaho during the 2003 growing season. The enhanced SSEB model compared well with the METRIC model output exhibiting an r2 improvement from 0.83 to 0.90 in less complex topography (elevation less than 2000m) and with an improvement of r2 from 0.27 to 0.38 in more complex (mountain) areas with elevation greater than 2000m. Independent evaluation showed that both models exhibited higher variation in complex topographic regions, although more with SSEB than with METRIC. The higher ET fraction variation in the complex mountainous regions highlighted the difficulty of capturing the radiation and heat transfer physics on steep slopes having variable aspect with the simple index model, and the need to conduct more research. However, the temporal consistency of the results suggests that the SSEB model can be used on a wide range of elevation (more successfully up 2000m) to detect anomalies in space and time for water resources management and monitoring such as for drought early warning systems in data scarce regions. SSEB has a potential for operational agro-hydrologic applications to estimate ET with inputs of surface temperature, NDVI, DEM and reference ET. ?? 2010.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Short selection process for procurements not to exceed the simplified acquisition threshold. 736.602-5 Section 736.602-5... selection process for procurements not to exceed the simplified acquisition threshold. References to FAR 36...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 4 2012-10-01 2012-10-01 false Short selection process for contracts not to exceed the simplified acquisition threshold. 436.602-5 Section 436.602-5 Federal... to exceed the simplified acquisition threshold. The HCA may include either or both procedures in FAR...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, J; Heins, D; Zhang, R
Purpose: To model the magnetic port in the temporary breast tissue expanders and to improve accuracy of dose calculation in Pinnacle, a commercial treatment planning system (TPS). Methods: A magnetic port in the tissue expander was modeled with a radiological measurement-basis; we have determined the dimension and the density of the model by film images and ion chamber measurement under the magnetic port, respectively. The model was then evaluated for various field sizes and photon energies by comparing depth dose values calculated by TPS (using our new model) and ion chamber measurement in a water tank. Also, the model wasmore » further evaluated by using a simplified anthropomorphic phantom with realistic geometry by placing thermoluminescent dosimeters (TLD)s around the magnetic port. Dose perturbations in a real patient’s treatment plan from the new model and a current clinical model, which is based on the subjective contouring created by the dosimetrist, were also compared. Results: Dose calculations based on our model showed less than 1% difference from ion chamber measurements for various field sizes and energies under the magnetic port when the magnetic port was placed parallel to the phantom surface. When it was placed perpendicular to the phantom surface, the maximum difference was 3.5%, while average differences were less than 3.1% for all cases. For the simplified anthropomorphic phantom, the calculated point doses agreed with TLD measurements within 5.2%. By comparing with the current model which is being used in clinic by TPS, it was found that current clinical model overestimates the effect from the magnetic port. Conclusion: Our new model showed good agreement with measurement for all cases. It could potentially improve the accuracy of dose delivery to the breast cancer patients.« less
Simplified ISCCP cloud regimes for evaluating cloudiness in CMIP5 models
NASA Astrophysics Data System (ADS)
Jin, Daeho; Oreopoulos, Lazaros; Lee, Dongmin
2017-01-01
We take advantage of ISCCP simulator data available for many models that participated in CMIP5, in order to introduce a framework for comparing model cloud output with corresponding ISCCP observations based on the cloud regime (CR) concept. Simplified global CRs are employed derived from the co-variations of three variables, namely cloud optical thickness, cloud top pressure and cloud fraction ( τ, p c , CF). Following evaluation criteria established in a companion paper of ours (Jin et al. 2016), we assess model cloud simulation performance based on how well the simplified CRs are simulated in terms of similarity of centroids, global values and map correlations of relative-frequency-of-occurrence, and long-term total cloud amounts. Mirroring prior results, modeled clouds tend to be too optically thick and not as extensive as in observations. CRs with high-altitude clouds from storm activity are not as well simulated here compared to the previous study, but other regimes containing near-overcast low clouds show improvement. Models that have performed well in the companion paper against CRs defined by joint τ- p c histograms distinguish themselves again here, but improvements for previously underperforming models are also seen. Averaging across models does not yield a drastically better picture, except for cloud geographical locations. Cloud evaluation with simplified regimes seems thus more forgiving than that using histogram-based CRs while still strict enough to reveal model weaknesses.
Fuzzy Edge Connectivity of Graphical Fuzzy State Space Model in Multi-connected System
NASA Astrophysics Data System (ADS)
Harish, Noor Ainy; Ismail, Razidah; Ahmad, Tahir
2010-11-01
Structured networks of interacting components illustrate complex structure in a direct or intuitive way. Graph theory provides a mathematical modeling for studying interconnection among elements in natural and man-made systems. On the other hand, directed graph is useful to define and interpret the interconnection structure underlying the dynamics of the interacting subsystem. Fuzzy theory provides important tools in dealing various aspects of complexity, imprecision and fuzziness of the network structure of a multi-connected system. Initial development for systems of Fuzzy State Space Model (FSSM) and a fuzzy algorithm approach were introduced with the purpose of solving the inverse problems in multivariable system. In this paper, fuzzy algorithm is adapted in order to determine the fuzzy edge connectivity between subsystems, in particular interconnected system of Graphical Representation of FSSM. This new approach will simplify the schematic diagram of interconnection of subsystems in a multi-connected system.
Spatial spreading model and dynamics of West Nile virus in birds and mosquitoes with free boundary.
Lin, Zhigui; Zhu, Huaiping
2017-12-01
In this paper, a reaction-diffusion system is proposed to model the spatial spreading of West Nile virus in vector mosquitoes and host birds in North America. Transmission dynamics are based on a simplified model involving mosquitoes and birds, and the free boundary is introduced to model and explore the expanding front of the infected region. The spatial-temporal risk index [Formula: see text], which involves regional characteristic and time, is defined for the simplified reaction-diffusion model with the free boundary to compare with other related threshold values, including the usual basic reproduction number [Formula: see text]. Sufficient conditions for the virus to vanish or to spread are given. Our results suggest that the virus will be in a scenario of vanishing if [Formula: see text], and will spread to the whole region if [Formula: see text] for some [Formula: see text], while if [Formula: see text], the spreading or vanishing of the virus depends on the initial number of infected individuals, the area of the infected region, the diffusion rate and other factors. Moreover, some remarks on the basic reproduction numbers and the spreading speeds are presented and compared.
Phonon-defect scattering and thermal transport in semiconductors: developing guiding principles
NASA Astrophysics Data System (ADS)
Polanco, Carlos; Lindsay, Lucas
First principles calculations of thermal conductivity have shown remarkable agreement with measurements for high-quality crystals. Nevertheless, most materials contain defects that provide significant extrinsic resistance and lower the conductivity from that of a perfect sample. This effect is usually accounted for with simplified analytical models that neglect the atomistic details of the defect and the exact dynamical properties of the system, which limits prediction capabilities. Recently, a method based on Greens functions was developed to calculate the phonon-defect scattering rates from first principles. This method has shown the important role of point defects in determining thermal transport in diamond and boron arsenide, two competitors for the highest bulk thermal conductivity. Here, we study the role of point defects on other relatively high thermal conductivity semiconductors, e.g., BN, BeSe, SiC, GaN and Si. We compare their first principles defect-phonon scattering rates and effects on transport properties with those from simplified models and explore common principles that determine these. Efforts will focus on basic vibrational properties that vary from system to system, such as density of states, interatomic force constants and defect deformation. Research supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division.
Turbulent Swirling Flow in Combustor/Exhaust Nozzle Systems
1991-03-29
simplify the specifica- tion and generation of the computational mesh as well as efficiently utilize all of the computat;’rnal cells . DUMPSTER was applied to...iteration at each cell in a zone when the k - E model is not activated. LIMPKE ............. This subroutine performs the forward sweep of the LU-SGS...iteration at each cell in a zone when the k-( model is activated. LUDRV .............. This is the controller subroutine that calls the LIMP, UIMP
Kimmel, Lara A; Holland, Anne E; Simpson, Pam M; Edwards, Elton R; Gabbe, Belinda J
2014-07-01
Early, accurate prediction of discharge destination from the acute hospital assists individual patients and the wider hospital system. The Trauma Rehabilitation and Prediction Tool (TRaPT), developed using registry data, determines probability of inpatient rehabilitation discharge for patients with isolated lower limb fractures. The aims of this study were: (1) to prospectively validatate the TRaPT, (2) to assess whether its performance could be improved by adding additional demographic data, and (3) to simplify it for use as a bedside tool. This was a cohort, measurement-focused study. Patients with isolated lower limb fractures (N=114) who were admitted to a major trauma center in Melbourne, Australia, were included. The participants' TRaPT scores were calculated from admission data. Performance of the TRaPT score alone, and in combination with frailty, weight-bearing status, and home supports, was assessed using measures of discrimination and calibration. A simplified TRaPT was developed by rounding the coefficients of variables in the original model and grouping age into 8 categories. Simplified TRaPT performance measures, including specificity, sensitivity, and positive and negative predictive values, were evaluated. Prospective validation of the TRaPT showed excellent discrimination (C-statistic=0.90 [95% confidence interval=0.82, 0.97]), a sensitivity of 80%, and specificity of 94%. All participants able to weight bear were discharged directly home. Simplified TRaPT scores had a sensitivity of 80% and a specificity of 88%. Generalizability may be limited given the compensation system that exists in Australia, but the methods used will assist in designing a similar tool in any population. The TRaPT accurately predicted discharge destination for 80% of patients and may form a useful aid for discharge decision making, with the simplified version facilitating its use as a bedside tool. © 2014 American Physical Therapy Association.
Simplified path integral for supersymmetric quantum mechanics and type-A trace anomalies
NASA Astrophysics Data System (ADS)
Bastianelli, Fiorenzo; Corradini, Olindo; Iacconi, Laura
2018-05-01
Particles in a curved space are classically described by a nonlinear sigma model action that can be quantized through path integrals. The latter require a precise regularization to deal with the derivative interactions arising from the nonlinear kinetic term. Recently, for maximally symmetric spaces, simplified path integrals have been developed: they allow to trade the nonlinear kinetic term with a purely quadratic kinetic term (linear sigma model). This happens at the expense of introducing a suitable effective scalar potential, which contains the information on the curvature of the space. The simplified path integral provides a sensible gain in the efficiency of perturbative calculations. Here we extend the construction to models with N = 1 supersymmetry on the worldline, which are applicable to the first quantized description of a Dirac fermion. As an application we use the simplified worldline path integral to compute the type-A trace anomaly of a Dirac fermion in d dimensions up to d = 16.
Application of zonal model on indoor air sensor network design
NASA Astrophysics Data System (ADS)
Chen, Y. Lisa; Wen, Jin
2007-04-01
Growing concerns over the safety of the indoor environment have made the use of sensors ubiquitous. Sensors that detect chemical and biological warfare agents can offer early warning of dangerous contaminants. However, current sensor system design is more informed by intuition and experience rather by systematic design. To develop a sensor system design methodology, a proper indoor airflow modeling approach is needed. Various indoor airflow modeling techniques, from complicated computational fluid dynamics approaches to simplified multi-zone approaches, exist in the literature. In this study, the effects of two airflow modeling techniques, multi-zone modeling technique and zonal modeling technique, on indoor air protection sensor system design are discussed. Common building attack scenarios, using a typical CBW agent, are simulated. Both multi-zone and zonal models are used to predict airflows and contaminant dispersion. Genetic Algorithm is then applied to optimize the sensor location and quantity. Differences in the sensor system design resulting from the two airflow models are discussed for a typical office environment and a large hall environment.
Snowden, Thomas J; van der Graaf, Piet H; Tindall, Marcus J
2017-07-01
Complex models of biochemical reaction systems have become increasingly common in the systems biology literature. The complexity of such models can present a number of obstacles for their practical use, often making problems difficult to intuit or computationally intractable. Methods of model reduction can be employed to alleviate the issue of complexity by seeking to eliminate those portions of a reaction network that have little or no effect upon the outcomes of interest, hence yielding simplified systems that retain an accurate predictive capacity. This review paper seeks to provide a brief overview of a range of such methods and their application in the context of biochemical reaction network models. To achieve this, we provide a brief mathematical account of the main methods including timescale exploitation approaches, reduction via sensitivity analysis, optimisation methods, lumping, and singular value decomposition-based approaches. Methods are reviewed in the context of large-scale systems biology type models, and future areas of research are briefly discussed.
Equivalent model and power flow model for electric railway traction network
NASA Astrophysics Data System (ADS)
Wang, Feng
2018-05-01
An equivalent model of the Cable Traction Network (CTN) considering the distributed capacitance effect of the cable system is proposed. The model can be divided into 110kV side and 27.5kV side two kinds. The 110kV side equivalent model can be used to calculate the power supply capacity of the CTN. The 27.5kV side equivalent model can be used to solve the voltage of the catenary. Based on the equivalent simplified model of CTN, the power flow model of CTN which involves the reactive power compensation coefficient and the interaction of voltage and current, is derived.
48 CFR 1553.213 - Small purchases and other simplified purchase procedures.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Small purchases and other simplified purchase procedures. 1553.213 Section 1553.213 Federal Acquisition Regulations System ENVIRONMENTAL PROTECTION AGENCY CLAUSES AND FORMS FORMS Prescription of Forms 1553.213 Small purchases and other...
48 CFR 3409.570 - Certification at or below the simplified acquisition threshold.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 7 2014-10-01 2014-10-01 false Certification at or below the simplified acquisition threshold. 3409.570 Section 3409.570 Federal Acquisition Regulations System DEPARTMENT OF EDUCATION ACQUISITION REGULATION COMPETITION AND ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Organizational and Consultant...
48 CFR 3409.570 - Certification at or below the simplified acquisition threshold.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 7 2011-10-01 2011-10-01 false Certification at or below the simplified acquisition threshold. 3409.570 Section 3409.570 Federal Acquisition Regulations System DEPARTMENT OF EDUCATION ACQUISITION REGULATION COMPETITION AND ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Organizational and Consultant...
48 CFR 3409.570 - Certification at or below the simplified acquisition threshold.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 7 2012-10-01 2012-10-01 false Certification at or below the simplified acquisition threshold. 3409.570 Section 3409.570 Federal Acquisition Regulations System DEPARTMENT OF EDUCATION ACQUISITION REGULATION COMPETITION AND ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Organizational and Consultant...
NASA Technical Reports Server (NTRS)
Pao, S. Paul; Deere, Karen A.; Abdol-Hamid, Khales S.
2011-01-01
Approaches were established for modeling the roll control system and analyzing the jet interactions of the activated roll control system on Ares-type configurations using the USM3D Navier-Stokes solver. Components of the modeling approach for the roll control system include a choice of turbulence models, basis for computing a dynamic equivalence of the real gas rocket exhaust flow in terms of an ideal gas, and techniques to evaluate roll control system performance for wind tunnel and flight conditions. A simplified Ares I-X configuration was used during the development phase of the roll control system modeling approach. A limited set of Navier-Stokes solutions was obtained for the purposes of this investigation and highlights of the results are included in this paper. The USM3D solutions were compared to equivalent solutions at select flow conditions from a real gas Navier- Stokes solver (Loci-CHEM) and a structured overset grid Navier-Stokes solver (OVERFLOW).
High-Order Non-Reflecting Boundary Conditions for the Linearized Euler Equations
2008-09-01
rotational effect. Now this rotational effect can be simplified. The atmosphere is thin compared to the radius of the Earth . Furthermore, atmospheric flows...error norm of the discrete solution. Blayo and Debreu [13] considered a characteristic variable ap- proach to NRBCs in first-order systems for ocean and...Third Edition, John Wiley and Sons, New York, 1995. [77] Jensen, T., “Open Boundary Conditions in Stratified Ocean Models,” Journal of Marine Systems
Modelling the urban water cycle as an integrated part of the city: a review.
Urich, Christian; Rauch, Wolfgang
2014-01-01
In contrast to common perceptions, the urban water infrastructure system is a complex and dynamic system that is constantly evolving and adapting to changes in the urban environment, to sustain existing services and provide additional ones. Instead of simplifying urban water infrastructure to a static system that is decoupled from its urban context, new management strategies use the complexity of the system to their advantage by integrating centralised with decentralised solutions and explicitly embedding water systems into their urban form. However, to understand and test possible adaptation strategies, urban water modelling tools are required to support exploration of their effectiveness as the human-technology-environment system coevolves under different future scenarios. The urban water modelling community has taken first steps to developing these new modelling tools. This paper critically reviews the historical development of urban water modelling tools and provides a summary of the current state of integrated modelling approaches. It reflects on the challenges that arise through the current practice of coupling urban water management tools with urban development models and discusses a potential pathway towards a new generation of modelling tools.
A framework for modeling and optimizing dynamic systems under uncertainty
Nicholson, Bethany; Siirola, John
2017-11-11
Algebraic modeling languages (AMLs) have drastically simplified the implementation of algebraic optimization problems. However, there are still many classes of optimization problems that are not easily represented in most AMLs. These classes of problems are typically reformulated before implementation, which requires significant effort and time from the modeler and obscures the original problem structure or context. In this work we demonstrate how the Pyomo AML can be used to represent complex optimization problems using high-level modeling constructs. We focus on the operation of dynamic systems under uncertainty and demonstrate the combination of Pyomo extensions for dynamic optimization and stochastic programming.more » We use a dynamic semibatch reactor model and a large-scale bubbling fluidized bed adsorber model as test cases.« less
A framework for modeling and optimizing dynamic systems under uncertainty
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicholson, Bethany; Siirola, John
Algebraic modeling languages (AMLs) have drastically simplified the implementation of algebraic optimization problems. However, there are still many classes of optimization problems that are not easily represented in most AMLs. These classes of problems are typically reformulated before implementation, which requires significant effort and time from the modeler and obscures the original problem structure or context. In this work we demonstrate how the Pyomo AML can be used to represent complex optimization problems using high-level modeling constructs. We focus on the operation of dynamic systems under uncertainty and demonstrate the combination of Pyomo extensions for dynamic optimization and stochastic programming.more » We use a dynamic semibatch reactor model and a large-scale bubbling fluidized bed adsorber model as test cases.« less
Zugck, C; Krüger, C; Kell, R; Körber, S; Schellberg, D; Kübler, W; Haass, M
2001-10-01
The performance of a US-American scoring system (Heart Failure Survival Score, HFSS) was prospectively evaluated in a sample of ambulatory patients with congestive heart failure (CHF). Additionally, it was investigated whether the HFSS might be simplified by assessment of the distance ambulated during a 6-min walk test (6'WT) instead of determination of peak oxygen uptake (peak VO(2)). In 208 middle-aged CHF patients (age 54+/-10 years, 82% male, NYHA class 2.3+/-0.7; follow-up 28+/-14 months) the seven variables of the HFSS: CHF aetiology; heart rate; mean arterial pressure; serum sodium concentration; intraventricular conduction time; left ventricular ejection fraction (LVEF); and peak VO(2), were determined. Additionally, a 6'WT was performed. The HFSS allowed discrimination between patients at low, medium and high risk, with mortality rates of 16, 39 and 50%, respectively. However, the prognostic power of the HFSS was not superior to a two-variable model consisting only of LVEF and peak VO(2). The areas under the receiver operating curves (AUC) for prediction of 1-year survival were even higher for the two-variable model (0.84 vs. 0.74, P<0.05). Replacing peak VO(2) with 6'WT resulted in a similar AUC (0.83). The HFSS continued to predict survival when applied to this patient sample. However, the HFSS was inferior to a two-variable model containing only LVEF and either peak VO(2) or 6'WT. As the 6'WT requires no sophisticated equipment, a simplified two-variable model containing only LVEF and 6'WT may be more widely applicable, and is therefore recommended.
A Manpower Model for U.S. Navy Operational Contracting
2012-06-01
Accomplishment Time RFP Request For Proposal SAF/FM Air Force Financial Management SAP Simplified Acquisition Procedures SAT Simplified...conformance and seller’s release of claim (Garrett, 2007). 2. Contract Size and its Effect on Workload Simplified acquisition procedures ( SAP ) were...the SAP dollar threshold. 14 The drastic reduction in KO workload through the use of SAP is unmatched by any federal authorization that came
NASA Astrophysics Data System (ADS)
Peckham, S. D.; Kelbert, A.; Rudan, S.; Stoica, M.
2016-12-01
Standardized metadata for models is the key to reliable and greatly simplified coupling in model coupling frameworks like CSDMS (Community Surface Dynamics Modeling System). This model metadata also helps model users to understand the important details that underpin computational models and to compare the capabilities of different models. These details include simplifying assumptions on the physics, governing equations and the numerical methods used to solve them, discretization of space (the grid) and time (the time-stepping scheme), state variables (input or output), model configuration parameters. This kind of metadata provides a "deep description" of a computational model that goes well beyond other types of metadata (e.g. author, purpose, scientific domain, programming language, digital rights, provenance, execution) and captures the science that underpins a model. While having this kind of standardized metadata for each model in a repository opens up a wide range of exciting possibilities, it is difficult to collect this information and a carefully conceived "data model" or schema is needed to store it. Automated harvesting and scraping methods can provide some useful information, but they often result in metadata that is inaccurate or incomplete, and this is not sufficient to enable the desired capabilities. In order to address this problem, we have developed a browser-based tool called the MCM Tool (Model Component Metadata) which runs on notebooks, tablets and smart phones. This tool was partially inspired by the TurboTax software, which greatly simplifies the necessary task of preparing tax documents. It allows a model developer or advanced user to provide a standardized, deep description of a computational geoscience model, including hydrologic models. Under the hood, the tool uses a new ontology for models built on the CSDMS Standard Names, expressed as a collection of RDF files (Resource Description Framework). This ontology is based on core concepts such as variables, objects, quantities, operations, processes and assumptions. The purpose of this talk is to present details of the new ontology and to then demonstrate the MCM Tool for several hydrologic models.
Klinzing, Gerard R; Zavaliangos, Antonios
2016-08-01
This work establishes a predictive model that explicitly recognizes microstructural parameters in the description of the overall mass uptake and local gradients of moisture into tablets. Model equations were formulated based on local tablet geometry to describe the transient uptake of moisture. An analytical solution to a simplified set of model equations was solved to predict the overall mass uptake and moisture gradients with the tablets. The analytical solution takes into account individual diffusion mechanisms in different scales of porosity and diffusion into the solid phase. The time constant of mass uptake was found to be a function of several key material properties, such as tablet relative density, pore tortuosity, and equilibrium moisture content of the material. The predictions of the model are in excellent agreement with experimental results for microcrystalline cellulose tablets without the need for parameter fitting. The model presented provides a new method to analyze the transient uptake of moisture into hydrophilic materials with the knowledge of only a few fundamental material and microstructural parameters. In addition, the model allows for quick and insightful predictions of moisture diffusion for a variety of practical applications including pharmaceutical tablets, porous polymer systems, or cementitious materials. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
2018-03-01
of a Simplified Renal Replacement Therapy Suitable for Prolonged Field Care in a Porcine (Sus scrofa) Model of Acute Kidney Injury. PRINCIPAL...and methods, results - include tables/figures, and conclusions/applications.) Objectives/Background: Acute kidney injury (AKI) is a serious
A simplified protocol has been developed to meet the need for modeling hydrodynamics and transport in large numbers of embayments quickly and reliably. The procedure is illustrated with 42 embayments in southern New England, USA, giving special attention to Greenwich Bay, RI. The...
A fluid model simulation of a simplified plasma limiter based on spectral-element time-domain method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, Cheng; Ding, Dazhi, E-mail: dzding@njust.edu.cn; Fan, Zhenhong
2015-03-15
A simplified plasma limiter prototype is proposed and the fluid model coupled with Maxwell's equations is established to describe the operating mechanism of plasma limiter. A three-dimensional (3-D) simplified sandwich structure plasma limiter model is analyzed with the spectral-element time-domain (SETD) method. The field breakdown threshold of air and argon at different frequency is predicted and compared with the experimental data and there is a good agreement between them for gas microwave breakdown discharge problems. Numerical results demonstrate that the two-layer plasma limiter (plasma-slab-plasma) has better protective characteristics than a one-layer plasma limiter (slab-plasma-slab) with the same length of gasmore » chamber.« less
Communication: A simplified coupled-cluster Lagrangian for polarizable embedding.
Krause, Katharina; Klopper, Wim
2016-01-28
A simplified coupled-cluster Lagrangian, which is linear in the Lagrangian multipliers, is proposed for the coupled-cluster treatment of a quantum mechanical system in a polarizable environment. In the simplified approach, the amplitude equations are decoupled from the Lagrangian multipliers and the energy obtained from the projected coupled-cluster equation corresponds to a stationary point of the Lagrangian.
Communication: A simplified coupled-cluster Lagrangian for polarizable embedding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krause, Katharina; Klopper, Wim, E-mail: klopper@kit.edu
A simplified coupled-cluster Lagrangian, which is linear in the Lagrangian multipliers, is proposed for the coupled-cluster treatment of a quantum mechanical system in a polarizable environment. In the simplified approach, the amplitude equations are decoupled from the Lagrangian multipliers and the energy obtained from the projected coupled-cluster equation corresponds to a stationary point of the Lagrangian.
NASA Technical Reports Server (NTRS)
Karpoukhin, Mikhii G.; Kogan, Boris Y.; Karplus, Walter J.
1995-01-01
The simulation of heart arrhythmia and fibrillation are very important and challenging tasks. The solution of these problems using sophisticated mathematical models is beyond the capabilities of modern super computers. To overcome these difficulties it is proposed to break the whole simulation problem into two tightly coupled stages: generation of the action potential using sophisticated models. and propagation of the action potential using simplified models. The well known simplified models are compared and modified to bring the rate of depolarization and action potential duration restitution closer to reality. The modified method of lines is used to parallelize the computational process. The conditions for the appearance of 2D spiral waves after the application of a premature beat and the subsequent traveling of the spiral wave inside the simulated tissue are studied.
Modeling of Nitrogen Oxides Emissions from CFB Combustion
NASA Astrophysics Data System (ADS)
Kallio, S.; Keinonen, M.
In this work, a simplified description of combustion and nitrogen oxides chemistry was implemented in a 1.5D model framework with the aim to compare the results with ones earlier obtained with a detailed reaction scheme. The simplified chemistry was written using 12 chemical components. Heterogeneous chemistry is given by the same models as in the earlier work but the homogeneous and catalytic reactions have been altered. The models have been taken from the literature. The paper describes the numerical model with emphasis on the chemistry submodels. A simulation of combustion of bituminous coal in the Chalmers 12 MW boiler is conducted and the results are compared with the results obtained earlier with the detailed chemistry description. The results are also compared with measured O2, CO, NO and N2O profiles. The simplified reaction scheme produces equally good results as earlier obtained with the more elaborate chemistry description.
Spin-density functional theory treatment of He+-He collisions
NASA Astrophysics Data System (ADS)
Baxter, Matthew; Kirchner, Tom; Engel, Eberhard
2016-09-01
The He+-He collision system presents an interesting challenge to theory. On one hand, a full treatment of the three-electron dynamics constitutes a massive computational problem that has not been attempted yet; on the other hand, simplified independent-particle-model based descriptions may only provide partial information on either the transitions of the initial target electrons or on the transitions of the projectile electron, depending on the choice of atomic model potentials. We address the He+-He system within the spin-density functional theory framework on the exchange-only level. The Krieger-Li-Iafrate (KLI) approximation is used to calculate the exchange potentials for the spin-up and spin-down electrons, which ensures the correct asymptotic behavior of the effective (Kohn-Sham) potential consisting of exchange, Hartree and nuclear Coulomb potentials. The orbitals are propagated with the two-center basis generator method. In each time step, simplified versions of them are fed into the KLI equations to calculate the Kohn-Sham potential, which, in turn, is used to generate the orbitals in the next time step. First results for the transitions of all electrons and the resulting charge-changing total cross sections will be presented at the conference. Work supported by NSERC, Canada.
Long-term evaluation of orbital dynamics in the Sun-planet system considering axial-tilt
NASA Astrophysics Data System (ADS)
Bakhtiari, Majid; Daneshjou, Kamran
2018-05-01
In this paper, the axial-tilt (obliquity) effect of planets on the motion of planets’ orbiter in prolonged space missions has been investigated in the presence of the Sun gravity. The proposed model is based on non-simplified perturbed dynamic equations of planetary orbiter motion. From a new point of view, in this work, the dynamic equations regarding a disturbing body in elliptic inclined three-dimensional orbit are derived. The accuracy of this non-simplified method is validated with dual-averaged method employed on a generalized Earth-Moon system. It is shown that the neglected short-time oscillations in dual-averaged technique can accumulate and propel to remarkable errors in the prolonged evolution. After validation, the effects of the planet’s axial-tilt on eccentricity, inclination and right ascension of the ascending node of the orbiter are investigated. Moreover, a generalized model is provided to study the effects of third-body inclination and eccentricity on orbit characteristics. It is shown that the planet’s axial-tilt is the key to facilitating some significant changes in orbital elements in long-term mission and short-time oscillations must be considered in accurate prolonged evaluation.
NASA Astrophysics Data System (ADS)
Kassem, M.; Soize, C.; Gagliardini, L.
2009-06-01
In this paper, an energy-density field approach applied to the vibroacoustic analysis of complex industrial structures in the low- and medium-frequency ranges is presented. This approach uses a statistical computational model. The analyzed system consists of an automotive vehicle structure coupled with its internal acoustic cavity. The objective of this paper is to make use of the statistical properties of the frequency response functions of the vibroacoustic system observed from previous experimental and numerical work. The frequency response functions are expressed in terms of a dimensionless matrix which is estimated using the proposed energy approach. Using this dimensionless matrix, a simplified vibroacoustic model is proposed.
Using quantum theory to simplify input-output processes
NASA Astrophysics Data System (ADS)
Thompson, Jayne; Garner, Andrew J. P.; Vedral, Vlatko; Gu, Mile
2017-02-01
All natural things process and transform information. They receive environmental information as input, and transform it into appropriate output responses. Much of science is dedicated to building models of such systems-algorithmic abstractions of their input-output behavior that allow us to simulate how such systems can behave in the future, conditioned on what has transpired in the past. Here, we show that classical models cannot avoid inefficiency-storing past information that is unnecessary for correct future simulation. We construct quantum models that mitigate this waste, whenever it is physically possible to do so. This suggests that the complexity of general input-output processes depends fundamentally on what sort of information theory we use to describe them.
A simplified rotor system mathematical model for piloted flight dynamics simulation
NASA Technical Reports Server (NTRS)
Chen, R. T. N.
1979-01-01
The model was developed for real-time pilot-in-the-loop investigation of helicopter flying qualities. The mathematical model included the tip-path plane dynamics and several primary rotor design parameters, such as flapping hinge restraint, flapping hinge offset, blade Lock number, and pitch-flap coupling. The model was used in several exploratory studies of the flying qualities of helicopters with a variety of rotor systems. The basic assumptions used and the major steps involved in the development of the set of equations listed are described. The equations consisted of the tip-path plane dynamic equation, the equations for the main rotor forces and moments, and the equation for control phasing required to achieve decoupling in pitch and roll due to cyclic inputs.
NASA Astrophysics Data System (ADS)
Paimushin, V. N.
2017-11-01
For an analysis of internal and external buckling modes of a monolayer inside or at the periphery of a layered composite, refined geometrically nonlinear equations are constructed. They are based on modeling the monolayer as a thin plate interacting with binder layers at the points of boundary surfaces. The binder layer is modeled as a transversely soft foundation. It is assumed the foundations, previously compressed in the transverse direction (the first loading stage), have zero displacements of its external boundary surfaces at the second loading stage, but the contact interaction of the plate with foundations occurs without slippage or delamination. The deformation of the plate at a medium flexure is described by geometrically nonlinear relations of the classical plate theory based on the Kirchhoff-Love hypothesis (the first variant) or the refined Timoshenko model with account of the transverse shear and compression (the second variant). The foundation is described by linearized 3D equations of elasticity theory, which are simplified within the framework of the model of a transversely soft layer. Integrating the linearized equations along the transverse coordinate and satisfying the kinematic joining conditions of the plate with foundations, with account of their initial compression in the thickness direction, a system of 2D geometrically nonlinear equations and appropriate boundary conditions are derived. These equations describe the contact interaction between elements of the deformable system. The relations obtained are simplified for the case of a symmetric stacking sequence.
Wang, Chengwen; Quan, Long; Zhang, Shijie; Meng, Hongjun; Lan, Yuan
2017-03-01
Hydraulic servomechanism is the typical mechanical/hydraulic double-dynamics coupling system with the high stiffness control and mismatched uncertainties input problems, which hinder direct applications of many advanced control approaches in the hydraulic servo fields. In this paper, by introducing the singular value perturbation theory, the original double-dynamics coupling model of the hydraulic servomechanism was reduced to a integral chain system. So that, the popular ADRC (active disturbance rejection control) technology could be directly applied to the reduced system. In addition, the high stiffness control and mismatched uncertainties input problems are avoided. The validity of the simplified model is analyzed and proven theoretically. The standard linear ADRC algorithm is then developed based on the obtained reduced-order model. Extensive comparative co-simulations and experiments are carried out to illustrate the effectiveness of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
The vibration characteristics of a coupled helicopter rotor-fuselage by a finite element analysis
NASA Technical Reports Server (NTRS)
Rutkowski, M. J.
1983-01-01
The dynamic coupling between the rotor system and the fuselage of a simplified helicopter model in hover was analytically investigated. Mass, aerodynamic damping, and elastic and centrifugal stiffness matrices are presented for the analytical model; the model is based on a beam finite element, with polynomial mass and stiffness distributions for both the rotor and fuselage representations. For this analytical model, only symmetric fuselage and collective blade degrees of freedom are treated. Real and complex eigen-analyses are carried out to obtain coupled rotor-fuselage natural modes and frequencies as a function of rotor speed. Vibration response results are obtained for the coupled system subjected to a radially uniform, harmonic blade loading. The coupled response results are compared with response results from an uncoupled analysis in which hub loads for an isolated rotor system subjected to the same sinusoidal blade loading as the coupled system are applied to a free-free fuselage.
Evaluating a Control System Architecture Based on a Formally Derived AOCS Model
NASA Astrophysics Data System (ADS)
Ilic, Dubravka; Latvala, Timo; Varpaaniemi, Kimmo; Vaisanen, Pauli; Troubitsyna, Elena; Laibinis, Linas
2010-08-01
Attitude & Orbit Control System (AOCS) refers to a wider class of control systems which are used to determine and control the attitude of the spacecraft while in orbit, based on the information obtained from various sensors. In this paper, we propose an approach to evaluate a typical (yet somewhat simplified) AOCS architecture using formal development - based on the Event-B method. As a starting point, an Ada specification of the AOCS is translated into a formal specification and further refined to incorporate all the details of its original source code specification. This way we are able not only to evaluate the Ada specification by expressing and verifying specific system properties in our formal models, but also to determine how well the chosen modelling framework copes with the level of detail required for an actual implementation and code generation from the derived models.
A Novel Approach to Develop the Lower Order Model of Multi-Input Multi-Output System
NASA Astrophysics Data System (ADS)
Rajalakshmy, P.; Dharmalingam, S.; Jayakumar, J.
2017-10-01
A mathematical model is a virtual entity that uses mathematical language to describe the behavior of a system. Mathematical models are used particularly in the natural sciences and engineering disciplines like physics, biology, and electrical engineering as well as in the social sciences like economics, sociology and political science. Physicists, Engineers, Computer scientists, and Economists use mathematical models most extensively. With the advent of high performance processors and advanced mathematical computations, it is possible to develop high performing simulators for complicated Multi Input Multi Ouptut (MIMO) systems like Quadruple tank systems, Aircrafts, Boilers etc. This paper presents the development of the mathematical model of a 500 MW utility boiler which is a highly complex system. A synergistic combination of operational experience, system identification and lower order modeling philosophy has been effectively used to develop a simplified but accurate model of a circulation system of a utility boiler which is a MIMO system. The results obtained are found to be in good agreement with the physics of the process and with the results obtained through design procedure. The model obtained can be directly used for control system studies and to realize hardware simulators for boiler testing and operator training.
Recent advances in QM/MM free energy calculations using reference potentials☆
Duarte, Fernanda; Amrein, Beat A.; Blaha-Nelson, David; Kamerlin, Shina C.L.
2015-01-01
Background Recent years have seen enormous progress in the development of methods for modeling (bio)molecular systems. This has allowed for the simulation of ever larger and more complex systems. However, as such complexity increases, the requirements needed for these models to be accurate and physically meaningful become more and more difficult to fulfill. The use of simplified models to describe complex biological systems has long been shown to be an effective way to overcome some of the limitations associated with this computational cost in a rational way. Scope of review Hybrid QM/MM approaches have rapidly become one of the most popular computational tools for studying chemical reactivity in biomolecular systems. However, the high cost involved in performing high-level QM calculations has limited the applicability of these approaches when calculating free energies of chemical processes. In this review, we present some of the advances in using reference potentials and mean field approximations to accelerate high-level QM/MM calculations. We present illustrative applications of these approaches and discuss challenges and future perspectives for the field. Major conclusions The use of physically-based simplifications has shown to effectively reduce the cost of high-level QM/MM calculations. In particular, lower-level reference potentials enable one to reduce the cost of expensive free energy calculations, thus expanding the scope of problems that can be addressed. General significance As was already demonstrated 40 years ago, the usage of simplified models still allows one to obtain cutting edge results with substantially reduced computational cost. This article is part of a Special Issue entitled Recent developments of molecular dynamics. PMID:25038480
Fast Orientation of Video Images of Buildings Acquired from a UAV without Stabilization.
Kedzierski, Michal; Delis, Paulina
2016-06-23
The aim of this research was to assess the possibility of conducting an absolute orientation procedure for video imagery, in which the external orientation for the first image was typical for aerial photogrammetry whereas the external orientation of the second was typical for terrestrial photogrammetry. Starting from the collinearity equations, assuming that the camera tilt angle is equal to 90°, a simplified mathematical model is proposed. The proposed method can be used to determine the X, Y, Z coordinates of points based on a set of collinearity equations of a pair of images. The use of simplified collinearity equations can considerably shorten the processing tine of image data from Unmanned Aerial Vehicles (UAVs), especially in low cost systems. The conducted experiments have shown that it is possible to carry out a complete photogrammetric project of an architectural structure using a camera tilted 85°-90° ( φ or ω) and simplified collinearity equations. It is also concluded that there is a correlation between the speed of the UAV and the discrepancy between the established and actual camera tilt angles.
Fast Orientation of Video Images of Buildings Acquired from a UAV without Stabilization
Kedzierski, Michal; Delis, Paulina
2016-01-01
The aim of this research was to assess the possibility of conducting an absolute orientation procedure for video imagery, in which the external orientation for the first image was typical for aerial photogrammetry whereas the external orientation of the second was typical for terrestrial photogrammetry. Starting from the collinearity equations, assuming that the camera tilt angle is equal to 90°, a simplified mathematical model is proposed. The proposed method can be used to determine the X, Y, Z coordinates of points based on a set of collinearity equations of a pair of images. The use of simplified collinearity equations can considerably shorten the processing tine of image data from Unmanned Aerial Vehicles (UAVs), especially in low cost systems. The conducted experiments have shown that it is possible to carry out a complete photogrammetric project of an architectural structure using a camera tilted 85°–90° (φ or ω) and simplified collinearity equations. It is also concluded that there is a correlation between the speed of the UAV and the discrepancy between the established and actual camera tilt angles. PMID:27347954
Non-Contact Thermal Characterization of NASA's HERMeS Hall Thruster
NASA Technical Reports Server (NTRS)
Huang, Wensheng; Kamhawi, Hani; Meyers, James L.; Yim, John T.; Neff, Gregory
2015-01-01
The Thermal Characterization Test of NASAs 12.5-kW Hall thruster is being completed. This thruster is being developed to support of a number of potential Solar Electric Propulsion Technology Demonstration Mission concepts, including the Asteroid Redirect Robotic Mission concept. As a part of this test, an infrared-based, non-contact thermal imaging system was developed to measure Hall thruster surfaces that are exposed to high voltage or harsh environment. To increase the accuracy of the measurement, a calibration array was implemented, and a pilot test was performed to determine key design parameters for the calibration array. The raw data is analyzed in conjunction with a simplified thermal model of the channel to account for reflection. The reduced data will be used to refine the thruster thermal model, which is critical to the verification of the thruster thermal specifications. The present paper will give an overview of the decision process that led to identification of the need for a non-contact temperature diagnostic, the development of said diagnostic, the measurement results, and the simplified thermal model of the channel.
NASA Astrophysics Data System (ADS)
Cowan, Noah; Sefati, Shahin; Neveln, Izaak; Roth, Eatai; Mitchell, Terence; Snyder, James; Maciver, Malcolm; Fortune, Eric
A surprising feature of animal locomotion is that organisms typically produce substantial forces in directions other than what is necessary to move the animal through its environment, such as perpendicular to, or counter to, the direction of travel. The effect of these forces has been difficult to observe because they are often mutually opposing and therefore cancel out. Using a combination of robotic physical modeling, computational modeling, and biological experiments, we discovered that these forces serve an important role: to simplify and enhance the control of locomotion. Specifically, we examined a well-suited model system, the glass knifefish Eigenmannia virescens, which produces mutually opposing forces during a hovering behavior. By systematically varying the locomotor parameters of our biomimetic robot, and measuring the resulting forces and kinematics, we demonstrated that the production and differential control of mutually opposing forces is a strategy that generates passive stabilization while simultaneously enhancing maneuverability. Mutually opposing forces during locomotion are widespread across animal taxa, and these results indicate that such forces can eliminate the tradeoff between stability and maneuverability, thereby simplifying robotic and neural control.
Numerical studies of a model fermion-boson system
NASA Astrophysics Data System (ADS)
Cheng, T.; Gospodarczyk, E. R.; Su, Q.; Grobe, R.
2010-02-01
We study the spectral and dynamical properties of a simplified model system of interacting fermions and bosons. The spatial discretization and an effective truncation of the Hilbert space permit us to compute the distribution of the bare fermions and bosons in the energy eigenstates of the coupled system. These states represent the physical particles and are used to examine the validity of the analytical predictions by perturbation theory and by the Greenberg-Schweber approximation that assumes all fermions are at rest. As an example of our numerical framework, we examine how a bare electron can trigger the creation of a cloud of virtual bosons around. We relate this cloud to the properties of the associated energy eigenstates.
Assessment of Geometry and In-Flow Effects on Contra-Rotating Open Rotor Broadband Noise Predictions
NASA Technical Reports Server (NTRS)
Zawodny, Nikolas S.; Nark, Douglas M.; Boyd, D. Douglas, Jr.
2015-01-01
Application of previously formulated semi-analytical models for the prediction of broadband noise due to turbulent rotor wake interactions and rotor blade trailing edges is performed on the historical baseline F31/A31 contra-rotating open rotor configuration. Simplified two-dimensional blade element analysis is performed on cambered NACA 4-digit airfoil profiles, which are meant to serve as substitutes for the actual rotor blade sectional geometries. Rotor in-flow effects such as induced axial and tangential velocities are incorporated into the noise prediction models based on supporting computational fluid dynamics (CFD) results and simplified in-flow velocity models. Emphasis is placed on the development of simplified rotor in-flow models for the purpose of performing accurate noise predictions independent of CFD information. The broadband predictions are found to compare favorably with experimental acoustic results.
Installé, Arnaud Jf; Van den Bosch, Thierry; De Moor, Bart; Timmerman, Dirk
2014-10-20
Using machine-learning techniques, clinical diagnostic model research extracts diagnostic models from patient data. Traditionally, patient data are often collected using electronic Case Report Form (eCRF) systems, while mathematical software is used for analyzing these data using machine-learning techniques. Due to the lack of integration between eCRF systems and mathematical software, extracting diagnostic models is a complex, error-prone process. Moreover, due to the complexity of this process, it is usually only performed once, after a predetermined number of data points have been collected, without insight into the predictive performance of the resulting models. The objective of the study of Clinical Data Miner (CDM) software framework is to offer an eCRF system with integrated data preprocessing and machine-learning libraries, improving efficiency of the clinical diagnostic model research workflow, and to enable optimization of patient inclusion numbers through study performance monitoring. The CDM software framework was developed using a test-driven development (TDD) approach, to ensure high software quality. Architecturally, CDM's design is split over a number of modules, to ensure future extendability. The TDD approach has enabled us to deliver high software quality. CDM's eCRF Web interface is in active use by the studies of the International Endometrial Tumor Analysis consortium, with over 4000 enrolled patients, and more studies planned. Additionally, a derived user interface has been used in six separate interrater agreement studies. CDM's integrated data preprocessing and machine-learning libraries simplify some otherwise manual and error-prone steps in the clinical diagnostic model research workflow. Furthermore, CDM's libraries provide study coordinators with a method to monitor a study's predictive performance as patient inclusions increase. To our knowledge, CDM is the only eCRF system integrating data preprocessing and machine-learning libraries. This integration improves the efficiency of the clinical diagnostic model research workflow. Moreover, by simplifying the generation of learning curves, CDM enables study coordinators to assess more accurately when data collection can be terminated, resulting in better models or lower patient recruitment costs.
Mechatronics by Analogy and Application to Legged Locomotion
NASA Astrophysics Data System (ADS)
Ragusila, Victor
A new design methodology for mechatronic systems, dubbed as Mechatronics by Analogy (MbA), is introduced and applied to designing a leg mechanism. The new methodology argues that by establishing a similarity relation between a complex system and a number of simpler models it is possible to design the former using the analysis and synthesis means developed for the latter. The methodology provides a framework for concurrent engineering of complex systems while maintaining the transparency of the system behaviour through making formal analogies between the system and those with more tractable dynamics. The application of the MbA methodology to the design of a monopod robot leg, called the Linkage Leg, is also studied. A series of simulations show that the dynamic behaviour of the Linkage Leg is similar to that of a combination of a double pendulum and a spring-loaded inverted pendulum, based on which the system kinematic, dynamic, and control parameters can be designed concurrently. The first stage of Mechatronics by Analogy is a method of extracting significant features of system dynamics through simpler models. The goal is to determine a set of simpler mechanisms with similar dynamic behaviour to that of the original system in various phases of its motion. A modular bond-graph representation of the system is determined, and subsequently simplified using two simplification algorithms. The first algorithm determines the relevant dynamic elements of the system for each phase of motion, and the second algorithm finds the simple mechanism described by the remaining dynamic elements. In addition to greatly simplifying the controller for the system, using simpler mechanisms with similar behaviour provides a greater insight into the dynamics of the system. This is seen in the second stage of the new methodology, which concurrently optimizes the simpler mechanisms together with a control system based on their dynamics. Once the optimal configuration of the simpler system is determined, the original mechanism is optimized such that its dynamic behaviour is analogous. It is shown that, if this analogy is achieved, the control system designed based on the simpler mechanisms can be directly implemented to the more complex system, and their dynamic behaviours are close enough for the system performance to be effectively the same. Finally it is shown that, for the employed objective of fast legged locomotion, the proposed methodology achieves a better design than Reduction-by-Feedback, a competing methodology that uses control layers to simplify the dynamics of the system.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-09
... DEPARTMENT OF COMMERCE Bureau of Industry and Security 15 CFR Part 748 [Docket No. 100826397-1059-02] RIN 0694-AE98 Simplified Network Application Processing System, On-line Registration and Account Maintenance AGENCY: Bureau of Industry and Security, Commerce. ACTION: Final rule. SUMMARY: The Bureau of...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 6 2013-10-01 2013-10-01 false SBA acceptance under partnership agreements for acquisitions exceeding the simplified acquisition threshold. 2419.804-370 Section 2419.804-370 Federal Acquisition Regulations System DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false SBA acceptance under partnership agreements for acquisitions exceeding the simplified acquisition threshold. 2419.804-370 Section 2419.804-370 Federal Acquisition Regulations System DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Government contract quality assurance for acquisitions at or below the simplified acquisition threshold. 46.404 Section 46.404 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT QUALITY ASSURANCE Government Contract Quality Assurance...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Government contract quality assurance for acquisitions at or below the simplified acquisition threshold. 46.404 Section 46.404 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT QUALITY ASSURANCE Government Contract Quality Assurance...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Government contract quality assurance for acquisitions at or below the simplified acquisition threshold. 46.404 Section 46.404 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT QUALITY ASSURANCE Government Contract Quality Assurance...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Government contract quality assurance for acquisitions at or below the simplified acquisition threshold. 46.404 Section 46.404 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT QUALITY ASSURANCE Government Contract Quality Assurance...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Government contract quality assurance for acquisitions at or below the simplified acquisition threshold. 46.404 Section 46.404 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT QUALITY ASSURANCE Government Contract Quality Assurance...
Stability of the line preserving flows
NASA Astrophysics Data System (ADS)
Figura, Przemysław
2017-11-01
We examine the equations that are used to describe flows which preserve field lines. We study what happens if we introduce perturbations to the governing equations. The stability of the line preserving flows in the case of the magneto-fluids permeated by magnetic fields is strictly connected to the non-null magnetic reconnection processes. In most of our study we use the Euler potential representation of the external magnetic field. We provide general expressions for the perturbations of the Euler potentials that describe the magnetic field. Similarly, we provide expressions for the case of steady flow as well as we obtain certain conditions required for the stability of the flow. In addition, for steady flows we formulate conditions under which the perturbations of the external field are negligible and the field may be described by its initial unperturbed form. Then we consider the flow equation that transforms quantities from the laboratory coordinate system to the related external field coordinate system. We introduce perturbations to the equation and obtain its simplified versions for the case of a steady flow. For a given system, use of this method allows us to simplify the considerations provided that some part of the system may be described as a perturbation. Next, to study regions favourable for the magnetic reconnection to occur we introduce a deviation vector to the basic line preserving flows condition equation. We provide expressions of the vector for some simplifying cases. This method allows us to examine if given perturbations either stabilise the system or induce magnetic reconnection. To illustrate some of our results we study two examples, namely a simple laboratory plasma flow and a simple planetary magnetosphere model.
A Mathematical Model of Marine Diesel Engine Speed Control System
NASA Astrophysics Data System (ADS)
Sinha, Rajendra Prasad; Balaji, Rajoo
2018-02-01
Diesel engine is inherently an unstable machine and requires a reliable control system to regulate its speed for safe and efficient operation. Also, the diesel engine may operate at fixed or variable speeds depending upon user's needs and accordingly the speed control system should have essential features to fulfil these requirements. This paper proposes a mathematical model of a marine diesel engine speed control system with droop governing function. The mathematical model includes static and dynamic characteristics of the control loop components. Model of static characteristic of the rotating fly weights speed sensing element provides an insight into the speed droop features of the speed controller. Because of big size and large time delay, the turbo charged diesel engine is represented as a first order system or sometimes even simplified to a pure integrator with constant gain which is considered acceptable in control literature. The proposed model is mathematically less complex and quick to use for preliminary analysis of the diesel engine speed controller performance.
Kim, Dong Seong; Park, Jong Sou
2014-01-01
It is important to assess availability of virtualized systems in IT business infrastructures. Previous work on availability modeling and analysis of the virtualized systems used a simplified configuration and assumption in which only one virtual machine (VM) runs on a virtual machine monitor (VMM) hosted on a physical server. In this paper, we show a comprehensive availability model using stochastic reward nets (SRN). The model takes into account (i) the detailed failures and recovery behaviors of multiple VMs, (ii) various other failure modes and corresponding recovery behaviors (e.g., hardware faults, failure and recovery due to Mandelbugs and aging-related bugs), and (iii) dependency between different subcomponents (e.g., between physical host failure and VMM, etc.) in a virtualized servers system. We also show numerical analysis on steady state availability, downtime in hours per year, transaction loss, and sensitivity analysis. This model provides a new finding on how to increase system availability by combining both software rejuvenations at VM and VMM in a wise manner. PMID:25165732
Quantifying the predictive consequences of model error with linear subspace analysis
White, Jeremy T.; Doherty, John E.; Hughes, Joseph D.
2014-01-01
All computer models are simplified and imperfect simulators of complex natural systems. The discrepancy arising from simplification induces bias in model predictions, which may be amplified by the process of model calibration. This paper presents a new method to identify and quantify the predictive consequences of calibrating a simplified computer model. The method is based on linear theory, and it scales efficiently to the large numbers of parameters and observations characteristic of groundwater and petroleum reservoir models. The method is applied to a range of predictions made with a synthetic integrated surface-water/groundwater model with thousands of parameters. Several different observation processing strategies and parameterization/regularization approaches are examined in detail, including use of the Karhunen-Loève parameter transformation. Predictive bias arising from model error is shown to be prediction specific and often invisible to the modeler. The amount of calibration-induced bias is influenced by several factors, including how expert knowledge is applied in the design of parameterization schemes, the number of parameters adjusted during calibration, how observations and model-generated counterparts are processed, and the level of fit with observations achieved through calibration. Failure to properly implement any of these factors in a prediction-specific manner may increase the potential for predictive bias in ways that are not visible to the calibration and uncertainty analysis process.