Sample records for simplified two-layer model

  1. Comment on 'Parametrization of Stillinger-Weber potential based on a valence force field model: application to single-layer MoS2 and black phosphorus'.

    PubMed

    Midtvedt, Daniel; Croy, Alexander

    2016-06-10

    We compare the simplified valence-force model for single-layer black phosphorus with the original model and recent ab initio results. Using an analytic approach and numerical calculations we find that the simplified model yields Young's moduli that are smaller compared to the original model and are almost a factor of two smaller than ab initio results. Moreover, the Poisson ratios are an order of magnitude smaller than values found in the literature.

  2. A fluid model simulation of a simplified plasma limiter based on spectral-element time-domain method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Cheng; Ding, Dazhi, E-mail: dzding@njust.edu.cn; Fan, Zhenhong

    2015-03-15

    A simplified plasma limiter prototype is proposed and the fluid model coupled with Maxwell's equations is established to describe the operating mechanism of plasma limiter. A three-dimensional (3-D) simplified sandwich structure plasma limiter model is analyzed with the spectral-element time-domain (SETD) method. The field breakdown threshold of air and argon at different frequency is predicted and compared with the experimental data and there is a good agreement between them for gas microwave breakdown discharge problems. Numerical results demonstrate that the two-layer plasma limiter (plasma-slab-plasma) has better protective characteristics than a one-layer plasma limiter (slab-plasma-slab) with the same length of gasmore » chamber.« less

  3. Uncertainty Analysis of Air Radiation for Lunar Return Shock Layers

    NASA Technical Reports Server (NTRS)

    Kleb, Bil; Johnston, Christopher O.

    2008-01-01

    By leveraging a new uncertainty markup technique, two risk analysis methods are used to compute the uncertainty of lunar-return shock layer radiation predicted by the High temperature Aerothermodynamic Radiation Algorithm (HARA). The effects of epistemic uncertainty, or uncertainty due to a lack of knowledge, is considered for the following modeling parameters: atomic line oscillator strengths, atomic line Stark broadening widths, atomic photoionization cross sections, negative ion photodetachment cross sections, molecular bands oscillator strengths, and electron impact excitation rates. First, a simplified shock layer problem consisting of two constant-property equilibrium layers is considered. The results of this simplified problem show that the atomic nitrogen oscillator strengths and Stark broadening widths in both the vacuum ultraviolet and infrared spectral regions, along with the negative ion continuum, are the dominant uncertainty contributors. Next, three variable property stagnation-line shock layer cases are analyzed: a typical lunar return case and two Fire II cases. For the near-equilibrium lunar return and Fire 1643-second cases, the resulting uncertainties are very similar to the simplified case. Conversely, the relatively nonequilibrium 1636-second case shows significantly larger influence from electron impact excitation rates of both atoms and molecules. For all cases, the total uncertainty in radiative heat flux to the wall due to epistemic uncertainty in modeling parameters is 30% as opposed to the erroneously-small uncertainty levels (plus or minus 6%) found when treating model parameter uncertainties as aleatory (due to chance) instead of epistemic (due to lack of knowledge).

  4. [A review on research of land surface water and heat fluxes].

    PubMed

    Sun, Rui; Liu, Changming

    2003-03-01

    Many field experiments were done, and soil-vegetation-atmosphere transfer(SVAT) models were stablished to estimate land surface heat fluxes. In this paper, the processes of experimental research on land surface water and heat fluxes are reviewed, and three kinds of SVAT model(single layer model, two layer model and multi-layer model) are analyzed. Remote sensing data are widely used to estimate land surface heat fluxes. Based on remote sensing and energy balance equation, different models such as simplified model, single layer model, extra resistance model, crop water stress index model and two source resistance model are developed to estimate land surface heat fluxes and evapotranspiration. These models are also analyzed in this paper.

  5. A Global 3D P-Velocity Model of the Earth’s Crust and Mantle for Improved Event Location

    DTIC Science & Technology

    2011-09-01

    starting model, we use a simplified layer crustal model derived from the NNSA Unified model in Eurasia and Crust 2.0 model everywhere else, over a...geographic and radial dimensions. For our starting model, we use a simplified layer crustal model derived from the NNSA Unified model in Eurasia and...tessellation with 4° triangles to the transition zone and upper mantle, and a third tessellation with variable resolution to all crustal layers. The

  6. "Home Made" Model to Study the Greenhouse Effect and Global Warming

    ERIC Educational Resources Information Center

    Onorato, P.; Mascheretti, P.; DeAmbrosis, A.

    2011-01-01

    In this paper a simplified two-parameter model of the greenhouse effect on the Earth is developed, starting from the well known two-layer model. It allows both the analysis of the temperatures of the inner planets, by focusing on the role of the greenhouse effect, and a comparison between the temperatures the planets should have in the absence of…

  7. A Fast Proceduere for Optimizing Thermal Protection Systems of Re-Entry Vehicles

    NASA Astrophysics Data System (ADS)

    Ferraiuolo, M.; Riccio, A.; Tescione, D.; Gigliotti, M.

    The aim of the present work is to introduce a fast procedure to optimize thermal protection systems for re-entry vehicles subjected to high thermal loads. A simplified one-dimensional optimization process, performed in order to find the optimum design variables (lengths, sections etc.), is the first step of the proposed design procedure. Simultaneously, the most suitable materials able to sustain high temperatures and meeting the weight requirements are selected and positioned within the design layout. In this stage of the design procedure, simplified (generalized plane strain) FEM models are used when boundary and geometrical conditions allow the reduction of the degrees of freedom. Those simplified local FEM models can be useful because they are time-saving and very simple to build; they are essentially one dimensional and can be used for optimization processes in order to determine the optimum configuration with regard to weight, temperature and stresses. A triple-layer and a double-layer body, subjected to the same aero-thermal loads, have been optimized to minimize the overall weight. Full two and three-dimensional analyses are performed in order to validate those simplified models. Thermal-structural analyses and optimizations are executed by adopting the Ansys FEM code.

  8. Energy and water vapor transport across a simplified cloud-clear air interface

    NASA Astrophysics Data System (ADS)

    Gallana, L.; Di Savino, S.; De Santi, F.; Iovieno, M.; Tordella, D.

    2014-11-01

    We consider a simplified physics of the could interface where condensation, evaporation and radiation are neglected and momentum, thermal energy and water vapor transport is represented in terms of the Boussinesq model coupled to a passive scalar transport equation for the vapor. The interface is modeled as a layer separating two isotropic turbulent regions with different kinetic energy and vapor concentration. In particular, we focus on the small scale part of the inertial range of the atmospheric boundary layer as well as on the dissipative range of scales which are important to the micro-physics of warm clouds. We have numerically investigated stably stratified interfaces by locally perturbing at an initial instant the standard temperature lapse rate at the cloud interface and then observing the temporal evolution of the system. When the buoyancy term becomes of the same order of the inertial one, we observe a spatial redistribution of the kinetic energy which produce a concomitant pit of kinetic energy within the mixing layer. In this situation, the mixing layer contains two interfacial regions with opposite kinetic energy gradient, which in turn produces two intermittent sublayers in the velocity fluctuations field. This changes the structure of the field with respect to the corresponding non-stratified shearless mixing: the communication between the two turbulent region is weak, and the growth of the mixing layer stops. These results are discussed with respect to Large Eddy Simulations data for the Planetary Boundary Layers.

  9. Data reduction of room tests for zone model validation

    Treesearch

    M. Janssens; H. C. Tran

    1992-01-01

    Compartment fire zone models are based on many simplifying assumptions, in particular that gases stratify in two distinct layers. Because of these assumptions, certain model output is in a form unsuitable for direct comparison to measurements made in full-scale room tests. The experimental data must first be reduced and transformed to be compatible with the model...

  10. A Global 3D P-Velocity Model of the Earth’s Crust and Mantle for Improved Event Location -- SALSA3D

    DTIC Science & Technology

    2010-09-01

    incorporates variable resolution in both the geographic and radial dimensions. For our starting model, we use a simplified two layer crustal model derived from... crustal model derived from the Crust 2.0 model over a uniform AK135 mantle. Sufficient damping is used to reduce velocity adjustments so that ray path...upper mantle, and a third tessellation with variable resolution to all crustal layers. The crustal tessellation (not shown) has 2° triangles in oceanic

  11. Simulating Carbon cycle and phenology in complex forests using a multi-layer process based ecosystem model; evaluation and use of 3D-CMCC-Forest Ecosystem Model in a deciduous and an evergreen neighboring forests, within the area of Brasschaat (Be)

    NASA Astrophysics Data System (ADS)

    Marconi, S.; Collalti, A.; Santini, M.; Valentini, R.

    2013-12-01

    3D-CMCC-Forest Ecosystem Model is a process based model formerly developed for complex forest ecosystems to estimate growth, water and carbon cycles, phenology and competition processes on a daily/monthly time scale. The Model integrates some characteristics of the functional-structural tree models with the robustness of the light use efficiency approach. It treats different heights, ages and species as discrete classes, in competition for light (vertical structure) and space (horizontal structure). The present work evaluates the results of the recently developed daily version of 3D-CMCC-FEM for two neighboring different even aged and mono specific study cases. The former is a heterogeneous Pedunculate oak forest (Quercus robur L. ), the latter a more homogeneous Scot pine forest (Pinus sylvestris L.). The multi-layer approach has been evaluated against a series of simplified versions to determine whether the improved model complexity in canopy structure definition increases its predictive ability. Results show that a more complex structure (three height layers) should be preferable to simulate heterogeneous scenarios (Pedunculate oak stand), where heights distribution within the canopy justify the distinction in dominant, dominated and sub-dominated layers. On the contrary, it seems that using a multi-layer approach for more homogeneous stands (Scot pine stand) may be disadvantageous. Forcing the structure of an homogeneous stand to a multi-layer approach may in fact increase sources of uncertainty. On the other hand forcing complex forests to a mono layer simplified model, may cause an increase in mortality and a reduction in average DBH and Height. Compared with measured CO2 flux data, model results show good ability in estimating carbon sequestration trends, on both a monthly/seasonal and daily time scales. Moreover the model simulates quite well leaf phenology and the combined effects of the two different forest stands on CO2 fluxes.

  12. Limitations in the 2D description of the electromagnetic waves propagation in thin dielectric and magnetic layers

    NASA Astrophysics Data System (ADS)

    Radożycki, Tomasz; Bargieła, Piotr

    2018-07-01

    The propagation of electromagnetic waves trapped within dielectric and magnetic layers is considered. The description within the three-dimensional theory is compared to the simplified analysis in two dimensions. Two distinct media configurations of different topology are dealt with: a plane slab and a hollow cylinder. Choosing the appropriate values for the geometrical parameters (layer thickness, radius of the cylinder) and for the electromagnetic properties of the media one can trap exactly one mode corresponding to that obtained within the two-dimensional electromagnetism. However, the symmetry between electric and magnetic fields suggests, that the two versions of the simplified electromagnetism ought to be equally considered. Its usual form is incomplete to describe all modes. It is also found that there exists a domain of optimal values of parameters for which the 2D model works relatively correctly. However, in the case of a cylindrical surface we observe several differences which may be attributed to the curvature of the layer, and which exclude the propagation of evanescent modes. The two-dimensional electrodynamics, whichever form is used, turns out still too poor to describe the so-called 'hybrid modes' excited in a real layer. The obtained results can be essential for proper description of the propagating waves within thin layers for which 3D approach is not available due to mathematical complexity and reducing the layer to a lower dimensional structure seems the only possible option.

  13. The effect of collagen fibril orientation on the biphasic mechanics of articular cartilage.

    PubMed

    Meng, Qingen; An, Shuqiang; Damion, Robin A; Jin, Zhongmin; Wilcox, Ruth; Fisher, John; Jones, Alison

    2017-01-01

    The highly inhomogeneous distribution of collagen fibrils may have important effects on the biphasic mechanics of articular cartilage. However, the effect of the inhomogeneity of collagen fibrils has mainly been investigated using simplified three-layered models, which may have underestimated the effect of collagen fibrils by neglecting their realistic orientation. The aim of this study was to investigate the effect of the realistic orientation of collagen fibrils on the biphasic mechanics of articular cartilage. Five biphasic material models, each of which included a different level of complexity of fibril reinforcement, were solved using two different finite element software packages (Abaqus and FEBio). Model 1 considered the realistic orientation of fibrils, which was derived from diffusion tensor magnetic resonance images. The simplified three-layered orientation was used for Model 2. Models 3-5 were three control models. The realistic collagen orientations obtained in this study were consistent with the literature. Results from the two finite element implementations were in agreement for each of the conditions modelled. The comparison between the control models confirmed some functions of collagen fibrils. The comparison between Models 1 and 2 showed that the widely-used three-layered inhomogeneous model can produce similar fluid load support to the model including the realistic fibril orientation; however, an accurate prediction of the other mechanical parameters requires the inclusion of the realistic orientation of collagen fibrils. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Significance of radiation models in investigating the flow phenomena around a Jovian entry body

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Subramanian, S. V.

    1978-01-01

    Formulation is presented to demonstrate the significance of a simplified radiation model in investigating the flow phenomena in the viscous radiating shock layer of a Jovian entry body. The body configurations used are a 55 degree sphere cone and 50 degree hyperboloid. A nongray absorption model for hydrogen-helium gas is developed which consists of 30 steps over the spectral range of 0 to 20 eV. By employing this model, results were obtained for temperature, pressure, density, the shock layer and along the body surface. These are compared with results of two sophisticated radiative transport models available in the literature.

  15. Formula Gives Better Contact-Resistance Values

    NASA Technical Reports Server (NTRS)

    Lieneweg, Udo; Hannaman, David J.

    1988-01-01

    Lateral currents in contact strips taken into account. Four-terminal test structures added to intergrated circuits to enable measurement of interfacial resistivities of contacts between thin conducting layers. Thin-film model simplified quasi-two-dimensional potential model that accounts adequately for complicated three-dimensional, nonuniform current densitites. Effects of nonuniformity caused by lateral current flow in strips summarized in equivalent resistance Rs and voltage Vs.

  16. Using a bias aware EnKF to account for unresolved structure in an unsaturated zone model

    NASA Astrophysics Data System (ADS)

    Erdal, D.; Neuweiler, I.; Wollschläger, U.

    2014-01-01

    When predicting flow in the unsaturated zone, any method for modeling the flow will have to define how, and to what level, the subsurface structure is resolved. In this paper, we use the Ensemble Kalman Filter to assimilate local soil water content observations from both a synthetic layered lysimeter and a real field experiment in layered soil in an unsaturated water flow model. We investigate the use of colored noise bias corrections to account for unresolved subsurface layering in a homogeneous model and compare this approach with a fully resolved model. In both models, we use a simplified model parameterization in the Ensemble Kalman Filter. The results show that the use of bias corrections can increase the predictive capability of a simplified homogeneous flow model if the bias corrections are applied to the model states. If correct knowledge of the layering structure is available, the fully resolved model performs best. However, if no, or erroneous, layering is used in the model, the use of a homogeneous model with bias corrections can be the better choice for modeling the behavior of the system.

  17. Effects of model layer simplification using composite hydraulic properties

    USGS Publications Warehouse

    Sepúlveda, Nicasio; Kuniansky, Eve L.

    2010-01-01

    The effects of simplifying hydraulic property layering within an unconfined aquifer and the underlying confining unit were assessed. The hydraulic properties of lithologic units within the unconfined aquifer and confining unit were computed by analyzing the aquifer-test data using radial, axisymmetric two-dimensional (2D) flow. Time-varying recharge to the unconfined aquifer and pumping from the confined Upper Floridan aquifer (USA) were simulated using 3D flow. Conceptual flow models were developed by gradually reducing the number of lithologic units in the unconfined aquifer and confining unit by calculating composite hydraulic properties for the simplified lithologic units. Composite hydraulic properties were calculated using either thickness-weighted averages or inverse modeling using regression-based parameter estimation. No significant residuals were simulated when all lithologic units comprising the unconfined aquifer were simulated as one layer. The largest residuals occurred when the unconfined aquifer and confining unit were aggregated into a single layer (quasi-3D), with residuals over 100% for the leakage rates to the confined aquifer and the heads in the confining unit. Residuals increased with contrasts in vertical hydraulic conductivity between the unconfined aquifer and confining unit. Residuals increased when the constant-head boundary at the bottom of the Upper Floridan aquifer was replaced with a no-flow boundary.

  18. Release Kinetics of Paclitaxel and Cisplatin from Two and Three Layered Gold Nanoparticles

    PubMed Central

    England, Christopher G.; Miller, M. Clarke; Kuttan, Ashani; Trent, John O.; Frieboes, Hermann B.

    2015-01-01

    Gold nanoparticles functionalized with biologically-compatible layers may achieve stable drug release while avoiding adverse effects in cancer treatment. We study cisplatin and paclitaxel release from gold cores functionalized with hexadecanethiol (TL) and phosphatidylcholine (PC) to form two-layer nanoparticles, or TL, PC, and high density lipoprotein (HDL) to form three-layer nanoparticles. Drug release was monitored for 14 days to assess long term effects of the core surface modifications on release kinetics. Release profiles were fitted to previously developed kinetic models to differentiate possible release mechanisms. The hydrophilic drug (cisplatin) showed an initial (5-hr.) burst, followed by a steady release over 14 days. The hydrophobic drug (paclitaxel) showed a steady release over the same time period. Two layer nanoparticles released 64.0 ± 2.5% of cisplatin and 22.3 ± 1.5% of paclitaxel, while three layer nanoparticles released the entire encapsulated drug. The Korsmeyer-Peppas model best described each release scenario, while the simplified Higuchi model also adequately described paclitaxel release from the two layer formulation. We conclude that functionalization of gold nanoparticles with a combination of TL and PC may help to modulate both hydrophilic and hydrophobic drug release kinetics, while the addition of HDL may enhance long term release of hydrophobic drug. PMID:25753197

  19. Organic thin film transistor with a simplified planar structure

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Yu, Jungsheng; Zhong, Jian; Jiang, Yadong

    2009-05-01

    Organic thin film transistor (OTFT) with a simplified planar structure is described. The gate electrode and the source/drain electrodes of OTFT are processed in one planar structure. And these three electrodes are deposited on the glass substrate by DC sputtering technology using Cr/Ni target. Then the electrode layouts of different width length ratio are made by photolithography technology at the same time. Only one step of deposition and one step of photolithography is needed while conventional process takes at least two steps of deposition and two steps of photolithography. Metal is first prepared on the other side of glass substrate and electrode is formed by photolithography. Then source/drain electrode is prepared by deposition and photolithography on the side with the insulation layer. Compared to conventional process of OTFTs, the process in this work is simplified. After three electrodes prepared, the insulation layer is made by spin coating method. The organic material of polyimide is used as the insulation layer. A small molecular material of pentacene is evaporated on the insulation layer using vacuum deposition as the active layer. The process of OTFTs needs only three steps totally. A semi-auto probe stage is used to connect the three electrodes and the probe of the test instrument. A charge carrier mobility of 0.3 cm2 /V s, is obtained from OTFTs on glass substrates with and on/off current ratio of 105. The OTFTs with the planar structure using simplified process can simplify the device process and reduce the fabrication cost.

  20. Analysis of simplified heat transfer models for thermal property determination of nano-film by TDTR method

    NASA Astrophysics Data System (ADS)

    Wang, Xinwei; Chen, Zhe; Sun, Fangyuan; Zhang, Hang; Jiang, Yuyan; Tang, Dawei

    2018-03-01

    Heat transfer in nanostructures is of critical importance for a wide range of applications such as functional materials and thermal management of electronics. Time-domain thermoreflectance (TDTR) has been proved to be a reliable measurement technique for the thermal property determinations of nanoscale structures. However, it is difficult to determine more than three thermal properties at the same time. Heat transfer model simplifications can reduce the fitting variables and provide an alternative way for thermal property determination. In this paper, two simplified models are investigated and analyzed by the transform matrix method and simulations. TDTR measurements are performed on Al-SiO2-Si samples with different SiO2 thickness. Both theoretical and experimental results show that the simplified tri-layer model (STM) is reliable and suitable for thin film samples with a wide range of thickness. Furthermore, the STM can also extract the intrinsic thermal conductivity and interfacial thermal resistance from serial samples with different thickness.

  1. Simplified Physics Based Models Research Topical Report on Task #2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Srikanta; Ganesh, Priya

    We present a simplified-physics based approach, where only the most important physical processes are modeled, to develop and validate simplified predictive models of CO2 sequestration in deep saline formation. The system of interest is a single vertical well injecting supercritical CO2 into a 2-D layered reservoir-caprock system with variable layer permeabilities. We use a set of well-designed full-physics compositional simulations to understand key processes and parameters affecting pressure propagation and buoyant plume migration. Based on these simulations, we have developed correlations for dimensionless injectivity as a function of the slope of fractional-flow curve, variance of layer permeability values, and themore » nature of vertical permeability arrangement. The same variables, along with a modified gravity number, can be used to develop a correlation for the total storage efficiency within the CO2 plume footprint. Similar correlations are also developed to predict the average pressure within the injection reservoir, and the pressure buildup within the caprock.« less

  2. The role of the antecedent soil moisture condition on the distributed hydrologic modelling of the Toce alpine basin floods.

    NASA Astrophysics Data System (ADS)

    Ravazzani, G.; Montaldo, N.; Mancini, M.; Rosso, R.

    2003-04-01

    Event-based hydrologic models need the antecedent soil moisture condition, as critical boundary initial condition for flood simulation. Land-surface models (LSMs) have been developed to simulate mass and energy transfers, and to update the soil moisture condition through time from the solution of water and energy balance equations. They are recently used in distributed hydrologic modeling for flood prediction systems. Recent developments have made LSMs more complex by inclusion of more processes and controlling variables, increasing parameter number and uncertainty of their estimates. This also led to increasing of computational burden and parameterization of the distributed hydrologic models. In this study we investigate: 1) the role of soil moisture initial conditions in the modeling of Alpine basin floods; 2) the adequate complexity level of LSMs for the distributed hydrologic modeling of Alpine basin floods. The Toce basin is the case study; it is located in the North Piedmont (Italian Alps), and it has a total drainage area of 1534 km2 at Candoglia section. Three distributed hydrologic models of different level of complexity are developed and compared: two (TDLSM and SDLSM) are continuous models, one (FEST02) is an event model based on the simplified SCS-CN method for rainfall abstractions. In the TDLSM model a two-layer LSM computes both saturation and infiltration excess runoff, and simulates the evolution of the water table spatial distribution using the topographic index; in the SDLSM model a simplified one-layer distributed LSM only computes hortonian runoff, and doesn’t simulate the water table dynamic. All the three hydrologic models simulate the surface runoff propagation through the Muskingum-Cunge method. TDLSM and SDLSM models have been applied for the two-year (1996 and 1997) simulation period, during which two major floods occurred in the November 1996 and in the June 1997. The models have been calibrated and tested comparing simulated and observed hydrographs at Candoglia. Sensitivity analysis of the models to significant LSM parameters were also performed. The performances of the three models in the simulation of the two major floods are compared. Interestingly, the results indicate that the SDLSM model is able to sufficiently well predict the major floods of this Alpine basin; indeed, this model is a good compromise between the over-parameterized and too complex TDLSM model and the over-simplified FEST02 model.

  3. Kinesthetic Life Cycle of Stars

    NASA Astrophysics Data System (ADS)

    Reinfeld, Erika L.; Hartman, Mark A.

    We present a kinesthetic approach to learning about the life cycle of stars. Using a simplified two-layer model for stellar structure, learners recreate kinesthetically the birth, life, and death of low- and high-mass stars. Examples of how this activity has been used in several settings outside school time provide additional resources for extending student learning about this topic.

  4. A multiphase model for chemically- and mechanically- induced cell differentiation in a hollow fibre membrane bioreactor: minimising growth factor consumption.

    PubMed

    Pearson, Natalie C; Oliver, James M; Shipley, Rebecca J; Waters, Sarah L

    2016-06-01

    We present a simplified two-dimensional model of fluid flow, solute transport, and cell distribution in a hollow fibre membrane bioreactor. We consider two cell populations, one undifferentiated and one differentiated, with differentiation stimulated either by growth factor alone, or by both growth factor and fluid shear stress. Two experimental configurations are considered, a 3-layer model in which the cells are seeded in a scaffold throughout the extracapillary space (ECS), and a 4-layer model in which the cell-scaffold construct occupies a layer surrounding the outside of the hollow fibre, only partially filling the ECS. Above this is a region of free-flowing fluid, referred to as the upper fluid layer. Following previous models by the authors (Pearson et al. in Math Med Biol, 2013, Biomech Model Mechanbiol 1-16, 2014a, we employ porous mixture theory to model the dynamics of, and interactions between, the cells, scaffold, and fluid in the cell-scaffold construct. We use this model to determine operating conditions (experiment end time, growth factor inlet concentration, and inlet fluid fluxes) which result in a required percentage of differentiated cells, as well as maximising the differentiated cell yield and minimising the consumption of expensive growth factor.

  5. Application of the top specified boundary layer (TSBL) approximation to initial characterization of an inland aquifer mineralization 1. Direct contact between fresh and saltwater

    USGS Publications Warehouse

    Rubin, H.; Buddemeier, R.W.

    1998-01-01

    This paper presents a basic study in generalized terms that originates from two needs: (1) to understand the major mechanisms involved in the mineralization of groundwater of the Great Bend Prairie aquifer of Kansas by saltwater originating from a deeper Permian bedrock formation, and (2) to develop simple, robust tools that can readily be used for local assessment and management activities in the salt-affected region. A simplified basic conceptual model is adopted, incorporating two horizontal layers of porous medium which come into contact at a specific location within the model domain. The top layer is saturated with freshwater, and the bottom layer is saturated with saltwater. The paper considers various stages of approximation which can be useful for simplified simulation of the build-up of the transition zone (TZ) between the freshwater and the saltwater. The hierarchy of approximate approaches leads to the development of the top specified boundary layer (TSBL) method, which is the major tool used in this study for initial characterization of the development of the TZ. It is shown that the thickness of the TZ is mainly determined by the characteristic dispersivity. The build-up of the TZ is completed after a time period equal to the time needed to advect a fluid particle along the whole extent of the TZ. Potential applications and the effects of natural recharge and pumpage on salinity transport in the domain are discussed and evaluated in the context of demonstrating the practicality of the TSBL approach.

  6. Excitations in confined helium

    NASA Astrophysics Data System (ADS)

    Apaja, V.; Krotscheck, E.

    2003-05-01

    We design models for helium in matrices such as aerogel, Vycor, or Geltech from a manifestly microscopic point of view. For that purpose, we calculate the dynamic structure function of 4He on Si substrates and between two Si walls as a function of energy, momentum transfer, and the scattering angle. The angle-averaged results are in good agreement with the neutron scattering data; the remaining differences can be attributed to the simplified model used here for the complex pore structure of the materials. A focus of the present work is the detailed identification of coexisting layer modes and bulklike excitations, and, in the case of thick films, ripplon excitations. Involving essentially two-dimensional motion of atoms, the layer modes are sensitive to the scattering angle.

  7. Highly efficient blue and warm white organic light-emitting diodes with a simplified structure

    NASA Astrophysics Data System (ADS)

    Li, Xiang-Long; Ouyang, Xinhua; Chen, Dongcheng; Cai, Xinyi; Liu, Ming; Ge, Ziyi; Cao, Yong; Su, Shi-Jian

    2016-03-01

    Two blue fluorescent emitters were utilized to construct simplified organic light-emitting diodes (OLEDs) and the remarkable difference in device performance was carefully illustrated. A maximum current efficiency of 4.84 cd A-1 (corresponding to a quantum efficiency of 4.29%) with a Commission Internationale de l’Eclairage (CIE) coordinate of (0.144, 0.127) was achieved by using N,N-diphenyl-4″-(1-phenyl-1H-benzo[d]imidazol-2-yl)-[1, 1‧:4‧, 1″-terphenyl]-4-amine (BBPI) as a non-doped emission layer of the simplified blue OLEDs without carrier-transport layers. In addition, simplified fluorescent/phosphorescent (F/P) hybrid warm white OLEDs without carrier-transport layers were fabricated by utilizing BBPI as (1) the blue emitter and (2) the host of a complementary yellow phosphorescent emitter (PO-01). A maximum current efficiency of 36.8 cd A-1 and a maximum power efficiency of 38.6 lm W-1 were achieved as a result of efficient energy transfer from the host to the guest and good triplet exciton confinement on the phosphorescent molecules. The blue and white OLEDs are among the most efficient simplified fluorescent blue and F/P hybrid white devices, and their performance is even comparable to that of most previously reported complicated multi-layer devices with carrier-transport layers.

  8. ALC: automated reduction of rule-based models

    PubMed Central

    Koschorreck, Markus; Gilles, Ernst Dieter

    2008-01-01

    Background Combinatorial complexity is a challenging problem for the modeling of cellular signal transduction since the association of a few proteins can give rise to an enormous amount of feasible protein complexes. The layer-based approach is an approximative, but accurate method for the mathematical modeling of signaling systems with inherent combinatorial complexity. The number of variables in the simulation equations is highly reduced and the resulting dynamic models show a pronounced modularity. Layer-based modeling allows for the modeling of systems not accessible previously. Results ALC (Automated Layer Construction) is a computer program that highly simplifies the building of reduced modular models, according to the layer-based approach. The model is defined using a simple but powerful rule-based syntax that supports the concepts of modularity and macrostates. ALC performs consistency checks on the model definition and provides the model output in different formats (C MEX, MATLAB, Mathematica and SBML) as ready-to-run simulation files. ALC also provides additional documentation files that simplify the publication or presentation of the models. The tool can be used offline or via a form on the ALC website. Conclusion ALC allows for a simple rule-based generation of layer-based reduced models. The model files are given in different formats as ready-to-run simulation files. PMID:18973705

  9. Similarity theory of the buoyantly interactive planetary boundary layer with entrainment

    NASA Technical Reports Server (NTRS)

    Hoffert, M. I.; Sud, Y. C.

    1976-01-01

    A similarity model is developed for the vertical profiles of turbulent flow variables in an entraining turbulent boundary layer of arbitrary buoyant stability. In the general formulation the vertical profiles, internal rotation of the velocity vector, discontinuities or jumps at a capping inversion and bulk aerodynamic coefficients of the boundary layer are given by solutions to a system of ordinary differential equations in the similarity variable. To close the system, a formulation for buoyantly interactive eddy diffusivity in the boundary layer is introduced which recovers Monin-Obukhov similarity near the surface and incorporates a hypothesis accounting for the observed variation of mixing length throughout the boundary layer. The model is tested in simplified versions which depend only on roughness, surface buoyancy, and Coriolis effects by comparison with planetary-boundary-layer wind- and temperature-profile observations, measurements of flat-plate boundary layers in a thermally stratified wind tunnel and observations of profiles of terms in the turbulent kinetic-energy budget of convective planetary boundary layers. On balance, the simplified model reproduced the trend of these various observations and experiments reasonably well, suggesting that the full similarity formulation be pursued further.

  10. Snow instability evaluation: calculating the skier-induced stress in a multi-layered snowpack

    NASA Astrophysics Data System (ADS)

    Monti, Fabiano; Gaume, Johan; van Herwijnen, Alec; Schweizer, Jürg

    2016-03-01

    The process of dry-snow slab avalanche formation can be divided into two phases: failure initiation and crack propagation. Several approaches tried to quantify slab avalanche release probability in terms of failure initiation based on shear stress and strength. Though it is known that both the properties of the weak layer and the slab play a major role in avalanche release, most previous approaches only considered slab properties in terms of slab depth, average density and skier penetration. For example, for the skier stability index, the additional stress (e.g. due to a skier) at the depth of the weak layer is calculated by assuming that the snow cover can be considered a semi-infinite, elastic, half-space. We suggest a new approach based on a simplification of the multi-layered elasticity theory in order to easily compute the additional stress due to a skier at the depth of the weak layer, taking into account the layering of the snow slab and the substratum. We first tested the proposed approach on simplified snow profiles, then on manually observed snow profiles including a stability test and, finally, on simulated snow profiles. Our simple approach reproduced the additional stress obtained by finite element simulations for the simplified profiles well - except that the sequence of layering in the slab cannot be replicated. Once implemented into the classical skier stability index and applied to manually observed snow profiles classified into different stability classes, the classification accuracy improved with the new approach. Finally, we implemented the refined skier stability index into the 1-D snow cover model SNOWPACK. The two study cases presented in this paper showed promising results even though further verification is still needed. In the future, we intend to implement the proposed approach for describing skier-induced stress within a multi-layered snowpack into more complex models which take into account not only failure initiation but also crack propagation.

  11. Snow instability evaluation: calculating the skier-induced stress in a multi-layered snowpack

    NASA Astrophysics Data System (ADS)

    Monti, F.; Gaume, J.; van Herwijnen, A.; Schweizer, J.

    2015-08-01

    The process of dry-snow slab avalanche formation can be divided into two phases: failure initiation and crack propagation. Several approaches tried to quantify slab avalanche release probability in terms of failure initiation based on shear stress and strength. Though it is known that both the properties of the weak layer and the slab play a major role in avalanche release, most previous approaches only considered slab properties in terms of slab depth, average density and skier penetration. For example, for the skier stability index, the additional stress (e.g. due to a skier) at the depth of the weak layer is calculated by assuming that the snow cover can be considered a semi-infinite, elastic half-space. We suggest a new approach based on a simplification of the multi-layered elasticity theory in order to easily compute the additional stress due to a skier at the depth of the weak layer taking into account the layering of the snow slab and the substratum. We first tested the proposed approach on simplified snow profiles, then on manually observed snow profiles including a stability test and, finally, on simulated snow profiles. Our simple approach well reproduced the additional stress obtained by finite element simulations for the simplified profiles - except that the sequence of layering in the slab cannot be replicated. Once implemented into the classical skier stability index and applied to manually observed snow profiles classified into different stability classes, the classification accuracy improved with the new approach. Finally, we implemented the refined skier stability index into the 1-D snow cover model SNOWPACK. For the two study cases presented in this paper, this approach showed promising results even though further verification is still needed. In the future, we intend to implement the proposed approach for describing skier-induced stress within a multi-layered snowpack into more complex models which take into account not only failure initiation but also crack propagation.

  12. SF-FDTD analysis of a predictive physical model for parallel aligned liquid crystal devices

    NASA Astrophysics Data System (ADS)

    Márquez, Andrés.; Francés, Jorge; Martínez, Francisco J.; Gallego, Sergi; Alvarez, Mariela L.; Calzado, Eva M.; Pascual, Inmaculada; Beléndez, Augusto

    2017-08-01

    Recently we demonstrated a novel and simplified model enabling to calculate the voltage dependent retardance provided by parallel aligned liquid crystal devices (PA-LCoS) for a very wide range of incidence angles and any wavelength in the visible. To our knowledge it represents the most simplified approach still showing predictive capability. Deeper insight into the physics behind the simplified model is necessary to understand if the parameters in the model are physically meaningful. Since the PA-LCoS is a black-box where we do not have information about the physical parameters of the device, we cannot perform this kind of analysis using the experimental retardance measurements. In this work we develop realistic simulations for the non-linear tilt of the liquid crystal director across the thickness of the liquid crystal layer in the PA devices. We consider these profiles to have a sine-like shape, which is a good approximation for typical ranges of applied voltage in commercial PA-LCoS microdisplays. For these simulations we develop a rigorous method based on the split-field finite difference time domain (SF-FDTD) technique which provides realistic retardance values. These values are used as the experimental measurements to which the simplified model is fitted. From this analysis we learn that the simplified model is very robust, providing unambiguous solutions when fitting its parameters. We also learn that two of the parameters in the model are physically meaningful, proving a useful reverse-engineering approach, with predictive capability, to probe into internal characteristics of the PA-LCoS device.

  13. Retrieval of ammonia abundances and cloud opacities on Jupiter from Voyager IRIS spectra

    NASA Technical Reports Server (NTRS)

    Conrath, B. J.; Gierasch, P. J.

    1986-01-01

    Gaseous ammonia abundances and cloud opacities are retrieved from Voyager IRIS 5- and 45-micron data on the basis of a simplified atmospheric model and a two-stream radiative transfer approximation, assuming a single cloud layer with 680-mbar base pressure and 0.14 gas scale height. Brightness temperature measurements obtained as a function of emission angle from selected planetary locations are used to verify the model and constrain a number of its parameters.

  14. Navier-Stokes calculations on multi-element airfoils using a chimera-based solver

    NASA Technical Reports Server (NTRS)

    Jasper, Donald W.; Agrawal, Shreekant; Robinson, Brian A.

    1993-01-01

    A study of Navier-Stokes calculations of flows about multielement airfoils using a chimera grid approach is presented. The chimera approach utilizes structured, overlapped grids which allow great flexibility of grid arrangement and simplifies grid generation. Calculations are made for two-, three-, and four-element airfoils, and modeling of the effect of gap distance between elements is demonstrated for a two element case. Solutions are obtained using the thin-layer form of the Reynolds averaged Navier-Stokes equations with turbulence closure provided by the Baldwin-Lomax algebraic model or the Baldwin-Barth one equation model. The Baldwin-Barth turbulence model is shown to provide better agreement with experimental data and to dramatically improve convergence rates for some cases. Recently developed, improved farfield boundary conditions are incorporated into the solver for greater efficiency. Computed results show good comparison with experimental data which include aerodynamic forces, surface pressures, and boundary layer velocity profiles.

  15. Photochemistry and dynamics of the ozone layer

    NASA Technical Reports Server (NTRS)

    Prinn, R. G.; Alyea, F. N.; Cunnold, D. M.

    1978-01-01

    The paper presents a broad review of the photochemical and dynamic theories of the ozone layer. The two theories are combined into the MIT three-dimensional dynamic-chemical quasi-geostrophic model with 26 levels in the vertical spaced in logarithmic pressure coordinates between the ground and 72-km altitude. The chemical scheme incorporates the important odd nitrogen, odd hydrogen, and odd oxygen chemistry, but is simplified in the sense that it requires specification of the distributions of NO2, OH and HO2. The prognostic equations are the vorticity equation, the perturbation thermodynamic equation, and the global mean and perturbation continuity equations for ozone; diagnostic equations include the hydrostatic equation, the balance condition, and the mass continuity equation. The model is applied to the investigation of the impact of supersonic aircraft on the ozone layer.

  16. Snow Physics and Meltwater Hydrology of the SSiB Model Employed for Climate Simulation Studies with GEOS 2 GCM

    NASA Technical Reports Server (NTRS)

    Mocko, David M.; Sud, Y. C.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Present-day climate models produce large climate drifts that interfere with the climate signals simulated in modelling studies. The simplifying assumptions of the physical parameterization of snow and ice processes lead to large biases in the annual cycles of surface temperature, evapotranspiration, and the water budget, which in turn causes erroneous land-atmosphere interactions. Since land processes are vital for climate prediction, and snow and snowmelt processes have been shown to affect Indian monsoons and North American rainfall and hydrology, special attention is now being given to cold land processes and their influence on the simulated annual cycle in GCMs. The snow model of the SSiB land-surface model being used at Goddard has evolved from a unified single snow-soil layer interacting with a deep soil layer through a force-restore procedure to a two-layer snow model atop a ground layer separated by a snow-ground interface. When the snow cover is deep, force-restore occurs within the snow layers. However, several other simplifying assumptions such as homogeneous snow cover, an empirical depth related surface albedo, snowmelt and melt-freeze in the diurnal cycles, and neglect of latent heat of soil freezing and thawing still remain as nagging problems. Several important influences of these assumptions will be discussed with the goal of improving them to better simulate the snowmelt and meltwater hydrology. Nevertheless, the current snow model (Mocko and Sud, 2000, submitted) better simulates cold land processes as compared to the original SSiB. This was confirmed against observations of soil moisture, runoff, and snow cover in global GSWP (Sud and Mocko, 1999) and point-scale Valdai simulations over seasonal snow regions. New results from the current snow model SSiB from the 10-year PILPS 2e intercomparison in northern Scandinavia will be presented.

  17. Sediment transport under wave groups: Relative importance between nonlinear waveshape and nonlinear boundary layer streaming

    USGS Publications Warehouse

    Yu, X.; Hsu, T.-J.; Hanes, D.M.

    2010-01-01

    Sediment transport under nonlinear waves in a predominately sheet flow condition is investigated using a two-phase model. Specifically, we study the relative importance between the nonlinear waveshape and nonlinear boundary layer streaming on cross-shore sand transport. Terms in the governing equations because of the nonlinear boundary layer process are included in this one-dimensional vertical (1DV) model by simplifying the two-dimensional vertical (2DV) ensemble-averaged two-phase equations with the assumption that waves propagate without changing their form. The model is first driven by measured time series of near-bed flow velocity because of a wave group during the SISTEX99 large wave flume experiment and validated with the measured sand concentration in the sheet flow layer. Additional studies are then carried out by including and excluding the nonlinear boundary layer terms. It is found that for the grain diameter (0.24 mm) and high-velocity skewness wave condition considered here, nonlinear waveshape (e.g., skewness) is the dominant mechanism causing net onshore transport and nonlinear boundary layer streaming effect only causes an additional 36% onshore transport. However, for conditions of relatively low-wave skewness and a stronger offshore directed current, nonlinear boundary layer streaming plays a more critical role in determining the net transport. Numerical experiments further suggest that the nonlinear boundary layer streaming effect becomes increasingly important for finer grain. When the numerical model is driven by measured near-bed flow velocity in a more realistic surf zone setting, model results suggest nonlinear boundary layer processes may nearly double the onshore transport purely because of nonlinear waveshape. Copyright 2010 by the American Geophysical Union.

  18. Studies and comparison of currently utilized models for ablation in Electrothermal-chemical guns

    NASA Astrophysics Data System (ADS)

    Jia, Shenli; Li, Rui; Li, Xingwen

    2009-10-01

    Wall ablation is a key process taking place in the capillary plasma generator in Electrothermal-Chemical (ETC) guns, whose characteristic directly decides the generator's performance. In the present article, this ablation process is theoretically studied. Currently widely used mathematical models designed to describe such process are analyzed and compared, including a recently developed kinetic model which takes into account the unsteady state in plasma-wall transition region by dividing it into two sub-layers, a Knudsen layer and a collision dominated non-equilibrium Hydrodynamic layer, a model based on Langmuir Law, as well as a simplified model widely used in arc-wall interaction process in circuit breakers, which assumes a proportional factor and an ablation enthalpy obtained empirically. Bulk plasma state and parameters are assumed to be consistent while analyzing and comparing each model, in order to take into consideration only the difference caused by model itself. Finally ablation rate is calculated in each method respectively and differences are discussed.

  19. Oxygen Mass Transport in Stented Coronary Arteries.

    PubMed

    Murphy, Eoin A; Dunne, Adrian S; Martin, David M; Boyle, Fergal J

    2016-02-01

    Oxygen deficiency, known as hypoxia, in arterial walls has been linked to increased intimal hyperplasia, which is the main adverse biological process causing in-stent restenosis. Stent implantation has significant effects on the oxygen transport into the arterial wall. Elucidating these effects is critical to optimizing future stent designs. In this study the most advanced oxygen transport model developed to date was assessed in two test cases and used to compare three coronary stent designs. Additionally, the predicted results from four simplified blood oxygen transport models are compared in the two test cases. The advanced model showed good agreement with experimental measurements within the mass-transfer boundary layer and at the luminal surface; however, more work is needed in predicting the oxygen transport within the arterial wall. Simplifying the oxygen transport model within the blood flow produces significant errors in predicting the oxygen transport in arteries. This study can be used as a guide for all future numerical studies in this area and the advanced model could provide a powerful tool in aiding design of stents and other cardiovascular devices.

  20. Particle Transport through Scattering Regions with Clear Layers and Inclusions

    NASA Astrophysics Data System (ADS)

    Bal, Guillaume

    2002-08-01

    This paper introduces generalized diffusion models for the transport of particles in scattering media with nonscattering inclusions. Classical diffusion is known as a good approximation of transport only in scattering media. Based on asymptotic expansions and the coupling of transport and diffusion models, generalized diffusion equations with nonlocal interface conditions are proposed which offer a computationally cheap, yet accurate, alternative to solving the full phase-space transport equations. The paper shows which computational model should be used depending on the size and shape of the nonscattering inclusions in the simplified setting of two space dimensions. An important application is the treatment of clear layers in near-infrared (NIR) spectroscopy, an imaging technique based on the propagation of NIR photons in human tissues.

  1. Effect of Anatomically Realistic Full-Head Model on Activation of Cortical Neurons in Subdural Cortical Stimulation—A Computational Study

    NASA Astrophysics Data System (ADS)

    Seo, Hyeon; Kim, Donghyeon; Jun, Sung Chan

    2016-06-01

    Electrical brain stimulation (EBS) is an emerging therapy for the treatment of neurological disorders, and computational modeling studies of EBS have been used to determine the optimal parameters for highly cost-effective electrotherapy. Recent notable growth in computing capability has enabled researchers to consider an anatomically realistic head model that represents the full head and complex geometry of the brain rather than the previous simplified partial head model (extruded slab) that represents only the precentral gyrus. In this work, subdural cortical stimulation (SuCS) was found to offer a better understanding of the differential activation of cortical neurons in the anatomically realistic full-head model than in the simplified partial-head models. We observed that layer 3 pyramidal neurons had comparable stimulation thresholds in both head models, while layer 5 pyramidal neurons showed a notable discrepancy between the models; in particular, layer 5 pyramidal neurons demonstrated asymmetry in the thresholds and action potential initiation sites in the anatomically realistic full-head model. Overall, the anatomically realistic full-head model may offer a better understanding of layer 5 pyramidal neuronal responses. Accordingly, the effects of using the realistic full-head model in SuCS are compelling in computational modeling studies, even though this modeling requires substantially more effort.

  2. A Simplified Land Model (SLM) for use in cloud-resolving models: Formulation and evaluation

    NASA Astrophysics Data System (ADS)

    Lee, Jungmin M.; Khairoutdinov, Marat

    2015-09-01

    A Simplified Land Model (SLM) that uses a minimalist set of parameters with a single-layer vegetation and multilevel soil structure has been developed distinguishing canopy and undercanopy energy budgets. The primary motivation has been to design a land model for use in the System for Atmospheric Modeling (SAM) cloud-resolving model to study land-atmosphere interactions with a sufficient level of realism. SLM uses simplified expressions for the transport of heat, moisture, momentum, and radiation in soil-vegetation system. The SLM performance has been evaluated over several land surface types using summertime tower observations of micrometeorological and biophysical data from three AmeriFlux sites, which include grassland, cropland, and deciduous-broadleaf forest. In general, the SLM captures the observed diurnal cycle of surface energy budget and soil temperature reasonably well, although reproducing the evolution of soil moisture, especially after rain events, has been challenging. The SLM coupled to SAM has been applied to the case of summertime shallow cumulus convection over land based on the Atmospheric Radiation Measurements (ARM) Southern Great Plain (SGP) observations. The simulated surface latent and sensible heat fluxes as well as the evolution of thermodynamic profiles in convective boundary layer agree well with the estimates based on the observations. Sensitivity of atmospheric boundary layer development to the soil moisture and different land cover types has been also examined.

  3. Acoustic dipole radiation based electrical impedance contrast imaging approach of magnetoacoustic tomography with magnetic induction.

    PubMed

    Sun, Xiaodong; Fang, Dawei; Zhang, Dong; Ma, Qingyu

    2013-05-01

    Different from the theory of acoustic monopole spherical radiation, the acoustic dipole radiation based theory introduces the radiation pattern of Lorentz force induced dipole sources to describe the principle of magnetoacoustic tomography with magnetic induction (MAT-MI). Although two-dimensional (2D) simulations have been studied for cylindrical phantom models, layer effects of the dipole sources within the entire object along the z direction still need to be investigated to evaluate the performance of MAT-MI for different geometric specifications. The purpose of this work is further verifying the validity and generality of acoustic dipole radiation based theory for MAT-MI with two new models in different shapes, dimensions, and conductivities. Based on the theory of acoustic dipole radiation, the principles of MAT-MI were analyzed with derived analytic formulae. 2D and 3D numerical studies for two new models of aluminum foil and cooked egg were conducted to simulate acoustic pressures and corresponding waveforms, and 2D images of the scanned layers were reconstructed with the simplified back projection algorithm for the waveforms collected around the models. The spatial resolution for conductivity boundary differentiation was also analyzed with different foil thickness. For comparison, two experimental measurements were conducted for a cylindrical aluminum foil phantom and a shell-peeled cooked egg. The collected waveforms and the reconstructed images of the scanned layers were achieved to verify the validation of the acoustic dipole radiation based theory for MAT-MI. Despite the difference between the 2D and 3D simulated pressures, good consistence of the collected waveforms proves that wave clusters are generated by the abrupt pressure changes with bipolar vibration phases, representing the opposite polarities of the conductivity changes along the measurement direction. The configuration of the scanned layer can be reconstructed in terms of shape and size, and the conductivity boundaries are displayed in stripes with different contrast and bipolar intensities. Layer effects are demonstrated to have little influence on the collected waveforms and the reconstructed images of the scanned layers for the two new models. The experimental results have good agreements with numerical simulations, and the reconstructed 2D images provide conductivity configurations in the scanned layers of the aluminum foil and the egg models. It can be concluded that the acoustic pressure of MAT-MI is produced by the divergence of the induced Lorentz force, and the collected waveforms comprise wave clusters with bipolar vibration phases and different amplitudes, providing the information of conductivity boundaries in the scanned layer. With the simplified back projection algorithm for diffraction sources, collected waveforms can be used to reconstruct 2D conductivity contrast image and the conductivity configuration in the scanned layer can be obtained in terms of shape and size in stripes with the spatial resolution of the acoustic wavelength. The favorable results further verify the validity and generality of the acoustic dipole radiation based theory and suggest the feasibility of MAT-MI as an effective electrical impedance contrast imaging approach for medical imaging.

  4. Waves propagating over a two-layer porous barrier on a seabed

    NASA Astrophysics Data System (ADS)

    Lin, Qiang; Meng, Qing-rui; Lu, Dong-qiang

    2018-05-01

    A research of wave propagation over a two-layer porous barrier, each layer of which is with different values of porosity and friction, is conducted with a theoretical model in the frame of linear potential flow theory. The model is more appropriate when the seabed consists of two different properties, such as rocks and breakwaters. It is assumed that the fluid is inviscid and incompressible and the motion is irrotational. The wave numbers in the porous region are complex ones, which are related to the decaying and propagating behaviors of wave modes. With the aid of the eigenfunction expansions, a new inner product of the eigenfunctions in the two-layer porous region is proposed to simplify the calculation. The eigenfunctions, under this new definition, possess the orthogonality from which the expansion coefficients can be easily deduced. Selecting the optimum truncation of the series, we derive a closed system of simultaneous linear equations for the same number of the unknown reflection and transmission coefficients. The effects of several physical parameters, including the porosity, friction, width, and depth of the porous barrier, on the dispersion relation, reflection and transmission coefficients are discussed in detail through the graphical representations of the solutions. It is concluded that these parameters have certain impacts on the reflection and transmission energy.

  5. A defect stream function, law of the wall/wake method for compressible turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Barnwell, Richard W.; Dejarnette, Fred R.; Wahls, Richard A.

    1989-01-01

    The application of the defect stream function to the solution of the two-dimensional, compressible boundary layer is examined. A law of the wall/law of the wake formulation for the inner part of the boundary layer is presented which greatly simplifies the computational task near the wall and eliminates the need for an eddy viscosity model in this region. The eddy viscosity model in the outer region is arbitrary. The modified Crocco temperature-velocity relationship is used as a simplification of the differential energy equation. Formulations for both equilibrium and nonequilibrium boundary layers are presented including a constrained zero-order form which significantly reduces the computational workload while retaining the significant physics of the flow. A formulation for primitive variables is also presented. Results are given for the constrained zero-order and second-order equilibrium formulations and are compared with experimental data. A compressible wake function valid near the wall has been developed from the present results.

  6. Simplified Predictive Models for CO2 Sequestration Performance Assessment

    NASA Astrophysics Data System (ADS)

    Mishra, Srikanta; RaviGanesh, Priya; Schuetter, Jared; Mooney, Douglas; He, Jincong; Durlofsky, Louis

    2014-05-01

    We present results from an ongoing research project that seeks to develop and validate a portfolio of simplified modeling approaches that will enable rapid feasibility and risk assessment for CO2 sequestration in deep saline formation. The overall research goal is to provide tools for predicting: (a) injection well and formation pressure buildup, and (b) lateral and vertical CO2 plume migration. Simplified modeling approaches that are being developed in this research fall under three categories: (1) Simplified physics-based modeling (SPM), where only the most relevant physical processes are modeled, (2) Statistical-learning based modeling (SLM), where the simulator is replaced with a "response surface", and (3) Reduced-order method based modeling (RMM), where mathematical approximations reduce the computational burden. The system of interest is a single vertical well injecting supercritical CO2 into a 2-D layered reservoir-caprock system with variable layer permeabilities. In the first category (SPM), we use a set of well-designed full-physics compositional simulations to understand key processes and parameters affecting pressure propagation and buoyant plume migration. Based on these simulations, we have developed correlations for dimensionless injectivity as a function of the slope of fractional-flow curve, variance of layer permeability values, and the nature of vertical permeability arrangement. The same variables, along with a modified gravity number, can be used to develop a correlation for the total storage efficiency within the CO2 plume footprint. In the second category (SLM), we develop statistical "proxy models" using the simulation domain described previously with two different approaches: (a) classical Box-Behnken experimental design with a quadratic response surface fit, and (b) maximin Latin Hypercube sampling (LHS) based design with a Kriging metamodel fit using a quadratic trend and Gaussian correlation structure. For roughly the same number of simulations, the LHS-based meta-model yields a more robust predictive model, as verified by a k-fold cross-validation approach. In the third category (RMM), we use a reduced-order modeling procedure that combines proper orthogonal decomposition (POD) for reducing problem dimensionality with trajectory-piecewise linearization (TPWL) for extrapolating system response at new control points from a limited number of trial runs ("snapshots"). We observe significant savings in computational time with very good accuracy from the POD-TPWL reduced order model - which could be important in the context of history matching, uncertainty quantification and optimization problems. The paper will present results from our ongoing investigations, and also discuss future research directions and likely outcomes. This work was supported by U.S. Department of Energy National Energy Technology Laboratory award DE-FE0009051 and Ohio Department of Development grant D-13-02.

  7. Equivalent model optimization with cyclic correction approximation method considering parasitic effect for thermoelectric coolers.

    PubMed

    Wang, Ning; Chen, Jiajun; Zhang, Kun; Chen, Mingming; Jia, Hongzhi

    2017-11-21

    As thermoelectric coolers (TECs) have become highly integrated in high-heat-flux chips and high-power devices, the parasitic effect between component layers has become increasingly obvious. In this paper, a cyclic correction method for the TEC model is proposed using the equivalent parameters of the proposed simplified model, which were refined from the intrinsic parameters and parasitic thermal conductance. The results show that the simplified model agrees well with the data of a commercial TEC under different heat loads. Furthermore, the temperature difference of the simplified model is closer to the experimental data than the conventional model and the model containing parasitic thermal conductance at large heat loads. The average errors in the temperature difference between the proposed simplified model and the experimental data are no more than 1.6 K, and the error is only 0.13 K when the absorbed heat power Q c is equal to 80% of the maximum achievable absorbed heat power Q max . The proposed method and model provide a more accurate solution for integrated TECs that are small in size.

  8. Approximate analytical solution to diurnal atmospheric boundary-layer growth under well-watered conditions

    USDA-ARS?s Scientific Manuscript database

    The system of governing equations of a simplified slab model of the uniformly-mixed, purely convective, diurnal atmospheric boundary layer (ABL) is shown to allow immediate solutions for the potential temperature and specific humidity as functions of the ABL height and net radiation when expressed i...

  9. The time-dependent response of 3- and 5-layer sandwich beams

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Oleksuk, L. S. S.; Bowles, D. E.

    1992-01-01

    Simple sandwich beam models have been developed to study the effect of the time-dependent constitutive properties of fiber-reinforced polymer matrix composites, considered for use in orbiting precision segmented reflectors, on the overall deformations. The 3- and 5-layer beam models include layers representing the face sheets, the core, and the adhesive. The static elastic deformation response of the sandwich beam models to a midspan point load is studied using the principle of stationary potential energy. In addition to quantitative conclusions, several assumptions are discussed which simplify the analysis for the case of more complicated material models. It is shown that the simple three-layer model is sufficient in many situations.

  10. Acoustic dipole radiation model for magnetoacoustic tomography with magnetic induction

    NASA Astrophysics Data System (ADS)

    Li, Yi-Ling; Ma, Qing-Yu; Zhang, Dong; Xia, Rong-Min

    2011-08-01

    An acoustic dipole radiation model for magnetoacoustic tomography with magnetic induction (MAT-MI) is proposed, based on the analyses of one-dimensional tissue vibration, three-dimensional acoustic dipole radiation and acoustic waveform detection with a planar piston transducer. The collected waveforms provide information about the conductivity boundaries in various vibration intensities and phases due to the acoustic dipole radiation pattern. Combined with the simplified back projection algorithm, the conductivity configuration of the measured layer in terms of shape and size can be reconstructed with obvious border stripes. The numerical simulation is performed for a two-layer cylindrical phantom model and it is also verified by the experimental results of MAT-MI for a tissue-like sample phantom. The proposed model suggests a potential application of conductivity differentiation and provides a universal basis for the further study of conductivity reconstruction for MAT-MI.

  11. Longitudinal wave propagation in multi cylindrical viscoelastic matching layers of airborne ultrasonic transducer: new method to consider the matching layer's diameter (frequency <100 kHz).

    PubMed

    Saffar, Saber; Abdullah, Amir

    2013-08-01

    Wave propagation in viscoelastic disk layers is encountered in many applications including studies of airborne ultrasonic transducers. For viscoelastic materials, both material and geometric dispersion are possible when the diameter of the matching layer is of the same order as the wavelength. Lateral motions of the matching layer(s) that result from the Poisson effect are accounted by using a new concept called the "effective-density". A new wave equation is derived for both metallic and non-metallic (polymeric) materials, usually employed for the matching layers of airborne ultrasonic transducer. The material properties are modeled by using the Kelvin model for metals and Linear Solid Standard model for non-metallic (polymeric) matching layers. The utilized model of the material of the matching layers has influence on amount and trend of variation in speed ratio. In this regard, 60% reduction in speed ratio is observed for Kelvin model for aluminum with diameter of 80 mm at 100 kHz while for a similar diameter but Standard Linear Model, the speed ratio increase to twice value at 15 kHz, and then reduced until 70% at 67 kHz for Polypropylene. The new wave theory simplifies to the one-dimensional solution for waves in metallic or polymeric matching layers if the Poisson ratio is set to zero. The predictions simplify to Love's equation for stress waves in elastic disks when loss term is removed from equations for both models. Afterwards, the new wave theory is employed to determine the airborne ultrasonic matching layers to maximize the energy transmission to the air. The optimal matching layers are determined by using genetic algorithm theory for 1, 2 and 3 airborne matching layers. It has been shown that 1-D equation is useless at frequencies less than 100 kHz and the effect of diameter of the matching layers must be considered to determine the acoustic impedances (matching layers) to design airborne ultrasonic transducers. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Reconsideration of F-layer seismic model in the south polar region

    NASA Astrophysics Data System (ADS)

    Ohtaki, T.; Kaneshima, S.

    2017-12-01

    Previously, we analyzed the seismic structure near the inner core boundary beneath Antarctica (Ohtaki et al., 2012). In the study, we determined the velocity of the lowermost outer core (F-layer) using amplitude ratio observations between the inner-core phase (PKIKP) and the inner-core grazing/diffracted phase (PKPbc/c-diff). Because the observations are not so sensitive to the F-layer structure, a constant velocity is assumed in the layer to simplify the model. The obtained model (SPR) has a flat velocity zone with a 75 km thick on the inner core boundary. With this F-layer structure and using travel times of these phases as well as the phase that reflects at the boundary, we determined the seismic structure of the inner core in the south polar region. However, a constant velocity layer is unrealistic, although it is reasonable assumption.Recently, we determined F-layer velocity structures more accurately using the combined observations of PKiKP-PKPbc differential travel times and of PKPbc/c-diff dispersion (Ohtaki et al., 2015, 2016). The former observation is sensitive to average velocity in the F-layer; the latter to velocity gradient in the layer. By analyzing these two observations together, we can determine the detailed velocity structure in the F-layer. The surveyed areas are beneath the Northeast Pacific and Australia. The seismic velocity models obtained are quite different between the two regions. Thus our results require laterally heterogeneous F-layer, and show that F-layer is more complicated than we ever imagined.Then there is one question; which structure is that of the south polar region close to? Unfortunately, the seismic waveforms that we analyzed in the previous study may not have quality high enough to analyze the PKiKP-PKPbc or PKPbc dispersion. However, it would be meaningful to reanalyze the amplitude data and reconsider the F-layer velocity there. And we also estimate how large slope of velocity can be acceptable for the F-layer velocity structure in this region.

  13. Simplified realistic human head model for simulating Tumor Treating Fields (TTFields).

    PubMed

    Wenger, Cornelia; Bomzon, Ze'ev; Salvador, Ricardo; Basser, Peter J; Miranda, Pedro C

    2016-08-01

    Tumor Treating Fields (TTFields) are alternating electric fields in the intermediate frequency range (100-300 kHz) of low-intensity (1-3 V/cm). TTFields are an anti-mitotic treatment against solid tumors, which are approved for Glioblastoma Multiforme (GBM) patients. These electric fields are induced non-invasively by transducer arrays placed directly on the patient's scalp. Cell culture experiments showed that treatment efficacy is dependent on the induced field intensity. In clinical practice, a software called NovoTalTM uses head measurements to estimate the optimal array placement to maximize the electric field delivery to the tumor. Computational studies predict an increase in the tumor's electric field strength when adapting transducer arrays to its location. Ideally, a personalized head model could be created for each patient, to calculate the electric field distribution for the specific situation. Thus, the optimal transducer layout could be inferred from field calculation rather than distance measurements. Nonetheless, creating realistic head models of patients is time-consuming and often needs user interaction, because automated image segmentation is prone to failure. This study presents a first approach to creating simplified head models consisting of convex hulls of the tissue layers. The model is able to account for anisotropic conductivity in the cortical tissues by using a tensor representation estimated from Diffusion Tensor Imaging. The induced electric field distribution is compared in the simplified and realistic head models. The average field intensities in the brain and tumor are generally slightly higher in the realistic head model, with a maximal ratio of 114% for a simplified model with reasonable layer thicknesses. Thus, the present pipeline is a fast and efficient means towards personalized head models with less complexity involved in characterizing tissue interfaces, while enabling accurate predictions of electric field distribution.

  14. Simplified efficient phosphorescent organic light-emitting diodes by organic vapor phase deposition

    NASA Astrophysics Data System (ADS)

    Pfeiffer, P.; Beckmann, C.; Stümmler, D.; Sanders, S.; Simkus, G.; Heuken, M.; Vescan, A.; Kalisch, H.

    2017-12-01

    The most efficient phosphorescent organic light-emitting diodes (OLEDs) are comprised of complex stacks with numerous organic layers. State-of-the-art phosphorescent OLEDs make use of blocking layers to confine charge carriers and excitons. On the other hand, simplified OLEDs consisting of only three organic materials have shown unexpectedly high efficiency when first introduced. This was attributed to superior energy level matching and suppressed external quantum efficiency (EQE) roll-off. In this work, we study simplified OLED stacks, manufactured by organic vapor phase deposition, with a focus on charge balance, turn-on voltage (Von), and efficiency. To prevent electrons from leaking through the device, we implemented a compositionally graded emission layer. By grading the emitter with the hole transport material, charge confinement is enabled without additional blocking layers. Our best performing organic stack is composed of only three organic materials in two layers including the emitter Ir(ppy)3 and yields a Von of 2.5 V (>1 cd/m2) and an EQE of 13% at 3000 cd/m2 without the use of any additional light extraction techniques. Changes in the charge balance, due to barrier tuning or adjustments in the grading parameters and layer thicknesses, are clearly visible in the current density-voltage-luminance (J-V-L) measurements. As charge injection at the electrodes and organic interfaces is of great interest but difficult to investigate in complex device structures, we believe that our simplified organic stack is not only a potent alternative to complex state-of-the-art OLEDs but also a well suited test vehicle for experimental studies focusing on the modification of the electrode-organic semiconductor interface.

  15. Interactions between marine biota and ENSO: a conceptual model analysis

    NASA Astrophysics Data System (ADS)

    Heinemann, M.; Timmermann, A.; Feudel, U.

    2011-01-01

    We develop a conceptual coupled atmosphere-ocean-ecosystem model for the tropical Pacific to investigate the interaction between marine biota and the El Niño-Southern Oscillation (ENSO). Ocean and atmosphere are represented by a two-box model for the equatorial Pacific cold tongue and the warm pool, including a simplified mixed layer scheme. Marine biota are represented by a three-component (nutrient, phytoplankton, and zooplankton) ecosystem model. The atmosphere-ocean model exhibits an oscillatory state which qualitatively captures the main physics of ENSO. During an ENSO cycle, the variation of nutrient upwelling, and, to a small extent, the variation of photosynthetically available radiation force an ecosystem oscillation. The simplified ecosystem in turn, due to the effect of phytoplankton on the absorption of shortwave radiation in the water column, leads to (1) a warming of the tropical Pacific, (2) a reduction of the ENSO amplitude, and (3) a prolongation of the ENSO period. We qualitatively investigate these bio-physical coupling mechanisms using continuation methods. It is demonstrated that bio-physical coupling may play a considerable role in modulating ENSO variability.

  16. Ill-posedness in modeling mixed sediment river morphodynamics

    NASA Astrophysics Data System (ADS)

    Chavarrías, Víctor; Stecca, Guglielmo; Blom, Astrid

    2018-04-01

    In this paper we analyze the Hirano active layer model used in mixed sediment river morphodynamics concerning its ill-posedness. Ill-posedness causes the solution to be unstable to short-wave perturbations. This implies that the solution presents spurious oscillations, the amplitude of which depends on the domain discretization. Ill-posedness not only produces physically unrealistic results but may also cause failure of numerical simulations. By considering a two-fraction sediment mixture we obtain analytical expressions for the mathematical characterization of the model. Using these we show that the ill-posed domain is larger than what was found in previous analyses, not only comprising cases of bed degradation into a substrate finer than the active layer but also in aggradational cases. Furthermore, by analyzing a three-fraction model we observe ill-posedness under conditions of bed degradation into a coarse substrate. We observe that oscillations in the numerical solution of ill-posed simulations grow until the model becomes well-posed, as the spurious mixing of the active layer sediment and substrate sediment acts as a regularization mechanism. Finally we conduct an eigenstructure analysis of a simplified vertically continuous model for mixed sediment for which we show that ill-posedness occurs in a wider range of conditions than the active layer model.

  17. Calculation of free turbulent mixing by interaction approach.

    NASA Technical Reports Server (NTRS)

    Morel, T.; Torda, T. P.

    1973-01-01

    The applicability of Bradshaw's interaction hypothesis to two-dimensional free shear flows was investigated. According to it, flows with velocity extrema may be considered to consist of several interacting layers. The hypothesis leads to a new expression for the shear stress which removes the usual restriction that shear stress vanishes at the velocity extremum. The approach is based on kinetic energy and the length scale equations. The compressible flow equations are simplified by restriction to low Mach numbers, and the range of their applicability is discussed. The empirical functions of the turbulence model are found here to be correlated with the spreading rate of the shear layer. The analysis demonstrates that the interaction hypothesis is a workable concept.

  18. Resonant Tidal Excitation of Internal Waves in the Earth's Fluid Core

    NASA Technical Reports Server (NTRS)

    Tyler, Robert H.; Kuang, Weijia

    2014-01-01

    It has long been speculated that there is a stably stratified layer below the core-mantle boundary, and two recent studies have improved the constraints on the parameters describing this stratification. Here we consider the dynamical implications of this layer using a simplified model. We first show that the stratification in this surface layer has sensitive control over the rate at which tidal energy is transferred to the core. We then show that when the stratification parameters from the recent studies are used in this model, a resonant configuration arrives whereby tidal forces perform elevated rates of work in exciting core flow. Specifically, the internal wave speed derived from the two independent studies (150 and 155 m/s) are in remarkable agreement with the speed (152 m/s) required for excitation of the primary normal mode of oscillation as calculated from full solutions of the Laplace Tidal Equations applied to a reduced-gravity idealized model representing the stratified layer. In evaluating this agreement it is noteworthy that the idealized model assumed may be regarded as the most reduced representation of the stratified dynamics of the layer, in that there are no non-essential dynamical terms in the governing equations assumed. While it is certainly possible that a more realistic treatment may require additional dynamical terms or coupling, it is also clear that this reduced representation includes no freedom for coercing the correlation described. This suggests that one must accept either (1) that tidal forces resonantly excite core flow and this is predicted by a simple model or (2) that either the independent estimates or the dynamical model does not accurately portray the core surface layer and there has simply been an unlikely coincidence between three estimates of a stratification parameter which would otherwise have a broad plausible range.

  19. Nonlinear cellular dynamics of keratinocytes in normal and psoriatic epidermis under action of UV radiation

    NASA Astrophysics Data System (ADS)

    Stolnitz, Mikhail M.; Medvedev, Boris A.; Gribko, Tatyana V.

    2004-05-01

    The semi-phenomenological model of epidermal cell dynamics is submitted. The model takes into account three types of basal layer keratinocytes (stem, transient amplifying, terminally differentiated), distribution of first two types cells on mitotic cycle stages and resting states, keratinocytes-lymphocytes interactions that provide a positive feedback loop, influence of more differentiated cells on their progenitors that provide a negative feedback loop. Simplified model are developed and its stationary solutions are received. The opportunity of interpretation of some received modes as corresponding to various stages of psoriasis is discussed. Influence of UV-radiation on transitions between various modes of epidermis functioning is qualitatively analyzed.

  20. Refined Models for an Analysis of Internal and External Buckling Modes of a Monolayer in a Layered Composite

    NASA Astrophysics Data System (ADS)

    Paimushin, V. N.

    2017-11-01

    For an analysis of internal and external buckling modes of a monolayer inside or at the periphery of a layered composite, refined geometrically nonlinear equations are constructed. They are based on modeling the monolayer as a thin plate interacting with binder layers at the points of boundary surfaces. The binder layer is modeled as a transversely soft foundation. It is assumed the foundations, previously compressed in the transverse direction (the first loading stage), have zero displacements of its external boundary surfaces at the second loading stage, but the contact interaction of the plate with foundations occurs without slippage or delamination. The deformation of the plate at a medium flexure is described by geometrically nonlinear relations of the classical plate theory based on the Kirchhoff-Love hypothesis (the first variant) or the refined Timoshenko model with account of the transverse shear and compression (the second variant). The foundation is described by linearized 3D equations of elasticity theory, which are simplified within the framework of the model of a transversely soft layer. Integrating the linearized equations along the transverse coordinate and satisfying the kinematic joining conditions of the plate with foundations, with account of their initial compression in the thickness direction, a system of 2D geometrically nonlinear equations and appropriate boundary conditions are derived. These equations describe the contact interaction between elements of the deformable system. The relations obtained are simplified for the case of a symmetric stacking sequence.

  1. Methods of Investigation of Equations that Describe Waves in Tubes with Elastic Walls and Application of the Theory of Reversible and Weak Dissipative Shocks

    NASA Astrophysics Data System (ADS)

    Bakholdin, Igor

    2018-02-01

    Various models of a tube with elastic walls are investigated: with controlled pressure, filled with incompressible fluid, filled with compressible gas. The non-linear theory of hyperelasticity is applied. The walls of a tube are described with complete membrane model. It is proposed to use linear model of plate in order to take the bending resistance of walls into account. The walls of the tube were treated previously as inviscid and incompressible. Compressibility of material of walls and viscosity of material, either gas or liquid are considered. Equations are solved numerically. Three-layer time and space centered reversible numerical scheme and similar two-layer space reversible numerical scheme with approximation of time derivatives by Runge-Kutta method are used. A method of correction of numerical schemes by inclusion of terms with highorder derivatives is developed. Simplified hyperbolic equations are derived.

  2. Designing for time-dependent material response in spacecraft structures

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Oleksuk, Lynda L. S.; Bowles, D. E.

    1992-01-01

    To study the influence on overall deformations of the time-dependent constitutive properties of fiber-reinforced polymeric matrix composite materials being considered for use in orbiting precision segmented reflectors, simple sandwich beam models are developed. The beam models include layers representing the face sheets, the core, and the adhesive bonding of the face sheets to the core. A three-layer model lumps the adhesive layers with the face sheets or core, while a five-layer model considers the adhesive layers explicitly. The deformation response of the three-layer and five-layer sandwich beam models to a midspan point load is studied. This elementary loading leads to a simple analysis, and it is easy to create this loading in the laboratory. Using the correspondence principle of viscoelasticity, the models representing the elastic behavior of the two beams are transformed into time-dependent models. Representative cases of time-dependent material behavior for the facesheet material, the core material, and the adhesive are used to evaluate the influence of these constituents being time-dependent on the deformations of the beam. As an example of the results presented, if it assumed that, as a worst case, the polymer-dominated shear properties of the core behave as a Maxwell fluid such that under constant shear stress the shear strain increases by a factor of 10 in 20 years, then it is shown that the beam deflection increases by a factor of 1.4 during that time. In addition to quantitative conclusions, several assumptions are discussed which simplify the analyses for use with more complicated material models. Finally, it is shown that the simpler three-layer model suffices in many situations.

  3. A method for coupling a parameterization of the planetary boundary layer with a hydrologic model

    NASA Technical Reports Server (NTRS)

    Lin, J. D.; Sun, Shu Fen

    1986-01-01

    Deardorff's parameterization of the planetary boundary layer is adapted to drive a hydrologic model. The method converts the atmospheric conditions measured at the anemometer height at one site to the mean values in the planetary boundary layer; it then uses the planetary boundary layer parameterization and the hydrologic variables to calculate the fluxes of momentum, heat and moisture at the atmosphere-land interface for a different site. A simplified hydrologic model is used for a simulation study of soil moisture and ground temperature on three different land surface covers. The results indicate that this method can be used to drive a spatially distributed hydrologic model by using observed data available at a meteorological station located on or nearby the site.

  4. Superelement Analysis of Tile-Reinforced Composite Armor

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.

    1998-01-01

    Super-elements can greatly improve the computational efficiency of analyses of tile-reinforced structures such as the hull of the Composite Armored Vehicle. By taking advantage of the periodicity in this type of construction, super-elements can be used to simplify the task of modeling, to virtually eliminate the time required to assemble the stiffness matrices, and to reduce significantly the analysis solution time. Furthermore, super-elements are fully transferable between analyses and analysts, so that they provide a consistent method to share information and reduce duplication. This paper describes a methodology that was developed to model and analyze large upper hull components of the Composite Armored Vehicle. The analyses are based on two types of superelement models. The first type is based on element-layering, which consists of modeling a laminate by using several layers of shell elements constrained together with compatibility equations. Element layering is used to ensure the proper transverse shear deformation in the laminate rubber layer. The second type of model uses three-dimensional elements. Since no graphical pre-processor currently supports super-elements, a special technique based on master-elements was developed. Master-elements are representations of super-elements that are used in conjunction with a custom translator to write the superelement connectivities as input decks for ABAQUS.

  5. Hypersonic three-dimensional nonequilibrium boundary-layer equations in generalized curvilinear coordinates

    NASA Technical Reports Server (NTRS)

    Lee, Jong-Hun

    1993-01-01

    The basic governing equations for the second-order three-dimensional hypersonic thermal and chemical nonequilibrium boundary layer are derived by means of an order-of-magnitude analysis. A two-temperature concept is implemented into the system of boundary-layer equations by simplifying the rather complicated general three-temperature thermal gas model. The equations are written in a surface-oriented non-orthogonal curvilinear coordinate system, where two curvilinear coordinates are non-orthogonial and a third coordinate is normal to the surface. The equations are described with minimum use of tensor expressions arising from the coordinate transformation, to avoid unnecessary confusion for readers. The set of equations obtained will be suitable for the development of a three-dimensional nonequilibrium boundary-layer code. Such a code could be used to determine economically the aerodynamic/aerothermodynamic loads to the surfaces of hypersonic vehicles with general configurations. In addition, the basic equations for three-dimensional stagnation flow, of which solution is required as an initial value for space-marching integration of the boundary-layer equations, are given along with the boundary conditions, the boundary-layer parameters, and the inner-outer layer matching procedure. Expressions for the chemical reaction rates and the thermodynamic and transport properties in the thermal nonequilibrium environment are explicitly given.

  6. Electromagnetic reflection from multi-layered snow models

    NASA Technical Reports Server (NTRS)

    Linlor, W. I.; Jiracek, G. R.

    1975-01-01

    The remote sensing of snow-pack characteristics with surface installations or an airborne system could have important applications in water-resource management and flood prediction. To derive some insight into such applications, the electromagnetic response of multilayered snow models is analyzed in this paper. Normally incident plane waves at frequencies ranging from 1 MHz to 10 GHz are assumed, and amplitude reflection coefficients are calculated for models having various snow-layer combinations, including ice layers. Layers are defined by thickness, permittivity, and conductivity; the electrical parameters are constant or prescribed functions of frequency. To illustrate the effect of various layering combinations, results are given in the form of curves of amplitude reflection coefficients versus frequency for a variety of models. Under simplifying assumptions, the snow thickness and effective dielectric constant can be estimated from the variations of reflection coefficient as a function of frequency.

  7. Technical note: Fu-Liou-Gu and Corti-Peter model performance evaluation for radiative retrievals from cirrus clouds

    NASA Astrophysics Data System (ADS)

    Lolli, Simone; Campbell, James R.; Lewis, Jasper R.; Gu, Yu; Welton, Ellsworth J.

    2017-06-01

    We compare, for the first time, the performance of a simplified atmospheric radiative transfer algorithm package, the Corti-Peter (CP) model, versus the more complex Fu-Liou-Gu (FLG) model, for resolving top-of-the-atmosphere radiative forcing characteristics from single-layer cirrus clouds obtained from the NASA Micro-Pulse Lidar Network database in 2010 and 2011 at Singapore and in Greenbelt, Maryland, USA, in 2012. Specifically, CP simplifies calculation of both clear-sky longwave and shortwave radiation through regression analysis applied to radiative calculations, which contributes significantly to differences between the two. The results of the intercomparison show that differences in annual net top-of-the-atmosphere (TOA) cloud radiative forcing can reach 65 %. This is particularly true when land surface temperatures are warmer than 288 K, where the CP regression analysis becomes less accurate. CP proves useful for first-order estimates of TOA cirrus cloud forcing, but may not be suitable for quantitative accuracy, including the absolute sign of cirrus cloud daytime TOA forcing that can readily oscillate around zero globally.

  8. The thermal impact of aquifer thermal energy storage (ATES) systems: a case study in the Netherlands, combining monitoring and modeling

    NASA Astrophysics Data System (ADS)

    Visser, Philip W.; Kooi, Henk; Stuyfzand, Pieter J.

    2015-05-01

    Results are presented of a comprehensive thermal impact study on an aquifer thermal energy storage (ATES) system in Bilthoven, the Netherlands. The study involved monitoring of the thermal impact and modeling of the three-dimensional temperature evolution of the storage aquifer and over- and underlying units. Special attention was paid to non-uniformity of the background temperature, which varies laterally and vertically in the aquifer. Two models were applied with different levels of detail regarding initial conditions and heterogeneity of hydraulic and thermal properties: a fine-scale heterogeneity model which construed the lateral and vertical temperature distribution more realistically, and a simplified model which represented the aquifer system with only a limited number of homogeneous layers. Fine-scale heterogeneity was shown to be important to accurately model the ATES-impacted vertical temperature distribution and the maximum and minimum temperatures in the storage aquifer, and the spatial extent of the thermal plumes. The fine-scale heterogeneity model resulted in larger thermally impacted areas and larger temperature anomalies than the simplified model. The models showed that scattered and scarce monitoring data of ATES-induced temperatures can be interpreted in a useful way by groundwater and heat transport modeling, resulting in a realistic assessment of the thermal impact.

  9. Neutron residual stress measurement and numerical modeling in a curved thin-walled structure by laser powder bed fusion additive manufacturing

    DOE PAGES

    An, Ke; Yuan, Lang; Dial, Laura; ...

    2017-09-11

    Severe residual stresses in metal parts made by laser powder bed fusion additive manufacturing processes (LPBFAM) can cause both distortion and cracking during the fabrication processes. Limited data is currently available for both iterating through process conditions and design, and in particular, for validating numerical models to accelerate process certification. In this work, residual stresses of a curved thin-walled structure, made of Ni-based superalloy Inconel 625™ and fabricated by LPBFAM, were resolved by neutron diffraction without measuring the stress-free lattices along both the build and the transverse directions. The stresses of the entire part during fabrication and after cooling downmore » were predicted by a simplified layer-by-layer finite element based numerical model. The simulated and measured stresses were found in good quantitative agreement. The validated simplified simulation methodology will allow to assess residual stresses in more complex structures and to significantly reduce manufacturing cycle time.« less

  10. Neutron residual stress measurement and numerical modeling in a curved thin-walled structure by laser powder bed fusion additive manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Ke; Yuan, Lang; Dial, Laura

    Severe residual stresses in metal parts made by laser powder bed fusion additive manufacturing processes (LPBFAM) can cause both distortion and cracking during the fabrication processes. Limited data is currently available for both iterating through process conditions and design, and in particular, for validating numerical models to accelerate process certification. In this work, residual stresses of a curved thin-walled structure, made of Ni-based superalloy Inconel 625™ and fabricated by LPBFAM, were resolved by neutron diffraction without measuring the stress-free lattices along both the build and the transverse directions. The stresses of the entire part during fabrication and after cooling downmore » were predicted by a simplified layer-by-layer finite element based numerical model. The simulated and measured stresses were found in good quantitative agreement. The validated simplified simulation methodology will allow to assess residual stresses in more complex structures and to significantly reduce manufacturing cycle time.« less

  11. Wind-US Code Physical Modeling Improvements to Complement Hypersonic Testing and Evaluation

    NASA Technical Reports Server (NTRS)

    Georgiadis, Nicholas J.; Yoder, Dennis A.; Towne, Charles S.; Engblom, William A.; Bhagwandin, Vishal A.; Power, Greg D.; Lankford, Dennis W.; Nelson, Christopher C.

    2009-01-01

    This report gives an overview of physical modeling enhancements to the Wind-US flow solver which were made to improve the capabilities for simulation of hypersonic flows and the reliability of computations to complement hypersonic testing. The improvements include advanced turbulence models, a bypass transition model, a conjugate (or closely coupled to vehicle structure) conduction-convection heat transfer capability, and an upgraded high-speed combustion solver. A Mach 5 shock-wave boundary layer interaction problem is used to investigate the benefits of k- s and k-w based explicit algebraic stress turbulence models relative to linear two-equation models. The bypass transition model is validated using data from experiments for incompressible boundary layers and a Mach 7.9 cone flow. The conjugate heat transfer method is validated for a test case involving reacting H2-O2 rocket exhaust over cooled calorimeter panels. A dual-mode scramjet configuration is investigated using both a simplified 1-step kinetics mechanism and an 8-step mechanism. Additionally, variations in the turbulent Prandtl and Schmidt numbers are considered for this scramjet configuration.

  12. Validity of the semi-infinite tumor model in diffuse reflectance spectroscopy for epithelial cancer diagnosis: a Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Zhu, Caigang; Liu, Quan

    2011-08-01

    The accurate understanding of optical properties of human tissues plays an important role in the optical diagnosis of early epithelial cancer. Many inverse models used to determine the optical properties of a tumor have assumed that the tumor was semi-infinite, which infers infinite width and length but finite thickness. However, this simplified assumption could lead to large errors for small tumor, especially at the early stages. We used a modified Monte Carlo code, which is able to simulate light transport in a layered tissue model with buried tumor-like targets, to investigate the validity of the semi-infinite tumor assumption in two common epithelial tissue models: a squamous cell carcinoma (SCC) tissue model and a basal cell carcinoma (BCC) tissue model. The SCC tissue model consisted of three layers, i.e. the top epithelium, the middle tumor and the bottom stroma. The BCC tissue model also consisted of three layers, i.e. the top epidermis, the middle tumor and the bottom dermis. Diffuse reflectance was simulated for two common fiber-optic probes. In one probe, both source and detector fibers were perpendicular to the tissue surface; while in the other, both fibers were tilted at 45 degrees relative to the normal axis of the tissue surface. It was demonstrated that the validity of the semi-infinite tumor model depends on both the fiber-optic probe configuration and the tumor dimensions. Two look-up tables, which relate the validity of the semi-infinite tumor model to the tumor width in terms of the source-detector separation, were derived to guide the selection of appropriate tumor models and fiber optic probe configuration for the optical diagnosis of early epithelial cancers.

  13. Two-Dimensional Model of Scrolled Packings of Molecular Nanoribbons

    NASA Astrophysics Data System (ADS)

    Savin, A. V.; Mazo, M. A.

    2018-04-01

    A simplified model of the in-plane molecular chain, allowing the description of folded and scrolled packings of molecular nanoribbons of different structures, is proposed. Using this model, possible steady states of single-layer nanoribbons scrolls of graphene, graphane, fluorographene, and fluorographane (graphene hydrogenated on the one side and fluorinated on the other side) are obtained. Their stability is demonstrated and their energy is calculated as a function of the nanoribbon length. It is shown that the scrolled packing is the most energetically favorable nanoribbon conformation at long lengths. The existences of scrolled packings for fluorographene nanoribbons and the existence of two different scroll types corresponding to left- and right-hand Archimedean spirals for fluorographane nanoribbons in the chain model are shown for the first time. The simplicity of the proposed model makes it possible to consider the dynamics of scrolls of rather long molecular nanoribbons at long enough time intervals.

  14. A simplified scheme for computing radiation transfer in the troposphere

    NASA Technical Reports Server (NTRS)

    Katayama, A.

    1973-01-01

    A scheme is presented, for the heating of clear and cloudy air by solar and infrared radiation transfer, designed for use in tropospheric general circulation models with coarse vertical resolution. A bulk transmission function is defined for the infrared transfer. The interpolation factors, required for computing the bulk transmission function, are parameterized as functions of such physical parameters as the thickness of the layer, the pressure, and the mixing ratio at a reference level. The computation procedure for solar radiation is significantly simplified by the introduction of two basic concepts. The first is that the solar radiation spectrum can be divided into a scattered part, for which Rayleigh scattering is significant but absorption by water vapor is negligible, and an absorbed part for which absorption by water vapor is significant but Rayleigh scattering is negligible. The second concept is that of an equivalent cloud water vapor amount which absorbs the same amount of radiation as the cloud.

  15. An analytical model for the distribution of CO2 sources and sinks, fluxes, and mean concentration within the roughness sub-layer

    NASA Astrophysics Data System (ADS)

    Siqueira, M. B.; Katul, G. G.

    2009-12-01

    A one-dimensional analytical model that predicts foliage CO2 uptake rates, turbulent fluxes, and mean concentration throughout the roughness sub-layer (RSL), a layer that extends from the ground surface up to 5 times the canopy height (h), is proposed. The model combines the mean continuity equation for CO2 with first-order closure principles for turbulent fluxes and simplified physiological and radiative transfer schemes for foliage uptake. This combination results in a second-order ordinary differential equation in which it is imposed soil respiration (RE) as lower and CO2 concentration well above the RSL as upper boundary conditions. An inverse version of the model was tested against data sets from two contrasting ecosystems: a tropical forest (TF, h=40 m) and a managed irrigated rice canopy (RC, h=0.7 m) - with good agreement noted between modeled and measured mean CO2 concentration profiles within the entire RSL (see figure). Sensitivity analysis on the model parameters revealed a plausible scaling regime between them and a dimensionless parameter defined by the ratio between external (RE) and internal (stomatal conductance) characteristics controlling the CO2 exchange process. The model can be used to infer the thickness of the RSL for CO2 exchange, the inequality in zero-plane displacement between CO2 and momentum, and its consequences on modeled CO2 fluxes. A simplified version of the solution is well suited for being incorporated into large-scale climate models. Furthermore, the model framework here can be used to a priori estimate relative contributions from the soil surface and the atmosphere to canopy-air CO2 concentration thereby making it synergetic to stable isotopes studies. Panels a) and c): Profiles of normalized measured leaf area density distribution (a) for TF and RC, respectively. Continuous lines are the constant a used in the model and dashed lines represent data-derived profiles. Panels b) and d) are modeled and ensemble-averaged measured CO2 profiles reference to the uppermost measured point for TF and RC, respectively.

  16. Reduced Fokker-Planck models for fast particle distribution across a transition layer of disparate plasma temperatures

    NASA Astrophysics Data System (ADS)

    Tang, Xian-Zhu; Berk, H. L.; Guo, Zehua; McDevitt, C. J.

    2014-03-01

    Across a transition layer of disparate plasma temperatures, the high energy tail of the plasma distribution can have appreciable deviations from the local Maxwellian distribution due to the Knudson layer effect. The Fokker-Planck equation for the tail particle population can be simplified in a series of practically useful limiting cases. The first is the approximation of background Maxwellian distribution for linearizing the collision operator. The second is the supra-thermal particle speed ordering of vTi ≪ v ≪ vTe for the tail ions and vTi ≪ vTe ≪ v for the tail electrons. Keeping both the collisional drag and energy scattering is essential for the collision operator to produce a Maxwellian tail distribution. The Fokker-Planck model for following the tail ion distribution for a given background plasma profile is explicitly worked out for systems of one spatial dimension, in both slab and spherical geometry. A third simplification is an expansion of the tail particle distribution using the spherical harmonics, which are eigenfunctions of the pitch angle scattering operator. This produces a set of coupled Fokker-Planck equations that contain energy-dependent spatial diffusion terms in two coordinates (position and energy), which originate from pitch angle scattering in the original Fokker-Planck equation. It is shown that the well-known diffusive Fokker-Planck model is a poor approximation of the two-mode truncation model, which itself has fundamental deficiency compared with the three-mode truncation model. The cause is the lack of even-symmetry representation in pitch dependence in the two-mode truncation model.

  17. Crustal Structure Beneath Taiwan Using Frequency-band Inversion of Receiver Function Waveforms

    NASA Astrophysics Data System (ADS)

    Tomfohrde, D. A.; Nowack, R. L.

    Receiver function analysis is used to determine local crustal structure beneath Taiwan. We have performed preliminary data processing and polarization analysis for the selection of stations and events and to increase overall data quality. Receiver function analysis is then applied to data from the Taiwan Seismic Network to obtain radial and transverse receiver functions. Due to the limited azimuthal coverage, only the radial receiver functions are analyzed in terms of horizontally layered crustal structure for each station. In order to improve convergence of the receiver function inversion, frequency-band inversion (FBI) is implemented, in which an iterative inversion procedure with sequentially higher low-pass corner frequencies is used to stabilize the waveform inversion. Frequency-band inversion is applied to receiver functions at six stations of the Taiwan Seismic Network. Initial 20-layer crustal models are inverted for using prior tomographic results for the initial models. The resulting 20-1ayer models are then simplified to 4 to 5 layer models and input into an alternating depth and velocity frequency-band inversion. For the six stations investigated, the resulting simplified models provide an average estimate of 38 km for the Moho thickness surrounding the Central Range of Taiwan. Also, the individual station estimates compare well with the recent tomographic model of and the refraction results of Rau and Wu (1995) and the refraction results of Ma and Song (1997).

  18. A new approach to assess the skier additional stress within a multi-layered snowpack

    NASA Astrophysics Data System (ADS)

    Monti, Fabiano; Gaume, Johan; van Herwijnen, Alec; Schweizer, Jürg

    2014-05-01

    The physical and mechanical processes of dry-snow slab avalanche formation can be distinguished into two subsequent phases: failure initiation and crack propagation. Several approaches tried to quantify slab avalanche release probability in terms of failure initiation, based on a simple strength-of-material approach (strength vs. stress). Even if it is known that both weak layer and slab properties play a major role in avalanche release, apart from weak layer characteristics, often only the slab thickness and its average density were considered. For calculating the amount of additional stress (e.g. due to a skier) at the depth of the weak layer, the snow cover was often assumed to be a semi-infinite elastic half space in order to apply Boussinesq's theory. However, finite element (FE) calculations have shown that slab layering strongly influences the stress at depth. To avoid FE calculations, we suggest a new approach based on a simplification of multi-layered elasticity theory. It allows computing the additional stress due to a skier at the depth of the weak layer, taking into account the layering of the snow slab and the substratum. The proposed approach was first tested on simplified snow profiles and compared reasonably well with FE calculations. We then implemented the method to refine the classical skier stability index. Using manually observed snow profiles, classified in different stability classes using stability tests, we obtained a satisfactory discrimination power. Lastly, the refined skier stability index was implemented into the 1-D snow cover model SNOWPACK and presented on two case studies. In the future, it will be interesting to implement the proposed method for describing skier-induced stress within a multi-layered snowpack into more complex models which take into account not only failure initiation but also crack propagation.

  19. Blood flow mechanics and oxygen transport and delivery in the retinal microcirculation: multiscale mathematical modeling and numerical simulation.

    PubMed

    Causin, Paola; Guidoboni, Giovanna; Malgaroli, Francesca; Sacco, Riccardo; Harris, Alon

    2016-06-01

    The scientific community continues to accrue evidence that blood flow alterations and ischemic conditions in the retina play an important role in the pathogenesis of ocular diseases. Many factors influence retinal hemodynamics and tissue oxygenation, including blood pressure, blood rheology, oxygen arterial permeability and tissue metabolic demand. Since the influence of these factors on the retinal circulation is difficult to isolate in vivo, we propose here a novel mathematical and computational model describing the coupling between blood flow mechanics and oxygen ([Formula: see text]) transport in the retina. Albeit in a simplified manner, the model accounts for the three-dimensional anatomical structure of the retina, consisting in a layered tissue nourished by an arteriolar/venular network laying on the surface proximal to the vitreous. Capillary plexi, originating from terminal arterioles and converging into smaller venules, are embedded in two distinct tissue layers. Arteriolar and venular networks are represented by fractal trees, whereas capillary plexi are represented using a simplified lumped description. In the model, [Formula: see text] is transported along the vasculature and delivered to the tissue at a rate that depends on the metabolic demand of the various tissue layers. First, the model is validated against available experimental results to identify baseline conditions. Then, a sensitivity analysis is performed to quantify the influence of blood pressure, blood rheology, oxygen arterial permeability and tissue oxygen demand on the [Formula: see text] distribution within the blood vessels and in the tissue. This analysis shows that: (1) systemic arterial blood pressure has a strong influence on the [Formula: see text] profiles in both blood and tissue; (2) plasma viscosity and metabolic consumption rates have a strong influence on the [Formula: see text] tension at the level of the retinal ganglion cells; and (3) arterial [Formula: see text] permeability has a strong influence on the [Formula: see text] saturation in the retinal arterioles.

  20. Exactly solvable model of the two-dimensional electrical double layer.

    PubMed

    Samaj, L; Bajnok, Z

    2005-12-01

    We consider equilibrium statistical mechanics of a simplified model for the ideal conductor electrode in an interface contact with a classical semi-infinite electrolyte, modeled by the two-dimensional Coulomb gas of pointlike unit charges in the stability-against-collapse regime of reduced inverse temperatures 0< or = beta < 2. If there is a potential difference between the bulk interior of the electrolyte and the grounded electrode, the electrolyte region close to the electrode (known as the electrical double layer) carries some nonzero surface charge density. The model is mappable onto an integrable semi-infinite sine-Gordon theory with Dirichlet boundary conditions. The exact form-factor and boundary state information gained from the mapping provide asymptotic forms of the charge and number density profiles of electrolyte particles at large distances from the interface. The result for the asymptotic behavior of the induced electric potential, related to the charge density via the Poisson equation, confirms the validity of the concept of renormalized charge and the corresponding saturation hypothesis. It is documented on the nonperturbative result for the asymptotic density profile at a strictly nonzero beta that the Debye-Hückel beta-->0 limit is a delicate issue.

  1. Machine learning modelling for predicting soil liquefaction susceptibility

    NASA Astrophysics Data System (ADS)

    Samui, P.; Sitharam, T. G.

    2011-01-01

    This study describes two machine learning techniques applied to predict liquefaction susceptibility of soil based on the standard penetration test (SPT) data from the 1999 Chi-Chi, Taiwan earthquake. The first machine learning technique which uses Artificial Neural Network (ANN) based on multi-layer perceptions (MLP) that are trained with Levenberg-Marquardt backpropagation algorithm. The second machine learning technique uses the Support Vector machine (SVM) that is firmly based on the theory of statistical learning theory, uses classification technique. ANN and SVM have been developed to predict liquefaction susceptibility using corrected SPT [(N1)60] and cyclic stress ratio (CSR). Further, an attempt has been made to simplify the models, requiring only the two parameters [(N1)60 and peck ground acceleration (amax/g)], for the prediction of liquefaction susceptibility. The developed ANN and SVM models have also been applied to different case histories available globally. The paper also highlights the capability of the SVM over the ANN models.

  2. 'Home made' model to study the greenhouse effect and global warming

    NASA Astrophysics Data System (ADS)

    Onorato, P.; Mascheretti, P.; DeAmbrosis, A.

    2011-03-01

    In this paper a simplified two-parameter model of the greenhouse effect on the Earth is developed, starting from the well known two-layer model. It allows both the analysis of the temperatures of the inner planets, by focusing on the role of the greenhouse effect, and a comparison between the temperatures the planets should have in the absence of greenhouse effect and their actual ones. It may also be used to predict the average temperature of the Earth surface in the future, depending on the variations of the concentration of greenhouse gases in the atmosphere due to human activities. This model can promote an elementary understanding of global warming since it allows a simple formalization of the energy balance for the Earth in the stationary condition, in the presence of greenhouse gases. For these reasons it can be introduced in courses for undergraduate physics students and for teacher preparation.

  3. Collisional transport across the magnetic field in drift-fluid models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madsen, J., E-mail: jmad@fysik.dtu.dk; Naulin, V.; Nielsen, A. H.

    2016-03-15

    Drift ordered fluid models are widely applied in studies of low-frequency turbulence in the edge and scrape-off layer regions of magnetically confined plasmas. Here, we show how collisional transport across the magnetic field is self-consistently incorporated into drift-fluid models without altering the drift-fluid energy integral. We demonstrate that the inclusion of collisional transport in drift-fluid models gives rise to diffusion of particle density, momentum, and pressures in drift-fluid turbulence models and, thereby, obviates the customary use of artificial diffusion in turbulence simulations. We further derive a computationally efficient, two-dimensional model, which can be time integrated for several turbulence de-correlation timesmore » using only limited computational resources. The model describes interchange turbulence in a two-dimensional plane perpendicular to the magnetic field located at the outboard midplane of a tokamak. The model domain has two regions modeling open and closed field lines. The model employs a computational expedient model for collisional transport. Numerical simulations show good agreement between the full and the simplified model for collisional transport.« less

  4. A simplified fourwall interference assessment procedure for airfoil data obtained in the Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Murthy, A. V.

    1987-01-01

    A simplified fourwall interference assessment method has been described, and a computer program developed to facilitate correction of the airfoil data obtained in the Langley 0.3-m Transonic Cryogenic Tunnel (TCT). The procedure adopted is to first apply a blockage correction due to sidewall boundary-layer effects by various methods. The sidewall boundary-layer corrected data are then used to calculate the top and bottom wall interference effects by the method of Capallier, Chevallier and Bouinol, using the measured wall pressure distribution and the model force coefficients. The interference corrections obtained by the present method have been compared with other methods and found to give good agreement for the experimental data obtained in the TCT with slotted top and bottom walls.

  5. Detection of nanoscale embedded layers using laboratory specular X-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beekman, Matt, E-mail: matt.beekman@oit.edu; Rodriguez, Gabriel; Atkins, Ryan

    Unusual specular X-ray diffraction patterns have been observed from certain thin film intergrowths of metal monochalcogenide (MX) and transition metal dichalcogenide (TX{sub 2}) structures. These patterns exhibit selective “splitting” or broadening of selected (00l) diffraction peaks, while other (00l) reflections remain relatively unaffected [Atkins et al., Chem. Mater. 24, 4594 (2012)]. Using a simplified optical model in the kinematic approximation, we illustrate that these peculiar and somewhat counterintuitive diffraction features can be understood in terms of additional layers of one of the intergrowth components, MX or TX{sub 2}, interleaved between otherwise “ideal” regions of MX-TX{sub 2} intergrowth. The interpretation ismore » in agreement with scanning transmission electron microscope imaging, which reveals the presence of such stacking “defects” in films prepared from non-ideal precursors. In principle, the effect can be employed as a simple, non-destructive laboratory probe to detect and characterize ultrathin layers of one material, e.g., 2-dimensional crystals, embedded between two slabs of a second material, effectively using the two slabs as a highly sensitive interferometer of their separation distance.« less

  6. The effect of abdominal wall morphology on ultrasonic pulse distortion. Part II. Simulations.

    PubMed

    Mast, T D; Hinkelman, L M; Orr, M J; Waag, R C

    1998-12-01

    Wavefront propagation through the abdominal wall was simulated using a finite-difference time-domain implementation of the linearized wave propagation equations for a lossless, inhomogeneous, two-dimensional fluid as well as a simplified straight-ray model for a two-dimensional absorbing medium. Scanned images of six human abdominal wall cross sections provided the data for the propagation media in the simulations. The images were mapped into regions of fat, muscle, and connective tissue, each of which was assigned uniform sound speed, density, and absorption values. Propagation was simulated through each whole specimen as well as through each fat layer and muscle layer individually. Wavefronts computed by the finite-difference method contained arrival time, energy level, and wave shape distortion similar to that in measurements. Straight-ray simulations produced arrival time fluctuations similar to measurements but produced much smaller energy level fluctuations. These simulations confirm that both fat and muscle produce significant wavefront distortion and that distortion produced by fat sections differs from that produced by muscle sections. Spatial correlation of distortion with tissue composition suggests that most major arrival time fluctuations are caused by propagation through large-scale inhomogeneities such as fatty regions within muscle layers, while most amplitude and waveform variations are the result of scattering from smaller inhomogeneities such as septa within the subcutaneous fat. Additional finite-difference simulations performed using uniform-layer models of the abdominal wall indicate that wavefront distortion is primarily caused by tissue structures and inhomogeneities rather than by refraction at layer interfaces or by variations in layer thicknesses.

  7. Noise measurements in a free-jet, flight simulation facility - Shear layer refraction and facility-to-flight corrections

    NASA Technical Reports Server (NTRS)

    Morfey, C. L.; Tester, B. J.

    1976-01-01

    The conversion of free-jet facility into equivalent flyover results is discussed. The essential problem is to 'calibrate out' the acoustic influence of the outer free-jet shear layer on the measurement, since this is absent in the flight case. Results are presented which illustrate the differences between current simplified models (vortex-sheet and geometric acoustics), and a more complete model based on the Lilley equation. Finally, the use of geometric acoustics for facility-to-flight data conversion is discussed.

  8. Simplified and quick electrical modeling for dye sensitized solar cells: An experimental and theoretical investigation

    NASA Astrophysics Data System (ADS)

    de Andrade, Rocelito Lopes; de Oliveira, Matheus Costa; Kohlrausch, Emerson Cristofer; Santos, Marcos José Leite

    2018-05-01

    This work presents a new and simple method for determining IPH (current source dependent on luminance), I0 (reverse saturation current), n (ideality factor), RP and RS, (parallel and series resistance) to build an electrical model for dye sensitized solar cells (DSSCs). The electrical circuit parameters used in the simulation and to generate theoretical curves for the single diode electrical model were extracted from I-V curves of assembled DSSCs. Model validation was performed by assembling five different types of DSSCs and evaluating the following parameters: effect of a TiO2 blocking/adhesive layer, thickness of the TiO2 layer and the presence of a light scattering layer. In addition, irradiance, temperature, series and parallel resistance, ideality factor and reverse saturation current were simulated.

  9. Impact of Nonlinearity of The Contact Layer Between Elements Joined in a Multi-Bolted System on Its Preload

    NASA Astrophysics Data System (ADS)

    Grzejda, R.

    2017-12-01

    The paper deals with modelling and calculations of asymmetrical multi-bolted joints at the assembly stage. The physical model of the joint is based on a system composed of four subsystems, which are: a couple of joined elements, a contact layer between the elements, and a set of bolts. The contact layer is assumed as the Winkler model, which can be treated as a nonlinear or linear model. In contrast, the set of bolts are modelled using simplified beam models, known as spider bolt models. The theorem according to which nonlinearity of the contact layer has a negligible impact on the final preload of the joint in the case of its sequential tightening has been verified. Results of sample calculations for the selected multi-bolted system, in the form of diagrams of preloads in the bolts as well as normal contact pressure between the joined elements during the assembly process and at its end, are presented.

  10. Static and Monoharmonic Acoustic Impact on a Laminated Plate

    NASA Astrophysics Data System (ADS)

    Paimushin, V. N.; Gazizullin, R. K.

    2017-07-01

    A discrete layered damping model of a multilayer plate at small displacements and deformations, with account of the internal damping of layers according to the Thompson-Kelvin-Voight model, is presented. Based on the equations derived, an analytical solution to the static deformation problem for single-layer rectangular plate hinge-supported along its contour and subjected of a uniformly distributed pressure applied to one of its boundary planes is obtained. Its convergence to the three-dimensional solution is analyzed in relation to the dimension of mesh in the thickness direction of the plate. It is found that, for thin plates, the dimension of the problem formulated can be reduced on the basis of simplified hypotheses applied to each layer. An analytical solutions is also constructed for the forced vibrations of two- and three-layer rectangular plates hinged in the opening of an absolutely stiff dividing wall upon transmission of a monoharmonic sound wave through them. It was assumed that the dividing wall is situated between two absolutely stiff barriers; one of them, owing to the harmonic vibration with a given displacement amplitude of the plate, forms an incident sound wave, and the other is stationary and is coated by a energy-absorbing material with high damping properties. Behavior of the acoustic media in spaces between the deformable plate and the barriers is described by the classical wave equations based on the model of an ideal compressible fluid. To describe the process of dynamic deformation of the energy-absorbing coating of the fixed barrier, two-dimensional equations of motion are derived based on the model of a transversely soft layer, a linear approximation of displacement fields in the thickness direction of the coating, and the account of damping properties of its material by using the hysteresis model. The effect of physical and mechanical parameters of the mechanical system considered and of frequency of the incident sound wave on the parameter of its sound insulation, and the characteristics of stress-strain state of the plate is investigated

  11. Attitude determination of a high altitude balloon system. Part 1: Development of the mathematical model

    NASA Technical Reports Server (NTRS)

    Nigro, N. J.; Elkouh, A. F.; Shen, K. S.; Nimityongskul, P.; Jhaveri, V. N.; Sethi, A.

    1975-01-01

    A mathematical model for predicting the three dimensional motion of the balloon system is developed, which includes the effects of bounce, pendulation and spin of each subsystem. Boundary layer effects are also examined, along with the aerodynamic forces acting on the balloon. Various simplified forms of the system mathematical model were developed, based on an order of magnitude analysis.

  12. Application of the order-of-magnitude analysis to a fourth-order RANS closure for simulating a 2D boundary layer

    NASA Astrophysics Data System (ADS)

    Poroseva, Svetlana V.

    2013-11-01

    Simulations of turbulent boundary-layer flows are usually conducted using a set of the simplified Reynolds-Averaged Navier-Stokes (RANS) equations obtained by order-of-magnitude analysis (OMA) of the original RANS equations. The resultant equations for the mean-velocity components are closed using the Boussinesq approximation for the Reynolds stresses. In this study OMA is applied to the fourth-order RANS (FORANS) set of equations. The FORANS equations are chosen as they can be closed on the level of the 5th-order correlations without using unknown model coefficients, i.e. no turbulent diffusion modeling is required. New models for the 2nd-, 3rd- and 4th-order velocity-pressure gradient correlations are derived for the current FORANS equations. This set of FORANS equations and models are analyzed for the case of two-dimensional mean flow. The equations include familiar transport terms for the mean-velocity components along with algebraic expressions for velocity correlations of different orders specific to the FORANS approach. Flat plate DNS data (Spalart, 1988) are used to verify these expressions and the areas of the OMA applicability within the boundary layer. The material is based upon work supported by NASA under award NNX12AJ61A.

  13. A New Kinetic Simulation Model with Self-Consistent Calculation of Regolith Layer Charging for Moon-Plasma Interactions

    NASA Astrophysics Data System (ADS)

    Han, D.; Wang, J.

    2015-12-01

    The moon-plasma interactions and the resulting surface charging have been subjects of extensive recent investigations. While many particle-in-cell (PIC) based simulation models have been developed, all existing PIC simulation models treat the surface of the Moon as a boundary condition to the plasma flow. In such models, the surface of the Moon is typically limited to simple geometry configurations, the surface floating potential is calculated from a simplified current balance condition, and the electric field inside the regolith layer cannot be resolved. This paper presents a new full particle PIC model to simulate local scale plasma flow and surface charging. A major feature of this new model is that the surface is treated as an "interface" between two mediums rather than a boundary, and the simulation domain includes not only the plasma but also the regolith layer and the bedrock underneath it. There are no limitations on the surface shape. An immersed-finite-element field solver is applied which calculates the regolith surface floating potential and the electric field inside the regolith layer directly from local charge deposition. The material property of the regolith layer is also explicitly included in simulation. This new model is capable of providing a self-consistent solution to the plasma flow field, lunar surface charging, the electric field inside the regolith layer and the bedrock for realistic surface terrain. This new model is applied to simulate lunar surface-plasma interactions and surface charging under various ambient plasma conditions. The focus is on the lunar terminator region, where the combined effects from the low sun elevation angle and the localized plasma wake generated by plasma flow over a rugged terrain can generate strongly differentially charged surfaces and complex dust dynamics. We discuss the effects of the regolith properties and regolith layer charging on the plasma flow field, dust levitation, and dust transport.

  14. Experimental and Computational Study of the Flow past a Simplified Geometry of an Engine/Pylon/Wing Installation at low velocity/moderate incidence flight conditions

    NASA Astrophysics Data System (ADS)

    Bury, Yannick; Lucas, Matthieu; Bonnaud, Cyril; Joly, Laurent; ISAE Team; Airbus Team

    2014-11-01

    We study numerically and experimentally the vortices that develop past a model geometry of a wing equipped with pylon-mounted engine at low speed/moderate incidence flight conditions. For such configuration, the presence of the powerplant installation under the wing initiates a complex, unsteady vortical flow field at the nacelle/pylon/wing junctions. Its interaction with the upper wing boundary layer causes a drop of aircraft performances. In order to decipher the underlying physics, this study is initially conducted on a simplified geometry at a Reynolds number of 200000, based on the chord wing and on the freestream velocity. Two configurations of angle of attack and side-slip angle are investigated. This work relies on unsteady Reynolds Averaged Navier Stokes computations, oil flow visualizations and stereoscopic Particle Image Velocimetry measurements. The vortex dynamics thus produced is described in terms of vortex core position, intensity, size and turbulent intensity thanks to a vortex tracking approach. In addition, the analysis of the velocity flow fields obtained from PIV highlights the influence of the longitudinal vortex initiated at the pylon/wing junction on the separation process of the boundary layer near the upper wing leading-edge.

  15. A neuromorphic model of motor overflow in focal hand dystonia due to correlated sensory input

    NASA Astrophysics Data System (ADS)

    Sohn, Won Joon; Niu, Chuanxin M.; Sanger, Terence D.

    2016-10-01

    Objective. Motor overflow is a common and frustrating symptom of dystonia, manifested as unintentional muscle contraction that occurs during an intended voluntary movement. Although it is suspected that motor overflow is due to cortical disorganization in some types of dystonia (e.g. focal hand dystonia), it remains elusive which mechanisms could initiate and, more importantly, perpetuate motor overflow. We hypothesize that distinct motor elements have low risk of motor overflow if their sensory inputs remain statistically independent. But when provided with correlated sensory inputs, pre-existing crosstalk among sensory projections will grow under spike-timing-dependent-plasticity (STDP) and eventually produce irreversible motor overflow. Approach. We emulated a simplified neuromuscular system comprising two anatomically distinct digital muscles innervated by two layers of spiking neurons with STDP. The synaptic connections between layers included crosstalk connections. The input neurons received either independent or correlated sensory drive during 4 days of continuous excitation. The emulation is critically enabled and accelerated by our neuromorphic hardware created in previous work. Main results. When driven by correlated sensory inputs, the crosstalk synapses gained weight and produced prominent motor overflow; the growth of crosstalk synapses resulted in enlarged sensory representation reflecting cortical reorganization. The overflow failed to recede when the inputs resumed their original uncorrelated statistics. In the control group, no motor overflow was observed. Significance. Although our model is a highly simplified and limited representation of the human sensorimotor system, it allows us to explain how correlated sensory input to anatomically distinct muscles is by itself sufficient to cause persistent and irreversible motor overflow. Further studies are needed to locate the source of correlation in sensory input.

  16. Numerical study of terrain-induced mesoscale motions and hydrostatic form drag in a heated, growing mixed layer

    NASA Technical Reports Server (NTRS)

    Deardorff, J. W.; Ueyoshi, K.; Han, Y.-J.

    1984-01-01

    Han et al. (1982) have found in a previous numerical study of terrain-induced mesoscale motions that the orography caused a steady-state flow pattern to occur. The study was concerned with a simplified case in which no surface heating occurred. The present investigation considers an extension of this study to the more realistic case of a heated, growing daytime mixed layer containing horizontal variations of potential temperature as well as velocity. The model is also extended to include three layers above the mixed layer. It is found for a heated, growing mixed layer, that the mesoscale form drag is a thermal-anomaly or buoyancy effect associated with horizontal variations of potential temperature within the layer.

  17. A Priori Analysis of Subgrid-Scale Models for Large Eddy Simulations of Supercritical Binary-Species Mixing Layers

    NASA Technical Reports Server (NTRS)

    Okong'o, Nora; Bellan, Josette

    2005-01-01

    Models for large eddy simulation (LES) are assessed on a database obtained from direct numerical simulations (DNS) of supercritical binary-species temporal mixing layers. The analysis is performed at the DNS transitional states for heptane/nitrogen, oxygen/hydrogen and oxygen/helium mixing layers. The incorporation of simplifying assumptions that are validated on the DNS database leads to a set of LES equations that requires only models for the subgrid scale (SGS) fluxes, which arise from filtering the convective terms in the DNS equations. Constant-coefficient versions of three different models for the SGS fluxes are assessed and calibrated. The Smagorinsky SGS-flux model shows poor correlations with the SGS fluxes, while the Gradient and Similarity models have high correlations, as well as good quantitative agreement with the SGS fluxes when the calibrated coefficients are used.

  18. Improved locality of the phase-field lattice-Boltzmann model for immiscible fluids at high density ratios

    NASA Astrophysics Data System (ADS)

    Fakhari, Abbas; Mitchell, Travis; Leonardi, Christopher; Bolster, Diogo

    2017-11-01

    Based on phase-field theory, we introduce a robust lattice-Boltzmann equation for modeling immiscible multiphase flows at large density and viscosity contrasts. Our approach is built by modifying the method proposed by Zu and He [Phys. Rev. E 87, 043301 (2013), 10.1103/PhysRevE.87.043301] in such a way as to improve efficiency and numerical stability. In particular, we employ a different interface-tracking equation based on the so-called conservative phase-field model, a simplified equilibrium distribution that decouples pressure and velocity calculations, and a local scheme based on the hydrodynamic distribution functions for calculation of the stress tensor. In addition to two distribution functions for interface tracking and recovery of hydrodynamic properties, the only nonlocal variable in the proposed model is the phase field. Moreover, within our framework there is no need to use biased or mixed difference stencils for numerical stability and accuracy at high density ratios. This not only simplifies the implementation and efficiency of the model, but also leads to a model that is better suited to parallel implementation on distributed-memory machines. Several benchmark cases are considered to assess the efficacy of the proposed model, including the layered Poiseuille flow in a rectangular channel, Rayleigh-Taylor instability, and the rise of a Taylor bubble in a duct. The numerical results are in good agreement with available numerical and experimental data.

  19. Channel flow and trichloroethylene treatment in a partly iron-filled fracture: experimental and model results.

    PubMed

    Cai, Zuansi; Merly, Corrine; Thomson, Neil R; Wilson, Ryan D; Lerner, David N

    2007-08-15

    Technical developments have now made it possible to emplace granular zero-valent iron (Fe(0)) in fractured media to create a Fe(0) fracture reactive barrier (Fe(0) FRB) for the treatment of contaminated groundwater. To evaluate this concept, we conducted a laboratory experiment in which trichloroethylene (TCE) contaminated water was flushed through a single uniform fracture created between two sandstone blocks. This fracture was partly filled with what was intended to be a uniform thickness of iron. Partial treatment of TCE by iron demonstrated that the concept of a Fe(0) FRB is practical, but was less than anticipated for an iron layer of uniform thickness. When the experiment was disassembled, evidence of discrete channelised flow was noted and attributed to imperfect placement of the iron. To evaluate the effect of the channel flow, an explicit Channel Model was developed that simplifies this complex flow regime into a conceptualised set of uniform and parallel channels. The mathematical representation of this conceptualisation directly accounts for (i) flow channels and immobile fluid arising from the non-uniform iron placement, (ii) mass transfer from the open fracture to iron and immobile fluid regions, and (iii) degradation in the iron regions. A favourable comparison between laboratory data and the results from the developed mathematical model suggests that the model is capable of representing TCE degradation in fractures with non-uniform iron placement. In order to apply this Channel Model concept to a Fe(0) FRB system, a simplified, or implicit, Lumped Channel Model was developed where the physical and chemical processes in the iron layer and immobile fluid regions are captured by a first-order lumped rate parameter. The performance of this Lumped Channel Model was compared to laboratory data, and benchmarked against the Channel Model. The advantages of the Lumped Channel Model are that the degradation of TCE in the system is represented by a first-order parameter that can be used directly in readily available numerical simulators.

  20. Channel flow and trichloroethylene treatment in a partly iron-filled fracture: Experimental and model results

    NASA Astrophysics Data System (ADS)

    Cai, Zuansi; Merly, Corrine; Thomson, Neil R.; Wilson, Ryan D.; Lerner, David N.

    2007-08-01

    Technical developments have now made it possible to emplace granular zero-valent iron (Fe 0) in fractured media to create a Fe 0 fracture reactive barrier (Fe 0 FRB) for the treatment of contaminated groundwater. To evaluate this concept, we conducted a laboratory experiment in which trichloroethylene (TCE) contaminated water was flushed through a single uniform fracture created between two sandstone blocks. This fracture was partly filled with what was intended to be a uniform thickness of iron. Partial treatment of TCE by iron demonstrated that the concept of a Fe 0 FRB is practical, but was less than anticipated for an iron layer of uniform thickness. When the experiment was disassembled, evidence of discrete channelised flow was noted and attributed to imperfect placement of the iron. To evaluate the effect of the channel flow, an explicit Channel Model was developed that simplifies this complex flow regime into a conceptualised set of uniform and parallel channels. The mathematical representation of this conceptualisation directly accounts for (i) flow channels and immobile fluid arising from the non-uniform iron placement, (ii) mass transfer from the open fracture to iron and immobile fluid regions, and (iii) degradation in the iron regions. A favourable comparison between laboratory data and the results from the developed mathematical model suggests that the model is capable of representing TCE degradation in fractures with non-uniform iron placement. In order to apply this Channel Model concept to a Fe 0 FRB system, a simplified, or implicit, Lumped Channel Model was developed where the physical and chemical processes in the iron layer and immobile fluid regions are captured by a first-order lumped rate parameter. The performance of this Lumped Channel Model was compared to laboratory data, and benchmarked against the Channel Model. The advantages of the Lumped Channel Model are that the degradation of TCE in the system is represented by a first-order parameter that can be used directly in readily available numerical simulators.

  1. A double-layer based model of ion confinement in electron cyclotron resonance ion source.

    PubMed

    Mascali, D; Neri, L; Celona, L; Castro, G; Torrisi, G; Gammino, S; Sorbello, G; Ciavola, G

    2014-02-01

    The paper proposes a new model of ion confinement in ECRIS, which can be easily generalized to any magnetic configuration characterized by closed magnetic surfaces. Traditionally, ion confinement in B-min configurations is ascribed to a negative potential dip due to superhot electrons, adiabatically confined by the magneto-static field. However, kinetic simulations including RF heating affected by cavity modes structures indicate that high energy electrons populate just a thin slab overlapping the ECR layer, while their density drops down of more than one order of magnitude outside. Ions, instead, diffuse across the electron layer due to their high collisionality. This is the proper physical condition to establish a double-layer (DL) configuration which self-consistently originates a potential barrier; this "barrier" confines the ions inside the plasma core surrounded by the ECR surface. The paper will describe a simplified ion confinement model based on plasma density non-homogeneity and DL formation.

  2. A multiple-time-scale turbulence model based on variable partitioning of turbulent kinetic energy spectrum

    NASA Technical Reports Server (NTRS)

    Kim, S.-W.; Chen, C.-P.

    1988-01-01

    The paper presents a multiple-time-scale turbulence model of a single point closure and a simplified split-spectrum method. Consideration is given to a class of turbulent boundary layer flows and of separated and/or swirling elliptic turbulent flows. For the separated and/or swirling turbulent flows, the present turbulence model yielded significantly improved computational results over those obtained with the standard k-epsilon turbulence model.

  3. ROTATING MOTIONS AND MODELING OF THE ERUPTING SOLAR POLAR-CROWN PROMINENCE ON 2010 DECEMBER 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Yingna; Van Ballegooijen, Adriaan, E-mail: ynsu@head.cfa.harvard.edu

    2013-02-10

    A large polar-crown prominence composed of different segments spanning nearly the entire solar disk erupted on 2010 December 6. Prior to the eruption, the filament in the active region part split into two layers: a lower layer and an elevated layer. The eruption occurs in several episodes. Around 14:12 UT, the lower layer of the active region filament breaks apart: One part ejects toward the west, while the other part ejects toward the east, which leads to the explosive eruption of the eastern quiescent filament. During the early rise phase, part of the quiescent filament sheet displays strong rolling motionmore » (observed by STEREO-B) in the clockwise direction (viewed from east to west) around the filament axis. This rolling motion appears to start from the border of the active region, then propagates toward the east. The Atmospheric Imaging Assembly (AIA) observes another type of rotating motion: In some other parts of the erupting quiescent prominence, the vertical threads turn horizontal, then turn upside down. The elevated active region filament does not erupt until 18:00 UT, when the erupting quiescent filament has already reached a very large height. We develop two simplified three-dimensional models that qualitatively reproduce the observed rolling and rotating motions. The prominence in the models is assumed to consist of a collection of discrete blobs that are tied to particular field lines of a helical flux rope. The observed rolling motion is reproduced by continuous twist injection into the flux rope in Model 1 from the active region side. Asymmetric reconnection induced by the asymmetric distribution of the magnetic fields on the two sides of the filament may cause the observed rolling motion. The rotating motion of the prominence threads observed by AIA is consistent with the removal of the field line dips in Model 2 from the top down during the eruption.« less

  4. Diffusion of Supercritical Fluids through Single-Layer Nanoporous Solids: Theory and Molecular Simulations.

    PubMed

    Oulebsir, Fouad; Vermorel, Romain; Galliero, Guillaume

    2018-01-16

    With the advent of graphene material, membranes based on single-layer nanoporous solids appear as promising devices for fluid separation, be it liquid or gaseous mixtures. The design of such architectured porous materials would greatly benefit from accurate models that can predict their transport and separation properties. More specifically, there is no universal understanding of how parameters such as temperature, fluid loading conditions, or the ratio of the pore size to the fluid molecular diameter influence the permeation process. In this study, we address the problem of pure supercritical fluids diffusing through simplified models of single-layer porous materials. Basically, we investigate a toy model that consists of a single-layer lattice of Lennard-Jones interaction sites with a slit gap of controllable width. We performed extensive equilibrium and biased molecular dynamics simulations to document the physical mechanisms involved at the molecular scale. We propose a general constitutive equation for the diffusional transport coefficient derived from classical statistical mechanics and kinetic theory, which can be further simplified in the ideal gas limit. This transport coefficient relates the molecular flux to the fluid density jump across the single-layer membrane. It is found to be proportional to the accessible surface porosity of the single-layer porous solid and to a thermodynamic factor accounting for the inhomogeneity of the fluid close to the pore entrance. Both quantities directly depend on the potential of mean force that results from molecular interactions between solid and fluid atoms. Comparisons with the simulations data show that the kinetic model captures how narrowing the pore size below the fluid molecular diameter lowers dramatically the value of the transport coefficient. Furthermore, we demonstrate that our general constitutive equation allows for a consistent interpretation of the intricate effects of temperature and fluid loading conditions on the permeation process.

  5. Intermittent Turbulence in the Stable Boundary Layer over Land. Part III: A Classification for Observations during CASES-99.

    NASA Astrophysics Data System (ADS)

    van de Wiel, B. J. H.; Moene, A. F.; Hartogensis, O. K.; de Bruin, H. A. R.; Holtslag, A. A. M.

    2003-10-01

    In this paper a classification of stable boundary layer regimes is presented based on observations of near-surface turbulence during the Cooperative Atmosphere-Surface Exchange Study-1999 (CASES-99). It is found that the different nights can be divided into three subclasses: a turbulent regime, an intermittent regime, and a radiative regime, which confirms the findings of two companion papers that use a simplified theoretical model (it is noted that its simpliflied structure limits the model generality to near-surface flows). The papers predict the occurrence of stable boundary layer regimes in terms of external forcing parameters such as the (effective) pressure gradient and radiative forcing. The classification in the present work supports these predictions and shows that the predictions are robust in a qualitative sense. As such, it is, for example, shown that intermittent turbulence is most likely to occur in clear-sky conditions with a moderately weak effective pressure gradient. The quantitative features of the theoretical classification are, however, rather sensitive to (often uncertain) local parameter estimations, such as the bulk heat conductance of the vegetation layer. This sensitivity limits the current applicability of the theoretical classification in a strict quantitative sense, apart from its conceptual value.

  6. Pathways of soil moisture controls on boundary layer dynamics

    NASA Astrophysics Data System (ADS)

    Siqueira, M.; Katul, G.; Porporato, A.

    2007-12-01

    Soil moisture controls on precipitation are now receiving significant attention in climate systems because the memory of their variability is much slower than the memory of the fast atmospheric processes. We propose a new model that integrates soil water dynamics, plant hydraulics and stomatal responses to water availability to estimate root water uptake and available energy partitioning, as well as feedbacks to boundary layer dynamics (in terms of water vapor and heat input to the atmospheric system). Using a simplified homogenization technique, the model solves the intrinsically 3-D soil water movement equations by two 1-D coupled Richards' equations. The first resolves the radial water flow from bulk soil to soil-root interface to estimate root uptake (assuming the vertical gradients in moisture persist during the rapid lateral flow), and then it solves vertical water movement through the soil following the radial moisture adjustments. The coupling between these two equations is obtained by area averaging the soil moisture in the radial domain (i.e. homogenization) to calculate the vertical fluxes. For each vertical layer, the domain is discretized in axi-symmetrical grid with constant soil properties. This is deemed to be appropriate given the fact that the root uptake occurs on much shorter time scales closely following diurnal cycles, while the vertical water movement is more relevant to the inter-storm time scale. We show that this approach was able to explicitly simulate known features of root uptake such as diurnal hysteresis of canopy conductance, water redistribution by roots (hydraulic lift) and downward shift of root uptake during drying cycles. The model is then coupled with an atmospheric boundary layer (ABL) growth model thereby permitting us to explore low-dimensional elements of the interaction between soil moisture and ABL states commensurate with the lifting condensation level.

  7. Electromagnetic Launch Vehicle Fairing and Acoustic Blanket Model of Received Power Using FEKO

    NASA Technical Reports Server (NTRS)

    Trout, Dawn H.; Stanley, James E.; Wahid, Parveen F.

    2011-01-01

    Evaluating the impact of radio frequency transmission in vehicle fairings is important to electromagnetically sensitive spacecraft. This study employs the multilevel fast multipole method (MLFMM) from a commercial electromagnetic tool, FEKO, to model the fairing electromagnetic environment in the presence of an internal transmitter with improved accuracy over industry applied techniques. This fairing model includes material properties representative of acoustic blanketing commonly used in vehicles. Equivalent surface material models within FEKO were successfully applied to simulate the test case. Finally, a simplified model is presented using Nicholson Ross Weir derived blanket material properties. These properties are implemented with the coated metal option to reduce the model to one layer within the accuracy of the original three layer simulation.

  8. Simplified predictive models for CO 2 sequestration performance assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Srikanta; Ganesh, Priya; Schuetter, Jared

    CO2 sequestration in deep saline formations is increasingly being considered as a viable strategy for the mitigation of greenhouse gas emissions from anthropogenic sources. In this context, detailed numerical simulation based models are routinely used to understand key processes and parameters affecting pressure propagation and buoyant plume migration following CO2 injection into the subsurface. As these models are data and computation intensive, the development of computationally-efficient alternatives to conventional numerical simulators has become an active area of research. Such simplified models can be valuable assets during preliminary CO2 injection project screening, serve as a key element of probabilistic system assessmentmore » modeling tools, and assist regulators in quickly evaluating geological storage projects. We present three strategies for the development and validation of simplified modeling approaches for CO2 sequestration in deep saline formations: (1) simplified physics-based modeling, (2) statisticallearning based modeling, and (3) reduced-order method based modeling. In the first category, a set of full-physics compositional simulations is used to develop correlations for dimensionless injectivity as a function of the slope of the CO2 fractional-flow curve, variance of layer permeability values, and the nature of vertical permeability arrangement. The same variables, along with a modified gravity number, can be used to develop a correlation for the total storage efficiency within the CO2 plume footprint. Furthermore, the dimensionless average pressure buildup after the onset of boundary effects can be correlated to dimensionless time, CO2 plume footprint, and storativity contrast between the reservoir and caprock. In the second category, statistical “proxy models” are developed using the simulation domain described previously with two approaches: (a) classical Box-Behnken experimental design with a quadratic response surface, and (b) maximin Latin Hypercube sampling (LHS) based design with a multidimensional kriging metamodel fit. For roughly the same number of simulations, the LHS-based metamodel yields a more robust predictive model, as verified by a k-fold cross-validation approach (with data split into training and test sets) as well by validation with an independent dataset. In the third category, a reduced-order modeling procedure is utilized that combines proper orthogonal decomposition (POD) for reducing problem dimensionality with trajectory-piecewise linearization (TPWL) in order to represent system response at new control settings from a limited number of training runs. Significant savings in computational time are observed with reasonable accuracy from the PODTPWL reduced-order model for both vertical and horizontal well problems – which could be important in the context of history matching, uncertainty quantification and optimization problems. The simplified physics and statistical learning based models are also validated using an uncertainty analysis framework. Reference cumulative distribution functions of key model outcomes (i.e., plume radius and reservoir pressure buildup) generated using a 97-run full-physics simulation are successfully validated against the CDF from 10,000 sample probabilistic simulations using the simplified models. The main contribution of this research project is the development and validation of a portfolio of simplified modeling approaches that will enable rapid feasibility and risk assessment for CO2 sequestration in deep saline formations.« less

  9. Trends and Techniques for Space Base Electronics

    NASA Technical Reports Server (NTRS)

    Trotter, J. D.; Wade, T. E.; Gassaway, J. D.

    1979-01-01

    Simulations of various phosphorus and boron diffusions in SOS were completed and a sputtering system, furnaces, and photolithography related equipment were set up. Double layer metal experiments initially utilized wet chemistry techniques. By incorporating ultrasonic etching of the vias, premetal cleaning a modified buffered HF, phosphorus doped vapox, and extended sintering, yields of 98% were obtained using the standard test pattern. A two dimensional modeling program was written for simulating short channel MOSFETs with nonuniform substrate doping. A key simplifying assumption used is that the majority carriers can be represented by a sheet charge at the silicon dioxide silicon interface. Although the program is incomplete, the two dimensional Poisson equation for the potential distribution was achieved. The status of other Z-D MOSFET simulation programs is summarized.

  10. Unimolecular decomposition reactions at low-pressure: A comparison of competitive methods

    NASA Technical Reports Server (NTRS)

    Adams, G. F.

    1980-01-01

    The lack of a simple rate coefficient expression to describe the pressure and temperature dependence hampers chemical modeling of flame systems. Recently developed simplified models to describe unimolecular processes include the calculation of rate constants for thermal unimolecular reactions and recombinations at the low pressure limit, at the high pressure limit and in the intermediate fall-off region. Comparison between two different applications of Troe's simplified model and a comparison between the simplified model and the classic RRKM theory are described.

  11. Modified Coaxial Probe Feeds for Layered Antennas

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W.; Chu, Andrew W.; Dobbins, Justin A.; Lin, Greg Y.

    2006-01-01

    In a modified configuration of a coaxial probe feed for a layered printed-circuit antenna (e.g., a microstrip antenna), the outer conductor of the coaxial cable extends through the thickness of at least one dielectric layer and is connected to both the ground-plane conductor and a radiator-plane conductor. This modified configuration simplifies the incorporation of such radio-frequency integrated circuits as power dividers, filters, and low-noise amplifiers. It also simplifies the design and fabrication of stacked antennas with aperture feeds.

  12. Effects of shock on hypersonic boundary layer stability

    NASA Astrophysics Data System (ADS)

    Pinna, F.; Rambaud, P.

    2013-06-01

    The design of hypersonic vehicles requires the estimate of the laminar to turbulent transition location for an accurate sizing of the thermal protection system. Linear stability theory is a fast scientific way to study the problem. Recent improvements in computational capabilities allow computing the flow around a full vehicle instead of using only simplified boundary layer equations. In this paper, the effect of the shock is studied on a mean flow provided by steady Computational Fluid Dynamics (CFD) computations and simplified boundary layer calculations.

  13. Analytical Studies of Boundary Layer Generated Aircraft Interior Noise

    NASA Technical Reports Server (NTRS)

    Howe, M. S.; Shah, P. L.

    1997-01-01

    An analysis is made of the "interior noise" produced by high, subsonic turbulent flow over a thin elastic plate partitioned into "panels" by straight edges transverse to the mean flow direction. This configuration models a section of an aircraft fuselage that may be regarded as locally flat. The analytical problem can be solved in closed form to represent the acoustic radiation in terms of prescribed turbulent boundary layer pressure fluctuations. Two cases are considered: (i) the production of sound at an isolated panel edge (i.e., in the approximation in which the correlation between sound and vibrations generated at neighboring edges is neglected), and (ii) the sound generated by a periodic arrangement of identical panels. The latter problem is amenable to exact analytical treatment provided the panel edge conditions are the same for all panels. Detailed predictions of the interior noise depend on a knowledge of the turbulent boundary layer wall pressure spectrum, and are given here in terms of an empirical spectrum proposed by Laganelli and Wolfe. It is expected that these analytical representations of the sound generated by simplified models of fluid-structure interactions can used to validate more general numerical schemes.

  14. The electric field standing wave effect in infrared transflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Mayerhöfer, Thomas G.; Popp, Jürgen

    2018-02-01

    We show that an electric field standing wave effect is responsible for the oscillations and the non-linear dependence of the absorbance on the layer thickness in thin layers on a reflective surface. This effect is connected to the occurrence of interference inside these layers. Consequently, the absorptance undergoes a maximum electric field intensity enhancement at spectral positions close to those where corresponding non-absorbing layers on a metal show minima in the reflectance. The effect leads to changes of peak maxima ratios with layer thickness and shows the same periodicity as oscillations in the peak positions. These peculiarities are fully based on and described by Maxwell's equations but cannot be understood and described if the strongly simplifying model centered on reflectance absorbance is employed.

  15. Anomalous transport in discrete arcs and simulation of double layers in a model auroral circuit

    NASA Technical Reports Server (NTRS)

    Smith, Robert A.

    1987-01-01

    The evolution and long-time stability of a double layer (DL) in a discrete auroral arc requires that the parallel current in the arc, which may be considered uniform at the source, be diverted within the arc to charge the flanks of the U-shaped double layer potential structure. A simple model is presented in which this current redistribution is effected by anomalous transport based on electrostatic lower hybrid waves driven by the flank structure itself. This process provides the limiting constraint on the double layer potential. The flank charging may be represented as that of a nonlinear transmission line. A simplified model circuit, in which the transmission line is represented by a nonlinear impedance in parallel with a variable resistor, is incorporated in a one-dimensional simulation model to give the current density at the DL boundaries. Results are presented for the scaling of the DL potential as a function of the width of the arc and the saturation efficiency of the lower hybrid instability mechanism.

  16. Anomalous transport in discrete arcs and simulation of double layers in a model auroral circuit

    NASA Technical Reports Server (NTRS)

    Smith, Robert A.

    1987-01-01

    The evolution and long-time stability of a double layer in a discrete auroral arc requires that the parallel current in the arc, which may be considered uniform at the source, be diverted within the arc to charge the flanks of the U-shaped double-layer potential structure. A simple model is presented in which this current re-distribution is effected by anomalous transport based on electrostatic lower hybrid waves driven by the flank structure itself. This process provides the limiting constraint on the double-layer potential. The flank charging may be represented as that of a nonlinear transmission. A simplified model circuit, in which the transmission line is represented by a nonlinear impedance in parallel with a variable resistor, is incorporated in a 1-d simulation model to give the current density at the DL boundaries. Results are presented for the scaling of the DL potential as a function of the width of the arc and the saturation efficiency of the lower hybrid instability mechanism.

  17. The role of boundary variability in polycrystalline grain-boundary diffusion

    NASA Astrophysics Data System (ADS)

    Moghadam, M. M.; Rickman, J. M.; Harmer, M. P.; Chan, H. M.

    2015-01-01

    We investigate the impact of grain-boundary variability on mass transport in a polycrystal. More specifically, we perform both numerical and analytical studies of steady-state diffusion in prototypical microstructures in which there is either a discrete spectrum of grain-boundary activation energies or else a complex distribution of grain-boundary character, and hence a continuous spectrum of boundary activation energies. An effective diffusivity is calculated for these structures using simplified multi-state models and, for the case of a continuous spectrum, employing experimentally obtained grain-boundary energy data. We identify different diffusive regimes for these cases and quantify deviations from Arrhenius behavior using effective medium theory. Finally, we examine the diffusion kinetics of a simplified model of an interfacial layering (i.e., complexion) transition.

  18. Numerical simulation and experimental study on farmland nitrogen loss to surface runoff in a raindrop driven process

    NASA Astrophysics Data System (ADS)

    Li, Jiayun; Tong, Juxiu; Xia, Chuanan; Hu, Bill X.; Zhu, Hao; Yang, Rui; Wei, Wenshuo

    2017-06-01

    It has been widely recognized that surface runoff from agricultural field is an important non-point pollution source, which however, the chemical transfer amount in the process is very difficult to be quantified in field since some variables and natural factors are hard to control, such as rainfall intensity, temperature, wind speeds and soil spatial heterogeneity, which may significantly affect the field experimental results. Therefore, a physically based nitrogen transport model was developed and tested with the so called semi-field experiments (i.e., artificial rainfall was used instead of natural rainfall, but other conditions were natural) in this paper. Our model integrated the raindrop driven process and diffusion effect with the simplified nitrogen chain reactions. In this model, chemicals in the soil surface layer, or the 'exchange layer', were transformed into the surface runoff layer due to raindrop impact. The raindrops also have a significant role on the diffusion process between the exchange layer and the underlying soil. The established mathematical model was solved numerically through the modified Hydrus-1d source code, and the model simulations agreed well with the experimental data. The modeling results indicate that the depth of the exchange layer and raindrop induced water transfer rate are two important parameters for the simulation results. Variation of the water transfer rate, er, can strongly influence the peak values of the NO-3-N and NH+4-N concentration breakthrough curves. The concentration of NO-3-N is more sensitive to the exchange layer depth, de, than NH+4-N. In general, the developed model well describes the nitrogen loss into surface runoff in a raindrop driven process. Since the raindrop splash erosion process may aggravate the loss of chemical fertilizer, choosing an appropriate fertilization time and application method is very important to prevent the pollution.

  19. A plug flow reactor model of a vanadium redox flow battery considering the conductive current collectors

    NASA Astrophysics Data System (ADS)

    König, S.; Suriyah, M. R.; Leibfried, T.

    2017-08-01

    A lumped-parameter model for vanadium redox flow batteries, which use metallic current collectors, is extended into a one-dimensional model using the plug flow reactor principle. Thus, the commonly used simplification of a perfectly mixed cell is no longer required. The resistances of the cell components are derived in the in-plane and through-plane directions. The copper current collector is the only component with a significant in-plane conductance, which allows for a simplified electrical network. The division of a full-scale flow cell into 10 layers in the direction of fluid flow represents a reasonable compromise between computational effort and accuracy. Due to the variations in the state of charge and thus the open circuit voltage of the electrolyte, the currents in the individual layers vary considerably. Hence, there are situations, in which the first layer, directly at the electrolyte input, carries a multiple of the last layer's current. The conventional model overestimates the cell performance. In the worst-case scenario, the more accurate 20-layer model yields a discharge capacity 9.4% smaller than that computed with the conventional model. The conductive current collector effectively eliminates the high over-potentials in the last layers of the plug flow reactor models that have been reported previously.

  20. A theoretical study for the propagation of rolling noise over a porous road pavement

    NASA Astrophysics Data System (ADS)

    Keung Lui, Wai; Ming Li, Kai

    2004-07-01

    A simplified model based on the study of sound diffracted by a sphere is proposed for investigating the propagation of noise in a hornlike geometry between porous road surfaces and rolling tires. The simplified model is verified by comparing its predictions with the published numerical and experimental results of studies on the horn amplification of sound over a road pavement. In a parametric study, a point monopole source is assumed to be localized on the surface of a tire. In the frequency range of interest, a porous road pavement can effectively reduce the level of amplified sound due to the horn effect. It has been shown that an increase in the thickness and porosity of a porous layer, or the use of a double layer of porous road pavement, attenuates the horn amplification of sound. However, a decrease in the flow resistivity of a porous road pavement does little to reduce the horn amplification of sound. It has also been demonstrated that the horn effect over a porous road pavement is less dependent on the angular position of the source on the surface of tires.

  1. Multilayered models for electromagnetic reflection amplitudes

    NASA Technical Reports Server (NTRS)

    Linlor, W. I.

    1976-01-01

    The remote sensing of snowpack characteristics with surface installations or with an airborne system could have important applications in water resource management and flood prediction. To derive some insight into such applications, the electromagnetic response of multilayer snow models is analyzed. Normally incident plane waves are assumed at frequencies ranging from 10 to the 6th power to 10 to the 10th power Hz, and amplitude reflection coefficients are calculated for models having various snow-layer combinations, including ice sheets. Layers are defined by a thickness, permittivity, and conductivity; the electrical parameters are constant or prescribed functions of frequency. To illustrate the effect of various layering combinations, results are given in the form of curves of amplitude reflection coefficients, versus frequency for a variety of models. Under simplifying assumptions, the snow thickness and effective dielectric constant can be estimated from the reflection coefficient variations as a function of frequency.

  2. On the relationship between tectonic plates and thermal mantle plume morphology

    NASA Technical Reports Server (NTRS)

    Lenardic, A.; Kaula, W. M.

    1993-01-01

    Models incorporating plate-like behavior, i.e., near uniform surface velocity and deformation concentrated at plate boundaries, into a convective system, heated by a mix of internal and basal heating and allowing for temperature dependent viscosity, were constructed and compared to similar models not possessing plate-like behavior. The simplified numerical models are used to explore how plate-like behavior in a convective system can effect the lower boundary layer from which thermal plumes form. A principal conclusion is that plate-like behavior can significantly increase the temperature drop across the lower thermal boundary layer. This temperature drop affects the morphology of plumes by determining the viscosity drop across the boundary layer. Model results suggest that plumes on planets possessing plate-like behavior, e.g., the Earth, may differ in morphologic type from plumes on planets not possessing plate-like behavior, e.g., Venus and Mars.

  3. To the theory of particle lifting by terrestrial and Martian dust devils

    NASA Astrophysics Data System (ADS)

    Kurgansky, M. V.

    2018-01-01

    The combined Rankine vortex model is applied to describe the radial profile of azimuthal velocity in atmospheric dust devils, and a simplified model version is proposed of the turbulent surface boundary layer beneath the Rankine vortex periphery that corresponds to the potential vortex. Based on the results by Burggraf et al. (1971), it is accepted that the radial velocity near the ground in the potential vortex greatly exceeds the azimuthal velocity, which makes tractable the problem of the surface shear stress determination, including the case of the turbulent surface boundary layer. The constructed model explains exceeding the threshold shear velocity for aeolian transport in typical dust-devil vortices both on Earth and on Mars.

  4. Modelling Laccoliths: Fluid-Driven Fracturing in the Lab

    NASA Astrophysics Data System (ADS)

    Ball, T. V.; Neufeld, J. A.

    2017-12-01

    Current modelling of the formation of laccoliths neglects the necessity to fracture rock layers for propagation to occur [1]. In magmatic intrusions at depth the idea of fracture toughness is used to characterise fracturing, however an analogue for near surface intrusions has yet to be explored [2]. We propose an analytical model for laccolith emplacement that accounts for the energy required to fracture at the tip of an intrusion. For realistic physical parameters we find that a lag region exists between the fluid magma front and the crack tip where large negative pressures in the tip cause volatiles to exsolve from the magma. Crucially, the dynamics of this tip region controls the spreading due to the competition between viscous forces and fracture energy. We conduct a series of complementary experiments to investigate fluid-driven fracturing of adhered layers and confirm the existence of two regimes: viscosity dominant spreading, controlled by the pressure in the lag region, and fracture energy dominant spreading, controlled by the energy required to fracture layers. Our experiments provide the first observations, and evolution, of a vapour tip. These experiments and our simplified model provide insight into the key physical processes in near surface magmatic intrusions with applications to fluid-driven fracturing more generally. Michaut J. Geophys. Res. 116(B5), B05205. Bunger & Cruden J. Geophys. Res. 116(B2), B02203.

  5. Formulating a subgrid-scale breakup model for microbubble generation from interfacial collisions

    NASA Astrophysics Data System (ADS)

    Chan, Wai Hong Ronald; Mirjalili, Shahab; Urzay, Javier; Mani, Ali; Moin, Parviz

    2017-11-01

    Multiphase flows often involve impact events that engender important effects like the generation of a myriad of tiny bubbles that are subsequently transported in large liquid bodies. These impact events are created by large-scale phenomena like breaking waves on ocean surfaces, and often involve the relative approach of liquid surfaces. This relative motion generates continuously shrinking length scales as the entrapped gas layer thins and eventually breaks up into microbubbles. The treatment of this disparity in length scales is computationally challenging. In this presentation, a framework is presented that addresses a subgrid-scale (SGS) model aimed at capturing the process of microbubble generation. This work sets up the components in an overarching volume-of-fluid (VoF) toolset and investigates the analytical foundations of an SGS model for describing the breakup of a thin air film trapped between two approaching water bodies in a physical regime corresponding to Mesler entrainment. Constituents of the SGS model, such as the identification of impact events and the accurate computation of the local characteristic curvature in a VoF-based architecture, and the treatment of the air layer breakup, are discussed and illustrated in simplified scenarios. Supported by Office of Naval Research (ONR)/A*STAR (Singapore).

  6. Towards optimization of an organotypic assay system that imitates human hair follicle-like epithelial-mesenchymal interactions.

    PubMed

    Havlickova, B; Bíró, T; Mescalchin, A; Arenberger, P; Paus, R

    2004-10-01

    Human hair growth can currently be studied in vitro by the use of organ-cultured scalp hair follicles (HFs). However, simplified organotypic systems are needed for dissecting the underlying epithelial-mesenchymal interactions and as screening tools for candidate hair growth-modulatory agents. To optimize the design and culture conditions of previously published organotypic systems that imitate epithelial-mesenchymal interactions in the human HF as closely as possible. Continuous submerged organotypic 'sandwich' cultures were established. These consist of a pseudodermis (collagen I mixed with and contracted by human interfollicular dermal fibroblasts) on which one of two upper layers is placed: either a mixture of Matrigel basement membrane matrix (BD Biosciences, Bedford, MA, U.S.A.) and follicular dermal papilla fibroblasts (DPC), with outer root sheath keratinocytes (ORSK) layered on the top ('layered' system), or a mixture of Matrigel, DPC and ORSK ('mixed' system). Morphological and functional characteristics of these 'folliculoid sandwiches' were then assessed by routine histology, histomorphometry and immunohistochemistry. In both 'layered' and 'mixed' systems, the ORSK formed spheroid epithelial cell aggregates, which retained their characteristic keratin expression pattern (i.e. cytokeratin 6). In the 'mixed' sandwich model the size of the epithelial cell aggregates was smaller, but the numbers of ORSK were significantly higher than in the 'layered' model at day 14 in the culture. ORSK proliferated better in the 'mixed' than in the 'layered' sandwich system, regardless of the calcium or serum content of the media, whereas apoptosis of ORSK was lowest in the 'mixed' system in serum-free, low calcium medium. The kinetics of proliferation and apoptosis of DPC, which retained their characteristic expression of versican, were similar in both systems. However, proliferation and apoptosis of DPC were higher in the presence of serum and/or under high calcium conditions. Our results underscore the importance of structural design and medium composition for epithelial-mesenchymal interactions as they occur in the human HF. Specifically, we report a new organotypic submerged 'folliculoid sandwich' system with serum-free, low calcium medium and a mixture of interacting human DPC and ORSK, which offers several advantages over previously available assays. This system allows the standardized assessment of the effects of a test agent on the proliferation, apoptosis and key marker expression of human ORSK and DPC under substantially simplified in vitro conditions which approximate the in vivo situation.

  7. [Influence of trabecular microstructure modeling on finite element analysis of dental implant].

    PubMed

    Shen, M J; Wang, G G; Zhu, X H; Ding, X

    2016-09-01

    To analyze the influence of trabecular microstructure modeling on the biomechanical distribution of implant-bone interface with a three-dimensional finite element mandible model of trabecular structure. Dental implants were embeded in the mandibles of a beagle dog. After three months of the implant installation, the mandibles with dental implants were harvested and scaned by micro-CT and cone-beam CT. Two three-dimensional finite element mandible models, trabecular microstructure(precise model) and macrostructure(simplified model), were built. The values of stress and strain of implant-bone interface were calculated using the software of Ansys 14.0. Compared with the simplified model, the precise models' average values of the implant bone interface stress increased obviously and its maximum values did not change greatly. The maximum values of quivalent stress of the precise models were 80% and 110% of the simplified model and the average values were 170% and 290% of simplified model. The maximum and average values of equivalent strain of precise models were obviously decreased, and the maximum values of the equivalent effect strain were 17% and 26% of simplified model and the average ones were 21% and 16% of simplified model respectively. Stress and strain concentrations at implant-bone interface were obvious in the simplified model. However, the distributions of stress and strain were uniform in the precise model. The precise model has significant effect on the distribution of stress and strain at implant-bone interface.

  8. Simplified model for determining local heat flux boundary conditions for slagging wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bingzhi Li; Anders Brink; Mikko Hupa

    2009-07-15

    In this work, two models for calculating heat transfer through a cooled vertical wall covered with a running slag layer are investigated. The first one relies on a discretization of the velocity equation, and the second one relies on an analytical solution. The aim is to find a model that can be used for calculating local heat flux boundary conditions in computational fluid dynamics (CFD) analysis of such processes. Two different cases where molten deposits exist are investigated: the black liquor recovery boiler and the coal gasifier. The results show that a model relying on discretization of the velocity equationmore » is more flexible in handling different temperature-viscosity relations. Nevertheless, a model relying on an analytical solution is the one fast enough for a potential use as a CFD submodel. Furthermore, the influence of simplifications to the heat balance in the model is investigated. It is found that simplification of the heat balance can be applied when the radiation heat flux is dominant in the balance. 9 refs., 7 figs., 10 tabs.« less

  9. Airflow and Particle Transport Through Human Airways: A Systematic Review

    NASA Astrophysics Data System (ADS)

    Kharat, S. B.; Deoghare, A. B.; Pandey, K. M.

    2017-08-01

    This paper describes review of the relevant literature about two phase analysis of air and particle flow through human airways. An emphasis of the review is placed on elaborating the steps involved in two phase analysis, which are Geometric modelling methods and Mathematical models. The first two parts describes various approaches that are followed for constructing an Airway model upon which analysis are conducted. Broad two categories of geometric modelling viz. Simplified modelling and Accurate modelling using medical scans are discussed briefly. Ease and limitations of simplified models, then examples of CT based models are discussed. In later part of the review different mathematical models implemented by researchers for analysis are briefed. Mathematical models used for Air and Particle phases are elaborated separately.

  10. A Simplified Finite Element Simulation for Straightening Process of Thin-Walled Tube

    NASA Astrophysics Data System (ADS)

    Zhang, Ziqian; Yang, Huilin

    2017-12-01

    The finite element simulation is an effective way for the study of thin-walled tube in the two cross rolls straightening process. To determine the accurate radius of curvature of the roll profile more efficiently, a simplified finite element model based on the technical parameters of an actual two cross roll straightening machine, was developed to simulate the complex straightening process. Then a dynamic simulation was carried out using ANSYS LS-DYNA program. The result implied that the simplified finite element model was reasonable for simulate the two cross rolls straightening process, and can be obtained the radius of curvature of the roll profile with the tube’s straightness 2 mm/m.

  11. Analysis of the leading edge effects on the boundary layer transition

    NASA Technical Reports Server (NTRS)

    Chow, Pao-Liu

    1990-01-01

    A general theory of boundary layer control by surface heating is presented. Some analytical results for a simplified model, i.e., the optimal control of temperature fluctuations in a shear flow are described. The results may provide a clue to the effectiveness of the active feedback control of a boundary layer flow by wall heating. In a practical situation, the feedback control may not be feasible from the instrumentational point of view. In this case the vibrational control introduced in systems science can provide a useful alternative. This principle is briefly explained and applied to the control of an unstable wavepacket in a parallel shear flow.

  12. A comparison study of two snow models using data from different Alpine sites

    NASA Astrophysics Data System (ADS)

    Piazzi, Gaia; Riboust, Philippe; Campo, Lorenzo; Cremonese, Edoardo; Gabellani, Simone; Le Moine, Nicolas; Morra di Cella, Umberto; Ribstein, Pierre; Thirel, Guillaume

    2017-04-01

    The hydrological balance of an Alpine catchment is strongly affected by snowpack dynamics. Melt-water supplies a significant component of the annual water budget, both in terms of soil moisture and runoff, which play a critical role in floods generation and impact water resource management in snow-dominated basins. Several snow models have been developed with variable degrees of complexity, mainly depending on their target application and the availability of computational resources and data. According to the level of detail, snow models range from statistical snowmelt-runoff and degree-day methods using composite snow-soil or explicit snow layer(s), to physically-based and energy balance snow models, consisting of detailed internal snow-process schemes. Intermediate-complexity approaches have been widely developed resulting in simplified versions of the physical parameterization schemes with a reduced snowpack layering. Nevertheless, an increasing model complexity does not necessarily entail improved model simulations. This study presents a comparison analysis between two snow models designed for hydrological purposes. The snow module developed at UPMC and IRSTEA is a mono-layer energy balance model analytically resolving heat and phase change equations into the snowpack. Vertical mass exchange into the snowpack is also analytically resolved. The model is intended to be used for hydrological studies but also to give a realistic estimation of the snowpack state at watershed scale (SWE and snow depth). The structure of the model allows it to be easily calibrated using snow observation. This model is further presented in EGU2017-7492. The snow module of SMASH (Snow Multidata Assimilation System for Hydrology) consists in a multi-layer snow dynamic scheme. It is physically based on mass and energy balances and it reproduces the main physical processes occurring within the snowpack: accumulation, density dynamics, melting, sublimation, radiative balance, heat and mass exchanges. The model is driven by observed forcing meteorological data (air temperature, wind velocity, relative air humidity, precipitation and incident solar radiation) to provide an estimation of the snowpack state. In this study, no DA is used. For more details on the DA scheme, please see EGU2017-7777. Observed data supplied by meteorological stations located in three experimental Alpine sites are used: Col de Porte (1325 m, France); Torgnon (2160 m, Italy); Weissfluhjoch (2540 m, Switzerland). Performances of the two models are compared through evaluations of snow mass, snow depth, albedo and surface temperature simulations in order to better understand and pinpoint limits and potentialities of the analyzed schemes and the impact of different parameterizations on models simulations.

  13. Anisotropy in the Australasian upper mantle from Love and Rayleigh waveform inversion

    NASA Astrophysics Data System (ADS)

    Debayle, Eric; Kennett, B. L. N.

    2000-12-01

    Records of both Rayleigh and Love waves have been analyzed to determine the pattern of anisotropy in the Australasian region. The approach is based on a two-stage inversion. Starting from a smooth PREM model with transverse isotropy about a vertical symmetry axis, the first step is an inversion of the waveforms of surface waves to produce path specific one-dimensional (1-D) upper mantle models. Under the assumption that the 1-D models represent averages along the paths, the results from 1584 Love and Rayleigh wave seismograms are combined in a tomographic inversion to provide a representation of three-dimensional structure for wavespeed heterogeneities and anisotropy. Polarization anisotropy with SH faster than SV is retrieved in the upper 200-250 km of the mantle for most of Precambrian Australia. In this depth interval, significant lateral variations in the level of polarization anisotropy are present. Locally, the anisotropy can be large, reaching an extreme value of 9% that is difficult to reconcile with current mineralogical models. However, the discrepancy may be explained in part by the presence of strong lateral heterogeneities along the path, or by effects introduced by the simplifying assumption of transverse isotropy for each path. The consistency between the location of polarization and azimuthal anisotropy in depth suggests that both observations share a common origin. The observation of polarization anisotropy down to at least 200 km supports a two-layered anisotropic model as constrained by the azimuthal anisotropy of SV waves. In the upper layer, 150 km thick, anisotropy would be related to past deformation frozen in the lithosphere while in the lower layer, anisotropy would reflect present day deformation due to plate motion.

  14. Scalable problems and memory bounded speedup

    NASA Technical Reports Server (NTRS)

    Sun, Xian-He; Ni, Lionel M.

    1992-01-01

    In this paper three models of parallel speedup are studied. They are fixed-size speedup, fixed-time speedup and memory-bounded speedup. The latter two consider the relationship between speedup and problem scalability. Two sets of speedup formulations are derived for these three models. One set considers uneven workload allocation and communication overhead and gives more accurate estimation. Another set considers a simplified case and provides a clear picture on the impact of the sequential portion of an application on the possible performance gain from parallel processing. The simplified fixed-size speedup is Amdahl's law. The simplified fixed-time speedup is Gustafson's scaled speedup. The simplified memory-bounded speedup contains both Amdahl's law and Gustafson's scaled speedup as special cases. This study leads to a better understanding of parallel processing.

  15. Study on the Mechanical Properties of Bionic Coupling Layered B4C/5083Al Composite Materials

    PubMed Central

    Zhao, Qian; Liang, Yunhong; Liu, Qingping; Zhang, Zhihui; Yu, Zhenglei; Ren, Luquan

    2018-01-01

    Based on microstructure characteristics of Meretrix lusoria shell and Rapana venosa shell, bionic coupling layered B4C/5083Al composites with different layered structures and hard/soft combination models were fabricated via hot pressed sintering. The simplified bionic coupling models with hard and soft layers were similar to layered structure and hardness tendency of shells, guiding the bionic design and fabrication. B4C/5083Al composites with various B4C contents and pure 5083Al were treated as hard and soft layers, respectively. Hot pressed sintering maintained the designed bionic structure and enhanced high bonding strength between ceramics and matrix. Compared with B4C/5083Al composites, bionic layered composites exhibited high mechanical properties including flexural strength, fracture toughness, compressive strength and impact toughness. The hard layers absorbed applied loads in the form of intergranular fracture. Besides connection role, soft layers restrained slabbing phenomenon and reset extension direction of cracks among layers. The coupling functions of bionic composites proved the feasibility and practicability of bionic fabrication, providing a new method for improvement of ceramic/Al composite with properties of being lightweight and high mechanical strength. PMID:29701707

  16. Teaching the Research Paper through Inquiry-Based Instruction

    ERIC Educational Resources Information Center

    Zeek, Sara

    2011-01-01

    The freshman research paper can be a labor for both the teacher and the student with its many layers of skills and expectations. While academia has moved beyond note cards and simplified documentation models, students continue to get lost in the research process, often to the point that instructors may even wonder if they had been teaching in an…

  17. Numerical analysis of the transient response of an axisymmetric ablative char layer considering internal flow effects

    NASA Technical Reports Server (NTRS)

    Pittman, C. M.; Howser, L. M.

    1972-01-01

    The differential equations governing the transient response of the char layer of an ablating axisymmetric body, internal pyrolysis gas flow effects being considered, have been derived. These equations have been expanded into finite difference form and programed for numerical solution on a digital computer. Numerical results compare favorably with simplified exact solutions. The complete numerical analysis was used to obtain solutions for two representative body shapes subjected to a typical entry heating environment. Pronounced effects of the lateral flow of pyrolysis gases on the mass flow field within the char layer and the associated surface and pyrolysis interface recession rates are shown.

  18. Feed-Forward Propagation of Temporal and Rate Information between Cortical Populations during Coherent Activation in Engineered In Vitro Networks.

    PubMed

    DeMarse, Thomas B; Pan, Liangbin; Alagapan, Sankaraleengam; Brewer, Gregory J; Wheeler, Bruce C

    2016-01-01

    Transient propagation of information across neuronal assembles is thought to underlie many cognitive processes. However, the nature of the neural code that is embedded within these transmissions remains uncertain. Much of our understanding of how information is transmitted among these assemblies has been derived from computational models. While these models have been instrumental in understanding these processes they often make simplifying assumptions about the biophysical properties of neurons that may influence the nature and properties expressed. To address this issue we created an in vitro analog of a feed-forward network composed of two small populations (also referred to as assemblies or layers) of living dissociated rat cortical neurons. The populations were separated by, and communicated through, a microelectromechanical systems (MEMS) device containing a strip of microscale tunnels. Delayed culturing of one population in the first layer followed by the second a few days later induced the unidirectional growth of axons through the microtunnels resulting in a primarily feed-forward communication between these two small neural populations. In this study we systematically manipulated the number of tunnels that connected each layer and hence, the number of axons providing communication between those populations. We then assess the effect of reducing the number of tunnels has upon the properties of between-layer communication capacity and fidelity of neural transmission among spike trains transmitted across and within layers. We show evidence based on Victor-Purpura's and van Rossum's spike train similarity metrics supporting the presence of both rate and temporal information embedded within these transmissions whose fidelity increased during communication both between and within layers when the number of tunnels are increased. We also provide evidence reinforcing the role of synchronized activity upon transmission fidelity during the spontaneous synchronized network burst events that propagated between layers and highlight the potential applications of these MEMs devices as a tool for further investigation of structure and functional dynamics among neural populations.

  19. Feed-Forward Propagation of Temporal and Rate Information between Cortical Populations during Coherent Activation in Engineered In Vitro Networks

    PubMed Central

    DeMarse, Thomas B.; Pan, Liangbin; Alagapan, Sankaraleengam; Brewer, Gregory J.; Wheeler, Bruce C.

    2016-01-01

    Transient propagation of information across neuronal assembles is thought to underlie many cognitive processes. However, the nature of the neural code that is embedded within these transmissions remains uncertain. Much of our understanding of how information is transmitted among these assemblies has been derived from computational models. While these models have been instrumental in understanding these processes they often make simplifying assumptions about the biophysical properties of neurons that may influence the nature and properties expressed. To address this issue we created an in vitro analog of a feed-forward network composed of two small populations (also referred to as assemblies or layers) of living dissociated rat cortical neurons. The populations were separated by, and communicated through, a microelectromechanical systems (MEMS) device containing a strip of microscale tunnels. Delayed culturing of one population in the first layer followed by the second a few days later induced the unidirectional growth of axons through the microtunnels resulting in a primarily feed-forward communication between these two small neural populations. In this study we systematically manipulated the number of tunnels that connected each layer and hence, the number of axons providing communication between those populations. We then assess the effect of reducing the number of tunnels has upon the properties of between-layer communication capacity and fidelity of neural transmission among spike trains transmitted across and within layers. We show evidence based on Victor-Purpura’s and van Rossum’s spike train similarity metrics supporting the presence of both rate and temporal information embedded within these transmissions whose fidelity increased during communication both between and within layers when the number of tunnels are increased. We also provide evidence reinforcing the role of synchronized activity upon transmission fidelity during the spontaneous synchronized network burst events that propagated between layers and highlight the potential applications of these MEMs devices as a tool for further investigation of structure and functional dynamics among neural populations. PMID:27147977

  20. Comparison between a typical and a simplified model for blast load-induced structural response

    NASA Astrophysics Data System (ADS)

    Abd-Elhamed, A.; Mahmoud, S.

    2017-02-01

    As explosive blasts continue to cause severe damage as well as victims in both civil and military environments. There is a bad need for understanding the behavior of structural elements to such extremely short duration dynamic loads where it is of great concern nowadays. Due to the complexity of the typical blast pressure profile model and in order to reduce the modelling and computational efforts, the simplified triangle model for blast loads profile is used to analyze structural response. This simplified model considers only the positive phase and ignores the suction phase which characterizes the typical one in simulating blast loads. The closed from solution for the equation of motion under blast load as a forcing term modelled either typical or simplified models has been derived. The considered herein two approaches have been compared using the obtained results from simulation response analysis of a building structure under an applied blast load. The computed error in simulating response using the simplified model with respect to the typical one has been computed. In general, both simplified and typical models can perform the dynamic blast-load induced response of building structures. However, the simplified one shows a remarkably different response behavior as compared to the typical one despite its simplicity and the use of only positive phase for simulating the explosive loads. The prediction of the dynamic system responses using the simplified model is not satisfactory due to the obtained larger errors as compared to the system responses obtained using the typical one.

  1. Tuning the dead-layer behavior of La{sub 0.67}Sr{sub 0.33}MnO{sub 3}/SrTiO{sub 3} via interfacial engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, R.; Xu, H. C.; Xia, M.

    The dead-layer behavior, deterioration of the bulk properties in near-interface layers, restricts the applications of many oxide heterostructures. We present the systematic study of the dead-layer in La{sub 0.67}Sr{sub 0.33}MnO{sub 3}/SrTiO{sub 3} grown by ozone-assisted molecular beam epitaxy. Dead-layer behavior is systematically tuned by varying the interfacial doping, while unchanged with varied doping at any other atomic layers. In situ photoemission and low energy electron diffraction measurements suggest intrinsic oxygen vacancies at the surface of ultra-thin La{sub 0.67}Sr{sub 0.33}MnO{sub 3}, which are more concentrated in thinner films. Our results show correlation between interfacial doping, oxygen vacancies, and the dead-layer, whichmore » can be explained by a simplified electrostatic model.« less

  2. Improvements to a global-scale groundwater model to estimate the water table across New Zealand

    NASA Astrophysics Data System (ADS)

    Westerhoff, Rogier; Miguez-Macho, Gonzalo; White, Paul

    2017-04-01

    Groundwater models at the global scale have become increasingly important in recent years to assess the effects of climate change and groundwater depletion. However, these global-scale models are typically not used for studies at the catchment scale, because they are simplified and too spatially coarse. In this study, we improved the global-scale Equilibrium Water Table (EWT) model, so it could better assess water table depth and water table elevation at the national scale for New Zealand. The resulting National Water Table (NWT) model used improved input data (i.e., national input data of terrain, geology, and recharge) and model equations (e.g., a hydraulic conductivity - depth relation). The NWT model produced maps of the water table that identified the main alluvial aquifers with fine spatial detail. Two regional case studies at the catchment scale demonstrated excellent correlation between the water table elevation and observations of hydraulic head. The NWT water tables are an improved water table estimation over the EWT model. In two case studies the NWT model provided a better approximation to observed water table for deep aquifers and the improved resolution of the model provided the capability to fill the gaps in data-sparse areas. This national model calculated water table depth and elevation across regional jurisdictions. Therefore, the model is relevant where trans-boundary issues, such as source protection and catchment boundary definition, occur. The NWT model also has the potential to constrain the uncertainty of catchment-scale models, particularly where data are sparse. Shortcomings of the NWT model are caused by the inaccuracy of input data and the simplified model properties. Future research should focus on improved estimation of input data (e.g., hydraulic conductivity and terrain). However, more advanced catchment-scale groundwater models should be used where groundwater flow is dominated by confining layers and fractures.

  3. A self-sustaining process model of inertial layer dynamics in high Reynolds number turbulent wall flows.

    PubMed

    Chini, G P; Montemuro, B; White, C M; Klewicki, J

    2017-03-13

    Field observations and laboratory experiments suggest that at high Reynolds numbers Re the outer region of turbulent boundary layers self-organizes into quasi-uniform momentum zones (UMZs) separated by internal shear layers termed 'vortical fissures' (VFs). Motivated by this emergent structure, a conceptual model is proposed with dynamical components that collectively have the potential to generate a self-sustaining interaction between a single VF and adjacent UMZs. A large-Re asymptotic analysis of the governing incompressible Navier-Stokes equation is performed to derive reduced equation sets for the streamwise-averaged and streamwise-fluctuating flow within the VF and UMZs. The simplified equations reveal the dominant physics within-and isolate possible coupling mechanisms among-these different regions of the flow.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  4. A self-sustaining process model of inertial layer dynamics in high Reynolds number turbulent wall flows

    PubMed Central

    Montemuro, B.; White, C. M.; Klewicki, J.

    2017-01-01

    Field observations and laboratory experiments suggest that at high Reynolds numbers Re the outer region of turbulent boundary layers self-organizes into quasi-uniform momentum zones (UMZs) separated by internal shear layers termed ‘vortical fissures’ (VFs). Motivated by this emergent structure, a conceptual model is proposed with dynamical components that collectively have the potential to generate a self-sustaining interaction between a single VF and adjacent UMZs. A large-Re asymptotic analysis of the governing incompressible Navier–Stokes equation is performed to derive reduced equation sets for the streamwise-averaged and streamwise-fluctuating flow within the VF and UMZs. The simplified equations reveal the dominant physics within—and isolate possible coupling mechanisms among—these different regions of the flow. This article is part of the themed issue ‘Toward the development of high-fidelity models of wall turbulence at large Reynolds number’. PMID:28167583

  5. Modelling the backscatter from spherical cavities in a solid matrix: Can an effective medium layer model mimic the scattering response?

    NASA Astrophysics Data System (ADS)

    Pinfield, Valerie J.; Challis, Richard E.

    2011-01-01

    Industrial applications are increasingly turning to modern composite layered materials to satisfy strength requirements whilst reducing component weight. An important group of such materials are fibre/resin composites in which long fibres are laid down in layers in a resin matrix. Whilst delamination flaws, where layers separate from each other, are detectable using traditional ultrasonic techniques, the presence of porosity in any particular layer is harder to detect. The reflected signal from a layered material can already be modelled successfully by using the acoustic impedance of the layers and summing reflections from layer boundaries. However, it is not yet known how to incorporate porosity into such a model. The aim of the work reported here was to model the backscatter from randomly distributed spherical cavities within one layer, and to establish whether an effective medium, with a derived acoustic impedance, could reproduce the characteristics of that scattering. Since effective medium models are much more readily implemented in simulations of multi-layer structures than scattering per se, it was felt desirable to simplify the scattering response into an effective medium representation. A model was constructed in which spherical cavities were placed randomly in a solid continuous matrix and the system backscattering response was calculated. The scattering from the cavities was determined by using the Rayleigh partial-wave method, and taking the received signal at the transducer to be equivalent to the far field limit. It was concluded that even at relatively low porosity levels, the received signal was still "layer-like" and an effective medium model was a good approximation for the scattering behaviour.

  6. Design and performance evaluation of a simplified dynamic model for combined sewer overflows in pumped sewer systems

    NASA Astrophysics Data System (ADS)

    van Daal-Rombouts, Petra; Sun, Siao; Langeveld, Jeroen; Bertrand-Krajewski, Jean-Luc; Clemens, François

    2016-07-01

    Optimisation or real time control (RTC) studies in wastewater systems increasingly require rapid simulations of sewer systems in extensive catchments. To reduce the simulation time calibrated simplified models are applied, with the performance generally based on the goodness of fit of the calibration. In this research the performance of three simplified and a full hydrodynamic (FH) model for two catchments are compared based on the correct determination of CSO event occurrences and of the total discharged volumes to the surface water. Simplified model M1 consists of a rainfall runoff outflow (RRO) model only. M2 combines the RRO model with a static reservoir model for the sewer behaviour. M3 comprises the RRO model and a dynamic reservoir model. The dynamic reservoir characteristics were derived from FH model simulations. It was found that M2 and M3 are able to describe the sewer behaviour of the catchments, contrary to M1. The preferred model structure depends on the quality of the information (geometrical database and monitoring data) available for the design and calibration of the model. Finally, calibrated simplified models are shown to be preferable to uncalibrated FH models when performing optimisation or RTC studies.

  7. Wintertime Air-Sea Gas Transfer Rates and Air Injection Fluxes at Station Papa in the NE Pacific

    NASA Astrophysics Data System (ADS)

    McNeil, C.; Steiner, N.; Vagle, S.

    2008-12-01

    In recent studies of air-sea fluxes of N2 and O2 in hurricanes, McNeil and D'Asaro (2007) used a simplified model formulation of air-sea gas flux to estimate simultaneous values of gas transfer rate, KT, and air injection flux, VT. The model assumes air-sea gas fluxes at high to extreme wind speeds can be explained by a combination of two processes: 1) air injection, by complete dissolution of small bubbles drawn down into the ocean boundary layer by turbulent currents, and 2) near-surface equilibration processes, such as occurs within whitecaps. This analysis technique relies on air-sea gas flux estimates for two gases, N2 and O2, to solve for the two model parameters, KT and VT. We present preliminary results of similar analysis of time series data collected during winter storms at Station Papa in the NE Pacific during 2003/2004. The data show a clear increase in KT and VT with increasing NCEP derived wind speeds and acoustically measured bubble penetration depth.

  8. A microfluidic galvanic cell on a single layer of paper

    NASA Astrophysics Data System (ADS)

    Purohit, Krutarth H.; Emrani, Saina; Rodriguez, Sandra; Liaw, Shi-Shen; Pham, Linda; Galvan, Vicente; Domalaon, Kryls; Gomez, Frank A.; Haan, John L.

    2016-06-01

    Paper microfluidics is used to produce single layer galvanic and hybrid cells to produce energy that could power paper-based analytical sensors. When two aqueous streams are absorbed onto paper to establish co-laminar flow, the streams stay in contact with each other with limited mixing. The interface at which mixing occurs acts as a charge-transfer region, eliminating the need for a salt bridge. We designed a Cusbnd Zn galvanic cell that powers an LED when two are placed in series. We also used more powerful redox couples (formate and silver, formate and permanganate) to produce higher power density (18 and 3.1 mW mg-1 Pd). These power densities are greater than previously reported paper microfluidic fuel cells using formate or methanol. The single layer design is much more simplified than previous reports of multi-layer galvanic cells on paper.

  9. Development of a Global Multilayered Cloud Retrieval System

    NASA Technical Reports Server (NTRS)

    Huang, J.; Minnis, P.; Lin, B.; Yi, Y.; Ayers, J. K.; Khaiyer, M. M.; Arduini, R.; Fan, T.-F

    2004-01-01

    A more rigorous multilayered cloud retrieval system has been developed to improve the determination of high cloud properties in multilayered clouds. The MCRS attempts a more realistic interpretation of the radiance field than earlier methods because it explicitly resolves the radiative transfer that would produce the observed radiances. A two-layer cloud model was used to simulate multilayered cloud radiative characteristics. Despite the use of a simplified two-layer cloud reflectance parameterization, the MCRS clearly produced a more accurate retrieval of ice water path than simple differencing techniques used in the past. More satellite data and ground observation have to be used to test the MCRS. The MCRS methods are quite appropriate for interpreting the radiances when the high cloud has a relatively large optical depth (tau(sub I) greater than 2). For thinner ice clouds, a more accurate retrieval might be possible using infrared methods. Selection of an ice cloud retrieval and a variety of other issues must be explored before a complete global application of this technique can be implemented. Nevertheless, the initial results look promising.

  10. The influence of modifications of a fatigue loading history program on fatigue lifetime

    NASA Technical Reports Server (NTRS)

    Branger, J.

    1972-01-01

    Rectangular specimens of 7075 and 2014 aluminum alloys with two holes (stress concentration factor of 3.24) have been tested under axial fatigue loading on a six-rod test bed with modifications of the loading program, the surface particulars, and the frequency. The length of the precrack stage was investigated by use of a new crack detector. In most cases the two alloys behaved similarly, with similar life to crack start under the same loading. Some overloads lengthened the life. Truncation by omission of the lowest peak loads should be limited to about 20 percent of the ultimate load. Simplifying counting methods gave misleading results. Very thin surface layers of anodizing, protection by vinyl, dry nitrogen atmosphere, as well as stepwise reaming or grinding the surface of the holes, lengthened the life; thick anodized layers shortened the life. Compressing the hole surface by rolling had no influence. Frequencies at about 210 to 240 cpm produced shorter lives than those at 40 cpm. At 5.4 cpm the life was considerably longer. A model to better understand the precrack-stage fatigue mechanism is discussed.

  11. Modeling Transverse Cracking in Laminates With a Single Layer of Elements Per Ply

    NASA Technical Reports Server (NTRS)

    Van Der Meer, Frans P.; Davila, Carlos G.

    2012-01-01

    The objective of the present paper is to investigate the ability of mesolevel X-FEM models with a single layer of elements per ply to capture accurately all aspects of matrix cracking. In particular, we examine whether the model can predict the insitu ply thickness effect on crack initiation and propagation, the crack density as a function of strain, the strain for crack saturation, and the interaction between delamination and transverse cracks. Results reveal that the simplified model does not capture correctly the shear-lag relaxation of the stress field on either side of a crack, which leads to an overprediction of the crack density. It is also shown, however, that after onset of delamination many of the inserted matrix cracks close again, and that the density of open cracks becomes similar to the density predicted by the detailed model. The degree to which the spurious cracks affect the global response is quantified and the reliability of the mesolevel approach with a single layer of elements per ply is discussed.

  12. Short-term dynamics of intertidal microphytobenthic biomass. Mathematical modelling [La dynamique a court terme de la biomasse du microphytobenthos intertidal. Formalisation mathematique

    USGS Publications Warehouse

    Guarini, J.-M.; Gros, P.; Blanchard, G.F.; Bacher, C.

    1999-01-01

    We formulate a deterministic mathematical model to describe the dynamics of the microphytobenthos of intertidal mudflats. It is 'minimal' because it only takes into account the essential processes governing the functioning of the system: the autotrophic production, the active upward and downward migrations of epipelic microalgae, the saturation of the mud surface by a biofilm of diatoms and the global net loss rates of biomass. According to the photic environment of the benthic diatoms inhabiting intertidal mudflats, and to their migration rhythm, the model is composed of two sub-systems of ordinary differential equations; they describe the simultaneous evolution of the biomass 'S' concentrated in the mud surface biofilm - the photic layer - and of the biomass 'F' diluted in the topmost centimetre of the mud - the aphotic layer. Qualitatively, the model solutions agree fairly well with the in situ observed dynamics of the S + F biomass. The study of the mathematical properties of the model, under some simplifying assumptions, shows the convergence of solutions to a stable cyclic equilibrium, whatever the frequencies of the physical synchronizers of the production. The sensitivity analysis reveals the necessity of a better knowledge of the processes of biomass losses, which so far are uncertain, and may further vary in space and time.

  13. Irregular vocal fold dynamics incited by asymmetric fluid loading in a model of recurrent laryngeal nerve paralysis

    NASA Astrophysics Data System (ADS)

    Sommer, David; Erath, Byron D.; Zanartu, Matias; Peterson, Sean D.

    2011-11-01

    Voiced speech is produced by dynamic fluid-structure interactions in the larynx. Traditionally, reduced order models of speech have relied upon simplified inviscid flow solvers to prescribe the fluid loadings that drive vocal fold motion, neglecting viscous flow effects that occur naturally in voiced speech. Viscous phenomena, such as skewing of the intraglottal jet, have the most pronounced effect on voiced speech in cases of vocal fold paralysis where one vocal fold loses some, or all, muscular control. The impact of asymmetric intraglottal flow in pathological speech is captured in a reduced order two-mass model of speech by coupling a boundary-layer estimation of the asymmetric pressures with asymmetric tissue parameters that are representative of recurrent laryngeal nerve paralysis. Nonlinear analysis identifies the emergence of irregular and chaotic vocal fold dynamics at values representative of pathological speech conditions.

  14. Application of the top specified boundary layer (TSBL) approximation to initial characterization of an inland aquifer mineralization: 2. Seepage of saltwater through semi-confining layers

    USGS Publications Warehouse

    Rubin, H.; Buddemeier, R.W.

    1998-01-01

    This paper presents a generalized basic study that addresses practical needs for an understanding of the major mechanisms involved in the mineralization of groundwater in the Great Bend Prairie aquifer in south- central Kansas. This Quaternary alluvial aquifer and associated surface waters are subject to contamination by saltwater, which in some areas seeps from the deeper Permian bedrock formation into the overlying freshwater aquifer through semiconfining layers. A simplified conceptual model is adopted. It incorporates the freshwater aquifer whose bottom is comprised of a semiconfining layer through which a hydrologically minor but geochemically important saline water discharge seeps into the aquifer. A hierarchy of approximate approaches is considered to analyze the mineralization processes taking place in the aquifer. The recently developed top specified boundary layer (TSBL) approach is very convenient to use for the initial characterization of these processes, and is further adapted to characterization of head-driven seepage through semi-confining layers. TSBL calculations indicate that the seeping saline water may create two distinct new zones in the aquifer: (1) a completely saline zone (CSZ) adjacent to the semiconfining bottom of the aquifer, and (2) a transition zone (TZ) which develops between the CSZ and the freshwater zone. Some possible scenarios associated with the various mineralization patterns are analyzed and discussed.

  15. Coupled magneto-electro-mechanical lumped parameter model for a novel vibration-based magneto-electro-elastic energy harvesting systems

    NASA Astrophysics Data System (ADS)

    Shirbani, Meisam Moory; Shishesaz, Mohammad; Hajnayeb, Ali; Sedighi, Hamid Mohammad

    2017-06-01

    The objective of this paper is to present a coupled magneto-electro-mechanical (MEM) lumped parameter model for the response of the proposed magneto-electro-elastic (MEE) energy harvesting systems under base excitation. The proposed model can be used to create self-powering systems, which are not limited to a finite battery energy. As a novel approach, the MEE composites are used instead of the conventional piezoelectric materials in order to enhance the harvested electrical power. The considered structure consists of a MEE layer deposited on a layer of non-MEE material, in the framework of unimorph cantilever bars (longitudinal displacement) and beams (transverse displacement). To use the generated electrical potential, two electrodes are connected to the top and bottom surfaces of the MEE layer. Additionally, a stationary external coil is wrapped around the vibrating structure to induce a voltage in the coil by the magnetic field generated in the MEE layer. In order to simplify the design procedure of the proposed energy harvester and obtain closed form solutions, a lumped parameter model is prepared. As a first step in modeling process, the governing constitutive equations, Gauss's and Faraday's laws, are used to derive the coupled MEM differential equations. The derived equations are then solved analytically to obtain the dynamic behavior and the harvested voltages and powers of the proposed energy harvesting systems. Finally, the influences of the parameters that affect the performance of the MEE energy harvesters such as excitation frequency, external resistive loads and number of coil turns are discussed in detail. The results clearly show the benefit of the coil circuit implementation, whereby significant increases in the total useful harvested power as much as 38% and 36% are obtained for the beam and bar systems, respectively.

  16. Electroneutral models for dynamic Poisson-Nernst-Planck systems

    NASA Astrophysics Data System (ADS)

    Song, Zilong; Cao, Xiulei; Huang, Huaxiong

    2018-01-01

    The Poisson-Nernst-Planck (PNP) system is a standard model for describing ion transport. In many applications, e.g., ions in biological tissues, the presence of thin boundary layers poses both modeling and computational challenges. In this paper, we derive simplified electroneutral (EN) models where the thin boundary layers are replaced by effective boundary conditions. There are two major advantages of EN models. First, it is much cheaper to solve them numerically. Second, EN models are easier to deal with compared to the original PNP system; therefore, it would also be easier to derive macroscopic models for cellular structures using EN models. Even though the approach used here is applicable to higher-dimensional cases, this paper mainly focuses on the one-dimensional system, including the general multi-ion case. Using systematic asymptotic analysis, we derive a variety of effective boundary conditions directly applicable to the EN system for the bulk region. This EN system can be solved directly and efficiently without computing the solution in the boundary layer. The derivation is based on matched asymptotics, and the key idea is to bring back higher-order contributions into the effective boundary conditions. For Dirichlet boundary conditions, the higher-order terms can be neglected and the classical results (continuity of electrochemical potential) are recovered. For flux boundary conditions, higher-order terms account for the accumulation of ions in boundary layer and neglecting them leads to physically incorrect solutions. To validate the EN model, numerical computations are carried out for several examples. Our results show that solving the EN model is much more efficient than the original PNP system. Implemented with the Hodgkin-Huxley model, the computational time for solving the EN model is significantly reduced without sacrificing the accuracy of the solution due to the fact that it allows for relatively large mesh and time-step sizes.

  17. Estimating reservoir permeability from gravity current modeling of CO2 flow at Sleipner storage project, North Sea

    NASA Astrophysics Data System (ADS)

    Cowton, L. R.; Neufeld, J. A.; Bickle, M.; White, N.; White, J.; Chadwick, A.

    2017-12-01

    Vertically-integrated gravity current models enable computationally efficient simulations of CO2 flow in sub-surface reservoirs. These simulations can be used to investigate the properties of reservoirs by minimizing differences between observed and modeled CO2 distributions. At the Sleipner project, about 1 Mt yr-1 of supercritical CO2 is injected at a depth of 1 km into a pristine saline aquifer with a thick shale caprock. Analysis of time-lapse seismic reflection surveys shows that CO2 is distributed within 9 discrete layers. The trapping mechanism comprises a stacked series of 1 m thick, impermeable shale horizons that are spaced at 30 m intervals through the reservoir. Within the stratigraphically highest reservoir layer, Layer 9, a submarine channel deposit has been mapped on the pre-injection seismic survey. Detailed measurements of the three-dimensional CO2 distribution within Layer 9 have been made using seven time-lapse surveys, providing a useful benchmark against which numerical flow simulations can be tested. Previous simulations have, in general, been largely unsuccessful in matching the migration rate of CO2 in this layer. Here, CO2 flow within Layer 9 is modeled as a vertically-integrated gravity current that spreads beneath a structurally complex caprock using a two-dimensional grid, considerably increasing computational efficiency compared to conventional three-dimensional simulators. This flow model is inverted to find the optimal reservoir permeability in Layer 9 by minimizing the difference between observed and predicted distributions of CO2 as a function of space and time. A three parameter inverse model, comprising reservoir permeability, channel permeability and channel width, is investigated by grid search. The best-fitting reservoir permeability is 3 Darcys, which is consistent with measurements made on core material from the reservoir. Best-fitting channel permeability is 26 Darcys. Finally, the ability of this simplified numerical model to forecast CO2 flow within Layer 9 is tested. Permeability recovered by modeling a suite of early seismic surveys is used to predict the CO2 distribution for a suite of later seismic surveys with a considerable degree of success. Forecasts have also been carried out that can be tested using future seismic surveys.

  18. Enhanced H-filter based on Fåhræus-Lindqvist effect for efficient and robust dialysis without membrane

    PubMed Central

    Zheng, Wei-Chao; Xie, Rui; He, Li-Qun; Xi, Yue-Heng; Liu, Ying-Mei; Meng, Zhi-Jun; Wang, Wei; Ju, Xiao-Jie; Chen, Gang; Chu, Liang-Yin

    2015-01-01

    A novel microfluidic device for highly efficient and robust dialysis without membrane is highly desired for the development of portable or wearable microdialyzer. Here we report an enhanced H-filter with pillar array based on Fåhræus-Lindqvist effect (F-L effect) for highly efficient and robust membraneless dialysis of simplified blood for the first time. The H-filter employs two fluids laminarly flowing in the microchannel for continuously membraneless dialysis. With pillar array in the microchannel, the two laminar flows, with one containing blood cells and small molecules and another containing dialyzate solution, can form a cell-free layer at the interface as selective zones for separation. This provides enhanced mixing yet extremely low shear for extraction of small molecules from the blood-cell-containing flow into the dialyzate flow, resulting in robust separation with reduced cell loss and improved efficiency. We demonstrate this by first using Chlorella pyrenoidosa as model cells to quantitatively study the separation performances, and then using simplified human blood for dialysis. The advanced H-filter, with highly efficient and robust performance for membraneless dialysis, shows great potential as promising candidate for rapid blood analysis/separation, and as fundamental structure for portable dialyzer. PMID:26339313

  19. Enhanced H-filter based on Fåhræus-Lindqvist effect for efficient and robust dialysis without membrane.

    PubMed

    Zheng, Wei-Chao; Xie, Rui; He, Li-Qun; Xi, Yue-Heng; Liu, Ying-Mei; Meng, Zhi-Jun; Wang, Wei; Ju, Xiao-Jie; Chen, Gang; Chu, Liang-Yin

    2015-07-01

    A novel microfluidic device for highly efficient and robust dialysis without membrane is highly desired for the development of portable or wearable microdialyzer. Here we report an enhanced H-filter with pillar array based on Fåhræus-Lindqvist effect (F-L effect) for highly efficient and robust membraneless dialysis of simplified blood for the first time. The H-filter employs two fluids laminarly flowing in the microchannel for continuously membraneless dialysis. With pillar array in the microchannel, the two laminar flows, with one containing blood cells and small molecules and another containing dialyzate solution, can form a cell-free layer at the interface as selective zones for separation. This provides enhanced mixing yet extremely low shear for extraction of small molecules from the blood-cell-containing flow into the dialyzate flow, resulting in robust separation with reduced cell loss and improved efficiency. We demonstrate this by first using Chlorella pyrenoidosa as model cells to quantitatively study the separation performances, and then using simplified human blood for dialysis. The advanced H-filter, with highly efficient and robust performance for membraneless dialysis, shows great potential as promising candidate for rapid blood analysis/separation, and as fundamental structure for portable dialyzer.

  20. The influence of a wind tunnel on helicopter rotational noise: Formulation of analysis

    NASA Technical Reports Server (NTRS)

    Mosher, M.

    1984-01-01

    An analytical model is discussed that can be used to examine the effects of wind tunnel walls on helicopter rotational noise. A complete physical model of an acoustic source in a wind tunnel is described and a simplified version is then developed. This simplified model retains the important physical processes involved, yet it is more amenable to analysis. The simplified physical model is then modeled as a mathematical problem. An inhomogeneous partial differential equation with mixed boundary conditions is set up and then transformed into an integral equation. Details of generating a suitable Green's function and integral equation are included and the equation is discussed and also given for a two-dimensional case.

  1. Active control of panel vibrations induced by a boundary layer flow

    NASA Technical Reports Server (NTRS)

    Chow, Pao-Liu

    1995-01-01

    The problems of active and passive control of sound and vibration has been investigated by many researchers for a number of years. However, few of the articles are concerned with the sound and vibration with flow-structure interaction. Experimental and numerical studies on the coupling between panel vibration and acoustic radiation due to flow excitation have been done by Maestrello and his associates at NASA/Langley Research Center. Since the coupled system of nonlinear partial differential equations is formidable, an analytical solution to the full problem seems impossible. For this reason, we have to simplify the problem to that of the nonlinear panel vibration induced by a uniform flow or a boundary-layer flow with a given wall pressure distribution. Based on this simplified model, we have been able to consider the control and stabilization of the nonlinear panel vibration, which have not been treated satisfactorily by other authors. Although the sound radiation has not been included, the vibration suppression will clearly reduce the sound radiation power from the panel. The major research findings are presented in three sections. In section two we describe results on the boundary control of nonlinear panel vibration, with or without flow excitation. Sections three and four are concerned with some analytical and numerical results in the optimal control of the linear and nonlinear panel vibrations, respectively, excited by the flow pressure fluctuations. Finally, in section five, we draw some conclusions from research findings.

  2. A comparison of observed (HALOE) and modeled (CCM2) methane and stratospheric water vapor

    NASA Technical Reports Server (NTRS)

    Mote, Philip W.; Holton, James R.; Russell, James M., III; Boville, Byron A.

    1993-01-01

    Recent measurements (21 September-15 October 1992) of methane and water vapor by the Halogen Occultation Experiment (HALOE) on the Upper Atmosphere Research Satellite (UARS) are compared with model results for the same season from a troposphere-middle atmosphere version of the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM2). Several important features of the two constituent fields are well reproduced by the CCM2, despite the use of simplified methane photochemistry in the CCM2 and some notable differences between the model's zonal mean circulation and climatology. Observed features simulated by the model include the following: 1) subsidence over a deep layer in the Southern Hemisphere polar vortex; 2) widespread dehydration in the polar vortex; and 3) existence of a region of low water vapor mixing ratios extending from the Antarctic into the Northern Hemisphere tropics, which suggests that Antarctic dehydration contributes to midlatitude and tropical dryness in the stratosphere.

  3. Adhesive sealing of dentin surfaces in vitro: A review

    PubMed Central

    Abu-Nawareg, Manar M; Zidan, Ahmed Z; Zhou, Jianfeng; Agee, Kelli; Chiba, Ayaka; Tagami, Jungi; Pashley, David H

    2016-01-01

    Purpose The purpose of this review is to describe the evolution of the use of dental adhesives to form a tight seal of freshly prepared dentin to protect the pulp from bacterial products, during the time between crown preparation and final cementum of full crowns. The evolution of these “immediate dentin sealants” follows the evolution of dental adhesives, in general. That is, they began with multiple-step, etch-and-rinse adhesives, and then switched to the use of simplified adhesives. Methods Literature was reviewed for evidence that bacteria or bacterial products diffusing across dentin can irritate pulpal tissues before and after smear layer removal. Smear layers can be solubilized by plaque organisms within 7–10 days if they are directly exposed to oral fluids. It is likely that smear layers covered by temporary restorations may last more than one month. As long as smear layers remain in place, they can partially seal dentin. Thus, many in vitro studies evaluating the sealing ability of adhesive resins use smear layer-covered dentin as a reference condition. Surprisingly, many adhesives do not seal dentin as well as do smear layers. Results Both in vitro and in vivo studies show that resin-covered dentin allows dentinal fluid to cross polymerized resins. The use of simplified single bottle adhesives to seal dentin was a step backwards. Currently, most authorities use either 3-step adhesives such as Scotchbond Multi-Purposea or OptiBond FLb or two-step self-etching primer adhesives, such as Clearfil SEc, Unifil Bondd or AdheSEe, respectfully. PMID:26846037

  4. Investigating the Use of a Simplified Aerosol Parameterization in Space-Based XCO2 Retrievals from OCO-2

    NASA Astrophysics Data System (ADS)

    Nelson, R. R.; O'Dell, C.

    2017-12-01

    The primary goal of OCO-2 is to use hyperspectral measurements of reflected near-infrared sunlight to retrieve the column-averaged dry-air mole fraction of carbon dioxide (XCO2) with high accuracy. This is only possible for measurements of scenes nearly free of optically thick clouds and aerosols. As some cloud or aerosol contamination will always be present, the OCO-2 retrieval algorithm includes clouds and aerosols as retrieved properties in its state vector. Information content analyses demonstrate that there are only 2-6 pieces of information about aerosols in the OCO-2 radiances. However, the upcoming OCO-2 algorithm (B8) attempts to retrieve 9 aerosol parameters; this over-fitting can hinder convergence and produce multiple solutions. In this work, we develop a simplified cloud and aerosol parameterization that intelligently reduces the number of retrieved parameters to 5 by only retrieving information about two aerosol layers: a lower tropospheric layer and an upper tropospheric / stratospheric layer. We retrieve the optical depth of each layer and the height of the lower tropospheric layer. Each of these layers contains a mixture of fine and coarse mode aerosol. In comparisons between OCO-2 XCO2 estimates and validation sources including TCCON, this scheme performs about as well as the more complicated OCO-2 retrieval algorithm, but has the potential benefits of more interpretable aerosol results, faster convergence, less nonlinearity, and greater throughput. We also investigate the dependence of our results on the optical properties of the fine and coarse mode aerosol types, such as their effective radii and the environmental relative humidity.

  5. Application of a simplified calculation for full-wave microtremor H/ V spectral ratio based on the diffuse field approximation to identify underground velocity structures

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Masaki, Kazuaki; Irikura, Kojiro; Sánchez-Sesma, Francisco José

    2017-12-01

    Under the diffuse field approximation, the full-wave (FW) microtremor H/ V spectral ratio ( H/ V) is modeled as the square root of the ratio of the sum of imaginary parts of the Green's function of the horizontal components to that of the vertical one. For a given layered medium, the FW H/ V can be well approximated with only surface waves (SW) H/ V of the "cap-layered" medium which consists of the given layered medium and a new larger velocity half-space (cap layer) at large depth. Because the contribution of surface waves can be simply obtained by the residue theorem, the computation of SW H/ V of cap-layered medium is faster than that of FW H/ V evaluated by discrete wavenumber method and contour integration method. The simplified computation of SW H/ V was then applied to identify the underground velocity structures at six KiK-net strong-motion stations. The inverted underground velocity structures were used to evaluate FW H/ Vs which were consistent with the SW H/ Vs of corresponding cap-layered media. The previous study on surface waves H/ Vs proposed with the distributed surface sources assumption and a fixed Rayleigh-to-Love waves amplitude ratio for horizontal motions showed a good agreement with the SW H/ Vs of our study. The consistency between observed and theoretical spectral ratios, such as the earthquake motions of H/ V spectral ratio and spectral ratio of horizontal motions between surface and bottom of borehole, indicated that the underground velocity structures identified from SW H/ V of cap-layered medium were well resolved by the new method.[Figure not available: see fulltext.

  6. Fault Diagnostics for Turbo-Shaft Engine Sensors Based on a Simplified On-Board Model

    PubMed Central

    Lu, Feng; Huang, Jinquan; Xing, Yaodong

    2012-01-01

    Combining a simplified on-board turbo-shaft model with sensor fault diagnostic logic, a model-based sensor fault diagnosis method is proposed. The existing fault diagnosis method for turbo-shaft engine key sensors is mainly based on a double redundancies technique, and this can't be satisfied in some occasions as lack of judgment. The simplified on-board model provides the analytical third channel against which the dual channel measurements are compared, while the hardware redundancy will increase the structure complexity and weight. The simplified turbo-shaft model contains the gas generator model and the power turbine model with loads, this is built up via dynamic parameters method. Sensor fault detection, diagnosis (FDD) logic is designed, and two types of sensor failures, such as the step faults and the drift faults, are simulated. When the discrepancy among the triplex channels exceeds a tolerance level, the fault diagnosis logic determines the cause of the difference. Through this approach, the sensor fault diagnosis system achieves the objectives of anomaly detection, sensor fault diagnosis and redundancy recovery. Finally, experiments on this method are carried out on a turbo-shaft engine, and two types of faults under different channel combinations are presented. The experimental results show that the proposed method for sensor fault diagnostics is efficient. PMID:23112645

  7. Fault diagnostics for turbo-shaft engine sensors based on a simplified on-board model.

    PubMed

    Lu, Feng; Huang, Jinquan; Xing, Yaodong

    2012-01-01

    Combining a simplified on-board turbo-shaft model with sensor fault diagnostic logic, a model-based sensor fault diagnosis method is proposed. The existing fault diagnosis method for turbo-shaft engine key sensors is mainly based on a double redundancies technique, and this can't be satisfied in some occasions as lack of judgment. The simplified on-board model provides the analytical third channel against which the dual channel measurements are compared, while the hardware redundancy will increase the structure complexity and weight. The simplified turbo-shaft model contains the gas generator model and the power turbine model with loads, this is built up via dynamic parameters method. Sensor fault detection, diagnosis (FDD) logic is designed, and two types of sensor failures, such as the step faults and the drift faults, are simulated. When the discrepancy among the triplex channels exceeds a tolerance level, the fault diagnosis logic determines the cause of the difference. Through this approach, the sensor fault diagnosis system achieves the objectives of anomaly detection, sensor fault diagnosis and redundancy recovery. Finally, experiments on this method are carried out on a turbo-shaft engine, and two types of faults under different channel combinations are presented. The experimental results show that the proposed method for sensor fault diagnostics is efficient.

  8. Exact Solutions for Wind-Driven Coastal Upwelling and Downwelling over Sloping Topography

    NASA Astrophysics Data System (ADS)

    Choboter, P.; Duke, D.; Horton, J.; Sinz, P.

    2009-12-01

    The dynamics of wind-driven coastal upwelling and downwelling are studied using a simplified dynamical model. Exact solutions are examined as a function of time and over a family of sloping topographies. Assumptions in the two-dimensional model include a frictionless ocean interior below the surface Ekman layer, and no alongshore dependence of the variables; however, dependence in the cross-shore and vertical directions is retained. Additionally, density and alongshore momentum are advected by the cross-shore velocity in order to maintain thermal wind. The time-dependent initial-value problem is solved with constant initial stratification and no initial alongshore flow. An alongshore pressure gradient is added to allow the cross-shore flow to be geostrophically balanced far from shore. Previously, this model has been used to study upwelling over flat-bottom and sloping topographies, but the novel feature in this work is the discovery of exact solutions for downwelling. These exact solutions are compared to numerical solutions from a primitive-equation ocean model, based on the Princeton Ocean Model, configured in a similar two-dimensional geometry. Many typical features of the evolution of density and velocity during downwelling are displayed by the analytical model.

  9. On the importance of geological data for hydraulic tomography analysis: Laboratory sandbox study

    NASA Astrophysics Data System (ADS)

    Zhao, Zhanfeng; Illman, Walter A.; Berg, Steven J.

    2016-11-01

    This paper investigates the importance of geological data in Hydraulic Tomography (HT) through sandbox experiments. In particular, four groundwater models with homogeneous geological units constructed with borehole data of varying accuracy are jointly calibrated with multiple pumping test data of two different pumping and observation densities. The results are compared to those from a geostatistical inverse model. Model calibration and validation performances are quantitatively assessed using drawdown scatterplots. We find that accurate and inaccurate geological models can be well calibrated, despite the estimated K values for the poor geological models being quite different from the actual values. Model validation results reveal that inaccurate geological models yield poor drawdown predictions, but using more calibration data improves its predictive capability. Moreover, model comparisons among a highly parameterized geostatistical and layer-based geological models show that, (1) as the number of pumping tests and monitoring locations are reduced, the performance gap between the approaches decreases, and (2) a simplified geological model with a fewer number of layers is more reliable than the one based on the wrong description of stratigraphy. Finally, using a geological model as prior information in geostatistical inverse models results in the preservation of geological features, especially in areas where drawdown data are not available. Overall, our sandbox results emphasize the importance of incorporating geological data in HT surveys when data from pumping tests is sparse. These findings have important implications for field applications of HT where well distances are large.

  10. A Comparison of Simplified Two-dimensional Flow Models Exemplified by Water Flow in a Cavern

    NASA Astrophysics Data System (ADS)

    Prybytak, Dzmitry; Zima, Piotr

    2017-12-01

    The paper shows the results of a comparison of simplified models describing a two-dimensional water flow in the example of a water flow through a straight channel sector with a cavern. The following models were tested: the two-dimensional potential flow model, the Stokes model and the Navier-Stokes model. In order to solve the first two, the boundary element method was employed, whereas to solve the Navier-Stokes equations, the open-source code library OpenFOAM was applied. The results of numerical solutions were compared with the results of measurements carried out on a test stand in a hydraulic laboratory. The measurements were taken with an ADV probe (Acoustic Doppler Velocimeter). Finally, differences between the results obtained from the mathematical models and the results of laboratory measurements were analysed.

  11. Quasi-periodic Fibonacci and periodic one-dimensional hypersonic phononic crystals of porous silicon: Experiment and simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aliev, Gazi N., E-mail: g.aliev@bath.ac.uk; Goller, Bernhard

    2014-09-07

    A one-dimensional Fibonacci phononic crystal and a distributed Bragg reflector were constructed from porous silicon. The structures had the same number of layers and similar acoustic impedance mismatch, and were electrochemically etched in highly boron doped silicon wafers. The thickness of the individual layers in the stacks was approximately 2 μm. Both types of hypersonic band gap structure were studied by direct measurement of the transmittance of longitudinal acoustic waves in the 0.1–2.6 GHz range. Acoustic band gaps deeper than 50 dB were detected in both structures. The experimental results were compared with model calculations employing the transfer matrix method. The acoustic propertiesmore » of periodic and quasi-periodic structures in which half-wave retarding bi-layers do not consist of two quarter-wave retarding layers are discussed. The strong correlation between width and depth of gaps in the transmission spectra is demonstrated. The dominant mechanisms of acoustic losses in porous multilayer structures are discussed. The elastic constants remain proportional over our range of porosity, and hence, the Grüneisen parameter is constant. This simplifies the expression for the porosity dependence of the Akhiezer damping.« less

  12. Si-Doping Effects in Cu(In,Ga)Se2 Thin Films and Applications for Simplified Structure High-Efficiency Solar Cells.

    PubMed

    Ishizuka, Shogo; Koida, Takashi; Taguchi, Noboru; Tanaka, Shingo; Fons, Paul; Shibata, Hajime

    2017-09-13

    We found that elemental Si-doped Cu(In,Ga)Se 2 (CIGS) polycrystalline thin films exhibit a distinctive morphology due to the formation of grain boundary layers several tens of nanometers thick. The use of Si-doped CIGS films as the photoabsorber layer in simplified structure buffer-free solar cell devices is found to be effective in enhancing energy conversion efficiency. The grain boundary layers formed in Si-doped CIGS films are expected to play an important role in passivating CIGS grain interfaces and improving carrier transport. The simplified structure solar cells, which nominally consist of only a CIGS photoabsorber layer and a front transparent and a back metal electrode layer, demonstrate practical application level solar cell efficiencies exceeding 15%. To date, the cell efficiencies demonstrated from this type of device have remained relatively low, with values of about 10%. Also, Si-doped CIGS solar cell devices exhibit similar properties to those of CIGS devices fabricated with post deposition alkali halide treatments such as KF or RbF, techniques known to boost CIGS device performance. The results obtained offer a new approach based on a new concept to control grain boundaries in polycrystalline CIGS and other polycrystalline chalcogenide materials for better device performance.

  13. Insights into the structure of covalently bound fatty acid monolayers on a simplified model of the hair epicuticle from molecular dynamics simulations.

    PubMed

    Cheong, Daniel W; Lim, Freda C H; Zhang, Liping

    2012-09-11

    The epicuticle is the outermost layer of the human hair, and consists of a monolayer of fatty acids that is predominantly 18-methyleicosanoic acid (18-MEA) covalently bound to a protein matrix. Surprisingly, despite the clear scientific and industrial importance, the detailed molecular structure of this fatty acid layer is still poorly understood. In this work, we aim to gain insight into the structure of this so-called F-layer by performing molecular dynamics simulations on a simplified hair surface model consisting of a monolayer of 18-MEA covalently attached to graphene sheets at various separation distances. The relative free energy of the fatty acid layer was calculated as a function of separation distance in order to obtain the optimal packing density of the fatty acids. Conformational properties such as the thickness, tilt angle, and order parameter of the fatty acid layers were also calculated to characterize the structure of the F-layer. Simulations of the structurally similar eicosanoic acid (EA) were also performed as a comparison and to investigate the role of the anteiso-methyl side chain at the 18th position of 18-MEA. The degree of water penetration into the fatty acid layer at the various separation distances was also investigated. Our simulations suggest that the optimal spacing for the fatty acids is between 0.492 and 0.651 nm, in contrast to the generally accepted literature value of around 0.9-1.0 nm. This results in a packing density of between 0.21 and 0.37 nm(2) per fatty acid molecule and a thickness of around 2.01-2.64 nm. We also show that, at larger separation distances, the 18-MEA fatty acid provides a slightly better hydrophobic layer than the EA fatty acid, suggesting that the 18-MEA fatty acid may have been naturally selected to provide better protection for the hair when it loses some of the fatty acids due to daily wear and tear. To our knowledge, this is the first attempt to systematically investigate the hair surface structure and properties with molecular simulations.

  14. Modelling of Heat and Moisture Loss Through NBC Ensembles

    DTIC Science & Technology

    1991-11-01

    the heat and moisture transport through various NBC clothing ensembles. The analysis involves simplifying the three dimensional physical problem of... clothing on a person to that of a one dimensional problem of flow through parallel layers of clothing and air. Body temperatures are calculated based on...prescribed work rates, ambient conditions and clothing properties. Sweat response and respiration rates are estimated based on empirical data to

  15. Two tradeoffs between economy and reliability in loss of load probability constrained unit commitment

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Wang, Mingqiang; Ning, Xingyao

    2018-02-01

    Spinning reserve (SR) should be scheduled considering the balance between economy and reliability. To address the computational intractability cursed by the computation of loss of load probability (LOLP), many probabilistic methods use simplified formulations of LOLP to improve the computational efficiency. Two tradeoffs embedded in the SR optimization model are not explicitly analyzed in these methods. In this paper, two tradeoffs including primary tradeoff and secondary tradeoff between economy and reliability in the maximum LOLP constrained unit commitment (UC) model are explored and analyzed in a small system and in IEEE-RTS System. The analysis on the two tradeoffs can help in establishing new efficient simplified LOLP formulations and new SR optimization models.

  16. Development of a head-phantom and measurement setup for lightning effects.

    PubMed

    Machts, Rene; Hunold, Alexander; Leu, Carsten; Haueisen, Jens; Rock, Michael

    2016-08-01

    Direct lightning strikes to human heads lead to various effects ranging from Lichtenberg figures, over loss of consciousness to death. The evolution of the induced current distribution in the head is of great interest to understand the effect mechanisms. This work describes a technique to model a simplified head-phantom to investigate effects during direct lightning strike. The head-phantom geometry, conductive and dielectric parameters were chosen similar to that of a human head. Three layers (brain, skull, and scalp) were created for the phantom using agarose hydrogel doped with sodium chloride and carbon. The head-phantom was tested on two different impulse generators, which reproduce approximate lightning impulses. The effective current and the current distribution in each layer were analyzed. The biggest part of the current flowed through the brain layer, approx. 70 % in cases without external flashover. Approx. 23 % of the current flowed through skull layer and 6 % through the scalp layer. However, the current decreased within the head-phantom to almost zero after a complete flashover on the phantom occurred. The flashover formed faster with a higher impulse current level. Exposition time of current through the head decreases with a higher current level of the lightning impulse. This mechanism might explain the fact that people can survive a lightning strike. The experiments help to understand lightning effects on humans.

  17. A Composite Medium Approximation for Moisture Tension-Dependent Anisotropy in Unsaturated Layered Sediments

    NASA Astrophysics Data System (ADS)

    Pruess, K.

    2001-12-01

    Sedimentary formations often have a layered structure in which hydrogeologic properties have substantially larger correlation length in the bedding plane than perpendicular to it. Laboratory and field experiments and observations have shown that even small-scale layering, down to millimeter-size laminations, can substantially alter and impede the downward migration of infiltrating liquids, while enhancing lateral flow. The fundamental mechanism is that of a capillary barrier: at increasingly negative moisture tension (capillary suction pressure), coarse-grained layers with large pores desaturate more quickly than finer-grained media. This strongly reduces the hydraulic conductivity of the coarser (higher saturated hydraulic conductivity) layers, which then act as barriers to downward flow, forcing water to accumulate and spread near the bottom of the overlying finer-grained material. We present a "composite medium approximation" (COMA) for anisotropic flow behavior on a typical grid block scale (0.1 - 1 m or larger) in finite-difference models. On this scale the medium is conceptualized as consisting of homogeneous horizontal layers with uniform thickness, and capillary equilibrium is assumed to prevail locally. Directionally-dependent relative permeabilities are obtained by considering horizontal flow to proceed via "conductors in parallel," while vertical flow involves "resistors in series." The model is formulated for the general case of N layers, and implementation of a simplified two-layer (fine-coarse) approximation in the multiphase flow simulator TOUGH2 is described. The accuracy of COMA is evaluated by comparing numerical simulations of plume migration in 1-D and 2-D unsaturated flow with results of fine-grid simulations in which all layers are discretized explicitly. Applications to water seepage and solute transport at the Hanford site are also described. This work was supported by the U.S. Department of Energy under Contract No. DE-AC03-76SF00098 through Memorandum Purchase Order 248861-A-B2 between Pacific Northwest National Laboratory and Lawrence Berkeley National Laboratory.

  18. A multiple-time-scale turbulence model based on variable partitioning of turbulent kinetic energy spectrum

    NASA Technical Reports Server (NTRS)

    Kim, S.-W.; Chen, C.-P.

    1987-01-01

    A multiple-time-scale turbulence model of a single point closure and a simplified split-spectrum method is presented. In the model, the effect of the ratio of the production rate to the dissipation rate on eddy viscosity is modeled by use of the multiple-time-scales and a variable partitioning of the turbulent kinetic energy spectrum. The concept of a variable partitioning of the turbulent kinetic energy spectrum and the rest of the model details are based on the previously reported algebraic stress turbulence model. Example problems considered include: a fully developed channel flow, a plane jet exhausting into a moving stream, a wall jet flow, and a weakly coupled wake-boundary layer interaction flow. The computational results compared favorably with those obtained by using the algebraic stress turbulence model as well as experimental data. The present turbulence model, as well as the algebraic stress turbulence model, yielded significantly improved computational results for the complex turbulent boundary layer flows, such as the wall jet flow and the wake boundary layer interaction flow, compared with available computational results obtained by using the standard kappa-epsilon turbulence model.

  19. A multiple-time-scale turbulence model based on variable partitioning of the turbulent kinetic energy spectrum

    NASA Technical Reports Server (NTRS)

    Kim, S.-W.; Chen, C.-P.

    1989-01-01

    A multiple-time-scale turbulence model of a single point closure and a simplified split-spectrum method is presented. In the model, the effect of the ratio of the production rate to the dissipation rate on eddy viscosity is modeled by use of the multiple-time-scales and a variable partitioning of the turbulent kinetic energy spectrum. The concept of a variable partitioning of the turbulent kinetic energy spectrum and the rest of the model details are based on the previously reported algebraic stress turbulence model. Example problems considered include: a fully developed channel flow, a plane jet exhausting into a moving stream, a wall jet flow, and a weakly coupled wake-boundary layer interaction flow. The computational results compared favorably with those obtained by using the algebraic stress turbulence model as well as experimental data. The present turbulence model, as well as the algebraic stress turbulence model, yielded significantly improved computational results for the complex turbulent boundary layer flows, such as the wall jet flow and the wake boundary layer interaction flow, compared with available computational results obtained by using the standard kappa-epsilon turbulence model.

  20. Mechanics of Unidirectional Fiber-Reinforced Composites: Buckling Modes and Failure Under Compression Along Fibers

    NASA Astrophysics Data System (ADS)

    Paimushin, V. N.; Kholmogorov, S. A.; Gazizullin, R. K.

    2018-01-01

    One-dimensional linearized problems on the possible buckling modes of an internal or peripheral layer of unidirectional multilayer composites with rectilinear fibers under compression in the fiber direction are considered. The investigations are carried out using the known Kirchhoff-Love and Timoshenko models for the layers. The binder, modeled as an elastic foundation, is described by the equations of elasticity theory, which are simplified in accordance to the model of a transversely soft layer and are integrated along the transverse coordinate considering the kinematic coupling relations for a layer and foundation layers. Exact analytical solutions of the problems formulated are found, which are used to calculate a composite made of an HSE 180 REM prepreg based on a unidirectional carbon fiber tape. The possible buckling modes of its internal and peripheral layers are identified. Calculation results are compared with experimental data obtained earlier. It is concluded that, for the composite studied, the flexural buckling of layers in the uniform axial compression of specimens along fibers is impossible — the failure mechanism is delamination with buckling of a fiber bundle according to the pure shear mode. It is realized (due to the low average transverse shear modulus) at the value of the ultimate compression stress equal to the average shear modulus. It is shown that such a shear buckling mode can be identified only on the basis of equations constructed using the Timoshenko shear model to describe the deformation process of layers.

  1. Sharply curved turn around duct flow predictions using spectral partitioning of the turbulent kinetic energy and a pressure modified wall law

    NASA Technical Reports Server (NTRS)

    Santi, L. Michael

    1986-01-01

    Computational predictions of turbulent flow in sharply curved 180 degree turn around ducts are presented. The CNS2D computer code is used to solve the equations of motion for two-dimensional incompressible flows transformed to a nonorthogonal body-fitted coordinate system. This procedure incorporates the pressure velocity correction algorithm SIMPLE-C to iteratively solve a discretized form of the transformed equations. A multiple scale turbulence model based on simplified spectral partitioning is employed to obtain closure. Flow field predictions utilizing the multiple scale model are compared to features predicted by the traditional single scale k-epsilon model. Tuning parameter sensitivities of the multiple scale model applied to turn around duct flows are also determined. In addition, a wall function approach based on a wall law suitable for incompressible turbulent boundary layers under strong adverse pressure gradients is tested. Turn around duct flow characteristics utilizing this modified wall law are presented and compared to results based on a standard wall treatment.

  2. Multi-domain boundary element method for axi-symmetric layered linear acoustic systems

    NASA Astrophysics Data System (ADS)

    Reiter, Paul; Ziegelwanger, Harald

    2017-12-01

    Homogeneous porous materials like rock wool or synthetic foam are the main tool for acoustic absorption. The conventional absorbing structure for sound-proofing consists of one or multiple absorbers placed in front of a rigid wall, with or without air-gaps in between. Various models exist to describe these so called multi-layered acoustic systems mathematically for incoming plane waves. However, there is no efficient method to calculate the sound field in a half space above a multi layered acoustic system for an incoming spherical wave. In this work, an axi-symmetric multi-domain boundary element method (BEM) for absorbing multi layered acoustic systems and incoming spherical waves is introduced. In the proposed BEM formulation, a complex wave number is used to model absorbing materials as a fluid and a coordinate transformation is introduced which simplifies singular integrals of the conventional BEM to non-singular radial and angular integrals. The radial and angular part are integrated analytically and numerically, respectively. The output of the method can be interpreted as a numerical half space Green's function for grounds consisting of layered materials.

  3. Examination of simplified travel demand model. [Internal volume forecasting model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, R.L. Jr.; McFarlane, W.J.

    1978-01-01

    A simplified travel demand model, the Internal Volume Forecasting (IVF) model, proposed by Low in 1972 is evaluated as an alternative to the conventional urban travel demand modeling process. The calibration of the IVF model for a county-level study area in Central Wisconsin results in what appears to be a reasonable model; however, analysis of the structure of the model reveals two primary mis-specifications. Correction of the mis-specifications leads to a simplified gravity model version of the conventional urban travel demand models. Application of the original IVF model to ''forecast'' 1960 traffic volumes based on the model calibrated for 1970more » produces accurate estimates. Shortcut and ad hoc models may appear to provide reasonable results in both the base and horizon years; however, as shown by the IVF mode, such models will not always provide a reliable basis for transportation planning and investment decisions.« less

  4. Numerical analysis of drilling hole work-hardening effects in hole-drilling residual stress measurement

    NASA Astrophysics Data System (ADS)

    Li, H.; Liu, Y. H.

    2008-11-01

    The hole-drilling strain gage method is an effective semi-destructive technique for determining residual stresses in the component. As a mechanical technique, a work-hardening layer will be formed on the surface of the hole after drilling, and affect the strain relaxation. By increasing Young's modulus of the material near the hole, the work-hardening layer is simplified as a heterogeneous annulus. As an example, two finite rectangular plates submitted to different initial stresses are treated, and the relieved strains are measured by finite element simulation. The accuracy of the measurement is estimated by comparing the simulated residual stresses with the given initial ones. The results are shown for various hardness of work-hardening layer. The influence of the relative position of the gages compared with the thickness of the work-hardening layer, and the effect of the ratio of hole diameter to work-hardening layer thickness are analyzed as well.

  5. Energy Performance and Optimal Control of Air-conditioned Buildings Integrated with Phase Change Materials

    NASA Astrophysics Data System (ADS)

    Zhu, Na

    This thesis presents an overview of the previous research work on dynamic characteristics and energy performance of buildings due to the integration of PCMs. The research work on dynamic characteristics and energy performance of buildings using PCMs both with and without air-conditioning is reviewed. Since the particular interest in using PCMs for free cooling and peak load shifting, specific research efforts on both subjects are reviewed separately. A simplified physical dynamic model of building structures integrated with SSPCM (shaped-stabilized phase change material) is developed and validated in this study. The simplified physical model represents the wall by 3 resistances and 2 capacitances and the PCM layer by 4 resistances and 2 capacitances respectively while the key issue is the parameter identification of the model. This thesis also presents the studies on the thermodynamic characteristics of buildings enhanced by PCM and on the investigation of the impacts of PCM on the building cooling load and peak cooling demand at different climates and seasons as well as the optimal operation and control strategies to reduce the energy consumption and energy cost by reducing the air-conditioning energy consumption and peak load. An office building floor with typical variable air volume (VAV) air-conditioning system is used and simulated as the reference building in the comparison study. The envelopes of the studied building are further enhanced by integrating the PCM layers. The building system is tested in two selected cities of typical climates in China including Hong Kong and Beijing. The cold charge and discharge processes, the operation and control strategies of night ventilation and the air temperature set-point reset strategy for minimizing the energy consumption and electricity cost are studied. This thesis presents the simulation test platform, the test results on the cold storage and discharge processes, the air-conditioning energy consumption and demand reduction potentials in typical air-conditioning seasons in typical China cites as well as the impacts of operation and control strategies.

  6. Snowmelt and Infiltration Deficiencies of SSiB and Their Resolution with a New Snow-Physics Scheme

    NASA Technical Reports Server (NTRS)

    Sud, Y. C.; Mocko, David M.

    1999-01-01

    A two-year 1987-1988 integration of SSiB forced with ISLSCP Initiative I surface data (as part of the Global Soil Wetness Project, GSWP, evaluation and intercomparison) produced generally realistic land surface fluxes and hydrology. Nevertheless, the evaluation also helped to identify some of the deficiencies of the current version of the Simplified Simple Biosphere (SSiB) model. The simulated snowmelt was delayed in most regions, along with excessive runoff and lack of an spring soil moisture recharge. The SSIB model had previously been noted to have a problem producing accurate soil moisture as compared to observations in the Russian snowmelt region. Similarly, various GSWP implementations of SSIB found deficiencies in this region of the simulated soil moisture and runoff as compared to other non-SSiB land-surface models (LSMs). The origin of these deficiencies was: 1) excessive cooling of the snow and ground, and 2) deep frozen soil disallowing snowmelt infiltration. The problem was most severe in regions that experience very cold winters. In SSiB, snow was treated as a unified layer with the first soil layer, causing soil and snow to cool together in the winter months, as opposed to snow cover acting as an insulator. In the spring season, a large amount of heat was required to thaw a hard frozen snow plus deep soil layers, delaying snowmelt and causing meltwater to become runoff over the frozen soil rather than infiltrate into it.

  7. Theory of plasma contactors in ground-based experiments and low Earth orbit

    NASA Technical Reports Server (NTRS)

    Gerver, M. J.; Hastings, Daniel E.; Oberhardt, M. R.

    1990-01-01

    Previous theoretical work on plasma contactors as current collectors has fallen into two categories: collisionless double layer theory (describing space charge limited contactor clouds) and collisional quasineutral theory. Ground based experiments at low current are well explained by double layer theory, but this theory does not scale well to power generation by electrodynamic tethers in space, since very high anode potentials are needed to draw a substantial ambient electron current across the magnetic field in the absence of collisions (or effective collisions due to turbulence). Isotropic quasineutral models of contactor clouds, extending over a region where the effective collision frequency upsilon sub e exceeds the electron cyclotron frequency omega sub ce, have low anode potentials, but would collect very little ambient electron current, much less than the emitted ion current. A new model is presented, for an anisotropic contactor cloud oriented along the magnetic field, with upsilon sub e less than omega sub ce. The electron motion along the magnetic field is nearly collisionless, forming double layers in that direction, while across the magnetic field the electrons diffuse collisionally and the potential profile is determined by quasineutrality. Using a simplified expression for upsilon sub e due to ion acoustic turbulence, an analytic solution has been found for this model, which should be applicable to current collection in space. The anode potential is low and the collected ambient electron current can be several times the emitted ion current.

  8. Prediction of interior noise due to random acoustic or turbulent boundary layer excitation using statistical energy analysis

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.

    1990-01-01

    The feasibility of predicting interior noise due to random acoustic or turbulent boundary layer excitation was investigated in experiments in which a statistical energy analysis model (VAPEPS) was used to analyze measurements of the acceleration response and sound transmission of flat aluminum, lucite, and graphite/epoxy plates exposed to random acoustic or turbulent boundary layer excitation. The noise reduction of the plate, when backed by a shallow cavity and excited by a turbulent boundary layer, was predicted using a simplified theory based on the assumption of adiabatic compression of the fluid in the cavity. The predicted plate acceleration response was used as input in the noise reduction prediction. Reasonable agreement was found between the predictions and the measured noise reduction in the frequency range 315-1000 Hz.

  9. Towards Biomimicking Wood: Fabricated Free-standing Films of Nanocellulose, Lignin, and a Synthetic Polycation

    PubMed Central

    Pillai, Karthik; Navarro Arzate, Fernando; Zhang, Wei; Renneckar, Scott

    2014-01-01

    Woody materials are comprised of plant cell walls that contain a layered secondary cell wall composed of structural polymers of polysaccharides and lignin. Layer-by-layer (LbL) assembly process which relies on the assembly of oppositely charged molecules from aqueous solutions was used to build a freestanding composite film of isolated wood polymers of lignin and oxidized nanofibril cellulose (NFC). To facilitate the assembly of these negatively charged polymers, a positively charged polyelectrolyte, poly(diallyldimethylammomium chloride) (PDDA), was used as a linking layer to create this simplified model cell wall. The layered adsorption process was studied quantitatively using quartz crystal microbalance with dissipation monitoring (QCM-D) and ellipsometry. The results showed that layer mass/thickness per adsorbed layer increased as a function of total number of layers. The surface coverage of the adsorbed layers was studied with atomic force microscopy (AFM). Complete coverage of the surface with lignin in all the deposition cycles was found for the system, however, surface coverage by NFC increased with the number of layers. The adsorption process was carried out for 250 cycles (500 bilayers) on a cellulose acetate (CA) substrate. Transparent free-standing LBL assembled nanocomposite films were obtained when the CA substrate was later dissolved in acetone. Scanning electron microscopy (SEM) of the fractured cross-sections showed a lamellar structure, and the thickness per adsorption cycle (PDDA-Lignin-PDDA-NC) was estimated to be 17 nm for two different lignin types used in the study. The data indicates a film with highly controlled architecture where nanocellulose and lignin are spatially deposited on the nanoscale (a polymer-polymer nanocomposites), similar to what is observed in the native cell wall. PMID:24961302

  10. Modeling and dynamic properties of dual-chamber solid and liquid mixture vibration isolator

    NASA Astrophysics Data System (ADS)

    Li, F. S.; Chen, Q.; Zhou, J. H.

    2016-07-01

    The dual-chamber solid and liquid mixture (SALiM) vibration isolator, mainly proposed for vibration isolation of heavy machines with low frequency, consists of four principle parts: SALiM working media including elastic elements and incompressible oil, multi-layers bellows container, rigid reservoir and the oil tube connecting the two vessels. The isolation system under study is governed by a two-degrees-of-freedom (2-DOF) nonlinear equation including quadratic damping. Simplifying the nonlinear damping into viscous damping, the equivalent stiffness and damping model is derived from the equation for the response amplitude. Theoretical analysis and numerical simulation reveal that the isolator's stiffness and damping have multiple properties with different parameters, among which the effects of exciting frequency, vibrating amplitude, quadratic damping coefficient and equivalent stiffness of the two chambers on the isolator's dynamics are discussed in depth. Based on the boundary characteristics of stiffness and damping and the main causes for stiffness hardening effect, improvement strategies are proposed to obtain better dynamic properties. At last, experiments were implemented and the test results were generally consistent with the theoretical ones, which verified the reliability of the nonlinear dynamic model.

  11. Two-point modeling of SOL losses of HHFW power in NSTX

    NASA Astrophysics Data System (ADS)

    Kish, Ayden; Perkins, Rory; Ahn, Joon-Wook; Diallo, Ahmed; Gray, Travis; Hosea, Joel; Jaworski, Michael; Kramer, Gerrit; Leblanc, Benoit; Sabbagh, Steve

    2017-10-01

    High-harmonic fast-wave (HHFW) heating is a heating and current-drive scheme on the National Spherical Torus eXperiment (NSTX) complimentary to neutral beam injection. Previous experiments suggest that a significant fraction, up to 50%, of the HHFW power is promptly lost to the scrape-off layer (SOL). Research indicates that the lost power reaches the divertor via wave propagation and is converted to a heat flux at the divertor through RF rectification rather than heating the SOL plasma at the midplane. This counter-intuitive hypothesis is investigated using a simplified two-point model, relating plasma parameters at the divertor to those at the midplane. Taking measurements at the divertor region of NSTX as input, this two-point model is used to predict midplane parameters, using the predicted heat flux as an indicator of power input to the SOL. These predictions are compared to measurements at the midplane to evaluate the extent to which they are consistent with experiment. This work was made possible by funding from the Department of Energy for the Summer Undergraduate Laboratory Internship (SULI) program. This work is supported by the US DOE Contract No. DE-AC02-09CH11466.

  12. Frontier molecular orbitals of a single molecule adsorbed on thin insulating films supported by a metal substrate: electron and hole attachment energies.

    PubMed

    Scivetti, Iván; Persson, Mats

    2017-09-06

    We present calculations of vertical electron and hole attachment energies to the frontier orbitals of a pentacene molecule absorbed on multi-layer sodium chloride films supported by a copper substrate using a simplified density functional theory (DFT) method. The adsorbate and the film are treated fully within DFT, whereas the metal is treated implicitly by a perfect conductor model. We find that the computed energy gap between the highest and lowest unoccupied molecular orbitals-HOMO and LUMO -from the vertical attachment energies increases with the thickness of the insulating film, in agreement with experiments. This increase of the gap can be rationalised in a simple dielectric model with parameters determined from DFT calculations and is found to be dominated by the image interaction with the metal. We find, however, that this simplified model overestimates the downward shift of the energy gap in the limit of an infinitely thick film.

  13. Frontier molecular orbitals of a single molecule adsorbed on thin insulating films supported by a metal substrate: electron and hole attachment energies

    NASA Astrophysics Data System (ADS)

    Scivetti, Iván; Persson, Mats

    2017-09-01

    We present calculations of vertical electron and hole attachment energies to the frontier orbitals of a pentacene molecule absorbed on multi-layer sodium chloride films supported by a copper substrate using a simplified density functional theory (DFT) method. The adsorbate and the film are treated fully within DFT, whereas the metal is treated implicitly by a perfect conductor model. We find that the computed energy gap between the highest and lowest unoccupied molecular orbitals—HOMO and LUMO -from the vertical attachment energies increases with the thickness of the insulating film, in agreement with experiments. This increase of the gap can be rationalised in a simple dielectric model with parameters determined from DFT calculations and is found to be dominated by the image interaction with the metal. We find, however, that this simplified model overestimates the downward shift of the energy gap in the limit of an infinitely thick film.

  14. Two-port connecting-layer-based sandwiched grating by a polarization-independent design.

    PubMed

    Li, Hongtao; Wang, Bo

    2017-05-02

    In this paper, a two-port connecting-layer-based sandwiched beam splitter grating with polarization-independent property is reported and designed. Such the grating can separate the transmission polarized light into two diffraction orders with equal energies, which can realize the nearly 50/50 output with good uniformity. For the given wavelength of 800 nm and period of 780 nm, a simplified modal method can design a optimal duty cycle and the estimation value of the grating depth can be calculated based on it. In order to obtain the precise grating parameters, a rigorous coupled-wave analysis can be employed to optimize grating parameters by seeking for the precise grating depth and the thickness of connecting layer. Based on the optimized design, a high-efficiency two-port output grating with the wideband performances can be gained. Even more important, diffraction efficiencies are calculated by using two analytical methods, which are proved to be coincided well with each other. Therefore, the grating is significant for practical optical photonic element in engineering.

  15. Longitudinal patterns and response lengths of algae in riverine ecosystems: A model analysis emphasising benthic-pelagic interactions.

    PubMed

    Jäger, Christoph G; Borchardt, Dietrich

    2018-04-07

    In riverine ecosystems primary production is principally possible in two habitats: in the benthic layer by sessile algae and in the surface water by planktonic algae being transported downstream. The relevance of these two habitats generally changes along the rivers' continuum. However, analyses of the interaction of algae in these two habitats and their controlling factors in riverine ecosystems are, so far, very rare. We use a simplified advection-diffusion model system combined with ecological process kinetics to analyse the interaction of benthic and planktonic algae and nutrients along idealised streams and rivers at regional to large scales. Because many of the underlying processes affecting algal dynamics are influenced by depth, we focus particularly on the impact of river depth on this interaction. At constant environmental conditions all state variables approach stable spatial equilibria along the river, independent of the boundary conditions at the upstream end. Because our model is very robust against changes of turbulent diffusion and stream velocity, these spatial equilibria can be analysed by a simplified ordinary differential equation (ode) version of our model. This model variant reveals that at shallower river depths, phytoplankton can exist only when it is subsidised by detaching benthic algae, and in turn, at deeper river depths, benthic algae can exist only in low biomasses which are subsidised by sinking planktonic algae. We generalise the spatial dynamics of the model system using different conditions at the upstream end of the model, which mimic various natural or anthropogenic factors (pristine source, dam, inflow of a waste water treatment plant, and dilution from e.g. a tributary) and analyse how these scenarios influence different aspects of the longitudinal spatial dynamics of the full spatial model: the relation of spatial equilibrium to spatial maximum, the distance to the spatial maximum, and the response length. Generally, our results imply that shallow systems recover within significantly shorter distances from spatially distinct disturbances when compared to deep systems, independent of the type of disturbance. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. A Simplified Analytic Investigation of the Riverside Effects of Sediment Diversions

    DTIC Science & Technology

    2013-09-01

    demonstrated that the river bed consists of a sand layer of variable thickness, underlain by erosion resistant strata (either relict glacial deposits...following analysis. Simplifications and Initial Conditions. Consider a river modeled as a wide rectangular channel of constant width (Figure 1). The...CHETN-VII-13 September 2013 14  Short term effects include the redistribution of sediment by erosion upstream of the diversion to deposition

  17. Three dimensional (3D) microstructure-based finite element modeling of Al-SiC nanolaminates using focused ion beam (FIB) tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayer, Carl R.

    Al-SiC nanolaminate composites show promise as high performance coating materials due to their combination of strength and toughness. Although a significant amount of modeling effort has been focused on materials with an idealized flat nanostructure, experimentally these materials exhibit complex undulating layer geometries. This work utilizes FIB tomography to characterize this nanostructure in 3D and finite element modeling to determine the effect that this complex structure has on the mechanical behavior of these materials. A sufficiently large volume was characterized such that a 1 × 2 μm micropillar could be generated from the dataset and compared directly to experimental results.more » The mechanical response from this nanostructure was then compared to pillar models using simplified structures with perfectly flat layers, layers with sinusoidal waviness, and layers with arc segment waviness. The arc segment based layer geometry showed the best agreement with the experimentally determined structure, indicating it would be the most appropriate geometry for future modeling efforts. - Highlights: •FIB tomography was used to determine the structure of an Al-SiC nanolaminate in 3D. •FEM was used to compare the deformation of the nanostructure to experimental results. •Idealized structures from literature were compared to the FIB determined structure. •Arc segment based structures approximated the FIB determined structure most closely.« less

  18. Time-domain electromagnetic soundings collected in Dawson County, Nebraska, 2007-09

    USGS Publications Warehouse

    Payne, Jason; Teeple, Andrew

    2011-01-01

    Between April 2007 and November 2009, the U.S. Geological Survey, in cooperation with the Central Platte Natural Resources District, collected time-domain electro-magnetic (TDEM) soundings at 14 locations in Dawson County, Nebraska. The TDEM soundings provide information pertaining to the hydrogeology at each of 23 sites at the 14 locations; 30 TDEM surface geophysical soundings were collected at the 14 locations to develop smooth and layered-earth resistivity models of the subsurface at each site. The soundings yield estimates of subsurface electrical resistivity; variations in subsurface electrical resistivity can be correlated with hydrogeologic and stratigraphic units. Results from each sounding were used to calculate resistivity to depths of approximately 90-130 meters (depending on loop size) below the land surface. Geonics Protem 47 and 57 systems, as well as the Alpha Geoscience TerraTEM, were used to collect the TDEM soundings (voltage data from which resistivity is calculated). For each sounding, voltage data were averaged and evaluated statistically before inversion (inverse modeling). Inverse modeling is the process of creating an estimate of the true distribution of subsurface resistivity from the mea-sured apparent resistivity obtained from TDEM soundings. Smooth and layered-earth models were generated for each sounding. A smooth model is a vertical delineation of calculated apparent resistivity that represents a non-unique estimate of the true resistivity. Ridge regression (Interpex Limited, 1996) was used by the inversion software in a series of iterations to create a smooth model consisting of 24-30 layers for each sounding site. Layered-earth models were then generated based on results of smooth modeling. The layered-earth models are simplified (generally 1 to 6 layers) to represent geologic units with depth. Throughout the area, the layered-earth models range from 2 to 4 layers, depending on observed inflections in the raw data and smooth model inversions. The TDEM data collected were considered good results on the basis of root mean square errors calculated after inversion modeling, comparisons with borehole geophysical logging, and repeatability.

  19. On the Resonant Behavior of a Weakly Compressible Water Layer During Tsunamigenic Earthquakes

    NASA Astrophysics Data System (ADS)

    Cecioni, Claudia; Bellotti, Giorgio

    2018-01-01

    Tsunamigenic earthquakes trigger pressure waves in the ocean, given the weak compressibility of the sea water. For particular conditions, a resonant behavior of the water layer can occur, which influences the energy transfer from the sea-bed motion to the ocean. In this paper, the resonance conditions are explained and analyzed, focusing on the hydro-acoustic waves in the proximity of the earthquake area. A preliminary estimation of the generation parameters (sea-bed rising time, velocity) is given, by means of parametric numerical simulations for simplified conditions. The results confirm the importance of measuring, modeling, and interpreting such waves for tsunami early detection and warning.

  20. Sedimentation, volcanism, and ancestral lakes in the Valles Marineris: Clues from topography

    NASA Technical Reports Server (NTRS)

    Lucchitta, B. K.; Isbell, N. K.; Howington-Kraus, A.

    1993-01-01

    Compilation of a simplified geologic/geomorphic map onto a digital terrain model of Valles Marineris has permitted quantitative evaluations of topographic parameters. The study showed that, if their interior layered deposits are lacustrine, the ancestral Valles Marineris must have consisted of isolated basins. If, on the other hand, the troughs were interconnected as they are today, the deposits are most likely to volcanic origin, and the mesas in the peripheral troughs may be table mountains. The material eroded from the trough walls was probably not sufficient to form all of the interior layered deposits, but it may have contributed significantly to their formation.

  1. On the Resonant Behavior of a Weakly Compressible Water Layer During Tsunamigenic Earthquakes

    NASA Astrophysics Data System (ADS)

    Cecioni, Claudia; Bellotti, Giorgio

    2018-04-01

    Tsunamigenic earthquakes trigger pressure waves in the ocean, given the weak compressibility of the sea water. For particular conditions, a resonant behavior of the water layer can occur, which influences the energy transfer from the sea-bed motion to the ocean. In this paper, the resonance conditions are explained and analyzed, focusing on the hydro-acoustic waves in the proximity of the earthquake area. A preliminary estimation of the generation parameters (sea-bed rising time, velocity) is given, by means of parametric numerical simulations for simplified conditions. The results confirm the importance of measuring, modeling, and interpreting such waves for tsunami early detection and warning.

  2. Comparing Ns-DBD vs Ac-DBD plasma actuation mechanisms on a NACA 0012 airfoil

    NASA Astrophysics Data System (ADS)

    Singh, Ashish; Durasiewicz, Claudia; Little, Jesse

    2017-11-01

    A NACA 0012 airfoil is used to study ns-DBD and ac-DBD plasma actuators at a Reynolds number of 740,000 (U∞=40 m/s). Ns-DBD plasma actuators are hypothesized to work on the principle of joule heating whereas ac-DBD actuators add momentum to the flow. Short duration forcing at a time scale much smaller than the convective time based on model chord is employed to study the control mechanism and flow field response. 2-D PIV carried out over a convective time range of 0-10 is used to study the flow structure. The results show the breakup of shear layer vorticity at the point of actuation followed by reattachment to the suction side of the airfoil and finally stall again. These events are very similar between the two actuators and indicate a similar flow response to different perturbation types. The pulse energies are varied and the response shows little change. The results are compared to other transitory separation control studies using more conventional actuators. The detailed study of these two control mechanisms with the separated flow over an airfoil helps to shed light on the evolution of the flow control process. Additional results on a simplified model problem (low speed mixing layer) are included to provide context. Supported by U.S. Army Research Office (W911NF-14-1-0662).

  3. Dissipation models for central difference schemes

    NASA Astrophysics Data System (ADS)

    Eliasson, Peter

    1992-12-01

    In this paper different flux limiters are used to construct dissipation models. The flux limiters are usually of Total Variation Diminishing (TVD type and are applied to the characteristic variables for the hyperbolic Euler equations in one, two or three dimensions. A number of simplified dissipation models with a reduced number of limiters are considered to reduce the computational effort. The most simplified methods use only one limiter, the dissipation model by Jameson belongs to this class since the Jameson pressure switch is considered as a limiter, not TVD though. Other one-limiter models with TVD limiters are also investigated. Models in between the most simplified one-limiter models and the full model with limiters on all the different characteristics are considered where different dissipation models are applied to the linear and non-linear characteristcs. In this paper the theory by Yee is extended to a general explicit Runge-Kutta type of schemes.

  4. Propagation of seismic waves in tall buildings

    USGS Publications Warehouse

    Safak, E.

    1998-01-01

    A discrete-time wave propagation formulation of the seismic response of tall buildings is introduced. The building is modeled as a layered medium, similar to a layered soil medium, and is subjected to vertically propagating seismic shear waves. Soil layers and the bedrock under the foundation are incorporated in the formulation as additional layers. Seismic response is expressed in terms of the wave travel times between the layers, and the wave reflection and transmission coefficients at the layer interfaces. The equations account for the frequency-dependent filtering effects of the foundation and floor masses. The calculation of seismic response is reduced to a pair of simple finite-difference equations for each layer, which can be solved recursively starting from the bedrock. Compared to the commonly used vibration formulation, the wave propagation formulation provides several advantages, including simplified calculations, better representation of damping, ability to account for the effects of the soil layers under the foundation, and better tools for identification and damage detection from seismic records. Examples presented show the versatility of the method. ?? 1998 John Wiley & Sons, Ltd.

  5. Design of high-fidelity haptic display for one-dimensional force reflection applications

    NASA Astrophysics Data System (ADS)

    Gillespie, Brent; Rosenberg, Louis B.

    1995-12-01

    This paper discusses the development of a virtual reality platform for the simulation of medical procedures which involve needle insertion into human tissue. The paper's focus is the hardware and software requirements for haptic display of a particular medical procedure known as epidural analgesia. To perform this delicate manual procedure, an anesthesiologist must carefully guide a needle through various layers of tissue using only haptic cues for guidance. As a simplifying aspect for the simulator design, all motions and forces involved in the task occur along a fixed line once insertion begins. To create a haptic representation of this procedure, we have explored both physical modeling and perceptual modeling techniques. A preliminary physical model was built based on CT-scan data of the operative site. A preliminary perceptual model was built based on current training techniques for the procedure provided by a skilled instructor. We compare and contrast these two modeling methods and discuss the implications of each. We select and defend the perceptual model as a superior approach for the epidural analgesia simulator.

  6. A transfer function type of simplified electrochemical model with modified boundary conditions and Padé approximation for Li-ion battery: Part 1. lithium concentration estimation

    NASA Astrophysics Data System (ADS)

    Yuan, Shifei; Jiang, Lei; Yin, Chengliang; Wu, Hongjie; Zhang, Xi

    2017-06-01

    To guarantee the safety, high efficiency and long lifetime for lithium-ion battery, an advanced battery management system requires a physics-meaningful yet computationally efficient battery model. The pseudo-two dimensional (P2D) electrochemical model can provide physical information about the lithium concentration and potential distributions across the cell dimension. However, the extensive computation burden caused by the temporal and spatial discretization limits its real-time application. In this research, we propose a new simplified electrochemical model (SEM) by modifying the boundary conditions for electrolyte diffusion equations, which significantly facilitates the analytical solving process. Then to obtain a reduced order transfer function, the Padé approximation method is adopted to simplify the derived transcendental impedance solution. The proposed model with the reduced order transfer function can be briefly computable and preserve physical meanings through the presence of parameters such as the solid/electrolyte diffusion coefficients (Ds&De) and particle radius. The simulation illustrates that the proposed simplified model maintains high accuracy for electrolyte phase concentration (Ce) predictions, saying 0.8% and 0.24% modeling error respectively, when compared to the rigorous model under 1C-rate pulse charge/discharge and urban dynamometer driving schedule (UDDS) profiles. Meanwhile, this simplified model yields significantly reduced computational burden, which benefits its real-time application.

  7. Differences Between the HUT Snow Emission Model and MEMLS and Their Effects on Brightness Temperature Simulation

    NASA Technical Reports Server (NTRS)

    Pan, Jinmei; Durand, Michael; Sandells, Melody; Lemmetyinen, Juha; Kim, Edward J.; Pulliainen, Jouni; Kontu, Anna; Derksen, Chris

    2015-01-01

    Microwave emission models are a critical component of snow water equivalent retrieval algorithms applied to passive microwave measurements. Several such emission models exist, but their differences need to be systematically compared. This paper compares the basic theories of two models: the multiple-layer HUT (Helsinki University of Technology) model and MEMLS (Microwave Emission Model of Layered Snowpacks). By comparing the mathematical formulation side-by-side, three major differences were identified: (1) by assuming the scattered intensity is mostly (96) in the forward direction, the HUT model simplifies the radiative transfer (RT) equation into 1-flux; whereas MEMLS uses a 2-flux theory; (2) the HUT scattering coefficient is much larger than MEMLS; (3 ) MEMLS considers the trapped radiation inside snow due to internal reflection by a 6-flux model, which is not included in HUT. Simulation experiments indicate that, the large scattering coefficient of the HUT model compensates for its large forward scattering ratio to some extent, but the effects of 1-flux simplification and the trapped radiation still result in different T(sub B) simulations between the HUT model and MEMLS. The models were compared with observations of natural snow cover at Sodankyl, Finland; Churchill, Canada; and Colorado, USA. No optimization of the snow grain size was performed. It shows that HUT model tends to under estimate T(sub B) for deep snow. MEMLS with the physically-based improved Born approximation performed best among the models, with a bias of -1.4 K, and an RMSE of 11.0 K.

  8. An improved hierarchical A * algorithm in the optimization of parking lots

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Wu, Junjuan; Wang, Ying

    2017-08-01

    In the parking lot parking path optimization, the traditional evaluation index is the shortest distance as the best index and it does not consider the actual road conditions. Now, the introduction of a more practical evaluation index can not only simplify the hardware design of the boot system but also save the software overhead. Firstly, we establish the parking lot network graph RPCDV mathematical model and all nodes in the network is divided into two layers which were constructed using different evaluation function base on the improved hierarchical A * algorithm which improves the time optimal path search efficiency and search precision of the evaluation index. The final results show that for different sections of the program attribute parameter algorithm always faster the time to find the optimal path.

  9. Advanced control of liquid water region in diffusion media of polymer electrolyte fuel cells through a dimensionless number

    NASA Astrophysics Data System (ADS)

    Wang, Yun; Chen, Ken S.

    2016-05-01

    In the present work, a three-dimension (3-D) model of polymer electrolyte fuel cells (PEFCs) is employed to investigate the complex, non-isothermal, two-phase flow in the gas diffusion layer (GDL). Phase change in gas flow channels is explained, and a simplified approach accounting for phase change is incorporated into the fuel cell model. It is found that the liquid water contours in the GDL are similar along flow channels when the channels are subject to two-phase flow. Analysis is performed on a dimensionless parameter Da0 introduced in our previous paper [Y. Wang and K. S. Chen, Chemical Engineering Science 66 (2011) 3557-3567] and the parameter is further evaluated in a realistic fuel cell. We found that the GDL's liquid water (or liquid-free) region is determined by the Da0 number which lumps several parameters, including the thermal conductivity and operating temperature. By adjusting these factors, a liquid-free GDL zone can be created even though the channel stream is two-phase flow. Such a liquid-free zone is adjacent to the two-phase region, benefiting local water management, namely avoiding both severe flooding and dryness.

  10. Advanced control of liquid water region in diffusion media of polymer electrolyte fuel cells through a dimensionless number

    DOE PAGES

    Wang, Yun; Chen, Ken S.

    2016-03-21

    In the present study, a three-dimension (3-D) model of polymer electrolyte fuel cells (PEFCs) is employed to investigate the complex, non-isothermal, two-phase flow in the gas diffusion layer (GDL). Phase change in gas flow channels is explained, and a simplified approach accounting for phase change is incorporated into the fuel cell model. It is found that the liquid water contours in the GDL are similar along flow channels when the channels are subject to two-phase flow. Here, analysis is performed on a dimensionless parameter Da 0 introduced in our previous paper and the parameter is further evaluated in a realisticmore » fuel cell. We found that the GDL's liquid water (or liquid-free) region is determined by the Da 0 number which lumps several parameters, including the thermal conductivity and operating temperature. By adjusting these factors, a liquid-free GDL zone can be created even though the channel stream is two-phase flow. Such a liquid-free zone is adjacent to the two-phase region, benefiting local water management, namely avoiding both severe flooding and dryness.« less

  11. Edge effects on band gap energy in bilayer 2H-MoS{sub 2} under uniaxial strain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Liang; Wang, Jin; Dongare, Avinash M., E-mail: dongare@uconn.edu

    2015-06-28

    The potential of ultrathin MoS{sub 2} nanostructures for applications in electronic and optoelectronic devices requires a fundamental understanding in their electronic structure as a function of strain. Previous experimental and theoretical studies assume that an identical strain and/or stress state is always maintained in the top and bottom layers of a bilayer MoS{sub 2} film. In this study, a bilayer MoS{sub 2} supercell is constructed differently from the prototypical unit cell in order to investigate the layer-dependent electronic band gap energy in a bilayer MoS{sub 2} film under uniaxial mechanical deformations. The supercell contains an MoS{sub 2} bottom layer andmore » a relatively narrower top layer (nanoribbon with free edges) as a simplified model to simulate the as-grown bilayer MoS{sub 2} flakes with free edges observed experimentally. Our results show that the two layers have different band gap energies under a tensile uniaxial strain, although they remain mutually interacting by van der Waals interactions. The deviation in their band gap energies grows from 0 to 0.42 eV as the uniaxial strain increases from 0% to 6% under both uniaxial strain and stress conditions. The deviation, however, disappears if a compressive uniaxial strain is applied. These results demonstrate that tensile uniaxial strains applied to bilayer MoS{sub 2} films can result in distinct band gap energies in the bilayer structures. Such variations need to be accounted for when analyzing strain effects on electronic properties of bilayer or multilayered 2D materials using experimental methods or in continuum models.« less

  12. Electromagnetic field generated in model of human head by simplified telephone transceiver

    NASA Astrophysics Data System (ADS)

    King, Ronold W. P.

    1995-01-01

    Possible adverse effects of electromagnetic fields on the human body and especially on the nervous system and the brain are of increasing concern, particularly with reference to cellular telephone transceivers held close to the head. An essential step in the study of this problem is the accurate determination of the complete electromagnetic field penetrating through the skull into the brain. Simple analytical formulas are derived from the theory of the horizontal electric dipole over a layered region. These give the components of the electric and magnetic fields on the air-head surface, in the skin-skull layer, and throughout the brain in terms of a planar model with the dimensions and average electrical properties of the human head. The specific absorption rate (SAR) is also determined.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubin, H.; Bemporad, G.A.

    This manuscript concerns the possible improvement of the conventional solar pond (CSP) performance by applying a multiselective injection and withdrawal procedure. The authors apply the term advanced solar pond (ASP), for a solar pond (SP) in which such a procedure is applied. The multiselective injection and withdrawal procedure creates in the SP a stratified thermal layer, namely a flowing layer which is subject to salinity and temperature stratification. This phenomenon is associated with reduction of heat losses into the atmosphere and an increase of the temperature of the fluid layer adjacent to the SP bottom. In the framework of thismore » study transport phenomena in the ASP are analyzed and simulated by applying a simplified mathematical model. The analysis and simulations indicate that the multiselective and withdrawal procedure may significantly improve the performance of the SP.« less

  14. A simplified model for the gravitational potential of the atmosphere and its effect on the geoid

    NASA Technical Reports Server (NTRS)

    Madden, S. J., Jr.

    1972-01-01

    The earth's atmosphere is considered as made up of oblate spheroidal layers of variable density lying over an oblate spheroidal earth. The gravitational attraction of the atmosphere at exterior points is computed and its contribution to the usual spherical harmonic gravitational expansion is assessed. The potential is also found for points at the bottom of the model atmosphere. This latter result is of interest for determination of the potential at the surface of the geoid. The atmospheric correction to the geoid determination from satellite coefficients is given.

  15. Mono-X versus direct searches: simplified models for dark matter at the LHC

    DOE PAGES

    Liew, Seng Pei; Papucci, Michele; Vichi, Alessandro; ...

    2017-06-15

    We consider simplified models for dark matter (DM) at the LHC, focused on mono-Higgs, -Z or -b produced in the final state. Our primary purpose is to study the LHC reach of a relatively complete set of simplified models for these final states, while comparing the reach of the mono-X DM search against direct searches for the mediating particle. We find that direct searches for the mediating particle, whether in di-jets, jets+E T, multi-b+E T, or di-boson+E T, are usually stronger. We draw attention to the cases that the mono-X search is strongest, which include regions of parameter space inmore » inelastic DM, two Higgs doublet, and squark mediated production models with a compressed spectrum.« less

  16. Mono-X versus direct searches: simplified models for dark matter at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liew, Seng Pei; Papucci, Michele; Vichi, Alessandro

    We consider simplified models for dark matter (DM) at the LHC, focused on mono-Higgs, -Z or -b produced in the final state. Our primary purpose is to study the LHC reach of a relatively complete set of simplified models for these final states, while comparing the reach of the mono-X DM search against direct searches for the mediating particle. We find that direct searches for the mediating particle, whether in di-jets, jets+E T, multi-b+E T, or di-boson+E T, are usually stronger. We draw attention to the cases that the mono-X search is strongest, which include regions of parameter space inmore » inelastic DM, two Higgs doublet, and squark mediated production models with a compressed spectrum.« less

  17. Deep neural mapping support vector machines.

    PubMed

    Li, Yujian; Zhang, Ting

    2017-09-01

    The choice of kernel has an important effect on the performance of a support vector machine (SVM). The effect could be reduced by NEUROSVM, an architecture using multilayer perceptron for feature extraction and SVM for classification. In binary classification, a general linear kernel NEUROSVM can be theoretically simplified as an input layer, many hidden layers, and an SVM output layer. As a feature extractor, the sub-network composed of the input and hidden layers is first trained together with a virtual ordinary output layer by backpropagation, then with the output of its last hidden layer taken as input of the SVM classifier for further training separately. By taking the sub-network as a kernel mapping from the original input space into a feature space, we present a novel model, called deep neural mapping support vector machine (DNMSVM), from the viewpoint of deep learning. This model is also a new and general kernel learning method, where the kernel mapping is indeed an explicit function expressed as a sub-network, different from an implicit function induced by a kernel function traditionally. Moreover, we exploit a two-stage procedure of contrastive divergence learning and gradient descent for DNMSVM to jointly training an adaptive kernel mapping instead of a kernel function, without requirement of kernel tricks. As a whole of the sub-network and the SVM classifier, the joint training of DNMSVM is done by using gradient descent to optimize the objective function with the sub-network layer-wise pre-trained via contrastive divergence learning of restricted Boltzmann machines. Compared to the separate training of NEUROSVM, the joint training is a new algorithm for DNMSVM to have advantages over NEUROSVM. Experimental results show that DNMSVM can outperform NEUROSVM and RBFSVM (i.e., SVM with the kernel of radial basis function), demonstrating its effectiveness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Evaluation of snow and frozen soil parameterization in a cryosphere land surface modeling framework in the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhou, J.

    2017-12-01

    Snow and frozen soil are important components in the Tibetan Plateau, and influence the water cycle and energy balances through snowpack accumulation and melt and soil freeze-thaw. In this study, a new cryosphere land surface model (LSM) with coupled snow and frozen soil parameterization was developed based on a hydrologically improved LSM (HydroSiB2). First, an energy-balance-based three-layer snow model was incorporated into HydroSiB2 (hereafter HydroSiB2-S) to provide an improved description of the internal processes of the snow pack. Second, a universal and simplified soil model was coupled with HydroSiB2-S to depict soil water freezing and thawing (hereafter HydroSiB2-SF). In order to avoid the instability caused by the uncertainty in estimating water phase changes, enthalpy was adopted as a prognostic variable instead of snow/soil temperature in the energy balance equation of the snow/frozen soil module. The newly developed models were then carefully evaluated at two typical sites of the Tibetan Plateau (TP) (one snow covered and the other snow free, both with underlying frozen soil). At the snow-covered site in northeastern TP (DY), HydroSiB2-SF demonstrated significant improvements over HydroSiB2-F (same as HydroSiB2-SF but using the original single-layer snow module of HydroSiB2), showing the importance of snow internal processes in three-layer snow parameterization. At the snow-free site in southwestern TP (Ngari), HydroSiB2-SF reasonably simulated soil water phase changes while HydroSiB2-S did not, indicating the crucial role of frozen soil parameterization in depicting the soil thermal and water dynamics. Finally, HydroSiB2-SF proved to be capable of simulating upward moisture fluxes toward the freezing front from the underlying soil layers in winter.

  19. Development of a land surface model with coupled snow and frozen soil physics

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Zhou, Jing; Qi, Jia; Sun, Litao; Yang, Kun; Tian, Lide; Lin, Yanluan; Liu, Wenbin; Shrestha, Maheswor; Xue, Yongkang; Koike, Toshio; Ma, Yaoming; Li, Xiuping; Chen, Yingying; Chen, Deliang; Piao, Shilong; Lu, Hui

    2017-06-01

    Snow and frozen soil are important factors that influence terrestrial water and energy balances through snowpack accumulation and melt and soil freeze-thaw. In this study, a new land surface model (LSM) with coupled snow and frozen soil physics was developed based on a hydrologically improved LSM (HydroSiB2). First, an energy-balance-based three-layer snow model was incorporated into HydroSiB2 (hereafter HydroSiB2-S) to provide an improved description of the internal processes of the snow pack. Second, a universal and simplified soil model was coupled with HydroSiB2-S to depict soil water freezing and thawing (hereafter HydroSiB2-SF). In order to avoid the instability caused by the uncertainty in estimating water phase changes, enthalpy was adopted as a prognostic variable instead of snow/soil temperature in the energy balance equation of the snow/frozen soil module. The newly developed models were then carefully evaluated at two typical sites of the Tibetan Plateau (TP) (one snow covered and the other snow free, both with underlying frozen soil). At the snow-covered site in northeastern TP (DY), HydroSiB2-SF demonstrated significant improvements over HydroSiB2-F (same as HydroSiB2-SF but using the original single-layer snow module of HydroSiB2), showing the importance of snow internal processes in three-layer snow parameterization. At the snow-free site in southwestern TP (Ngari), HydroSiB2-SF reasonably simulated soil water phase changes while HydroSiB2-S did not, indicating the crucial role of frozen soil parameterization in depicting the soil thermal and water dynamics. Finally, HydroSiB2-SF proved to be capable of simulating upward moisture fluxes toward the freezing front from the underlying soil layers in winter.

  20. Dynamical Disentangling and Cooling of Atoms in Bilayer Optical Lattices

    NASA Astrophysics Data System (ADS)

    Kantian, A.; Langer, S.; Daley, A. J.

    2018-02-01

    We show how experimentally available bilayer lattice systems can be used to prepare quantum many-body states with exceptionally low entropy in one layer, by dynamically disentangling the two layers. This disentangling operation moves one layer—subsystem A —into a regime where excitations in A develop a single-particle gap. As a result, this operation maps directly to cooling for subsystem A , with entropy being shuttled to the other layer. For both bosonic and fermionic atoms, we study the corresponding dynamics showing that disentangling can be realized cleanly in ongoing experiments. The corresponding entanglement entropies are directly measurable with quantum gas microscopes, and, as a tool for producing lower-entropy states, this technique opens a range of applications beginning with simplifying production of magnetically ordered states of bosons and fermions.

  1. The role of feedbacks in Antarctic sea ice change

    NASA Astrophysics Data System (ADS)

    Feltham, D. L.; Frew, R. C.; Holland, P.

    2017-12-01

    The changes in Antarctic sea ice over the last thirty years have a strong seasonal dependence, and the way these changes grow in spring and decay in autumn suggests that feedbacks are strongly involved. The changes may ultimately be caused by atmospheric warming, the winds, snowfall changes, etc., but we cannot understand these forcings without first untangling the feedbacks. A highly simplified coupled sea ice -mixed layer model has been developed to investigate the importance of feedbacks on the evolution of sea ice in two contrasting regions in the Southern Ocean; the Amundsen Sea where sea ice extent has been decreasing, and the Weddell Sea where it has been expanding. The change in mixed layer depth in response to changes in the atmosphere to ocean energy flux is implicit in a strong negative feedback on ice cover changes in the Amundsen Sea, with atmospheric cooling leading to a deeper mixed layer resulting in greater entrainment of warm Circumpolar Deep Water, causing increased basal melting of sea ice. This strong negative feedback produces counter intuitive responses to changes in forcings in the Amundsen Sea. This feedback is absent in the Weddell due to the complete destratification and strong water column cooling that occurs each winter in simulations. The impact of other feedbacks, including the albedo feedback, changes in insulation due to ice thickness and changes in the freezing temperature of the mixed layer, were found to be of secondary importance compared to changes in the mixed layer depth.

  2. Possibility-induced simplified neutrosophic aggregation operators and their application to multi-criteria group decision-making

    NASA Astrophysics Data System (ADS)

    Şahin, Rıdvan; Liu, Peide

    2017-07-01

    Simplified neutrosophic set (SNS) is an appropriate tool used to express the incompleteness, indeterminacy and uncertainty of the evaluation objects in decision-making process. In this study, we define the concept of possibility SNS including two types of information such as the neutrosophic performance provided from the evaluation objects and its possibility degree using a value ranging from zero to one. Then by extending the existing neutrosophic information, aggregation models for SNSs that cannot be used effectively to fusion the two different information described above, we propose two novel neutrosophic aggregation operators considering possibility, which are named as a possibility-induced simplified neutrosophic weighted arithmetic averaging operator and possibility-induced simplified neutrosophic weighted geometric averaging operator, and discuss their properties. Moreover, we develop a useful method based on the proposed aggregation operators for solving a multi-criteria group decision-making problem with the possibility simplified neutrosophic information, in which the weights of decision-makers and decision criteria are calculated based on entropy measure. Finally, a practical example is utilised to show the practicality and effectiveness of the proposed method.

  3. A simplified method for determining reactive rate parameters for reaction ignition and growth in explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, P.J.

    1996-07-01

    A simplified method for determining the reactive rate parameters for the ignition and growth model is presented. This simplified ignition and growth (SIG) method consists of only two adjustable parameters, the ignition (I) and growth (G) rate constants. The parameters are determined by iterating these variables in DYNA2D hydrocode simulations of the failure diameter and the gap test sensitivity until the experimental values are reproduced. Examples of four widely different explosives were evaluated using the SIG model. The observed embedded gauge stress-time profiles for these explosives are compared to those calculated by the SIG equation and the results are described.

  4. Chirp optical coherence tomography of layered scattering media.

    PubMed

    Haberland, U H; Blazek, V; Schmitt, H J

    1998-07-01

    A new noninvasive technique that reveals cross sectional images of scattering media is presented. It is based on a continuous wave frequency modulated radar, but uses a tunable laser in the near infrared. As the full width at half maximum resolution of 16 μm is demonstrated with an external cavity laser, the chirp optical coherence tomography becomes an alternative to conventional short coherence tomography with the advantage of a simplified optical setup. The analysis of two-layer solid phantoms shows that the backscattered light gets stronger with decreasing anisotropic factor and increasing scattering coefficient, as predicted by Monte Carlo simulations. By introducing a two-phase chirp sequence, the combination of lateral resolved perfusion and depth resolved structure is shown. © 1998 Society of Photo-Optical Instrumentation Engineers.

  5. Estimating the timing and location of shallow rainfall-induced landslides using a model for transient, unsaturated infiltration

    USGS Publications Warehouse

    Baum, Rex L.; Godt, Jonathan W.; Savage, William Z.

    2010-01-01

    Shallow rainfall-induced landslides commonly occur under conditions of transient infiltration into initially unsaturated soils. In an effort to predict the timing and location of such landslides, we developed a model of the infiltration process using a two-layer system that consists of an unsaturated zone above a saturated zone and implemented this model in a geographic information system (GIS) framework. The model links analytical solutions for transient, unsaturated, vertical infiltration above the water table to pressure-diffusion solutions for pressure changes below the water table. The solutions are coupled through a transient water table that rises as water accumulates at the base of the unsaturated zone. This scheme, though limited to simplified soil-water characteristics and moist initial conditions, greatly improves computational efficiency over numerical models in spatially distributed modeling applications. Pore pressures computed by these coupled models are subsequently used in one-dimensional slope-stability computations to estimate the timing and locations of slope failures. Applied over a digital landscape near Seattle, Washington, for an hourly rainfall history known to trigger shallow landslides, the model computes a factor of safety for each grid cell at any time during a rainstorm. The unsaturated layer attenuates and delays the rainfall-induced pore-pressure response of the model at depth, consistent with observations at an instrumented hillside near Edmonds, Washington. This attenuation results in realistic estimates of timing for the onset of slope instability (7 h earlier than observed landslides, on average). By considering the spatial distribution of physical properties, the model predicts the primary source areas of landslides.

  6. A simple homogeneous model for regular and irregular metallic wire media samples

    NASA Astrophysics Data System (ADS)

    Kosulnikov, S. Y.; Mirmoosa, M. S.; Simovski, C. R.

    2018-02-01

    To simplify the solution of electromagnetic problems with wire media samples, it is reasonable to treat them as the samples of a homogeneous material without spatial dispersion. The account of spatial dispersion implies additional boundary conditions and makes the solution of boundary problems difficult especially if the sample is not an infinitely extended layer. Moreover, for a novel type of wire media - arrays of randomly tilted wires - a spatially dispersive model has not been developed. Here, we introduce a simplistic heuristic model of wire media samples shaped as bricks. Our model covers WM of both regularly and irregularly stretched wires.

  7. NASCRIN - NUMERICAL ANALYSIS OF SCRAMJET INLET

    NASA Technical Reports Server (NTRS)

    Kumar, A.

    1994-01-01

    The NASCRIN program was developed for analyzing two-dimensional flow fields in supersonic combustion ramjet (scramjet) inlets. NASCRIN solves the two-dimensional Euler or Navier-Stokes equations in conservative form by an unsplit, explicit, two-step finite-difference method. A more recent explicit-implicit, two-step scheme has also been incorporated in the code for viscous flow analysis. An algebraic, two-layer eddy-viscosity model is used for the turbulent flow calculations. NASCRIN can analyze both inviscid and viscous flows with no struts, one strut, or multiple struts embedded in the flow field. NASCRIN can be used in a quasi-three-dimensional sense for some scramjet inlets under certain simplifying assumptions. Although developed for supersonic internal flow, NASCRIN may be adapted to a variety of other flow problems. In particular, it should be readily adaptable to subsonic inflow with supersonic outflow, supersonic inflow with subsonic outflow, or fully subsonic flow. The NASCRIN program is available for batch execution on the CDC CYBER 203. The vectorized FORTRAN version was developed in 1983. NASCRIN has a central memory requirement of approximately 300K words for a grid size of about 3,000 points.

  8. Numerical study of entropy generation and melting heat transfer on MHD generalised non-Newtonian fluid (GNF): Application to optimal energy

    NASA Astrophysics Data System (ADS)

    Iqbal, Z.; Mehmood, Zaffar; Ahmad, Bilal

    2018-05-01

    This paper concerns an application to optimal energy by incorporating thermal equilibrium on MHD-generalised non-Newtonian fluid model with melting heat effect. Highly nonlinear system of partial differential equations is simplified to a nonlinear system using boundary layer approach and similarity transformations. Numerical solutions of velocity and temperature profile are obtained by using shooting method. The contribution of entropy generation is appraised on thermal and fluid velocities. Physical features of relevant parameters have been discussed by plotting graphs and tables. Some noteworthy findings are: Prandtl number, power law index and Weissenberg number contribute in lowering mass boundary layer thickness and entropy effect and enlarging thermal boundary layer thickness. However, an increasing mass boundary layer effect is only due to melting heat parameter. Moreover, thermal boundary layers have same trend for all parameters, i.e., temperature enhances with increase in values of significant parameters. Similarly, Hartman and Weissenberg numbers enhance Bejan number.

  9. Simplified hydraulic model of French vertical-flow constructed wetlands.

    PubMed

    Arias, Luis; Bertrand-Krajewski, Jean-Luc; Molle, Pascal

    2014-01-01

    Designing vertical-flow constructed wetlands (VFCWs) to treat both rain events and dry weather flow is a complex task due to the stochastic nature of rain events. Dynamic models can help to improve design, but they usually prove difficult to handle for designers. This study focuses on the development of a simplified hydraulic model of French VFCWs using an empirical infiltration coefficient--infiltration capacity parameter (ICP). The model was fitted using 60-second-step data collected on two experimental French VFCW systems and compared with Hydrus 1D software. The model revealed a season-by-season evolution of the ICP that could be explained by the mechanical role of reeds. This simplified model makes it possible to define time-course shifts in ponding time and outlet flows. As ponding time hinders oxygen renewal, thus impacting nitrification and organic matter degradation, ponding time limits can be used to fix a reliable design when treating both dry and rain events.

  10. Estimation of evaporation from equilibrium diurnal boundary layer humidity

    NASA Astrophysics Data System (ADS)

    Salvucci, G.; Rigden, A. J.; Li, D.; Gentine, P.

    2017-12-01

    Simplified conceptual models of the convective boundary layer as a well mixed profile of potential temperature (theta) and specific humidity (q) impinging on an initially stably stratified linear potential temperature profile have a long history in atmospheric sciences. These one dimensional representations of complex mixing are useful for gaining insights into land-atmosphere interactions and for prediction when state of the art LES approaches are infeasible. As previously shown (e.g. Betts), if one neglects the role of q in bouyancy, the framework yields a unique relation between mixed layer Theta, mixed layer height (h), and cumulative sensible heat flux (SH) throughout the day. Similarly assuming an initially q profile yields a simple relation between q, h, and cumulative latent heat flux (LH). The diurnal dynamics of theta and q are strongly dependent on SH and the initial lapse rates of theta (gamma_thet) and q (gamma q). In the estimation method proposed here, we further constrain these relations with two more assumptions: 1) The specific humidity is the same at the start of the period of boundary layer growth and at the collapse; and 2) Once the mixed layer reaches the LCL, further drying occurs proportionally to the deardorff convective velocity scale (omega) multiplied by q. Assumption (1) is based on the idea that below the cloud layer, there are no sinks of moisture within the mixed layer (neglecting lateral humidity divergence). Thus the net mixing of dry air aloft with evaporation from the surface must balance. Inclusion of the simple model of moisture loss above the LCL into the bulk-CBL model allows definition of an equilibrium humidity (q) condition at which the diurnal cycle of q repeats (i.e. additions of q from surface balance entrainment of dry air from above). Surprisingly, this framework allows estimation of LH from q, theta, and estimated net radiation by solving for the value of Evaporative Fraction (EF) for which the diurnal cycle of q repeats. Three parameters need specification: cloud area fraction, entrainment factor, and morning lapse rate. Surprisingly, a single set of values for these parameters are adequate to estimate EF at over 70 tested Ameriflux sites to within about 20%, though improvements are gained using a single regression model for gamma_thet that has been fitted to radiosonde data.

  11. Evaluating the importance of characterizing soil structure and horizons in parameterizing a hydrologic process model

    USGS Publications Warehouse

    Mirus, Benjamin B.

    2015-01-01

    Incorporating the influence of soil structure and horizons into parameterizations of distributed surface water/groundwater models remains a challenge. Often, only a single soil unit is employed, and soil-hydraulic properties are assigned based on textural classification, without evaluating the potential impact of these simplifications. This study uses a distributed physics-based model to assess the influence of soil horizons and structure on effective parameterization. This paper tests the viability of two established and widely used hydrogeologic methods for simulating runoff and variably saturated flow through layered soils: (1) accounting for vertical heterogeneity by combining hydrostratigraphic units with contrasting hydraulic properties into homogeneous, anisotropic units and (2) use of established pedotransfer functions based on soil texture alone to estimate water retention and conductivity, without accounting for the influence of pedon structures and hysteresis. The viability of this latter method for capturing the seasonal transition from runoff-dominated to evapotranspiration-dominated regimes is also tested here. For cases tested here, event-based simulations using simplified vertical heterogeneity did not capture the state-dependent anisotropy and complex combinations of runoff generation mechanisms resulting from permeability contrasts in layered hillslopes with complex topography. Continuous simulations using pedotransfer functions that do not account for the influence of soil structure and hysteresis generally over-predicted runoff, leading to propagation of substantial water balance errors. Analysis suggests that identifying a dominant hydropedological unit provides the most acceptable simplification of subsurface layering and that modified pedotransfer functions with steeper soil-water retention curves might adequately capture the influence of soil structure and hysteresis on hydrologic response in headwater catchments.

  12. Neural Network and Response Surface Methodology for Rocket Engine Component Optimization

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, Rajkumar; Papita, Nilay; Shyy, Wei; Tucker, P. Kevin; Griffin, Lisa W.; Haftka, Raphael; Fitz-Coy, Norman; McConnaughey, Helen (Technical Monitor)

    2000-01-01

    The goal of this work is to compare the performance of response surface methodology (RSM) and two types of neural networks (NN) to aid preliminary design of two rocket engine components. A data set of 45 training points and 20 test points obtained from a semi-empirical model based on three design variables is used for a shear coaxial injector element. Data for supersonic turbine design is based on six design variables, 76 training, data and 18 test data obtained from simplified aerodynamic analysis. Several RS and NN are first constructed using the training data. The test data are then employed to select the best RS or NN. Quadratic and cubic response surfaces. radial basis neural network (RBNN) and back-propagation neural network (BPNN) are compared. Two-layered RBNN are generated using two different training algorithms, namely solverbe and solverb. A two layered BPNN is generated with Tan-Sigmoid transfer function. Various issues related to the training of the neural networks are addressed including number of neurons, error goals, spread constants and the accuracy of different models in representing the design space. A search for the optimum design is carried out using a standard gradient-based optimization algorithm over the response surfaces represented by the polynomials and trained neural networks. Usually a cubic polynominal performs better than the quadratic polynomial but exceptions have been noticed. Among the NN choices, the RBNN designed using solverb yields more consistent performance for both engine components considered. The training of RBNN is easier as it requires linear regression. This coupled with the consistency in performance promise the possibility of it being used as an optimization strategy for engineering design problems.

  13. An exact solution of a simplified two-phase plume model. [for solid propellant rocket

    NASA Technical Reports Server (NTRS)

    Wang, S.-Y.; Roberts, B. B.

    1974-01-01

    An exact solution of a simplified two-phase, gas-particle, rocket exhaust plume model is presented. It may be used to make the upper-bound estimation of the heat flux and pressure loads due to particle impingement on the objects existing in the rocket exhaust plume. By including the correction factors to be determined experimentally, the present technique will provide realistic data concerning the heat and aerodynamic loads on these objects for design purposes. Excellent agreement in trend between the best available computer solution and the present exact solution is shown.

  14. Design verification of large time constant thermal shields for optical reference cavities.

    PubMed

    Zhang, J; Wu, W; Shi, X H; Zeng, X Y; Deng, K; Lu, Z H

    2016-02-01

    In order to achieve high frequency stability in ultra-stable lasers, the Fabry-Pérot reference cavities shall be put inside vacuum chambers with large thermal time constants to reduce the sensitivity to external temperature fluctuations. Currently, the determination of thermal time constants of vacuum chambers is based either on theoretical calculation or time-consuming experiments. The first method can only apply to simple system, while the second method will take a lot of time to try out different designs. To overcome these limitations, we present thermal time constant simulation using finite element analysis (FEA) based on complete vacuum chamber models and verify the results with measured time constants. We measure the thermal time constants using ultrastable laser systems and a frequency comb. The thermal expansion coefficients of optical reference cavities are precisely measured to reduce the measurement error of time constants. The simulation results and the experimental results agree very well. With this knowledge, we simulate several simplified design models using FEA to obtain larger vacuum thermal time constants at room temperature, taking into account vacuum pressure, shielding layers, and support structure. We adopt the Taguchi method for shielding layer optimization and demonstrate that layer material and layer number dominate the contributions to the thermal time constant, compared with layer thickness and layer spacing.

  15. Plasma and wave properties downstream of Martian bow shock: Hybrid simulations and MAVEN observations

    NASA Astrophysics Data System (ADS)

    Dong, Chuanfei; Winske, Dan; Cowee, Misa; Bougher, Stephen W.; Andersson, Laila; Connerney, Jack; Epley, Jared; Ergun, Robert; McFadden, James P.; Ma, Yingjuan; Toth, Gabor; Curry, Shannon; Nagy, Andrew; Jakosky, Bruce

    2015-04-01

    Two-dimensional hybrid simulation codes are employed to investigate the kinetic properties of plasmas and waves downstream of the Martian bow shock. The simulations are two-dimensional in space but three dimensional in field and velocity components. Simulations show that ion cyclotron waves are generated by temperature anisotropy resulting from the reflected protons around the Martian bow shock. These proton cyclotron waves could propagate downward into the Martian ionosphere and are expected to heat the O+ layer peaked from 250 to 300 km due to the wave-particle interaction. The proton cyclotron wave heating is anticipated to be a significant source of energy into the thermosphere, which impacts atmospheric escape rates. The simulation results show that the specific dayside heating altitude depends on the Martian crustal field orientations, solar cycles and seasonal variations since both the cyclotron resonance condition and the non/sub-resonant stochastic heating threshold depend on the ambient magnetic field strength. The dayside magnetic field profiles for different crustal field orientation, solar cycle and seasonal variations are adopted from the BATS-R-US Mars multi-fluid MHD model. The simulation results, however, show that the heating of O+ via proton cyclotron wave resonant interaction is not likely in the relatively weak crustal field region, based on our simplified model. This indicates that either the drift motion resulted from the transport of ionospheric O+, or the non/sub-resonant stochastic heating mechanism are important to explain the heating of Martian O+ layer. We will investigate this further by comparing the simulation results with the available MAVEN data. These simulated ion cyclotron waves are important to explain the heating of Martian O+ layer and have significant implications for future observations.

  16. Multiple-relaxation-time color-gradient lattice Boltzmann model for simulating two-phase flows with high density ratio

    NASA Astrophysics Data System (ADS)

    Ba, Yan; Liu, Haihu; Li, Qing; Kang, Qinjun; Sun, Jinju

    2016-08-01

    In this paper we propose a color-gradient lattice Boltzmann (LB) model for simulating two-phase flows with high density ratio and high Reynolds number. The model applies a multirelaxation-time (MRT) collision operator to enhance the stability of the simulation. A source term, which is derived by the Chapman-Enskog analysis, is added into the MRT LB equation so that the Navier-Stokes equations can be exactly recovered. Also, a form of the equilibrium density distribution function is used to simplify the source term. To validate the proposed model, steady flows of a static droplet and the layered channel flow are first simulated with density ratios up to 1000. Small values of spurious velocities and interfacial tension errors are found in the static droplet test, and improved profiles of velocity are obtained by the present model in simulating channel flows. Then, two cases of unsteady flows, Rayleigh-Taylor instability and droplet splashing on a thin film, are simulated. In the former case, the density ratio of 3 and Reynolds numbers of 256 and 2048 are considered. The interface shapes and spike and bubble positions are in good agreement with the results of previous studies. In the latter case, the droplet spreading radius is found to obey the power law proposed in previous studies for the density ratio of 100 and Reynolds number up to 500.

  17. Reliability and availability modeling of coupled communication networks - A simplified modeling approach

    NASA Technical Reports Server (NTRS)

    Shooman, Martin L.; Cortes, Eladio R.

    1991-01-01

    The network-complexity of LANs and of LANs that are interconnected by bridges and routers poses a challenging reliability-modeling problem. The present effort toward these problems' solution attempts to simplify them by reducing their number of states through truncation and state merging, as suggested by Shooman and Laemmel (1990). Through the use of state merging, it becomes possible to reduce the Bateman-Cortes 161 state model to a two state model with a closed-form solution. In the case of coupled networks, a technique which allows for problem-decomposition must be used.

  18. Assessment of Submarine Slope Stability on the Continental Margin off SW Taiwan

    NASA Astrophysics Data System (ADS)

    Hsu, Huai-Houh; Dong, Jia-Jyun; Cheng, Win-Bin; Su, Chih-Chieh

    2017-04-01

    The abundant gas hydrate reservoirs are distributed in the southwest (SW) off Taiwan. To explore this new energy, geological methods were systematically used and mainly emphasized on the storage potential evaluation. On the other hand, the correlation between gas hydrate dissociation and submarine slope stability is also an important issue. In this study, three submarine profiles on the active and passive continental margin were selected and assessed their slope stabilities by considering two influence factors (seismic forces and number of sedimentary layers). The gravity corers obtained from these three sites (Xiaoliuqiu, Yuan-An Ridge, and Pointer Ridge) to conduct soil laboratory tests. The physical property tests and isotropically consolidated undrained (CIU) triaxial tests were carried out to establish reference properties and shear strength parameters. Before the stability analysis is performed, it is also necessary to construct the seabed profile. For each submarine profile, data from P-waves and from S-waves generated by P-S conversion on reflection from airgun shots recorded along one line of ocean bottom seismometers were used to construct 2-D velocity sections. The seabed strata could be simplified to be only one sedimentary layer or to be multilayer in accordance with the velocity structure profile. Results show the safety factors (FS) of stability analysis are obviously different in considering the number of sedimentary layers, especially for a very thin layer of sediments on a steep slope. The simplified strata condition which treated all seabed strata as only one sedimentary layer might result in the FS lower than 1 and the slope was in an unstable state. On the contrary, the FS could be higher than 10 in a multilayer condition.

  19. Receiving water quality assessment: comparison between simplified and detailed integrated urban modelling approaches.

    PubMed

    Mannina, Giorgio; Viviani, Gaspare

    2010-01-01

    Urban water quality management often requires use of numerical models allowing the evaluation of the cause-effect relationship between the input(s) (i.e. rainfall, pollutant concentrations on catchment surface and in sewer system) and the resulting water quality response. The conventional approach to the system (i.e. sewer system, wastewater treatment plant and receiving water body), considering each component separately, does not enable optimisation of the whole system. However, recent gains in understanding and modelling make it possible to represent the system as a whole and optimise its overall performance. Indeed, integrated urban drainage modelling is of growing interest for tools to cope with Water Framework Directive requirements. Two different approaches can be employed for modelling the whole urban drainage system: detailed and simplified. Each has its advantages and disadvantages. Specifically, detailed approaches can offer a higher level of reliability in the model results, but can be very time consuming from the computational point of view. Simplified approaches are faster but may lead to greater model uncertainty due to an over-simplification. To gain insight into the above problem, two different modelling approaches have been compared with respect to their uncertainty. The first urban drainage integrated model approach uses the Saint-Venant equations and the 1D advection-dispersion equations, for the quantity and for the quality aspects, respectively. The second model approach consists of the simplified reservoir model. The analysis used a parsimonious bespoke model developed in previous studies. For the uncertainty analysis, the Generalised Likelihood Uncertainty Estimation (GLUE) procedure was used. Model reliability was evaluated on the basis of capacity of globally limiting the uncertainty. Both models have a good capability to fit the experimental data, suggesting that all adopted approaches are equivalent both for quantity and quality. The detailed model approach is more robust and presents less uncertainty in terms of uncertainty bands. On the other hand, the simplified river water quality model approach shows higher uncertainty and may be unsuitable for receiving water body quality assessment.

  20. Additive manufacturing of liquid/gas diffusion layers for low-cost and high-efficiency hydrogen production

    DOE PAGES

    Mo, Jingke; Zhang, Feng -Yuan; Dehoff, Ryan R.; ...

    2016-01-14

    The electron beam melting (EBM) additive manufacturing technology was used to fabricate titanium liquid/gas diffusion media with high-corrosion resistances and well-controllable multifunctional parameters, including two-phase transport and excellent electric/thermal conductivities, has been first demonstrated. Their applications in proton exchange membrane eletrolyzer cells have been explored in-situ in a cell and characterized ex-situ with SEM and XRD. Compared with the conventional woven liquid/gas diffusion layers (LGDLs), much better performance with EBM fabricated LGDLs is obtained due to their significant reduction of ohmic loss. The EBM technology components exhibited several distinguished advantages in fabricating gas diffusion layer: well-controllable pore morphology and structure,more » rapid prototyping, fast manufacturing, highly customizing and economic. In addition, by taking advantage of additive manufacturing, it possible to fabricate complicated three-dimensional designs of virtually any shape from a digital model into one single solid object faster, cheaper and easier, especially for titanium. More importantly, this development will provide LGDLs with control of pore size, pore shape, pore distribution, and therefore porosity and permeability, which will be very valuable to develop modeling and to validate simulations of electrolyzers with optimal and repeatable performance. Further, it will lead to a manufacturing solution to greatly simplify the PEMEC/fuel cell components and to couple the LGDLs with other parts, since they can be easily integrated together with this advanced manufacturing process« less

  1. Assessment of Geometry and In-Flow Effects on Contra-Rotating Open Rotor Broadband Noise Predictions

    NASA Technical Reports Server (NTRS)

    Zawodny, Nikolas S.; Nark, Douglas M.; Boyd, D. Douglas, Jr.

    2015-01-01

    Application of previously formulated semi-analytical models for the prediction of broadband noise due to turbulent rotor wake interactions and rotor blade trailing edges is performed on the historical baseline F31/A31 contra-rotating open rotor configuration. Simplified two-dimensional blade element analysis is performed on cambered NACA 4-digit airfoil profiles, which are meant to serve as substitutes for the actual rotor blade sectional geometries. Rotor in-flow effects such as induced axial and tangential velocities are incorporated into the noise prediction models based on supporting computational fluid dynamics (CFD) results and simplified in-flow velocity models. Emphasis is placed on the development of simplified rotor in-flow models for the purpose of performing accurate noise predictions independent of CFD information. The broadband predictions are found to compare favorably with experimental acoustic results.

  2. A simplified method for generating periodic nanostructures by interference lithography without the use of an anti-reflection coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapon, Omree; Muallem, Merav; Palatnik, Alex

    Interference lithography has proven to be a useful technique for generating periodic sub-diffraction limited nanostructures. Interference lithography can be implemented by exposing a photoresist polymer to laser light using a two-beam arrangement or more simply a one beam configuration based on a Lloyd's Mirror Interferometer. For typical photoresist layers, an anti-reflection coating must be deposited on the substrate to prevent adverse reflections from cancelling the holographic pattern of the interfering beams. For silicon substrates, such coatings are typically multilayered and complex in composition. By thinning the photoresist layer to a thickness well below the quarter wavelength of the exposing beam,more » we demonstrate that interference gratings can be generated without an anti-reflection coating on the substrate. We used ammonium dichromate doped polyvinyl alcohol as the positive photoresist because it provides excellent pinhole free layers down to thicknesses of 40 nm, and can be cross-linked by a low-cost single mode 457 nm laser, and can be etched in water. Gratings with a period of 320 nm and depth of 4 nm were realized, as well as a variety of morphologies depending on the photoresist thickness. This simplified interference lithography technique promises to be useful for generating periodic nanostructures with high fidelity and minimal substrate treatments.« less

  3. The Application of a Massively Parallel Computer to the Simulation of Electrical Wave Propagation Phenomena in the Heart Muscle Using Simplified Models

    NASA Technical Reports Server (NTRS)

    Karpoukhin, Mikhii G.; Kogan, Boris Y.; Karplus, Walter J.

    1995-01-01

    The simulation of heart arrhythmia and fibrillation are very important and challenging tasks. The solution of these problems using sophisticated mathematical models is beyond the capabilities of modern super computers. To overcome these difficulties it is proposed to break the whole simulation problem into two tightly coupled stages: generation of the action potential using sophisticated models. and propagation of the action potential using simplified models. The well known simplified models are compared and modified to bring the rate of depolarization and action potential duration restitution closer to reality. The modified method of lines is used to parallelize the computational process. The conditions for the appearance of 2D spiral waves after the application of a premature beat and the subsequent traveling of the spiral wave inside the simulated tissue are studied.

  4. Preference vs. Authority: A Comparison of Student Searching in a Subject-Specific Indexing and Abstracting Database and a Customized Discovery Layer

    ERIC Educational Resources Information Center

    Dahlen, Sarah P. C.; Hanson, Kathlene

    2017-01-01

    Discovery layers provide a simplified interface for searching library resources. Libraries with limited finances make decisions about retaining indexing and abstracting databases when similar information is available in discovery layers. These decisions should be informed by student success at finding quality information as well as satisfaction…

  5. The effect of loading time on flexible pavement dynamic response: a finite element analysis

    NASA Astrophysics Data System (ADS)

    Yin, Hao; Solaimanian, Mansour; Kumar, Tanmay; Stoffels, Shelley

    2007-12-01

    Dynamic response of asphalt concrete (AC) pavements under moving load is a key component for accurate prediction of flexible pavement performance. The time and temperature dependency of AC materials calls for utilizing advanced material characterization and mechanistic theories, such as viscoelasticity and stress/strain analysis. In layered elastic analysis, as implemented in the new Mechanistic-Empirical Pavement Design Guide (MEPDG), the time dependency is accounted for by calculating the loading times at different AC layer depths. In this study, the time effect on pavement response was evaluated by means of the concept of “pseudo temperature.” With the pavement temperature measured from instrumented thermocouples, the time and temperature dependency of AC materials was integrated into one single factor, termed “effective temperature.” Via this effective temperature, pavement responses under a transient load were predicted through finite element analysis. In the finite element model, viscoelastic behavior of AC materials was characterized through relaxation moduli, while the layers with unbound granular material were assumed to be in an elastic mode. The analysis was conducted for two different AC mixtures in a simplified flexible pavement structure at two different seasons. Finite element analysis results reveal that the loading time has a more pronounced impact on pavement response in the summer for both asphalt types. The results indicate that for reasonable prediction of dynamic response in flexible pavements, the effect of the depth-dependent loading time on pavement temperature should be considered.

  6. An Earthquake Rupture Forecast model for central Italy submitted to CSEP project

    NASA Astrophysics Data System (ADS)

    Pace, B.; Peruzza, L.

    2009-04-01

    We defined a seismogenic source model for central Italy and computed the relative forecast scenario, in order to submit the results to the CSEP (Collaboratory for the study of Earthquake Predictability, www.cseptesting.org) project. The goal of CSEP project is developing a virtual, distributed laboratory that supports a wide range of scientific prediction experiments in multiple regional or global natural laboratories, and Italy is the first region in Europe for which fully prospective testing is planned. The model we propose is essentially the Layered Seismogenic Source for Central Italy (LaSS-CI) we published in 2006 (Pace et al., 2006). It is based on three different layers of sources: the first one collects the individual faults liable to generate major earthquakes (M >5.5); the second layer is given by the instrumental seismicity analysis of the past two decades, which allows us to evaluate the background seismicity (M ~<5.0). The third layer utilizes all the instrumental earthquakes and the historical events not correlated to known structures (4.5

  7. Evaluation of the constant potential method in simulating electric double-layer capacitors

    NASA Astrophysics Data System (ADS)

    Wang, Zhenxing; Yang, Yang; Olmsted, David L.; Asta, Mark; Laird, Brian B.

    2014-11-01

    A major challenge in the molecular simulation of electric double layer capacitors (EDLCs) is the choice of an appropriate model for the electrode. Typically, in such simulations the electrode surface is modeled using a uniform fixed charge on each of the electrode atoms, which ignores the electrode response to local charge fluctuations in the electrolyte solution. In this work, we evaluate and compare this Fixed Charge Method (FCM) with the more realistic Constant Potential Method (CPM), [S. K. Reed et al., J. Chem. Phys. 126, 084704 (2007)], in which the electrode charges fluctuate in order to maintain constant electric potential in each electrode. For this comparison, we utilize a simplified LiClO4-acetonitrile/graphite EDLC. At low potential difference (ΔΨ ⩽ 2 V), the two methods yield essentially identical results for ion and solvent density profiles; however, significant differences appear at higher ΔΨ. At ΔΨ ⩾ 4 V, the CPM ion density profiles show significant enhancement (over FCM) of "inner-sphere adsorbed" Li+ ions very close to the electrode surface. The ability of the CPM electrode to respond to local charge fluctuations in the electrolyte is seen to significantly lower the energy (and barrier) for the approach of Li+ ions to the electrode surface.

  8. Detection and electrical characterization of hidden layers using time-domain analysis of terahertz reflections

    NASA Astrophysics Data System (ADS)

    Geltner, I.; Hashimshony, D.; Zigler, A.

    2002-07-01

    We use a time-domain analysis method to characterize the outer layer of a multilayer structure regardless of the inner ones, thus simplifying the characterization of all the layers. We combine this method with THz reflection spectroscopy to detect nondestructively a hidden aluminum oxide layer under opaque paint and to measure its conductivity and high-frequency dielectric constant in the THz range.

  9. Modeling Electronic Skin Response to Normal Distributed Force

    PubMed Central

    Seminara, Lucia

    2018-01-01

    The reference electronic skin is a sensor array based on PVDF (Polyvinylidene fluoride) piezoelectric polymers, coupled to a rigid substrate and covered by an elastomer layer. It is first evaluated how a distributed normal force (Hertzian distribution) is transmitted to an extended PVDF sensor through the elastomer layer. A simplified approach based on Boussinesq’s half-space assumption is used to get a qualitative picture and extensive FEM simulations allow determination of the quantitative response for the actual finite elastomer layer. The ultimate use of the present model is to estimate the electrical sensor output from a measure of a basic mechanical action at the skin surface. However this requires that the PVDF piezoelectric coefficient be known a-priori. This was not the case in the present investigation. However, the numerical model has been used to fit experimental data from a real skin prototype and to estimate the sensor piezoelectric coefficient. It turned out that this value depends on the preload and decreases as a result of PVDF aging and fatigue. This framework contains all the fundamental ingredients of a fully predictive model, suggesting a number of future developments potentially useful for skin design and validation of the fabrication technology. PMID:29401692

  10. Modeling Electronic Skin Response to Normal Distributed Force.

    PubMed

    Seminara, Lucia

    2018-02-03

    The reference electronic skin is a sensor array based on PVDF (Polyvinylidene fluoride) piezoelectric polymers, coupled to a rigid substrate and covered by an elastomer layer. It is first evaluated how a distributed normal force (Hertzian distribution) is transmitted to an extended PVDF sensor through the elastomer layer. A simplified approach based on Boussinesq's half-space assumption is used to get a qualitative picture and extensive FEM simulations allow determination of the quantitative response for the actual finite elastomer layer. The ultimate use of the present model is to estimate the electrical sensor output from a measure of a basic mechanical action at the skin surface. However this requires that the PVDF piezoelectric coefficient be known a-priori. This was not the case in the present investigation. However, the numerical model has been used to fit experimental data from a real skin prototype and to estimate the sensor piezoelectric coefficient. It turned out that this value depends on the preload and decreases as a result of PVDF aging and fatigue. This framework contains all the fundamental ingredients of a fully predictive model, suggesting a number of future developments potentially useful for skin design and validation of the fabrication technology.

  11. Monte Carlo modeling (MCML) of light propagation in skin layers for detection of fat thickness

    NASA Astrophysics Data System (ADS)

    Nilubol, Chonnipa; Treerattrakoon, Kiatnida; Mohammed, Waleed S.

    2010-05-01

    Nowadays, most activities require lesser physical actions, which could ultimately lead to accumulation of excessive body fat. The main roles of body fat are to store energy and acts as various kinds of insulators for the body. The thickness of fat layers can be measured to indicate fat-body weight ratio. Exceeding the body-mass index (BMI) could lead to many illnesses regarding obesity. Consequently, many studies have proposed various principles and techniques to measure the amount of fat within one's body. In this paper, infrared interactance in skin layers is studied for investigation of the influence of fat thickness upon photon travelling pattern in skin tissues using Monte Carlo model (MCML). Photon propagation is numerically simulated in simplified multi-layered tissues. The optical coefficients of each skin layers are accounted for different traveling paths of photons that move through random motion. The thickness of fat layer is varied, and changing in optical parameters is observed. Then the statistically obtained data are computed and analyzed for the effect of the fat layer upon reflection percentage using different wavelengths. The calculations have shown increment in the slope of change of reflection percentage versus fat thickness, when using infrared compare to visible light. This technique can be used to construct a mobile device that is capable of measuring the volume fraction of melanin and blood in the epidermis layer and dermis layer, to calculate for the necessary optical coefficients that would be necessary for measurement of fat thickness.

  12. LES Modeling of Supersonic Combustion at SCRAMJET Conditions

    NASA Astrophysics Data System (ADS)

    Vane, Zachary; Lacaze, Guilhem; Oefelein, Joseph

    2016-11-01

    Results from a series of large-eddy simulations (LES) of the Hypersonic International Flight Research Experiment (HIFiRE) are examined with emphasis placed on the coupled performance of the wall and combustion models. The test case of interest corresponds to the geometry and conditions found in the ground based experiments performed in the HIFiRE Direct Connect Rig (HDCR) in dual-mode operation. In these calculations, the turbulence and mixing characteristics of the high Reynolds number turbulent boundary layer with multi-species fuel injection are analyzed using a simplified chemical model and combustion closure to predict the heat release measured experimentally. These simulations are then used to identify different flame regimes in the combustor section. Concurrently, the performance of an equilibrium wall-model is evaluated in the vicinity of the fuel injectors and in the flame-holding cavity where regions of boundary layer and thermochemical non-equilibrium are present. Support for this research was provided by the Defense Advanced Research Projects Agency (DARPA).

  13. Wave interactions in a three-dimensional attachment line boundary layer

    NASA Technical Reports Server (NTRS)

    Hall, Philip; Mackerrell, Sharon O.

    1988-01-01

    The 3-D boundary layer on a swept wing can support different types of hydrodynamic instability. Attention is focused on the so-called spanwise contamination problem, which occurs when the attachment line boundary layer on the leading edge becomes unstable to Tollmien-Schlichting waves. In order to gain insight into the interactions important in that problem, a simplified basic state is considered. This simplified flow corresponds to the swept attachment line boundary layer on an infinite flat plate. The basic flow here is an exact solution of the Navier-Stokes equations and its stability to 2-D waves propagating along the attachment can be considered exactly at finite Reynolds number. This has been done in the linear and weakly nonlinear regimes. The corresponding problem is studied for oblique waves and their interaction with 2-D waves is investigated. In fact, oblique modes cannot be described exactly at finite Reynolds number so it is necessary to make a high Reynolds number approximation and use triple deck theory. It is shown that there are two types of oblique wave which, if excited, cause the destabilization of the 2-D mode and the breakdown of the disturbed flow at a finite distance from the leading edge. First, a low frequency mode related to the viscous stationary crossflow mode is a possible cause of breakdown. Second, a class of oblique wave with frequency comparable with that of the 2-D mode is another cause of breakdown. It is shown that the relative importance of the modes depends on the distance from the attachment line.

  14. A Simplified Biosphere Model for Global Climate Studies.

    NASA Astrophysics Data System (ADS)

    Xue, Y.; Sellers, P. J.; Kinter, J. L.; Shukla, J.

    1991-03-01

    The Simple Biosphere Model (SiB) as described in Sellers et al. is a bio-physically based model of land surface-atmosphere interaction. For some general circulation model (GCM) climate studies, further simplifications are desirable to have greater computation efficiency, and more important, to consolidate the parametric representation. Three major reductions in the complexity of SiB have been achieved in the present study.The diurnal variation of surface albedo is computed in SiB by means of a comprehensive yet complex calculation. Since the diurnal cycle is quite regular for each vegetation type, this calculation can be simplified considerably. The effect of root zone soil moisture on stomatal resistance is substantial, but the computation in SiB is complicated and expensive. We have developed approximations, which simulate the effects of reduced soil moisture more simply, keeping the essence of the biophysical concepts used in SiB.The surface stress and the fluxes of heat and moisture between the top of the vegetation canopy and an atmospheric reference level have been parameterized in an off-line version of SiB based upon the studies by Businger et al. and Paulson. We have developed a linear relationship between Richardson number and aero-dynamic resistance. Finally, the second vegetation layer of the original model does not appear explicitly after simplification. Compared to the model of Sellers et al., we have reduced the number of input parameters from 44 to 21. A comparison of results using the reduced parameter biosphere with those from the original formulation in a GCM and a zero-dimensional model shows the simplified version to reproduce the original results quite closely. After simplification, the computational requirement of SiB was reduced by about 55%.

  15. A fully resolved active musculo-mechanical model for esophageal transport

    NASA Astrophysics Data System (ADS)

    Kou, Wenjun; Bhalla, Amneet Pal Singh; Griffith, Boyce E.; Pandolfino, John E.; Kahrilas, Peter J.; Patankar, Neelesh A.

    2015-10-01

    Esophageal transport is a physiological process that mechanically transports an ingested food bolus from the pharynx to the stomach via the esophagus, a multi-layered muscular tube. This process involves interactions between the bolus, the esophagus, and the neurally coordinated activation of the esophageal muscles. In this work, we use an immersed boundary (IB) approach to simulate peristaltic transport in the esophagus. The bolus is treated as a viscous fluid that is actively transported by the muscular esophagus, and the esophagus is modeled as an actively contracting, fiber-reinforced tube. Before considering the full model of the esophagus, however, we first consider a standard benchmark problem of flow past a cylinder. Next a simplified version of our model is verified by comparison to an analytic solution to the tube dilation problem. Finally, three different complex models of the multi-layered esophagus, which differ in their activation patterns and the layouts of the mucosal layers, are extensively tested. To our knowledge, these simulations are the first of their kind to incorporate the bolus, the multi-layered esophagus tube, and muscle activation into an integrated model. Consistent with experimental observations, our simulations capture the pressure peak generated by the muscle activation pulse that travels along the bolus tail. These fully resolved simulations provide new insights into roles of the mucosal layers during bolus transport. In addition, the information on pressure and the kinematics of the esophageal wall resulting from the coordination of muscle activation is provided, which may help relate clinical data from manometry and ultrasound images to the underlying esophageal motor function.

  16. Information fusion via isocortex-based Area 37 modeling

    NASA Astrophysics Data System (ADS)

    Peterson, James K.

    2004-08-01

    A simplified model of information processing in the brain can be constructed using primary sensory input from two modalities (auditory and visual) and recurrent connections to the limbic subsystem. Information fusion would then occur in Area 37 of the temporal cortex. The creation of meta concepts from the low order primary inputs is managed by models of isocortex processing. Isocortex algorithms are used to model parietal (auditory), occipital (visual), temporal (polymodal fusion) cortex and the limbic system. Each of these four modules is constructed out of five cortical stacks in which each stack consists of three vertically oriented six layer isocortex models. The input to output training of each cortical model uses the OCOS (on center - off surround) and FFP (folded feedback pathway) circuitry of (Grossberg, 1) which is inherently a recurrent network type of learning characterized by the identification of perceptual groups. Models of this sort are thus closely related to cognitive models as it is difficult to divorce the sensory processing subsystems from the higher level processing in the associative cortex. The overall software architecture presented is biologically based and is presented as a potential architectural prototype for the development of novel sensory fusion strategies. The algorithms are motivated to some degree by specific data from projects on musical composition and autonomous fine art painting programs, but only in the sense that these projects use two specific types of auditory and visual cortex data. Hence, the architectures are presented for an artificial information processing system which utilizes two disparate sensory sources. The exact nature of the two primary sensory input streams is irrelevant.

  17. Simple models for rope substructure mechanics: application to electro-mechanical lifts

    NASA Astrophysics Data System (ADS)

    Herrera, I.; Kaczmarczyk, S.

    2016-05-01

    Mechanical systems modelled as rigid mass elements connected by tensioned slender structural members such as ropes and cables represent quite common substructures used in lift engineering and hoisting applications. Special interest is devoted by engineers and researchers to the vibratory response of such systems for optimum performance and durability. This paper presents simplified models that can be employed to determine the natural frequencies of systems having substructures of two rigid masses constrained by tensioned rope/cable elements. The exact solution for free un-damped longitudinal displacement response is discussed in the context of simple two-degree-of-freedom models. The results are compared and the influence of characteristics parameters such as the ratio of the average mass of the two rigid masses with respect to the rope mass and the deviation ratio of the two rigid masses with respect to the average mass is analyzed. This analysis gives criteria for the application of such simplified models in complex elevator and hoisting system configurations.

  18. Simplified ZrTiO x -based RRAM cell structure with rectifying characteristics by integrating Ni/n + -Si diode.

    PubMed

    Lin, Chia-Chun; Wu, Yung-Hsien; Chang, You-Tai; Sun, Cherng-En

    2014-01-01

    A simplified one-diode one-resistor (1D1R) resistive switching memory cell that uses only four layers of TaN/ZrTiO x /Ni/n(+)-Si was proposed to suppress sneak current where TaN/ZrTiO x /Ni can be regarded as a resistive-switching random access memory (RRAM) device while Ni/n(+)-Si acts as an Schottky diode. This is the first RRAM cell structure that employs metal/semiconductor Schottky diode for current rectifying. The 1D1R cell exhibits bipolar switching behavior with SET/RESET voltage close to 1 V without requiring a forming process. More importantly, the cell shows tight resistance distribution for different states, significantly rectifying characteristics with forward/reverse current ratio higher than 10(3) and a resistance ratio larger than 10(3) between two states. Furthermore, the cell also displays desirable reliability performance in terms of long data retention time of up to 10(4) s and robust endurance of 10(5) cycles. Based on the promising characteristics, the four-layer 1D1R structure holds the great potential for next-generation nonvolatile memory technology.

  19. Observations and simulations of the bottom nepheloid layer in the Lafourche Trough, Louisiana Continental Shelf

    NASA Astrophysics Data System (ADS)

    Jolliff, J.; Jarosz, E.; Penko, A.; Smith, T.

    2017-12-01

    The "Lafourche Trough" is a mud/silt -dominated, elongate seafloor depression located between transgressive sandy shoals approximately 50 km south of Cocodrie, Louisiana. These irregular bathymetric features are relicts of the abandoned Lafourche delta complex that still have an impact upon coupled sediment-hydrodynamic processes occurring today. Repeated optical and physical oceanographic surveys conducted during the spring of 2015 and winter 2017 reveal persistent bottom nepheloid layers (BNLs) characterized by extreme optical turbidity (beam attenuation 10 m-1, 532 nm). The manifestation and persistence of cohesive sediment BNLs in this area appears to result from a complex interplay between tidal currents, bathymetry, and frontal dynamics along the edge of the Mississippi River plume. Numerical experiments were performed using the Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS), an integrated air-sea-wave operational forecasting tool, that includes a simplified numerical sediment resuspension and transport scheme in order to simulate the nepheloid layer observations through the trough. The model results suggest that the wave-current bottom boundary layer is a critical factor in BNL development, and thusly, without wave model integration into COAMPS the system struggles to replicate the observations. Future modeling work will need to explore the potential suppression of physical mixing due to density perturbations along the BNL to fluid mud continuum within the bottom boundary layer.

  20. A transfer function type of simplified electrochemical model with modified boundary conditions and Padé approximation for Li-ion battery: Part 2. Modeling and parameter estimation

    NASA Astrophysics Data System (ADS)

    Yuan, Shifei; Jiang, Lei; Yin, Chengliang; Wu, Hongjie; Zhang, Xi

    2017-06-01

    The electrochemistry-based battery model can provide physics-meaningful knowledge about the lithium-ion battery system with extensive computation burdens. To motivate the development of reduced order battery model, three major contributions have been made throughout this paper: (1) the transfer function type of simplified electrochemical model is proposed to address the current-voltage relationship with Padé approximation method and modified boundary conditions for electrolyte diffusion equations. The model performance has been verified under pulse charge/discharge and dynamic stress test (DST) profiles with the standard derivation less than 0.021 V and the runtime 50 times faster. (2) the parametric relationship between the equivalent circuit model and simplified electrochemical model has been established, which will enhance the comprehension level of two models with more in-depth physical significance and provide new methods for electrochemical model parameter estimation. (3) four simplified electrochemical model parameters: equivalent resistance Req, effective diffusion coefficient in electrolyte phase Deeff, electrolyte phase volume fraction ε and open circuit voltage (OCV), have been identified by the recursive least square (RLS) algorithm with the modified DST profiles under 45, 25 and 0 °C. The simulation results indicate that the proposed model coupled with RLS algorithm can achieve high accuracy for electrochemical parameter identification in dynamic scenarios.

  1. Resonant spatiotemporal learning in large random recurrent networks.

    PubMed

    Daucé, Emmanuel; Quoy, Mathias; Doyon, Bernard

    2002-09-01

    Taking a global analogy with the structure of perceptual biological systems, we present a system composed of two layers of real-valued sigmoidal neurons. The primary layer receives stimulating spatiotemporal signals, and the secondary layer is a fully connected random recurrent network. This secondary layer spontaneously displays complex chaotic dynamics. All connections have a constant time delay. We use for our experiments a Hebbian (covariance) learning rule. This rule slowly modifies the weights under the influence of a periodic stimulus. The effect of learning is twofold: (i) it simplifies the secondary-layer dynamics, which eventually stabilizes to a periodic orbit; and (ii) it connects the secondary layer to the primary layer, and realizes a feedback from the secondary to the primary layer. This feedback signal is added to the incoming signal, and matches it (i.e., the secondary layer performs a one-step prediction of the forthcoming stimulus). After learning, a resonant behavior can be observed: the system resonates with familiar stimuli, which activates a feedback signal. In particular, this resonance allows the recognition and retrieval of partial signals, and dynamic maintenance of the memory of past stimuli. This resonance is highly sensitive to the temporal relationships and to the periodicity of the presented stimuli. When we present stimuli which do not match in time or space, the feedback remains silent. The number of different stimuli for which resonant behavior can be learned is analyzed. As with Hopfield networks, the capacity is proportional to the size of the second, recurrent layer. Moreover, the high capacity displayed allows the implementation of our model on real-time systems interacting with their environment. Such an implementation is reported in the case of a simple behavior-based recognition task on a mobile robot. Finally, we present some functional analogies with biological systems in terms of autonomy and dynamic binding, and present some hypotheses on the computational role of feedback connections.

  2. Compaction and Crystallisation in Magma Chambers: Towards a Model of the Skaergaard Intrusion

    NASA Astrophysics Data System (ADS)

    McKenzie, D. P.

    2010-12-01

    The equations governing the conservation of mass, momentum and energy are first simplified by using the extended Boussinesq approximation, and then solved numerically to study the time dependent behaviour of a compacting solidifying layer at the base of a magma chamber when variations in the horizontal plane can be neglected. The most important result is that the concept of a trapped liquid fraction, which has been widely used to model the bulk composition of layered intrusions, is a useful concept to describe the steady state behaviour of compacting layers. The result is at first sight surprising, because there is relative movement between the melt and crystals during compaction, and the system is therefore open. The reason why it is correct is because both the melt and the crystals are moving downwards in a frame fixed to the upper surface of the compacting layer. Since the mass of all elements must be conserved, what goes into the top of the layer as melt and solid must come out of its bottom as a solid when the behaviour is not time dependent. However, when time dependent behaviour occurs the concept of a trapped liquid fraction ceases to be useful. The governing equations are then used to model the concentration of phosphorous in the lower part of the Skaergaard intrusion, where it behaves incompatibly. The observed behaviour requires the viscosity of the solid part of the compacting layer to have a viscosity of about 10^18 Pa s.

  3. Determining Off-Cycle Fuel Economy Benefits of 2-Layer HVAC Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Eric W; Moniot, Matthew; Jehlik, Forrest

    This work presents a methodology to determine the off-cycle fuel economy benefit of a 2-Layer HVAC system which reduces ventilation and heat rejection losses of the heater core versus a vehicle using a standard system. Experimental dynamometer tests using EPA drive cycles over a broad range of ambient temperatures were conducted on a highly instrumented 2016 Lexus RX350 (3.5L, 8 speed automatic). These tests were conducted to measure differences in engine efficiency caused by changes in engine warmup due to the 2-Layer HVAC technology in use versus the technology being disabled (disabled equals fresh air-considered as the standard technology baseline).more » These experimental datasets were used to develop simplified response surface and lumped capacitance vehicle thermal models predictive of vehicle efficiency as a function of thermal state. These vehicle models were integrated into a database of measured on road testing and coupled with U.S. typical meteorological data to simulate vehicle efficiency across seasonal thermal and operational conditions for hundreds of thousands of drive cycles. Fuel economy benefits utilizing the 2-Layer HVAC technology are presented in addition to goodness of fit statistics of the modeling approach relative to the experimental test data.« less

  4. Thermal Rayleigh-Marangoni convection in a three-layer liquid-metal-battery model.

    PubMed

    Köllner, Thomas; Boeck, Thomas; Schumacher, Jörg

    2017-05-01

    The combined effects of buoyancy-driven Rayleigh-Bénard convection (RC) and surface tension-driven Marangoni convection (MC) are studied in a triple-layer configuration which serves as a simplified model for a liquid metal battery (LMB). The three-layer model consists of a liquid metal alloy cathode, a molten salt separation layer, and a liquid metal anode at the top. Convection is triggered by the temperature gradient between the hot electrolyte and the colder electrodes, which is a consequence of the release of resistive heat during operation. We present a linear stability analysis of the state of pure thermal conduction in combination with three-dimensional direct numerical simulations of the nonlinear turbulent evolution on the basis of a pseudospectral method. Five different modes of convection are identified in the configuration, which are partly coupled to each other: RC in the upper electrode, RC with internal heating in the molten salt layer, and MC at both interfaces between molten salt and electrode as well as anticonvection in the middle layer and lower electrode. The linear stability analysis confirms that the additional Marangoni effect in the present setup increases the growth rates of the linearly unstable modes, i.e., Marangoni and Rayleigh-Bénard instability act together in the molten salt layer. The critical Grashof and Marangoni numbers decrease with increasing middle layer thickness. The calculated thresholds for the onset of convection are found for realistic current densities of laboratory-sized LMBs. The global turbulent heat transfer follows scaling predictions for internally heated RC. The global turbulent momentum transfer is comparable with turbulent convection in the classical Rayleigh-Bénard case. In summary, our studies show that incorporating Marangoni effects generates smaller flow structures, alters the velocity magnitudes, and enhances the turbulent heat transfer across the triple-layer configuration.

  5. Thermal Rayleigh-Marangoni convection in a three-layer liquid-metal-battery model

    NASA Astrophysics Data System (ADS)

    Köllner, Thomas; Boeck, Thomas; Schumacher, Jörg

    2017-05-01

    The combined effects of buoyancy-driven Rayleigh-Bénard convection (RC) and surface tension-driven Marangoni convection (MC) are studied in a triple-layer configuration which serves as a simplified model for a liquid metal battery (LMB). The three-layer model consists of a liquid metal alloy cathode, a molten salt separation layer, and a liquid metal anode at the top. Convection is triggered by the temperature gradient between the hot electrolyte and the colder electrodes, which is a consequence of the release of resistive heat during operation. We present a linear stability analysis of the state of pure thermal conduction in combination with three-dimensional direct numerical simulations of the nonlinear turbulent evolution on the basis of a pseudospectral method. Five different modes of convection are identified in the configuration, which are partly coupled to each other: RC in the upper electrode, RC with internal heating in the molten salt layer, and MC at both interfaces between molten salt and electrode as well as anticonvection in the middle layer and lower electrode. The linear stability analysis confirms that the additional Marangoni effect in the present setup increases the growth rates of the linearly unstable modes, i.e., Marangoni and Rayleigh-Bénard instability act together in the molten salt layer. The critical Grashof and Marangoni numbers decrease with increasing middle layer thickness. The calculated thresholds for the onset of convection are found for realistic current densities of laboratory-sized LMBs. The global turbulent heat transfer follows scaling predictions for internally heated RC. The global turbulent momentum transfer is comparable with turbulent convection in the classical Rayleigh-Bénard case. In summary, our studies show that incorporating Marangoni effects generates smaller flow structures, alters the velocity magnitudes, and enhances the turbulent heat transfer across the triple-layer configuration.

  6. Chemical transport model ozone simulations for spring 2001 over the western Pacific: Comparisons with TRACE-P lidar, ozonesondes, and Total Ozone Mapping Spectrometer columns

    NASA Astrophysics Data System (ADS)

    Wild, Oliver; Sundet, Jostein K.; Prather, Michael J.; Isaksen, Ivar S. A.; Akimoto, Hajime; Browell, Edward V.; Oltmans, Samuel J.

    2003-11-01

    Two closely related chemical transport models (CTMs) employing the same high-resolution meteorological data (˜180 km × ˜180 km × ˜600 m) from the European Centre for Medium-Range Weather Forecasts are used to simulate the ozone total column and tropospheric distribution over the western Pacific region that was explored by the NASA Transport and Chemical Evolution over the Pacific (TRACE-P) measurement campaign in February-April 2001. We make extensive comparisons with ozone measurements from the lidar instrument on the NASA DC-8, with ozonesondes taken during the period around the Pacific Rim, and with TOMS total column ozone. These demonstrate that within the uncertainties of the meteorological data and the constraints of model resolution, the two CTMs (FRSGC/UCI and Oslo CTM2) can simulate the observed tropospheric ozone and do particularly well when realistic stratospheric ozone photochemistry is included. The greatest differences between the models and observations occur in the polluted boundary layer, where problems related to the simplified chemical mechanism and inadequate horizontal resolution are likely to have caused the net overestimation of about 10 ppb mole fraction. In the upper troposphere, the large variability driven by stratospheric intrusions makes agreement very sensitive to the timing of meteorological features.

  7. Computational split-field finite-difference time-domain evaluation of simplified tilt-angle models for parallel-aligned liquid-crystal devices

    NASA Astrophysics Data System (ADS)

    Márquez, Andrés; Francés, Jorge; Martínez, Francisco J.; Gallego, Sergi; Álvarez, Mariela L.; Calzado, Eva M.; Pascual, Inmaculada; Beléndez, Augusto

    2018-03-01

    Simplified analytical models with predictive capability enable simpler and faster optimization of the performance in applications of complex photonic devices. We recently demonstrated the most simplified analytical model still showing predictive capability for parallel-aligned liquid crystal on silicon (PA-LCoS) devices, which provides the voltage-dependent retardance for a very wide range of incidence angles and any wavelength in the visible. We further show that the proposed model is not only phenomenological but also physically meaningful, since two of its parameters provide the correct values for important internal properties of these devices related to the birefringence, cell gap, and director profile. Therefore, the proposed model can be used as a means to inspect internal physical properties of the cell. As an innovation, we also show the applicability of the split-field finite-difference time-domain (SF-FDTD) technique for phase-shift and retardance evaluation of PA-LCoS devices under oblique incidence. As a simplified model for PA-LCoS devices, we also consider the exact description of homogeneous birefringent slabs. However, we show that, despite its higher degree of simplification, the proposed model is more robust, providing unambiguous and physically meaningful solutions when fitting its parameters.

  8. A comparison of models for supernova remnants including cosmic rays

    NASA Astrophysics Data System (ADS)

    Kang, Hyesung; Drury, L. O'C.

    1992-11-01

    A simplified model which can follow the dynamical evolution of a supernova remnant including the acceleration of cosmic rays without carrying out full numerical simulations has been proposed by Drury, Markiewicz, & Voelk in 1989. To explore the accuracy and the merits of using such a model, we have recalculated with the simplified code the evolution of the supernova remnants considered in Jones & Kang, in which more detailed and accurate numerical simulations were done using a full hydrodynamic code based on the two-fluid approximation. For the total energy transferred to cosmic rays the two codes are in good agreement, the acceleration efficiency being the same within a factor of 2 or so. The dependence of the results of the two codes on the closure parameters for the two-fluid approximation is also qualitatively similar. The agreement is somewhat degraded in those cases where the shock is smoothed out by the cosmic rays.

  9. Lie integrable cases of the simplified multistrain/two-stream model for tuberculosis and dengue fever

    NASA Astrophysics Data System (ADS)

    Nucci, M. C.; Leach, P. G. L.

    2007-09-01

    We apply the techniques of Lie's symmetry analysis to a caricature of the simplified multistrain model of Castillo-Chavez and Feng [C. Castillo-Chavez, Z. Feng, To treat or not to treat: The case of tuberculosis, J. Math. Biol. 35 (1997) 629-656] for the transmission of tuberculosis and the coupled two-stream vector-based model of Feng and Velasco-Hernandez [Z. Feng, J.X. Velasco-Hernandez, Competitive exclusion in a vector-host model for the dengue fever, J. Math. Biol. 35 (1997) 523-544] to identify the combinations of parameters which lead to the existence of nontrivial symmetries. In particular we identify those combinations which lead to the possibility of the linearization of the system and provide the corresponding solutions. Many instances of additional symmetry are analyzed.

  10. Preparation of bilayer-core osmotic pump tablet by coating the indented core tablet.

    PubMed

    Liu, Longxiao; Xu, Xiangning

    2008-03-20

    In this paper, a bilayer-core osmotic pump tablet (OPT) which does not require laser drilling to form the drug delivery orifice is described. The bilayer-core consisted of two layers: (a) push layer and (b) drug layer, and was made with a modified upper tablet punch, which produced an indentation at the center of the drug layer surface. The indented tablets were coated by using a conventional pan-coating process. Although the bottom of the indentation could be coated, the side face of the indentation was scarcely sprayed by the coating solution and this part of the tablet remained at least partly uncoated leaving an aperture from which drug release could occur. Nifedipine was selected as the model drug. Sodium chloride was used as osmotic agent, polyvinylpyrrolidone as suspending agent and croscarmellose sodium as expanding agent. The indented core tablet was coated by ethyl cellulose as semipermeable membrane containing polyethylene glycol 400 for controlling the membrane permeability. The formulation of core tablet was optimized by orthogonal design and the release profiles of various formulations were evaluated by similarity factor (f(2)). It was found that the optimal OPT was able to deliver nifedipine at an approximate zero-order up to 24 h, independent on both release media and agitation rates. The preparation of bilayer-core OPT was simplified by coating the indented core tablet, by which sophisticated technology of the drug layer identification and laser drilling could be eliminated. It might be promising in the field of preparation of bilayer-core OPT.

  11. Towards the next generation of simplified Dark Matter models

    NASA Astrophysics Data System (ADS)

    Albert, Andreas; Bauer, Martin; Brooke, Jim; Buchmueller, Oliver; Cerdeño, David G.; Citron, Matthew; Davies, Gavin; de Cosa, Annapaola; De Roeck, Albert; De Simone, Andrea; Du Pree, Tristan; Flaecher, Henning; Fairbairn, Malcolm; Ellis, John; Grohsjean, Alexander; Hahn, Kristian; Haisch, Ulrich; Harris, Philip C.; Khoze, Valentin V.; Landsberg, Greg; McCabe, Christopher; Penning, Bjoern; Sanz, Veronica; Schwanenberger, Christian; Scott, Pat; Wardle, Nicholas

    2017-06-01

    This White Paper is an input to the ongoing discussion about the extension and refinement of simplified Dark Matter (DM) models. It is not intended as a comprehensive review of the discussed subjects, but instead summarises ideas and concepts arising from a brainstorming workshop that can be useful when defining the next generation of simplified DM models (SDMM). In this spirit, based on two concrete examples, we show how existing SDMM can be extended to provide a more accurate and comprehensive framework to interpret and characterise collider searches. In the first example we extend the canonical SDMM with a scalar mediator to include mixing with the Higgs boson. We show that this approach not only provides a better description of the underlying kinematic properties that a complete model would possess, but also offers the option of using this more realistic class of scalar mixing models to compare and combine consistently searches based on different experimental signatures. The second example outlines how a new physics signal observed in a visible channel can be connected to DM by extending a simplified model including effective couplings. In the next part of the White Paper we outline other interesting options for SDMM that could be studied in more detail in the future. Finally, we review important aspects of supersymmetric models for DM and use them to propose how to develop more complete SDMMs. This White Paper is a summary of the brainstorming meeting "Next generation of simplified Dark Matter models" that took place at Imperial College, London on May 6, 2016, and corresponding follow-up studies on selected subjects.

  12. Update on Area Production in Mixing of Supercritical Fluids

    NASA Technical Reports Server (NTRS)

    Okongo, Nora; Bellan, Josette

    2003-01-01

    The focus of this research is on supercritical C7H16/N2 and O2/H2 mixing layers undergoing transitions to turbulence. The C7H16/N2 system serves as a simplified model of hydrocarbon/air systems in gas-turbine and diesel engines; the O2/H2 system is representative of liquid rocket engines. One goal of this research is to identify ways of controlling area production to increase disintegration of fluids and enhance combustion in such engines. As used in this research, "area production" signifies the fractional rate of change of surface area oriented perpendicular to the mass-fraction gradient of a mixing layer. In the study, a database of transitional states obtained from direct numerical simulations of the aforementioned mixing layers was analyzed to investigate global layer characteristics, phenomena in regions of high density-gradient magnitude (HDGM), irreversible entropy production and its relationship to the HDGM regions, and mechanisms leading to area production.

  13. Airfoil deposition model

    NASA Technical Reports Server (NTRS)

    Kohl, F. J.

    1982-01-01

    The methodology to predict deposit evolution (deposition rate and subsequent flow of liquid deposits) as a function of fuel and air impurity content and relevant aerodynamic parameters for turbine airfoils is developed in this research. The spectrum of deposition conditions encountered in gas turbine operations includes the mechanisms of vapor deposition, small particle deposition with thermophoresis, and larger particle deposition with inertial effects. The focus is on using a simplified version of the comprehensive multicomponent vapor diffusion formalism to make deposition predictions for: (1) simple geometry collectors; and (2) gas turbine blade shapes, including both developing laminar and turbulent boundary layers. For the gas turbine blade the insights developed in previous programs are being combined with heat and mass transfer coefficient calculations using the STAN 5 boundary layer code to predict vapor deposition rates and corresponding liquid layer thicknesses on turbine blades. A computer program is being written which utilizes the local values of the calculated deposition rate and skin friction to calculate the increment in liquid condensate layer growth along a collector surface.

  14. Evaluation of Various Tack Coat Materials Using Interface Shear Device and Recommendations on a Simplified Device

    DOT National Transportation Integrated Search

    2017-12-01

    The performance of pavement interface bonds affects the integrity of pavement structures. In current practice, tack coats are used to ensure sufficient bonding between asphalt concrete (AC) layers as well as AC and concrete or aggregate base layers. ...

  15. Senstitivity analysis of horizontal heat and vapor transfer coefficients for a cloud-topped marine boundary layer during cold-air outbreaks. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Chang, Y. V.

    1986-01-01

    The effects of external parameters on the surface heat and vapor fluxes into the marine atmospheric boundary layer (MABL) during cold-air outbreaks are investigated using the numerical model of Stage and Businger (1981a). These fluxes are nondimensionalized using the horizontal heat (g1) and vapor (g2) transfer coefficient method first suggested by Chou and Atlas (1982) and further formulated by Stage (1983a). In order to simplify the problem, the boundary layer is assumed to be well mixed and horizontally homogeneous, and to have linear shoreline soundings of equivalent potential temperature and mixing ratio. Modifications of initial surface flux estimates, time step limitation, and termination conditions are made to the MABL model to obtain accurate computations. The dependence of g1 and g2 in the cloud topped boundary layer on the external parameters (wind speed, divergence, sea surface temperature, radiative sky temperature, cloud top radiation cooling, and initial shoreline soundings of temperature, and mixing ratio) is studied by a sensitivity analysis, which shows that the uncertainties of horizontal transfer coefficients caused by changes in the parameters are reasonably small.

  16. Refinements to SSiB with an Emphasis on Snow-Physics: Evaluation and Validation Using GSWP and Valdai Data

    NASA Technical Reports Server (NTRS)

    Mocko, David M.; Sud, Y. C.

    2000-01-01

    Refinements to the snow-physics scheme of SSiB (Simplified Simple Biosphere Model) are described and evaluated. The upgrades include a partial redesign of the conceptual architecture to better simulate the diurnal temperature of the snow surface. For a deep snowpack, there are two separate prognostic temperature snow layers - the top layer responds to diurnal fluctuations in the surface forcing, while the deep layer exhibits a slowly varying response. In addition, the use of a very deep soil temperature and a treatment of snow aging with its influence on snow density is parameterized and evaluated. The upgraded snow scheme produces better timing of snow melt in GSWP-style simulations using ISLSCP Initiative I data for 1987-1988 in the Russian Wheat Belt region. To simulate more realistic runoff in regions with high orographic variability, additional improvements are made to SSiB's soil hydrology. These improvements include an orography-based surface runoff scheme as well as interaction with a water table below SSiB's three soil layers. The addition of these parameterizations further help to simulate more realistic runoff and accompanying prognostic soil moisture fields in the GSWP-style simulations. In intercomparisons of the performance of the new snow-physics SSiB with its earlier versions using an 18-year single-site dataset from Valdai Russia, the version of SSiB described in this paper again produces the earliest onset of snow melt. Soil moisture and deep soil temperatures also compare favorably with observations.

  17. Axisymmetric inertial modes in a spherical shell at low Ekman numbers

    NASA Astrophysics Data System (ADS)

    Rieutord, M.; Valdettaro, L.

    2018-06-01

    We investigate the asymptotic properties of axisymmetric inertial modes propagating in a spherical shell when viscosity tends to zero. We identify three kinds of eigenmodes whose eigenvalues follow very different laws as the Ekman number $E$ becomes very small. First are modes associated with attractors of characteristics that are made of thin shear layers closely following the periodic orbit traced by the characteristic attractor. Second are modes made of shear layers that connect the critical latitude singularities of the two hemispheres of the inner boundary of the spherical shell. Third are quasi-regular modes associated with the frequency of neutral periodic orbits of characteristics. We thoroughly analyse a subset of attractor modes for which numerical solutions point to an asymptotic law governing the eigenvalues. We show that three length scales proportional to $E^{1/6}$, $E^{1/4}$ and $E^{1/3}$ control the shape of the shear layers that are associated with these modes. These scales point out the key role of the small parameter $E^{1/12}$ in these oscillatory flows. With a simplified model of the viscous Poincar\\'e equation, we can give an approximate analytical formula that reproduces the velocity field in such shear layers. Finally, we also present an analysis of the quasi-regular modes whose frequencies are close to $\\sin(\\pi/4)$ and explain why a fluid inside a spherical shell cannot respond to any periodic forcing at this frequency when viscosity vanishes.

  18. Spatial coherence effect on layer thickness determination in narrowband full-field optical coherence tomography.

    PubMed

    Safrani, Avner; Abdulhalim, Ibrahim

    2011-06-20

    Longitudinal spatial coherence (LSC) is determined by the spatial frequency content of an optical beam. The use of lenses with a high numerical aperture (NA) in full-field optical coherence tomography and a narrowband light source makes the LSC length much shorter than the temporal coherence length, hence suggesting that high-resolution 3D images of biological and multilayered samples can be obtained based on the low LSC. A simplified model is derived, supported by experimental results, which describes the expected interference output signal of multilayered samples when high-NA lenses are used together with a narrowband light source. An expression for the correction factor for the layer thickness determination is found valid for high-NA objectives. Additionally, the method was applied to a strongly scattering layer, demonstrating the potential of this method for high-resolution imaging of scattering media.

  19. Aspect ratio effects on limited scrape-off layer plasma turbulence

    NASA Astrophysics Data System (ADS)

    Jolliet, Sébastien; Halpern, Federico D.; Loizu, Joaquim; Mosetto, Annamaria; Ricci, Paolo

    2014-02-01

    The drift-reduced Braginskii model describing turbulence in the tokamak scrape-off layer is written for a general magnetic configuration with a limiter. The equilibrium is then specified for a circular concentric magnetic geometry retaining aspect ratio effects. Simulations are then carried out with the help of the global, flux-driven fluid three-dimensional code GBS [Ricci et al., Plasma Phys. Controlled Fusion 54, 124047 (2012)]. Linearly, both simulations and simplified analytical models reveal a stabilization of ballooning modes. Nonlinearly, flux-driven nonlinear simulations give a pressure characteristic length whose trends are correctly captured by the gradient removal theory [Ricci and Rogers, Phys. Plasmas 20, 010702 (2013)], that assumes the profile flattening from the linear modes as the saturation mechanism. More specifically, the linear stabilization of ballooning modes is reflected by a 15% increase in the steady-state pressure gradient obtained from GBS nonlinear simulations when going from an infinite to a realistic aspect ratio.

  20. Simplified Perovskite Solar Cell with 4.1% Efficiency Employing Inorganic CsPbBr3 as Light Absorber.

    PubMed

    Duan, Jialong; Zhao, Yuanyuan; He, Benlin; Tang, Qunwei

    2018-05-01

    Perovskite solar cells with cost-effectiveness, high power conversion efficiency, and improved stability are promising solutions to the energy crisis and environmental pollution. However, a wide-bandgap inorganic-semiconductor electron-transporting layer such as TiO 2 can harvest ultraviolet light to photodegrade perovskite halides, and the high cost of a state-of-the-art hole-transporting layer is an economic burden for commercialization. Here, the building of a simplified cesium lead bromide (CsPbBr 3 ) perovskite solar cell with fluorine-doped tin oxide (FTO)/CsPbBr 3 /carbon architecture by a multistep solution-processed deposition technology is demonstrated, achieving an efficiency as high as 4.1% and improved stability upon interfacial modification by graphene quantum dots and CsPbBrI 2 quantum dots. This work provides new opportunities of building next-generation solar cells with significantly simplified processes and reduced production costs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Study of human phonation in a full-body domain

    NASA Astrophysics Data System (ADS)

    Saurabh, Shakti; Bodony, Daniel

    2015-11-01

    The generation and propagation of the human voice is studied in two-dimensions using a full-body domain, using direct numerical simulation. The fluid/air in the vocal tract is modeled as a compressible and viscous fluid interacting with the non-linear, viscoelastic vocal folds (VF). The VF tissue material properties are multi-layered, with varying stiffness, and a finite-strain model is utilized and implemented in a quadratic finite element code. The fluid-solid domains are coupled through a boundary-fitted interface and utilize a Poisson equation-based mesh deformation method. The full-body domain includes the near VF region, the vocal tract, a simplified model of the soft palate and mouth, and extends out into the acoustic far-field. A new kind of inflow boundary condition based upon a quasi-one-dimensional formulation with constant sub-glottal volume velocity, which is linked to the VF movement, has been adopted. The sound pressure levels (SPL) measured are realistic and we analyze their connection to the VF dynamics and glottal and vocal tract geometries. Supported by the National Science Foundation (CAREER award number 1150439).

  2. Mean-velocity profile of smooth channel flow explained by a cospectral budget model with wall-blockage

    DOE PAGES

    McColl, Kaighin A.; Katul, Gabriel G.; Gentine, Pierre; ...

    2016-03-16

    A series of recent studies has shown that a model of the turbulent vertical velocity variance spectrum (F vv) combined with a simplified cospectral budget can reproduce many macroscopic flow properties of turbulent wall-bounded flows, including various features of the mean-velocity profile (MVP), i.e., the "law of the wall". While the approach reasonably models the MVP's logarithmic layer, the buffer layer displays insufficient curvature compared to measurements. The assumptions are re-examined here using a direct numerical simulation (DNS) dataset at moderate Reynolds number that includes all the requisite spectral and co-spectral information. Starting with several hypotheses for the cause ofmore » the "missing" curvature in the buffer layer, it is shown that the curvature deficit is mainly due to mismatches between (i) the modelled and DNS-observed pressure-strain terms in the cospectral budget and (ii) the DNS-observed F vv and the idealized form used in previous models. By replacing the current parameterization for the pressure-strain term with an expansive version that directly accounts for wall-blocking effects, the modelled and DNS reported pressure-strain profiles match each other in the buffer and logarithmic layers. Forcing the new model with DNS-reported F vv rather than the idealized form previously used reproduces the missing buffer layer curvature to high fidelity thereby confirming the "spectral link" between F vv and the MVP across the full profile. A broad implication of this work is that much of the macroscopic properties of the flow (such as the MVP) may be derived from the energy distribution in turbulent eddies (i.e., F vv) representing the microstate of the flow, provided the link between them accounts for wall-blocking.« less

  3. Comparison of simplified models in the prediction of two phase flow in pipelines

    NASA Astrophysics Data System (ADS)

    Jerez-Carrizales, M.; Jaramillo, J. E.; Fuentes, D.

    2014-06-01

    Prediction of two phase flow in pipelines is a common task in engineering. It is a complex phenomenon and many models have been developed to find an approximate solution to the problem. Some old models, such as the Hagedorn & Brown (HB) model, have been highlighted by many authors to give very good performance. Furthermore, many modifications have been applied to this method to improve its predictions. In this work two simplified models which are based on empiricism (HB and Mukherjee and Brill, MB) are considered. One mechanistic model which is based on the physics of the phenomenon (AN) and it still needs some correlations called closure relations is also used. Moreover, a drift flux model defined in steady state that is flow pattern dependent (HK model) is implemented. The implementation of these methods was tested using published data in the scientific literature for vertical upward flows. Furthermore, a comparison of the predictive performance of the four models is done against a well from Campo Escuela Colorado. Difference among four models is smaller than difference with experimental data from the well in Campo Escuela Colorado.

  4. A simplified memory network model based on pattern formations

    NASA Astrophysics Data System (ADS)

    Xu, Kesheng; Zhang, Xiyun; Wang, Chaoqing; Liu, Zonghua

    2014-12-01

    Many experiments have evidenced the transition with different time scales from short-term memory (STM) to long-term memory (LTM) in mammalian brains, while its theoretical understanding is still under debate. To understand its underlying mechanism, it has recently been shown that it is possible to have a long-period rhythmic synchronous firing in a scale-free network, provided the existence of both the high-degree hubs and the loops formed by low-degree nodes. We here present a simplified memory network model to show that the self-sustained synchronous firing can be observed even without these two necessary conditions. This simplified network consists of two loops of coupled excitable neurons with different synaptic conductance and with one node being the sensory neuron to receive an external stimulus signal. This model can be further used to show how the diversity of firing patterns can be selectively formed by varying the signal frequency, duration of the stimulus and network topology, which corresponds to the patterns of STM and LTM with different time scales. A theoretical analysis is presented to explain the underlying mechanism of firing patterns.

  5. A coagulation-fragmentation model for the turbulent growth and destruction of preplanetesimals

    NASA Astrophysics Data System (ADS)

    Johansen, A.; Brauer, F.; Dullemond, C.; Klahr, H.; Henning, T.

    2008-08-01

    To treat the problem of growing protoplanetary disc solids across the meter barrier, we consider a very simplified two-component coagulation-fragmentation model that consists of macroscopic boulders and smaller dust grains, the latter being the result of catastrophic collisions between the boulders. Boulders in turn increase their radii by sweeping up the dust fragments. An analytical solution of the dynamical equations predicts that growth by coagulation-fragmentation can be efficient and allow agglomeration of 10-m-sized objects within the time-scale of the radial drift. These results are supported by computer simulations of the motion of boulders and fragments in 3-D time-dependent magnetorotational turbulence. However allowing the fragments to diffuse freely out of the sedimentary layer of boulders drastically reduces the density of both boulders and fragments in the mid-plane, and thus also the growth of the boulder radius. The reason is that the turbulent diffusion time-scale is so much shorter than the collisional time-scale that dust fragments leak out of the mid-plane layer before they can be swept up by the boulders there. Our conclusion that coagulation-fragmentation is not an efficient way to grow across the meter barrier in fully turbulent protoplanetary discs confirms recent results by Brauer, Dullemond, & Henning who solved the coagulation equation in a parameterised turbulence model with collisional fragmentation, cratering, radial drift, and a range of particle sizes. We find that a relatively small population of boulders in a sedimentary mid-plane layer can populate the entire vertical extent of the disc with small grains and that these grains are not first generation dust, but have been through several agglomeration-destruction cycles during the simulations.

  6. Molecular dynamics of conformational substates for a simplified protein model

    NASA Astrophysics Data System (ADS)

    Grubmüller, Helmut; Tavan, Paul

    1994-09-01

    Extended molecular dynamics simulations covering a total of 0.232 μs have been carried out on a simplified protein model. Despite its simplified structure, that model exhibits properties similar to those of more realistic protein models. In particular, the model was found to undergo transitions between conformational substates at a time scale of several hundred picoseconds. The computed trajectories turned out to be sufficiently long as to permit a statistical analysis of that conformational dynamics. To check whether effective descriptions neglecting memory effects can reproduce the observed conformational dynamics, two stochastic models were studied. A one-dimensional Langevin effective potential model derived by elimination of subpicosecond dynamical processes could not describe the observed conformational transition rates. In contrast, a simple Markov model describing the transitions between but neglecting dynamical processes within conformational substates reproduced the observed distribution of first passage times. These findings suggest, that protein dynamics generally does not exhibit memory effects at time scales above a few hundred picoseconds, but confirms the existence of memory effects at a picosecond time scale.

  7. Development of a global aerosol model using a two-dimensional sectional method: 1. Model design

    NASA Astrophysics Data System (ADS)

    Matsui, H.

    2017-08-01

    This study develops an aerosol module, the Aerosol Two-dimensional bin module for foRmation and Aging Simulation version 2 (ATRAS2), and implements the module into a global climate model, Community Atmosphere Model. The ATRAS2 module uses a two-dimensional (2-D) sectional representation with 12 size bins for particles from 1 nm to 10 μm in dry diameter and 8 black carbon (BC) mixing state bins. The module can explicitly calculate the enhancement of absorption and cloud condensation nuclei activity of BC-containing particles by aging processes. The ATRAS2 module is an extension of a 2-D sectional aerosol module ATRAS used in our previous studies within a framework of a regional three-dimensional model. Compared with ATRAS, the computational cost of the aerosol module is reduced by more than a factor of 10 by simplifying the treatment of aerosol processes and 2-D sectional representation, while maintaining good accuracy of aerosol parameters in the simulations. Aerosol processes are simplified for condensation of sulfate, ammonium, and nitrate, organic aerosol formation, coagulation, and new particle formation processes, and box model simulations show that these simplifications do not substantially change the predicted aerosol number and mass concentrations and their mixing states. The 2-D sectional representation is simplified (the number of advected species is reduced) primarily by the treatment of chemical compositions using two interactive bin representations. The simplifications do not change the accuracy of global aerosol simulations. In part 2, comparisons with measurements and the results focused on aerosol processes such as BC aging processes are shown.

  8. Tunable Interfacial Thermal Conductance by Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Shen, Meng

    We study the mechanism of tunable heat transfer through interfaces between solids using a combination of non-equilibrium molecular dynamics simulation (NEMD), vibrational mode analysis and wave packet simulation. We investigate how heat transfer through interfaces is affected by factors including pressure, interfacial modulus, contact area and interfacial layer thickness, with an overreaching goal of developing fundamental knowledge that will allow one to tailor thermal properties of interfacial materials. The role of pressure and interfacial stiffness is unraveled by our studies on an epitaxial interface between two Lennard-Jones (LJ) crystals. The interfacial stiffness is varied by two different methods: (i) indirectly by applying pressure which due to anharmonic nature of bonding, increases interfacial stiffness, and (ii) directly by changing the interfacial bonding strength by varying the depth of the potential well of the LJ potential. When the interfacial bonding strength is low, quantitatively similar behavior to pressure tuning is observed when the interfacial thermal conductance is increased by directly varying the potential-well depth parameter of the LJ potential. By contrast, when the interfacial bonding strength is high, thermal conductance is almost pressure independent, and even slightly decreases with increasing pressure. This decrease can be explained by the change in overlap between the vibrational densities of states of the two crystalline materials. The role of contact area is studied by modeling structures comprised of Van der Waals junctions between single-walled nanotubes (SWCNT). Interfacial thermal conductance between SWCNTs is obtained from NEMD simulation as a function of crossing angle. In this case the junction conductance per unit area is essentially a constant. By contrast, interfacial thermal conductance between multiwalled carbon nanotubes (MWCNTs) is shown to increase with diameter of the nanotubes by recent experimental studies [1]. To elucidate this behavior we studied a simplified model comprised of an interface between two stacks of graphene ribbons to mimic the contact between multiwalled nanotubes. Our results, in agreement with experiment, show that the interfacial thermal conductance indeed increases with the number of graphene layers, corresponding to larger diameter and larger number of walls in MWCNT. The role of interfacial layer thickness is investigated by modeling a system of a few layers of graphene sandwiched between two silicon slabs. We show, by wave packet simulation and by theoretical calculation of a spring-mass model, that the transmission coefficient of individual vibrational modes is strongly dependent on the frequency and the number of graphene layers due to coherent interference effects; by contrast, the interfacial thermal conductance obtained in NEMD simulation, which represents an integral over all phonons, is essentially independent of the number of graphene layers, in agreement with recent experiments. Furthermore, when we heat one atomic layer of graphene directly, the effective interfacial conductance associated with heat dissipation to the silicon substrate is very small. We attribute this to the resistance associated with heat transfer between high and low frequency phonon modes within graphene. Finally, we also replaced graphene layers by a few WSe2 sheets and observed that interfacial thermal resistance of a Si/n-WSe2/Si structure increases linearly with interface thickness at least for 1 < n <= 20, indicating diffusive heat transfer mechanism, in contrast to ballistic behavior of a few graphene layers. The corresponding thermal conductivity (0.048 W m-1 K-1) of a few WSe2 layers is rather small. By comparing phonon dispersion of graphene layers and WSe2 sheets, we attribute the diffusive behavior of a few WSe2 sheets to abundant optical phonons at low and medium frequencies leading to very short mean free path. Our computational studies of effects of pressure and structural properties on interfacial thermal conductance provide fundamental insights for tunable heat transfer in nanostructures. [1] Professor D. Y. Li from University of Vanderbilt, private communication (Nov. 14, 2011).

  9. Retrieval of Haze Properties in Pluto's Atmosphere from New Horizons Observations

    NASA Astrophysics Data System (ADS)

    Fan, S.; Gao, P.; Yung, Y. L.

    2017-12-01

    On July 14th, 2015, New Horizons performed its historic close approach of Pluto, giving humanity unprecedented observations of the dwarf planet's atmosphere. One of the amazing features seen was the multi-layered haze in its atmosphere. The haze was detected both at visible wavelengths by the Long Range Reconnaissance Imager (LORRI) from direct imaging and in the ultraviolet by the Alice spectrograph from solar occultations. Preliminary analysis using simplified models showed that neither spherical nor 2-dimensional aggregate particles could satisfy both sets of observations. In this work, we present a joint retrieval of haze particles using both LORRI and Alice data, which examines various size distributions and dimensions of aggregate particles. We map out the haze particles' phase function by the forward scattering and extinction properties by the occultation. With the combination of these two approaches, the Haze's properties of size and shape are constrained.

  10. Secondary barrier construction for vessels carrying spherical low temperature liquefied gas storage tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okamoto, T.; Nishimoto, T.; Sawada, K.

    1978-05-16

    To simplify and thus reduce the cost of the secondary barrier for spherical LNG storage tanks onboard ocean-transport vessels, Japan's Hitachi Shipbuilding and Engineering Co., Ltd., has developed a new secondary-containment system that allows easy installation directly on the cargo hold's bottom plate beneath the spherical tank. The new system comprises at least two layers of rigid-foam synthetic resin sprayed on the hold plates and covered by a layer of glass mesh and adhesive. Alternatively, the layers of synthetic resin, glass mesh, and adhesive are applied to plywood attached to the hold plates by joists, thus forming an air spacemore » between the secondary barrier and the hold plates. Where the hold plates have a multisurface construction, (1) laminated rigid urethane foam blocks are butted end-to-end and are bonded to each other and to the plywood sheets at the corners between adjacent hold plates, (2) the spray-formed layers are applied between the blocks, and (3) the entire assembly is covered by a protective layer of glass mesh and adhesive.« less

  11. Controllability of multiplex, multi-time-scale networks

    NASA Astrophysics Data System (ADS)

    Pósfai, Márton; Gao, Jianxi; Cornelius, Sean P.; Barabási, Albert-László; D'Souza, Raissa M.

    2016-09-01

    The paradigm of layered networks is used to describe many real-world systems, from biological networks to social organizations and transportation systems. While recently there has been much progress in understanding the general properties of multilayer networks, our understanding of how to control such systems remains limited. One fundamental aspect that makes this endeavor challenging is that each layer can operate at a different time scale; thus, we cannot directly apply standard ideas from structural control theory of individual networks. Here we address the problem of controlling multilayer and multi-time-scale networks focusing on two-layer multiplex networks with one-to-one interlayer coupling. We investigate the practically relevant case when the control signal is applied to the nodes of one layer. We develop a theory based on disjoint path covers to determine the minimum number of inputs (Ni) necessary for full control. We show that if both layers operate on the same time scale, then the network structure of both layers equally affect controllability. In the presence of time-scale separation, controllability is enhanced if the controller interacts with the faster layer: Ni decreases as the time-scale difference increases up to a critical time-scale difference, above which Ni remains constant and is completely determined by the faster layer. We show that the critical time-scale difference is large if layer I is easy and layer II is hard to control in isolation. In contrast, control becomes increasingly difficult if the controller interacts with the layer operating on the slower time scale and increasing time-scale separation leads to increased Ni, again up to a critical value, above which Ni still depends on the structure of both layers. This critical value is largely determined by the longest path in the faster layer that does not involve cycles. By identifying the underlying mechanisms that connect time-scale difference and controllability for a simplified model, we provide crucial insight into disentangling how our ability to control real interacting complex systems is affected by a variety of sources of complexity.

  12. Multiple-relaxation-time color-gradient lattice Boltzmann model for simulating two-phase flows with high density ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ba, Yan; Liu, Haihu; Li, Qing

    2016-08-15

    In this paper, we propose a color-gradient lattice Boltzmann (LB) model for simulating two-phase flows with high density ratio and high Reynolds number. The model applies a multi-relaxation-time (MRT) collision operator to enhance the stability of the simulation. A source term, which is derived by the Chapman-Enskog analysis, is added into the MRT LB equation so that the Navier-Stokes equations can be exactly recovered. Also, a new form of the equilibrium density distribution function is used to simplify the source term. To validate the proposed model, steady flows of a static droplet and the layered channel flow are first simulatedmore » with density ratios up to 1000. Small values of spurious velocities and interfacial tension errors are found in the static droplet test, and improved profiles of velocity are obtained by the present model in simulating channel flows. Then, two cases of unsteady flows, Rayleigh-Taylor instability and droplet splashing on a thin film, are simulated. In the former case, the density ratio of 3 and Reynolds numbers of 256 and 2048 are considered. The interface shapes and spike/bubble positions are in good agreement with the results of previous studies. In the latter case, the droplet spreading radius is found to obey the power law proposed in previous studies for the density ratio of 100 and Reynolds number up to 500.« less

  13. The effect of rotatory inertia on the natural frequencies of composite beams

    NASA Astrophysics Data System (ADS)

    Auclair, Samuel C.; Sorelli, Luca; Salenikovich, Alexander; Fafard, Mario

    2016-03-01

    This paper focuses on the dynamic behaviour of two-layer composite beams, which is an important aspect of performance of structures, such as a concrete slab on a girder in residential floors or bridges. After briefly reviewing the composite beam theory based on Euler-Bernoulli hypothesis, the dynamic formulation is extended by including the effect of the relative longitudinal motion of the layers in the rotatory inertia, which can be particularly important for timber-concrete composite beams. The governing equation and the finite element model are derived in detail and validated by comparing the natural frequency predictions against other methods. A parametric analysis shows the key factors, which affect the rotatory inertia and its influence on the frequency of a single-span composite beam with different boundary conditions. The effect of the rotatory inertia on the first natural frequency of the composite beam appears below 5 percent; however, the effect on the higher natural frequencies becomes more important and not negligible in a full dynamics analysis. Finally, a simplified equation is proposed to account for the effect of the rotatory inertia on the calculation of the frequency of a composite beam for design purpose.

  14. Crash Padding Research : Volume II. Constitutive Equation Models.

    DOT National Transportation Integrated Search

    1986-08-01

    Several simplified one-dimensional constitutive equations for viscoelastic materials are reviewed and found to be inadequate for representing the impact-response performance of strongly nonlinear materials. Two multi-parameter empirical models are de...

  15. XFEM with equivalent eigenstrain for matrix-inclusion interfaces

    NASA Astrophysics Data System (ADS)

    Benvenuti, Elena

    2014-05-01

    Several engineering applications rely on particulate composite materials, and numerical modelling of the matrix-inclusion interface is therefore a crucial part of the design process. The focus of this work is on an original use of the equivalent eigenstrain concept in the development of a simplified eXtended Finite Element Method. Key points are: the replacement of the matrix-inclusion interface by a coating layer with small but finite thickness, and its simulation as an inclusion with an equivalent eigenstrain. For vanishing thickness, the model is consistent with a spring-like interface model. The problem of a spherical inclusion within a cylinder is solved. The results show that the proposed approach is effective and accurate.

  16. Designing a VMEbus FDDI adapter card

    NASA Astrophysics Data System (ADS)

    Venkataraman, Raman

    1992-03-01

    This paper presents a system architecture for a VMEbus FDDI adapter card containing a node core, FDDI block, frame buffer memory and system interface unit. Most of the functions of the PHY and MAC layers of FDDI are implemented with National's FDDI chip set and the SMT implementation is simplified with a low cost microcontroller. The factors that influence the system bus bandwidth utilization and FDDI bandwidth utilization are the data path and frame buffer memory architecture. The VRAM based frame buffer memory has two sections - - LLC frame memory and SMT frame memory. Each section with an independent serial access memory (SAM) port provides an independent access after the initial data transfer cycle on the main port and hence, the throughput is maximized on each port of the memory. The SAM port simplifies the system bus master DMA design and the VMEbus interface can be designed with low-cost off-the-shelf interface chips.

  17. A quantitative approach to aquifer vulnerability mapping

    NASA Astrophysics Data System (ADS)

    Connell, L. D.; Daele, Gerd van den

    2003-05-01

    This paper presents a procedure for calculating the transport to groundwater of surface-released contaminants. The approach is derived from a series of analytical and semi-analytical solutions to the advection-dispersion equation that include root zone and unsaturated water movement effects on the transport process. The steady-state form of these equations provides an efficient means of calculating the maximum concentration at the watertable and therefore has potential for use in vulnerability mapping. A two-layer approach is used in the solutions to represent the unsaturated profile, with the root zone corresponding to the upper layer where evapotranspiration can occur and transport properties can be in contrast to the rest of the profile. A novel transformation is applied to the advection-dispersion equation that considerably simplifies the way in which water movement is represented. To provide a combined flow and transport model an approximate procedure for water movement, using averages of the infiltration and transpiration rates with a novel, simple, quasi-steady state solution, is presented that can be used in conjunction with the solutions to the advection-dispersion equation. This quasi-steady state approximation for water movement allows for layering in the soil profile and root water uptake. Results from the combined quasi-steady state water movement and semi-analytical solute transport procedure compare well with numerical solutions to the coupled unsaturated flow and solute transport equations in a series of hypothetical simulations.

  18. Estimation of actual evapotranspiration in the Nagqu river basin of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zou, Mijun; Zhong, Lei; Ma, Yaoming; Hu, Yuanyuan; Feng, Lu

    2018-05-01

    As a critical component of the energy and water cycle, terrestrial actual evapotranspiration (ET) can be influenced by many factors. This study was mainly devoted to providing accurate and continuous estimations of actual ET for the Tibetan Plateau (TP) and analyzing the effects of its impact factors. In this study, summer observational data from the Coordinated Enhanced Observing Period (CEOP) Asia-Australia Monsoon Project (CAMP) on the Tibetan Plateau (CAMP/Tibet) for 2003 to 2004 was selected to determine actual ET and investigate its relationship with energy, hydrological, and dynamical parameters. Multiple-layer air temperature, relative humidity, net radiation flux, wind speed, precipitation, and soil moisture were used to estimate actual ET. The regression model simulation results were validated with independent data retrieved using the combinatory method. The results suggested that significant correlations exist between actual ET and hydro-meteorological parameters in the surface layer of the Nagqu river basin, among which the most important factors are energy-related elements (net radiation flux and air temperature). The results also suggested that how ET is eventually affected by precipitation and two-layer wind speed difference depends on whether their positive or negative feedback processes have a more important role. The multivariate linear regression method provided reliable estimations of actual ET; thus, 6-parameter simplified schemes and 14-parameter regular schemes were established.

  19. Memristive behavior in a junctionless flash memory cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orak, Ikram; Department of Physics, Faculty of Science and Art, Bingöl University, 12000 Bingöl; Ürel, Mustafa

    2015-06-08

    We report charge storage based memristive operation of a junctionless thin film flash memory cell when it is operated as a two terminal device by grounding the gate. Unlike memristors based on nanoionics, the presented device mode, which we refer to as the flashristor mode, potentially allows greater control over the memristive properties, allowing rational design. The mode is demonstrated using a depletion type n-channel ZnO transistor grown by atomic layer deposition (ALD), with HfO{sub 2} as the tunnel dielectric, Al{sub 2}O{sub 3} as the control dielectric, and non-stoichiometric silicon nitride as the charge storage layer. The device exhibits themore » pinched hysteresis of a memristor and in the unoptimized device, R{sub off}/R{sub on} ratios of about 3 are presented with low operating voltages below 5 V. A simplified model predicts R{sub off}/R{sub on} ratios can be improved significantly by adjusting the native threshold voltage of the devices. The repeatability of the resistive switching is excellent and devices exhibit 10{sup 6 }s retention time, which can, in principle, be improved by engineering the gate stack and storage layer properties. The flashristor mode can find use in analog information processing applications, such as neuromorphic computing, where well-behaving and highly repeatable memristive properties are desirable.« less

  20. Towards a Comprehensive Model of Jet Noise Using an Acoustic Analogy and Steady RANS Solutions

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2013-01-01

    An acoustic analogy is developed to predict the noise from jet flows. It contains two source models that independently predict the noise from turbulence and shock wave shear layer interactions. The acoustic analogy is based on the Euler equations and separates the sources from propagation. Propagation effects are taken into account by calculating the vector Green's function of the linearized Euler equations. The sources are modeled following the work of Tam and Auriault, Morris and Boluriaan, and Morris and Miller. A statistical model of the two-point cross-correlation of the velocity fluctuations is used to describe the turbulence. The acoustic analogy attempts to take into account the correct scaling of the sources for a wide range of nozzle pressure and temperature ratios. It does not make assumptions regarding fine- or large-scale turbulent noise sources, self- or shear-noise, or convective amplification. The acoustic analogy is partially informed by three-dimensional steady Reynolds-Averaged Navier-Stokes solutions that include the nozzle geometry. The predictions are compared with experiments of jets operating subsonically through supersonically and at unheated and heated temperatures. Predictions generally capture the scaling of both mixing noise and BBSAN for the conditions examined, but some discrepancies remain that are due to the accuracy of the steady RANS turbulence model closure, the equivalent sources, and the use of a simplified vector Green's function solver of the linearized Euler equations.

  1. Kinetic multi-layer model of aerosol surface and bulk chemistry (KM-SUB): the influence of interfacial transport and bulk diffusion on the oxidation of oleic acid by ozone

    NASA Astrophysics Data System (ADS)

    Shiraiwa, Manabu; Pfrang, Christian; Pöschl, Ulrich

    2010-05-01

    Aerosols are ubiquitous in the atmosphere and have strong effects on climate and public health. Gas-particle interactions can significantly change the physical and chemical properties of aerosols such as toxicity, reactivity, hygroscopicity and radiative properties. Chemical reactions and mass transport lead to continuous transformation and changes in the composition of atmospheric aerosols ("chemical aging"). Resistor model formulations are widely used to describe and investigate heterogeneous reactions and multiphase processes in laboratory, field and model studies of atmospheric chemistry. The traditional resistor models, however, are usually based on simplifying assumptions such as steady state conditions, homogeneous mixing, and limited numbers of non-interacting species and processes. In order to overcome these limitations, Pöschl, Rudich and Ammann have developed a kinetic model framework (PRA framework) with a double-layer surface concept and universally applicable rate equations and parameters for mass transport and chemical reactions at the gas-particle interface of aerosols and clouds [1]. Based on the PRA framework, we present a novel kinetic multi-layer model that explicitly resolves mass transport and chemical reaction at the surface and in the bulk of aerosol particles (KM-SUB) [2]. The model includes reversible adsorption, surface reactions and surface-bulk exchange as well as bulk diffusion and reaction. Unlike earlier models, KM-SUB does not require simplifying assumptions about steady-state conditions and radial mixing. The temporal evolution and concentration profiles of volatile and non-volatile species at the gas-particle interface and in the particle bulk can be modeled along with surface concentrations and gas uptake coefficients. In this study we explore and exemplify the effects of bulk diffusion on the rate of reactive gas uptake for a simple reference system, the ozonolysis of oleic acid particles, in comparison to experimental data and earlier model studies. We demonstrate how KM-SUB can be used to interpret and analyze experimental data from laboratory studies, and how the results can be extrapolated to atmospheric conditions. In particular, we show how interfacial transport and bulk transport, i.e., surface accommodation, bulk accommodation and bulk diffusion, influence the kinetics of the chemical reaction. Sensitivity studies suggest that in fine air particulate matter oleic acid and compounds with similar reactivity against ozone (C=C double bonds) can reach chemical life-times of multiple hours only if they are embedded in a (semi-)solid matrix with very low diffusion coefficients (~10-10 cm2 s-1). Depending on the complexity of the investigated system, unlimited numbers of volatile and non-volatile species and chemical reactions can be flexibly added and treated with KM-SUB. We propose and intend to pursue the application of KM-SUB as a basis for the development of a detailed master mechanism of aerosol chemistry as well as for the derivation of simplified but realistic parameterizations for large-scale atmospheric and climate models. References [1] Pöschl et al., Atmos. Chem. and Phys., 7, 5989-6023 (2007). [2] Shiraiwa et al., Atmos. Chem. Phys. Discuss., 10, 281-326 (2010).

  2. An analytical solution for the elastic response to surface loads imposed on a layered, transversely isotropic and self-gravitating Earth

    NASA Astrophysics Data System (ADS)

    Pan, E.; Chen, J. Y.; Bevis, M.; Bordoni, A.; Barletta, V. R.; Molavi Tabrizi, A.

    2015-12-01

    We present an analytical solution for the elastic deformation of an elastic, transversely isotropic, layered and self-gravitating Earth by surface loads. We first introduce the vector spherical harmonics to express the physical quantities in the layered Earth. This reduces the governing equations to a linear system of equations for the expansion coefficients. We then solve for the expansion coefficients analytically under the assumption (i.e. approximation) that in the mantle, the density in each layer varies as 1/r (where r is the radial coordinate) while the gravity is constant and that in the core the gravity in each layer varies linearly in r with constant density. These approximations dramatically simplify the subsequent mathematical analysis and render closed-form expressions for the expansion coefficients. We implement our solution in a MATLAB code and perform a benchmark which shows both the correctness of our solution and the implementation. We also calculate the load Love numbers (LLNs) of the PREM Earth for different degrees of the Legendre function for both isotropic and transversely isotropic, layered mantles with different core models, demonstrating for the first time the effect of Earth anisotropy on the LLNs.

  3. A superconducting nanowire can be modeled by using SPICE

    NASA Astrophysics Data System (ADS)

    Berggren, Karl K.; Zhao, Qing-Yuan; Abebe, Nathnael; Chen, Minjie; Ravindran, Prasana; McCaughan, Adam; Bardin, Joseph C.

    2018-05-01

    Modeling of superconducting nanowire single-photon detectors typically requires custom simulations or finite-element analysis in one or two dimensions. Here, we demonstrate two simplified one-dimensional SPICE models of a superconducting nanowire that can quickly and efficiently describe the electrical characteristics of a superconducting nanowire. These models may be of particular use in understanding alternative architectures for nanowire detectors and readouts.

  4. 60 GHz Tapered Transmission Line Resonators

    DTIC Science & Technology

    2008-09-15

    and out small capacitors, using varactors for part of the capacitance, or both. However, at high frequencies the size of these lumped components...the full substrate stack is made up of many oxide layers with different EM characteristics. To speed up simulation time it is imperative to simplify...the substrate stackup dramatically. This was achieved by using only one oxide layer which encompasses all metal layers. The character- istics of this

  5. Prediction of Broadband Shock-Associated Noise Including Propagation Effects Originating NASA

    NASA Technical Reports Server (NTRS)

    Miller, Steven; Morris, Philip J.

    2012-01-01

    An acoustic analogy is developed based on the Euler equations for broadband shock-associated noise (BBSAN) that directly incorporates the vector Green s function of the linearized Euler equations and a steady Reynolds-Averaged Navier-Stokes solution (SRANS) to describe the mean flow. The vector Green s function allows the BBSAN propagation through the jet shear layer to be determined. The large-scale coherent turbulence is modeled by two-point second order velocity cross-correlations. Turbulent length and time scales are related to the turbulent kinetic energy and dissipation rate. An adjoint vector Green s function solver is implemented to determine the vector Green s function based on a locally parallel mean flow at different streamwise locations. The newly developed acoustic analogy can be simplified to one that uses the Green s function associated with the Helmholtz equation, which is consistent with a previous formulation by the authors. A large number of predictions are generated using three different nozzles over a wide range of fully-expanded jet Mach numbers and jet stagnation temperatures. These predictions are compared with experimental data from multiple jet noise experimental facilities. In addition, two models for the so-called fine-scale mixing noise are included in the comparisons. Improved BBSAN predictions are obtained relative to other models that do not include propagation effects.

  6. A two-layer multiple-time-scale turbulence model and grid independence study

    NASA Technical Reports Server (NTRS)

    Kim, S.-W.; Chen, C.-P.

    1989-01-01

    A two-layer multiple-time-scale turbulence model is presented. The near-wall model is based on the classical Kolmogorov-Prandtl turbulence hypothesis and the semi-empirical logarithmic law of the wall. In the two-layer model presented, the computational domain of the conservation of mass equation and the mean momentum equation penetrated up to the wall, where no slip boundary condition has been prescribed; and the near wall boundary of the turbulence equations has been located at the fully turbulent region, yet very close to the wall, where the standard wall function method has been applied. Thus, the conservation of mass constraint can be satisfied more rigorously in the two-layer model than in the standard wall function method. In most of the two-layer turbulence models, the number of grid points to be used inside the near-wall layer posed the issue of computational efficiency. The present finite element computational results showed that the grid independent solutions were obtained with as small as two grid points, i.e., one quadratic element, inside the near wall layer. Comparison of the computational results obtained by using the two-layer model and those obtained by using the wall function method is also presented.

  7. Analysis of laser remote fusion cutting based on a mathematical model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matti, R. S.; Department of Mechanical Engineering, College of Engineering, University of Mosul, Mosul; Ilar, T.

    Laser remote fusion cutting is analyzed by the aid of a semi-analytical mathematical model of the processing front. By local calculation of the energy balance between the absorbed laser beam and the heat losses, the three-dimensional vaporization front can be calculated. Based on an empirical model for the melt flow field, from a mass balance, the melt film and the melting front can be derived, however only in a simplified manner and for quasi-steady state conditions. Front waviness and multiple reflections are not modelled. The model enables to compare the similarities, differences, and limits between laser remote fusion cutting, lasermore » remote ablation cutting, and even laser keyhole welding. In contrast to the upper part of the vaporization front, the major part only slightly varies with respect to heat flux, laser power density, absorptivity, and angle of front inclination. Statistical analysis shows that for high cutting speed, the domains of high laser power density contribute much more to the formation of the front than for low speed. The semi-analytical modelling approach offers flexibility to simplify part of the process physics while, for example, sophisticated modelling of the complex focused fibre-guided laser beam is taken into account to enable deeper analysis of the beam interaction. Mechanisms like recast layer generation, absorptivity at a wavy processing front, and melt film formation are studied too.« less

  8. Analysis of laser remote fusion cutting based on a mathematical model

    NASA Astrophysics Data System (ADS)

    Matti, R. S.; Ilar, T.; Kaplan, A. F. H.

    2013-12-01

    Laser remote fusion cutting is analyzed by the aid of a semi-analytical mathematical model of the processing front. By local calculation of the energy balance between the absorbed laser beam and the heat losses, the three-dimensional vaporization front can be calculated. Based on an empirical model for the melt flow field, from a mass balance, the melt film and the melting front can be derived, however only in a simplified manner and for quasi-steady state conditions. Front waviness and multiple reflections are not modelled. The model enables to compare the similarities, differences, and limits between laser remote fusion cutting, laser remote ablation cutting, and even laser keyhole welding. In contrast to the upper part of the vaporization front, the major part only slightly varies with respect to heat flux, laser power density, absorptivity, and angle of front inclination. Statistical analysis shows that for high cutting speed, the domains of high laser power density contribute much more to the formation of the front than for low speed. The semi-analytical modelling approach offers flexibility to simplify part of the process physics while, for example, sophisticated modelling of the complex focused fibre-guided laser beam is taken into account to enable deeper analysis of the beam interaction. Mechanisms like recast layer generation, absorptivity at a wavy processing front, and melt film formation are studied too.

  9. A fully resolved active musculo-mechanical model for esophageal transport

    PubMed Central

    Kou, Wenjun; Bhalla, Amneet Pal Singh; Griffith, Boyce E.; Pandolfino, John E.; Kahrilas, Peter J.; Patankar, Neelesh A.

    2015-01-01

    Esophageal transport is a physiological process that mechanically transports an ingested food bolus from the pharynx to the stomach via the esophagus, a multilayered muscular tube. This process involves interactions between the bolus, the esophagus, and the neurally coordinated activation of the esophageal muscles. In this work, we use an immersed boundary (IB) approach to simulate peristaltic transport in the esophagus. The bolus is treated as a viscous fluid that is actively transported by the muscular esophagus, and the esophagus is modeled as an actively contracting, fiber-reinforced tube. Before considering the full model of the esophagus, however, we first consider a standard benchmark problem of flow past a cylinder. Next a simplified version of our model is verified by comparison to an analytic solution to the tube dilation problem. Finally, three different complex models of the multi-layered esophagus, which differ in their activation patterns and the layouts of the mucosal layers, are extensively tested. To our knowledge, these simulations are the first of their kind to incorporate the bolus, the multi-layered esophagus tube, and muscle activation into an integrated model. Consistent with experimental observations, our simulations capture the pressure peak generated by the muscle activation pulse that travels along the bolus tail. These fully resolved simulations provide new insights into roles of the mucosal layers during bolus transport. In addition, the information on pressure and the kinematics of the esophageal wall resulting from the coordination of muscle activation is provided, which may help relate clinical data from manometry and ultrasound images to the underlying esophageal motor function. PMID:26190859

  10. Interior Noise Predictions in the Preliminary Design of the Large Civil Tiltrotor (LCTR2)

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Cabell, Randolph H.; Boyd, David D.

    2013-01-01

    A prediction scheme was established to compute sound pressure levels in the interior of a simplified cabin model of the second generation Large Civil Tiltrotor (LCTR2) during cruise conditions, while being excited by turbulent boundary layer flow over the fuselage, or by tiltrotor blade loading and thickness noise. Finite element models of the cabin structure, interior acoustic space, and acoustically absorbent (poro-elastic) materials in the fuselage were generated and combined into a coupled structural-acoustic model. Fluctuating power spectral densities were computed according to the Efimtsov turbulent boundary layer excitation model. Noise associated with the tiltrotor blades was predicted in the time domain as fluctuating surface pressures and converted to power spectral densities at the fuselage skin finite element nodes. A hybrid finite element (FE) approach was used to compute the low frequency acoustic cabin response over the frequency range 6-141 Hz with a 1 Hz bandwidth, and the Statistical Energy Analysis (SEA) approach was used to predict the interior noise for the 125-8000 Hz one-third octave bands.

  11. Risk stratification in middle-aged patients with congestive heart failure: prospective comparison of the Heart Failure Survival Score (HFSS) and a simplified two-variable model.

    PubMed

    Zugck, C; Krüger, C; Kell, R; Körber, S; Schellberg, D; Kübler, W; Haass, M

    2001-10-01

    The performance of a US-American scoring system (Heart Failure Survival Score, HFSS) was prospectively evaluated in a sample of ambulatory patients with congestive heart failure (CHF). Additionally, it was investigated whether the HFSS might be simplified by assessment of the distance ambulated during a 6-min walk test (6'WT) instead of determination of peak oxygen uptake (peak VO(2)). In 208 middle-aged CHF patients (age 54+/-10 years, 82% male, NYHA class 2.3+/-0.7; follow-up 28+/-14 months) the seven variables of the HFSS: CHF aetiology; heart rate; mean arterial pressure; serum sodium concentration; intraventricular conduction time; left ventricular ejection fraction (LVEF); and peak VO(2), were determined. Additionally, a 6'WT was performed. The HFSS allowed discrimination between patients at low, medium and high risk, with mortality rates of 16, 39 and 50%, respectively. However, the prognostic power of the HFSS was not superior to a two-variable model consisting only of LVEF and peak VO(2). The areas under the receiver operating curves (AUC) for prediction of 1-year survival were even higher for the two-variable model (0.84 vs. 0.74, P<0.05). Replacing peak VO(2) with 6'WT resulted in a similar AUC (0.83). The HFSS continued to predict survival when applied to this patient sample. However, the HFSS was inferior to a two-variable model containing only LVEF and either peak VO(2) or 6'WT. As the 6'WT requires no sophisticated equipment, a simplified two-variable model containing only LVEF and 6'WT may be more widely applicable, and is therefore recommended.

  12. Simplified and refined structural modeling for economical flutter analysis and design

    NASA Technical Reports Server (NTRS)

    Ricketts, R. H.; Sobieszczanski, J.

    1977-01-01

    A coordinated use of two finite-element models of different levels of refinement is presented to reduce the computer cost of the repetitive flutter analysis commonly encountered in structural resizing to meet flutter requirements. One model, termed a refined model (RM), represents a high degree of detail needed for strength-sizing and flutter analysis of an airframe. The other model, called a simplified model (SM), has a relatively much smaller number of elements and degrees-of-freedom. A systematic method of deriving an SM from a given RM is described. The method consists of judgmental and numerical operations to make the stiffness and mass of the SM elements equivalent to the corresponding substructures of RM. The structural data are automatically transferred between the two models. The bulk of analysis is performed on the SM with periodical verifications carried out by analysis of the RM. In a numerical example of a supersonic cruise aircraft with an arrow wing, this approach permitted substantial savings in computer costs and acceleration of the job turn-around.

  13. Attenuation properties of diagnostic x-ray shielding materials.

    PubMed

    Archer, B R; Fewell, T R; Conway, B J; Quinn, P W

    1994-09-01

    Single- and three-phase broad-beam x-ray attenuation data have been obtained using lead, steel, plate glass, gypsum wallboard, lead acrylic, and wood. Tube voltages of 50, 70, 100, 125, and 150 kVp were employed and the resulting curves were compared to transmission data found in the literature. To simplify computation of barrier requirements, all data sets were parametrized by nonlinear least-squares fit to a previously described mathematical model. High attenuation half value layers and the lead equivalence of the alternate materials were also determined.

  14. Simplified charge separation energetics in a two-dimensional model for polymer-based photovoltaic cells.

    PubMed

    Sylvester-Hvid, Kristian O; Ratner, Mark A

    2005-01-13

    An extension of our two-dimensional working model for photovoltaic behavior in binary polymer and/or molecular photoactive blends is presented. The objective is to provide a more-realistic description of the charge generation and charge separation processes in the blend system. This is achieved by assigning an energy to each of the possible occupation states, describing the system according to a simple energy model for exciton and geminate electron-hole pair configurations. The energy model takes as primary input the ionization potential, electron affinity and optical gap of the components of the blend. The underlying photovoltaic model considers a nanoscopic subvolume of a photoactive blend and represents its p- and n-type domain morphology, in terms of a two-dimensional network of donor and acceptor sites. The nearest-neighbor hopping of charge carriers in the illuminated system is described in terms of transitions between different occupation states. The equations governing the dynamics of these states are cast into a linear master equation, which can be solved for arbitrary two-dimensional donor-acceptor networks, assuming stationary conditions. The implications of incorporating the energy model into the photovoltaic model are illustrated by simulations of the short circuit current versus thickness of the photoactive blend layer for different choices of energy parameters and donor-acceptor topology. The results suggest the existence of an optimal thickness of the photoactive film in bulk heterojunctions, based on kinetic considerations alone, and that this optimal thickness is very sensitive to the choice of energy parameters. The results also indicate space-charge limiting effects for interpenetrating donor-acceptor networks with characteristic domain sizes in the nanometer range and high driving force for the photoinduced electron transfer across the donor-acceptor internal interface.

  15. FDTD-based quantitative analysis of terahertz wave detection for multilayered structures.

    PubMed

    Tu, Wanli; Zhong, Shuncong; Shen, Yaochun; Zhou, Qing; Yao, Ligang

    2014-10-01

    Experimental investigations have shown that terahertz pulsed imaging (TPI) is able to quantitatively characterize a range of multilayered media (e.g., biological issues, pharmaceutical tablet coatings, layered polymer composites, etc.). Advanced modeling of the interaction of terahertz radiation with a multilayered medium is required to enable the wide application of terahertz technology in a number of emerging fields, including nondestructive testing. Indeed, there have already been many theoretical analyses performed on the propagation of terahertz radiation in various multilayered media. However, to date, most of these studies used 1D or 2D models, and the dispersive nature of the dielectric layers was not considered or was simplified. In the present work, the theoretical framework of using terahertz waves for the quantitative characterization of multilayered media was established. A 3D model based on the finite difference time domain (FDTD) method is proposed. A batch of pharmaceutical tablets with a single coating layer of different coating thicknesses and different refractive indices was modeled. The reflected terahertz wave from such a sample was computed using the FDTD method, assuming that the incident terahertz wave is broadband, covering a frequency range up to 3.5 THz. The simulated results for all of the pharmaceutical-coated tablets considered were found to be in good agreement with the experimental results obtained using a commercial TPI system. In addition, we studied a three-layered medium to mimic the occurrence of defects in the sample.

  16. Electron-transporting small molecule/ o-xylene hybrid additives to boost the performance of simplified inverted polymer solar cells

    NASA Astrophysics Data System (ADS)

    Qin, Dashan; Cao, Huan; Zhang, Jidong

    2017-05-01

    Electron-transporting small molecule bathophenanthroline (Bphen) together with o-xylene has been used as hybrid additives to improve the performance of simplified inverted polymer solar cells employing ITO alone as cathode and photoactive layer based on polymer [[2,6'-4,8-di(5-ethylhexylthienyl)benzo[1,2-b;3,3-b] dithiophene] [3-fluoro-2[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl

  17. The Effect of the Thickness of the Sensitive Layer on the Performance of the Accumulating NOx Sensor

    PubMed Central

    Groß, Andrea; Richter, Miriam; Kubinski, David J.; Visser, Jacobus H.; Moos, Ralf

    2012-01-01

    A novel and promising method to measure low levels of NOx utilizes the accumulating sensor principle. During an integration cycle, incoming NOx molecules are stored in a sensitive layer based on an automotive lean NOx trap (LNT) material that changes its electrical resistivity proportional to the amount of stored NOx, making the sensor suitable for long-term detection of low levels of NOx. In this study, the influence of the thickness of the sensitive layer, prepared by multiple screen-printing, is investigated. All samples show good accumulating sensing properties for both NO and NO2. In accordance to a simplified model, the base resistance of the sensitive layer and the sensitivity to NOx decrease with increasing thickness. Contrarily, the sensor response time increases. The linear measurement range of all samples ends at a sensor response of about 30% resulting in an increase of the linearly detectable amount with the thickness. Hence, the variation of the thickness of the sensitive layer is a powerful tool to adapt the linear measurement range (proportional to the thickness) as well as the sensitivity (proportional to the inverse thickness) to the application requirements. Calculations combining the sensor model with the measurement results indicate that for operation in the linear range, about 3% of the LNT material is converted to nitrate.

  18. A Physically Based Distributed Hydrologic Model with a no-conventional terrain analysis

    NASA Astrophysics Data System (ADS)

    Rulli, M.; Menduni, G.; Rosso, R.

    2003-12-01

    A physically based distributed hydrological model is presented. Starting from a contour-based terrain analysis, the model makes a no-conventional discretization of the terrain. From the maximum slope lines, obtained using the principles of minimum distance and orthogonality, the models obtains a stream tubes structure. The implemented model automatically can find the terrain morphological characteristics, e.g. peaks and saddles, and deal with them respecting the stream flow. Using this type of discretization, the model divides the elements in which the water flows in two classes; the cells, that are mixtilinear polygons where the overland flow is modelled as a sheet flow and channels, obtained by the interception of two or more stream tubes and whenever surface runoff occurs, the surface runoff is channelised. The permanent drainage paths can are calculated using one of the most common methods: threshold area, variable threshold area or curvature. The subsurface flow is modelled using the Simplified Bucket Model. The model considers three type of overland flow, depending on how it is produced:infiltration excess;saturation of superficial layer of the soil and exfiltration of sub-surface flow from upstream. The surface flow and the subsurface flow across a element are routed according with the mono-dimensional equation of the kinematic wave. The also model considers the spatial variability of the channels geometry with the flow. The channels have a rectangular section with length of the base decreasing with the distance from the outlet and depending on a power of the flow. The model was tested on the Rio Gallina and Missiaga catchments and the results showed model good performances.

  19. Pressure distribution under flexible polishing tools. II - Cylindrical (conical) optics

    NASA Astrophysics Data System (ADS)

    Mehta, Pravin K.

    1990-10-01

    A previously developed eigenvalue model is extended to determine polishing pressure distribution by rectangular tools with unequal stiffness in two directions on cylindrical optics. Tool misfit is divided into two simplified one-dimensional problems and one simplified two-dimensional problem. Tools with nonuniform cross-sections are treated with a new one-dimensional eigenvalue algorithm, permitting evaluation of tool designs where the edge is more flexible than the interior. This maintains edge pressure variations within acceptable parameters. Finite element modeling is employed to resolve upper bounds, which handle pressure changes in the two-dimensional misfit element. Paraboloids and hyperboloids from the NASA AXAF system are treated with the AXAFPOD software for this method, and are verified with NASTRAN finite element analyses. The maximum deviation from the one-dimensional azimuthal pressure variation is predicted to be 10 percent and 20 percent for paraboloids and hyperboloids, respectively.

  20. Brief Communication: A Simplified Approach to Transient Convective Droplet Evaporation and Burning

    NASA Technical Reports Server (NTRS)

    Madooglu, K.; Karagozian, A. R.

    1994-01-01

    Empirical correlations for evaporation rates from single fuel droplets have existed since the 1930s. These correlations, which will be referred to in this article as Froessling/Ranz-Marshall types of correlations, are appropriate to the special cases of steady-state evaporation in the absence of chemical reaction. In a previous article by the authors, the quasi-steady evaporation and burning processes associated with a fuel drop in a convective environment are examined through a droplet model based on the boundary layer approach. For droplet Reynolds numbers of practical interest, this model produces very reasonable steady state as well as quasi-time-dependent droplet simulations, requiring relatively short computational times and yielding good agreement with the above-mentioned empirical correlations. The steady-state case, however, is usually relevant to practical combustor situations only when the drop has reached a nearly uniform temperature since the heating process of the drop cannot be considered to be quasi-steady. In the present study, the transient heating process of the droplet interior during evaporation and/or burning is taken into account, and thus calculations pertaining to the entire life-time of the droplet are carried out. It is of particular interest here to obtain simplified correlations to describe the transient behavior of evaporating and burning droplets; these may be incorporated with greater ease into spray calculations. Accordingly, we have chosen to use stagnation conditions in the present model in a modification of the Froessling/Ranz-Marshall correlations. These modified correlations, incorporating an effective transfer number, produce a fairly accurate representation of droplet evaporation and burning, while requiring only one tenth the computational effort used in a full boundary layer solution.

  1. Theory and modelling of light-matter interactions in photonic crystal cavity systems coupled to quantum dot ensembles

    NASA Astrophysics Data System (ADS)

    Cartar, William K.

    Photonic crystal microcavity quantum dot lasers show promise as high quality-factor, low threshold lasers, that can be integrated on-chip, with tunable room temperature opera- tions. However, such semiconductor microcavity lasers are notoriously difficult to model in a self-consistent way and are primarily modelled by simplified rate equation approxima- tions, typically fit to experimental data, which limits investigations of their optimization and fundamental light-matter interaction processes. Moreover, simple cavity mode optical theory and rate equations have recently been shown to fail in explaining lasing threshold trends in triangular lattice photonic crystal cavities as a function of cavity size, and the potential impact of fabrication disorder is not well understood. In this thesis, we develop a simple but powerful numerical scheme for modelling the quantum dot active layer used for lasing in these photonic crystal cavity structures, as an ensemble of randomly posi- tioned artificial two-level atoms. Each two-level atom is defined by optical Bloch equations solved by a quantum master equation that includes phenomenological pure dephasing and an incoherent pump rate that effectively models a multi-level gain system. Light-matter in- teractions of both passive and lasing structures are analyzed using simulation defined tools and post-simulation Green function techniques. We implement an active layer ensemble of up to 24,000 statistically unique quantum dots in photonic crystal cavity simulations, using a self-consistent finite-difference time-domain method. This method has the distinct advantage of capturing effects such as dipole-dipole coupling and radiative decay, without the need for any phenomenological terms, since the time-domain solution self-consistently captures these effects. Our analysis demonstrates a powerful ability to connect with recent experimental trends, while remaining completely general in its set-up; for example, we do not invoke common approximations such as the rotating-wave or slowly-varying envelope approximations, and solve dynamics with zero a priori knowledge.

  2. The effect of acoustically levitated objects on the dynamics of ultrasonic actuators

    NASA Astrophysics Data System (ADS)

    Ilssar, D.; Bucher, I.

    2017-03-01

    This paper presents a comprehensive model, coupling a piezoelectric actuator operating at ultrasonic frequencies to a near-field acoustically levitated object through a compressible thin layer of gas such that the combined dynamic response of the system can be predicted. The latter is derived by introducing a simplified model of the nonlinear squeezed layer of gas and a variational model of the solid structure and the piezoelectric elements. Since the harmonic forces applied by the entrapped fluid depend on the levitated object's height and vertical motion, the latter affects the impedance of the driving surface, affecting the natural frequencies, damping ratios, and amplification of the actuator. Thus, the developed model is helpful when devising a resonance tracking algorithm aimed to excite a near-field acoustic levitation based apparatus optimally. Validation of the suggested model was carried out using a focused experimental setup geared to eliminate the effects that were already verified in the past. In agreement with the model, the experimental results showed that the natural frequency and damping ratio of a designated mode decrease monotonically with the levitated object's average height, whereas the amplification of the mode increases with the levitation height.

  3. Some Simple Solutions to the Problem of Predicting Boundary-Layer Self-Induced Pressures

    NASA Technical Reports Server (NTRS)

    Bertram, Mitchel H.; Blackstock, Thomas A.

    1961-01-01

    Simplified theoretical approaches are shown, based on hypersonic similarity boundary-layer theory, which allow reasonably accurate estimates to be made of the surface pressures on plates on which viscous effects are important. The consideration of viscous effects includes the cases where curved surfaces, stream pressure gradients, and leadingedge bluntness are important factors.

  4. A comparison study of one-and two-dimensional hydraulic models for river environments.

    DOT National Transportation Integrated Search

    2017-05-01

    Computer models are used every day to analyze river systems for a wide variety of reasons vital to : the public interest. For decades most hydraulic engineers have been limited to models that simplify the fluid : mechanics to the unidirectional case....

  5. Numerical investigation of cryogen re-gasification in a plate heat exchanger

    NASA Astrophysics Data System (ADS)

    Malecha, Ziemowit; Płuszka, Paweł; Brenk, Arkadiusz

    2017-12-01

    The efficient re-gasification of cryogen is a crucial process in many cryogenic installations. It is especially important in the case of LNG evaporators used in stationary and mobile applications (e.g. marine and land transport). Other gases, like nitrogen or argon can be obtained at highest purity after re-gasification from their liquid states. Plate heat exchangers (PHE) are characterized by a high efficiency. Application of PHE for liquid gas vaporization processes can be beneficial. PHE design and optimization can be significantly supported by numerical modelling. Such calculations are very challenging due to very high computational demands and complexity related to phase change modelling. In the present work, a simplified mathematical model of a two phase flow with phase change was introduced. To ensure fast calculations a simplified two-dimensional (2D) numerical model of a real PHE was developed. It was validated with experimental measurements and finally used for LNG re-gasification modelling. The proposed numerical model showed to be orders of magnitude faster than its full 3D original.

  6. Validation of scaffold design optimization in bone tissue engineering: finite element modeling versus designed experiments.

    PubMed

    Uth, Nicholas; Mueller, Jens; Smucker, Byran; Yousefi, Azizeh-Mitra

    2017-02-21

    This study reports the development of biological/synthetic scaffolds for bone tissue engineering (TE) via 3D bioplotting. These scaffolds were composed of poly(L-lactic-co-glycolic acid) (PLGA), type I collagen, and nano-hydroxyapatite (nHA) in an attempt to mimic the extracellular matrix of bone. The solvent used for processing the scaffolds was 1,1,1,3,3,3-hexafluoro-2-propanol. The produced scaffolds were characterized by scanning electron microscopy, microcomputed tomography, thermogravimetric analysis, and unconfined compression test. This study also sought to validate the use of finite-element optimization in COMSOL Multiphysics for scaffold design. Scaffold topology was simplified to three factors: nHA content, strand diameter, and strand spacing. These factors affect the ability of the scaffold to bear mechanical loads and how porous the structure can be. Twenty four scaffolds were constructed according to an I-optimal, split-plot designed experiment (DE) in order to generate experimental models of the factor-response relationships. Within the design region, the DE and COMSOL models agreed in their recommended optimal nHA (30%) and strand diameter (460 μm). However, the two methods disagreed by more than 30% in strand spacing (908 μm for DE; 601 μm for COMSOL). Seven scaffolds were 3D-bioplotted to validate the predictions of DE and COMSOL models (4.5-9.9 MPa measured moduli). The predictions for these scaffolds showed relative agreement for scaffold porosity (mean absolute percentage error of 4% for DE and 13% for COMSOL), but were substantially poorer for scaffold modulus (51% for DE; 21% for COMSOL), partly due to some simplifying assumptions made by the models. Expanding the design region in future experiments (e.g., higher nHA content and strand diameter), developing an efficient solvent evaporation method, and exerting a greater control over layer overlap could allow developing PLGA-nHA-collagen scaffolds to meet the mechanical requirements for bone TE.

  7. Experimental investigation of the flow in a simplified model of water lubricated axial thrust bearing

    NASA Astrophysics Data System (ADS)

    Kirschner, O.; Ruprecht, A.; Riedelbauch, S.

    2014-03-01

    In hydropower plants the axial thrust bearing takes up the hydraulic axial thrust of the runner and, in case of vertical shafts, the entire weight of all rotating masses. The use of water lubricated bearings can eliminate the oil leakage risk possibly contaminating the environment. A complex flow is generated by the smaller film thickness due to the lower viscosity of water compared with oil. Measurements on a simplified hydrostatic axial trust bearing model were accomplished for validating CFD analysis of water lubricated bearings. In this simplified model, fixed pads are implemented and the width of the gap was enlarged to create a higher resolution in space for the measurements. Most parts of the model were manufactured from acrylic glass to get optical access for measurement with PIV. The focus of these measurements is on the flow within the space between two pads. Additional to the PIV- measurement, the pressure on the wall of the rotating disk is captured by pressure transducers. The model bearing measurement results are presented for varied operating conditions.

  8. High performance low voltage organic field effect transistors on plastic substrate for amplifier circuits

    NASA Astrophysics Data System (ADS)

    Houin, G.; Duez, F.; Garcia, L.; Cantatore, E.; Torricelli, F.; Hirsch, L.; Belot, D.; Pellet, C.; Abbas, M.

    2016-09-01

    The high performance air stable organic semiconductor small molecule dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) was chosen as active layer for field effect transistors built to realize flexible amplifier circuits. Initial device on rigid Si/SiO2 substrate showed appreciable performance with hysteresis-free characteristics. A number of approaches were applied to simplify the process, improve device performance and decrease the operating voltage: they include an oxide interfacial layer to decrease contact resistance; a polymer passivation layer to optimize semiconductor/dielectric interface and an anodized high-k oxide as dielectric layer for low voltage operation. The devices fabricated on plastic substrate yielded excellent electrical characteristics, showing mobility of 1.6 cm2/Vs, lack of hysteresis, operation below 5 V and on/off current ratio above 105. An OFET model based on variable ranging hopping theory was used to extract the relevant parameters from the transfer and output characteristics, which enabled us to simulate our devices achieving reasonable agreement with the measurements

  9. Release from or through a wax matrix system. IV. Generalized expression of the release process for a reservoir device tablet.

    PubMed

    Yonezawa, Yorinobu; Ishida, Sumio; Suzuki, Shinobu; Sunada, Hisakazu

    2002-09-01

    Generalization of the release process through the wax matrix layer was examined by use of a reservoir device tablet. The wax matrix layer of the reservoir device tablet was prepared from a physical mixture of lactose and hydrogenated castor oil to simplify the release properties. Release through the wax matrix layer showed zero-order kinetics in a steady state after a given lag time, and could be divided into two stages. The first stage was the formation process of water channel by dissolving the soluble component in the wax matrix layer. The lag time obtained by applying the square root law equation was well connected with the amount of the matrix layer and mixed weight ratio of components in this layer. The second stage was the zero-order release process of drug in the reservoir through the wax matrix layer, because the effective surface area was fixed. The release rate constants were connected with thickness of the matrix layer and permeability coefficient, and the permeability coefficients were connected with the diffusion coefficient of drug and porosity. Hence the release rate constant could be connected with the amount of matrix layer and the mixed weight ratio of components in the matrix layer. It was therefore suggested that the release process could be generalized using the amount of matrix layer and the mixed weight ratio of components in the matrix layer.

  10. Spin injection and transport in semiconductor and metal nanostructures

    NASA Astrophysics Data System (ADS)

    Zhu, Lei

    In this thesis we investigate spin injection and transport in semiconductor and metal nanostructures. To overcome the limitation imposed by the low efficiency of spin injection and extraction and strict requirements for retention of spin polarization within the semiconductor, novel device structures with additional logic functionality and optimized device performance have been developed. Weak localization/antilocalization measurements and analysis are used to assess the influence of surface treatments on elastic, inelastic and spin-orbit scatterings during the electron transport within the two-dimensional electron layer at the InAs surface. Furthermore, we have used spin-valve and scanned probe microscopy measurements to investigate the influence of sulfur-based surface treatments and electrically insulating barrier layers on spin injection into, and spin transport within, the two-dimensional electron layer at the surface of p-type InAs. We also demonstrate and analyze a three-terminal, all-electrical spintronic switching device, combining charge current cancellation by appropriate device biasing and ballistic electron transport. The device yields a robust, electrically amplified spin-dependent current signal despite modest efficiency in electrical injection of spin-polarized electrons. Detailed analyses provide insight into the advantages of ballistic, as opposed to diffusive, transport in device operation, as well as scalability to smaller dimensions, and allow us to eliminate the possibility of phenomena unrelated to spin transport contributing to the observed device functionality. The influence of the device geometry on magnetoresistance of nanoscale spin-valve structures is also demonstrated and discussed. Shortcomings of the simplified one-dimensional spin diffusion model for spin valve are elucidated, with comparison of the thickness and the spin diffusion length in the nonmagnetic channel as the criterion for validity of the 1D model. Our work contributes directly to the realization of spin valve and spin transistor devices based on III-V semiconductors, and offers new opportunities to engineer the behavior of spintronic devices at the nanoscale.

  11. Flap Edge Aeroacoustic Measurements and Predictions

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Humphreys, William M., Jr.

    2000-01-01

    An aeroacoustic model test has been conducted to investigate the mechanisms of sound generation on high-lift wing configurations. This paper presents an analysis of flap side-edge noise, which is often the most dominant source. A model of a main element wing section with a half-span flap was tested at low speeds of up to a Mach number of 0.17, corresponding to a wing chord Reynolds number of approximately 1.7 million. Results are presented for flat (or blunt), flanged, and round flap-edge geometries, with and without boundary-layer tripping, deployed at both moderate and high flap angles. The acoustic database is obtained from a Small Aperture Directional Array (SADA) of microphones, which was constructed to electronically steer to different regions of the model and to obtain farfield noise spectra and directivity from these regions. The basic flap-edge aerodynamics is established by static surface pressure data, as well as by Computational Fluid Dynamics (CFD) calculations and simplified edge flow analyses. Distributions of unsteady pressure sensors over the flap allow the noise source regions to be defined and quantified via cross-spectral diagnostics using the SADA output. It is found that shear layer instability and related pressure scatter is the primary noise mechanism. For the flat edge flap, two noise prediction methods based on unsteady surface pressure measurements are evaluated and compared to measured noise. One is a new causality spectral approach developed here. The other is a new application of an edge-noise scatter prediction method. The good comparisons for both approaches suggest that much of the physics is captured by the prediction models. Areas of disagreement appear to reveal when the assumed edge noise mechanism does not fully define the noise production. For the different edge conditions, extensive spectra and directivity are presented. Significantly, for each edge configuration, the spectra for different flow speeds, flap angles, and surface roughness were successfully scaled by utilizing aerodynamic performance and boundary layer scaling methods developed herein.

  12. Flap Edge Aeroacoustic Measurements and Predictions

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Humphreys, William M., Jr.

    2000-01-01

    An aeroacoustic model test has been conducted to investigate the mechanisms of sound generation on high-lift wing configurations. This paper presents an analysis of flap side-edge noise, which is often the most dominant source. A model of a main element wing section with a half-span flap was tested at low speeds of up to a Mach number of 0.17, corresponding to a wing chord Reynolds number of approximately 1.7 million. Results are presented for flat (or blunt), flanged, and round flap-edge geometries, with and without boundary-layer tripping, deployed at both moderate and high flap angles. The acoustic database is obtained from a Small Aperture Directional Array (SADA) of microphones, which was constructed to electronically steer to different regions of the model and to obtain farfield noise spectra and directivity from these regions. The basic flap-edge aerodynamics is established by static surface pressure data, as well as by Computational Fluid Dynamics (CFD) calculations and simplified edge flow analyses. Distributions of unsteady pressure sensors over the flap allow the noise source regions to be defined and quantified via cross-spectral diagnostics using the SADA output. It is found that shear layer instability and related pressure scatter is the primary noise mechanism. For the flat edge flap, two noise prediction methods based on unsteady-surface-pressure measurements are evaluated and compared to measured noise. One is a new causality spectral approach developed here. The other is a new application of an edge-noise scatter prediction method. The good comparisons for both approaches suggest that much of the physics is captured by the prediction models. Areas of disagreement appear to reveal when the assumed edge noise mechanism does not fully define, the noise production. For the different edge conditions, extensive spectra and directivity are presented. Significantly, for each edge configuration, the spectra for different flow speeds, flap angles, and surface roughness were successfully scaled by utilizing aerodynamic performance and boundary layer scaling method developed herein.

  13. Full three-dimensional morphology evolution of amorphous thin films for atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Jin, Lingpeng; Li, Yawei; Hu, Zhigao; Chu, Junhao

    2018-04-01

    We introduce a Monte Carlo model based on random deposition and diffusion limited aggregation in order to study the morphological evolution of deposition of nanofilm, which is difficult to carry out by the experimental methods. The instantaneous evolution of morphology and the corresponding parameters are observed when employing a novel perspective, modeling the aggregation of nanoscale units. Despite simplifying the chemical details, the simulation results qualitatively describe experiments with bulky precursors, and the strong dependence of growth rate on steric hindrance is obtained. Moreover, the well know behavior that the delay before steady growth is accurately predicted and analyzed based solely on modeling. Through this work, the great influence of steric hindrance on the initial stage of ALD is described.

  14. Large eddy simulation of reactive pollutants in a deep urban street canyon: Coupling dynamics with O3-NOx-VOC chemistry.

    PubMed

    Zhong, Jian; Cai, Xiao-Ming; Bloss, William James

    2017-05-01

    A large eddy simulation (LES) model coupled with O 3 -NO x -VOC chemistry is implemented to simulate the coupled effects of emissions, mixing and chemical pre-processing within an idealised deep (aspect ratio = 2) urban street canyon under a weak wind condition. Reactive pollutants exhibit significant spatial variations in the presence of two vertically aligned unsteady vortices formed in the canyon. Comparison of the LES results from two chemical schemes (simple NO x -O 3 chemistry and a more comprehensive Reduced Chemical Scheme (RCS) chemical mechanism) shows that the concentrations of NO 2 and O x inside the street canyon are enhanced by approximately 30-40% via OH/HO 2 chemistry. NO, NO x , O 3 , OH and HO 2 are chemically consumed, while NO 2 and O x (total oxidant) are chemically produced within the canyon environment. Within-canyon pre-processing increases oxidant fluxes from the canyon to the overlying boundary layer, and this effect is greater for deeper street canyons (as found in many traditional European urban centres) than shallower (lower aspect ratio) streets. There is clear evidence of distinct behaviours for emitted chemical species and entrained chemical species, and positive (or negative) values of intensities of segregations are found between pairs of species with similar (or opposite) behaviour. The simplified two-box model underestimated NO and O 3 levels, but overestimated NO 2 levels for both the lower and upper canyon compared with the more realistic LES-chemistry model. This suggests that the segregation effect due to incomplete mixing reduces the chemical conversion rate of NO to NO 2 . This study reveals the impacts of nonlinear O 3 -NO x -VOC photochemical processes in the incomplete mixing environment and provides a better understanding of the pre-processing of emissions within canyons, prior to their release to the urban boundary layer, through the coupling of street canyon dynamics and chemistry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Experimental and Numerical Analysis of Narrowband Coherent Rayleigh-Brillouin Scattering in Atomic and Molecular Species (Pre Print)

    DTIC Science & Technology

    2012-02-01

    use of polar gas species. While current simplified models have adequately predicted CRS and CRBS line shapes for a wide variety of cases, multiple ...published simplified models are presented for argon, molecular nitrogen, and methane at 300 & 500 K and 1 atm. The simplified models require uncertain gas... models are presented for argon, molecular nitrogen, and methane at 300 & 500 K and 1 atm. The simplified models require uncertain gas properties

  16. Microstructural Development during Directional Solidification of Peritectic Alloys

    NASA Technical Reports Server (NTRS)

    Lograsso, Thomas A.

    1996-01-01

    A thorough understanding of the microstructures produced through solidification in peritectic systems has yet to be achieved, even though a large number of industrially and scientifically significant materials are in this class. One type of microstructure frequently observed during directional solidification consists of alternating layers of primary solid and peritectic solid oriented perpendicular to the growth direction. This layer formation is usually reported for alloy compositions within the two-phase region of the peritectic isotherm and for temperature gradient and growth rate conditions that result in a planar solid-liquid interface. Layered growth in peritectic alloys has not previously been characterized on a quantitative basis, nor has a mechanism for its formation been verified. The mechanisms that have been proposed for layer formation can be categorized as either extrinsic or intrinsic to the alloy system. The extrinsic mechanisms rely on externally induced perturbations to the system for layer formation, such as temperature oscillations, growth velocity variations, or vibrations. The intrinsic mechanisms approach layer formation as an alternative type of two phase growth that is inherent for certain peritectic systems and solidification conditions. Convective mixing of the liquid is an additional variable which can strongly influence the development and appearance of layers due to the requisite slow growth rate. The first quantitative description of layer formation is a model recently developed by Trivedi based on the intrinsic mechanism of cyclic accumulation and depiction of solute in the liquid ahead of the interface, linked to repeated nucleation events in the absence of convection. The objective of this research is to characterize the layered microstructures developed during ground-based experiments in which external influences have been minimized as much as possible and to compare these results to the current the model. Also, the differences between intrinsic and externally influenced layer formation were explored. The choice of alloy system is critical to a study of the formation of layered microstructures. The ideal system would have a well-characterized phase diagram, equal densities of both elements in the liquid state to minimize compositionally-driven convective flows, a low peritectic temperature to simplify directional solidification and the achievement of a high temperature gradient in the liquid, a broad composition range for the peritectic reaction, and a reasonable hardness at room temperature to facilitate handling and metallographic preparation. The In-Sn system was selected initially due to a very low peritectic temperature and the nearly equal densities of In and Sn in the liquid state. Since the In-rich peritectic reaction had apparently not been utilized previously for solidification research, experiments were conducted to check the phase diagram in the region of interest. The alloys in this system proved to be difficult to handle and prepare in bulk form with the equipment available, so experiments were initiated with the Sn-Cd system. Layered microstructures had been observed previously in Sn-Cd.

  17. High-efficiency non-blocking phosphorescent organic light emitting diode with ultrathin emission layer

    NASA Astrophysics Data System (ADS)

    Qiu, Jacky; Helander, Michael G.; Wang, Zhibin; Chang, Yi-Lu; Lu, ZhengHong

    2012-09-01

    Non-blocking Phosphorescent Organic Light Emitting Diode (NB-PHOLED) is a highly simplified device structure that has achieved record high device performance on chlorinated ITO[1], flexible substrates[2], also with Pt based phosphorescent dopants[3] and NB-PHOLED has significantly reduced efficiency roll-off[4]. The principle novel features of NB-PHOLED is the absence of blocking layer in the OLED stack, as well as the absence of organic hole injection layer, this allows for reduction of carrier accumulation in between organic layers and result in higher efficiencies.

  18. On the torsional loading of elastoplastic spheres in contact

    NASA Astrophysics Data System (ADS)

    Nadimi, Sadegh; Fonseca, Joana

    2017-06-01

    The mechanical interaction between two bodies involves normal loading in combination with tangential, torsional and rotational loading. This paper focuses on the torsional loading of two spherical bodies which leads to twisting moment. The theoretical approach for calculating twisting moment between two spherical bodies has been proposed by Lubkin [1]. Due to the complexity of the solution, this has been simplified by Deresiewicz for discrete element modelling [2]. Here, the application of a simplified model for elastoplastic spheres is verified using computational modelling. The single grain interaction is simulated in a combined finite discrete element domain. In this domain a grain can deform using a finite element formulation and can interact with other objects based on discrete element principles. For an elastoplastic model, the contact area is larger in comparison with the elastic model, under a given normal force. Therefore, the plastic twisting moment is stiffer. The results presented here are important for describing any granular system involving torsional loading of elastoplastic grains. In particular, recent research on the behaviour of soil has clearly shown the importance of plasticity on grain interaction and rearrangement.

  19. Self-consistent Dark Matter simplified models with an s-channel scalar mediator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, Nicole F.; Busoni, Giorgio; Sanderson, Isaac W., E-mail: n.bell@unimelb.edu.au, E-mail: giorgio.busoni@unimelb.edu.au, E-mail: isanderson@student.unimelb.edu.au

    We examine Simplified Models in which fermionic DM interacts with Standard Model (SM) fermions via the exchange of an s -channel scalar mediator. The single-mediator version of this model is not gauge invariant, and instead we must consider models with two scalar mediators which mix and interfere. The minimal gauge invariant scenario involves the mixing of a new singlet scalar with the Standard Model Higgs boson, and is tightly constrained. We construct two Higgs doublet model (2HDM) extensions of this scenario, where the singlet mixes with the 2nd Higgs doublet. Compared with the one doublet model, this provides greater freedommore » for the masses and mixing angle of the scalar mediators, and their coupling to SM fermions. We outline constraints on these models, and discuss Yukawa structures that allow enhanced couplings, yet keep potentially dangerous flavour violating processes under control. We examine the direct detection phenomenology of these models, accounting for interference of the scalar mediators, and interference of different quarks in the nucleus. Regions of parameter space consistent with direct detection measurements are determined.« less

  20. A mathematical model for the generation and control of a pH gradient in an immobilized enzyme system involving acid generation.

    PubMed

    Chen, G; Fournier, R L; Varanasi, S

    1998-02-20

    An optimal pH control technique has been developed for multistep enzymatic synthesis reactions where the optimal pH differs by several units for each step. This technique separates an acidic environment from a basic environment by the hydrolysis of urea within a thin layer of immobilized urease. With this technique, a two-step enzymatic reaction can take place simultaneously, in proximity to each other, and at their respective optimal pH. Because a reaction system involving an acid generation represents a more challenging test of this pH control technique, a number of factors that affect the generation of such a pH gradient are considered in this study. The mathematical model proposed is based on several simplifying assumptions and represents a first attempt to provide an analysis of this complex problem. The results show that, by choosing appropriate parameters, the pH control technique still can generate the desired pH gradient even if there is an acid-generating reaction in the system. Copyright 1998 John Wiley & Sons, Inc.

  1. Research on simplified parametric finite element model of automobile frontal crash

    NASA Astrophysics Data System (ADS)

    Wu, Linan; Zhang, Xin; Yang, Changhai

    2018-05-01

    The modeling method and key technologies of the automobile frontal crash simplified parametric finite element model is studied in this paper. By establishing the auto body topological structure, extracting and parameterizing the stiffness properties of substructures, choosing appropriate material models for substructures, the simplified parametric FE model of M6 car is built. The comparison of the results indicates that the simplified parametric FE model can accurately calculate the automobile crash responses and the deformation of the key substructures, and the simulation time is reduced from 6 hours to 2 minutes.

  2. iGen: An automated generator of simplified models with provable error bounds.

    NASA Astrophysics Data System (ADS)

    Tang, D.; Dobbie, S.

    2009-04-01

    Climate models employ various simplifying assumptions and parameterisations in order to increase execution speed. However, in order to draw conclusions about the Earths climate from the results of a climate simulation it is necessary to have information about the error that these assumptions and parameterisations introduce. A novel computer program, called iGen, is being developed which automatically generates fast, simplified models by analysing the source code of a slower, high resolution model. The resulting simplified models have provable bounds on error compared to the high resolution model and execute at speeds that are typically orders of magnitude faster. iGen's input is a definition of the prognostic variables of the simplified model, a set of bounds on acceptable error and the source code of a model that captures the behaviour of interest. In the case of an atmospheric model, for example, this would be a global cloud resolving model with very high resolution. Although such a model would execute far too slowly to be used directly in a climate model, iGen never executes it. Instead, it converts the code of the resolving model into a mathematical expression which is then symbolically manipulated and approximated to form a simplified expression. This expression is then converted back into a computer program and output as a simplified model. iGen also derives and reports formal bounds on the error of the simplified model compared to the resolving model. These error bounds are always maintained below the user-specified acceptable error. Results will be presented illustrating the success of iGen's analysis of a number of example models. These extremely encouraging results have lead on to work which is currently underway to analyse a cloud resolving model and so produce an efficient parameterisation of moist convection with formally bounded error.

  3. In-Flight Boundary-Layer Transition of a Large Flat Plate at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Banks, D. W.; Frederick, M. A.; Tracy, R. R.; Matisheck, J. R.; Vanecek, N. D.

    2012-01-01

    A flight experiment was conducted to investigate the pressure distribution, local-flow conditions, and boundary-layer transition characteristics on a large flat plate in flight at supersonic speeds up to Mach 2.00. The tests used a NASA testbed aircraft with a bottom centerline mounted test fixture. The primary objective of the test was to characterize the local flow field in preparation for future tests of a high Reynolds number natural laminar flow test article. A second objective was to determine the boundary-layer transition characteristics on the flat plate and the effectiveness of using a simplified surface coating. Boundary-layer transition was captured in both analog and digital formats using an onboard infrared imaging system. Surface pressures were measured on the surface of the flat plate. Flow field measurements near the leading edge of the test fixture revealed the local flow characteristics including downwash, sidewash, and local Mach number. Results also indicated that the simplified surface coating did not provide sufficient insulation from the metallic structure, which likely had a substantial effect on boundary-layer transition compared with that of an adiabatic surface. Cold wall conditions were predominant during the acceleration to maximum Mach number, and warm wall conditions were evident during the subsequent deceleration.

  4. A Theory of Density Layering in Stratified Turbulence using Statistical State Dynamics

    NASA Astrophysics Data System (ADS)

    Fitzgerald, J.; Farrell, B.

    2016-12-01

    Stably stratified turbulent fluids commonly develop density structures that are layered in the vertical direction (e.g., Manucharyan et al., 2015). Within layers, density is approximately constant and stratification is weak. Between layers, density varies rapidly and stratification is strong. A common explanation for the existence of layers invokes the negative diffusion mechanism of Phillips (1972) & Posmentier (1977). The physical principle underlying this mechanism is that the flux-gradient relationship connecting the turbulent fluxes of buoyancy to the background stratification must have the special property of weakening fluxes with strengthening gradient. Under these conditions, the evolution of the stratification is governed by a negative diffusion problem which gives rise to spontaneous layer formation. In previous work on stratified layering, this flux-gradient property is often assumed (e.g, Posmentier, 1977) or drawn from phenomenological models of turbulence (e.g., Balmforth et al., 1998).In this work we develop the theoretical underpinnings of layer formation by applying stochastic turbulence modeling and statistical state dynamics (SSD) to predict the flux-gradient relation and analyze layer formation directly from the equations of motion. We show that for stochastically-forced homogeneous 2D Boussinesq turbulence, the flux-gradient relation can be obtained analytically and indicates that the fluxes always strengthen with stratification. The Phillips mechanism thus does not operate in this maximally simplified scenario. However, when the problem is augmented to include a large scale background shear, we show that the flux-gradient relationship is modified so that the fluxes weaken with stratification. Sheared and stratified 2D Boussinesq turbulence thus spontaneously forms density layers through the Phillips mechanism. Using SSD (Farrell & Ioannou 2003), we obtain a closed, deterministic dynamics for the stratification and the statistical turbulent state. We show that density layers form as a linear instability of the sheared turbulence, associated with a supercritical bifurcation. We further show that SSD predicts the nonlinear equilibration and maintenance of the layers, and captures the phenomena of layer growth and mergers (Radko, 2007).

  5. Accelerating non-contrast-enhanced MR angiography with inflow inversion recovery imaging by skipped phase encoding and edge deghosting (SPEED).

    PubMed

    Chang, Zheng; Xiang, Qing-San; Shen, Hao; Yin, Fang-Fang

    2010-03-01

    To accelerate non-contrast-enhanced MR angiography (MRA) with inflow inversion recovery (IFIR) with a fast imaging method, Skipped Phase Encoding and Edge Deghosting (SPEED). IFIR imaging uses a preparatory inversion pulse to reduce signals from static tissue, while leaving inflow arterial blood unaffected, resulting in sparse arterial vasculature on modest tissue background. By taking advantage of vascular sparsity, SPEED can be simplified with a single-layer model to achieve higher efficiency in both scan time reduction and image reconstruction. SPEED can also make use of information available in multiple coils for further acceleration. The techniques are demonstrated with a three-dimensional renal non-contrast-enhanced IFIR MRA study. Images are reconstructed by SPEED based on a single-layer model to achieve an undersampling factor of up to 2.5 using one skipped phase encoding direction. By making use of information available in multiple coils, SPEED can achieve an undersampling factor of up to 8.3 with four receiver coils. The reconstructed images generally have comparable quality as that of the reference images reconstructed from full k-space data. As demonstrated with a three-dimensional renal IFIR scan, SPEED based on a single-layer model is able to reduce scan time further and achieve higher computational efficiency than the original SPEED.

  6. Phonon transport in single-layer boron nanoribbons

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongwei; Xie, Yuee; Peng, Qing; Chen, Yuanping

    2016-11-01

    Inspired by the successful synthesis of three two-dimensional (2D) allotropes, the boron sheet has recently been one of the hottest 2D materials around. However, to date, phonon transport properties of these new materials are still unknown. By using the non-equilibrium Green’s function (NEGF) combined with the first principles method, we study ballistic phonon transport in three types of boron sheets; two of them correspond to the structures reported in the experiments, while the third one is a stable structure that has not been synthesized yet. At room temperature, the highest thermal conductance of the boron nanoribbons is comparable with that of graphene, while the lowest thermal conductance is less than half of graphene’s. Compared with graphene, the three boron sheets exhibit diverse anisotropic transport characteristics. With an analysis of phonon dispersion, bonding charge density, and simplified models of atomic chains, the mechanisms of the diverse phonon properties are discussed. Moreover, we find that many hybrid patterns based on the boron allotropes can be constructed naturally without doping, adsorption, and defects. This provides abundant nanostructures for thermal management and thermoelectric applications.

  7. Research on performance of three-layer MG-OXC system based on MLAG and OCDM

    NASA Astrophysics Data System (ADS)

    Wang, Yubao; Ren, Yanfei; Meng, Ying; Bai, Jian

    2017-10-01

    At present, as traffic volume which optical transport networks convey and species of traffic grooming methods increase rapidly, optical switching techniques are faced with a series of issues, such as more requests for the number of wavelengths and complicated structure management and implementation. This work introduces optical code switching based on wavelength switching, constructs the three layers multi-granularity optical cross connection (MG-OXC) system on the basis of optical code division multiplexing (OCDM) and presents a new traffic grooming algorithm. The proposed architecture can improve the flexibility of traffic grooming, reduce the amount of used wavelengths and save the number of consumed ports, hence, it can simplify routing device and enhance the performance of the system significantly. Through analyzing the network model of switching structure on multicast layered auxiliary graph (MLAG) and the establishment of traffic grooming links, and the simulation of blocking probability and throughput, this paper shows the excellent performance of this mentioned architecture.

  8. A prototype software methodology for the rapid evaluation of biomanufacturing process options.

    PubMed

    Chhatre, Sunil; Francis, Richard; O'Donovan, Kieran; Titchener-Hooker, Nigel J; Newcombe, Anthony R; Keshavarz-Moore, Eli

    2007-10-01

    A three-layered simulation methodology is described that rapidly evaluates biomanufacturing process options. In each layer, inferior options are screened out, while more promising candidates are evaluated further in the subsequent, more refined layer, which uses more rigorous models that require more data from time-consuming experimentation. Screening ensures laboratory studies are focused only on options showing the greatest potential. To simplify the screening, outputs of production level, cost and time are combined into a single value using multi-attribute-decision-making techniques. The methodology was illustrated by evaluating alternatives to an FDA (U.S. Food and Drug Administration)-approved process manufacturing rattlesnake antivenom. Currently, antivenom antibodies are recovered from ovine serum by precipitation/centrifugation and proteolyzed before chromatographic purification. Alternatives included increasing the feed volume, replacing centrifugation with microfiltration and replacing precipitation/centrifugation with a Protein G column. The best alternative used a higher feed volume and a Protein G step. By rapidly evaluating the attractiveness of options, the methodology facilitates efficient and cost-effective process development.

  9. Two-Layer Viscous Shallow-Water Equations and Conservation Laws

    NASA Astrophysics Data System (ADS)

    Kanayama, Hiroshi; Dan, Hiroshi

    In our previous papers, the two-layer viscous shallow-water equations were derived from the three-dimensional Navier-Stokes equations under the hydrostatic assumption. Also, it was noted that the combination of upper and lower equations in the two-layer model produces the classical one-layer equations if the density of each layer is the same. Then, the two-layer equations were approximated by a finite element method which followed our numerical scheme established for the one-layer model in 1978. Also, it was numerically demonstrated that the interfacial instability generated when the densities are the same can be eliminated by providing a sufficient density difference. In this paper, we newly show that conservation laws are still valid in the two-layer model. Also, we show results of a new physical experiment for the interfacial instability.

  10. On Displacement Height, from Classical to Practical Formulation: Stress, Turbulent Transport and Vorticity Considerations

    NASA Astrophysics Data System (ADS)

    Sogachev, Andrey; Kelly, Mark

    2016-03-01

    Displacement height ( d) is an important parameter in the simple modelling of wind speed and vertical fluxes above vegetative canopies, such as forests. Here we show that, aside from implicit definition through a (displaced) logarithmic profile, accepted formulations for d do not consistently predict flow properties above a forest. Turbulent transport can affect the displacement height, and is an integral part of what is called the roughness sublayer. We develop a more general approach for estimation of d, through production of turbulent kinetic energy and turbulent transport, and show how previous stress-based formulations for displacement height can be seen as simplified cases of a more general definition including turbulent transport. Further, we also give a simplified and practical form for d that is in agreement with the general approach, exploiting the concept of vortex thickness scale from mixing-layer theory. We assess the new and previous displacement height formulations by using flow statistics derived from the atmospheric boundary-layer Reynolds-averaged Navier-Stokes model SCADIS as well as from wind-tunnel observations, for different vegetation types and flow regimes in neutral conditions. The new formulations tend to produce smaller d than stress-based forms, falling closer to the classic logarithmically-defined displacement height. The new, more generally defined, displacement height appears to be more compatible with profiles of components of the turbulent kinetic energy budget, accounting for the combined effects of turbulent transport and shear production. The Coriolis force also plays a role, introducing wind-speed dependence into the behaviour of the roughness sublayer; this affects the turbulent transport, shear production, stress, and wind speed, as well as the displacement height, depending on the character of the forest. We further show how our practical (`mixing-layer') form for d matches the new turbulence-based relation, as well as correspondence to previous (stress-based) formulations.

  11. High-efficiency/CRI/color stability warm white organic light-emitting diodes by incorporating ultrathin phosphorescence layers in a blue fluorescence layer

    NASA Astrophysics Data System (ADS)

    Miao, Yanqin; Wang, Kexiang; Zhao, Bo; Gao, Long; Tao, Peng; Liu, Xuguang; Hao, Yuying; Wang, Hua; Xu, Bingshe; Zhu, Furong

    2018-01-01

    By incorporating ultrathin (<0.1 nm) green, yellow, and red phosphorescence layers with different sequence arrangements in a blue fluorescence layer, four unique and simplified fluorescence/phosphorescence (F/P) hybrid, white organic light-emitting diodes (WOLEDs) were obtained. All four devices realize good warm white light emission, with high color rending index (CRI) of >80, low correlated color temperature of <3600 K, and high color stability at a wide voltage range of 5 V-9 V. These hybrid WOLEDs also reveal high forward-viewing external quantum efficiencies (EQE) of 17.82%-19.34%, which are close to the theoretical value of 20%, indicating an almost complete exciton harvesting. In addition, the electroluminescence spectra of the hybrid WOLEDs can be easily improved by only changing the incorporating sequence of the ultrathin phosphorescence layers without device efficiency loss. For example, the hybrid WOLED with an incorporation sequence of ultrathin red/yellow/green phosphorescence layers exhibits an ultra-high CRI of 96 and a high EQE of 19.34%. To the best of our knowledge, this is the first WOLED with good tradeoff among device efficiency, CRI, and color stability. The introduction of ultrathin (<0.1 nm) phosphorescence layers can also greatly reduce the consumption of phosphorescent emitters as well as simplify device structures and fabrication process, thus leading to low cost. Such a finding is very meaningful for the potential commercialization of hybrid WOLEDs.

  12. A Combined Gravity Compensation Method for INS Using the Simplified Gravity Model and Gravity Database.

    PubMed

    Zhou, Xiao; Yang, Gongliu; Wang, Jing; Wen, Zeyang

    2018-05-14

    In recent decades, gravity compensation has become an important way to reduce the position error of an inertial navigation system (INS), especially for a high-precision INS, because of the extensive application of high precision inertial sensors (accelerometers and gyros). This paper first deducts the INS's solution error considering gravity disturbance and simulates the results. Meanwhile, this paper proposes a combined gravity compensation method using a simplified gravity model and gravity database. This new combined method consists of two steps all together. Step 1 subtracts the normal gravity using a simplified gravity model. Step 2 first obtains the gravity disturbance on the trajectory of the carrier with the help of ELM training based on the measured gravity data (provided by Institute of Geodesy and Geophysics; Chinese Academy of sciences), and then compensates it into the error equations of the INS, considering the gravity disturbance, to further improve the navigation accuracy. The effectiveness and feasibility of this new gravity compensation method for the INS are verified through vehicle tests in two different regions; one is in flat terrain with mild gravity variation and the other is in complex terrain with fierce gravity variation. During 2 h vehicle tests, the positioning accuracy of two tests can improve by 20% and 38% respectively, after the gravity is compensated by the proposed method.

  13. A Combined Gravity Compensation Method for INS Using the Simplified Gravity Model and Gravity Database

    PubMed Central

    Zhou, Xiao; Yang, Gongliu; Wang, Jing; Wen, Zeyang

    2018-01-01

    In recent decades, gravity compensation has become an important way to reduce the position error of an inertial navigation system (INS), especially for a high-precision INS, because of the extensive application of high precision inertial sensors (accelerometers and gyros). This paper first deducts the INS’s solution error considering gravity disturbance and simulates the results. Meanwhile, this paper proposes a combined gravity compensation method using a simplified gravity model and gravity database. This new combined method consists of two steps all together. Step 1 subtracts the normal gravity using a simplified gravity model. Step 2 first obtains the gravity disturbance on the trajectory of the carrier with the help of ELM training based on the measured gravity data (provided by Institute of Geodesy and Geophysics; Chinese Academy of sciences), and then compensates it into the error equations of the INS, considering the gravity disturbance, to further improve the navigation accuracy. The effectiveness and feasibility of this new gravity compensation method for the INS are verified through vehicle tests in two different regions; one is in flat terrain with mild gravity variation and the other is in complex terrain with fierce gravity variation. During 2 h vehicle tests, the positioning accuracy of two tests can improve by 20% and 38% respectively, after the gravity is compensated by the proposed method. PMID:29757983

  14. Physical layer simulation study for the coexistence of WLAN standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howlader, M. K.; Keiger, C.; Ewing, P. D.

    This paper presents the results of a study on the performance of wireless local area network (WLAN) devices in the presence of interference from other wireless devices. To understand the coexistence of these wireless protocols, simplified physical-layer-system models were developed for the Bluetooth, Wireless Fidelity (WiFi), and Zigbee devices, all of which operate within the 2.4-GHz frequency band. The performances of these protocols were evaluated using Monte-Carlo simulations under various interference and channel conditions. The channel models considered were basic additive white Gaussian noise (AWGN), Rayleigh fading, and site-specific fading. The study also incorporated the basic modulation schemes, multiple accessmore » techniques, and channel allocations of the three protocols. This research is helping the U.S. Nuclear Regulatory Commission (NRC) understand the coexistence issues associated with deploying wireless devices and could prove useful in the development of a technical basis for guidance to address safety-related issues with the implementation of wireless systems in nuclear facilities. (authors)« less

  15. Attentional control of associative learning--a possible role of the central cholinergic system.

    PubMed

    Pauli, Wolfgang M; O'Reilly, Randall C

    2008-04-02

    How does attention interact with learning? Kruschke [Kruschke, J.K. (2001). Toward a unified Model of Attention in Associative Learning. J. Math. Psychol. 45, 812-863.] proposed a model (EXIT) that captures Mackintosh's [Mackintosh, N.J. (1975). A theory of attention: Variations in the associability of stimuli with reinforcement. Psychological Review, 82(4), 276-298.] framework for attentional modulation of associative learning. We developed a computational model that showed analogous interactions between selective attention and associative learning, but is significantly simplified and, in contrast to EXIT, is motivated by neurophysiological findings. Competition among input representations in the internal representation layer, which increases the contrast between stimuli, is critical for simulating these interactions in human behavior. Furthermore, this competition is modulated in a way that might be consistent with the phasic activation of the central cholinergic system, which modulates activity in sensory cortices. Specifically, phasic increases in acetylcholine can cause increased excitability of both pyramidal excitatory neurons in cortical layers II/III and cortical GABAergic inhibitory interneurons targeting the same pyramidal neurons. These effects result in increased attentional contrast in our model. This model thus represents an initial attempt to link human attentional learning data with underlying neural substrates.

  16. Attentional control of associative learning—A possible role of the central cholinergic system

    PubMed Central

    Pauli, Wolfgang M.; O'Reilly, Randall C.

    2010-01-01

    How does attention interact with learning? Kruschke [Kruschke, J.K. (2001). Toward a unified Model of Attention in Associative Learning. J. Math. Psychol. 45, 812–863.] proposed a model (EXIT) that captures Mackintosh's [Mackintosh, N.J. (1975). A theory of attention: Variations in the associability of stimuli with reinforcement. Psychological Review, 82(4), 276–298.] framework for attentional modulation of associative learning. We developed a computational model that showed analogous interactions between selective attention and associative learning, but is significantly simplified and, in contrast to EXIT, is motivated by neurophysiological findings. Competition among input representations in the internal representation layer, which increases the contrast between stimuli, is critical for simulating these interactions in human behavior. Furthermore, this competition is modulated in a way that might be consistent with the phasic activation of the central cholinergic system, which modulates activity in sensory cortices. Specifically, phasic increases in acetylcholine can cause increased excitability of both pyramidal excitatory neurons in cortical layers II/III and cortical GABAergic inhibitory interneurons targeting the same pyramidal neurons. These effects result in increased attentional contrast in our model. This model thus represents an initial attempt to link human attentional learning data with underlying neural substrates. PMID:17870060

  17. Impact of Missing Physiologic Data on Performance of the Simplified Acute Physiology Score 3 Risk-Prediction Model.

    PubMed

    Engerström, Lars; Nolin, Thomas; Mårdh, Caroline; Sjöberg, Folke; Karlström, Göran; Fredrikson, Mats; Walther, Sten M

    2017-12-01

    The Simplified Acute Physiology 3 outcome prediction model has a narrow time window for recording physiologic measurements. Our objective was to examine the prevalence and impact of missing physiologic data on the Simplified Acute Physiology 3 model's performance. Retrospective analysis of prospectively collected data. Sixty-three ICUs in the Swedish Intensive Care Registry. Patients admitted during 2011-2014 (n = 107,310). None. Model performance was analyzed using the area under the receiver operating curve, scaled Brier's score, and standardized mortality rate. We used a recalibrated Simplified Acute Physiology 3 model and examined model performance in the original dataset and in a dataset of complete records where missing data were generated (simulated dataset). One or more data were missing in 40.9% of the admissions, more common in survivors and low-risk admissions than in nonsurvivors and high-risk admissions. Discrimination did not decrease with one to two missing variables, but accuracy was highest with no missing data. Calibration was best in the original dataset with a mix of full records and records with some missing values (area under the receiver operating curve was 0.85, scaled Brier 27%, and standardized mortality rate 0.99). With zero, one, and two data missing, the scaled Brier was 31%, 26%, and 21%; area under the receiver operating curve was 0.84, 0.87, and 0.89; and standardized mortality rate was 0.92, 1.05 and 1.10, respectively. Datasets where the missing data were simulated for oxygenation or oxygenation and hydrogen ion concentration together performed worse than datasets with these data originally missing. There is a coupling between missing physiologic data, admission type, low risk, and survival. Increased loss of physiologic data reduced model performance and will deflate mortality risk, resulting in falsely high standardized mortality rates.

  18. Temporal slow-growth formulation for direct numerical simulation of compressible wall-bounded flows

    NASA Astrophysics Data System (ADS)

    Topalian, Victor; Oliver, Todd A.; Ulerich, Rhys; Moser, Robert D.

    2017-08-01

    A slow-growth formulation for DNS of wall-bounded turbulent flow is developed and demonstrated to enable extension of slow-growth modeling concepts to wall-bounded flows with complex physics. As in previous slow-growth approaches, the formulation assumes scale separation between the fast scales of turbulence and the slow evolution of statistics such as the mean flow. This separation enables the development of approaches where the fast scales of turbulence are directly simulated while the forcing provided by the slow evolution is modeled. The resulting model admits periodic boundary conditions in the streamwise direction, which avoids the need for extremely long domains and complex inflow conditions that typically accompany spatially developing simulations. Further, it enables the use of efficient Fourier numerics. Unlike previous approaches [Guarini, Moser, Shariff, and Wray, J. Fluid Mech. 414, 1 (2000), 10.1017/S0022112000008466; Maeder, Adams, and Kleiser, J. Fluid Mech. 429, 187 (2001), 10.1017/S0022112000002718; Spalart, J. Fluid Mech. 187, 61 (1988), 10.1017/S0022112088000345], the present approach is based on a temporally evolving boundary layer and is specifically tailored to give results for calibration and validation of Reynolds-averaged Navier-Stokes (RANS) turbulence models. The use of a temporal homogenization simplifies the modeling, enabling straightforward extension to flows with complicating features, including cold and blowing walls. To generate data useful for calibration and validation of RANS models, special care is taken to ensure that the mean slow-growth forcing is closed in terms of the mean and other quantities that appear in standard RANS models, ensuring that there is no confounding between typical RANS closures and additional closures required for the slow-growth problem. The performance of the method is demonstrated on two problems: an essentially incompressible, zero-pressure-gradient boundary layer and a transonic boundary layer over a cooled, transpiring wall. The results show that the approach produces flows that are qualitatively similar to other slow-growth methods as well as spatially developing simulations and that the method can be a useful tool in investigating wall-bounded flows with complex physics.

  19. A Simplified Technique for Scoring DSM-IV Personality Disorders with the Five-Factor Model

    ERIC Educational Resources Information Center

    Miller, Joshua D.; Bagby, R. Michael; Pilkonis, Paul A.; Reynolds, Sarah K.; Lynam, Donald R.

    2005-01-01

    The current study compares the use of two alternative methodologies for using the Five-Factor Model (FFM) to assess personality disorders (PDs). Across two clinical samples, a technique using the simple sum of selected FFM facets is compared with a previously used prototype matching technique. The results demonstrate that the more easily…

  20. Acoustic Velocity Log Numerical Simulation and Saturation Estimation of Gas Hydrate Reservoir in Shenhu Area, South China Sea

    PubMed Central

    Xiao, Kun; Zou, Changchun; Xiang, Biao; Liu, Jieqiong

    2013-01-01

    Gas hydrate model and free gas model are established, and two-phase theory (TPT) for numerical simulation of elastic wave velocity is adopted to investigate the unconsolidated deep-water sedimentary strata in Shenhu area, South China Sea. The relationships between compression wave (P wave) velocity and gas hydrate saturation, free gas saturation, and sediment porosity at site SH2 are studied, respectively, and gas hydrate saturation of research area is estimated by gas hydrate model. In depth of 50 to 245 m below seafloor (mbsf), as sediment porosity decreases, P wave velocity increases gradually; as gas hydrate saturation increases, P wave velocity increases gradually; as free gas saturation increases, P wave velocity decreases. This rule is almost consistent with the previous research result. In depth of 195 to 220 mbsf, the actual measurement of P wave velocity increases significantly relative to the P wave velocity of saturated water modeling, and this layer is determined to be rich in gas hydrate. The average value of gas hydrate saturation estimated from the TPT model is 23.2%, and the maximum saturation is 31.5%, which is basically in accordance with simplified three-phase equation (STPE), effective medium theory (EMT), resistivity log (Rt), and chloride anomaly method. PMID:23935407

  1. The influence of misrepresenting the nocturnal boundary layer on idealized daytime convection in large-eddy simulation

    NASA Astrophysics Data System (ADS)

    van Stratum, Bart J. H.; Stevens, Bjorn

    2015-06-01

    The influence of poorly resolving mixing processes in the nocturnal boundary layer (NBL) on the development of the convective boundary layer the following day is studied using large-eddy simulation (LES). Guided by measurement data from meteorological sites in Cabauw (Netherlands) and Hamburg (Germany), the typical summertime NBL conditions for Western Europe are characterized, and used to design idealized (absence of moisture and large-scale forcings) numerical experiments of the diel cycle. Using the UCLA-LES code with a traditional Smagorinsky-Lilly subgrid model and a simplified land-surface scheme, a sensitivity study to grid spacing is performed. At horizontal grid spacings ranging from 3.125 m in which we are capable of resolving most turbulence in the cases of interest to grid a spacing of 100 m which is clearly insufficient to resolve the NBL, the ability of LES to represent the NBL and the influence of NBL biases on the subsequent daytime development of the convective boundary layer are examined. Although the low-resolution experiments produce substantial biases in the NBL, the influence on daytime convection is shown to be small, with biases in the afternoon boundary layer depth and temperature of approximately 100 m and 0.5 K, which partially cancel each other in terms of the mixed-layer top relative humidity.

  2. Dissecting jets and missing energy searches using $n$-body extended simplified models

    DOE PAGES

    Cohen, Timothy; Dolan, Matthew J.; El Hedri, Sonia; ...

    2016-08-04

    Simplified Models are a useful way to characterize new physics scenarios for the LHC. Particle decays are often represented using non-renormalizable operators that involve the minimal number of fields required by symmetries. Generalizing to a wider class of decay operators allows one to model a variety of final states. This approach, which we dub the $n$-body extension of Simplified Models, provides a unifying treatment of the signal phase space resulting from a variety of signals. In this paper, we present the first application of this framework in the context of multijet plus missing energy searches. The main result of thismore » work is a global performance study with the goal of identifying which set of observables yields the best discriminating power against the largest Standard Model backgrounds for a wide range of signal jet multiplicities. Our analysis compares combinations of one, two and three variables, placing emphasis on the enhanced sensitivity gain resulting from non-trivial correlations. Utilizing boosted decision trees, we compare and classify the performance of missing energy, energy scale and energy structure observables. We demonstrate that including an observable from each of these three classes is required to achieve optimal performance. In conclusion, this work additionally serves to establish the utility of $n$-body extended Simplified Models as a diagnostic for unpacking the relative merits of different search strategies, thereby motivating their application to new physics signatures beyond jets and missing energy.« less

  3. The study of the Boltzmann equation of solid-gas two-phase flow with three-dimensional BGK model

    NASA Astrophysics Data System (ADS)

    Liu, Chang-jiang; Pang, Song; Xu, Qiang; He, Ling; Yang, Shao-peng; Qing, Yun-jie

    2018-06-01

    The motion of many solid-gas two-phase flows can be described by the Boltzmann equation. In order to simplify the Boltzmann equation, the convective-diffusion term is reserved and the collision term is replaced by the three-dimensional Bharnagar-Gross-Krook (BGK) model. Then the simplified Boltzmann equation is solved by homotopy perturbation method (HPM), and its approximate analytical solution is obtained. Through the analyzing, it is proved that the analytical solution satisfies all the constraint conditions, and its formation is in accord with the formation of the solution that is obtained by traditional Chapman-Enskog method, and the solving process of HPM is much more simple and convenient. This preliminarily shows the effectiveness and rapidness of HPM to solve the Boltzmann equation. The results obtained herein provide some theoretical basis for the further study of dynamic model of solid-gas two-phase flows, such as the sturzstrom of high-speed distant landslide caused by microseism and the sand storm caused by strong breeze.

  4. An Analytic Approach to Modeling Land-Atmosphere Interaction: 1. Construct and Equilibrium Behavior

    NASA Astrophysics Data System (ADS)

    Brubaker, Kaye L.; Entekhabi, Dara

    1995-03-01

    A four-variable land-atmosphere model is developed to investigate the coupled exchanges of water and energy between the land surface and atmosphere and the role of these exchanges in the statistical behavior of continental climates. The land-atmosphere system is substantially simplified and formulated as a set of ordinary differential equations that, with the addition of random noise, are suitable for analysis in the form of the multivariate Îto equation. The model treats the soil layer and the near-surface atmosphere as reservoirs with storage capacities for heat and water. The transfers between these reservoirs are regulated by four states: soil saturation, soil temperature, air specific humidity, and air potential temperature. The atmospheric reservoir is treated as a turbulently mixed boundary layer of fixed depth. Heat and moisture advection, precipitation, and layer-top air entrainment are parameterized. The system is forced externally by solar radiation and the lateral advection of air and water mass. The remaining energy and water mass exchanges are expressed in terms of the state variables. The model development and equilibrium solutions are presented. Although comparisons between observed data and steady state model results re inexact, the model appears to do a reasonable job of partitioning net radiation into sensible and latent heat flux in appropriate proportions for bare-soil midlatitude summer conditions. Subsequent work will introduce randomness into the forcing terms to investigate the effect of water-energy coupling and land-atmosphere interaction on variability and persistence in the climatic system.

  5. Feynman's and Ohta's Models of a Josephson Junction

    ERIC Educational Resources Information Center

    De Luca, R.

    2012-01-01

    The Josephson equations are derived by means of the weakly coupled two-level quantum system model given by Feynman. Adopting a simplified version of Ohta's model, starting from Feynman's model, the strict voltage-frequency Josephson relation is derived. The contribution of Ohta's approach to the comprehension of the additional term given by the…

  6. MODELING SMALL-SCALE SPILLS OF AQUEOUS SOLUTIONS IN THE INDOOR ENVIRONMENT

    EPA Science Inventory

    A mass transfer model is proposed to estimate the rates of chemical emissions from aqueous solutions spilled on hard surfaces inside buildings. The model is presented in two forms: a set of four ordinary differential equations and a simplified exact solution. The latter can be ...

  7. A 2D nonlinear multiring model for blood flow in large elastic arteries

    NASA Astrophysics Data System (ADS)

    Ghigo, Arthur R.; Fullana, Jose-Maria; Lagrée, Pierre-Yves

    2017-12-01

    In this paper, we propose a two-dimensional nonlinear ;multiring; model to compute blood flow in axisymmetric elastic arteries. This model is designed to overcome the numerical difficulties of three-dimensional fluid-structure interaction simulations of blood flow without using the over-simplifications necessary to obtain one-dimensional blood flow models. This multiring model is derived by integrating over concentric rings of fluid the simplified long-wave Navier-Stokes equations coupled to an elastic model of the arterial wall. The resulting system of balance laws provides a unified framework in which both the motion of the fluid and the displacement of the wall are dealt with simultaneously. The mathematical structure of the multiring model allows us to use a finite volume method that guarantees the conservation of mass and the positivity of the numerical solution and can deal with nonlinear flows and large deformations of the arterial wall. We show that the finite volume numerical solution of the multiring model provides at a reasonable computational cost an asymptotically valid description of blood flow velocity profiles and other averaged quantities (wall shear stress, flow rate, ...) in large elastic and quasi-rigid arteries. In particular, we validate the multiring model against well-known solutions such as the Womersley or the Poiseuille solutions as well as against steady boundary layer solutions in quasi-rigid constricted and expanded tubes.

  8. Gradient retention prediction of acid-base analytes in reversed phase liquid chromatography: a simplified approach for acetonitrile-water mobile phases.

    PubMed

    Andrés, Axel; Rosés, Martí; Bosch, Elisabeth

    2014-11-28

    In previous work, a two-parameter model to predict chromatographic retention of ionizable analytes in gradient mode was proposed. However, the procedure required some previous experimental work to get a suitable description of the pKa change with the mobile phase composition. In the present study this previous experimental work has been simplified. The analyte pKa values have been calculated through equations whose coefficients vary depending on their functional group. Forced by this new approach, other simplifications regarding the retention of the totally neutral and totally ionized species also had to be performed. After the simplifications were applied, new prediction values were obtained and compared with the previously acquired experimental data. The simplified model gave pretty good predictions while saving a significant amount of time and resources. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Vertical structure of mean cross-shore currents across a barred surf zone

    USGS Publications Warehouse

    Haines, John W.; Sallenger, Asbury H.

    1994-01-01

    Mean cross-shore currents observed across a barred surf zone are compared to model predictions. The model is based on a simplified momentum balance with a turbulent boundary layer at the bed. Turbulent exchange is parameterized by an eddy viscosity formulation, with the eddy viscosity Aυ independent of time and the vertical coordinate. Mean currents result from gradients due to wave breaking and shoaling, and the presence of a mean setup of the free surface. Descriptions of the wave field are provided by the wave transformation model of Thornton and Guza [1983]. The wave transformation model adequately reproduces the observed wave heights across the surf zone. The mean current model successfully reproduces the observed cross-shore flows. Both observations and predictions show predominantly offshore flow with onshore flow restricted to a relatively thin surface layer. Successful application of the mean flow model requires an eddy viscosity which varies horizontally across the surf zone. Attempts are made to parameterize this variation with some success. The data does not discriminate between alternative parameterizations proposed. The overall variability in eddy viscosity suggested by the model fitting should be resolvable by field measurements of the turbulent stresses. Consistent shortcomings of the parameterizations, and the overall modeling effort, suggest avenues for further development and data collection.

  10. Road to Grid Parity through Deployment of Low-Cost 21.5% N-Type Si Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velundur, Vijay

    This project seeks to develop and deploy differentiated 21.5% efficient n-type Si solar cells while reaching the SunShot module cost goal of ≤ $0.50/W. This objective hinges on development of enabling low cost technologies that simplify the manufacturing process and reduce overall processing costs. These comprise of (1) Boron emitter formation and passivation; (2) Simplified processing process for emitter and BSF layers; and (3) Advanced metallization for the front and back contacts.

  11. Effect of changes to the manufacturer application techniques 
on the shear bond strength of simplified dental adhesives.

    PubMed

    Chasqueira, Ana Filipa; Arantes-Oliveira, Sofia; Portugal, Jaime

    2013-09-13

    The aim of this work was to assess the shear bond strength (SBS) between a composite resin and dentin, promoted by two dental adhesive systems (one-step self-etching adhesive Easy Bond [3M ESPE], and two-step etch-and-rinse adhesive Scotchbond 1XT [3M ESPE]) with different application protocols (per manufacturer's instruction (control group); with one to four additional adhesive layers; or with an extra hydrophobic adhesive layer). Proximal enamel was removed from ninety caries-free human molars to obtain two dentin discs per tooth, which were randomly assigned to twelve experimental groups (n=15). After adhesion protocol, the composite resin (Filtek Z250 [3M ESPE]) was applied. Specimens were mounted in the Watanabe test device and shear bond test was performed in a universal testing machine with a crosshead speed of 5 mm/min. Data were analyzed with ANOVA followed by Student-Newman-Keuls tests (P<0.05). The highest SBS mean value was attained with the Easy Bond three layers group (41.23±2.71 MPa) and the lowest with Scotchbond 1XT per manufacturer's instructions (27.15±2.99 MPa). Easy Bond yielded higher SBS values than Scotchbond 1XT. There were no statistically significant differences (P>0.05) between the application protocols tested, except for the three and four layers groups, that presented higher SBS results compared to manufacturer's instruction groups (P<0.05). No statistically significant differences were detected between the three and four layers groups (P≥0.05). It is recommendable to apply three adhesive layers when using Easy Bond and Scotchbond 1XT adhesives, since it improves SBS values without consuming much time.

  12. Refracted arrival waves in a zone of silence from a finite thickness mixing layer.

    PubMed

    Suzuki, Takao; Lele, Sanjiva K

    2002-02-01

    Refracted arrival waves which propagate in the zone of silence of a finite thickness mixing layer are analyzed using geometrical acoustics in two dimensions. Here, two simplifying assumptions are made: (i) the mean flow field is transversely sheared, and (ii) the mean velocity and temperature profiles approach the free-stream conditions exponentially. Under these assumptions, ray trajectories are analytically solved, and a formula for acoustic pressure amplitude in the far field is derived in the high-frequency limit. This formula is compared with the existing theory based on a vortex sheet corresponding to the low-frequency limit. The analysis covers the dependence on the Mach number as well as on the temperature ratio. The results show that both limits have some qualitative similarities, but the amplitude in the zone of silence at high frequencies is proportional to omega(-1/2), while that at low frequencies is proportional to omega(-3/2), omega being the angular frequency of the source.

  13. 76 FR 71833 - Defense Federal Acquisition Regulation Supplement: Simplified Acquisition Threshold for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-18

    ...-AH29 Defense Federal Acquisition Regulation Supplement: Simplified Acquisition Threshold for... statutory authority to invoke a simplified acquisition threshold that is two times the normal amount to...) to invoke a simplified acquisition threshold that is two times the amount specified at 41 U.S.C 134...

  14. A Study for the Restoration of Hong Dae-Yong Honsangui - Focusing on the structure and operating mechanism

    NASA Astrophysics Data System (ADS)

    Lee, Yong Sam; Kim, Sang Hyuk; Park, Je Hoon

    2013-09-01

    Honsangui (celestial globe) which is a water-hammering method astronomical clock is recorded in "Juhaesuyong" which is Volume VI of supplement from "Damheonseo", written by Hong Dae-Yong (1731~1783). We made out the conceptual design of Hong Dae-Yong's Honsangui through the study on its structure and working mechanism. Honsangui consist of three rings and two layers, the structure of rings which correspond to outer layer is similar to his own Tongcheonui (armillary sphere) which is a kind of armillary sphere. Honsang sphere which correspond to inner layer depicts constellations and milky way and two beads hang on it as Sun and Moon respectively for realize the celestial motion. Tongcheonui is operated by the pendulum power but Honsangui is operated by water-hammering method mechanism. This Honsangui's working mechanism is the traditional way of Joseon and it was simplified the working mechanism of Shui y'n i hsiang t'ai which is a representative astronomical clock of China. This record of Honsangui is the only historical record about the water-hammering method working mechanism of Joseon Era and it provide the study of water-hammering method mechanism with a vital clue.

  15. Order Matters: Sequencing Scale-Realistic Versus Simplified Models to Improve Science Learning

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Schneps, Matthew H.; Sonnert, Gerhard

    2016-10-01

    Teachers choosing between different models to facilitate students' understanding of an abstract system must decide whether to adopt a model that is simplified and striking or one that is realistic and complex. Only recently have instructional technologies enabled teachers and learners to change presentations swiftly and to provide for learning based on multiple models, thus giving rise to questions about the order of presentation. Using disjoint individual growth modeling to examine the learning of astronomical concepts using a simulation of the solar system on tablets for 152 high school students (age 15), the authors detect both a model effect and an order effect in the use of the Orrery, a simplified model that exaggerates the scale relationships, and the True-to-scale, a proportional model that more accurately represents the realistic scale relationships. Specifically, earlier exposure to the simplified model resulted in diminution of the conceptual gain from the subsequent realistic model, but the realistic model did not impede learning from the following simplified model.

  16. Procedure for Tooth Contact Analysis of a Face Gear Meshing With a Spur Gear Using Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Bibel, George; Lewicki, David G. (Technical Monitor)

    2002-01-01

    A procedure was developed to perform tooth contact analysis between a face gear meshing with a spur pinion using finite element analysis. The face gear surface points from a previous analysis were used to create a connected tooth solid model without gaps or overlaps. The face gear surface points were used to create a five tooth face gear Patran model (with rim) using Patran PCL commands. These commands were saved in a series of session files suitable for Patran input. A four tooth spur gear that meshes with the face gear was designed and constructed with Patran PCL commands. These commands were also saved in a session files suitable for Patran input. The orientation of the spur gear required for meshing with the face gear was determined. The required rotations and translations are described and built into the session file for the spur gear. The Abaqus commands for three-dimensional meshing were determined and verified for a simplified model containing one spur tooth and one face gear tooth. The boundary conditions, loads, and weak spring constraints were determined to make the simplified model work. The load steps and load increments to establish contact and obtain a realistic load was determined for the simplified two tooth model. Contact patterns give some insight into required mesh density. Building the two gears in two different local coordinate systems and rotating the local coordinate systems was verified as an easy way to roll the gearset through mesh. Due to limitation of swap space, disk space and time constraints of the summer period, the larger model was not completed.

  17. Diffuse attenuation coefficient for downwelling irradiance at 490 nm and its spectral characteristics in the Black Sea upper layer: modeling, in situ measurements and ocean color data

    NASA Astrophysics Data System (ADS)

    Suslin, V. V.; Slabakova, V. K.; Churilova, T. Ya.

    2017-11-01

    Vertical diffuse attenuation coefficient, Kd(490), is one of the key parameter required for water quality modeling, hydrodynamic and biological processes in the sea. We showed that standard level-2 product of Kd(490) was underestimated in comparison with Kd(490) values simulated by the regional model during the diatom bloom in the Black Sea. Using data of SeaWiFS, MERIS and MODIS color scanners, a regional relationship between the model value of Kd(490) and the ratio of remote sensing reflectances has been obtained. Based on the bulgarian argo-bio-buoy dataset, the relationship between the attenuation coefficient of photosynthetically active radiation and attenuation coefficient at a wavelength of 490 nm is obtained. The simplified model, below as the S-model, of the diffuse attenuation coefficient spectrum for downwelling irradiance in the Black Sea upper layer is described. As a consequence of the S-model, the link between the depth of the euphotic zone and Kd(490) has been obtained. It is shown that the Kd(490) values, retrieved from ocean color data with using the regional link and from argo-bio-buoy measurements at depths between 6-20 m, are close to each other.

  18. Development of an aerostatic bearing system for roll-to-roll printed electronics

    NASA Astrophysics Data System (ADS)

    Chen, Shasha; Chen, Weihai; Liu, Jingmeng; Chen, Wenjie; Jin, Yan

    2018-06-01

    Roll-to-roll printed electronics is proved to be an effective way to fabricate electrical devices on various substrates. High precision overlay alignment plays a key role to create multi-layer electrical devices. Multiple rollers are adopted to support and transport the substrate web. In order to eliminate the negative effect of the machining error and assembling error of the roller, a whole roll-to-roll system including two aerostatic bearing devices with arrayed restrictors is proposed in this paper. Different to the conventional roller, the aerostatic bearing device can create a layer of air film between the web and the device to realize non-contact support and transport. Based on simplified Navier–Stokes equations, the theoretical model of the air film is established. Moreover, the pressure distribution of the whole flow field and single restrictor in different positions are modeled by conducting numerical simulation with computational fluid dynamics (CFD) software FLUENT. The load capacity curves and stiffness curves are generated to provide guidance for optimizing the structure of the device. A prototype of the aerostatic bearing system is set up and the experiment tests are carried out. For the proposed aerostatic bearing roller with a diameter of 100 mm and length of 200 mm, the experimental results show the aerostatic bearing method can achieve the position accuracy in a range of 1 μm in the vertical direction of the web, which is much better than that using existing methods.

  19. Influence of Trabecular Bone on Peri-Implant Stress and Strain Based on Micro-CT Finite Element Modeling of Beagle Dog

    PubMed Central

    Liao, Sheng-hui; Zhu, Xing-hao; Xie, Jing; Sohodeb, Vikesh Kumar; Ding, Xi

    2016-01-01

    The objective of this investigation is to analyze the influence of trabecular microstructure modeling on the biomechanical distribution of the implant-bone interface. Two three-dimensional finite element mandible models, one with trabecular microstructure (a refined model) and one with macrostructure (a simplified model), were built. The values of equivalent stress at the implant-bone interface in the refined model increased compared with those of the simplified model and strain on the contrary. The distributions of stress and strain were more uniform in the refined model of trabecular microstructure, in which stress and strain were mainly concentrated in trabecular bone. It was concluded that simulation of trabecular bone microstructure had a significant effect on the distribution of stress and strain at the implant-bone interface. These results suggest that trabecular structures could disperse stress and strain and serve as load buffers. PMID:27403424

  20. Influence of Trabecular Bone on Peri-Implant Stress and Strain Based on Micro-CT Finite Element Modeling of Beagle Dog.

    PubMed

    Liao, Sheng-Hui; Zhu, Xing-Hao; Xie, Jing; Sohodeb, Vikesh Kumar; Ding, Xi

    2016-01-01

    The objective of this investigation is to analyze the influence of trabecular microstructure modeling on the biomechanical distribution of the implant-bone interface. Two three-dimensional finite element mandible models, one with trabecular microstructure (a refined model) and one with macrostructure (a simplified model), were built. The values of equivalent stress at the implant-bone interface in the refined model increased compared with those of the simplified model and strain on the contrary. The distributions of stress and strain were more uniform in the refined model of trabecular microstructure, in which stress and strain were mainly concentrated in trabecular bone. It was concluded that simulation of trabecular bone microstructure had a significant effect on the distribution of stress and strain at the implant-bone interface. These results suggest that trabecular structures could disperse stress and strain and serve as load buffers.

  1. Radiative Heating Methodology for the Huygens Probe

    NASA Technical Reports Server (NTRS)

    Johnston, Christopher O.; Hollis, Brian R.; Sutton, Kenneth

    2007-01-01

    The radiative heating environment for the Huygens probe near peak heating conditions for Titan entry is investigated in this paper. The task of calculating the radiation-coupled flowfield, accounting for non-Boltzmann and non-optically thin radiation, is simplified to a rapid yet accurate calculation. This is achieved by using the viscous-shock layer (VSL) technique for the stagnation-line flowfield calculation and a modified smeared rotational band (SRB) model for the radiation calculation. These two methods provide a computationally efficient alternative to a Navier-Stokes flowfield and line-by-line radiation calculation. The results of the VSL technique are shown to provide an excellent comparison with the Navier-Stokes results of previous studies. It is shown that a conventional SRB approach is inadequate for the partially optically-thick conditions present in the Huygens shock-layer around the peak heating trajectory points. A simple modification is proposed to the SRB model that improves its accuracy in these partially optically-thick conditions. This modified approach, labeled herein as SRBC, is compared throughout this study with a detailed line-by-line (LBL) calculation and is shown to compare within 5% in all cases. The SRBC method requires many orders-of-magnitude less computational time than the LBL method, which makes it ideal for coupling to the flowfield. The application of a collisional-radiative (CR) model for determining the population of the CN electronic states, which govern the radiation for Huygens entry, is discussed and applied. The non-local absorption term in the CR model is formulated in terms of an escape factor, which is then curve-fit with temperature. Although the curve-fit is an approximation, it is shown to compare well with the exact escape factor calculation, which requires a computationally intensive iteration procedure.

  2. Family of the Sun-and-Stars Time-Determining Instruments (Ilseong-jeongsi-ui) Invented During the Joseon Dynasty

    NASA Astrophysics Data System (ADS)

    Lee, Yong Sam; Kim, Sang Hyuk; Mihn, Byeong-Hee

    2016-09-01

    We analyze the design and specifications of the Sun-and-Stars Time-Determining group of instruments (Ilseong-jeongsi-ui, 日星定時儀) made during the Joseon dynasty. According to the records of the Sejong Sillok (Veritable Records of King Sejong), Sun-and-Stars Time-Determining Instruments measure the solar time of day and the sidereal time of night through three rings and an alidade. One such instrument, the Simplified Time-Determining Instrument (So-jeongsi-ui, 小定時儀), is made without the essential component for alignment with the celestial north pole. Among this group of instruments, only two bronze Hundred-Interval-Ring Sundials (Baekgak-hwan-Ilgu, 百刻環日晷) currently exist. A comparison of the functions of these two relics with two Time-Determining Instruments suggests that the Hundred-Interval-Ring Sundial is a Simplified Sundial (So-ilyeong, 小日影), as recorded in the Sejong Sillok and the Seongjong Sillok (Veritable Records of King Seongjong). Furthermore, the Simplified Sundial is a model derived from the Simplified Time-Determining Instrument. During the King Sejong reign, the Sun-and-Stars Time-Determining Instruments were used in military camps of the kingdom’s frontiers, in royal ancestral rituals, and in royal astronomical observatories.

  3. Fast intersection detection algorithm for PC-based robot off-line programming

    NASA Astrophysics Data System (ADS)

    Fedrowitz, Christian H.

    1994-11-01

    This paper presents a method for fast and reliable collision detection in complex production cells. The algorithm is part of the PC-based robot off-line programming system of the University of Siegen (Ropsus). The method is based on a solid model which is managed by a simplified constructive solid geometry model (CSG-model). The collision detection problem is divided in two steps. In the first step the complexity of the problem is reduced in linear time. In the second step the remaining solids are tested for intersection. For this the Simplex algorithm, which is known from linear optimization, is used. It computes a point which is common to two convex polyhedra. The polyhedra intersect, if such a point exists. Regarding the simplified geometrical model of Ropsus the algorithm runs also in linear time. In conjunction with the first step a resultant collision detection algorithm is found which requires linear time in all. Moreover it computes the resultant intersection polyhedron using the dual transformation.

  4. Simplified subsurface modelling: data assimilation and violated model assumptions

    NASA Astrophysics Data System (ADS)

    Erdal, Daniel; Lange, Natascha; Neuweiler, Insa

    2017-04-01

    Integrated models are gaining more and more attention in hydrological modelling as they can better represent the interaction between different compartments. Naturally, these models come along with larger numbers of unknowns and requirements on computational resources compared to stand-alone models. If large model domains are to be represented, e.g. on catchment scale, the resolution of the numerical grid needs to be reduced or the model itself needs to be simplified. Both approaches lead to a reduced ability to reproduce the present processes. This lack of model accuracy may be compensated by using data assimilation methods. In these methods observations are used to update the model states, and optionally model parameters as well, in order to reduce the model error induced by the imposed simplifications. What is unclear is whether these methods combined with strongly simplified models result in completely data-driven models or if they can even be used to make adequate predictions of the model state for times when no observations are available. In the current work we consider the combined groundwater and unsaturated zone, which can be modelled in a physically consistent way using 3D-models solving the Richards equation. For use in simple predictions, however, simpler approaches may be considered. The question investigated here is whether a simpler model, in which the groundwater is modelled as a horizontal 2D-model and the unsaturated zones as a few sparse 1D-columns, can be used within an Ensemble Kalman filter to give predictions of groundwater levels and unsaturated fluxes. This is tested under conditions where the feedback between the two model-compartments are large (e.g. shallow groundwater table) and the simplification assumptions are clearly violated. Such a case may be a steep hill-slope or pumping wells, creating lateral fluxes in the unsaturated zone, or strong heterogeneous structures creating unaccounted flows in both the saturated and unsaturated compartments. Under such circumstances, direct modelling using a simplified model will not provide good results. However, a more data driven (e.g. grey box) approach, driven by the filter, may still provide an improved understanding of the system. Comparisons between full 3D simulations and simplified filter driven models will be shown and the resulting benefits and drawbacks will be discussed.

  5. Differences between the MEMLS and the multiple-layer HUT model and their comparisons with in-situ snowpack observations

    NASA Astrophysics Data System (ADS)

    Pan, J.; Durand, M. T.; Sandells, M. J.; Lemmetyinen, J.; Kim, E. J.

    2013-12-01

    Application of passive microwave (PM) brightness temperature for snow water equivalent retrieval requires deep understanding of snow emission models, not only for their performance to reproduce in-situ PM observations, but also for their theoretical differences to approximate radiative transfer theory. In this paper, differences between the multiple-layer HUT (or TKK) model and the Microwave Emission Model of Layered Snowpacks (MEMLS) were listed, and the two models were compared with snow ground-based PM observations at Streamboat Springs, Colorado, USA; Churchill, Canada; and Sodankyla, Finland. The two models were chosen for their multiple-layer schemes are close to actual layer-by-layer snow measurements. Both the two models are semi-empirical models; whereas the HUT model uses the mean snow grain size, MEMLS uses the correlation length to relate the snow microstructure with the scattering coefficients. The two parameters are related according to previous studies. The Specific Surface Area (SSA) was measured at three test sites to derive the correlation length, while the mean snow grain sizes was available at Stream Springs and Sodankyla. It was shown that with different apparent forms of radiative transfer equations, the different parts of the two models have one-to-one correspondence however, and intermediate parameters are comparable. Regarding the multiple-layer structure of the models, it was found that the HUT model considers the internal reflectivity of each snow layer to be zero. The two-flux radiative transfer equations of the two models were compared, and the correspondence of the semi-empirical parameter q in the HUT model was found in the MEMLS. The effect of consideration of transverse radiation scattered into the direction under consideration via the six-flux approximation in MEMLS is compared. Based on model comparisons, we analyzed the differences of TB predictions at the three test sites.

  6. Simplified models for dark matter searches at the LHC

    NASA Astrophysics Data System (ADS)

    Abdallah, Jalal; Araujo, Henrique; Arbey, Alexandre; Ashkenazi, Adi; Belyaev, Alexander; Berger, Joshua; Boehm, Celine; Boveia, Antonio; Brennan, Amelia; Brooke, Jim; Buchmueller, Oliver; Buckley, Matthew; Busoni, Giorgio; Calibbi, Lorenzo; Chauhan, Sushil; Daci, Nadir; Davies, Gavin; De Bruyn, Isabelle; De Jong, Paul; De Roeck, Albert; de Vries, Kees; Del Re, Daniele; De Simone, Andrea; Di Simone, Andrea; Doglioni, Caterina; Dolan, Matthew; Dreiner, Herbi K.; Ellis, John; Eno, Sarah; Etzion, Erez; Fairbairn, Malcolm; Feldstein, Brian; Flaecher, Henning; Feng, Eric; Fox, Patrick; Genest, Marie-Hélène; Gouskos, Loukas; Gramling, Johanna; Haisch, Ulrich; Harnik, Roni; Hibbs, Anthony; Hoh, Siewyan; Hopkins, Walter; Ippolito, Valerio; Jacques, Thomas; Kahlhoefer, Felix; Khoze, Valentin V.; Kirk, Russell; Korn, Andreas; Kotov, Khristian; Kunori, Shuichi; Landsberg, Greg; Liem, Sebastian; Lin, Tongyan; Lowette, Steven; Lucas, Robyn; Malgeri, Luca; Malik, Sarah; McCabe, Christopher; Mete, Alaettin Serhan; Morgante, Enrico; Mrenna, Stephen; Nakahama, Yu; Newbold, Dave; Nordstrom, Karl; Pani, Priscilla; Papucci, Michele; Pataraia, Sophio; Penning, Bjoern; Pinna, Deborah; Polesello, Giacomo; Racco, Davide; Re, Emanuele; Riotto, Antonio Walter; Rizzo, Thomas; Salek, David; Sarkar, Subir; Schramm, Steven; Skubic, Patrick; Slone, Oren; Smirnov, Juri; Soreq, Yotam; Sumner, Timothy; Tait, Tim M. P.; Thomas, Marc; Tomalin, Ian; Tunnell, Christopher; Vichi, Alessandro; Volansky, Tomer; Weiner, Neal; West, Stephen M.; Wielers, Monika; Worm, Steven; Yavin, Itay; Zaldivar, Bryan; Zhou, Ning; Zurek, Kathryn

    2015-09-01

    This document outlines a set of simplified models for dark matter and its interactions with Standard Model particles. It is intended to summarize the main characteristics that these simplified models have when applied to dark matter searches at the LHC, and to provide a number of useful expressions for reference. The list of models includes both ss-channel and tt-channel scenarios. For ss-channel, spin-0 and spin-1 mediations are discussed, and also realizations where the Higgs particle provides a portal between the dark and visible sectors. The guiding principles underpinning the proposed simplified models are spelled out, and some suggestions for implementation are presented.

  7. Hybrid simplified spherical harmonics with diffusion equation for light propagation in tissues.

    PubMed

    Chen, Xueli; Sun, Fangfang; Yang, Defu; Ren, Shenghan; Zhang, Qian; Liang, Jimin

    2015-08-21

    Aiming at the limitations of the simplified spherical harmonics approximation (SPN) and diffusion equation (DE) in describing the light propagation in tissues, a hybrid simplified spherical harmonics with diffusion equation (HSDE) based diffuse light transport model is proposed. In the HSDE model, the living body is first segmented into several major organs, and then the organs are divided into high scattering tissues and other tissues. DE and SPN are employed to describe the light propagation in these two kinds of tissues respectively, which are finally coupled using the established boundary coupling condition. The HSDE model makes full use of the advantages of SPN and DE, and abandons their disadvantages, so that it can provide a perfect balance between accuracy and computation time. Using the finite element method, the HSDE is solved for light flux density map on body surface. The accuracy and efficiency of the HSDE are validated with both regular geometries and digital mouse model based simulations. Corresponding results reveal that a comparable accuracy and much less computation time are achieved compared with the SPN model as well as a much better accuracy compared with the DE one.

  8. Calibration of a Spatial-Temporal Discrimination Model from Forward, Simultaneous, and Backward Masking

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J.; Beard, B. L.; Stone, Leland (Technical Monitor)

    1997-01-01

    We have been developing a simplified spatial-temporal discrimination model similar to our simplified spatial model in that masking is assumed to be a function of the local visible contrast energy. The overall spatial-temporal sensitivity of the model is calibrated to predict the detectability of targets on a uniform background. To calibrate the spatial-temporal integration functions that define local visible contrast energy, spatial-temporal masking data are required. Observer thresholds were measured (2IFC) for the detection of a 12 msec target stimulus in the presence of a 700 msec mask. Targets were 1, 3 or 9 c/deg sine wave gratings. Masks were either one of these gratings or two of them combined. The target was presented in 17 temporal positions with respect to the mask, including positions before, during and after the mask. Peak masking was found near mask onset and offset for 1 and 3 c/deg targets, while masking effects were more nearly uniform during the mask for the 9 c/deg target. As in the purely spatial case, the simplified model can not predict all the details of masking as a function of masking component spatial frequencies, but overall the prediction errors are small.

  9. Mono-W dark matter signals at the LHC: simplified model analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, Nicole F.; Cai, Yi; Leane, Rebecca K., E-mail: n.bell@unimelb.edu.au, E-mail: yi.cai@unimelb.edu.au, E-mail: rleane@physics.unimelb.edu.au

    2016-01-01

    We study mono-W signals of dark matter (DM) production at the LHC, in the context of gauge invariant renormalizable models. We analyze two simplified models, one involving an s-channel Z' mediator and the other a t-channel colored scalar mediator, and consider examples in which the DM-quark couplings are either isospin conserving or isospin violating after electroweak symmetry breaking. While previous work on mono-W signals have focused on isospin violating EFTs, obtaining very strong limits, we find that isospin violating effects are small once such physics is embedded into a gauge invariant simplified model. We thus find that the 8 TeVmore » mono-W results are much less constraining than those arising from mono-jet searches. Considering both the leptonic (mono-lepton) and hadronic (mono fat jet) decays of the W, we determine the 14 TeV LHC reach of the mono-W searches with 3000 fb{sup −1} of data. While a mono-W signal would provide an important complement to a mono-jet discovery channel, existing constraints on these models imply it will be a challenging signal to observe at the 14 TeV LHC.« less

  10. Comparison Between Navier-Stokes and Thin-Layer Computations for Separated Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Degani, David; Steger, Joseph L.

    1983-01-01

    In the numerical simulation of high Reynolds-number flow, one can frequently supply only enough grid points to resolve the viscous terms in a thin layer. As a consequence, a body-or stream-aligned coordinate system is frequently used and viscous terms in this direction are discarded. It is argued that these terms cannot be resolved and computational efficiency is gained by their neglect. Dropping the streamwise viscous terms in this manner has been termed the thin-layer approximation. The thin-layer concept is an old one, and similar viscous terms are dropped, for example, in parabolized Navier-Stokes schemes. However, such schemes also make additional assumptions so that the equations can be marched in space, and such a restriction is not usually imposed on a thin-layer model. The thin-layer approximation can be justified in much the same way as the boundary-layer approximation; it requires, therefore, a body-or stream-aligned coordinate and a high Reynolds number. Unlike the boundary-layer approximation, the same equations are used throughout, so there is no matching problem. Furthermore, the normal momentum equation is not simplified and the convection terms are not one-sided differenced for marching. Consequently, the thin-layer equations are numerically well behaved at separation and require no special treatment there. Nevertheless, the thin-layer approximation receives criticism. It has been suggested that the approximation is invalid at separation and, more recently, that it is inadequate for unsteady transonic flow. Although previous comparisons between the thin-layer and Navier-Stokes equations have been made, these comparisons have not been adequately documented.

  11. ENSEMBLE and AMET: Two Systems and Approaches to a Harmonized, Simplified and Efficient Facility for Air Quality Models Development and Evaluation

    EPA Science Inventory

    The complexity of air quality modeling systems, air quality monitoring data make ad-hoc systems for model evaluation important aids to the modeling community. Among those are the ENSEMBLE system developed by the EC-Joint Research Center, and the AMET software developed by the US-...

  12. RACORO continental boundary layer cloud investigations. Part I: Case study development and ensemble large-scale forcings

    DOE PAGES

    Vogelmann, Andrew M.; Fridlind, Ann M.; Toto, Tami; ...

    2015-06-19

    Observation-based modeling case studies of continental boundary layer clouds have been developed to study cloudy boundary layers, aerosol influences upon them, and their representation in cloud- and global-scale models. Three 60-hour case study periods span the temporal evolution of cumulus, stratiform, and drizzling boundary layer cloud systems, representing mixed and transitional states rather than idealized or canonical cases. Based on in-situ measurements from the RACORO field campaign and remote-sensing observations, the cases are designed with a modular configuration to simplify use in large-eddy simulations (LES) and single-column models. Aircraft measurements of aerosol number size distribution are fit to lognormal functionsmore » for concise representation in models. Values of the aerosol hygroscopicity parameter, κ, are derived from observations to be ~0.10, which are lower than the 0.3 typical over continents and suggestive of a large aerosol organic fraction. Ensemble large-scale forcing datasets are derived from the ARM variational analysis, ECMWF forecasts, and a multi-scale data assimilation system. The forcings are assessed through comparison of measured bulk atmospheric and cloud properties to those computed in 'trial' large-eddy simulations, where more efficient run times are enabled through modest reductions in grid resolution and domain size compared to the full-sized LES grid. Simulations capture many of the general features observed, but the state-of-the-art forcings were limited at representing details of cloud onset, and tight gradients and high-resolution transients of importance. Methods for improving the initial conditions and forcings are discussed. The cases developed are available to the general modeling community for studying continental boundary clouds.« less

  13. RACORO Continental Boundary Layer Cloud Investigations: 1. Case Study Development and Ensemble Large-Scale Forcings

    NASA Technical Reports Server (NTRS)

    Vogelmann, Andrew M.; Fridlind, Ann M.; Toto, Tami; Endo, Satoshi; Lin, Wuyin; Wang, Jian; Feng, Sha; Zhang, Yunyan; Turner, David D.; Liu, Yangang; hide

    2015-01-01

    Observation-based modeling case studies of continental boundary layer clouds have been developed to study cloudy boundary layers, aerosol influences upon them, and their representation in cloud- and global-scale models. Three 60 h case study periods span the temporal evolution of cumulus, stratiform, and drizzling boundary layer cloud systems, representing mixed and transitional states rather than idealized or canonical cases. Based on in situ measurements from the Routine AAF (Atmospheric Radiation Measurement (ARM) Aerial Facility) CLOWD (Clouds with Low Optical Water Depth) Optical Radiative Observations (RACORO) field campaign and remote sensing observations, the cases are designed with a modular configuration to simplify use in large-eddy simulations (LES) and single-column models. Aircraft measurements of aerosol number size distribution are fit to lognormal functions for concise representation in models. Values of the aerosol hygroscopicity parameter, kappa, are derived from observations to be approximately 0.10, which are lower than the 0.3 typical over continents and suggestive of a large aerosol organic fraction. Ensemble large-scale forcing data sets are derived from the ARM variational analysis, European Centre for Medium-Range Weather Forecasts, and a multiscale data assimilation system. The forcings are assessed through comparison of measured bulk atmospheric and cloud properties to those computed in "trial" large-eddy simulations, where more efficient run times are enabled through modest reductions in grid resolution and domain size compared to the full-sized LES grid. Simulations capture many of the general features observed, but the state-of-the-art forcings were limited at representing details of cloud onset, and tight gradients and high-resolution transients of importance. Methods for improving the initial conditions and forcings are discussed. The cases developed are available to the general modeling community for studying continental boundary clouds.

  14. RACORO continental boundary layer cloud investigations: 1. Case study development and ensemble large-scale forcings

    NASA Astrophysics Data System (ADS)

    Vogelmann, Andrew M.; Fridlind, Ann M.; Toto, Tami; Endo, Satoshi; Lin, Wuyin; Wang, Jian; Feng, Sha; Zhang, Yunyan; Turner, David D.; Liu, Yangang; Li, Zhijin; Xie, Shaocheng; Ackerman, Andrew S.; Zhang, Minghua; Khairoutdinov, Marat

    2015-06-01

    Observation-based modeling case studies of continental boundary layer clouds have been developed to study cloudy boundary layers, aerosol influences upon them, and their representation in cloud- and global-scale models. Three 60 h case study periods span the temporal evolution of cumulus, stratiform, and drizzling boundary layer cloud systems, representing mixed and transitional states rather than idealized or canonical cases. Based on in situ measurements from the Routine AAF (Atmospheric Radiation Measurement (ARM) Aerial Facility) CLOWD (Clouds with Low Optical Water Depth) Optical Radiative Observations (RACORO) field campaign and remote sensing observations, the cases are designed with a modular configuration to simplify use in large-eddy simulations (LES) and single-column models. Aircraft measurements of aerosol number size distribution are fit to lognormal functions for concise representation in models. Values of the aerosol hygroscopicity parameter, κ, are derived from observations to be 0.10, which are lower than the 0.3 typical over continents and suggestive of a large aerosol organic fraction. Ensemble large-scale forcing data sets are derived from the ARM variational analysis, European Centre for Medium-Range Weather Forecasts, and a multiscale data assimilation system. The forcings are assessed through comparison of measured bulk atmospheric and cloud properties to those computed in "trial" large-eddy simulations, where more efficient run times are enabled through modest reductions in grid resolution and domain size compared to the full-sized LES grid. Simulations capture many of the general features observed, but the state-of-the-art forcings were limited at representing details of cloud onset, and tight gradients and high-resolution transients of importance. Methods for improving the initial conditions and forcings are discussed. The cases developed are available to the general modeling community for studying continental boundary clouds.

  15. NASA's Cryogenic Fluid Management Technology Project

    NASA Technical Reports Server (NTRS)

    Tramel, Terri L.; Motil, Susan M.

    2008-01-01

    The Cryogenic Fluid Management (CFM) Project's primary objective is to develop storage, transfer, and handling technologies for cryogens that will support the enabling of high performance cryogenic propulsion systems, lunar surface systems and economical ground operations. Such technologies can significantly reduce propellant launch mass and required on-orbit margins, reduce or even eliminate propellant tank fluid boil-off losses for long term missions, and simplify vehicle operations. This paper will present the status of the specific technologies that the CFM Project is developing. The two main areas of concentration are analysis models development and CFM hardware development. The project develops analysis tools and models based on thermodynamics, hydrodynamics, and existing flight/test data. These tools assist in the development of pressure/thermal control devices (such as the Thermodynamic Vent System (TVS), and Multi-layer insulation); with the ultimate goal being to develop a mature set of tools and models that can characterize the performance of the pressure/thermal control devices incorporated in the design of an entire CFM system with minimal cryogen loss. The project does hardware development and testing to verify our understanding of the physical principles involved, and to validate the performance of CFM components, subsystems and systems. This database provides information to anchor our analytical models. This paper describes some of the current activities of the NASA's Cryogenic Fluid Management Project.

  16. Effect of Turbulence Modeling on an Excited Jet

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.; Hixon, Ray

    2010-01-01

    The flow dynamics in a high-speed jet are dominated by unsteady turbulent flow structures in the plume. Jet excitation seeks to control these flow structures through the natural instabilities present in the initial shear layer of the jet. Understanding and optimizing the excitation input, for jet noise reduction or plume mixing enhancement, requires many trials that may be done experimentally or computationally at a significant cost savings. Numerical simulations, which model various parts of the unsteady dynamics to reduce the computational expense of the simulation, must adequately capture the unsteady flow dynamics in the excited jet for the results are to be used. Four CFD methods are considered for use in an excited jet problem, including two turbulence models with an Unsteady Reynolds Averaged Navier-Stokes (URANS) solver, one Large Eddy Simulation (LES) solver, and one URANS/LES hybrid method. Each method is used to simulate a simplified excited jet and the results are evaluated based on the flow data, computation time, and numerical stability. The knowledge gained about the effect of turbulence modeling and CFD methods from these basic simulations will guide and assist future three-dimensional (3-D) simulations that will be used to understand and optimize a realistic excited jet for a particular application.

  17. Temperature Measurement and Numerical Prediction in Machining Inconel 718.

    PubMed

    Díaz-Álvarez, José; Tapetado, Alberto; Vázquez, Carmen; Miguélez, Henar

    2017-06-30

    Thermal issues are critical when machining Ni-based superalloy components designed for high temperature applications. The low thermal conductivity and extreme strain hardening of this family of materials results in elevated temperatures around the cutting area. This elevated temperature could lead to machining-induced damage such as phase changes and residual stresses, resulting in reduced service life of the component. Measurement of temperature during machining is crucial in order to control the cutting process, avoiding workpiece damage. On the other hand, the development of predictive tools based on numerical models helps in the definition of machining processes and the obtainment of difficult to measure parameters such as the penetration of the heated layer. However, the validation of numerical models strongly depends on the accurate measurement of physical parameters such as temperature, ensuring the calibration of the model. This paper focuses on the measurement and prediction of temperature during the machining of Ni-based superalloys. The temperature sensor was based on a fiber-optic two-color pyrometer developed for localized temperature measurements in turning of Inconel 718. The sensor is capable of measuring temperature in the range of 250 to 1200 °C. Temperature evolution is recorded in a lathe at different feed rates and cutting speeds. Measurements were used to calibrate a simplified numerical model for prediction of temperature fields during turning.

  18. Synchronous Chaos and Broad Band Gamma Rhythm in a Minimal Multi-Layer Model of Primary Visual Cortex

    PubMed Central

    Battaglia, Demian; Hansel, David

    2011-01-01

    Visually induced neuronal activity in V1 displays a marked gamma-band component which is modulated by stimulus properties. It has been argued that synchronized oscillations contribute to these gamma-band activity. However, analysis of Local Field Potentials (LFPs) across different experiments reveals considerable diversity in the degree of oscillatory behavior of this induced activity. Contrast-dependent power enhancements can indeed occur over a broad band in the gamma frequency range and spectral peaks may not arise at all. Furthermore, even when oscillations are observed, they undergo temporal decorrelation over very few cycles. This is not easily accounted for in previous network modeling of gamma oscillations. We argue here that interactions between cortical layers can be responsible for this fast decorrelation. We study a model of a V1 hypercolumn, embedding a simplified description of the multi-layered structure of the cortex. When the stimulus contrast is low, the induced activity is only weakly synchronous and the network resonates transiently without developing collective oscillations. When the contrast is high, on the other hand, the induced activity undergoes synchronous oscillations with an irregular spatiotemporal structure expressing a synchronous chaotic state. As a consequence the population activity undergoes fast temporal decorrelation, with concomitant rapid damping of the oscillations in LFPs autocorrelograms and peak broadening in LFPs power spectra. We show that the strength of the inter-layer coupling crucially affects this spatiotemporal structure. We predict that layer VI inactivation should induce global changes in the spectral properties of induced LFPs, reflecting their slower temporal decorrelation in the absence of inter-layer feedback. Finally, we argue that the mechanism underlying the emergence of synchronous chaos in our model is in fact very general. It stems from the fact that gamma oscillations induced by local delayed inhibition tend to develop chaos when coupled by sufficiently strong excitation. PMID:21998568

  19. Using color histogram normalization for recovering chromatic illumination-changed images.

    PubMed

    Pei, S C; Tseng, C L; Wu, C C

    2001-11-01

    We propose a novel image-recovery method using the covariance matrix of the red-green-blue (R-G-B) color histogram and tensor theories. The image-recovery method is called the color histogram normalization algorithm. It is known that the color histograms of an image taken under varied illuminations are related by a general affine transformation of the R-G-B coordinates when the illumination is changed. We propose a simplified affine model for application with illumination variation. This simplified affine model considers the effects of only three basic forms of distortion: translation, scaling, and rotation. According to this principle, we can estimate the affine transformation matrix necessary to recover images whose color distributions are varied as a result of illumination changes. We compare the normalized color histogram of the standard image with that of the tested image. By performing some operations of simple linear algebra, we can estimate the matrix of the affine transformation between two images under different illuminations. To demonstrate the performance of the proposed algorithm, we divide the experiments into two parts: computer-simulated images and real images corresponding to illumination changes. Simulation results show that the proposed algorithm is effective for both types of images. We also explain the noise-sensitive skew-rotation estimation that exists in the general affine model and demonstrate that the proposed simplified affine model without the use of skew rotation is better than the general affine model for such applications.

  20. Facile transfer of thickness controllable poly(methyl methacrylate) patterns on a nanometer scale onto SiO2 substrates via microcontact printing combined with simplified Langmuir-Schaefer technique.

    PubMed

    Kim, Yong-Kwan; Kim, Dae-Il; Park, Jaehyun; Shin, Gunchul; Kim, Gyu Tae; Ha, Jeong Sook

    2008-12-16

    We report on the facile patterning of poly(methyl methacrylate) (PMMA) layers onto SiO2 substrates via microcontact printing combined with the simplified Langmuir-Schaefer (LS) technique. Langmuir film of PMMA was formed just by dropping a dilute PMMA solution onto the air/water surface in a glass Petri dish via self-assembly, and it was used as an ink for the patterned poly(dimethylsilioxane) (PDMS) stamp. The transferred film properties were systematically investigated with variation of postannealing temperature, molecular weight of PMMA, and the inking number. The patterned PMMA film surface was smooth with no vacancy defect in a few micrometers scale AFM images over the whole film area after post-annealing process. The thickness of the PMMA patterns was controlled on the nanometer scale by the number of inkings of the LS layer of PMMA on the PDMS stamp. By using the PMMA patterns as a barrier and a sacrificial layer against the chemical etching and metal deposition, SiO2 and metal patterns were fabricated, respectively. The PMMA layers also worked as a passivation layer against the patterning of V2O5 nanowires and the selective adsorption of single-walled carbon nanotubes (SWCNTs). We also fabricated thin film transistors using patterned SWCNTs with different percolation states and investigated the electrical properties.

  1. A simplified model for dynamics of cell rolling and cell-surface adhesion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cimrák, Ivan, E-mail: ivan.cimrak@fri.uniza.sk

    2015-03-10

    We propose a three dimensional model for the adhesion and rolling of biological cells on surfaces. We study cells moving in shear flow above a wall to which they can adhere via specific receptor-ligand bonds based on receptors from selectin as well as integrin family. The computational fluid dynamics are governed by the lattice-Boltzmann method. The movement and the deformation of the cells is described by the immersed boundary method. Both methods are fully coupled by implementing a two-way fluid-structure interaction. The adhesion mechanism is modelled by adhesive bonds including stochastic rules for their creation and rupture. We explore amore » simplified model with dissociation rate independent of the length of the bonds. We demonstrate that this model is able to resemble the mesoscopic properties, such as velocity of rolling cells.« less

  2. Seismic waves and earthquakes in a global monolithic model

    NASA Astrophysics Data System (ADS)

    Roubíček, Tomáš

    2018-03-01

    The philosophy that a single "monolithic" model can "asymptotically" replace and couple in a simple elegant way several specialized models relevant on various Earth layers is presented and, in special situations, also rigorously justified. In particular, global seismicity and tectonics is coupled to capture, e.g., (here by a simplified model) ruptures of lithospheric faults generating seismic waves which then propagate through the solid-like mantle and inner core both as shear (S) or pressure (P) waves, while S-waves are suppressed in the fluidic outer core and also in the oceans. The "monolithic-type" models have the capacity to describe all the mentioned features globally in a unified way together with corresponding interfacial conditions implicitly involved, only when scaling its parameters appropriately in different Earth's layers. Coupling of seismic waves with seismic sources due to tectonic events is thus an automatic side effect. The global ansatz is here based, rather for an illustration, only on a relatively simple Jeffreys' viscoelastic damageable material at small strains whose various scaling (limits) can lead to Boger's viscoelastic fluid or even to purely elastic (inviscid) fluid. Self-induced gravity field, Coriolis, centrifugal, and tidal forces are counted in our global model, as well. The rigorous mathematical analysis as far as the existence of solutions, convergence of the mentioned scalings, and energy conservation is briefly presented.

  3. On consistent inter-view synthesis for autostereoscopic displays

    NASA Astrophysics Data System (ADS)

    Tran, Lam C.; Bal, Can; Pal, Christopher J.; Nguyen, Truong Q.

    2012-03-01

    In this paper we present a novel stereo view synthesis algorithm that is highly accurate with respect to inter-view consistency, thus to enabling stereo contents to be viewed on the autostereoscopic displays. The algorithm finds identical occluded regions within each virtual view and aligns them together to extract a surrounding background layer. The background layer for each occluded region is then used with an exemplar based inpainting method to synthesize all virtual views simultaneously. Our algorithm requires the alignment and extraction of background layers for each occluded region; however, these two steps are done efficiently with lower computational complexity in comparison to previous approaches using the exemplar based inpainting algorithms. Thus, it is more efficient than existing algorithms that synthesize one virtual view at a time. This paper also describes the implementation of a simplified GPU accelerated version of the approach and its implementation in CUDA. Our CUDA method has sublinear complexity in terms of the number of views that need to be generated, which makes it especially useful for generating content for autostereoscopic displays that require many views to operate. An objective of our work is to allow the user to change depth and viewing perspective on the fly. Therefore, to further accelerate the CUDA variant of our approach, we present a modified version of our method to warp the background pixels from reference views to a middle view to recover background pixels. We then use an exemplar based inpainting method to fill in the occluded regions. We use warping of the foreground from the reference images and background from the filled regions to synthesize new virtual views on the fly. Our experimental results indicate that the simplified CUDA implementation decreases running time by orders of magnitude with negligible loss in quality. [Figure not available: see fulltext.

  4. Comparison of two trajectory based models for locating particle sources for two rural New York sites

    NASA Astrophysics Data System (ADS)

    Zhou, Liming; Hopke, Philip K.; Liu, Wei

    Two back trajectory-based statistical models, simplified quantitative transport bias analysis and residence-time weighted concentrations (RTWC) have been compared for their capabilities of identifying likely locations of source emissions contributing to observed particle concentrations at Potsdam and Stockton, New York. Quantitative transport bias analysis (QTBA) attempts to take into account the distribution of concentrations around the directions of the back trajectories. In full QTBA approach, deposition processes (wet and dry) are also considered. Simplified QTBA omits the consideration of deposition. It is best used with multiple site data. Similarly the RTWC approach uses concentrations measured at different sites along with the back trajectories to distribute the concentration contributions across the spatial domain of the trajectories. In this study, these models are used in combination with the source contribution values obtained by the previous positive matrix factorization analysis of particle composition data from Potsdam and Stockton. The six common sources for the two sites, sulfate, soil, zinc smelter, nitrate, wood smoke and copper smelter were analyzed. The results of the two methods are consistent and locate large and clearly defined sources well. RTWC approach can find more minor sources but may also give unrealistic estimations of the source locations.

  5. Hierarchical random additive process and logarithmic scaling of generalized high order, two-point correlations in turbulent boundary layer flow

    NASA Astrophysics Data System (ADS)

    Yang, X. I. A.; Marusic, I.; Meneveau, C.

    2016-06-01

    Townsend [Townsend, The Structure of Turbulent Shear Flow (Cambridge University Press, Cambridge, UK, 1976)] hypothesized that the logarithmic region in high-Reynolds-number wall-bounded flows consists of space-filling, self-similar attached eddies. Invoking this hypothesis, we express streamwise velocity fluctuations in the inertial layer in high-Reynolds-number wall-bounded flows as a hierarchical random additive process (HRAP): uz+=∑i=1Nzai . Here u is the streamwise velocity fluctuation, + indicates normalization in wall units, z is the wall normal distance, and ai's are independently, identically distributed random additives, each of which is associated with an attached eddy in the wall-attached hierarchy. The number of random additives is Nz˜ln(δ /z ) where δ is the boundary layer thickness and ln is natural log. Due to its simplified structure, such a process leads to predictions of the scaling behaviors for various turbulence statistics in the logarithmic layer. Besides reproducing known logarithmic scaling of moments, structure functions, and correlation function [" close="]3/2 uz(x ) uz(x +r ) >, new logarithmic laws in two-point statistics such as uz4(x ) > 1 /2, 1/3, etc. can be derived using the HRAP formalism. Supporting empirical evidence for the logarithmic scaling in such statistics is found from the Melbourne High Reynolds Number Boundary Layer Wind Tunnel measurements. We also show that, at high Reynolds numbers, the above mentioned new logarithmic laws can be derived by assuming the arrival of an attached eddy at a generic point in the flow field to be a Poisson process [Woodcock and Marusic, Phys. Fluids 27, 015104 (2015), 10.1063/1.4905301]. Taken together, the results provide new evidence supporting the essential ingredients of the attached eddy hypothesis to describe streamwise velocity fluctuations of large, momentum transporting eddies in wall-bounded turbulence, while observed deviations suggest the need for further extensions of the model.

  6. Hypersonic Vehicle Propulsion System Simplified Model Development

    NASA Technical Reports Server (NTRS)

    Stueber, Thomas J.; Raitano, Paul; Le, Dzu K.; Ouzts, Peter

    2007-01-01

    This document addresses the modeling task plan for the hypersonic GN&C GRC team members. The overall propulsion system modeling task plan is a multi-step process and the task plan identified in this document addresses the first steps (short term modeling goals). The procedures and tools produced from this effort will be useful for creating simplified dynamic models applicable to a hypersonic vehicle propulsion system. The document continues with the GRC short term modeling goal. Next, a general description of the desired simplified model is presented along with simulations that are available to varying degrees. The simulations may be available in electronic form (FORTRAN, CFD, MatLab,...) or in paper form in published documents. Finally, roadmaps outlining possible avenues towards realizing simplified model are presented.

  7. A one- and two-layer model for estimating evapotranspiration with remotely sensed surface temperature and ground-based meteorological data over partial canopy cover

    NASA Technical Reports Server (NTRS)

    Kustas, William P.; Choudhury, Bhaskar J.; Kunkel, Kenneth E.

    1989-01-01

    Surface-air temperature differences are commonly used in a bulk resistance equation for estimating sensible heat flux (H), which is inserted in the one-dimensional energy balance equation to solve for the latent heat flux (LE) as a residual. Serious discrepancies between estimated and measured LE have been observed for partial-canopy-cover conditions, which are mainly attributed to inappropriate estimates of H. To improve the estimates of H over sparse canopies, one- and two-layer resistance models that account for some of the factors causing poor agreement are developed. The utility of the two models is tested with remotely sensed and micrometeorological data for a furrowed cotton field with 20 percent cover and a dry soil surface. It is found that the one-layer model performs better than the two-layer model when a theoretical bluff-body correction for heat transfer is used instead of an empirical adjustment; otherwise, the two-layer model is better.

  8. A Hierarchy of Models for Two-Phase Flows

    NASA Astrophysics Data System (ADS)

    Bouchut, F.; Brenier, Y.; Cortes, J.; Ripoll, J.-F.

    2000-12-01

    We derive a hierarchy of models for gas-liquid two-phase flows in the limit of infinite density ratio, when the liquid is assumed to be incompressible. The starting model is a system of nonconservative conservation laws with relaxation. At first order in the density ratio, we get a simplified system with viscosity, while at the limit we obtain a system of two conservation laws, the system of pressureless gases with constraint and undetermined pressure. Formal properties of this constraint model are provided, and sticky blocks solutions are introduced. We propose numerical methods for this last model, and the results are compared with the two previous models.

  9. Two-In-One Method for Graphene Transfer: Simplified Fabrication Process for Organic Light-Emitting Diodes.

    PubMed

    Liu, Lihui; Shang, Wenjuan; Han, Chao; Zhang, Qing; Yao, Yao; Ma, Xiaoqian; Wang, Minghao; Yu, Hongtao; Duan, Yu; Sun, Jie; Chen, Shufen; Huang, Wei

    2018-02-28

    Graphene as one of the most promising transparent electrode materials has been successfully applied in organic light-emitting diodes (OLEDs). However, traditional poly(methyl methacrylate) (PMMA) transfer method usually results in hardly removed polymeric residues on the graphene surface, which induces unwanted leakage current, poor diode behavior, and even device failure. In this work, we proposed a facile and efficient two-in-one method to obtain clean graphene and fabricate OLEDs, in which the poly(9,9-di-n-octylfluorene-alt-(1,4-phenylene-(4-sec-butylphenyl)imino)-1,4-phenylene) (TFB) layer was inserted between the graphene and PMMA film both as a protector during the graphene transfer and a hole-injection layer in OLEDs. Finally, green OLED devices were successfully fabricated on the PMMA-free graphene/TFB film, and the device luminous efficiency was increased from 64.8 to 74.5 cd/A by using the two-in-one method. Therefore, the proposed two-in-one graphene transfer method realizes a high-efficient graphene transfer and device fabrication process, which is also compatible with the roll-to-roll manufacturing. It is expected that this work can enlighten the design and fabrication of the graphene-based optoelectronic devices.

  10. Using spiral chain models for study of nanoscroll structures

    NASA Astrophysics Data System (ADS)

    Savin, Alexander V.; Sakovich, Ruslan A.; Mazo, Mikhail A.

    2018-04-01

    Molecular nanoribbons with different chemical structures can form scrolled packings possessing outstanding properties and application perspectives due to their morphology. Here, we propose a simplified two-dimensional model of the molecular chain that allows us to describe the molecular nanoribbon's scrolled packings of various structures as a spiral packaging chain. The model allows us to obtain the possible stationary states of single-layer nanoribbon scrolls of graphene, graphane, fluorographene, fluorographane (graphene hydrogenated on one side and fluorinated on the other side), graphone C4H (graphene partially hydrogenated on one side), and fluorographone C4F . The obtained states and the states of the scrolls found through all-atomic models coincide with good accuracy. We show the stability of scrolled packings and calculate the dependence of energy, the number of coils, and the inner and outer radius of the scrolled packing on the nanoribbon length. It is shown that a scrolled packing is the most energetically favorable conformation for nanoribbons of graphene, graphane, fluorographene, and fluorographane at large lengths. A double-scrolled packing when the nanoribbon is symmetrically rolled into a scroll from opposite ends is more advantageous for longer length nanoribbons of graphone and fluorographone. We show the possibility of the existence of scrolled packings for nanoribbons of fluorographene and the existence of two different types of scrolls for nanoribbons of fluorographane, which correspond to the left and right Archimedean spirals of the chain model. The simplicity of the proposed model allows us to consider the dynamics of molecular nanoribbon scrolls of sufficiently large lengths and at sufficiently large time intervals.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang, Yu; Yu, Guoqiang, E-mail: guoqiang.yu@uky.edu

    Conventional semi-infinite analytical solutions of correlation diffusion equation may lead to errors when calculating blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements in tissues with irregular geometries. Very recently, we created an algorithm integrating a Nth-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in homogenous tissues with arbitrary geometries for extraction of BFI (i.e., αD{sub B}). The purpose of this study is to extend the capability of the Nth-order linear algorithm for extracting BFI in heterogeneous tissues with arbitrary geometries. The previous linear algorithm was modified to extract BFIs in different typesmore » of tissues simultaneously through utilizing DCS data at multiple source-detector separations. We compared the proposed linear algorithm with the semi-infinite homogenous solution in a computer model of adult head with heterogeneous tissue layers of scalp, skull, cerebrospinal fluid, and brain. To test the capability of the linear algorithm for extracting relative changes of cerebral blood flow (rCBF) in deep brain, we assigned ten levels of αD{sub B} in the brain layer with a step decrement of 10% while maintaining αD{sub B} values constant in other layers. Simulation results demonstrate the accuracy (errors < 3%) of high-order (N ≥ 5) linear algorithm in extracting BFIs in different tissue layers and rCBF in deep brain. By contrast, the semi-infinite homogenous solution resulted in substantial errors in rCBF (34.5% ≤ errors ≤ 60.2%) and BFIs in different layers. The Nth-order linear model simplifies data analysis, thus allowing for online data processing and displaying. Future study will test this linear algorithm in heterogeneous tissues with different levels of blood flow variations and noises.« less

  12. A Nth-order linear algorithm for extracting diffuse correlation spectroscopy blood flow indices in heterogeneous tissues.

    PubMed

    Shang, Yu; Yu, Guoqiang

    2014-09-29

    Conventional semi-infinite analytical solutions of correlation diffusion equation may lead to errors when calculating blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements in tissues with irregular geometries. Very recently, we created an algorithm integrating a N th-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in homogenous tissues with arbitrary geometries for extraction of BFI (i.e., αD B ). The purpose of this study is to extend the capability of the N th-order linear algorithm for extracting BFI in heterogeneous tissues with arbitrary geometries. The previous linear algorithm was modified to extract BFIs in different types of tissues simultaneously through utilizing DCS data at multiple source-detector separations. We compared the proposed linear algorithm with the semi-infinite homogenous solution in a computer model of adult head with heterogeneous tissue layers of scalp, skull, cerebrospinal fluid, and brain. To test the capability of the linear algorithm for extracting relative changes of cerebral blood flow (rCBF) in deep brain, we assigned ten levels of αD B in the brain layer with a step decrement of 10% while maintaining αD B values constant in other layers. Simulation results demonstrate the accuracy (errors < 3%) of high-order ( N  ≥ 5) linear algorithm in extracting BFIs in different tissue layers and rCBF in deep brain. By contrast, the semi-infinite homogenous solution resulted in substantial errors in rCBF (34.5% ≤ errors ≤ 60.2%) and BFIs in different layers. The N th-order linear model simplifies data analysis, thus allowing for online data processing and displaying. Future study will test this linear algorithm in heterogeneous tissues with different levels of blood flow variations and noises.

  13. The evaporatively driven cloud-top mixing layer

    NASA Astrophysics Data System (ADS)

    Mellado, Juan Pedro

    2010-11-01

    Turbulent mixing caused by the local evaporative cooling at the top cloud-boundary of stratocumuli will be discussed. This research is motivated by the lack of a complete understanding of several phenomena in that important region, which translates into an unacceptable variability of order one in current models, including those employed in climate research. The cloud-top mixing layer is a simplified surrogate to investigate, locally, particular aspects of the fluid dynamics at the boundary between the stratocumulus clouds and the upper cloud-free air. In this work, direct numerical simulations have been used to study latent heat effects. The problem is the following: When the cloud mixes with the upper cloud-free layer, relatively warm and dry, evaporation tends to cool the mixture and, if strong enough, the buoyancy reversal instability develops. This instability leads to a turbulent convection layer growing next to the upper boundary of the cloud, which is, in several aspects, similar to free convection below a cold horizontal surface. In particular, results show an approximately self-preserving behavior that is characterized by the molecular buoyancy flux at the inversion base, fact that helps to explain the difficulties found when doing large-eddy simulations of this problem using classical subgrid closures.

  14. Characterizing the electronic ground states of single-layer NbSe2 via STM/STS

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Ugeda, Miguel; Bradley, Aaron; Zhang, Yi; Onishi, Seita; Ruan, Wei; Ojeda-Aristizabal, Claudia; Ryu, Hyejin; Edmonds, Mark; Tsai, Hsin-Zon; Riss, Alexander; Mo, Sung-Kwan; Lee, Dunghai; Zettl, Alex; Hussain, Zahid; Shen, Zhi-Xun; Crommie, Michael

    Layered transition metal dichalcogenides (TMDs) are ideal systems for exploring collective electronic phases such as charge density wave (CDW) order and superconductivity. In bulk NbSe2 the CDW sets in at TCDW = 33K and superconductivity sets in at Tc = 7.2K. Below Tc these electronic states coexist but their microscopic formation mechanisms remain controversial. Here we present an electronic characterization study of a single 2D layer of NbSe2 by means of low temperature scanning tunneling microscopy/spectroscopy (STM/STS), angle-resolved photoemission spectroscopy (ARPES), and electrical transport measurements. We demonstrate that the CDW order remains intact in 2D and exhibits a robust 3 x 3 superlattice. Superconductivity also still occurs but its onset is depressed to 1.6K. Our STS measurements at 5K reveal a CDW gap of Δ = 4 meV at the Fermi energy, which is accessible via STS due to the removal of bands crossing the Fermi surface in the 2D limit. Our observations are consistent with the predicted simplified (compared to bulk) electronic structure of single-layer NbSe2, thus providing new insight into CDW formation and superconductivity in this model strongly-correlated system.

  15. Swept shock/boundary layer interaction experiments in support of CFD code validation

    NASA Technical Reports Server (NTRS)

    Settles, G. S.; Lee, Y.

    1992-01-01

    Research on the topic of shock wave/turbulent boundary-layer interaction was carried out during the past three years at the Penn State Gas Dynamics Laboratory. This report describes the experimental research program which provides basic knowledge and establishes new data on heat transfer in swept shock wave/boundary-layer interactions. An equilibrium turbulent boundary-layer on a flat plate is subjected to impingement by swept planar shock waves generated by a sharp fin. Five different interactions with fin angle ranging from 10 deg to 20 deg at freestream Mach numbers of 3.0 and 4.0 produce a variety of interaction strengths from weak to very strong. A foil heater generates a uniform heat flux over the flat plate surface, and miniature thin-film-resistance sensors mounted on it are used to measure the local surface temperature. The heat convection equation is then solved for the heat transfer distribution within an interaction, yielding a total uncertainty of about +/- 10 percent. These experimental data are compared with the results of numerical Navier-Stokes solutions which employ a k-epsilon turbulence model. Finally, a simplified form of the peak heat transfer correlation for fin interactions is suggested.

  16. Wind-tunnel experiments of turbulent flow over a surface-mounted 2-D block in a thermally-stratified boundary layer

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Markfort, Corey; Porté-Agel, Fernando

    2014-11-01

    Turbulent flows over complex surface topography have been of great interest in the atmospheric science and wind engineering communities. The geometry of the topography, surface roughness and temperature characteristics as well as the atmospheric thermal stability play important roles in determining momentum and scalar flux distribution. Studies of turbulent flow over simplified topography models, under neutrally stratified boundary-layer conditions, have provided insights into fluid dynamics. However, atmospheric thermal stability has rarely been considered in laboratory experiments, e.g., wind-tunnel experiments. Series of wind-tunnel experiments of thermally-stratified boundary-layer flow over a surface-mounted 2-D block, in a well-controlled boundary-layer wind tunnel, will be presented. Measurements using high-resolution PIV, x-wire/cold-wire anemometry and surface heat flux sensors were conducted to quantify the turbulent flow properties, including the size of the recirculation zone, coherent vortex structures and the subsequent boundary layer recovery. Results will be shown to address thermal stability effects on momentum and scalar flux distribution in the wake, as well as dominant mechanism of turbulent kinetic energy generation and consumption. The authors gratefully acknowledge funding from the Swiss National Foundation (Grant 200021-132122), the National Science Foundation (Grant ATM-0854766) and NASA (Grant NNG06GE256).

  17. PropBase Query Layer: a single portal to UK subsurface physical property databases

    NASA Astrophysics Data System (ADS)

    Kingdon, Andrew; Nayembil, Martin L.; Richardson, Anne E.; Smith, A. Graham

    2013-04-01

    Until recently, the delivery of geological information for industry and public was achieved by geological mapping. Now pervasively available computers mean that 3D geological models can deliver realistic representations of the geometric location of geological units, represented as shells or volumes. The next phase of this process is to populate these with physical properties data that describe subsurface heterogeneity and its associated uncertainty. Achieving this requires capture and serving of physical, hydrological and other property information from diverse sources to populate these models. The British Geological Survey (BGS) holds large volumes of subsurface property data, derived both from their own research data collection and also other, often commercially derived data sources. This can be voxelated to incorporate this data into the models to demonstrate property variation within the subsurface geometry. All property data held by BGS has for many years been stored in relational databases to ensure their long-term continuity. However these have, by necessity, complex structures; each database contains positional reference data and model information, and also metadata such as sample identification information and attributes that define the source and processing. Whilst this is critical to assessing these analyses, it also hugely complicates the understanding of variability of the property under assessment and requires multiple queries to study related datasets making extracting physical properties from these databases difficult. Therefore the PropBase Query Layer has been created to allow simplified aggregation and extraction of all related data and its presentation of complex data in simple, mostly denormalized, tables which combine information from multiple databases into a single system. The structure from each relational database is denormalized in a generalised structure, so that each dataset can be viewed together in a common format using a simple interface. Data are re-engineered to facilitate easy loading. The query layer structure comprises tables, procedures, functions, triggers, views and materialised views. The structure contains a main table PRB_DATA which contains all of the data with the following attribution: • a unique identifier • the data source • the unique identifier from the parent database for traceability • the 3D location • the property type • the property value • the units • necessary qualifiers • precision information and an audit trail Data sources, property type and units are constrained by dictionaries, a key component of the structure which defines what properties and inheritance hierarchies are to be coded and also guides the process as to what and how these are extracted from the structure. Data types served by the Query Layer include site investigation derived geotechnical data, hydrogeology datasets, regional geochemistry, geophysical logs as well as lithological and borehole metadata. The size and complexity of the data sets with multiple parent structures requires a technically robust approach to keep the layer synchronised. This is achieved through Oracle procedures written in PL/SQL containing the logic required to carry out the data manipulation (inserts, updates, deletes) to keep the layer synchronised with the underlying databases either as regular scheduled jobs (weekly, monthly etc) or invoked on demand. The PropBase Query Layer's implementation has enabled rapid data discovery, visualisation and interpretation of geological data with greater ease, simplifying the parametrisation of 3D model volumes and facilitating the study of intra-unit heterogeneity.

  18. Controlling the electrophoretic mobility of single-walled carbon nanotubes: a comparison of theory and experiment.

    PubMed

    Usrey, Monica L; Nair, Nitish; Agnew, Daniel E; Pina, Cesar F; Strano, Michael S

    2007-07-03

    The electrophoretic mobilities of single-walled carbon nanotubes (SWNTs) in agarose gels subjected to negatively charged covalent functionalization and noncovalent anionic surfactant adsorption are compared using a simplified hydrodynamic model. Net charges are calculated on the basis of estimated friction coefficients for cylindrical rodlike particles. The effects of functionalization with negatively charged 4-hydroxybenzene diazonium and anionic sodium cholate are quantified and compared with model predictions. The adsorption of Na+ counterions into the nonionic surfactant layer adsorbed on SWNTs (Triton-X-405) is shown to induce a positive charge and reverse the mobility under select conditions. This effect has not been identified or quantified for nanoparticle systems and may be important in the processing of these systems.

  19. Simplified models for dark matter searches at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdallah, Jalal; Araujo, Henrique; Arbey, Alexandre

    This document a outlines a set of simplified models for dark matter and its interactions with Standard Model particles. It is intended to summarize the main characteristics that these simplified models have when applied to dark matter searches at the LHC, and to provide a number of useful expressions for reference. The list of models includes both s-channel and t-channel scenarios. For s-channel, spin-0 and spin-1 mediations are discussed, and also realizations where the Higgs particle provides a portal between the dark and visible sectors. The guiding principles underpinning the proposed simplified models are spelled out, and some suggestions formore » implementation are presented.« less

  20. Simplified Models for Dark Matter Searches at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdallah, Jalal

    This document outlines a set of simplified models for dark matter and its interactions with Standard Model particles. It is intended to summarize the main characteristics that these simplified models have when applied to dark matter searches at the LHC, and to provide a number of useful expressions for reference. The list of models includes both s-channel and t-channel scenarios. For s-channel, spin-0 and spin-1 mediations are discussed, and also realizations where the Higgs particle provides a portal between the dark and visible sectors. The guiding principles underpinning the proposed simplified models are spelled out, and some suggestions for implementationmore » are presented.« less

  1. Simplified Models for Dark Matter Searches at the LHC

    DOE PAGES

    Abdallah, Jalal

    2015-08-11

    This document outlines a set of simplified models for dark matter and its interactions with Standard Model particles. It is intended to summarize the main characteristics that these simplified models have when applied to dark matter searches at the LHC, and to provide a number of useful expressions for reference. The list of models includes both s-channel and t-channel scenarios. For s-channel, spin-0 and spin-1 mediations are discussed, and also realizations where the Higgs particle provides a portal between the dark and visible sectors. The guiding principles underpinning the proposed simplified models are spelled out, and some suggestions for implementationmore » are presented.« less

  2. Effect of spine motion on mobility in quadruped running

    NASA Astrophysics Data System (ADS)

    Chen, Dongliang; Liu, Qi; Dong, Litao; Wang, Hong; Zhang, Qun

    2014-11-01

    Most of current running quadruped robots have similar construction: a stiff body and four compliant legs. Many researches have indicated that the stiff body without spine motion is a main factor in limitation of robots' mobility. Therefore, investigating spine motion is very important to build robots with better mobility. A planar quadruped robot is designed based on cheetahs' morphology. There is a spinal driving joint in the body of the robot. When the spinal driving joint acts, the robot has spine motion; otherwise, the robot has not spine motion. Six group prototype experiments with the robot are carried out to study the effect of spine motion on mobility. In each group, there are two comparative experiments: the spinal driving joint acts in one experiment but does not in the other experiment. The results of the prototype experiments indicate that the average speeds of the robot with spine motion are 8.7%-15.9% larger than those of the robot without spine motion. Furthermore, a simplified sagittal plane model of quadruped mammals is introduced. The simplified model also has a spinal driving joint. Using a similar process as the prototype experiments, six group simulation experiments with the simplified model are conducted. The results of the simulation experiments show that the maximum rear leg horizontal thrusts of the simplified mode with spine motion are 68.2%-71.3% larger than those of the simplified mode without spine motion. Hence, it is found that spine motion can increase the average running speed and the intrinsic reason of speed increase is the improvement of the maximum rear leg horizontal thrust.

  3. An over 18%-efficiency completely buffer-free Cu(In,Ga)Se2 solar cell

    NASA Astrophysics Data System (ADS)

    Ishizuka, Shogo; Nishinaga, Jiro; Koida, Takashi; Shibata, Hajime

    2018-07-01

    In this letter, an independently certified photovoltaic efficiency of 18.4% demonstrated from a completely buffer-layer-free Cu(In,Ga)Se2 (CIGS) solar cell is reported. A Si-doped CIGS thin film was used as the photoabsorber layer and a conductive B-doped ZnO (BZO) front electrode layer was directly deposited on the CIGS layer. Metastable acceptor activation by heat-light soaking treatment was performed to maximize the efficiency. The results presented here are expected to serve as a benchmark for simplified-structure CIGS devices as well as a reference for discussions on the role of buffer layers used in conventional CIGS solar cells.

  4. A practical nonlocal model for heat transport in magnetized laser plasmas

    NASA Astrophysics Data System (ADS)

    Nicolaï, Ph. D.; Feugeas, J.-L. A.; Schurtz, G. P.

    2006-03-01

    A model of nonlocal transport for multidimensional radiation magnetohydrodynamics codes is presented. In laser produced plasmas, it is now believed that the heat transport can be strongly modified by the nonlocal nature of the electron conduction. Other mechanisms, such as self-generated magnetic fields, may also affect the heat transport. The model described in this work, based on simplified Fokker-Planck equations aims at extending the model of G. Schurtz, Ph. Nicolaï, and M. Busquet [Phys. Plasmas 7, 4238 (2000)] to magnetized plasmas. A complete system of nonlocal equations is derived from kinetic equations with self-consistent electric and magnetic fields. These equations are analyzed and simplified in order to be implemented into large laser fusion codes and coupled to other relevant physics. The model is applied to two laser configurations that demonstrate the main features of the model and point out the nonlocal Righi-Leduc effect in a multidimensional case.

  5. Modeling marine boundary-layer clouds with a two-layer model: A one-dimensional simulation

    NASA Technical Reports Server (NTRS)

    Wang, Shouping

    1993-01-01

    A two-layer model of the marine boundary layer is described. The model is used to simulate both stratocumulus and shallow cumulus clouds in downstream simulations. Over cold sea surfaces, the model predicts a relatively uniform structure in the boundary layer with 90%-100% cloud fraction. Over warm sea surfaces, the model predicts a relatively strong decoupled and conditionally unstable structure with a cloud fraction between 30% and 60%. A strong large-scale divergence considerably limits the height of the boundary layer and decreases relative humidity in the upper part of the cloud layer; thus, a low cloud fraction results. The efffects of drizzle on the boundary-layer structure and cloud fraction are also studied with downstream simulations. It is found that drizzle dries and stabilizes the cloud layer and tends to decouple the cloud from the subcloud layer. Consequently, solid stratocumulus clouds may break up and the cloud fraction may decrease because of drizzle.

  6. The effects of gas diffusion layers structure on water transportation using X-ray computed tomography based Lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Jinuntuya, Fontip; Whiteley, Michael; Chen, Rui; Fly, Ashley

    2018-02-01

    The Gas Diffusion Layer (GDL) of a Polymer Electrolyte Membrane Fuel Cell (PEMFC) plays a crucial role in overall cell performance. It is responsible for the dissemination of reactant gasses from the gas supply channels to the reactant sites at the Catalyst Layer (CL), and the adequate removal of product water from reactant sites back to the gas channels. Existing research into water transport in GDLs has been simplified to 2D estimations of GDL structures or use virtual stochastic models. This work uses X-ray computed tomography (XCT) to reconstruct three types of GDL in a model. These models are then analysed via Lattice Boltzmann methods to understand the water transport behaviours under differing contact angles and pressure differences. In this study, the three GDL samples were tested over the contact angles of 60°, 80°, 90°, 100°, 120° and 140° under applied pressure differences of 5 kPa, 10 kPa and 15 kPa. By varying the contact angle and pressure difference, it was found that the transition between stable displacement and capillary fingering is not a gradual process. Hydrophilic contact angles in the region of 60°<θ < 90° showed stable displacement properties, whereas contact angles in the region of 100°<θ < 140° displayed capillary fingering characteristics.

  7. Validation of Simplified Urban-Canopy Aerodynamic Parametrizations Using a Numerical Simulation of an Actual Downtown Area

    NASA Astrophysics Data System (ADS)

    Ramirez, N.; Afshari, Afshin; Norford, L.

    2018-07-01

    A steady-state Reynolds-averaged Navier-Stoke computational fluid dynamics (CFD) investigation of boundary-layer flow over a major portion of downtown Abu Dhabi is conducted. The results are used to derive the shear stress and characterize the logarithmic region for eight sub-domains, where the sub-domains overlap and are overlaid in the streamwise direction. They are characterized by a high frontal area index initially, which decreases significantly beyond the fifth sub-domain. The plan area index is relatively stable throughout the domain. For each sub-domain, the estimated local roughness length and displacement height derived from CFD results are compared to prevalent empirical formulations. We further validate and tune a mixing-length model proposed by Coceal and Belcher (Q J R Meteorol Soc 130:1349-1372, 2004). Finally, the in-canopy wind-speed attenuation is analysed as a function of fetch. It is shown that, while there is some room for improvement in Macdonald's empirical formulations (Boundary-Layer Meteorol 97:25-45, 2000), Coceal and Belcher's mixing model in combination with the resolution method of Di Sabatino et al. (Boundary-Layer Meteorol 127:131-151, 2008) can provide a robust estimation of the average wind speed in the logarithmic region. Within the roughness sublayer, a properly parametrized Cionco exponential model is shown to be quite accurate.

  8. Signature of a Sudden Stratospheric Warming in the near-ground 7Be flux.

    NASA Astrophysics Data System (ADS)

    Pacini, A. A.

    2015-12-01

    We present here a study of the impact of one Sudden Stratospheric Warming (SSW) upon the atmospheric vertical dynamics based on 7Be measurements in near ground air, using both numerical and conceptual. In late September 2002, an unprecedented SSW event occurred in the southern hemisphere (SH), causing changes in the tropospheric circulation, ozone depletion and weakening of the polar jet in the mesosphere. There is an observational evidence suggesting that anomalies in the stratosphere play an important role in driving tropospheric weather producing tropospheric changes that can persists for up to 60 days in NH and up to about 90 days in the SH, as observed after the 2002 SSW (Thompson et al., 2005). Radioactive environmental techniques for tracing large-scale air-mass transport have been applied in studies of atmospheric dynamics for decades and they are becoming more and more precise due to the improvement of the instrumental sensitivity and associated modeling. Temporal variations of the cosmogenic 7Be concentration in the near-surface atmosphere can provide information on the air mass dynamics, precipitation patterns, stratosphere-troposphere coupling and cosmic ray variations. The present study is based on an analysis of 7Be concentration measured in near-ground air in the city of Angra dos Reis, Rio de Janeiro state, Brazil between 1987 and 2009. Using a simplified tropospheric 7Be model deposition based on a two-layer transport model, Pacini (2011) reported that the occurrence of strong downward air flux leave an imprint of the 3D motion of air masses to the near-ground air 7Be data in the studied region. In this work, we have further developed the two-layer model by adding one more layer: the lower stratosphere (LS). In normal conditions, the contribution of the LS 7Be to the near-ground isotopic variability would be very small. On the other hand, stratospheric source can be crucial for the SSW event, indicating that a strong stratospheric air intrusion happened after the SSW and induced a downward flux of stratospheric aerosols from the LS to the ground level lasting several months after the SSW peak, showing that its tropospheric consequences can be much larger than it is usually considered.

  9. A method to estimate groundwater depletion from confining layers

    USGS Publications Warehouse

    Konikow, Leonard F.; Neuzil, Christopher E.

    2007-01-01

    Although depletion of storage in low‐permeability confining layers is the source of much of the groundwater produced from many confined aquifer systems, it is all too frequently overlooked or ignored. This makes effective management of groundwater resources difficult by masking how much water has been derived from storage and, in some cases, the total amount of water that has been extracted from an aquifer system. Analyzing confining layer storage is viewed as troublesome because of the additional computational burden and because the hydraulic properties of confining layers are poorly known. In this paper we propose a simplified method for computing estimates of confining layer depletion, as well as procedures for approximating confining layer hydraulic conductivity (K) and specific storage (Ss) using geologic information. The latter makes the technique useful in developing countries and other settings where minimal data are available or when scoping calculations are needed. As such, our approach may be helpful for estimating the global transfer of groundwater to surface water. A test of the method on a synthetic system suggests that the computational errors will generally be small. Larger errors will probably result from inaccuracy in confining layer property estimates, but these may be no greater than errors in more sophisticated analyses. The technique is demonstrated by application to two aquifer systems: the Dakota artesian aquifer system in South Dakota and the coastal plain aquifer system in Virginia. In both cases, depletion from confining layers was substantially larger than depletion from the aquifers.

  10. Models of Solar Irradiance Variability and the Instrumental Temperature Record

    NASA Technical Reports Server (NTRS)

    Marcus, S. L.; Ghil, M.; Ide, K.

    1998-01-01

    The effects of decade-to-century (Dec-Cen) variations in total solar irradiance (TSI) on global mean surface temperature Ts during the pre-Pinatubo instrumental era (1854-1991) are studied by using two different proxies for TSI and a simplified version of the IPCC climate model.

  11. Initial Crisis Reaction and Poliheuristic Theory

    ERIC Educational Resources Information Center

    DeRouen, Karl, Jr.; Sprecher, Christopher

    2004-01-01

    Poliheuristic (PH) theory models foreign policy decisions using a two-stage process. The first step eliminates alternatives on the basis of a simplifying heuristic. The second step involves a selection from among the remaining alternatives and can employ a more rational and compensatory means of processing information. The PH model posits that…

  12. Kinematic Structural Modelling in Bayesian Networks

    NASA Astrophysics Data System (ADS)

    Schaaf, Alexander; de la Varga, Miguel; Florian Wellmann, J.

    2017-04-01

    We commonly capture our knowledge about the spatial distribution of distinct geological lithologies in the form of 3-D geological models. Several methods exist to create these models, each with its own strengths and limitations. We present here an approach to combine the functionalities of two modeling approaches - implicit interpolation and kinematic modelling methods - into one framework, while explicitly considering parameter uncertainties and thus model uncertainty. In recent work, we proposed an approach to implement implicit modelling algorithms into Bayesian networks. This was done to address the issues of input data uncertainty and integration of geological information from varying sources in the form of geological likelihood functions. However, one general shortcoming of implicit methods is that they usually do not take any physical constraints into consideration, which can result in unrealistic model outcomes and artifacts. On the other hand, kinematic structural modelling intends to reconstruct the history of a geological system based on physically driven kinematic events. This type of modelling incorporates simplified, physical laws into the model, at the cost of a substantial increment of usable uncertain parameters. In the work presented here, we show an integration of these two different modelling methodologies, taking advantage of the strengths of both of them. First, we treat the two types of models separately, capturing the information contained in the kinematic models and their specific parameters in the form of likelihood functions, in order to use them in the implicit modelling scheme. We then go further and combine the two modelling approaches into one single Bayesian network. This enables the direct flow of information between the parameters of the kinematic modelling step and the implicit modelling step and links the exclusive input data and likelihoods of the two different modelling algorithms into one probabilistic inference framework. In addition, we use the capabilities of Noddy to analyze the topology of structural models to demonstrate how topological information, such as the connectivity of two layers across an unconformity, can be used as a likelihood function. In an application to a synthetic case study, we show that our approach leads to a successful combination of the two different modelling concepts. Specifically, we show that we derive ensemble realizations of implicit models that now incorporate the knowledge of the kinematic aspects, representing an important step forward in the integration of knowledge and a corresponding estimation of uncertainties in structural geological models.

  13. Stress intensity factors in two bonded elastic layers containing cracks perpendicular to and on the interface. Part 1: Analysis

    NASA Technical Reports Server (NTRS)

    Lu, M. C.; Erdogan, F.

    1980-01-01

    The basic crack problem which is essential for the study of subcritical crack propagation and fracture of layered structural materials is considered. Because of the apparent analytical difficulties, the problem is idealized as one of plane strain or plane stress. An additional simplifying assumption is made by restricting the formulation of the problem to crack geometries and loading conditions which have a plane of symmetry perpendicular to the interface. The general problem is formulated in terms of a coupled system of four integral equations. For each relevant crack configuration of practical interest, the singular behavior of the solution near and at the ends and points of intersection of the cracks is investigated and the related characteristic equations are obtained. The edge crack terminating at and crossing the interface, the T-shaped crack consisting of a broken layer and a delamination crack, the cross-shaped crack which consists of a delamination crack intersecting a crack which is perpendicular to the interface, and a delamination crack initiating from a stress-free boundary of the bonded layers are some of the practical crack geometries considered.

  14. Modeling of thermal storage systems in MILP distributed energy resource models

    DOE PAGES

    Steen, David; Stadler, Michael; Cardoso, Gonçalo; ...

    2014-08-04

    Thermal energy storage (TES) and distributed generation technologies, such as combined heat and power (CHP) or photovoltaics (PV), can be used to reduce energy costs and decrease CO 2 emissions from buildings by shifting energy consumption to times with less emissions and/or lower energy prices. To determine the feasibility of investing in TES in combination with other distributed energy resources (DER), mixed integer linear programming (MILP) can be used. Such a MILP model is the well-established Distributed Energy Resources Customer Adoption Model (DER-CAM); however, it currently uses only a simplified TES model to guarantee linearity and short run-times. Loss calculationsmore » are based only on the energy contained in the storage. This paper presents a new DER-CAM TES model that allows improved tracking of losses based on ambient and storage temperatures, and compares results with the previous version. A multi-layer TES model is introduced that retains linearity and avoids creating an endogenous optimization problem. The improved model increases the accuracy of the estimated storage losses and enables use of heat pumps for low temperature storage charging. Ultimately,results indicate that the previous model overestimates the attractiveness of TES investments for cases without possibility to invest in heat pumps and underestimates it for some locations when heat pumps are allowed. Despite a variation in optimal technology selection between the two models, the objective function value stays quite stable, illustrating the complexity of optimal DER sizing problems in buildings and microgrids.« less

  15. Chemical vapor transport of layer structured crystal β-ZrNCl

    NASA Astrophysics Data System (ADS)

    Ohashi, M.; Yamanaka, S.; Hattori, M.

    1988-12-01

    A layer structured compound β-ZrNCl is transported to a higher temperature zone with the aid of ammonium chloride as the transporting agent in the temperature range of 823-1173 K. The transport mechanism can be explained by the formation of a volatile compound (NH 4) 2ZrCl 6: β- ZrNCl+5 NH4Cl→( NH4) 2ZrCl6+4 NH3. The measurements of the vapor pressure and the mass spectrum revealed that (NH 4) 2ZrCl 6 decomposed congruently according to the equation: ( NH4) 2ZrCl6( s)→ ZrCl4( g)+2 NH3( g)+2 HCl( g) The enthalpy change for the decomposition was determined to be 533 kJ/mol. By combining the above two equations, a simplified transport equation is derived: β- ZrNCl( s)+3 HCl( g)⇌ ZrCl4( g+ NH3( g) .

  16. [A simplified occupational health and safety management system designed for small enterprises. Initial validation results].

    PubMed

    Bacchi, Romana; Veneri, L; Ghini, P; Caso, Maria Alessandra; Baldassarri, Giovanna; Renzetti, F; Santarelli, R

    2009-01-01

    Occupational Health and Safety Management Systems (OHSMS) are known to be effective in improving safety at work. Unfortunately they are often too resource-heavy for small businesses. The aim of this project was to develop and test a simplified model of OHSMS suitable for small enterprises. The model consists of 7 procedures and various operating forms and check lists, that guide the enterprise in managing safety at work. The model was tested in 15 volunteer enterprises. In most of the enterprises two audits showed increased awareness and participation of workers; better definition and formalisation of respon sibilities in 8 firms; election of Union Safety Representatives in over one quarter of the enterprises; improvement of safety equipment. The study also helped identify areas where the model could be improved by simplification of unnecessarily complex and redundant procedures.

  17. Evaluation of the SEI using a multilayer spectroscopic ellipsometry model

    DOE PAGES

    Dufek, Eric J.

    2014-08-28

    A multilayer spectroscopic ellipsometry (SE) model has been developed to characterize SEI formation. The model, which consists of two Cauchy layers, is constructed with an inner layer meant to model primarily inorganic compounds adjacent to an electrode and an outer layer which mirrors polymeric, organic constituents on the exterior of the SEI. Comparison of 1:1 EC:EMC and 1:4 EC:EMC with 1.0 M LiPF₆ shows distinct differences in the two modeled layers. The data suggest that the thickness of both layers change over a wide potential range. These changes have been linked with other reports on the growth of the SEI.

  18. Shielding analyses of an AB-BNCT facility using Monte Carlo simulations and simplified methods

    NASA Astrophysics Data System (ADS)

    Lai, Bo-Lun; Sheu, Rong-Jiun

    2017-09-01

    Accurate Monte Carlo simulations and simplified methods were used to investigate the shielding requirements of a hypothetical accelerator-based boron neutron capture therapy (AB-BNCT) facility that included an accelerator room and a patient treatment room. The epithermal neutron beam for BNCT purpose was generated by coupling a neutron production target with a specially designed beam shaping assembly (BSA), which was embedded in the partition wall between the two rooms. Neutrons were produced from a beryllium target bombarded by 1-mA 30-MeV protons. The MCNP6-generated surface sources around all the exterior surfaces of the BSA were established to facilitate repeated Monte Carlo shielding calculations. In addition, three simplified models based on a point-source line-of-sight approximation were developed and their predictions were compared with the reference Monte Carlo results. The comparison determined which model resulted in better dose estimation, forming the basis of future design activities for the first ABBNCT facility in Taiwan.

  19. Linearized-moment analysis of the temperature jump and temperature defect in the Knudsen layer of a rarefied gas.

    PubMed

    Gu, Xiao-Jun; Emerson, David R

    2014-06-01

    Understanding the thermal behavior of a rarefied gas remains a fundamental problem. In the present study, we investigate the predictive capabilities of the regularized 13 and 26 moment equations. In this paper, we consider low-speed problems with small gradients, and to simplify the analysis, a linearized set of moment equations is derived to explore a classic temperature problem. Analytical solutions obtained for the linearized 26 moment equations are compared with available kinetic models and can reliably capture all qualitative trends for the temperature-jump coefficient and the associated temperature defect in the thermal Knudsen layer. In contrast, the linearized 13 moment equations lack the necessary physics to capture these effects and consistently underpredict kinetic theory. The deviation from kinetic theory for the 13 moment equations increases significantly for specular reflection of gas molecules, whereas the 26 moment equations compare well with results from kinetic theory. To improve engineering analyses, expressions for the effective thermal conductivity and Prandtl number in the Knudsen layer are derived with the linearized 26 moment equations.

  20. Simplified models for dark matter face their consistent completions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonçalves, Dorival; Machado, Pedro A. N.; No, Jose Miguel

    Simplified dark matter models have been recently advocated as a powerful tool to exploit the complementarity between dark matter direct detection, indirect detection and LHC experimental probes. Focusing on pseudoscalar mediators between the dark and visible sectors, we show that the simplified dark matter model phenomenology departs significantly from that of consistentmore » $${SU(2)_{\\mathrm{L}} \\times U(1)_{\\mathrm{Y}}}$$ gauge invariant completions. We discuss the key physics simplified models fail to capture, and its impact on LHC searches. Notably, we show that resonant mono-Z searches provide competitive sensitivities to standard mono-jet analyses at $13$ TeV LHC.« less

  1. Numerical simulations of internal wave generation by convection in water.

    PubMed

    Lecoanet, Daniel; Le Bars, Michael; Burns, Keaton J; Vasil, Geoffrey M; Brown, Benjamin P; Quataert, Eliot; Oishi, Jeffrey S

    2015-06-01

    Water's density maximum at 4°C makes it well suited to study internal gravity wave excitation by convection: an increasing temperature profile is unstable to convection below 4°C, but stably stratified above 4°C. We present numerical simulations of a waterlike fluid near its density maximum in a two-dimensional domain. We successfully model the damping of waves in the simulations using linear theory, provided we do not take the weak damping limit typically used in the literature. To isolate the physical mechanism exciting internal waves, we use the spectral code dedalus to run several simplified model simulations of our more detailed simulation. We use data from the full simulation as source terms in two simplified models of internal-wave excitation by convection: bulk excitation by convective Reynolds stresses, and interface forcing via the mechanical oscillator effect. We find excellent agreement between the waves generated in the full simulation and the simplified simulation implementing the bulk excitation mechanism. The interface forcing simulations overexcite high-frequency waves because they assume the excitation is by the "impulsive" penetration of plumes, which spreads energy to high frequencies. However, we find that the real excitation is instead by the "sweeping" motion of plumes parallel to the interface. Our results imply that the bulk excitation mechanism is a very accurate heuristic for internal-wave generation by convection.

  2. Validation of Simplified Load Equations Through Loads Measurement and Modeling of a Small Horizontal-Axis Wind Turbine Tower

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dana, Scott; Van Dam, Jeroen J; Damiani, Rick R

    As part of an ongoing effort to improve the modeling and prediction of small wind turbine dynamics, the National Renewable Energy Laboratory (NREL) tested a small horizontal-axis wind turbine in the field at the National Wind Technology Center. The test turbine was a 2.1-kW downwind machine mounted on an 18-m multi-section fiberglass composite tower. The tower was instrumented and monitored for approximately 6 months. The collected data were analyzed to assess the turbine and tower loads and further validate the simplified loads equations from the International Electrotechnical Commission (IEC) 61400-2 design standards. Field-measured loads were also compared to the outputmore » of an aeroelastic model of the turbine. In particular, we compared fatigue loads as measured in the field, predicted by the aeroelastic model, and calculated using the simplified design equations. Ultimate loads at the tower base were assessed using both the simplified design equations and the aeroelastic model output. The simplified design equations in IEC 61400-2 do not accurately model fatigue loads and a discussion about the simplified design equations is discussed.« less

  3. Oscillating water column structural model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Copeland, Guild; Bull, Diana L; Jepsen, Richard Alan

    2014-09-01

    An oscillating water column (OWC) wave energy converter is a structure with an opening to the ocean below the free surface, i.e. a structure with a moonpool. Two structural models for a non-axisymmetric terminator design OWC, the Backward Bent Duct Buoy (BBDB) are discussed in this report. The results of this structural model design study are intended to inform experiments and modeling underway in support of the U.S. Department of Energy (DOE) initiated Reference Model Project (RMP). A detailed design developed by Re Vision Consulting used stiffeners and girders to stabilize the structure against the hydrostatic loads experienced by amore » BBDB device. Additional support plates were added to this structure to account for loads arising from the mooring line attachment points. A simplified structure was designed in a modular fashion. This simplified design allows easy alterations to the buoyancy chambers and uncomplicated analysis of resulting changes in buoyancy.« less

  4. Modelling the evaporation of a tear film over a contact lens.

    PubMed

    Talbott, Kevin; Xu, Amber; Anderson, Daniel M; Seshaiyer, Padmanabhan

    2015-06-01

    A contact lens (CL) separates the tear film into a pre-lens tear film (PrLTF), the fluid layer between the CL and the outside environment, and a post-lens tear film (PoLTF), the fluid layer between the CL and the cornea. We examine a model for evaporation of a PrLTF on a modern permeable CL allowing fluid transfer between the PrLTF and the PoLTF. Evaporation depletes the PrLTF, and continued evaporation causes depletion of the PoLTF via fluid loss through the CL. Governing equations include Navier-Stokes, heat and Darcy's equations for the fluid flow and heat transfer in the PrLTF and porous layer. The PoLTF is modelled by a fixed pressure condition on the posterior surface of the CL. The original model is simplified using lubrication theory for the PrLTF and CL applied to a sagittal plane through the eye. We obtain a partial differential equation (PDE) for the PrLTF thickness that is first-order in time and fourth-order in space. This model incorporates evaporation, conjoining pressure effects in the PrLTF, capillarity and heat transfer. For a planar film, we find that this PDE can be reduced to an ordinary differential equation (ODE) that can be solved analytically or numerically. This reduced model allows for interpretation of the various system parameters and captures most of the basic physics contained in the model. Comparisons of ODE and PDE models, including estimates for the loss of fluid through the lens due to evaporation, are given. © The Authors 2014. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  5. Printing Semiconductor-Insulator Polymer Bilayers for High-Performance Coplanar Field-Effect Transistors.

    PubMed

    Bu, Laju; Hu, Mengxing; Lu, Wanlong; Wang, Ziyu; Lu, Guanghao

    2018-01-01

    Source-semiconductor-drain coplanar transistors with an organic semiconductor layer located within the same plane of source/drain electrodes are attractive for next-generation electronics, because they could be used to reduce material consumption, minimize parasitic leakage current, avoid cross-talk among different devices, and simplify the fabrication process of circuits. Here, a one-step, drop-casting-like printing method to realize a coplanar transistor using a model semiconductor/insulator [poly(3-hexylthiophene) (P3HT)/polystyrene (PS)] blend is developed. By manipulating the solution dewetting dynamics on the metal electrode and SiO 2 dielectric, the solution within the channel region is selectively confined, and thus make the top surface of source/drain electrodes completely free of polymers. Subsequently, during solvent evaporation, vertical phase separation between P3HT and PS leads to a semiconductor-insulator bilayer structure, contributing to an improved transistor performance. Moreover, this coplanar transistor with semiconductor-insulator bilayer structure is an ideal system for injecting charges into the insulator via gate-stress, and the thus-formed PS electret layer acts as a "nonuniform floating gate" to tune the threshold voltage and effective mobility of the transistors. Effective field-effect mobility higher than 1 cm 2 V -1 s -1 with an on/off ratio > 10 7 is realized, and the performances are comparable to those of commercial amorphous silicon transistors. This coplanar transistor simplifies the fabrication process of corresponding circuits. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Specification for a surface-search radar-detection-range model

    NASA Astrophysics Data System (ADS)

    Hattan, Claude P.

    1990-09-01

    A model that predicts surface-search radar detection range versus a variety of combatants has been developed at the Naval Ocean Systems Center. This model uses a simplified ship radar cross section (RCS) model and the U.S. Navy Oceanographic and Atmospheric Mission Library Standard Electromagnetic Propagation Model. It provides the user with a method of assessing the effects of the environment of the performance of a surface-search radar system. The software implementation of the model is written in ANSI FORTRAN 77, with MIL-STD-1753 extensions. The program provides the user with a table of expected detection ranges when the model is supplied with the proper environmental radar system inputs. The target model includes the variation in RCS as a function of aspect angle and the distribution of reflected radar energy as a function of height above the waterline. The modeled propagation effects include refraction caused by a multisegmented refractivity profile, sea-surface roughness caused by local winds, evaporation ducting, and surface-based ducts caused by atmospheric layering.

  7. Simplified aerosol modeling for variational data assimilation

    NASA Astrophysics Data System (ADS)

    Huneeus, N.; Boucher, O.; Chevallier, F.

    2009-11-01

    We have developed a simplified aerosol model together with its tangent linear and adjoint versions for the ultimate aim of optimizing global aerosol and aerosol precursor emission using variational data assimilation. The model was derived from the general circulation model LMDz; it groups together the 24 aerosol species simulated in LMDz into 4 species, namely gaseous precursors, fine mode aerosols, coarse mode desert dust and coarse mode sea salt. The emissions have been kept as in the original model. Modifications, however, were introduced in the computation of aerosol optical depth and in the processes of sedimentation, dry and wet deposition and sulphur chemistry to ensure consistency with the new set of species and their composition. The simplified model successfully manages to reproduce the main features of the aerosol distribution in LMDz. The largest differences in aerosol load are observed for fine mode aerosols and gaseous precursors. Differences between the original and simplified models are mainly associated to the new deposition and sedimentation velocities consistent with the definition of species in the simplified model and the simplification of the sulphur chemistry. Furthermore, simulated aerosol optical depth remains within the variability of monthly AERONET observations for all aerosol types and all sites throughout most of the year. Largest differences are observed over sites with strong desert dust influence. In terms of the daily aerosol variability, the model is less able to reproduce the observed variability from the AERONET data with larger discrepancies in stations affected by industrial aerosols. The simplified model however, closely follows the daily simulation from LMDz. Sensitivity analyses with the tangent linear version show that the simplified sulphur chemistry is the dominant process responsible for the strong non-linearity of the model.

  8. On the coverage of the pMSSM by simplified model results

    NASA Astrophysics Data System (ADS)

    Ambrogi, Federico; Kraml, Sabine; Kulkarni, Suchita; Laa, Ursula; Lessa, Andre; Waltenberger, Wolfgang

    2018-03-01

    We investigate to which extent the SUSY search results published by ATLAS and CMS in the context of simplified models actually cover the more realistic scenarios of a full model. Concretely, we work within the phenomenological MSSM (pMSSM) with 19 free parameters and compare the constraints obtained from SModelS v1.1.1 with those from the ATLAS pMSSM study in arXiv:1508.06608. We find that about 40-45% of the points excluded by ATLAS escape the currently available simplified model constraints. For these points we identify the most relevant topologies which are not tested by the current simplified model results. In particular, we find that topologies with asymmetric branches, including 3-jet signatures from gluino-squark associated production, could be important for improving the current constraining power of simplified models results. Furthermore, for a better coverage of light stops and sbottoms, constraints for decays via heavier neutralinos and charginos, which subsequently decay visibly to the lightest neutralino are also needed.

  9. Use of non-linear mixed-effects modelling and regression analysis to predict the number of somatic coliphages by plaque enumeration after 3 hours of incubation.

    PubMed

    Mendez, Javier; Monleon-Getino, Antonio; Jofre, Juan; Lucena, Francisco

    2017-10-01

    The present study aimed to establish the kinetics of the appearance of coliphage plaques using the double agar layer titration technique to evaluate the feasibility of using traditional coliphage plaque forming unit (PFU) enumeration as a rapid quantification method. Repeated measurements of the appearance of plaques of coliphages titrated according to ISO 10705-2 at different times were analysed using non-linear mixed-effects regression to determine the most suitable model of their appearance kinetics. Although this model is adequate, to simplify its applicability two linear models were developed to predict the numbers of coliphages reliably, using the PFU counts as determined by the ISO after only 3 hours of incubation. One linear model, when the number of plaques detected was between 4 and 26 PFU after 3 hours, had a linear fit of: (1.48 × Counts 3 h + 1.97); and the other, values >26 PFU, had a fit of (1.18 × Counts 3 h + 2.95). If the number of plaques detected was <4 PFU after 3 hours, we recommend incubation for (18 ± 3) hours. The study indicates that the traditional coliphage plating technique has a reasonable potential to provide results in a single working day without the need to invest in additional laboratory equipment.

  10. Understanding exchanges across turbulent/stratified zones interfaces

    NASA Astrophysics Data System (ADS)

    Le Bars, M.; Ribeiro, A.; Le Gal, P.; Aurnou, J. M.

    2013-12-01

    In many geophysical and astrophysical situations, a turbulent fluid layer is separated from a stably stratified one by a relatively sharp but deformable interface. Examples include the convective and radiative zones in stars, the atmospheric convective layer and overlying stratosphere, the Earth's outer core... While motions in the stratified layer are often neglected, it actually supports oscillatory motions called gravito-inertial waves (GIW) excited by Reynolds stresses, entropy fluctuations and interface deformations associated with the turbulence. Besides their direct observation as for instance in asteroseismology, GIW transport energy, carry momentum, break, mix... and are thus essential for accurate models of global climate and solar or core dynamics. Global integrated models including length scales and time scales spanning many orders of magnitude are required to fully address motions in turbulent and stratified zones and to understand the details of the highly non-linear couplings between rotation, meridional circulation, turbulence and waves: this is clearly very challenging from both analytical and numerical points of view. Here, we present results from two complementary laboratory experiments using water as a working fluid and salt or temperature to control the buoyancy effects, allowing to address the whole range of relevant physical issues in simplified models. In the first set-up, we take benefit from the unusual property of water that its density has a maximum value near 4oC to study its convective and oscillatory motions in a tank with a bottom boundary at about 0oC and a hotter upper surface. High precision local measurements of temperature fluctuations are performed simultaneously in the convective and stratified zones to produce the corresponding power density spectrum and probability density function. In the second set-up, a turbulent jet generated by injection of water impinges upon the interface between a uniform density layer and a stratified one of salted water. The experiment is performed on a rotating table. Velocity measurements are carried out non-intrusively using Particle Imaging Velocimetry in both regions. Our combined results show that (i) the interface acts as a filter which mostly allows for the passing of low frequency perturbations, while (ii) the further propagation of the excited waves in the stratified zone gives rise to selective wave damping, focusing the transported energy and momentum around given frequencies corresponding to selected propagation angles. We explain those results with a simple analytical model, allowing their extension to natural configurations.

  11. A semi-analytical model of disk evaporation by thermal conduction

    NASA Astrophysics Data System (ADS)

    Dullemond, C. P.

    1999-01-01

    The conditions for disk evaporation by electron thermal conduction are examined, using a simplified semi-analytical 1-D model. The model is based on the mechanism proposed by Meyer & Meyer-Hofmeister ( te{meyermeyhof:1994}) in which an advection dominated accretion flow evaporates the top layers from the underlying disk by thermal conduction. The evaporation rate is calculated as a function of the density of the advective flow, and an analysis is made of the time scales and length scales of the dynamics of the advective flow. It is shown that evaporation can only completely destroy the disk if the conductive length scale is of the order of the radius. This implies that radial conduction is an essential factor in the evaporation process. The heat required for evaporation is in fact produced at small radii and transported radially towards the evaporation region.

  12. A simplified model for equilibrium and transient swelling of thermo-responsive gels.

    PubMed

    Drozdov, A D; deClaville Christiansen, J

    2017-11-01

    A simplified model is developed for the elastic response of thermo-responsive gels subjected to swelling under an arbitrary deformation with finite strains. The constitutive equations involve five adjustable parameters that are determined by fitting observations in equilibrium water uptake tests and T-jump transient tests on thin gel disks. Two scenarios for water release under heating are revealed by means of numerical simulation. When the final temperature in a T-jump test is below the volume-phase transition temperature, deswelling is characterized by smooth distribution of water molecules and small tensile stresses. When the final temperature exceeds the critical temperature, a gel disk is split into three regions (central part with a high concentration of water molecules and two domains near the boundaries with low water content) separated by sharp interfaces, whose propagation is accompanied by development of large (comparable with the elastic modulus) tensile stresses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The focusing effect of P-wave in the Moon's and Earth's low-velocity core. Analytical solution

    NASA Astrophysics Data System (ADS)

    Fatyanov, A. G.; Burmin, V. Yu

    2018-04-01

    The important aspect in the study of the structure of the interiors of planets is the question of the presence and state of core inside them. While for the Earth this task was solved long ago, the question of whether the core of the Moon is in a liquid or solid state up to the present is debatable up to present. If the core of the Moon is liquid, then the velocity of longitudinal waves in it should be lower than in the surrounding mantle. If the core is solid, then most likely, the velocity of longitudinal waves in it is higher than in the mantle. Numerical calculations of the wave field allow us to identify the criteria for drawing conclusions about the state of the lunar core. In this paper we consider the problem of constructing an analytical solution for wave fields in a layered sphere of arbitrary radius. A stable analytic solution is obtained for the wave fields of longitudinal waves in a three-layer sphere. Calculations of the total wave fields and rays for simplified models of the Earth and the Moon with real parameters are presented. The analytical solution and the ray pattern showed that the low-velocity cores of the Earth and the Moon possess the properties of a collecting lens. This leads to the emergence of a wave field focusing area. As a result, focused waves of considerable amplitude appear on the surface of the Earth and the Moon. In the Earth case, they appear before the first PKP-wave arrival. These are so-called "precursors", which continue in the subsequent arrivals of waves. At the same time, for the simplified model of the Earth, the maximum amplitude growth is observed in the 147-degree region. For the Moon model, the maximum amplitude growth is around 180°.

  14. Application of the Integral Theory of Impact to the Qualification of Materials and the Development of a Simplified Rod Penetrator Model

    DTIC Science & Technology

    1978-11-01

    Kevlar target. This composite is a woven fabric produced by DuPont and consists of aramid ( Kevlar ) fibers treated with an epoxy resin and molded into...between layers was employed. Kevlar has a value of E~p comparable to steel and a large component of E~e D. Summary of Qualification Tests A summary of...34 STEEL BALL 0 .156" STEEL BALL1 p/dO X.k WC ball I theory Steel ball theory .0 20 100 1000 Velocity, ft/sec Figure 17 34 KEVLAR TARGET RIGID, EPOXY RESIN

  15. Thermal magnetic field noise: electron optics and decoherence.

    PubMed

    Uhlemann, Stephan; Müller, Heiko; Zach, Joachim; Haider, Max

    2015-04-01

    Thermal magnetic field noise from magnetic and non-magnetic conductive parts close to the electron beam recently has been identified as a reason for decoherence in high-resolution transmission electron microscopy (TEM). Here, we report about new experimental results from measurements for a layered structure of magnetic and non-magnetic materials. For a simplified version of this setup and other situations we derive semi-analytical models in order to predict the strength, bandwidth and spatial correlation of the noise fields. The results of the simulations are finally compared to previous and new experimental data in a quantitative manner. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Plasmonic detection of possible defects in multilayer nanohole array consisting of essential materials in simplified STT-RAM cell

    NASA Astrophysics Data System (ADS)

    Sadri-Moshkenani, Parinaz; Khan, Mohammad Wahiduzzaman; Zhao, Qiancheng; Krivorotov, Ilya; Nilsson, Mikael; Bagherzadeh, Nader; Boyraz, Ozdal

    2017-08-01

    Plasmonic nanostructures are highly used for sensing purposes since they support plasmonic modes which make them highly sensitive to the refractive index change of their surrounding medium. Therefore, they can also be used to detect changes in optical properties of ultrathin layer films in a multilayer plasmonic structure. Here, we investigate the changes in optical properties of ultrathin films of macro structures consisting of STT-RAM layers. Among the highest sensitive plasmonic structures, nanohole array has attracted many research interest because of its ease of fabrication, small footprint, and simplified optical alignment. Hence it is more suitable for defect detection in STT-RAM geometries. Moreover, the periodic nanohole pattern in the nanohole array structure makes it possible to couple the light to the surface plasmon polariton (SPP) mode supported by the structure. To assess the radiation damages and defects in STT-RAM cells we have designed a multilayer nanohole array based on the layers used in STT-RAM structure, consisting 4nm- Ta/1.5nm-CoFeB/2nm-MgO/1.5nm-CoFeB/4nm-Ta layers, all on a 300nm silver layer on top of a PEC boundary. The nanoholes go through all the layers and become closed by the PEC boundary on one side. The dimensions of the designed nanoholes are 313nm depth, 350nm diameter, and 700nm period. Here, we consider the normal incidence of light and investigate zeroth-order reflection coefficient to observe the resonance. Our simulation results show that a 10% change in refractive index of the 2nm-thick MgO layer leads to about 122GHz shift in SPP resonance in reflection pattern.

  17. Proxies of oceanic Lithosphere/Asthenosphere Boundary from Global Seismic Anisotropy Tomography

    NASA Astrophysics Data System (ADS)

    Burgos, Gael; Montagner, Jean-Paul; Beucler, Eric; Trampert, Jeannot; Capdeville, Yann

    2013-04-01

    Surface waves provide essential information on the knowledge of the upper mantle global structure despite their low lateral resolution. This study, based on surface waves data, presents the development of a new anisotropic tomographic model of the upper mantle, a simplified isotropic model and the consequences of these results for the Lithosphere/Asthenosphere Boundary (LAB). As a first step, a large number of data is collected, these data are merged and regionalized in order to derive maps of phase and group velocity for the fundamental mode of Rayleigh and Love waves and their azimuthal dependence (maps of phase velocity are also obtained for the first six overtones). As a second step, a crustal a posteriori model is developped from the Monte-Carlo inversion of the shorter periods of the dataset, in order to take into account the effect of the shallow layers on the upper mantle. With the crustal model, a first Monte-Carlo inversion for the upper mantle structure is realized in a simplified isotropic parameterization to highlight the influence of the LAB properties on the surface waves data. Still using the crustal model, a first order perturbation theory inversion is performed in a fully anisotropic parameterization to build a 3-D tomographic model of the upper mantle (an extended model until the transition zone is also obtained by using the overtone data). Estimates of the LAB depth are derived from the upper mantle models and compared with the predictions of oceanic lithosphere cooling models. Seismic events are simulated using the Spectral Element Method in order to validate the ability of the anisotropic tomographic model of the upper mantle to re- produce observed seismograms.

  18. Computational Study of Ventilation and Disease Spread in Poultry Houses

    NASA Astrophysics Data System (ADS)

    Cimbala, John; Pawar, Sourabh; Wheeler, Eileen; Lindberg, Darla

    2006-11-01

    The air flow in and around poultry houses has been studied numerically with the goal of determining disease spread characteristics and comparing ventilation schemes. A typical manure-belt layer egg production facility is considered. The continuity, momentum, and energy equations are solved for flow both inside and outside poultry houses using the commercial computational fluid dynamics (CFD) code FLUENT. Both simplified two-dimensional and fully three-dimensional geometries are modeled. The spread of virus particles is considered to be analogous to diffusion of a tracer contaminant gas, in this case ammonia. The effect of thermal plumes produced by the hens in the poultry house is also considered. Two ventilation schemes with opposite flow directions are compared. Contours of temperature and ammonia mass fraction for both cases are obtained and compared. The analysis shows that ventilation and air quality characteristics are much better for the case in which the air flow is from bottom to top (enhancing the thermal plume) instead of from top to bottom (fighting the thermal plume) as in most poultry houses. This has implications in air quality control in the event of epidemic outbreaks of avian flu or other infectious diseases.

  19. A Simplified Baseband Prefilter Model with Adaptive Kalman Filter for Ultra-Tight COMPASS/INS Integration

    PubMed Central

    Luo, Yong; Wu, Wenqi; Babu, Ravindra; Tang, Kanghua; Luo, Bing

    2012-01-01

    COMPASS is an indigenously developed Chinese global navigation satellite system and will share many features in common with GPS (Global Positioning System). Since the ultra-tight GPS/INS (Inertial Navigation System) integration shows its advantage over independent GPS receivers in many scenarios, the federated ultra-tight COMPASS/INS integration has been investigated in this paper, particularly, by proposing a simplified prefilter model. Compared with a traditional prefilter model, the state space of this simplified system contains only carrier phase, carrier frequency and carrier frequency rate tracking errors. A two-quadrant arctangent discriminator output is used as a measurement. Since the code tracking error related parameters were excluded from the state space of traditional prefilter models, the code/carrier divergence would destroy the carrier tracking process, and therefore an adaptive Kalman filter algorithm tuning process noise covariance matrix based on state correction sequence was incorporated to compensate for the divergence. The federated ultra-tight COMPASS/INS integration was implemented with a hardware COMPASS intermediate frequency (IF), and INS's accelerometers and gyroscopes signal sampling system. Field and simulation test results showed almost similar tracking and navigation performances for both the traditional prefilter model and the proposed system; however, the latter largely decreased the computational load. PMID:23012564

  20. Iron and manganese removal: Recent advances in modelling treatment efficiency by rapid sand filtration.

    PubMed

    Vries, D; Bertelkamp, C; Schoonenberg Kegel, F; Hofs, B; Dusseldorp, J; Bruins, J H; de Vet, W; van den Akker, B

    2017-02-01

    A model has been developed that takes into account the main characteristics of (submerged) rapid filtration: the water quality parameters of the influent water, notably pH, iron(II) and manganese(II) concentrations, homogeneous oxidation in the supernatant layer, surface sorption and heterogeneous oxidation kinetics in the filter, and filter media adsorption characteristics. Simplifying assumptions are made to enable validation in practice, while maintaining the main mechanisms involved in iron(II) and manganese(II) removal. Adsorption isotherm data collected from different Dutch treatment sites show that Fe(II)/Mn(II) adsorption may vary substantially between them, but generally increases with higher pH. The model is sensitive to (experimentally) determined adsorption parameters and the heterogeneous oxidation rate. Model results coincide with experimental values when the heterogeneous rate constants are calibrated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Simplified method for numerical modeling of fiber lasers.

    PubMed

    Shtyrina, O V; Yarutkina, I A; Fedoruk, M P

    2014-12-29

    A simplified numerical approach to modeling of dissipative dispersion-managed fiber lasers is examined. We present a new numerical iteration algorithm for finding the periodic solutions of the system of nonlinear ordinary differential equations describing the intra-cavity dynamics of the dissipative soliton characteristics in dispersion-managed fiber lasers. We demonstrate that results obtained using simplified model are in good agreement with full numerical modeling based on the corresponding partial differential equations.

  2. Numerical and experimental study of expiratory flow in the case of major upper airway obstructions with fluid structure interaction

    NASA Astrophysics Data System (ADS)

    Chouly, F.; van Hirtum, A.; Lagrée, P.-Y.; Pelorson, X.; Payan, Y.

    2008-02-01

    This study deals with the numerical prediction and experimental description of the flow-induced deformation in a rapidly convergent divergent geometry which stands for a simplified tongue, in interaction with an expiratory airflow. An original in vitro experimental model is proposed, which allows measurement of the deformation of the artificial tongue, in condition of major initial airway obstruction. The experimental model accounts for asymmetries in geometry and tissue properties which are two major physiological upper airway characteristics. The numerical method for prediction of the fluid structure interaction is described. The theory of linear elasticity in small deformations has been chosen to compute the mechanical behaviour of the tongue. The main features of the flow are taken into account using a boundary layer theory. The overall numerical method entails finite element solving of the solid problem and finite differences solving of the fluid problem. First, the numerical method predicts the deformation of the tongue with an overall error of the order of 20%, which can be seen as a preliminary successful validation of the theory and simulations. Moreover, expiratory flow limitation is predicted in this configuration. As a result, both the physical and numerical models could be useful to understand this phenomenon reported in heavy snorers and apneic patients during sleep.

  3. DEM modeling of failure mechanisms induced by excavations on the Moon

    NASA Astrophysics Data System (ADS)

    jiang, mingjing; shen, zhifu; Utili, Stefano

    2013-04-01

    2D Discrete Element Method (DEM) analyses were performed for excavations supported by retaining walls in lunar environment. The lunar terrain is made of a layer of sand (regolith) which differs from terrestrial sands for two main features: the presence of adhesive attractive forces due to van der Waals interactions and grains being very irregular in shape leading to high interlocking. A simplified contact model based on linear elasticity and perfect plasticity was employed. The contact model includes a moment - relative rotation law to account for high interlocking among grains and a normal adhesion law to account for the van der Waals interactions. Analyses of the excavations were run under both lunar and terrestrial environments. Under lunar environment, gravity is approximately one sixth than the value on Earth and adhesion forces between grains of lunar regolith due to van der Waals interactions are not negligible. From the DEM simulations it emerged that van der Waals interactions may significantly increase the bending moment and deflection of the retaining wall, and the ground displacements. Hence this study indicates that an unsafe estimate of the wall response to an excavation on the Moon would be obtained from physical experiments performed in a terrestrial environment, i.e., considering the effect of gravity but neglecting the van der Waals interactions.

  4. A Fast Method for Embattling Optimization of Ground-Based Radar Surveillance Network

    NASA Astrophysics Data System (ADS)

    Jiang, H.; Cheng, H.; Zhang, Y.; Liu, J.

    A growing number of space activities have created an orbital debris environment that poses increasing impact risks to existing space systems and human space flight. For the safety of in-orbit spacecraft, a lot of observation facilities are needed to catalog space objects, especially in low earth orbit. Surveillance of Low earth orbit objects are mainly rely on ground-based radar, due to the ability limitation of exist radar facilities, a large number of ground-based radar need to build in the next few years in order to meet the current space surveillance demands. How to optimize the embattling of ground-based radar surveillance network is a problem to need to be solved. The traditional method for embattling optimization of ground-based radar surveillance network is mainly through to the detection simulation of all possible stations with cataloged data, and makes a comprehensive comparative analysis of various simulation results with the combinational method, and then selects an optimal result as station layout scheme. This method is time consuming for single simulation and high computational complexity for the combinational analysis, when the number of stations increases, the complexity of optimization problem will be increased exponentially, and cannot be solved with traditional method. There is no better way to solve this problem till now. In this paper, target detection procedure was simplified. Firstly, the space coverage of ground-based radar was simplified, a space coverage projection model of radar facilities in different orbit altitudes was built; then a simplified objects cross the radar coverage model was established according to the characteristics of space objects orbit motion; after two steps simplification, the computational complexity of the target detection was greatly simplified, and simulation results shown the correctness of the simplified results. In addition, the detection areas of ground-based radar network can be easily computed with the simplified model, and then optimized the embattling of ground-based radar surveillance network with the artificial intelligent algorithm, which can greatly simplifies the computational complexities. Comparing with the traditional method, the proposed method greatly improved the computational efficiency.

  5. Impulsive penetration : a viable mechanism for plasma entry across the magnetopause ?

    NASA Astrophysics Data System (ADS)

    De Keyser, Johan; Echim, Marius; Darrouzet, Fabien; Gunell, Herbert

    Density inhomogeneities in the solar wind may cross the bow shock, and retain an excess earthward momentum in the magnetosheath upon approaching the magnetopause. Also, the bow shock dynamics as well as the behaviour of the magnetopause itself may introduce spatial inhomogeneities in the magnetosheath density and/or flow. Plasma entities with excess momentum may penetrate across the magnetopause, by the impulsive penetration mechanism. This plasma entry mechanism requires the existence of a polarization electric field in the moving blob, that is sustained by charge separation layers in the interfaces at the flanks of the blob. Both direct observation and simulation of plasma entry across the magnetopause following the impulsive penetration mechanism are hard. It is difficult to prove that observed plasma entry is really due to the impulsive penetration mechanism since the required charge separation layers or the resulting polarization electric field are hard to measure directly. Simply assessing the geometry is not easy, although multi-spacecraft missions like Cluster have resolved many of the ambiguities inherent in single-spacecraft measurements. Impulsive penetration is difficult to simulate as it operates on the fluid, the ion, and the electron scales simultaneously. It requires not only a high spatial resolution, but also a high precision to properly represent the charge imbalance in the flank interfaces. We have modelled impulsive penetration with a kinetic model, by simplifying the problem. The fully kinetic model is 3-dimensional in velocity space, but we consider spatial structure only along a single spatial dimension, namely the coordinate transverse to the blob’s direction of motion. We thereby assume that the blob is elongated both along the magnetic field and in the direction of motion. The model is semi-analytic and is able to represent the charge imbalance in the blob edges very well. In a second modelling step, we consider a slow, quasi-static change of this structure as the blob penetrates deeper into the magnetosphere, resulting in a description of the evolution of the penetrating plasma blob as a consequence of both adiabatic and non-adiabatic deceleration. Although the simulation considers this a simplified geometry, it sheds some light on some fundamental aspects of this plasma entry mechanism.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hobbs, Michael L.

    We previously developed a PETN thermal decomposition model that accurately predicts thermal ignition and detonator failure [1]. This model was originally developed for CALORE [2] and required several complex user subroutines. Recently, a simplified version of the PETN decomposition model was implemented into ARIA [3] using a general chemistry framework without need for user subroutines. Detonator failure was also predicted with this new model using ENCORE. The model was simplified by 1) basing the model on moles rather than mass, 2) simplifying the thermal conductivity model, and 3) implementing ARIA’s new phase change model. This memo briefly describes the model,more » implementation, and validation.« less

  7. On Least Squares Fitting Nonlinear Submodels.

    ERIC Educational Resources Information Center

    Bechtel, Gordon G.

    Three simplifying conditions are given for obtaining least squares (LS) estimates for a nonlinear submodel of a linear model. If these are satisfied, and if the subset of nonlinear parameters may be LS fit to the corresponding LS estimates of the linear model, then one attains the desired LS estimates for the entire submodel. Two illustrative…

  8. Salient object detection based on multi-scale contrast.

    PubMed

    Wang, Hai; Dai, Lei; Cai, Yingfeng; Sun, Xiaoqiang; Chen, Long

    2018-05-01

    Due to the development of deep learning networks, a salient object detection based on deep learning networks, which are used to extract the features, has made a great breakthrough compared to the traditional methods. At present, the salient object detection mainly relies on very deep convolutional network, which is used to extract the features. In deep learning networks, an dramatic increase of network depth may cause more training errors instead. In this paper, we use the residual network to increase network depth and to mitigate the errors caused by depth increase simultaneously. Inspired by image simplification, we use color and texture features to obtain simplified image with multiple scales by means of region assimilation on the basis of super-pixels in order to reduce the complexity of images and to improve the accuracy of salient target detection. We refine the feature on pixel level by the multi-scale feature correction method to avoid the feature error when the image is simplified at the above-mentioned region level. The final full connection layer not only integrates features of multi-scale and multi-level but also works as classifier of salient targets. The experimental results show that proposed model achieves better results than other salient object detection models based on original deep learning networks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Flap-edge aeroacoustic measurements and predictions

    NASA Astrophysics Data System (ADS)

    Brooks, Thomas F.; Humphreys, William M.

    2003-03-01

    An aeroacoustic model test has been conducted to investigate the mechanisms of sound generation on high-lift wing configurations. This paper presents an analysis of flap side-edge noise, which is often the most dominant source. A model of a main element wing section with a half-span flap was tested at low speeds of up to a Mach number of 0.17, corresponding to a wing chord Reynolds number of approximately 1.7 million. Results are presented for flat (or blunt), flanged, and round flap-edge geometries, with and without boundary-layer tripping, deployed at both moderate and high flap angles. The acoustic database is obtained from a small aperture directional array (SADA) of microphones, which was constructed to electronically steer to different regions of the model and to obtain farfield noise spectra and directivity from these regions. The basic flap-edge aerodynamics is established by static surface pressure data, as well as by computational fluid dynamics (CFD) calculations and simplified edge flow analyses. Distributions of unsteady pressure sensors over the flap allow the noise source regions to be defined and quantified via cross-spectral diagnostics using the SADA output. It is found that shear layer instability and related pressure scatter is the primary noise mechanism. For the flat edge flap, two noise prediction methods based on unsteady-surface-pressure measurements are evaluated and compared to measured noise. One is a new causality spectral approach developed here. The other is a new application of an edge-noise scatter prediction method. The good comparisons for both approaches suggest that the prediction models capture much of the physics. Areas of disagreement appear to reveal when the assumed edge noise mechanism does not fully define the noise production. For the different edge conditions, extensive spectra and directivity are presented. The complexity of the directivity results demonstrate the strong role of edge source geometry and frequency in the noise radiation. Significantly, for each edge configuration, the spectra for different flow speeds, flap angles, and surface roughness were successfully scaled by utilizing aerodynamic performance and boundary-layer scaling methods developed herein.

  10. Structure of the Madden-Julian oscillation in coupled and uncoupled versions of the superparameterized community atmosphere model

    NASA Astrophysics Data System (ADS)

    Benedict, James J.

    The Madden-Julian Oscillation (MJO), an eastward-propagating atmospheric disturbance resembling a transient Walker cell, dominates intraseasonal (20--100 days) variability in the tropical Indian and West Pacific Ocean regions. The phenomenon is most active during the Northern Hemisphere winter and is characterized by cyclic periods of suppressed (dry phase) and active (wet phase) cloudiness and precipitation. Numerous complexities---multi-scale interactions of moist convection and large-scale wave dynamics, air-sea fluxes and feedbacks, topographical impacts, and tropical-extratropical interactions---challenge our ability to fully understand the MJO and result in its poor representation in most current general circulation models (GCMs). This study examines the representation of the MJO in a modified version of the NCAR Community Atmosphere Model (CAM). The modifications involve substituting conventional boundary layer, turbulence, and cloud parameterizations with a configuration of cloud-resolving models (CRMs) embedded into each GCM grid cell in a technique termed "superparameterization" (SP). Unlike many GCMs including the standard CAM, the SP-CAM displays robust intraseasonal convective variability. Two SP-CAM simulations are utilized in this study: one forced by observed sea-surface temperatures (SSTs; "uncoupled") and a second identical to the first except for a new treatment of tropical SSTs in which a simplified mixed-layer ocean model is used to predict SST anomalies that are coupled to the atmosphere ("coupled"). Key physical features of the MJO are captured in the uncoupled SP-CAM. Ahead (east) of the disturbance there is meridional boundary layer moisture convergence and a vertical progression of warmth, moisture, and convective heating from the lower to upper troposphere. The space-time dynamical response to convective heating is also reproduced, especially the vertical structure of anomalous westerly wind and its migration into the region of heavy rainfall as the disturbance propagates eastward. Advective drying processes in the MJO wake are also represented well. The coupled SP-CAM shows more realistic MJO eastward propagation, signal coherence and spatial structure relative to the uncoupled SP-CAM. The improvement varies with longitude but generally stems from better space-time relationships among MJO convective heating, its dynamical response, SSTs, surface fluxes, boundary layer properties, and vertical moisture structure. Coupled MJO events in the Indian Ocean display more realistic intensity; in the West Pacific, the coupled SP-CAM overestimates convective strength but shows an improved vertical structure relative to the uncoupled SP-CAM. Biases related to MJO convection are also examined. Overestimated convective intensity in the West Pacific appears to be linked to basic state biases, Maritime Continent topographical impacts, unrealistic convection-wind-evaporation feedbacks, and the neglect of convective momentum transport in the model. Phase errors between observed and simulated boundary layer moisture appear to stem from an unrealistic representation of shallow cumuli.

  11. Computer program optimizes design of nuclear radiation shields

    NASA Technical Reports Server (NTRS)

    Lahti, G. P.

    1971-01-01

    Computer program, OPEX 2, determines minimum weight, volume, or cost for shields. Program incorporates improved coding, simplified data input, spherical geometry, and an expanded output. Method is capable of altering dose-thickness relationship when a shield layer has been removed.

  12. Communicating with Accelerated Observers in Minkowski Spacetime

    ERIC Educational Resources Information Center

    FLores, F. J.

    2008-01-01

    Our goal here is to determine the spatial and temporal constraints on communication between two observers at least one of which moves with constant proper acceleration in two-dimensional Minkowski spacetime. We take as a simplified model of communication one observer bouncing a light signal off another observer. Our derivations use only elementary…

  13. Determining Mass and Persistence of a Reactive Brominated-Solvent DNAPL Source Using Mass Depletion-Mass Flux Reduction Relationships During Pumping

    NASA Astrophysics Data System (ADS)

    Johnston, C. D.; Davis, G. B.; Bastow, T.; Annable, M. D.; Trefry, M. G.; Furness, A.; Geste, Y.; Woodbury, R.; Rhodes, S.

    2011-12-01

    Measures of the source mass and depletion characteristics of recalcitrant dense non-aqueous phase liquid (DNAPL) contaminants are critical elements for assessing performance of remediation efforts. This is in addition to understanding the relationships between source mass depletion and changes to dissolved contaminant concentration and mass flux in groundwater. Here we present results of applying analytical source-depletion concepts to pumping from within the DNAPL source zone of a 10-m thick heterogeneous layered aquifer to estimate the original source mass and characterise the time trajectory of source depletion and mass flux in groundwater. The multi-component, reactive DNAPL source consisted of the brominated solvent tetrabromoethane (TBA) and its transformation products (mostly tribromoethene - TriBE). Coring and multi-level groundwater sampling indicated the DNAPL to be mainly in lower-permeability layers, suggesting the source had already undergone appreciable depletion. Four simplified source dissolution models (exponential, power function, error function and rational mass) were able to describe the concentration history of the total molar concentration of brominated organics in extracted groundwater during 285 days of pumping. Approximately 152 kg of brominated compounds were extracted. The lack of significant kinetic mass transfer limitations in pumped concentrations was notable. This was despite the heterogeneous layering in the aquifer and distribution of DNAPL. There was little to choose between the model fits to pumped concentration time series. The variance of groundwater velocities in the aquifer determined during a partitioning inter-well tracer test (PITT) were used to parameterise the models. However, the models were found to be relatively insensitive to this parameter. All models indicated an initial source mass around 250 kg which compared favourably to an estimate of 220 kg derived from the PITT. The extrapolated concentrations from the dissolution models diverged, showing disparate approaches to possible remediation objectives. However, it also showed that an appreciable proportion of the source would need to be removed to discriminate between the models. This may limit the utility of such modelling early in the history of a DNAPL source. A further limitation is the simplified approach of analysing the combined parent/daughter compounds with different solubilities as a total molar concentration. Although the fitted results gave confidence to this approach, there were appreciable changes in relative abundance. The dissolution and partitioning processes are discussed in relation to the lower-solubility TBA becoming dominant in pumped groundwater over time, despite its known rapid transformation to TriBE. These processes are also related to the architecture of the depleting source as revealed by multi-level groundwater sampling under reversed pumping/injection conditions.

  14. First-principles modeling of titanate/ruthenate superlattices

    NASA Astrophysics Data System (ADS)

    Junquera, Javier

    2013-03-01

    The possibility to create highly confined two-dimensional electron gases (2DEG) at oxide interfaces has generated much excitement during the last few years. The most widely studied system is the 2DEG formed at the LaO/TiO2 polar interface between LaAlO3 and SrTiO3, where the polar catastrophe at the interface has been invoked as the driving force. More recently, partial or complete delta doping of the Sr or Ti cations at a single layer of a SrTiO3 matrix has also been used to generate 2DEG. Following this recipe, we report first principles characterization of the structural and electronic properties of (SrTiO3)5/(SrRuO3)1 superlattices, where all the Ti of a given layer have been replaced by Ru. We show that the system exhibits a spin-polarized two-dimensional electron gas extremely confined to the 4 d orbitals of Ru in the SrRuO3 layer, a fact that is independent of the level of correlation included in the simulations. For hybrid functionals or LDA+U, every interface in the superlattice behaves as minority-spin half-metal ferromagnet, with a magnetic moment of μ = 2.0 μB/SrRuO3 unit. The shape of the electronic density of states, half metallicity and magnetism are explained in terms of a simplified tight-binding model, considering only the t2 g orbitals plus (i) the bi-dimensionality of the system, and (ii) strong electron correlations. Possible applications are discussed, from their eventual role in thermoelectric applications to the possible tuning of ferromagnetic properties of the 2DEG with the polarization of the dielectric. Work done in collaboration with P. García, M. Verissimo-Alves, D. I. Bilc, and Ph. Ghosez. Financial support provided by MICINN Grant FIS2009-12721-C04-02, and by the European Union Grant No. CP-FP 228989-2 ``OxIDes.'' The authors thankfully acknowledge the computer resources, technical expertise and assistance provided by the BSC/RES.

  15. Protograph LDPC Codes Over Burst Erasure Channels

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Sam; Jones, Christopher

    2006-01-01

    In this paper we design high rate protograph based LDPC codes suitable for binary erasure channels. To simplify the encoder and decoder implementation for high data rate transmission, the structure of codes are based on protographs and circulants. These LDPC codes can improve data link and network layer protocols in support of communication networks. Two classes of codes were designed. One class is designed for large block sizes with an iterative decoding threshold that approaches capacity of binary erasure channels. The other class is designed for short block sizes based on maximizing minimum stopping set size. For high code rates and short blocks the second class outperforms the first class.

  16. Parameterization Interactions in Global Aquaplanet Simulations

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Ritthik; Bordoni, Simona; Suselj, Kay; Teixeira, João.

    2018-02-01

    Global climate simulations rely on parameterizations of physical processes that have scales smaller than the resolved ones. In the atmosphere, these parameterizations represent moist convection, boundary layer turbulence and convection, cloud microphysics, longwave and shortwave radiation, and the interaction with the land and ocean surface. These parameterizations can generate different climates involving a wide range of interactions among parameterizations and between the parameterizations and the resolved dynamics. To gain a simplified understanding of a subset of these interactions, we perform aquaplanet simulations with the global version of the Weather Research and Forecasting (WRF) model employing a range (in terms of properties) of moist convection and boundary layer (BL) parameterizations. Significant differences are noted in the simulated precipitation amounts, its partitioning between convective and large-scale precipitation, as well as in the radiative impacts. These differences arise from the way the subcloud physics interacts with convection, both directly and through various pathways involving the large-scale dynamics and the boundary layer, convection, and clouds. A detailed analysis of the profiles of the different tendencies (from the different physical processes) for both potential temperature and water vapor is performed. While different combinations of convection and boundary layer parameterizations can lead to different climates, a key conclusion of this study is that similar climates can be simulated with model versions that are different in terms of the partitioning of the tendencies: the vertically distributed energy and water balances in the tropics can be obtained with significantly different profiles of large-scale, convection, and cloud microphysics tendencies.

  17. Forward and back diffusion through argillaceous formations

    NASA Astrophysics Data System (ADS)

    Yang, Minjune; Annable, Michael D.; Jawitz, James W.

    2017-05-01

    The exchange of solutes between aquifers and lower-permeability argillaceous formations is of considerable interest for solute and contaminant fate and transport. We present a synthesis of analytical solutions for solute diffusion between aquifers and single aquitard systems, validated in well-controlled experiments, and applied to several data sets from laboratory and field-scale problems with diffusion time and length scales ranging from 10-2 to 108 years and 10-2 to 102 m. One-dimensional diffusion models were applied using the method of images to consider the general cases of a finite aquitard bounded by two aquifers at the top and bottom, or a semiinfinite aquitard bounded by an aquifer. The simpler semiinfinite equations are appropriate for all domains with dimensionless relative diffusion length, ZD < 0.7. At dimensionless length scales above this threshold, application of semiinfinite equations to aquitards of finite thickness leads to increasing errors and solutions based on the method of images are required. Measured resident solute concentration profiles in aquitards and flux-averaged solute concentrations in surrounding aquifers were accurately modeled by appropriately accounting for generalized dynamic aquifer-aquitard boundary conditions, including concentration gradient reversals. Dimensionless diffusion length scales were used to illustrate the transferability of these relatively simple models to physical systems with dimensions that spanned 10 orders of magnitude. The results of this study offer guidance on the application of a simplified analytical approach to environmentally important layered problems with one or two diffusion interfaces.

  18. The Prediction of Broadband Shock-Associated Noise Including Propagation Effects

    NASA Technical Reports Server (NTRS)

    Miller, Steven; Morris, Philip J.

    2011-01-01

    An acoustic analogy is developed based on the Euler equations for broadband shock- associated noise (BBSAN) that directly incorporates the vector Green's function of the linearized Euler equations and a steady Reynolds-Averaged Navier-Stokes solution (SRANS) as the mean flow. The vector Green's function allows the BBSAN propagation through the jet shear layer to be determined. The large-scale coherent turbulence is modeled by two-point second order velocity cross-correlations. Turbulent length and time scales are related to the turbulent kinetic energy and dissipation. An adjoint vector Green's function solver is implemented to determine the vector Green's function based on a locally parallel mean flow at streamwise locations of the SRANS solution. However, the developed acoustic analogy could easily be based on any adjoint vector Green's function solver, such as one that makes no assumptions about the mean flow. The newly developed acoustic analogy can be simplified to one that uses the Green's function associated with the Helmholtz equation, which is consistent with the formulation of Morris and Miller (AIAAJ 2010). A large number of predictions are generated using three different nozzles over a wide range of fully expanded Mach numbers and jet stagnation temperatures. These predictions are compared with experimental data from multiple jet noise labs. In addition, two models for the so-called 'fine-scale' mixing noise are included in the comparisons. Improved BBSAN predictions are obtained relative to other models that do not include the propagation effects, especially in the upstream direction of the jet.

  19. Toward Transparent Data Management in Multi-layer Storage Hierarchy for HPC Systems

    DOE PAGES

    Wadhwa, Bharti; Byna, Suren; Butt, Ali R.

    2018-04-17

    Upcoming exascale high performance computing (HPC) systems are expected to comprise multi-tier storage hierarchy, and thus will necessitate innovative storage and I/O mechanisms. Traditional disk and block-based interfaces and file systems face severe challenges in utilizing capabilities of storage hierarchies due to the lack of hierarchy support and semantic interfaces. Object-based and semantically-rich data abstractions for scientific data management on large scale systems offer a sustainable solution to these challenges. Such data abstractions can also simplify users involvement in data movement. Here, we take the first steps of realizing such an object abstraction and explore storage mechanisms for these objectsmore » to enhance I/O performance, especially for scientific applications. We explore how an object-based interface can facilitate next generation scalable computing systems by presenting the mapping of data I/O from two real world HPC scientific use cases: a plasma physics simulation code (VPIC) and a cosmology simulation code (HACC). Our storage model stores data objects in different physical organizations to support data movement across layers of memory/storage hierarchy. Our implementation sclaes well to 16K parallel processes, and compared to the state of the art, such as MPI-IO and HDF5, our object-based data abstractions and data placement strategy in multi-level storage hierarchy achieves up to 7 X I/O performance improvement for scientific data.« less

  20. Toward Transparent Data Management in Multi-layer Storage Hierarchy for HPC Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wadhwa, Bharti; Byna, Suren; Butt, Ali R.

    Upcoming exascale high performance computing (HPC) systems are expected to comprise multi-tier storage hierarchy, and thus will necessitate innovative storage and I/O mechanisms. Traditional disk and block-based interfaces and file systems face severe challenges in utilizing capabilities of storage hierarchies due to the lack of hierarchy support and semantic interfaces. Object-based and semantically-rich data abstractions for scientific data management on large scale systems offer a sustainable solution to these challenges. Such data abstractions can also simplify users involvement in data movement. Here, we take the first steps of realizing such an object abstraction and explore storage mechanisms for these objectsmore » to enhance I/O performance, especially for scientific applications. We explore how an object-based interface can facilitate next generation scalable computing systems by presenting the mapping of data I/O from two real world HPC scientific use cases: a plasma physics simulation code (VPIC) and a cosmology simulation code (HACC). Our storage model stores data objects in different physical organizations to support data movement across layers of memory/storage hierarchy. Our implementation sclaes well to 16K parallel processes, and compared to the state of the art, such as MPI-IO and HDF5, our object-based data abstractions and data placement strategy in multi-level storage hierarchy achieves up to 7 X I/O performance improvement for scientific data.« less

  1. Implementation of a piezoelectrically actuated self-contained quadruped robot

    NASA Astrophysics Data System (ADS)

    Ho, Thanhtam; Lee, Sangyoon

    2009-05-01

    In this paper we present the development of a mesoscale self-contained quadruped mobile robot that employs two pieces of piezoelectric actuators for the bounding gait locomotion, i.e., two rear legs have the same movement and two front legs do too. The actuator named LIPCA (LIghtweight Piezoceramic Composite curved Actuator) is a piezocomposite actuator that uses a PZT layer that is sandwiched between composite materials of carbon/epoxy and glass/epoxy layers to amplify the displacement. A biomimetic concept is applied to the design of the robot in a simplified way, such that each leg of the robot has only one degree of freedom. Considering that LIPCA requires a high input voltage and possesses capacitive characteristics, a small power supply circuit using PICO chips is designed for the implementation of selfcontained mobile robot. The prototype with the weight of 125 gram and the length of 120 mm can locomote with the bounding gait. Experiments showed that the robot can locomote at about 50 mm/sec with the circuit on board and the operation time is about 5 minutes, which can be considered as a meaningful progress toward the goal of building an autonomous legged robot actuated by piezoelectric actuators.

  2. Two-layer Crustal Structure of the Contiguous United States from Joint Inversion of USArray Receiver Functions and Gravity

    NASA Astrophysics Data System (ADS)

    Ma, X.; Lowry, A. R.

    2015-12-01

    The composition and thickness of crustal layering is fundamental to understanding the evolution and dynamics of continental lithosphere. Lowry and Pérez-Gussinyé (2011) found that the western Cordillera of the United States, characterized by active deformation and high heat flow, is strongly correlated with low bulk crustal seismic velocity ratio. They interpreted this observation as evidence that quartz controls continental tectonism and deformation. We will present new imaging of two-layer crustal composition and structure from cross-correlation of observed receiver functions and model synthetics. The cross-correlation coefficient of the two-layer model increases significantly relative to an assumed one-layer model, and the lower crustal thickness map from raw two-layer modeling (prior to Bayesian filtering with gravity models and Optimal Interpolation) clearly shows Colorado plateau and Appalachian boundaries, which are not apparent in upper crustal models, and also the high vP/vS fill the most of middle continental region while low vP/vS are on the west and east continental edge. In the presentation, we will show results of a new algorithm for joint Bayesian inversion of thickness and vP/vS of two-layer continental crustal structure. Recent thermodynamical modeling of geophysical models based on lab experiment data (Guerri et al., 2015) found that a large impedance contrast can be expected in the midcrust due to a phase transition that decreases plagioclase and increases clinopyroxene, without invoking any change in crustal chemistry. The depth of the transition depends on pressure, temperature and hydration, and in this presentation we will compare predictions of layer thicknesses and vP/vS predicted by mineral thermodynamics to those we observe in the USArray footprint.

  3. Role of geometric parameters in electrical measurements of insulating thin films deposited on a conductive substrate

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Gerhardt, R. A.

    2012-03-01

    The effects of film thickness, electrode size and substrate thickness on the impedance parameters of alternating frequency dielectric measurements of insulating thin films deposited on conductive substrates were studied through parametric finite-element simulations. The quasi-static forms of Maxwell's electromagnetic equations in a time harmonic mode were solved using COMSOL Multiphysics® for several types of 2D models (linear and axisymmetric). The full 2D model deals with a configuration in which the impedance is measured between two surface electrodes on top of a film deposited on a conductive substrate. For the simplified 2D models, the conductive substrate is ignored and the two electrodes are placed on the top and bottom of the film. By comparing the full model and the simplified models, approximations and generalizations are deduced. For highly insulating films, such as the case of insulating SiO2 films on a conducting Si substrate, even the simplified models predict accurate capacitance values at all frequencies. However, the edge effects on the capacitance are found to be significant when the film thickness increases and/or the top electrode contact size decreases. The thickness of the substrate affects predominantly the resistive components of the dielectric response while having no significant effect on the capacitive components. Changing the electrode contact size or the film thickness determines the specific values of the measured resistance or capacitance while the material time constant remains the same, and thus this affects the frequency dependence that is able to be detected. This work highlights the importance of keeping in mind the film thickness and electrode contact size for the correct interpretation of the measured dielectric properties of micro/nanoscale structures that are often investigated using nanoscale capacitance measurements.

  4. Networks for image acquisition, processing and display

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.

    1990-01-01

    The human visual system comprises layers of networks which sample, process, and code images. Understanding these networks is a valuable means of understanding human vision and of designing autonomous vision systems based on network processing. Ames Research Center has an ongoing program to develop computational models of such networks. The models predict human performance in detection of targets and in discrimination of displayed information. In addition, the models are artificial vision systems sharing properties with biological vision that has been tuned by evolution for high performance. Properties include variable density sampling, noise immunity, multi-resolution coding, and fault-tolerance. The research stresses analysis of noise in visual networks, including sampling, photon, and processing unit noises. Specific accomplishments include: models of sampling array growth with variable density and irregularity comparable to that of the retinal cone mosaic; noise models of networks with signal-dependent and independent noise; models of network connection development for preserving spatial registration and interpolation; multi-resolution encoding models based on hexagonal arrays (HOP transform); and mathematical procedures for simplifying analysis of large networks.

  5. A precise integration method for solving coupled vehicle-track dynamics with nonlinear wheel-rail contact

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Gao, Q.; Tan, S. J.; Zhong, W. X.

    2012-10-01

    A new method is proposed as a solution for the large-scale coupled vehicle-track dynamic model with nonlinear wheel-rail contact. The vehicle is simplified as a multi-rigid-body model, and the track is treated as a three-layer beam model. In the track model, the rail is assumed to be an Euler-Bernoulli beam supported by discrete sleepers. The vehicle model and the track model are coupled using Hertzian nonlinear contact theory, and the contact forces of the vehicle subsystem and the track subsystem are approximated by the Lagrange interpolation polynomial. The response of the large-scale coupled vehicle-track model is calculated using the precise integration method. A more efficient algorithm based on the periodic property of the track is applied to calculate the exponential matrix and certain matrices related to the solution of the track subsystem. Numerical examples demonstrate the computational accuracy and efficiency of the proposed method.

  6. Multicore runup simulation by under water avalanche using two-layer 1D shallow water equations

    NASA Astrophysics Data System (ADS)

    Bagustara, B. A. R. H.; Simanjuntak, C. A.; Gunawan, P. H.

    2018-03-01

    The increasing of layers in shallow water equations (SWE) produces more dynamic model than the one-layer SWE model. The two-layer 1D SWE model has different density for each layer. This model becomes more dynamic and natural, for instance in the ocean, the density of water will decreasing from the bottom to the surface. Here, the source-centered hydro-static reconstruction (SCHR) numerical scheme will be used to approximate the solution of two-layer 1D SWE model, since this scheme is proved to satisfy the mathematical properties for shallow water equation. Additionally in this paper, the algorithm of SCHR is adapted to the multicore architecture. The simulation of runup by under water avalanche is elaborated here. The results show that the runup is depend on the ratio of density of each layers. Moreover by using grid sizes Nx = 8000, the speedup and efficiency by 2 threads are obtained 1.74779 times and 87.3896 % respectively. Nevertheless, by 4 threads the speedup and efficiency are obtained 2.93132 times and 73.2830 % respectively by similar number of grid sizes Nx = 8000.

  7. Modified optimal control pilot model for computer-aided design and analysis

    NASA Technical Reports Server (NTRS)

    Davidson, John B.; Schmidt, David K.

    1992-01-01

    This paper presents the theoretical development of a modified optimal control pilot model based upon the optimal control model (OCM) of the human operator developed by Kleinman, Baron, and Levison. This model is input compatible with the OCM and retains other key aspects of the OCM, such as a linear quadratic solution for the pilot gains with inclusion of control rate in the cost function, a Kalman estimator, and the ability to account for attention allocation and perception threshold effects. An algorithm designed for each implementation in current dynamic systems analysis and design software is presented. Example results based upon the analysis of a tracking task using three basic dynamic systems are compared with measured results and with similar analyses performed with the OCM and two previously proposed simplified optimal pilot models. The pilot frequency responses and error statistics obtained with this modified optimal control model are shown to compare more favorably to the measured experimental results than the other previously proposed simplified models evaluated.

  8. Three-dimensional flow of Prandtl fluid with Cattaneo-Christov double diffusion

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Aziz, Arsalan; Muhammad, Taseer; Alsaedi, Ahmed

    2018-06-01

    This research paper intends to investigate the 3D flow of Prandtl liquid in the existence of improved heat conduction and mass diffusion models. Flow is created by considering linearly bidirectional stretchable sheet. Thermal and concentration diffusions are considered by employing Cattaneo-Christov double diffusion models. Boundary layer approach has been used to simplify the governing PDEs. Suitable nondimensional similarity variables correspond to strong nonlinear ODEs. Optimal homotopy analysis method (OHAM) is employed for solutions development. The role of various pertinent variables on temperature and concentration are analyzed through graphs. The physical quantities such as surface drag coefficients and heat and mass transfer rates at the wall are also plotted and discussed. Our results indicate that the temperature and concentration are decreasing functions of thermal and concentration relaxation parameters respectively.

  9. A Simplified Micromechanical Modeling Approach to Predict the Tensile Flow Curve Behavior of Dual-Phase Steels

    NASA Astrophysics Data System (ADS)

    Nanda, Tarun; Kumar, B. Ravi; Singh, Vishal

    2017-11-01

    Micromechanical modeling is used to predict material's tensile flow curve behavior based on microstructural characteristics. This research develops a simplified micromechanical modeling approach for predicting flow curve behavior of dual-phase steels. The existing literature reports on two broad approaches for determining tensile flow curve of these steels. The modeling approach developed in this work attempts to overcome specific limitations of the existing two approaches. This approach combines dislocation-based strain-hardening method with rule of mixtures. In the first step of modeling, `dislocation-based strain-hardening method' was employed to predict tensile behavior of individual phases of ferrite and martensite. In the second step, the individual flow curves were combined using `rule of mixtures,' to obtain the composite dual-phase flow behavior. To check accuracy of proposed model, four distinct dual-phase microstructures comprising of different ferrite grain size, martensite fraction, and carbon content in martensite were processed by annealing experiments. The true stress-strain curves for various microstructures were predicted with the newly developed micromechanical model. The results of micromechanical model matched closely with those of actual tensile tests. Thus, this micromechanical modeling approach can be used to predict and optimize the tensile flow behavior of dual-phase steels.

  10. TH-AB-201-10: Portal Dosimetry with Elekta IViewDose:Performance of the Simplified Commissioning Approach Versus Full Commissioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kydonieos, M; Folgueras, A; Florescu, L

    2016-06-15

    Purpose: Elekta recently developed a solution for in-vivo EPID dosimetry (iViewDose, Elekta AB, Stockholm, Sweden) in conjunction with the Netherlands Cancer Institute (NKI). This uses a simplified commissioning approach via Template Commissioning Models (TCMs), consisting of a subset of linac-independent pre-defined parameters. This work compares the performance of iViewDose using a TCM commissioning approach with that corresponding to full commissioning. Additionally, the dose reconstruction based on the simplified commissioning approach is validated via independent dose measurements. Methods: Measurements were performed at the NKI on a VersaHD™ (Elekta AB, Stockholm, Sweden). Treatment plans were generated with Pinnacle 9.8 (Philips Medical Systems,more » Eindhoven, The Netherlands). A farmer chamber dose measurement and two EPID images were used to create a linac-specific commissioning model based on a TCM. A complete set of commissioning measurements was collected and a full commissioning model was created.The performance of iViewDose based on the two commissioning approaches was compared via a series of set-to-work tests in a slab phantom. In these tests, iViewDose reconstructs and compares EPID to TPS dose for square fields, IMRT and VMAT plans via global gamma analysis and isocentre dose difference. A clinical VMAT plan was delivered to a homogeneous Octavius 4D phantom (PTW, Freiburg, Germany). Dose was measured with the Octavius 1500 array and VeriSoft software was used for 3D dose reconstruction. EPID images were acquired. TCM-based iViewDose and 3D Octavius dose distributions were compared against the TPS. Results: For both the TCM-based and the full commissioning approaches, the pass rate, mean γ and dose difference were >97%, <0.5 and <2.5%, respectively. Equivalent gamma analysis results were obtained for iViewDose (TCM approach) and Octavius for a VMAT plan. Conclusion: iViewDose produces similar results with the simplified and full commissioning approaches. Good agreement is obtained between iViewDose (simplified approach) and the independent measurement tool. This research is funded by Elekta Limited.« less

  11. Numerical Approximation of Elasticity Tensor Associated With Green-Naghdi Rate.

    PubMed

    Liu, Haofei; Sun, Wei

    2017-08-01

    Objective stress rates are often used in commercial finite element (FE) programs. However, deriving a consistent tangent modulus tensor (also known as elasticity tensor or material Jacobian) associated with the objective stress rates is challenging when complex material models are utilized. In this paper, an approximation method for the tangent modulus tensor associated with the Green-Naghdi rate of the Kirchhoff stress is employed to simplify the evaluation process. The effectiveness of the approach is demonstrated through the implementation of two user-defined fiber-reinforced hyperelastic material models. Comparisons between the approximation method and the closed-form analytical method demonstrate that the former can simplify the material Jacobian evaluation with satisfactory accuracy while retaining its computational efficiency. Moreover, since the approximation method is independent of material models, it can facilitate the implementation of complex material models in FE analysis using shell/membrane elements in abaqus.

  12. A data model for environmental scientists

    NASA Astrophysics Data System (ADS)

    Kapeljushnik, O.; Beran, B.; Valentine, D.; van Ingen, C.; Zaslavsky, I.; Whitenack, T.

    2008-12-01

    Environmental science encompasses a wide range of disciplines from water chemistry to microbiology, ecology and atmospheric sciences. Studies often require working across disciplines which differ in their ways of describing and storing data such that it is not possible to devise a monolithic one-size-fits-all data solution. Based on our experiences with Consortium of the Universities for the Advancement of Hydrologic Science Inc. (CUAHSI) Observations Data Model, Berkeley Water Center FLUXNET carbon-climate work and by examining standards like EPA's Water Quality Exchange (WQX), we have developed a flexible data model that allows extensions without need to altering the schema such that scientists can define custom metadata elements to describe their data including observations, analysis methods as well as sensors and geographical features. The data model supports various types of observations including fixed point and moving sensors, bottled samples, rasters from remote sensors and models, and categorical descriptions (e.g. taxonomy) by employing user-defined-types when necessary. It leverages ADO .NET Entity Framework to provide the semantic data models for differing disciplines, while maintaining a common schema below the entity layer. This abstraction layer simplifies data retrieval and manipulation by hiding the logic and complexity of the relational schema from users thus allows programmers and scientists to deal directly with objects such as observations, sensors, watersheds, river reaches, channel cross-sections, laboratory analysis methods and samples as opposed to table joins, columns and rows.

  13. A simplified dynamic model of the T700 turboshaft engine

    NASA Technical Reports Server (NTRS)

    Duyar, Ahmet; Gu, Zhen; Litt, Jonathan S.

    1992-01-01

    A simplified open-loop dynamic model of the T700 turboshaft engine, valid within the normal operating range of the engine, is developed. This model is obtained by linking linear state space models obtained at different engine operating points. Each linear model is developed from a detailed nonlinear engine simulation using a multivariable system identification and realization method. The simplified model may be used with a model-based real time diagnostic scheme for fault detection and diagnostics, as well as for open loop engine dynamics studies and closed loop control analysis utilizing a user generated control law.

  14. Discrete hexamer water clusters and 2D water layer trapped in three luminescent Ag/tetramethylpyrazine/benzene-dicarboxylate hosts: 1D chain, 2D layer and 3D network

    NASA Astrophysics Data System (ADS)

    Mei, Hong-Xin; Zhang, Ting; Huang, Hua-Qi; Huang, Rong-Bin; Zheng, Lan-Sun

    2016-03-01

    Three mix-ligand Ag(I) coordination compounds, namely, {[Ag10(tpyz) 5(L1) 5(H2 O)2].(H2 O)4}n (1, tpyz = 2,3,4,5-tetramethylpyrazine, H2 L1 = phthalic acid), [Ag4(tpyz) 2(L2) 2(H2 O)].(H2 O)5}n (2, H2 L2 = isophthalic acid) {[Ag2(tpyz) 2(L3) (H2 O)4].(H2 O)8}n (3, H2 L3 = terephthalic acid), have been synthesized and characterized by elemental analysis, IR, PXRD and X-ray single-crystal diffraction. 1 exhibits a 2D layer which can be simplified as a (4,4) net. 2 is a 3D network which can be simplified as a (3,3)-connected 2-nodal net with a point symbol of {102.12}{102}. 3 consists of linear [Ag(tpyz) (H2 O)2]n chain. Of particular interest, discrete hexamer water clusters were observed in 1 and 2, while a 2D L10(6) water layer exists in 3. The results suggest that the benzene dicarboxylates play pivotal roles in the formation of the different host architectures as well as different water aggregations. Moreover, thermogravimetric analysis (TGA) and emissive behaviors of these compounds were investigated.

  15. Improvement on a simplified model for protein folding simulation.

    PubMed

    Zhang, Ming; Chen, Changjun; He, Yi; Xiao, Yi

    2005-11-01

    Improvements were made on a simplified protein model--the Ramachandran model-to achieve better computer simulation of protein folding. To check the validity of such improvements, we chose the ultrafast folding protein Engrailed Homeodomain as an example and explored several aspects of its folding. The engrailed homeodomain is a mainly alpha-helical protein of 61 residues from Drosophila melanogaster. We found that the simplified model of Engrailed Homeodomain can fold into a global minimum state with a tertiary structure in good agreement with its native structure.

  16. TMDL RUSLE MODEL

    EPA Science Inventory

    We developed a simplified spreadsheet modeling approach for characterizing and prioritizing sources of sediment loadings from watersheds in the United States. A simplified modeling approach was developed to evaluate sediment loadings from watersheds and selected land segments. ...

  17. Validation of Simplified Load Equations through Loads Measurement and Modeling of a Small Horizontal-Axis Wind Turbine Tower; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dana, S.; Damiani, R.; vanDam, J.

    As part of an ongoing effort to improve the modeling and prediction of small wind turbine dynamics, NREL tested a small horizontal axis wind turbine in the field at the National Wind Technology Center (NWTC). The test turbine was a 2.1-kW downwind machine mounted on an 18-meter multi-section fiberglass composite tower. The tower was instrumented and monitored for approximately 6 months. The collected data were analyzed to assess the turbine and tower loads and further validate the simplified loads equations from the International Electrotechnical Commission (IEC) 61400-2 design standards. Field-measured loads were also compared to the output of an aeroelasticmore » model of the turbine. Ultimate loads at the tower base were assessed using both the simplified design equations and the aeroelastic model output. The simplified design equations in IEC 61400-2 do not accurately model fatigue loads. In this project, we compared fatigue loads as measured in the field, as predicted by the aeroelastic model, and as calculated using the simplified design equations.« less

  18. Simplified analysis of a generalized bias test for fabrics with two families of inextensible fibres

    NASA Astrophysics Data System (ADS)

    Cuomo, M.; dell'Isola, F.; Greco, L.

    2016-06-01

    Two tests for woven fabrics with orthogonal fibres are examined using simplified kinematic assumptions. The aim is to analyse how different constitutive assumptions may affect the response of the specimen. The fibres are considered inextensible, and the kinematics of 2D continua with inextensible chords due to Rivlin is adopted. In addition to two forms of strain energy depending on the shear deformation, also two forms of energy depending on the gradient of shear are examined. It is shown that this energy can account for the bending of the fibres. In addition to the standard bias extension test, a modified test has been examined, in which the head of the specimen is rotated rather than translated. In this case more bending occurs, so that the results of the simulation carried out with the different energy models adopted differ more that what has been found for the BE test.

  19. Search for supersymmetry in events with three leptons and missing transverse momentum in √[s]=7 TeV pp collisions with the ATLAS detector.

    PubMed

    Aad, G; Abbott, B; Abdallah, J; Abdel Khalek, S; Abdelalim, A A; Abdinov, O; Abi, B; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Acerbi, E; Acharya, B S; Adamczyk, L; Adams, D L; Addy, T N; Adelman, J; Adomeit, S; Adragna, P; Adye, T; Aefsky, S; Aguilar-Saavedra, J A; Aharrouche, M; Ahlen, S P; Ahles, F; Ahmad, A; Ahsan, M; Aielli, G; Akdogan, T; Åkesson, T P A; Akimoto, G; Akimov, A V; Akiyama, A; Alam, M S; Alam, M A; Albert, J; Albrand, S; Aleksa, M; Aleksandrov, I N; Alessandria, F; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Aliev, M; Alimonti, G; Alison, J; Allbrooke, B M M; Allport, P P; Allwood-Spiers, S E; Almond, J; Aloisio, A; Alon, R; Alonso, A; Alvarez Gonzalez, B; Alviggi, M G; Amako, K; Amelung, C; Ammosov, V V; Amorim, A; Amorós, G; Amram, N; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anderson, K J; Andreazza, A; Andrei, V; Anduaga, X S; Angerami, A; Anghinolfi, F; Anisenkov, A; Anjos, N; Annovi, A; Antonaki, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoun, S; Aperio Bella, L; Apolle, R; Arabidze, G; Aracena, I; Arai, Y; Arce, A T H; Arfaoui, S; Arguin, J-F; Arik, E; Arik, M; Armbruster, A J; Arnaez, O; Arnal, V; Arnault, C; Artamonov, A; Artoni, G; Arutinov, D; Asai, S; Asfandiyarov, R; Ask, S; Åsman, B; Asquith, L; Assamagan, K; Astbury, A; Aubert, B; Auge, E; Augsten, K; Aurousseau, M; Avolio, G; Avramidou, R; Axen, D; Azuelos, G; Azuma, Y; Baak, M A; Baccaglioni, G; Bacci, C; Bach, A M; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Badescu, E; Bagnaia, P; Bahinipati, S; Bai, Y; Bailey, D C; Bain, T; Baines, J T; Baker, O K; Baker, M D; Baker, S; Banas, E; Banerjee, P; Banerjee, Sw; Banfi, D; Bangert, A; Bansal, V; Bansil, H S; Barak, L; Baranov, S P; Barbaro Galtieri, A; Barber, T; Barberio, E L; Barberis, D; Barbero, M; Bardin, D Y; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Barrillon, P; Bartoldus, R; Barton, A E; Bartsch, V; Bates, R L; Batkova, L; Batley, J R; Battaglia, A; Battistin, M; Bauer, F; Bawa, H S; Beale, S; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, S; Beckingham, M; Becks, K H; Beddall, A J; Beddall, A; Bedikian, S; Bednyakov, V A; Bee, C P; Begel, M; Behar Harpaz, S; Behera, P K; Beimforde, M; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellina, F; Bellomo, M; Belloni, A; Beloborodova, O; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Benoit, M; Bensinger, J R; Benslama, K; Bentvelsen, S; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Berglund, E; Beringer, J; Bernat, P; Bernhard, R; Bernius, C; Berry, T; Bertella, C; Bertin, A; Bertolucci, F; Besana, M I; Besson, N; Bethke, S; Bhimji, W; Bianchi, R M; Bianco, M; Biebel, O; Bieniek, S P; Bierwagen, K; Biesiada, J; Biglietti, M; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biscarat, C; Bitenc, U; Black, K M; Blair, R E; Blanchard, J-B; Blanchot, G; Blazek, T; Blocker, C; Blocki, J; Blondel, A; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V B; Bocchetta, S S; Bocci, A; Boddy, C R; Boehler, M; Boek, J; Boelaert, N; Bogaerts, J A; Bogdanchikov, A; Bogouch, A; Bohm, C; Bohm, J; Boisvert, V; Bold, T; Boldea, V; Bolnet, N M; Bomben, M; Bona, M; Bondioli, M; Boonekamp, M; Booth, C N; Bordoni, S; Borer, C; Borisov, A; Borissov, G; Borjanovic, I; Borri, M; Borroni, S; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boterenbrood, H; Botterill, D; Bouchami, J; Boudreau, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boveia, A; Boyd, J; Boyko, I R; Bozhko, N I; Bozovic-Jelisavcic, I; Bracinik, J; Branchini, P; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brelier, B; Bremer, J; Brendlinger, K; Brenner, R; Bressler, S; Britton, D; Brochu, F M; Brock, I; Brock, R; Brodet, E; Broggi, F; Bromberg, C; Bronner, J; Brooijmans, G; Brooks, W K; Brown, G; Brown, H; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Buanes, T; Buat, Q; Bucci, F; Buchanan, J; Buchholz, P; Buckingham, R M; Buckley, A G; Buda, S I; Budagov, I A; Budick, B; Büscher, V; Bugge, L; Bulekov, O; Bundock, A C; Bunse, M; Buran, T; Burckhart, H; Burdin, S; Burgess, T; Burke, S; Busato, E; Bussey, P; Buszello, C P; Butler, B; Butler, J M; Buttar, C M; Butterworth, J M; Buttinger, W; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calderini, G; Calfayan, P; Calkins, R; Caloba, L P; Caloi, R; Calvet, D; Calvet, S; Camacho Toro, R; Camarri, P; Cameron, D; Caminada, L M; Campana, S; Campanelli, M; Canale, V; Canelli, F; Canepa, A; Cantero, J; Capasso, L; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capriotti, D; Capua, M; Caputo, R; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, B; Caron, S; Carquin, E; Carrillo Montoya, G D; Carter, A A; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Cascella, M; Caso, C; Castaneda Hernandez, A M; Castaneda-Miranda, E; Castillo Gimenez, V; Castro, N F; Cataldi, G; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Cattani, G; Caughron, S; Cauz, D; Cavalleri, P; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chan, K; Chapleau, B; Chapman, J D; Chapman, J W; Chareyre, E; Charlton, D G; Chavda, V; Chavez Barajas, C A; Cheatham, S; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, S; Chen, X; Cheplakov, A; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Cheung, S L; Chevalier, L; Chiefari, G; Chikovani, L; Childers, J T; Chilingarov, A; Chiodini, G; Chisholm, A S; Chislett, R T; Chizhov, M V; Choudalakis, G; Chouridou, S; Christidi, I A; Christov, A; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Ciapetti, G; Ciftci, A K; Ciftci, R; Cinca, D; Cindro, V; Ciocca, C; Ciocio, A; Cirilli, M; Citterio, M; Ciubancan, M; Clark, A; Clark, P J; Cleland, W; Clemens, J C; Clement, B; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coe, P; Cogan, J G; Coggeshall, J; Cogneras, E; Colas, J; Colijn, A P; Collins, N J; Collins-Tooth, C; Collot, J; Colon, G; Conde Muiño, P; Coniavitis, E; Conidi, M C; Consonni, S M; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Copic, K; Cornelissen, T; Corradi, M; Corriveau, F; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Costin, T; Côté, D; Courneyea, L; Cowan, G; Cowden, C; Cox, B E; Cranmer, K; Crescioli, F; Cristinziani, M; Crosetti, G; Crupi, R; Crépé-Renaudin, S; Cuciuc, C-M; Cuenca Almenar, C; Cuhadar Donszelmann, T; Curatolo, M; Curtis, C J; Cuthbert, C; Cwetanski, P; Czirr, H; Czodrowski, P; Czyczula, Z; D'Auria, S; D'Onofrio, M; D'Orazio, A; Da Via, C; Dabrowski, W; Dafinca, A; Dai, T; Dallapiccola, C; Dam, M; Dameri, M; Damiani, D S; Danielsson, H O; Dao, V; Darbo, G; Darlea, G L; Davey, W; Davidek, T; Davidson, N; Davidson, R; Davies, E; Davies, M; Davison, A R; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Castro, S; De Cecco, S; de Graat, J; De Groot, N; de Jong, P; De la Taille, C; De la Torre, H; De Lorenzi, F; De Lotto, B; de Mora, L; De Nooij, L; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie de Regie, J B; De Zorzi, G; Dearnaley, W J; Debbe, R; Debenedetti, C; Dechenaux, B; Dedovich, D V; Degenhardt, J; Del Papa, C; Del Peso, J; Del Prete, T; Delemontex, T; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Della Pietra, M; della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; Demers, S; Demichev, M; Demirkoz, B; Deng, J; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Devetak, E; Deviveiros, P O; Dewhurst, A; DeWilde, B; Dhaliwal, S; Dhullipudi, R; Di Ciaccio, A; Di Ciaccio, L; Di Girolamo, A; Di Girolamo, B; Di Luise, S; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Diaz, M A; Diblen, F; Diehl, E B; Dietrich, J; Dietzsch, T A; Diglio, S; Dindar Yagci, K; Dingfelder, J; Dionisi, C; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; do Vale, M A B; Do valle Wemans, A; Doan, T K O; Dobbs, M; Dobinson, R; Dobos, D; Dobson, E; Dodd, J; Doglioni, C; Doherty, T; Doi, Y; Dolejsi, J; Dolenc, I; Dolezal, Z; Dolgoshein, B A; Dohmae, T; Donadelli, M; Donega, M; Donini, J; Dopke, J; Doria, A; Dos Anjos, A; Dotti, A; Dova, M T; Doxiadis, A D; Doyle, A T; Dris, M; Dubbert, J; Dube, S; Duchovni, E; Duckeck, G; Dudarev, A; Dudziak, F; Dührssen, M; Duerdoth, I P; Duflot, L; Dufour, M-A; Dunford, M; Duran Yildiz, H; Duxfield, R; Dwuznik, M; Dydak, F; Düren, M; Ebke, J; Eckweiler, S; Edmonds, K; Edwards, C A; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Eisenhandler, E; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Ellis, K; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Engelmann, R; Engl, A; Epp, B; Eppig, A; Erdmann, J; Ereditato, A; Eriksson, D; Ernst, J; Ernst, M; Ernwein, J; Errede, D; Errede, S; Ertel, E; Escalier, M; Escobar, C; Espinal Curull, X; Esposito, B; Etienne, F; Etienvre, A I; Etzion, E; Evangelakou, D; Evans, H; Fabbri, L; Fabre, C; Fakhrutdinov, R M; Falciano, S; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farley, J; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassnacht, P; Fassouliotis, D; Fatholahzadeh, B; Favareto, A; Fayard, L; Fazio, S; Febbraro, R; Federic, P; Fedin, O L; Fedorko, W; Fehling-Kaschek, M; Feligioni, L; Fellmann, D; Feng, C; Feng, E J; Fenyuk, A B; Ferencei, J; Fernando, W; Ferrag, S; Ferrando, J; Ferrara, V; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filthaut, F; Fincke-Keeler, M; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, G; Fisher, M J; Flechl, M; Fleck, I; Fleckner, J; Fleischmann, P; Fleischmann, S; Flick, T; Floderus, A; Flores Castillo, L R; Flowerdew, M J; Fonseca Martin, T; Forbush, D A; Formica, A; Forti, A; Fortin, D; Fournier, D; Fox, H; Francavilla, P; Franchino, S; Francis, D; Frank, T; Franklin, M; Franz, S; Fraternali, M; Fratina, S; French, S T; Friedrich, C; Friedrich, F; Froeschl, R; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fulsom, B G; Fuster, J; Gabaldon, C; Gabizon, O; Gadfort, T; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Gallas, E J; Gallo, V; Gallop, B J; Gallus, P; Gan, K K; Gao, Y S; Gaponenko, A; Garberson, F; Garcia-Sciveres, M; García, C; García Navarro, J E; Gardner, R W; Garelli, N; Garitaonandia, H; Garonne, V; Garvey, J; Gatti, C; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geerts, D A A; Geich-Gimbel, Ch; Gellerstedt, K; Gemme, C; Gemmell, A; Genest, M H; Gentile, S; George, M; George, S; Gerlach, P; Gershon, A; Geweniger, C; Ghazlane, H; Ghodbane, N; Giacobbe, B; Giagu, S; Giakoumopoulou, V; Giangiobbe, V; Gianotti, F; Gibbard, B; Gibson, A; Gibson, S M; Gillberg, D; Gillman, A R; Gingrich, D M; Ginzburg, J; Giokaris, N; Giordani, M P; Giordano, R; Giorgi, F M; Giovannini, P; Giraud, P F; Giugni, D; Giunta, M; Giusti, P; Gjelsten, B K; Gladilin, L K; Glasman, C; Glatzer, J; Glazov, A; Glitza, K W; Glonti, G L; Goddard, J R; Godfrey, J; Godlewski, J; Goebel, M; Göpfert, T; Goeringer, C; Gössling, C; Göttfert, T; Goldfarb, S; Golling, T; Gomes, A; Gomez Fajardo, L S; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; Gonzalez, S; González de la Hoz, S; Gonzalez Parra, G; Gonzalez Silva, M L; Gonzalez-Sevilla, S; Goodson, J J; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorfine, G; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Gosdzik, B; Goshaw, A T; Gosselink, M; Gostkin, M I; Gough Eschrich, I; Gouighri, M; Goujdami, D; Goulette, M P; Goussiou, A G; Goy, C; Gozpinar, S; Grabowska-Bold, I; Grafström, P; Grahn, K-J; Grancagnolo, F; Grancagnolo, S; Grassi, V; Gratchev, V; Grau, N; Gray, H M; Gray, J A; Graziani, E; Grebenyuk, O G; Greenshaw, T; Greenwood, Z D; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grigalashvili, N; Grillo, A A; Grinstein, S; Grishkevich, Y V; Grivaz, J-F; Gross, E; Grosse-Knetter, J; Groth-Jensen, J; Grybel, K; Guest, D; Guicheney, C; Guida, A; Guindon, S; Guler, H; Gunther, J; Guo, B; Guo, J; Gushchin, V N; Gutierrez, P; Guttman, N; Gutzwiller, O; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haas, S; Haber, C; Hadavand, H K; Hadley, D R; Haefner, P; Hahn, F; Haider, S; Hajduk, Z; Hakobyan, H; Hall, D; Haller, J; Hamacher, K; Hamal, P; Hamer, M; Hamilton, A; Hamilton, S; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Handel, C; Hanke, P; Hansen, J R; Hansen, J B; Hansen, J D; Hansen, P H; Hansson, P; Hara, K; Hare, G A; Harenberg, T; Harkusha, S; Harper, D; Harrington, R D; Harris, O M; Harrison, K; Hartert, J; Hartjes, F; Haruyama, T; Harvey, A; Hasegawa, S; Hasegawa, Y; Hassani, S; Haug, S; Hauschild, M; Hauser, R; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hawkins, D; Hayakawa, T; Hayashi, T; Hayden, D; Hayward, H S; Haywood, S J; He, M; Head, S J; Hedberg, V; Heelan, L; Heim, S; Heinemann, B; Heisterkamp, S; Helary, L; Heller, C; Heller, M; Hellman, S; Hellmich, D; Helsens, C; Henderson, R C W; Henke, M; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Henry-Couannier, F; Hensel, C; Henss, T; Hernandez, C M; Hernández Jiménez, Y; Herrberg, R; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Higón-Rodriguez, E; Hill, J C; Hiller, K H; Hillert, S; Hillier, S J; Hinchliffe, I; Hines, E; Hirose, M; Hirsch, F; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoffman, J; Hoffmann, D; Hohlfeld, M; Holder, M; Holmgren, S O; Holy, T; Holzbauer, J L; Hong, T M; Hooft van Huysduynen, L; Horn, C; Horner, S; Hostachy, J-Y; Hou, S; Hoummada, A; Howarth, J; Hristova, I; Hrivnac, J; Hruska, I; Hryn'ova, T; Hsu, P J; Hsu, S-C; Hubacek, Z; Hubaut, F; Huegging, F; Huettmann, A; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hurwitz, M; Husemann, U; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibbotson, M; Ibragimov, I; Iconomidou-Fayard, L; Idarraga, J; Iengo, P; Igonkina, O; Ikegami, Y; Ikeno, M; Iliadis, D; Ilic, N; Imori, M; Ince, T; Inigo-Golfin, J; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishikawa, A; Ishino, M; Ishmukhametov, R; Issever, C; Istin, S; Ivashin, A V; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jackson, B; Jackson, J N; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakubek, J; Jana, D K; Jansen, E; Jansen, H; Jantsch, A; Janus, M; Jarlskog, G; Jeanty, L; Jen-La Plante, I; Jenni, P; Jeremie, A; Jež, P; Jézéquel, S; Jha, M K; Ji, H; Ji, W; Jia, J; Jiang, Y; Jimenez Belenguer, M; Jin, S; Jinnouchi, O; Joergensen, M D; Joffe, D; Johansen, L G; Johansen, M; Johansson, K E; Johansson, P; Johnert, S; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Joram, C; Jorge, P M; Joshi, K D; Jovicevic, J; Jovin, T; Ju, X; Jung, C A; Jungst, R M; Juranek, V; Jussel, P; Juste Rozas, A; Kabana, S; Kaci, M; Kaczmarska, A; Kadlecik, P; Kado, M; Kagan, H; Kagan, M; Kajomovitz, E; Kalinin, S; Kalinovskaya, L V; Kama, S; Kanaya, N; Kaneda, M; Kaneti, S; Kanno, T; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kaplon, J; Kar, D; Karagounis, M; Karnevskiy, M; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kasieczka, G; Kass, R D; Kastanas, A; Kataoka, M; Kataoka, Y; Katsoufis, E; Katzy, J; Kaushik, V; Kawagoe, K; Kawamoto, T; Kawamura, G; Kayl, M S; Kazanin, V A; Kazarinov, M Y; Keeler, R; Kehoe, R; Keil, M; Kekelidze, G D; Keller, J S; Kennedy, J; Kenyon, M; Kepka, O; Kerschen, N; Kerševan, B P; Kersten, S; Kessoku, K; Keung, J; Khalil-zada, F; Khandanyan, H; Khanov, A; Kharchenko, D; Khodinov, A; Khomich, A; Khoo, T J; Khoriauli, G; Khoroshilov, A; Khovanskiy, V; Khramov, E; Khubua, J; Kim, H; Kim, M S; Kim, S H; Kimura, N; Kind, O; King, B T; King, M; King, R S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kittelmann, T; Kiver, A M; Kladiva, E; Klein, M; Klein, U; Kleinknecht, K; Klemetti, M; Klier, A; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klinkby, E B; Klioutchnikova, T; Klok, P F; Klous, S; Kluge, E-E; Kluge, T; Kluit, P; Kluth, S; Knecht, N S; Kneringer, E; Knoops, E B F G; Knue, A; Ko, B R; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Köneke, K; König, A C; Koenig, S; Köpke, L; Koetsveld, F; Koevesarki, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohn, F; Kohout, Z; Kohriki, T; Koi, T; Kolachev, G M; Kolanoski, H; Kolesnikov, V; Koletsou, I; Koll, J; Kollefrath, M; Komar, A A; Komori, Y; Kondo, T; Kono, T; Kononov, A I; Konoplich, R; Konstantinidis, N; Kootz, A; Koperny, S; Korcyl, K; Kordas, K; Korn, A; Korol, A; Korolkov, I; Korolkova, E V; Korotkov, V A; Kortner, O; Kortner, S; Kostyukhin, V V; Kotov, S; Kotov, V M; Kotwal, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kral, V; Kramarenko, V A; Kramberger, G; Krasny, M W; Krasznahorkay, A; Kraus, J; Kraus, J K; Krejci, F; Kretzschmar, J; Krieger, N; Krieger, P; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Kruker, T; Krumnack, N; Krumshteyn, Z V; Kruth, A; Kubota, T; Kuday, S; Kuehn, S; Kugel, A; Kuhl, T; Kuhn, D; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kummer, C; Kuna, M; Kunkle, J; Kupco, A; Kurashige, H; Kurata, M; Kurochkin, Y A; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwee, R; La Rosa, A; La Rotonda, L; Labarga, L; Labbe, J; Lablak, S; Lacasta, C; Lacava, F; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Laisne, E; Lamanna, M; Lambourne, L; Lampen, C L; Lampl, W; Lancon, E; Landgraf, U; Landon, M P J; Lane, J L; Lange, C; Lankford, A J; Lanni, F; Lantzsch, K; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Larner, A; Lassnig, M; Laurelli, P; Lavorini, V; Lavrijsen, W; Laycock, P; Le Dortz, O; Le Guirriec, E; Le Maner, C; Le Menedeu, E; LeCompte, T; Ledroit-Guillon, F; Lee, H; Lee, J S H; Lee, S C; Lee, L; Lefebvre, M; Legendre, M; LeGeyt, B C; Legger, F; Leggett, C; Lehmacher, M; Lehmann Miotto, G; Lei, X; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Lendermann, V; Leney, K J C; Lenz, T; Lenzen, G; Lenzi, B; Leonhardt, K; Leontsinis, S; Lepold, F; Leroy, C; Lessard, J-R; Lester, C G; Lester, C M; Levêque, J; Levin, D; Levinson, L J; Lewis, A; Lewis, G H; Leyko, A M; Leyton, M; Li, B; Li, H; Li, S; Li, X; Liang, Z; Liao, H; Liberti, B; Lichard, P; Lichtnecker, M; Lie, K; Liebig, W; Limbach, C; Limosani, A; Limper, M; Lin, S C; Linde, F; Linnemann, J T; Lipeles, E; Lipniacka, A; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, C; Liu, D; Liu, H; Liu, J B; Liu, M; Liu, Y; Livan, M; Livermore, S S A; Lleres, A; Llorente Merino, J; Lloyd, S L; Lobodzinska, E; Loch, P; Lockman, W S; Loddenkoetter, T; Loebinger, F K; Loginov, A; Loh, C W; Lohse, T; Lohwasser, K; Lokajicek, M; Lombardo, V P; Long, R E; Lopes, L; Lopez Mateos, D; Lorenz, J; Lorenzo Martinez, N; Losada, M; Loscutoff, P; Lo Sterzo, F; Losty, M J; Lou, X; Lounis, A; Loureiro, K F; Love, J; Love, P A; Lowe, A J; Lu, F; Lubatti, H J; Luci, C; Lucotte, A; Ludwig, A; Ludwig, D; Ludwig, I; Ludwig, J; Luehring, F; Luijckx, G; Lukas, W; Lumb, D; Luminari, L; Lund, E; Lund-Jensen, B; Lundberg, B; Lundberg, J; Lundquist, J; Lungwitz, M; Lynn, D; Lys, J; Lytken, E; Ma, H; Ma, L L; Macana Goia, J A; Maccarrone, G; Macchiolo, A; Maček, B; Machado Miguens, J; Mackeprang, R; Madaras, R J; Mader, W F; Maenner, R; Maeno, T; Mättig, P; Mättig, S; Magnoni, L; Magradze, E; Mahboubi, K; Mahmoud, S; Mahout, G; Maiani, C; Maidantchik, C; Maio, A; Majewski, S; Makida, Y; Makovec, N; Mal, P; Malaescu, B; Malecki, Pa; Malecki, P; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V; Malyukov, S; Mameghani, R; Mamuzic, J; Manabe, A; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Mangeard, P S; Manhaes de Andrade Filho, L; Mann, A; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Mapelli, A; Mapelli, L; March, L; Marchand, J F; Marchese, F; Marchiori, G; Marcisovsky, M; Marino, C P; Marroquim, F; Marshall, Z; Martens, F K; Marti-Garcia, S; Martin, B; Martin, B; Martin, J P; Martin, T A; Martin, V J; Martin dit Latour, B; Martin-Haugh, S; Martinez, M; Martinez Outschoorn, V; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massaro, G; Massol, N; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Matricon, P; Matsunaga, H; Matsushita, T; Mattravers, C; Maurer, J; Maxfield, S J; Mayne, A; Mazini, R; Mazur, M; Mazzaferro, L; Mazzanti, M; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; McGlone, H; Mchedlidze, G; Mclaughlan, T; McMahon, S J; McPherson, R A; Meade, A; Mechnich, J; Mechtel, M; Medinnis, M; Meera-Lebbai, R; Meguro, T; Mehlhase, S; Mehta, A; Meier, K; Meirose, B; Melachrinos, C; Mellado Garcia, B R; Meloni, F; Mendoza Navas, L; Meng, Z; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Merritt, H; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Meyer, J; Meyer, T C; Meyer, W T; Miao, J; Michal, S; Micu, L; Middleton, R P; Migas, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Miller, D W; Miller, R J; Mills, W J; Mills, C; Milov, A; Milstead, D A; Milstein, D; Minaenko, A A; Miñano Moya, M; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mirabelli, G; Mitrevski, J; Mitsou, V A; Mitsui, S; Miyagawa, P S; Miyazaki, K; Mjörnmark, J U; Moa, T; Mockett, P; Moed, S; Moeller, V; Mönig, K; Möser, N; Mohapatra, S; Mohr, W; Moles-Valls, R; Molina-Perez, J; Monk, J; Monnier, E; Montesano, S; Monticelli, F; Monzani, S; Moore, R W; Moorhead, G F; Mora Herrera, C; Moraes, A; Morange, N; Morel, J; Morello, G; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, M; Morii, M; Morin, J; Morley, A K; Mornacchi, G; Morris, J D; Morvaj, L; Moser, H G; Mosidze, M; Moss, J; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Mueller, F; Mueller, J; Mueller, K; Müller, T A; Mueller, T; Muenstermann, D; Munwes, Y; Murray, W J; Mussche, I; Musto, E; Myagkov, A G; Myska, M; Nadal, J; Nagai, K; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagel, M; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Nanava, G; Napier, A; Narayan, R; Nash, M; Nattermann, T; Naumann, T; Navarro, G; Neal, H A; Nechaeva, P Yu; Neep, T J; Negri, A; Negri, G; Nektarijevic, S; Nelson, A; Nelson, T K; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neusiedl, A; Neves, R M; Nevski, P; Newman, P R; Nguyen Thi Hong, V; Nickerson, R B; Nicolaidou, R; Nicolas, L; Nicquevert, B; Niedercorn, F; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolics, K; Nikolopoulos, K; Nilsen, H; Nilsson, P; Ninomiya, Y; Nisati, A; Nishiyama, T; Nisius, R; Nodulman, L; Nomachi, M; Nomidis, I; Nordberg, M; Norton, P R; Novakova, J; Nozaki, M; Nozka, L; Nugent, I M; Nuncio-Quiroz, A-E; Nunes Hanninger, G; Nunnemann, T; Nurse, E; O'Brien, B J; O'Neale, S W; O'Neil, D C; O'Shea, V; Oakes, L B; Oakham, F G; Oberlack, H; Ocariz, J; Ochi, A; Oda, S; Odaka, S; Odier, J; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohshima, T; Okada, S; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olchevski, A G; Olivares Pino, S A; Oliveira, M; Oliveira Damazio, D; Oliver Garcia, E; Olivito, D; Olszewski, A; Olszowska, J; Onofre, A; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Orlov, I; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Osuna, C; Otero Y Garzon, G; Ottersbach, J P; Ouchrif, M; Ouellette, E A; Ould-Saada, F; Ouraou, A; Ouyang, Q; Ovcharova, A; Owen, M; Owen, S; Ozcan, V E; Ozturk, N; Pacheco Pages, A; Padilla Aranda, C; Pagan Griso, S; Paganis, E; Paige, F; Pais, P; Pajchel, K; Palacino, G; Paleari, C P; Palestini, S; Pallin, D; Palma, A; Palmer, J D; Pan, Y B; Panagiotopoulou, E; Panikashvili, N; Panitkin, S; Pantea, D; Papadelis, A; Papadopoulou, Th D; Paramonov, A; Paredes Hernandez, D; Park, W; Parker, M A; Parodi, F; Parsons, J A; Parzefall, U; Pashapour, S; Pasqualucci, E; Passaggio, S; Passeri, A; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N; Pater, J R; Patricelli, S; Pauly, T; Pecsy, M; Pedraza Morales, M I; Peleganchuk, S V; Pelikan, D; Peng, H; Penning, B; Penson, A; Penwell, J; Perantoni, M; Perez, K; Perez Cavalcanti, T; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Perini, L; Pernegger, H; Perrino, R; Perrodo, P; Persembe, S; Peshekhonov, V D; Peters, K; Petersen, B A; Petersen, J; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petrolo, E; Petrucci, F; Petschull, D; Petteni, M; Pezoa, R; Phan, A; Phillips, P W; Piacquadio, G; Picazio, A; Piccaro, E; Piccinini, M; Piec, S M; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinder, A; Pinfold, J L; Pinto, B; Pizio, C; Plamondon, M; Pleier, M-A; Plotnikova, E; Poblaguev, A; Poddar, S; Podlyski, F; Poggioli, L; Poghosyan, T; Pohl, M; Polci, F; Polesello, G; Policicchio, A; Polini, A; Poll, J; Polychronakos, V; Pomarede, D M; Pomeroy, D; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Portell Bueso, X; Pospelov, G E; Pospisil, S; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Prabhu, R; Pralavorio, P; Pranko, A; Prasad, S; Pravahan, R; Prell, S; Pretzl, K; Price, D; Price, J; Price, L E; Prieur, D; Primavera, M; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Prudent, X; Przybycien, M; Przysiezniak, H; Psoroulas, S; Ptacek, E; Pueschel, E; Purdham, J; Purohit, M; Puzo, P; Pylypchenko, Y; Qian, J; Qin, Z; Quadt, A; Quarrie, D R; Quayle, W B; Quinonez, F; Raas, M; Radescu, V; Radloff, P; Rador, T; Ragusa, F; Rahal, G; Rahimi, A M; Rahm, D; Rajagopalan, S; Rammensee, M; Rammes, M; Randle-Conde, A S; Randrianarivony, K; Rauscher, F; Rave, T C; Raymond, M; Read, A L; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Reinherz-Aronis, E; Reinsch, A; Reisinger, I; Rembser, C; Ren, Z L; Renaud, A; Rescigno, M; Resconi, S; Resende, B; Reznicek, P; Rezvani, R; Richter, R; Richter-Was, E; Ridel, M; Rijpstra, M; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Rios, R R; Riu, I; Rivoltella, G; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Rocha de Lima, J G; Roda, C; Roda Dos Santos, D; Rodriguez, D; Roe, A; Roe, S; Røhne, O; Rolli, S; Romaniouk, A; Romano, M; Romeo, G; Romero Adam, E; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, A; Rose, M; Rosenbaum, G A; Rosenberg, E I; Rosendahl, P L; Rosenthal, O; Rosselet, L; Rossetti, V; Rossi, E; Rossi, L P; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Ruckert, B; Ruckstuhl, N; Rud, V I; Rudolph, C; Rudolph, G; Rühr, F; Ruggieri, F; Ruiz-Martinez, A; Rumyantsev, L; Runge, K; Rurikova, Z; Rusakovich, N A; Rutherfoord, J P; Ruwiedel, C; Ruzicka, P; Ryabov, Y F; Ryan, P; Rybar, M; Rybkin, G; Ryder, N C; Saavedra, A F; Sadeh, I; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Sakamoto, H; Salamanna, G; Salamon, A; Saleem, M; Salek, D; Salihagic, D; Salnikov, A; Salt, J; Salvachua Ferrando, B M; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Samset, B H; Sanchez, A; Sanchez Martinez, V; Sandaker, H; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, T; Sandoval, C; Sandstroem, R; Sankey, D P C; Sansoni, A; Santamarina Rios, C; Santoni, C; Santonico, R; Santos, H; Saraiva, J G; Sarangi, T; Sarkisyan-Grinbaum, E; Sarri, F; Sartisohn, G; Sasaki, O; Sasao, N; Satsounkevitch, I; Sauvage, G; Sauvan, E; Sauvan, J B; Savard, P; Savinov, V; Savu, D O; Sawyer, L; Saxon, D H; Saxon, J; Sbarra, C; Sbrizzi, A; Scallon, O; Scannicchio, D A; Scarcella, M; Schaarschmidt, J; Schacht, P; Schaefer, D; Schäfer, U; Schaepe, S; Schaetzel, S; Schaffer, A C; Schaile, D; Schamberger, R D; Schamov, A G; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Scherzer, M I; Schiavi, C; Schieck, J; Schioppa, M; Schlenker, S; Schmidt, E; Schmieden, K; Schmitt, C; Schmitt, S; Schmitz, M; Schöning, A; Schott, M; Schouten, D; Schovancova, J; Schram, M; Schroeder, C; Schroer, N; Schultens, M J; Schultes, J; Schultz-Coulon, H-C; Schulz, H; Schumacher, J W; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwemling, Ph; Schwienhorst, R; Schwierz, R; Schwindling, J; Schwindt, T; Schwoerer, M; Sciolla, G; Scott, W G; Searcy, J; Sedov, G; Sedykh, E; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekula, S J; Selbach, K E; Seliverstov, D M; Sellden, B; Sellers, G; Seman, M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Seuster, R; Severini, H; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shank, J T; Shao, Q T; Shapiro, M; Shatalov, P B; Shaw, K; Sherman, D; Sherwood, P; Shibata, A; Shichi, H; Shimizu, S; Shimojima, M; Shin, T; Shiyakova, M; Shmeleva, A; Shochet, M J; Short, D; Shrestha, S; Shulga, E; Shupe, M A; Sicho, P; Sidoti, A; Siegert, F; Sijacki, Dj; Silbert, O; Silva, J; Silver, Y; Silverstein, D; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simmons, B; Simoniello, R; Simonyan, M; Sinervo, P; Sinev, N B; Sipica, V; Siragusa, G; Sircar, A; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinnari, L A; Skottowe, H P; Skovpen, K; Skubic, P; Slater, M; Slavicek, T; Sliwa, K; Smakhtin, V; Smart, B H; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, B C; Smith, D; Smith, K M; Smizanska, M; Smolek, K; Snesarev, A A; Snow, S W; Snow, J; Snyder, S; Sobie, R; Sodomka, J; Soffer, A; Solans, C A; Solar, M; Solc, J; Soldatov, E; Soldevila, U; Solfaroli Camillocci, E; Solodkov, A A; Solovyanov, O V; Soni, N; Sopko, V; Sopko, B; Sosebee, M; Soualah, R; Soukharev, A; Spagnolo, S; Spanò, F; Spighi, R; Spigo, G; Spila, F; Spiwoks, R; Spousta, M; Spreitzer, T; Spurlock, B; St Denis, R D; Stahlman, J; Stamen, R; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staude, A; Stavina, P; Steele, G; Steinbach, P; Steinberg, P; Stekl, I; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stern, S; Stewart, G A; Stillings, J A; Stockton, M C; Stoerig, K; Stoicea, G; Stonjek, S; Strachota, P; Stradling, A R; Straessner, A; Strandberg, J; Strandberg, S; Strandlie, A; Strang, M; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Strong, J A; Stroynowski, R; Strube, J; Stugu, B; Stumer, I; Stupak, J; Sturm, P; Styles, N A; Soh, D A; Su, D; Subramania, Hs; Succurro, A; Sugaya, Y; Suhr, C; Suita, K; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, Y; Suzuki, Y; Svatos, M; Swedish, S; Sykora, I; Sykora, T; Sánchez, J; Ta, D; Tackmann, K; Taffard, A; Tafirout, R; Taiblum, N; Takahashi, Y; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A; Tamsett, M C; Tanaka, J; Tanaka, R; Tanaka, S; Tanaka, S; Tanasijczuk, A J; Tani, K; Tannoury, N; Tapprogge, S; Tardif, D; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tassi, E; Tatarkhanov, M; Tayalati, Y; Taylor, C; Taylor, F E; Taylor, G N; Taylor, W; Teinturier, M; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Ten Kate, H; Teng, P K; Terada, S; Terashi, K; Terron, J; Testa, M; Teuscher, R J; Therhaag, J; Theveneaux-Pelzer, T; Thioye, M; Thoma, S; Thomas, J P; Thompson, E N; Thompson, P D; Thompson, P D; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thun, R P; Tian, F; Tibbetts, M J; Tic, T; Tikhomirov, V O; Tikhonov, Y A; Timoshenko, S; Tipton, P; Tique Aires Viegas, F J; Tisserant, S; Todorov, T; Todorova-Nova, S; Toggerson, B; Tojo, J; Tokár, S; Tokunaga, K; Tokushuku, K; Tollefson, K; Tomoto, M; Tompkins, L; Toms, K; Tonoyan, A; Topfel, C; Topilin, N D; Torchiani, I; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiakiris, M; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsung, J-W; Tsuno, S; Tsybychev, D; Tua, A; Tudorache, A; Tudorache, V; Tuggle, J M; Turala, M; Turecek, D; Turk Cakir, I; Turlay, E; Turra, R; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Tzanakos, G; Uchida, K; Ueda, I; Ueno, R; Ugland, M; Uhlenbrock, M; Uhrmacher, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Unno, Y; Urbaniec, D; Usai, G; Uslenghi, M; Vacavant, L; Vacek, V; Vachon, B; Vahsen, S; Valenta, J; Valente, P; Valentinetti, S; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; van der Graaf, H; van der Kraaij, E; Van Der Leeuw, R; van der Poel, E; van der Ster, D; van Eldik, N; van Gemmeren, P; van Vulpen, I; Vanadia, M; Vandelli, W; Vaniachine, A; Vankov, P; Vannucci, F; Vari, R; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vassilakopoulos, V I; Vazeille, F; Vazquez Schroeder, T; Vegni, G; Veillet, J J; Veloso, F; Veness, R; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinek, E; Vinogradov, V B; Virchaux, M; Virzi, J; Vitells, O; Viti, M; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, A; Vokac, P; Volpi, G; Volpi, M; Volpini, G; von der Schmitt, H; von Loeben, J; von Radziewski, H; von Toerne, E; Vorobel, V; Vorwerk, V; Vos, M; Voss, R; Voss, T T; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vu Anh, T; Vuillermet, R; Vukotic, I; Wagner, W; Wagner, P; Wahlen, H; Wahrmund, S; Wakabayashi, J; Walch, S; Walder, J; Walker, R; Walkowiak, W; Wall, R; Waller, P; Wang, C; Wang, H; Wang, H; Wang, J; Wang, J; Wang, J C; Wang, R; Wang, S M; Wang, T; Warburton, A; Ward, C P; Warsinsky, M; Washbrook, A; Wasicki, C; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, A T; Waugh, B M; Weber, M; Weber, M S; Weber, P; Weidberg, A R; Weigell, P; Weingarten, J; Weiser, C; Wellenstein, H; Wells, P S; Wenaus, T; Wendland, D; Weng, Z; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Werth, M; Wessels, M; Wetter, J; Weydert, C; Whalen, K; Wheeler-Ellis, S J; White, A; White, M J; White, S; Whitehead, S R; Whiteson, D; Whittington, D; Wicek, F; Wicke, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wijeratne, P A; Wildauer, A; Wildt, M A; Wilhelm, I; Wilkens, H G; Will, J Z; Williams, E; Williams, H H; Willis, W; Willocq, S; Wilson, J A; Wilson, M G; Wilson, A; Wingerter-Seez, I; Winkelmann, S; Winklmeier, F; Wittgen, M; Wolter, M W; Wolters, H; Wong, W C; Wooden, G; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wraight, K; Wright, C; Wright, M; Wrona, B; Wu, S L; Wu, X; Wu, Y; Wulf, E; Wynne, B M; Xella, S; Xiao, M; Xie, S; Xu, C; Xu, D; Yabsley, B; Yacoob, S; Yamada, M; Yamaguchi, H; Yamamoto, A; Yamamoto, K; Yamamoto, S; Yamamura, T; Yamanaka, T; Yamaoka, J; Yamazaki, T; Yamazaki, Y; Yan, Z; Yang, H; Yang, U K; Yang, Y; Yang, Z; Yanush, S; Yao, L; Yao, Y; Yasu, Y; Ybeles Smit, G V; Ye, J; Ye, S; Yilmaz, M; Yoosoofmiya, R; Yorita, K; Yoshida, R; Young, C; Young, C J; Youssef, S; Yu, D; Yu, J; Yu, J; Yuan, L; Yurkewicz, A; Zabinski, B; Zaidan, R; Zaitsev, A M; Zajacova, Z; Zanello, L; Zaytsev, A; Zeitnitz, C; Zeller, M; Zeman, M; Zemla, A; Zendler, C; Zenin, O; Ženiš, T; Zinonos, Z; Zenz, S; Zerwas, D; Zevi della Porta, G; Zhan, Z; Zhang, D; Zhang, H; Zhang, J; Zhang, X; Zhang, Z; Zhao, L; Zhao, T; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, N; Zhou, Y; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhuravlov, V; Zieminska, D; Zimmermann, R; Zimmermann, S; Zimmermann, S; Ziolkowski, M; Zitoun, R; Živković, L; Zmouchko, V V; Zobernig, G; Zoccoli, A; zur Nedden, M; Zutshi, V; Zwalinski, L

    2012-06-29

    A search for the weak production of charginos and neutralinos decaying to a final state with three leptons (electrons or muons) and missing transverse momentum is presented. The analysis uses 2.06 fb(-1) of √[s]=7 TeV proton-proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with standard model expectations in two signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric and simplified models. For the simplified models, degenerate lightest chargino and next-to-lightest neutralino masses up to 300 GeV are excluded for mass differences from the lightest neutralino up to 300 GeV.

  20. Numerical experiments with a wind- and buoyancy-driven two-and-a-half-layer upper ocean model

    NASA Astrophysics Data System (ADS)

    Cherniawsky, J. Y.; Yuen, C. W.; Lin, C. A.; Mysak, L. A.

    1990-09-01

    We describe numerical experiments with a limited domain (15°-67°N, 65° west to east) coarse-resolution two-and-a-half-layer upper ocean model. The model consists of two active variable density layers: a Niiler and Kraus (1977) type mixed layer and a pycnocline layer, which overlays a semipassive deep ocean. The mixed layer is forced with a cosine wind stress and Haney type heat and precipitation-evaporation fluxes, which were derived from zonally averaged climatological (Levitus, 1982) surface temperatures and salinities for the North Atlantic. The second layer is forced from below with (1) Newtonian cooling to climatological temperatures and salinities at the lower boundary, (2) convective adjustment, which occurs whenever the density of the second layer is unstable with respect to climatology, and (3) mass entrainment in areas of strong upwelling, when the deep ocean ventilates through the bottom surface. The sensitivity of this model to changes in its internal (mixed layer) and external (e.g., a Newtonian coupling coefficient) parameters is investigated and compared to the results from a control experiment. We find that the model is not overly sensitive to changes in most of the parameters that were tested, albeit these results may depend to some extent on the choice of the control experiment.

Top